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Abstract

It is a common approach in statistics to assume that the parameters of a stochas-

tic model change. The simplest model involves parameters than can be exactly or

approximately piecewise constant. In such a model, the aim is the posteriori de-

tection of the number and location in time of the changes in the parameters. This

thesis develops segmentation methods for non-stationary time series and regression

models using randomised methods or methods that involve L1 penalties which force

the coefficients in a regression model to be exactly zero. Randomised techniques are

not commonly found in nonparametric statistics, whereas L1 methods draw heav-

ily from the variable selection literature. Considering these two categories together,

apart from other contributions, enables a comparison between them by pointing out

strengths and weaknesses. This is achieved by organising the thesis into three main

parts.

First, we propose a new technique for detecting the number and locations of the

change-points in the second-order structure of a time series. The core of the seg-

mentation procedure is the Wild Binary Segmentation method (WBS) of Fryzlewicz

(2014), a technique which involves a certain randomised mechanism. The advan-

tage of WBS over the standard Binary Segmentation lies in its localisation feature,

thanks to which it works in cases where the spacings between change-points are short.

Our main change-point detection statistic is the wavelet periodogram which allows

a rigorous estimation of the local autocovariance of a piecewise-stationary process.

We provide a proof of consistency and examine the performance of the method on

simulated and real data sets.
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Second, we study the fused lasso estimator which, in its simplest form, deals

with the estimation of a piecewise constant function contaminated with Gaussian

noise (Friedman et al. (2007)). We show a fast way of implementing the solution

path algorithm of Tibshirani and Taylor (2011) and we make a connection between

their algorithm and the taut-string method of Davies and Kovac (2001). In addition,

a theoretical result and a simulation study indicate that the fused lasso estimator is

suboptimal in detecting the location of a change-point.

Finally, we propose a method to estimate regression models in which the coeffi-

cients vary with respect to some covariate such as time. In particular, we present a

path algorithm based on Tibshirani and Taylor (2011) and the fused lasso method of

Tibshirani et al. (2005). Thanks to the adaptability of the fused lasso penalty, our

proposed method goes beyond the estimation of piecewise constant models to models

where the underlying coefficient function can be piecewise linear, quadratic or cubic.

Our simulation studies show that in most cases the method outperforms smoothing

splines, a common approach in estimating this class of models.
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Chapter 1

Introduction

In many practical applications it is often more realistic to assume that the parame-

ters of a stochastic model do not remain constant. For instance, the market volatility

observed in many financial time series is unlikely to remain constant through time. A

model that considers the varying parameter will probably result in a better forecast-

ing performance and, therefore it is important to estimate it accurately. This issue

has attracted considerable attention within the statistical and econometric literature

mainly due to the wide range of applicability of these models. On top of that the

technological advancement has generated a tremendous amount of data (now com-

monly referred to as big data). All these leave much space for the development of

new estimation methods which need to be faster and more accurate.

This thesis deals with the problem of estimating a model that possibly has a

varying structure. The main estimation tools are based on randomised algorithms

or methods with L1 penalties. We consider the segmentation of non-stationary time

series as well as more general regression models where the coefficients are allowed

to vary with respect to some variable. In Chapter 2, we review the literature in
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Chapter 1 Introduction

the relevant areas including non-stationary time series, variable selection methods

and non-parametric regression. The rest of the thesis consists of three parts and is

organised as follows.

Chapter 3: Multiple change-point detection for non-stationary time

series using Wild Binary Segmentation

In this chapter, which has been submitted to a journal and is currently under

consideration for publication, we propose a new technique for consistent estimation

of the number and locations of the change-points in the second-order structure of a

time series. The core of the segmentation procedure is the Wild Binary Segmentation

method (WBS) proposed by Fryzlewicz (2014), a technique which involves a certain

randomised mechanism. The advantage of WBS over the standard Binary Segmen-

tation lies in its localisation feature, thanks to which it works in cases where the

spacings between change-points are short. In addition, we do not restrict the total

number of change-points a time series can have. We also ameliorate the performance

of our method by combining the CUSUM statistics obtained at different scales of

the wavelet periodogram, our main change-point detection statistic, which allows a

rigorous estimation of the local autocovariance of a piecewise-stationary process. We

provide an extensive simulation study to examine the performance of our method

for different types of scenarios. Finally, we examine the practical performance of

our method by applying it to the US Gross National Product (GNP) data with the

purpose to detect peaks and troughs in the growth of the US economy; and the infant

electrocardiogram data (ECG) with the purpose to identify the sleep states.

Chapter 4: A fast implementation and a criticism of the fused lasso

estimator

18



Chapter 1 Introduction

In this chapter, we build upon the solution path algorithm of Tibshirani and

Taylor (2011), a method developed to solve lasso-type problems. We are particu-

larly interested in the fused lasso estimator which, in its simplest form, deals with

the estimation of a piecewise constant function contaminated with Gaussian noise

(Friedman et al. (2007)). We show a faster way of implementing this method by

exploiting the special structure of the matrix multiplications embedded in this algo-

rithm. In addition, we make a connection between the solution path algorithm of

Tibshirani and Taylor (2011) and the taut-string method of Davies and Kovac (2001)

which also solves problems with total variation penalties. Further, we show that their

algorithm has a “top-down” approach resembling other methods such as the Binary

Segmentation method, which was also shown in Cho and Fryzlewicz (2011) for the

taut-string method. As such we are able to compare the two methods both theoret-

ically and practically through an extensive simulation study. In addition, Brodsky

and Darkhovsky (1993) and Cho and Fryzlewicz (2011) argue that estimators with

total variation penalties are suboptimal in detecting the number and locations of the

change-points. We prove an exact rate of convergence for an estimated change-point

using the fused lasso method and provide numerical evidence to support this claim.

Chapter 5: Adaptive Estimation of Time-Varying Models

Regression models in which the coefficients vary with respect to some covariate,

such as time, arise naturally in many practical studies. This is due to the fact that

the assumption of constant coefficients can possibly reduce the forecasting accuracy

of a model if the coefficients exhibit smooth transitions, present in many aspects

of science. This chapter proposes a path algorithm based on Tibshirani and Taylor

(2011) and the fused lasso method of Tibshirani et al. (2005). The latter is an

19



Chapter 1 Introduction

extension of the lasso, a variable selection tool widely used in the context of high

dimensional linear regression problems, i.e. cases where the number of the variables

is larger than the sample size. Thanks to the adaptability of the fused lasso penalty,

our proposed method goes beyond the estimation of piecewise constant models (the

main contribution of Chapters 3 and 4) to models where the underlying coefficient

function can be piecewise linear, quadratic or cubic. Our method draws from a new

adaptive technique in nonparametric regression of Tibshirani (2014). The examples

considered in the simulation study show that in most cases our method outperforms

smoothing splines, a common approach in estimating this class of models.

It is noteworthy that Chapter 4, among other side contributions, serves as a

comparison study between L1 methods and the binary segmentation search (and to

an extent the randomised binary segmentation search). It justifies the use of the

latter in non-parametric regression, but it points out the flexibility, adaptability and

the extensive coverage in the literature of methods with L1 penalties. It is mainly

for these reasons we choose to develop a lasso-type algorithm in Chapter 5 without,

of course, arguing that other methods could not potentially perform better.

Finally, Chapter 6 summarises the contributions of this thesis and proposes di-

rections for future research.
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Chapter 2

Literature Review

2.1 Non-stationary time series

2.1.1 Stationary and locally stationary models

A time series is a collection of random variables measured at successive points in time.

They are found in different aspects of science, technology, economics, medicine etc

and the demand for effective tools for analysing and modelling them is strong. The

literature on time series is vast and we refer the reader to some standard monographs,

i.e. Priestley (1981), Brockwell and Davis (2002) or Hamilton (1994). The main

challenge of a typical time series is that the observations are not independent, but

rather they posses a degree of a stochastic dependence.

The statistical literature is mainly focused around stationary time series. We say

that Xt is a stationary time series when its statistical properties remain unchanged

through time. We say that Xt is a strictly stationary time series where the joint

distribution of (Xt1 , ..., Xtn) is the same as (Xt1+τ , ..., Xtn+τ ) for all n, t1, ..., tn and

τ . Strict stationarity is often restrictive for practical purposes and the following form
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is used. We say that a univariate, zero-mean time series Xt is weakly or second-order

stationary if the autocovariance function cX(τ) = cov(Xt, Xt+τ ) is a function of τ

only. Finally, another way of examining a time series is the spectral density function

(or spectrum), fX(ω), which determines how much energy is contained in a time series

at different frequencies ω ∈ (−π, π).

A zero-mean stationary process admits the following Crámer representation

Xt =

∫ π

−π
A(ω) exp(iωt)dξ(ω), t ∈ Z (2.1)

where A(ω) is the amplitude of Xt and dξ(ω) is an orthonormal increment process.

Simply, the Crámer representation says that Xt is the (weighted) sum of Fourier ex-

ponentials oscillating at different frequencies. Under mild conditions, the covariance

structure of Xt can be expressed as

cX(τ) =

∫ π

−π
fX(ω) exp(iωτ)dω

where fX(ω) := |A(ω)|2.

In practice, it is rare to find time series that are stationary (even in the weakest

form) and it can have important implications when fitting models developed for

stationary time series to real data (Mercurio and Spokoiny (2004)). It is therefore

necessary to focus on non-stationary modelling and avoid all the restrictions imposed

by assuming stationarity. One way of doing this is to introduce time dependence

into the Crámer representation by replacing the constant A(ω) with a time-varying

amplitude function At(ω). Dahlhaus (1997) proposes a class of locally stationary

processes where X is modelled as a triangular stochastic array {Xt,T}Tt=1 for T =

1, 2, ... such that (for simplicity assume that there is no trend present in the process)

Xt =

∫ π

−π
A0
t,T (ω) exp(iωt)dξ(ω)
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and there exists a function A : [0, 1] × R → C, which is 2π-periodic in ω with

A(u,−ω) = A(u, ω) such that

sup
t,ω

∣∣∣∣A0
t,T (ω)− A(

t

T
, ω)

∣∣∣∣ ≤ KT−1 ∀ T

for some K > 0.

An alternative to the Fourier based approach for modeling time series whose

spectral characteristics change over time is the class of locally stationary wavelet

processes (LSW) introduced by Nason et al. (2000) where the difference lies in the

use of non-decimated wavelets instead of Fourier exponentials. The use of wavelets

means that the LSW model is localised both in time and in frequency and it has been

embraced or adapted to model many types of non-stationary time series, e.g. financial

(Fryzlewicz (2005)), image texture (Eckley et al. (2010)), experimental neuroscience

(Sanderson et al. (2010)). We present the LSW model in Section 2.1.2, after a brief

introduction to wavelets in Section 2.1.2.1.

2.1.2 Wavelets and the locally stationary wavelet model

2.1.2.1 Introduction to wavelets

Wavelets are localised, compactly supported oscillating functions which integrate to

zero. This is in contrast to sine and cosine functions in Fourier analysis, which also

oscillate, but the amplitude of their oscillation always remain unchanged. This is

why when plotted resemble “little waves”. Wavelets have received significant at-

tention from the mathematical (Daubechies (1992), Mallat (1999)) and applied sci-

ences community such as signal processing (Rioul and Vetterli (1991), Shapiro (1993)

among others) or image and audio compression (Salomon (2004)). For wavelets in
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statistics we refer the reader to Nason (2008), Vidakovic (2009), Percival and Walden

(2000) for applications in time series analysis, Antoniadis (2007) for a review article

and Abramovich et al. (2000) for an introductory paper. In Section 2.4.5 we discuss

the application of wavelets in non-parametric regression which deals with extracting

the signal from a noisy series.

We now formally describe wavelets. A function ψ(x) ∈ L2(R) (i.e. a function

that belongs to the space of all square-integrable functions) is defined to be a wavelet

function (or mother wavelet) if it satisfies the admissibility condition

Cψ =

∫ ∞

−∞

Ψ(ω)2

|ω| dω <∞ (2.2)

where Ψ(ω) is the Fourier transform of ψ(x). Condition (2.2) implies that

∫
ψ(x)dx = Ψ(0) = 0. (2.3)

A family of functions ψa,b, a ∈ R\{0}, b ∈ R are generated from the mother wavelet

as translated (shifts) and dilated (stretches) versions of ψ, i.e.

ψa,b =
1√
a
ψ

(
x− b
a

)
.

Condition (2.2) means that ψ(x) has an exponential decay over L2(R) and, hence,

it should be localised in frequency. Condition (2.3) ensures that ψ(x) has an oscilla-

tory behaviour and it is also localised in time.

Continuous and discrete wavelet transform

The continuous wavelet transform of any function f ∈ L2(R) is defined as a

function of two variables

CWTf(a, b) = 〈f, ψa,b〉 =
∫
f(x)ψa,b(x)dx.
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Under Condition (2.2), the original function f is recovered through the following

inverse transform (“resolution of identity”)

f(x) = C−1
ψ

∫
R2

CWTf (a, b)f(x)ψa,b(x)a
−2dadb.

CWTf(a, b) is a function of two real variables and, hence, it is a redundant

transform. To reduce this redundancy the values of a and b can be discretised so that

the invertibility of the transform is maintained. To preserve all the information such

a discretisation cannot be coarser than the critical sampling. The critical sampling

will produce a basis for L2(R) for a = 2−j and b = r2−j and under mild conditions

on ψ, the basis

ψj,r(x) = 2j/2ψ
(
2jx− r

)
j, r ∈ Z

will be orthonormal. Index j is referred to as scale and r as location while large

(small) values of j denote finer (coarser) scales. A theoretical framework for this

discretisation is the multiresolution analysis which we do not cover here but we refer

the reader to Mallat (1989).

Haar wavelets

The simplest and best-known example of wavelets are Haar wavelets given by

ψ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ x ≤ 1/2

−1 if 1/2 < x ≤ 1

0 otherwise.

We note that the Haar wavelet belongs to the compactly supported Daubechies

wavelets. Daubechies (1992) identifies the Extremal Phase family of wavelet systems

which are compactly supported wavelets, possessing different degrees of freedom.

Many other wavelets or families of wavelets exist, for example Daubechies Least
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Asymmetric family of wavelets, Meyer’s wavelets, Shannon’s wavelets, see Vidakovic

(2009) for some examples of these. In this thesis we only make use of the piecewise

constant Haar wavelets which are a natural choice given that we are interested in

processes whose second-order structure evolves over time in a piecewise constant

manner (Chapter 3).

2.1.2.2 Locally stationary wavelet model

For the LSW model Nason et al. (2000) apply the pyramid algorithm to construct

compactly supported discrete wavelets ψj = (ψj,0, ..., ψj,(Nj)−1) of length Nj for scale

j < 0 such that

• ψ−1,n =
∑

r gn−2rδ0,r = gn for n = 0, ..., N−1 − 1

• ψ(j−1),n =
∑

r hn−2rψj,r = gn for n = 0, ..., Nj−1 − 1

• Nj = (2−j − 1)(Nh − 1) + 1

where δ0,r is the Kronecker delta and Nh denotes the number of the elements of {hr}

that are non-zero.

The key difference now is that non-decimated wavelets rather than wavelet func-

tions as in Section 2.1.2.1 are used which can be shifted to any location at each scale

and not by shifts by 2−j so that ψj,r(τ) = ψj,(r−τ), τ ∈ Z.

We now proceed with the definition of the LSW model.

Definition 2.1. A triangular stochastic array {Xt,T}T−1
t=0 for T = 1, 2, ..., is in the

class of Locally Stationary Wavelet (LSW) processes if there exists a mean-square

representation

Xt,T =
−1∑

j=−J(T )

∞∑
r=−∞

ωj,r;Tψj,r(t)ξj,r (2.4)
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where ψj,r(t) are the non-decimated discrete wavelets vectors, J(T ) = −min{j :

Nj ≤ T}, ωj,r;T are real constants and ξj,r are zero-mean, orthonormal, identi-

cally distributed random variables. In addition, for each j there exists a Lipschitz-

continuous function Wj(z) : [0, 1]→ R such that

•
∑−1

j=−∞W 2
j (z) <∞ uniformly in z,

• the Lipschitz constant Lj are uniformly bounded in j and satisfy
∑−1

j=−∞ 2−jLj <

∞, and

• there exists a sequence of constants Cj which satisfy
∑−1

j=−∞ 2−jCj <∞ and

sup0≤r≤T−1

∣∣∣ωj,r;T −Wj

( r
T

)∣∣∣ ≤ Cj
T

for each T and j = −1, ...,−J(T ).

The usual summary statistic in the general time series is the spectrum and a

similar quantity can be defined within the LSW framework. The evolutionary wavelet

spectrum (EWS) is defined in rescaled time as

Sj(z) =W 2
j (z) = lim

T→∞
ωj,�zT �;T .

The LSW model implies that Xt,T is a linear combination of oscillatory functions

(ψj,r) and the autocovariance function will depend on time ifXt,T is locally stationary.

Analogous to the stationary time series where the spectral density is related to the

autocovariance function (one being the Fourier transform of the other) a similar

relationship can also be shown for the LSW. First, let cT (z, τ) denote the finite-

sample covariance function of Xt,T at lag τ and rescaled time location z

cT = E(X�zT �,T , X�zT �+τ,T ).

27



Chapter 2 Literature review

Now, define the autocorrelation wavelet Ψj(τ) (Nason et al. (2000))

Ψj(τ) =
∑
k

ψj,rψj,r+τ .

Further, let c(z, τ) be the asymptotic local autocovariance function of Xt,T at lag

τ and rescaled time location z, defined as a transform of Sj(z) with respect to the

set of autocorrelation wavelets

c(z, τ) =

−1∑
j=−∞

Sj(z)Ψj(τ). (2.5)

Nason et al. (2000) show that under the assumptions of Definition 2.1 the asymp-

totic local autocovariance c(z, τ) is a good approximation to the sample covariance

cT (z, τ), i.e. |cT (z, τ) − c(z, τ)| = O(T−1). This is an interesting link between the

autocovariance of Xt,T and the EWS, an analogue of the usual formula, that is, the

autocovariance of stationary process is the Fourier transformation of the spectrum.

This one-to-one correspondence can be also seen from the invertibility of (2.5), i.e.

Sj(z) =
∑
τ

(∑
r

Ψr(τ)A
−1
j,j′c(z, τ)

)

where Aj,j′ =
∑

τ Ψj(τ)Ψj′(τ).

Estimation of the LSW model

For a time series at hand it is important to have a means of estimating the

EWS. Nason et al. (2000) define and propose to use the raw wavelet periodogram as

a method of estimating the EWS. Since (2.4) indicates that the time series Xt,T is

the inverse wavelet transform of the coefficients ωj,r;Tψj,r(t)ξj,r, then the EWS can

be estimated from the squares of the non-decimated wavelet coefficients.

We now provide the definition of the wavelet periodogram from Nason et al.

(2000).
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Definition 2.2. Let Xt,T be an LSW process constructed using the wavelet system

ψ. The triangular stochastic array

I
(j)
t,T =

∣∣∣∣∣∑
s

Xs,Tψi,s−t

∣∣∣∣∣
2

(2.6)

is called the wavelet periodogram of Xt,T at scale j.

Nason et al. (2000) show that the wavelet periodogram (3.8) is not an asymptot-

ically unbiased estimator of the wavelet spectrum. Indeed, they prove the following

result for all j ≤ −1

EI
(j)
t,T =

−1∑
j′=−∞

Sj′

(
t

T

)
Aj,j′ +O(2−j/T ).

To deal with the inconsistency of the EWS estimator Nason et al. (2000) choose

to smooth the wavelet periodogram by the use of wavelet shrinkage. Smoothing

a wavelet periodogram is not an easy task, mainly due to the fact that I
(j)
t,T is a

correlated series. Neumann and Von Sachs (1995), in a similar setting, use a non-

linear estimation technique, however, it involves a pre-estimate of the local variance

of the observations and can reduce the performance of the method, see e.g. Fryzlewicz

(2005).

For a different approach in wavelet smoothing we refer the reader to Fryzlewicz

and Nason (2006) and Fryzlewicz et al. (2006) who propose a device that stabilises

the variance with the purpose to bring the data closer to Gaussianity with constant

variance. The authors propose a transformation of data, called “Fisz-transform”, but

combined with wavelet (Haar) coefficients and, hence, termed “Haar-Fisz” technique.

Finally, we note that in this thesis we adopt a modified version of the LSW

model in Definition 2.1 by Fryzlewicz and Nason (2006). In this version, the authors
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assume that the transfer function Wj(z) is piecewise constant with a finite number of

change-points (jumps) and not Lipschitz-continuous as in Nason et al. (2000). This

enables us to model a non-stationary process whose autocovariance structure evolves

over time in a piecewise constant manner with the purpose to locate the areas of

discontinuities which is the topic of Chapter 3.

2.2 Model selection methods using penalised least

squares estimation

Variable selection in a high-dimensional statistical problem has attracted significant

attention from researchers in different fields such as science, humanities, genomics,

finance and machine learning. Donoho (2000) has stressed the importance for new

developments in high-dimensional statistics.

One of the main challenges in dimension reduction is the estimation of the coef-

ficients β ∈ Rp×1 in the following model

y = Xβ + ε

where y ∈ Rn is the response vector, X ∈ Rn×p is the design matrix, ε ∈ Rn are iid

random errors and p (the dimensionality of the data) is very large, possibly, n << p.

The main challenge therefore is to select a subset B of variables that contribute to

the response y, i.e.

B = {1 ≤ j ≤ p : βj �= 0}.

There are many studies in the literature that deal with this high-dimensional

problem. Some of the well-known classes of approaches include greedy methods (e.g.

30



Chapter 2 Literature review

forward and backward-stepwise selection) and methods that add a penalty to the

minimisation of the loss function. By adding a penalty it is expected that a method

will lead to a sparse solution with the hope that all the irrelevant variables will have

coefficients close or equal to zero.

This section reviews certain model selection techniques in the context of Lq pe-

nalised least squares estimation that are most relevant to this thesis with the aim to

build a pillar for Chapters 4 and 5 which deal with non-parametric regression and

time-varying estimation respectively.

2.2.1 Ridge regression

Ridge regression aims to shrink the regression coefficients by minimising the following

penalised cost function

f(β) =
1

2

n∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

β2
j (2.7)

where λ ≥ 0 controls the amount of shrinkage. In a regression setting where many

correlated variables are present it is possibly that the estimated coefficients can ex-

hibit high variance. By imposing the penalty constraint this problem is relieved.

Due to the different scaling of the predictors we can standardise xi,j such that∑N
i=1 xij = 0 and

∑N
i=1 x

2
ij = 1 (note that the intercept is left out from the penalty

term so to avoid the procedure depending on the origin). We can now find the

estimated coefficients by

β̂ridge = (XTX + λI)−1XTy

where I is the p × p identity matrix. One can see that that λI adds a positive
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constant to the diagonal of XTX and hence making the problem nonsingular if λ

is chosen appropriately. In the case where xi,j are orthonormal then the estimated

ridge coefficients can be obtained from β̂ridge = β̂ols/(1 + λ).

2.2.2 Least absolute shrinkage and selection operator (lasso)

Lasso performs a similar task to ridge regression and the aim of this technique is to

shrink coefficients towards zero (Tibshirani (1996)). Similarly with ridge regression

we can re-parameterise the constant β0 by standardising xi,j . Lasso finds those βjs

that minimise the following Lagrange function

f(β) =
1

2

n∑
i=1

(
yi −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

|βj| (2.8)

where λ is a tuning parameter - large values means more coefficients are set to zero

and hence the selected model is more sparse. Using the Lq norm notation the above

problem takes the following matrix form

min
β∈Rn
‖y −Xβ‖22 + λ||β||1

where ||v||1 = |v1|+ |v2|+ ...+ |vn|.

Typically, the solution of a lasso problem is carried out using a quadratic pro-

gramming algorithm (see, e.g., Boyd and Vandenberghe (2004)), but other efficient

algorithms are available such as the Least Angle Regression of Efron et al. (2004). It

is worth mentioning that lasso can be seen as an iterated reweighted ridge regression

and, hence, admits an (approximate) closed form solution (Tibshirani (1996)). In the

simplest scenario where the predictors are uncorrelated with each other the solution

to a lasso problem can be obtained by simple thresholding i.e. sign(β̂ols)(|β̂ols| −λ)+.
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In a more general context, lasso can be seen as a variable selection method by

setting coefficients exactly equal to zero. Hence, unlike ridge regression, lasso pro-

duces interpretable submodels. However, the former does better when variables are

highly correlated for usual n > p situations (Tibshirani (1996)).

2.2.3 The elastic net

The elastic net method of Zou and Hastie (2005) can be seen as a combined method

of lasso and ridge regression. It adds a second constraint ||β||22 to the lasso problem,

that is,

min
β∈Rn
‖y −Xβ‖22 + λ1||β||1 + λ2||β||22.

This method inherits features from both the ridge and lasso estimation in that

it simultaneously does continuous shrinkage and variable selection. An important

feature is that it allows more than n variables to be selected since lasso selects up

to n variables under the n << p paradigm. Another advantage over lasso is that it

encourages a grouping effect, where predictors with high pairwise correlation tend to

be in or out of the model together. By contrast, the lasso tends to select only one

variable from such a group without any preference.

2.2.4 Fused lasso

Many extensions of the lasso have been proposed, e.g. the adaptive lasso (Zou (2006)),

the elastic net (Zou and Hastie (2005)), the randomised lasso (Meinshausen and

Bühlmann (2010)), the random lasso (Wang et al. (2011)). These methods mainly

focus on improving the performance of lasso. A particularly interesting extension is

when some prior information about the model is known that could be incorporated
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into it. The fused lasso of Tibshirani et al. (2005) (see also Tibshirani and Wang

(2008)) takes advantage of this information by using simultaneously the lasso penalty

and an L1 (total variation) penalty on the differences of neighbouring coefficients.

Hence, it favours solutions that are both sparse and blocky. The loss function takes

the following form

f(β) =
1

2

n∑
i=1

(
yi −

p∑
j=1

xijβj

)2

+ λ1

p∑
j=1

|βj|+ λ2

p∑
j=2

|βj − βj−1| (2.9)

where λ2 controls the smoothness of the resulting solution. There are no clear di-

rections for how the regularisation parameters λ1 and λ2 are simultaneously tuned,

at least in the context of variable selection. Hence, we can select the tuning param-

eters by cross-validation which is a commonly used method in penalised regression

problems (see Hastie et al. (2009)).

It is not necessary to impose a penalty on neighbouring coefficients, but rather

one can penalise differences of coefficients that correspond to an edge in a graph.

This permits more flexibility and it has found applications in e.g. biostatistics and

genetics where the purpose is to find associations between phenotypes (outputs) and

a few single neucleotide polymorphisms (SNPs) out of millions SNPs (inputs) where

inputs are closely related to each other (see Kim et al. (2009b) among others).

A special case of the fused lasso is when the predictor matrix X = I ∈ Rn×n and

it is termed the Fused Lasso Signal Approximator (FLSA), see Tibshirani and Wang

(2008). The loss functions has the following form

f(β) =
1

2

n∑
i=1

(yi − βi)2 + λ1

n∑
i=1

|βi|+ λ2

n∑
i=2

|βi − βi−1|. (2.10)

The FLSA is related to the non-parametric regression which we discuss in Section

2.4. In Chapter 4, among other things, we explore its estimation performance. The
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FLSA should be categorised as a denoising method, that is, extracting the signal μ

from a noisy series yi

yi = μi + εi for i ∈ 1, ..., n and εi are iid r.v. (2.11)

and not as a variable selection method. The reason we report it here is that the

algorithms found in the literature focus on the minimisation of (2.10) mainly due to

its conceptual simplicity. These algorithms are then extended to other settings, such

as (2.9), see Hoefling (2010) or Tibshirani and Taylor (2011). Another important

feature of the FLSA is the fact that the penalty parameter λ1 which controls the

lasso term can be set equal to 0. This is thanks to the following theorem

Theorem 2.1. (Friedman et al. (2007)) The solution for any value of (λ1, λ2)

can be found by simple soft-thresholding of the solution obtained for (0, λ2). More

precisely, if X = I and the solution for λ1 = 0 and λ2 > 0 is a known quantity

β(0, λ2) then the solution for λ1 is βi(λ1, λ2) = sign(βi(0, λ2))(|βi(0, λ2)| − λ1)+.

Figure 2.1 shows an example of an application of FLSA on the Blocks signal, first

examined by Donoho and Johnstone (1994), for different values of λ2 and for λ1 = 0.

For λ2 → ∞, i.e. no regularisation, the estimated signal is a straight line (red), the

mean of the series yi. The other two lines are for λ2 = 5, 50 and one can see that

smoothness increases for smaller values by removing noise and improving estimation.

2.2.5 A note on subgradient theory

In the case where the loss function is convex but non-differentiable then the gradient

is not defined. This is common with lasso-type optimisation problems where a loss

function has a minimum, but it is not differentiable, so the standard gradient method
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Figure 2.1: FLSA on the Blocks signal (Donoho and Johnstone (1994)), obtained from the

R package wavethresh (Nason (2013b)). Green, blue and red line is for λ2 = 5, λ2 = 50

and λ2 = 700 respectively.

cannot be used, see Figure 2.2 for an illustration of this. Hence, we need to introduce

the notion of a subgradient. We say a vector g ∈ Rn is a subgradient of f : Rn → R

at x ∈ domf if for all y ∈ domf , f(y) ≥ f(x) + gT (y − x). This is equivalent to

the first-order condition when f is differentiable f(y) ≥ f(x) +∇f(x)T (y− x) where

∇f(x) denotes the gradient of function f .

A function f is called subdifferentiable at x if there exists at least one subgradient

at x. The set of all the subgradients at x of function f is called the subdifferential of

f at x and is denoted by ∂f(x).

A point x� is said to be a minimiser of the convex function f if f is subdifferen-
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tiable at that point and a subgradient g ∈ ∂f(x) exists such that

g = 0.

If f is differentiable then the above optimality condition reduces to

∇f(x) = 0.
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Figure 2.2: Left panel: a convex and differentiable loss function with a minimum at x0 = 0.

Right panel: a convex and non-differentiable loss function (right panel) with a minimum at

x0 = 0.

Calculus of subgradient

There are two rules that apply in subgradient calculus, i.e. the “weak” and the

“strong”. The aim of the former is to produce one subgradient, arbitrarily chosen even

if more subgradients exist. It is sufficient in practice since most algorithms require

only one subgradient at each stage. On the other hand, the “strong” calculus describe

the complete set of subgradients ∂f(x) as a function of f . We do not elaborate more

on the calculus of subgradients, but we refer the reader to Bertsekas (1999).
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2.3 Review of Estimation Methodologies

We now present different methods that have been proposed to solve the fused lasso

problem. These can be categorised into two groups: the first includes path-wise

algorithms which find the whole solution path for an increasing or decreasing reg-

ularisation parameter. The other includes algorithms that employ gradient descent

optimisation methods that solve the fused lasso problem at a fixed value of the regu-

larisation parameter, often determined by the user. The advantage of the first group

over the second is that the user can obtain the whole path of solutions for all values of

the regularisation parameter. On the other hand, the second group is not restricted

by the rank of the predictor matrix X (when n < p then X does not have full rank),

a typical limitation of most methods of the first group.

2.3.1 Path algorithms

2.3.1.1 Pathwise coordinate optimisation

Friedman et al. (2007) explore “one-at-a-time” coordinate-wise algorithms which ac-

cording to the authors is faster than the LARS algorithm of Efron et al. (2004) when

trying to compute the lasso solution on a range of values of λ1. Coordinate-wise

algorithms apply an iterative soft-thresholding with a partial residual as a response

variable. By rewriting (2.8) as

f(β̃) =
1

2

n∑
i=1

(
yi −

∑
k �=j

xikβ̃k − xijβj

)2

+ λ1
∑
k �=j
|β̃j|+ λ1|βj|
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where the values of βk for k �= j are fixed at values β̃k(λ1) and minimising f(β̃) w.r.t

βj, we have

β̃j(λ1)← S

(
n∑
i=1

xij(yi − ỹ(j)i ), λ1

)

where S(α, β) = sign(α)(|α| − β)+ is the threshold function. The update is repeated

until the algorithm converges.

The coordinate-wise descent algorithm works for a range of penalised least squares

problems, such as the elastic net (Zou and Hastie (2005)), the least absolute devi-

ation regression (Li and Arce (2004)), the grouped lasso (Yuan and Lin (2006)) or

the negative garrotte (Breiman (1995)). However, the coordinate-wise descent pro-

cedure needs to be substantially modified in order to be applied to the FLSA case

because (2.9) is not continuously differentiable despite the fact that it is convex

(Tseng (2001)). Hence, the algorithm can get stuck in a corner of the loss function

f(β). To advance to the minimum, we have to move coefficients together. Friedman

et al. (2007) generalise the algorithm for the FLSA case in order to deal with this

issue and their algorithm is still faster than a typical quadratic optimisation solver.

Briefly, for λ1 = 0 their algorithm is summarised into three nested cycles

• Descent cycle: Coordinate-wise descent is run for each parameter βj, while all

the others are held fixed.

• Fusion cycle: Neighbouring pairs of parameters are fused, followed by coordinate-

wise descent.

• Smoothing cycle: Penalty λ2 is increased by a small amount δ, and the two

previous cycles are rerun.
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Figure 2.3: The path algorithm of Hoefling (2010) applied on a piecewise constant function

contaminated with Gaussian noise for different values of λ2. Points 5 and 6 have the closest

value and thus are the first to be fused (red line). These points form the set F5 ∈ {5, 6}.

The next points to be fused are 7 and 8.

2.3.1.2 Path algorithm for the FLSA

Hoefling (2010) presents a faster algorithm than that of Friedman et al. (2007) which

gives a solution for all values of λ2, applies to the 2-dimensional FLSA problem

(denoising an image) and to the general fused lasso when rank(X) = p. The path

algorithm proposed from Hoefling (2010) is based on the idea of fused sets. We

present the method for the 1-dimensional FLSA problem (2.10). The algorithm

starts by setting λ2 = 0 and then increase it until all coefficients are equal. A pair

of sets Fi, Fi+1 of coefficients that are “close” in values are merged (fused), and they
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form a new set Fi′ . This works as follows. The quantity

hi,i+1(λ2) =
βFi
− βFi+1

∂βFi+1

∂λ2
− ∂βFi

∂λ2

+ λ2 for i = 1, ..., nF (λ2)− 1

where nF (λ2) is the number of fused sets, will determine which two neighbouring

sets of fused coefficients can be fused and have the same value by finding i′ =

argminh(λ2)>λ2 hi,i+1. Now, the coefficients βFi′ and βFi′+1
are fused and form the set

Fi′ (for an illustration see Figure 2.3) with βFi′ = βFi
+(hi,i+1(λ2)−λ2)

(
∂βFi+1

∂λ2
− ∂βFi

∂λ2

)
.

The iteration continues until all coefficients are equal to each other and to the mean

of yi. Briefly, the method works by fusing together adjacent coordinates with similar

values, which produces a blocky estimate. This “bottom-up” method is an oppo-

site approach to the solution path algorithm of Tibshirani and Taylor (2011) where

coefficients that are most different are identified first. This gives a computational

advantage of the former since Hoefling (2010) calculates the computational complex-

ity to be O(n logn) (due to the tree structure of the algorithm) compared with the

solution path algorithm of Tibshirani and Taylor (2011) (see Section 2.3.1.3) which,

as we show in Chapter 4, is O(n2) where n is the sample size. However, the latter

solves the generalised lasso and, hence, it can be used in a range of different prob-

lems. Finally, we note that a similar “bottom-up” approach has been suggested by

Fryzlewicz (2007) in the context of estimating in the model (2.11).

2.3.1.3 Solution path of the generalised lasso

Tibshirani and Taylor (2011) propose an algorithm to calculate the full path for the

generalised lasso problem which includes the fused lasso. The authors consider an
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argument from Kim et al. (2009a) who transform the following (primal) problem

min
β∈Rn

1

2
||y − β||22 + λ2||Dβ||1

where D ∈ R(n−1)×n is the penalty matrix, into a simpler one with no linear trans-

formations (the dual problem)

min
u∈Rm

1

2
||y −DTu||22 subject to ‖u‖∞ ≤ λ2 (2.12)

where ‖Δ‖∞ denotes the maximum absolute element of a matrix or vector Δ. The

reason for this is that the L1 penalty is composed with a linear transformation of β.

It is easier to work with the dual (2.12): a regression with a simple constraint set.

Starting from λ2 =∞ and moving towards λ2 = 0, one can find the dual coordinates

that hit the boundary (the constraint ‖u‖∞ ≤ λ2) in an one-by-one manner.

The solution path algorithm is based on the fact that the active set B (which

contains the hitting coordinates) does not change as λ2 → 0 thanks to the following

lemma

Lemma 2.1. (Tibshirani and Taylor (2011)): For the 1-dimensional fused

lasso (FLSA) we have that for any coordinate i, the solution ûλ of (2.12) satisfies

ûλ0,i = λ0 ⇒ ûλ,i = λ for all λ ∈ [0, λ0]

and

ûλ0,i = −λ0 ⇒ ûλ,i = −λ for all λ ∈ [0, λ0].

Simply, the lemma states that for decreasing λ2 the coordinate ui stays within

the boundary i.e. ui = λ2 and thus at every iteration we need to solve only for

the interior coordinates. The boundary lemma is the equivalent of Proposition 2 of
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Friedman et al (2007) which states that when two values β̂ fuse then for increasing

λ2 those values remain always fused. The boundary lemma is about the fusion of the

dual solutions û for decreasing λ2.

The solution path algorithm can be extended to other fused lasso problems by

making a transformation of the design matrix X, the response vector y and the

penalty matrix D. However, Lemma 2.1 does not hold anymore and the algorithm

needs to keep track of the dual coefficients that leave the active set B.

In Chapter 4 we show, among other things, a fast version of this algorithm which

does not involve matrix multiplications. In addition, in Chapter 5 we adapt the

solution path algorithm to estimate time-varying models and hence propose a new

path algorithm which is shown to perform well on the examples we consider in our

simulation study.

A note on duality theory

Duality theory shows a way of constructing an alternative problem (the dual

problem) from the original optimisation problem (the primal problem) and the op-

timisation problem is viewed from two different perspectives. Its purpose is e.g. to

obtain easily a lower bound on the optimal value of the objective function for the

original problem or because it is easier to computationally solve the dual than the

primal problem.

Consider the (primal) problem

min
x∈Rn

n∑
i=1

fi(xi)

subject to aTx ≤ b

where a is a vector, b a scalar and fi : R→ R is a convex continuously differentiable
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function. The main idea behind duality is to take the constraints in the problem

above into account by adding to the objective function the constraint functions, i.e.

form the Lagrangian function

L(x, λ) =
n∑
i=1

fi(xi) + λ(b− aTx).

The dual function is defined by

q(λ) = inf
x∈Rn

(L(x, λ)) = inf
x∈Rn

(
n∑
i=1

fi(xi) + λ(b− aTx)
)
.

Hence, the dual problem is

max q(λ) subject to λ ∈ R.

In general, the optimal solution to the primal problem is not necessarily equal

to that of the dual problem and, hence, a duality gap exists. When the objective

function is convex and strictly feasible (in the sense that the inequality constraints

are strictly inequalities), then the optimal duality gap is zero and we say that strong

duality holds (see Boyd and Vandenberghe (2004)). In the case of the solution path

algorithm (Section 2.3.1.3) strong duality holds (there is only an equality constraint)

and it is preferred to derive the dual problem since it is easier to work with.

2.3.2 Convex optimisation techniques

2.3.2.1 Proximal-gradient method for optimisation with smooth penalty

term

Chen et al. (2010) propose a proximal-gradient method using an auxiliary matrix

that smoothes the loss function. Recall from Section 2.2.5 that the loss function

has a unique minimum, but it is not differentiable and, therefore standard proximal
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gradient methods cannot be adopted. However, according to the authors, the ap-

proximation of the smoothed function is sufficiently close to the original objective

function. Their algorithm can work efficiently under the n << p paradigm while it

is simple in the implementation. Notably, the method can be easily adapted to deal

with many cases such as the (fused) lasso case, the 1-dimensional or 2-dimensional

case or other structures such as grids or graphs. In a graph structure we are not

restricted to sparsity in differences of neighbour coefficients, i.e.

f(β) =
1

2
‖Y −Xβ‖22 + λ1

p∑
j=1

βj + λ2
∑

(κ,l)∈E,κ<l
|βκ − βl| (2.13)

where E are the edges in a graph G = (V,E) with V = {1, ..., p} representing the

variables. By restricting κ < l we ensure that any two coefficients are penalised only

once since the edges are assumed to be undirected.

Define the penalty matrix C = (λ1I, λ2D) where |Dβ| =
∑

(k,l)∈E,κ<l |βκ − βl|.

Then, (2.13) can be rewritten as follows

f(β) =
1

2
||Y −Xβ||22 + ||βTC||1. (2.14)

Now, an auxiliary vector α is defined with domain Q = {||a||1 ≤ 1} such that

||βTC||1 = max
α∈Q

αβTC. (2.15)

The reformulated penalty term (2.15) can be seen as the inner product of the

auxiliary vector α and the linear mapping of β via a linear operator Γ(β) = βTC.

Yet, it remains a non-smooth function of β, hence, optimisation is still not feasible.

To deal with this, an auxiliary convex function d(a) is defined on Q such that

fμ(β) = max
α∈Q

αβTC − μd(a) (2.16)
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where μ is a smoothness parameter. The algorithm of Chen et al. (2010) utilises the

optimal solution of (2.16) and propose d(α) = 1
2
||α||22. To achieve efficient convergence

they set μ = e/2G where e is the desired accuracy and G depends on α. By smoothing

the objective function, the problem can be solved efficiently using a standard proximal

gradient method such as the FISTA method (fast iterative shrinkage-thresholding

algorithm) of Beck and Teboulle (2009).

2.3.2.2 Other methods

Alternative techniques are that of Ye and Xie (2011) who use a Split Bregman method

to solve the fused lasso problem. The authors augment equation (2.9) by adding two

terms that penalise the two linear constraints (the lasso and the fusion penalty).

Then, the solution is found by solving a system of linear equations. Main limitation

of this method is the choice of two extra parameters that can affect the rate of

convergence of the algorithm. Wang et al. (2013) also augment the Lagrangian loss

function with squares of the constraint functions. The attractive feature of this

technique is the simplicity in implementation, yet this method applies only to the

FLSA case. Lin et al. (2011) approach the minimisation by alternately solving two

subproblems, the squared error function and the fusion penalty function which are

both linearised (and thus termed alternating linearisation). Finally, Liu et al. (2010)

propose a transformation of the general fused lasso problem into a standard FLSA

problem and the use of a gradient descent method on its dual.
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2.4 Non-parametric regression

Non-parametric regression focuses on the estimation of a function f0 given the ob-

servations y1, ..., yn ∈ R from the following model

yi = f0(xi) + εi, for i = 1, ..., n (2.17)

where x1, ..., xn ∈ R are input points and ε1, ..., εn ∈ R are independent errors. In

addition, it is assumed that the inputs x1, ..., xn are evenly spaced over the unit

interval [0, 1], i.e. xi = i/n for i = 1, ..., n.

The non-parametric regression toolbox is highly-developed with plenty of meth-

ods based on kernels, polynomials, splines or wavelets. We review some of these in

the next sections.

2.4.1 Kernel smoothing

Define a kernel K as a weighted mean function K : R→ R such that∫
K(x)dx = 1,

∫
xK(x)dx = 0,

∫
x2K(x)dx <∞.

Two well-known kernels are the Gaussian

K(x) =
1√
2π

exp(−x2/2),

and the Epanechnikov kernel

K(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3
4
(1− x2) if |x| ≤ 1

0 otherwise.

Now, a kernel-smoother is defined as

f̂(x0) =

∑n
i=1K

(
x0−xi
h

)
yi∑n

s=1K
(
x0−xs
h

)
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where h > 0 is the bandwidth and determines the width of the local neighbourhoud

at x0 and it controls the “roughness” of the estimated function f̂(x0) as, e.g., high

values of h averages more observations reducing the variance, but increasing the bias.

Notice that the kernel estimator is a linear smoother with weights

wi(x0) =
K(x0−xi

h
)∑n

j=1K(x0−xi
h

)
.

A noticeable shortcoming of the kernel smoothing is that it suffers from poor

bias at the boundaries of the domain of x1, ..., xn arising from the asymmetry of wi

in these regions. To overcome this limitation we can move from a local constant fit

to a local higher-order fit. This can be done by local polynomials presented in the

next section.

2.4.2 Local polynomials

Due to the bias present in the boundaries of x1, ..., xn using the kernel smoother a

first-order correction can alleviate the issue by employing the estimate f̂(x) = α̂+β̂x,

where α̂ and β̂ are such that

min
α(x0),β(x0)

n∑
i=1

K

(
x0 − xi
h

)
(yi − α(x0)− β(x0)xi)2.

This is the local linear regression and it can be shown that it is also linear in the

observations {yi}ni=1. In addition, we do not necessarily need to stop at linear fits,

but we can move to higher orders and fit f̂(x0) = β̂0(x0) +
∑p

j=1 β̂j(x0)x
j.

2.4.3 Smoothing splines

Smoothing splines are a popular tool and have been studied both in computational

and theoretical terms, see de Boor (1978), Wahba (1990) or Green and Silverman
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(1994). These estimators perform a regularised regression over the natural spline

basis without the need to select knots, but rather they place them at all inputs

x1, ..., xn. A natural spline of order k with knots at t1 < ... < tm is a piecewise

polynomial function f such that i. f reduces to a polynomial of degree k on each

of [t1, t2], ..., [tm−1, tm] ii. f reduces to a polynomial of degree (k − 1)/2 on [−∞, t1]

and [tm,∞] (and, hence, natural splines are only defined for odd order k) iii. f is

continuous and has continuous derivatives of orders 1, ..., k − 1 at its knot points.

For a given order k the smoothing spline estimate f̂ is defined as

f̂ = argmin
f

n∑
i=1

(yi − f(xi))2 + λ

∫
{f ′′(x)}2dx

where λ is a fixed smoothing parameter which controls the curvature in the function

f(xi). A noticeable result here is that smoothing splines are also linear smoothers

since the problem above can be re-parameterised and can be written as

β̂ = arg min
β∈Rn
‖y −Nβ‖22 + λβTΩβ

where {N}ij = Nj(xi), Nj(x) are a set of basis functions for natural splines with

knots over x1, ..., xn and {Ω}jk =
∫
N ′′
j (t)N

′′
k (t)dt. Since this is a generalised ridge

regression the solution is given by

β̂ = (NTN+ λΩ)−1NTy

which is linear in the observations {y}ni=1.

Hastie and Tibshirani (1993) extend smoothing splines to regression models with

varying coefficients which are the focus of Chapter 5. In the same chapter, we compare

the performance of a new estimator with a total variation penalty with smoothing

splines and we show that the former outperforms the latter in many cases using
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both simulated and real data. In the next section, we review two methods in non-

parametric regression that adopt total variation penalties.

2.4.4 Trend filtering and locally adaptive regression splines

Tibshirani (2014) proposes a new class of estimators for non-parametric regression,

termed trend filtering. This term was first used by Kim et al. (2009a), but the authors

focus mainly on piecewise linear estimation. For a given integer k ≥ 0, Tibshirani

(2014) considers the following penalised least squares optimisation problem

β̂ ∈ arg min
β∈Rn
‖y − β‖22 + λ||D(k+1)β||1 (2.18)

where λ is a tuning parameter and D(k+1) ∈ R(n−k)×n is the discrete difference op-

erator of order k + 1. When k = 0 then
∥∥D(1)β

∥∥
1
=
∑n

t=1 |βt − βt−1| which is the

1-dimensional total variation denoising (see Rudin et al. (1992)) or the 1-dimensional

FLSA of Tibshirani et al. (2005), already mentioned in the context of variable se-

lection in Section 2.2.4. For k ≥ 0, the operator D(k+1) ∈ R(n−k)×n is recursively

defined

D(k+1) = D(1)D(k).

Hence, the matrix D(k+1) can be seen as the discrete analogy to the (k + 1)st order

derivative operator and the penalty term in (2.18) penalises the changes in the discrete

kth derivative of β.

In addition, Tibshirani (2014) shows that the trend filtering achieves the same

minimax rate with the locally adaptive regression splines of Mammen and van de

Geer (1997), a total variation type of estimator. He shows that the two methods are

equivalent when k = 0 (piecewise constant) or k = 1 (piecewise linear), but trend
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filtering has a computational advantage over locally adaptive regression splines when

k ≥ 2.

In Chapter 4, we show a fast way of implementing the solution path algorithm

of Tibshirani and Taylor (2011) for the case k = 0. Further, we provide a theoretical

result for the consistency of the trend filtering (equivalently, the locally adaptive

regression splines) when k = 0. Finally, in Chapter 5 we extend trend filtering

to estimating regression models with varying coefficients as an alternative to the

smoothing splines.

2.4.5 Wavelet smoothing

Wavelet methods have been widely employed for non-parametric regression and they

perform well in cases where the signal has spatially heterogeneous degree of smooth-

ness, for example, it can be “wiggly” in some regions of a signal and piecewise con-

stant in some others. The local adaptivity of wavelet smoothing is attributed to

the fact that it selects a sparse wavelet coefficient vector by shrinking coefficients

that are zero or close to zero. This is termed wavelet shrinkage, first introduced to

the statistical literature by Donoho (1993), Donoho (1995), Donoho and Johnstone

(1994) and Donoho et al. (1995). Wavelet shrinkage has been shown to work well

with correlated data (see Figure 2.4 for an illustration of the whitening property

of wavelets), non-Gaussian error (see Averkamp and Houdré (2003) and references

therein) or irregularly spaced data in the sense that xi �= i/n (see Nunes et al. (2006)

and references therein).

The first step is to form a wavelet basis matrix W ∈ Rn×n and then perform a
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Discrete Wavelet Transform (DWT) of the outputs {yi}ni=1 from the model (2.17)

dj,r = θj,r + εj,r

where d =Wy. Note that εj,r are still iid Gaussian due to the orthonormality of the

DWT.

The next step is to threshold the vector d

d̂ = Tλ(d)

for some λ > 0, such that some of the coefficients dj,r are shrunk towards zero. The

hope is that with an appropriate threshold some of the coefficients of the vector d̂

will be more significant indicating an irregularity in the function f . Those dj,r that

are zero or close to zero correspond to regions where is f smooth and are set equal

to zero.

Finally, the method involves an inverse wavelet transform of d̂

f̂ =WT d̂

to obtain an estimate of the function f .

Donoho and Johnstone (1994) propose the hard-thresholding

Tλ(dj,r) = dj,rI(|dj,r| > λ)

and the soft-thresholding

Tλ(dj,r) = sign(dj,r)max(|dj,r| − λ, 0),

making use of the universal threshold λ� = σ
√

2 log(n) where σ is unknown, but it can

be estimated through the Median Absolute Deviation of the sequence
∣∣∣Xi+1−Xi√

2

∣∣∣n−1

i=1
.
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It is particularly interesting to see that the wavelet shrinkage estimate is the

solution to the lasso problem

min
d∈Rn
||y −Wd||+ λ||d||1

and sinceW is orthonormal then the lasso estimates are obtained from soft-thresholding.

Finally, we note that the DWT (Mallat (1989)) is a fast decomposition and

reconstruction algorithm for discrete data, analogous to the Fast Fourier Transform

of Cooley and Tukey (1965). It produces a vector of wavelet coefficients at dyadic

scales and locations without involving matrix multiplication hence its complexity is

O(n) and not O(n2) where n is the length of the input vector.

It is important to notice that in Chapter 4 we use similar ideas to overcome the

matrix multiplications in the algorithm by Tibshirani and Taylor (2011) resulting in

lower complexity.

2.4.6 Methods for piecewise constant estimation

An important class of non-linear estimators are the piecewise constant estimators

which have been shown to approximate a wide range of function spaces (DeVore

(1998)) well. This means that the underlying function f0 in the model (2.17) may

belong to different smoothness classes, including the case where f0 is discontinuous,

e.g. piecewise constant. In this thesis we mainly focus on piecewise stationarity and

we review estimation methods in the next lines.

We consider the following model

Xt = ft + εt for t = 1, ..., n (2.19)

where ft is a piecewise constant and deterministic function with N change-points at
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Figure 2.4: Whitening property of the wavelet transformation for an ARMA(1,1) process.

The acf of the ARMA(1,1) process (panel a.) indicates high autocorrelation which decays

slowly. Panels c. and d. are the acf of the finest and a coarser scale DWT showing

significantly reduced autocorrelations.

locations η = {η1, ..., ηN}. Both N and the locations of change-points are unknown

to the user and need to be estimated.

One branch of change-point estimators are formulated as multivariate optimisa-
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tion problems, i.e.

min
η
J(η,Xt) + λpen(η)

where J(η,Xt) is a measure of fit, also termed cost or contrast function. For the

cost function J(η,Xt), the least squares or twice the negative log-likelihood (Chen

and Gupta (2011)) are typically used. In addition, the penalty function pen(η)

depends on the number N of change-points and a linear relation, i.e. pen(η) = N , is

commonly used. This, in practice, is similar to using an information criterion such as

AIC (Akaike’s IC) where λ = 2N̄ and N̄ are the additional change-points. Another

example of pen(η) is when λ = N̄ logn which coincides with the Schwarz Information

Criterion (SIC or BIC). Hence, the purpose of the penalty λpen(η) is to control for

over-fitting. Techniques that involve minimisation of penalised functions have been

proposed by Yao (1988), Braun et al. (2000), Auger and Lawrence (1989) and Killick

et al. (2012) among others.

A different route in the estimation of the model (2.19) using penalised regression

is through the use of L1 penalties. In Section 2.2.4 we discussed the fused lasso

method. A different approach to solving the problem (2.10) is to transform it into a

lasso one. Harchaoui and Lévy-Leduc (2010) choose to solve the following problem

arg min
β∈Rn

1

n
(Yi − (Xnβ)i)

2 s.t.
n∑
i=1

|βi| ≤ NJ�max (2.20)

where Xn is a n × n lower triangular matrix with nonzero elements equal to one,

N is the true number of change-points, and J�max is the maximum distance between

two consecutive change-points. Since the number of change-points is not known, the

authors impose an upper bound for N .

On the other hand, the estimation of change-points can be formulated as a prob-
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lem of minimising a series of univariate cost functions i.e. detecting a single change-

point and then progressively moving to identify more. The Binary Segmentation

method belongs to this category and we discuss it in the next section.
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Figure 2.5: The CUSUM statistic (blue lines) applied to a noisy signal with no change-

points (left) and a single change-point (right). The underlying signals are shown in red.

When there is no change-point the CUSUM looks “flatter” while a peak is formed in the

case of a change.

2.4.6.1 Binary Segmentation

The Binary Segmentation (BS) method (Vostrikova (1981)), is a generic technique

where the change-point detection starts with a single change-point b, using, for ex-

ample, the following Cumulative Sum statistic (henceforth, CUSUM)

X̃b
s,e =

√
e− b

n̄(b− s+ 1)

b∑
t=s

Xt −
√
b− s+ 1

n̄(e− b)

e∑
t=b+1

Xt (2.21)

where s = 1, e = n and n̄ = e− s+ 1.

The intuition of the CUSUM is that it computes a statistic sequentially as a

difference of two weighted sums (the left and right segment with varying size). At

56



Chapter 2 Literature review

the point of change, say b, the CUSUM statistic takes its maximum value in absolute

terms, see also Figure 2.5. If the obtained statistic X̃b
s,e is larger than a threshold ζn

then we conclude that a change-point has occurred.

Now, BS continues on the left and on the right of b until no further change-points

are detected. This “greedy” approach is, perhaps, the most widely used change-

point search method (Killick et al. (2012)) and the main reasons are the simplicity in

implementing it and its low complexity O(n log n). In addition, it has found many

applications in other setting such as in the multiple detection of change-point in

variance (Inclan and Tiao (1994)), in autocovariance (Cho and Fryzlewicz (2012)),

or in the conditional variance (Fryzlewicz and Subba Rao (2013)).

The BS method may be unsuitable in cases where the change-points occur close

to each other and particularly if the minimum spacing between them is of order

O(n3/4) only then BS is consistent in the number and locations of the change-points

(Fryzlewicz (2014)). In particular, Venkatraman (1992) shows that the BS method

fails to detect change-points that are not separated by at least n1/2 observations, see

Figure 2.6 for an illustration of this argument (BS estimates are shown by a blue

dotted line).

Fryzlewicz (2014) attempts to eliminate this weakness by proposing a randomised

binary segmentation, termed Wild Binary Segmentation (WBS), where the search for

change-points proceeds by using the CUSUM statistic in smaller segments. To put

it simply, at the initiation of the search the CUSUM (2.21) is not calculated globally

(s = 1 and e = n), but rather over multiple sub-samples such that 1 ≤ s < e ≤ n. It

is therefore expected that CUSUMs with starting and ending points within a short

distance from a certain change-point will be more alert in identifying it. In order to
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Figure 2.6: A typical example of the BS (blue dotted line) method failing to detect change-

points within short distance. The WBS method (red dotted line) detects all six change-

points.

avoid the restriction from choosing a window or span parameter the author randomly

selects the starting and ending points with the hope that with a high probability a

favourable interval with a single change-point will be found. Finally, the method

inherits the main feature of the BS search, i.e. after identifying a change-point the

problem is divided into to two sub-problems where for each segment we again test

for further change-points.

We note that another attempt to improve the performance of BS is found in

Olshen et al. (2004). The authors suggest the Circular Binary Segmentation (CBS)

58



Chapter 2 Literature review

which requires a choice of window for larger data sets and thus making it less user-

friendly. In addition, the CBS method involves a permutation approach making it

computationally prohibitive for large samples. A faster CBS is proposed by Venka-

traman and Olshen (2007), however, the authors notice that it comes with a loss

in accuracy. This is due to the approximation of the P -value, used in deciding on

the existence of a change-point, which does not affect the estimated locations of the

change-points but can result in fewer detected change-points.

In Chapter 3, we adopt the WBS method in order to estimate the number and

locations of the change-points in a non-stationary time series motivated by its good

practical performance in the simplest model (2.19).
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Chapter 3

Multiple change-point detection

for non-stationary time series

using Wild Binary Segmentation

Introduction

The assumption of stationarity has been the dominant framework for the analysis of

many real data. However, in practice, time series entail changes in their dependence

structure and therefore modelling non-stationary processes using stationary methods

to capture their time-evolving dependence aspects will most likely result in a crude

approximation. As pointed out by Mercurio and Spokoiny (2004) the risk of fitting

a stationary model to non-stationary data can be high in terms of prediction and

forecasting. Many examples of non-stationary data exist; for example, in biomedical

signal processing of electroencephalograms (EEG) see Ombao et al. (2001); in audio

signal processing see Davies and Bland (2010); in finance see Stărică and Granger
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(2005); in oceanography see Killick et al. (2013), to name but a few. In this chapter

we deal with piecewise stationarity, arguably the simplest type of deviation from

stationarity. This implies a time-varying process where its parameters evolve through

time but remain constant for a specific period of time.

The problem of change-point estimation has attracted significant attention. A

branch of the literature deals with the estimation of a single change-point (for a

change in mean see e.g. Sen and Srivastava (1975); for time series see Davis et al.

(1995), Gombay (2008), Gombay and Serban (2009) and references therein) while

another extends it to multiple change-points with many changing parameters such

as Ombao et al. (2001) who divide a time series into dyadic segments and choose

the one with the minimum cost. The latter branch can be further categorised. On

the one hand, the multiple change-point estimation can be formulated through an

optimisation task i.e. minimising a multivariate cost function (or criterion). When

the number of change-points N is unknown then a penalty is typically added e.g.

the Schwarz criterion (see Yao (1988)). In addition, the user can adopt certain

cost functions to deal with the estimation of specific models: the least-squares for

change in the mean of a series (Yao and Au (1989) or Lavielle and Moulines (2000)),

the Minimum Description Length criterion (MDL) for non-stationary time series

(Davis et al. (2006)), the Gaussian log-likelihood function for changes in the volatility

(Lavielle and Teyssiere (2007)) or the covariance structure of a multivariate time series

(Lavielle and Teyssiere (2006)).

Several algorithms for minimising a cost function are based on dynamic pro-

gramming (Bellman and Dreyfus (1966) and Kay (1998)) and they are often used in

solving change-point problems, see e.g. Perron (2006) and references therein. Auger
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and Lawrence (1989) propose the Segment Neighbourhood method with complexity

O(QT 2) where Q is the maximum number of change-points. An alternative method is

the exact method of Optimal Partitioning by Jackson et al. (2005), but its complexity

of O(T 2) makes it suitable for smaller samples.

Change-point estimators that adopt a multivariate cost function often come with

a high computational cost. An attempt to reduce the computational burden is found

in Killick et al. (2012) who extend the Optimal Partitioning method of Jackson

et al. (2005) (termed PELT) and show that the computational cost is O(T ) when

the number of change-points increases linearly with T . Another attempt is found in

Davis et al. (2006) and Davis et al. (2008) who suggest a genetic algorithm to detect

change-points in a piecewise-constant AR model or non-linear processes, respectively,

where the MDL criterion is used.

On the other hand, the estimation of change-points can be formulated as a prob-

lem of minimising a series of univariate cost functions i.e. detecting a single change-

point and then progressively moving to identify more. The Binary Segmentation

method (BS) belongs to this category and uses a certain test statistic (such as the

CUSUM) to reject the null hypothesis of no change-point. The BS has been widely

used and the main reasons are its low computational complexity and the fact that it

is conceptually easy to implement: after identifying a change-point the detection of

further change-points continues to the left and to the right of the initial change-point

until no further changes are found.

The BS method has been adopted to solve different types of problems. Inclan and

Tiao (1994) detect breaks in the variance of a sequence of independent observations;

Berkes et al. (2009) use a weighted CUSUM to reveal changes in the mean or the
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covariance structure of a linear process; Lee et al. (2003) apply the test in the residu-

als obtained from a least squares estimator; and Kim et al. (2000) and Lee and Park

(2001) extend Inclan and Tiao (1994) method to a GARCH(1,1) model and linear

processes, respectively. A common factor of most of these methods is the estimation

of the long-term variance or autocovariance; a rather difficult task when the obser-

vations are dependent. Cho and Fryzlewicz (2012) apply the binary segmentation

method on the wavelet periodograms with the purpose to detect change-points in the

second-order structure of a non-stationary process. Using the wavelet periodogram,

Killick et al. (2013) propose a likelihood ratio test under the null and alternative hy-

potheses. The authors apply the binary segmentation algorithm but assume an upper

bound for the number of change-points. Fryzlewicz and Subba Rao (2013) adopt the

binary segmentation search to test for multiple change-points in a piecewise constant

ARCH model. BS is also used for multivariate (possibly high-dimensional) time series

segmentation in Cho and Fryzlewicz (2013) and in Schröder and Fryzlewicz (2013)

in the context of trend detection for financial time series.

In this chapter we develop a detection method to estimate the number and

locations of change-points for a piecewise stationary time series model using the

non-parametric Locally Stationary Wavelet (LSW) process of Nason et al. (2000).

The LSW model provides a complete description of the second-order structure of a

stochastic process and, hence, it permits a fast estimation of the local autocovariance

through the evolutionary wavelet spectrum. This choice, however, should not be seen

as a restriction and potentially other models can form the basis for our algorithm.

In order to implement the change-point detection we adopt the Wild Binary

Segmentation (WBS) method proposed in the signal+iid Gaussian noise set-up by
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Fryzlewicz (2014) which attempts to overcome the limitations of the BS method.

Under specific setups where many change-points are present the BS search may be

inefficient in detecting them. This stems from the fact that the BS starts its search

assuming a single change-point. To correct this limitation, Fryzlewicz (2014) proposes

the WBS algorithm that involves a “certain random localisation mechanism”. His

method can be summarised as follows. At the beginning of the algorithm the CUSUM

statistic is not calculated over the entire set {1, ..., T} where T is the sample size but

only over M local segments [s, e]. The starting s and ending e points are randomly

drawn from a uniform distribution U(1, T ) and the hope is that for a large enoughM

a specific [s, e] will contain a single change-point. The method then proceeds similarly

to BS: if the obtained CUSUM statistic exceeds a threshold then it is deemed to be

a change-point and the procedure continues to its left and right.

To summarise, our contribution in this work is twofold: i. to adopt the WBS

technique to the segmentation of a piecewise stationary time series and ii. to pro-

pose a method of combining the estimated change-points across wavelet periodogram

scales. The chapter is structured as follows: in Section 3.1 we present and review

the WBS algorithm in the context of time series. The reasons for selecting the LSW

model as the core of our detection algorithm are given in Section 3.2. The main algo-

rithm is presented in Section 3.3 along with its theoretical consistency in estimating

the number and locations of change-points. In addition, we conduct an extensive

simulation study to examine the performance of the algorithm; the results are given

in Section 3.4. In Section 3.5 we apply our method to two real datasets. Finally,

proofs of the theorems related to our method are in Section 3.6.
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3.1 The Wild Binary Segmentation Algorithm

The BS algorithm for a stochastic process was first introduced by Vostrikova (1981)

who showed its consistency for the number and locations of change-points for a fixed

N . A proof of its consistency is also given by Venkatraman (1992) for the Gaussian

function+noise model, though the rates for the locations of the change-points are

suboptimal. Improved rates of convergence of the locations of the change-points for

the BS method are given by Fryzlewicz (2014).

As a preparatory exercise before considering segmentation in the full time series

model (3.7) we first examine the following multiplicative model

Y 2
t,T = σ2

t,TZ
2
t,T , t = 0, ..., T − 1 (3.2)

where σ2
t,T is a piecewise constant function and the series Zt,T are possibly autocorre-

lated standard normal variables. This generic set-up is of interest to us because the

wavelet periodogram, used later in the segmentation of (3.7), follows model (3.2).

A potential change-point b0 on a segment [s, e] is given by

b0 = argmax
b

∣∣∣Ỹ b
s,e/qs,e

∣∣∣
where Ỹ b

s,e is the CUSUM statistic

Ỹ b
s,e =

√
e− b

n(b− s+ 1)

b∑
t=s

Y 2
t −

√
b− s+ 1

n(e− b)

e∑
t=b+1

Y 2
t , (3.3)

qs,e =
∑e

t=s Y
2
t /n and n = e− s+ 1.

The value |Ỹ b0
s,e/qs,e| = maxb |Ỹ b

s,e/qs,e| will be tested against a threshold ωT in

order to decide whether the null hypothesis of no change-point is rejected or not.

The BS proceeds by recursively applying the above CUSUM on the two, newly-

created segments defined by the already detected b0, i.e [s, b0] and [b0 + 1, e]. The
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algorithm stops in each current interval when no further change-points are detected,

that is, the obtained CUSUM values fall below threshold ωT .

The BS method has the disadvantage of possibly fitting the wrong model when

multiple change-points are present as it searches the whole series. The CUSUM

formula (3.3) can result in spurious change-points when e.g. the true change-points

occur close to each other. This is due to the fact that the BS method begins by

assuming a single change-point exists in the series and, hence, the CUSUM statistic

looks flatter. Especially, the BS method can fail to detect a small change in the

middle of a large segment (Olshen et al. (2004)) which is illustrated in Fryzlewicz

(2014).

Fryzlewicz (2014) proposes a randomised binary segmentation (termed Wild Bi-

nary Segmentation - WBS) where the search for change-points proceeds by calculating

the CUSUM statistic in smaller segments whose length is random. By doing so, it is

expected that CUSUMs with starting and ending points within a short distance from

the change-points will be more alert in identifying them. Ideally, an interval over

which the CUSUM statistic is maximised over a large collection of random intervals

should contain a single change-point. Since the number and location of the change-

points are unknown, Fryzlewicz (2014) suggests to take multiple random intervals

such that with high probability a favourable interval with a single change-point is

found (see Figure 3.1). The binary segmentation procedure is not altered, meaning

that after identifying a change-point the problem is divided into two sub-problems

where for each segment we again test for further change-points. Finally, the com-

putational complexity of the method can be reduced by noticing that the randomly

drawn intervals and their corresponding CUSUM statistics can be calculated once
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at the start of the algorithm. Then, as the algorithm proceeds at a generic segment

[s, e], the obtained statistics can be retrieved making sure the random starting and

end points fall within [s, e].

The main steps of the WBS algorithm modified for the model (3.2) are outlined

below.

• Calculate the CUSUM statistics over a collection of random intervals [sm, em].

The starting and ending points are not fixed but are sampled from a uniform

distribution with replacement making sure that

em ≥ sm +ΔT (3.4)

where ΔT > 0 defines the minimum size of the interval drawn.

Denote with Ms,e the set of all random intervals [sm, em] where m = 1, ...,M

such that [sm, em] ⊆ [s, e]; then the likely location of a change-point is

(m0, b0) = argmax
(m∈Ms,e,b∈sm,...,em−1)

∣∣∣Ỹ b
sm,em/qsm,em

∣∣∣ (3.5)

such that

max

(
em0 − b0

em0 − sm0 + 1
,
b0 − sm0 + 1

em0 − sm0 + 1

)
≤ c� (3.6)

where c� is a constant satisfying c� ∈ [2/3, 1). The conditions (3.4) and (3.5)

do not appear in the original work by Fryzlewicz (2014), but they are necessary

since the assumption of an iid Gaussian process does not hold for the model

(3.2).

• The obtained CUSUM values are rescaled and tested against a threshold ωT .

This will ensure that with a high probability only the significant change-points

will survive. The choice of the threshold ωT is discussed in Section 3.3. If the
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Figure 3.1: A simulated series (top-left) of an AR(1) model yt = φtyt−1 + εt with φt =

(0.5, 0.0) and change-points at {50, 100, ..., 450}. The Wavelet Periodogram at scale −1

(top-right). The CUSUM statistic of scale −1 (bottom-left) as in the BS method; the red

line is the threshold defined in the main algorithm, i.e. C log(T ). The CUSUM statistics

with random sample sizes (bottom-right) as in the WBS method; the red line is the same

threshold.
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obtained CUSUM statistic is significant then the search is continued to the left

and to the right of b0; otherwise the algorithm stops. This step differs from the

original WBS method of Fryzlewicz (2014) in that the CUSUM statistics are

rescaled using qsm,em so that ωT not to depend on σ2
t,T .

3.2 Locally Stationary Wavelets and the Multi-

plicative Model

The LSW process enables a time-scale decomposition of a process and thus permits a

rigorous estimation of the evolutionary wavelet spectrum and the local autocovariance

and can be seen as an alternative to the Fourier based approach for modelling time

series. We refer the reader to Definition 2.4 in Chapter 2 for more discussion on LSW

since here we are interested in non-stationary processes whose second-order structure

is piecewise constant and therefore, we use the definition of the LSW from Cho and

Fryzlewicz (2012): a triangular stochastic array {Xt,T}T−1
t=0 for T = 1, 2, ..., is in a

class of Locally Stationary Wavelet (LSW) processes if there exists a mean-square

representation

Xt,T =

−1∑
i=−∞

∞∑
k=−∞

Wi(k/T )ψi,t−kξi,k (3.7)

with i ∈ −1,−2, ... and k ∈ Z are, respectively, scale and location parameters,

(ψi,0, ..., ψi,L−1) are discrete, real-valued, compactly supported, non-decimated wavelet

vectors with support length L = O(2−i), and the ξi,k are zero-mean, orthonormal,

identically distributed random variables. In this set-up we replace the Lipschitz-

continuity constraint on Wi(z) by the piecewise constant constraint, which allows

us to model a process whose second-order structure evolves in a piecewise constant
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manner over time with a finite but unknown number of change-points. Let Li be the

total magnitude of change-points in W 2
i (z), then the functions Wi(z) satisfy

•
∑−1

i=−∞W 2
i <∞ uniformly in z

•
∑−1

i=−I 2
−iLi = O(log T ) where I = log2 T .

The simplest type of a wavelet system that can be used in formula (3.7) are the

Haar wavelets. Specifically,

ψi,k = 2i/2I0,...,2−j−1−1(k)− 2i/2I2−j−1,...,2−i−1(k)

for i = −1,−2, ..., k k ∈ Z where IA(k) is 1 if k ∈ A and 0 otherwise. Further, small

absolute values of the scale parameter i denote “fine” scales, while large absolute

values denote “coarser” scales. In fine scales the wavelet vectors are most oscillatory

and localised. On the contrary, coarser scales have longer, less oscillatory wavelet

vectors.

Throughout this chapter, we assume that ξi,k are distributed as N (0, 1) and this

leads to Xt,T being Gaussian itself. In addition, the choice of the Haar wavelets

is natural given that the second-order structure of the non-stationary processes we

consider in this chapter evolves over time in a piecewise constant manner.

Of main interest in the LSW set-up is the Evolutionary Wavelet Spectrum (EWS)

Si(z) = W 2
i (z), i = −1,−2, ..., defined on the rescaled-time interval z ∈ [0, 1]. The

estimation of the EWS is done through the wavelet periodogram (Nason et al. (2000))

and its definition is given below:
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Definition: Let Xt,T be an LSW process constructed using the wavelet system

ψ. The triangular stochastic array

I
(i)
t,T =

∣∣∣∣∣∑
s

Xs,Tψi,s−t

∣∣∣∣∣
2

(3.8)

is called the wavelet periodogram of Xt,T at scale i.

We also recall two further definitions from Nason et al. (2000): the autocorrelation

wavelets Ψi(τ) =
∑

k ψi,kψi,k−τ and the autocorrelation wavelet inner product matrix

Ai,k =
∑

τ Ψi(τ)Ψk(τ). Fryzlewicz and Nason (2006) show that EI
(i)
t,T is “close” (in

the sense that the integrated squared bias converges to zero) to the function βi(z) =∑−1
j=−∞ Sj(z)Ai,j , a piecewise constant function with at most N change-points, whose

set is denoted by N . Every change-point in the autocovariance structure of the time

series results in a change-point in at least one of the βi(z); therefore, detecting a

change-point in the wavelet periodogram implies a change-point in the autocovariance

structure of the process.

In addition, note that each wavelet periodogram ordinate is a squared wavelet

coefficient of a standard Gaussian time series and it satisfies

I
(i)
t,T = EI

(i)
t,TZ

2
t,T (3.9)

where {Zt,T}T−1
t=0 are autocorrelated standard normal variables (or equivalently the

distribution of the squared wavelet coefficient I
(i)
t,T is that of a scaled χ2

1 variable).

Then, the quantities I
(i)
t,T and EI

(i)
t,T can be seen as special cases of Y 2

t,T and σ2
t,T

respectively of the multiplicative model (3.2). To enable the application of the model

(3.9) in this context, we assume the following condition:

(A0): σ2
t,T is deterministic and “close” to a piecewise constant function σ2(t/T )

(apart from intervals around the discontinuities in σ2(t/T ) which have length at most
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K2−i) in the sense that T−1
∑T−1

t=0 |σ2
t,T − σ2(t/T )|2 = o(log−1 T ) where the rate of

convergence comes from the integrated squared bias between βi(t/T ) and EI
(i)
t,T (see

Fryzlewicz and Nason (2006)).

3.3 The Algorithm

In this section we present the WBS algorithm within the framework of the LSW

model. First, we form the following CUSUM-type statistic

Y
b(i)
sm,em =

√
em − b

n(b− sm + 1)

b∑
t=sm

I
(i)
t,T −

√
b− sm + 1

n(em − b)

em∑
t=b+1

I
(i)
t,T (3.10)

where the subscript (.)m denotes an element chosen randomly from the set {1, ..., T}

as in (3.4), n = em − sm + 1 and I
(i)
t,T are the wavelet periodogram ordinates at scale

i that form the multiplicative model I
(i)
t,T = EI

(i)
t,TZ

2
t,T discussed in Section 3.2. The

likely location of a change-point b0 is then given by (3.5).

The following stages summarise the recursive procedure:

Stage I: Start with s = 1 and e = T .

Stage II: Examine whether hm0 = |Yb0
sm0 ,em0

|/qsm0 ,em0
> ωT = C log(T ) where

qsm0 ,em0
=
∑em0

t=sm0
I
(i)
t,T/nm0 , nm0 = em0 − sm0 + 1 and m0, b0 as in (3.5); C is a

parameter that remains constant and only varies between scales. In other words,

perform hard-thresholding on hm0 , i.e. h
′
m0

= hm0I(hm0 > ωT ) where I(.) is 1 if the

inequality is satisfied and 0 otherwise.

Stage III: If h′m0
> 0, then add b0 to the set of estimated change-points; other-

wise if h′m0
= 0 stop the algorithm.

Stage IV: Repeat stages II-III to each of the two segments (s, e) = (1, b0) and

(s, e) = (b0 + 1, T ) if their length is more than ΔT .
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The choice of parameters C and ΔT is described in Section 3.3.4. We note that in

addition to the random intervals [sm, em] we also include intoMs,e the segment [s, e].

This implies that the BS method is also taken into consideration when calculating

the CUSUM statistic and it improves the method in two directions i. even with a

small value of M the hope is that the performance of the BS will improve and ii.

the BS has better performance when no or only one change-point is present in the

current interval.

Further, we expect that finer scales will be more useful in detecting the number

and locations of the change-points in EI
(i)
t,T . This is because as we move to coarser

scales the autocorrelation within I
(i)
t,T becomes stronger and the intervals on which a

wavelet periodogram sequence is not piecewise constant become longer. Hence, we

select the scale i < −I� where I� = �α log log T � and α ∈ (0, 3λ] for λ > 0 such that

the consistency of our method is retained.

In stage II, we rescale the statistic hm0 before we test it against the threshold.

This division plays the role of stabilising the variance and, therefore threshold ωT

does not depend on σ2(z) and can be selected more easily.

Finally, we notice that Horváth et al. (2008) propose a similar type of CUSUM

statistic which does not require an estimate of the variance of a stochastic process

by using the ratio of the maximum of two local means. However, the authors apply

the method to detect a single change-point in the mean of a stochastic process under

independent, correlated or heteroscedastic error settings.
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3.3.1 Technical assumptions and consistency

In this section we present the consistency theorem of the WBS algorithm for the total

number N and locations of the change-points 0 < η1 < ... < ηN < T − 1 with η0 = 0

and ηN+1 = T . To achieve consistency, we impose the following assumptions:

(A1): σ2(t/T ) is bounded from above and away from zero, i.e. 0 < σ2(t/T ) <

σ� <∞ where σ� ≤ maxt,T σ
2(t/T ). Further, the number of change-points N in (3.2)

is unknown and allowed to increase with T i.e. only the minimum distance between

the change-points can restrict the maximum number of N .

(A2): {Zt,T}T−1
t=0 is a sequence of standard Gaussian variables and the autocor-

relation function ρ(τ) = supt,T |cor(Zt,T , Zt+τ,T )| is absolutely summable, that is it

satisfies ρ1∞ <∞ where ρp∞ =
∑

τ |ρ(τ)|p.

(A3): The distance between any two adjacent change-points satisfies minr=1,...,N+1 |ηr−

ηr−1| ≥ δT , where δT ≥ C log2 T for a large enough C.

(A4): The magnitude of the change-points satisfy inf1≤r≤N |σ((ηr + 1)/T ) −

σ(ηr/T )| ≥ σ� where σ� > 0.

(A5): ΔT � δT where ΔT as defined in (3.4).

Theorem 1 Let Y 2
t,T follow model (3.2), and suppose that Assumptions (A1)-

(A5) hold. Denote the number of change-points in σ2(t/T ) as N and the locations

of those change-points as η1, ..., ηN . Let N̂ and η̂1, ..., η̂N be the number and locations

of the change-points (in ascending order), respectively, estimated by the Wild Binary

Segmentation algorithm. There exist two constants C1 and C2 such that if C1 log T ≤

ωT ≤ C2

√
δT , then P(ZT )→ 1, where

ZT = {N̂ = N ; max
r=1,...,N

|η̂r − ηr| ≤ C log2 T}
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for a certain C > 0, where the guaranteed speed of convergence of P(ZT ) to 1 is no

faster than Tδ−1
T (1 − δ2T (1 − c̄)2T−2/9)M where M is the number of random draws

and c̄ = 3− 2/c� for c� as in (3.6).

For the purpose of comparison we note that the rate of convergence for the

estimated change-points obtained for the BS method by Cho and Fryzlewicz (2013)

is of order O(
√
T log(2+ϑ) T ) and O(log(2+ϑ) T ) for any positive constant ϑ when δT is

of order T 3/4 and T respectively. In the WBS setting, the rate is square logarithmic

when δT is of order log2 T , hence the improvement is significant. In addition, the

lower threshold is always of order log T regardless of the minimum space between the

change-points.

A natural question that arises at this point is whether improved consistency can

be achieved by reconsidering the output of the BS algorithm. To be more specific,

let us assume that the BS algorithm identifies N̂ change-points instead of N where

N̂ < N . With the reduced set, the BS algorithm can be re-applied to each of the N̂+1

segments. However, it is not guaranteed that the change-points will be recovered with

high probability. To see that, consider, for example, the occasion where Assumption

(A3) is satisfied. Then, at the start of the BS algorithm no change-points will be

detected and, hence, a further improvement is not feasible at all. This is where WBS

achieves consistency over BS.

We also elaborate on the choice of the minimum number of random intervals M

required to ensure consistency. From Fryzlewicz (2014) and by taking into consider-

ation the “balanceness” parameter c̄ we have that

M ≥ 9T 2

δ2T (1− c̄)
log(T 2δ−1

T ).
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Hence, when δT = O(T ) only a small (logarithmic) number of random draws is

necessary. However, a larger M is needed when δT is e.g. square logarithmic. In

addition, to avoid the restriction of balanceness between the change-points, as in

the BS method (see Cho and Fryzlewicz (2012) and Cho and Fryzlewicz (2013)), we

assume that sm and em are randomly drawn symmetrically around a certain change-

point. To accomplish this a balanced draw is required so if, for example, we choose

c� ≈ 1 (i.e. an unbalanced draw) then M increases very fast.

3.3.2 Simultaneous across-scale post-processing

Theorem 1 covers the case of the multiplicative model (3.2). We now consider change-

point detection for the function W 2
i of the full model (3.7). Recall that any change-

points in the piecewise constant functions Wi(z) correspond to change-points in the

autocovariance function cT (z, τ) = cov(X�zT �,T , X�zT �+τ,T ), τ = 0, 1, ... of Xt,T which

in turn correspond to the change-points in EI
(i)
t,T . Therefore, we are required to

examine I
(i)
t,T across scales i = −1,−2, ...,−I� in order to detect the change-points

and to accomplish this we propose two methods.

Method 1: The search for further change-points in each interval (sm, em) pro-

ceeds to the next scale i− 1 only if no change-points are detected at scale i on that

interval. It therefore ensures that the finest scales are preferred (since change-points

detected at the finest scales are likely to be more accurate) and only moves to coarser

if necessary. Cho and Fryzlewicz (2012) use a similar technique to combine across

scales change-points, but involving an extra parameter. The role of this parameter

is to create groups of estimated change-points which are close to each other. Then,

only one change-point (detected at the finest scale) from each of these groups will
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survive the post-processing. Hence, their method will be used as a benchmark for

our first type of across-scale post-processing.

Method 2: Alternatively, we suggest a method that simultaneously joins the

estimated change-points across all the scales such that all the information from every

scale is combined making it more likely for the true change-points and not spurious

ones to exceed the threshold. Namely, motivated by Cho and Fryzlewicz (2013) who

propose an alternative aggregation method to these of Groen et al. (2011) in order to

detect change-points in the second order structure of a high-dimensional time series

we define the following statistic

Y
thr
t =

−1∑
i=−I�

Y (i)
t I(Y (i)

t > ω
(i)
T ) for i = −1, ...,−I� (3.11)

where Y (i)
t = |Yb(i)

sm,em |/q(i)sm,em . This statistic differs from that of Cho and Fryzlewicz

(2013) in that it applies across the scales i = −1,−2, ...,−I� of a univariate time

series, whereas Cho and Fryzlewicz (2013) calculate their statistic on the scales across

many time series.

The algorithm is identical to the algorithm in Section 3.3 except for replacing

(3.10) with (3.11). In addition, if the obtained Ythr
t > 0 there is no need to test

further for the significance of b0.

Below, we present the consistency theorem for the across-scale post-processing

algorithm:

Theorem 2 Let Xt follow model (3.7), and suppose that Assumptions (A1)-(A5)

for σ2(t/T ) hold for each βi(z) and i = −1,−2, ..., I�. Denote the number of change-

points in βi(z) as N and the locations of those change-points as θ1, ..., θN . Let N̂

and θ̂1, ..., θ̂N be the number and locations of the change-points (in ascending order),

respectively, estimated by the across-scale post-processing method 1 or 2. There exist
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two constants C3 and C4 such that if C3 log T ≤ ωT ≤ C4δT , then P(UT )→ 1, where

UT = {N̂ = N ; max
r=1,...,N

|θ̂r − θr| ≤ C ′ log2 T}

for a certain C ′ > 0, where the guaranteed speed of convergence is the same as in

Theorem 1.

3.3.3 Post-processing

In order to control the number of change-points estimated from the WBS algorithm

and to reduce the risk of over-segmentation we propose a post-processing method

similar to Cho and Fryzlewicz (2012) and Inclan and Tiao (1994). More specifically,

we compare every change-point against the adjacent ones using the CUSUM statistic

making sure that (3.6) is satisfied. That is, for a set N̂ = {θ̂0, ..., θ̂N+1} where θ̂0 = 0

and θ̂N+1 = T we test whether θ̂r satisfies

Y
thr
t =

−1∑
i=−I�

Y (i)
t I(Y (i)

t > ω
(i)
T ) > 0 for i = −1, ...,−I�

where Y (i)
t = |Yθ̂r(i)

θ̂r−1,θ̂r+1
|/|q(i)

θ̂r−1,θ̂r+1
| and

max

(
θ̂r+1 − θ̂r

θ̂r+1 − θ̂r−1 + 1
,
θ̂r − θ̂r−1 + 1

θ̂r+1 − θ̂r−1 + 1

)
≤ c�. (3.12)

If Ythr
t = 0 then change-point θ̂r is temporarily eliminated from set N̂ . In the next

run, when considering change-point θ̂r+1, the adjacent change-points are θ̂r−1 and

θ̂r+2. When the post-processing finishes its cycle all temporarily eliminated change-

points are reconsidered using as adjacent change-points those that have survived the

first cycle. It is necessary for θ̂r to satisfy (3.12) with its adjacent estimated change-

points θ̂r−1 and θ̂r+1, otherwise it is never eliminated. The algorithm is terminated

when the set of change-points does not change.
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3.3.4 Choice of threshold and parameters

In this section we present the choices of the parameters involved in the algorithms.

From Theorems 1 and 2 we have that the threshold ωT includes the constant C(i)

which varies between the scales. The values of C(i) will be the same for all the methods

presented, either BS/WBS or the Methods 1 and 2 in Section 3.3.2. Therefore, we

can use the thresholds by Cho and Fryzlewicz (2012) who conduct experiments to

establish the value of the threshold parameter under the null hypothesis of no change-

points such that when the obtained statistic exceeds the threshold the null hypothesis

is rejected. However, in that work the threshold is of the form τ0T
ϑ0
√
log T where

ϑ0 ∈ (1/4, 1/2) and τ0 > 0 is the parameter that changes across scales. For that

reason, we repeat the experiments which are described below.

We generate a vector X ∼ N (0,Σ) where the covariance matrix Σ = (σκ,κ′)
T
κ,κ′=1

and σκ,κ′ = ρ|κ−κ
′|. Then we find v that maximises (3.10). The following ratio

C
(i)
T = Y

(i)
v (log T )−1

(
T∑
t=1

I
(i)
t,T

)−1

T

gives us an insight into the magnitude of parameter C(i). We repeat the experiment

for different values of ρ and for every scale i we select C(i) as the 95% quantile. The

same values are used for the post-processing method explained in Section 3.3.3. Our

results indicate that C(i) tends to increase as we move to coarser scales due to the

increasing dependence in the wavelet periodogram sequences.

Further, based on empirical evidence we select the scale I� by setting λ = 0.7.

In stage III of the algorithm we mentioned that the procedure is terminated when

either the CUSUM statistic does not exceed a certain threshold or the length of the

respective segment is ΔT . This also defines the minimum length of a favourable
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draw from (3.4). We choose ΔT to be of the same order as δT since this is the lowest

permissible order of magnitude according to (A5). Practically, we find that the choice

ΔT = �log2 T/3� works well. Finally, we set c� = 0.75.

3.4 Simulation study

We present a set of simulation studies to assess the performance of our methods. In

all the simulations we assume sample sizes to be either 256 or 1024 over 100 iterations.

For comparison we also report the performance of the method by Cho and Fryzlewicz

(2012) - henceforth CF - using the default values specified in their paper. BS1 and

BS2 refer to the Method 1 and Method 2 of aggregation (as described in Section 3.3.2)

using the BS technique, respectively. WBS1 and WBS2 refer to the Method 1 and

Method 2 of aggregation (as in Section 3.3.2) using the Wild Binary Segmentation

technique, respectively.

3.4.1 Models with no change-points

We simulate stationary time series with innovations εt ∼ N (0, 1) and we report the

number of occasions (out of 100) the methods incorrectly rejected the null hypothesis

of no change-points. The models S1-S7 (Table 3.1) we consider here are taken from

Nason (2013a).

The results of Table 3.1 indicate our methods’ good performance over that of Cho

and Fryzlewicz (2012) apart from models S3 and S7 where all methods incorrectly

reject the null hypothesis frequently in many occasions. A visual inspection of an

AR(1) process with φ = −0.9 could confirm that this type of process exhibits a “clus-
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Table 3.1: Stationary processes results. For all the models the sample size is 1024 and there

are no change-points. Figures show the number of occasions the methods detected change-

points with the universal thresholds C(i) obtained as described in Section 3.3.4. Figures in

brackets are the number of occasions the methods detected change-points with the thresholds

C(i) obtained as described in Section 3.4.1.

Model BS1 WBS1 BS2 WBS2 CF

S1: iid standard normal 1 [0] 3 [2] 0 [0] 1 [0] 4

S2: AR(1) with parameter 0.9 3 [1] 5 [1] 1 [1] 5 [1] 9

S3: AR(1) with parameter −0.9 58 [0] 93 [0] 46 [0] 48 [5] 79

S4: MA(1) with parameter 0.8 2 [3] 7 [4] 3 [3] 1 [0] 7

S5: MA(1) with parameter −0.8 2 [0] 4 [2] 4 [0] 0 [0] 7

S6: ARMA(1,0,2) with AR= {−0.4} and MA= {−0.8, 0.4} 8 [0] 27 [0] 8 [0] 8 [0] 25

S7: AR(2) with parameters 1.385929 and −0.9604 88 [3] 99 [4] 88 [3] 88 [5] 96

tering behaviour” which mimics changing variance. Hence, the process is interpreted

as non-stationary by the wavelet periodogram resulting in erroneous outcomes. A

similar argument is valid for S7 model. To correct that limitation, parameter C(i)

should be chosen with care. Higher values will ensure that the null hypothesis is

not rejected frequently. This is achieved by not using universal thresholds (as shown

in Section 3.3.4) but calculating them for every instance. Specifically, given a time

series yt we fit an AR(p) model. Then we generate 100 instances of the same length

and with the same AR(p) coefficients. Similarly with Section 3.3.4 we select C(i)

as the 95% quantile. This procedure is more computationally intensive and imposes

a parametric assumption about the underlying processes but improves the method

significantly; see the figures in brackets (Table 3.1).
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3.4.2 Non-stationary models

We now examine the performance of our method for a set of non-stationary models by

using and extending the examples from Cho and Fryzlewicz (2012). Since the WBS

method has improved rates of convergence new simulation results are presented which

assess how close to the real change-points the estimated ones are. For this reason

we report the total number of change-points identified within �5% · T � from the real

ones. The results favour WBS methods even more when �2.5% · T � distances are

considered and, hence, omitted for brevity.

The accuracy of a method should be also judged in parallel with the total number

of change-points identified. We propose a test that tries to accomplish this. Assuming

that we define the maximum distance from a real change-point η as dmax, an estimated

change-point η̂ is correctly identified if |η − η̂| ≤ dmax (here within 5% of the sample

size). If two (or more) estimated change-points are within this distance then only one

change-point which is the closest to the real change-point is classified as correct. The

rest are deemed to be false, except if any of these are close to another change-point.

An estimator performs well when the hit ratio HR is closer to 1

HR =
#correct change-points identified

max(N, N̂)
.

By using the term max(N, N̂) we aim to penalise cases where, for example, the

estimator correctly identifies a certain number of change-points all within the distance

dmax but N̂ < N . It also penalises the estimator when N̂ > N and all N̂ change-

points are within distance dmax.
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3.4.2.1 Large sample size simulation study

We proceed by assessing the performance of the methods when T = 1024 using the

following models. Models A and C are taken from Davis et al. (2006) and models B,

E and F from Cho and Fryzlewicz (2012). All the results are shown in Table 3.2.

Model A: A non-stationary process that includes one AR(1) and two AR(2)

processes with two clearly observable change-points

yt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.9yt−1 + εt, εt ∼ N (0, 1) for 1 ≤ t ≤ 512

1.68yt−1 − 0.81yt−2 + εt, εt ∼ N (0, 1) for 513 ≤ t ≤ 768

1.32yt−1 − 0.81yt−2 + εt, εt ∼ N (0, 1) for 769 ≤ t ≤ 1024

Both BS and WBS detect change-points with high accuracy. The two procedures

over-segmented the process less than 30% of the time. CF tended to detect spurious

change-points mainly towards the end of the series.

Model B: A non-stationary process with two less clearly observable change-points

yt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.4yt−1 + εt, εt ∼ N (0, 1) for 1 ≤ t ≤ 400

−0.6yt−1 + εt, εt ∼ N (0, 1) for 401 ≤ t ≤ 612

0.5yt−1 + εt, εt ∼ N (0, 1) for 613 ≤ t ≤ 1024

All methods do well in the estimation of this type of model. Approximately the

same number of change-points within 5% are detected even though BS and WBS

were more conservative in the total number of change-points. This results in the

improved hit ratio.
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Model C: A non-stationary process with a short segment at the start

yt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.75yt−1 + εt, εt ∼ N (0, 1) for 1 ≤ t ≤ 50

−0.5yt−1 + εt, εt ∼ N (0, 1) for 51 ≤ t ≤ 1024

In this type of model both BS2 and CF perform well compared with the BS1,

WBS1 and WBS2 methods. Over WBS it is expected that binary segmentation

methods will perform better due to the fact that the latter starts its search assuming

a single change-point. Hence, the CUSUM statistic will take its maximum value when

the starting and ending point is s = 1 and e = 1024 respectively, which we observed

to happen less frequently for the WBS methods.

Model D: A non-stationary process similar to model B but with the two change-

points at a short distance from each other.

In this model, the two change-points occur very close to each other i.e. (400, 470)

instead of (400, 612). The CF method, BS1 and BS2 do not perform well as in half

of the cases the two change-points were detected. On the contrary, the WBS1 and

WBS2 methods achieved high hit ratio (almost double of that of the BS methods)

and in less than 8% of the cases did not detect any change-point.

Model E: A highly persistent non-stationary process with time-varying variance

yt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.399yt−1 − 0.4yt−2 + εt, εt ∼ N (0, 0.8) for 1 ≤ t ≤ 400

0.999yt−1 + εt, εt ∼ N (0, 1.22) for 401 ≤ t ≤ 750

0.699yt−1 + 0.3yt−1 + εt, εt ∼ N (0, 1) for 751 ≤ t ≤ 1024
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The CF and BS1 methods perform well since they detect most of the change-

points within 5% distance from the real ones. From our simulations we noticed

that in most cases the two change-points were found in the finest scale (i = −1).

The aggregation Method 2 does not improve the estimation since its purpose is to

simultaneously combine the information from different scales not just from a single

one. On the other hand, the CF method and Method 1 favour change-points detected

in the finest scales and this is the reason for their good performance.

Model F: A piecewise constant ARMA(1,1) process

yt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.7yt−1 + εt + 0.6εt−1, for 1 ≤ t ≤ 125

0.3yt−1 + εt + 0.3εt−1, for 126 ≤ t ≤ 532

0.9yt−1 + εt, for 533 ≤ t ≤ 704

0.1yt−1 + εt − 0.5εt−1, for 704 ≤ t ≤ 1024

The first change-point is the least apparent and is left undetected in most cases

when applying the CF method. Our methods are capable of capturing this point

more frequently while in almost double of the cases they find the correct number of

change-points within 5% of their real positions.

Model G: A near-unit-root non-stationary process with time-varying variance

yt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.999yt−1 + εt, εt ∼ N (0, 1) for 1 ≤ t ≤ 200, 401 ≤ t ≤ 600 and 801 ≤ t ≤ 1024

0.999yt−1 + εt, εt ∼ N (0, 1.52) for 201 ≤ t ≤ 400 and 601 ≤ t ≤ 800

In this near-unit-root process there are 4 change-points in its variance. All binary
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segmentation methods do not perform well as they often miss the middle change-

points. Both WBS1 and WBS2 manage to detect most of the change-points achieving

a hit ratio almost three times higher than BS2. In almost 70% of the occasions WBS2

detects at least 4 change-points.

Model H: A non-stationary process similar to model F but with the three change-

points at a short distance from each other.

In this model the three change-points occur close to each other, i.e. N =

(125, 325, 550). The first two change-points fail to be detected by the CF and BS

methods in many instances. By contrast, WBS2 performs better in this case by

identifying them more often. This results in a higher hit ratio.

Model I: A non-stationary AR process with many changes within close distances.

We simulate instances with 5 change-points occurring at uniformly distributed

positions. We allow the distances to be as small as 30 and not larger than 100.

In this scenario, CF correctly identifies more than 4 change-points in 15% in-

stances while BS1 and BS2 in 15% and 16% respectively. Again, the WBS methods

do well in revealing the majority of the change-points and in many cases close to the

real ones.

3.4.2.2 Small sample size simulation study

We proceed by assessing the performance of the methods when T = 256 using the

following models. These models are modifications of the models discussed above

except Cs which is taken from Killick et al. (2013). All the results are shown in Table

3.3.

Model As: A non-stationary process similar to model A
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Table 3.2: Non-stationary processes results for T = 1024. Panel I shows the number of

occasions a method detected that number of change-points within a distance of 5% from the

real ones. Bold: the method with the highest hit ratio or within 10% from the highest. Panel

II shows the percentage of occasions a method detected that number of change-points. True

number of change-points is in bold.

Model
BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 2 0 1 0 3 0 0 0 0 0 39 12 35 21 6

1 29 15 16 21 29 11 8 4 9 7 61 88 65 79 94

2 69 85 83 79 68 89 92 96 91 93 - - - - -

Hit ratio 0.768 0.850 0.817 0.808 0.712 0.928 0.921 0.966 0.928 0.865 0.580 0.860 0.600 0.746 0.853

Model
BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 36 52 12 11 48 6 12 8 11 1 2 0 0 0 1

1 58 14 9 11 12 40 42 59 53 40 18 6 5 3 7

2 6 34 79 78 40 54 46 33 36 59 32 32 22 24 45

3 - - - - - - - - - - 48 62 73 73 47

Hit ratio 0.428 0.403 0.835 0.835 0.436 0.712 0.649 0.610 0.611 0.743 0.744 0.847 0.890 0.894 0.765

Model
BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 58 60 9 11 39 0 0 2 2 0 0 2 1 0 0

1 11 11 13 6 20 40 33 23 16 29 39 33 8 8 39

2 20 21 20 20 30 38 37 38 40 57 16 15 8 7 27

3 6 5 15 22 5 22 30 37 42 14 23 27 20 18 25

4 5 3 43 41 6 - - - - - 14 11 22 18 3

5 - - - - - - - - - - 8 12 41 49 6

Hit ratio 0.222 0.200 0.671 0.686 0.297 0.605 0.654 0.693 0.732 0.603 0.472 0.496 0.745 0.779 0.419

Model
BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 0 0 0 0 0 0 0 0 0 0 20 9 23 10 2

1 8 0 0 0 0 0 0 0 0 1 67 86 66 80 81

2 68 76 74 70 65 95 88 96 91 70 12 5 7 7 16

>2 24 24 26 30 35 5 12 4 9 29 1 0 4 3 1

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Model
BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 44 42 8 7 38 1 0 0 0 0 0 0 0 0 0

1 15 18 5 4 17 19 22 28 26 19 15 2 0 1 1

2 39 38 87 89 38 69 69 64 66 65 15 12 15 13 19

3 2 2 0 0 7 10 8 7 8 15 65 83 83 83 65

>3 0 0 0 0 0 1 1 1 0 1 5 3 2 3 15

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Model
BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 58 59 9 11 38 0 0 0 0 0 0 0 0 0 0

1 7 7 5 2 16 24 21 14 13 12 33 30 7 7 22

2 24 23 25 18 32 36 28 28 29 51 12 10 5 5 28

3 2 2 0 1 3 39 50 54 55 30 24 24 15 16 24

4 9 9 59 66 11 1 1 4 3 7 16 20 13 9 11

>4 0 0 2 2 0 0 0 0 0 0 15 16 60 63 15
Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Panel I

G H I

Number of Change-points within 5%

G H I

Number of Change-points

A B C

Number of Change-points

D E F

Number of Change-points

D E F

Panel II

Number of Change-points within 5% (Panel I)

A B C

Number of Change-points within 5%
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In this model the change-points occur in positions (128, 188). All methods per-

form similarly.

Model Bs: A non-stationary process similar to model B

In this model the change-points occur in positions (100, 153). WBS1 and WBS2

do well in this example achieving a hit ratio almost double than that of the rest

methods. In more than 67% of the occasions they detected two change-points without

over-segmenting the series.

Model Cs: A piecewise constant MA process

yt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εt + 0.8εt−1, εt ∼ N (0, 1) for 1 ≤ t ≤ 128

εt + 1.68εt−1 − 0.81εt−2, εt ∼ N (0, 1) for 129 ≤ t ≤ 256

All our methods outperform the CF method and, in particular, WBS2 is more

accurate in detecting the single change-point in 87 occasions. In addition, even

though a single change-point is present in the time series WBS methods do better in

this example.

Model Ds: A non-stationary process similar to model Bs but with the two

change-points at a short distance from each other.

In this model, the two change-points occur very close to each other i.e. (100, 135)

and, hence, is a harder version of model Bs. Due to the short distance between

the change-points the WBS methods do well here detecting both change-points in at

least 50% of the occasions and in most cases within 5% from the real ones. On the

contrary, CF, BS1 and BS2 fail to detect any change-points in more than 70% of the

occasions even though the former performed slightly better.
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Model Es: A non-stationary process similar to model Cs but with two change-

points and at a short distance from each other.

In this model, the two change-points occur very close to each other i.e. (85, 120).

The WBS methods achieve a high hit ratio and WBS1 detected both change-points

correctly in 85% of the occasions, more than double from BS1 which performed the

worst.

Model Fs: A non-stationary AR process with many changes within close dis-

tances.

We simulate instances with 4 change-points occurring at uniformly distributed

positions. We allow the distances to be as small as 15 and not larger than 80.

Again, the WBS methods do well in revealing most of the change-points and with

a good accuracy. This resulted in the higher hit ratio.

3.5 Applications

3.5.1 US Gross National Product series (GNP)

We obtain the GNP from the Federal Reserve Bank of St. Louis web page1. The

seasonally adjusted and quarterly data is expressed in billions of dollars and spans

the period from 1947:1 to 2013:1 but we only use the last 256 observations, i.e. from

1949:4. On the left panel of Figure 3.2 one can see the logarithm of the GNP series. As

in Shumway and Stoffer (2011) we only examine the first difference of the logarithm

of the GNP (also called the growth rate) since there is an obvious linear trend. From

the right panel of Figure 3.2 which illustrates the growth rate it is visually clear that

1See http://research.stlouisfed.org/fred2/series/GNP
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Table 3.3: Non-stationary processes results for T = 256. Panel I shows the number of

occasions a method detected that number of change-points within a distance of 5% from the

real ones. Bold: the method with the highest hit ratio or within 10% from the highest. Panel

II shows the percentage of occasions a method detected that number of change-points. True

number of change-points is in bold.

Model
BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 30 22 26 25 28 64 65 31 33 67 17 19 16 13 17

1 67 73 68 70 61 14 14 24 24 12 83 81 84 87 83

2 3 5 6 5 11 22 21 45 43 21 - - - - -

Hit ratio 0.363 0.413 0.396 0.400 0.411 0.286 0.280 0.570 0.550 0.265 0.810 0.790 0.835 0.865 0.775

Model
BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 85 85 43 47 82 45 44 5 7 44 47 46 24 25 53

1 4 4 6 5 6 17 16 10 16 17 36 36 34 40 36

2 11 11 51 48 12 38 40 85 77 39 16 16 19 19 11

3 - - - - - - - - - - 1 2 11 7 0

4 - - - - - - - - - - 0 0 12 9 0

Hit ratio 0.126 0.130 0.540 0.505 0.150 0.458 0.473 0.896 0.843 0.475 0.177 0.185 0.382 0.337 0.145

Model
BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 2 2 3 2 2 57 58 27 29 57 0 0 0 0 0

1 82 76 80 75 69 7 7 2 3 11 96 96 99 99 88

2 15 21 16 23 28 35 35 71 67 30 4 4 1 1 12

>2 1 1 1 0 1 1 0 0 1 2 0 0 0 0 0

Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Model
BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF BS1 BS2 WBS1 WBS2 CF

0 75 75 41 43 70 44 44 5 6 43 27 26 17 20 23

1 13 13 4 5 18 10 8 4 4 11 44 44 35 34 46

2 11 12 55 52 12 44 46 90 88 46 26 26 21 27 30

3 1 0 0 0 0 2 2 1 2 0 2 2 12 8 0

>3 0 0 0 0 0 0 0 0 0 0 1 2 15 11 1
Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Panel I

Panel II

Ds Es Fs

Number of Change-points within 5%

As Bs Cs

Number of Change-points within 5%

Ds Es Fs

Number of Change-points

As Bs Cs

Number of Change-points
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Figure 3.2: Natural logarithm of the GNP series (left) and its first difference (right). The

black, green and red vertical lines are the change-points as estimated by BS2, CF and WBS2

respectively.

the GNP series exhibits less variability in the right side. We are interested in finding

whether our method is capable of spotting this change and/or possibly others.

Applying our method i.e. BS2 and WBS2 (BS1 and WBS1 produced identical

results) we find that BS2 detects two change-points η̂ = {133, 222} while the WBS2

detects three at positions {18, 131, 230}. For the sake of comparison, CF detects two

possible change-points i.e. η̂ = {134, 234}. The acf graphs in Figure 3.3 confirm

that there are changes in the autocovariance structure for all the possible sets of

change-points.

Change-point 18 i.e. 1953(3) almost exactly coincides with a peak of the GNP

growth as decided by the Business Cycle Dating Committee of the National Bureau

of Economic Research where the official date is July 1953 (note that cycles do not
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necessarily overlap with the quarterly publications of the GNP). In addition, change-

points 131, 133 and 134 lie within a cycle that peaks in January 1981 and has a trough

in November 1982. This cycle corresponds to the start of the Great Moderation

(around 1980s), a period that experienced more efficient monetary policy and shocks

of small magnitude, see Blanchard and Simon (2001), Stock and Watson (2003),

Bernanke (2004) and Clark (2009) among others. Finally, all three methods detected

a change-point towards the end of the series - 222, 230, 234 which are dated 2004(3),

2006(3) and 2007(3) respectively. According to Clark (2009) the Great Moderation

had reversed and the decline is offset by negative growth rates due to the recent

economic recession2.

3.5.2 Infant Electrocardiogram Data (ECG)

We apply the three methods (CF, BS2, WBS2) to the ECG data of an infant found

in the R package wavethresh (Nason (2013b)). This is a popular example of a non-

stationary time series and it has been analysed in e.g. Nason et al. (2000). The

local segments of possible stationarity indicate the sleep state of the infant and it

is classified on a scale from 1 to 4, see the caption to Figure 3.4. The same figure

plots the time series with the respective estimated change-points (the methods were

applied on the first difference so that its mean is approximately zero). All methods

identify most of the sleep states and, notably, WBS2 detects the abrupt change of

short duration (quite sleep-awake-quiet sleep) towards the end of the series.

2It should be mentioned that other econometric techniques return multiple change-points, see

Hamilton (1989) for an early attempt to examine GNP for the identification of “contraction” and

“expansion” states. However, our findings are most related to the studies mentioned in the text.
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Figure 3.3: The graphs are the acfs for the four periods discussed in the text for the change-

points estimated by WBS2.
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Figure 3.4: Plot of BabyECG data. The top blue, middle red and bottom purple vertical

lines are the change-points as estimated by CF, WBS2 and BS2 respectively. The horizontal

dotted line represents the sleep states i.e. 1 = quiet sleep, 2 = quiet-to-active sleep, 3 =

active sleep, 4 =awake.
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3.6 Proofs

Proof of Theorem 1

We notice that the proof of consistency is based on the following multiplicative

model

Ỹt,T = σ(t/T )2Z2
t,T t = 0, ..., T − 1.

We define the following two CUSUM statistics

Y
b
s,e =

√
e− b

n(b− s+ 1)

b∑
t=s

Ỹt,T −
√
b− s+ 1

n(e− b)

e∑
t=b+1

Ỹt,T

and

S
b
s,e =

√
e− b

n(b− s + 1)

b∑
t=s

σ2(t/T )−
√
b− s+ 1

n(e− b)

e∑
t=b+1

σ2(t/T )

where n = e− s+ 1, the size of the segment defined by (s, e).

Yb
s,e can be seen as the inner product between sequence {Ỹt,T}t=s,...,e and a vector

ψbs,e whose elements ψbs,e,t are constant and positive for t ≤ b and constant and negative

for t > b such that they sum to zero and sum to one when squared. Similarly for Sbs,e.

Let s, e satisfy ηp0 ≤ s < ηp0+1 < ... < ηp0+q < e ≤ ηp0+q+1 for 0 ≤ p0 ≤ N − q.

The inequality will hold at all stages of the algorithm until no undetected change-

points are remained. We impose at least one of the following conditions

s < ηp0+r′ − CδT < ηp0+r′ + CδT < e, for some 1 ≤ r′ ≤ q (3.13)

{(ηp0+1 − s) ∧ (s− ηp0)} ∨ {(ηp0+q+1 − e) ∧ (e− ηp0+q)} ≤ CεT (3.14)

where ∧ and ∨ denote the minimum and maximum operators, respectively. These

inequalities will hold throughout the algorithm until no further change-points are

detected.
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We define symmetric intervals ILr and IRr around change-points such that for

every triplet {ηr−1, ηr, ηr+1}

ILr =

[
ηr −

2

3
δrmin, ηr −

1

3
δrmin (1 + c̄)

]

and

IRr =

[
ηr +

1

3
δrmin (1 + c̄) , ηr +

2

3
δrmin

]
for r = 1, ..., N + 1

where δrmin = min{ηr−ηr−1, ηr+1−ηr} and c̄ = 3− 2
c�
for c� as in (3.6). We recall that at

every stage of the WBS algorithmM intervals (sm, em), m = 1, ...,M are drawn from

a discrete uniform distribution over the set {(s, e) : s < e, 1 ≤ s ≤ T −1, 2 ≤ e ≤ T}.

We define the event DM
T as

DM
T = {∀r = 1, ..., N ∃ m = 1, ...,M (sm, em) ∈ ILr × IRr }.

Also, note that

P((DM
T )c) ≤

N∑
r=1

M∏
m−1

(1− P((sm, em) ∈ ILr × IRr )) ≤
T

δT
(1− δ2T (1− c̄)2T−2/9)M .

Similarly with Fryzlewicz (2014), for M large enough we have that the inter-

val (sm, em) is such that it contains only one change-point. On a generic interval

satisfying (3.13) and (3.14) we consider

(m0, b) = arg max
(m,t):m∈Ms,e,sm≤t≤em

|Ỹ t
sm,em| (3.15)

whereMs,e = {m : (sm, em) ⊆ (s, e), 1 ≤ m ≤M}.

Lemma 3.1.

P

(
max

(sm0 ,b,em0 )∈Ms,e

∣∣∣Yb
sm0 ,em0

− S
b
sm0 ,em0

∣∣∣ > λ1

)
→ 0 (3.16)

λ1 ≥ log T
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Proof. We start by studying the following event∣∣∣∣∣∣
em0∑
t=sm0

ctσ(t/T )
2(Z2

t,T − 1)

∣∣∣∣∣∣ > √nm0λ1

where ct =
√

(em0 − bm0)/(b− sm0 + 1) and ct =
√

(b− sm0 + 1)/(em0 − bm0) for

t ≤ b and b + 1 ≤ t respectively. From (3.6), we have that ct ≤ c� ≡
√

c�
1−c� < ∞.

The proof proceeds as in Cho and Fryzlewicz (2013) and we have that (3.16) is

bounded by

∑
(sm0 ,b,em0 )∈Ms,e

2 exp

(
− nm0λ

2
1

4c2�maxz σ2(z)nm0ρ
2∞ + 2c�maxz σ(z)

√
nm0λ1ρ

1∞

)
≤ 2T 3 exp

(
−C ′

1(c
�−2

) log2 T
)

which converges to 0 since nm0 ≥ δT = O(log2 T ) and ρ1∞ <∞ from (A2).

Lemma 3.2. Assuming that (3.13) holds, then there exists C2 > 0 such that for b

satisfying |b−ηp0+r′| = C2γT for some r′, we have |Sηp0+r
′

sm0 ,em0
| ≥ |Sbsm0 ,em0

|+CγT δ−1/2
T ≥

|Sbsm0 ,em0
|+ 2λ1, where γT =

√
δTλ1.

Proof. From the proof of Theorem 3.2 in Fryzlewicz (2014) and Lemma 1 in Cho and

Fryzlewicz (2012) we have the following result

|Sbsm0 ,em0
| ≥ |Yb

sm0 ,em0
| − λ1 ≥ C3

√
δT (3.17)

provided that δT ≥ C4λ
2
1.

By Lemma 2.2 in Venkatraman (1992) there exists a change-point ηp0+r′ imme-

diately to the left or right of b such that

|Sηp0+r′
sm0 ,em0

| > |Sbsm0 ,em0
| ≥ C3

√
δT

Now, the following three cases are not possible:
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1. (sm0 , em0) contains a single change-point, ηp0+r′, and both ηp0+r′ − sm0 and

em0 − ηp0+r′ are not bounded from below by c1δT .

2. (sm0 , em0) contains a single change-point, ηp0+r′ , and either ηp0+r′ − sm0 or

em0 − ηp0+r′ are not bounded from below by c1δT .

3. (sm0 , em0) contains two change-point, ηp0+r′ and ηp0+r′+1, and both ηp0+r′ − sm0

and em0 − ηp0+r′+1 are not bounded from below by c1δT .

The first case is not permitted by (A5). For the last two, if either case were true,

then following the arguments as in Lemma A.5 of Fryzlewicz (2014), we would obtain

maxt:sm0≤t≤em0
|Stsm0 ,em0

| were not bounded from below by C3

√
δT which contradicts

(3.17). Hence, interval (sm0 , em0) satisfies condition (3.13) and following a similar

argument with the proof of Lemma 2 in Cho and Fryzlewicz (2012) we can show that

for any b satisfying |b− ηp0+r′| = C2γT , then |S
ηp0+r

′
sm0 ,em0

| ≥ |Sbsm0 ,em0
|+ CγT δ

−1/2
T .

Lemma 3.3. Under conditions (3.13) and (3.14) there exists 1 ≤ r′ ≤ q such that

|b− ηp0+r′| ≤ εT , where b is given in (3.15) and εT = C log2 T for a positive constant

C.

Proof. First, we mention that the model (3.2) can be written as Ỹt,T = σ(t/T )2 +

σ(t/T )2(Z2
t,T−1) which has the form of a signal+noise model i.e. Yt = ft+εt. Now, let

f̄ dsm0 ,em0
define the best function approximation to ft such that argmaxd |〈ψdsm0 ,em0

, f〉| =

argmind
∑em0

t=sm0
(ft−f̄ dsm0 ,em0

) where f̄ dsm0 ,em0
= f̄+〈f, ψdsm0 ,em0

〉ψdsm0 ,em0
, f̄ is the mean

of f and ψdsm0 ,em0
is a set of vectors that are constant and positive until d and then

constant and negative from d+ 1 until em0 .

97



Chapter 3 Multiple change-point detection for non-stationary time series

If it can be shown that for a certain εT < C2γT , we have

em0∑
t=sm0

(Yt − Ȳ d
sm0 ,em0 ,t

)2 >

em0∑
t=sm0

(Yt − f̄
ηp0+r′
sm0 ,em0 ,t

)2 (3.18)

as long as

εT ≤ |d− ηp0+r′|

then this would prove necessarily that |b− ηp0+r′| ≤ εT .

By Lemma 3.2 and Lemma A.3 in Fryzlewicz (2014), we have the same triplet of

inequalities with the argument in the proof of Theorem 3.2 in Fryzlewicz (2014) i.e.

|d− ηp0+r′| ≥ C(λ2|d− ηp0+r′|δ
−1/2
T ) ∨ (λ2|d− ηp0+r′|−1/2) ∨ (λ22). (3.19)

Hence, with the requirement that |d− ηp0+r′ | ≤ C2γT = C2λ1
√
δT we obtain

δT > C2λ22max(C2C−2
2 λ−2

1 λ22, 1)

and εT = max(1, C2)λ22. From Lemma 3.1 λ1 is of order O(log T ). For λ2, which

appears in the following two terms of the decomposition of (3.18)

I =
1

d− sm0 + 1

⎛⎝ d∑
t=sm0

εt

⎞⎠2

and II =
1

em0 − d+ 1

( em0∑
t=d+1

εt

)2

we show below that with probability tending to 1, I ≤ λ22 = log2 T . From Lemma

3.1 we have that ct = 1 for t = sm0 , ..., d and thus

P

⎛⎝ 1√
d− sm0 + 1

∣∣∣∣∣∣
d∑

t=sm0

εt

∣∣∣∣∣∣ > λ2

⎞⎠→ 0

since by the Bernstein inequality the probability is bounded by

2T 2 exp

(
− (d− sm0 + 1)λ22
4maxz σ2(z)(d− sm0 + 1)ρ2∞ + 2c′ maxz σ(z)

√
d− sm0 + 1λ2ρ1∞

)
≤ 2T 2 exp

(
−C ′

3λ
2
2

)
which converges to 0 due to (d − sm0 + 1) = O(δT ) from (3.6). Note that II has

similar order and we omit the details. This concludes the lemma.
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Lemma 3.4. Under conditions (3.13) and (3.14)

P

(
|Yb

sm0 ,em0
| > ωT

∑em0
t=sm0

Ỹt

nm0

)
→ 1

where b is given in (3.15).

Proof. We define the following two events A =
{
|Yb

sm0 ,em0
| < ωT

1
nm0

∑em0
t=sm0

Ỹt,T

}
and B =

{
1

nm0

∣∣∣∑em0
t=sm0

Ỹt,T −
∑em0

t=sm0
σ(t/T )2

∣∣∣ < σ̄ = 1
2nm0

∑em0
t=sm0

σ2(t/T )
}
.

Since P(A) ≤ P(A∩B)+P(Bc) we need to show that P(B)→ 1 and P(A∩B)→ 1.

To show that P(B) = P

(
1

nm0

∑em0
t=sm0

Ỹt,T ∈ (σ̄/2, 3σ̄/2)
)
→ 1 we apply the Bernstein

inequality as in Lemma 3.1 and we have that

P(B�) = P

⎛⎝ 1

nm0

∣∣∣∣∣∣
em0∑
t=sm0

Ỹt,T −
em0∑
t=sm0

σ(t/T )2

∣∣∣∣∣∣ > σ̄

⎞⎠
= P

⎛⎝∣∣∣∣∣∣
em0∑
t=sm0

σ(t/T )2(Z2
t,T − 1)

∣∣∣∣∣∣ > nm0 σ̄

⎞⎠ .

Hence,

P(B�) ≤ 2 exp

(
−

n2
m0
σ̄2

4maxz σ2(z)nm0ρ
2∞ + 2c′ maxz σ(z)nm0 σ̄ρ

1∞

)
≤ 2T 2 exp

(
−C ′

4 log
2 T
)

which converges to 0 since nm0 ≥ δT = O(log2 T ) and ρ1∞ <∞ from (A2). Now, from

Lemma (3.3), we have some η ≡ ηp0+r′ satisfying |b− η| ≤ CεT . Turning to P(A∩B)

we have from conditions (3.13) and (3.14)

|Yb
sm0 ,em0

| ≥ |Yη
sm0 ,em0

| ≥ |Sηsm0 ,em0
| − log T

=

∣∣∣∣∣
√

(η − sm0 + 1)(em0 − η)
nm0

(
σ
( η
T

)2

− σ
(
η + 1

T

)2
)∣∣∣∣∣− log T

=

√
em0 − η

nm0(η − sm0 + 1)
(η − sm0 + 1)σ� − log T

≥ C
√
δT − log T > ωT3σ̄/2.
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Lemma 3.5. For some positive constants C, C ′, let s, e satisfy either

• ∃1 ≤ p ≤ N such that s ≤ ηp ≤ e and (ηp − s+ 1) ∧ (e− ηp) ≤ CεT or

• ∃1 ≤ p ≤ N such that s ≤ ηp+1 ≤ e and (ηp − s+ 1) ∨ (e− ηp+1) ≤ C ′εT .

Then,

P

(
|Yb

sm0 ,em0
| < ωT

∑em0
t=sm0

Yt

nm0

)
→ 1

where b is given in (3.15).

Proof. A similar argument with the proof of Lemma 3.5 is applied here. We only need

to show that P(A∩B)→ 0 where now event A =
{
|Ysm0 ,b,em0

| > ωT
1

nm0

∑em0
t=sm0

Ỹt,T

}
.

Using condition (i) or (ii) we have that

|Yb
sm0 ,em0

| ≤ |Sbsm0 ,em0
|+ log T

=

∣∣∣∣∣
√
b− sm0 + 1

√
em0 − b√

nm0

(
σ2(b/T )− σ2((b+ 1)/T )

)∣∣∣∣∣+ log T

≤ σ∗C
√
εT + log T < ωT σ̄/2.

The proof of Theorem 1 proceeds as follows: at the start of the algorithm when

s = 0 and e = T − 1 all the conditions of (3.13) & (3.14) required by Lemma 3.4

are met and thus it detects a change-point on that interval defined by formula (3.15)

within the distance of CεT (by Lemma 3.3). The conditions of Lemma (3.4) are

satisfied until all change-points have been identified. Then, every random interval

(sm, em) does not contain a change-point or the conditions of Lemma 3.5 are met;

hence no more change-points are detected and the algorithm stops.

Proof of Theorem 2
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We start by the first method of aggregation. From the invertibility of the au-

tocorrelation wavelet inner product matrix A, there exists at least one ordinate of

wavelet periodogram in which a change-point θr is detected. From Theorem 1 it holds

that |θr − θ̂r| ≤ CεT with probability converging to 1 regardless of the scale i. Since

the algorithm begins its search from the finest scale and only proceeds to the next

one if no change-point is detected (until scale I�) then consistency is preserved.

We now turn to the second method of aggregation. We note that Ythr
t has the

same functional form with each of Y (i)
t i.e. h(i)(x) = (x(1 − x))−1/2(c

(i)
x x + d

(i)
x x)

for x = (t − sm + 1)/n ∈ (0, 1), where c
(i)
x , d

(i)
x are determined by the location and

the magnitude of the change-points of I
(i)
t,T . Let b = argmaxsm0<t<em0

Ythr
t ; then

following a similar argument with Lemma 2 of Fryzlewicz (2014) we can show that

Ythr
t must have a local maximum at t = θp0+r′ and that |b − θp0+r′| ≤ C5γT . With

this result, we can show that |b − θp0+r| ≤ C ′εT for some 1 ≤ r′ ≤ q as in Lemma

3.3 above by constructing a signal+noise model yt = ft+ εt and substituting ft with∑−1
i=−I� EI

(i)
t,T I(Y

(i)
t > ω

(i)
T )/q

(i)
sm,em. Then, conditions (3.13) and (3.14) are satisfied

within each segment for at least one scale i ∈ {−1, ...,−I�}. When all change-

points have been detected every subsequent random interval (sm, em) will satisfy the

conditions of Lemma 3.5 for every i ∈ {−1, ...,−I�} and the algorithm stops.

Finally, we examine whether condition A0, i.e. the bias present in EI
(i)
t,T , will affect

the consistency of the proofs above. Fryzlewicz and Nason (2006) - see Proposition

2.1 - show that the integrated bias between EI
(i)
t,T and βi(t/T ) converges to zero.

We now define S̃ts,e similarly with S
t
s,e by replacing σ(t/T )2 with σ2

t,T . Assume that

ηr is a change-point within the interval [sm0 , em0 ] and b = argmaxt∈(sm0 ,em0 )
|Sbsm0 ,em0

|

and b̂ = argmaxt∈(sm0 ,em0)
|S̃bsm0 ,em0

|. Recall that EI
(i)
t,T is constant within each seg-
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ment apart from short intervals around true change-point ηr i.e. [ηr−K2−i, ηr+K2−i].

In addition, from Theorem 2 in Cho and Fryzlewicz (2013) the finest scale should

satisfy i ≥ I� = −�α log log T � in order for (A4) to hold. Then, |b̂− b| ≤ K2I
�
< εT

holds since I� = O(log log T ). Therefore, bias does not affect the results of the

lemmas above and consistency is preserved.
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Chapter 4

A fast implementation and a

criticism of the fused lasso

estimator

Introduction

An important problem in statistics is the estimation of a parameter, such as the mean,

of a stochastic model that does not remain constant. In its simplest form, it entails

removing the noise from a piecewise constant signal i.e. estimating a one-dimensional

function μ from the noisy observations yi in the following model

yi = μi + εi (4.1)

where μ ∈ Rn is the unknown vector of mean values with change-points whose number

N and their locations J = {η1, ..., ηN} are unknown. Further, the noise εi is assumed

to be iid Gaussian.

The problem of estimating the underlying function μ has attracted considerable
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attention, mainly because piecewise stationarity is easier to interpret in the sense

that the parameters of the process in every segment remain constant. In this chapter

we are interested in methods where the estimation procedure has a “top-down” ap-

proach, i.e. starting from a single change-point and then progressively continuing to

identify more. The Binary Segmentation method (BS) belongs to this category and

it has been shown to perform well, both theoretically and practically, see Vostrikova

(1981), Venkatraman (1992), Fryzlewicz (2007) or Fryzlewicz (2014). BS also has

an interpretation in terms of “Unbalanced Haar” wavelets (Fryzlewicz (2007)) and

inherits many features from the “multiscale” wavelet methods for which a represen-

tative example is the work by Donoho and Johnstone (1994). The authors propose

the wavelet thresholding to estimate the model (4.1) by using the simplest form of

wavelets, i.e. the Haar wavelets, and they show that the thresholded estimation is

theoretically tractable. Kolaczyk and Nowak (2004) develop a recursive partitioning

estimator noticing that there is a link to Unbalanced Haar wavelets and, hence, it

is multiscale in nature. Another method with a top-down approach is the CART

methodology of Breiman et al. (1983), an adaptive recursive partitioning which pro-

duces a piecewise constant reconstruction where the pieces are terminal nodes of the

partition. The CART method is also used by Gey and Lebarbier (2008) who then

prune the output change-points using an exhaustive search algorithm.

A different approach is to see the estimation of (4.1) as a problem where the pur-

pose is to minimise a cost function such as the likelihood ratio. Methods based on this

approach date back to Chernoff and Zacks (1964) and Kander and Zacks (1966), and

have received significant attention afterwards by Worsley (1986), Siegmund (1988),

Siegmund and Venkatraman (1995), Antoch and Hušková (2003), to name but a
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few. However, these methods require a predefined maximal number of change-points.

Since in most of the cases the true number of change-points is unknown, a penalty is

typically added in order to control the total number of change-points. This penalty

acts as a model selection criterion and prevents overfitting. Yao (1988) introduced

BIC-type penalties, but other more sophisticated penalties have been proposed by

e.g. Yao and Au (1989) and Lavielle and Moulines (2000); Birgé and Massart (2001)

who use a generalisation of the Cp criterion (Mallows (1973)); Davis et al. (2006)

who propose the Minimum Description Length Criterion (MDL), but in the context

of change-point detection for non-stationary time series.

In order to solve these optimisation problems dynamic programming techniques

are often adopted, see Bellman and Dreyfus (1966), Kay (1998), Jackson et al. (2005).

Given that the complexity of O(n2) is prohibitive for large samples Rigaill (2010),

Killick et al. (2012) and Frick et al. (2014) include pruning steps into the dynamic

program with the aim to reduce the computational burden under certain assumptions.

Another notable penalisation method is the method introduced by Mammen and

van de Geer (1997), which uses a linear combination of the total variation and the

L1 penalty. It is of importance to notice that this method was later discovered

by Friedman et al. (2007) and named fused lasso signal approximator (FLSA), but

without references to the work by Mammen and van de Geer (1997). An algorithm

for solving the total variation problem, termed taut string, already existed before

FLSA and it was proposed by Davies and Kovac (2001). In Cho and Fryzlewicz

(2011) the taut string method is shown to have a multiscale nature and from that

perspective it can be also categorised as a top-down method. Another algorithm

for solving the FLSA is developed by Tibshirani and Taylor (2011), which is also
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the main topic of interest in this chapter. We do not argue that other algorithms

should not be preferred. Davies and Kovac (2001), Friedman et al. (2007), Hoefling

(2010) and Harchaoui and Lévy-Leduc (2010) all propose methods that solve the

FLSA problem. However, the algorithm of Tibshirani and Taylor (2011) is designed

to solve many other lasso-type problems and with this in mind we believe that we

can shed more light into other set-ups.

One of the contributions in this chapter is to show a faster implementation of the

algorithm by Tibshirani and Taylor (2011). This is achieved by replacing the matrix

multiplications involved in their algorithm with simple cumulative summations in the

spirit of “Mallat” pyramids (Mallat (1989)). In addition, we establish a link between

their algorithm and the taut string technique of Davies and Kovac (2001). By doing

so we are able to exploit the multiscale structure of the algorithm by Tibshirani and

Taylor (2011) and to argue that trend filtering - a total variation technique which

goes beyond the model (4.1) to assume that μ is piecewise linear (Kim et al. (2009a)),

piecewise quadratic, piecewise cubic etc (Tibshirani (2014)) - can be also categorised

as a multiscale method. Another contribution of this chapter is a result about the

suboptimality of lasso-type estimators in change-point detection, an argument that

has been made earlier by Brodsky and Darkhovsky (1993) and Cho and Fryzlewicz

(2011). Here, we prove an exact rate of convergence for an estimated change-point and

to support our argument we also provide a detailed simulation study by comparing

the fused lasso estimator with the BS method.

This chapter is organised as follows. In Section 4.1 we present a fast version of

the algorithm by Tibshirani and Taylor (2011). Then, we make a connection between

the taut string method of Davies and Kovac (2001) and the algorithm by Tibshirani
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and Taylor (2011) (Section 4.2). This is followed by a consistency result about the

FLSA estimator for the model (4.1) with a single change-point (Section 4.3). In Sec-

tion 4.4 we discuss model selection for the SPA method by taking advantage of its

multiscale nature. A simulation study to assess the performance of the FLSA method

in comparison with the Binary Segmentation method is presented in Section 4.5. In

Section 4.6 we argue that faster versions to other set-ups using the algorithm by Tib-

shirani and Taylor (2011) are possible, but technically challenging. The penultimate

section contains proofs related to the consistency theorem of the FLSA (Section 4.7).

Finally, Section 4.8 establishes a bridge between this chapter and Chapter 5.

4.1 The solution path algorithm

4.1.1 The fused lasso estimator

Considering the model (4.1) we are now interested in estimating μ and, hence, pro-

ducing estimates of the unknown partition Fj, j = 1, ...,N by finding the number

N and locations J of the change-points. One way of doing this is to minimise the

following penalised cost function

μ̂FL = arg min
μ∈Rn

1

2

n∑
i=1

(yi − μi)2 + λ1||μ||1 + λ2||μ||TV (4.2)

where λ1 and λ2 are tuning parameters, and ||μ||1 = |μ1|+ |μ2|+ ...+ |μn|. The total

variation norm ||μ||TV =
∑n

i=2 |μi − μi−1| is particularly important for the recovery

of the change-points. This type of penalty for signal estimation is found in Mammen

and van de Geer (1997) and Davies and Kovac (2001) (but with λ1 = 0), while

Friedman et al. (2007) call it the FLSA and treat it as a special case of the fused

lasso method of Tibshirani et al. (2005) used in the context of variable selection
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by penalising neighbouring coefficients (in addition to the coefficients themselves).

Further, it is common to examine the cost function without the λ1 penalty and

find the piecewise estimates μ̂i for some values of λ2. Then, from Proposition 1

in Friedman et al. (2007), the fused lasso estimator μ̂FL can be obtained by soft-

thresholding the individual coordinates μ̂i for a given value of λ1 and, hence, we take

λ1 = 0 for the rest of this chapter.

Davies and Kovac (2001), Friedman et al. (2007) and Hoefling (2010) propose

methods that solve problem (4.2). Here, we focus on the solution path algorithm

(henceforth, SPA) of Tibshirani and Taylor (2011) which provides an exact solution

to problems with the following form

μ̂ ∈ arg min
μ∈Rp

1

2
‖y −Xμ‖22 + λ2 ‖Dμ‖1 . (4.3)

For problem (4.2), X = I ∈ Rn×n and

D =

⎛⎜⎜⎜⎜⎜⎝
−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −1 1

⎞⎟⎟⎟⎟⎟⎠ ∈ R
(n−1)×n. (4.4)

By considering the corresponding Lagrange dual problem of (4.3), which is con-

ceptually clearer in that the L1 penalty does not involve a linear transformation of

μ, Tibshirani and Taylor (2011) devise the SPA method. We recall the details of the

dual path algorithm, a “top-down” approach in estimating the knots of a signal (we

use the term “knot” interchangeably with “change-point”). Tibshirani and Taylor

(2011) (note that since X = I, X has full column rank, i.e. rank(X) = n) re-write

the primal problem (4.3) into its Lagrangian form (taking λ = λ2 for notational

simplicity)

L(μ, z, u) = 1

2
||y − μ||22 + λ||z||1 + uT (Dμ− z)
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and the dual problem is derived by minimising L(μ, z, u) over μ and z, i.e.

min
u∈Rm

1

2
||y −DTu||22 subject to ‖u‖∞ ≤ λ (4.5)

which is a regression problem with a simple constraint set. The algorithm starts

from λmax = (DDT )−1Dy (an unconstrained least squares estimate) and progressively

identifies further knots until μ̂i = yi ∀i = 1, ..., n and λ = 0. At the qth iteration the

dual solution is given by

ûλ,B = λqS for all λ ∈ [0, λq]

where set B contains the coordinates (knots) that are currently on the boundary

(called boundary coordinates), or the active set of the constraint ‖u‖∞ ≤ λ. Alter-

natively, we can interpret B as the active set, the set which contains the estimated

change-points. Finally, we denote with S the vector that contains the signs of ûλ,B.

Now, since these do not change for decreasing λq, then we only need to find the

“interior coordinates” i ∈ −B, i.e. those dual coordinates that do not belong to the

set B and lie strictly between −λq and λq. These are found by

ûλq,−B = (D−B(D−B)T )−1D−B(y − λq(D−B)TS) (4.6)

where D−B denotes the penalty matrix which does not contain the row corresponding

to point i ∈ B. An important step of this algorithm is to determine the next point i

that will be included in the set B

iq+1 = argmax
i
hi (4.7)

where

hi =
[D−B(D−B)T )−1D−By]i

[D−B(D−B)T )−1D−B(DB)TS]i ± 1
(4.8)
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and either −1 or 1 in (4.8) will yield a value in [0, λq]. Finally, the primal solutions

are obtained by

μ̂ = y −DT û. (4.9)

The steps of the algorithm are summarised below:

Solution Path Algorithm for FLSA

• Set B = ∅, S = ∅, λ =∞.

• For q = 0, 1, ..., n− 2,

1. Compute the solution at λq using (4.6).

2. Find λq+1 = maxi(hi) where hi as in (4.8).

3. Locate the next knot iq+1 using (4.7).

4. Add iq+1 to B and its sign to S.

• Compute μ̂ using (4.9).

4.1.2 Fast implementation of the solution path algorithm

In this section, we introduce a more efficient implementation of the SPA method.

The SPA method involves a heavy use of matrix multiplication which increases its

complexity. Formula (4.8) contains the D ∈ R(m−1)×n matrix and, therefore the

numerator requires O(n2) operations. The same number of operations applies to the

denominator. Tibshirani and Taylor (2011) report that the total complexity of their

algorithm (presented here for the FLSA case) is O(qn2) where q is the number of
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iterations (notice that q = n for the full path). Even if we assume that q << n,

the complexity is again very high. Here, we show a way to reduce the complexity.

However, regardless of the issue of speed we believe that a deeper understanding

of the SPA algorithm will provide a better insight into not only the signal+noise

problem but other more complex settings.

Our suggestion for a faster implementation of (4.8) is based on the fact that

matrix multiplications can be replaced with simpler calculations if the matrices have

special structures. For example, the pyramid algorithm of Mallat (1989) is widely

used in the Discrete Wavelet Transformation (DWT) and it is preferred due to its

low computational cost. The DWT of an input vector y = {yi}ni=1 is the vector of

inner products between y and ψj,r for all j and r i.e.

DWT(y)j,r =
〈
y, ψj,r

〉
where 〈., .〉 denotes the inner product operation and ψj,r are the wavelet vectors.

If we define matrix W such that the J + 1 rows contain the wavelet vectors ψj,r

where J = log2N , then the DWT can be conducted through the following matrix

multiplication

DWT(y) =Wy

which typically requires O(n2) operations, but thanks to pyramidal multiplication

schemes and the way wavelets are constructed it only takes O(n) operations. How-

ever, it is not necessary for W to be a wavelet basis (the simplest one is the Haar

wavelet) to take advantage of these fast multiplications. For example, Fryzlewicz

(2007) proposes a method to construct an orthonormal Haar-like basis which, unlike

the Haar wavelets, avoids the restriction of jumps in the basis function to occur in
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the middle of their support. The basis W for a toy example when the sample size of

a series y is 6 has the following form

W =

⎛⎜⎜⎜⎜⎜⎜⎝

6−1/2 6−1/2 6−1/2 6−1/2 6−1/2 6−1/2

(5/6)1/2 −30−1/2 −30−1/2 −30−1/2 −30−1/2 −30−1/2

0 (3/10)1/2 (3/10)1/2 −(2/15)−1/2 −(2/15)−1/2 −(2/15)−1/2

0 2−1/2 −2−1/2 0 0 0

0 0 0 6−1/2 6−1/2 −(2/3)1/2
0 0 0 2−1/2 −2−1/2 0

⎞⎟⎟⎟⎟⎟⎟⎠
where vectors ψj,r are defined by the set of the change-points (1, 3, 2, 5, 4). Of utmost

importance is to select a suitable UH basis which amounts to choosing change-point

bj,r for each vector ψj,r. One way of doing this is described in Fryzlewicz (2007): the

first change-point is detected as the one that maximises b0,1 = argmaxi | 〈y, ψ1,i,n〉 |

where

ψ1,i,n =

⎛⎜⎜⎜⎜⎝
(5/6)1/2 −30−1/2 −30−1/2 −30−1/2 −30−1/2 −30−1/2

3−1/2 3−1/2 −12−1/2 −12−1/2 −12−1/2 −12−1/2

6−1/2 6−1/2 6−1/2 −6−1/2 −6−1/2 −6−1/2

12−1/2 12−1/2 12−1/2 12−1/2 −3−1/2 −3−1/2

30−1/2 30−1/2 30−1/2 30−1/2 30−1/2 −(5/6)1/2

⎞⎟⎟⎟⎟⎠ .

As mentioned above, the matrix multiplication would require O(n2) operations, but

due to the specific form of the UH vectors it can be computed in O(n) (in a similar

manner with the computation of cumulative means of a vector with length n which

also takes time O(n)).

The question now is how we can utilise the above arguments to formula (4.8) with

the aim to reduce the computational cost significantly. We notice that (4.8) contains

inner products of the form (D−B(D−B)T )−1D−By. For example, at the initiation of

the algorithm the first knot b is found by

b = | arg max
i∈{1,...,n}

(DDT )−1Dy|

since B = ∅ and, hence, DB in (4.8) contains only zeros.

We denote ξ1,i,n the quantity (DDT )−1D. To visualise its form and compare it
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against ψ1,i,n, we illustrate it through the toy example for n = 6; hence,

ξ1,i,n =

⎛⎜⎜⎜⎜⎝
−5/6 1/6 1/6 1/6 1/6 1/6
−2/3 −2/3 1/3 1/3 1/3 1/3
−1/2 −1/2 −1/2 1/2 1/2 1/2
−1/3 −1/3 −1/3 −1/3 2/3 2/3
−1/6 −1/6 −1/6 −1/6 −1/6 5/6

⎞⎟⎟⎟⎟⎠ .

The function ξ1,i,n differs from ψ1,i,n in that the former is fixed and only depends

on the sample size n; whereas ψ1,i,n is only one way to construct an UH basis i.e. one

can choose any bj,k and still obtain a UH basis. However, we can still use the same

argument: the inner product between y and ξ1,i,n can be re-written as the cumulative

mean of a vector of length n which only requires O(n) operations, i.e.

〈
y, ξ1,i,n

〉
=
i− n
n

i∑
u=1

yu +
i

n

n∑
u=i+1

yu. (4.10)

The SPA method proceeds repeatedly to identify the next knot i. Previous knots

determine the segment in which the formula (4.8) is applied. The multiscale nature

of the algorithm allows us to divide the problem into two sub-problems like in the

binary segmentation algorithm. Hence, the locating function (4.11) is calculated on

a smaller segment, i.e. only a specific segment needs to be updated every time. To

be more precise, let us assume that at iteration q the knots that have been added to

the set B are {b1, b2, b3, ..., bκ} where κ ∈ {1, ..., K}, K < n and n is the sample size.

Also assume that the last knot added to B is bh. Normally, to find the next knot we

need to calculate formula (4.8). However, this can be avoided by noticing that inner

products of every cycle will remain identical except from ξbl+1,i,br , where b
l and br are

the knots to the left and to the right of bh respectively.

In particular, for a generic interval [s, e] (at the initiation of the procedure, s = 1
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and e = n) we calculate the locating function

hi =
[〈y, ξs,i,e〉]i

[〈G, ξs,i,e〉]i + gi
for i ∈ [s, e] (4.11)

where G is a vector whose elements Giq = [sign(〈y, ξs,i,e〉)]iq and zero otherwise. This

locating function replaces (4.8) in SPA. Finally, (4.6) also contains an expression of

the form (DDT )−1Dα where α ∈ Rn×1 and the same cumulative sum technique is

applied to it. If our interest is the detection of the knots and not the estimation of μ

itself, then the calculation of (4.6) can be omitted.

The steps of our implementation of the SPA algorithm are given below.

Solution Path Algorithm for FLSA without matrix operations

• Set B = ∅.

• Find the first knot b = argmaxi∈{1,...,n} | 〈y, ξ1,i,n〉 | where 〈y, ξ1,i,n〉 as in

(4.10).

1. Set s = 1 and e = b.

2. Locate the next knot b = argi∈(s,e)maxgi=±1 hi where hi as in (4.11).

3. Add b to B.

4. Repeat steps 2 and 3 to the segment s = b+ 1 to e = n.

• Repeat steps 1-4 until ∀i ∈ B
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4.1.3 Computational Complexity

We notice that the main computational burden stems from the matrix multiplication

involved in the main formula. Taking the simple example of the piecewise constant

signal+noise problem then the operations required to find a knot that joins B are of

order O(n) and therefore, to find the first q knots O(qn) operations are required. If

we are interested in obtaining the solution at all values of the tuning parameter λ2

(the solution path), the calculation from the first knot to join the active set B until

all n of them join B will increase the complexity of our method to O(n2). Finally,

the action of dividing the problem into two sub-problems reduces the computational

time in practice for both our implementation of SPA and the original algorithm, but

not the overall complexity.

4.2 The solution path algorithm and its connec-

tion with the multiscale taut string method

Penalised least squares methods where the penalty term uses the total variation norm

have been widely used previously. We refer the reader to Mammen and van de Geer

(1997) who propose the locally adaptive regression splines. These estimators penalise

the total variation of the kth derivative and, hence, when k = 0 this gives the fused

lasso estimator (4.2). A practically very similar method (termed trend filtering) to

the locally adaptive regression splines has been introduced by Tibshirani (2014).

The taut string method (TS) is an alternative technique to solve the optimisation

problem (4.2) for λ1 = 0. Davies and Kovac (2001) develop a method that works as

follows. Define the integrated process Y(i/n) =
∑i

v=1 yv (with Y(0) = 0) and a tube

with lower and upper bounds Ln = Y(i/n) − γ and Un = Y(i/n) + γ respectively
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for γ > 0 (where γ = λ2). A piece of string f : [0, 1] → R is attached such that it

connects (0,Y(0)) and (1,Y(1)). Now, the string is pulled until it is taut, while being

constrained to lie between the boundaries of the tube, touching either side at possibly

multiple knots. The taut string fn has the smallest length and also minimises the

total variation

TV (fn) =

∫ 1

0

|fn(t)(1)|dt

where fn(t)
(1) denotes the derivative of fn(t), such that f0 = Y(0), fn = Y(n), Ln ≤

ft ≤ Un. Starting from left to right the TS algorithm simultaneously computes the

greatest convex minorant of Un (between two knots at which the string only touches

Un) and the least concave majorant of Ln (between two knots at which the string

only touches Ln). Finally, at points where the string switches from touching Un (Ln)

to touching Ln (Un) the derivative fn(t)
(1) has a local maximum (minimum).

Since SPA and TS are two methods that solve the same problem (4.2) it is of

interest to examine their connection. We start from SPA and consider the simple

case where we look at the first knot joining the active set. From the dual problem

(4.5) we see that u can be estimated from least squares under the constraint set

{u : ||u||∞ ≤ λ2}. This means that the estimated dual variable u must satisfy

element-wise

−λ2 ≤ û ≤ λ2

or

−λ2 ≤ (DDT )−1Dy ≤ λ2

and using (4.10)

−λ2 ≤
i− n
n

i∑
v=1

yv +
i

n

n∑
v=i+1

yv ≤ λ2
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i∑
v=1

yv − λ2 ≤
i

n

n∑
v=1

yv ≤
i∑

v=1

yv + λ2 for i = 1, ..., n. (4.12)

The limits of the inequality (4.12) define the tube while the term i
n

∑n
v=1 yv is the

“taut string”, see also Figure 4.1 which illustrates this for a model with a single

change-point at i
n

= 2/3. However, for small values of λ2 we cannot solve (4.8)

by defining a tube and its associated string. This is because in order to solve this

problem for any given value of λ2 the previous knots must be given in hand. Hence,

for a certain value λ02 a solution always requires O(qn) for SPA, while TS is a faster

algorithm since a solution is obtained in linear time.

We note that Cho and Fryzlewicz (2011) show that the TS algorithm also has

a multiscale nature where the “parent” segment is split into two “children” subseg-

ments. The authors therefore refer to their version of this algorithm as “multiscale

TS”. They define the “locating function” used to find the location of change-points

(knots) in a given segment. The locating function is equivalent to (4.11) [and (4.10)

for the first knot only] and, therefore the SPA algorithm is the same with the “mul-

tiscale TS”.

4.3 Lack of sign consistency of the FLSA estimator

Cho and Fryzlewicz (2011) argue that the total variation method is suboptimal in

detecting both the number and the locations of the change-points in the model (4.1).

Their argument is based on a theorem about a family of test statistics for change-

point detection by Brodsky and Darkhovsky (1993). In this section, we aim to find

an exact rate of convergence for the estimated location of a change-point and, hence,

claim that the FLSA estimator cannot recover its exact location. Even though sign
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Figure 4.1: Left panel: a simulated data set with a change-point at i
n = 2/3. Right panel:

at the initiation of the procedure the solution path algorithm defines a tube (the black, sym-

metrical lines) and a string (red line), pulled until it is taut. The dotted red line coincides

with the greatest convex minorant of Un which in this case is a linear function because the

tube is “squeezed” until it touches the first knot.

consistency can hold under e.g. the “irrepresentable condition” of Meinshausen and

Yu (2009) for the lasso problem in the context of variable selection, here we argue

that for FLSA it does not, i.e. P({N̂ = N} ∩ {sign(μ̂i − μ̂i−1) = sign(μi − μi−1)})

does not tend to 1 as n → ∞. This assertion invalidates Theorem 2.5 of Rinaldo

(2009) who claims that the exact recovery of the change-points in the model (4.1)

is feasible with high probability. This erroneous result has also been noted out by

Rojas and Wahlberg (2014).
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We consider a model with a single change-point η i.e.

yi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ0 + εi, for 1 ≤ i ≤ η

μ1 + εi, for η + 1 ≤ i ≤ n

(4.13)

The following lemma gives the FLSA estimates for the two segments in the model

(4.13).

Lemma 4.1. For the model (4.13) and μ0 < μ1 the estimated μ0 and μ1 are given

respectively by

μ̂0 =

∑η̂
i=1 yi
η̂

+
λ2
η̂
, for i = 1, ..., η̂ (4.14)

μ̂1 =

∑n
i=η̂+1 yi

n− η̂ − λ2
n− η̂ , for i = η̂ + 1, ..., n. (4.15)

Proof: See Section 4.7.

From these two equations we see that the FLSA estimator introduces a bias into

the mean of segment F̂1 (F̂2) equal to λ2/η̂ (λ2/(n − η̂)) where its sign depends on

whether μ0 (or μ1) is a local maximum or minimum. As it is apparent from the

formulation, the bias increases as λ2 →∞ and η̂ → 0.

We make the following assumptions

Assumptions 4.1.

1. The random sequence εi
iid∼ N (0, 1).

2. The sequence {μi}ni=1 is bounded, i.e. |μ0|, |μ1| <∞ for i = 1, ..., n.

3. The magnitude of the jump between μ0 and μ1 satisfies |μ0 − μ1| ≥ μ where

μ ≥ C0/n
ω, with ω ≥ 0.

4. The distance between η and either η0 = 0 or ηN = n is at least δn ≥ C1n
θ and

θ ≤ 1.
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5. The parameters satisfy θ − ω > 1/2.

The reason we choose var(εi) = 1 is purely for simplicity and in practice it can

be accurately estimated, for example, by the Median Absolute Deviation (Hampel

(1974))

σn =
1.48√

2
Median{|y2 − y1)|, ..., |yn − yn−1|}. (4.16)

In addition, Assumption 4.1(4) ensures that the change-point η is not too close to

the start or the end of the series. In the multiple change-point setting this assumption

establishes the minimum distance between successive change-points.

The following consistency theorem holds.

Theorem 4.1. Let yi follow model (4.13), and suppose that Assumptions 4.1 hold.

Let η̂ be the estimated change-point by the FLSA and λ2 ≥
√
2n logn where λ2 as in

(4.2). Then there exists a positive constant C such that P(Un)→ 1, where

Un = {|η̂ − η| ≤ Cεn}

with εn = n3/2
√
log nμ−1δ−1

n .

The proof of Theorem 4.1 is given in Section 4.7. We elaborate on the rate of

convergence. When δn is of O(n), then εn is of O(
√
n) whereas in rescaled time εn/n

is O(1/
√
n) and, hence, the rate is suboptimal. On the contrary, from Fryzlewicz

(2014) the BS method achieves a near-optimal rate of O(logn/n) when δn is again

O(n).

In Section 4.5 we discuss the performance of the FLSA estimator and we provide

numerical evidence through finite sample size examples that the FLSA is suboptimal

in detecting the locations of change-points. In fact, the simulation study indicates

that BS does better in locating change-points.
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Figure 4.2: Extracting signal using the Fused Lasso estimator with a multiresolution cri-

terion (right - red line). The real signal (right - black, dotted line) is the DJblocks data

contaminated with white noise with σ = 3 (left).
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4.4 Model selection

In this section we briefly discuss optimal stopping for the SPAmethod. Tibshirani and

Taylor (2011) propose the use of information criteria that account for error reduction

and penalise for over-segmentation. Since the SPA method progressively identifies

the knots in the model (4.1) an information criterion is monotonically related with

the decrease of λ2. Therefore, at every iteration the algorithm may include an extra

step for calculating a value for the information criterion. The algorithm stops as soon

as it gets a value larger or smaller compared with the previous cycle.

An alternative approach is to take advantage of the multiscale nature of SPA and

stop the path as soon as the obtained residuals “look” like white noise. Davies and

Kovac (2001) utilise the multiresolution criterion by estimating the multiresolution

coefficients wj,r

wj,r = 2−j/2
(r+1)2j∑
i=r2j+1

ε̂i

if n is a power of two; otherwise the interval [(r2j+1)/n, (k+1)2j/n] can be replaced

by [(r2j + 1)/n,min{(k + 1)2j/n, 1}] (Davies and Kovac (2001)).

Then, the residuals can be adequately approximated by Gaussian white noise

(see e.g. Lemma 4.2 in Section 4.7) if

|wj,r| ≤ σn
√
τ log n (4.17)

where σn is some measure of the scale of the residuals, such as (4.16).

Figure 4.2 shows the estimated signals for the DJ data found in the R package

wavethresh and contaminated with iid Gaussian noise with σ = 3. We set τ = 2.5 as

Davies and Kovac (2001) suggest that it gives good results.
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Figure 4.3: Zoomed in version of the blocks (left) and bumps (right) series. The signals

are estimated using the SPA method (red line). The real signal is shown by a black dotted

line.

4.5 Simulation study

Introduction

A careful inspection of the estimated signals of Figure 4.2 indicates that the FLSA

method introduces a bias in the estimated piecewise intervals, see also Figure 4.3.

Recall from Section 4.3 that the magnitude of the bias depends on the size and the

location of the segments. To circumvent this one can estimate the mean of yi between

the change-points. To some extent this can improve the performance in the �2 sense,

i.e. ‖μ− μ̂‖2, as we discuss in Section 4.5.2. We refer to this estimator as mFLSA.

From Figure 4.3 it is also evident that the FL estimator tends to multi-segment
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the series around the true change-points. This has also been noticed by Davies and

Kovac (2001) (in the context of the taut-string method) and Harchaoui and Lévy-

Leduc (2010) who treat the estimation as a lasso problem. The authors use the

Least Angle Regression algorithm (LARS) of Efron et al. (2004) and they impose

an upper bound N̄ for the number of change-points due to the fact that the true

number N is not known. Their algorithm has a complexity of O(N̄n log(n)) which

is slower than our approach by a logarithmic term (assuming that we also impose an

upper bound of the maximum number of change-points; see also Section 4.1.3). A

post-selection method is suggested by the authors which selects those change-points

that have the most significant reduction in the variance of the error. To perform

this post-selection they use a dynamic programming algorithm, originally proposed

by Fisher (1958) and Bellman (1961). With the reduced set of change-points, the

complexity of the post-selection procedure is O(N̄ 3) resulting in a total complexity

of O(N̄ 3 + N̄n log(n)). However, the authors do not provide a consistency result

for this hybrid method, whereas the post-processing will increase the computational

complexity if N is allowed to increase with the sample size.

For this reason, we choose not to evaluate the performance of the FLSA estimator

based on the estimated change-point vis-á-vis the real ones. Instead, we conduct a

study that examines the performance in terms of the estimated location of a single

change-point, i.e. how far an estimated change-point is from the real one (see Section

4.5.1), as well as in the �2 sense (see Section 4.5.2).

Finally, to enable comparison with other methods we choose the Binary Segmen-

tation method which is computationally fast, theoretically consistent and has good

performance in numerical simulation studies, see Fryzlewicz (2014).
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4.5.1 Location accuracy performance

In Section 4.3 we showed that the FLSA estimator is suboptimal in detecting the

location of a change-point. Here, we provide a numerical study to support this claim.

To achieve this we consider the following two models

yi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ0 + εi, for 1 ≤ i ≤ �n/3�

μ1 + εi, for �n/3� + 1 ≤ i ≤ n

(4.18)

yi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ0 + εi, for 1 ≤ i ≤ �n/3�

μ1 + εi, for �n/3�+ 1 ≤ i ≤ �2n/3�

μ2 + εi, for �2n/3�+ 1 ≤ i ≤ n

(4.19)

where (μ0, μ1, μ2) = (0, 1, 1.5), εi ∼ N (0, 1), the sample size n ranges from 200 to

2000 and we repeat the experiment B = 100 times for every specific sample size.

For both the models (4.18) and (4.19) we examine the ability of FLSA and BS in

locating the first change-point η1, i.e. the jump between μ0 and μ1. This is due to

our earlier observation that multisegmentation does not allow to pin the locations

of the estimated change-points exactly. Hence, we only consider the first knot to be

returned from SPA. Finally, we use the following metric to assess the performance of

BS and FLSA

MSE =

B∑
�′=1

(η1 − η̂(�
′)

1 )2/B

where η̂1 is the estimated change-point obtained from either of the two methods.

Figure 4.4 indicates that BS does well in both models and particularly in the

model (4.19), where two change-points are present, the BS method significantly out-

performs FLSA.

125



Chapter 4 On the fused lasso estimator

500 1000 1500 2000

0.
00

00
0.

00
02

0.
00

04
0.

00
06

0.
00

08
0.

00
10

0.
00

12

Sample Size

Lo
ca

tio
n 

M
S

E

500 1000 1500 2000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

Sample Size

Lo
ca

tio
n 

M
S

E

Figure 4.4: MSE calculated for increasing sample size. The left panel shows the performance

of BS (black line) and FLSA (red dotted line) on the first change-point of the model (4.18).

The right panel is for the model (4.19) and for the first change-point only.

4.5.2 Multiple change-point performance in the �2 sense

We conduct another simulation study to compare the performance of the FLSA es-

timator and the BS method on simulated data. We take the underlying functions to

be the DJ data (djdata) and test the consistency of the two methods in the �2 sense.

The reason we choose this measure is to examine whether the FLSA method can do

better on noisy signals where “peaks” (big jumps of small magnitude) are observed

(the bumps data), on smooth signals (the heavisine data) or on wiggly signals (the

left part of the doppler data). For a fair comparison between the FLSA, mFLSA and

BS methods, we need to control that a stopping rule will not impact the performance.

This is why we allow the algorithms to run assuming that there are many change-

points. Given that in practice either we do not know the real number of change-points

in a signal or a signal has smoother transitions (heavisine and doppler data) we are
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able to perform a knot-by-knot (change-point) comparative study between the three

methods. We repeat the experiment 100 times and report the mean and plus or

minus one standard deviation, see Figures 4.5 - 4.7. For robustness, we examine their

performance for three different signal-to-noise-ratio scenarios by contaminating the

series with iid Gausian noise with mean zero and σ = 1, 2, 3.

For all the simulated examples the BS method clearly outperforms both FLSA

and mFLSA, see Figures 4.5, 4.6 and 4.7. Particularly, in signals with a “blocky”

structure (blocks and bumps data) BS achieves a low value of MSE even in the very

noisy scenario (top panels in Figure 4.7). It is also interesting that BS outperforms

FLSA and mFLSA in the signals with smoother transitions (heavisine and doppler

data) and in the high SNR cases it is competitive with the other two methods when

increased flexibility is allowed. In addition, as noticed above mFLSA improves the

estimation performance of the FLSA estimator in every scenario.

4.6 Extensions to other settings

In this section, we extend our previous arguments about algorithm’s computational

complexity to other set-ups. In the next lines we present possible extensions of SPA

and we see that the locating functions can be found even though they are difficult to

obtain.

4.6.1 The two-dimensional FLSA case

We start our discussion with the denoising of an image or the 2d FLSA problem. In

this setting, the FLSA estimator penalises the differences between adjacent pixels.
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Figure 4.5: Shown is the squared error loss (‖μ− μ̂‖2) in predicting the true function μ

averaged over 100 simulated data sets where the signals are the DJ data. The red curves

display the loss for FLSA, the blue for mFLSA and the black for BS. The dotted lines are

the standard deviations. All simulations are based on a high signal-to-noise ratio.
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Figure 4.6: Shown is the squared error loss (‖μ− μ̂‖2) in predicting the true function μ

averaged over 100 simulated data sets where the signals are the DJ data. The red curves

display the loss for FLSA, the blue for mFLSA and the black for BS. The dotted lines are

the standard deviations. All simulations are based on a medium signal-to-noise ratio.
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Figure 4.7: Shown is the squared error loss (‖μ− μ̂‖2) in predicting the true function μ

averaged over 100 simulated data sets where the signals are the DJ data. The red curves

display the loss for FLSA, the blue for mFLSA and the black for BS. The dotted lines are

the standard deviations. All simulations are based on a low signal-to-noise ratio.
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Penalty matrix D2d has a similar structure with (4.4), i.e. every row contains a 1 and

−1, but arranged such that the differences are not only horizontal but vertical, i.e.

D2d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0 0 0 0 0

.

..
.
..

.

..
. . .

.

..
.
..

.

..
.
..

.

..

0 0 0 · · · 0 0 0 −1 1

−1 0 0 · · · 1 · · · 0 0 0

...
...

...
. . .

...
...

...
...

...

0 0 0 · · · −1 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We have not established a closed-end formula in the sense of (4.10) and (4.11) for

the 2d FLSA. However, Fryzlewicz (2007) argues that a top-down approach would

be less suitable for image denoising due to the fact that the particular form of the

basis functions would result in undesirable “blocky” artefacts. Hence, a bottom-up

approach, i.e. searching all the pairs of neighbours for the smallest detail coefficient,

would be more efficient. A natural choice for image denoising in the context of total

variation penalty is the work by Hoefling (2010) and Kovac and Smith (2011).

4.6.2 The piecewise polynomial case

Another interesting extension of function estimation is when μi of the model (4.1)

is a smooth function of time. Tibshirani (2014) shows that the solutions from total

variation penalty estimators resemble the structure of a piecewise kth degree poly-

nomial filtering where the discrete derivative operators can be defined in a recursive

manner starting with D(1) and then letting

D(k+1) = D(1)D(k) for k = 1, 2, 3, ...

This means that the method can estimate the underlying piecewise polynomial func-

tion of any order such as constant (k = 0), linear (k = 1), quadratic (k = 2) etc.
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The changes in kth derivative (knots) are selected adaptively based on the data and

this simultaneous selection and estimation phenomenon does not occur in regression

splines (Hastie and Tibshirani (1990)) or smoothing splines (de Boor (1978), Wahba

(1990), Green and Silverman (1994)). The former operate on a fixed set of knots and

the user needs to select the number of knots and their placement. The latter place

a knot at each data point. Through a generalised ridge regression on the coefficients

in a natural spline basis smoothing splines implement smoothness.

For trend filtering the main algorithm still applies and only the locating function

(4.8) which now involves the quantity (D(k)D(k)T )−1D(k) needs to be adjusted, but we

have not established closed-end formulae (see Figure 4.8 for different forms of ξ1,i,n

for k = 0, 1, 2). We notice that all other settings will always involve more operations

due to the fact that the knots are now allowed to leave the active set. In other

words, if a knot is located at a value λ
(1)
2 it is not necessary that it will remain a

knot at a value λ
(0)
2 < λ

(1)
2 . Therefore, the calculation of the whole path will be more

computationally intensive compared with the piecewise constant estimation method.

4.7 Proofs

Before we prove Theorem 4.1 we prove Lemma 4.1. Lemma 4.2 provides a bound

for the regularisation parameter λ2. In addition, and w.l.o.g, we assume that the

estimated change-point η̂ is such that η̂ > η.

Proof of Lemma 4.1. Consider the model (4.13). Since the series yi is blocky, we

assume there exists a partition {F1,F2}. Following e.g. Hoefling (2010), that is,

differentiating (4.3) with respect to μi and setting it equal to 0 we get that μ̂i is the
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Figure 4.8: From left to right: ξ1,i,n functions of order k = 0 (piecewise constant), k = 1

(piecewise linear), and k = 2 (piecewise quadratic). In all the cases the sample size is

n = 10. The knots are adaptively chosen based on the data. At the initiation of the SPA

method the first knot b is located by b = argmaxi∈{k+1,...,n} |
〈
y, ξ1+k,i,n

〉
|.

unique solution to the subgradient equation

μ̂i = yi − λ2 (sign(μ̂i − μ̂i−1)− (μ̂i+1 − μ̂i))

where the sign(x) function is defined as

sign(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if x > 0

−1 if x < 0

[−1, 1] if x = 0.

Now, summing over every partition F̂1 and F̂2 we get (4.14) and (4.15).
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Lemma 4.2. Let An = {|
∑n

i=1 εi| ≤ λ2}; then the following holds

P(An)→ 1

where λ2 ≥
√
2n logn is the regularisation parameter in (4.2).

Proof. Since σ = 1 we have that
∑n

i=1 εi ∼ N (0, n) and using a (standard) Gaussian

bound

P

(∣∣∣∣∣
n∑
i=1

εi

∣∣∣∣∣ > λ2

)
≤ exp

(
−λ

2
2

2n

)
the lemma holds.

We now proceed with the proof of the main Theorem 4.1 where we use a similar

procedure with Lemma A3 of Fryzlewicz (2014). On the set An defined in Lemma

4.1 we start with the following

n∑
i=1

(yi − μ̂i)2 + λ2||μ̂||TV ≤
n∑
i=1

(yi − μi)2 + λ2||μ||TV

n∑
i=1

(yi − μ̂i)2 − (yi − μi)2 ≤ λ2

n∑
i=2

|μi − μi−1| − λ2
n∑
i=2

|μ̂i − μ̂i−1|

n∑
i=1

(μ̂i − μi)2 ≤ 2
n∑
i=1

εi(μ̂i − μi)︸ ︷︷ ︸
I

+λ2

⎛⎜⎜⎜⎝
n∑
i=2

|μi − μi−1|︸ ︷︷ ︸
II

−
n∑
i=2

|μ̂i − μ̂i−1|︸ ︷︷ ︸
III

⎞⎟⎟⎟⎠ (4.20)

We decompose the RHS of (4.20) starting with I

n∑
i=1

εi(μ̂i − μi) =
η∑
i=1

εi(μ̂i − μi)︸ ︷︷ ︸
I.A

+

η̂∑
i=η+1

εi(μ̂i − μi)︸ ︷︷ ︸
I.B

+

n∑
i=η̂+1

εi(μ̂i − μi)︸ ︷︷ ︸
I.C

I.A becomes

η∑
i=1

εi

(∑η̂
u=1 yu
η̂

+
λ2
η̂
− μi

)
=

(∑η̂
u=1 yu
η̂

)
η∑
i=1

εi +
λ2
η̂

η∑
i=1

εi −
η∑
i=1

εiμi.
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Using the model (4.13) we have that the first term on the RHS(
ημ0

η̂
+

∑η̂
u=1 εu
η̂

+
(η̂ − η)μ1

η̂

)
η∑
i=1

εi+
λ2
η̂

η∑
i=1

εi−
η∑
i=1

εiμ0 =
η

η̂
μ

η∑
i=1

εi+
λ2
η̂

η∑
i=1

εi−μ
η∑
i=1

εi.

Hence, a bound for I.A is given by

I.A ≤ λ2
η̂

η∑
i=1

εi + μ

η∑
i=1

εi.

Following a similar argument for I.B we have that

I.B =

(
ημ0

η̂
+

∑η̂
u=1 εu
η̂

+
(η̂ − η)μ1

η̂

)
η̂∑

i=η+1

εi +
λ2
η̂

η̂∑
i=η+1

εi −
η̂∑

i=η+1

εiμ1

=
ημ

η̂

η̂∑
i=η+1

εi +

∑η̂
u=1 εu
η̂

η̂∑
i=η+1

εi +
λ2
η̂

η̂∑
i=η+1

εi ≤ μ

η̂∑
i=η+1

εi +
λ2
η̂

η̂∑
i=η+1

εi.

Hence, I.A and I.B are of the same order. For I.C we have that

I.C =

(
μ1 +

∑n
u=η̂+1 εu

n− η̂

)
n∑

i=η̂+1

εi −
(

λ2
n− η̂

) n∑
i=η̂+1

εi −
n∑

i=η̂+1

εiμ1

=

∑n
u=η̂+1 εu

n− η̂

n∑
i=η̂+1

εi −
(

λ2
n− η̂

) n∑
i=η̂+1

εi ≤
λ22
δn
.

For II we have that
∑n

i=2 |μi − μi−1| = |μ| from Assumptions 4.1.

We now examine III. Note that

n∑
i=1

|μ̂i − μ̂i−1| = |μ̂1 − μ̂0|.

Hence, from (4.14) and (4.15), and the model (4.13) we have that

|μ̂1 − μ̂0| =

∣∣∣∣∣
∑n

i=η̂+1 yi

n− η̂ − λ2
n− η̂ −

∑η̂
i=1 yi
η̂

− λ2
η̂

∣∣∣∣∣
=

∣∣∣∣∣μ1 +

∑n
i=η̂+1 εi

n− η̂ − λ2
n− η̂ −

ημ0

η̂
− εnμ1

η̂
−
∑η̂

i=1 εi
η̂

− λ2
η̂

∣∣∣∣∣
≤ |μ|+

∣∣∣∣∣
∑n

i=η̂+1 εi

n− η̂

∣∣∣∣∣+ λ2
n− η̂ +

∣∣∣∣∣
∑η̂

i=1 εi
η̂

∣∣∣∣∣+ λ2
η̂
.

On the set An we combine I.A, I.B, I.C, II and III, and we get

n∑
i=1

(μ̂i − μi)2 < C2μλ2 +
λ22
δn
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for a big enough C2 and by noticing that O(λ2) dominates O(λ22/η̂).

We decompose the LHS of (4.20)

n∑
i=1

(μ̂i − μi)2 =
(

η∑
i=1

+

η̂∑
i=η+1

+

n∑
i=η̂+1

)
(μ̂i − μi)2. (4.21)

We start with the first term on the LHS. Using (4.14) and the model (4.13) we

have that

η∑
i=1

(μ̂i − μi)2 =

η∑
i=1

(∑η̂
u=1 yu
η̂

+
λ2
η̂
− μi

)2

=

η∑
i=1

(∑η̂
u=1 μu
η̂

+

∑η̂
u=1 εu
η̂

+
λ2
η̂
− μi

)2

=

η∑
i=1

(
η

η̂
μ0 +

(η̂ − η)μ1

η̂
+

∑η̂
u=1 εu
η̂

+
λ2
η̂
− μ0

)2

=

η∑
i=1

(
εnμ

η̂
+

∑η̂
u=1 εu
η̂

+
λ2
η̂

)2

≥
δnε

2
nμ

2

n2
+

4δnλ
2
2

n2
+

4δnλ2εnμ

n2
.

We proceed with the second term.

η̂∑
i=η+1

(μ̂i − μi)2 =

η̂∑
i=η+1

(∑η̂
u=1 yu
η̂

+
λ2
η̂
− μi

)2

=

η̂∑
i=η+1

(
ημ

η̂
+

∑η̂
u=1 εu
η̂

+
λ2
η̂

)2

≥
δnεnμ

2

n2
+

4εnλ
2
2

n2
+

4λ2εnμ

n2
.

Similarly for the third term

n∑
i=η̂+1

(∑n
u=η̂+1 εu

n− η̂ − λ2
n− η̂

)2

≥ 4λ22
δn

.

Combining all the inequalities we get the result.

4.8 Connecting Chapter 3 and Chapter 5

In this chapter, we have provided evidence that the total variation penalty estimator

is suboptimal in detecting both the location and the number of the change-points in
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the mean of a stochastic process. The simulation studies conducted clearly indicate

that the BS method outperforms the FLSA method. In Chapter 3 we showed that

the Wild Binary Segmentation (WBS) method - an improved version of BS - does

well in detecting the change-points occurred in the autocovariance function of a time

series. It is unlikely therefore for the FLSA method to exhibit better performance in

other settings, for example in the model (4.1) when the error εi is autocorrelated.

Despite that, the fused lasso method and, particularly, the solution path algo-

rithm of Tibshirani and Taylor (2011), which solves many types of lasso problems,

provides the user with a flexible tool to estimate a different class of models of the

following form

y = β1(u) + β2(u)X2 + ... + βp(u)Xp + ε (4.22)

where y ∈ Rn is the response vector, Xj for j = 1, ..., p are the inputs, ε ∈ Rn are iid

random errors and the coefficients βj(u) are piecewise constant, linear, quadratic or

cubic functions of u. This class of models is considered in Chapter 5.

Given the good performance of the BS or WBS methods, one might choose an

appropriate loss function to estimate the piecewise constant varying coefficients βj(u)

for j = 1, ..., p and then apply the binary segmentation search. Even though appeal-

ing, this kind of estimation will be restricted to piecewise constant models since to

the best of our knowledge the BS method has not been applied in models where the

coefficients βj(u) are piecewise polynomials.

There are, of course, alternative methods developed for estimating the model

(4.22), such as, the smoothing splines (Hastie and Tibshirani (1993)), the kernel

estimators (Hoover et al. (1998)), the local polynomial least squares (Fan and Zhang

(1999)), or the polynomial splines (Huang et al. (2002)), to name but a few. We do
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not presume that the fused lasso method should be regarded as the preferred method

over other techniques in the estimation of the model (4.22), but that it represents a

useful contribution in making use of an L1 penalty in the estimation process.
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Chapter 5

Adaptive Estimation of

Time-Varying Models

Introduction

In a standard linear regression set-up we are interested in modelling the influence of

covariates x(1), ..., x(p) on the response variable y via

yt = β0 + β1x
(1)
t + ...+ βpx

(p)
t + εt (5.1)

where εt ∈ Rn are iid random errors. A useful extension of this linear regression is to

assume a model where the regression coefficients βj for j = 1, ..., p vary, for example,

over time, different age groups or other covariates (and thus termed varying coefficient

models; henceforth, VC).

The full potential of VC models was not explored until the seminal works of

Cleveland et al. (1991) and Hastie and Tibshirani (1993). VC models are used in

a range of applications, including longitudinal studies aiming at investigating how

covariates affect responses through time (Hoover et al. (1998), Fan and Zhang (1999),
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Fan and Zhang (2000), Eubank et al. (2004) among others). For example, in Eubank

et al. (2004) the authors examine a data set which concerns patients with multiple

sclerosis who had been admitted to nursing homes. The response variable y in this

study is a performance index measuring the activities of daily living which has been

measured along with other variables such as race, ethnicity, body mass index or

gender. The authors allow the covariates to vary with time (in addition to the

coefficients) which in this case is taken to be the age of a patient, and they develop a

method to estimate this model. Other applications involve financial data, such as the

work by Criton and Scaillet (2011) who examine the time-varying alpha, a measure

of financial performance, in order to show that market exposures differ between two

crises. Especially in the time series context (note that if x
(1)
t = yt−1, ..., x

(p)
t = yt−p

the model (5.1) is an AR(p) model) there is a substantial interest for models where

coefficients evolve with respect to some variable; see, for example, Robinson (1989),

Chen and Tsay (1993) or Cai et al. (2000). Bai and Perron (1998) and Qu and

Perron (2007) assume that the coefficients in the model (5.1) are piecewise constant

which is of interest in many studies where relationships between economic indices are

likely to contain structural breaks (e.g. Stock and Watson (1996), McConnell and

Perez-Quiros (2000)).

In this chapter, we are interested in fitting a linear model in several predictor

variables. We believe that each coefficient is varying with respect to some underlying

parameter t. We consider the following time-varying model

yt =

p∑
j=1

β
(j)
t x

(j)
t + εt, for j = 1, ..., p and t = 1, ..., n (5.2)

where β
(j)
t are p piecewise polynomial functions of time and εt

iid∼ N (0, σ2). The
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model (5.2) covers the case of a varying intercept by setting x
(1)
t = 1 ∀t = 1, ..., n.

We assume that the coefficients vary with respect to a single index t which, for

simplicity, is taken to be time, but other indices can be also used as in the applications

we consider in Section 5.8. Further, the underlying parameter t is univariate and the

same for all the covariates. Hence, (5.2) is a special case of a VC model where β(j) is

not necessarily a function of time g(t), but also g(Rj) where Rj can be taken to be

xj or a linear combination of regressors and/or other variables (Fan et al. (2003)).

Finally, the time-varying model (5.2) differs from the generalised additive models

(GAM) of Hastie and Tibshirani (1990) in that GAMs assume a linear regression

model where some or all of the regressors are smooth non-parametric functions. A

special case of a GAM is non-parametric regression which we discuss in Section 5.1.

Fan and Zhang (2008) categorise the VC estimation into three approaches. One

possible way to conduct variable smoothing is by using the smoothing spline approach

of Hastie and Tibshirani (1993). The varying coefficients can be estimated using the

backfitting algorithm, an iterative “one at a time” method, typically adopted in the

estimation of GAMs. Smoothing splines have also been studied by Hoover et al.

(1998) and Chiang et al. (2001) in the context of longitudinal studies. Another ap-

proach of estimating the model (5.2) is by adopting polynomial splines first proposed

by Huang et al. (2002). Polynomial splines are favoured over other basis systems,

such as the Fourier basis, since they perform well in approximating the local features

of a function and provide stable numerical solutions (de Boor (1978)). Finally, a

branch of estimators make use of a kernel-local polynomial smoothing, see Cleveland

et al. (1991), Wu et al. (1998), Hoover et al. (1998), Kauermann and Tutz (1999)

and Cai et al. (2000). But a major drawback of ordinary least squares kernels and
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local polynomial estimators is that they rely on a single bandwidth and, hence, they

assume that all functions posses the same degree of smoothness. To overcome this

limitation, Fan and Zhang (1999) propose a two-step-estimation where the obtained

initial estimates are input into a second local least-squares regression. By doing so it

is expected that the estimation is not sensitive to the bandwidth of the first step.

We propose an estimation method based on the Fused Lasso method of Tibshi-

rani et al. (2005). Due to the adoption of an L1 penalty in the estimation process,

our method falls in the penalised regression category similarly with the smoothing

splines which utilise L2 penalties. We adopt the solution path algorithm of Tibshirani

and Taylor (2011) (henceforth, T&T), a method used to solve lasso-type problems

such as the non-parametric regression. In a non-parametric regression setting Tibshi-

rani (2014) shows that estimators with total-variation penalties perform better than

smoothing splines in terms of minimax convergence rates and empirical evidence.

Since we adopt this new class of estimators to estimate β
(j)
t for j = 1, ..., p in the

model (5.2) we expect our method (termed Fused Lasso estimator for Time Varying

models - FuLTV) to do better than smoothing splines in time-varying estimation.

Indeed, in the simulated examples and real data sets that we consider FuLTV per-

forms well in most cases. Finally, a notable result of our method is that it permits an

exact calculation of the degrees of freedom and, hence, a more efficient way of model

selection.

This chapter contributes in the time-varying model estimation literature in four

ways. First, it proposes a new class of estimators for the time-varying coefficients

β
(j)
t in the model (5.2) making use of L1 penalties in the estimation process. Second,

it suggests a path algorithm for this lasso-type problem. Path algorithms provide an
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exact solution in contrast with general purpose convex optimisation techniques. In

addition, they offer an interpretation advantage where the user is able to examine

the solution path for a decreasing regularisation parameter. Third, it shows how

FuLTV estimates models where the underlying coefficient structure is not only piece-

wise constant, but also piecewise polynomial of degree k and, hence, piecewise linear,

quadratic, cubic etc. Finally, the adoption of the fused lasso method enables a com-

parison with penalised least squares method first proposed by Hastie and Tibshirani

(1993) who adopt L2 penalties for estimating the model (4.22). From that perspec-

tive, this chapter also serves as a comparative study between L1 - and L2 -type of

penalised regression.

This chapter is organised as follows. After introducing the solution path algo-

rithm of T&T (Section 5.1), in Section 5.2 we examine some computational aspects

of the univariate time-varying model. Then we extend T&T’s path algorithm in

a multi-covariate setting in Section 5.3. This is followed by a comparison between

FuLTV and the smoothing splines of Hastie and Tibshirani (1993) and a sketch of

the theoretical consistency of FuLTV for the piecewise constant model in Sections

5.4 and 5.5, respectively. In Section 5.6 we discuss model selection for the FuLTV

by looking at the degrees of freedom, a measure of the complexity of a model. After

performing a simulation study to assess the performance of our method in Section

5.7, the penultimate part (Section 5.8) consists of an account of two applications

to real data sets. Finally, Section 5.9 contains proofs of the lemmas related to the

FuLTV method.
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5.1 Preliminaries

The method we propose in this chapter for estimating the model (5.2) is a natural

extension of the non-parametric regression, i.e. the observations y1, ..., yn ∈ R are

generated from the following model

yi = f0(xi) + εi, i = 1, ..., n (5.3)

where xi are input points, f0 is the underlying function (signal) to be estimated

and ε1, ..., εn are independent errors. It is important to notice that the model (5.3)

can contain multiple functions, and not just f0(xi). Therefore, the model (5.3) is a

univariate GAM. Finally, the model (5.2) differs from (5.3) (apart from the multiple

predictors involved) in that yi is related to xi through a coefficient that varies with

respect to another variable.

Many methods for estimating f0 have been proposed such as local polynomi-

als, splines or wavelets. A special case of the model (5.3) is when f0 exhibits a

piecewise constant behaviour which can be also described as abrupt changes, termed

change-points or break-points, in the mean of a series. Algorithms for estimating the

piecewise constant signal in the context of the Fused Lasso approach, the main topic

of interest in this chapter, can be found in Friedman et al. (2007) (Fused Lasso Signal

Approximator - FLSA) and Hoefling (2010). However, an algorithm has already been

devised by Davies and Kovac (2001), but with a different name, i.e. the taut string.

Kim et al. (2009a) introduce the trend filtering method to estimate the underlying

function of (5.3) when f0 is a piecewise linear function. Tibshirani (2014) proposes a

kth order trend filtering which estimates the structure of a piecewise polynomial of

any order i.e. piecewise quadratic, cubic etc and not only piecewise constant or linear.

144



Chapter 5 Adaptive Estimation of Time-Varying Models

In addition, it is worth mentioning that trend filtering is practically very similar to

the locally adaptive regression splines of Mammen and van de Geer (1997), a total

variation type of method for estimating the model (5.3).

The algorithm of T&T is designed to solve the following lasso problem

β ∈ arg min
β∈Rp
||y −Xβ||22 + λ||Dβ||1 (5.4)

where y ∈ Rn is an outcome vector, X ∈ Rn×p is a predictor matrix and D ∈ Rm×p

a penalty matrix. A special case of the problem is when D = I which reduces to

the standard lasso problem (Tibshirani (1996)). For the model (5.3) X = I and

βi = f0(xi). If the underlying signal βi is piecewise constant we use the penalty

matrix

D =

⎛⎜⎜⎜⎜⎜⎝
−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −1 1

⎞⎟⎟⎟⎟⎟⎠ ∈ R
(n−1)×n. (5.5)

In Chapter 4 we presented the algorithm in the case where X = I and D has

the form of (5.5). Of utmost importance is to note a difference in algorithmic terms

between this case and the case where D is an arbitrary penalty matrix. When the

penalty matrix D is as in (5.5), i.e. the piecewise constant estimator, the dual

coordinates (knots) always remain in the active set B until the termination of the

algorithm. From the “primal” perspective this means that

β̂λ0,i = β̂λ0,i+1 ⇒ β̂λ,i = β̂λ,i+1 ∀ λ ≥ λ0.

However, for an arbitrary penalty matrix D the dual coordinates included in the

active set B (hitting coordinates) can also leave B for decreasing regularisation pa-

rameter and this will happen frequently. Therefore, at the qth iteration, apart from
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testing when a dual coordinate will join the active set B, i.e.

iq+1 = argmax
i
hi

where

hi =
[D−B(D−B)T )+D−By]i

[D−B(D−B)T )+D−B(DB)TS]i ± 1

(either −1 or 1 in (4.8) will yield a value in [0, λq]) it is essential to know when it will

leave B (leaving coordinates), i.e.

iq+1 = argmax
i
li

where

li =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γi/δi if γi, δi < 0

0 otherwise

and

γi = Si
[
DB[I − (D−B)T (D−B(D−B)T )+D−B]y

]
i

δi = Si
[
DB[I − (D−B)T (D−B(D−B)T )+D−B](D−B)TS

]
i

where A+ denotes the Moore-Penrose pseudoinverse of A.

Below, we summarise the solution path algorithm of T&T.

Algorithm 1 (Dual Path Algorithm for X = I and a general matrix D)

Given y ∈ Rn and D ∈ Rm×n

1. Find û by minimising the L2 norm solution of

min
u∈Rm

||y −DTu||22.
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2. Find the first hitting time λ1 and the hitting coordinate i1; record the

solution û(λ) = û for λ ∈ [λ1,∞]). Initialize B = {i1}, S = sign(ûi1) and

q = 1.

3. While λq > 0:

(a) Find â and b̂ by minimising the L2 norm solution of

min
a∈Rm−|B|

||y −DT
−Ba||22 and min

b∈Rm−|B|
||DT

BS −DT
−Bb||22.

(b) Compute the next hitting time Πq+1 = maxi hi and leaving time Γq+1 =

maxi li.

Set λq+1 = max{Πq+1,Γq+1}.

If Πq+1 > Γq+1 add the hitting coordinate to B and its sign S; other-

wise, remove the leaving coordinate from B and S.

Record the solution û(λ) = â − λb̂ for λ ∈ [λq+1, λq]) and update

q = q + 1.

Algorithm 1 can be extended to other settings where X �= I as is the case with

the model (5.2) we consider here. This is achieved by applying a transformation to

the response vector y and the penalty matrix D. Specifically, let ỹ = XX+y and

D̃ = DX+. Then, to find the solution path of the transformed problem, we can

apply Algorithm 1 on ỹ and D̃. However, this transformation does not change the

properties of the estimator: the values of the coefficients can be obtained from the

dual coordinates by

β̂ = ỹ − D̃T û.
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5.2 The univariate time-varying model

5.2.1 Computational aspects

As a preparatory exercise and before we consider the estimation of the model (5.2)

in Section 5.3 we examine the simpler time-varying model with a single covariate

(p = 1)

yt = βtxt + εt (5.6)

where t = 1, ..., n and εt are independent errors. Note the similarities of this model

with the model (5.3) when taking xt = 1 for ∀t ∈ {1, ..., n}.

Our aim is to estimate βt which, for example, can be sparse and blocky. We form

the loss function

f(βt) =

n∑
t=1

(yt − βtxt)2 + λ1

n∑
t=1

|βt|+ λ2

n∑
t=2

|βt − βt−1|+ λ3

n∑
t=1

β2
t . (5.7)

where λ3 > 0. The reasons for adding the extra (ridge) penalty λ3
∑n

t=1 β
2
t are

explained later in this section. The fused lasso penalty term in the piecewise constant

time-varying model set-up takes the following form

‖Dβ‖1 =
n∑
t=1

|βt − βt−1|.

This type of penalty encourages sparsity in the differences of the coefficients and

hence some of the terms |βt − βt−1| will be zero. We define the matrix

X =

⎛⎜⎜⎜⎜⎜⎝
x1 0 · · · 0

0 x2 · · · 0

...
...

. . .
...

0 0 · · · xn

⎞⎟⎟⎟⎟⎟⎠ ∈ R
n×n (5.8)

which is the identity matrix (as in the FLSA) multiplied by the vector xt. In order

to proceed with the estimation method of the above model we present the following

lemma which is a modification of Lemma A.1 of Friedman et al. (2007) [pg 326]:
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Lemma 5.1. When the solution for λ1 = 0 and λ2 ≥ 0 denoted by β̂(0, λ2) is known

then for a fixed λ3 the solution for λ1 > 0 is

β̂t(λ1, λ2) = sign(β̂t(0, λ2))(|β̂t(0, λ2)| −
λ1
x
¯
2
t

)+

where x
¯
2
t = x2t + λ3.

Proof: See Section 5.9.

Simply, due to the special structure of the design matrix X , the estimated coef-

ficients for the lasso penalty can be obtained by soft-thresholding. Hence, we do not

need to solve the problem over a grid of values of the pair (λ1, λ2) but only over a

grid of values of λ2 and then use Lemma 5.1 to find the solution for different values

of λ1. The division by x
¯
2
t is permitted thanks to the ridge penalty in (5.7). Since we

do not consider the lasso penalty in time-varying estimation, henceforth, we will take

λ1 = 0 and for notational simplicity, λ = λ2.

We now show how the fused lasso estimator returns a blocky solution by fusing

neighbouring coefficients for increasing λ. Let us consider the loss function for the

model (5.6)

f(β) =

n∑
t=1

(yt − βtxt)2 + λ

n∑
t=2

|βt − βt−1|+ λ3

n∑
t=1

β2
t

where we fix all βk = β̂k, k �= t at their global minimising values (those values

that minimise the loss function) and we only consider βt. The loss function is not

differentiable with respect to βt at {β̂t−1, β̂t+1} (left panel of Figure 5.1) and standard

rules of subdifferential calculus are adopted (Bertsekas (1999)) i.e. the subdifferential
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of f(βt) with respect to βt is

∂f(β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(yt − βtxt)xt + 2λ3βt + λ
(
sign(β̂t − β̂t−1)− sign(β̂t+1 − βt)

)
if β̂t /∈ {β̂t−1, β̂t+1}

[−(yt − β̂t−1xt)xt + 2λ3β̂t−1 − 2λ,−(yt − β̂t−1xt)xt + 2λ3β̂t−1] if β̂t = β̂t−1

[−(yt − β̂t+1xt)xt + 2λ3β̂t+1,−(yt − β̂t+1xt)xt + 2λ+ 2λ3β̂t+1] if β̂t = β̂t+1

The above expression is a piecewise linear function of β̂t with one solution, if that

exists. The breaks occur at points β̂t−1 and β̂t+1 and we check whether 0 ∈ ∂f(β)

by inspecting each of the three intervals that are created (see also the right panel of

Figure 5.1). In the illustration of Figure 5.1 this occurs when β̂t = β̂t−1, i.e. the two

coefficients are now fused.
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Figure 5.1: Loss function f(β) with respect to βt with the rest of the parameters set at their

global minimising values (left). The subgradient ∂f(β) of βt with discontinuities at β̂t−1

and β̂t+1 (right). The blue line is the break at β̂t+1 while the red is at the point where βt

takes its optimal value i.e. equal to β̂t−1.

In Section 5.2.2 we devise a solution path algorithm to estimate univariate time-

varying models. Since the ridge penalty provides numerical stability (the X matrix is
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singular if some of the values of xt are zero or close to zero) we choose to keep it by

making a variable transformation. To achieve this we re-write (5.7) in the following

form

f(βt) =

n∑
t=1

(yt − βtxt)2 + λ

n∑
t=2

|βt − βt−1|+
n∑
t=1

(0−
√
λ3βt)

2. (5.9)

We can now define vector y̌ = [y, 0]T and X̌ =
[

X√
λ3I

]
where I is a n×n diagonal

matrix and X as in (5.8). This transformation allows us to work with y̌ and X̌ instead

of y,X . The addition of a ridge penalty into the loss function is required only for the

purpose of applying the solution path algorithm and not for the consistency result in

Section 5.5.

5.2.2 A solution path algorithm for the univariate time-varying

model

Using the transformed variables y̌ and X̌ we proceed with the estimation of a univari-

ate model with piecewise constant (time-varying) coefficients by using the penalty

matrix as in (5.5).

In matrix notation the optimisation problem (5.7) has the following form

min
β∈Rn,z∈Rm

1

2
||y̌ − X̌β||22 + λ||z||1 s.t. Dβ = z. (5.10)

In the new optimisation problem (5.10) the ridge penalty is taken into consideration

through the transformed variables y̌ and X̌. We now follow the same argument as in

T&T (see also Section 5.1), but for the time-varying set-up.

We rewrite the problem (5.10) into its Lagrangian form

L(β, z, u) = 1

2
||y̌ − X̌β||22 + λ||z||1 + uTDβ − uTz
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and minimise it over β and z. Starting with β,

(
1

2
(y̌ − X̌β̂)T (y̌ − X̌β̂) + uTDβ̂

)′

= 0

or

−X̌T y̌ + X̌T X̌β̂ +DTu = 0

or

β̂ = (X̌T X̌)−1(X̌T y̌ −DTu).

Define Q = (X̌T X̌)−1. We now invoke an argument by T&T to show that the

dual problem has the following form

min
u∈Rn−1

1

2
(X̌T y̌ −DTu)TQ(X̌T y̌ −DTu) s.t. ||u||∞ ≤ λ. (5.11)

We transform y̌ and D according to T&T and more specifically

ỹ = X̌QX̌T y̌ (5.12)
D̃ = DQT X̌T (5.13)

In order to obtain the time-varying coefficients from the dual variables ûλ we use

β̂λ = QX̌T (y̌ − D̃T ûλ).

The optimisation problem has the following form

min
u∈Rn−1

1

2
||ỹ − D̃Tu||22 s.t. ||u||∞ ≤ λ. (5.14)

Note that (X̌T X̌)−1 is a n× n diagonal matrix with entries
x2t

x2t+λ3
for t = 1, ..., n

and λ3 as in (5.7). Then, we can take ỹ ≈ y̌ and, therefore no transformation is

required. If, in addition, λ3 → 0 and matrix X is invertible then ỹ := y and the

similarity of problems (4.5) and (5.14) becomes apparent.

We now turn to the reasons for adding an L2 penalty into the loss function.

Assume that λ3 = 0, then Q = (XTX)−1 which is not always invertible (to see that
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take some elements of diag(X) to be zero). By adding the extra penalty we permit

the calculation of Q even if XTX is singular. Recall from the ridge regression that

the L2 penalty permits estimation of the regression coefficients when XTX is not of

full rank which is the case when the sample size n is smaller than the number of

predictors. The ridge penalty performs a similar task in the univariate case.

Instead of adding a ridge penalty in (5.7) we can follow a different approach.

First, consider the model

ytxt = βtx
2
t + εtxt. (5.15)

We define M non-overlapping partitions of the model each of size m such that the

response matrix Ỹ ∈ RM×1 has the form

Ỹ =

⎡⎣ m∑
t=1

ytxt,
2m∑

t=m+1

ytxt, ...,
Mm∑

t=(M−1)m+1

ytxt

⎤⎦T

and X̃ ∈ RM×M such that

diag(X̃) =

⎡⎣ m∑
t=2

x2t ,
2m∑

t=m+1

x2t , ...,
Mm∑

t=(M−1)m+1

x2t

⎤⎦ .
We can repeat the primal-dual transformation to obtain the optimisation problem

(5.14) by considering the following model

y
¯t

� = βt�x
¯t

� + ut� (5.16)

where t� = 1, ...,M − 1, y
¯t

� =
∑(t�+1)m

t=t�m ytxt and x
¯t

� =
∑(t�+1)m

t=t�m x2t for a partition of

size m.

However, grouping the data as shown has three main disadvantages. Firstly, it

reduces the effective sample size which becomes even less desirable as we increase

the size of the small segments. In applications with large samples this might not

be a major drawback, but in small samples this method can significantly reduce
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the performance of the estimator. Secondly, the fact that we define non-overlapping

segments, it implies that it is possible to miss change-points that occur inside the

segments. Finally, a tuning process is needed to select size m. We do not make

further use of this transformation apart from proving Lemma 5.2 below.

In order to derive a solution path algorithm for the model (5.6) we examine

whether the boundary lemma holds (Lemma 5.2). The boundary lemma in the FLSA

is the equivalent of Proposition 2 of Friedman et al. (2007) which states that two

parameters that are fused in the solution for (λ1, λ2) will be fused for all (λ1, λ
′
2 > λ2).

T&T notice that the lemma holds when DDT is diagonally dominant, that is

(DDT )ii ≥
∑
j �=i

∣∣(DDT )ij
∣∣ for i = 1, ..., n− 1.

In Section 5.9 (Lemma 5.3) we show that D̃D̃T is also diagonally dominant and,

hence, the following lemma holds:

Lemma 5.2. For a univariate time-varying model we have that for any coordinate

i, the solution ûλ of (5.14) satisfies

ûλ0,i = λ0 ⇒ ûλ,i = λ for all λ ∈ [0, λ0]

and

ûλ0,i = −λ0 ⇒ ûλ,i = −λ for all λ ∈ [0, λ0].

Proof: See Section 5.9.

Simply, the lemma states that for decreasing λ the coordinate ui stays within

the boundary i.e. ui = λ. Thus at every iteration we only need to find the interior

coordinates.

The solution path algorithm for a univariate time varying model with piecewise-

constant coefficients is a direct modification of Algorithm 1. In other words, we only
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need to solve the following linear system

D̃D̃Tu = D̃y̌. (5.17)

This corresponds to an amendment in steps 1 and 3a of Algorithm 1.

5.2.3 Beyond piecewise-constant structure

In this section we argue that FuLTV can estimate a univariate time-varying where

the underlying varying coefficient structure is not necessarily piecewise-constant. In

the non-parametric regression set-up Tibshirani (2014) suggests that the solutions

from total variation penalty estimators resemble the structure of a piecewise kth

degree polynomial filtering where the discrete derivative operators can be defined in

a recursive manner starting with D(1) and then letting

D(k+1) = D(1)D(k) for k = 1, 2, 3, ... (5.18)

We also refer the reader to the work by the same author for theoretical support

of estimation properties of trend filtering and its comparison (in terms of minimax

convergence rates) with smoothing splines (see e.g. de Boor (1978), Wahba (1990),

Green and Silverman (1994)) and locally adaptive regression splines by Mammen and

van de Geer (1997).

The penalty matrixD in (5.5) is, hence, D(k+1) for k = 0. Another type of penalty

is the L1 trend filtering (k = 1) of Kim et al. (2009a) which penalises variations in

the trend, i.e. ∥∥D(2)β
∥∥
1
=

n∑
t=1

|βt−1 − 2βt + βt+1|.

An example of a simulated time-varying univariate model and its estimated vary-

ing coefficients βt is shown in Figure 5.2. The coefficients are assumed to admit a
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piecewise-linear function and, hence, a D(2) penalty is used. This type of penalty

also appears in Mammen and van de Geer (1997) and from that perspective trend

filtering is the same with locally adaptive regression splines when k = 0 or k = 1.
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Figure 5.2: Left panel is an instance of 100 simulated TV models of the form yt = βtxt+ εt

where xt ∼ N (1, 1), εt ∼ N (0, 2) and βt follows a piecewise linear function (in blue and

multiplied by 5 for scale reasons). Right panel shows the estimated coefficients averaged over

100 simulations denoted by the (red) solid line while the standard deviations (multiplied by 2

for scale reasons) are denoted by the two (black) symmetric, dashed lines. The underlying,

true function βt is denoted by the (blue) dashed line.

5.3 Multi-covariate time-varying model estimation

We extend FuLTV in the multi-covariate setting and we estimate the time-varying

coefficients in the model (5.2). We form the following loss function

f(β) =
n∑
t=1

(
yt −

p∑
j=1

β
(j)
t x

(j)
t

)2

+ λ

p∑
j=1

||Dβ(j)
t ||1 (5.19)
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or (in matrix notation)

f(β) = ||y −Xβ||22 + λ ‖Dβ‖1 (5.20)

where y ∈ Rn×1 is the response vector; X ∈ Rn×p� is the design block matrix where

its partition contains p diagonal matrices of size n× n and

p� = np. (5.21)

In addition, β ∈ R
p�×1 is the coefficient matrix and D ∈ R

p(n−1)×p(n−1) is the penalty

matrix the form of which is described shortly after.

In Section 5.2, we presented the univariate piecewise constant model (p = 1)

and we showed that it shares many features with the FLSA method. In the multi-

covariate case we stack the p matrices X(j) = diag(x
(j)
t ) ∈ R

n×n for j = 1, ..., p into

one single design matrix, i.e.

X =

(
X(1)| X(2)| · · · | X(p)

)
.

The penalty matrix D has the following form

D =

⎛⎜⎝
D

(k1+1)
1 0 ··· 0

0 D
(k2+1)
2 ··· 0

...
...

...
...

0 0 ··· D
(kp+1)
p

⎞⎟⎠
where D

(kj+1)
j is the penalty matrix (5.18) with discrete difference operator of order

kj +1 where kj ≥ 0 for j = 1, ..., p. An interesting feature of the penalty matrix D is

that it allows the use of different orders of piecewise polynomial functions across the

covariates, even though practically this means that the user has a priori knowledge

of the underlying structure of each of the varying coefficients.

We now apply the solution path algorithm for the model (5.2). Firstly, we note

that in the multi-covariate time-varying case the predictor matrix X does not have
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full rank (recall that m = np). One way to deal with that is to add a ridge penalty

to the original problem (5.20)

f(β) = ||y −Xβ||22 + λ||Dβ||1 + λ3||β||22.

This is analogous to the elastic net of Zou and Hastie (2005) which adds a second

constraint to the lasso problem. The above can be re-written as follows

f(β) = ||y∗ −X∗β||22 + λ||Dβ||1 (5.22)

where y∗ = [y, 0]T , X∗ =
[

X√
λ3I

]
and I is a p� × p� diagonal matrix. The extra ridge

penalty provides more computational stability especially when the diagonals of the

X(j) contain values close or equal to 0.

For the multi-covariate X∗, we can apply the same argument with the univariate

setting as in Section 5.2.2 to derive the dual of (5.22)

min
u∈Rp�

1

2
||ỹ∗ − D̃Tu||22 s.t. ||u||∞ ≤ λ (5.23)

where the transformation of y∗ and D permits the use of the solution path algorithm

as with the univariate setting. The only difference now between (5.14) and (5.23) is

that in the latter the newly defined penalty matrix D̃ is not diagonally dominant and

the boundary lemma does not hold. This means that in addition to checking when a

coordinate will hit the boundary we have to determine when a boundary coordinate

will leave the boundary.

5.4 Comparison with smoothing splines

Hastie and Tibshirani (1993) propose the following penalised least squares criterion
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in order to solve (5.2)

�(β1, ..., βp) =

n∑
t=1

{yt −
p∑
j=1

β
(j)
t x

(j)
t }+

p∑
j=1

λj

∫
[β

(j)′′
t ]2dt. (5.24)

They parameterise the problem by adopting the natural cubic spline basis. De-

note them N1
j (t), ..., N

nj

j (t) where nj are the unique values of t. Further, let the basis

matrix Nj have tqth element N q
j (t). Then each β

(j)
t can be expressed in terms of its

basis functions

β
(j)
t =

nj∑
ν=1

γνjN
ν
j (t)

which can be rewritten as βj = N jγj . The penalised least squares equation (5.24)

can now be written as

�(γ1, ...,γ2, ...γp) = ||y −
p∑
j=1

W jN jγj||22 +
p∑
j=1

λj||γj||2Ωj
(5.25)

whereΩj has tqth element
∫
N t
j (t)

′′N q
j (t)

′′dt, the penalty seminorm ||γj||2Ωj
= γTj Ωjγj

and W j ∈ Rn×n is a diagonal matrix with the values of X
(j)
t on its diagonal. The

estimated coefficients can then be obtained

β̂j = N jγj = Sj(λj)W
−
j (y −

∑
k �=j

W kN kγk)

where Sj(λj) = N j(N
T
j W

2
jN j+λjΩj)

−1NT
j W

2
j and W−

j is the generalized inverse

of W j , necessary if some elements of W j are 0.

The matrix operator Sj(λj) is a weighted cubic smoothing spline with weights

W j and one can see that this reduces to a cubic smoothing spline when diag(W j) =

[1, ..., 1]. The minimisers β̂1, β̂2, ..., β̂p can be found in an iterative “one at a time”

manner by using backfitting procedures.

To compare the varying coefficient smoothing spline problem (5.24) with the

FuLTV method we re-write the fitted values in the following form (we remove sub-
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script j for convenience)

Nγ = N(NTW 2N + λΩ)−1NTWy = (W 2 + λK)−1Wy (5.26)

where K = N−TΩN−1 (the expression in (5.26) is termed the Reinsch form). After

setting û = Nγ into (5.25) we have the following minimisation problem

u ∈ arg min
u∈Rn
||y −Wu||22 + λuTKu (5.27)

which has a similar form with (5.4) above (note that W = X). Extending Tibshirani

(2014) who studies the differences between trend filtering and smoothing splines for

the case of W = I we discuss them in a time-varying setting. A first observation is

that K1/2 is similar to the discrete derivative operators. For instance, when k = 3

Tibshirani (2014) shows that ||K1/2u||22 = ||C−1/2D(2)u||22 where C−1/2 ∈ Rn×n is a

tridiagonal matrix, with diagonal and off-diagonal elements equal to 2/3 and 1/6

respectively. The main distinction between the two methods, however, lies in the two

types of penalties applied i.e. L2 (ridge) for the smoothing splines and L1 (lasso) for

the FuLTV method. It is well known that the former type shrinks coefficients towards

zero (but never set them equal to zero) while the latter gives a sparse solution, i.e.

it adaptively sets coefficients equal to zero. Making the analogy to the time-varying

model we would expect FuLTV to have better adaptivity properties than smoothing

splines. The simulation study of Section 5.7 supports this claim.

5.5 Time-varying estimation as a lasso problem

We now transform problem (5.20) into its lasso equivalent

f(α) = ‖y −XHα‖22 + λ ‖α‖1 (5.28)
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where H is a block diagonal matrix having in its diagonal p lower triangular matrices.

This transformation derives from the invertibility of the penalty matrix D as given

in (5.3) and the fact that the inverse operation inverts the matrices in the diagonal.

An action of this kind is generally allowed when the penalty matrix D ∈ Rm×p has

rank(D) = m in the sense that a fused lasso problem (or generalised lasso if the

penalty matrix does not necessarily have the form of (5.5)) can be transformed to a

lasso problem. Now, the two problem formulations (5.20) and (5.28) are the analysis

and synthesis approaches in the context of L1 penalised estimation with varying

coefficients (the terms are used by Elad et al. (2007) to categorise two branches of

estimation methods commonly embraced in the signal processing literature). It is

yet unclear which approach is easier to work with and Elad et al. (2007) establish

the existence of an “unbridgeable gap” between them, even though they favour the

analysis approach.

We denote by H(j) each submatrix of the H diagonal matrix. The form of each

H(j) depends on k, the degree of polynomial filtering as in (5.18). From Lemma 2 of

Tibshirani (2014) the predictor matrix H(j) ∈ Rn×n is given by

H
(j)
i,i′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ii
′−1/ni

′−1 for i = 1, ..., n, i′ = 1, ..., k + 1

0 for i ≤ i′ − 1, i′ ≥ k + 2

σ
(k)
i−i′+1k!/n

k for i > i′ − 1, i′ ≥ k + 2

(5.29)

where σ(0) = 1 for all i and

σ(k) =

i∑
i′=1

σ
(k−1)
i′ for k = 1, 2, 3, ...

where σ(k) is the kth order cumulative sum of (1, 1, ..., 1) ∈ R
i. For the piecewise

constant and piecewise linear estimators the basis matrices are respectively
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H(j) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

1 1 0 · · · 0

1 1 1 · · · 0

..

.

1 1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
if k = 0

(5.30)

H(j) =
1

n

⎛⎜⎜⎜⎜⎜⎜⎜⎝

n 1 0 0 · · · 0

n 2 1 0 · · · 0

n 3 2 1 · · · 0

..

.

n n n− 2 n− 3 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
if k = 1

Let us assume that X̃ = XH and α̂ − α = v for notational simplicity. In

addition, define the active set B = {t ∈ [1, n] and j ∈ [1, p] : αt,j �= 0} and

Bc = {1, ..., n} ∩ {1, ..., p}\B. We use the notation Bc and not −B (practically they

are the same) to distinguish a set (former) from a set of rows (latter). Finally, denote

s0 = |B| the cardinality of the active set and Cn := XTX the Gram-type matrix

where Cn ∈ Rp�×p� . The matrix Cn can be expressed in a block-wise form

Cn =

⎛⎜⎜⎜⎜⎜⎝
Cn

11 Cn
12 · · · Cn

1p

Cn
21 Cn

22 · · · Cn
2p

...
...

. . .
...

Cn
p1 Cn

p2 · · · Cn
pp

⎞⎟⎟⎟⎟⎟⎠
where Cn

κκ′ ∈ Rn×n for κ, κ′ = 1, ..., p are diagonal matrices containing xκt x
κ′
t for

t = 1, ..., n. For the lasso problem (5.28) the Gram matrix CH is HTCnH and its

specific form will depend on the choice of k for the different predictor variables.

An important feature of the lasso estimator is its ability to recover the true

pattern of a high-dimensional model asymptotically with high probability. Zhao and

Yu (2006) give the following definition of sign consistency.

Definition 5.1. An estimator βλ is called sign consistent if and only if

P (sign(β) = sign(βλ))→ 1 as n→∞. (5.31)

In order for the above condition to hold for the time-varying linear model the

irrepresentable condition should be met. Assume, w.l.o.g, that diag(X) = [1, ..., 1]
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and j = 1 such that CH = 1
n
HTH . Then, Meinshausen and Yu (2009) give the

following definition

Definition 5.2. The sub-matrix CFQ of Cn is obtained by keeping rows with index

in the set F and columns with index in the set Q. Then the irrepresentable condition

is fulfilled when the following inequality holds element-wise:

|CH
BcB

(
CH

BB
)−1

sign(βB)| < 1. (5.32)

In our case, with the use of counterexamples we can show that for k ≥ 0 there

exists at least one component i0 such that (5.32) does not hold. Hence, the asymptotic

properties of the lasso, normally adopted in a general regression framework, cannot

directly be applied here. However, we can still examine the convergence rate of our

estimation method in the �2 sense i.e. ||β̂−β||22. This is simply equal to ||Hα̂−Hα||22 =

||H(α̂ − α)||22 and hence we can find a bound by examining (5.28). We impose the

following assumptions:

(A1) - For any t = 1, ..., n and j = 1, ..., pM≤
(
x
(j)
t

)2

≤M.

(A2) - For p→∞ and n→∞

log p�n/n→ 0

where p�n as in (5.21).

(A3) - The regularisation parameter λ = σ

√
2 log p�nM

n
.

We now prove the following result for the time-varying FL estimator when the

underlying coefficient structure of the model (5.2) is piecewise constant.

Proposition 5.1. Under Assumptions (A1)-(A3), for k = 0 and {αt,j}t,j∈B ∈ (αmin, αmax)

the following event

1

n
||H(α̂− α)||22 ≤ 2σ

√
log p�nM

n
s0αmaxM−1
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holds with probability tending to 1.

Proof. If α̂ are the minimisers of the lasso problem, then the following holds

1

n
||y − X̃α̂||22 + λ||α̂||1 ≤

1

n
||y − X̃α||22 + λ||α||1

1

n
||ε− X̃v||22 + λ||α+ v||1 ≤

1

n
||ε||22 + λ||α||1

1

n
||X̃v||22 ≤

2

n
vT X̃Tε︸ ︷︷ ︸

I

+λ||α||1 − λ||α+ v||1. (5.33)

We turn to the process I which we can write as 1
n
vTHTXT ε. Recall from (5.30)

that H(j) is a lower triangular matrix. Matrix multiplication of the form Θ = H (j)Δ

where Δ is a n × 1 vector returns a vector Θ the elements of which are cumulative

sums of decreasing length. That is,

Θ =

⎛⎜⎜⎜⎜⎝
1 1 1 · · · 1

0 1 1 · · · 1

0 0 1 · · · 1

.

.

.

0 0 0 · · · 1

⎞⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎣

Δ1,1

Δ2,1

Δ3,1

.

.

.

Δn,1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
∑n

t=1 Δt,1

∑n
t=2 Δt,1

∑n
t=3 Δt,1

.

.

.

Δn,1

⎤⎥⎥⎥⎥⎦
We invoke the above property to show that

1

n
vTHTXT ε =

1

n

p∑
j=1

n∑
�=1

v
(j)
�

(
n∑
t=�

x
(j)
t εt

)
≤

p∑
j=1

n∑
�=1

v
(j)
� λ (5.34)

where the last inequality derives from Lemma 5.4 (see Section 5.9).

The inequality (5.33) becomes

1

n
||X̃v||22 ≤

p∑
j=1

n∑
�=1

v
(j)
� λ+ λ||α||1 − λ||α+ v||1

1

n
||X̃(α̂−α)||22 ≤ λ||α||1+λ||α̂||1+λ||α||1−λ||α̂||1 ≤ 2λ

∑
{t,j}∈B

αtj ≤ 2σ

√
log p�n
n

s0αmaxM.

With this result and by Assumption (A1) the proof concludes.
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Some remarks are in order. The rate obtained is the same with FLSA up to the

terms log p�n, M and M. In general, we note that for the nonparametric regression

problem (5.3) Tibshirani (2014) shows that the kth order trend filtering attains the

minimax rate, i.e. O(n−(2k+2)/(2k+3)) which for k = 0 is better than that of Proposition

5.1. Proposition 5.1 can be extended to high order cases (k > 0) by finding an

appropriate bound for the process (5.34).

5.6 Degrees of freedom and model selection

The degrees of freedom measures the complexity of the model and quantitatively

describes the effective number of parameters used in the fit by a given procedure.

An estimate of degrees of freedom allows us to use model selection criteria. Before

discussing in detail model selection criteria, we provide the definition of the degrees

of freedom as in e.g. Efron (1986) or Efron et al. (2004). Let us assume that y ∈ R
n

is drawn from the following normal model

y ∼ N (μ, σ2I)

where X is fixed. For a function h : Rn → Rn (with ith coordinate function hi :

Rn → R), the degrees of freedom of function h is defined as

df(h) =
1

σ2

n∑
i=1

Cov(hi(y), yi).

In our context, h(y) = Xβ̂λ(y) for fixed λ.

Tibshirani and Taylor (2012) give an expression for the degrees of freedom with

minimal assumptions (Theorem 3). For an arbitrary X, D and λ ≥ 0, an unbiased

estimate for the degrees of freedom for the generalised lasso is given by

df(Xβλ) = E[dim(Xnull(D−B))]. (5.35)
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We now consider null(D−B). Since D is a block diagonal matrix of D
kj+1
j for j =

1, ..., p (e.g. kj = 0 gives the 1-dimensional fused lasso penalty which leads to piece-

wise constant solutions), then

null(D−B) = span{null(Dk1+1
−B )×{0}×...∩{0}×null(Dk2+1

−B )×{0}×...∩...{0}×null(Dkp+1
−B )}.

(5.36)

Therefore, at every iteration of the algorithm we can find the null space of D by

looking only at the null space of D
kj+1
j associated with the covariate X(j).

In addition, the multiplication with X does not change the dimension of the null

space of D and, therefore (5.35) reduces to df(Xβλ) = E[dim(null(D−B))]. Practi-

cally, this means the degrees of freedom are given by

df(Xβλ) =

p∑
j=1

dim(null(D
kj+1
−B ))

or, put it simply, the degrees of freedom are given by examining the null space of

each D
kj+1
−B for j = 1, ..., p which in turn depends on the number of knots in β̂(j) and

the kth degree of polynomial filtering. Hence, for each β̂(j) the degrees of freedom

derives from known results on the generalised lasso and trend filtering (see Tibshirani

and Taylor (2012)), i.e.

df(β̂(j)) = E[number of knots in β̂(j)] + k + 1

where the number of number of knots in β̂(j) is the number of non-zero entries in

D(kj+1)β̂(j).

From the above analysis we can see that the FuLTV method gives an exact

representation of the degrees of freedom of any fitted model. In the context of other

linear estimation methods (linear in the data y), such as in Hastie and Tibshirani

(1993), the calculation of the degrees of freedom is based on approximate methods.
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For a simple smooth fit ŷ = Sy where S is the operator that produces the fitted term

Xβ̂λ, Hastie and Tibshirani (1990) consider three definitions of the degrees of freedom

df(βλ), i.e. tr(S), tr(S
TS), tr(2S− SST ). These are not easy to calculate (see Zhang

(2003) for a discussion on this topic as well as for empirical formulas for degrees of

freedom). For instance, for the latter definition Hastie and Tibshirani (1993) make

use of the following approximation (in the context of VC models)

tr(2S− SST ) ≈ 1.25tr(S)− 0.5

from Hastie and Tibshirani (1990).

Once we obtain the degrees of freedoms at certain values of the regularisation

parameter λ, the final model needs to be chosen. One approach would be cross-

validation, in which the observations are divided into a training set and a test set.

Then, a model is estimated on the former set and its accuracy is tested on the lat-

ter set using an appropriate error measure; this procedure is repeated and the error

measure is averaged over different test sets. This method, however, is computation-

ally intensive and it does not take advantage of the path-following structure of our

algorithm. Instead of cross-validation we can use certain information criteria, such

as the Cp statistic (Mallows (1973)) or the Bayesian Information Criterion (BIC),

also known as the Schwarz criterion (Schwarz (1978)) and considered e.g. by Bai

and Perron (2003) in the context of change-point estimation in linear models. The

criteria are given below respectively,

Cp(λ) =
∥∥∥y −Xβ̂λ

∥∥∥2
2
− nσ2 + 2σ2df(Xβ̂λ)

and

BIC(λ) = log
∥∥∥(y −Xβ̂λ

)
/n
∥∥∥2
2
+ df(Xβ̂λ) log(n)/n
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where β̂λ are the estimated coefficients at a fixed value of λ. Due to the fact that

FuLTV is a path algorithm which consists of sub-models then one can choose the

final model such that λ� = argminλ BIC(λ) or λ
� = argminλCp(λ).

For decreasing λ the �2 norm of the estimated residuals are monotonically de-

creasing and, hence, the minimum Cp or BIC(λ) value will be found somewhere

between the critical points. Ideally, this implies that at every iteration we can stop

the algorithm as soon as we calculate a value of Cp or BIC that is larger from the

one obtained in the previous iteration. However, in our simulations, we notice that

stopping the algorithm as soon as a minimum value of Cp or BIC is obtained does not

work efficiently. The main reason behind this is that it is difficult to know how many

times a coordinate will leave the boundary. Both information criteria penalise for

extra complexity through the number of the estimated knots. A direct consequence

is the early termination of the algorithm as it gives the signal that complexity has

increased very fast.

We propose to allow the algorithm to run several steps and then choose the esti-

mated coefficients that return the global minimum for either criterion. It is difficult

to bound the number of steps required, but we find that O(p�n) iterations work well.

It is noted that Mammen and van de Geer (1997), who devise an algorithm in the

context of nonparametric regression using total variation penalties, conjecture that

roughly O(n) cycles are necessary.

The above discussion is illustrated by an example. We consider a simple piecewise-
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stationary AR(1) process

yt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.9yt−1 + εt, for 1 ≤ t ≤ 100

εt, for 101 ≤ t ≤ 300

0.9yt−1 + εt, for 301 ≤ t ≤ 500

(5.37)

where εt ∼ N (0, 1). A realisation of the process is shown at the top-left panel of

Figure 5.3. From the bottom-right panel of the same figure it is evident that the BIC

criterion would signal an early termination of the path algorithm if we chose to stop

the algorithm as soon as a minimum value for BIC is achieved. This is due to the

fact that until the fourth point (iteration) the BIC function monotonically increases.

Allowing the algorithm to run for many cycles shows a significant decrease, reaching

the minimum BIC value after ten iterations. Similar arguments can be made for the

Cp criterion (bottom-right panel).

Finally, in our simulations we find that BIC works better than Cp which tends

to over-fit the data, see for example Figure 5.3 where we observe that the minimum

BIC is obtained earlier at iteration 10 while for Cp at 20.

5.7 Simulation study

We conduct a set of simulations to assess the performance of our method and compare

it against the smoothing splines (henceforth, SStv). For the latter we use the R

package mgcv (Wood (2014)) which is a repository of generalised additive modelling

and varying coefficient models functions; we refer the reader to Wood (2006) for a

guide to the mgcv package. The main function adopted for the simulations is gam1.

1We acknowledge help from Simon Wood in regards to the use of this function.
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Figure 5.3: Plots of two Information Criteria: BIC (down-left) and Cp(down-right) for a

non-stationary model (top-left) with time-varying AR(1) coefficients (top-right)

To compare the performance of the methods we calculate the mean absolute deviation

error

E (j)MAD =
1

nB

B∑
�′

n∑
t=1

∣∣∣β(j);�′
t − β̂(j);�′

t

∣∣∣
where j = 0, ..., p and β̂

(j);�′
t are the estimated coefficients obtained from either of the

two methods and B is the number of experiments.

The Model: We generate yt according to the model (5.2) for p = 3 of sample

size n = 200, 500, 1000 and σ = 0.5, 1, 2. The coefficients curves for the first two
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covariates are taken from Huang et al. (2002), i.e.

β
(0)
t = 15 + 20 sin(tπ/60)

β
(1)
t = 2− 3 cos{(t− 25π)/15}

The third curve is a combination of β
(0)
t and β

(1)
t

β
(2)
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
15 + 20 sin(tπ/60), for �n/2�

c0 − 3 cos{(t− 25π)/15}, for �n/2�+ 1

where c0 is a constant selected such that the curve is roughly continuous at t = �n/2�.

The purpose of β
(2)
t is to assess the performance of the two methods when a segment

of a curve exhibits more variability than another. From panel c of Figure 5.4 it

appears that the right part of the curve is “wiggly”, while the left part is smooth.

Finally, the independent variables X
(j)
t ∼ N (1, 1) for j = 2, 3 and X

(1)
t =

[1, ..., 1]T . We select k = 3 i.e. the cubic trend filtering and BIC(λ) for model

selection. For every pair (n, σ) we repeat the experiment B = 100 times.

Table 5.1 summarises the results. For small sample size SStv shows good perfor-

mance, close to that of FuLTV. Particularly, when n = 200 and in low signal-to-noise

cases SStv outperforms FuLTV yet by a margin. However, as the sample size increases

FuLTV does well compared with SStv and the difference in E (j)MAD for all covariates

is higher in many instances. We also notice that FuLTV almost always outperforms

SStv when “wiggliness” is present in the underlying coefficient curve (like β
(1)
t ). How-

ever, for n = 1000 the results indicate that SStv gives better estimates when a curve

is both wiggly and smooth which is the case with β
(2)
t . Perhaps, the reason is that

SStv does well in the smooth part of the curve and this is reflected in the total E (j)MAD.
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Table 5.1: Simulation results for the model described in Section 5.7. For every coefficient

curve the mean of E(j)MAD for j = 0, 1, 2 is reported over B = 100 repetitions.

Overall, FuLTV shows a better performance even though this should not be seen as a

criticism of SStv, as it performs well in other cases (especially in the small samples).

5.8 Applications

5.8.1 Ethanol data

For the purpose of motivation, we consider the same example from Hastie and Tib-

shirani (1993) who estimate a varying-coefficient model using 88 observations on the

exhaust from an engine fueled by ethanol. The data set, first analysed by Cleveland
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Figure 5.4: Top panels show the estimated coefficients averaged over 100 repetitions for the

model described in Section 5.7. Bottom panels are zoomed in versions of the estimated coef-

ficients. The estimated coefficients are denoted by the black solid line and their point-wise

standard deviations (calculated over 100 repetitions and multiplied by 2 for scale reasons) are

denoted by the two red symmetric lines. The true coefficient functions β
(j)
t for j = 0, ..., 2

are denoted by the blue dashed lines.

et al. (1991), is available from the R package lattice (Sarkar (2008)). It consists of

the response variable NOxi (concentration of nitrogen dioxide) and two predictors

Ei and Ci which measure the fuel-air ratio and the compression ratio of the engine,
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respectively. The authors observe that Ci interacts with Ei and they suggest the

following model

NOxi = β0(Ei) + β1(Ei)Ci + εi. (5.38)

To estimate this model we choose the following penalty matrix

D =

⎛⎜⎜⎝D
(k1+1)
β0

0

0 D
(k2+1)
β1

⎞⎟⎟⎠ .

Without restricting the choice of different trend filtering orders we set k1 = k2 = 3

which is the cubic trend filtering matrix. Higher orders did not significantly improve

the estimation. We do not use an information criterion, but instead we extract a

solution when the total degrees of freedom are 20. These are roughly the degrees

of freedom obtained from the gam function in the mgcv package which uses cross-

validation to select the penalty parameter (Hastie and Tibshirani (1993) choose 8

degrees of freedom for each of the two predictors).

In addition to FuLTV and SStv, we also estimate the following least squares

model

NOxi = β0 + β1E
2
i + εi.

Results are shown in Figure 5.5. The FuLTV method does well in this example

indicated by the q-q plots and it achieves a residual sum of squares of 2.53, while the

smoothing splines achieve 2.62 (Hastie and Tibshirani (1993) estimate it to be 2.65)

and the least squares 107.73.

5.8.2 Boston Housing data

We present an application of the FuLTV method where we use BIC to select the

regularisation parameter. The Boston Housing data, found in the R package ml-
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Figure 5.5: The estimated varying coefficients β0 (c.) and β1 (d.) for the ethanol example

for λ = 30.76.
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bench (Leisch and Dimitriadou (2010)) and first analysed in the context of varying-

coefficient model by Fan and Huang (2005), consists of the median value of owner-

occupied homes (MEDV) in the Boston area along with other variables. Here, we

only consider the predictors that have been shown to be the most relevant in pre-

dicting MEDV when the coefficients are allowed to vary (Wang and Xia (2009) and

Antoniadis et al. (2013)), i.e. CRIM (a measure of crime), RM (average number of

rooms in a dwelling), PRATIO (student-teacher ratio by town) and TAX (full-value

property-tax rate per $10,000). Following Fan and Huang (2005) and Wang and Xia

(2009) we take the underlying covariate to be LSTAT (we denote it by u), the per-

centage of the lower status of the population. In addition, the response and predictor

variables are transformed so that their marginal distribution to be approximately

N (0, 1). To achieve this we use Box-Cox transformations as in Antoniadis et al.

(2013). In accordance with all these studies the intercept is also allowed to vary.

Similarly with the ethanol example we choose the cubic trend filtering for each of the

predictors. By fitting the model

MEDVi = β0(u)+β1(u)CRIMi+β2(u)RMi+β3(u)PRATIOi+εi for i = 1, ..., 504

we get the coefficient curves shown in Figure 5.6. From panel c it is evident that e.g.

the house prices are positively related to the number of rooms in a dwelling (RM),

but this relation diminishes when moving to areas with lower status. The q-q plot

in the same figure confirms that our method performs well. Finally, we note that

the RSS for the FuLTV method is 77.28, lower than that of the smoothing splines

(79.53), but only marginally.
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Figure 5.6: The estimated varying coefficients β0 (a.), β1 (b.), β2 (c.), β3 (d.), and β4 (e.),

and the q-q plot (bottom right) for the Boston Housing data.
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5.9 Proofs

Proof of Lemma 5.1. First we have the subgradient equation which is

gt = β̂tx
¯
2
t − y

¯t
x
¯t

+ λ1s
(1)
t + λ2s

(2)
t

We now insert β̂t(λ1) = sign(β̂t(0))(|β̂t(0)| − λ1
x
¯

2
t
)+ into the subgradient equation

and examine two cases:

Case 1: |βt(0)| > λ1
x
¯

2
t

gt(λ1) = β̂t(0)x
¯
2
t − λ1sign(β̂t(0))− y

¯t
x
¯t

+ λ1s
(1)
t (λ1) + λ2s

(2)
t+1(λ1)− λ2s

(2)
t (λ1)

gt(λ1) = β̂t(0)x
¯
2
t − λ1sign(β̂t(0))− y

¯t
x
¯t

+ λ1s
(1)
t (λ1) +

+λ2{sign(sign(β̂t+1(0))(|β̂t+1(0)| −
λ1
x
¯
2
t

)− sign(β̂t(0))(|β̂t(0)| −
λ1
x
¯
2
t

))} −

−λ2{sign(sign(β̂t(0))(|β̂t(0)| −
λ1
x
¯
2
t

)− sign(β̂t−1(0))(|β̂t−1(0)| −
λ1
x
¯
2
t

))}.

Note from the above two equations that the signs of the total variation penalties

do not change, since soft-thresholding does not change the ordering of βt, βt−1 and

βt+1. So for any λ1 > 0 it holds that s
(2)
t (λ1) = s

(2)
t (0). Hence we have that

gt(λ1) = β̂t(0)x
¯
2
t − x

¯t
y
¯t

+ λ2s
(2)
t (0)− λ1sign(β̂t(0)) + λ1s

(1)
t (λ1).

By the assumption of β̂t(0) being a solution, the first three terms of the equation

are equal to zero and thus gt(λ1) = 0.

Case 2: |βt(0)| ≤ λ1
x
¯

2
t
. We have that

gt(λ1) = −y
¯t
x
¯t

+ λ1s
(1)
t (λ1) +

+λ2{sign(sign(β̂t+1(0))(|β̂t+1(0)| −
λ1
x
¯
2
t

)− sign(β̂t(0))(|β̂t(0)| −
λ1
x
¯
2
t

))} −

−λ2{sign(sign(β̂t(0))(|β̂t(0)| −
λ1
x
¯
2
t

)− sign(β̂t−1(0))(|β̂t−1(0)| −
λ1
x
¯
2
t

))}

= 0
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by choosing s
(1)
t (λ1) = βt(0)x

¯
2
t/λ1 ∈ [−1, 1].

Note that in the extreme and without interest - in terms of real applications -

case, the soft-thresholding quantity would be λ1/x
¯
2
t . One can see that by applying a

lasso regression on the univariate model y
¯t

= βtx
¯t

+ εt.

Lemma 5.3. The matrix D̃D̃T ∈ R(n−1)×(n−1) is diagonally dominant i.e.

(D̃D̃T )i,i ≥
∑
j �=i

(D̃D̃T )i,j for i = 1, ..., n− 1.

Proof. First note that D̃D̃T = DQT X̌T X̌QDT = DQDT from (5.13). The matrix Q

is diagonal with entries 1
x2t+λ3

for t = 1, ..., n; Every row i = 2, ..., n− 2 of D̃D̃T is

[
0, ..., 0,

1

x2i + λ3
,

1

x2i + λ3
+

1

x2i+1 + λ3
,

1

x2i+1 + λ3
, 0, ..., 0

]
where the middle term is on the diagonal (i, i), hence the off-diagonal terms 1

x2i+λ3
, 1
x2i+1+λ3

is equal to the diagonal term. When i = 1[
1

x21 + λ3
+

1

x22 + λ3
,

1

x22 + λ3
, 0, ..., 0

]
.

Hence, the first term (on the diagonal) is always larger than the second (off the

diagonal). Finally, when i = n− 1[
0, ..., 0,

1

x2n−1 + λ3
+

1

x2n + λ3

]
.

This concludes the proof.

Proof of Lemma 5.2. The boundary proof below applies to the time-varying model

(5.16) over M partitions of yt. Recall that by partitioning the (5.16) model we can

safely make divisions since x
¯t
> 0 for ∀t = 1, ..., n.

min
ut

1

2

(
y
¯t
− (

ut−1

x
¯t
− ut

x
¯t
)

)2

+
1

2

(
y
¯t+1
− (

ut
x
¯t+1

− ut+1

x
¯t+1

)

)2
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s.t. |ut| ≤ λ. Differentiating with respect to ut,

(
y
¯t
− ut−1

x
¯t

+
ut
x
¯t

)
1

x
¯t
−
(
y
¯t+1
− ut

x
¯t+1

+
ut+1

x
¯t+1

)
1

x
¯t+1

= 0.

This is a quadratic function where its solution lies in an interval, hence

ut = Tλ

⎛⎝x
¯t
y
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− x

¯t+1y
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x
¯t

+ ut+1
x
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x
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x
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x
¯t

+
x
¯t

x
¯t+1

⎞⎠ .

Then, the proof proceeds as in T&T, i.e.
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which is ≤ max
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∣∣∣∣∣ , λ0 − λ
}

and thus ||uλ0 −u(1)||∞ ≤ λ0−λ by

noticing that

∣∣∣∣∣
x
¯t+1
x
¯t

x
¯t+1
x
¯t

+
x
¯t
x
¯t+1

∣∣∣∣∣ ≤ 1.

Lemma 5.4. Let V
(j)
i =

∑n
t=i xtεt for i = 1, ..., n and j = 1, ..., p. Define the event

Λn =
{
maxi=1,...,n,j=1,...,p |V (j)

i | > nλ
}
.Then, if λ = σ

√
2 log p�n

n
, the following holds

P (Λn)→ 1.

Proof. From standard results (see Knight and Fu (2000) or Hebiri and van de Geer

(2011)) V
(j)
i ∼ N (0, (n− i+ 1)σ2M). Now, we have that

P

({
max

i=1,...,n,j=1,...,p
|V (j)
i | ≤ nλ

})
≤ p�n max

i=1,...,n,j=1,...,p
P

(
|V (j)
i | ≤ nλ

)
≤ p�n exp

(
− n2λ2

2σ2nM

)
→ 1.

This concludes the proof.
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Chapter 6

Conclusions and future directions

In this thesis we have considered randomised and L1 penalty approaches to the seg-

mentation of time series and regression models. In this chapter, we summarise our

main contributions and findings of Chapters 3, 4 and 5 and we discuss possible di-

rections for future research.

In Chapter 3, we adopted the Wild Binary Segmentation method (WBS) pro-

posed by Fryzlewicz (2014) in order to detect the number and locations of the change-

points in the second-order structure of a time series. Thanks to a certain randomised

mechanism, WBS works in cases where the spacings between change-points are short,

unlike the standard Binary Segmentation. In addition, we developed a method to

combine the change-points detected at different scales of the wavelet periodogram,

our main change-point detection statistic. We tested our algorithm on a series of

stationary and non-stationary time series models for both small and large samples.

The results indicate the good performance of the WBS method. We also applied

our method to two real data sets: the US Gross National Product where we detected

peaks and troughs in the growth of the US economy; and the infant electrocardiogram
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data where we identified the sleep states.

In Chapter 4, we focused on the estimation of the piecewise constant structure of

a signal+noise model using the fused lasso method of Tibshirani et al. (2005), a total

variation penalty regression. In particular, we showed a fast way of implementing

the solution path algorithm of Tibshirani and Taylor (2011). This was achieved by

replacing the matrix multiplications with simple CUSUM-type statistics. Based on

this observation we were also able to make a connection between the taut string algo-

rithm of Davies and Kovac (2001) and its “multiscale” version of Cho and Fryzlewicz

(2011). In addition, by considering a piecewise constant model with a single change-

point we proved a result about the consistency of the fused lasso estimator. The main

output of this result is that the detection of the exact location of a change-point is not

feasible. We supported this claim through a simulation study for different scenarios.

In Chapter 5, we proposed a path algorithm based on Tibshirani and Taylor

(2011) and the fused lasso of Tibshirani et al. (2005), termed FuLTV, to estimate

regression models where the coefficients are piecewise constant functions of an index

variable such as time. Thanks to the adaptability of the fused lasso penalty, our

proposed method is capable of estimating models where the underlying coefficient

function is not only piecewise constant, but piecewise linear, quadratic or cubic. In

addition, we considered various simulated examples and real data sets and we showed

that FuLTV did better than smoothing splines of Hastie and Tibshirani (1993) in most

cases. From that perspective, Chapter 5 also serves as a comparative study between

L1 - and L2 -type of penalised regression in time-varying model estimation.

We conclude with a discussion of a few possible avenues to extend the work

presented in this thesis. The WBS method in Chapter 3 can be extended to the
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estimation of regression models with change-points. We have considered in Chapter

5 the fused lasso methodology to estimate regression models with change-points.

However, given the good performance of the Binary Segmentation method over the

fused lasso in the context of non-parametric regression (Chapter 4), it is natural to

expect that WBS will do better than the latter in the estimation of piecewise constant

regression models. The new method could build upon that of Bai and Perron (2003)

with the main change-point detection statistic being the sum of squared residuals. At

least one advantage of the WBS method over that of Bai and Perron (2003) will be

the lack of a selection process for the minimum segment size (trimming parameter).

Furthermore, at least two directions for further research stand out with regards to

Chapter 4 and the fused lasso estimator. The first is to explore trend detection, which

has received considerable attention by practitioners and academics in different fields

including biological/medical sciences (e.g. Greenland and Longnecker (1992)), geo-

physics (Baillie and Chung (2002)) and macroeconomics (e.g. Hodrick and Prescott

(1997), Singleton (1988)). Even though trend detection with an L1 penalty has been

already documented and tested (Kim et al. (2009a)), a consistency result about the

number and locations of the change-points remains, to the best of our knowledge,

still unexplored.

The second direction is to recognise the change-point detection as a model selec-

tion procedure and examine whether other variable selection methods can do better

than lasso. This is due to our findings in Chapter 4 that the (fused) lasso is sub-

optimal in detecting the location of the change-points. We can still use the same

basis functions and the reasons for doing this are twofold: i. they can be computed

quickly, without matrix multiplications, and, other methods can take advantage of
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this property and ii. the user is not required to select the number of knots and their

placement. An adaptive way of knot selection, but not in the lasso framework, could

perform better in the non-parametric regression set-up.

Finally, the FuLTV method in Chapter 5 can be also extended in at least two

different directions. First, in Section 5.5 we provided a sketch of the theoretical con-

sistency of FuLTV for the piecewise constant model. For the case where the regression

coefficients admit different smoothness levels the simulation studies confirm FuLTV’s

good performance in comparison with the smoothing splines. Future research should

focus on the proof of a consistency result for the FuLTV method for different levels of

smoothness. Second, in addition to estimating the regression coefficient functions of a

time-varying model (Section 5.3) it is important to consider the problem of selecting

the relevant variables among a large set of variables. The variable selection problem

in the context of a time-varying model has been shown to improve its forecasting per-

formance, see Wang and Huang (2008), Wang and Xia (2009) and Antoniadis et al.

(2013). Therefore, variable selection for the FuLTV method should be considered in

future studies.
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