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Abstract 

Managers frequently deal with risk by considering uncertainty as an element of the decision 

problem over which they can exert control — for example, lobbyists trying to exert influence 

over regulators or managers trying to mitigate Operational Risks related to human processes. 

This perspective that the probabilities of uncertain events are at times ‘mutable’ — i.e. 

subject to one’s influence — has an important and previously under-appreciated role in 

decision-making under risk. The present research, structured as a series of three papers, 

addresses this gap between theory and practice on the topic of ‘control’ from a descriptive, 

theoretical and prescriptive perspective.  

The descriptive paper discusses a novel empirical test of the behavioural effect of 

‘control’ on risk taking. The key finding that control does not always enhance risk taking 

but, instead, has a moderating effect on attitudes to risk, extends insights from related 

research. Strong preference for exerting control to eliminate uncertainty is also revealed. 

Affective and cognitive interpretations of the findings are offered and their correspondence 

with managerial attitudes to risk taking is discussed. 

The theoretical paper builds on methods in Decision Analysis and Philosophy, and 

develops a new probability revision rule for modelling control as interventions on 

uncertainties. This rule is shown to dramatically alleviate the judgmental burden of analysing 

multiple interventions. Foundational properties for probability revision rules for 

interventions, similar to the coherence criterion for Bayes rule, are also constructed and a 

proof that the proposed rule satisfies these properties is offered. 

In the prescriptive paper, a real world application of the probability revision rule is 

illustrated in the context of Operational Risk assessment, where several uncertainties are 

controllable (e.g. staff strikes). It is shown how this rule can be integrated with Operational 

Risk calculations to explicitly incorporate the effect of managerial mitigations on loss events, 

thus making a useful contribution to the field. 

In summary, this research explores the concept of ‘probability control’ as a way to 

manage risks in the context of Decision Sciences. It furthers our behavioural understanding 

of risk attitudes to better resonate with managerial perspectives on risk taking and extends 

the relevance of Decision Analysis methods to corporate risk management. 
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Chapter 1       

An Introduction to the Notion of 

‘Control’ in Decision Sciences 
 

Some people want it to happen, some 

wish it would happen, others make it 

happen. 

-Michael Jordan 

1.1 Research motivation and context setting 

Decisions are integral to the lives of most people. By choosing between decisions and acting 

upon them individuals strive to bring about more desirable states of affairs (Von Mises, 

1957). Often, making decisions involves some uncertainty about the consequences of the 

decisions. Examples of such decisions that involve uncertainty are deciding to carry an 

umbrella or not, investing in stocks vs. fixed income bonds, selling or buying a house now or 

later, decisions about performing life threatening medical surgeries, a basketball player 

contemplating taking a long distance shot, earthquake evacuation programmes, etc. 

Furthermore, some of the potential consequences of a decision can be negative, such as 

losing initial capital when investing in stocks, or the loss of lives if an earthquake strikes. 

Colloquially, such decisions are regarded as being risky, i.e. they bear ‘the chance of 

something bad happening’. A formal definition of risk typically constitutes some 

combination of the severity of the negative consequences and how likely they are (e.g. 

Bedford and Cooke, 2001; Holton, 2004; Pate-Cornell, 1996).
1
  

People are willing to engage with risky decisions because, in the real world, risk is 

often positively correlated with the potential reward (positive consequences) (e.g. 

Loewenstein et al., 2001): a greater danger also presents a greater opportunity. For example, 

in the corporate world risk taking is believed to have a close bearing on an individual’s and a 

firm’s success (MacCrimmon and Wehrung, 1990, 1986); investing in stocks presents 

greater returns on investment than investing in bonds; entrepreneurs risk starting a business 

because they believe it has the potential to reap huge rewards; and the risks associated with 

                                                      

 

1 It is noted that a universal definition of risk is subject to debate in academia and definitions of risk often relate 

to context specific quantitative assessments such as probability assignments to uncertainty (Knight, 1921), Value-

at-Risk (Holton, 2002; Leavens, 1945; Markowitz, 1952; Roy, 1952), volatility, probability of loss, etc.  

http://www.brainyquote.com/quotes/quotes/m/michaeljor167382.html
http://www.brainyquote.com/quotes/quotes/m/michaeljor167382.html
http://www.brainyquote.com/quotes/quotes/m/michaeljor167382.html
http://www.brainyquote.com/quotes/authors/m/michael_jordan.html
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dangerous sports like bungee jumping are compensated by the thrill experienced. Dating 

back to the eighteenth century, developing methods for analysing and modelling the risk-

reward trade-off remains an active area of research across a wide range of disciplines 

(Bernstein, 1998).  

This thesis is centred on decisions under uncertainty and its focus is on a formal study 

of uncertainty management as a way to mitigate risks, in the context of Decision Analysis. 

The perspective adopted in this research is that, in many real world situations, voluntary 

actions serve as instruments that can interact with uncertainty to bring about the desirable 

consequences, or mitigate the undesirable consequences. Thus, rather than simply choosing 

an option that presents the optimal risk-reward tradeoff, individuals or organizations often 

seek to reduce the risk while retaining most of the potential rewards (see Huber, 2002, 

2007).  

Risks can be mitigated by controlling the impact of an unfavourable decision outcome 

to the decision maker (e.g. purchasing insurance) and/or by managing the uncertainty (e.g. 

taking measures to prevent the unfavourable event from occurring). Whether it is the impact 

or the uncertainty (or both) that can be controlled, this depends crucially on the nature of 

uncertainty that the decision maker experiences. For example, consider the various types of 

Operational Risks an organization may experience such as an earthquake, break down of IT 

systems, internal frauds, staff strikes, etc. (Basel Committee, 2003; Cummins and 

Embrechts, 2006). While the organization can put measures in place to control the impact of 

natural disasters, such as an earthquake (e.g. purchase insurance, set up alternative temporary 

work stations), it can do nothing to make the occurrence of an earthquake less likely. In 

contrast, for events corresponding to human processes, such as staff strikes, the organization 

can not only control the impact but also put measures in place to prevent strikes from 

occurring (e.g. periodically review employee satisfaction) or mitigate their severity (e.g. 

establish good relations with trade unions to terminate the strike quickly). Similarly, consider 

the decision of buying a small stake in a blue chip company (with no control over board 

decisions) vs. buying a large stake in a start-up (with control over board decisions). In the 

former case, the investor cannot influence the probability of a stock price increasing but in 

the latter case, the investor may be able to exert some control on improving the valuation of 

the company. 

 These examples motivate a qualitative distinction between uncertainties that are 

‘controllable’ and those that are ‘uncontrollable’ based on whether or not a decision maker 

can influence the probabilities attached to uncertain events. Such a distinction has been 

proposed previously from the perspective of whether the probabilities depend on skill or 

chance (Brandstätter and Schwarzenberger, 2001; Cohen, 1960; Goodie, 2003). In this 
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research, a more general distinction is made based on the mutability of the probability 

distribution of an uncertain event. This classification of uncertainty — based on 

controllability — is the key theme of this research and overarches the collection of three 

papers (Chapters 2 – 4) that constitute this thesis. The focus of all three papers that compose 

the thesis is on the study of decision making when the uncertainty is ‘controllable’ and this 

topic is explored from both behavioural and theoretical perspectives. 

1.1.1 On distinguishing uncertainty based on controllability 

A dichotomous conceptualization of uncertainty, based on qualitative factors, is not new to 

the analysis of uncertainty. A widely discussed distinction of uncertainty is based on its 

source, where uncertainty is classified as arising due to lack of knowledge (epistemic)
 
or due 

to random variation that cannot be explained (aleatoric — e.g. error in prediction, spinning 

of the roulette wheel) (Fox and Ulkumen, 2011; Chatterton, 2001; Gilboa, 1999; Pate-

Cornell, 1996; Hoffman and Hammonds, 1994; Chernoff and Moses, 1959; Hacking, 1975; 

Keynes, 1936). Another, more controversial, distinction of uncertainty is based on its 

quantification and uncertainties are distinguished in terms of class probability (or frequency 

probability) and case probability (or subjective probabilities that represent agents’ degrees of 

belief) (Morgan and Henrion, 1990; Von Mises, 1949, pp. 107–115). Although the 

foundational basis for both these classifications remains controversial, they are useful for the 

purpose of modelling and understanding uncertainty in complex decision problems. From a 

risk management perspective, the distinctions help recognize whether the uncertainty is 

reducible or not (see Winkler, 1996). From a behavioural perspective, there is evidence that 

the nature and the sources of uncertainty affect how people respond to uncertainty, and 

consequently, people’s decisions and preferences. This is illustrated by the famous Ellsberg 

Paradox (Ellsberg, 1961; see also Chow and Sarin, 2002).
2
 The qualitative distinction of 

uncertainty also underlies cognitive factors that inform probability judgements (Howell and 

Burnett, 1978), biases in probability judgements (e.g. hindsight bias is more salient in 

situations where uncertainty is epistemic (see Fox and Ulkumen, 2011)) and investment 

behaviours (Ulkumen et al., 2014). 

                                                      

 

2 The problem consists of one urn containing 30 red balls and 60 balls which may be blue or yellow. Subjects are 

presented with two decisions. In the first decision they choose between Bet A where the payoff is £100 if a red 

ball is drawn (£0 otherwise) and Bet B where the payoff is £100 if a blue ball is drawn. In the second decision the 

choice is between Bet C where the payoff is £100 if a red ball or yellow ball is drawn and Bet D where the payoff 

is £100 if a blue or yellow ball is drawn. Individuals choose Bet A and Bet D, contrary to what principles of 

rationality dictate, suggesting that individuals prefer to bet on known probabilities and have a distaste for 

ambiguity (unknown probabilities). 
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On a similar score, a conceptualization of uncertainty based on controllability, as the 

one proposed here, is also germane to the study and analysis of uncertainty but has not 

received much attention. From a risk management perspective, this conceptualisation helps 

distinguish “luck” from “knowing” from “managing”— an agent may not merely wish to 

cope with or manage risks that result from the model of the real world, but may instead act 

towards modifying the world so as to guarantee that favourable outcomes will ensue. With 

respect to the analysis of decisions, this concept of control recognizes that agents are not 

merely prognosticators of events, but in some situations can cause the desired outcomes to 

happen. 

 This perspective of causation and control is at the heart of how managers think about 

decisions under uncertainty and how they decide to take risk. The alliance of ‘control’ with 

‘risk’ is salient in managerial conceptions of risk; they make a sharp distinction between 

gambling (where the odds are exogenously determined and uncontrollable) and risk taking 

(where skill or information can reduce the uncertainty) (March and Shapira, 1987). A 

manager is considered to be taking good risks when s/he can control fate and is confident of 

success as opposed to gambling when s/he relies on fate. Managers also look for alternatives 

that can be managed to meet targets, rather than assess or accept risks (March and Shapira, 

1987; Strickland et al., 1966). Courtney (2000, p. 40) makes the observation that the size of 

strategic bets have the potential to shift the industry structure, thus alluding towards the 

notion that uncertainty is perceived by managers as being ‘shapeable’. The notion of 

controllability of uncertainty is also relevant when understanding the willingness of 

entrepreneurs to bear risks (Caliendo et al., 2009).  

 Outside the corporate world, there is evidence that perceived controllability has a 

positive impact on risk taking (e.g. Cohen, 1960; Chau and Phillips, 1995; Horswill and 

McKenna, 1999; Brandstätter and Schwarzenberger, 2001; Goodie and Young, 2007). For 

example, risk acceptance is higher when the probabilities associated with the uncertainty 

depend on skill, and hence are ‘controllable’ (Goodie, 2003; Goodie and Young, 2007); 

individuals find bets on skill-related probabilities more attractive than chance-related 

probabilities (Brandstätter and Schwarzenberger, 2001; Young et al., 2011) and driving 

speeds are higher when individuals imagine themselves as drivers rather than passengers 

(Horswill and McKenna, 1999). 

1.1.2 Addressing the notion of ‘controllable’ uncertainty 

It emerges that whether or not the uncertainty is controllable has a bearing on how people 

make decisions when faced with risk and uncertainty. When uncertainty is controllable, the 

choice of action is not viewed as a resolution of the decision problem at hand but as a way to 
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alter the problem or environment. Such acts, which control or modify the uncertainty, can be 

considered to be interventions — “active” interactions with the system to affect the causal 

factors that influence the uncertain states. Furthermore, since uncertainty generates much 

cognitive strain, being able to mitigate uncertainty in and of itself may have value 

(Humphreys and Berkeley, 1985). From a Decision Analysis perspective, this means that 

discussions of how uncertainty can be handled ought to be incorporated explicitly in the 

formal analysis of decisions (Humphreys and Berkeley, 1985).  

 In recent times, the pressing need for more research in Decision Sciences where the 

role of ‘control’ is formally acknowledged in the study and analysis of risky decisions has 

been reflected in discussions by scholars. Shatcher (2012), for instance, advocates that 

modelling the effect of actions on uncertainties can facilitate analysis of strategic decisions 

such as understanding decision opportunities or developing new and robust strategies. 

Rosenzweig (2013) emphasizes that identifying controllability of outcomes is essential to 

how individuals approach many decisions, frequently endeavouring to “make things 

happen”. von Winterfeldt et al. (2012) demonstrate how being in control of decisions or not 

can affect the value of information analysis of uncertain variables. While the field of 

Decision Sciences has a wealth of models, tools and techniques that study, analyse, explain 

and guide real world decision making, the notion of control has been under appreciated in its 

methods. By incorporating control as an explicit component of decision models, methods 

from Decision Sciences can be applied more usefully to analyse real world decisions, 

especially in the corporate world.  

 This research looks at the analysis of decisions where agents can exert control over 

the uncertain events on which the outcomes depend, i.e. the uncertainty is ‘controllable’. The 

papers in this thesis constitute a descriptive study of how controllability of uncertainty is an 

important determinant of risk taking behaviour, develop decision analytic techniques to 

explicitly model the impact of decision makers’ actions on uncertainties and discuss an 

application of the proposed techniques to analyse real world risk assessments and mitigations 

of Operational Risks. Developments in this direction can, hopefully, help better tie the 

managerial reasoning of risky decisions & corporate risk management to the methods of 

Decision Sciences. 

The rest of this chapter is organised as follows. In the next section, previous research 

on the topic of control is reviewed and some areas for further research are identified. In the 

subsequent section the research aims are established within the context of existing research, 

a brief overview of the method and approach used are presented and the potential 

contributions of this research are highlighted. The final section discusses the structure of the 
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remaining thesis. The appendix covers some detailed expositions of the research gaps that 

are identified. 

1.2 Previous research on the topic of ‘control’ and unresolved issues 

The notion of control has received attention in a number of disciplines that study decision 

making such as Behavioural Decision Making, Decision Analysis, Philosophy and Artificial 

Intelligence. In this research, the focus will be limited to the treatment of control in 

Behavioural Decision Making and Decision Analysis and only passing remarks are made on 

associations with other disciplines. This section briefly reviews some of the discussions in 

these areas of study and exposes some of the issues that arise in Decision Sciences when the 

notion of ‘controllable uncertainty’ and ‘control’ is explicitly introduced into the formal 

analysis of decisions. Research areas that can merit from further study and are covered in 

this thesis are also identified. 

1.2.1 Behavioral Decision Making  

In the field of Behavioural Decision Making, the topic of control has been studied from a 

number of different perspectives. Early notions of control closely correspond to skill related 

probabilities and studies have shown that contrary to the thesis of ambiguity aversion, agents 

prefer to bet on skill (imprecise probabilities) rather than on chance (precise probabilities, 

e.g. ascertained from a roulette wheel) (Cohen, 1960, p. 85; Cohen and Hansel, 1959; 

Howell, 1971). This behaviour can in part be explained by overconfidence in one’s own 

performance (Howell, 1971) and favourable perceptions of one’s competence (Heath and 

Tversky, 1991). Langer (1975) studied the effect of ‘illusionary control’ — when pertinence 

of skill in the task is mistaken, arising from situational factors such as familiarity, 

involvement, foreknowledge, reinforcement — and found a positive effect on the amount 

subjects were willing to bet or options they chose. Following this seminal study, a number of 

experiments have been conducted on the variants of illusion of control (see Presson and 

Benassi (1996) for a review), all confirming a positive effect of illusion of control on the 

attractiveness of options. A recent test of this choice-judgement discrepancy
3
 (Li, 2011) 

revealed that in some cases, preference for an option stems from a source preference (Chew 

and Sagi, 2008), rather than illusion, since subjects recognize that they cannot modify the 

probabilities of the task at hand. Goodie (2003) revisited the relation between control and 

                                                      

 

3 The choice-judgement discrepancy (Heath and Tversky, 1991) is the preference to bet on event A over B even 

when B is judged to be at least as likely as A. 
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skill and introduced a formal definition of control as ‘probability alterability’ which 

corresponds closely to the concept of control in this thesis. Subsequent studies verified that 

controllability of uncertainty influences risk acceptance on skill related probabilities 

independently of competence in tasks (Goodie and Young, 2007) and this attractiveness for 

bets on controllable probabilities can be captured by an elevated probability weighting 

function (Young et al., 2011). Huber (2002) argues that control and managing the risks is an 

essential ingredient of every day decision making which is absent in most laboratory studies 

on decision making. His experiments indicate that preference for alternatives are driven by 

the presence of an opportunity to mitigate risk either before or after the occurrence of a 

negative event (Huber, 1997, 2007).  

It appears that the topic of control has been studied from a variety of behavioural 

perspectives and there is sufficient evidence that control is an important determinant of risk 

taking. In most studies, however, the manipulation of control has revolved around 

perceptions of control and invariably been confounded with other factors such as 

competence or overconfidence. A more ‘pure’ test of the effect of control on choices and risk 

taking would be desirable. Furthermore, while endeavours have been made to explain the 

effect of control on risk acceptance using popular theories of decision making, such as 

Cumulative Prospect Theory (Tversky and Kahneman, 1992), there is scope for more 

research in this direction. Specifically, by studying the effect of control over a wider range of 

probability levels and alternative decision frames, especially payoff domains which entail 

losses only (for example, as is the case for managers dealing with Operational Risks), its 

effect on the commonly observed fourfold pattern of risk attitudes
4
 can be captured. This 

would lead to a more comprehensive understanding of the behavioural effect of control on 

risk taking. Both these directions will be explored in one part of this research. 

1.2.2 Decision Analysis  

The concept of control is implicit in decision support tools such as influence diagrams 

(represented by an arc from a decision node to a state node) (Howard and Matheson, 1984, 

2005) and decision trees (represented by asymmetric decision trees). Decisions that affect 

probabilities of a state are conceptualized as ‘interventions’ on uncertainty (e.g. Matheson 

and Matheson, 2005). In contrast to the analysis of information which has been explored 

extensively, there have been very limited discussions on the formal treatment of 

                                                      

 

4 The fourfold pattern of risk taking, predicted by Cumulative Prospect Theory, corresponds to risk aversion for 

moderate to large probability of gains, risk seeking for small probabilities of gains, risk seeking for moderate to 

large probabilities of losses and risk aversion for small probabilities of losses. 
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interventions. In the case of information, Bayes rule
5
 is well established as a probability 

revision rule for modelling the effect of information on probability distributions. A 

probability revision calculus simplifies the input information required when dealing with 

complex decisions, described by large graphical networks (e.g. Pearl, 2000, p. 14). It enables 

the analyst to obtain probability inputs independently for different uncertain states from 

different experts, exploit the mathematical relationship between uncertain states to reduce 

the judgemental burden of obtaining the inputs, as well as update the distributions when one 

or more variables are eliminated or introduced in the graph (illustrated in Appendix section 

1.5.1 for Bayes rule). 

When probabilities depend on decisions, however, Bayes rule cannot be used to 

modify the probabilities as it would require probabilities to be assigned to actions, which is 

unnatural. Typically, several probability distributions conditional on each decision are 

elicited. As will be demonstrated in section 3.3.3, this approach can be judgementally very 

burdensome especially when several interventions need to be explored and the controllable 

state depends on other state nodes. It is for this reason, perhaps, that the majority of research 

in Decision Analysis and related disciplines has focused on analysing interventions that 

bring about a state outcome with certainty. A treatment of control as a perfect intervention 

on a state node, analogous to the concept of Expected Value of Perfect Information, was first 

proposed by Matheson (1990) using influence diagrams. A preliminary extension of the 

concept of perfect control to imperfect control is offered by Matheson and Matheson (2005) 

within the context of influence diagrams. Their approach called the ‘generic controller’, 

describes a Bayesian procedure to obtain the distribution conditional on an intervention as a 

probability revision of a pre-intervention distribution (distribution corresponding to the do-

nothing option). A detailed discussion of the generic controller is offered in section 3.3.1.  

While the procedural simplicity of the generic controller is appealing, as will be 

discussed later in this thesis, it is limited in the type of interventions it can model. 

Nonetheless, it is an interesting step in the direction of developing a probability revision 

calculus for describing the effect of actions on probability distributions and mirrors the well-

established use of Bayes rule as a method for modelling the effect of information on 

probabilities. Advancing the research on modelling the dependence of probabilities on 

actions in Decision Analysis as probability revision rules, can enhance its use in practice, 

                                                      

 

5 According to Bayes rule, the probabilities of a state 𝑆𝐴 = {𝑠𝑖
𝐴}, given information about another state 𝑠𝑘

𝐵 ∈

𝑆𝐵 = {𝑠𝑖
𝐵}, is computed using the equation 𝑃(𝑠𝑖

𝐴| 𝑠𝑘
𝐵) = 𝑃(𝑠𝑖

𝐴, 𝑠𝑘
𝐵)/𝑃(𝑠𝑘

𝐵). 



1.2. Previous research on the topic of ‘control’ and unresolved issues  23  

 

 

especially in areas of risk management. Developing methods to model interventions and their 

impact on probability distributions is therefore one of the key areas of focus in this research. 

It is worth noting that one of the reasons that the field of Decision Sciences has 

neglected the study of decision problems where probabilities can depend on decisions is 

because introducing this dependence conflicts with the underlying axioms that support 

Expected Utility Theory. While decision theories which allow this dependence have been 

proposed and debated (for example variants of Conditional Expected Utility Theory (Jeffrey, 

1965; Bolker, 1967; Luce and Krantz, 1971) and Causal Decision Theory (Gibbard and 

Harper, 1978; Lewis, 1981; Skyrms, 1982; Armendt, 1986; Joyce, 1999)), their use has been 

somewhat limited and a marriage of these theories with non-canonical influence diagrams 

remains to be exposed. A detailed discussion of this issue is beyond the scope of this thesis. 

1.2.3 Other disciplines 

In other disciplines, the notion of control is embedded in the concept of causality. Pearl 

(2000) has produced pioneering work on causality in the field of Artificial Intelligence. In 

Pearl’s framework the relationship between variables described by a graph, such as Bayes 

networks, acquire a functional characterization and the outcome of a state 𝑆 is determined by 

some function 𝑓(∙). An intervention on a state 𝑆 is represented by replacing the function 𝑓(∙) 

with the fixed value that represents the state brought about by the intervention and the graph 

is modified to eliminate all arcs into the state node intervened on. These ‘atomic’ 

interventions are represented by mechanism modifying operators 𝑑𝑜(𝑆) and the probability 

distribution of the revised graph is updated using a ‘truncated’ Bayes factorization formula 

(Pearl, 2000, chap. 3). Heckerman and Shachter (1995; Shachter and Heckerman, 2010) link 

Pearl’s model and the 𝑑𝑜(∙) operator with decision theoretic primitives in an influence 

diagram — acts, states and consequences. They define causality based on the notion of 

‘unresponsiveness’ of one variable to another variable in an influence diagram and analyse 

the dependence of uncertainties on actions using ‘mapping variables’. 

One limitation of the treatment of interventions offered in the field of Artificial 

Intelligence is that it treats interventions as being deterministic, i.e. the intervention 

eliminates uncertainty entirely from the state node. It is not immediately clear how more 

realistic interventions, which modify the probability distribution of a specific state variable, 

can be represented. As suggested in section 1.2.2, developing a more general probability 

calculus for interventions, which is not restricted to atomic or ‘perfect’ interventions, can be 

useful for modelling real world decisions. Addressing this need will be a primary intent of 

the methods for modelling interventions that are developed in this research. 
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Some of the interesting characteristics of probability modifications as a result of 

intervention vs. obtaining new information are highlighted in decision situations when the 

‘controllable’ uncertain state also depends on other uncertainties. In particular, the effect of 

actions on probabilities cannot be treated like the effect of information on probabilities 

(Pearl, 2000, chap. 4); treating decisions as evidence can lead to erroneous inferences such as 

“patients should avoid going to the doctor to reduce the probability that one is seriously ill” 

or “students should not prepare for exams lest this would prove them behind in their studies” 

(see Pearl, 2000, pp. 108, 242). Such paradoxical decision cases, exemplified by the 

Newcomb paradox
6
 (Nozick, 1969), have been discussed extensively in areas of Philosophy, 

leading to two variants of Expected Utility Theory — Evidential Utility Theory and Causal 

Decision Theory. The two theories differ in their interpretation of probabilities conditional 

on decisions: Evidential Decision Theory treats the conditional probabilities as ordinary 

Bayes conditionals (‘𝑠𝑖 ∈ 𝑆 given 𝑎 is performed’) (thereby spuriously adjusting 

probabilities for any correlation between an action and a state, even when the probabilities of 

the state do not depend on the action), whereas in Causal Decision Theory the conditionals 

are treated as counterfactuals (‘𝑠𝑖 ∈ 𝑆 if 𝑎 were performed’) and describe causal influences 

of actions on uncertainty. The latter treatment of conditionals is considered to be a more 

suitable interpretation for actions (see Pearl, 2000, p. 112). A probability transformation for 

dealing with counterfactuals, called imaging, was described by Lewis (1976) and was later 

generalized by Gardenfors (1982). A simplified review of imaging and its comparison with 

the 𝑑𝑜(∙) operator is offered by Pearl (2010). More details on imaging are discussed in 

section in section 3.3.3.  

While there appears to be some work exposing the relationship of the 𝑑𝑜(∙) operator 

with the concept of control in Decision Analysis (Shachter and Heckerman, 2010) as well as 

with imaging (Pearl, 2010), the relationship between Decision Analysis techniques to model 

control and imaging does not appear to have been explored before. In this research, 

potentially interesting relationships between Decision Analysis methods (e.g. generic 

controller) and imaging will be investigated.  

                                                      

 

6 In this fictitious paradox, there is a being who can predict the future choices of any individual with full 

confidence and is known to have never erred. Suppose there are two boxes B1 and B2. B1 contains $1000 and B2 

may contain $0 or $1,000,000 ($ M). An individual is presented with the choice of taking both the boxes or only 

B2. The individual knows that if the being predicts he will take both boxes, then the being will not put $M in B2. 

If, instead, the being predicts that the individual will take only B2, then he will put $M in B2. The sequence of 

events is as follows: The being first predicts the choice the individual will make and then puts the respective 

amount of money in B2. Then the individual makes a choice. The question is: what is the optimal choice for the 

individual? 
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It is worth observing that, perhaps, one reason why no reference to imaging appears in 

the Decision Analysis literature is that its supporting arguments are based on topics such as 

causality and counterfactual reasoning, which Decision Analysis has stayed clear of (see 

Shachter, 2012). In comparison, the widely used belief revision rule for information — 

Bayes rule — is grounded in rationality arguments like Dutch books (Teller, 1973) which 

mesh more naturally with the Decision Analysis approach. Perhaps developing similar 

coherence arguments for imaging, or any probability revision rule for interventions in 

general, can make their use more compelling and relevant in Decision Analysis. Establishing 

some foundational properties for probability revision rules for interventions will therefore 

also be an area of focus in this research. 

Finally, it is noted that another area that also deals with the concept of control is 

Markov Decision Processes (Howard, 1960). Control is modelled as a state transition 

function which describes the probabilities that an action will move the system from one state 

to another. Much of the discussion of Markov Decision Processes is centred on dynamic 

processes where the same state acquires different values and outcomes of the state are either 

partially or completely observable at the time of a decision. While it is recognized that there 

could be potential synergies between Markov Decision Processes and modelling techniques 

in Decision Analysis, the literature on Markov Decision Processes is not covered in this 

research. The next section outlines the topics on control that are studied in this research. 

1.3 Research focus 

The previous subsection exposed a number of areas of research in Decision Sciences where 

the topic of control can merit from further study. Some of these directions of research will be 

explored in this thesis and others are left to future research. The research directions explored 

in this thesis relate to expanding the prevailing behavioural understanding of the effect of 

control on risk taking as well as further developing the techniques for modelling 

interventions in Decision Analysis. Potential real world applications of the methods 

developed will also be explored. While an attempt will be made to link the methods to model 

control in Decision Analysis with belief revision rules in Philosophy, their correspondence 

with other disciplines, such as Markov Decision Processes and Artificial Intelligence, will 

not be covered here. The issue related to the normative foundations of decisions where 

probabilities depend on actions is also left to future research. 

1.3.1 Research aims 

The overarching goal of this research is to further develop the formal study of decisions in 

contexts which present the opportunity to modify uncertainties so that they mesh more 
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naturally with managerial perspectives of uncertainty and how it can be managed. It seeks to 

better understand the potential effects of control over uncertainty on risk taking and 

endeavours to expand the quantitative tools for modelling the effect of control on probability 

distributions, while also exploring their applications in a corporate context. In relation, this 

research investigates four main research questions and two secondary questions. The first 

two of the six research aims are formulated in the area of behavioural decision making. 

Research aims 3-5 relate to theoretical methods of Decision Analysis. The final aim acquires 

a prescriptive flavour and concerns the practical value of the formal methods for analysing 

control that will be developed in the research. The six research aims are: 

1. In the context of behavioural decision making, a primary aim is to provide a more 

comprehensive understanding of the behavioural effect of control on risk taking. 

Specifically, an empirical test, which covers a wider range of probabilities and 

payoffs (than explored by extant studies) and also endows individuals with actual 

control over probabilities, will be designed and implemented. The purpose of such a 

study is to test the effect of control on the fourfold pattern of attitudes to risk that is 

predicted by state-of-art theories of decision making such as Cumulative Prospect 

Theory (Chapter 2). 

2. A secondary aim of the behavioural study of control, also related to one of the theses 

of Cumulative Prospect Theory (certainty effect), is to examine if preferences for 

exerting control relate to prior probabilities of success and if exerting control is 

valued differently based on whether it only modifies probabilities or also eliminates 

uncertainty (Chapter 2). 

3. From an analytic perspective, a primary aim is to expand the existing procedures of 

Decision Analysis to model the effect of control on probability assessments in a 

tractable and more general way. Specifically, the goal is to develop a procedure that 

can capture beliefs about interventions that are not restricted to those that bring 

about any one outcome of an uncertain state with certainty or improve the 

probability of only one state (Chapter 3).  

4. Another primary aim of the analytic research is defending the suitability of existing 

and proposed probability revision procedures for interventions by establishing 

theoretical foundations for them which are similar to the coherence criterion that 

supports Bayes rule (Chapter 3). 

5. A secondary aim of the theoretical research on control is exploring any connections 

between modelling techniques for control in Decision Analysis and probability 

revision rules in Philosophy (e.g. imaging) (Chapter 3). 
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6. The final primary aim of the research, in the context of practical application of the 

present research, is to apply the procedure developed in this thesis in a real world 

context, to assess its feasibility and potential usefulness (Chapter 4). 

Since these research aims span a number of different sub disciplines of Decision Sciences, 

the methods of research employed are also distinct. The next subsection details the 

approaches used to address these questions. 

1.3.2 Research methodology 

The study of decision making has been broadly distributed between three different 

approaches (Bell et al., 1988; Tsoukiàs, 2008) — 1) the normative approach, which seeks to 

construct theories of how people should make decisions; 2) the descriptive approach, which 

offers formal explanations of how people do make decisions; and 3) the prescriptive 

approach, which integrates the normative and descriptive insights to devise techniques to 

help people make better decisions. The three papers in this research, on the role of control in 

the study of decision making, can be roughly distinguished based on these three approaches 

and correspond to different aspects of extant research on control. 

The first paper (Chapter 2) is firmly rooted in the descriptive study of control and 

endeavours to understand how a key aspect of decision making — attitudes to risk — are 

different with and without control. It takes the fourfold pattern of risk attitudes described by 

Cumulative Prospect Theory as a starting point, which is well-established especially for 

decisions where subjects cannot exert control on the probabilities (Tversky and Kahneman, 

1992). Through a randomized controlled within–subject study, conducted using 

approximately 300 human subjects, the research in this paper exposes if and how the 

fourfold pattern of risk attitudes is altered when individuals have an opportunity to exert 

control on the probabilities. The data gathered is also analysed statistically from a different 

perspective to check if preference for exerting control is driven by prior probabilities of 

‘success’ and for the prevalence of the well-known certainty effect (Tversky and Kahneman, 

1986). 

The second paper (Chapter 3) has a theoretical focus and the latter part of this paper 

acquires a normative flavour. The first part of the paper is aimed towards building a general 

probability revision rule for modelling the effect of actions that extends and integrates 

existing approaches for modelling probability revisions described by interventions. Taking 

Matheson and Matheson’s (2005) generic controller as a starting point, modifications to their 

procedure are introduced incrementally so that a wider class of interventions can be 

modelled. Once a sufficient generalization of the generic controller is obtained, the 

equivalence of the generalized generic controller and probability revision rules proposed in 
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other disciplines (specifically ‘imaging’) are formally established. In the second part of the 

paper, the proposed probability revision rule is defended on normative grounds using Dutch 

book type arguments, similar to the ones that support Bayes rule as the ‘rational’ procedure 

for processing information and updating beliefs. In particular, for special instances of 

interventions — interventions on state nodes that depend on other state nodes — a Dutch 

book argument is presented for the generalized generic controller and some other desirable 

properties are also exposed. The discussions presented in this paper are illustrated using a 

fictitious example of a firm contemplating advertising to increase the probability of a higher 

market share. 

The third paper (Chapter 4) seeks to test the practical value of the method developed 

in Paper 2 and demonstrates how using the generalized generic controller can help generate 

risk assessments that tie more easily with managerial thinking, while also saving 

computational effort when the assessments need to be revised. One area where the concept of 

‘controllable’ uncertainty is especially relevant is Operational Risks. The paper presents an 

approach for operationalizing the generalized generic controller so that it is more accessible 

to the analyst and its algebraic properties are also made more transparent. Using this 

alternative approach, the generalized generic controller is adapted to represent mitigations 

contemplated by Operational Risk managers. The integration of the generalized generic 

controller with existing risk assessment models in Operations Research is illustrated using a 

real world case-study where the mitigation examined is actions to reduce the probability of 

an extended staff strike, in the event of an outage. This case study was performed for a major 

European insurance company. The proposed method to model interventions was built as an 

overlay to the existing model (in Excel) and most other inputs were borrowed from the 

model that was already in place. Inputs specific to the generalized generic controller were 

elicited using a questionnaire and phone discussions. The analysis presented, however, 

assumes hypothetical inputs and the relationship between the inputs and eventual cost 

savings is presented for this specific case.  

Overall, the three papers span a wide range of research approaches and disciplines. 

The descriptive paper looks predominantly at the literature on behavioural decision making 

(e.g. Young et al., 2011; Seo et al., 2010; Fennema and Wakker, 1997; Wu and Gonzalez, 

1996; Tversky and Kahneman, 1992), and some related literature in psychology (e.g. Bryant 

and Dunford, 2008; Crowe and Higgins, 1997; Higgins, 1996a) and behavioural agency 

theory (e.g. Wiseman and Gomez-Mejia, 1998). The theoretical paper mainly scopes the 

literature in Decision Analysis (e.g. Matheson and Matheson, 2005; Matheson, 1990; 

Shachter, 1986; Howard and Matheson, 1984, 2005) and areas of Philosophy which have 

discussed belief revision rules (e.g. Lewis, 1976; Gardenfors, 1982). The application paper 
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reviews some literature in Operational Risk assessment (e.g. Chaudhury, 2010; Antoine 

Frachot et al., 2001), in addition to the literature covered in the theoretical paper. 

1.3.3 Potential research contributions 

The interdisciplinary approach of this thesis, possibly, brings some novel insights to the 

behavioural understanding of decision making under uncertainty and also makes potential 

contributions to the formal modelling of decisions when uncertainties are controllable, with 

the intent of extending the applicability of Decision Analysis to risk management. Here a 

brief overview of the contributions is offered. A more detailed review is presented in the 

concluding chapter (Chapter 5). 

In the context of Behavioural Decision Making, the findings from the present study 

that control has a moderating effect on attitudes, contributes to the prevalent understanding 

of how control affects risk taking. This finding is not at odds with previous research, which 

has found that control increases risk taking, but extends these findings to decision situations 

that have not been studied before. Specifically, the experimental design in this research 

covers cases where risk seeking behaviour persists in the absence of control (e.g. negative 

valued payoffs) which haven’t been explored properly by previous research. An attempt is 

made to offer a deeper understanding of the observed effects and why control affects risk 

taking by evoking the affective and cognitive factors that underlie risk taking behaviour and 

their interaction with control. Connections are also made between these explanations and 

contextual variations in managerial risk attitudes. In terms of preference for exerting control, 

the findings from the study endorse the certainty effect: other things equal (such as relative 

riskiness of prospect), it is found that the control is valued more when it guarantees some 

gains or eliminate sure losses. While this insight is not new, it highlights the need to 

explicitly value ‘certainty’ when performing a value of control analysis so that the resulting 

recommendations better resonate with real world perceptions of how control is valued. 

From an analytic perspective, one potential contribution of the present research is that 

it augments the tool kit of Decision Analysis by proposing a general probability revision rule 

for interventions. The proposed method builds on the existing procedures in Decision 

Analysis (e.g. generic controller (Matheson and Matheson, 2005)) and links it to belief 

revision rules in other disciplines such as Philosophy (e.g. imaging (Gardenfors, 1982)). The 

potential usefulness of this development, in terms of alleviating the judgmental burden of 

eliciting probabilities in ‘large’ influence diagrams, is highlighted. A second, more 

theoretical, potential contribution is the development of a normative rationale for using the 

existing and proposed procedures for modelling interventions which mirror the coherence 

arguments presented for using Bayes rule as the probability revision function for 
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information. By showing that existing and the proposed probability revision rules for 

interventions satisfy some key properties that are proposed and defended in this research, the 

hope is that it makes the use of these probability revision rules for interventions more 

compelling. 

From a practical perspective, the present research demonstrates how the methods 

developed in this thesis can contribute to the techniques of modelling and assessing 

Operational Risks. By demonstrating how the proposed probability revision methods for 

modelling interventions can be operationalized and used to model the Operational Risk 

mitigations, this research endeavours to integrate Decision Analysis methods with 

Operational Risks. It is argued that this integration can significantly alleviate the burden of 

both obtaining inputs for Operational Risk models and updating them periodically to reflect 

changes in policies and decisions in an organization. Consequently, by simplifying the 

process by which value of mitigations (in terms of cost savings) is quantified, it can also 

serve the exploration of alternative risk management policies. 

1.4 Structure of this thesis 

This thesis is structured as a collection of three papers which are presented as three separate 

chapters. These chapters acquire the style of working papers, i.e. they have the authors listed 

and contain an abstract. Each of the papers have been written with a target journal in mind 

and the presentation, length and style of the papers have been adapted to roughly meet the 

respective journal guidelines while respecting some uniformity for the purpose of this thesis. 

Additional discussions or explanations that support the contents of the papers have been 

included as appendices (material that will be submitted to journals) and supplementary 

material (material which will most likely not be submitted to journals). All the three papers 

are published as working papers on the Management Science website at the London School 

of Economics. 

Chapter 2 presents the paper on the behavioural effects of control on risk attitudes. 

Chapter 3 is the paper which develops a probability revision rule for interventions and 

establishes the theoretical foundations for any probability revision rule for interventions. 

Chapter 4 constitutes the paper which was developed in collaboration with the Operational 

Risk and Human Resources team of a leading insurance company. It discusses the 

operationalization of the probability revision rule proposed in Chapter 3 and demonstrates its 

application to a specific Operational Risk scenario. The concluding chapter, Chapter 5, 

summarizes the key ideas of this research, discusses its limitations, the challenges 

experienced and directions for future research. The Annexure discusses the basic expected 

utility framework for analysing decisions (preliminary concept which overarches Chapters 2 
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and 3), its extensions to study and model behavioural attitudes to risk (relevant for Chapter 

3) and a decision modelling tool, influence diagrams (used in Chapter 4 and 5). 

1.5 Appendix for Chapter 1 

1.5.1 The practical advantages of a probability revision calculus 

Consider Figure 1-1: When a state node (e.g. 𝑆𝐶) depends on another state node (e.g. 𝑆𝐵), 

Bayes rule describes how the probabilities of the state node (𝑆𝐶) are updated to incorporate 

information about the preceeding state node (𝑆𝐵) that it depends on. The relationship is 

given by 𝑃(𝑠𝑖
𝐶|𝑠𝑗

𝐵) = 𝑃(𝑠𝑖
𝐶 , 𝑠𝑗

𝐵) 𝑃(𝑠𝑗
𝐵)⁄ . This relationship also describes the decomposition 

of a joint probability distribution into conditional and marginal distributions which has a 

number of practical advantages when analysing graphical models such as Bayes nets and 

influence diagrams. 

Figure 1-1: Hypothetical relationship between states which can feature in an influence diagram.  

 

 

 

Firstly, it can significantly reduce the judgemental burden of eliciting the joint probability 

distribution of the uncertain variables. Consider Figure 1-1 again. Suppose each of the states 

𝑆𝐴, 𝑆𝐵, 𝑆𝐶 have 3 outcomes. The joint probability distribution 𝑃(𝑠𝑘
𝐴, 𝑠𝑗

𝐵 , 𝑠𝑖
𝐶) requires 26 

probability inputs. However, applying Bayes rule, we have 

𝑃(𝑠𝑘
𝐴, 𝑠𝑗

𝐵, 𝑠𝑖
𝐶) = 𝑃(𝑠𝑘

𝐴)𝑃(𝑠𝑗
𝐵|𝑠𝑘

𝐴)𝑃(𝑠𝑖
𝐶|𝑠𝑗

𝐵) and the right hand side of this equation needs 

only 14 inputs. Secondly, the decomposition of the joint distribution enables an analyst to 

obtain the probabilities of the various states independently from different experts. This is 

especially useful when working with large influence diagrams were the required information 

may be needed from different people. Finally, if the influence diagram is modified so that 

some of the dependencies are dropped (e.g. node 𝑆𝐴 is removed) then Bayes rule can be used 

to compute the probabilities of the new influence diagram 𝑃(𝑠𝑗
𝐵, 𝑠𝑖

𝐶) = 𝑃(𝑠𝑗
𝐵)𝑃(𝑠𝑖

𝐶|𝑠𝑗
𝐵) 

where 𝑃(𝑠𝑗
𝐵) = ∑ 𝑃(𝑠𝑘

𝐴)𝑃(𝑠𝑗
𝐵|𝑠𝑘

𝐴)𝑘  and the probabilities do not need to be elicited again. 
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PRELUDE TO CHAPTER 2 

This chapter is in the area of Behavioural Decision Making. Attitudes to risk are a widely 

studied topic in Behavioural Decision Making and there has been ample work on examining 

and explaining contextual variations in risk attitudes. Closer to the topic of this thesis, there 

has been some empirical work on studying how ‘control’ over uncertainty affects risk taking. 

Control, however, has been conceptualized in many distinct ways (e.g. illusionary control, 

source preference, probability alterability). 

In this chapter, control is conceptualized as the opportunity to modify probabilities of an 

uncertain event, before playing a gamble, and will be manipulated as a fixed shift of 

probability mass from the worse outcome to the better outcome. A novel randomized 

controlled study is presented to explore two behavioural research questions related to 

control: 1) its effect on risk taking; and 2) behavioural perceptions of how control is valued.  

The endeavour of the study is to expand prevailing understanding of how and why control 

affects risk taking, and the relationship between observations in a laboratory setting and 

accounts of managerial risk taking from the field, where uncertainty is often viewed as being 

controllable. Understanding the behavioural perceptions of how control is valued can be 

pertinent to analytic methods which measure the value of exerting control.  

Some basic concepts of the methods used to measure attitudes to risk and the basics of 

corresponding theories of decision making, that are relevant for this chapter, can be found in 

the Annexure. 
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Chapter 2      
The Moderating Effect of 

‘Probability Control’ on Risk 

Taking 

Shweta Agarwal
*
 

ABSTRACT 

When faced with risky choices, decision makers can often exert some control on the risks 

they experience, either by modifying the probabilities or the outcomes. Previous research on 

the topic of ‘control’ suggests that people are willing to accept more risk in decision 

situations where probabilities are ‘controllable’ (e.g. depend on skill) than when they depend 

on pure chance. A novel study is designed to investigate whether ‘control’, defined as the 

opportunity to alter the probabilities of a gamble, before playing it, can affect risk taking and 

tested for three types of gambles — gains-only, losses-only and mixed gambles. While for 

decisions without control, the choice patterns are found to be consistent with the fourfold 

pattern of risk attitudes predicted by Cumulative Prospect Theory (CPT), this pattern is 

‘neutralized’ in tasks where subjects could modify probabilities. Control was found to 

increase risk taking when risk-averse behaviour persists but reduce risk taking otherwise. 

These results are explained using previous findings about the relationship between affect and 

CPT as well as cognitive accounts of risk-seeking behaviour for losses, thus providing a 

deeper insight into why control affects risk acceptance. Consistent with the certainty effect, 

there is evidence that control is valued more when it guarantees gains or makes sure losses 

probable. The relation between this research and agency-based models of managerial 

attitudes to risk are also discussed. 
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2.1 Introduction 

When making decisions in the real world, individuals often have an opportunity to exert 

some control over the uncertainties they encounter (Goodie, 2003; Young et al., 2011). For 

example, in contrast to the weather on a particular day or the outcome of a sporting game 

(watched on television), which are ‘uncontrollable’ events, activities which depend on skill, 

such as how well one performs in an exam or whether a doctor will perform a medical 

surgery successfully are ‘controllable’ events (Brandstätter and Schwarzenberger, 2001; 

Rosenzweig, 2014). Similarly, in the corporate world, in addition to managing risks by 

controlling the outcomes (e.g. purchasing insurance), managers also endeavour to modify 

risks by influencing the probabilities of the uncertain events (e.g. operational risk 

management, marketing or product launch decisions) (March and Shapira, 1987; Courtney, 

2001; Goodie and Young, 2007; Rosenzweig, 2013, pp. 23–44). Understanding attitudes to 

risk when uncertainties are controllable, labelled here as the ‘decision with control’ (DWC) 

paradigm, is important because managers view risk taking as being fundamentally different 

from ‘gambling’ and often associate good management with being able to affect the odds of 

uncertain outcomes favourably (March and Shapira, 1987; Rosenzweig, 2014, pp. 23–44). 

The behavioural effect of ‘control’ on risk taking is also particularly relevant to models of 

agency theory and corporate governance that seek to explain managerial risk taking 

(Lefebvre and Vieider, 2014; Wiseman and Gomez-Mejia, 1998). 

The majority of empirical research on decision making under risk, however, examines 

choice behaviour using gambles where the probabilities of outcomes are based on pure 

chance events such as coin flips, drawing balls from an urn or spinning a roulette wheel. In 

these tasks, subjects cannot alter the probabilities of outcomes before playing the gambles, 

labelled here as the ‘decision without control’ (DWOC) paradigm. The stability of attitudes 

to risk in the DWOC paradigm has been studied extensively from a number of perspectives 

and there is empirical support that risk-seeking or risk-aversive behaviour depends on 

objective contingencies of gambles such as decision frame and the magnitude of 

probabilities (Tversky and Kahneman, 1992; Tversky and Wakker, 1995). A widely accepted 

theory of choice for the DWOC paradigm is Cumulative Prospect Theory (CPT) (Tversky 

and Kahneman, 1992) which predicts a fourfold pattern of risk attitudes — risk-aversion for 

moderate-to-large probabilities of gains and small probability of losses; risk-seeking for 

moderate-to-large probabilities of losses and small probabilities of gain. The psychological 

implications of this theory, namely, loss aversion, reflection effect and overweighting of 

small probabilities can account for many decisions in the real world, such as coexistence of 

lottery purchases and insurance (Tversky and Kahneman, 1992), over-betting on long-shot 

horses (Camerer, 2004), disposition effects (Camerer, 2004), investor decisions (Olsen, 
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1997) and incidence of fraudulent financial reporting (Fung, 2014). It has been suggested 

that the extent to which our understanding of attitudes to risk in the DWOC paradigm 

reflects decision making in situations where an agent can influence the risks, such as 

strategic decisions faced by managers, is questionable (Rosenzweig, 2013). This paper, 

therefore, studies the effect of control on risk taking and, in particular, on the fourfold 

pattern of risk attitudes. 

Over the years, various conceptualizations of control have been studied. Broadly, 

these can be classified into three types: i) effect of ‘illusionary control’(introduced by Langer 

(1975), see Presson and Benassi (1996) for a review), where control is manipulated by 

introducing skill related but probability independent cues in tasks;
1
 ii) effect of ‘control’ as a 

distinct source of uncertainty (Li, 2011), where control is manipulated as the opportunity to 

pick a random number to bet on; and iii) the effect of ‘probability alterability’ (Goodie, 

2003; Young et al., 2011) manipulated by comparing bet acceptance on skill (subjective 

probability of answering a general knowledge question correctly) as opposed to equi-

probable chance events. A common finding of all these studies is that perception of control
2
 

increases risk acceptance and this observed effect of control is not mediated by competence 

when probabilities depend on skill. Thus, although interlinked, inherent controllability of 

probabilities and competence in task (competence hypothesis (Heath and Tversky, 1991)) 

influence risk taking independently. Various dependent measures such as choice of bet 

(Brandstätter and Schwarzenberger, 2001; Goodie, 2003), coefficient of the probability 

weighting function (Young et al., 2011), investment amount (Li, 2011) have been used to 

capture the effect of control on risk taking. 

In this paper, ‘control’ is conceptualized as the opportunity to modify probabilities of 

a gamble before playing them and closely corresponds to Goodie’s (2003) conception of 

probability alterability. The present study extends the prevailing insights on the effect of 

control on risk taking in three important ways. Firstly, in contrast to previous studies on 

control, where probability was only perceived to be controllable and subjects did not have 

opportunity to actually alter the probabilities, in this study subjects were allowed to actually 

modify the probability of the events before playing the gamble. Thus, control was an 

objective characteristic of the task and not subject to judgement. Secondly, since emotional 

responses and, consequently, attitudes to risk have been found to be sensitive to decision 

frame (Bryant and Dunford, 2008; Seo et al., 2010), the effect of control is examined 

                                                      

 

1 Illusionary control was manipulated in several ways such as appearance of skill (compete against an attractive 

or awkward confederate in a chance task), degree of choice (choose or accept a lottery ticket), familiarity with a 

chance task (opportunity to try the task) and confidence (time spent contemplating if a lottery will be won). 
2
 Perceptions of controllability and the corresponding effects on risk taking can depend on the relevance of skill 

in the task (Chau and Phillips, 1995; Horswill and McKenna, 1999).  
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separately for all domains of payoffs — gains, losses and mixed gambles. Arguably, control 

can interact with the interdependence of affect, risk taking and decision frame, which can be 

relevant to any general explanation that can be offered about the effect of control on risk 

taking. However, previous studies on control have mostly focussed on gains-only gambles 

(Young et al., 2011; Goodie and Young, 2007; Brandstätter and Schwarzenberger, 2001). 

Thirdly, in this study, the effect of control is studied for the entire probability scale. In 

previous studies for which the concept of control closely corresponds to the one used in this 

paper (Goodie, 2003; Goodie and Young, 2007; Young et al., 2011), the effect of control has 

been studied only in situations where the probability of success is at least 0.5, because of 

how control was manipulated (as confidence in the answer to a general knowledge question). 

Considering the full probability scale, allows us to better relate the observed effects of 

control to the variations in risk attitude captured by descriptive theories of risk such as 

Cumulative Prospect Theory (Tversky and Kahneman, 1992). 

The findings from this study underscore the crucial mediating effect of payoffs and 

prior probabilities of success on any general conclusions that can be made on the effect of 

control on risk taking. In relation to the fourfold pattern of risk attitudes, findings from the 

present study suggest that control increases risk taking when risk-averse behaviour persists 

(i.e. for large probability of gains and small probabilities of losses), whereas the opposite is 

true when risk-seeking behaviour is prevalent (i.e. control reduces risk taking for small 

probability of gains and large probabilities of losses). Explanations for this moderating effect 

of control based on the interaction of control with affect, cognitive accounts of risk taking 

and regulatory focus are offered.  

This paper also examines preferences for exerting control at particular probability 

levels of ‘success’ and this phenomenon is formally described here as perceived value of 

control (PVoC) — the difference in expected utility of a risky option before and after control 

is exerted based on the CPT framework. PVoC is an extension of the ‘Expected Value of 

Control’ concept from Decision Analysis, where the benefit of exerting control is assessed 

by measuring the standard difference in utility (without probability weighting) (Matheson 

and Matheson, 2005; Matheson, 1990). According to CPT, however, the psychological value 

of probability changes that make a possibility an impossibility, or an impossibility a 

possibility, is greater than intermediate changes to probability. For a fixed change in 

expected utility, if PVoC is found to depend on prior probability of success, then it can 

inform analysis based on ‘Expected Value of Control’. In particular, the resulting 

recommendations may need to be sensitive to whether exerting control eliminates 

uncertainty or not (and not just the magnitude of utility change) in order to better tie 

individuals’ preferences for exerting control with theoretical solutions. An area where 

valuing control is especially useful is Operational Risk management (Agarwal and 
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Montibeller, 2014) where a number of uncertainties can be modified but due to limited 

resources and positive cost of mitigating risks, control can be exerted only selectively. The 

findings from this study reveal that, in line with CPT, there is a strong preference for 

exerting control at the boundaries of the probability scale, i.e. when exerting control can 

guarantee a positive payoff or make a sure (or nearly sure) loss probable. 

This paper is organized as follows. Section 2 describes the experimental set up. 

Section 3 and 4 discuss the analysis, findings and interpretations for the effect of control on 

risk taking and perceived value of control, respectively. In section 5, some auxiliary analyses 

corresponding to demographic and experimental factors are presented. In the concluding 

section, the relation of this research to managerial attitudes to risk is discussed and some 

directions for future research are proposed. The Appendix discusses the estimation of 

probability weighting functions for the data in this study and contains some other 

accompanying tables. 

2.2 Design of experiments 

335 graduate students (approximately 170 female) from London volunteered to participate in 

the study. Subjects were recruited online through an email invitation which contained a link 

to the experiment. The study was administered online and subjects were randomly assigned 

to one of three experiments, corresponding to three distinct payoff domains — gains-only, 

mixed, losses-only. Subjects were allowed to take the experiment any time they wanted and 

were told that the experiment would be closed as soon as the target number of respondents is 

reached. The three experiments employed a within-subject test of the effect of control on risk 

taking. Each experiment consisted of two conditions — Decision with control (DWC) and 

Decision without control (DWOC) — which were presented separately as two parts of the 

experiment.  

In each condition, subjects chose between two gambles. In the DWC condition, the 

two gambles presented were of the type 𝐴𝐷𝑊𝐶 = (£𝑥, 𝑝𝐴; £𝑦, 1 − 𝑝𝐴) vs. 𝐵𝐷𝑊𝐶 =

(£𝑥, 𝑝𝐵; £𝑦, 1 − 𝑝𝐵), 𝑥 > 𝑦, and subjects were told that they would play both gambles. They 

were asked to choose the gamble in which they prefer to improve the probability of the better 

outcome (£𝑥) from 𝑝∗ to 𝑝∗
′ = 𝑝∗ + .2 before an opportunity to play both gambles. Playing 

the two binary gambles, 𝐴𝐷𝑊𝐶  and 𝐵𝐷𝑊𝐶, is theoretically equivalent to playing a 

‘compound’ gamble with three outcomes of the type (£2𝑥, 𝑝;  £(𝑥 + 𝑦),1 − 𝑝 −  𝑞;  £2𝑦, 1 −

𝑞), where 𝑝 = 𝑝𝐴 ∗ 𝑝𝐵, and 𝑞 = (1 − 𝑝𝐴) ∗ (1 − 𝑝𝐵). This is illustrated in Figure 2-1. 
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Figure 2-1: The equivalence between playing two binary gambles and playing one 

corresponding three outcome ‘compound’ gamble. 

In the DWOC condition, subjects were presented with two gambles 𝐴𝐷𝑊𝑂𝐶  and 𝐵𝐷𝑊𝑂𝐶 

which corresponded to the ‘compound’ gambles obtained by modifying the probability in 

𝐴𝐷𝑊𝐶 and 𝐵𝐷𝑊𝐶, respectively, and subjects simply choose which gamble they prefer to play. 

Thus, if 𝑝𝐴
′ = 𝑝𝐴 + 0.2 and 𝑝𝐵

′ = 𝑝𝐵 + 0.2, the gambles in DWOC condition were: 

𝐴𝐷𝑊𝑂𝐶 = (£2𝑥, 𝑝𝐴
′ 𝑝𝐵; £(𝑦 + 𝑥), (1 − 𝑝𝐴

′ )𝑝𝐵 + (1 − 𝑝𝐵)𝑝𝐴
′ ; £2𝑦, (1 − 𝑝𝐴

′ )(1 − 𝑝𝐵)) 

𝐵𝐷𝑊𝑂𝐶 = (£2𝑥, 𝑝𝐵
′ 𝑝𝐴; £(𝑦 + 𝑥), (1 − 𝑝𝐵

′ )𝑝𝐴 + (1 − 𝑝𝐴)𝑝𝐵
′ ; £2𝑦, (1 − 𝑝𝐵

′ )(1 − 𝑝𝐴)) 
(2-1) 

The study consisted of 15 tests of the effect of control on risk taking. The tasks 

designed for the DWC condition were such that the payoffs were same for all 15 questions 

(gains-only: 𝑥 = 1500, 𝑦 = 0; losses-only: 𝑥 = 0, 𝑦 = −1500; mixed 𝑥 = 1500; 𝑦 =

−1500) but the probabilities, 𝑝𝐴 and 𝑝𝐵, were varied to be all pairwise combinations of 0%, 

5% 20%, 50%, 75%, 80%. Table 2-1 gives the set of 15 choice tasks for the DWC condition. 

The tasks for the DWOC condition were derived from the DWC tasks using equation (2-1) 

(see Table 2-12 in Appendix for a complete list).  

Table 2-1: List of 15 choice tasks for the DWC condition. Choice tasks for the DWOC condition 

were derived from these gambles using equation (2-1). 

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

𝒑𝑨 .80 .80 .80 .80 .80 .75 .75 .75 .75 .50 .50 .50 .20 .20 .05 

𝒑𝑩 .75 .50 .20 .05 0 .50 .20 .05 0 .20 .05 0 .05 0 0 

The choice of payoffs (£1500) was based on a rationale similar to the one adopted in other 

studies (Stott, 2006), i.e. to correspond to some real world financial activity in subjects’ 

lives. £1500 reflects the approximate monthly expenditure of students in London. The 

probability levels were chosen to be sufficiently distinct and to cover the entire scale 

(without exceeding a total of 15 tasks per condition), with a focus on capturing decision 

making behaviour at the extreme ends of the probability scale, i.e. when for one of the choice 

options the best outcome is impossible before control (tasks 5, 9, 12, 14, 15) or can be 

guaranteed after exerting control (tasks 1-5). The choice of probabilities was also guided by 

the desire to obtain integer numbers without needing to round them when probabilities for 

the DWOC condition are derived, since the probabilities were converted to number of balls 
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of a particular colour in an urn. The gambles were presented as draws from a bag with 100 

different coloured balls with a different payoff attached to each colour. A sample of the 

questions presented in the DWC and DWOC conditions for task 10 in the gains-only 

experiment is shown in Figure 2-2. 

Figure 2-2: Stimuli for the DWC and the DWOC conditions for task 10 in the gains-only 

experiment. The design for the other payoff domains was identical except for the 

winning amounts. 

Decision with Control (DWC) 

 

Decision without Control (DWOC) 

 

The order in which the subjects took the DWC and the DWOC conditions, the order of 

15 questions within each condition and appearance of the gambles on the left or right of the 

screen was counterbalanced. Measures to enhance quality of data were taken by including 

two practice questions in each condition, randomly repeating two questions in each condition 

and presenting two questions in the DWOC condition where one gamble clearly dominated 
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the other gamble. Subjects were asked to rate the clarity of the questions after the practice 

question and the ease with which they could answer the questions at the end of each part of 

the experiment on a 6 point Likert scale. Demographic information such as gender, age, 

financial support for education and nationality was also collected. At the end of the 

experiment, subjects were asked to provide a brief description of how they made the 

decisions during the experiment. Subjects answered a total of 40 gambles questions, 6 rating 

questions, 10 (optional) demographic questions and 2 (optional) free text questions. The 

estimated time for completing the experiment was 20 minutes but subjects were allowed to 

take as much time as they wanted. All choices were hypothetical but subjects were 

incentivized by telling them that three participants would be selected at random to play one 

of their answered questions for real money and would be given 10% of their winnings in the 

selected question (for the losses-only gambles experiment, 10% of the losses was deducted 

from an initial endowment of £300 and for the mixed gambles experiment the subject was 

paid average of £300 and 10% of the winnings). In all three experiments the maximum 

amount that could be won was £300 and the minimum was £0. 

2.3 Effect of control on risk taking 

To study the effect of control on risk taking and fourfold pattern of risk attitudes, the data 

was analysed from two perspectives: i) overall effect of control on risk taking for each 

domain; and ii) effect of control on fourfold pattern of risk attitudes. In addition, the 

coefficients of the probability weighting and expected utility functions were also estimated 

(Appendix 2-1). 

2.3.1 Estimation and hypotheses 

Risk taking and the effect of control was measured as follows. For each pair of gambles in 

the two conditions, 𝐵𝐷𝑊𝐶  and 𝐵𝐷𝑊𝑂𝐶 are the riskier options in the sense that within the 

standard expected utility paradigm, selection of 𝐵∗ maximizes expected utility for a risk-

seeking individual. For single domain gambles this corresponds to a convex utility function, 

i.e. the risk-aversion coefficients in the (power) utility function, 𝜌𝐺 , 𝜌𝐿, are greater than 1. 

For mixed gambles this corresponds to a convex utility function in both domains or an S or 

inverse-S shaped function where the convexity is greater than the concavity.
3
 Intuitively, 

preference for taking risk means that a person is unwilling to forego probability mass on the 

best outcome for a lower probability of the worst outcome and therefore prefers to choose or 

create gambles that maximize the probability of the best outcome rather than minimize the 

                                                      

 

3 In the case of S shaped function this means, for given loss aversion 𝜆, 𝜌𝐺 > 𝜌𝐿 + ln (𝜆) ln (3000)⁄  if  𝜌𝐺 , 𝜌𝐿 >
1. In the case of inverse-S shaped function this means 𝜌𝐺 < 𝜌𝐿 + ln (𝜆) ln (3000)⁄  if  𝜌𝐺 , 𝜌𝐿 < 1). 
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chance of the worst outcome. In terms of exerting control, this means that the person who is 

willing to take risk prefers to exert control on the inferior gamble which has a higher prior 

probability of the worse outcome. If gamble 𝐵∗ is selected more often than the less risky 

gamble 𝐴∗, then it can be concluded that on average subjects prefer to take risk. 

Two measures were used to test if control affects risk taking: 1) relative proportions of 

riskier choices in the DWC and DWOC conditions across all subjects and tasks; and 2) 

relative proportions of riskier choices in the DWC and DWOC conditions in tasks when a 

switch in risk preference is observed between the two conditions. Based on previous studies, 

one would expect the proportion of risky choices to be higher in the DWC condition, 

especially for gains-only gambles. The following hypothesis tests if control increases risk 

taking in the DWC condition: 

Hypothesis 1: The proportion of riskier choices is higher in the DWC condition 

(control increases risk taking). 

In the context of fourfold pattern of risk attitudes predicted by CPT, the effect of control at 

various levels of probabilities of gains (or losses) was examined. In the experiments 

presented in this paper, the gambles in both conditions contain three possible outcomes (e.g. 

£0, £1500, £3000 for gains-only gambles) and therefore it is difficult to identify a single 

probability of gain (or loss) in an unambiguous manner. The following approach was 

adopted in this paper. For a given choice task, the ‘base’ gamble in the DWC condition 

(Table 2-1) was used to define the overall probability of gain (or loss). This overall 

probability was determined by taking the average of the gain or loss probabilities in the two 

gambles 𝐴𝐷𝑊𝐶 and 𝐵𝐷𝑊𝐶. For example, in the gains domain, for a choice task 𝐴𝐷𝑊𝐶 =

(£1500, 𝑝𝐴; £0, 1 − 𝑝𝐴) vs. 𝐵𝐷𝑊𝐶 = (£1500, 𝑝𝐵; £0, 1 − 𝑝𝐵), the probability of gain is 

taken to be (𝑝𝐴 + 𝑝𝐵) 2⁄ . Table 2-2 shows the ordering of the 15 tasks in decreasing order of 

probability of gain for this approach.
4
 

Table 2-2: Ordering of tasks (as numbered in Table 2-1) based on overall probability of gains. 

                                                      

 

4 An alternative approach would be to use the gambles in the DWOC condition as reference and to calculate the 

cumulative probability of the non-zero outcomes (1 − (1 − 𝑝𝐴)(1 − 𝑝𝐵)). It can be verified that although this 

approach yields different magnitudes of probabilities of gain (or loss), the ordering of tasks in terms of 

probability of gain is almost identical to the approach displayed in Table 2-2 (except for tasks 4 and 7) and both 

approaches reasonably cover the entire probability scale. Since it is the ordering of tasks that is important for the 

analysis to follow, the results are presented for only the approach displayed in Table 2-2.  

Method (average probability): P(gain)= (𝑝𝐴 + 𝑝𝐵) 2⁄ ; P(loss)= 1 − (𝑝𝐴 + 𝑝𝐵) 2⁄  

Task 1 2 6 3 7 4 5 8 9 10 11 12 13 15 14 

P(gain) .78 .65 .63 .50 .48 .43 .40 .40 .38 .35 .28 .25 .13 .10 .03 
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For the DWOC condition, the following hypothesis is postulated to test if the observed 

choices are consistent with the fourfold pattern of risk attitudes. 

Hypothesis 2: For tasks 14 and 15 in gains-only gambles, the proportion of riskier 

choices is greater than 0.5 and for all other tasks the proportion of 

riskier choices is smaller than 0.5. For tasks 1 and 2 in losses-only 

gambles the proportion of riskier choices is smaller than 0.5 and for 

all other tasks the proportion of riskier choices is greater than 0.5. 

For the DWC condition, if control increases risk taking regardless of payoff domain and 

probability levels, then we expect the proportion of riskier choices in the DWC condition to 

be higher for all tasks. The corresponding hypothesis is: 

Hypothesis 3: The proportion of riskier choices in the DWC condition is higher 

than in the DWOC condition for all tasks.  

2.3.2 Results 

The median completion time for each payoff domain was around 18 minutes for all the 

payoff domains. 31 (17 female) of 335 respondents were excluded from the analysis because 

they violated dominance in at least one of the two questions (23 subjects), indicated 

extremely low clarity after the practice questions (6 subjects) or made inconsistent choices in 

all four questions that were repeated (2 subjects) (break down across payoff domains in 

shown in Table 2-13. The final sample size consisted of 102 (50 female) respondents for 

gains-only gambles, 99 (53 female) respondents for losses-only gambles and 103 (50 female) 

respondents for the mixed gambles. The choices also appeared to be reasonably consistent in 

the questions that were repeated: in the DWOC condition consistency rates were close to 

75% whereas in the DWC condition consistency rates were over 80% (see Table 2-14). 

These consistency percentages are marginally higher than values reported in other studies, 

which are around 70% (Brooks et al., 2013; Brooks and Zank, 2005; Weber and Kirsner, 

1997; Wakker et al., 1994; Camerer, 1989; Starmer and Sugden, 1989). 

Figure 2-3 shows histograms of the overall effect of control on risk taking for gains-

only, losses-only and mixed gambles for the DWC and DWOC condition. Comparing the 

risky choices in the DWC and DWOC conditions, as hypothesized for gains-only gambles, 

control increases risk taking (Hypothesis 1 is not rejected (𝑝 < 0.01; McNemar)). However, 

for losses-only and mixed gambles control was found to decrease risk taking (Hypothesis 1 

is rejected and the proportion of riskier choices are significantly different (𝑝 < 0.01; 

McNemar)).  

 

 



2.3. Effect of control on risk taking  48  

 

 

Figure 2-3: Mean proportion of riskier choices in the decision with control (DWC) and the 

decision without control (DWOC) conditions for all domains. 

The proportions of riskier choices in each choice task are shown in Table 2-3 and 

plotted in Figure 2-4. In the DWOC condition, the choice pattern is found to be consistent 

with the fourfold pattern of risk attitudes. For gains-only gambles, risk-seeking behaviour is 

observed for tasks 14 and 15, where the probability of gain is small (Hypothesis 2 is not 

rejected for 1 of 2 tasks) and risk-aversion is observed for the remaining tasks where the 

probability of gain is not low (Hypothesis 2 is not rejected for 11 of the remaining 13 tasks). 

Conversely, for losses-only gambles, risk-aversion is observed for small probability of losses 

(Hypothesis 2 is not rejected for 2 of 2 tasks) and risk-seeking behaviour is observed for the 

remaining tasks (Hypothesis 2 is not rejected for 11 of 13 tasks). Weaker but similar results, 

i.e. increase in risk taking as probability of gain decreases, is observed for mixed gambles. 

Table 2-3: Proportion of riskier choices for each choice task. Statistically significant differences 

in the DWC and the DWOC conditions are indicated with *. 

   P(gain/no 

loss) 

Gains Losses Mixed 

Task DWOC DWC DWOC DWC DWOC DWC 

1 0.78 0.24++ 0.33++ 0.34++ 0.33++ 0.23++ 0.32++ 

2 0.65 0.19++ 0.32++(**) 0.34++ 0.42     0.20++ 0.37+  (**) 

6 0.63 0.25++ 0.39+    (*) 0.53 0.52     0.31++ 0.44     

3 0.50 0.12++ 0.26++(**) 0.47 0.49     0.21++ 0.40+  (**) 

7 0.48 0.23++ 0.39+   (**) 0.75++ 0.55  (**) 0.43 0.46     

4 0.43 0.16++ 0.33++(**) 0.7++ 0.44  (**) 0.22++ 0.38+   (*) 

5 0.40 0.18++ 0.32++  (*) 0.86++ 0.61+(**) 0.57 0.50     

8 0.40 0.15++ 0.35++(**) 0.72++ 0.53  (**) 0.55 0.47     

9 0.38 0.25++ 0.36++ 0.81++ 0.66++(*) 0.75++ 0.58    (**) 

10 0.35 0.30++ 0.40     0.76++ 0.58   (**) 0.50 0.50     

11 0.28 0.26++ 0.37+    0.77++ 0.49   (**) 0.57 0.50     

12 0.25 0.45 0.44     0.88++ 0.63+(**) 0.83++ 0.56    (**) 

13 0.13 0.45 0.41     0.70++ 0.55    (*) 0.61+ 0.44      (*) 

14 0.10 0.60 0.39+  (**) 0.81++ 0.57  (**) 0.83++ 0.50    (**) 

15 0.03 0.66++ 0.44    (**) 0.77++ 0.63+ (*) 0.82++ 0.56    (**) 

 Average 0.30++ 0.37++(**) 0.68++ 0.53+(**) 0.51 0.46++(**) 

Proportion different from 0.5: ++ p<0.01; + p<0.05;  

DWC and DWOC proportions different (McNemar’s test): ** p<0.01; *p<0.05 

In 9 (gains-only), 11 (losses-only), 8 (mixed) out of 15 tests the proportion of riskier 

choices were significantly different between the DWC and DWOC condition. However, it is 



2.3. Effect of control on risk taking  49  

 

 

not the case that the proportion of riskier choices in the DWC condition is always higher 

than in DWOC condition. Roughly, Hypothesis 3 is rejected for small probabilities of gains 

and large probabilities of losses but not rejected for high probabilities of non-zero gains. The 

proportion of riskier choices is significantly higher in 7 gains-only tasks (0.4≤ P(gain)) but 

lower in 2 gains-only tasks (P(gain) ≤ 0.1); significantly lower in 11 losses-only tasks (0.5≤

 P(loss)); significantly lower in 5 mixed tasks (roughly 0.6≤ P(loss)) but significantly higher 

for 3 mixed tasks (some tasks where 0.4≤ P(gain)). 

Figure 2-4: Proportion of riskier choices at various probability levels. Shaded points indicate 

proportions that are significantly different from 0.5; triangles indicate proportion in 

the DWC condition is significantly different from proportion in the DWOC 

condition. 

 

As illustrated in Figure 2-4, the findings indicate that control has a moderating effect on 

attitudes to risk: when individuals are inclined to avert risk in the absence of control (small 

probability of loss or large probability of gain), control reduces risk-aversion. However, if 
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individuals are inclined to take risk in the absence of control (small probability of gain and 

large probability of loss), then control decreases risk taking. 

2.3.3 Discussion 

The main objective of this study was to test the effect of control on risk taking in relation to 

the fourfold pattern of risk attitudes predicted by Cumulative Prospect Theory (CPT). The 

findings from the DWOC condition provide additional support for CPT as a descriptive 

theory of choice under risk. The predictive strength of CPT is also found to be stronger for 

single domain gambles, compared to mixed domain gambles, reflecting conclusions of other 

studies (Brooks et al., 2013; Wu and Markle, 2008). Control was found to affect risk taking 

but the direction of the effect is mediated by decision frame (e.g. gains or losses) as well as 

the magnitude of probabilities. Overall, control has a moderating effect on risk taking. Three 

explanations are offered for this finding. The first explanation, also discussed by extant 

research on control, is based on the influence of control on the emotional and affective 

factors that underlie risk taking tendencies (Camerer, 1992; Isen and Patrick, 1983; Lerner 

and Keltner, 2001; Loewenstein et al., 2001; Rottenstreich and Hsee, 2001; Seo et al., 2010; 

Trepel et al., 2005).
5
 The second explanation explores the interaction of control with 

cognitive accounts of risk-seeking in the domain of losses (e.g. Sitkin and Pablo, 1992; 

Thaler and Johnson, 1990). The third explanation is based on regulatory focus theory 

(Higgins, 1996b, 1997, 1998) which has been acknowledged to bear comparison with the 

role of control (Goodie, 2003). These explanations, in the corresponding sequence, are 

discussed next. 

An explanation for observed effects of control on risk taking based on the interaction 

of control with emotional factors that can affect risk taking behaviour has been discussed 

frequently by extant research on control. For example, there is empirical evidence that when 

situations are perceived to be controllable, individuals are also overly optimistic (Weinstein, 

1980) which can lead to increased attractiveness of controllable options. The enhanced 

confidence and optimism in the presence of control can explain the positive relationship 

between perceived controllability and risk taking for gains-only prospects (see Young et al., 

2011). For gains-only gambles, the results from this study support the general finding that 

when probabilities can be controlled, risk taking is higher. Decision with control has not 

been studied previously for losses, and the present study suggests that individuals take less 

                                                      

 

5 For example, probability distortion at the boundary (impossibility to possibility, possibility to certainty) is 

heightened for affect laden outcomes (Camerer, 1992; Rottenstreich and Hsee, 2001), anger induces risk taking 

whereas fear reduces risk taking (Lerner and Keltner, 2001) and risk taking or aversive biases are reduced if the 

decision maker experiences pleasant feelings (Seo et al., 2010). 
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risk when they can control losses. The effect of control for mixed gambles is similar to 

losses, possibly due to the symmetric design of the gambles in this study. While at first the 

findings for losses-only and mixed gambles may appear counterintuitive, one explanation 

can be offered by extending the explanations offered for gains-only gambles, that control 

mitigates the unpleasant feelings induced in a risky situation. Studies on the interaction of 

affect with decision frames, Seo et al. (2010) and Isen & Patrick (1983) have found that 

positive affect (for example, average self-reported scores of ‘happy’, ‘satisfied’, 

‘enthusiastic’ and ‘relaxed’ in Seo et al’s (2010) study) attenuates the relationship between 

decision frames and risk taking. The findings of the present study mirror these effects, which 

is consistent with the explanation that control induces positive affect.  

A cognitive explanation, which fits the data is based on ‘perceived risk’ (Sitkin and 

Pablo, 1992) or ‘risk bearing’(Wiseman and Gomez-Mejia, 1998). Sitkin and Pablo’s (1992) 

notion of perceived risk, defined as threats to wealth, can explain CPT’s prediction of risk 

aversion for gains and risk seeking for losses (Wiseman and Gomez-Mejia, 1998). In the 

gains domain, since award of wealth is at risk, perceived risk is higher, resulting in 

conservative choices. Conversely, in the losses domain since the wealth is effectively lost, 

perceived risk is lower which in turn increases risk taking. In agency-based theories the 

related notion of risk bearing is offered as an explanation for conservative behaviour of 

executives when firm forecasts are positive vs. willingness to take strategic risks when the 

forecasts are unsatisfactory (Wiseman and Gomez-Mejia, 1998). It is possible that control 

mitigates perceived risk or risk bearing, which in turn reduces risk-aversion in the domain of 

gains and risk-seeking in the domain of losses, as observed in this study. An alternative 

explanation for risk taking in the domain of losses is related to aversion to losses: individuals 

prefer to minimize the chance of any loss rather than chance of large losses, which leads 

them to make riskier choices (Thaler and Johnson, 1990; Wiseman and Gomez-Mejia, 1998). 

Aversion to losses was reflected in the explanations offered by subjects, who reported 

making decisions so as to avoid sure losses, where possible. Although not directly measured 

by this study, it is possible that control reduces aversion to losses and with it decreases risk 

taking in the domain of losses. 

An explanation for the data based on regulatory focus (Higgins, 1996b, 1997, 1998) is 

as follows. According to regulatory focus theory, decision makers either adopt a prevention 

focus (invoked by security needs and targeted towards avoiding pain) or promotion focus 

(invoked by self-actualization needs or aspiration mindedness and targeted towards obtaining 

pleasure). The emotions experienced (cheerfulness or dejection in promotion focus vs. 

agitation or quiescence in the prevention focus) (Higgins, 1996a, 1997) as well as the 

strategic inclination (precautionary in the prevention focus vs. eagerness to achieve gains in 

promotion focus) (Crowe and Higgins, 1997) are distinct in the two regulatory orientations. 
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There is evidence that these orientations and the related emotions interact with the framing 

of risky decisions (i.e. as gains vs. losses) (Bryant and Dunford, 2008; Idson et al., 2000) as 

well as probability distortion (Kluger et al., 2004) and therefore can explain or mediate the 

risk taking behaviour predicted by CPT. In particular, in relation to commission risks (gains 

or losses that can result from acting), a promotion focus (characteristic of gains-only 

gambles) will promote risk taking and prevention focus (characteristic of losses-only 

gambles) will lead to risk avoidance (Bryant and Dunford, 2008; Crowe and Higgins, 1997). 

In the context of control, one explanation is that when exerting control in gains-only 

prospect, an agent acts to promote gains and the promotion focus prevails. Conversely, when 

exerting control in losses-only prospects, an agent acts to prevent losses and prevention 

focus prevails. It is possible that control causes an individual to feel more responsible for the 

outcomes that ensue and thus makes the notion of commission more salient. As a result, 

relative to risk attitudes that prevail in the absence of control, when probabilities can be 

controlled more risk is accepted for gains-only gambles and risk is avoided for losses-only 

gambles. 

2.4 Perceived value of control 

The risk averting choices for gains-only gambles in the DWC condition, suggest that when 

no losses are involved, given a choice, subjects prefer to exert control so as to guarantee 

some gain over exerting control to make a large gain more likely. This inference is supported 

by the self-reported explanation for decisions provided by a majority of the subjects 

(elaborated in section 2.5.3 below). For losses-only gambles, neutral attitude to risk suggests 

that subjects are insensitive to probability levels when exerting control. However in four 

tasks (5, 9, 12, 14), where one of the gambles presented a sure loss, control was exerted to 

eliminate sure loss (proportion significantly higher than 0.5), suggesting an aversion for sure 

losses. This aversion for sure losses is replicated in mixed gambles. Additionally, there is 

indication that subjects prefer to guarantee no loss on at least one gamble (i.e. in tasks 1, 2, 3, 

4 and 5 exert control on gambles for which the probability of ‘no loss’ before control is 0.8). 

Using an approach similar to Wu and Gonzalez (1996), a thorough analysis of preference for 

exerting control at various levels of probability is presented in this section. 

2.4.1 Estimation 

Consider tasks 2 and 6 in Table 2-1 which are reproduced in Table 2-4 below. In both tasks, 

gamble 𝐵𝐷𝑊𝐶 = (£1500,0.5; £0, 0.5) is the same but gamble 𝐴𝐷𝑊𝐶 is different. If 

preference for exerting control is driven by attitudes to risk only, then we should not find any 

significant difference between proportion of times 𝐴𝐷𝑊𝐶 is selected in the two choice tasks 

(since in both tasks they are the less risky gambles). However, if the proportion of times 
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control is exerted varies, then arguably, the perceived value of control when 𝑝𝐴 = 0.8 (task 

2) is different from the perceived value of control when 𝑝𝐴 = 0.75 (task 6).  

Notice that preference for exerting control when 𝑝𝐴 = 0.8 vs. when 𝑝𝐴 = 0.75 is also 

captured by considering the proportion of times 𝐴𝐷𝑊𝐶 is selected in tasks 3 and 7 (𝐵𝐷𝑊𝐶 =

(£1500,0.2; £0, 0.8) is same) or 4 and 8 (𝐵𝐷𝑊𝐶 = (£1500,0.05; £0, 0.95) is same) or 5 and 

9 (𝐵𝐷𝑊𝐶 = (£1500,0; £0, 1) is same). These pairs of tasks are reproduced in Table 2-4. The 

overall perceived value for exerting control at 𝑝𝐴 = 0.8 vs. 𝑝𝐴 = 0.75 was therefore 

examined by comparing the proportion of times 𝐴𝐷𝑊𝐶 is selected in the group of tasks 

𝑨0.8 ={2,3,4,5} vs. in the ‘matched’ group of tasks 𝑨0.75 ={6,7,8,9}. The matching of task 

groups 𝑨0.8 and 𝑨0.75 for 𝑝𝐴  =  0.8 and 𝑝𝐴 = 0.75, respectively, is illustrated in Table 2-4. 

Table 2-4: Matched groups of tasks, {2, 3, 4, 5} and {6, 7, 8, 9}, for a comparison between 

𝒑𝑨 = 𝟎. 𝟖 and 𝒑𝑨 = 𝟎. 𝟕𝟓. Both 𝟎. 𝟖 and 𝟎. 𝟕𝟓 always feature on the less risky 

gamble, 𝑨𝑫𝑾𝑪 and the other gamble, 𝑩𝑫𝑾𝑪, is same. The task numbers correspond 

to the numbers in Table 2-1. 

Gambles 

in group  

𝑨0.8 

  Task 2 Task 3 Task 4 Task 5 

𝐴𝐷𝑊𝐶 𝑝𝐴 .80 .80 .80 .80 

𝐵𝐷𝑊𝐶  𝑝𝐵 .50 .20 .05 0 

Gambles 

in group 

𝑨0.75 

𝐵𝐷𝑊𝐶  𝑝𝐵 .50 .20 .05 0 

𝐴𝐷𝑊𝐶 𝑝𝐴 .75 .75 .75 .75 

  Task 6 Task 7 Task 8 Task 9 

Similarly, matched task groups were constructed for pairwise comparisons between other 

probability levels. Table 2-5 shows the grouping of tasks for 20 comparisons between the six 

probability levels, so that the probabilities that were compared always featured on either the 

less risky gamble (groups 𝑨∗) or on the more risky gamble (groups 𝑩∗). The shaded cell 

depicts the matched group of tasks for the comparison described in Table 2-4.  

Table 2-5: ‘Matched’ grouping of tasks for pairwise comparison between all probability levels of 

the proportion of times control is exerted.  

 P(Gain) 0 0.05 0.2 0.5 0.75 0.8 

0.05 
𝑩.𝟎𝟓={4,8,11,13} 

  𝑩0={5,9,12,14}  

𝑨.𝟎𝟓={15}    

  𝑨.𝟐={14} 

𝑨.𝟎𝟓={15}  

  𝑨.𝟓={12} 

𝑨.𝟎𝟓={15} 

𝑨.𝟕𝟓={5} 

𝑨.𝟎𝟓={15}    

  𝑨.𝟖={9} 

0.2 
𝑩.𝟐 ={3,7,10}  

  𝑩𝟎={5,9,12} 

 𝑩.𝟐={3,7,10} 

𝑩.𝟎𝟓={4,8,11}  

𝑨.𝟐={13,14}   

𝑨.𝟓={11,12} 

   𝑨.𝟐={13,14}  

 𝑨.𝟕𝟓={4,5} 

𝑨.𝟐={13,14}   

 𝑨.𝟖={8,9} 

0.5 
𝑩.𝟓={2,6}     

 𝑩𝟎={5,9} 

  𝑩.𝟓={2,6}   

𝑩.𝟎𝟓={4,8} 

𝑩.𝟓={2,6}   

𝑩.𝟐={3,7}  

  𝑨.𝟓={10,11,12}   

𝑨.𝟕𝟓={3,4,5} 

𝑨.𝟓={10,11,12}    

𝑨.𝟖={7,8,9} 

0.75 
𝑩.𝟕𝟓={1}   

  𝑩𝟎={5} 

𝑩.𝟕𝟓={1}    

𝑩.𝟎𝟓={4} 

 𝑩.𝟕𝟓={1} 

  𝑩.𝟐={3} 

𝑩.𝟕𝟓={1}    

  𝑩.𝟓={2}  

𝑨.𝟕𝟓={6,7,8,9}   

  𝑨.𝟖={2,3,4,5} 

The number of tasks used in each pair of matched task groups is different because the 

proportion of times a given probability level features on a less risky gamble, 𝐴𝐷𝑊𝐶, is 

different from the proportion of times it features on the more risky gamble, 𝐵𝐷𝑊𝐶. Using the 

data in the DWC condition, perceived value of control was examined by comparing the 
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proportion of times 𝐴𝐷𝑊𝐶 (𝐵𝐷𝑊𝐶) is selected for each pair of task groups 𝑨∗(𝑩∗) in Table 

2-5. 

2.4.2 Results 

Table 2-6 shows the various pairwise comparisons of the proportion of times control was 

exerted at various probability levels after controlling for the relative riskiness of the gambles 

for which the probabilities are compared. For example, the shaded cell in Table 2-6a 

describes the comparison discussed in Table 2-4, in which 62% times control was exerted 

when 𝑝𝐴 = 0.75 whereas 68% times control was exerted when 𝑝𝐴 = 0.8. 

Table 2-6: Proportion of times control is exerted at various probability levels when the relative 

risk at the level is same. The pair in each cell compares the proportion of times 

control is exerted on the row probability vs. on the column probability for the task 

groups in Table 2-5. Statistically significant differences are marked with *. 

6a. Gains-only gambles 

P(gain) 0 0.05 0.2 0.5 0.75 0.8 

0.05 0.37, 0.38   0.56, 0.61 0.56, 0.56 0.56, 0.64 0.56, 0.68* 

0.2 0.35, 0.38 0.35, 0.35 
 

0.59, 0.59 0.59, 0.64 0.59, 0.67* 

0.5 0.36, 0.34 0.36, 0.34 0.36, 0.33 
 

0.59, 0.62 0.59, 0.69** 

0.75 0.33, 0.32 0.33, 0.33 0.33, 0.26 0.33, 0.32   0.62, 0.68** 
 

6b. Losses-only gambles 

P(loss) 1 0.95 0.8 0.5 0.25 0.2 

0.95 0.50, 0.61**   0.37, 0.43 0.37, 0.37 0.37, 0.34 0.37, 0.39 

0.8 0.53, 0.62** 0.53, 0.49* 
 

0.44, 0.43 0.44, 0.40 0.44, 0.47 

0.5 0.56, 0.63** 0.56, 0.48* 0.56, 0.52 
 

0.43, 0.42 0.43, 0.48 

0.25 0.33, 0.61** 0.33, 0.44* 0.33, 0.49** 0.33, 0.61**  0.44, 0.50** 
 

6c. Mixed gambles 

P(loss) 1 0.95 0.8 0.5 0.25 0.2 

0.95 0.44, 0.54**   0.44, 0.50 0.44, 0.44 0.44, 0.42 0.44, 0.50 

0.8 0.45, 0.54** 0.45, 0.45 
 

0.53, 0.47 0.53, 0.48 0.53, 0.56 

0.5 0.47, 0.54* 0.47, 0.42 0.47, 0.42 
 

0.48, 0.50 0.48, 0.57** 

0.25 0.32, 0.50** 0.32, 0.38 0.32, 0.40 0.32, 0.50**  0.51, 0.59** 

**p value<0.01; *p value <0.05 (McNemar) 

For gains-only gambles, the proportion of times control is exerted at various 

probability levels is not significantly different except when the prior probability of gain is 

0.8, where it is significantly higher (last column of Table 2-6a). For losses-only gambles, the 

relationship between probability levels and perceived value of control is less clear cut. 

Perceived value of control is significantly higher when it makes a sure loss probable (first 

column of Table 2-6b) or when it is exerted on moderate-to-large probability of loss (last 

row of triangle of Table 2-6b). Subjects were agnostic between reducing large probabilities 

of losses and guaranteeing no loss (last column of Table 2-6b). For mixed gambles the 
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aversion for sure losses is replicated (first column of Table 2-6c). There is also indication 

that in situations when the probability of gain is moderately high (above 0.5) subjects sought 

to guarantee no loss (bottom right cells of Table 2-6c). 

2.4.3 Discussion 

The analysis for perceived value of control reveals that there is a strong preference to exert 

control on the boundaries of the probability scale and individuals aspire to eliminate sure 

losses or ensure some gain. This is compatible with the well-known ‘certainty effect’ 

(Tversky and Kahneman, 1986). The desire for certainty is again directly related to negative 

emotions such as ‘worry’ that decision under risk invokes and therefore the emotional impact 

is greater for modifications of extreme probabilities compared to intermediate probabilities 

(Loewenstein et al., 2001).  

The present study supports findings of Payne et al. (1999), that individuals prefer to 

exert control (manipulated in their study by increasing the value of any one outcome by a 

fixed amount) such that it improves the probability of some gain and reduces the probability 

of any loss. In their study and other studies (Fennema and Wakker, 1997), control has been 

applied as an alternative methodological tool for validating CPT. Fennema and Wakker 

(1997) found that, in line with CPT, subjects prefer to alter probabilities of extreme 

outcomes, especially for flat tailed gambles. The present study confirms that observed 

preferences for exerting control can be captured by CPT’s modelling of diminishing 

sensitivity with respect to changes in probability (Fennema and Wakker, 1997). In relation, 

the analysis of the data in the DWC condition can be considered a different methodological 

test of CPT.  

In terms of probability weighting functions, the findings suggest that for gains-only 

gambles the weighting function is close to linear throughout the probability range with some 

convexity at the right end of the scale (shape predicted by Segal (1987)). For losses-only 

gambles, the probability weighting function takes the popular inverse-S shape — convex at 

the upper end of the scale (P(loss) > 0.8) and concave at the lower end of the scale (P(loss) 

< 0.5). For mixed gambles the probability weighting function is similar to that of losses-

only gambles, with a more pronounced boundary effect. Furthermore, there is indication that 

boundary effects are more salient drivers of the non-linearity of probability weighting 

function for ‘controllable’ probabilities especially when losses are a potential outcome of the 

risky decision (e.g. Tversky and Wakker, 1995). This differs from discussions about the 

shape of the probability weighting function which were obtained in experiments were 

subjects did not exert control (e.g. Wu and Gonzalez, 1996). An estimation of probability 

weighting functions is offered in Appendix 2-1.  
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The crucial desire to bring about certainty (or uncertainty in the case of losses), 

exhibited in this study suggests, that when evaluating the value of control in Decision 

Analysis, the calculations should be sensitive to whether control eliminates uncertainty or 

simply alters probabilities. Furthermore if CPT-based models are used to perform such 

analysis, different probability weighting functions may be needed to evaluate decisions 

where probabilities are not controllable vs. where probabilities are controllable. 

2.5 Other analysis and findings 

The demographic effects on risk taking, potential effects of the experimental manipulation 

and the qualitative self-reported explanations about how subjects chose were also analysed. 

The findings are presented in this section. 

2.5.1 Demographic effects 

At the end of the experiment, subjects were given the option to provide some demographic 

information about themselves. Four demographic variables were analysed — gender 

(male/female), age (18-22, 23-27, 28+), nationality (emerging market country or developed 

country) and sponsorship for current programme of study (not sponsored or sponsored) — 

using a stepwise logistic regression (p=0.05) with only first order effects. Table 2-7 reports 

the variables which were significant predictors of risk taking and changes in risk taking as 

well as the corresponding odds ratio. The proportions of riskier choices for each 

demographic group are shown in Appendix 2-2 (Table 2-15). 

Broadly, previous research has found that risk taking reduces with age (Byrnes et al., 

1999; Vroom and Pahl, 1971) and males are more likely to take risk (Byrnes et al., 1999; 

Charness and Gneezy, 2012). These trends are roughly confirmed by the present study but 

mediated by the payoff domain and presence of control. When non-zero gains are a possible 

outcome, the odds of taking risk was approximately 30-50% higher for males, compared to 

females (no difference was observed for losses-only gambles). For mixed gambles, increase 

in risk taking in the DWC condition was significantly higher for males. Compared to 

students in the 18-22 years group, older students (23+ years group) made more conservative 

choices for gains-only gambles (odds of taking risk are 50% lower), regardless of whether 

they can exert control, but conversely, for losses-only gambles when they can exert control, 

the odds of them taking risk is twice as much.  
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Table 2-7: Odds ratios from stepwise regression on demographic variables (for risk taking in 

the DWC and the DWOC conditions and increase in risk taking in the DWC 

condition). 

 Gains Losses Mixed 

Baseline 

Variable 
Variable DWOC DWC 

Higher 

risk in 

DWC 

DWOC DWC 

Higher 

risk in 

DWC 

DWOC DWC 

Higher 

risk in 

DWC 

Male Female 0.76 0.67     

 

    0.48 0.70 

18-22 23-27 yrs 0.54 0.52     3.58 1.97   0.72 

18-22 28+ yrs 0.50 0.68     7.19 1.03   1.38 

EM Nat. Dev Nat.   1.81 1.72   

 

    2.13 1.81 

Unspon. Spons. 1.43 2.61 1.48   0.55 0.70 0.79     

 n 1395 1395 1395 1440 1440 1440 1380 1380 1380 

 LL -843 -853 -1274 -908 -922 -1365 -947 -906 -1333 

 R-square 0.02 0.06 0.01 0.00 0.07 0.02 0.01 0.05 0.02 

Only statistically significant odds ratios are reported. 

No difference in risk taking behaviour was observed between students from developed 

countries and emerging market countries in the DWOC condition, but the odds of risk taking 

for students from developed countries is nearly twice that of students from emerging market 

countries when they can exert control and the gambles contain positive payoffs. Fully 

sponsored students took more risk than students who were partially or not sponsored for 

gains-only gambles, especially in the DWC condition. 

2.5.2 Experimental factors 

It is possible that the design of the experiment and layout of questions affected the responses. 

Although, on average, subjects found the instructions in the practice questions reasonably 

clear (Likert rating >4.5 on 1-6 scale), the reported clarity for the DWOC condition was 

significantly higher (>5). The cognitive difficulty of making the decisions (asked at the end 

of each condition) was more or less same for losses-only and mixed gambles but for gains-

only gambles subjects found decisions in the DWOC condition more difficult. The mean 

scores are reported in Appendix 2-2 (Table 2-16). A regression was performed to examine 

any effect of the order in which the two conditions appeared and the side of the screen on 

which the less risky gamble (gamble A) appeared. The side of the screen on which gamble 

appeared did not affect risk taking. However, whether the DWC condition was experienced 

first or second affected overall risk taking, which highlights an important limitation of within 

subject experimental designs. For single domain gambles, in both conditions, the proportion 

of riskier choices was relatively higher if the DWC condition was experienced first (except 

for DWOC, losses-only gambles). For mixed gambles, more risk was taken in the condition 

that was experienced first. The odds ratio and proportions of riskier choices is reported in 

Appendix 2-2 (Table 2-17 and Table 2-18, respectively). 
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2.5.3 Qualitative responses 

The qualitative self-reported explanations provided by subjects were also analysed. Only a 

small proportion of participants noticed that the expected value was the same (20% when 

gains were present and 9% for losses-only gambles). A few subjects appear to have 

miscalculated expected value and did not realize they were equal. Loosely, five other 

strategies used by subjects were identified for all the payoff domains — 1) maximize the 

chance of the best payoff; 2) minimize the chance of the worst payoff; 3) trade off 

probabilities on extreme payoffs (DWOC); 4) Equalize risk (DWC); and 5) focus on 

achieving probabilities above and below a threshold (DWC). For gains-only gambles, 

majority of the subjects attempted to seek some gain (strategy 2). For losses-only gambles, 

both minimizing probability of any loss (strategy 1) and probability of worst loss (strategy 2) 

were equally popular but subjects also consciously avoided sure losses (especially in the 

DWC condition). For mixed gambles, minimizing losses (strategy 2) was most popular, 

followed by strategies 1 and 3. 

2.6 Conclusion 

Most laboratory and field studies that have sought to validate Cumulative Prospect Theory 

(CPT) are based on a paradigm where individuals cannot exert any control on the 

probabilities. In many real world decisions, however, individuals can exert some control on 

probabilities of events. Scholars have noted that risk acceptance and attitudes to risk as 

described by CPT are sensitive to situational and emotional factors such as affect (e.g. Isen 

and Patrick, 1983; Rottenstreich and Hsee, 2001; Seo et al., 2010), anxiety (Thompson, 

1981), time pressure (Kocher et al., 2013) and perceived ‘controllability’ of the probabilities 

of a gamble (Brandstätter and Schwarzenberger, 2001; Goodie, 2003; Langer, 1975; Weber 

and Milliman, 1997). The aim of this paper was to further the understanding of how one of 

the situational factors — control — affects the ‘risk biases’ predicted by CPT, by 

considering all payoff domains and different probabilities of success. In particular the 

generality of previous findings (focused mostly on gains-only gambles), that control 

increases risk taking, was investigated. Preferences for exerting control at various probability 

levels, formalized here as perceived value of control, were also examined. 

The findings from this study cast a new perspective on the effect of control on risk 

taking. In particular, it is found that control does not always increase taking — control 

increases risk taking in favourable situations but reduces risk taking in less favourable 

situations. Thus, in the context of CPT, control has a moderating effecting on the fourfold 

pattern of risk attitudes and this effect is robust across all payoff domains. This result closely 

corresponds to the effect that positive affect has on the fourfold pattern of risk attitudes (Isen 
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and Patrick, 1983; Seo et al., 2010). An account of the observed effects was constructed by 

combining previous explanations regarding the effect of control on emotions — that control 

reduces the negative feelings experienced in risky situations (Thompson, 1981) or enhances 

optimism (Weinstein, 1980; Young et al., 2011) — with findings on the relation between 

affect and risk taking (Isen and Patrick, 1983; Seo et al., 2010). A cognitive explanation 

based on the mitigating effect of control on risk bearing, proposed as a determinant of risk 

taking (Sitkin and Pablo, 1992; Wiseman and Gomez-Mejia, 1998), was also offered. 

Additionally, an alternative interpretation within the context of regulatory focus (Crowe and 

Higgins, 1997; Idson et al., 2000) was explored; control possibly makes commission risks 

more salient, thus enhancing risk taking for positive outcomes but reducing it for negative 

outcomes. With regards to how control is valued and its relation to prior probability of 

success it was found that, in line with the certainty effect (Tversky and Kahneman, 1986), 

control was preferred more when it guaranteed (eliminated) probable gains (losses) or made 

sure losses probable. 

The findings from this study can also contribute to the agency-based literature that has 

attempted to integrate risk taking in the corporate world with the behavioural insights offered 

by Prospect Theory (Lefebvre and Vieider, 2014; Wiseman and Gomez-Mejia, 1998). In 

particular they can help understand the complex contextual variations in managerial risk 

taking. For example, although managers believe that risk taking is essential for success, risk 

is avoided if it poses a significant threat to the current position of the firm (March & Shapira 

1987). Alternatively, by viewing stock options as a compensation instrument that endows 

executives with greater control over their earnings, the findings from this study are 

consistent with findings that executive compensation through stock options increases risk 

taking (Anderson and Fraser, 2000; Lefebvre and Vieider, 2014; Wiseman and Gomez-

Mejia, 1998) but post regulation in the 1990’s, the relation between managerial stock holding 

and banks (Anderson and Fraser, 2000) was found to be negative. One oversimplified 

explanation is that the threat of penalties for taking unwarranted risks enhance the element of 

losses in the risky decisions that are considered by managers and, as found in this study, risk 

taking is lower despite having control. The connections proposed between this study and 

managerial risk taking can be informative for designing executive compensation contracts 

and open some interesting avenues for future research. 

This study has some limitations inherent to the design of the experiments. Firstly, the 

gambles in the DWOC condition were presented as a multiple outcome gambles whereas 

those in the DWC condition were presented as binary gambles. The number of outcomes can 

affect how individuals reason about the gambles and subsequent patterns of choices of 

studies (Brooks et al., 2013; Payne, 2005). More experiments, with varied designs that test of 

the effect of control, are needed to confirm the robustness of the findings presented in this 
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study. Secondly, in this study, control was manipulated as an unbiased, objective 

contingency of the gambles and the level of control was fixed. In real world situations 

control is subject to perception and depending on the context individuals can feel different 

levels of control. A potential area for further research is to check if the moderating effect of 

control found in this study depends on perceived levels of control in any systematic way. 

Finally, the explanation offered for the findings in this study were based on the impact 

control has on the emotions that underlie risk taking, its interaction with regulatory focus and 

cognitive arguments related to the notion of risk bearing. While an attempt was made to 

extract cognitive explanations provided by subjects, the emotional effects or impact on 

regulatory focus was not directly captured. The validity of the explanations offered in 

support of the findings presented in this paper, therefore, also merits further empirical 

investigation. 
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2.7 Appendices for Chapter 2 

Appendix 2-1 Parameter estimation 

While measuring the effect of control by comparing the proportion of risky choices with and 

without control is fairly unambiguous, capturing the effect of control on risk acceptance 

parametrically, within the Cumulative Prospect Theory (CPT) framework, poses some 

challenges. In particular, this effect can be captured in two ways: as a less (more) concave 

(convex) value function or an elevated probability weighting function. Previous studies have 

suggested capturing the effect of control on risk acceptance as an elevated probability 

weighting function (Gonzalez and Wu, 1999; Young et al., 2011). Compared to gains-only 

bets on chance (uncontrollable) probabilities, Young et al. (2011) found significantly 

elevated probability weighting function for (gains-only) bets with knowledge relevant 

(controllable) probabilities but no significant difference in the risk-aversion coefficient or 

probability distortion. The effect of control for mixed gambles and losses-only gambles was 

not investigated in their study. Here, the parametric effect of control within the CPT 

framework is formally tested by fitting probability weighting functions and utility functions 

for the DWC and DWOC condition at pooled participant level.  
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Cumulative Prospect Theory and Model Estimation 

In the CPT framework, if 𝑝1, 𝑝2, … , 𝑝𝑛 denote the probabilities attached to the payoffs 

𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑖 < 𝑥𝑖+1 and 𝑤(𝑝𝑖) and 𝑈(𝑥𝑖) represent the nonlinear transformations, the 

expected utility, 𝐸𝑈(𝑋), of the prospect 𝑋 = {𝑥1, 𝑝1; 𝑥2, 𝑝2; … ; 𝑥𝑛𝑝𝑛} is given by: 

 
𝐸𝑈(𝑋) =∑ 𝑊(𝑝𝑖)𝑈(𝑥𝑖)

𝑛

𝑖=1
 

 

(2-2) 

where if 𝑥𝑘 = 0, the decision weights, 𝑊(𝑝𝑖), for gains and losses are given by: 

  

𝑊(𝑝𝑖) =

{
 
 

 
 𝑤 (∑ 𝑝𝑗

𝑛

𝑗=𝑖
) − 𝑤 (∑ 𝑝𝑗

𝑛

𝑗=𝑖+1
) ;  𝑘 < 𝑖 ≤ 𝑛

(1 − 𝑤 (1 −∑ 𝑝𝑗
𝑖

𝑗=1
)) − (1 − 𝑤 (1 −∑ 𝑝𝑗

𝑖−1

𝑗=1
)) ;    1 ≤ 𝑖 < 𝑘

0;  𝑖 = 𝑘

 
 

(2-3) 

Wakker (2010, pp. 219–222) provides a detailed explanation of the relationship between the 

weighting functions for losses and gains. The power function is a popular choice for the 

utility function (Wakker, 2010, p. 256) whereas the Tversky and Kahneman (1992), the 

Linear-in-Log-odds function (Goldstein and Einhorn, 1987; Gonzalez and Wu, 1999) and the 

Prelec (Prelec, 1998) functions are frequently used for probability weighting functions (see 

Stott (2006) for a comprehensive list). Studies that have looked at the best fitting probability 

weighting functions (Cavagnaro et al., 2013; Stott, 2006), however, have found that the 

Prelec function and the Linear-in-Log odds function provide better empirical fits. These 

functions, along with the psychological interpretation of the parameters, are shown in Table 

2-8. 

Table 2-8: The utility function and probability weighting functions that are commonly assumed 

for Cumulative Prospect Theory. 

Utility function Probability weighting functions 

Power: 𝑈(𝑥) = {
𝑥𝜌𝐺       𝑥 ≥ 0

−𝜆𝑥𝜌𝐿  𝑥 < 0, 𝜆 > 0
 

Prelec (Pr): 𝑤𝑃𝑟(𝑝) = exp (−𝛽(− ln(𝑝))𝛼) 

Linear-in-Log-odds (GE): 𝑤𝐺𝐸(𝑝) =
𝛽𝑝𝛼

𝛽𝑝𝛼+(1−𝑝)𝛼
 

𝝆: Attitude to risk (risk neutral when 

𝜌 = 1, risk averse when 𝜌 < 1, risk-

seeking when 𝜌 > 1) 

𝝀: Loss aversion (loss-averse for 𝜆 > 1, 

gain-seeking for 𝜆 < 1). 

𝜶: Sensitivity to probabilities (complete insensitivity when 

𝛼 = 0, diminishing for intermediate probabilities when 

𝛼 < 1, diminishing for extreme probabilities s when 𝛼 > 1) 

𝜷: Optimism (neutral when 𝛽 = 1, optimistic 𝛽 < 1, 

pessimistic 𝛽 > 1) 

Since the data in the present study is obtained from choices between pairs of gambles, a 

stochastic choice analysis at pooled participant level, akin to the analysis in studies by Wu 

and Markle (2008), Stott (2006), Camerar and Ho (1994) and Wu and Gonzalez (1996), was 

performed. In this analysis, it is assumed that choices are generated by a stochastic process, 

where each choice depends on the deterministic difference in expected utility of the gambles 

(evaluated based on the subject’s true underlying preference functions) plus some noise. If 
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the noise terms are assumed to be independent and identically distributed and follow a 

double exponential (Gumbel Type II extreme value) distribution, which is a popular choice 

(Sokol-Hessner et al., 2013; Wu and Markle, 2008; Stott, 2006; Camerer and Ho, 1994; 

Carbone and Hey, 1994), the probability of selecting gamble A over B (𝑃(𝐴 > 𝐵)) is given 

by the following Logit choice function:  

 
𝑃(𝐴 > 𝐵) =

1

1 + exp (−𝜇(𝐸𝑈(𝐴) − 𝐸𝑈(𝐵))
 (2-4) 

where 𝜇 measures the sensitivity of the choices to utility differences (Wu and Markle, 2008). 

For a given model for 𝑈(∙) (choice of functional forms for utility and probability weighting), 

the best fitting parameters {𝜃𝑖
∗} are estimated by maximizing the Log-likelihood of 

generating the observed proportions of choices of each gamble or equivalently the Logarithm 

of the joint probability of the choices, ∏ 𝑃(𝐴 > 𝐵|{𝜃𝑖})𝑡,𝑛 , observed for all 𝑛 participants 

and 𝑡 tasks. If {𝜃𝑖} is the set of parameters assumed in the expected utility model 𝐸𝑈(∙), 𝑡 is 

the index for the 15 tasks and 𝑁𝑡𝐴 and 𝑁𝑡𝐵 denote the number of times gamble A and B were 

selected in task 𝑡, the objective function to be maximized is: 

 

max
𝜇,{𝑥𝑖}

∑𝑁𝑡𝐴𝑙𝑛(𝑃(𝐴 > 𝐵|{𝜃𝑖})) +

15

𝑡=1

𝑁𝑡𝐵𝑙𝑛(1 − 𝑃(𝐴 > 𝐵|{𝜃𝑖})) (2-5) 

A more detailed discussion of this approach, including review of studies where similar 

analysis is performed, can be found in Stott (2006). The maximum Log-likelihood provides a 

measure of the fit of the model assumed for 𝐸𝑈(∙) as follows: if the model does no better 

than chance, assigning 𝑃(𝐴 ≥ 𝐵) = 𝑃(𝐴 ≤ 𝐵) = 0.5 for every task and participant, the Log-

likelihood for the 15 ∗  𝑛 observations would be 15 ∗ 𝑛 ∗ 𝑙𝑛(0.5), yielding in the present 

study, maximum Log-likelihood values of -1060.5, -1029.32 and -1070.9 for the gains-only, 

losses-only and mixed gambles, respectively. Conversely, a model which generates a perfect 

prediction would have a maximum Log-likelihood value of 15 ∗ 𝑛 ∗ 𝑙𝑛(1) = 0.  

Since previous studies have reported that the best-fitting model (one which maximizes 

the Log-likelihood) can depend on the specification of the choice of the functional forms 

assumed in the CPT framework (Cavagnaro et al., 2013; Stott, 2006), three different models 

for calculating 𝐸𝑈(∙) (by varying choice of probability weighting functions) were tested — 

1) No probability weighting; 2) Prelec (Pr) function; and 3) Lin-in-Log-odds (GE) function. 

In addition, for the DWC condition, based on the perceived value of control (equation (2-6)), 

two other methods were used to calculate the expected utility for different choices of 

probability weighting functions — 1) Prelec function (Pr); and 2) Lin-in-Log-odds function 

(GE). The expected utility in equation (2-4) is replaced by PVoC which, for binary gambles 

({𝑥1, 𝑝1; 𝑥2, 𝑝2}; 𝑥1 < 𝑥2), is given by: 

 𝑃𝑉𝑜𝐶(𝑋) = (𝑊(𝑝1 − 0.2) −𝑊(𝑝1))𝑈(𝑥1) + (𝑊(𝑝2 + 0.2) −𝑊(𝑝2))𝑈(𝑥2) (2-6) 



2.7. Appendices for Chapter 2  63  

 

 

Given the design of the present study (single domains, zero valued payoff), the objective 

function was simplified where possible, by dropping some parameters.
6
 The non-linear 

optimization was performed in Matlab; a procedure for minimizing the negative of equation 

(2-5) using the fmincon function was written, where all variables except 𝜇 were constrained 

to be positive. 

The estimation was carried out similar to Wu and Markle (2008), where 𝜇, 𝛼, 𝛽 were 

taken to be free parameters and the utility function (𝜌𝐺 , 𝜌𝐿 , 𝜆) was fixed.
7
 The probability 

weighting function for mixed gambles was assumed to be the same for losses and gains. For 

the CPT models, the parameter estimation was repeated for 5 different values of 𝜌𝐺 and 𝜌𝐿 

(0.25, 0.5…,1.25) and 𝜆 (0.5, 1,…,2.5) and the set of solutions which maximized equation 

(2-5) across all these fixed values of 𝜌, 𝜆 is reported.
8
 Since the solution was also found to be 

sensitive to the initial values supplied in the optimization, for each model the optimization 

was repeated for 5 different initial values
9
 for 𝜇, 𝛼, 𝛽 (0.25, 0.5…,1.25) and the set of 

parameters which maximized equation (2-5) across all the iterations were selected. Adjusting 

the Log-likelihood (LL) for the number of free parameters (k) in a model, the Akaike 

Information Criterion (AIC = –2*LL+2k) was used to determine which model provided the 

best fit. 

Results and Discussion 

The ordering of models based on increasing AIC is shown in Table 2-9. The CPT framework 

with the GE probability weighting function was found to be the best fitting model in most 

cases. 

                                                      

 

6 In the PVoC model, the differential, 𝑃𝑉𝑜𝐶(𝐴) − 𝑃𝑉𝑜𝐶(𝐵), for gains-only gambles is given by (𝑊(𝑝2
𝐴 + .2) −

𝑊(𝑝2
𝐴)) − (𝑊(𝑝2

𝐵 + .2) −𝑊(𝑝2
𝐵))𝑈(1500). 𝑈(1500) can be absorbed into the coefficient 𝜇 in equation (2-4) 

and equation (2-5) is maximized for various combinations of 𝜇 and 𝜌𝐺 . Thus, when fitting the model for PVoC, 

the utility function can be ignored. The same is true for losses-only gambles. Similarly, for the CPT framework 

when estimating the parameters for the losses-only domain, the loss aversion coefficient can be ignored. 
7 In a previous attempt at estimating the parameters, both the utility (𝜌𝐺 , 𝜌𝐿, 𝜆) and probability weighting 

parameters 𝛼, 𝛽 as well as the sensitivity parameter 𝜇 were assumed to be free parameters. Two observations are 

made about the solutions obtained in this attempt. First for single domain gambles, the values of 𝜌𝐺 , 𝜌𝐿 that were 

estimated were very small (less than 0.1). One reason for the extreme concavity (convexity for losses) might be 

the spacing of the payoffs in this experiment. It is likely that £1500 and £3000 may not have been perceived to be 

very different. Given that the utility function also captures the perceived psychological worth of a given outcome, 

the corresponding utility function would be relatively flat between the £1500 and £3000. Second, for mixed 

gambles, the optimal utility function and 𝜇 was not unique, but the probability weighting function was unique. 

This may be because the number of free parameters is larger. Given these difficulties with the estimation, the 

restrictions used by Wu and Markle (2008) were introduced. 
8 For mixed gambles, when fitting the CPT framework, the optimal solution for the utility function was again 

found to be non-unique in the DWOC condition and the value of 𝛽 as well as the utility function was found to be 

non-unique for the DWC condition. For the DWOC condition, the utility function selected is the one for which 

the value of 𝛽 best approximate the values obtained in the first trial. For the DWC condition the same utility 

function was selected. 
9 Chosen to manage the computational challenges of estimating the parameters. 
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Table 2-9: Ordering of models based on AIC (lower AIC implies better explanatory power of a 

model). ‘Pr’ stands for the Prelec probability weighting function and ‘GE’ for the 

Linear-in-Log-odds probability weighting function. 

Gains-only Losses-only Mixed 

DWOC DWC DWOC DWC DWOC DWC 

CPT-Pr 

1716.6 

CPT-GE 

2020.1 

CPT-GE 

1720.3 

CPT-GE 

2028.0 

CPT-GE 

1826.3 

PVoC-GE 

2110.1 

CPT-GE 

1727.0 

CPT-Pr 

2023.3 

CPT-Pr 

1720.7 

CPT-Pr 

2029.2 

CPT-Pr 

1826.8 

PVoC-Pr 

2115.8 

 
PVoC-GE 

2026.1 
 

PVoC-GE 

2029.5 
 

CPT-GE 

2116.0 

 
PVoC-Pr 

2026.6 
 

PVoC-Pr 

2029.5 
 

CPT-Pr 

2116.0 

EU 

1795.1 

EU 

2030.5 

EU 

1849.8 

EU 

2056.0 

EU 

2149.8 

EU 

2146.3 

The parameter estimates for the CPT framework with GE probability weighting function is 

shown in Table 2-10. The estimates for the Prelec probability weighting function are 

qualitatively similar.
10

 Comparing the Log-likelihood (LL) for the DWC and DWOC 

conditions in Table 2-10, it can be seen that the CPT fit is superior for the DWOC condition.  

Table 2-10: Parameter estimates for the CPT and the PVoC models (with the GE probability 

weighting function). 

 
Gains-only Losses-only Mixed 

 
DWOC DWC DWC DWOC DWC DWC DWOC DWC DWC 

 
CPT CPT PVoC CPT CPT PVoC CPT CPT PVoC 

𝜶 0.72 0.89 0.91 0.62 0.18 0.00 0.31 0.00 0.41 

𝜷 1.98 2.24 0.33 0.50 0.40 2.00 1.53 0.82 1.18 

𝝆𝑮 0.25 0.25 - 
   

0.25 0.25 0.25 

𝝆𝑳 
   

0.25 0.25 - 0.25 0.25 0.25 

𝝀 
   

- - - 1.50 1.50 1.00 

𝝁 4.35 3.38 2.34 3.59 0.45 0.79 0.59 0.08 0.13 

LL -860.48 -1007.07 -1010.06 -857.16 -1011.02 -1011.76 -910.17 -1055.01 -1052.07 

LR 400.06 106.90 100.90 344.29 98.99 35.13 321.49 31.81 37.68 

This is not surprising as the CPT model has been originally proposed for choices people 

make in the absence of control. The PVoC model which reflects preference for exerting 

control at particular probability levels does not do better, except for mixed gambles where it 

is marginally better. Consistent with previous findings (Young et al., 2011), it is found that 

changes in risk taking attitudes in the presence of control are captured not by the curvature of 

the utility function but by the elevation of the probability weighting function.  

                                                      

 

10 Except for the gains-DWC and mixed-DWC conditions, where the utility functions differed from the utility 

functions in the GE probability weighting function fit (less risk-aversion for gains-DWC and gain seeking for 

mixed-DWC) which affected the elevation of the probability weighting function (less elevated). 
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The parameter estimates for the utility and probability weighting function have been 

noted to vary across various studies (see Stott, 2006, p. 116 for gains-only tasks). The 

probability sensitivity parameter, 𝛼, for gains-only gambles in the DWOC condition 

obtained in this study (𝛼 = 0.72) somewhat resemble the ones reported in Brandstatter et al. 

(2002) (𝛼 = 0.77, 𝛽 = 0.88), Wu and Gonzalez (1996) (𝛼 = 0.68, 𝛽 = 0.84) and Young et 

al’s (2011) within-subject experiment (𝛼 = 0.78, 𝛽 = 0.97), but the value of 𝛽 = 1.98 in 

this study is comparatively much higher. (This is probably due to the low value of 𝜌𝐺 = 0.25 

in this study compared to the value of 𝜌𝐺 > 0.85 assumed in the other studies).
11

 In the 

within-subject design Young et al. (2011) found 𝛼 = 0.77 and 𝛽 = 1 for the knowledge 

condition, which was their manipulation for controllable probabilities. 

Figure 2-5 plots the probability weighting functions for the estimates in Table 2-10. 

Similar to the within subject test of Young et al. (2011), for gains-only gambles, compared to 

the DWOC condition the elevation of probability weighting function is significantly higher 

for the DWC condition (𝑡 = 4.2, 𝑝 <  0.0001). Young et al. (2011) found no significant 

difference in the sensitivity parameter between conditions, but in this study the sensitivity to 

probability was found to be higher for the DWC condition (gains-only gambles) (𝛼 is closer 

to 1, 𝑡 = 13.8, 𝑝 <  0.0001). The opposite is true when losses are present (for losses-only 

gambles 𝛼: 𝑡 = 17.8 , 𝑝 <  0.0001; 𝛽: 𝑡 = 4.9 , 𝑝 <  0.0001 and for mixed gambles 

𝛼: 𝑡 = 8.1, 𝑝 <  0.0001; 𝛽: 𝑡 = 16.2 , 𝑝 <  0.0001). The finding in Wu & Markle’s (2008) 

study, that compared to single domain gambles, sensitivity to probabilities captured by 𝛼 is 

diminished for mixed domain gambles, is also replicated in this study for both DWOC 

(𝑡 = 10.0, 𝑝 <  0.0001) and DWC conditions (𝑡 = 5.6, 𝑝 <  0.0001). 

Figure 2-5: Comparison of the probability weighting functions estimated for the DWOC and the 

DWC conditions for all three domains of gambles (based on parameter estimations 

in Table 2-10). 

As one would expect, the probability weighting functions obtained for perceived value of 

control in the DWC condition, compared to the CPT probability weighting functions, have a 

                                                      

 

11 0.88 in Brandstatter et al. (2002) and 0.853 in Young et al. (2011). The value for Wu and Gonzalez (1996) was 

not reported. 
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different elevation (lower for gains-only gambles (𝑡 = 19.79, 𝑝 < 0.0001), higher for 

losses-only gambles (𝑡 =  14.79, 𝑝 < 0.0001), and higher for mixed gambles (𝑡 =

 6.79, 𝑝 < 0.0001)). This is because the effect of attitude to risk (risk-aversion for gains and 

risk-seeking for losses) that is normally captured by the utility function is transferred to the 

parameter 𝛽, yielding a lower weighting function for gains-only gambles and a higher 

probability weighting function for losses-only and mixed gambles.  

Analysis of Choice Patterns 

The data collected in the experiments is not sufficient to estimate parameters at the 

individual level. However, ranking the tasks from high to low probability of the best 

outcome (e.g. Table 2-2), the choice patterns (Brooks et al., 2013; Harless and Camerer, 

1994) of each individual was studied. Tasks 5, 9, 12 in Table 2-2 were eliminated for this 

part of the analysis so that the patterns could be compared to CPT predictions (for various 

choices of parameters).  

Six different choice patterns were identified — 1) All risk-averse choices (A…); 2) 

All risk-seeking choices (B…); 3) Risk-averse for large probabilities of the better outcome 

and switch to risk-seeking choices at some threshold probability level (A…B…); 4) Risk-

seeking for large probabilities of the better outcome and switch to risk-averse choices at 

some threshold probability level (B…A…); 5) Risk-seeking for extreme probabilities of the 

better outcome and risk-seeking otherwise (B…A…B…); 6) Risk-averse for extreme 

probabilities of the better outcome and risk-averse otherwise (A…B…A…). The first four 

patterns are consistent with CPT predictions (for some parameters of the probability 

weighting and utility functions, depending on the threshold probability level for switching 

attitude to risk). The proportion of choices for each pattern are shown in Table 2-11. 

Table 2-11: Choice patterns examined and the number of choices in each pattern. 

 
Gains (n=102) Losses (n=99) Mixed (n=103) 

Choice Pattern DWC DWOC DWC DWOC DWC DWOC 

A… 27 17 19 8 17 5 

B… 8 1 15 2 7 3 

A…B... 15 22 25 9 16 23 

B…A… 12 2 16 3 14 4 

B…A…B… 5 4 2 7 6 9 

A…B…A… 8 7 7 13 7 10 

Total classified 75 53 84 42 67 54 

Consistent with CPT 62 42 75 22 54 35 

Nearly half of the observations could be classified into one of the six patterns. The 

relationship between prior probabilities and risk taking was found to be more consistent in 

the DWC condition than in the DWOC condition — more than half of the participants’ 

choices can be explained using a CPT framework in the DWC condition whereas for the 

DWOC condition it was less than 40%. 
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Appendix 2-2 Accompanying tables 

Table 2-12: Pairs of gambles for the 15 choice tasks. 𝒙 and 𝒚 denote the payoffs for the three 

payoff domains. For gains-only gambles, 𝒙 = £𝟏𝟓𝟎𝟎;  𝒚 = £𝟎; for losses-only 

gambles, 𝒙 = £𝟎; 𝒚 = −£𝟏𝟓𝟎𝟎; and for mixed gambles, 𝒙 = £𝟏𝟓𝟎𝟎;  𝒚 = −£𝟏𝟓𝟎𝟎. 

 DWC A DWC B DWOC A DWOC B 

Task 𝑷(𝒚) 𝑷(𝒙) 𝑷(𝒚) 𝑷(𝒙) 𝑷(𝟐𝒚) 𝑷(𝒚 + 𝒙) 𝑷(𝟐𝒙) 𝑷(𝟐𝒚) 𝑷(𝒚 + 𝒙) 𝑷(𝟐𝒙) 

1 0.2 0.8 0.25 0.75 0 0.25 0.75 0.01 0.23 0.76 

2 0.2 0.8 0.5 0.5 0 0.5 0.5 0.06 0.38 0.56 

3 0.2 0.8 0.8 0.2 0 0.8 0.2 0.12 0.56 0.32 

4 0.2 0.8 0.95 0.05 0 0.95 0.05 0.15 0.65 0.2 

5 0.2 0.8 1 0 0 1 0 0.16 0.68 0.16 

6 0.25 0.75 0.5 0.5 0.03 0.5 0.47 0.08 0.4 0.52 

7 0.25 0.75 0.8 0.2 0.04 0.77 0.19 0.15 0.55 0.3 

8 0.25 0.75 0.95 0.05 0.05 0.9 0.05 0.19 0.62 0.19 

9 0.25 0.75 1 0 0.05 0.95 0 0.2 0.65 0.15 

10 0.5 0.5 0.8 0.2 0.24 0.62 0.14 0.3 0.5 0.2 

11 0.5 0.5 0.95 0.05 0.28 0.68 0.04 0.37 0.5 0.13 

12 0.5 0.5 1 0 0.3 0.7 0 0.4 0.5 0.1 

13 0.8 0.2 0.95 0.05 0.57 0.41 0.02 0.6 0.35 0.05 

14 0.8 0.2 1 0 0.6 0.4 0 0.64 0.32 0.04 

15 0.95 0.05 1 0 0.75 0.25 0 0.76 0.23 0.01 

 

Table 2-13: Number of respondents excluded. 

 

 

Gains Losses Mixed 

Total number of responses 112 114 109 

Deleted: 

Low clarity in practice questions 1 2 3 

Time taken low + reversals 1 0 1 

Violate dominance 8 13 2 

 Sample Size 102 99 103 

 

Table 2-14: Inconsistency rates for each of the two randomly selected questions that were 

repeated (for both conditions). 

 

Gains Losses Mixed 

 

Q1 only Q2 only Both Q1 only Q2 only Both Q1 only Q2 only Both 

DWOC 26% 21% 8% 24% 24% 7% 21% 15% 5% 

DWC 14% 12% 2% 10% 22% 8% 19% 19% 7% 
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Table 2-15: Proportion of riskier choices in each condition by demographics. 

 

Gains Losses Mixed 

DWOC DWC 
p 

value 
n DWOC DWC 

p 

value 
n DWOC DWC 

p 

value 
n 

Male 0.33 0.42 0.00 49 0.66 0.52 0.00 45 0.54 0.56 0.55 50 

Female 0.28 0.31 0.08 50 0.69 0.55 0.00 53 0.48 0.36 0.00 50 

18-22 yrs 0.43 0.46 0.49 16 0.62 0.24 0.00 15 0.49 0.45 0.37 21 

23-27 yrs 0.28 0.33 0.01 63 0.68 0.54 0.00 64 0.54 0.43 0.00 57 

28+ yrs 0.26 0.39 0.00 20 0.72 0.72 1.00 20 0.46 0.54 0.02 22 

EM 

Nation 
0.33 0.29 0.13 44 0.67 0.46 0.00 36 0.51 0.37 0.00 37 

Dev. 

Nation 
0.29 0.42 0.00 50 0.68 0.57 0.00 63 0.51 0.56 0.06 56 

Part/No 

Spons. 
0.26 0.26 0.94 36 0.70 0.62 0.00 38 0.51 0.37 0.11 37 

Spons. 0.33 0.43 0.00 61 0.66 0.46 0.00 59 0.51 0.56 0.01 61 

 

Table 2-16: Difficulty (end of each section) and Clarity (end of practice section) of questions. 

Difficulty  
Gains Losses Mixed 

DWOC DWC DWOC DWC DWOC DWC 

Extremely Difficult (1) 0 0 2 1 0 1 

Fairly Difficult (2) 1 9 4 1 1 1 

Somewhat Difficult (3) 9 12 14 12 13 13 

Somewhat Easy (4) 24 18 15 21 32 35 

Fairly Easy (5) 49 46 48 43 41 40 

Extremely Easy (6) 19 17 16 21 16 13 

Average 4.75 4.49 4.53 4.69 4.56 4.47 

p value (2 tailed ttest) 0.01 0.20 0.25 
 

Clarity  
Gains Losses Mixed 

DWOC DWC DWOC DWC DWOC DWC 

Extremely Unclear (1) 1 3 1 2   

Fairly Unclear (2) 2 6 1 1 1 1 

Somewhat Unclear (3) 0 10 3 14 4 9 

Somewhat Clear (4) 15 15 11 17 12 15 

Fairly Clear (5) 40 41 48 41 47 52 

Extremely Clear (6) 44 27 35 24 39 26 

Average 5.2 4.6 5.1 4.7 5.2 4.9 

 0.00 0.01 0.00 

 

Table 2-17: Effect of the order in which the two conditions appeared and the side on which 

gamble A appeared (logistic regression). 

 

Gains Losses Mixed 

DWOC 

Odds 

Ratio 

Std. 

Err. 
p value 

Odds 

Ratio 

Std. 

Err. 
p value 

Odds 

Ratio 

Std. 

Err. 
p value 

Order (DWOC first) 0.69 0.17 0.00 0.88 0.13 0.27 1.35 0.08 0.00 

Left right (A on left)  0.92 0.10 0.44 0.97 0.11 0.82 1.18 0.12 0.11 

DWC 
         

Order (DWC first) 1.44 0.15 0.00 1.65 0.18 0.00 1.72 0.18 0.00 

Left right (A on left)  0.93 0.10 0.48 1.03 0.11 0.80 1.15 0.12 0.18 

R
2
<=0.01 for all domains and conditions 
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Table 2-18: Proportion of riskier choices corresponding to the order in which the two conditions 

appeared and the side on which gamble A appeared. 

 

Gains Losses Mixed 

DWOC 

% 

riskier 

choices 

Std. 

Err. 

p val 

Chi2(1) 

% 

riskier 

choices 

Std. 

Err. 

p val 

Chi2(1) 

% 

riskier 

choices 

Std. 

Err. 

p val 

(Chi2 1) 

DWOC 1
st
 26% 0.02 

0.00 
67% 0.02 

0.26 
55% 0.02 

0.00 
DWOC 2

nd
  33% 0.02 70% 0.02 47% 0.02 

A on right 31% 0.02 
0.53 

68% 0.02 
0.80 

49% 0.02 
0.11 

A on left 29% 0.02 68% 0.02 53% 0.02 

DWC          

DWC 1
st
 41% 0.02 

0.00 
60% 0.02 

0.00 
53% 0.02 

0.00 
DWC 2

nd
  32% 0.02 48% 0.02 40% 0.02 

A on right 38% 0.02 
0.51 

53% 0.02 
0.91 

45% 0.02 
0.17 

A on left 36% 0.02 53% 0.02 48% 0.02 
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2.9 Supplementary material for Chapter 2 

S 2-1: Other tables and figures 

Table 2-19: Standard error and p values for Table 2-3. 

Task 

Gains Losses Mixed 

Std err 
p value 

(2 tail) 
Bin. test 

Std err 
p value 

(2 tail) 
Bin. test 

p value 
McNemar 

test 
Std err 

p value 

(2 tail) 
Bin. test 

Std err 
p value 

(2 tail) 
Bin. test 

p value 
McNemar 

test 
Std err 

p value 

(2 tail) 
Bin. test 

Std err 
p value 

(2 tail) 
Bin. test 

p value 
McNemar 

test 

1 0.042 0.00 0.047 0.00 0.08 0.048 0.00 0.048 0.00 0.88 0.042 0.00 0.046 0.00 0.12 

2 0.039 0.00 0.047 0.00 0.01 0.048 0.00 0.050 0.16 0.23 0.040 0.00 0.048 0.01 0.01 

6 0.043 0.00 0.049 0.04 0.01 0.050 0.62 0.050 0.84 0.88 0.046 0.00 0.049 0.24 0.06 

3 0.032 0.00 0.044 0.00 0.00 0.050 0.69 0.051 1.00 0.77 0.041 0.00 0.048 0.05 0.00 

7 0.042 0.00 0.049 0.04 0.00 0.044 0.00 0.050 0.42 0.00 0.049 0.17 0.049 0.43 0.67 

4 0.036 0.00 0.047 0.00 0.00 0.046 0.00 0.050 0.31 0.00 0.041 0.00 0.048 0.02 0.01 

5 0.038 0.00 0.047 0.00 0.02 0.035 0.00 0.049 0.04 0.00 0.049 0.17 0.050 1.00 0.29 

8 0.035 0.00 0.048 0.00 0.00 0.045 0.00 0.050 0.62 0.01 0.049 0.32 0.049 0.55 0.18 

9 0.043 0.00 0.048 0.01 0.11 0.040 0.00 0.048 0.00 0.02 0.043 0.00 0.049 0.11 0.01 

10 0.046 0.00 0.049 0.06 0.14 0.043 0.00 0.050 0.13 0.01 0.050 1.00 0.050 1.00 1.00 

11 0.044 0.00 0.048 0.01 0.11 0.043 0.00 0.051 1.00 0.00 0.049 0.17 0.050 1.00 0.28 

12 0.050 0.37 0.049 0.28 0.89 0.033 0.00 0.049 0.02 0.00 0.037 0.00 0.049 0.24 0.00 

13 0.050 0.37 0.049 0.09 0.56 0.046 0.00 0.050 0.42 0.03 0.048 0.03 0.049 0.24 0.02 

14 0.049 0.06 0.049 0.04 0.00 0.040 0.00 0.050 0.23 0.00 0.037 0.00 0.050 1.00 0.00 

15 0.047 0.00 0.049 0.28 0.00 0.043 0.00 0.049 0.02 0.03 0.038 0.00 0.049 0.24 0.00 
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Table 2-20: Gender effects for risk taking for each choice task. 

Task 

Gains Losses Mixed 

DWOC DWC DWOC DWC DWOC DWC 

Male Fem. Sig. 

diff. 

Male Fem. Sig. Male Fem. Sig. Male Fem. Sig. Male Fem. Sig. Male Fem. Sig. 

49 50 49 50 diff. 45 53 diff. 45 53 diff. 50 50 diff. 50 50 diff. 

1 0.29 0.20 0.32 0.39 0.28 0.26 0.40 0.30 0.31 0.33 0.34 0.95 0.38 0.08 0.00 0.42 0.20 0.02 

2 0.27 0.12 0.07 0.45 0.20 0.01 0.38 0.30 0.43 0.47 0.40 0.48 0.32 0.10 0.01 0.42 0.30 0.21 

6 0.29 0.20 0.32 0.37 0.40 0.74 0.58 0.47 0.30 0.47 0.57 0.33 0.34 0.28 0.52 0.54 0.30 0.02 

3 0.14 0.08 0.32 0.27 0.24 0.77 0.40 0.55 0.15 0.56 0.45 0.31 0.32 0.12 0.02 0.50 0.26 0.01 

7 0.24 0.22 0.77 0.41 0.36 0.62 0.71 0.77 0.48 0.49 0.60 0.26 0.46 0.40 0.55 0.60 0.30 0.00 

4 0.18 0.12 0.38 0.35 0.32 0.78 0.67 0.72 0.59 0.40 0.49 0.37 0.24 0.20 0.63 0.52 0.24 0.00 

5 0.20 0.16 0.57 0.37 0.26 0.25 0.78 0.92 0.04 0.58 0.64 0.52 0.58 0.56 0.84 0.64 0.36 0.01 

8 0.18 0.12 0.38 0.37 0.32 0.62 0.62 0.79 0.06 0.60 0.47 0.21 0.58 0.52 0.55 0.58 0.36 0.03 

9 0.31 0.22 0.33 0.35 0.36 0.89 0.76 0.85 0.22 0.71 0.62 0.36 0.78 0.70 0.36 0.68 0.48 0.04 

10 0.35 0.26 0.35 0.45 0.34 0.27 0.73 0.77 0.65 0.60 0.57 0.74 0.54 0.44 0.32 0.50 0.46 0.69 

11 0.33 0.22 0.24 0.39 0.36 0.78 0.82 0.72 0.22 0.44 0.55 0.31 0.62 0.54 0.42 0.52 0.46 0.55 

12 0.43 0.50 0.48 0.51 0.38 0.19 0.89 0.87 0.75 0.62 0.64 0.84 0.80 0.88 0.28 0.68 0.46 0.03 

13 0.49 0.44 0.62 0.51 0.32 0.06 0.69 0.70 0.92 0.49 0.60 0.26 0.52 0.72 0.04 0.54 0.32 0.03 

14 0.57 0.64 0.49 0.51 0.26 0.01 0.78 0.83 0.52 0.51 0.62 0.27 0.82 0.86 0.59 0.58 0.40 0.07 

15 0.69 0.64 0.57 0.57 0.32 0.01 0.73 0.79 0.49 0.60 0.66 0.54 0.84 0.78 0.45 0.64 0.48 0.11 

Mean 0.33 0.28 0.02 0.42 0.31 0.00 0.66 0.69 0.25 0.52 0.55 0.36 0.54 0.48 0.01 0.56 0.36 0.00 
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Figure 2-6: Predicted vs. observed proportion of riskier choices for each choice task for the CPT and the PVoC models in Table 2-10. 



2.9. Supplementary material for Chapter 2  77  

 

 

S 2-2: Experiment invitation e-mail 

We would like to invite you to do a short online experiment (25 mins).  

The link to the experiment is below and you can take it anytime you like, ideally, within the 

next week. 

https://lse.qualtrics.com/SE/?SID=SV_3fUmWxmIKnyOqz3 (now defunct) 

Compensation for your participation: 

From all those who complete this experiment, three respondents will be selected at random, 

to play one of their answered questions for real money and each selected respondent can 

earn up to £300  

(Participation in this experiment is entirely voluntary and your decision to not participate 

will have no bearing on your grades or access to LSE services).  

Please note that this experiment is open only for a limited time and will be closed once we 

receive around 300 complete responses.  

(Once the experiment is closed, three respondents will be selected at random and invited via 

email to play one of their answered questions for real money).  

All data gathered in this experiment will be used in anonymised form for the research.  

Your participation in this experiment is very valuable to our research and by participating 

you will help advance scientific research on decision under risk & uncertainty. 

Thank you in advance for your support. 

https://lse.qualtrics.com/SE/?SID=SV_3fUmWxmIKnyOqz3
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S 2-3: Sample of experiment (screenshots for one instance of gains-only gambles). 
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S 2-4: Raffle winner announcements 

Dear Participants,  

Thank you for participating in the recent Online Decision Science Experiment. 

Congratulations! 

You have been selected to play one of your answered questions for real money and can win 

upto £300 when you play one of the questions. 

You will need to come to the London School of Economics on Friday, 1st March at 2.30 pm 

to play one of your answered questions for real money.  

The 'lottery session' will last approximately 30 mins.  

 First, you will draw a slip from a bag which will determine the question you will play.  
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 Then you will play the selected question by drawing from one (or two) bags that contain 

coloured balls. 

The payment will be made by cheque (issued by LSE) and sent to you by post. You should 

receive the cheque within one month of playing the question. 

Please reply to this email to confirm that you can attend the lottery session. If you are unable 

to make the time or cannot attend in person, then please let us know ASAP.  

Please note that if we do not hear from you by Tuesday 26th February 2013, you will be 

disqualified from this opportunity to play one of your questions for real money and we will 

randomly select another participant. 

We look forward to hearing from you. 

S 2-5: Experiment closed e-announcement 

Dear Participant,  

Thank you for participating in the recent Online Decision Science Experiment. 

We have now closed the experiment and randomly selected three participants to play one of 

their questions for real money. (The random selection was done using a computer in the 

presence of a neutral witness who was completely unacquainted with the study). 

Unfortunately, you have not been selected to play one of your answered questions for real 

money. We highly value your contribution in this study to help advance research on decision 

making under risk. We will notify you when the findings on this study are published. 

Thank you once again for your time. 

S 2-6: Procedure and instruction for the raffle session 

Instructions: 

Thank you for participating in the experiment and attending the lottery session today. 

Review of Experiment 

In the experiment you saw two types of questions: 

1. Bags with 2 colours of balls: You had to choose the bag in which you will replace 

20 red balls (£0) with yellow balls (£1500) before drawing one ball, once, from each 

bag.  
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2. Bags with 3 colours of balls: You had to choose from which bag you will draw one 

ball, once. The payoff to you would be £0, £1500, £3000 depending on the colour of 

the ball you draw. 

You were told you would be paid £10% of your total payoff if you are invited to play one 

of the questions for real money. 

The table on the next page lists all the questions you saw, the choices you made and the final 

contents of the bags (from which you will draw a ball) based on your decision.  

About the session 

This session will be conducted in two parts:  

1. One question will be randomly selected by the computer in your presence. 

2. We will count the number of coloured m&ms (instead of balls) in the selected 

question and mix them in a bag. You will then draw one m&m from each bag in the 

selected question. 

Payment 

The payoffs for each colour m&m you draw and the corresponding amount that will be paid 

is as follows:  

Colour of m&m drawn Payoff shown in experiment Amount that will be paid 

Red £ 0 £ 0 

Yellow £ 1500 £ 150 

Green £ 3000 £ 300 

You will need to provide your name and address and a cheque for the total amount you earn 

will be sent to you by post. 

_____________________________________________________________________ 

Please let us know if you any questions. We will begin the session when you are ready. 
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Table 2-21: Choices of a sample participant selected for raffle (Draw/Modify from a bag) 

 
List of Questions (number of balls in each bag) 

and your Choices 

Contents of the bags based on your choices from 

which you will draw a ball 

Q. # 

Bag A =1 Bag B =2 
Bag 

Selected 

Bag A =1 Bag B =2 

R Y G R Y G R Y G R Y G 

      £0 £1500 £3000 £0 £1500 £3000 

1 20 80 
 

25 75 
 

1 0 100 
 

25 75 
 

2 20 80 
 

80 20 
 

1 0 100 
 

80 20 
 

3 20 80 
 

100 0 
 

1 0 100 
 

100 0 
 

4 25 75 
 

80 20 
 

1 5 95 
 

80 20 
 

5 25 75 
 

100 0 
 

1 5 95 
 

100 0 
 

6 50 50 
 

95 5 
 

1 30 70 
 

95 5 
 

7 80 20 
 

95 5 
 

1 60 40 
 

95 5 
 

8 95 5 
 

100 0 
 

2 95 5 
 

80 20 
 

9 20 80 
 

50 50 
 

2 20 80 
 

30 70 
 

10 20 80 
 

95 5 
 

1 0 100 
 

95 5 
 

11 25 75 
 

50 50 
 

2 25 75 
 

30 70 
 

12 25 75 
 

95 5 
 

1 5 95 
 

95 5 
 

13 50 50 
 

80 20 
 

1 30 70 
 

80 20 
 

14 50 50 
 

100 0 
 

1 30 70 
 

100 0 
 

15 80 20 
 

100 0 
 

1 60 40 
 

100 0 
 

16 0 25 75 1 23 76 1 0 25 75 
   

17 0 80 20 12 56 32 1 0 80 20 
   

18 0 100 0 16 68 16 1 0 100 0 
   

19 4 77 19 15 55 30 1 4 77 19 
   

20 5 95 0 20 65 15 2 
   

20 65 15 

21 28 68 4 37 50 13 1 28 68 4 
   

22 57 41 2 60 35 5 2 
   

60 35 5 

23 75 25 0 76 23 1 2 
   

76 23 1 

24 0 50 50 6 38 56 1 0 50 50 
   

25 0 95 5 15 65 20 1 0 95 5 
   

26 3 50 47 8 40 52 1 3 50 47 
   

27 5 90 5 19 62 19 1 5 90 5 
   

28 24 62 14 30 50 20 2 
   

30 50 20 

29 30 70 0 40 50 10 2 
   

40 50 10 

30 60 40 0 64 32 4 2 
   

64 32 4 

31 20 80 
 

25 75 
 

1 0 100 
 

25 75 
 

32 20 80 
 

95 5 
 

1 0 100 
 

95 5 
 

33 5 95 0 20 65 15 1 5 95 0 
   

34 57 41 2 60 35 5 2 
   

60 35 5 

35 50 40 10 60 30 10 1 50 40 10 
   

36 15 45 40 10 50 40 2 
   

10 50 40 
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PRELUDE TO CHAPTER 3 

In the previous chapter, a simplistic view of ‘control’ was adopted — as a fixed change in 

probability mass from one of two outcomes to another. In the real world, however, control is 

often subject to judgement and the controllable uncertain state may have multiple outcomes, 

which can make calculating the impact of exerting control burdensome. Therefore, in 

complex decision situations, analytic methods which capture beliefs about control 

quantitatively and compute the revised probability distribution can be helpful.  

Shifting the focus away from examining control in a behavioural context, this chapter studies 

the topic of control from a modelling perspective, in the context of Decision Analysis. It 

explores the limitations of existing approaches in Decision Analysis for modelling 

uncertainty control and expands them to enable general beliefs about how actions can 

influence uncertainty to be modelled as a probability revision process. Links with probability 

revision rules in other disciplines are established and theoretical foundations for the 

procedure developed, akin to the coherence criterion that supports Bayes rule as the 

probability revision rule for information, are proposed and defended. 

It is shown that the procedure developed can lower the judgemental burden of modelling the 

effect of interventions on probabilities, dramatically. The theoretical foundations proposed 

can potentially inform the suitability of any probability revision rule for interventions, while 

also giving such procedures a normative anchorage that is similar to Bayes rule. It is the 

hope that these developments can enhance the applicability of Decision Analysis in areas of 

risk management. 

A brief introduction to Decision Analysis and relevant modelling tools can be found in the 

Annexure. 

 

 

. 
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Chapter 3      
Stochastic Interventions: A New 

Probability Revision Rule to Model the 

Effect of Actions on Uncertainties 

Shweta Agarwal
*
, Gilberto Montibeller

*
, Alec Morton

**
 

ABSTRACT 

Managers frequently deal with risk by considering uncertainty as an element of the decision 

problem over which they can exert control, for example lobbyists trying to exert influence 

over regulators, or advertisers designing marketing campaigns to improve the chance of 

success of a new product. Although such interventions on uncertain events can be modelled 

using influence diagrams, the procedure for analysing them requires eliciting probability 

distributions corresponding to each action, which can be judgmentally very burdensome. In 

this paper, we address this challenge of analysing interventions in Decision Analysis. We 

present a tractable probability revision procedure for interventions, which is analogous to 

Bayes rule for information, but does not require probabilities to be assigned to actions. Our 

proposed procedure builds upon an existing method to model interventions in Decision 

Analysis (generic controller) and links this method to a class of linear probability revision 

rules (imaging), proposed in Philosophy. We also ground the notion of probability revision 

rules for interventions in theoretical foundations, similar to the coherence criterion that 

supports Bayes rule, by establishing two key properties. We expose the undesirable 

inconsistencies that can arise when these properties are violated and prove that our proposed 

probability revision procedure satisfies these properties. The benefit of our proposed 

approach to decision analysts, in terms of requiring fewer elicitations in complex influence 

diagrams, is demonstrated and potential real world applications are also suggested. 

Key-words: decisions under uncertainty, uncertainty management, stochastic interventions, 

probability revision rules. 
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3.1 Introduction 

Managers are often required to make decisions under uncertainty and manage risks. In terms 

of Decision Analysis frameworks, the analysis of such decisions entails producing 

assessments of uncertainty (probabilities of events), defining the impacts of uncertain events 

to the decision maker (consequences) and calculating the expected utility of each decision 

alternative. Risks can be managed by either controlling consequences (e.g. purchasing 

insurance) or, when possible, by influencing the probability of events (e.g. pre-empting 

competition by building new capacity (Courtney et al., 1997), increasing the chance of a 

product being successful through advertising, lobbying to influence legislations, or affecting 

stock prices through mergers and acquisitions (Sudarsanam, 2003)). Evidence suggests that 

the latter approach, of attempting to influence uncertainty, pervades most decisions about 

strategic risks in the corporate world. In particular, rather than accepting risks as inherent to 

a situation, managers and entrepreneurs often seek to ‘change the odds’ (March and Shapira, 

1987), ‘shape the future’(Courtney, 2001) or ‘make things happen’ (Rosenzweig, 2014). This 

paper focusses on analysing decision problems where actions can influence the probabilities 

of uncertain events. 

The concept of influencing uncertainty or ‘control’ has implicitly been a part of the 

Decision Analysis repertoire since the eighties (Howard and Matheson, 1984) and over time 

this concept has seen some formal developments (Matheson 1990; Heckerman and Shachter 

1994; Matheson and Matheson 2005; Shachter and Heckerman 2010). More recently, the 

notion of ‘control’ has received attention from a number of perspectives. In the context of 

causal thinking, it has been suggested that explicitly modelling the effect of actions on 

uncertainties can facilitate analysis of strategic decisions, such as understanding decision 

opportunities or developing new and robust strategies (Shachter, 2012). The relevance of 

control when analysing the value of information in real world decisions has also been 

explored (von Winterfeldt et al., 2012). In related disciplines, such as behavioural decision 

making, formally capturing the relation between event controllability and risk taking 

preferences is an ongoing area of research (Agarwal, 2014; Li, 2011; Young et al., 2011). In 

this paper, we will further develop the notion of ‘control’ in Decision Analysis and present a 

way to explicitly model the effect of actions on uncertain states. 

Within a Decision Analysis framework, the dependence of probabilities on actions can 

be conveniently modelled using graphical tools such as influence diagrams (Howard and 

Matheson, 1984). The influence of actions on an uncertain state is represented by an arc from 

the decision node to the uncertainty node. Such actions can be regarded as interventions on 

the ‘controllable’ state node (Matheson and Matheson 2005) and typically one of the 
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constituent options of such decisions is a ‘do-nothing’ option. Figure 3-1 shows an influence 

diagram for a firm’s decision, whether or not to advertise (denoted by the decision node 

𝐴𝐷 = {𝑎𝐷 , ¬𝑎𝐷}), to affect the chance of obtaining a higher market share (denoted by the 

state node 𝑆𝑀 = {𝑠𝑖
𝑀}) than its competitor and the corresponding payoffs (denoted by the 

value node 𝑉). 

Figure 3-1: Influence diagram for market share problem. 

 

In Figure 3-1, if 𝑃(𝑠𝑖
𝑀|𝑎𝐷) represents the probability conditional on the decision to advertise 

and 𝑈(𝑠𝑖
𝑀 , 𝑎𝐷) is the corresponding monetary value or utility of the decision and state, the 

expected utility of the decision 𝑎𝐷 is given by: 

 𝐸𝑈(𝑎𝐷) =∑𝑃(𝑠𝑖
𝑀|𝑎𝐷) ∗ 𝑈(𝑠𝑖

𝑀 , 𝑎𝐷)

𝑖

 
(3-1) 

Similarly, the expected utility of the decision ¬𝑎𝐷 can be computed. Analysing managerial 

decisions to control the probability of events using equation (3-1), however, poses some 

serious difficulties. A normative problem with using equation (3-1) is that the corresponding 

expected utility calculation is not consistent with the commonly assumed axioms (e.g. sure-

thing principle) of standard decision theories (Savage, 1954; von Neumann and Morgenstern, 

1944) that underpin utility calculations as a guide to rational choice. Another problem with 

modelling interventions as probabilities conditional on decisions is that, typically, the 

conditional probabilities 𝑃(𝑠𝑖
𝑀|𝑎𝐷) and 𝑃(𝑠𝑖

𝑀|¬𝑎𝐷) in equation (3-1) are elicited separately 

for each decision. From a decision analyst’s perspective, as we will show in this paper, this 

procedure can be judgmentally very burdensome when multiple interventions need to be 

analysed, especially when the state node that can be influenced also depends on other state 

nodes. While various solutions to the normative problem have been proposed (see Matheson 

1990; Gibbard and Harper 1978, 22; Jeffrey 1965) (discussed in Supplementary Note S 3-1), 

the more pressing problem for a decision analyst — of a tractable procedure for modelling 

the effect of actions on uncertainties — merits further research and will be addressed in this 

paper. 
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Current methods for modelling interventions circumvent the problems associated with 

eliciting probabilities conditional on decisions, since they focus mostly on deterministic 

interventions, which eliminate the uncertainty of the controllable state node entirely and set 

the probability of one of its constituent outcomes to 1. Such interventions are described as 

‘atomic interventions’ by Pearl (1994), or ‘set decisions’ by Heckerman & Shachter (1994), 

or ‘perfect control’ interventions by Matheson & Matheson (2005). Managerial 

interventions, however, can be stochastic, i.e. interventions that alter the probability 

distribution of the controllable state node. Matheson & Matheson (2005) describe such 

interventions as ‘imperfect control’ interventions: interventions which bring about a desired 

outcome of the controllable state (i.e. sets its probability to 1) with some positive probability 

and leave the probability distribution unaffected, otherwise. The post-intervention 

probability of the controllable state is then described by a linear mixture of its pre-

intervention distribution and the distribution that assigns probability one to the desired 

outcome of the uncertain state.  

In the first part of this paper, we will show how Matheson & Matheson’s (2005) 

procedure, called the generic controller, can be regarded as a probability revision procedure 

for interventions which is analogous to Bayes rule for information. In particular, if 𝑆 is the 

controllable state node, the description of an intervention along with the pre-intervention 

distribution of 𝑆, 𝑷(𝑆|¬𝑎) (associated with the ‘do nothing’ option), describes the post-

intervention distribution, 𝑷(𝑆|𝑎). We will then develop a generalization of their procedure to 

allow more arbitrary movements of probability mass between states. We will also prove that 

our generalization of the generic controller coincides with imaging (Gardenfors, 1982) — a 

probability revision rule proposed as an alternative to Bayes conditionalization, for assigning 

probabilities to conditional statements from their unconditional probabilities. Imaging has 

been advocated in subject areas of causality and causal decision theory as a suitable 

procedure for calculating probabilities conditional on actions (Joyce, 1999; Pearl, 1994) 

since, unlike Bayes conditionalization, imaging has the advantage that the probability 

revision is described even when the prior probability of the conditioning event is 0 or 1 (as is 

the case for actions). We demonstrate that compared to standard procedures for analysing 

interventions (e.g. eliciting post-intervention probabilities directly), the probability revision 

approach for analysing stochastic interventions is less information intensive and requires 

fewer elicitations when the controllable state depends on several other uncertain states. 

In the second part of the paper, we establish theoretical foundations for probability 

revision rules for interventions. The foundational underpinning of Bayes rule, as a 

probability revision procedure for modelling the effect of information on subjective 

probabilities, is a coherence criterion: if a decision maker’s pre-information and post-
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information beliefs about probabilities of a state do not satisfy Bayes rule then the decision 

maker becomes vulnerable to a ‘Dutch book’ (i.e. a series of bets on the occurrence of 

uncertain events, which the decision maker will willingly buy or sell, but guarantee a net loss 

to the decision maker whatever happens) (Teller, 1973) (argument presented in 

Supplementary Note S 3-2). We will extend this coherence criterion of Bayes rule to 

probability revision rules for interventions by establishing two key properties that probability 

revision rules for interventions should satisfy. We show that when these properties are 

satisfied, if the decision maker’s pre-intervention beliefs about the controllable state are 

coherent (satisfy Bayes rule), then, the post-intervention beliefs will also be coherent (i.e. 

immune to Dutch books). We also prove that our proposed probability revision procedure 

satisfies these key properties of probability revision rules for interventions.  

This paper makes two main contributions. Our first contribution is a tractable and 

general probability revision procedure that generalizes an existing approach of modelling 

control (generic controller (Matheson and Matheson, 2005)) in Decision Analysis and links it 

to probability revision rules proposed in Philosophy (imaging (Lewis, 1976; Gardenfors, 

1982)). We demonstrate its usefulness to decision analysts in terms of alleviating the 

judgmental burden of eliciting probabilities in ‘large’ influence diagrams that contain 

multiple interventions on controllable states that depend on other states. A second 

contribution is grounding the notion of probability revision rules for interventions in 

theoretical foundations, similar to the coherence criterion that supports Bayes rule. In 

particular, we state two key properties that probability revision rules for interventions, 

should satisfy and expose the undesirable inconsistencies that can arise when these 

properties are violated. We also prove that the method we are proposing fulfils these two 

properties. 

This paper is organized as follows. In section 2, we provide a formal definition of an 

influence diagram and introduce the notations. In section 3, we review the generic controller 

of Matheson and Matheson (2005), develop a generalization of this procedure and offer a 

formal proof of the equivalence between our generalization and imaging. In section 4 we 

state and expose some properties that probability revision rules for interventions should 

satisfy and prove that the probability revision procedure proposed in section 3 satisfy these 

properties. In the concluding section we provide a summary and discuss directions for future 

research. The appendices contain a discussion on eliciting beliefs about interventions, some 

proofs and other technical discussions. 
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3.2 Definition of an influence diagram and notations used in this paper 

In this section, we will provide a formal definition of an influence diagram (Howard and 

Matheson, 1984, 2005), its inputs and how the decisions in an influence diagram are 

evaluated. The section also introduces the notations that are used in the rest of the paper. 

An influence diagram is a directed graph 𝐺 = (𝒩, ℓ) with nodes 𝒩 = {𝑁𝑖|𝑖 =

1,2,… , |𝒩|}, where |𝒩| represents the number of nodes in the graph, directed arcs ℓ =

((𝑁𝑖 , 𝑁𝑗)|𝑖, 𝑗 = 1,2, … , |𝒩|; 𝑖 ≠ 𝑗) and no directed cycles. Following Shachter (1986), the 

nodes in an influence diagram can be partitioned into sets of state nodes 𝒮 = {𝑆𝑗|𝑗 =

1,2,… , |𝒮|} where 𝑆𝑗 = {𝑠𝑖
𝑗
|𝑖 = 1,2,… , |𝑆𝑗|}, decision nodes 𝒜 = {𝐴𝑗|𝑗 = 1,2, … , |𝒜|} 

where 𝐴𝑗 = {𝑎𝑖
𝑗
|𝑖 = 1,2, … , |𝐴𝑗|} and a value node 𝑉 = {𝑣𝑖|𝑖 = 1,2, … , |𝑉|}. We will refer 

to 𝑠𝑖
𝑗
, 𝑎𝑖

𝑗
, 𝑣𝑖 as the atomic outcomes of the corresponding nodes. 

For any subset 𝒜′ ⊆ 𝒜, the vector of joint decisions 𝒜𝑖
′ = (𝑎𝑖1

1 , 𝑎𝑖2
2 , … , 𝑎𝑖|𝒜′|

|𝒜′|
)  ∈

∏ 𝐴𝑗𝒜′  is defined to be a policy corresponding to 𝒜′. Similarly, for any subset 𝒮′ ⊆ 𝒮 the 

vector 𝒮𝑖
′ = (𝑠𝑖1

1 , 𝑠𝑖2
2 , … , 𝑠𝑖|𝑆′|

|𝑆′|
) ∈ ∏ 𝑆𝑗𝒮′  is defined to be an event corresponding to 𝒮′. For a 

given node 𝑁𝐾, the sets of state nodes 𝒮(𝑁𝐾) and decision nodes 𝒜(𝑁𝐾) are called the 

parent state and decision nodes of 𝑁𝐾, respectively, if there exists a directed path from every 

𝑁𝑖 ∈  (𝒮(𝑁𝐾) ∪𝒜(𝑁𝐾)) to 𝑁𝐾. The states 𝒮(𝑁𝐾) ⊇ 𝒮∗(𝑁𝐾) = {𝑆𝑗|(𝑆𝑗, 𝑁𝐾) ∈ ℓ} and 

𝒜(𝑁𝐾) ⊇ 𝒜∗(𝑁𝐾) = {𝐴𝑗|(𝐴𝑗, 𝑁𝐾) ∈ ℓ} denote the state and decision nodes, respectively, 

that are direct predecessors of 𝑁𝐾. Figure 3-2, which is an extended version of the market 

share example in Figure 3-1, illustrates the notations for a hypothetical influence diagram.  

An influence diagram which contains a value node is called an oriented influence 

diagram . We will call a state node 𝑆𝐾 controllable if there is an arc from a decision node 

into 𝑆𝐾, i.e. 𝒜∗(𝑆𝐾) ≠ ∅, and a conditional state if there is an arc from another state node 

into 𝑆𝐾, i.e. 𝒮∗(𝑆𝐾) ≠ ∅. The decisions 𝒜∗(𝑆𝐾) of a controllable state will be called 

interventions on 𝑆𝐾. 𝐴𝐾 is a conditional decision if a state node is its direct predecessor, i.e. 

𝒮∗(𝐴𝐾) ≠ ∅. An influence diagram is said to be in the canonical form if it has no 

controllable states, i.e. 𝒜∗(𝑆𝑗) = ∅, ∀𝑆𝑗. In Figure 3-2, 𝑆𝐶 and 𝑆𝑀 are controllable and 

conditional states and 𝐴𝑇 and 𝐴𝐷 are the corresponding interventions. 
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Figure 3-2: Notations for components of a hypothetical influence diagram (extended version of 

Figure 1). 

 

Graph: 𝐺 =  (𝒩, ℓ) 

Nodes 

𝒩 = {𝑁𝑖};  e.g. {𝐴𝐷, 𝐴𝑇 , 𝑆𝐸 , 𝑆𝐶 , 𝑆𝑀 , 𝑉} 

Arcs 

ℓ = (𝑁𝑖 , 𝑁𝑗) 

Decision nodes: 𝒜 = {𝐴𝑗}  

e.g. {𝐴𝐷, 𝐴𝑇} 

State nodes: 𝒮 = {𝑆𝑗} 

e.g. {𝑆𝐸 , 𝑆𝐶 , 𝑆𝑀} 

Value 

node 

𝑉 = {𝑣𝑖} 
 

Atomic decisions : 𝐴𝑗 = {𝑎𝑖
𝑗
} 

 𝐴𝑗 = 𝑎1
𝐷, 𝑎2

𝐷,…𝑎|𝐴𝐷|
𝐷 }, etc. 

Atomic states: 𝑆𝑗 = {𝑠1
𝑗
} 

𝑆𝑗 = {𝑠1
𝐶, 𝑠2

𝐶 ,…, 𝑠
|𝑆𝐶|
𝐶 }, etc. 

   

Policy: 𝒜𝑖 = (𝑎𝑖1
1 , 𝑎𝑖2

2 , … , 𝑎𝑖|𝒜|
|𝒜|
) ∈ ∏ 𝐴𝑗𝒜  

e.g. 𝒜1 = (𝑎1
𝐷, 𝑎1

𝑇), 𝒜2 = (𝑎2
𝐷,  𝑎1

𝑇),  etc. 

Event: 𝒮𝑖
′ = (𝑠𝑖1

1 , 𝑠𝑖2
2 ,…,𝑠𝑖|𝑆′|

|𝑆′|
) ∈ ∏ 𝑆𝑗𝒮′  

e.g. 𝒮1
′ = (𝑠1

𝐶 ,  𝑠1
𝐸), 𝒮2

′ = (𝑠1
𝐶 ,  𝑠2

𝐸), 

etc. 

Parent Decision node: 𝒜(𝑁𝐾) 

e.g. 𝒜(𝑆𝑀) = {𝐴𝐷, 𝐴𝑇} 

Parent State node: 𝒮(𝑁𝐾) 

e.g. 𝒮(𝑆𝑀) = {𝑆𝐸 , 𝑆𝐶} 

Direct Predecessors 

𝒜∗(𝑁𝐾): e.g. 𝒜∗(𝑆𝑀) = 𝐴𝐷, etc. 𝒮∗(𝑁𝐾): e.g. 𝒮∗(𝑆𝑀) = 𝑆𝐶 , etc. 

The value node, 𝑉, and state nodes, 𝑆𝑗, have real value mappings associated with them 

which describe the inputs required for an influence diagram: for the value node we have 

𝑈:∏ 𝐴𝑗𝒜 ×∏ 𝑆𝑗𝒮 → ℝ, which is the utility of a particular policy and event, 𝑈(𝒜𝑖, 𝒮𝑗), to 

the decision maker and for any state node, 𝑆𝐾, we have 

𝑃: 𝑆𝐾 × ∏ 𝑆𝑗𝒮∗(𝑆𝐾) × ∏ 𝐴𝑗𝒜𝑖
∗(𝑆𝐾) → [0,1], which is the conditional probability 

𝑃𝒜𝑖
∗(𝑆𝐾) (𝑠𝑖

𝐾|𝒮𝑖
∗(𝑆𝐾)) of the atomic states 𝑠𝑖

𝐾 ∈ 𝑆𝐾, given 𝒮𝑖
∗(𝑆𝐾) occurs and under the 

hypothesis that policy 𝒜𝑖
∗(𝑆𝐾) is selected. Given the real value mappings for 𝑉 and 𝒮 the 

influence diagram can be evaluated using expected utility calculations and the optimal policy 

𝒜𝑜𝑝𝑡 = (𝑎𝑖1
1 , 𝑎𝑖2

2 , … , 𝑎𝑖|𝒜|
|𝒜|
)  ∈ ∏ 𝐴𝑗𝒜  can be determined. Since expected utility calculations 

will not play a role in what is discussed in this paper, the procedure is not described here. 

Details of the procedure (similar to the algorithm proposed in Shachter (1986)) can be found 

in Supplementary Note S 3-3. 
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In the rest of the paper, vectors are distinguished from scalars using bold characters. In 

particular, 𝑷(𝑆𝐴, 𝑆𝐵, … , 𝑆𝐻) is used to represent the joint probability distribution for 

{𝑆𝐴, 𝑆𝐵, … , 𝑆𝐻}, 𝑷(𝑆𝐾 , 𝒮𝑖
∗(𝑆𝐾)) to represent sections of the joint probability distribution for 

{𝑆𝐾 ∪ 𝒮∗(𝑆𝐾)} and 𝑃 (𝑠𝑗
𝐾 , 𝒮𝑖

∗(𝑆𝐾)) to represent the individual probabilities. 

3.3 Modelling interventions as probability revision 

In this section, we will discuss how interventions on a controllable state node 𝑆𝐾 can be 

modelled as revision of ‘prior’ probabilities of 𝑆𝐾. In the market share example (Figure 3-1) 

this corresponds to describing a way to obtain 𝑃𝑎𝐷 from 𝑃¬𝑎𝐷. We will show that for a 

controllable state 𝑆𝐾, when 𝒮∗(𝑆𝐾) ≠ ∅, a probability revision rule for modelling the effect 

of actions on probability distributions can significantly reduce the effort required to elicit the 

inputs for an influence diagram. 

When the probability of a state node 𝑆𝐾 depends on the outcome of another state node, 

𝒮∗(𝑆𝐾) = 𝑆𝑅 = {𝑠𝑖
𝑅}, the rule that is suitable for updating the probability of 𝑠𝑖

𝐾, given an 

observation 𝑠𝑙
𝑅, is Bayes conditionalization and we have 

∀𝑠𝑖
𝐾 , 𝑃(𝑠𝑖

𝐾|𝑠𝑙
𝑅) = 𝑃(𝑠𝑖

𝐾 , 𝑠𝑙
𝑅) ∑ 𝑃(𝑠𝑖

𝐾 , 𝑠𝑙
𝑅)𝑖⁄ = 𝑃(𝑠𝑖

𝐾 , 𝑠𝑙
𝑅) 𝑃(𝑠𝑙

𝑅)⁄ . In the case of interventions, 

when the probability of 𝑆𝐾 depends on actions, the revised probabilities of 𝑆𝐾 cannot be 

calculated using Bayes conditionalization, 𝑃(𝑠𝑖
𝐾|𝑎) = 𝑃(𝑠𝑖

𝐾&𝑎) 𝑃(𝑎)⁄ , since normally a 

decision maker does not assign probabilities to actions. We therefore need an alternative 

probability revision rule for interventions which does not involve assigning probabilities to 

actions.  

In this section we will develop a probability revision rule for interventions. We will 

first review the generic controller, which is an existing approach for describing post-

intervention probabilities as a probability revision of pre-intervention probabilities. We will 

then generalize this procedure and show that our generalization of the generic controller 

coincides with a class of linear probability revision rules called ‘imaging’. The probability 

revision rules discussed in this paper will be described as functions that quantitatively 

describe how the probabilities of the controllable state are redistributed as a result of action 

or observation. Formally, we define a probability revision function as follows: 

Definition 3-1: Probability revision function 

Suppose 𝑷(𝑆𝐾) = 〈𝑃(𝑠1
𝐾), 𝑃(𝑠2

𝐾), … , 𝑃 (𝑠
|𝑆𝐾|
𝐾 )〉 is a probability distribution for a 

controllable state 𝑆𝐾, where |𝑆𝐾| is the number of outcomes of 𝑆𝐾. Let ∆|𝑆
𝐾| 

denote the |𝑆𝐾|−dimensional probability simplex. A probability revision function 

given an action or observation c, denoted by 𝑓𝑐, is a function 𝑓𝑐: ∆
|𝑆𝐾|→ ∆|𝑆

𝐾|. 
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We will only consider the probability revision of marginal distributions in this section; 

probability revision of joint distributions is discussed in the next section, where we present 

some properties that probability revision functions should satisfy. 

3.3.1 The generic controller 

In Decision Analysis, one way to model stochastic interventions is by using the concept of 

the generic controller (Matheson and Matheson 2005). In this approach, interventions are 

atomic, i.e. raise the probability of one of the atomic states 𝑠𝑖
𝐾  ∈ 𝑆𝐾 to 1. Let 𝑠𝑡

𝐾 ∈ 𝑆𝐾 be the 

desired atomic state, i.e. the atomic state for which the decision maker wishes to change the 

probability to 1. Let 𝒆𝒊
𝑲 = 〈𝑒(𝑠𝑖

𝐾 , 𝑠1
𝐾), 𝑒(𝑠𝑖

𝐾 , 𝑠2
𝐾)… , 𝑒 (𝑠𝑖

𝐾 , 𝑠
|𝑆𝐾|
𝐾 )〉 be the probability function 

where 𝑒(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) = 1 for 𝑖 = 𝑗 and 0 otherwise. The probability vector 𝒆𝒕
𝑲 represents an 

atomic intervention which assigns probability value 1 to the desired atomic state 𝑠𝑡
𝐾. An 

intervention is called “perfect” if it increases the probability of 𝑠𝑡
𝐾 to 1 and “imperfect” (or 

stochastic) if it increases the probability of 𝑠𝑡
𝐾 to some value less than 1. An imperfect 

intervention is modelled by introducing a new random variable (𝑄 in Figure 3-3b) to the 

existing influence diagram (Figure 3-3a), with an arc pointing to the controllable state node 

(𝑆𝐾 in Figure 3-3). This variable 𝑄, also known as the quality node, has two outcomes, 

perfect and useless, with probabilities 𝑞 and 1 −  𝑞 respectively, but is hidden in the 

influence diagram since the outcomes are not actually observed. In the revised influence 

diagram, the probabilities of the controllable state node, 𝑃(𝑠𝑖
𝐾), are described by 

probabilities conditional on the quality node: ∀𝑠𝑖
𝐾 ∈ 𝑆𝐾 , 𝑃(𝑠𝑖

𝐾|𝑢𝑠𝑒𝑙𝑒𝑠𝑠) =  𝑃(𝑠𝑖
𝐾) 

and 𝑃(𝑠𝑖
𝐾|𝑝𝑒𝑟𝑓𝑒𝑐𝑡) =  𝑒(𝑠𝑡

𝐾 , 𝑠𝑖
𝐾). 

Figure 3-3: An influence diagram (a) modified to represent the generic controller (b). 

 

                      (a)                                                                        (b) 

For the generic controller, the post-intervention distribution, 𝑷𝒂(𝑆
𝐾) = 𝑓𝑎(𝑷(𝑆

𝐾)), of the 

controllable state node 𝑆𝐾 is given by: ∀𝑠𝑖
𝐾 ∈ 𝑆𝐾 ,  𝑃𝑎(𝑠𝑖

𝐾) =  𝑃(𝑠𝑖
𝐾|𝑢𝑠𝑒𝑙𝑒𝑠𝑠) ∗

𝑃(𝑢𝑠𝑒𝑙𝑒𝑠𝑠) + 𝑃(𝑠𝑖
𝐾|𝑝𝑒𝑟𝑓𝑒𝑐𝑡) ∗ 𝑃(𝑝𝑒𝑟𝑓𝑒𝑐𝑡) or equivalently: 
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∀𝑠𝑖

𝐾 ∈ 𝑆𝐾 , 𝑃𝑎(𝑠𝑖
𝐾 ) = {

𝑃(𝑠𝑖
𝐾 ) ∗ (1 − 𝑞) + 0 ∗ 𝑞, 𝑖 ≠ 𝑡

𝑃(𝑠𝑖
𝐾 ) ∗ (1 − 𝑞) + 1 ∗ 𝑞, 𝑖 = 𝑡

 (3-2) 

Box 1 shows a numerical application of the generic controller to the market share example 

described in Figure 3-1. 

Viewed through the algebraic lens, the generic controller moves the pre-intervention 

probability vector to a different point on the standard probability simplex (convex hull of all 

atomic interventions 𝒆𝒋
𝑲). The post-intervention probability vector is located on the line that 

connects the pre-intervention probability vector to the vertex which represents the perfect 

atomic intervention. Figure 3-4 shows the probability simplex for the market share example 

discussed in Box 1. 

Figure 3-4: Probability simplex for three atomic states {𝒔𝒐
𝑴, 𝒔𝒑

𝑴, 𝒔𝒇
𝑴} where 𝒔𝒇

𝑴 is the most desired 

state and the intervention has quality 𝒒 = 𝟎. 𝟓. 

 

A key advantage of the generic controller, which is not explicitly discussed by its 

proponents, is that this approach clearly separates beliefs about uncertainty (probability 

Box 1: Example of the generic controller for the market share example in Figure 3-1 

Suppose the market share node has three outcomes which correspond to no market share (𝑠𝑜
𝑀), 

partial market share (𝑠𝑝
𝑀) and full maket share (𝑠𝑓

𝑀) and the pre-intervention distribution (firm does 

not advertise) is given by: 

𝒔𝒐
𝑴 𝒔𝒑

𝑴 𝒔𝒇
𝑴 

0.2 0.6 0.2 

If 𝑎𝐷 is modelled as an atomic intervention which increases the probability of full market share, 𝑠𝑓
𝑀, 

and the quality of the intervention is 𝑞 = 0.5, then the post-intervention probabilities, 𝑃𝑎𝐷(𝑠𝑖
𝑀), 

(using equation (3-2)) are given by: 

𝒔𝒐
𝑴 𝒔𝒑

𝑴 𝒔𝒇
𝑴 

0.1 0.3 0.6 
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distribution of 𝑆𝐾) from views about intervention (modelled as the distribution of a hidden 

chance variable 𝑄). The generic controller can also be easily applied to influence diagrams 

when there are multiple stochastic interventions on the controllable state node or when the 

controllable state node has other direct predecessors which are state nodes. For instance, 

consider a modified example of the market share example shown in Figure 3-1, where 

instead of one intervention, we have two interventions on the market share node —

advertising (𝐴𝐷) and decision to takeover an existing competitor (𝐴𝑇) (Figure 3-5). 

Figure 3-5: Influence diagram for market share problem with multiple interventions. 

 

Suppose we model the interventions in Figure 3-5 as generic controllers and also 

suppose that both advertising, 𝑎𝐷, and decision to take over, 𝑎𝑇, increases the probability of 

full market share, 𝑠𝑓
𝑀, with qualities 𝑞𝐷 and 𝑞𝑇, respectively. Then we can apply the generic 

controller twice so that the post-intervention probability 

𝑷𝒂𝑻,𝒂𝑫(𝑆
𝑀) =  (𝑓𝑎𝑇  o 𝑓𝑎𝐷)(𝑷(𝑆

𝑀)) is given by: 

∀𝑠𝑖
𝑀  ∈ 𝑆𝑀,  

𝑃𝑎𝑇,𝑎𝐷(𝑠𝑖
𝑀) = {

𝑃(𝑠𝑖
𝑀) ∗ (1 − 𝑞𝐷)(1 − 𝑞𝑇), 𝑖 ≠ 𝑓

𝑃(𝑠𝑖
𝑀) ∗ (1 − 𝑞𝐷)(1 − 𝑞𝑇) + 𝑞𝐷 + 𝑞𝑇 − 𝑞𝐷 ∗ 𝑞𝑇, 𝑖 = 𝑓

 (3-3) 

Notice in equation (3-3), a convenient property of the generic controller is that the 

calculation of the post-intervention probability is invariant to the order in which the 

probability revision function for 𝑎𝐷 and 𝑎𝑇 are applied, i.e. (𝑓𝑎𝑇  o 𝑓𝑎𝐷)(𝑷(𝑆
𝑀)) =

(𝑓𝑎𝐷 o 𝑓𝑎𝑇)(𝑷(𝑆
𝑀)). This order invariance property stems from the fact that the generic 

controller is formulated as a Bayesian probability revision (by conditioning on a fictitious 

state node (e.g. 𝑄 in Figure 3-3)), and Bayes rule has the special property that iterated 

application of Bayes rule is invariant to the order in which the revisions are applied 

(demonstrated in Supplementary Note S 3-4). 

We will now offer a different perspective of the generalized controller. Rewriting 

equation (3-2) for the generic controller, we have: 
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∀𝑠𝑖
𝐾 ∈ 𝑆𝐾 , 𝑃𝑎(𝑠𝑖

𝐾 ) =

{
 
 

 
 𝑃(𝑠𝑖

𝐾 ) ∗ (1 − 𝑞) + 0 ∗∑𝑃(𝑠𝑗
𝐾 )

𝑗≠𝑖

, 𝑖 ≠ 𝑡

𝑃(𝑠𝑖
𝐾 ) + 𝑞 ∗∑𝑃(𝑠𝑗

𝐾 )

𝑗≠𝑖

, 𝑖 = 𝑡
 (3-4) 

It can be seen that the post-intervention probability is a linear mixture of the pre-intervention 

probabilities, i.e. 𝑃𝑎(𝑠𝑖
𝐾) = ∑ 𝑃(𝑠𝑖

𝐾)𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾)𝑗 , where the mixing coefficients, 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾), 

for 𝑃𝑎(𝑠𝑖
𝐾) are given by: 

∀𝑠𝑖
𝐾 ∈ 𝑆𝐾 , 𝜌𝑎(𝑠𝑖

𝐾 , 𝑠𝑗
𝐾) = {

1 − 𝑞, 𝑖 = 𝑗;  𝑖 ≠ 𝑡,
0, 𝑖 ≠ 𝑗;  𝑖 ≠ 𝑡
1, 𝑖 = 𝑗;  𝑖 = 𝑡
𝑞, 𝑖 ≠ 𝑗;  𝑖 = 𝑡

 (3-5) 

From a decision theoretic perspective, 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) can be interpreted as encoding the 

decision maker’s views about how an intervention redistributes the probabilities of a 

controllable state node. Consider the expression for the pre-intervention probability 𝑃(𝑠𝑖
𝐾). 

From the definition of 𝒆𝒋
𝑲, we can write 𝑃(𝑠𝑖

𝐾) = ∑ 𝑃(𝑠𝑗
𝐾)𝑒(𝑠𝑖

𝐾 , 𝑠𝑗
𝐾)𝑗 , ∀𝑠𝑖

𝐾 ∈ 𝑆𝐾. The value 

𝑒(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) can be interpreted as the proportion of probability mass of 𝑃(𝑠𝑗
𝐾) which is 

concentrated on 𝑃(𝑠𝑖
𝐾). In the expression for post-intervention probability, 𝑃𝑎(𝑠𝑖

𝐾) =

∑ 𝑃(𝑠𝑗
𝐾)𝜌𝑎(𝑠𝑖

𝐾 , 𝑠𝑗
𝐾)𝑗 , 𝜌𝑎(𝑠𝑖

𝐾 , 𝑠𝑗
𝐾) can be interpreted as the proportion of probability mass of 

𝑠𝑗
𝐾 that is transferred to 𝑠𝑖

𝐾 , (𝑖 ≠ 𝑗) as a result of the intervention. In the generic controller, 

equal proportions, 𝑞, of probability masses are transferred from the less desirable states to 

the desirable states (illustrated in Figure 3-6 for the market share example in Box 1. 

Figure 3-6: Proportion of probability mass transfer illustrated for the generic controller applied 

to the market share example, where 𝒒 = 𝟎. 𝟓. 

 

The motivation for re-interpreting the generic controller is that it helps us to establish a link 

between the generic controller and a class of probability revision functions called ‘imaging’, 

that has been proposed in Philosophy as an alternative to Bayes rule. In the next section, we 



3.3. Modelling interventions as probability revision  106  

 

 

will generalize the generic controller and then, in section 3.3.3, expose how the 

generalization is related to imaging. 

3.3.2 Generalizing the generic controller 

We will first propose an extension of the generic controller which allows interventions that 

can bring about more than one desirable state to be represented. We will then propose a 

further generalization which also enables interventions that prevent undesirable states from 

occurring to be represented. Suppose instead of having only two outcomes for the hidden 

chance (quality) node 𝑄, perfect and useless with probabilities 𝑞 and 1 − 𝑞, the outcomes of 

𝑄 can be various perfect interventions corresponding to the desired atomic states {𝑠𝑖
𝐾} ∈

𝑆𝐾
′
⊂ 𝑆𝐾, each with quality 𝑞𝑖  (∑ 𝑞𝑖 ≤ 1; 𝑞𝑖 ≥ 0) and a useless intervention with quality 

(1 − ∑𝑞𝑖 ). Then {𝑠𝑖
𝐾 ∈ 𝑆𝐾

′
} ∪ {𝑢𝑠𝑒𝑙𝑒𝑠𝑠} will be the outcomes of the hidden chance node 

with probabilities {𝑞𝑖 }𝑠𝑖
𝐾∈𝑆𝐾

′ ∪ {1 − ∑ 𝑞𝑖 }𝑠𝑖
𝐾∈𝑆𝐾

′ . For this extension, called the extended 

generic controller (EGC), the post-intervention distribution, 𝑷𝒂(𝑆
𝐾) = 𝑓𝑎(𝑷(𝑆

𝐾)), of the 

controllable state node is given by: 

∀𝑠𝑖
𝐾 ∈ 𝑆𝐾 , 𝑃𝑎(𝑠𝑖

𝐾 ) =

{
 
 
 

 
 
 
(1 −∑𝑞𝑗 

𝑆𝐾
′

) ∗ 𝑃(𝑠𝑖
𝐾 ),                             𝑠𝑖

𝐾 ∉ 𝑆𝐾
′

(1 − ∑ 𝑞𝑗 

𝑠𝑗
𝐾∈𝑆𝐾

′

) ∗ 𝑃(𝑠𝑖
𝐾 ) + 𝑞𝑖 ∗ 1, 𝑠𝑖

𝐾 ∈ 𝑆𝐾
′

 

 

 

(3-6) 

Consider the pre-intervention probability distribution for the market share example in 

Box 1. Suppose the firm believes that advertising has a positive effect on both full and partial 

market share, so 𝑆𝑀
′
= {𝑠𝑝

𝑀 , 𝑠𝑓
𝑀} and the corresponding perfect interventions have qualities 

𝑞𝑝 = 0.3 and 𝑞𝑓 = 0.5. Then the post-intervention probabilities (using equation (3-6)) are 

given by 𝑃𝑎𝐷(𝑠𝑜
𝑀) = 0.04, 𝑃𝑎𝐷(𝑠𝑝

𝑀) = 0.42 and 𝑃𝑎𝐷(𝑠𝑓
𝑀) = 0.54. Graphically, this 

extension of the generic controller moves the pre-intervention probability towards the 

simplex which connects the states in 𝑆𝐾
′
 (Figure 3-7). In the special case where 𝑆𝐾

′
 contains 

only one atomic state, this simplex is a point and corresponds to the generic controller. 
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Figure 3-7: Probability simplex for three atomic states {𝒔𝒐
𝑴, 𝒔𝒑

𝑴, 𝒔𝒇
𝑴} where the probabilities of 

both 𝒔𝒇
𝑴 and 𝒔𝒑

𝑴 are raised (𝑺𝑴′ = {𝒔𝒑
𝑴, 𝒔𝒇

𝑴}) and the intervention has qualities 

𝒒𝒑 = 𝟎. 𝟑, 𝒒𝒇 = 𝟎. 𝟓.  

In terms of probability mass transfers, the 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) corresponding to the EGC are given 

by: 

∀𝑠𝑖
𝐾 ∈ 𝑆𝐾 , 𝜌𝑎(𝑠𝑖

𝐾 , 𝑠𝑗
𝐾) =

{
 
 
 
 

 
 
 
 1 − ∑ 𝑞𝑗 

𝑠𝑗
𝐾∈𝑆𝐾

′

, 𝑖 = 𝑗; 𝑖, 𝑠𝑖
𝐾 ∉ 𝑆𝐾

′
,

0, 𝑖 ≠ 𝑗; 𝑠𝑖
𝐾 ∉ 𝑆𝐾

′

1 − ∑ 𝑞𝑗 

𝑠𝑗
𝐾∈{𝑆𝐾

′
−𝑠𝑖

𝐾}

, 𝑖 = 𝑗; 𝑠𝑖
𝐾 ∈ 𝑆𝐾

′

𝑞𝑖 , 𝑖 ≠ 𝑗; 𝑠𝑖
𝐾 ∈ 𝑆𝐾

′

 
 

(3-7) 

For the market share example, where 𝑆𝑀
′
= {𝑠𝑝

𝑀 , 𝑠𝑓
𝑀} and 𝑞𝑝 = 0.3, 𝑞𝑓 = 0.5, the 

coefficients 𝜌𝑎(𝑠𝑖
𝐾 ,∙) = 〈𝜌𝑎(𝑠𝑖

𝐾 , 𝑠𝑜
𝑀), 𝜌𝑎(𝑠𝑖

𝐾 , 𝑠𝑝
𝑀), 𝜌𝑎(𝑠𝑖

𝐾 , 𝑠𝑓
𝑀)〉 are given by: 𝜌𝑎(𝑠𝑜

𝐾 ,∙) =

〈0.2,0,0〉,  𝜌𝑎(𝑠𝑝
𝐾 ,∙) = 〈0.3,0.5,0.3〉,  𝜌𝑎(𝑠𝑓

𝐾 ,∙) = 〈0.5,0.5,0.7〉. Figure 3-8 illustrates the 

corresponding probability mass transfers. 

Figure 3-8: Proportion of probability mass transfer illustrated for the EGC applied to the 

market share example, where 𝑺𝑴
′
= {𝒔𝒑

𝑴, 𝒔𝒇
𝑴} and 𝒒𝒑 = 𝟎. 𝟑, 𝒒𝒇 = 𝟎. 𝟓. 
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We note that since the EGC is also formulated as a Bayesian probability revision 

(conditioning on the fictitious node 𝑄), when multiple interventions are modelled as EGCs, 

the EGCs share the order invariance property of the generic controller. One of the limitations 

of the generic controller and EGC is that they can only be used to model interventions that 

raise the probability of atomic states and it is not immediately clear how they can be used to 

model interventions that are designed to prevent an undesirable state from occurring. 

However, if we do not restrict 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) to the form in equation (3-7) and allow 

𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) to take any value in [0,1], with the requirement that ∑ 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) = 1,𝑗 ∀𝑖 (to 

conserve the sum of pre-intervention probabilities), then we have a further generalization of 

the generic controller which can be used to describe interventions that reduce the probability 

of an undesired atomic state. Formally, the probability revision function 𝑓𝑎 and post-

intervention distribution, 𝑷𝒂(𝑆
𝐾) = 𝑓𝑎(𝑷(𝑆

𝐾)), for the generalized generic controller 

(GGC) is given by: 

∀𝑠𝑖
𝐾 ∈ 𝑆𝐾 , 𝑃𝑎(𝑠𝑖

𝐾) =∑𝑃(𝑠𝑗
𝐾)𝜌𝑎(𝑠𝑖

𝐾 , 𝑠𝑗
𝐾)

𝑗

;  𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾)

∈ [0,1],∑𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) = 1

𝑖

 

(3-8) 

One approach for eliciting 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾), in a manner similar to the ‘probability 

wheel’(Shephard and Kirkwood, 1994), is described in Appendix 3-1. (In Supplementary 

Note S 3-5, the elicitation is illustrated for the market share example, through a conversation 

between a manager and a decision analyst). 

We offer an algebraic interpretation for the GGC which is different from those in 

Figure 3-4 and Figure 3-7. Graphically, {𝒆𝒋
𝑲} can be interpreted as the vertices of a standard 

simplex and 𝑷(𝑆𝐾) is a point on this simplex. The probability revision described by the 

generic controller defines a new simplex with respect to the vectors 

{𝝆𝒂(𝑠1
𝐾 ,∙), 𝝆𝒂(𝑠2

𝐾 ,∙)… , 𝝆𝒂(𝑠𝑛
𝐾 ,∙)} and 𝑷𝒂(𝑆

𝐾) is the projection of 𝑷(𝑆𝐾) on the new simplex. 

Unlike the generic controller and EGC, the GGC is not order invariant and therefore it may 

not be possible to formulate the GGC as a Bayesian probability revision process. However, 

as we will show in section 3.4, the GGC shares some desirable properties of Bayes rule 

which are relevant when the controllable state node, 𝑆𝐾, has other direct predecessors which 

are state nodes, i.e. 𝒮∗(𝑆𝐾) ≠ ∅. In the next subsection we will discuss the correspondence 

between the GGC and probability revision rules that are developed in Philosophy. 
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3.3.3 Generalized generic controller and imaging 

Based on the semantics for belief revision formulated by Stalnaker (1968), Lewis (1976) 

proposed a probability revision rule called imaging (generalized by Gardenfors (1988, pp. 

108–18, 1982)) to describe probabilities of conditional statements as revisions of 

probabilities of unconditional statements. In contrast to Bayes rule, which rescales the 

probabilities once information about some states becomes available, imaging describes 

probability revision in terms of probability mass transfer between states, based on the 

decision maker’s qualitative views about how ‘similar’ the states are (Joyce, 1999, p. 198). 

For instance, suppose 𝑷(𝑆𝐾) depends on the outcome of 𝑆𝑅. Given 𝑠𝑙
𝑅 ∈ 𝑆𝑅 is observed, 

while the revised probability for 𝑠𝑖
𝐾 ∈ 𝑆𝐾 based on Bayes rule is given by 𝑃(𝑠𝑖

𝐾|𝑠𝑙
𝑅) =

𝑃(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅) 𝑃(𝑠𝑙
𝑅)⁄ , the revised probability based on imaging, 𝑃𝑠𝑙

𝑅(𝑠𝑖
𝐾), does not depend on 

the prior probability 𝑃(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅) but, instead, is described by probability transfers from the 

joint events (𝑠𝑖
𝐾 , 𝑠𝑗

𝑅) ∈ (𝑆𝐾 × {𝑆𝑅 − 𝑠𝑙
𝑅} ) to (𝑠𝑖

𝐾 , 𝑠𝑙
𝑅) ∈ (𝑆𝐾 × 𝑠𝑙

𝑅), where the proportion of 

probability transfer, 𝜌𝑠𝑙
𝑅
(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅), from (𝑠𝑖
𝐾 , 𝑠𝑗

𝑅) to (𝑠𝑖
𝐾 , 𝑠𝑙

𝑅) depends on some notion of 

similarity between (𝑠𝑖
𝐾 , 𝑠𝑗

𝑅) and (𝑠𝑖
𝐾 , 𝑠𝑙

𝑅). Gardenfors (1988, pp. 108–18, 1982) proved that 

the characterizing property for generalized imaging, which distinguishes it from Bayes rule, 

is a linearity condition defined as follows: 

Definition 3-2: Linear probability revision function 

Let 𝑷𝒂(𝑆
𝐾) = 𝑓𝑎(𝑷(𝑆

𝐾)) be the post-intervention probabilities for a controllable 

state node 𝑆𝐾 = {𝑠𝑖
𝐾}, for any probability function 𝑷. A probability revision 

function 𝑓𝑎 is linear if for some probability functions 𝑷′, 𝑷′′, 𝛼 ∈ [0,1], 𝑷(𝑆𝐾) =

𝛼𝑷′(𝑆𝐾) + (1 − 𝛼)𝑷′′(𝑆𝐾), then 𝑷𝒂(𝑆
𝐾) = 𝛼𝑷𝒂

′ (𝑆𝐾) + (1 − 𝛼)𝑷𝒂
′′(𝑆𝐾). 

This definition is illustrated in Box 2. 

It can be shown that the GGC in equation (3-9) is characterized by the same linearity 

property and thus coincides with imaging. 

Theorem 3-1: Representation theorem for the generalized generic controller 

A probability revision function 𝑓𝑎  is linear if and only if 𝑷𝒂(𝑆
𝐾) = 𝑓𝑎(𝑷(𝑆

𝐾)) is a 

generalized generic controller. 

The proof for Theorem 3-1 can be found in Appendix 3-2. (In Supplementary Note S 3-6 the 

relationship between Bayes rule and the linearity property is discussed). 
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We will now demonstrate the advantage of modelling stochastic interventions as 

probability revision rules in influence diagrams. Suppose in Figure 3-1 the firm realizes that 

the probability of the market share is in fact conditional on whether or not a competitor 

advertises its product. To incorporate this information, the influence diagram is modified and 

a direct predecessor 𝑆𝐶 = {𝑠𝑑
𝐶 , 𝑠¬𝑑

𝐶 }, with two scenarios (competitor advertises, competitor 

does not advertise} is added to the controllable state node 𝑆𝑀 (Figure 3-9). The distribution 

of the market share node, 𝑆𝑀, is described by the conditional probability distributions 

𝑷(𝑆𝑀|𝑠𝑗
𝐶).  

  

Box 2: Example to illustrate the definition of a linear probability revision function 

Suppose there are three urns A, B, C which contain 100 balls, either coloured yellow or coloured 

black. The number of yellow coloured balls in each urn is as follows: 

Urn A  Urn B  Urn C 

20  60  40 

Consider the following two alternatives: 

(1)  (2) 

Flip a fair coin and draw a ball 

from urn A if the coin shows 

heads else draw a ball from urn B 

 Draw a ball 

from urn C 

 

Let {𝑠𝑦𝑒 , 𝑠𝑏𝑙} denote the uncertain outcomes of the draw in both alternatives. The probability of 

drawing a yellow ball (𝑃(𝑠𝑦𝑒) = 0.4) is the same in both alternatives. Now consider two different 

rules to revise the contents of each urn:  

1) replace 50% of black balls with yellow balls;  

2) replace 𝑥% of black balls with yellow balls where 𝑥 is the number of yellow balls in 

the urn.  

If the first rule is applied, the revised probability of drawing a yellow ball is the same (0.7) in both 

alternatives and therefore the corresponding probability revision function 𝑓′ (𝑃(𝑠𝑦𝑒)) =

𝑃(𝑠𝑦𝑒)  + 0.5𝑃(𝑠𝑏𝑙), 𝑓′(𝑃(𝑠𝑏𝑙)) = 0.5𝑃(𝑠𝑏𝑙)) is linear. However if the second rule is applied, the 

revised probability of drawing a yellow ball is different in each alternative (0.60 in the first 

alternative and 0.64 in the second alternative) and therefore the corresponding probability revision 

function 𝑓′′ (𝑃(𝑠𝑦𝑒)) = 𝑃(𝑠𝑦𝑒)(1 + 𝑃(𝑠𝑏𝑙)), 𝑓
′′(𝑃(𝑠𝑏𝑙)) = 𝑃(𝑠𝑏𝑙)(1 − 𝑃(𝑠𝑦𝑒)) is not linear.  
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Figure 3-9: Influence diagram in Figure 2 modified to include another direct predecessor for the 

market share node 𝑺𝑴. 

 

 

 

 

 

 

 

Suppose the intervention on 𝑆𝑀 is modelled as a probability revision and 𝑷𝒂(𝑆
𝑀) =

𝑓𝑎(𝑷(𝑆
𝑀)). Then the post-intervention conditional probabilities 𝑃𝑎(𝑠𝑖

𝑀|𝑠𝑗
𝐶) can be 

calculated by applying 𝑓𝑎 to 𝑷(𝑆𝑀|𝑠𝑗
𝐶) without requiring new elicitations. On the other hand, 

in the absence of a probability revision procedure, the probability distributions for 

𝑃𝑎(𝑠𝑖
𝑀|𝑠𝑗

𝐶) would need to be re-elicited. In general, with a probability revision function like 

the GGC, the judgmental burden of eliciting probability distributions is reduced considerably 

when the controllable node has several direct predecessors that are state nodes. In particular, 

for 𝑛 atomic states of the controllable node, 𝑘 options for the intervention and 𝑚 ≥ 1 atomic 

states of direct predecessors of the controllable state node, compared to direct elicitation of 

post-intervention conditional probabilities, which requires (𝑛 − 1) ∗ 𝑚 ∗ 𝑘 elicitations, the 

GGC requires at most (𝑛 − 1) ∗ ((𝑘 − 1) ∗ 𝑛 +𝑚) elicitations. For large influence 

diagrams, when the total number of atomic states of the direct predecessors of the 

controllable state node is greater than the number of atomic states of the controllable state 

node, the number of elicitations for the GGC will be much fewer than direct elicitation of 

post-intervention probabilities (illustrated in Table 3-1). 

It is important to note that when the controllable state has direct predecessors that are 

state nodes, one cannot in general make inferences about these predecessor state nodes from 

the post-intervention distribution of the controllable state, i.e. the inference about 𝑃𝑎(𝑠𝑗
𝐶|𝑠𝑖

𝑀) 

is not valid and need not be equal to 𝑃(𝑠𝑗
𝐶|𝑠𝑖

𝑀) (illustrated in Supplementary Note S 3-7 for 

the market share example). In other words, all arcs into and out of the controllable state node 

are non-backtracking and cannot be reversed. This restriction is also assumed by Matheson 

and Matheson (2005). 
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Table 3-1: Numerical comparison of the number of elicitations required for each approach. 

Atomic 

‘controllable’ 

states 

𝒏 

Atomic 

decision 

options 

𝒌 

Total direct 

predecessor 

atomic states 

𝒎 

Direct elicitation 

 

(𝒏 − 𝟏) ∗ 𝒌 ∗ 𝒎 

Generalized generic controller 

 

(𝒏 − 𝟏) ∗ ((𝒌 − 𝟏) ∗ 𝒏 +𝒎) 

3 2 1 4 8 

3 2 2 8 10 

3 2 3 12 12 

3 2 4 16 14 

3 2 5 20 16 

3 2 10 40 26 

3 3 1 6 14 

3 3 2 12 16 

3 3 3 18 18 

3 3 4 24 20 

3 3 5 30 22 

3 3 10 60 32 

The generalized generic controller or, equivalently, linear probability revision 

functions are one of many ways of describing a probability revision function for stochastic 

interventions. In the next section we offer some arguments for why the GGC is a suitable 

probability revision procedure for modelling stochastic interventions. 

3.4 Some foundations for probability revision rules for interventions 

In this section we will state two properties that probability revision functions for 

interventions should satisfy and expose why these properties are reasonable requirements. 

We will show that the GGC satisfies both these requirements. Both the properties that we 

state are related to interventions that are performed on a controllable state 𝑆𝐾 that also has a 

state node 𝑆𝑅 as a direct predecessor (e.g. Figure 3-9), and thus correspond to probability 

revision of joint distributions 𝑷(𝑆𝐾 , 𝑆𝑅). In order to discuss these properties we therefore, 

first extend Definition 3-1 to describe a probability revision function for joint probability 

distributions (e.g. 𝑓𝑎(𝑷(𝑆
𝐾 , 𝑆𝑅))). 

Definition 3-3: Probability revision function for joint distributions 

Suppose 𝑆𝐾 = {𝑠𝑖
𝐾} is a controllable state node, |𝑆𝐾| is the number of outcomes of 

𝑆𝐾, 𝒮∗(𝑆𝐾) = {𝑆𝐴, 𝑆𝐵, … , 𝑆𝐻} are the direct predecessors of 𝑆𝐾, 𝒮𝑖
∗(𝑆𝐾) =

(𝑠𝐴𝑖
𝐴 , 𝑠𝐵𝑖

𝐵 , … , 𝑠𝐻𝑖
𝐻 ) ∈ ∏ 𝑆𝑗𝒮∗(𝑆𝐾)  are the events corresponding to 𝒮∗(𝑆𝐾), |𝒮∗(𝑆𝐾)| is 

the total number of events of 𝒮∗(𝑆𝐾) and 𝑃(𝑠𝐾𝑖
𝐾 , 𝑠𝐴𝑖

𝐴 , … , 𝑠𝐻𝑖
𝐻 ) are the joint 

probabilities of the events. For any 𝒮𝑖
∗(𝑆𝐾), denote the corresponding section of the 

joint probability distribution for (𝑆𝐾  ∪ 𝒮𝑖
∗(𝑆𝐾)) by the vector 𝑷(𝑆𝐾 , 𝒮𝑖

∗(𝑆𝐾)) =

〈𝑃 (𝑠1
𝐾 , 𝒮𝑖

∗(𝑆𝐾)) , … , 𝑃 (𝑠
|𝑆𝐾|
𝐾 , 𝒮𝑖

∗(𝑆𝐾))〉. A probability revision function for 𝑆𝐾, 
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given an action or observation c, is a vector-valued function 

𝑓𝑐 = ⟨𝑓𝑐
1, 𝑓𝑐

2, … , 𝑓𝑐
|𝒮∗(𝑆𝐾)|

⟩ : ∆|𝑆
𝐾||𝒮∗(𝑆𝐾)|→ ∆|𝑆

𝐾||𝒮∗(𝑆𝐾)|, where the component 

functions 𝑓𝑐
𝑖: 𝑷(𝑆𝐾 , 𝒮𝑖

∗(𝑆𝐾)) → [0,1]|𝑆
𝐾|, for any 𝑷(∙). 

Box 3 illustrates a hypothetical probability revision function for the market share example in 

Figure 3-9.  

For a controllable state 𝑆𝐾, where 𝒮∗(𝑆𝐾) = 𝑆𝑅, the probability revision function for the 

GGC and Bayes rule is defined as follows: 

Generalized generic controller (for an intervention 𝒂 on 𝑺𝑲): 

Let 𝑓𝑎 = ⟨𝑓𝑎
1, 𝑓𝑎

2, … , 𝑓𝑎
|𝑆𝑅|

⟩ : ∆|𝑆
𝐾||𝑆𝑅|→ ∆|𝑆

𝐾||𝑆𝑅| be a probability revision function 

for the GGC and 𝑃𝑎(𝑠𝑖
𝐾 , 𝑠𝑚

𝑅 ) represent the corresponding revised probabilities. 

Then, 

∀ 𝑚, 𝑃𝑎(𝑠𝑖
𝐾 , 𝑠𝑚

𝑅 ) =∑𝑃(𝑠𝑗
𝐾 , 𝑠𝑚

𝑅 )𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾)

𝑗

; 

0 ≤ 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) ≤ 1,∑𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) = 1

𝑖

 
(3-9) 

 

 

 

Box 3: Numerical Example of a probability revision function 

In Figure 3-9, suppose, like in Box 1, there are three atomic states for the market share node (𝑆𝑀 =

{𝑠𝑜
𝑀 , 𝑠𝑝

𝑀 , 𝑠𝑓
𝑀}) and that 𝑃(𝑠𝑓

𝑀) is higher if the competitor does not advertise (𝑠¬𝑑
𝐶 ). Consider the 

following joint distribution of (𝑆𝑀, 𝑆𝐶): 

 𝑠¬𝑑
𝐶  𝑠𝑑

𝐶  

𝑠𝑜
𝑀 1/20 3/20 

𝑠𝑝
𝑀 6/20 6/20 

𝑠𝑓
𝑀 3/20 1/20 

Let 𝑝𝑖𝑗  denote the probability for row 𝑖 and column 𝑗 of this table. An example of a probability 

revision function (that represents the effect of the firm advertising 𝑎𝐷) is 𝑓𝑎 = ⟨𝑓𝑎
¬𝑑 , 𝑓𝑎

𝑑⟩: ∆6→ ∆6 

where 𝑓𝑎
𝑖: ∆3→ ∆3 is given by: 

𝑓𝑎
¬𝑑(𝑝11, 𝑝21, 𝑝31) = (

2(𝑝11+𝑝21+𝑝31)

9
,
2(𝑝11+𝑝21+𝑝31)

9
,
2(𝑝11+𝑝21+𝑝31)

9
)  

   𝑓𝑎
𝑑(𝑝12, 𝑝22, 𝑝32) = (

1

3
,
(𝑝12+𝑝22+𝑝32)

3
,
(𝑝12+𝑝22+𝑝32)

3
)  

The post-intervention distribution is given by:  

𝑓𝑎
¬𝑑 (

1

20
,
6

20
,
3

20
) = (

1

9
,
1

9
,
1

9
) and 𝑓𝑎

𝑑 (
3

20
,
6

20
,
1

20
) = (

2

6
,
1

6
,
1

6
).  
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Bayes rule (for conditioning the distribution 𝑷(𝑺𝑲, 𝑺𝑹) on an observed state 

𝒔𝒍
𝑹): 

Let 𝑔𝑠𝑙
𝑅 = ⟨𝑔

𝑠𝑙
𝑅
1 , 𝑔

𝑠𝑙
𝑅
2 , … , 𝑔

𝑠𝑙
𝑅
|𝑆𝑅|

⟩ : ∆|𝑆
𝐾||𝑆𝑅|→ ∆|𝑆

𝐾||𝑆𝑅| be a probability revision 

function for Bayes rule and 𝑃𝑠𝑙
𝑅(𝑠𝑖

𝐾 , 𝑠𝑚
𝑅 ) represent the corresponding revised 

probabilities. Then, 

∀𝑚, 𝑃𝑠𝑙
𝑅(𝑠𝑖

𝐾 , 𝑠𝑚
𝑅 ) = {

0                      𝑚 ≠ 𝑙
𝑃(𝑠𝑖

𝐾 , 𝑠𝑚
𝑅 )

∑ 𝑃(𝑠𝑗
𝐾 , 𝑠𝑚

𝑅 )𝑗

 𝑚 = 𝑙 (3-10) 

For example, in the numerical example in Box 3, Bayes conditioning on 𝑠𝑑
𝐶 is described by 

𝑔𝑠𝑑
𝐶 = ⟨𝑔

𝑠𝑑
𝐶
¬𝑑 , 𝑔

𝑠𝑑
𝐶
𝑑 ⟩ : ∆6→ ∆6, 𝑔

𝑠𝑑
𝐶
¬𝑑 (

1

20
,
6

20
,
3

20
) = (0,0, 0),  𝑔

𝑠𝑑
𝐶
𝑑 (

3

20
,
6

20
,
1

20
) = (

3

10
,
6

10
,
1

10
) and 

conditioning on 𝑠¬𝑑
𝐶  by 𝑔𝑠¬𝑑

𝐶 = ⟨𝑔
𝑠¬𝑑
𝐶
¬𝑑 , 𝑔

𝑠¬𝑑
𝐶
𝑑 ⟩ : ∆6→ ∆6, 𝑔

𝑠¬𝑑
𝐶
¬𝑑 (

1

20
,
6

20
,
3

20
) = (

1

10
,
6

10
,
3

10
), 

𝑔
𝑠¬𝑑
𝐶
𝑑 (

3

20
,
6

20
,
1

20
) = (0,0,0). 

We will now state the properties that a probability revision function for joint 

distributions must fulfill when the controllable state node, 𝑆𝐾, has a direct predecessor, i.e. 

𝒮∗(𝑆𝐾) ≠ ∅, and expose the importance of these properties. 

3.4.1 Basic properties for probability revision rules for interventions 

Suppose 𝑆𝐾 is a controllable state node, with a direct predecessor node 𝒮∗(𝑆𝐾) = 𝑆𝑅, 

𝑷(𝑆𝐾 , 𝑆𝑅) is any joint probability distribution for {𝑆𝐾, 𝑆𝑅} = {(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅)|𝑖 = 1,2, … , |𝑆𝐾|; 𝑗 =

1,2,… , |𝑆𝑅|} and 𝑓𝑎: ∆
|𝑆𝐾||𝑆𝑅|→ ∆|𝑆

𝐾||𝑆𝑅| is a probability revision function for an intervention 

on 𝑆𝐾. Then, two basic properties that 𝑓𝑎 should satisfy are: 

Fixed-point at zero: ∀𝑗, 𝑓𝑎
𝑗(𝟎) = 𝟎 where 𝟎 represents the |𝑆𝐾|−dimensional zero vector 

Bayes conditionalization preserving: ∀𝑗, 𝑓𝑎
𝑗
(𝑷(𝑆𝐾 , 𝑠𝑗

𝑅)) = 𝑓𝑎
𝑗
(𝑷(𝑆𝐾|𝑠𝑗

𝑅)) ∗ 𝑃(𝑠𝑗
𝑅) 

The first property ensures that a probability revision function for an intervention does 

not generate counterintuitive probability distributions for 𝑆𝐾 if it is applied after information 

is received about 𝑆𝑅. To see this, consider the probability revision function 𝑓𝑎 defined in Box 

3, which does not satisfy property (i) (𝑓𝑎
𝑑(0,0,0) = (

1

3
, 0,0)). Let 𝑔𝑠¬𝑑

𝐶 (𝑃(𝑆𝑀, 𝑆𝑅)) 

represents Bayes conditioning with respect to the observation that the competitor does not 

advertise (𝑠¬𝑑
𝐶 ). Table 3-2 illustrates the various transformations of the probability 

distribution in Box 3 when 𝑓𝑎 and 𝑔𝑠¬𝑑
𝐶  are applied. 
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Table 3-2: Transformations of the probability distribution in Box 3, where 𝒇𝒂 is the probability 

revision function in Box 3 and 𝒈𝒔¬𝒅
𝑪  is Bayes conditioning once 𝒔¬𝒅

𝑪  (competitor does 

not advertise) is observed. 

 𝑓𝑎(𝑃(∙))  (𝑔𝑠¬𝑑
𝐶 o𝑓𝑎 ) (𝑃(∙))  𝑔𝑠¬𝑑

𝐶 (𝑃(∙))  (𝑓𝑎o𝑔𝑠¬𝑑
𝐶 ) (𝑃(∙)) 

 𝑠¬𝑑
𝐶  𝑠𝑑

𝐶   𝑠¬𝑑
𝐶  𝑠𝑑

𝐶   𝑠¬𝑑
𝐶  𝑠𝑑

𝐶   𝑠¬𝑑
𝐶  𝑠𝑑

𝐶  

𝑠𝑜
𝑀 1/9 2/6  1/3 0  1/10 0  2/9 1/3 

𝑠𝑝
𝑀 1/9 1/6  1/3 0  6/10 0  2/9 0 

𝑠𝑓
𝑀 1/9 1/6  1/3 0  3/10 0  2/9 0 

 

Notice in Table 3-2 that when the probability revision function 𝑓𝑎 is applied after 

information is received that 𝑠¬𝑑
𝐶  will occur (i.e.(𝑓𝑎o 𝑔𝑠¬𝑑

𝐶 )), 𝑓𝑎 assigns positive probability to 

𝑠𝑑
𝐶, a state that is known to not occur. Thus, to avoid generating such conflicting beliefs, 

probability revision functions for interventions must fulfil property (i). (A necessary and 

sufficient condition for property (i) is stated in Theorem 3-3 in Appendix 3-4). 

The second property states that if the distribution of 𝑆𝐾 is revised to incorporate the 

effect of an intervention, 𝑓𝑎, and information about 𝒮∗(𝑆𝐾) = 𝑆𝑅 (e.g. 𝑠𝑗
𝑅 is observed), then 

the corresponding component function, 𝑓𝑎
𝑗
, when applied to its section of the joint 

distribution, 𝑷(𝑆𝐾 , 𝑠𝑗
𝑅), and the distribution conditional on the observation 𝑠𝑗

𝑅, 𝑷(𝑆𝐾|𝑠𝑗
𝑅), 

should satisfy Bayes rule. This property implies a coherence condition for probability 

revision functions for interventions: if a probability revision function for interventions does 

not satisfy property (ii), then it is possible to construct a Dutch book against the decision 

maker. 

To see this, consider the probability revision function 𝑓𝑎 defined in Box 3, which does 

not satisfy property (ii) (for 𝑓𝑎
𝑑, 𝑓𝑎

𝑑(𝑃(𝑆𝑀, 𝑠𝑑
𝐶)) = (

2

6
,
1

6
,
1

6
), 𝑓𝑎

𝑑(𝑃(𝑆𝑀|𝑠𝑑
𝐶)) ∗ 𝑃(𝑠𝑑

𝐶) =

𝑓𝑎
𝑑 (

3

10
,
6

10
,
1

10
) ∗ 0.5 = (

1

3
,
1

3
,
1

3
) ∗ 0.5 = (

1

6
,
1

6
,
1

6
) ≠ 𝑓𝑎

𝑑(𝑃(𝑆𝑀, 𝑠𝑑
𝐶)). The following Dutch 

book can be constructed for this probability revision function:  

Let 𝑷𝑎(𝑆
𝑀|𝑠𝑑

𝐶) = 𝑓𝑎
𝑑(𝑷(𝑆𝑀|𝑠𝑑

𝐶)) represent the post-intervention probabilities if the 

competitor advertises and 𝑷𝒂(𝑆
𝑀, 𝑠𝑑

𝐶) = 𝑓𝑎 (𝑷(𝑆
𝑀, 𝑠𝑑

𝐶)) represents the post-intervention 

probabilities if the competitor’s decision is unknown. From Box 3, the probability that the 

competitor will not advertise, 𝑃(𝑠¬𝑑
𝐶 ), is 0.5 and 𝑷𝒂(𝑆

𝑀, 𝑠𝑑
𝐶) = (

2

6
,
1

6
,
1

6
). Suppose the 

firm commits to advertising. Given the firm’s post intervention beliefs, (𝑷𝒂(𝑆
𝑀|𝑠𝑑

𝐶) and 

𝑷𝒂(𝑆
𝑀, 𝑠𝑑

𝐶)), a bookie designs two bets, which are shown in Table 3-3. 
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Table 3-3: Bets designed by a bookie which show the payoff to the owner of the bet. 

Bet A on whether or not 

Competitor advertises 

 Bet B on the joint events (Competitor’s 

decision and market share outcome) 

𝑠¬𝑑
𝐶  𝑠𝑑

𝐶   𝑠¬𝑑
𝐶  𝑠𝑑

𝐶  

$    33 $     - 

𝑠𝑜
𝑀 $     - $  100 

𝑠𝑝
𝑀 $     - $     - 

𝑠𝑓
𝑀 $     - $     - 

Assuming risk neutrality, the fair price for each bet, based on the firm’s post-intervention 

beliefs is: 

               Bet A: $ 33 ∗ 𝑃(𝑠¬𝑑
𝐶 ) = $16.5                        Bet B: $ 100 ∗ 𝑃𝑎(𝑠𝑑

𝐶, 𝑠𝑜
𝑀) = $33  

The bookie sells both the bets to the firm at the maximum price the firm is willing to pay 

(the firm pays the fair price $33 + $16.5 = $49.5) and the bookie will make payments to 

the firm depending on the outcome of the events. Now consider the potential payoffs to 

the firm. If the competitor does not advertise, the firm wins Bet A and the bookie pays the 

firm $33 (payoff to the firm is −$49.5 + $33 = −$16.5). If the competitor advertises, 

the bookie buys Bet B back from the firm (thus declaring it void) at the minimum price 

the firm is willing to accept, which is the fair price $ 100 ∗ 𝑃𝑎,𝑠𝑑
𝐶(𝑠𝑜

𝑀 , 𝑠𝑑
𝐶) = $ 100 ∗

 0.33 = $33 (payoff to the firm is −$49.5 + $33 = −$16.5). Thus, the firm incurs a loss 

of $16.5 regardless of which state occurs.  

A general design of the Dutch book for probability revision functions which do not satisfy 

property (ii) is presented in Appendix 3-3. 

An alternative interpretation of the basic properties (i) and (ii) is that probability 

revision functions should commute with Bayes rule: when 𝒮∗(𝑆𝐾) = {𝑆𝑅, 𝐴}, the revised 

distribution of 𝑆𝐾 should be the same regardless of the order in which the probability 

revisions for the intervention (e.g. 𝑓𝑎) and information (e.g. 𝑔𝑠𝑙
𝑅) are applied. (The 

equivalence between this re-interpretation and the basic properties is proved in Appendix 

3-4). We will now prove that the GGC satisfies both the basic properties of probability 

revision functions for interventions. 

3.4.2 GGC satisfies the properties of probability revision rules for interventions 

In this subsection, first we prove that the basic properties of probability revision functions, 

stated in section 3.4.1, are satisfied by functions which preserve scalar multiplication. Using 

this result, we will prove that the GGC satisfies the basic properties. 
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Theorem 3-2: Functions which satisfy the basic properties of probability revision 

functions 

Suppose 𝑆𝐾 is a controllable state node with a direct predecessor 𝒮∗(𝑆𝐾) = 𝑆𝑅, 

𝑷(𝑆𝐾 , 𝑆𝑅) is any joint probability distribution for {𝑆𝐾 , 𝑆𝑅} = {(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅)|𝑖 =

1,2,… , |𝑆𝐾|; 𝑗 = 1,2, … , |𝑆𝑅|}, 𝑓𝑎: ∆
|𝑆𝐾||𝑆𝑅|→ ∆|𝑆

𝐾||𝑆𝑅| is a probability revision 

function for an intervention on 𝑆𝐾 and 𝑔𝑠𝑙
𝑅 : ∆|𝑆

𝐾||𝑆𝑅|→ ∆|𝑆
𝐾||𝑆𝑅| represents Bayes 

conditioning with respect to 𝑠𝑙
𝑅 ∈ 𝑆𝑅. If, for any scalar 𝛼 ∈ [0,1], 

𝑓𝑎
𝑗
(𝛼𝑷(𝑆𝐾 , 𝑠𝑗

𝑅)) = 𝛼𝑓𝑎
𝑗
(𝑷(𝑆𝐾 , 𝑠𝑗

𝑅)) , ∀𝑗 then ∀𝑗, (i)  𝑓𝑎
𝑗(𝟎) =  𝟎 and (ii) 

𝑓𝑎
𝑗
(𝑷(𝑆𝐾|𝑠𝑗

𝑅)) ∗ 𝑃(𝑠𝑗
𝑅) =  𝑓𝑎

𝑗
(𝑷(𝑆𝐾, 𝑠𝑗

𝑅)). 

Proof: 

Since ∀𝑗,  𝑓𝑎
𝑗
(𝛼𝑷(𝑆𝐾 , 𝑠𝑗

𝑅)) = 𝛼𝑓𝑎
𝑗
(𝑷(𝑆𝐾 , 𝑠𝑗

𝑅)), by setting 𝛼 = 0, have ∀𝑗, 𝑓𝑎
𝑗(𝟎) =  𝟎. 

∀𝑗, 𝑓𝑎
𝑗
(𝑷(𝑆𝐾|𝑠𝑗

𝑅)) = 𝑓𝑎
𝑗
(
𝑷(𝑆𝐾,𝑠𝑗

𝑅)

∑ 𝑃(𝑠𝑖
𝐾,𝑠𝑗

𝑅)𝑖

) =
𝑓𝑎
𝑗
(𝑷(𝑆𝐾,𝑠𝑗

𝑅))

∑ 𝑃(𝑠𝑖
𝐾,𝑠𝑗

𝑅)𝑖

=
𝑓𝑎
𝑗
(𝑷(𝑆𝐾,𝑠𝑗

𝑅))

𝑃(𝑠𝑗
𝑅)

 

Therefore, ∀𝑗, 𝑓𝑎
𝑗
(𝑷(𝑆𝐾|𝑠𝑗

𝑅)) ∗ 𝑃(𝑠𝑗
𝑅) =  𝑓𝑎

𝑗
(𝑷(𝑆𝐾 , 𝑠𝑗

𝑅)). 

Note that property (i) and (ii) can hold for functions that do not preserve scalar 

multiplication: for example, Bayes rule does not preserve scalar multiplication (∀ 𝑠𝑙
𝑅 ∈ 𝑆𝑅 , 

𝑔𝑠𝑙
𝑅 (𝛼𝑃(𝑠𝑖

𝐾 , 𝑠𝑗
𝑅)) = 𝑔𝑠𝑙

𝑅 (𝑃(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅))), but it can be verified that Bayes rule satisfies 

property (i) and (ii) (since Bayes rule commute; see Supplementary Note S 3-4). 

Corollary: The generalized generic controller satisfies the basic properties of 

probability revision functions for interventions. 

Proof:  

It is easy to verify that the GGC preserves scalar multiplication. Suppose 𝑆𝐾 is a controllable 

state node, 𝒮∗(𝑆𝐾) = 𝑆𝑅, 𝑷(𝑆𝐾 , 𝑆𝑅) is the joint probability distribution for {𝑆𝐾 , 𝑆𝑅} =

{(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅)|𝑖 = 1,2, … , |𝑆𝐾|; 𝑗 = 1,2, … , |𝑆𝑅|} and 𝑓𝑎 = ⟨𝑓𝑎
1, 𝑓𝑎

2, … , 𝑓𝑎
|𝑆𝑅|

⟩ : ∆|𝑆
𝐾||𝑆𝑅|→ ∆|𝑆

𝐾||𝑆𝑅|  

is a GGC. For any 𝛼 ∈ [0,1], we have, 

∀𝑙, 𝑓𝑎
𝑙 (𝛼𝑷(𝑆𝐾 , 𝑠𝑙

𝑅)) = (∑ 𝛼𝑃(𝑠𝑗
𝐾 , 𝑠𝑙

𝑅)𝜌𝑎(𝑠1
𝐾 , 𝑠𝑗

𝐾)𝑗 , … , ∑ 𝛼𝑃(𝑠𝑗
𝐾 , 𝑠𝑙

𝑅)𝜌𝑎 (𝑠
|𝑆𝐾|
𝐾 , 𝑠𝑗

𝐾)𝑗 ) 

= 𝛼𝑓𝑎
𝑙 (𝑷(𝑆𝐾 , 𝑠𝑙

𝑅)). Applying Theorem 3-2, we have that 𝑓𝑎 satisfies the basic properties of 

probability revision functions. 
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3.5 Summary and directions for further research 

Managers often deal with risks by considering uncertainty as an element of the decision 

problem over which they can exert control (Chelst and Bodily, 2000; Courtney, 2001; March 

and Shapira, 1987; Rosenzweig, 2013). Managerial actions to influence the probability of 

uncertain states can be modelled as stochastic interventions in influence diagrams (Howard 

and Matheson 1984; Howard and Matheson 2005; Matheson and Matheson 2005) with an 

arc from the decision node to a state node. However, within the Decision Analysis 

framework, evaluating a number of different stochastic interventions using standard 

procedures, such as eliciting post-intervention probabilities directly, can be judgmentally 

very burdensome. In this paper, we addressed this challenge associated with modelling 

stochastic interventions in Decision Analysis frameworks and developed a general 

probability revision method for interventions, which is analogous to Bayes rule (the 

probability revision rule for information), but does not need probabilities to be assigned to 

actions. 

The method we proposed in this paper — the generalized generic controller (GGC) — 

builds upon the generic controller of Matheson & Matheson (2005). We first extended the 

generic controller (extended generic controller (EGC)) and offered an interpretation of the 

generic controller and the EGC in terms of ‘probability mass transfers’ between states. We 

also exposed their ‘Bayesian’ nature and that they share the order invariance property of 

Bayes rule. This property can be advantageous when modelling simultaneous interventions 

on the same state node. We then developed the GGC by further generalizing the generic 

controller to allow any arbitrary movements of probability mass between states, so that more 

general interventions, such as those that prevent an undesirable state from occurring, can be 

represented. We proved that the GGC is equivalent to ‘imaging’ (Gardenfors, 1982; Lewis, 

1976), a probability revision method proposed in Philosophy, thus establishing an interesting 

link between methods in Decision Analysis and other disciplines. It was noted that the GGC 

does not share the order invariance property of the generic controller and EGC. 

The tractability of our proposed procedure for analysing stochastic interventions has 

several prescriptive advantages in terms of using Decision Analysis methods to analyse 

managerial influences on uncertainty. First, we demonstrated that compared to standard 

procedures for analysing interventions, the GGC is less information intensive and requires 

fewer elicitations when the controllable state node has several direct predecessor state nodes. 

This can reduce the effort needed when managers want to explore several potential 

interventions. Another important advantage of this procedure, which has not been recognized 

before, is that it separates beliefs about uncertainty from beliefs about the effect of 
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intervention on the probability distribution. This is particularly helpful if an analyst wants to 

introduce new predecessors to the controllable state node in the decision problem. With a 

probability revision function, as described in the paper, the post-intervention probabilities 

can systematically be obtained from the new conditional probabilities of the state node and 

the decision maker does not need to reassess all the probability distributions again. 

A potential theoretical contribution of this paper is formally grounding the concept of 

probability revision rules for interventions, formulated as functions, in foundational 

principles which are akin to the coherence criterion and Dutch book argument that supports 

Bayes rule as the probability revision rule for information. We stated two basic properties for 

probability revision functions for interventions that are key when the controllable state 

depends on the outcome of other state nodes and Bayes rule is used to incorporate any 

information about these state nodes. The first property we stated, fixed-point at zero, ensures 

that when probability revision functions for interventions are applied together with Bayes 

rule, the post-intervention distribution does not assign positive probabilities to states that are 

known to not occur (i.e. have probability zero). The second property, Bayes 

conditionalization preserving, which requires that post-intervention beliefs should satisfy 

Bayes rule, extends the coherence arguments (such as immunity to Dutch books) that support 

Bayes rule (Teller, 1973), to probability revision functions for interventions. We proved that 

the GGC (or imaging) and, more generally, functions which preserve scalar multiplication 

satisfy these basic properties, thus providing additional support to previous suggestions to 

use imaging for modelling interventions (Joyce, 1999; Pearl, 1994). 

One limitation of the approach proposed in this paper is that, in general, when 

modelling multiple interventions as GGCs, the post-intervention distribution is not invariant 

to the order in which the GGCs are applied. This limits the possible ways in which 

interventions can be formulated when multiple interventions are performed simultaneously 

on the same state node. We leave the formalization of a general condition under which the 

GGCs commute to future research. From a practitioner's perspective, the feasibility of using 

the GGC to model real world interventions needs to be tested. One area where the GGC can 

be potentially useful is in producing Operational Risk assessments, where many uncertainties 

pertaining to people, processes and systems are controllable and managers often have 

mitigations in place to modify the probability of loss events. The probability revision 

method, proposed here, provides a quantitative way to model the impact of mitigations on 

Operational Risk costs, explicitly. Agarwal and Montibeller (2014) explore the application of 

the GGC to measure Operational Risks in a real world case study. 

We identify two theoretical directions for further research which could be useful. One 

of the motivations for generalizing the generic controller, beyond the EGC, was to establish 
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its correspondence with probability revision procedures in other disciplines. A direction for 

potentially useful research is to provide ecological validity for the GGC as a probability 

revision rule for interventions, by exposing the counterfactual reasoning that underpins 

imaging and unifying it with how managers contemplate interventions as mechanisms to 

bring about desired states. A second direction for further research relates to the lack of a 

normative foundation for influence diagrams in the non-canonical form. Potential solutions 

to this problem are based on eliminating any direct links between the decision node and state 

node by reformulating the state that can be influenced, without affecting the overall analysis 

of the decision problem (see Matheson 1990; Gibbard and Harper 1978, 22; Jeffrey 1965). 

We propose that another interesting approach would be to investigate if alternative versions 

of expected utility theory, with a revised set of axioms, such as Conditional Expected Utility 

(Bolker, 1967; Jeffrey, 1965; Luce and Krantz, 1971) or Causal Decision Theory (Armendt, 

1986; Joyce, 1999; Lewis, 1981; Skyrms, 1982), can serve as normative foundations for 

influence diagrams that are not in the canonical form. 
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3.6 Appendices for Chapter 3 

Appendix 3-1: Eliciting the coefficients for the generalized generic controller using the 

influence wheel 

Let the controllable state node be 𝑆𝐾 = {𝑠1
𝐾 , 𝑠2

𝐾 , … , 𝑠
|𝑆𝐾|
𝐾 }. The coefficients, 𝜌𝑎(𝑠𝑖

𝐾 , 𝑠𝑗
𝐾), can 

be elicited as follows:  

For each [𝜌𝑎(𝑠1
𝐾 , 𝑠𝑗

𝐾), 𝜌𝑎(𝑠2
𝐾 , 𝑠𝑗

𝐾), …𝜌𝑎 (𝑠
|𝑆𝐾|
𝐾 , 𝑠𝑗

𝐾)]: 

Step 1: The decision maker is told that only 𝑠𝑗
𝐾 will occur. The only way the other 𝑠𝑖

𝐾 can 

occur is if he performs the intervention or spins an ‘influence wheel’. 

Step 2 (elicit 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) for 𝑖 = 𝑗): The decision maker is told if he spins the ‘influence 

wheel’ there is 𝑥% chance that 𝑠𝑗
𝐾 will occur and (1 − 𝑥)% chance one of the other states 

will occur. The value of 𝑥 that makes the decision maker indifferent between spinning the 

wheel and performing the intervention is the value for 𝜌𝑎(𝑠𝑗
𝐾 , 𝑠𝑗

𝐾).  
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Step 3 (elicit 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) for 𝑖 ≠ 𝑗): The decision maker is told if he spins the ‘influence 

wheel’, there is 𝜌𝑎(𝑠𝑗
𝐾 , 𝑠𝑗

𝐾)% chance that 𝑠𝑗
𝐾 will occur, 𝑥% chance 𝑠𝑖

𝐾 will occur and 

(1 − 𝜌𝑎(𝑠𝑗
𝐾 , 𝑠𝑗

𝐾) − 𝑥)% chance one of the other states will occur. 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) is the value 

of 𝑥 that makes the decision maker indifferent between spinning the wheel and 

performing the intervention. 

Step 4 (repeat Step 3 for the other 𝑖s): The remaining 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) are elicited similarly in a 

sequential fashion, where for each subsequent elicitation, the number of outcomes of the 

influence wheel increases to include the states for which 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) are already elicited 

and their associated chance of occurring is held constant at 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾). Repeat till 𝑛 − 1 

elicitations are obtained and then set the probability of the n
th
 state to 

1 − ∑ 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾)𝑛−1
𝑖=1 . 

Appendix 3-2: Proof for Theorem 1 (representation theorem for generalized generic 

controller) 

⇐ Suppose 𝑷𝒂(𝑆
𝐾) = 𝑓𝑎(𝑷(𝑆

𝐾)) is a GGC. Let 𝑷(𝑆𝐾) = 𝛼𝑷′(𝑆𝐾) + (1 − 𝛼)𝑷′′(𝑆𝐾) for 

some 𝑷′, 𝑷′′, 𝛼 ∈ [0,1]. ∀𝑠𝑖
𝐾 ∈ 𝑆𝐾,  

𝑃𝑎(𝑠𝑖
𝐾) =∑𝑃(𝑠𝑗

𝐾)𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) 

𝑗

 

=∑(𝛼𝑃′(𝑠𝑗
𝐾) + (1 − 𝛼)𝑃′′(𝑠𝑗

𝐾)) 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾)

𝑗

 

=∑𝛼𝑃′(𝑠𝑗
𝐾)𝜌𝑎(𝑠𝑖

𝐾 , 𝑠𝑗
𝐾) + (1 − 𝛼)𝑃′′(𝑠𝑗

𝐾)𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾)

𝑗

 

= 𝛼∑𝑃′(𝑠𝑗
𝐾)𝜌𝑎(𝑠𝑖

𝐾 , 𝑠𝑗
𝐾) + (1 − 𝛼)∑𝑃′′(𝑠𝑗

𝐾)𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾)

𝑗𝑗

 

= 𝛼𝑃𝑎
′(𝑠𝑖

𝐾) + (1 − 𝛼)𝑃𝑎
′′(𝑠𝑖

𝐾) 

definition of GGC 

 

assumption about 

𝑃, 𝑃′, 𝑃′′ 

by algebra 

 

by algebra 

 

GGC applied to 

𝑃′, 𝑃′′ 

Therefore 𝑓𝑎 is linear. 

⇒ Suppose 𝑓𝑎: ∆
|𝑆𝐾|→ ∆|𝑆

𝐾| is a linear probability revision function.  

To show that 𝑷𝒂(𝑆
𝐾) = 𝑓𝑎(𝑷(𝑆

𝐾)) is a generalized generic controller it is sufficient to 

show that for some 0 ≤ 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) ≤ 1, ∑ 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) = 1𝑖 ; 

𝑃𝑎(𝑠𝑖
𝐾) = ∑ 𝑃(𝑠𝑗

𝐾)𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾)𝑗 , ∀𝑠𝑖
𝐾 ∈ 𝑆𝐾.  

By iterated application of Definition 3-2 have, if 𝑃(𝑠𝑖
𝐾) = ∑ 𝛼𝑗𝑃

𝑗(𝑠𝑖
𝐾)𝑗 , 𝛼𝑗 ∈ [0,1] and 

∑ 𝛼𝑗 = 1𝑗 , then, 𝑃𝑎(𝑠𝑖
𝐾) = ∑ 𝛼𝑗𝑃𝑎

𝑗
(𝑠𝑖
𝐾)𝑗 . 
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Let 𝒆𝒊
𝑲 = 〈𝑒(𝑠𝑖

𝐾 , 𝑠1
𝐾), … , 𝑒(𝑠𝑖

𝐾 , 𝑠𝑛
𝐾)〉 be the probability vector where 𝑒(𝑠𝑖

𝐾 , 𝑠𝑗
𝐾) = 1 for 

𝑖 = 𝑗, 0 otherwise and 𝑓𝑎(𝒆𝒊
𝑲) = 〈𝑒𝑎(𝑠𝑖

𝐾 , 𝑠1
𝐾),… , 𝑒𝑎(𝑠𝑖

𝐾 , 𝑠𝑛
𝐾)〉. Since 𝑓𝑎(𝒆𝒊

𝑲) is a point in 

∆|𝑆
𝐾|, we have 𝑒𝑎(𝑠𝑖

𝐾 , 𝑠𝑗
𝐾) ∈ [0,1], ∑ 𝑒𝑎(𝑠𝑖

𝐾 , 𝑠𝑗
𝐾) = 1𝑖 . 

∀𝑠𝑖
𝐾 ∈ 𝑆𝐾 we have,  

𝑃(𝑠𝑖
𝐾) =∑𝑃(𝑠𝑗

𝐾)𝑒(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾)

𝑗

 

𝑃𝑎(𝑠𝑖
𝐾) =∑𝑃(𝑠𝑗

𝐾)𝑒𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾)

𝑗

 

=∑𝑃(𝑠𝑗
𝐾)𝜌𝑎(𝑠𝑖

𝐾 , 𝑠𝑗
𝐾)

𝑗

 

definition of 𝑒(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) 

 

linearity assumption  

 

set 𝜌𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) =  𝑒𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝐾) 

Therefore 𝑓𝑎 is a generalized generic controller. 

Appendix 3-3: The Dutch book for probability revision functions which are not Bayes 

conditionalization preserving 

Here we present a general strategy for constructing a Dutch book for probability revision 

functions that do not satisfy property (ii) (Bayes conditionalization preserving), stated in 

section 3.4.1. 

Statement of the Dutch book Theorem:  

Suppose 𝑆𝐾 is a state node, the probabilities of 𝑆𝐾 depend on another state node 

𝑆𝑅, 𝑷(𝑆𝐾 , 𝑆𝑅) is the joint probability distribution for {𝑆𝐾 , 𝑆𝑅} = {(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅)}. If a 

probability revision function for intervention 𝑓𝑎: ∆
|𝑆𝐾||𝑆𝑅|→ ∆|𝑆

𝐾||𝑆𝑅| is not Bayes 

conditionalization preserving (i.e for some 𝑠𝑖
𝐾 , 𝑠𝑙

𝑅 , 𝑃𝑎(𝑠𝑖
𝐾| 𝑠𝑙

𝑅)𝑃(𝑠𝑙
𝑅) ≠ 𝑃𝑎(𝑠𝑖

𝐾 , 𝑠𝑙
𝑅) 

where, 𝑃𝑎(𝑆
𝐾 , 𝑠𝑙

𝑅) = 𝑓𝑎
𝑙 (𝑷(𝑆𝐾 , 𝑠𝑙

𝑅)), 𝑃𝑎(𝑆
𝐾| 𝑠𝑙

𝑅) = 𝑓𝑎
𝑙 (𝑷(𝑆𝐾|𝑠𝑙

𝑅))), then once 

the decision maker commits to performing the intervention, a bookie who knows 

no more or less than the decision maker can induce the decision maker to willingly 

buy and sell bets on the occurrence of 𝑆𝑅 and 𝑆𝐾 which will guarantee a net loss to 

the decision whatever happens.  

In order to construct the proof we will assume that the subjective probabilities, 𝑃(𝑠𝑖
𝐾), of a 

risk neutral decision maker represent the maximum (minimum) price he/she is willing to pay 

(accept) for a bet on 𝑆𝐾 which pays 1 if 𝑠𝑖
𝐾 occurs and 0 otherwise. This bet is represented as 

follows: 

𝑠𝑖
𝐾: 1

�̅�𝑖
𝐾: 0
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Proof: 

Suppose for some 𝑠𝑖
𝐾, 𝑃𝑎(𝑠𝑖

𝐾 , 𝑠𝑙
𝑅) ≠ 𝑃𝑎(𝑠𝑖

𝐾|𝑠𝑙
𝑅) 𝑃(𝑠𝑙

𝑅) and 𝑃𝑎(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅) > 𝑃𝑎(𝑠𝑖
𝐾|𝑠𝑙

𝑅) 𝑃(𝑠𝑙
𝑅). 

Then, 𝑃𝑎(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅) = 𝑃𝑎(𝑠𝑖
𝐾|𝑠𝑙

𝑅) 𝑃(𝑠𝑙
𝑅) + 𝛿, for some 𝛿 > 0. 

The bookie designs the following two bets on the occurrence of 𝑆𝑅 and 𝑆𝐾: 

Bet A      

𝑠𝑙
𝑅̅̅ ̅: 𝑃𝑎(𝑠𝑖

𝐾|𝑠𝑙
𝑅)

𝑠𝑙
𝑅: 0

 

Bet B             

𝑠𝑙
𝑅 , 𝑠𝑖

𝐾: 1

𝑠𝑙
𝑅
𝑖

̅̅ ̅̅ , 𝑠𝑖
𝐾: 0

    �̅�𝑖
𝐾: 0

 

Suppose a bookie sells Bet A and Bet B to the decision maker at the maximum price that the 

decision maker is willing to pay for the two bets, which is: 

𝑃𝑎(𝑠𝑖
𝐾|𝑠𝑙

𝑅) ∗ 𝑃(𝑠𝑙
𝑅̅̅ ̅) + 𝑃𝑎(𝑠𝑖

𝐾 , 𝑠𝑙
𝑅) ∗ 1 = 𝑃𝑎(𝑠𝑖

𝐾|𝑠𝑙
𝑅) ∗ 𝑃(𝑠𝑙

𝑅̅̅ ̅) + (𝑃𝑎(𝑠𝑖
𝐾|𝑠𝑙

𝑅) 𝑃(𝑠𝑙
𝑅) + 𝛿) ∗ 1 

= 𝑃𝑎(𝑠𝑖
𝐾|𝑠𝑙

𝑅) + 𝛿 

If 𝑠𝑙
𝑅̅̅ ̅ occurs, then the payoff to the decision maker is 𝑃𝑎(𝑠𝑖

𝐾|𝑠𝑙
𝑅) − (𝑃𝑎(𝑠𝑖

𝐾|𝑠𝑙
𝑅) + 𝛿) = −𝛿. 

If 𝑠𝑙
𝑅 occurs, then before the outcome of 𝑆𝐾 is observed, the bookie buys back Bet B at the 

minimum price that the decision maker is willing to accept, which is 𝑃𝑎(𝑠𝑖
𝐾|𝑠𝑙

𝑅). Then the 

payoff to the decision maker is 𝑃𝑎(𝑠𝑖
𝐾|𝑠𝑙

𝑅) − (𝑃𝑎(𝑠𝑖
𝐾|𝑠𝑙

𝑅) + 𝛿) = −𝛿. Thus, the decision 

maker incurs a net loss of −𝛿 whatever happens. 

If 𝑃𝑎(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅) < 𝑃𝑎(𝑠𝑖
𝐾|𝑠𝑙

𝑅) 𝑃(𝑠𝑙
𝑅), then the argument above can be reconstructed by having 

the bookie buy Bet A and Bet B from the decision maker and sell Bet B back to the decision 

maker depending on the outcome of state 𝑆𝑅. 

Appendix 3-4: A necessary and sufficient condition for the basic properties of 

probability revision functions for interventions 

Here we will prove that any probability revision function for interventions which commutes 

with Bayes rule satisfies both the basic properties stated in section 3.4.1 and vice-versa. First 

we will prove a necessary and sufficient condition for the first property (fixed-point at zero). 

We will then use this result to prove that ‘commutes with Bayes rule’ is a necessary and 

sufficient condition for the basic properties stated in section 3.4.1.  

Theorem 3-3: Necessary and Sufficient condition for fixed-point at zero 

Suppose 𝑆𝐾 is a controllable state node with a direct predecessor 𝒮∗(𝑆𝐾) = 𝑆𝑅, 

𝑷(𝑆𝐾 , 𝑆𝑅) is any joint probability distribution for {𝑆𝐾 , 𝑆𝑅} = {(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅)}, 

𝑓𝑎: ∆
|𝑆𝐾||𝑆𝑅|→ ∆|𝑆

𝐾||𝑆𝑅| is a probability revision function for an intervention on 𝑆𝐾 

and 𝑔𝑠𝑙
𝑅 : ∆|𝑆

𝐾||𝑆𝑅|→ ∆|𝑆
𝐾||𝑆𝑅| represents Bayes conditioning with respect to 
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𝑠𝑙
𝑅 ∈ 𝑆𝑅. Let 𝑷𝒂(𝑠𝑖

𝐾 , 𝑠𝑗
𝑅) represent the revised probabilities for 𝑓𝑎

𝑗
. ∀𝑙,

∑ 𝑃𝑎(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅)𝑖 = ∑ 𝑃(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅)𝑖 ⇔ ∀𝑙, 𝑓𝑎
𝑙(𝟎) = 𝟎.  

Proof: 

⇒ Suppose ∀𝑙, ∑ 𝑃𝑎(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅)𝑖 = ∑ 𝑃(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅)𝑖  but for some 𝑚, 𝑓𝑎
𝑚(𝟎) ≠ 𝟎. Conditioning the 

distribution 𝑃(𝑆𝐾 , 𝑆𝑅) on some 𝑠𝑧
𝑅  ∈ 𝑆𝑅, 𝑧 ≠ 𝑚 and using 𝑃𝑠𝑧𝑅(𝑠𝑖

𝐾 , 𝑠𝑗
𝑅) to denote the 

revised probabilities, have 𝑷𝒔𝒛𝑹(𝑆
𝐾 , 𝑠𝑚

𝑅 ) = 𝟎. Now applying 𝑓𝑎 to 𝑷𝒔𝒛𝑹(𝑆
𝐾 , 𝑆𝑅) have 

𝑷𝒂,𝒔𝒛𝑹(𝑆
𝐾 , 𝑠𝑚

𝑅 )  = 𝑓𝑎
𝑚 (𝑷𝒔𝒛𝑹(𝑆

𝐾 , 𝑠𝑚
𝑅 ))  ≠ 𝟎. ∑ 𝑃𝑠𝑧𝑅(𝑠𝑖

𝐾 , 𝑠𝑚
𝑅 ) 𝑖 = 𝟎 ≠ ∑ 𝑃𝑎,𝑠𝑧𝑅(𝑠𝑖

𝐾 , 𝑠𝑚
𝑅 )𝑖 , 

which is a contradiction. Therefore ∀𝑙, 𝑓𝑎
𝑙(𝟎) = 𝟎. 

⇐ Suppose ∀𝑙, 𝑓𝑎
𝑙(𝟎) = 𝟎 but for some 𝑚, ∑ 𝑃𝑎(𝑠𝑖

𝐾 , 𝑠𝑚
𝑅 )𝑖 ≠ ∑ 𝑃(𝑠𝑖

𝐾 , 𝑠𝑚
𝑅 )𝑖 . Conditioning the 

distribution 𝑃(𝑆𝐾 , 𝑆𝑅) on 𝑠𝑚
𝑅  ∈ 𝑆𝑅 and using 𝑃𝑠𝑚𝑅 (𝑠𝑖

𝐾 , 𝑠𝑗
𝑅) to denote the revised 

probabilities, have 𝑷𝒔𝒎𝑹 (𝑆
𝐾 , 𝑠𝑗

𝑅) = 𝟎 for 𝑗 ≠ 𝑚. Since 𝑃𝑠𝑚𝑅 (𝑠𝑖
𝐾 , 𝑠𝑗

𝑅) are points in the 

probability simplex ∆|𝑆
𝐾||𝑆𝑅|, ∑ 𝑃𝑠𝑚𝑅 (𝑠𝑖

𝐾 , 𝑠𝑚
𝑅 )𝑖 = 1. Applying 𝑓𝑎 to 𝑷𝒔𝒎𝑹 (𝑆

𝐾, 𝑆𝑅), have  

∑ 𝑃𝑎,𝑠𝑚𝑅 (𝑠𝑖
𝐾 , 𝑠𝑚

𝑅 )𝑖 ≠ ∑ 𝑃𝑠𝑚𝑅 (𝑠𝑖
𝐾 , 𝑠𝑚

𝑅 )𝑖 = 1. This means for some 𝑗 ≠ 𝑚, 𝑃𝑎,𝑠𝑚𝑅 (𝑠𝑖
𝐾 , 𝑠𝑗

𝑅) >

0. But this is a contradiction since for 𝑗 ≠ 𝑚, 𝑷𝒂,𝒔𝒎𝑹 (𝑆
𝐾 , 𝑠𝑗

𝑅)  = 𝑓𝑎
𝑚 (𝑷𝒔𝒎𝑹 (𝑆

𝐾 , 𝑠𝑗
𝑅)) =

𝑓𝑎
𝑚(𝟎) = 𝟎. 

Theorem 3-3 states that when revising the probabilities of a controllable state node 𝑆𝐾 with 

joint probabilities 𝑃(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅), the cumulative probability of each section of the joint 

distribution of 𝒮𝑖
∗(𝑆𝐾), ∀𝑖 is conserved if and only if ∀𝑗, 𝑓𝑎

𝑗(𝟎) = 𝟎. 

Theorem 3-4: Equivalence between ‘commutes with Bayes rule’ and the basic 

properties of probability revision functions 

Suppose 𝑆𝐾 is a controllable state node, 𝒮∗(𝑆𝐾) = 𝑆𝑅, 𝑷(𝑆𝐾 , 𝑆𝑅) is any joint 

probability distribution for {𝑆𝐾 , 𝑆𝑅} = {(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅)}, 𝑓𝑎: ∆
|𝑆𝐾||𝑆𝑅|→ ∆|𝑆

𝐾||𝑆𝑅| is a 

probability revision function for an intervention on 𝑆𝐾 and 𝑔𝑠𝑙
𝑅 : ∆|𝑆

𝐾||𝑆𝑅|→

∆|𝑆
𝐾||𝑆𝑅| represents Bayes conditioning with respect to some 𝑠𝑙

𝑅 ∈ 𝑆𝑅. 

 (𝑔𝑠𝑗
𝑅  o 𝑓𝑎) (𝑷(𝑆

𝐾 , 𝑆𝑅)) = (𝑓𝑎 o 𝑔𝑠𝑗
𝑅) (𝑷(𝑆𝐾 , 𝑆𝑅)), ∀𝑠𝑗

𝑅 ∈ 𝑆𝑅 ⇔ 𝑓𝑎
𝑗(𝟎) = 𝟎, 

∀𝑗 and 𝑓𝑎
𝑗
(𝑷(𝑆𝐾, 𝑠𝑗

𝑅)) = 𝑓𝑎
𝑗
(𝑷(𝑆𝐾|𝑠𝑗

𝑅)) ∗ 𝑃(𝑠𝑗
𝑅), ∀𝑗. 

Proof: 

Let 𝑃𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅) represent the revised probabilities for 𝑓𝑎. We have 𝑷(𝑆𝐾|𝑠𝑙
𝑅) =

𝑔𝑠𝑙
𝑅(𝑷(𝑆𝐾 , 𝑆𝑅)). Consider (𝑓𝑎 o 𝑔𝑠𝑙

𝑅) and (𝑔𝑠𝑙
𝑅  o 𝑓𝑎) for any 𝑙. 
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(𝑓𝑎 o 𝑔𝑠𝑙
𝑅) (𝑃(𝑆𝐾 , 𝑆𝑅)) = {

𝑓𝑎
𝑗
(𝑷(𝑆𝐾|𝑠𝑙

𝑅))  𝑗 = 𝑙

𝑓𝑎
𝑗(𝟎)                   𝑗 ≠ 𝑙

  and,  

(𝑔𝑠𝑙
𝑅  o 𝑓𝑎) (𝑃(𝑆

𝐾 , 𝑆𝑅)) = {

𝑓𝑎
𝑗
(𝑷(𝑆𝐾 , 𝑠𝑙

𝑅))

∑ 𝑃𝑎(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅)𝑖

  𝑗 = 𝑙

𝟎                   𝑗 ≠ 𝑙

 

For any 𝑙, (𝑔𝑠𝑙
𝑅  o 𝑓𝑎) = (𝑓𝑎  o 𝑔𝑠𝑙

𝑅) ⇔ 𝑓𝑎
𝑗(𝟎) = 𝟎, ∀ 𝑗 ≠ 𝑙 and 𝑓𝑎

𝑗
(𝑷(𝑆𝐾|𝑠𝑙

𝑅)) =
𝑓𝑎
𝑗
(𝑷(𝑆𝐾,𝑠𝑙

𝑅))

∑ 𝑃𝑎(𝑠𝑖
𝐾,𝑠𝑙

𝑅)𝑖
 

for 𝑗 = 𝑙.  

Comparing the expression for (𝑔𝑠𝑗
𝑅 o 𝑓𝑎) and (𝑓𝑎 o 𝑔𝑠𝑗

𝑅) for various 𝑠𝑗
𝑅, have:  

⇒ (𝑔𝑠𝑗
𝑅  o 𝑓𝑎) = (𝑓𝑎  o 𝑔𝑠𝑗

𝑅) , ∀𝑗 ⇒ 𝑓𝑎
𝑗(𝟎) = 𝟎, ∀ 𝑗 and 𝑓𝑎

𝑗
(𝑷(𝑆𝐾|𝑠𝑗

𝑅)) =
𝑓𝑎
𝑗
(𝑷(𝑆𝐾,𝑠𝑗

𝑅))

∑ 𝑃𝑎(𝑠𝑖
𝐾,𝑠𝑗

𝑅)𝑗

, ∀ 𝑗. 

By Theorem 3-3, ∑ 𝑃𝑎(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅)𝑖 = ∑ 𝑃(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅)𝑖 = 𝑃(𝑠𝑗
𝑅), ∀ 𝑗, therefore 

𝑓𝑎
𝑗
(𝑷(𝑆𝐾|𝑠𝑗

𝑅))𝑃(𝑠𝑗
𝑅) = 𝑓𝑎

𝑗
(𝑷(𝑆𝐾 , 𝑠𝑗

𝑅), ∀ 𝑗. 

⇐ 𝑓𝑎
𝑗(𝟎) = 𝟎, ∀ 𝑗 and 𝑓𝑎

𝑗
(𝑷(𝑆𝐾|𝑠𝑗

𝑅))𝑃(𝑠𝑗
𝑅) = 𝑓𝑎

𝑗
(𝑷(𝑆𝐾 , 𝑠𝑗

𝑅), ∀ 𝑗 ⇒ 𝑓𝑎
𝑗(𝟎) = 𝟎 , ∀ 𝑗 and 

𝑓𝑎
𝑗
(𝑷(𝑆𝐾|𝑠𝑗

𝑅)) =
𝑓𝑎
𝑗
(𝑷(𝑆𝐾,𝑠𝑗

𝑅))

∑ 𝑃𝑎(𝑠𝑖
𝐾,𝑠𝑗

𝑅)𝑗

, ∀ 𝑗 ⇒ (𝑔𝑠𝑗
𝑅  o 𝑓𝑎) = (𝑓𝑎  o 𝑔𝑠𝑗

𝑅) , ∀ 𝑗. 
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3.8 Supplementary material for Chapter 3 

S 3-1: A discussion of the conceptual issues with non-canonical influence diagrams 

A normative objection of non-canonical influence diagrams is that the expected utility 

calculation of equation (3-1) to evaluate interventions is incompatible with the normative 

principles of classical expected utility paradigms (Savage, 1954; von Neumann and 

Morgenstern, 1944), which require the actions and states to be probabilistically independent 

(Matheson 1990). In particular, not all axioms of these classical expected utility paradigms, 

that are necessary to show that expected utility calculations of decisions represent qualitative 

preferences over decisions, are satisfied. From a Decision Analysis perspective, in influence 

diagrams which contain interventions, it is also not possible to represent value of information 

analysis on the state node that can be influenced as it creates a forbidden loop (Matheson 

1990). 

Some approaches have been proposed to resolve this conflict between normative 

foundations of expected utility calculations and influence diagrams that are not in the 

canonical form. One approach in Decision Analysis is to convert the influence diagram in the 

canonical form by making the ‘controllable’ state node deterministic and adding new chance 
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nodes (Figure 3-10), where each new node represents the probabilities conditional on each 

decision (Matheson 1990).  

Figure 3-10: Revised influence diagram for the market share example (in the canonical form) 

 

Value of information analysis on the controllable state node can then be represented by 

introducing arcs from the new nodes to the interventions. Conceptually, this means that the 

decision maker first commits to a decision and then evaluates the value of information given 

the selected decision.  

Another method to make the state and decision node probabilistically independent of 

one another (i.e. remove the link between the decision node) is to repartition the state node 

(or revise how it is described) (Jeffrey 1965, p.22; Gibbard & Harper 1978). In the example 

in Figure 3-1, suppose there are three atomic states for the state node (𝑆𝑀 = {𝑠𝑖
𝑀}): gain no 

marketshare (𝑠𝑜
𝑀), gain partial marketshare (𝑠𝑝

𝑀), or gain full market share (𝑠𝑓
𝑀). Then the 

atomic states for the reformulated problem would be 𝑆𝑀 = {𝑠𝑖 𝑖𝑓 𝑎
𝑀 } ∪ {𝑠𝑖 𝑖𝑓 ¬𝑎 

𝑀 } ∪

{𝑠𝑖 𝑖𝑓 𝑎∨¬𝑎
𝑀 }, where 𝑠𝑖 𝑖𝑓 𝑎

𝑀  is the state that 𝑠𝑖
𝑀 will occur if the firm advertises and one of other 

states will occur if it does not advertise; and 𝑠𝑖 𝑖𝑓 𝑎∨¬𝑎
𝑀  is the state that 𝑠𝑖

𝑀 will occur 

regardless of what the firm does. From a practical perspective, this method is tedious — for 

example, compared to the approach of directly eliciting probabilities conditional on 

decisions, this new formulation requires a higher number of elicitations (nine instead of six). 

In particular, for 𝑛 atomic states of the controllable node, 𝑘 options and 𝑚 ≥ 1 atomic states 

of the parents of the controllable state node direct elicitation of post-intervention conditional 

probabilities 𝑃(𝑠𝑖|𝐴) requires 𝑚 ∗ (𝑛 − 1) ∗ 𝑘 elicitations, which is always fewer than 

repartitioning the state node which requires 𝑚 ∗ (𝑛𝑘 − 1) elicitations. A numerical 

comparison is offered in Table 3-4.  
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Table 3-4: Number of elicitations required for each approach. 

Atomic States 

𝒏 

Options 

𝒌 

Parent Atomic 

States 

𝒎 

Reformulated 

problem 

𝒎 ∗ (𝒏𝒌 − 𝟏) 

Direct elicitation 

(𝒏 − 𝟏) ∗ 𝒌 ∗ 𝒎 

3 2 1 8 4 

3 2 2 16 8 

3 2 3 24 12 

3 2 4 32 16 

3 3 1 26 6 

3 3 2 52 12 

3 3 5 130 30 

3 3 10 260 60 

S 3-2: The Dutch book argument for Bayes rule 

Statement of the Dutch book Theorem:  

Suppose 𝑆𝐾 is a state node, the probabilities of 𝑆𝐾 depend on another state node 

𝑆𝑅, 𝑷(𝑆𝐾 , 𝑆𝑅) is the joint probability distribution for {𝑆𝐾 , 𝑆𝑅} = {(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅)}. Upon 

receiving information about the state node 𝑆𝑅, if a decision maker’s new beliefs 

about 𝑆𝐾, 𝑃′(𝑆𝐾), do not satisfy Bayes rule (i.e. for any 𝑠𝑙
𝑅 that is known to occur, 

for some 𝑠𝑖
𝐾 , 𝑃′(𝑠𝑖

𝐾) ≠ 𝑃(𝑠𝑖
𝐾|𝑠𝑙

𝑅) = 𝑃(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅) 𝑃(𝑠𝑙
𝑅)⁄ ), a bookie who knows no 

more or less than the decision maker can induce the decision maker to willingly 

buy and sell bets on the occurrence of 𝑆𝑅 and 𝑆𝐾 which will guarantee a net loss to 

the decision maker whatever happens. 

In order to construct the proof we assume that the subjective probabilities, 𝑃(𝑠𝑖
𝐾), of a risk 

neutral decision maker represent the maximum (minimum) price he/she is willing to pay 

(accept) for a bet on 𝑆𝐾 which pays 1 if 𝑠𝑖
𝐾 occurs and 0 otherwise. This bet is represented as 

follows: 

𝑠𝑖
𝐾: 1

�̅�𝑖
𝐾: 0

 

 

Proof: 

Suppose for some 𝑠𝑖
𝐾, 𝑃′(𝑠𝑖

𝐾) ≠ 𝑃(𝑠𝑖
𝐾|𝑠𝑙

𝑅) and 𝑃′(𝑠𝑖
𝐾) < 𝑃′(𝑠𝑖

𝐾|𝑠𝑙
𝑅). Then 𝑃′(𝑠𝑖

𝐾) =

𝑃(𝑠𝑖
𝐾|𝑠𝑙

𝑅) − 𝛿, for some 𝛿 > 0. 

Consider the following two bets on the occurrence of 𝑆𝑅 and 𝑆𝐾: 

Bet A      

𝑠𝑙
𝑅̅̅ ̅: 𝑃′(𝑠𝑖

𝐾)

𝑠𝑙
𝑅: 0

 

Bet B             

𝑠𝑙
𝑅 , 𝑠𝑖

𝐾: 1

𝑠𝑙
𝑅
𝑖

̅̅ ̅̅ , 𝑠𝑖
𝐾: 0

    �̅�𝑖
𝐾: 0

 



3.8. Supplementary material for Chapter 3  130  

 

 

Suppose a bookie sells Bet A and Bet B to the decision maker at the maximum price that the 

decision maker is willing to pay for the two bets, which is: 

𝑃′(𝑠𝑖
𝐾) ∗ 𝑃(𝑠𝑙

𝑅̅̅ ̅) + 1 ∗ 𝑃(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅) = (𝑃(𝑠𝑖
𝐾|𝑠𝑙

𝑅) − 𝛿) ∗ 𝑃(𝑠𝑙
𝑅̅̅ ̅) + 𝑃(𝑠𝑖

𝐾|𝑠𝑙
𝑅) ∗ 𝑃(𝑠𝑙

𝑅) ∗ 1

= (𝑃(𝑠𝑖
𝐾|𝑠𝑙

𝑅) − 𝛿) ∗ (1 − 𝑃(𝑠𝑙
𝑅)) + 𝑃(𝑠𝑖

𝐾|𝑠𝑙
𝑅) ∗ 𝑃(𝑠𝑙

𝑅) ∗

= −𝛿 (1 − 𝑃(𝑠𝑙
𝑅)) + 𝑃(𝑠𝑖

𝐾|𝑠𝑙
𝑅) = −𝛿 𝑃(𝑠𝑙

𝑅̅̅ ̅) + 𝑃(𝑠𝑖
𝐾|𝑠𝑙

𝑅) 

If 𝑠𝑙
𝑅̅̅ ̅ occurs, then the payoff to the decision maker is 𝑃′(𝑠𝑖

𝐾) − (−𝛿 𝑃(𝑠𝑙
𝑅̅̅ ̅) + 𝑃(𝑠𝑖

𝐾|𝑠𝑙
𝑅)) =

𝑃(𝑠𝑖
𝐾|𝑠𝑙

𝑅) − 𝛿 + 𝛿 𝑃(𝑠𝑙
𝑅̅̅ ̅) − 𝑃(𝑠𝑖

𝐾|𝑠𝑙
𝑅) = −𝛿𝑃(𝑠𝑙

𝑅). 

If 𝑠𝑙
𝑅 occurs, then before the outcome of 𝑆𝐾 is observed, the bookie buys back Bet B at the 

minimum price that the decision maker is willing to accept, which is 𝑃′(𝑠𝑖
𝐾). Then the 

payoff to the decision maker is 𝑃′(𝑠𝑖
𝐾) − (−𝛿 𝑃(𝑠𝑙

𝑅̅̅ ̅) + 𝑃(𝑠𝑖
𝐾|𝑠𝑙

𝑅)) = −𝛿𝑃(𝑠𝑙
𝑅). Thus, the 

decision maker incurs a net loss of 𝛿𝑃(𝑠𝑙
𝑅) no matter what happens. 

If 𝑃′(𝑠𝑖
𝐾) > 𝑃′(𝑠𝑖

𝐾|𝑠𝑙
𝑅), then the argument above can be reconstructed by having the bookie 

buy Bet A and Bet B from the decision maker and sell Bet B back to the decision maker 

depending on the outcome of state 𝑆𝑅. 

S 3-3: Expected utility calculations in influence diagrams 

First we will discuss the expected utility calculation for an influence diagram where all 

decisions are made at the same time (𝒜(𝐴𝐾) = ∅,∀𝐴𝐾) and decisions are not conditional 

(𝒮∗(𝐴𝐾) = ∅, ∀𝐴𝐾). An oriented influence diagram 𝐺, where the payoffs depend on both 

chance and decisions, i.e. 𝒮(𝑉) ≠ ∅, (𝒜(𝑉) ∪𝒜(𝑆𝑗)) ≠ ∅, for some 𝑆𝑗 (and for which 

(𝒜(𝐴𝐾) ∪ 𝒮∗(𝐴𝐾)) = ∅, ∀𝐴𝐾), can be evaluated directly using an expected utility 

calculation. Given the real value mappings for 𝑉 and 𝒮, the solution of the influence diagram 

is: 

 max
𝒜𝑖 

𝐸𝑈(𝒜𝑖 )  =∑𝑃𝒜𝑖
(𝒮𝑘) ∗

𝑘

𝑈(𝒜𝑖, 𝒮𝑘) (3-11) 

where 𝒜𝑖 are the policies and 𝒮𝑘 are the events. The joint probabilities, 𝑃𝒜𝑖
(𝒮𝑘), of the event 

𝒮𝑘 can be determined from the conditional probabilities using the chain rule:  

 𝑃𝒜𝑖
(𝒮𝑘) =  ∏𝑃𝒜𝑖

∗(𝑆𝑗)

𝑗

(𝑠𝑘𝑗
𝑗
|𝒮𝑘
∗(𝑆𝑗)) 

(3-12) 

For an influence diagram in the canonical form (𝒜∗(𝑆𝑗) = ∅,∀𝑗), 

∀𝑖, 𝑗, 𝑃𝒜𝑖
∗(𝑆𝑗) (𝑠𝑘

𝑗
|𝒮𝑘
∗(𝑆𝑗)) = 𝑃 (𝑠𝑘

𝑗
|𝒮𝑘
∗(𝑆𝑗)). In Figure 3-2, consider a policy 𝒜1 = (𝑎1

𝐷 , 𝑎1
𝑇) 

and the events 𝒮 = {(𝑠𝑖
𝐶 ,  𝑠𝑗

𝐸 , 𝑠𝑘
𝑀) |𝑖 = 1,2,… , |𝑆𝐶|, 𝑗 = 1,2,… , |𝑆𝐸|, 𝑘 = 1,2,… , |𝑆𝑀|}. The 
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expected utility of this policy is given by 

𝐸𝑈(𝒜1 ) = 𝐸𝑈(𝑎1
𝐷 , 𝑎1

𝑇) = ∑ 𝑃𝒜1
(𝑠𝑖
𝐶 ,  𝑠𝑗

𝐸 , 𝑠𝑘
𝑀) ∗𝑖,𝑗,𝑘 𝑈 (𝒜1, (𝑠𝑖

𝐶 ,  𝑠𝑗
𝐸 , 𝑠𝑘

𝑀)) and 

𝑃𝒜1
(𝑠𝑖
𝐶 ,  𝑠𝑗

𝐸 , 𝑠𝑘
𝑀) = 𝑃𝑎1𝐷(𝑠𝑘

𝑀|𝑠𝑖
𝐶)𝑃𝑎1𝑇(𝑠𝑖

𝐶|𝑠𝑗
𝐸)𝑃(𝑠𝑗

𝐸). 

Equation (3-12) can be generalized to calculate the optimal policies for influence 

diagrams which contain sequential decisions (𝒜(𝐴𝐾) ≠ ∅ for some 𝐴𝐾) and/or decisions 

that are conditional (𝒮∗(𝐴𝐾) ≠ ∅ for some 𝐴𝐾), i.e. the information state is different for 

various decisions. The procedure involves iterated application of equation (3-12) to restricted 

realizations of the influence diagram, corresponding to the known state of information at the 

time a particular decision is made. The optimal policy for such influence diagrams can be 

evaluated using the following procedure: 

i. First order the decisions in the set 𝒜 by temporal precedence 𝒜1,𝒜2… ,𝒜𝑛 where 𝒜𝑖 is 

the set of decisions that is performed before the set of decisions 𝒜𝑖+1.  

ii. Evaluate the optimal conditional policy for the latest set of decisions 𝒜𝑥 as follows: Let 

𝒜′ = ⋃ 𝒜(𝐴𝑗)𝐴𝑗∈𝒜𝑥  represent the decisions and 𝒮′ = ⋃ 𝒮(𝐴𝑗)𝐴𝑗∈𝒜𝑥  represent the states 

that will be known at the time decisions 𝒜𝑥 need to be made. Let 𝛺 = 𝒜′ ∪ 𝒮′ represent 

the information state and 𝛺𝑖 = 𝒜𝑖
′ ∪ 𝒮𝑖

′ an event and policy in 𝛺. Let 𝒮𝑥 = 𝒮 − 𝒮′ be the 

states that will be unknown at the time decisions 𝒜𝑥 need to be made. Define the optimal 

conditional policy for 𝒜𝑥 (conditional on 𝛺𝑗) as: 

 max
𝒜𝑖
𝑛
𝐸𝑈(𝒜𝑖

𝑥|Ω𝑗)  =∑𝑃𝒜𝑖
𝑥,𝒜𝑗

′(𝒮𝑘
𝑥|𝒮𝑗

′) ∗

𝑘

𝑈(𝒜𝑖
𝑥 ∪𝒜𝑗

′, 𝒮𝑘
𝑥 ∪ 𝒮𝑗

′) 
(3-13) 

For each information state, 𝛺𝑗, let 𝐸𝑈 (𝒜𝛺𝑗
𝑥∗|𝛺𝑗) represent the maximum expected utilities 

that corresponds to the optimal conditional policies 𝒜𝛺𝑗
𝑥∗. 

iii. Once all the optimal conditional policies for 𝒜𝑥  (corresponding to each 𝛺𝑖) have been 

evaluated, revise the real value mapping for the value node to 𝑈:∏ 𝐴𝑗𝒜′ ×∏ 𝑆𝑗𝒮′ → ℝ 

where 𝑈(𝒜𝑖
′, 𝒮𝑗

′) =𝐸𝑈 (𝒜𝛺𝑗
𝑥∗|𝛺𝑗).  

iv. Revise the influence diagram by removing the nodes 𝒮𝑥 and 𝒜𝑥 from the influence 

diagram and introduce arcs from their direct predecessors, to the value node, 𝑉, i.e. 

introduce (𝑁𝑗, 𝑉) ∀𝑁𝑗 ∈ (𝒜∗(𝑁𝑘) ∪ 𝒮∗(𝑁𝑘)) , ∀𝑁𝑘 ∈ (𝒜𝑥 ∪ 𝒮𝑥).  

v. Let 𝛺𝑗
𝑥 denote the information states for the optimal conditional policies 𝒜𝛺𝑗

𝑥∗. The set of 

all optimal conditional policies are 𝒜𝛺𝑗
∗ = ⋃{𝒜𝛺𝑗

(𝑥+𝑚)∗;  0 ≤ 𝑚 ≤ 𝑛 − 𝑥 |𝒜𝛺𝑗
𝑥∗ ∈ 𝛺𝑗

𝑥+𝑚 

for some 𝑗}. 

Repeat ii—v for remaining 𝒜𝑖 to determine the optimal policies corresponding to the other 

decisions. 

Figure 3-11 illustrates this procedure for a hypothetical influence diagram. 
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Figure 3-11: Evaluation of a hypothetical influence diagram (extended version of Figure 3-2 

with sequential decisions). The shaded nodes correspond to the information state 𝛀 

when the decision 𝑨𝒋 needs to be made. The unshaded nodes are the variables for 

which the expected utility is calculated (for fixed 𝛀𝒋) in each iteration. 

 

 9(a): The original influence diagram.  

𝓐𝟏 = 𝑨𝑬,𝓐𝟐 = 𝑨𝑻,𝓐𝟑 = 𝑨𝑫.  

Iteration 1/3: 

Since 𝑨𝑫 is the latest decision, the 

optimal conditional policy will be 

evaluated for 𝑨𝑫 first.  

 
9(b): Modified influence diagram after 

conditional policies for 𝑨𝑫 have been 

determined and the real value 

mapping for the value node is 

redefined.  

Iteration 2/3: 

Since 𝑨𝑻 is the latest decision, the 

optimal conditional policy will be 

evaluated for 𝑨𝑻.  

 

9(c): Influence diagram after conditional 

policies for 𝑨𝑫 and 𝑨𝑻 have been 

determined and the real value 

mapping for the value node is 

redefined.  

Iteration 3/3: 

Since 𝑨𝑬 is the only decision, the 

optimal conditional policy will be 

evaluated for 𝑨𝑬. 

S 3-4: Order invariance for Bayes rule 

Suppose 𝒮(𝑆𝐾) = {𝑆𝑅 , 𝐴}, 𝑆𝑅 = {𝑠𝑖
𝑅}, 𝐴 = {𝑎,¬𝑎}. 

Let 𝑓𝑎 = ⟨𝑓𝑎
1, 𝑓𝑎

2, … , 𝑓𝑎
|𝑆𝑅|

, 𝑓𝑎
|𝑆𝑅|+1

, 𝑓𝑎
|𝑆𝑅|+2

, … , 𝑓𝑎
2|𝑆𝑅|

⟩ : ∆2|𝑆
𝐾||𝑆𝑅|→ ∆2|𝑆

𝐾||𝑆𝑅| represent Bayes 

conditioning with respect to the variable 𝑎 ∈ 𝐴 and let 
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 𝑔𝑠𝑙
𝑅 = ⟨𝑔

𝑠𝑙
𝑅
1 , 𝑔

𝑠𝑙
𝑅
2 , … , 𝑔

𝑠𝑙
𝑅
|𝑆𝑅|

, 𝑔
𝑠𝑙
𝑅

|𝑆𝑅|+1
, 𝑔
𝑠𝑙
𝑅

|𝑆𝑅|+2
, … , 𝑔

𝑠𝑙
𝑅
2|𝑆𝑅|

⟩ : ∆2|𝑆
𝐾||𝑆𝑅|→ ∆2|𝑆

𝐾||𝑆𝑅| represent 

Bayes conditioning with respect to the variable 𝑠𝑙
𝑅.  

Suppose the functions 𝑓𝑎
𝑖 and 𝑔

𝑠𝑙
𝑅
𝑖  are indexed so that 𝑎 ∈ 𝒮𝑖(𝑆

𝐾) for 𝑖 ≤ |𝑆𝑅| and ¬𝑎 ∈

𝒮𝑖(𝑆
𝐾) for 𝑖 > |𝑆𝑅| and 𝑠𝑖

𝑅 ∈ 𝒮𝑖(𝑆
𝐾) and 𝒮|𝑆𝑅|+𝑖(𝑆

𝐾). 

∀(𝑆𝐾 , 𝑠𝑗
𝑅 , 𝑎𝑘), 1 ≤ 𝑗 ≤ |𝑆

𝑅|,  

𝑓𝑎 (𝑷(𝑆
𝐾 , 𝑠𝑗

𝑅 , 𝑎𝑘)) =

{
 
 

 
 
𝑓𝑎
𝑗
(𝑷(𝑆𝐾 , 𝑠𝑗

𝑅 , 𝑎)) =
𝑷(𝑆𝐾 , 𝑠𝑗

𝑅 , 𝑎)

∑ ∑ 𝑃(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅 , 𝑎)𝑖𝑗

=
𝑷(𝑆𝐾 , 𝑠𝑗

𝑅 , 𝑎)

𝑃(𝑎)
; 𝑎𝑘 = 𝑎

𝑓𝑎
|𝑆𝑅|+𝑗

(𝑷(𝑆𝐾 , 𝑠𝑗
𝑅 , ¬𝑎)) = 0;                                               𝑎𝑘 = ¬𝑎

 

(𝑔𝑠𝑙
𝑅o𝑓𝑎) (𝑷(𝑆

𝐾 , 𝑠𝑗
𝑅 , 𝑎𝑘)) = {

𝑔𝑠𝑙
𝑅 (
𝑷(𝑆𝐾 , 𝑠𝑗

𝑅 , 𝑎)

𝑃(𝑎)
) ; 𝑎𝑘 = 𝑎 

0;                                 𝑎𝑘 = ¬𝑎

 

=

{
 
 

 
 𝑷(𝑆𝐾 , 𝑠𝑗

𝑅 , 𝑎)/𝑃(𝑎)

∑ 𝑃(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅 , 𝑎)/ 𝑃(𝑎)𝑖

=
𝑷(𝑆𝐾 , 𝑠𝑗

𝑅 , 𝑎)

𝑃(𝑠𝑗
𝑅 , 𝑎)

; 𝑎𝑘 = 𝑎, 𝑗 = 𝑙

𝟎;                                                                    𝑎𝑘 = 𝑎, 𝑗 ≠ 𝑙
𝟎;                                                                    𝑎𝑘 = ¬𝑎       

 

For 𝑗 = 𝑙, 𝑎𝑘 = 𝑎: 
𝑷(𝑆𝐾,𝑠𝑗

𝑅,𝑎)

𝑃(𝑠𝑗
𝑅,𝑎)

=
𝑷(𝑆𝐾,𝑠𝑗

𝑅,𝑎)/𝑃(𝑠𝑗
𝑅)

∑ (𝑃(𝑠𝑖
𝐾,𝑠𝑗

𝑅,𝑎)/ 𝑃(𝑠𝑗
𝑅))𝑖

= 𝑓𝑎 (
𝑷(𝑆𝐾,𝑠𝑗

𝑅,𝑎)

𝑃(𝑠𝑗
𝑅)

) = (𝑓𝑎o𝑔𝑠𝑙
𝑅) (𝑷(𝑆𝐾 , 𝑠𝑗

𝑅 , 𝑎)). 

For 𝑗 ≠ 𝑙, 𝑎𝑘 = 𝑎: 𝑔𝑠𝑙
𝑅 (𝑷(𝑆𝐾 , 𝑠𝑗

𝑅 , 𝑎)) = 𝟎; therefore, (𝑓𝑎o𝑔𝑠𝑙
𝑅) (𝑷(𝑆𝐾 , 𝑠𝑗

𝑅 , 𝑎)) = 𝟎. 

For 𝑎𝑘 = ¬𝑎:  (𝑓𝑎o𝑔𝑠𝑙
𝑅) (𝑷(𝑆𝐾 , 𝑠𝑗

𝑅 , ¬𝑎)) = 𝟎. 

Therefore, (𝑔𝑠𝑙
𝑅o𝑓𝑎) (𝑷(𝑆

𝐾 , 𝑠𝑗
𝑅 , 𝑎)) = (𝑓𝑎o𝑔𝑠𝑙

𝑅) (𝑷(𝑆𝐾 , 𝑠𝑗
𝑅 , 𝑎)). 

S 3-5: Illustrating the elicitation of the GGC through a conversation 

The following hypothetical conversation between an analyst and a manager demonstrates the 

elicitation of the generalized generic controller for the market share example. 

Part 1/3 

Analyst: Suppose I told you I have information that your company will have no market 

share for this product if you don’t advertise.  

Manager: But if I launch a good advertising campaign then surely there is a chance that I 

will have some market share? 

Analyst: True. In fact there is another way you can possibly avoid having no market share: it 

is by spinning the ‘influence wheel’. You can see the influence wheel has two colours — red 

and blue. [Analyst sets the influence wheel so that exactly half the circle is coloured blue and 

the other half coloured red]. Upon spinning the wheel, if the pointer points in the blue area 
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then you will avoid no market share else you will have no market share. I can adjust the 

portion of the wheel that is red and blue, but let us begin with this setting, which is a fifty-

fifty chance the pointer will point to a red or blue area.  

Manager: So, the option is between spinning this wheel you are showing me or advertising? 

Analyst: Correct. You can either spin the wheel at this current setting or advertise. What 

would you prefer to do? 

Manager: I think the chances are better if I advertise, so I prefer to advertise. 

[Analyst changes the setting of the influence wheel so that exactly one quadrant of the circle 

is coloured red]. 

Analyst: What about spinning the wheel with this new setting vs. advertising? Would you 

still prefer to advertise? 

Manager: Probably not. I think I would try my luck with spinning the wheel at this new 

setting. 

[Analyst changes the setting of the influence wheel so that exactly 65% is coloured blue and 

the rest is coloured red]. 

Analyst: What about the choice between spinning this wheel vs. advertising? 

Manager: Difficult to say — guess I would advertise. 

[Analyst stops. Coefficient 𝜌𝑎(𝑠𝑜
𝑀 , 𝑠𝑜

𝑀) is between 0.35 and 0.25. Analyst picks mid-point: 

0.3]. 

Analyst: Looks like you feel there is around seventy percent chance that advertising will 

lead your company to avoid no market share? 

Manager: Yes, that sounds about right. 

Analyst: Do you feel there is any chance that if you avoid no market share, you will be able 

to obtain full market share? Remember if you don’t advertise you will have no market share. 

Manager: Probably. But the chances are small if without advertising the outcome is going to 

be no market share. 

Analyst: I have another influence wheel with three colours red, orange and green. If upon 

spinning the wheel, the pointer points to red your company gets no market share, if it points 

to orange your company gets partial market share and if it lands on green your company gets 

full market share. [Analyst sets the wheel so that 30% is red, 35 % is orange and 35% is 

green]. What do you think — spin the wheel or advertise?  

Manager: I would definitely spin the wheel. If I advertise I think the chance of getting full 

market share is about a quarter that of getting partial market share. 

[Analyst sets the wheel so that 30% is red, 55 % is orange and 15% is green]. 

Analyst: Now? 

Manager: Not sure — I’d be fine with either but I guess it would be better to advertise. 
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[Analyst stops and records 𝜌𝑎(𝑠𝑜
𝑀 , 𝑠𝑜

𝑀) = 0.30, 𝜌𝑎(𝑠𝑜
𝑀 , 𝑠𝑝

𝑀) = 0.55 and 𝜌𝑎(𝑠𝑜
𝑀 , 𝑠𝑓

𝑀) = 0.15 

as the coefficients corresponding to no market share for the GGC.]  

Part 2/3 

Analyst: Now suppose I tell you that there is new information—your company will 

definitely get partial market share if you don’t advertise. How does that sound? 

Manager: That’s good news but we could probably get full market share if our advertising 

campaign was good. 

Analyst: Sure. But do you think your ad-campaign could have a damaging effect, leading 

you to lose market share? 

Manager: No, that will definitely not happen. The ad-campaign can only improve the 

chance of better market share. 

Analyst: I see. So what are the chances the ad-campaign will lead to full market share? 

Manager: I’d say the chances are fifty-fifty. 

[Analyst sets the two-coloured wheel so that 50% is red and 50% is blue]. 

Analyst: So you are indifferent between spinning this wheel and advertising, if a red 

outcome on the wheel meant you would stay with partial market share?  

Manager: Not sure. I think I’ll spin the wheel. 

[Analyst sets the two-coloured wheel so that 60% is red and 40% is blue]. 

Analyst: Now? 

Manager: I guess I would be okay with either spinning the wheel or advertising. 

Analyst: So you feel that the chances you will obtain full market share, if you advertise are 

slightly lower than fifty percent, around forty percent? 

Manager: Yes. 

[Analyst records 𝜌𝑎(𝑠𝑝
𝑀, 𝑠𝑜

𝑀) = 0, 𝜌𝑎(𝑠𝑝
𝑀 , 𝑠𝑝

𝑀) = 0.60 and 𝜌𝑎(𝑠𝑝
𝑀, 𝑠𝑓

𝑀) = 0.40 as the 

coefficients corresponding to partial market share for the GGC.]  

Part 3/3 

Analyst: Now suppose I tell you I have information that you will get full market share if you 

don’t advertise, would you advertise at all? 

Manager: Well, like I mentioned earlier it won’t hurt to advertise. Depending on the budget, 

we may still launch a small ad-campaign to keep up the brand image and boost demand. 

[Analyst records 𝜌𝑎(𝑠𝑜
𝑀, 𝑠𝑓

𝑀) = 0, 𝜌𝑎(𝑠𝑝
𝑀 , 𝑠𝑓

𝑀) = 0 and 𝜌𝑎(𝑠𝑓
𝑀 , 𝑠𝑓

𝑀) = 1 as the coefficients 

corresponding to partial market share for the GGC.]  

Analyst: Thank you. We now have all the numbers to calculate how beneficial it will be for 

your company to advertise to improve the chances of higher market share. 
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S 3-6: Bayes rule and the linearity condition 

Bayes rule and GGC are distinct classes of probability revision functions since, in general, 

Bayes rule does not satisfy the linearity condition. However, under some special 

circumstances, Bayes rule satisfies the linearity property. This is discussed next. 

Consider a joint probability distribution 𝑃(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅) for two variables 𝑆𝐾 and 𝑆𝑅. 

Suppose 𝑃(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅) = 𝛼𝑃′(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅) + (1 − 𝛼)𝑃′′(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅). The probability revision obtained 

by Bayes conditioning on 𝑠𝑙
𝑅 is:  

lhs: 

𝑔𝑠𝑙
𝑅 (𝑃(𝑠𝑖

𝐾 , 𝑠𝑗
𝑅)) =  𝑃(𝑠𝑖

𝐾|𝑠𝑙
𝑅) 

=
𝑃(𝑠𝑖

𝐾 , 𝑠𝑙
𝑅)

∑ 𝑃(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅)𝑖

 

=
𝛼𝑃′(𝑠𝑖

𝐾 , 𝑠𝑙
𝑅) + (1 − 𝛼)𝑃′′(𝑠𝑖

𝐾 , 𝑠𝑙
𝑅)

𝛼 ∑ 𝑃′(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅)𝑖 + (1 − 𝛼)∑ 𝑃′′(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅)𝑖

 

=
𝛼𝑃′(𝑠𝑖

𝐾 , 𝑠𝑙
𝑅) + (1 − 𝛼)𝑃′′(𝑠𝑖

𝐾 , 𝑠𝑙
𝑅)

𝛼𝑃′(𝑠𝑙
𝑅) + (1 − 𝛼)𝑃′′(𝑠𝑙

𝑅)
 

rhs: 

𝛼𝑔𝑠𝑙
𝑅 (𝑃′(𝑠𝑖

𝐾 , 𝑠𝑗
𝑅)) + (1 − 𝛼)𝑔𝑠𝑙

𝑅 (𝑃′′(𝑠𝑖
𝐾 , 𝑠𝑗

𝑅)) 

= 𝛼𝑃′(𝑠𝑖
𝐾|𝑠𝑙

𝑅) + (1 − 𝛼)𝑃′′(𝑠𝑖
𝐾|𝑠𝑙

𝑅) 

= 𝛼
𝑃′(𝑠𝑖

𝐾,𝑠𝑙
𝑅)

∑ 𝑃′𝑖 (𝑠𝑖
𝐾 , 𝑠𝑙

𝑅)
+ (1 − 𝛼)

𝑃′′(𝑠𝑖
𝐾,𝑠𝑙

𝑅)

∑ 𝑃′′(𝑠𝑖
𝐾 , 𝑠𝑙

𝑅)𝑖

 

= 𝛼
𝑃′(𝑠𝑖

𝐾 , 𝑠𝑙
𝑅)

𝑃′(𝑠𝑙
𝑅)

+ (1 − 𝛼)
𝑃′′(𝑠𝑖

𝐾 , 𝑠𝑙
𝑅)

𝑃′′(𝑠𝑙
𝑅)

 

In general, the lhs (quotient of mixtures) will not be equal to the rhs (mixture of quotients). 

However when 𝑃′(𝑠𝑙
𝑅) = 𝑃′′(𝑠𝑙

𝑅), then the lhs will be equal to the rhs. 

One natural situation where 𝑃′(𝑠𝑙
𝑅) = 𝑃′′(𝑠𝑙

𝑅) is as follows: Suppose in Figure 3-9 we 

replace the decision node 𝐴𝐷 with a state node 𝐴𝐷 (where 𝐴𝐷 = {𝑎𝐷 , ¬𝑎𝐷 }) and describe the 

probability revision of 𝑆𝑀 using Bayes rule. Setting 𝑃′(𝑠𝑖
𝑀, 𝑠𝑗

𝐶) = 𝑃(𝑠𝑖
𝑀 , 𝑠𝑗

𝐶|𝑎𝐷), 

𝑃′′(𝑠𝑖
𝑀, 𝑠𝑗

𝐶) = 𝑃(𝑠𝑖
𝑀 , 𝑠𝑗

𝐶|¬𝑎𝐷) and 𝛼 = 𝑃(𝑎𝐷), we have Bayes rule satisfies the linearity 

condition when ∀𝑗, 𝑃′(𝑠𝑗
𝐶) = 𝑃(𝑠𝑗

𝐶|𝑎𝐷) = 𝑃(𝑠𝑗
𝐶|¬𝑎𝐷) = 𝑃′′(𝑠𝑗

𝐶) i.e. when 𝐴𝐷 and 𝑆𝐶 are 

independent. In an influence diagram this holds if 𝑆𝐶 and 𝐴𝐷 don’t have any common 

parents i.e. 𝒮(𝑆𝐶) ∩ 𝒮(𝐴𝐷) = ∅. 
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S 3-7: Post-intervention inference in a non-canonical influence diagram 

In an influence diagram which is not in the canonical form, the reversibility of the arcs holds 

only between state nodes which are not controllable. If 𝒜∗(𝑆𝐾) ≠ ∅, 𝑆𝑅 ∈  𝒮∗(𝑆𝐾) and for 

simplicity suppose 𝒜∗(𝑆𝑅) = ∅, then the arc between 𝑆𝐾 and 𝑆𝑅 cannot be reversed because 

𝑃𝒜𝑖
∗(𝑆𝐾)(𝑠𝑖

𝐾|𝑠𝑗
𝑅) ∗ 𝑃(𝑠𝑗

𝑅) need not be equal to 𝑃(𝑠𝑗
𝑅|𝑠𝑖

𝐾) ∗ 𝑃𝒜𝑖
∗(𝑆𝐾)(𝑠𝑖

𝐾) and the expected 

utility calculation will be different for the two influence diagrams. To see this, consider the 

joint distribution in Box 3 for the market share example and a probability revision function 

described by the generic controller in Box 1 (𝑞 = 0.5). The conditional probability 

distribution for the market share node, depending on whether or not the competitor 

advertises is given below in Table 3-5. 

Table 3-5: Probabilities of market share conditional on the competitor’s decision to advertise or 

not. 

From Box 3, the probability that the competitor advertises is 0.5. The probability of the 

competitor node conditional on the market share node can be derived from the pre-

intervention distribution 𝑃(𝑠𝑗
𝐶|𝑠𝑖

𝑀) = 𝑃¬𝑎𝐷(𝑠𝑖
𝑀|𝑠𝑗

𝐶) ∗ 𝑃(𝑠𝑗
𝐶)/𝑃¬𝑎𝐷(𝑠𝑖

𝑀) and is shown in 

Table 3-6. 

Table 3-6: Probabilities of competitor advertising, conditional on market share. 

In the original influence diagram, where the arc is from 𝑆𝐶 to 𝑆𝑀, the post intervention joint 

distribution is given by: 𝑷𝒂𝑫(𝑆
𝑀, 𝑆𝐶) = [𝑷𝒂𝑫(𝑆

𝑀|𝑠𝑑
𝐶) ∗ 𝑃(𝑠𝑑

𝐶), 𝑷𝒂𝑫(𝑆
𝑀|𝑠¬𝑑

𝐶 ) ∗ 𝑃(𝑠¬𝑑
𝐶 ) ]. 

However, if the arc between 𝑆𝑀 and 𝑆𝐶 is reversed then, 𝑷𝒂𝑫(𝑆
𝑀 , 𝑆𝐶) = [𝑷(𝑆𝐶|𝑠𝑜

𝑀) ∗

Conditional 

probabilities for 

market share 𝑷¬𝒂𝑫(∙ |𝒔¬𝒅
𝑪 )    𝑷𝒂𝑫(∙ |𝒔¬𝒅

𝑪 ) 

Competitor does not 

advertise (𝒔¬𝒅
𝑪 ) 

𝑷¬𝒂𝑫(∙ |𝒔𝒅
𝑪)      𝑷𝒂𝑫(∙ |𝒔𝒅

𝑪) 

Competitor advertises 

(𝒔𝒅
𝑪) 

𝑷¬𝒂𝑫(∙)       𝑷𝒂𝑫(∙) 

Marginal 

probability 

No market share 

(𝒔𝒐
𝑴) 

0.10 0.05 0.30 0.15 0.2 0.1 

Partial market 

share (𝒔𝒑
𝑴) 

0.60 0.30 0.60 0.30 0.6 0.3 

Full market 

share (𝒔𝒇
𝑴) 

0.30 0.65 0.10 0.55 0.2 0.6 

Conditional probabilities for the 

competitor (pre-intervention) 

Competitor does not 

advertise (¬𝒔𝒅
𝑪) 

Competitor advertises (𝒔𝒅
𝑪) 

No market share (𝒔𝒐
𝑴)        𝑷(∙ |𝒔𝒐

𝑴) 0.25 0.75 

Partial market share (𝒔𝒑
𝑴)  𝑷(∙ |𝒔𝒑

𝑴) 0.50 0.50 

Full market share (𝒔𝒇
𝑴)      𝑷(∙ |𝒔𝒇

𝑴) 0.75 0.25 
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𝑃𝑎𝐷(𝑠𝑜
𝑀), 𝑷(𝑆𝐶|𝑠𝑝

𝑀) ∗ 𝑃𝑎𝐷(𝑠𝑝
𝑀), 𝑷(𝑆𝐶|𝑠𝑓

𝑀) ∗ 𝑃𝑎𝐷(𝑠𝑓
𝑀)]. The two approaches for calculating 

the joint distribution, 𝑷𝒂𝑫(𝑆
𝑀, 𝑆𝐶), shown in Table 3-7, are not equal. 

Table 3-7: Post-intervention joint distribution for {𝑺𝑴, 𝑺𝑪} depending on the direction of the arc 

between 𝑺𝑴 and 𝑺𝑪. 

Thus, reversing the arc between two state nodes, where one node is controllable, may not 

preserve the utility calculation of the influence diagram. 

𝑷𝒂𝑫(𝑺
𝑴, 𝑺𝑪) 

𝑷𝒂𝑫(𝑺
𝑴|𝒔𝒊

𝑪) ∗ 𝑷(𝒔𝒊
𝑪) 𝑷(𝑺𝑪|𝒔𝒊

𝑴) ∗ 𝑷𝒂𝑫(𝒔𝒊
𝑴) 

Competitor 

does not 

advertise (¬𝒔𝒅
𝑪) 

Competitor 

advertises 

(𝒔𝒅
𝑪) 

Competitor 

does not 

advertise (¬𝒔𝒅
𝑪) 

Competitor 

advertises 

(𝒔𝒅
𝑪) 

No market share (𝒔𝒐
𝑴)      0.025 0.075 0.05 0.15 

Partial market share (𝒔𝒑
𝑴)   0.15 0.15 0.30 0.30 

Full market share (𝒔𝒇
𝑴)   0.325 0.275 0.15 0.05 
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PRELUDE TO CHAPTER 4 

In the previous chapter, a general probability revision for modelling interventions was 

proposed. Its advantage in terms of alleviating the judgemental burden when modelling the 

potential effects of actions on uncertainty was exposed. The feasibility of using the proposed 

procedure in practice needs to be explored. 

This chapter endeavours to leverage the proposed practical benefits of the proposed 

probability revision rule in the context of Operational Risk assessments. Operational Risk 

assessments are estimations of potentially extreme losses that can arise from the uncertainty 

about various events such as earthquakes, breakdown of IT systems, staff strikes etc. The 

uncertainty for some of these events (e.g. staff strikes, IT system breakdown) is, to some 

extent, controllable and managers endeavour to mitigate the likelihood or severity of these 

events to curtail the resulting losses.  

In this chapter, it will be discussed how influence diagrams can be used to model and 

represent the Operational Risk for a given loss event. An operationalization of the 

probability revision rule discussed in chapter 3 will be presented and applied to model risk 

mitigations. Using a real world case study that was conducted for a leading insurance 

company, it is shown how this operationalization can be integrated with existing Operational 

Risk assessment methods to explicitly model the impact of mitigations on Operational Risk 

costs. The proposed integration can enable the impact of different mitigations to be 

compared tractably and also simplify the process of updating Operational Risk assessments 

to reflect changes in managerial policies. 
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Chapter 4       

A Quantitative Method for 

Measuring the Value of 

Operational Risk Mitigations 

Shweta Agarwal
*
, Gilberto Montibeller

*
 

ABSTRACT 

The estimation of costs associated with Operational Risks is a regulatory initiative to protect 

the solvency of financial organizations and to motivate better management processes for 

mitigating risks associated with ‘loss’ events. A sophisticated way to measure Operational 

Risk quantitatively is based on calculating the Value-at-Risk of the loss distribution using the 

Loss Distribution Approach (LDA). However, in this approach, it is difficult to capture the 

effect of all types of managerial mitigations on loss distributions effectively. While the LDA 

can deal with mitigations that reduce the impact of an Operational Risk event (e.g. 

purchasing of insurance), analysing the effect of mitigations that alter uncertainty or 

probabilities of the loss-generating event (e.g. managerial policies to prevent staff strike) can 

be tedious within the existing statistical framework. In this paper we thus propose a new 

approach for modelling and measuring the value of Operational Risk mitigations. We show 

how the concept of ‘controllers’ in Decision Analysis can be integrated with the LDA to 

model the impact of mitigations on uncertain events explicitly. We then operationalize this 

concept as a probability revision matrix, which encodes the effect of mitigations on 

probability distributions quantitatively. The theoretical properties that characterize this 

approach leads to a less burdensome way to calculate the effect of mitigation on Operational 

Risk costs, thereby providing a tractable way to compare the value of various mitigations. 

We also present a real world application of this approach for a specific Operational Risk 

scenario, staff strike, conducted for a leading insurance company. 

Key words: Operational Risk, risk mitigation, probability revision, value of control 
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4.1 Introduction 

In recent times, Operational Risk management and measurement has become an important 

regulatory requirement that needs to be performed by all financial organizations. Operational 

Risk (OpRisk) is the ‘residual’ business risk after systemic risks such as market, credit, & 

interest risks have been considered (Basel Committee, 2003; Cummins and Embrechts, 

2006) and is defined
1
 as: “the risk of direct or indirect loss resulting from inadequate or 

failed internal processes, people and systems or from external events” (Chaudhury, 2010; 

Frachot et al., 2001). Examples of OpRisks are business interruptions and losses due to 

natural disasters (e.g. earthquakes, hurricanes, etc.) as well mishaps caused by human factors 

(e.g. manual processing errors, fraud), failed ‘processes’ (e.g. employment practices and 

workplace safety, client practices) or ‘systems’ (e.g. hardware failures, break down of 

technical systems). As a part of the Basel 2 mandate (Basel Committee, 2005), businesses 

are required to quantify their OpRisk and set aside monetary reserves (also known as capital 

charge or economic capital) to be able to absorb the costs of loss events that may result from 

operational failures (Cummins and Embrechts, 2006; Neil et al., 2005). The mandate 

describes various methods (qualitative and quantitative) to calculate capital charge.
2
 An 

important body of literature develops quantitative models for Operational Risk assessments 

(Chaudhury, 2010; Chavez-Demoulin et al., 2006; Chavez-Demoulin and Embrechts, 2004; 

Embrechts et al., 2004, 2003; Frachot et al., 2001) which can be used when organizations 

have the capabilities to quantify OpRisk using their own internal data and build OpRisk 

models specific to the nature of their business. One of the most sophisticated (Frachot et al., 

2001) statistical/actuarial method for modelling losses due to Operational Risks described in 

the Basel mandate, which is becoming increasing popular and therefore also the one 

employed in this paper, is the Loss Distribution Approach (LDA).  

The main purpose of assessing OpRisk costs and setting aside capital reserves is to 

incentivize banks to improve management processes (Basel Committee, 2011) and therefore 

mitigate the chance or impact of a loss event. As part of business continuity planning, 

organizations are encouraged to have specific policies and processes to control or mitigate 

risks (e.g. early warning indicators, timely performance reviews) as well as devise strategies 

or contingency plans of actions they will undertake to mitigate the severity of a loss event if 

it were to occur (Basel Committee, 2003). OpRisk management is important not only to 

                                                      

 

1 Basel Committee on Banking Supervision 2006, paragraph 644, p. 144. 
2 This is ‘Pillar 1’ of the 3 pillar approach which is taken over by Solvency Project Insurance (Solvency 2) set up 

in 2001. 
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prevent an organizational failure, but also because announcements of operational losses have 

a negative impact on the firm’s market value, can strain stakeholder relationships and can 

affect financial ratings of the firm (Cummins and Embrechts, 2006). Furthermore, unlike 

other types of risk, higher OpRisk does not mean higher returns for an organization, and 

therefore there is a strong motivation to minimize OpRisk and thus enhance the value of a 

firm. 

One of the key challenges that OpRisk measurement poses is how to quantitatively 

model various risk mitigation policies and explicitly calculate the effect of these managerial 

measures on capital charge assessments. Given the rarity of OpRisk events and changing 

management policies, these internal mitigations cannot directly be captured statistically. 

Ideally, a framework is required to link managerial mitigations on operational processes to 

the statistical methods that are used to calculate Operational Risks. Although the need for 

such a framework is conceptualized in Basel (as risk control self-assessment) (Lubbe and 

Snyman, 2010) and mentioned in the literature (Frachot et al., 2001) there has been little 

academic exploration on how it can be formalized quantitatively. The goal of this paper is to 

address this challenge of modelling risk mitigations quantitatively and better integrating 

them with advanced OpRisk assessment methods (such as the LDA) to explicitly calculate 

the effect of mitigations on capital charge assessments.  

A distinction between uncertain events in terms of probability ‘controllability’ is 

instrumental for modelling mitigations and understanding how they affect loss distributions. 

The probability of some OpRisk events, such as those associated with natural disasters (e.g. 

hurricanes, floods) is ‘uncontrollable’ in the sense that the probability of the loss event 

cannot be altered by managerial actions, and thus these risks are usually mitigated by 

managing the impact of these events on business losses (e.g. by purchasing insurance). In 

contrast, the probability of other OpRisk events, such as those caused by people, processes or 

systems (e.g. staff strike), can often be controlled by managerial actions and, thus, these risks 

can be mitigated by affecting the probability of the loss event. While the effect of managing 

the consequences (e.g. purchasing insurance) is amenable to quantitative analysis and can be 

incorporated within the LDA (Franzetti, 2011, p. 292), explicit calculations of the effect of 

managerial measures to modify the probability of the loss event are challenging, as these 

measures are usually taken to be implicit in the model assumptions. 

In this paper, we will provide a method for modelling mitigations that manage 

uncertainty or influence the probability of an OpRisk event explicitly. We will discuss how 

concepts from Decision Analysis, such as the Expected Value of Perfect Control (Matheson, 

1990) and the generic controller of Matheson and Matheson (Matheson and Matheson, 
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2005), can be used to formally model the effect of such mitigations quantitatively as 

percentage reduction in capital charge. In particular, we propose the probability revision 

matrix (PRM) method as a way to operationalize generalizations of these Decision Analysis 

concepts (Agarwal et al., 2014) and show how it can offer a way to quantitatively model 

beliefs about mitigations against OpRisk events.  

This paper also discusses an application of the PRM approach in a real world case 

study that was conducted for one of several Operational Risk scenarios of a leading 

insurance company. For this scenario, we illustrate how the PRM can serve as a powerful 

tool to model internal mitigations within the LDA. The problem considered relates to 

employment practices and workplace safety and models Operational Risks that are attributed 

to staff strikes. The mitigation modelled is measures to reduce the length of a strike, if it 

occurs. The detailed study of this mitigation exposes the practical benefits of the PRM 

method in terms of requiring fewer inputs, reducing the computational burden and allowing 

statistical risk measurements to be combined with subjective views about the mitigation. 

The paper is organized as follows: In section 2, we will review how OpRisk is 

measured using the LDA and its limitations. In section 3, we will show how existing 

Decision Analysis methods can be extended to model OpRisk mitigations and propose a new 

approach for modelling such mitigating actions. In section 4, we use the staff strike case 

study to illustrate how this proposed approach can be used in the LDA to calculate capital 

charges with and without mitigation, as well as perform several sensitivity tests. The final 

section contains some reflections, concluding remarks and directions for further research. 

4.2 Measuring and quantifying Operational Risk 

According to Basel 2, risk reporting should provide a clear understanding of the key 

Operational Risks, the related drivers and the effectiveness of internal controls (Basel 

Committee, 2011). The mandate defines three approaches for organizations to calculate their 

Operational Risks – 1) Basic indicator Approach (BIA), 2) Standardized Approach (SA) 3) 

Advanced Measurement Approach (AMA) — which vary in the extent to which an 

organization can customize an OpRisk model to better reflect their business practices 

(Frachot et al., 2001). An advanced statistical/actuarial method of calculation under the 

AMA is the Loss Distribution Approach (LDA) (Chaudhury, 2010; Frachot et al., 2001). As 

we will describe our model for mitigation within this framework, in this section we will 

briefly review this approach. 
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4.2.1 Loss Distribution Approach 

In the LDA, the loss distribution and capital charge is estimated for each event type in a 

given business line using internal data, over a one year horizon, and then aggregated to 

calculate the capital charge for the organization as a whole (Chaudhury, 2010; Frachot et al., 

2001). Typically, the potential losses associated with an event type are characterized by two 

factors — frequency (per year) of the loss event type and impact or severity of the loss event 

if it occurs, usually measured directly in terms of monetary losses (Frachot et al., 2003). 

Both, frequency and severity are taken to be stochastic variables and typically described by a 

parametric probability distribution. Often the Poisson distribution is used to model frequency 

and one of the extreme value distributions (e.g. Lognormal, Weibull, Gumbel) is used to 

model severity (Moosa, 2007). The compound loss distribution for a one year time horizon is 

a convolution of the frequency distribution and the severity distribution, which is estimated 

numerically using Monte Carlo methods since it does not have an analytical expression 

(Frachot et al., 2001). Each simulated loss value is determined by sampling one value from 

the frequency distribution and 𝑘 values from the severity distribution (where 𝑘 is the value 

simulated from the frequency distribution).  

Once the loss distribution has been estimated for an event type in a business line, the 

capital charge is typically calculated from the α-quantile of the distribution for the event 

type, where 𝛼 > 99% depends on the rating of the company (Frachot et al., 2001). The 

expected loss (mean of the loss distribution) and unexpected loss (difference between α-

quantile and mean), of the event type can also be estimated. According to the method 

described in the Basel Handbook, the capital charge for the bank as a whole is computed by 

simply adding the capital charges across all event types and business lines. Computationally 

this approach is less burdensome than calculating the aggregate loss distribution for the 

whole bank (as a convolution of the individual loss distributions) and then estimating the 

charges form the aggregate distribution. Alternative methods for estimating the aggregate 

capital charge entails summing the squares of individual capital charges (square root rule). 

The theoretical assumptions that underpin these methods are discussed in Frachot et al. 

(2001).  

4.2.2 Limitations of the Loss Distribution Approach 

Using the LDA in practice poses some challenges. Firstly, often there is inadequate historical 

data that is required by statistical methods to assess OpRisks (Chaudhury, 2010; Chavez-

Demoulin et al., 2006; Frachot et al., 2003) and therefore it is difficult to get reliable 

estimations of the frequency and severity distributions. While external data can be used to 
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supplement internal data, this may not always be suitable since operational accidents depend 

not only on historical observations but organizational features such as checks on fallibility, 

management practice, organizations’ exposure to a loss event (Neil et al., 2005), which 

change over time. Alternatively, distributions can be estimated from subjective assessments 

of some statistics of the distribution (such as percentiles or moments). These can be obtained 

using qualitative methods, for example from scores for certain drivers of the loss event, and 

then can be used in combination with known statistics (Neil et al., 2005). Sensitivity analysis 

of capital charge to the input parameters of the distribution can be insightful and help 

determine the robustness of capital charge estimates. 

A second limitation of the LDA is that it is based on numerical methods and the 

accuracy of capital charge assessment might be compromised, since the results are sensitive 

to the assumptions inherent to sampling methods (e.g. number of simulations). Frachot et al. 

(2001) discuss methods to control errors due to numerical estimation, such as comparing the 

theoretical moments of the distribution with the estimated ones or checking for convergence 

of statistics.  

In this paper, we address a third limitation of the LDA: incorporating the effect of 

mitigation measures on the loss distribution and subsequently calculating the reduction in 

capital charge. Incorporating such effects may not be straightforward if the severity and 

frequency distributions are estimated from historical observations. In addition, if the effect of 

mitigation is implicit in the parameter estimates of the distributions, reassessments can be 

time consuming and tedious every time a mitigation is reviewed. In the next section, we will 

describe a procedure that can be integrated with the LDA and demonstrate how it offers a 

promising way to address the challenge of explicitly calculating the impact of a mitigation 

on the loss distribution. 

4.3 Modelling mitigations when dealing with Operational Risks 

In this section, we will discuss how methods from Decision Analysis to model ‘control’ as 

influences on probability distributions, can be applied to quantitatively model managerial 

mitigations that reduce the probability of an OpRisk event. We then suggest a new approach 

for modelling mitigating actions in this context.  

The benefits realized from integrating Decision Analysis methods with the LDA has 

been recognized before. Neil et al. (2005) discuss the advantages of using graphical tools, 

such as Bayes nets, to formulate and analyse OpRisk problems as they offer visual 

convenience, can deal with the challenges of combining qualitative assessments about the 

effectiveness of business processes with statistical estimates, as well as facilitate ‘what if’ 
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analysis to test sensitivity of end results to model inputs. They emphasize that graphical 

methods help decompose the loss distribution into various causal components, which can 

make it cognitively easier for experts to supply probability judgements. They also show how 

dependence between frequency and severity can be handled by adding a common cause 

variable to the Bayes net (e.g. process effectiveness) and eliciting conditional probability 

distributions for frequency and severity. King (2001) describes how the machinery of causal 

models to infer causal relations from data can be used to analyse operational errors, which 

can help predict the effects of intervention that alter values of particular variables. These 

features of graphical tools are particularly useful for a risk analyst, as it allows him/her to 

exploit the expertise in an organization by obtaining inputs to the model from different 

sources, separately, and then combine them using the mathematics that underpins the graphs 

to get a more realistic estimate of the loss distribution.  

 In this paper, our choice of modelling tool for analysing OpRisk mitigations is the 

influence diagram (Howard, 1990; Howard and Matheson, 2005), which is a directed acyclic 

graph that differentiates between decision, chance and value variables and, therefore, is 

useful for problem structuring and clearly defining the problem variables. The components 

of an OpRisk event can be described in terms of decision analytic primitives — actions 

(mitigations), uncertain states of the world (loss events), and consequences (impact in terms 

of monetary losses). In an influence diagram (Figure 4-1), mitigating actions can be 

represented explicitly as a decision node with an arc into the target chance variable (e.g. 

severity of loss event). The chance variable then has different distributions associated with 

different decisions (or mitigations) and can also be conditional on the other chance variables 

(drivers of the loss event). 

Figure 4-1: Generic influence diagram for OpRisk of a loss event. 
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In Figure 4-1, OpRisk is captured by the loss distribution (probability distribution of 

‘expected losses’ node), which is determined by the probability distribution of the loss events 

and the possible monetary consequences associated with each outcome of the events. Notice 

that the loss distribution can be altered by either managing uncertainty (mitigation to control 

probabilities of events), or affecting the consequences (mitigation to control impact), but in 

both cases the OpRisk is altered. The statistical difference between the two types of 

mitigation is shown in Figure 4-2. 

Figure 4-2: Statistical difference between managing uncertainty (distribution of an OpRisk 

event) and managing the impact of an OpRisk event (consequences).  

 
No mitigation Manage Uncertainty Manage Impact 

Event 

probability 

distribution 

  
 

Loss 

distribution 

   

Probabilities are assigned (col 1) to the outcome of an event (e.g. number of days the event continues for) and 

the loss distribution is determined by assigning a monetary loss to each outcome of the event (e.g. €1 million per 

day). When uncertainty is managed (col 2), the probability distribution for the length of the event is altered 

(grey line), which in turn affects the loss distribution (grey line). On the other hand, when the impact is 

managed (col 3), for example by buying an insurance which limits the loss to €2 million, the probability 

distribution remains the same and only the payoffs associated with the event outcomes are affected, and, hence 

only the loss distribution is altered (grey line). 

Agarwal et al. (2014) describe how in the special case when the probability 

distribution of the uncertain node depends on whether or not an action is performed (i.e. ‘no 

action’ is a possible outcome of the decision node), actions can be regarded as interventions 

that alter the probability distribution of the state node. Within this perspective, OpRisk 

mitigations can be regarded as interventions that alter the probability distribution of a loss 

event which subsequently alters the capital charge assessments. 

Agarwal et al. (2014) extend existing methods to model interventions in Decision 

Analysis and propose a general way to analyse the effect of interventions on probability 

distribution in a manner that is similar to analysing the effect of information on probability 

distribution using Bayes Rule: as a revision of a prior probability distribution. This 

probability revision method, when applied to OpRisk mitigations, offers a less burdensome 

way to compare capital charge with and without mitigation, while holding other model 
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inputs fixed. This provides an effective way to assess the effect of a mitigation on OpRisk 

costs. In the rest of the section, we will briefly review this procedure and then propose a way 

to operationalize it, using OpRisk mitigations as an example. 

4.3.1 Modelling interventions in Decision Analysis: The generalized generic 

controller 

A common way to model interventions in Decision Analysis is as a perfect (Matheson, 1990) 

or deterministic intervention (Heckerman and Shachter, 1994; Pearl, 1994) on a target 

uncertain state, which sets the probability of the desired event to one. The ‘value’ of exerting 

control is then assessed by comparing the optimal payoff before and after an intervention is 

performed. Matheson and Matheson (2005) extend the concept of perfect control to 

imperfect control. They propose the generic controller to model interventions that cause the 

most desirable state to be achieved with probability 𝑞 (with 0 ≤ 𝑞 ≤ 1), where 𝑞 reflects the 

quality of the intervention. For a target uncertainty 𝑆 with 𝑛 outcomes 𝑠1, 𝑠2, … ,  𝑠𝑛 and 

respective probabilities 𝑝1, 𝑝2, … , 𝑝𝑛, if 𝑠1 is the most desirable state outcome, the revised 

probabilities 𝑝𝑖′, based on the generic controller, are a linear mixture of 𝑝𝑖 and deterministic 

distribution (that guarantees 𝑠1), given by: 

 
𝑝𝑖′ = {

(1 − 𝑞)𝑝𝑖 ,  𝑖 > 1
𝑞 + (1 − 𝑞)𝑝𝑖 , 𝑖 = 1

  (4-1) 

Agarwal et al. (2014) suggest an alternative interpretation for the probability revision 

described by the generic controller in equation (4-1): as probability mass transfer from less 

desirable states to more desirable states. A probability revision rule based on this 

interpretation — imaging — was first proposed in the 1970s (Lewis, 1976) as an alternative 

to Bayes rule for evaluating the probability of conditional statements. Subject areas of 

causality and causal decision theory have advocated imaging as a way to calculate 

probabilities conditional on actions (Joyce, 1999; Pearl, 1994) since, unlike Bayes 

conditionalization, imaging has the advantage that the probability revision is described even 

when the prior probability of the conditioning event is 0 or 1. 

Agarwal et al. (2014) propose the generalized generic controller (GGC) to describe 

interventions that allow arbitrary movements of probability mass between states. The 

corresponding probability revision rule is given by: 

 𝑝𝑖
′ =∑𝜌𝑗𝑖

𝑗

𝑝𝑗;     ∑𝜌𝑗𝑖
𝑖

= 1;  𝜌𝑗𝑖 ∈ [0,1] (4-2) 
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where the coefficients 𝜌𝑖𝑗 represent the probability mass transfer
 
from state 𝑠𝑗 to 𝑠𝑖.

3
 They 

show that the GGC coincides with imaging, as both of these methods are characterized by 

the same linearity property (Gardenfors, 1982) defined as follows: 

Definition 4-1: Linear Probability Revision Rule: For any probability 

function 𝑃, let 𝑓(𝑃(𝑠𝑖)) be the post-intervention probabilities for a target state node 

𝑆 = {𝑠𝑖}. A probability revision function 𝑓: ∆𝑛→ ∆𝑛 is linear if ∀𝑖, 𝑃(𝑠𝑖) =

𝛼𝑃′(𝑠𝑖) + (1 − 𝛼)𝑃
′′(𝑠𝑖), for some probability functions 𝑃′, 𝑃′′, 𝛼 ∈ [0,1], then 

𝑓(𝑃(𝑆))  = 𝛼𝑓(𝑃′(𝑠𝑖)) + (1 − 𝛼)𝑓(𝑃′′(𝑠𝑖)). 

Agarwal et al. (2014) expose the properties of the GGC in terms of how it interacts with 

Bayes rule and prove that when the target node 𝑆 has a parent node 𝑅 then the post-

intervention probability distribution of 𝑆 is the same regardless of the order in which the 

effect of information received about 𝑅 (Bayes rule) and effect of intervention performed 

(GGC) is incorporated. They also discuss how this order invariance condition can be 

interpreted as a coherence condition: if the decision maker’s pre-intervention beliefs are 

coherent (immune to a Dutch book) then the GGC guarantees that the post-intervention 

beliefs are also coherent. 

There are some relevant benefits of representing OpRisk mitigations as a GGC. 

Firstly, the probability revision approach can be less burdensome than treating the effect of 

mitigations as being implicit in the parameter estimates of the frequency/severity 

distribution, since it avoids a complete reassessment of the model inputs when a change in 

mitigation policy is announced. Secondly, the linearity property of GGC imposes the 

constraint that the inputs of the GGC (𝜌𝑗𝑖) ought not to depend on the probability 

distribution of the loss event. This is crucially advantageous for our purpose as it allows an 

analyst to obtain inputs from different business divisions in large organizations, where 

frequently the personnel responsible for risk assessments are different from those managing 

the risks. In the next subsection, we will propose a more compact formulation of the GGC, 

which guarantees that its characterizing linearity property is always preserved and apply it to 

model OpRisk mitigations. 

                                                      

 

3 For the generic controller, if 𝑖∗ is the target state, ∀𝑖 ≠ 𝑖∗, 𝜌𝑖𝑖 = 1 − 𝑞, 𝜌𝑖𝑖∗ = 𝑞, 𝜌𝑖∗𝑖∗ = 1 and 0 otherwise. 
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4.3.2 The probability revision matrix 

Throughout this section, we will use bold characters to represent vectors. We observe that 

the GGC in equation (4-2) is in fact a system of linear equations in 𝑝1, 𝑝2, … , 𝑝𝑛 and can 

alternatively be formulated as a product of matrices (Meyer, 2001), given by: 

[

𝜌11
⋮
𝜌𝑛1

𝜌12…
⋮

𝜌𝑛1… 

 𝜌1𝑛
⋮
𝜌𝑛1

] [

𝑝1
⋮
𝑝𝑛
] = [

𝑝1
′

⋮
𝑝𝑛
′
] (4-3) 

where ∑ 𝜌𝑖𝑗𝑖 = 1. The matrix 𝝆 = [𝜌𝑖𝑗] represents a linear map (Lang, 1966, p. 80) of the 

standard Euclidean simplex ∆𝑒
𝑛−1⊂ ℛ𝑛 into ∆𝑒

𝑛−1⊂ ℛ𝑛 with respect to the standard basis 

vectors 𝒆𝒋 = {(𝑒1𝑗, 𝑒2𝑗, … , 𝑒𝑛𝑗)|𝑒𝑖𝑗 = 1 if 𝑗 = 𝑖; 𝑒𝑖𝑗 = 0 if 𝑗 ≠ 𝑖) defined by 𝑓(𝒆𝒋) = 𝝆𝒋 

where 𝝆𝒋 is the column vector (𝜌1𝑗, 𝜌2𝑗, … , 𝜌𝑛𝑗). We will refer to the matrix 𝝆 = [𝜌𝑖𝑗] as the 

probability revision matrix (PRM), which is defined as: 

Definition 4-2: Probability revision matrix for GGC:  

A probability revision matrix for the GGC, 𝝆, is an 𝑛 × 𝑛 matrix of real numbers 

such that: (i) 𝜌𝑖𝑗 ≥ 0 (ii) ∑ 𝜌𝑖𝑗 = 1,𝑖 ∀ 𝑗 (iii) for any two distributions 𝒒 =

(𝑞1, 𝑞2, … , 𝑞𝑛) and 𝒑 = (𝑝1, 𝑝2, … , 𝑝𝑛), if 𝝆𝒑 and 𝝆𝒒 describe the probability 

revision matrix for 𝒑 and 𝒒 respectively and for the same GGC, then 𝝆𝒑 = 𝝆𝒒. 

The first two conditions guarantee that 𝒑′ = (𝑝1
′ , 𝑝2

′ , … , 𝑝𝑛
′ ) satisfies the conditions of a 

probability distribution. The third condition is needed to relate the definition of linear maps 

to the linearity condition in definition 1, which is achieved if 𝝆𝒊𝒋 is not determined by the 

probabilities 𝒑. The proof that PRM satisfies the linearity property in Definition 4-1 can be 

found in Appendix 1. 

We will now elaborate on how the PRM operationalizes the GGC. Note that the pre-

intervention probabilities can be described as: 

[
1

⋱
1

] [

𝑝1
⋮
𝑝𝑛
] = [

𝑝1
⋮
𝑝𝑛
] (4-4) 

where the columns of the matrix represent the possible outcomes of the target state node. 

Column 𝑗 of the identity matrix represents the possibility that 𝑠𝑗 will occur; row 𝑖 in column 

𝑗 represents the proportion of times 𝑠𝑖 will occur instead of 𝑠𝑗. By definition, the matrix that 

represents no mitigation (identity matrix) is one where for 𝑖 ≠ 𝑗, 𝑠𝑖 will not occur instead of 

𝑠𝑗. An intervention can be regarded as causing a desired state 𝑠𝑖∗ in a world where 𝑠𝑗, 𝑗 ≠

𝑖, would have occurred (without the mitigation). 𝜌𝑖∗𝑗 in equation (4-3) describes the 

proportion of times 𝑠𝑖∗  can be made to occur instead of 𝑠𝑗 or equivalently the probability 

mass that gets transferred from 𝑠𝑗 to 𝑠𝑖∗ .  
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4.3.3 The probability revision matrix for OpRisk mitigations 

OpRisk mitigations are often directed towards preventing an undesirable state from 

occurring and therefore correspond to a leftward shift of probability mass. If for a given 

target chance variable 𝑆 = {𝑠𝑖}, the outcome 𝑠𝑖 is preferred to 𝑠𝑖+1 for every 𝑖, the 

corresponding PRM is an upper triangular matrix. For 𝑆 = {𝑠1, 𝑠2, 𝑠3}, where 𝑠1 is the most 

desirable state and 𝑠3 the least desirable state, the general PRM for an OpRisk mitigation is 

given by: 

 

𝒔𝟏
𝒔𝟐
𝒔𝟑
[

1 𝑞12 𝑞13
0 1 − 𝑞12 𝑞23
0 0 1 − 𝑞23 − 𝑞13

]                       where    ∑ 𝑞𝑖𝑗
𝑗−1
𝑖=1 = 1 

     
(4-5) 

where 𝑞𝑖𝑗 represents the proportion of probability mass that is shifted from the state 𝑠𝑗 to 𝑠𝑖. 

Eliciting the coefficients for the PRM in the general form can be tedious. It may therefore be 

desirable to describe the mitigation by a single parameter, as in the generic controller. For a 

mitigation described by the generic controller, the single parameter 𝑞 can be interpreted as 

the probability of the mitigation preventing all undesirable states from occurring (equation 

(4-6)). Alternatively, a mitigation that reduces severity can be described by transferring a 

fixed proportion (single parameter 𝑞) of probability mass from a state outcome to its 

‘nearest’ less severe outcome (equation (4-6)). 

  

𝒔𝟏
𝒔𝟐
𝒔𝟑
[

1 𝑞 𝑞
0 1 − 𝑞 0
0 0 1 − 𝑞

]    

𝒔𝟏
𝒔𝟐
𝒔𝟑
[

1 𝑞 0
0 1 − 𝑞 𝑞
0 0 1 − 𝑞

] (4-6) 

            (i) The generic controller                            (ii) Probability mass transferred to ‘nearest’ state 

Depending on the nature of the state variable that is mitigated, other single parameter PRMs 

can be formulated. 

Agarwal et al. (2014) offer a geometric interpretation of the GGC as transformation of 

the probability simplex. The algebraic correspondence of the PRM to simplex 

transformations is discussed in Appendix 2. Here we will graphically illustrate the simplex 

transformations for the PRMs in equation (4-6). Equation (4-6) is a special simplex 

contained in ∆𝑛−1
𝑒 , where for 𝑞 >1 the number of vertices are the same as the original 

simplex, but the length of edges is modified to 1 − 𝑞 < 1. On the other hand, equation (4-6) 

encodes a more general transformation of the original simplex, where the number of vertices 

in the new simplex can be fewer than those in the original simplex and the length of edges 

can vary. The corresponding graphical representation for different values of 𝑞 is shown in 

Figure 4-3. 

𝒔𝟏 

 

𝒔𝟏         𝒔𝟐                𝒔𝟑  
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Figure 4-3: Each of the 4 panels shows the original simplex (solid line), the simplex 

corresponding to the generic controller (4-6i) (dotted dash line) and the simplex 

corresponding to equation (4-6ii) (dashed line) for various values of q. The vertices 

represent the atomic state probabilities 𝑷(𝒔𝒊) = 𝟏. 

𝒒 = 𝟏 (The generic controller is the point 𝒔𝟏and 

equation (4-6ii) is the edge between 𝒔𝟏and 𝒔𝟐) 
𝑞 = 0.75 

  

  

𝑞 = 0.5 𝑞 = 0.25 

  

In the next section, we will describe how a single parameter PRM was formulated for 

modelling a mitigation on a loss event (length of a staff strike) and show how the PRM 

approach can be integrated with the Loss Distribution Approach to calculate the resulting 

impact on capital charge calculations. 

4.4 Case Study: Modelling mitigations for the ‘Staff Strike’ scenario 

An important criterion for any approach that is proposed for OpRisk assessments is the 

convenience with which it can be implemented. Despite the emerging literature on 

sophisticated methods to calculate OpRisk, institutions are often faced with practical 

challenges when attempting to apply them in practice (Chaudhury, 2010). We tested the 

feasibility of the PRM method to estimate the effect of mitigation on capital charge within 

the LDA in a case study for one loss event, staff strike (classified under the ‘employment 

relations, diversity and discrimination risk category and belonging to the Human Resources 

business unit), that was conducted for a leading insurance company. The aim of the study 

was to test the intuitive appeal of the PRM as a model for mitigations and to engage in 
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analyses that can offer potentially useful insights on how mitigations encoded as PRM affect 

capital charge assessments. 

We will first give an overview of the strike problem and discuss how we adopted a 

Decision Analysis approach to identify the various drivers of the loss distribution for this 

event. Then we will describe how the loss distribution was estimated, and subsequently 

illustrate how we explored the effect of risk mitigation on the length of strike using the PRM 

method. (Although not computationally most efficient, it was convenient to build the loss 

distribution model in Excel so that it could be shared easily over email with the company for 

whom the case study was considered). 

4.4.1 Problem description 

A high level description of the strike event based on interviews with the Risk Assessment 

(RA) team and Human Resources (HR) Team is as follows: typically employee strikes may 

be triggered when employment official bodies disagree with management decisions (e.g. 

annual appraisal of salary changes). The frequency (per year) with which a strike occurs 

depends on the probability of the trigger event and the relationship or ‘negotiability’ of the 

management with the unions and workers. The severity of this event is the monetary loss 

incurred due to the business disruption and is a function of the number of days a strike lasts. 

We used an influence diagram (Figure 4-4) to structure the problem and obtained inputs for 

the model from both the RA and HR teams. 

Figure 4-4: Influence diagram for the OpRisk of staff strike (with mitigation on length of 

strike). 

 

Notice from the influence diagram that there is a difference between our 

implementation of the LDA to the approach described in section 4.2: rather than modelling 

the severity of a strike directly in terms of monetary losses we model it as one of the key 

drivers of losses — length of strike, measured in days — given a strike occurs. The losses 
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are calculated separately for each possible length of strike based on various contributing 

factors, such as cost due to delays in processing, additional workforce/overtime rates, loss of 

new business, etc. (For some of these factors the cost was a linear function of length of strike 

whereas for others it was a convex function). 

There are a few advantages of not measuring severity directly in terms of the monetary 

losses, but instead a more fundamental variable on which the costs depend. Firstly, it adds 

transparency to the model and the assumptions that go into estimating the OpRisk costs and 

loss distribution. Secondly, the cost structure in a firm is often constantly reviewed and 

subject to frequent changes. When the parameters of the severity distribution do not depend 

directly on the monetary losses, the extent of effort required to update OpRisk models to 

reflect any changes in the cost scheme is considerably lower. Thirdly, it is possible to model 

the effect of specific managerial mitigations targeted towards one of the drivers of the loss 

distribution more reliably, since often those planning the specific mitigation may not be 

properly acquainted with cost implications. In a questionnaire filled out by the HR managers, 

it was found that the firm has contingency and mitigation plans in place to reduce the length 

of strike and they believe that if these mitigations are executed they alter the probabilities 

associated with the length of the strike. 

4.4.2 Estimating the loss distribution 

We assumed that both frequency 𝑥𝑓 (number of strikes per year) and severity 𝑥𝑙  (length of 

strike, days) follow a parametric distribution and the loss distribution was sampled from the 

assumed distributions using Monte-Carlo simulation. We assumed no dependence between 

the parameters of the frequency and severity distributions. A possible dependence (modelled 

as an arc from the ‘negotiability’ node to the ‘length of strike’ node (Neil et al., 2005)) is 

explored later on, in section 4.4.4.4. 

The frequency distribution was assumed to be a Poisson distribution, whereas for 

severity two different choices of distribution — Lognormal and Weibull — were considered. 

Due to lack of historical data, the parameters of the distribution were obtained from the 

company experts’ judgments. For strike frequency, negotiability (obtained using a scorecard) 

and probability of trigger event were considered to be the key drivers and the mean for the 

Poisson distribution was estimated from these scores. The parameters of the severity 

distribution were estimated from the company experts’ opinions of what constitutes a 

‘typical’, ‘serious’ and ‘extreme’ case of the length of strike, which correspond to the mode 

𝑚𝑙, 𝛼1 percentile and 𝛼2 percentile of the distribution for severity, respectively. The 

distribution was then determined using the weighted least-squared approach discussed in 
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Appendix 3. The non-parametric loss distribution was estimated by sampling 10,000 

observations from the frequency distribution and severity distribution. The capital charge 

was taken to be the 99.5 percentile of the distribution (total computation time was 

approximately 85 seconds in Excel). Figure 4-5 shows the distributions for frequency, 

severity and the loss distribution. The size of the simulation was constrained by the 

capabilities of building the model in Excel. We performed convergence tests to measure the 

stability of the capital charge estimates (as will be discussed in section 4.4.4.2). 

Figure 4-5: Distributions for frequency (𝒙𝒇 ~ 𝑷𝒐𝒊𝒔(𝝀 = 𝟎. 𝟎𝟐)) and length of strike 

(𝒙𝒍~ 𝑳𝒐𝒈𝑵(𝝁 = 𝟏. 𝟎𝟔, 𝝈 = 𝟎. 𝟕𝟒); 𝒙𝒍~ 𝑾(𝜶 = 𝟎. 𝟗𝟒, 𝜷 = 𝟏. 𝟒𝟗) ). 

Frequency                 Severity              Loss Distribution 

4.4.3 Modelling risk mitigation 

Having estimated the loss distribution, we explored the effect of a risk mitigation on the loss 

distribution. We considered a mitigation on the length of strike (e.g. by giving in to the 

workers’ demands, taking prompt actions to initiate a dialogue, etc.) and modelled it as a 

single parameter PRM, discussed in section 4.3.3, where the parameter 𝑞 is described as 

follows: once a strike occurs, the firm has contingency plans in place which has 𝑞% 

efficiency or that there is 𝑞% less chance that a strike will continue to the next day. While 

hypothetical values for 𝑞 are assumed in this paper, following are some techniques that can 

be used for obtaining the parameter 𝑞: 

i) from an efficiency score card that may already be in place to assess the efficiency of 

mitigations;  

ii) elicit by asking the following question: “Suppose a strike has lasted n days. What is 

the chance that the mitigation will prevent the strike from continuing to the next 

day?” 

The variable 𝑞 can be interpreted as the proportion of probability mass transferred from days 

that the strike will continue beyond day 𝑛 to day 𝑛. Let 𝑛 = 0 indicate that a strike will not 

occur and let us also assume that if a strike occurs it will last at least 𝑛 = 1 day. Let 

𝑝1, 𝑝2, … , 𝑝𝑛 denote the prior probabilities that the strike will last 1 day, 2 days, etc. The 

corresponding PRM (given a strike occurs) and post mitigation distribution is given by: 
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where 𝐺(𝑛) is the decumulative distribution function of 𝑥𝑙, i.e. 𝑃(𝑥𝑙) > 𝑛. The 

transformation of the probability simplex corresponding to this mitigation is shown in Figure 

4-6. 

Figure 4-6: The transformation of the simplex corresponding to various values of 𝒒 in equation 

(4-7) (modified for at most three strike days). 

 

Once the post-mitigation distribution for the length of strike was calculated, the loss 

distributed was re-estimated (sample: 10,000 observations) and the effect of the mitigation 

on the capital charge was assessed (Figure 4-7). 

Figure 4-7: Severity (Lognormal) and Loss distribution without mitigation and with mitigation 

(𝒒 = 𝟎. 𝟓 in equation (4-7)). 

In general, the value of mitigation can be assessed by comparing various statistics of the pre-

mitigation and the post-mitigation distribution. For example, the difference in means of the 

distributions before and after ‘control’ corresponds to the notion of Expected Value of 
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𝒑𝟓
⋮ ]
 
 
 
 
 

=

[
 
 
 
 
 
 

𝒑𝟏 + 𝒒𝑮(𝟏)

(𝟏 − 𝒒)(𝒑𝟐 + 𝒒𝑮(𝟐))

(𝟏 − 𝒒)𝟐(𝒑𝟑 + 𝒒𝑮(𝟑))

(𝟏 − 𝒒)𝟑(𝒑𝟒 + 𝒒𝑮(𝟒))

(𝟏 − 𝒒)𝟒(𝒑𝟓 + 𝒒𝑮(𝟓))
⋮ ]

 
 
 
 
 
 

  (4-7) 
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Control. An industry measure for valuing mitigations, also the one presented here, is the 

percentage reduction in capital charge due to mitigation.  

4.4.4 Sensitivity analysis 

In this section, we will discuss a few exploratory tests that were performed to test the 

sensitivity of the capital charge estimates to various model assumptions and input 

parameters.  

4.4.4.1 Effect of varying q 

We explored the effect of a more general mitigation on the capital charge estimate where we 

allowed the quality of mitigation to increase or decrease over time. This model requires two 

parameter inputs: the initial quality, 𝑞1, of terminating a strike on the first day and the 

change in quality, 𝛿. We can determine the quality (0 ≤ 𝑞𝑛 ≤ 1) for the remaining days 

using the recursion: 

𝑞𝑛 = min (1, 𝑞𝑛−1 + 𝛿) +max (0, 𝑞𝑛−1 + 𝛿) − (𝑞𝑛−1 + 𝛿);  −𝑞1 ≤ 𝛿 ≤ 1 − 𝑞1 
(4-8) 

The corresponding PRM is given by: 

 

𝟏 
𝟐
𝟑
𝟒
⋮

[
 
 
 
 
 
 
 
1 𝑞1 𝑞1 𝑞1 𝑞1
0 1 − 𝑞1 𝑞2(1 − 𝑞1) 𝑞2(1 − 𝑞1) 𝑞2(1 − 𝑞1)

0 0 ∏ (1 − 𝑞𝑖)
2

1
𝑞3∏ (1− 𝑞𝑖)

2

1
𝑞3∏ (1− 𝑞𝑖)

2

1

0 0 0 ∏ (1 − 𝑞𝑖)
3

1
𝑞4∏ (1− 𝑞𝑖)

3

1

0 0 0 0 ⋱ ]
 
 
 
 
 
 
 

  

[
 
 
 
 
𝑝1
𝑝2
𝑝3
𝑝4
⋮ ]
 
 
 
 

=

[
 
 
 
 
 
 
 

𝑝1 + 𝑞1𝐺(1)
(1 − 𝑞1)(𝑝2 + 𝑞2𝐺(2))

∏ (1 − 𝑞𝑖)
2

1
(𝑝3 + 𝑞3𝐺(3))

∏ (1 − 𝑞𝑖)
3

1
(𝑝4 + 𝑞4𝐺(3))

⋮ ]
 
 
 
 
 
 
 

  (4-9) 

Figure 4-8 show the percentage reduction in capital charge for various values of 𝑞1 and 𝛿 in 

equation (4-8). 

Figure 4-8: Percentage reductions in capital charge (99.5 percentile) for various qualities of 

intervention in equation (4-9). The solid line shows the percentage reduction if the 

quality is fixed over time (equation (4-8)). The grey bars indicate the extent to which 

percentage reduction can change depending on how quality changes over time.  
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The sensitivity of percentage reduction in capital charge to the quality of intervention 

(Figure 4-8) shows that the marginal value of mitigation decreases as quality increases. 

Furthermore, as the quality of intervention increases, changes in quality for each additional 

day of strike has a lower effect on the resulting capital charge estimates. When reliable 

estimates for quality of intervention cannot be obtained, sensitivity analysis provides useful 

insights on the desired levels of quality of intervention and given a quality, whether it is 

worth taking the effort to improve the quality of intervention as the event continues. 

4.4.4.2  Effect of chosen distribution for severity and convergence tests 

As mentioned in section 4.2.2, when using numerical methods to estimate the loss 

distribution, it is important to test for the stability of the sample distribution. Figure 4-9 

shows the cumulative density function for the 99.5 percentile of the sample distribution in 

Figure 4-7 (based on 10,000 observations) for 5,000 replications. 

Figure 4-9: Convergence tests for capital charge estimates and percentage reduction: The black 

line corresponds to a Lognormal distribution and grey line corresponds to a Weibull 

distribution for severity (p<0.01 for all figures, based on two sample Kolmogorov-

Smirnov test). For Lognormal distribution the mean capital charge was found to be 

€3.13 million (± €3750) without mitigation, and 1.13 million (±€1150) with 

mitigation. The mean percentage reduction was found to be 64%. (±.03%). 

The capital charge estimates were found to be more robust when a Lognormal distribution is 

assumed for severity (significantly lower variance than Weibull) whereas the measured 

percentage reduction in capital charge is higher when a Weibull distribution is assumed. One 

reason for these differences is that the Weibull distribution has heavier tails. 

4.4.4.3 Effect of model inputs 

We also performed extensive tests to check the sensitivity of the capital charge calculations 

to various model inputs and assumptions. The left panel in Figure 4-10 shows the sensitivity 

of the capital charge to the frequency (mean of Poisson distribution) with a fixed severity 

distribution. The right panel in Figure 4-10 shows the sensitivity of the capital charge 
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estimates to the scores from the score cards for negotiability — social dialogue adequacy and 

exposure to conflict.  

Figure 4-10: Sensitivity of capital charge estimates (without mitigation) to various inputs of the 

score. 

 

A regression was conducted to estimate the slope of the plane and it was found that the 

sensitivity of capital charge estimates to ‘social dialogue adequacy’ score is around 1.5 (2) 

times the sensitivity to ‘exposure to conflict’ score when a Lognormal (Weibull) distribution 

is assumed for the length of strike. 

4.4.4.4  Effect of assuming correlation between the frequency and severity distribution 

We also looked at the effect of assuming dependence of the distribution for the length of 

strike on negotiability. This dependence introduces a correlation between the frequency and 

severity distribution (Neil et al., 2005). We found that at a fixed level of probability of 

trigger event, introducing this correlation increases the spread of capital charges (standard 

deviation of capital charge for various for scores of the score cards) by 32% (9%) for 

Lognormal (Weibull) distribution. From Figure 4-11 we can see that for lower values of 

negotiability score, the capital charge is higher when the parameters of the length of strike 

are conditional on the ‘negotiability’ score when using a Lognormal distribution for the 

length of the strike. 

Figure 4-11: Capital charge estimates using parameters conditional on ‘negotiability’ score vs. 

unconditional parameters. (Based on rank sum test, 𝒑 ≤ 𝟎. 𝟎𝟓 for Lognormal 

distribution, when negotiability < 𝟎. 𝟐𝟓). 
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Although not presented here, the sensitivity tests to model inputs (in sections 4.4.4.3 and 

4.4.4.4) can be easily extended to include the mitigations within our proposed framework. 

4.5 Summary and conclusion 

Managers frequently contemplate risk management as being able to affect the odds of chance 

variables and, thus, the notion of ‘control’ can be potentially useful for analysing such 

decisions where uncertainty is regarded as being ‘controllable’. OpRisk management is an 

area where the probabilities of many OpRisk events are intrinsically linked to managerial 

practices in an organization. In fact, one of the aims of formalizing the OpRisk assessments 

is that, over time, it will converge towards effective risk management practices (Basel 

Committee, 2011), thus leading to fewer business disruptions. Explicitly calculating the 

reduction in capital charge due to mitigations can provide natural incentives for enterprises 

to take active measures to mitigate risks.  

In this article we proposed a quantitative method to assess the value of Operational 

Risk (OpRisk) mitigations that alter the probability distribution of the loss event as 

percentage reduction of capital charge within a Loss Distribution Approach (LDA) 

framework. Since the LDA can be expressed in terms of Decision Analysis primitives, 

Decision Analysis methods can be extended to support the input estimations needed in the 

LDA. The concept of a controller and Expected Value of Control has been a part of the 

Decision Analysis repertoire but, unlike Expected Value of Information, its application has 

not been discussed extensively. One reason for this is that, in Decision Analysis, often the 

probabilities of uncertain variables are formulated as being outside the decision maker’s 

influence. Thus, there has been little research on developing a proper framework to encode 

views about interventions that are not deterministic, and a systematic method to define post 

intervention distributions as a probability revision of the prior. In this article, we proposed 

the probability revision matrix (PRM) method as one way to quantitatively model non-

deterministic interventions and thus broaden the applicability of controllers. This approach 

operationalizes the concept of controllers in Decision Analysis and, as we showed, can be 

integrated with the Loss Distribution Approach as a separate input. OpRisk mitigations 

modelled as a PRM provide a more consistent and tractable comparison of various mitigation 

policies on a given probability distribution (modelled using LDA) and their effects on capital 

charge.  

In the case study that was conducted and presented here, we were able to test the 

advantages of integrating Decision Analysis methods and the PRM with traditional OpRisk 

assessment methods, such as the LDA. We found graphical tools useful for engaging experts 
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in a discussion on their beliefs about various assessments and dependencies between 

variables. When there was lack of consensus whether a dependency between variables 

should be modelled or discretionary choice of distribution for modelling length of strike, it 

was possible to evaluate the extent to which the assumptions affected the end estimates by 

altering the assumptions about one variable and repeating the calculations, while keeping all 

other assumptions intact. Our sensitivity tests revealed that some of these decisions can lead 

to significantly different estimates for the capital charge. We were also able to demonstrate 

the relationship between quantitative assessment of mitigations and capital charge reduction, 

which can be insightful when designing mitigation procedures. Furthermore, the tractability 

of the proposed method enables comparisons of different mitigations, permits calculations to 

measure the combined effect of multiple mitigations, and allows the analyst to investigate 

mitigations that have the required effect on the probabilities of a loss event.  

Experts from the OpRisk team endorsed the usefulness of sensitivity analysis and 

robustness tests in the Advanced Measurement Approach, as they demonstrate rigour and 

reliability of the estimates, which makes it easier to get approval from the regulators. When 

mitigations are a part of the OpRisk model, the PRM method can make these calculations 

less tedious. The ability to analytically integrate the expertise between the Operational Risk 

team and Human Resources team was also a novel contribution to the OpRisk calculation 

procedures that were already in place. This type of analysis can be extended to other OpRisk 

scenarios, whenever uncertainty can be ‘controlled’ and the scenarios are modelled 

statistically using the LDA. 

Despite the computational advantages, eliciting the inputs for the PRM so that it is a 

reasonable quantitative description of the mitigation may not always be straightforward. In 

general a clear rationale and unbiased process for obtaining the inputs is crucial if an 

institution wants to use the PRM method to negotiate a lower capital charge on the basis of 

certain mitigation plans it has in place. (A thorough procedure for eliciting the parameter 𝜌𝑗𝑖 

for a general PRM, based on an approach that is similar to the probability wheel (Shephard 

and Kirkwood, 1994), is explained in Agarwal et al. (2014)). In this paper, we formulated 

PRMs with at most two parameters. One area for future research is to develop simpler and 

more intuitive ways to measure the numeric inputs of the PRM. The feasibility and 

usefulness of this approach can also merit from further exploration. 
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4.6 Appendices for Chapter 4 

Appendix 4-1: Proof that the probability revision matrix satisfies the linearity property 

Let 𝑓(𝑃(𝑠𝑖)) be the post-intervention probabilities for a target state node 𝑆 = {𝑠𝑖} for any 

probability function 𝑃. Suppose ∀𝑖 𝑃(𝑠𝑖) = 𝛼𝑃
′(𝑠𝑖) + (1 − 𝛼)𝑃

′′(𝑠𝑖) for some 

𝑃′(𝑠𝑖), 𝑃
′′(𝑠𝑖) and 0 ≤ 𝛼 ≤ 1. Let [𝜌𝑖𝑗] represent the probability revision matrix 

corresponding to the probability revision function 𝑓. Then ∀𝑖, 𝑓(𝑃(𝑠𝑖)) = ∑ 𝜌𝑖𝑗𝑃(𝑠𝑗)𝑗 . ∀𝑖, 

𝑓(𝛼𝑃′(𝑠𝑖) + (1 − 𝛼)𝑃
′′(𝑠𝑖)) =  ∑𝜌𝑖𝑗(𝛼𝑃′(𝑠𝑗) + (1 − 𝛼)𝑃′′(𝑠𝑗))

𝑗

  

           = ∑𝜌𝑖𝑗𝛼𝑃′(𝑠𝑗)

𝑗

+∑𝜌𝑖𝑗(1 − 𝛼)𝑃′′(𝑠𝑗)

𝑗

  

           = 𝛼∑𝜌𝑖𝑗𝑃′(𝑠𝑗)

𝑗

+ (1 − 𝛼)∑𝜌𝑖𝑗𝑃′′(𝑠𝑗)

𝑗

 

           = 𝛼𝑓(𝑃′(𝑠𝑖)) + (1 − 𝛼)𝑓(𝑃
′′(𝑠𝑖)) 

Appendix 4-2: Geometric interpretation of probability revision matrix 

Suppose 𝑆 has 𝑛 outcomes 𝑠1, 𝑠2, … ,  𝑠𝑛 and the probability distribution for 𝑆 is given by 

𝒑 = (𝑝1, 𝑝2, … , 𝑝𝑛). Let 𝒑′ = (𝑝1
′ , 𝑝2

′ , … , 𝑝𝑛
′ ) be the post-mitigation probabilities as 

described by equation (4-2). When no mitigation is performed, as in equation (4-4), the 

columns of the PRM are the standard basis vectors 𝒆𝒋 and geometrically correspond to the 

vertices of the Euclidean 𝑛 − 1 simplex ∆𝑒
𝑛−1⊂ ℛ𝑛, defined as (Wallace, 1957, p. 96): 

Definition 4-3: Euclidean 𝒏 − 𝟏 simplex  

Let 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 be points of ℛ𝑛 where 𝒙𝒋 = (𝑥1𝑗, 𝑥2𝑗, … 𝑥𝑛𝑗). Then the Euclidean 

𝑛 − 1 simplex ∆𝑥
𝑛−1 is the set of all points 𝒛 = (𝑧1, 𝑧2, … 𝑧𝑛), given by: 

       ∆𝑥
𝑛−1 = {(𝑧1, 𝑧2, … 𝑧𝑛) ∈ ℛ

𝑛|𝑧𝑖 = ∑ 𝜆𝑗𝑥𝑖𝑗
𝑛
𝑗=1 , 𝜆𝑗 ≥ 0,∑ 𝜆𝑖

𝑛
𝑗=1 = 1, ∀ 𝑖 = 1,2, … , 𝑛}. 

𝜆𝑗 are uniquely defined for each point 𝒛 (Wallace, 1957, p. 97). Setting 𝒙𝒋 = 𝒆𝒋 and 𝜆𝑗 = 𝑝𝑗 

we have the pre-mitigation probability distribution 𝒑 = ∑ 𝑝𝑗𝒆
𝒋𝑛

𝑗=1  and is a point on ∆𝑒
𝑛−1. In 

general, ∆𝑒
𝑛−1 can be considered to be the set of all possible pre-mitigation probabilities. 

Consider the post-mitigation probabilities 𝒑′ = (𝑝1
′ , 𝑝2

′ , … , 𝑝𝑛
′ ) where 𝒑′ = ∑ 𝑝𝑗𝝆

𝒋𝑛
𝑗=1 . By 
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Definition 4-3, 𝒑′ is a point on the simplex ∆𝜌
𝑛−1 described by the vertices 𝝆𝒋 and 𝜆𝑗 = 𝑝𝑗. 

The probabilities 𝒑 and 𝒑’ are related by the linear map 𝑓: ∆𝑒
𝑛−1→ ∆𝜌

𝑛−1 such that 𝑓(𝒆𝒋) = 𝝆𝒋 

and ∀ 𝒚 = (𝑦1, 𝑦2, … 𝑦𝑛) ∈ ∆𝑒
𝑛−1, 𝒚 = ∑ 𝒆𝒋𝑦𝑗

𝑛
𝑗=1 , 𝑓(𝒚) = ∑ 𝑓(𝒆𝒋)𝑦𝑗

𝑛
𝑗=1 = ∑ 𝝆𝒋𝑦𝑗

𝑛
𝑗=1  ∈ 

∆𝜌
𝑛−1[30]

. This linear map 𝑓 can be described by the PRM 𝝆 = [𝜌𝑖𝑗]. Thus, the PRM describes 

a transformation of ∆𝑛−1
𝑒  where ∆𝜌

𝑛−1⊂ ∆𝑒
𝑛−1 is the transformed simplex and 𝒑′ is the 

projection of 𝒑 on a new simplex with vertices 𝝆𝒋. To ensure that 𝒑′satisfies the linearity 

property that characterizes the GGC we need that all 𝒚 ∈ ∆𝑒
𝑛−1 get projected to the same 

simplex and therefore the specification of 𝜌𝑖𝑗 should not depend on 𝒚.  

Appendix 4-3: Distribution fitting functions (weighted least square method) for 

Lognormal and Weibull distribution 

Given estimates of mode (𝑚), events corresponding to the ‘serious’ percentile (𝑦1) and 

‘extreme’ percentile (𝑦2), and precision 𝑤𝑖 (also obtained from experts), the function to be 

minimized is:  

𝑤1(𝑚 − 𝑚𝑙)
2 +𝑤2(𝑦1 − 𝐹

−1(α1))
2
+𝑤3(𝑦2 − 𝐹

−1(α2))
2
 

where 𝑚𝑙 is the mode of the distribution, α1, α2 the percentiles that reflect ‘serious’ and 

‘extreme’ cases, respectively, and 𝐹 is the cumulative distribution of the severity function. 

The corresponding objective function for a Lognormal distribution and Weibull distribution 

are: 

Lognormal (with parameters μ, σ)  

𝑤1(𝑚 − 𝑒µ−σ
2
)
2
+ 𝑤2(𝑦1 −

1

2
 (1 + erf (

ln(α1) − μ

σ√2
)))

2

+ 𝑤3(𝑦2 −
1

2
 (1 + erf (

ln(α2) − μ

σ√2
)))

2

 

Weibull (with parameters α, β) 

𝑤1 (𝑚 −  𝛽 ∗ (1 −
1

α
)1/α)

2

+ 𝑤2(𝑦1 − 𝛽 ∗ (−ln(1 − α1))
1/α)

2
+ 𝑤3(𝑦2 − 𝛽 ∗ (−ln(1 − α1))

1/α)
2
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4.8 Supplementary Material for Chapter 4 

S 4-1: Screenshots from the Excel tool showing the model inputs and outputs for data  
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S 4-2: Algorithm for simulating the loss distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝒚𝒊 

Generate 10000 

numbers 

between 0 and 1 

 

[𝒙𝒅]𝒊
𝒋
= 𝑳𝒈𝒏−𝟏(𝒛𝒊

𝒋
) 

Calculate strike duration 

without mitigation 

 

[𝒙𝒅]𝒊
𝒋
=  𝝋(𝑳𝒈𝒏)−𝟏(𝒛𝒊

𝒋
) 

Calculate strike duration 

with mitigation 

where 𝜑 is the probability 

revision 

[𝒙𝒇]𝒊
= 𝑷𝒐𝒊𝒔−𝟏(𝒚𝒊) 

Calculate frequency  

 

𝒛𝒊
𝒋
    

𝟎 ≤ 𝒋 < [𝒙𝒇]𝒊 

Generate 10000 

random number sets 

(between 0 and 1) 

where set 𝑖 contains 𝑗 

random numbers 

 

Calculate total cost, 

for each simulated 

strike duration and 

generate empirical 

distribution 

 
Calculate total cost, 

for each simulated 

strike duration and 

generate empirical 

distribution 
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S 4-3: Sample Questionnaire used to understand AXAs model and risk mitigation 

policies (not used in the paper) 

Important Note:  

The question corresponding to the impact of mitigation is worded differently in this 

questionnaire (Part 2 Q5 and Q6). We phrased a less confusing wording for numerical 

elicitations of probability revision matrix when writing the paper (described in this paper in 

section 4.4.3). 

Responses to the questionnaire are not included for confidentiality reasons. 

 

 

 

Short Questionnaire for AXA on 

Operational Risks due to Strikes 
 

Shweta Agarwal (s.agarwal@lse.ac.uk) 

Supervisor: Gilberto Montibeller (g.montibeller@lse.ac.uk) 

Department of Management, London School of Economics, London, WC2A 2AE 

 

 

Any information provided by AXA in this questionnaire will be 

kept strictly confidential. This information will be used for 

research only and will not be reproduced without explicit 

consent from AXA. 

  

mailto:s.agarwal@lse.ac.uk
mailto:g.montibeller@lse.ac.uk
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PART 1 

In this part of the questionnaire, we would like to ask AXA a few questions about some 

model estimates that were provided. 

1) On a scale of 1 to 10, please indicate how confident AXA is about the current 

estimate for probability of a trigger event: 

 

2) On a scale of 1 to 10, please indicate how precise are the following estimates for 

strike duration: 

 

3) Are the estimates in (1) and (2) different from those in 2011? Please circle one of the 

following 

Yes      No 

  

If yes, please indicate the values in 2011:  

i. Probability of trigger event = _______________ 

ii. Typical case (Mode) =  _______________ 

iii. Serious case (80 percentile) = ______________ 

iv. Extreme case (95 percentile) = ______________ 

 

4) On a scale of 1 to 10, please indicate how likely is it that the estimates will change 

for assessments in 2013? 

Extremely 

Unconfident   
Extremely 

Confident 

1 2 3 4 5 6 7 8 9 10 

          

 
Extremely 

Imprecise   

Extremely 

 Precise 

 
1 2 3 4 5 6 7 8 9 10 

Typical case 

(Mode) = 2 days 

     

  

 

  

Serious case 

(80 percentile) = 5 days 

     

  

 

  

Extreme case 

(95 percentile) = 10 days 

     

  

 

  

Extremely  

Unlikely   
Extremely  

Likely 

1 2 3 4 5 6 7 8 9 10 
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5) In your experience at AXA, what is the longest number of days that a strike has 

lasted? 

 

6) We welcome any comments, thoughts or related information you would like to share 

with us on estimating the duration of strike. Please feel free to add them below. 

____________________________________________________________________ 

____________________________________________________________________ 

____________________________________________________________________ 

____________________________________________________________________ 

PART 2 

In this part of the questionnaire, we would like to ask AXA a few questions on their 

approach to mitigate the risks due to strikes 

1) Please indicate whether you ‘agree’ or ‘disagree’ with the following statements. 

 
Agree Disagree 

i. AXA has a plan of mitigation options before a 

strike occurs.  
  

ii. AXA takes initiatives to mitigate how long a 

strike lasts, once a strike occurs. 
  

iii. If a strike has occurred in the year, the estimated 

chance of a strike occurring (again) will not 

change. 

  

iv. AXA takes initiatives to reduce the chance of a 

strike occurring even when there is no threat of a 

strike. 

  

v. If a strike has occurred in the year, it is more 

likely that a strike will occur again. 
  

vi. AXA does not take initiatives to mitigate how 

long a strike lasts, once a strike occurs. 
  

vii. AXA takes initiatives to reduce the chance of a 

strike occurring only when there is threat of a 

strike. 

  

viii. If a strike has occurred in the year, it is less 

likely that a strike will occur again. 
  

 

 

 

 

0 

days 

1  

day 

2 

days 

3 

days 

4 

days 

5 

days 

6 

days 

7 

days 

8 

days 

9 days or 

more 
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2) Once a strike occurs (Day 0), what is chance that the strike will continue without 

any active efforts from AXA to end the strike? 

 
0% 10% 25% 50% 75% 90% 100% Other 

Continue to the next day?         

Continue for two days?         

Continue for three days?         

Continue for four days or 

more? 

        

 

3) Once a strike occurs, after how many days do the managers at AXA take initiatives 

to put an end to the strike:   

 

4) Once a strike occurs, and the managers at AXA intervene to put an end to the 

strike, what is the chance that the strike will:  

  

5) Suppose that a strike has started. If the managers at AXA intervene to put an end 

to the strike, what is the chance that the strike will continue to the next day? 

 

6) Suppose that a strike continues for 2 days. If the managers at AXA intervene to put 

an end to the strike, what is the chance that the strike will continue to the next day? 

On the same 

day After 1 day After 2 days After 3 days 
After 4 or 

more days 

     

 

0% 10% 25% 50% 75% 90% 100% Other 

Continue to the next day?         

Continue for two days?         

Continue for three days?         

Continue for four days or more?         

 

0% 10% 25% 50% 75% 90% 100% Other 
The chance that it will continue to 

next day is    

     

 

0% 10% 25% 50% 75% 90% 100% Other 
The chance that it will continue to 

next day is    
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7) It would be helpful for us to know the type of mitigations that are used by managers 

at AXA. Please add any information you can share on initiatives taken by AXA 

i. To mitigate the risk of a strike occurring 

____________________________________________________________________ 

____________________________________________________________________ 

____________________________________________________________________ 

____________________________________________________________________ 

ii. To reduce the number of days a strike lasts for, if it occurs 

____________________________________________________________________

____________________________________________________________________ 

____________________________________________________________________ 

____________________________________________________________________ 

iii. Any other information 

____________________________________________________________________ 

____________________________________________________________________ 

____________________________________________________________________ 

____________________________________________________________________ 
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Chapter 5       

Concluding Remarks 
 

The motivating idea of this research was that, when contemplating risky decisions, 

individuals not only seek to optimize expected payoffs but also endeavour to actively 

mitigate the risks while retaining the potential rewards (e.g. Huber, 2002, 2007). Risks can 

be mitigated by influencing either the uncertainties (e.g. advertising to improve the chance of 

a higher demand) and/or the impact (e.g. purchasing insurance). While the notion of 

managing impact (dependence between actions and consequences) is embedded in most 

formalizations of decisions (e.g. Savage, 1954), the notion of managing uncertainty 

(dependence between actions and probabilities), conceptualized in the literature as ‘control’ 

(Goodie, 2003; e.g. Matheson, 1990) or as ‘interventions’ (e.g. Matheson and Matheson, 

2005; Pearl, 2000) has been comparatively less explored. The empirical research on decision 

making under risk has also predominantly been in the context where actions cannot directly 

influence probabilities attached to uncertainties. In contrast, corporate perspectives on risk 

management and risk taking are closely linked to the notion of managing the uncertainty 

inherent to the description of risks, tantamount to modifying the probability distribution 

associated with uncertain events, when possible. 

Thus, as argued in this thesis, in order to make the formal study of decision making 

under uncertainty better resonate with managerial thinking, the evaluation of risky decisions 

should focus not only on the effect of actions on consequences but, when relevant, also build 

upon the contingent influence of actions on uncertainty. In relation, this research focused on 

deepening the understanding of the behavioural effect of uncertainty control on risk taking 

and also attempted to expand the capability of Decision Analysis to quantitatively model the 

effect of interventions on probability distributions.  

Following previous suggestions (see Brandstätter and Schwarzenberger, 2001; 

Goodie, 2003), first a distinction of uncertainty based on its ‘controllability’, i.e. whether or 

not a decision maker can modify the probabilities attached to uncertain events, was 

proposed. This dual construct of uncertainty mirrors the distinctions between uncertainties 

based on the nature of probabilities (e.g. Morgan and Henrion, 1990; Von Mises, 1949, pp. 

107–115) or information (e.g. Fox and Ulkumen, 2011; Chatterton, 2001; Hoffman and 

Hammonds, 1994; Chernoff and Moses, 1959) (discussed briefly in section 1.1.1). It was 

noted that while there is ample evidence that subjective characteristics of uncertainty, such 

as ambiguity, can play an essential role in understanding why some options are preferred 
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over others and the willingness to accept risk (Ellsberg, 1961; Ulkumen et al., 2014), the 

prevailing understanding of how ‘controllability’ of uncertainty affects risk taking is 

somewhat limited (see Huber, 2007). This thesis revisited some of the prevailing 

conceptualizations of control (Brandstätter and Schwarzenberger, 2001; Goodie, 2003; 

Langer, 1975; Li, 2011; Matheson and Matheson, 2005; e.g. Matheson, 1990; Young et al., 

2011) and identified the unaddressed behavioural, procedural and conceptual issues (section 

1.2).  

From a behavioural perspective, it was argued that the commonly observed finding 

that control, illusionary or perceived, increases willingness to accept risk was potentially 

incomplete, owing to the design of the studies that have been conducted. Specifically, the 

gambles employed in the previous studies have not explored the full range of probabilities 

and payoffs, and were skewed towards cases where typically risk aversion is observed in the 

absence of control. Thus, the effect of control in cases when otherwise risk taking tendencies 

prevail (e.g. gambles with predominantly negative valued payoffs) has not been captured 

prior to this study. In this thesis, it was suggested that for a more comprehensive 

understanding of the effect of control on risk taking, its effect on the fourfold pattern of risk 

attitudes, within the context Cumulative Prospect Theory (Tversky and Kahneman, 1992), 

needs to be investigated. It was also proposed that, from a methodological perspective, a 

study which endows subjects with actual control, rather than leaving it to their perception, 

would constitute a novel test of control on risk taking. Both these research gaps were 

addressed by the study presented in this thesis (Chapter 2), with the intent of enhancing the 

behavioural insights on how control affects decision making and better tying laboratory 

findings to managerial risk taking tendencies. 

From an analytic perspective, too, it emerged that work needs to be done on 

developing the tools of Decision Analysis for modelling and analysing control. The thesis 

discussed that while the notion of control is easily represented in influence diagrams as 

interventions (using an arc from a decision node to state node) (Howard and Matheson, 

2005, 1984), the analysis of interventions has mostly been from the perspective that they 

bring about a desired state with certainty (Matheson, 1990; Pearl, 2000). Although Matheson 

and Matheson (2005) have proposed a procedure for modelling imperfect control, as 

discussed in section 3.3.2, the scope of this procedure is limited by the type of interventions 

it can model. Furthermore, unlike Bayes rule — the probability revision rule used to model 

the effect of information — which is supported by theoretical foundations such as the 

coherence criterion, the existing Decision Analysis procedures for modelling the impact of 

interventions on probabilities are procedural and lack a similar theoretical basis. Thus, the 
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thesis argued that existing methods to model interventions as a probability revision process 

in Decision Analysis are underdeveloped. Additionally, it was suggested that there is also 

scope to explore the relationship between the concept of control in Decision Analysis and a 

belief revision rule, called imaging, in Philosophy. In this thesis, these research gaps were 

addressed and developments were proposed to enhance the capability of Decision Analysis 

to formally deal with the concept of control (Chapter 3). The feasibility of applying the 

proposed procedure in practice was also explored (Chapter 4). The intent of pursuing these 

directions was that it can lead to the development of Decision Analytic methods that better 

resonate with managerial rationale for making strategic risky choices and thus expand the 

applicability of Decision Analysis to corporate risk management. The next subsection 

summarizes the research aims of this thesis and key results. 

5.1. A summary of the areas of research covered in this thesis 

The study of control from behavioural, theoretical and prescriptive perspectives of decision 

making was distributed correspondingly over three papers, which constitute this thesis. In the 

context of behavioural decision making, the primary aim of the related paper (Chapter 2) was 

to conduct a more comprehensive and novel laboratory study to test the effect of probability 

control on risk taking. A secondary aim was to explore any systematic relation between 

exerting control and prior probabilities of ‘success’. In the context of theoretical decision 

making, the primary goal of the related paper (Chapter 3) was twofold — 1) to extend the 

existing methods of modelling interventions in Decision Analysis so that more general 

interventions can be modelled; and 2) to ground the existing and proposed procedures for 

modelling the effect of interventions on probabilities in theoretical foundations, similar to the 

coherence criterion that supports Bayes rule as a procedure for modelling the effect of 

information on probabilities. A secondary aim was to explore potential relationships between 

Decision Analysis methods to model control and imaging. Finally, in the context of 

prescriptive decision making, the goal of the related paper (Chapter 4) was to test the 

feasibility of applying the developed procedure in practice, especially in areas of risk 

management. Each of the aims in the respective areas was addressed as follows: 

5.1.1. Understanding the behavioral effects of control 

A novel within subject randomized controlled experiment was designed to test the 

behavioural effect of control on risk taking. The study differed from previous experimental 

work in three crucial ways, to enable a test of the effect of control on the fourfold pattern of 

risk attitudes, leading to a broader understanding of the effect of control on risk taking. 
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Firstly, controlling probabilities was manipulated as a fixed change in probability mass from 

the worse outcome to the better outcome and therefore was an objective contingency of the 

task and not subject to judgement. Secondly, the tasks were designed so that they cover both 

negative and positive valued payoffs. The majority of previous research has only looked at 

positive valued payoffs. Finally, in this research the entire spectrum of the probability scale 

was explored, and this was possible because controllable probabilities were not associated 

with confidence in general knowledge answers. 

Findings from the experiments suggest control has a moderating effect on risk 

attitudes. Although this finding does not conflict with extant insights (obtained mostly in the 

context of gains-only or mixed gambles for moderate probabilities of gains), they differ from 

their conclusions that control increases risk taking (Brandstätter and Schwarzenberger, 2001; 

Goodie and Young, 2007; Langer, 1975). Nonetheless, it was discussed in section 2.3.3 that 

the findings of the present study can be explained using arguments similar to the ones used 

in previous studies, which are based on optimism and positive affect that control induces (see 

Young et al., 2011) and the known effects of positive affect on risk taking (Isen and Patrick, 

1983; Seo et al., 2010) Alternative cognitive explanations based on risk bearing, which help 

tie the observed effects of control to managerial risk taking, were also offered (Wiseman and 

Gomez-Mejia, 1998).  

The data analysis on understanding how exerting control is valued revealed that 

‘certainty’ plays a crucial rule in ascertaining the perceived value of control. Specifically, 

eliminating the certainty of a loss or guaranteeing some gain is valued more than simply 

modifying probabilities. When exerting control does not introduce or eliminate uncertainty 

faced, perceived value of control is found to not vary with prior probability of success except 

in situations where a loss is likely (greater than 0.5). Where a loss is likely, control is valued 

differentially (directed towards mitigating the chance of the worst outcome or improving the 

chance of the best outcome) depending on the adversity of the situation. While most of these 

findings are in line with the precepts of Cumulative Prospect Theory, they highlight that 

boundary effects may be more salient drivers of probability distortion in the presence of 

control, compared to when control is absent (e.g. Wu and Gonzalez, 1996). 

5.1.2. Modelling control in Decision Analysis 

To address the theoretical aims, existing discussions on modelling ‘imperfect’ control 

(Matheson and Matheson, 2005) were developed further, and a new general probability 

revision procedure for interventions, the generalized generic controller, was developed in 

section 3.3.2. Its close correspondence with belief revision rules in Philosophy that are 
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considered suitable to evaluate counterfactual statements (‘imaging’ (Gardenfors, 1982; 

Lewis, 1976)) was also exposed in section 3.3.3. Additionally, two key properties — 1) 

fixed-point at zero; and 2) Bayes conditionalization preserving — that probability revision 

rules for interventions should satisfy were stated, and the anomalies resulting from the 

violation of these properties were demonstrated in section 3.4.1. The first property ensures 

that a probability revision rule does not assign positive probabilities to states that are known 

to not occur. The second property, which requires that post intervention probabilities satisfy 

Bayes rule, can be regarded as a coherence criterion for probability revision rules for 

interventions and mirror the coherence criterion that supports Bayes rule, the probability 

revision rule for information. 

5.1.3. Application of Decision Analysis to areas of risk assessment and risk 

management 

To test the feasibility of using the proposed probability revision procedure, the generalized 

generic controller was first operationalized as a probability revision matrix. Using this 

operationalization, its algebraic properties as a transformation of a probability simplex were 

exposed. The convenience with which the probability revision matrix can be integrated with 

risk assessment techniques in Operational Risks, such as the Loss Distribution Approach 

(Frachot et al., 2001) was demonstrated using a real world case study. This case study was 

conducted in collaboration with executives at a leading insurance company and was an 

endeavour to apply Decision Science methods to calculate the impact of risk mitigations on 

Operational Risk costs. 

5.2. Main contributions of this research revisited 

This research potentially makes three main contributions to the core literature on theoretical 

and behavioural research on decision making and offers two peripheral insights. 

Additionally, by demonstrating how the proposed developments of Decision Analysis can be 

used in practice to analyse managerial risk mitigations in the real world, the research 

possibly contributes to an area of risk management — Operational Risks — which was 

explored in this thesis. The main contributions of this research are: 

1. A new understanding of the behavioral effects of control on risk taking: By 

studying the effect of control on a wider range of probabilities and payoffs in this 

research, a main contribution of the experiment conducted in this research is that it 

offers a more complete understanding of how control affects risk taking within the 

context of fourfold pattern of risk attitudes predicted by Cumulative Prospect 
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Theory. The findings from the present study, that control has a moderating effect on 

risk taking, were not entirely expected and therefore cast a new perspective on the 

effect of control on risk taking. Using affective and cognitive explanations, it was 

discussed how these findings mirror discussions in the agency literature about how 

managers respond to risk. These findings can have implications for influencing or 

mitigating risk taking by introducing selective control in managerial tasks. From a 

methodological perspective, this study highlights the crucial mediating effect of 

decision frame and probability magnitudes on any general conclusion that can be 

made on the effect of one or more contextual factors on risk taking. The research 

also offers some peripheral insights on the close correspondence between the 

perceived value of exerting control and certainty effect. The enhanced perceived 

value of exerting control when it eliminates certain losses or guarantees some gains 

demonstrates that certainty in and of itself has value. The notion of valuing certainty 

is absent in most formal treatments and analysis of decisions and control (e.g. 

Expected Value of Control concept). This opens a direction for future study related 

to refining the analytic techniques used to compute the value of control to explicitly 

incorporate the impact of any certainty achieved. 

2. A tractable probability revision rule for modelling the effects of interventions 

on probabilities: The proposed probability revision procedure for modelling the 

effect of actions on uncertainty — the generalized generic controller (GGC) — is a 

new addition to the Decision Analysis toolkit which can hopefully enhance the 

applicability of Decision Analysis in practice, especially in areas of risk 

management. As illustrated in section 3.3.3, a probability revision rule can 

significantly reduce the number of inputs required when analyzing interventions on 

uncertainties which depend on other uncertain variables. Furthermore, it enables an 

analyst to obtain judgments about probabilities and mitigations separately from 

different sources and use the proposed calculus to combine these judgments and thus 

compute the post-intervention probabilities. Consequently, if pre-intervention 

probability judgments about uncertain events are revised, then the post-intervention 

probabilities can be updated without requiring new inputs. These are all the desirable 

benefits of Bayes rule that were briefly summarized in section 1.2.2. These benefits, 

however, were only partially available when analyzing interventions using existing 

approaches. By developing the proposed probability revision procedure, this 

research has helped enhance the procedural convenience with which interventions 

are analyzed. A peripheral contribution relates to the interesting link that was 
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established between Decision Analysis and more theoretic areas of decision making 

such as Philosophy, which paves the way to explore potentially useful synergies 

between the two disciplines. 

3. Theoretical foundations for probability revision rules for interventions: One of 

the most compelling reasons for using Bayes rule for modelling the effect of actions 

on uncertainties is that it is grounded in consistency principles which are exposed 

using Dutch book arguments. By establishing two theoretical properties that 

probability revision rules for interventions should satisfy to avoid generating 

inconsistent beliefs, this research is a step towards giving the analysis of 

interventions the same normative anchorage as Bayes rule. Beyond being a subject 

of theoretical interest, these properties help constrain the possible probability 

revision rules for interventions, thus eliminating some arbitrariness from the 

proposed and other potential recommendations for probability revision rules for 

interventions. 

4. Demonstrating an innovative and potentially useful integration of Decision 

Analysis methods with risk management: The third paper, which was an 

application of Decision Analysis to areas of Operational Risk management, is a 

useful contribution to the methods for modelling Operational Risks. Existing 

methods, such as the Loss Distribution Approach, are relatively inflexible to the 

introduction of or changes in risk mitigation policies, since: 1) they rely on historical 

data; and 2) typically the effect of mitigations is reflected in the input parameters 

and a reassessment of the probability distributions can be tedious. The benefits and 

flexibility of using the proposed probability revision rule for modelling 

interventions, operationalized as a matrix, was unveiled using a real world case 

study, and it was shown that the procedure can be easily integrated with existing 

Operational Risk assessment techniques. This enables multiple mitigations to be 

analyzed quantitatively without much effort. Furthermore, the power of influence 

diagrams as a suitable front end tool to model the various relationships between the 

uncertain states and process them probabilistically was demonstrated, thus 

emphasizing the usefulness of Decision Analysis methods in practice. 

In summary, the developments of this research offer novel insights on how control affects 

risk taking and contributes to the Decision Analysis toolkit to enable the role of control in 

decision making to be incorporated explicitly. It was exposed how these developments can 

help bridge the gap between managerial motivations for risk taking and behaviour observed 
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in laboratory settings as well as be useful for modelling real world mitigations, more 

conveniently and realistically. It is the hope that the proposed techniques offer a way to 

structure and analyse decisions so that they correspond more closely to managerial thinking. 

5.3. Research limitations  

The present research attempts to make some new contributions to the study of decision 

making under uncertainty from a number of perspectives, with the intent of better aligning its 

methods with how managers think about decisions and contemplate risk taking. However, 

given the breadth of topics covered across a range of disciplines in decision making, the 

depth of discussion for each topic was limited. Some of the main limitations of this research 

are: 

1. Limitations of the empirical insights on how control affects risk taking: One of 

the major limitations of the study presented in this thesis relates to the restricted 

selection of payoff and probability magnitudes employed as well as how the gambles 

were presented in the two conditions. These issues, however, are inherent to most 

laboratory studies on attitudes to risk and the need to impose discretionary 

constraints when designing the stimuli is almost indispensable. Another limitation is 

that, as they stand, the explanations offered for the observed findings of this study 

also lack direct empirical support, even though they draw on previous empirical 

work. A crude attempt was made to extract the self-reported cognitive explanations 

of subjects regarding the basis for their decisions in this study, but it was found to be 

only remotely informative.  

2. Limitations of how control was manipulated in the empirical study: The 

manipulation of control in this study — as a fixed probability change — is, arguably, 

somewhat artificial and divorced from real world conceptions of control. In the real 

world, decision makers experience varied levels of control depending on their 

circumstances and perception; and the relationship between risk taking and control is 

probably also linked to the level of control individuals feel they have. Any 

systematic relationship between levels of control experienced and the moderating 

effect of control discovered in this study ought to be examined for obtaining a more 

complete understanding of the effect of control on risk taking.  

3. Input elicitation for a probability revision rule for interventions: A potential 

criticism and practical limitation of the probability revision procedure presented in 

section 3.3.2 is that eliciting the inputs for the generalized generic controller (GGC) 

is not very different from eliciting probabilities and therefore this procedure inherits 
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all the cognitive biases that probability judgments suffer from (e.g. von Winterfeldt 

and Edwards, 1986a). Although a procedure analogous to eliciting probabilities was 

presented, this procedure is still tedious and simpler methods will need to be devised 

to make the use of the generalized generic controller more appealing. Another 

limitation of the research is that it only exposed the procedural similarities between 

the generalized generic controller and imaging, and not much was said about the 

cognitive or information processing advantages of this equivalence. Imaging has 

been proposed as a way to assign probabilities to counterfactual statements and there 

have been passing claims that this approach fitly applies to the analysis of the effect 

of actions on uncertainties (Joyce, 1999; Pearl, 2000). A deeper discussion of how 

this underpinning feature of imaging can be utilized to analyze interventions in the 

context of Decision Analysis is needed. 

4. Strengthening the theoretical foundations for a probability revision rule for 

interventions: While this research attempted to ground probability revision rules for 

interventions in consistency principles by stating a couple of basic properties they 

should satisfy, there is scope to develop these theoretical foundations further. Note 

that although it was shown that the GGC satisfies the stated basic properties of 

probability revision functions for interventions, the converse may not hold. This 

leaves open the possibility of other probability revision rules for modelling 

interventions that could also be suitable.  

5. The probability revision matrix and its applicability: In this research, the 

discussion of the GGC and its operationalization in section 4.3 focused only on 

discrete probability distributions. This limits the use of the GGC as it is not 

immediately clear how it can be applied to model influences on probability 

distributions described over continuous random variables. Developing an extension 

of the GGC which can be applied to continuous probability distributions is a natural 

direction for future research. The practical application of the probability revision 

matrix that was explored assumed hypothetical inputs. While an attempt was made 

to elicit the inputs using a questionnaire, the reliability of the procedure remains 

disputable. One of the challenges experienced was suitable framing of the elicitation 

question to properly fit with the definition of the inputs of the probability revision 

matrix and also ensure that it is not confusing. While performing sensitivity analysis 

(Figure 4-8), can address some of the problems related to the ambiguity regarding 

inputs, a rigorous procedure for de-biasing the inputs is desirable and ought to be 

developed. 
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5.4. Directions for further research 

This research is a small step in the direction of developing the formal study of control in 

Decision Sciences. Promising avenues for further research emerge from questions that 

remain unaddressed and the discovery of new questions. 

1. Further testing of the empirical observations and explanations of the effect of 

control on risk taking: The present study is one of the first attempts at explaining 

the effect of control in the context where risk seeking behavior prevails when 

uncertainties cannot be controlled (e.g. losses only payoffs and probability levels). It 

paves the way for a number of interesting empirical studies. First, variants of this 

study need to be conducted to check for the robustness of the moderating effect of 

control on risk attitudes that was revealed in this study. One variation that merits 

research is preserving the structure of gambles (i.e. two gambles each with two 

outcomes) in the two conditions (with and without control), as the number of 

outcomes in a ‘gamble’ can affect risk taking (Brooks et al., 2013; Payne, 2005). 

Future work on variations of the design presented here should also endeavor to go 

beyond simple gambles and use narratives that describe corporate risks, when testing 

for the effect of control on decision making. Another important area for further 

research, which has emerged from this study, is a direct test of the explanations 

offered for the observed effects of control on risk taking. Future studies should seek 

to capture the affective moods and cognitive explanations in a more sophisticated 

manner to enable a clearer understanding of why control affects risk taking.  

2. Conducting empirical research on perceived levels of exerting control: Given 

that, in the real world, the extent to which uncertainty can be controlled is often a 

matter of perception, it would be interesting to explore how levels of control 

experienced affect risk taking and the perceived value of exerting control. There is 

also scope to take the study on perceived value of control further to investigate 

preferences for exerting control using alternative dependent variables, such as 

willingness to pay for exerting control. Finally it will be interesting to explore how 

perceived control affects not only risk taking but if it is a determining factor of 

choices people make or why some options are preferred over others. For example, 

are people willing to accept riskier options with some control over uncertainty 

instead of safe options with no control over uncertainty? Taking this line of inquiry 

further, it would be useful to develop a quantitative way to directly measure the risk 

offsetting effect of a given level of control (see related concept in Huber, 2007). 
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3. Tying the input elicitation for a probability revision rule for interventions to 

human reasoning: One limitation of the present research which can impede its 

usability is that eliciting the inputs for the GGC is not straightforward. Therefore, 

more creative methods which align the elicitation with how individuals naturally 

think about interventions need to be devised. One direction in which this can be 

explored is by building on the relationship between the GGC and imaging exposed 

in this research, to find a way to relate the input elicitation to counterfactual 

reasoning. Establishing this relationship has prescriptive value as, in addition to 

facilitating the elicitation, it can provide analytic support to corporate decisions, such 

as those pertaining to identifying and developing new opportunities, where 

counterfactual reasoning plays a salient role (e.g. Gaglio, 2004). 

4. Strengthening the theoretical foundations for a probability revision rule for 

interventions: As mentioned, the theoretical foundations proposed in this research, 

are still short of providing a compelling case for using the GGC or, equivalently, 

imaging as the probability revision rule for interventions. One area for further 

research is to find more properties that probability revision functions for 

interventions should satisfy so that the GGC is both a necessary and sufficient 

condition for the established properties to be satisfied. 

5. Leveraging the probability revision matrix: It is worth observing that the 

operationalization of the GGC as a probability revision matrix has a close 

correspondence with the techniques of Markov Decision Processes (MDP) (Howard, 

1960). Exploring the similarities or differences between the methods of MDP 

constitutes an interesting area for future research and can also inform the extension 

of the GGC to continuous probability distributions. Another interesting and 

potentially useful area of research builds upon the algebraic description of the GGC. 

It was mentioned earlier that the formal analysis of control such as the Expected 

Value of Control concept is typically based on the impact exerting control has on the 

‘expected utility’ and is not sensitive to the value attributed to mitigating uncertainty 

itself. The simplex representation can be useful for developing metrics that assess 

the value of mitigating uncertainty (in the desired direction). Some premature 

suggestions on this front entail developing metrics that are based on the change in 

volume of the simplex or the distance of the centroid from the most favorable vertex. 

The development of metrics that capture pure uncertainty mitigation can be helpful 

when it is difficult to assign numeric scores to the consequences (e.g. impact of 

climate change). 
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6. Normative/Philosophical issues related to non-canonical influence diagrams: 

Finally, it is worth exploring an issue which was mentioned at the outset of the 

research but was left unaddressed: the issue pertaining to the normative 

underpinnings of an influence diagram which is not in the canonical form. While 

normative theories of decision making which allow for probabilities of uncertain 

states to depend on an action have been proposed (Jeffrey, 1965; Armendt, 1986; 

Luce and Krantz, 1971; Joyce, 1999), the interpretation of the probabilities is subject 

to debate. For a given decision problem, different interpretations can result in 

different expected utility calculations (e.g. Armendt, 1986; Gibbard and Harper, 

1978; Maher, 1990). Understanding which of these decision theories mesh with 

expected utility calculations that support influence diagrams constitutes an 

interesting direction for future research. Developments in this direction can help 

strengthen the normative status of influence diagrams, thus making its use in practice 

more compelling. 

On a closing note, it is worth drawing attention to a subject area that the field of Decision 

Analysis has steered clear of, and was therefore also avoided in this thesis: the notion of 

causality (Shachter, 2012). Causality has been an active area of discussion among some 

(causal) decision theorists who advocate that a recommendation procedure for actions should 

be based on the good that an agent can cause and not on the evidential or ‘symptomatic’ 

properties (e.g. Joyce, 1999; Maher, 1990). In other words, the way an agent reasons about 

the potential effects of his or her actions on uncertainty should be different from how he or 

she contemplates the effect of information and this distinction is crucially important when 

the outcomes of an uncertain variable are correlated with the an action. The notion of causal 

influence is embedded in influence diagrams but has not been explored sufficiently 

(Shachter, 2012). Exploring the unaddressed subtleties between Decision Analysis methods 

and causal thinking (Shachter, 2012), and better formalizing this association to reflect how 

managers think about their decisions and capabilities as causing outcomes, merits future 

research. This can help extend the scope of Decision Analysis tools and make them pertinent 

in situations where corporate risk management goes beyond gearing choices towards 

reducing risks, to converting them into an opportunity or “making things happen” (March 

and Shapira, 1987). 
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ANNEXURE: Brief Background of some areas of 

Decision Sciences 

In this section some preliminary concepts and methods of Decision Sciences that were 

assumed in the chapters (but not covered in the chapters) are briefly reviewed. This is mainly 

for the benefit of a reader who is not versed with the basic concepts of Expected Utility 

Theory, Cumulative Prospect Theory and principles of Decision Analysis.  

7.1 The basic theoretical framework for evaluating decisions 

The formal analysis of decisions under uncertainty is based on a three part decomposition of 

decision problems — actions, uncertain events and consequences. These components are 

related as follows: an agent chooses amongst uncertain prospects (actions) which lead to 

some outcomes (or consequences) that depend on the (uncertain) states of the world. 

An agent’s preference over the possible consequences and beliefs about the 

uncertainty that underlies these consequences is central to the analysis of decisions. A 

common feature of various theories that have been put forth to analyze decisions is suitable 

quantification of both the preferences and beliefs about uncertainty. Tracing its roots to the 

eighteenth century, probability remains a widely accepted metric for measuring uncertainty. 

With regards to the consequences, the moral worth of the consequences —‘utilities’— are 

scored between 0 and 1 (Bernoulli, 1738) and can be inferred from preferences among 

simple binary bets (introduced by von Neumann and Morgenstern, 1944). The 

recommendation of a suitable action is then evaluated based on an ‘Expected Utility’ (EU) 

calculation which combines utilities of the consequences (rewards or losses) with the 

corresponding probabilities of obtaining them. If 𝑝1, 𝑝2, … , 𝑝𝑛 denote the probabilities 

attached to the consequences 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑖 < 𝑥𝑖+1 with utilities 𝑈(𝑥𝑖), the expected 

utility of a decision 𝑋 = {𝑥1, 𝑝1; 𝑥2, 𝑝2; … ; 𝑥𝑛𝑝𝑛} is given by: 

 
𝐸𝑈(𝑋) =∑ 𝑝𝑖𝑈(𝑥𝑖)

𝑛

𝑖=1
 

(A-1) 

This expectation procedure is underpinned by certain assumptions (or axioms) about the 

nature of decision makers’ preferences over consequences and beliefs about the uncertainty.
1
 

The justification for some of the axioms as reasonable assumptions about a ‘rational’ 

decision maker corresponds to a form of consistency and is demonstrated by constructing 

                                                      

 

1 As well as some technical axioms (e.g. continuity, completeness) which are required to enable the required 

quantification. 
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money pump arguments and Dutch books: if a decision maker violates these underlying 

axioms then he/she can be forced to accept a series of fair bets which will guarantee a net 

loss whatever happens (e.g. Cubitt and Sugden, 2001; Gilboa et al., 2012; Hájek, 2008). 

Some of the commonly accepted principles of rationality are transitivity, the sure thing (or 

independence) principle and that subjective probabilities should obey basic properties of 

probability calculus (see von Winterfeldt and Edwards, 1986b, pp. 321–25 for a complete 

list). Any person who accepts these principles of rationality commits to evaluating decisions 

based on EU calculations (equation A-1), which reflect the (unknown) ordinal preference 

ranking of the agent over the decisions. A representation theorem is a formal claim of this 

equivalence between an agent’s hidden preference for decisions and the numerical values 

obtained using equation A-1. 

The extent to which quantitative assessments of uncertainty and consequences alone 

can serve the prediction of the wide range of real world decisions has remained a point of 

concern. There is ample evidence from the field of Behavioural Decision Making that 

decisions people make and risks they take depend also on qualitative contextual factors such 

as the frame of the decision problem (e.g. Kahneman and Tversky, 1979; Tversky and 

Kahneman, 1981), type of uncertainty (Ellsberg, 1961; Abdellaoui et al., 2011), emotions 

they experience (e.g. Isen and Patrick, 1983; Loewenstein et al., 2001; Rottenstreich and 

Hsee, 2001; Seo et al., 2010). In what follows next, the adequacy of EU calculations in terms 

of modelling and capturing the variety of real world decisions is discussed.  

7.2 Modelling the psychology of decision making 

Over the years, the Expected Utility (EU) framework has been adapted and applied in 

various ways. The shape of an agent’s utility function reflects not only an agent’s 

preferences for consequences but can also be used to capture his or her attitudes to risk 

(Arrow, 1971; Pratt, 1964; Arrow, 1951). Attitudes to risk can be inferred from choices 

people make between a bet containing uncertain payoffs and a sure payoff which is equal to 

the expected value of the bet (Wakker, 2010, p. 52). Individuals who opt for the sure payoff 

are regarded as risk averters and the bet rejection can be explained on the basis that the 

‘subjective’ value of the uncertain bet, adjusted for uncertainty, is lower than its ‘objective’ 

expected value. Conversely, those who opt for the uncertain bet are regarded as risk seekers 

(subjective value is greater than objective value). Those who are indifferent conform to the 

normative assumption of risk neutrality. Attitude to risk is reflected in the curvature of the 

utility function and measured as the ratio of first and second derivative of the utility function 

(Pratt, 1964). A concave utility function captures the preference for the sure amount to risk 
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aversion and a convex utility function implies risk seeking behaviour. This is illustrated in 

Figure A-1 for a hypothetical choice between a bet which yields £60 with probability 0.5 and 

£0 otherwise (denoted by [£60, 0.5; £0, 0.5]) and a sure amount of £30. The subjective value 

of the bet is given by 𝑈−1(0.5 ∗ 𝑈(60)). 

Figure A-1 Illustration of functions capturing risk aversion and risk seeking behaviour for a 

hypothetical choice between a bet [£60, 0.5; £0, 0.5] and sure amount of £30. 

 

The degree of risk aversion, modelled as a parameter of the utility function, can be estimated 

by eliciting the subjective value of the bet which is the sure payoff that makes the individual 

indifferent between the bet and sure payoff (e.g. Howard, 1988).
2
 Given a bet [£𝑝, 𝑝;  £0, 1 −

𝑝], and elicited sure payoff (CE) the parameter is obtained by solving the equation 𝐶𝐸 =

 𝑈−1(𝑝 ∗ 𝑈(𝑥)). 

Behavioural scientists have investigated the extent to which individuals conform to the 

underpinning assumptions of EU theory and how well it predicts actual choices people make 

and their preference for taking or averting risk. Well known examples of violations of the 

axioms are Allais Paradox or common consequence effect, the common-ratio effect (see 

Machina, 1987) and Ellsberg Paradox. Rather than attribute violations of the aforementioned 

principles of rationality to irrational behaviour, the descriptive theorists endeavour to explain 

the inconsistencies and construct formal theories or models that rationalize and predict the 

observed decisions. These theories either relax some of the controversial assumptions of EU 

theory or introduce a formal correction in the recommendation procedure to reflect the 

                                                      

 

2 Also known as an individual’s ‘certainty equivalence’ for the bet. 
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cognitive processing of choices. In response to the empirical violations of the axioms, 

refinements of EU theory, such as non-expected utility (NEU) theories (e.g. Edwards, 1955; 

Kahneman and Tversky, 1979; Quiggin, 1982; Tversky and Kahneman, 1992), regret theory 

(Bell, 1982; Fishburn, 1982; Loomes and Sugden, 1986), have been proposed. One of the 

widely accepted theory of choice under risk and uncertainty which adequately captures the 

observed choices of individuals, and is used in this research, is Cumulative Prospect Theory 

(CPT) (Tversky and Kahneman, 1992). Specifically, it predicts a fourfold pattern of attitudes 

to risk — risk aversion for moderate-to-large probabilities of gains and small probabilities of 

losses and, risk seeking for moderate-to-large probabilities of gains and small probabilities of 

losses (Tversky and Kahneman, 1992; Tversky and Fox, 1995). From a procedural 

perspective, it entails a non-linear transformation of probabilities (akin to the transformations 

of consequences captured by the utility function). This transformation captures individuals 

tendencies to overweigh small probabilities of gains and under-weigh large probabilities of 

gain. This is illustrated in Figure A-2 using some hypothetical weighting functions (𝑤(𝑝)). 

Figure A-2: Illustration of probability weighting (𝒘(𝒑)) typically exhibited by individuals.  

 

It is worth noting that risk acceptance can also be captured by attitudes to uncertainty, i.e. 

optimism or pessimism (Gonzalez and Wu, 1999; Wakker, 2010, p. 147). To see this, 

consider the bet [£60, 0.5; £0, 0.5]). An optimistic individual who overweighs the probability 

of £60 (𝑤(0.5) > 0.5) will evaluate the subjective value of the bet to be 𝑤(0.5) ∗ 60 and 

hence find the bet more attractive than a sure amount of £30. Conversely, a pessimistic 

individual who underweighs the probability of £60 (𝑤(0.5) < 0.5) will find the bet less 

attractive than a sure amount of £30. Other aspects of this theory and more details of the 

functional forms is offered in Appendix 2-1. A comprehensive discussion of Cumulative 

Prospect Theory can be found in (Wakker, 2010). 
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Researchers have attempted to obtain a better understanding of the underlying 

motivations of the psychophysics of the Prospect Theory functions. In particular, the 

robustness of the ‘risk biases’ predicted by Cumulative Prospect Theory (Kahneman and 

Tversky, 1979) to the effect of objective contingencies of a gamble (losses/gains frame and 

magnitude of gain/loss probability), hedonic, emotional, cognitive and other situational 

factors has been explored extensively. There is evidence that affective components underlie 

and mediate the Prospect Theory phenomenon (see Trepel et al., 2005 for a review): 

probability distortion at the boundary (impossibility to possibility, possibility to certainty) is 

heightened for affect laden outcomes (Camerer, 1992; Rottenstreich and Hsee, 2001), anger 

induces risk taking whereas fear reduces risk taking (Lerner and Keltner, 2001) and risk 

taking or aversive biases are reduced if the decision maker experiences pleasant feelings 

(Seo et al., 2010). Alternative explanations are based on cognitive factors (e.g. Sitkin and 

Pablo, 1992) and regulatory focus theory (e.g. Higgins, 1996b, 1997, 1998). These theories 

are briefly discussed in section 2.3.3. 

7.3 Decision support tools for modelling decisions in practice 

Broadly, the field of Decision Analysis concerns itself with applying the theoretical precepts 

of Decision Sciences to aid decision making in the real word (Howard, 1988). It provides a 

formal language for encoding various aspects of a vaguely defined decision problem which 

helps better understand, analyse and recommend a solution (e.g. Tsoukiàs, 2008). Many of 

its procedures involve developing models and techniques, such as graphical representation of 

decision problem, preference and probability elicitation techniques, robustness analysis 

which are sensitive to the decision makers’ natural thinking. These procedures not only serve 

as a conduit for translating the decision makers’ beliefs, preferences, reasoning and mental 

construction to quantitative inputs or relationships in a decision model, but are endowed with 

the mathematical structure required to perform the corresponding analysis. Some of the 

widely used tools to represent and model decision problems are decision trees, Bayes nets 

and influence diagrams. The three part decomposition of decision problems into actions 

states and outcomes constitute the building blocks for decision trees and influence diagrams 

and the EU approach for analysing decisions is embedded in the analysis that support these 

frameworks for representing decisions. 

The modelling tool used and discussed in this research is the influence diagram 

(Howard and Matheson, 1984, 2005). An influence diagram is a graphical representation of a 

decision problem which describes the relationship between the decisions, uncertainties and 

consequences. These decision components are represented as nodes in a graph and the 
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relationship is described by directed arcs. Some illustrations of simple influence diagrams 

and the relationships they represent are shown in Figure A-3. Figure A-3a shows the 

prototypical influence diagram for decision problems where payoffs (𝑉) depend on actions 

(𝐴) and uncertain states (𝑆). Figure A-3b describes decision problems where probabilities 

attached to uncertain states depend on actions and payoffs depend on the uncertain states; 

and Figure A-3c illustrates decision problems where both the payoffs and probabilities 

depend on actions and the payoffs also depend on the uncertain states. 

Figure A-3 Influence diagrams for different decision problems. 

 

Figure A-3a                   Figure A-3b                   Figure A-3c 

A thorough technical definition of influence diagrams is presented in sections 3.2 and S 3-3. 

Influence diagrams offer a convenient and unambiguous way to describe the various 

relationships between the components of a decision problem and have been found to be 

widely useful in practice (Howard, 1988; Buede, 2005). In the influence diagram, the notion 

of control which is the central topic of this thesis is represented by the arc from a decision 

node to a state node Figure A-3a&b. This arc represents the probabilistic dependence of 

uncertainties on actions; and the corresponding decisions can be regarded as interventions on 

uncertainty when one of the decision outcomes is a do nothing option.  
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