
Developing Complex Information Systems:

The Use of a Geometric Data Structure to Aid

the Specification of a Multi-Media

Information Environment.

A. R. Warm an, B.Sc.

A thesis submitted in completion of the requirements for the degree of

Doctor of Philosophy

March 1990

The London School of Economics and Political Science

UMI Number: U047879

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Disscrrlation Publishing

UMI U047879
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

S / c à ^ . '

TvA £ S £ S

F

é > h ^ 2 ^

xc3 ioj.6o&3,9

Abstract

Developing Complex Information Systems

The Use of a Geometric Data Structure to Aid the Specification

of a Multimedia Information Environment.

The enormous computing power available today has resulted in the acceptance

of information technology into a wide range of applications, the identification or

creation of numerous problem areas, and the considerable tasks of finding problem

solutions. Using computers for handling the current data manipulation tasks which

characterise modem information processing requires considerably more sophisticated

hardware and software technologies. Yet the development of more ‘enhanced’ packages

frequently requires hundreds of man-years. Similarly, computer hardware design has

become so complicated that only by using existing computers is it possible to develop

newer machines.

The common characteristic of such data manipulation tasks is that much larger

amounts of information in evermore complex arrangements are being handled at greater

speeds. Instead of being ‘concrete’ or ‘black and white’, issues at the higher levels of

information processing can appear blurred - there may be much less precision because

situations, perspectives and circumstances can vary. Most current packages focus on

specific task areas, but the modem information processing environment actually requires

a broader range of functions that cooperate in integrating and relating information

handling activities in a manner far beyond that normally offered.

It would seem that a fresh approach is required to examine all of the constituent

problems. This report describes the research work carried out during such a

consideration, and details the specification and development of a suggested method for

enhancing information systems by specifying a multimedia information environment.

This thesis develops a statement of the perceived problems, using extensive

references to the current state of information system technologies. Examples are given

Abstract

of how some current systems approach the multiple tasks of processing and sharing data

and applications. The discussion then moves to consider further what the underlying

objectives of information handling - and a suitable integration architecture - should

perhaps be, and shows how some current systems do not really meet these aims,

although they incorporate certain of the essential fundamentals that contribute towards

more enhanced information handling.

The discussion provides the basis for the specification and construction of

complete, integrated Information Environment applications. The environments are used

to describe not only the jobs which the user wishes to carry out, but also the

circumstances under which the job is being performed.

The architecture uses a new geometric data structure to facilitate manipulation

of the working data, relationships, and the environment description. The manipulation

is carried out spatially, and this allows the user to work using a geometric

representation of the data components, thus supporting the abstract nature of some

information handling tasks.

Acknowledgements.

I would like to thank all those friends, relatives and colleagues who have

supported and encouraged me throughout the efforts described in this thesis. In

particular I would like to thank my supervisor, Prof. I. O. Angell, for his tremendous

support; not least in watching out for the split infinitives which I seemed to always

include. Above all my thanks and love to Sue, who found time to become my wife.

Funding for this research was initially provided by the Science and Engineering

Research Council. Later assistance was provided by the London School of Economics

and Political Science.

m

Contents

Abstract: Developing Complex Information Systems i

Chapter 1: Information Systems and Enhancement Strategies 1

1.1: Introduction 1

1.2: The Problem Domain 3

1.3: Current Approaches 13

1.4: Suggested Requirements 21

1.5: Summary 29

1.6: Thesis Structure 29

Chapter 2: Current Systems 31

2.1: Overview of Current Systems 31

2.2: Management Systems 33

2.2.1: Project Management Systems 34

2.2.2: Resource Management Systems 38

2.2.3: Software Configuration Management 40

2.3: Development Systems 41

2.3.1: Software Engineering 41

2.3.2: SSADM 44

2.3.3: C A S E. 45

2.3.4: I.P.S.E. 47

2.3.5: Analysis and Design Tools 47

2.3.6: Code Generators and Fourth Generation Languages 49

2.3.7: ISDOS 49

2.4: Data Handling Systems 50

2.4.1: Standard Text Description Systems 50

2.4.1.1: Te X 52

2.4.2: Graphic Presentation Systems 52

2.5: Idea Processors 54

2.6: Data Flow Control 56

2.7: Discussion of Current Systems 58

IV

Chapter 3: Current Research 60

3.1: Overview of Current Research 60

3.2: Multimedia Systems 64

3.2.1: Example Systems 66

3.3: Hypertext 70

3.3.1: Example Systems 74

3.4: Hypermedia 79

3.5: Information Browsing, Presentation and Preparation 82

3.6: Information Structuring 86

3.7: Computer Architectures 90

3.8: Groupware 93

3.9: Summary 95

Chapter 4: Consideration of Current Svstems and Related Research 98

4.1: Overview 98

4.2: Introduction 99

4.3: Discussion of Current Systems 100

4.4: Discussion of Current Research 105

4.5: Focused Systems and User Confusion 112

4.6: Conclusion 117

Chapter 5: Requirements for Genuine Information Svstems: A Fresh

Consideration 118

5.1: Introduction 118

5.2: Identifying System Components 124

5.2.1: The User and Presentation to the User 124

5.2.2: Control and Report 126

5.2.3: Integration 128

5.2.4: Communication 129

5.2.5: Processing and Computation 131

5.2.6: Data Groups 132

5.2.7: Data Basics 133

5.3: Suggested Requirements 134

5.4: Data and Information, Flow and Control 139

Chapter 6: The Information Environment 141

6.1: Introduction 141

6.2: The Information Environment 146

6.3: The Information Document 151

6.4: Designing an Information Document Architecture 152

6.5: Summary 154

6.6: Research Method 155

Chapter 7: The Information Environment and GENIE-M: Description, Generation

and Control 157

7.1: Introduction 157

7.2: Geometrical Data Structures 160

7.2.1: Philosophy 160

7.2.2: Physical Description 161

7.3: GENIE-M Architecture 164

7.3.1: Modules and the Environment 164

7.3.2: Tile Transfer and Manipulation 165

7.3.3: Module Organisation within the Environment 165

7.4: The User Interface 166

7.5: Application Examples 168

7.5.1: Mixed Media Documents 169

7.5.2: Newspaper Layout Construction 169

7.5.3: Lecture and Presentation Control and Structure 172

7.5.4: Prototyping Methodologies 174

7.6: Problems with the Concept 174

7.7: Conclusion 177

7.7.1: Use of GENIE-M on Existing Systems 178

7.7.2: GENIE-M Users 179

7.7.3: Future Systems and the GENIE-M Architecture 180

Chapter 8: Design of the Prototvpe Svstem 182

8.1: Introduction - Analysis and Design of the System 182

8.1.1: The Contribution and Incorporation of Software Engineering

Techniques 183

8.1.2: Evolutionary Prototyping 185

VI

8.2: The Structural Specification 187

8.2.1: The Kernel 188

8.2.2: The Server and User Interface 189

8.2.2.1: The Application Administrator 189

8.2.2.2: The Presentation Manager 190

8.2.2.3: The Event Handler 191

8.2.2.4: The Sub-Application Manager 191

8.2.2.5: The Geometric Tile Builder 192

8.2.2.6: The Tilestore Domains 192

8.2.2.6.1: The Localised Topological Tilestore 193

8.2.2.Ô.2: The Geometrical Tilestore 193

8.3: Hardware and Software Considerations 193

8.4: Summary 198

Chapter 9: Implementation of the Prototvpe Svstem 201

9.1: Implementation Details 201

9.1.1: Implementation Concepts 202

9.2: Module Communication 203

9.2.1: GENIE_init(); 207

9.2.2: GENIE_send(); 208

9.2.3: GENIE_recv(); 208

9.2.4: GENIE_recvfrom(); 209

9.2.5: GENIE_stop(); 210

9.3: Module and Tile Architecture 211

9.3.1: ABORT 213

9.3.2: DEVICE 213

9.3.3: GROUP 213

9.3.3.1: GROUP ADD 214

9.3.3.2: GROUP DELETE 214

9.3.3.3: GROUP MOVE 215

9.3.3.4: GROUP RMOVE 215

9.3.4: SHOW 215

9.3.4.1: SHOW DEVICE 215

9.3.4.2: SHOW GROUP 216

9.3.4.3: SHOW TILE 216

vu

9.3.4.4: SHOW TREE 216

9.3.5: TILE 217

9.3.5.1: TILE CREATE 217

9.3.5.2: TILE GET 217

9.3.5.2.1: TILE GET ATTRIBUTE 217

9.3.S.2.2: TILE GET DATA 218

9.3.5.2.3: TILE GET POSITION 220

9.3.5.2.4: TILE GET SIZE 220

9.3.5.3: TILE IDENTIFY 220

9.3.5.3.1: TILE IDENTIFY NEXT 221

9.3.5.3.2: TILE IDENTIFY ROOT 222

9.3.5.4: TILE MOVE 222

9.3.5.5: TILE READ 222

9.3.5.6: TILE RMOVE 223

9.3.5.7: TILE SELECT 223

9.3.5.S: TILE SET 224

9.3.5.8.1: TILE SET ATTRIBUTE 224

9.3.5.8.2: TILE SET DATA 224

9.3.5.8.3: TILE SET POSITION 225

9.3.5.8.4: TILE SET SIZE 226

9.3.6: TREE 226

9.3.6.1: TREE LOAD 226

9.3.6.2: TREE SAVE 227

9.4: Coding - the Sun Workstation Development Environment 227

9.5: Tile Space Storage Mechanisms 229

9.5.1: The ‘matrix’ module 229

9.6: GENIE-M and Distributed Systems 230

9.7: Summary 232

Chanter 10: Conclusions 234

10.1: Introduction 234

10.2: Review of the GENIE-M Philosophy 235

10.3: The Demonstration System 239

10.4: Successes of the Work 240

10.5: Limitations of the Current System: Threads for Future Development 243

VUl

10.6: Final Thoughts 245

Appendix 247

References 247

Error Codes returned by the Communications Routines 267

Record of Demonstration Session 269

IX

Chapter 1.

Information Svstems and Enhancement Strategies:

An Introduction to the Problem.

Section 1.1: Introduction.

The origins of this work derive from the desire to seek a mechanism for

implementing multiple editions of electronic books [Angell 86]. A specific example

was considered suitable for general study, that of a computer-based text-book on

crystallography. Multiple editions of the book would be generated on-line, where each

different edition referred to a different crystal group. The majority of the text in the

book would remain constant, but specific sections would require reconfiguration

according to the space group and symmetries under discussion. In addition, a

longer-term requirement was that multiple users should be able to access the electronic

book(s), across a distributed multi-tasking environment. In order to provide the

necessary capabilities, a totally new kind of electronic document structure was indicated.

Analysis of the necessary design of this structure suggested a promising line of

research, part of which culminated in this thesis.

Rather than generating a highly specific solution to the problem, it was

considered sensible to consider the issues in more detail, such that a generalised

definition might be derived. In particular, a structure technology based on geometry

was suggested (for reasons discussed in section 7.2) as a possible foundation for the

electronic books, but it soon became clear that such a concept had additional

implications of a much wider-ranging nature. It was felt that the use of geometry for

solving problems offers a number of benefits in terms of understanding and representing

the computer-processing problems themselves.

Chapter 1

Extending the geometric concept to more generalised cases represents a

significant line of research. For example, the use of multiple geometric objects

suggested the existence of relationships between them - at first according to the

‘edition’ of the electronic book, but subsequently in terms of the general application.

Furthermore, since the geometrical objects could be viewed as related but independent

objects, the way in which they could be used or accessed could also vary in

correspondence with the application. A major first step was the observation that the

use of a geometric architecture would promote easier definition of the problem and

implementation of the solution. Standardisation on a geometrical foundation underlying

a minimal architecture for computer-based information processing had the result that a

multitude of enhancements were suggested for various applications.

This thesis is a report of the development work carried out for two related

problems. Firstly, the development of a geometric structure to support the

representation - and hence understanding - of problems and subsequent implementation

of appropriate solutions, and secondly the generation of a computer-based architecture

built upon these geometric structures, to be used for testing the contribution of

geometry in implementing the solutions to the problems. At the same time, there is

a parallel requirement for the development of a more formal methodology that can be

used for applying the geometric structure to problem solving, since the provision of a

tool alone would be of restricted value without an understanding of how the tool could

be applied. The aim of the current work has not been to produce a ‘Grand Theory’

but instead to design and implement a minimal, primitive system to be used as the

basis for prototyping further system extension. This in turn would be used as the basis

for further work towards production of a larger, commercial system.

The work clearly required a comprehensive review of existing technology and

techniques of problem representation. Simply patching geometry onto current

application tools would not only be difficult, but also unlikely to result in clear major

benefits. This would be due to the underlying concepts of the present application tools

being founded on non-geometric principles, and so coming into conflict with the

objectives of a geometric architecture. Therefore, the review was to be used in

establishing from first principles the primary objectives of application tools, and their

Chapter 1

characteristic features. These would be used in developing the specification for the

geometric structure, and subsequently the development of an architecture that

implements those features.

Section 1.2: The Problem Domain.

The majority of modem computers have a fundamental feature in common: they

are based on the Von Neumann architectural principle of single-state processing. Only

one task can be in operation within the central processing unit of a single computer at

any one time. There is almost no provision for the support of multiple computational

tasks being shared among more than one machine in a distributed processing

environment. Where such a facihty is provided, it is typically by the use of support

peripherals that provide interaction resources for the host machine to call on. The use

of complex programs and fast hardware means that a computer may give the illusion

of doing several jobs at the same time, but in reality this is achieved by swapping the

machine’s ‘attention’ from task to task in rapid succession.

A natural effect of this ‘single-tasking’ approach has been that both users of

computer systems and developers of computer systems tend to work in a step-by-step

fashion - considering each job (or each aspect of the current job) one-at-a-time. Such

an approach has the advantage of simplicity, but the disadvantages of reducing

performance and introducing complexity in the jobs to be performed. In particular,

there seems little correspondence between this method of implementing computer-based

information systems, and the practical realities of the problems encountered and

requiring solution ‘in the real world’.

As computers have become more powerful, the ease with which multiple tasks

or applications can be accommodated within the machine has increased through the use

of essentially low-level time-sharing models, and accordingly, the environment in which

the user works has a greater potential to be more productive. An example is in the

ability to run tasks ‘in the background’, for example printing operations; or in the

provision of useful utilities packages such as on-screen clocks or mail arrival flags.

Chapter 1

A comparatively recent innovation for workstations and personal computers is the

graphic ‘desktop’, where users can see a pictorial representation of their jobs, all

supposedly running simultaneously [Smith 82]. A simpler and more common variant

of this is that each of the visible jobs is ‘suspended’, and only actually runs when the

user is actively ‘looking’ at it.

This method of representing the current working state of the machine has proved

very popular because of its initial simplicity for users, and similar facilities are

apparently ‘migrating down’ from small workstations to be implemented on personal

computers, as well migrating up to run on larger and more powerful computer systems.

However, now that multiple activities can be seen to be taking place at any one time,

many users wish to move away from rudimentary problem-solving by isolated ‘hermit

like’ processing of tasks, and pursue a more natural method of problem-solving, with

the benefits of multiple tasks to communicate and share more information more rapidly.

Such enhanced information handling requires complex system technology that does not

as yet exist. The nearest current approximation is to use separate application tools in

concert. This means that from the technological viewpoint, the user wants the practical

ability to exchange data of varying kinds between the many tasks that can be seen

running on a machine. But the less technological aspects of information handling

involve going more into the higher-level or environmental requirements. In this case,

users have needs going far beyond simple data manipulation; instead it becomes

important to model as much as possible of the complete operational environment, in

order to try and take into account real-world problem-solving circumstances which

should influence the nature of information processing.

Few current systems incorporate environmental aspects into processing tasks,

concentrating instead upon the technological safety of lower-level considerations such

as the already mentioned data exchange between tools. In sales literature, a popular

term for the passing of data in this way is ‘Integration’, but this often turns out to be

an inaccurate exaggeration of the rather simple facilities offered. The low-level

communications provided cannot offer high-level or complex facilities. Accordingly,

weaknesses are generally found in the approaches used by many packages to implement

integration. For example, while the ideal of integration would be to support data and

Chapter 1

environmental exchange, the actual implementation of integration usually offers less

than this, resulting in only a rudimentary sharing or exchange of certain selected data.

Indeed, such integration can in fact lead to additional complexity not only with regard

to the technical issues, but also concerning the people using the systems, who must

function while taking into account the practical, social and political consequences of

their actions. Consequently, integration alone is insufficient to enhance computer

systems to a point where they can better support problem solving.

More advanced objectives for enhancing computer-based information systems

would imply that while the user’s machine or machines may be running several distinct

low-level tasks or programs, they should be able to share and exchange data in a

meaningful fashion which reflect both the problem and its working environment, in

effect requiring that the tasks being performed can be inter-connected and inter-related

in some way, rather than existing and operating in isolation from each other.

Consequently, the tools should work with each other, cooperating in modelling

the problem environment rather than competing in isolated and focused applications.

All too often, the implementation of a computer-based information system gives little

consideration to the actual nature or context of the problem; the continually changing

environment of some application areas - such as most businesses - is typical in

experiencing rapid changes. A vison points out in [Avison 85] that design of systems

may be output driven, and yet:

... it is common and not unreasonable for users to require a change in

the outputs even before the new system is operational. But because the

system has been designed from the output backwards, such changes may

necessitate a very large change in the whole system design. This can

cause either a serious delay in the implementation schedule or an

operational system that is unsatisfactory from the start.’

This could have a direct result in the form of increased difficulty in

implementation or even failure of the project, simply because the application

development process does not take into account the circumstances of the operational

Chapter 1

environment. The difficulties increase dramatically if several packages are used which

were not originally intended to cooperate in problem solving.

Furthermore, the manipulation of problem data is a specific job that usually has

to be initiated at the user’s request, and cannot be performed as an automatic

background task. Yet changes in the data may be the result of events occurring

outside the user’s influence, for example real-time events can take place while other

work is being done, and any of these could be relevant to the tasks at hand.

Currently, users cannot be clearly informed of an event, let alone invited to

accommodate it into relevant work.

An example of this might be the preparation of a list of researchers attending

a conference, for which the details are kept on a central database, but where the

documents detailing events and names of those present are kept in a ‘fluid’ state up to

and including the day of the conference. As the database is changed - possibly by

several users - so the documenting system should immediately reorganise the underlying

details appropriately without having to be specifically instructed to do so.

There are many ways in which current application development technology fails

to meet requirements. A summary list of criticisms of typical computer applications

is provided in [Avison 88]:

1) Failure to meet the needs of business. In particular, middle

management and top management are being largely ignored by

computer data processing. Management information ... is being

largely neglected.

2) Another major problem is the inflexibility of the systems that are

being implemented. ... Their designs are similar to those of the

existing system. They are not intended to be adaptive: they are

expected to parallel existing systems.

Chapter 1

3) User dissatisfaction ... is a feature almost inherent in some

computer applications. Frequently they are rejected as soon as

they become operational. The user may agree the design of

outputs with the systems analysts, but it is only when the system

is operational that he sees the repercussions of his decisions.

4) There are problems with the documentation. The orientation of

the documentation ... is towards the technologists and not the

future users of the system.

5) Unusual conditions, commonly known as exception conditions, are

frequently ignored in the computer system and this leads to

incomplete systems.

6) A further problem is the application backlog found in data

processing departments. Some users may have to wait two or

three years before the development process can get under way and

a further year before their system is operational. [There may be

a] temptation ... to offer a ‘quick and dirty’ solution, particularly

if the deadline ... proves to be somewhat optimistic.

7) Poorly designed systems will be difficult to maintain and in many

businesses the maintenance workload is over 75% of total data

processing workload.

Recognising some of these limitations in current systems, developers have tried

to make their products easier to use, by sacrificing functionality in favour of

operational simplicity. For example, in an attempt to provide some sort of assistance

in the planning of which tasks need to be carried out, computer system developers

have provided a facility to associate images with applications or very elementary

concepts. This use of ‘icons’ has been promoted as the perfect solution to the

difficulty of learning and subsequently coordinating the many tasks a user has to carry

out, subject to the icon design meeting a number of criteria [Hakiel 87]:

Chapter 1

1) Appropriateness - where an icon is rated according to how

appropriate it is in relation to the desired function.

2) Comprehension - a measure of how likely it is that appropriate

behaviour would follow interpretation of the icon.

3) Matching - where an icon is evaluated according to how well it

represents a specific function.

For example, a word processing package that is not currently active might be

represented on the screen as a small picture of a typewriter; and similarly, to dispose

of some unwanted data (such as a file), a small picture representing the data can be

moved across the screen to another icon representing a dustbin which will ‘dispose’ of

the data.

In practice, however, the use of icons alone is inadequate, since they are simply

different labels for the original objects - the only potential advantage they have is that

users (and especially inexperienced users) can more quickly associate images with the

corresponding concepts than they can link program names with the same concepts.

Some people feel more ‘comfortable’ with icons rather than text.

This also assumes, however, that the user does not misinterpret the images used

(which can often be very similar if they portray, for example, files of data), and in

some cases the picture selected for the icon may have little obvious relevance or

reference to the intended association. Indeed, there is rarely any consistency between

packages with regard to exactly which icon image should be used to represent a

specific concept - a problem aggravated by issues of copyright^

1: An example of this concerns the Apple Macintosh computers, where the Apple corporation are
notorious for taking legal action against any firm imitating the Macintosh desktop or its Icons. This
means that - for example - the ‘trash can’ symbol used to depict the means by which data/files can be
removed from the system cannot be copied on other computer systems. The ‘Next’ computer from Next,
Inc. uses a ‘black hole’ icon to represent precisely the same activities as the Macintosh trash can icon.
Next, Inc. is a company set up by Steve Jobs, one of the founders of Apple.

8

Chapter 1

Even at the comparatively low-level of command key sequences, we can find

examples of inconsistencies between packages from the same source, such as the

WordStar word-processors from MicroPro. On the WordStar Professional edition, the

key sequence Control-Q and A is used to invoke the search and replace operation,

whereas in WordStar 2000, the same sequence is used to exit from the current

document, abandoning any changes made during the editing session, with possibly

distressing results.

Until a genuine enhancement, or at the very least, a better integration of

information processing systems is achieved, the current approach for developing

computer-based information systems means that the potential for effective information

handling, and support of the users, is minimal. Although raw data manipulation is well

understood, more advanced issues which are relevant to problem solving, such as

establishing the underlying and relevant data relationships, is more difficult to achieve

than it needs to be. Furthermore, there is not necessarily any increase in inherent

flexibility or power for problem solving even if multiple machines are interconnected.

This is because, except in certain special cases, a computer system will manipulate data

in a context-free fashion - with no real consideration as to what the data represents, or

the unsuspected results that could be obtained from combining the various kinds and

sets of data. Therefore, no assumptions can be made about what the data represents

or how it is to be used. In many cases, the actual context of the data may even be

specifically removed, despite the fact that this could be highly significant to the

problem solving process. There is no generally applicable model which can be used

for supporting distributed computation or support of problems.

A consequence of the current manner of information system implementation is

that the user still has a major amount of work to do in deciding what operations must

be performed in order to achieve the desired result - the computer will provide little

assistance in representing or tackling the problem. Problem solving is therefore not

greatly enhanced by the use of computer technology - at best the more trivial tasks can

be performed more quickly. This is because significant improvement in terms of

successful or efficient solutions can only be attained once the problem is well

understood. Examples of the sort of difficulties which users can encounter are readily

Chapter 1

observed during the common tasks of preparing simple text documents. Although the

computer can assist with mundane tasks such as storage of textual data (and possibly

visual images if the package is sufficiently powerful); the author of the document still

has the tasks of deciding the layout of material, preparing the correct formats for use

with the output device, selection of the fonts to he used at certain points within the

document, page size, line length, and many other jobs. It is true that some of the

more advanced publishing packages used for the preparation of certain ‘Fleet Street’

papers offer some of these facilities [Honeywell 87], hut generally, a single user still

has to make the main presentation decisions. For all of these issues, the decisions

must he influenced by the nature of the intended audience - thus requiring an

understanding of the working environment. Some packages will advise the user that -

for example - the attempted operation ‘won’t work’ or ‘won’t fit’\ because the tool

simply is not designed to support it. However, at a higher-level, consideration should

he given to the feasibility of operations that would he performed in the context of what

may or may not he suitable under the given circumstances, thus taking into account the

environment yet again.

Advanced users should he able to provide detailed requirements if they prefer,

and so the computer would have different work to do according to the newly defined

priorities and objectives; while novice users could use a standard or default description

for the problem, for which the computer needed very little guidance hut also offered

reduced flexibility. We can describe a simple example which is representative of these

issues by considering an enhanced form of a ‘document’, which must include data

types other than simple text as standard components, in much the same way that sound

and colour is a (vital) component of television or film ‘documents’ [Hall 87 &

Harke 87]. Some computer-based systems - for example those based on hypertext

concepts - do attempt to extend the document definition in this fashion, but remain

limited for reasons which will be discussed in section 4.4.

In essence, the whole concept of document handling could suddenly become

considerably more enhanced in nature, since the tedious work can - and indeed,

2: Although most users would probably prefer suggestions that will work,

10

Chapter 1

should - be passed over to the machine, while the author or group can concentrate on

the actual - and more important - content and context of the document itself which

forms the value of the exercise. An extended document definition (as suggested by

enhanced information handling architectures like that described in this thesis) would

additionally make provision for automation of some significant parts of the work, such

as incorporating the full effects of any content or context alterations by following

through all the constructed cross-references and inter-dependencies.

A further detail concerns the use of devices. Computer systems are rarely

‘standard’ with regard to their peripheral or central equipment, and indeed any system

that is fixed in such a way would be limited because of its inflexibility. Even those

expansions which are supported are limited to a standardised connection mechanism,

which limits the range of facilities that can be offered via a given peripheral device.

In order to overcome the limitations, a diversity of peripherals are available. However,

this can cause significant difficulties for users trying to ‘install’ packages for the first

time because of the sheer complexity of choosing from the many options.

Assuming that a computer system can be instructed in the nature of the devices

it will be using, there is no reason why information processing should not become far

more context sensitive to both peripherals and environment. This would result in

computer systems with a greater ability to assist in the practical effects of problem

solving by modelling the circumstances according to realistic models of the users

specifications.

At this stage, it would be easy to think that the problem has now been defined,

in that we must establish a consistent architecture for manipulating data and

relationships around and between various applications packages and systems, hardware

or otherwise. However, while this would increase the potential for flexibility of

information handling, on its own it does not immediately improve the underlying

construction of the systems in general, nor does it enhance the range of capabilities

available. Further thought allows us to perceive an enormous expansion facility within

the framework of the stated ideas, offering the promise of significant developments

leading towards more powerful computer-based information systems.

11

Chapter 1

The hardware basis of computer and peripheral technology is advancing at a

very fast rate, and the range of devices which could be inter-connected with the

computer system is extensive and could form a very powerful configuration indeed.

In this category of devices, we can list the various standard computer peripherals, such

as monitor, printer (both impact and laser), keyboard and other input device such as a

mouse and/or light pen; but we can also include devices such as scanners, voice and

sound synthesis devices, telecommunications systems, video cameras, and video

projection units (often used for echoing the display of monitor pictures). We can go

further to include dynamically variable (analogue) devices which monitor or control

real-time circumstances, such as lighting, temperature, sound and volume control

mechanisms, or security devices such as motion detectors. However, by

interconnecting such a range of devices we are introducing the potential for extreme

complexity - some of which may be predicted, but in other cases may suffer from

emergent problems. We are interested as much in studying the failures and limitations

of such interconnection and enhancement, as in trying by experimentation to understand

possible mechanisms for enhancing information processing tasks.

The connection of devices in a meaningful fashion, coupled with a computer’s

ability to carry out real-time updates or alterations to the data and the context of the

data - as described in section 6.1 - would seem to be necessary in order to permit the

construction of a considerably more advanced system. The design of an architecture

suitable for such a proposed system has been listed in section 1.1 as one aspect of this

research, and the work on producing an experimental system to test out these

implementation ideas is described in this report. The overall objectives of this thesis

involve several tasks. We must consider exactly what is meant by an idealised

environment for information processing, why it is useful in problem solving - and

indeed, why it seems to be necessary to enhance problem solving activities. This will

require consideration of how various current systems offer selected components from

such a concept, but do not yet achieve the full implementation of an environment.

Finally, we describe in detail the work carried out in studying an architecture intended

to allow users or group of distributed users to work within and become a part of the

proposed Information Environment. Recognising that multiple users may require

multiple configurations, we have to move away from imposing specific or focused

12

Chapter 1

answers and instead to experiment with developing an architecture that attempts to deal

with the potential problems and conflicts that may be introduced.

Section 1.3: Current Approaches.

A key issue is to consider exactly what is meant by a computer-based system

[Straub 89]. Typically, the result of labours by system developers will be a data

manipulating system that is directed by the user within constraints or ‘guidelines’

determining what can or cannot be done with the package. The actual degree of user

control over the system is a matter which has changed in parallel with the decreasing

cost of improved computer and technology power. With the more capable equipment

of recent times, users now - rightly - expect much more than a simple menu system

to select from a constrained series of options [Wilson 85]. Current information

handling systems are being sought which provide the more demanding applications that

users are operating. Furthermore, the nature of applications is extending such that it

is less of a viable proposition to develop isolated and insular packages. Instead, there

is a real user demand for packages to conform with each other, to cooperate in the

exchange and sharing of information.

The approaches being used to provide cooperation between systems currently

fall into two categories. The first is to take a specific application area - for example,

spreadsheet, database or word processing, and then to decide on how to make the

system import or export the raw data to other popular or ‘standard’ packages, for

example dBase HI or WordStar. Typically, the only provision for this sort of activity

is by the use of specific conversion utilities, that are barely integrated with the host

package let alone each other.

The second and only marginally improved approach is to try and create a user

environment that allows several unrelated packages to coexist successfully in the

common environment, on the assumption that by ‘consolidating’ the operating

circumstances, a package can be made to accept data from another package under the

impression that it is in fact coming from another entirely different source. A simple

13

Chapter 1

example of this is found in the ‘pipe’ mechanism^ used in the UNDC* operating system

to ‘build’ connections between separate ‘well-behaved’ processes which have a

consistent mechanism for data input or output [Bourne 83]; while more complex

examples can be found in applications running under a windowing environment, and

which support I/O redirection in order to enable multi-tasking and non-intrusive

coexistence.

However, there is a distinctly separate area of development work which

concentrates on determining at a very high-level each of the tasks that need to be

carried out. In this category of information systems and development methodologies,

we can include various Management Information Systems (MIS), Project Management

Systems (PMS), Resource Management Systems (RMS) and development systems for

software or general projects.

These information systems can be very detailed descriptions of guidelines to

follow, or they may be presented as software running on computers that simply say

what to do and when, but the essence of them all is to identify and isolate the goal

and steps in reaching it, and then to provide control of the sequence of events that

should be followed to achieve successfully a specific goal or goals.

The purpose of such packages varies, but ultimately they are intended to

identify the areas where methodical use of technology or policy will improve or

enhance existing procedures, whether it be the simple construction of a software

package, or the development of a complete company organisation structure. The

problem with this approach is that working with information is rarely an ‘either or’

situation. For any given problem with relevance to the real world, there could be a

range of possible answers, depending on the environment of the issues. Social, moral,

philosophical and political realities all dramatically reduce the number of problems

which can have simple right or wrong, true or false answers. The ideal of the unified

solution cannot exist - every technique produces a variety of possible solutions.

3: Denoted by the ‘ | ’ symbol.

4: UNIX™ is a trademark of Bell Laboratories.

14

Chapter 1

The division of packages means that it is obvious that there is almost no

overlap between the fields of work. This is a major difficulty that is apparently a

result of the areas being classified as ‘territories’. The users who do the work have

their application packages, while the managers who decide what work is to be done

have their administration and directional packages. Research into the strategic aspects

of information systems must inevitably take this into account. The territoriality seems

to be in keeping with many of the popular organisational procedures, but fails to take

full advantage of the information processing power and potential of computer-based

information systems. Recognising the value of information as a commodity, and the

benefits of enhanced, or at the very least more efficient, information handling, there

must be a significant effort by organisations to move towards using the resources of

the computer for the sharing and exchanging of data, although the degree to which this

can be achieved depends in part upon human nature. [Clark 83] takes an idealistic

view:

‘Management by divisional competition and conflict must give way to

cooperative management as information is shared rather than controlled.’

This straightforward and somewhat utopian observation has so far not been

recognised or put into practice on any large scale, and placing aside the practical

difficulties of incorporating such a philosophy into current information-consuming

organisations, a major reason for rejection was clearly stated in the same article:

‘The proliferation of computers increases the impetus for change, but

system incompatibility hinders electronic reorganisation.’

The author then goes further in suggesting that:

‘The usefulness of integrated software packages remains limited by

general-purpose designs aimed at large markets.’

This latter statement seems to add a new aspect to the argument. The packages

which are available may not in fact be general-purpose enough, because they are still

15

Chapter 1

based upon a rigid architecture and focused working environment, which specifically

constrains the options which are available to users. Computer-based systems which are

intended for information processing will at best support human-machine and/or

machine-human interaction, whereas the ideal would seem to be human to human

communication. Despite the great deal of effort expended on trying to make

human-computer interaction as transparent as possible, there is still a definite overhead

for using computers to communicate and to process information, and that overhead is

determined by its effect on ease-of-use, performance, and usefulness. Only a few

paçkages have followed appropriate and considered design strategies, as shown by the

sometimes scattered and/or generalised options which are implemented. This means

that the unspecific options may have subtle and unfortunate implications on each other.

In very specific cases, extensive support tools may be designed and built which go

some way towards promoting a suitable environment for face to face conferencing -

such as the ICL POD. However, the problem with such systems is that they may be

designed in a way that limits reconfiguration beyond the bounds of the original

specification.

Rather than attempting to solve all problems with a single, but enormous,

applications package, it might perhaps be preferable to concentrate on the difficulties

of representing problems. If this is overcome, it may become possible to have any

number of application systems to handle all possible jobs, knowing that they will each

cooperate and contribute to the overall task objectives and their environment(s). A

further advantage would be that this is in accordance with much of the emphasis of

preferred management techniques such as those used in stmctured programming, where

complex tasks are broken down into smaller and simpler problems. Each atomic

problem is dealt with using a simple tool, and these tools or modules can be grouped

together and invoked as and when necessary, knowing that the interaction between them

is clear, well-defined, consistent and cooperative. However, the end result must be

qualified by pointing out the delicate balance between risk and opportunity. More

flexible systems are prone to complexity because of increased options, while

constrained systems have reduced complexity but are limiting in their options. It is

important not to lose sight of dangers and opportunities being associated with each

other.

16

Chapter 1

The work of this thesis suggests that the complex activities of everyday

information handling cannot be successfully tackled using a single applications package,

but instead require the use of a variety of task-orientated and dedicated tools which are

fully and properly structured, thus providing for overall solutions. The tools are built

upon each other and cooperate together in terms of a problem specification

environment, that must have an enhanced capacity for providing problem descriptions.

Of crucial importance is the recognition that the human user is also a major

environmental component that must be modelled. The user forms the highest level of

information processing, positioned at the apex of the data and processing structures.

If the users cannot work successfully with the system, then again the benefits or value

of the system will be minimal. Therefore, there must be provision for, and inclusion

of. Human and Computer Integration techniques, rather than the more widely promoted

facility for Human/Computer Interaction. This in turn must be worked and tested in

order to move towards the greater goal of using computer technology to support and

enhance human-human interaction.

Ordinary interaction makes little attempt to incorporate user perspectives into the

information processing tasks, assuming simply that the computer-based technology

forms the peak of the presumed sole task of data manipulation, with the users as

overseers and directors. There is even less support for the concept of the working

group, contributing and functioning as a larger entity than the single user. A wide

range of admittedly powerful, but low-level interaction tools (in comparison to the

user’s level of capability) are now available, but they all tend towards the erroneous

assumption that the user must have complete responsibility for directing the integration

and use of data within an application. This may often be valuable to a specific user,

but it should be optional, rather than being imposed and enforced by the application

tools and utilities.

Conversely, by modelling or ‘integrating’ the user as part of the information

processing environment, the most powerful processing components (the user’s mind and

ideas) can be incorporated as part of the problem-solving system model to enable the

provision of a much more cohesive, efficient and complete task execution capability.

17

Chapter 1

But this must be extended further to support many users, supporting system

enhancement on a larger and non-technological scale. Current work is often directed

towards one user and one machine as a unit, possibly communicating in simple terms

with each other as simplistic units. Such constraints inevitably limit the possibilities

for work as a dynamic group, because the existing perspective is too focused, assuming

black and white simplicity where facts and results are either true or false.

For computer-based information systems, the problem area is clear: application

packages all too frequently take the form of directed, pseudo-generalised designs which

cannot - by definition - match or be modified to fit precisely the individual needs of

all problems and users. Compounding the error, system designers have focused their

attention almost exclusively on the two fields of the application package and the

administration package, all the while trying to make them general-purpose. Little

allowance has been given to the issues of unpredictability within the environment -

computer systems have a tendency to be ‘special cases’, which cannot be realistically

handled in a generalised manner, nor necessarily dealt with by straightforward

‘patching’. It seems that emphasis should have been placed on studying the problem

environment, and the flow of information within and between the applications and the

administration with a view to the end goal of enhancing problem-solving. In other

words, it means recognising the fact that tasks lead from one to another at all levels,

and further that these tasks can exist at differing conceptual levels, and so should not

necessarily be performed by the same machine or even the same user. In effect, the

focus on ‘the task’ should be widened to incorporate multiple users and indeed the

working medium as being part of the information flow. Currently, the media support

is viewed purely as a channel for input or output, rather than being integral to the

function of the system.

This extension of the working environment model also introduces the issues of

dynamism and feedback, for example concerning the reorganisation of systems both

structurally and conceptually, modelling the environment as it also changes dynamically.

An architecture for information processing must support dynamic reconfiguration, but

permit users to over-ride and direct as appropriate. Current monolithic systems, which

are focused and inherently inflexible, cannot achieve this.

18

Chapter 1

Having recognised a preference for more dynamic systems, the realistic

integration of packages by provision of an underlying architecture offers a stepping

stone to enhancing computer-based information systems. The problem is therefore to

work towards identifying ways in which computer technology can be used for

enhancing the productivity of not just the single user, but also the working group,

where the computer systems and distributed users (at all levels) are considered as vital

contributing components of the team. Problems must be recognised, and solutions

proposed and tentatively experimented with. Instead of concentrating on the technology

itself as the only issue, it becomes important to study the processing components that

seem to occur during information system processing, and thus begin to study how

technology might be used to help in achieving enhanced work - if indeed I.T. needs

to be used at all. For example, rather than merely mechanising the flow of data,

technology should perhaps be used to improve the manner in which data can be

worked - and this influences the nature of the architecture required.

Many sources have attempted to discuss this in detail, but some fail to take the

important step of applying the ideas in a generalised form rather than in specific terms.

For example [Stobie 87]:

‘A key idea is that it (the integrated office concept) functions with a

work group by helping the group members interact with each other more

productively. This makes network mail a central feature of the integrated

office.’

The above quote has faults in two areas. In the first case, the latter sentence

of the quote cannot be implied logically from the first, as there is no valid basis for

the conclusion.

In the second case, even if it could be implied logically, the latter sentence

quoted is erroneous because it ignores the full implications of the first sentence. The

provision of an electronic network mail (email) facility is very important to help with

encouraging the flow of data between users, but is totally insufficient in itself to

provide all the interaction that might be expected for integration, let alone provide an

19

Chapter 1

extensive problem representation facility. Email provision further assumes that the

problem of confusion so often observed within message systems can in some way be

eliminated or minimised.

For straightforward exchange of data or ideas, electronic mail has many

advantages, including speed, accuracy, and reliability. But under certain circumstances

these same factors can become unbalanced and result in passionate exchanges.

Examples of this turbulence can be regularly observed when a ‘public mail message’

is sent to all mail users. Multiple recipients do not necessarily read their mail at the

same time, and so replies and subsequent responses can quickly become

out-of-sequence. They rapidly begin to suffer from a lack of clarity regarding the

initial message that provoked the response. This is an inevitable consequence of the

natural tendency for human communication to deviate from a specific discussion topic

[Wilson 85b & Boyle 85].

Furthermore, the apparent ‘insensitivity’ of electronic mail can be a major

problem. Comments which have a ‘sarcastic’ or ‘humorous’ intent can be interpreted

in entirely the wrong way when read without the benefit of the accompanying

body-language to indicate that the statement should not be taken too seriously. In

conjunction with delivery delays, this leads to the acrimonious and highly aggressive

series of message exchanges known as ‘flaming’ [Kiesler 89]. Such is the difficulty

of email misinterpretation, that a series of symbols have evolved to help portray the

‘emotion’ of the message^:

Happy/Joke 8-)
Sad 8 —(

All this leads us to conclude that instead of simply providing more capability

for raw communication, consideration must be given to the circumstances under which

communication is to take place, as it is this which will help deal with the difficulty of

misinterpretation. Ultimately, it is necessary to examine the objectives of

5: To understand the symbols, turn this page clockwise through 90 degrees. The character symbols
resolve themselves into frowning and smiling ‘faces’.

2 0

Chapter 1

communicating data around and between both the users and the machines working in

the context of the task environment. Specifically, it is important to consider the

mechanics of the communications in the light of identifying what such data movement

is expected to achieve, and this in turn implies a requirement for an architecture that

allows you to detect and hopefully to correct an imbalance. Only by questioning the

purpose of an information handling tool - such as email - will we be able to implement

a more useful facility that is of genuine benefit to the users.

Section 1.4: Suggested Requirements.

There are a number of properties which a more advanced strategy for

information processing ought to have, in order to operate in a more flexible fashion.

The first of these has been briefly mentioned in section 1.3, and concerns the internal

construction and communication methods of the data manipulation. In other words, an

architecture must be developed that supports the manipulation and interaction

requirements by virtue of having been designed for that purpose, rather than taking

existing structures which are then ‘patched’ by forcing changes in order to try and meet

the refined needs. Once such an architectural specification is achieved, a more flexible

system can be built upon it that supports much greater degrees of enhancement between

the applications processes.

The second property involves presentation of the architecture, which requires an

understanding of the natural human preference for working with images or pictures as

descriptions of concepts which actually mean something, rather than with the textual

or static graphic tokens (icons) that attempt (poorly) to portray those same concepts by

simple relabelling. Using an enhanced internal architecture, it should be possible to

support user-controlled dynamic portrayal of images. It is important to recognise the

advantages of customisable dynamic depictions, because they support the idea of

incorporating aspects of relationships into data control and presentation tasks. This

follows because the data that is being worked with can remain consistent, but the

presentation circumstances (which are under the user’s direction) can vary in real-time.

2 1

Chapter 1

In other words, not only can the data itself be presented in a useful manner

under user control or preference, but also - and just as importantly - the relationships

that exist between the data can also be incorporated, which may be important because

they can change the way in which information is perceived and therefore evaluated.

This seems to be a vital but frequently overlooked component of the way in which data

presentation by computer can influence human thinking.

The depiction of the relationships could be enabled in many ways, but this

thesis considers a first step towards the problem by experimenting with a prototype

implementation of an architecture that uses geometrical and topological presentation

systems, the exact mechanism of which will be dealt with in section 8.2. The adoption

of such a geometrically-based paradigm would ideally encourage the users to explore

the potential for benefits to be derived from studying the relationships that can be

created between data objects, as well as providing facilities for an extended document

architecture.

Such an approach is significantly different from the current emphasis on purely

algebraic interaction, because it is not limited to the ordinary form of relationship

depiction by explicit rules. Instead, relationships can be further supplemented by the

inclusion of representation through geometric attributes. In order to explain this, we

can consider all data as being stored within an unlimited cache area called a data

space. We can then give a new attribute to data, which is its geometrical relationship

to other data existing within the same data space. Having done this, we can now

position associated data within the data space such that some of the relationships

between data can be inferred from the grouping of the data (see Figure 1). In the

diagram, the five blocks of data have no connection depicted in any form, yet

instinctively most readers would group the blocks into two sets, A and B, by virtue of

the proximity of certain of the blocks.

In systems that could enhance representation by use of geometric attributes such

as that just described, a processing component would be responsible for performing the

evaluation of relationships. The process could focus on computational components

within the system, but by extending the concept of the working environment, we can

2 2

Chapter 1

Data Set A Data Set B

Figure 1: Data Space Modelling Environment.

include other components, such as the users them selves. The users are essential to the

information processing tasks, and so should be recognised as such and be incorporated

into the model. The relationships represented within the data space would be identified

in a context-sensitive manner by the evaluating process. In other words, the geometric

property alone can be interpreted to establish som e o f the nature o f the data

relationships. The interpretation itself may vary, depending on the tools being used to

interpret the relationship itself. This is a valid proposition, because we can observe

everyday exam ples o f it in human users. W e understand a data presentation only once

we have learned to recognise how strategies can be used to depict a relationship, and

hence identify which strategy is being used in a specific instance. Consequently, if a

different strategy is used for depiction, then this can easily result in different

interpretations.

Extending the idea o f relationship depiction, it is not only the physical

relationship between data that is o f importance in establishing the association, but also

the facility for supporting geometrical or topological relationships. In other words, we

are not emphasising the absolute positioning o f data as being the sole requirement for

23

Chapter 1

relationship specification, but also the attributes of relative positioning of data as

contributing to the relationship specification through geometry. This enables us to work

within the unlimited (virtual) volume of the data space, thus distributing the data in

both a conceptual sense - within the data space - and also in a physical sense by

relocation of data storage amongst multiple distributed machines. Taking the abstraction

a stage further, we can remove the geometric component to address the relationships

in purely topological terms, thus absolving any physical (machine) or geometric

dependencies. In effect, we can propose the use of topological mechanisms to represent

relationships explicitly, while geometrical mechanisms could still be used for the

depiction of implicit relationships, which cannot otherwise be described.

Building a data handling system that can associate value with the relationships

between data, using a topological viewpoint, introduces a number of significant

advantages for the constmction and operation of information systems. For example,

altering the presentation of data implies only that the presentation technique itself must

be altered, and not necessarily that there must be any modification to the data. No

additional data processing is required, it is simply ‘seen’ differently.

Changing the presentation technique within a topological relationship could be

accommodated by altering the association that exists between one set of presentation

techniques or characteristics, and another set. This could be achieved in turn by

redefining the geometric relationships that are depicted within the model. In effect, the

relation between a data set and presentation system is removed, and a new and different

relation with an alternative presentation system is then established.

A preferred advantage of this would be that the basic data being presented

should not need to undergo drastic conversion or manipulation in order for the

alternative presentation to be performed. Consequently, individual users could be

catered for without requiring such extensive manipulation by the installed system.

Instead, it would only be necessary to use the ‘new presentation technique’, which

would be installed by establishing a new relationship between the original data and the

new presentation system, as well as permitting the establishment of novel

inter-relationships.

24

Chapter 1

Using the more normal algebraic specification of relationships would require that

a complete new algebraic specification is defined in order for the changes to be

implemented. Such a procedure has the inherent risk of introducing paradoxes or

inconsistencies within the algebraic rules.

A further advantage of the geometrical approach is that connections can be made

between the working concepts or data sets at a high level of visualisation, without

being concerned or restrained by the actual implementation of such connections. This

follows because the relationship depiction matches closely some suggested models of

information handling, where ideas are developed using relationships as well as the data

itself, without necessarily requiring any understanding of how the relationship depiction

is actually carried out.

Inevitably, there are limitations to such an approach. It is almost certain that

there are circumstances which cannot be predicted or modelled in this fashion, and it

is partly to experiment with these that the prototype system is being developed. The

nature of the proposed architecture is inherently complex owing to the potentially large

number of tasks which would be actively processing relationships at any one time, and

also due to the dynamic nature of the multiple paths of communication between those

tasks. Consequently, the architecture would minimally require a host machine which

offers more advanced computer technology, such as that provided by multi-user

workstations.

The last important property for a more advanced information system would seem

to be the requirement for an ability to build up the representation of the working

circumstances as a description of the Information Environment. The nature of this

description could be considered as a form of ‘document’, with each such document

detailing an electronic abstraction of the specific Information Environment. This point

will be considered in section 6.3, but for the moment it is sufficient to note that the

successful construction of such a description depends on the first two properties being

implemented correctly.

25

Chapter 1

At this stage, it may not be apparent why there is the necessity to include

human users as part of the Information Environment. The justification for this

context-sensitivity can be seen by considering a typical application of a computer - for

example, processing information using a spreadsheet. At some stage, the computer user

will wish to produce a hard-copy output of the results obtained from the spreadsheet.

Currently, most application packages have to be ‘installed’ to recognise precisely which

devices - in this instance, the printer - are attached and available for use. Without this

data, the output would be severely restricted in its content or flexibility, assuming that

it is possible to output anything at all. Thus, the efficiency of the computer depends

in part upon the accuracy of its specified configuration at the time of use, and this

configuration must be built up with the help of the human user.

Envu'onment

System

Figure 2: Optimised view of System/User Interaction
within the Information Environment.

From this we can deduce that the human user is also part of the configuration

and therefore a vital part of the Information Environment (see Figure 2). Once the user

is modelled as part of the Information Environment, then interaction becomes facilitated

with other users who are also working and represented within the same environment.

26

Chapter 1

A truly multi-tasking and multi-user system is viable, and it becomes possible for all

users to recognise the tasks that other users are performing, and so to monitor, to

contribute and to cooperate for the benefit of all concerned.

Conversely, a user who is not correctly ‘installed’ in the Information

Environment (i.e. one who has not been taught how to use the system, or who is

assumed to be familiar with the more complex options) will not be able to operate

competently or correctly, and can potentially make mistakes leading in the least case

to inefficiencies, or in the worst case to damage of some kind.

The more typical practice of

considering the user as being distinct and

isolated from the rest of the information

system (see Figure 3) means that any and

all exchanges between user and system

must pass through a single

communications channel, which leads to

significant problems concerning data

supply and data reception for the user.

However, once the users are recognised

as central components within the

information system, it is then much easier

to establish more diversity in the nature

and number of data communication

channels, a development that suggests

advantages for information handling.

Figure 3: Standard View of User/System Interface. As an example of why the

integration of the user into the system

benefits tasks being run by an application, it is clear that an advanced user will be able

to take shortcuts in running the application, and will not need to use a ‘help’ facility

except on rare occasions. The computer need not provide the help facility except when

specifically requested to. Indeed, advanced users may find it frustrating to continually

System

27

Chapter 1

have a help prompt on screen, as this can significantly decrease the amount of useful

screen area - the work area - available to them. Conversely, an inexperienced user will

appreciate having an on-line help facility, and may prefer to be guided through every

potential key press - which must inevitably reduce the speed of performing the task

[Heppe 85]. The main danger to be avoided is the all-too-often occurring case of the

on-line help being an exact duplicate of existing pages within the application manuals.

This is rarely of use in itself, as it fails to supply genuinely relevant assistance^.

Yet both types of users are essentially trying to perform the same task, and this

means that the application processes and the system must reflect not only the task

objectives, but also the circumstances in which the task is being performed. This is

done by recognising the user’s level of proficiency, and hence requires incorporation

of the user characteristics into the system’s operation.

Having shown the need for a complete description of the Information

Environment, the problem of representation must now be examined. The concept of

the electronic description is a tentative and exploratory step towards the aim, intended

to allow the incorporation of all relevant components from the Information Environment

(user, data, circumstances, application, and so on) into a single (possibly extensive) unit.

Crucial to the proposed construction of the description is an underlying architecture that

permits description of the various components in a meaningful fashion. However, it

is clear that if the description requires a complex architecture in order to be

implemented, then there must be some way of building up the description of the

working environment and its applications in order to produce the basis of the

application. A ‘generator’ is therefore required which reflects, and is specific to, the

Information Environment that must be modelled to perform the activity. The design

of a suitable architecture and a generator which implements it forms a major component

in this report.

6: For example, the UNIX operating system will normally provide on-line copies of the documentation,
but the actual number of worked examples is small.

2 8

Chapter 1

Section 1.5: Summary.

There is a clear requirement for an enhancement of existing information

processing systems, and the nature of such systems will remain the subject of on-going

research. This thesis reports on the experimental results from a study of one possible

approach based on geometry, which attempts to develop architectural mechanisms for

enhanced problem representation, and thus offers a greater understanding of the

undoubtedly complex issues and problems which must be managed. The geometrical

concepts described are used to provide the basis of a prototype mechanism for studying

how geometry may contribute to understanding problems, as well as being used for

implementing a solution.

The prototype system itself is not intended to be anything more than a minimal

implementation of the more primitive components. Instead, it is directed at providing

a workable environment within which further development work can be carried out.

This in turn would lead towards development of a more formalised way of thinking,

and the development of a formal methodology to be used for solving problems that

may benefit from geometrical analysis.

Section 1.6: Thesis Structure.

The structure of this thesis is as follows. In chapters 2 and 3, examples of

current systems and current research are described. The examples have been selected

for their direct relevance to the issues that are central to this thesis. The contribution

of the examples is discussed in chapter 4, before moving on to consider in chapter 5

how each of the key attributes may be brought together to aid in specifying an

enhancement to computer-based information systems.

The key attributes must be placed into a context, and this is provided by the

Information Environment concept which is introduced in chapter 6. A suggested

implementation of the Information Environment is given in chapter 7, along with details

of how the system might be used in example applications. Actual implementation

29

Chapter 1

decisions made by the author are described in chapter 8, with reference to the

demonstration system; before detailing the central facilities of the demonstration system

in chapter 9. Chapter 10 summarises the results of the work, and suggests further lines

of research and development that the author considers worthy of consideration.

30

Chapter 2.

Current Systems.

Section 2.1: Overview of Current Systems.

In this chapter, we are interested in considering the nature of current commercial

products, and in identifying the aspects of those systems which are devoted to the

general tasks of information administration, organisation and handling. We study how

appropriate components that are fundamental to the system may be blended together in

order to develop an enhanced information system architecture. This in turn will lead

us to the suggested concept of the Information Environment. As implied in section 1.3,

few current systems appear to be built upon the basis of an information architecture

that could support such a proposal. Part of the advanced nature and suggested benefits

of the Information Environment stems from the objective of structuring all components,

at all levels. Therefore, it is relevant to consider the current systems which function

at many different layers of operation and activity, to show how they have helped in

identifying concepts used in the environment.

The normal sequence of events to be carried out during a complete information

processing job involves a number of stages, starting with an identification of the

primary goals of the job or ‘application’. Next, tasks are defined that must be

completed in order to attain the goals. Finally, the tasks are performed. The first two

stages can be conveniently considered as a single group, as they are largely concerned

with direction or policy in carrying out applications, while the latter stage or group is

concerned with actual implementation of the policy. The first group is therefore that

of the management packages, or activity analysis and management tools. These

organise the specification of the information processing tasks which must be carried out,

and so are used for coordinating the selection and use of the second group systems, the

functional tools. The latter group - also known as application packages - have a clearly

defined set of objectives to achieve.

31

Chapter 2

We will proceed to discuss examples from each of the two groups, and show

that one of the main reasons why the packages within the two groups may not be as

widely used as might be hoped is because they often cooperate poorly, or have weak

connections with the lower level tasks, or require independence from the higher level

aspect of information processing. Thus the general cause of such failure seems to be

due to an inherent inflexibility resulting from limited integration with other systems,

and is suggested as an important obstacle to be overcome before information systems

can make any further advances. However, it must be recognised that failures can also

result from various other issues apart from technical inadequacies or internal design;

for example insufficient or over-complex control mechanisms, or reduced speed, or

increased cost. While important points, these latter cases of speed and cost fall outside

the scope of this research.

As stated, the first group of systems comprises methodologies and packages for

defining and performing information processing tasks that may be loosely categorised

under the term ‘administration purposes’. Such systems are less concerned with the

low level tasks of handling raw data, but instead are intended to help with analysing

and identifying key management strategies at the higher and middle levels of

information processing. Within the higher level of administration, systems such as

project planners or project management tools help in the identification and coordination

of goals. At the lower level of administration, there are packages which help in

specifying the actual tasks performed. These ‘development’ systems build upon the

broad directions identified and organised by project planners, and enlarge upon the

details of the tasks to be carried out. They help construct strategies for ‘filling in the

gaps’ between the start and end of the tasks that must be performed to achieve the

goals. Packages such as resource management or critical path analysis systems help

in improving the efficiency of the information processing tasks, for example by

isolating potential ‘bottlenecks’ which could slow down tasks and thereby affect

productivity. Examples of these sort of packages include Pertmaster Advance from

Abtex in the UK, and Viewpoint 3.0 from Computer Aided Management of California.

The second group of systems tackle specific application areas, with a general

rule that any given package will focus upon basic information processing functions.

32

Chapter 2

A few of the packages in this category seem to be quite extensive, and apparently have

facilities for handling a variety of related or connected applications. As such, they can

appear to be well integrated within themselves. However, it is sometimes the case that

the sub-applications are special cases or re-interpretations of the original tasks. For

example, Lotus 1-2-3 ̂ combines spreadsheet, graphic and database facilities. In

practice, the database is implemented by providing functions which can search for and

select from the correct ‘cells’ within a normal spreadsheet, while the graphic

presentation facility is an alternative depiction of data values existing within the

spreadsheet.

We will now consider the types of products that are currently available in the

two groups of administration and application tools, showing how they process

information at the various administrative levels, and culminate in the manipulation and

presentation of data categories for the user. We are particularly interested in the first

group of systems, because they are concerned with more abstract information handling,

especially involving relationships and patterns in information. Accordingly, the systems

incorporate higher-level processing aspects that depend upon information representation

architectures, and it is these that we wish to identify in order to improve on existing

structures.

Section 2.2: Management Svstems.

Products in the general category of management systems come in various forms,

for use according to the direction of management objectives. The first and highest

level of objectives is that of overall planning, and is addressed by project management

systems. Below that comes the more detailed concept of the resource management

system, which considers the identification of tasks and resources required for the

implementation of the strategy already established. A new form of this latter system

is the software management system, which will also be detailed.

7; Lotus 1-2-3 is a trademark of Lotus Development Corp.

33

Chapter 2

Section 2.2.1: Project Management Svstems.

These systems are designed to organise and coordinate the structural

inter-relationships of project or work tasks in order to achieve a specific objective. The

most important elements are:

1) That a structured approach should be used in the identification of

activities and resources necessary to perform the tasks.

2) That the activities and resource usage should be organised in the

most efficient manner, typically by breaking large problems into

smaller, more workable components.

3) That the progress should be monitored, and the actual usage of

resources recorded.

4) That the progress made should be reviewed, with reallocation of

priorities, tasks and resources as necessary.

Thus, as well as being interested in tasks, the relationships of tasks to each

other are also relevant and important. Current project management systems are

sometimes derived from database programs that have been enhanced in a number of

specific ways. For example, they may be extended to include working-day and

working-week calendars so that tasks can be placed in chronological relation to each

other. During the analysis, each stage of a project has to be broken down into its

component activities, which are in turn divided into tasks. These tasks should ideally

have clear start and end points, used to identify when they begin and terminate.

Concluding a specific activity means achieving a milestone. Scheduling the various

activities and resources in relation to each other using the calendar systems means that

critical tasks are performed in the quickest possible time, or at the lowest cost, with

minimal problems. The end objectives are relevance, accuracy and efficiency.

Analysis is carried out by using a variety of standard tools which work by identifying

tasks and milestones. At each stage, the resources used and the costs of these

34

Chapter 2

components are recorded, and a number of charts in different styles can be constructed

to depict the project as a whole. The two most common fundamental depictions are

the Gantt chart (activity against time) and the Program Evaluation and Review

Technique (PERT) chart, which represents interactions between the tasks. The Gantt

chart is normally depicted as a bar chart showing tasks and their durations, and

frequently the resources which were allocated to those tasks when they occurred. The

PERT chart is particularly popular for implementation in Project Management System

(PMS) software, as the resulting network diagrams are familiar concepts for the

developers to work with.

Examples of PMS packages include ‘Harvard Project Manager 3’ available from

Software Publishing in London, and ‘MicroSoft Project 4’ from MicroSoft Corporation.

The Hoskyns Group has produced a PC based Information Systems management

package called ‘Bridge’, which combines a development methodology with project

planning facilities.

The sort of task to which a PMS may be better suited tends to be concerning

the coordination of a long range or long term group effort, with clearly defined start

and finish points. A simple example of their use might be planning the construction

of a house, while a more complex example is that of constructing a large ship. A

PMS helps by making planning and updating tasks easier than would be possible using

ordinary paper-based systems. In effect, it processes information at a higher level of

abstraction, with minimal reference to the potentially confusing underlying lower level

tasks or data. Using computer technology also means that several different plans can

be produced for varying parameters, so that comparisons may be made. As the project

progresses, the tasks coordinated by the PMS can be updated to reflect the reality of

how long they took, or how much they cost in terms of resources or time. This means

that there is a requirement for a monitoring or a logging/auditing facility to be

implemented.

More generally, a PMS will focus attention on the issues which have a

significant influence on system development, in order to minimise error or inefficiency

in the overall production process. The end result should be a project development

35

Chapter 2

environment that has had good planning, established recognisable progress and

achievement goals, incorporated ample facility for refinement of plans, ensured

coordination and consistency between all tasks within the project, and - importantly -

can make use of prior project experience and use it to produce new experience, which

can again be applied on later work.

The intrinsic paradox for most project management systems is that they have to

be generalised in order to facilitate the more desirable goal of a less complex but more

complete working environment, but at the same time they need to be specific to the

management goal in order to achieve greater task efficiency and relevance.

Furthermore, providing the system with a suitable mechanism for processing all

the tasks, resources and time components for projects means that the PMS packages

must necessarily be of intricate architecture, yet their actual operation may conversely

require the use of very straightforward control options, which insulate the users from

the internal complexity. No matter how colourful or ‘exciting’ the interface is, it will

often be built upon a rather fixed or inflexible option scheme. Such mechanisms can

result in the users feeling that they have limited control over a nicely presented

package, and as a result management users may be reluctant - or unable - to become

sufficiently familiar with the system to use it to good effect. Certainly, a better

understanding of a package would seem likely to produce more valuable results when

the package is used, and the claim for the value of having a detailed understanding of

tasks has been described as both instinctive and provable through direct observation

during a study of Management Information Systems [Ein-Dor 86], although other

sources, such as [Ackoff 67] are less convinced of this.

The goal of a Management Information System (MIS) is in assisting managers

in their duties by helping with the collection, processing and presentation of

information which is used in management tasks. Accordingly, MIS are contributory to

the objectives of project management systems. The actual value of such systems can

be very difficult to determine, owing to the varied nature of tasks and circumstances

involved. One approach used for measuring value is by the use of tools such as

‘business games’, which are highly complex simulations of management situations.

36

Chapter 2

‘played’ over an extended period. The Ein-Dor study used such a business game

involving an MIS to test several hypotheses concerning the value of such systems, but

in doing so lends itself to a number of important criticisms. Firstly, there is no

discussion of whether the business game used was accidentally or intentionally geared

to reflect the use of an MIS, and secondly, there was no test of the alternative

hypothesis that use of an MIS could actually reduce the likelihood of success.

The general conclusions included the point that a better understanding of MIS

function and applicability (termed ‘familiarity’ in the report) did indeed produce a

significant correlation with success in the studied business game, especially at the

higher levels of management, and made the statement that:

‘greater use by top management of MIS increases the likelihood of

success’.

When considered from a ‘real-world’ viewpoint, this is perhaps rather an

unusual conclusion to reach. Given that the study was carried out some years ago, it

would seem reasonable to suppose that such a positive result would have been rapidly

reflected by increased usage of such products, but this does not seem to have been the

case. It is worth considering whether in fact an MIS system used outside a controlled

and bounded environment is in fact of any value. Certainly, there is little evidence to

indicate popular use or even acceptance of such systems in the commercial world. The

fact that significant numbers of managers do not use such systems (despite the general

awareness of their availability) could even suggest that managers - who should know

their jobs - may actually be correct not to use them.

Indeed, a survey carried out in 1988 indicated that the percentage of end-users

requiring some form of MIS dropped from 4% in 1987 to 3% in 1988 [PCWeek 88].

Thus not only is the user-base demand for MIS comparatively small when compared

with Information Retrieval/Reporting (23%), Application Development (16%) and

DTP/Word Processing (24%), but it actually dropped in importance over the period of

study.

37

Chapter 2

Work carried out by Ackoff [Ackoff 67] suggests that few of the MIS that have

been put into operation meet their expectations, and:

‘some have been outright failures.’

He believes that these:

‘near- and far-misses could have been avoided if certain false (and

usually implicit) assumptions on which many such systems have been

erected had not been made.’

Accordingly, the concern expressed in 1967 over the value of such systems

appears to remain today, as borne out by quoted survey; consequently their actual

worth must remain an unresolved point for the moment.

Section 2.2.2: Resource Management Svstems.

As a contrast to Project Management Systems, Resource Management Systems

(RMS) are rather easier to apply - possibly because they deal with the more ‘concrete’

problems found at the lower levels of information processing. They are concerned with

the organisation of resources in order to achieve the specific task or end goal, once the

tasks or goals have been ascertained by the PMS. Hence RMS form the next stage

down in the managerial process, in that the end goal or task will have been defined,

and correspondingly, the starting point(s) would be clearly recognised. The RMS is

used in organising the execution of the tasks from start to completion, and for

identifying the key points where enhanced efficiency or speed will improve the overall

execution of the task.

The concept of RMS is one that is ultimately relevant to the implementation of

an Information Environment - such as that described by the GENIE-M system proposed

in section 8.2 - because in the larger model of the electronic Information Environment,

there seems to be a requirement for a coordination of resources above and beyond the

standard computer I /O resources. Any computer-based system that implements an

38

Chapter 2

Information Environment will almost certainly have to coordinate the resources to be

used and which have an ‘existence* within the structure, and therefore the methods of

operation used in an RMS will offer valuable data during the development of important

components in the suggested information system architecture.

A typical RMS for application purposes is based upon the proven concept of

Critical Path Analysis (CPA). All tasks comprise activities and resources, and the aim

of CPA is to optimise the application of activities and resources to meet or improve

upon timing, cost and quality measures.

Breaking down a task into its activities - a process started at the project

management level - means that relationships or ‘dependencies’ between activities can

be identified, although it should be emphasised that the accuracy and value of the

identifications will depend heavily upon the analysis techniques used. The

dependencies can be portrayed as a ‘network’ of activities, which can be made very

complex by the fact that some activities can run concurrently with other activities,

while others operate only on a serial basis.

A critical path is identified for a network such that, if one of the activities on

that path were to be delayed, then the completion of the entire task would also be

delayed. A Resource Management System can help to isolate the key activities on

such a critical path, and so focus effort on improving those activities in some fashion.

Furthermore, an RMS allows modifications to be made to the activities carried out -

for example, by replacing old production tools with newer and faster ones (that might

be more expensive) - and this enables the manager to examine ways in which the task

efficiency may be improved, in the same way that the popular ‘what if’ approach has

helped the growth of spreadsheet packages.

An example of a combined project and resource management system is the

package ‘Pertmaster Advance’ from Pertmaster International of Leicester, for the IBM

PC computer. It is operated by entering the activities, dependencies and resources of

the task, as well as other parameters such as cost and timing constraints. The package

can then produce a number of reports:

39

Chapter 2

1) A standard report that details the earliest and latest start times to

commence each activity.

2) A project and period chart to display overall task duration, and

any critical path found.

3) A resource usage report.

Packages such as this combine tools for deciding upon information handling

policy with the coordination of resources necessary for the information handling itself.

Accordingly, such packages are relevant in establishing the higher-level aspects of a

generalised architecture for an enhanced information system.

Section 2.2.3: Software Configuration Management.

We can now move more towards a consideration of computer system

involvement as a complementary part of a management task, rather than merely as a

planning tool for helping in its specification. This ‘half-way’ house concept involves

the use of the computer to help in organising the execution of the computer tasks

themselves, and good examples of the issues involved are categorised under the name

‘Software Configuration Management’ or SCM [Bersoff 81 & Buckle 82].

This concept concerns the controlling of changes which affect many components

generated during the life cycle of a software product. The number of components can

be very large - especially for complex projects - and so the efficient management of

component evolution is of great importance in order to prevent the project from

becoming at best unwieldy and at worst unmanageable. The configuration management

process would normally be applied throughout the project at all stages from conception

to completion. While there are a number of tools available to help with SCM, the

Department of Trade and Industry STARTS guide [DTI 87] has a list of thirteen

functional requirements that suitable tools would implement, and as yet none of the

available tools meet all the requirements.

40

Chapter 2

Section 2.3: Development Systems.

In general terms, we can define a Development System as being any procedure

or technique which is concerned with the successful construction of a (possibly large)

system. For our purposes in discussing computer-based information systems, we can

further require that the produced system will involve the use of information and

computer technology as major components. The process involves detailed analysis of

the task or tasks to be carried out, and this in turn requires that the problem be broken

down into clearly defined components, as described above in section 2.2. Quality

control is important to ensure that a task specification is being met, and further that

task execution is performed to the required standard.

One of the main ways in which the quality and accuracy can be (theoretically)

improved is by the use of Software Engineering techniques, in conjunction with other

tools such as program generators and ‘Integrated Project Support Environments’

(IPSE’s). In this section, we will examine how these tools fit into the task

environment, but as yet do not always integrate fully with each other or lower level

tools. The purpose of this discussion is directed more towards the end goal of

identifying issues that affect the design and specification of an enhanced information

system architecture, although the consideration itself also helps with the development

of a prototype system.

Section 2.3.1: Software Engineering.

In 1972, Terry Baker wrote a major article discussing the so-called ‘software

crisis’, in which he brought together ideas on structured programming, top-down design

and implementation, the chief programmer, the chief programmer team, and the

documentation librarian [Baker 72]. This article provoked considerable research work

on systems analysis, design and construction, and which has subsequently become

identified as the area of Software Engineering. The topic has various definitions and

meanings depending on the author being read, but generally the emphasis is upon

promoting a discipline for the production of complex (and not-so-complex) software.

41

Chapter 2

Software engineering takes the form of the appropriate use of a variety of

techniques for dealing with software as a product that requires engineering quality

precision. This means developing systems with regard to software specification, design,

implementation, testing and maintenance. Concentrating on specific areas in a

methodical manner should hopefully produce a much better development environment,

and thus begin to ease the difficulties of developing a powerful system.

Despite its age. Software Engineering is still referred to as ‘emergent’ or ‘new’.

This is because although it has undoubted benefits, the techniques are not always

sufficient in themselves to guarantee the successful conclusion of a development

project. For example, there are still significant areas of influence which necessarily

fall outside the software engineer’s control. Such external aspects which are relevant

include training, parallel hardware development, individual module and integration

testing, as well as the very important matter of customer acceptance.

Despite certain limitations, there seems to be general agreement that a

methodical approach to system development is preferable to a haphazard attack on the

problems. Hence there is a very real need to learn from the benefits of Software

Engineering principles, and to apply them in other applications, such as the design of

user interfaces.

Evidence for this is observed in a number of references, including [Tagg 87].

In this reference, the author showed that Software Engineering approaches emphasise

the System as being the object of central concern. But given that the user may be

carrying out a number of tasks within a given environment, it is perhaps more

important to consider the user as being at the centre of a number of systems. As Tagg

points out:

‘[by adding the systems together] into a set of unified facilities for the

end user ... he can use all of the computer services from a single

workstation in a consistent way’.

42

Chapter 2

Most texts on Software Engineering ultimately emphasise the ‘waterfall’ model

for development, which has five basic phases often called the Software Lifecycle:

1) Specification.

2) Design.

3) Implementation.

4) Testing.

5) Maintenance.

Within each of these phases, a number of techniques, systems, methodologies

or frameworks may be available. Some of them address more than one phase - with

a corresponding danger of insufficient attention being given to the detailed or subtle

problems possible at each stage - while other systems provide an in-depth philosophy

for working in specific phases such as testing. Furthermore, many of the techniques

tend to emphasise the earlier stages of the lifecycle. This is because, regardless of how

well a program is structured and coded, it should be the result of the earlier design and

specification phases, and so any errors or inefficiencies incorporated in those phases

will reappear throughout the whole system. Some authors have carried out work which

suggests that as much as 46% of the entire development effort is expended in the

initial design and specification stages [Boehm 75]. That problems do occur later is

made possible because of the inadequacies and imprecision of ‘natural language’ design

techniques, and may even be inevitable given the dynamic and complex environments

which are typical of large-scale software development activities.

As decisions are made with regard to the design of the software, there is a

certain obligation to justify or prove the reason for each of those decisions. Some

automated methodologies allow for the recording of each of the steps taken during the

design and construction phases, and this data can assist with the evaluation, but again

the difficulty is in the expression of this material [Maddison 83]. Work is being done

in the development of frameworks [Coleman 88] that support the recording of

development ‘history’, at the same time as reducing the danger of flooding the designer

with too much or irrelevant background; and all while avoiding reliance upon specific

Software Engineering methodologies.

43

Chapter 2

The use of such a framework aids the communication and comprehension of

design decisions relating to structure, component functionality, data representation and

choice of (software) component implementations. However, the emphasis is still

primarily upon the software issues, with reduced consideration of the user or hardware

requirements or limitations. Even more notable is the absence from certain systems of

any incorporation of systems behaviour principles, a particularly interesting omission

in view of the possibility of behaviour contributing to the limitations of systems.

Generally, software design methodologies make use of a variety of graphical

notations and regulations concerning the permitted or preferable design representations.

A summary of these techniques appears in [Peters 80], but the existence of a large

number of such techniques is evidenced by a survey in Holland which identified at

least 24 techniques [Blank 83]. Perhaps the most well-known works on this area

include deMarco [deMarco 78] and Gane and S arson [Gane 79], with other important

techniques including Yourdon’s ‘Structured Design’ [Constantine 79], the Ministry of

Defence ‘Mascot’ [MASCOT 83], and Jackson’s JSP and JSD systems [Jackson 75 and

Jackson 83].

Section 2.3.2: SSADM

One particular method of relevance and importance in Great Britain is the

Government approved standard system, SSADM (Structured Systems Analysis and

Design Method) [NCC 86 & Downs 88]. Its derivation is from the work of Learmouth

and Burchett Management Systems (LBMS), who worked in cooperation with the UK

government’s Central Computer and Telecommunications Agency (CCTA). The

requirement was that the methodology should be self-checking, use tried-and-tested

techniques, be configurable to user needs, and simple to teach. The LBMS

methodology was finally accepted in January 1981, and subsequently became a requisite

for all government projects in early 1983. SSADM determines how a systems

development venture can be governed, but with the potential for reconfiguration

according to localised demands. The basic method is to reduce a project down into

phases, which are subdivided into stages. Each stage is further divided into steps,

which have a list of tasks, inputs and outputs.

44

Chapter 2

Section 2.3.3: C.A.S.E.

A logical development of Software Engineering is to use computers themselves

to assist in the coordination and presentation of the (often large) quantities of data

being manipulated. A simplistic but workable definition of Computer Aided Software

Engineering (C.A.S.E.) states that [Sommerville 89]:

‘Computer Aided Software Engineering is the term used to refer to the

support of the software engineer using software tools.’

C.A.S.E. is of particular importance when the objective ultimately or partly

requires the production of a computer system. This is because much of the material

will already be present within a computer, whereas most of the tools described in

section 2.3 do not require that the end result of their usage must always be the

production of a computer system, nor do they necessarily require a computer in order

to operate. The specific problems that C.A.S.E. is supposed to target concern the

design and generation of computer software.

As the power and memory capacity of computer hardware has improved, the

complexity of software has similarly increased. Yet the task of software design is one

that has largely remained disorganised, resource intensive and tediously slow. There

have been several well-publicised examples of development projects that have failed to

meet deadlines, including Lotus 1-2-3 version 3, which was finally released

approximately two years behind schedule. The problem is that as the complexity of

the project increases, so the requirements for development tools and good

communication procedures increase. It is to problems of this nature that C.A.S.E. tools

are addressed, but so far with limited success. Although C.A.S.E. tools have helped

in certain specific areas, benefits can be quickly lost through trying to integrate the

results with the remaining issues which are not within the scope of C.A.S.E..

Accordingly, the need for integration is increasingly quoted as a major thrust of

development of such tools, ranging from considering the small scale concerns of

individual stages within the development lifecycle, through to the full scale Integrated

Project Support Environment.

45

Chapter 2

A report on C.A.S.E. technology and its market and current products was issued

by the research group Ovum in 1987 [Ovum 87]. The report defines C.A.S.E. products

as falling into three categories. The first and highest level category is the true

C.A.S.E. tool, or the closely-connected concept of the Integrated Project Support

Environment, which is discussed in more detail in section 2.3.3. The second category

or middle level consists of ‘Analyst Workbenches’, which are tools for specific analysis

and design problems. A set of definitions in a data dictionary and an underlying

design database are used in conjunction with presentation software to allow the

developer to experiment with system diagrams. The third and lowest layer category

comprises automatic code generators and Fourth Generation Languages (4GL). These

tools generate most of the code required for an application by building upon some

basic components such as database access modules. The remainder of the code is

constructed out of the specification prepared by a programmer or systems analyst.

The Ovum report pointed out that in general, products developed for use within

the latter two categories tended to be more effective when companies specialising in

the categories collaborated with each other, rather than by attempting to develop

techniques already perfected elsewhere. As an indication of this, the research report

found signs of an increasing move towards integration or cooperation between analysis

tools and design tools.

However, a more recent report on C.A.S.E. tools included in [Grindley 89]

suggests that IT managers remain unconvinced of the value of such tools. Although

they have been presented as the solution to system development retardation, 41% of all

IT managers still have no plans to implement them. Of the 32% of IT managers who

have used them, one in five subsequently rejected C.A.S.E. tools because of poor cost

justification. According to this report, emphasis seems to be moving away from

meeting project deadlines, and more towards integrating IT within corporate strategy.

Currently, the most popular C.A.S.E. tools seem to be Information Engineering

Workbench, from Knowledgeware; Foundation, from Arthur Andersen; Maestro from

46

Chapter 2

Softlab; and Case*, from Oracle*. However, IBM has recently announced its C.A.S.E.

tool, called the IBM Application Development/Cycle. The key components of

AD/Cycle are an integrated set of analysis, design and production tools based around

a single application development control point called the Repository. This enables

groups working on different parts of a development to share and exchange project

information.

Section 2.3.4: I.P.S.E.

Integrated Project Support Environments (IPSE’s) are usually multi-user systems

that are aimed at managing software development projects that require large groups of

analysts and programmers. They are derivatives of the need for an integrated set of

C.A.S.E. tools, and seek to control every stage of the system development lifecycle

with a major objective of supporting the development team in all the necessary work.

The support is provided in part by maintaining a database of interdependent objects

such as program modules and related documentation. Programmers are kept aware of

latest versions of code for which their own work has some sort of connection.

Any modifications to documentation (such as changing a single data name)

might normally take a long time and introduce potential problems of consistency. An

IPSE would provide a cross-referencing facility to speed required changes with

complete accuracy. Furthermore, the documentation can be automatically prepared to

conform with the project standards by referencing a standard library which is defined

at the start of a project. An IPSE might also be used for configuring the various

program modules to form a complete application system, and this is a process called

configuration management.

Section 2.3.5: Analvsis and Design Tools.

Structured Analysis and Design methodologies typically use diagrams to show

the relationships between the entities of the application, the processes manipulating the

8: It is interesting to note that Case* stands for Computer Aided Systems Engineering,

47

Chapter 2

entities, and the flow of data between the processes. The validity of the resulting data

model is judged by its ability to present the constraints or characteristics of the data

needed. Coordinating the large amount of material produced by such methodologies

requires a lot of effort in order to avoid problems of inaccuracies or inconsistency,

particularly if the methodology is paper-based. Furthermore, it can be tempting to

‘short-cut* the rules of a methodology, and this is even more tempting if mistakes have

to be corrected later in the project.

However, personal computers allow the use of methodology packages (often

called Workbenches) which replace the paper documentation with screen-and

mouse-based manipulation tools. A difficulty arises with regard to the level of the

workbench, in other words whether it merely offers diagramming tools for the data

model construction, or whether the workbench can actually model all the required

features. Certain facts cannot be represented meaningfully using a diagram, such as

definitions or user responsibility.

‘In order to be effective, ... (a) workbench needs to support both the

diagrams and a background dictionary, or encyclopedia. Furthermore,

there must be tight integration between the two. For example, when an

entity is created using the diagrams, an entry should automatically be

created in the background dictionary ready to be filled in with additional

details - its abbreviated name, its definition, volume figures and so on.

Ideally, the analyst should be able to swap from diagrams to

encyclopedia during dialogue with the computer.’[Pearce 89]

Most workbenches are American in origin. An example is the Excelerator

system^, which includes a graphics facility for developing and updating system

diagrams, and a dictionary for storing and cross-referencing design data.

9; Excelerator is a trademark of Index Technology,

48

Chapter 2

Section 2.3.6: Code Generators and Fourth Generation Languages.

The main difference between automatic code generators and fourth generation

languages (4GL) is that the former produces code for a third generation language which

can be compiled, while the latter produces code which needs to be interpreted and is

often less efficient. Another important difference is that the 4GL tools tend to be

suitable for end-users, while code generators are orientated more towards the

professional developer.

An example of a code generator package is the Application Productivity Systems

Development Centre, which can run under DOS on a PC or on IBM mainframe

computers running MVS or VM. As well as providing code generation facilities, it

supports prototyping and the design of software modules. It includes a facility which

enables the programmer to write code in a high-level language similar to COBOL, and

this can then be automatically translated into genuine COBOL source code for CICS,

IMS, DB2 and VS AM environments on IBM mainframes. Database code and common

functions can be included by use of a macro facility. However, it does not handle the

early stages in the logical design of a project, and so is intended to work with rather

than replace the analysis and design tools.

Section 2.3.7: ISDOS.

The ISDOS system (Information System Design and Optimisation System)

described in [Teichroew 77] was a system intended to aid information system

development by establishing an automation process for taking user requirements

(specified using a Problem Statement Language - PSL) and analysing the statements

(using a Problem Statement Analyser - PSA) in order to produce a set of documents

which includes the system analysts’ formal specification. An optimiser was included

in order to make generated code as efficient as possible. The aim of incorporating all

aspects of systems work into a complete automated package proved over-ambitious.

49

Chapter 2

Section 2.4: Data Handling Systems.

Data Handling Systems are specifically intended to work with particular kinds

of data and produce a specific end result. In the majority of systems, they work

explicitly under the guidance of the end user, who then has a larger amount of work

to do in order to obtain the desired result. For our purposes, we consider two

categories of Data Handling Systems: Standard Text Description systems, and the more

recently defined Graphic Presentation Systems.

Section 2.4.1: Standard Text Description Systems.

In order to provide a greater degree of flexibility, while maintaining a minimal

requirement for learning new systems, standard text description systems (STD’s) work

with a minimal amount of user support, relying instead upon the user being familiar

with the main utilities provided on their system, specifically the text editor. This is

then used to create files which have data and commands interspersed but distinct. This

file is treated just the same as any ordinary file by the user’s system, but once

completed, it can then be processed by the STD.

Typical of these systems are the more dated text processing systems such as the

UNIX based ‘n r o f f ’ or the more widely implemented TgX. Here, no real attempt

is made to provide the user with a friendly presentation - instead, the user is expected

to become familiar with the commands necessary to achieve the desired result. This

has the advantage that each of the programs (editor and formatter) can be made distinct

and so learned separately, but at the same time it reduces any possibility of integration

of operation.

However, in order to give the system more capability, the complexity and range

of commands increases to the point where it becomes difficult for a user to construct

the desired document. It is then necessary to use a front-end package to help with the

constmction of the underlying document structure, and this approach has been used to

enable the development of more flexible systems.

50

Chapter 2

These systems include the Office Document Architecture (ODA) which goes to

considerable lengths to define not only the structure of the commands possible within

a conforming document, but also describes the actual structure of the document itself

by providing amongst other things ‘the definition of an abstract document model for

presentation of office documents’ which will ‘facilitate the interchange of office

documents’ [ECMA 85]. ODA further provides for the definition of character and

photographic content, but in order for this to be achieved the actual command and

control information contained within an ODA-conformant document is considerable.

[Brown 89] gives a good summary of ODA as a hierarchical and object-orientated

model, where objects represent components of the document and attributes provide

information about the objects.

A more recent but similar system is the Standard Generalised Markup Language

(SGML). This is an International Standards Organisation (ISO) Draft International

Standard [ISO SGML] for text processing, which is designed to enable authors to

‘mark up’ their documents on the basis of their logical structure rather than their final

appearance. Abstract names, such as section and heading are used rather than specific

formatting commands; since they can then be translated by the appropriate output

device using a driver package that ‘understands’ the construction of an SGML

document. This is clearly of benefit to any system working within an information

environment, since it facilitates data exchange, although with limitations as to the range

of data types which may be incorporated. [Brown 89] points out that, unlike ODA,

SGML is a generic markup language rather than an object-orientated document

description:

‘This means that an SGML document, at its simplest, is a string of

characters consisting of the text of the document interspersed with

markup commands to identify the start and end of each logical item.’

By contrast, ODA documents have their structure description separated logically

from the content of the document. With the latter systems, the greater flexibility

naturally improves the potential for better quality documents, but the extra control

information required means that it is entirely possible that the amount of markup

51

Chapter 2

descriptions for the document may actually exceed the quantity of material that forms

the body of the text or diagrams.

Section 2.4.1.1: TgX

The TgX [Knuth 86] system was developed by Professor Donald Knuth to deal

with the problem of handling scientific and mathematical material. The coding scheme

is public property, but its complexity is such that a dedicated package is required to

use it, as an ordinary text editor would not be sufficient. Implementations are available

on a variety of computers, including UNIX and the IBM PC machines. Its advantages

encompass powerful text handling with minimal system requirements, and also

portability across heterogeneous computer systems. As well as formatting equations,

it is possible for authors to design their own fonts.

Section 2.4.2: Graphic Presentation Svstems.

The variety of document production systems has helped increase the speed with

which documents can be constructed, as well as greatly improving the possibilities for

their appearance. Many of these documents have a basic objective of providing

information to the reader, perhaps in the form of a company report document.

However, once the document has been prepared, it is a common requirement to be able

to present the material in a summarised form to an audience who can then read the

detail of the actual report at their leisure. The typical circumstance of this would be

the so-called ‘Executive Summary and Presentation’. Accordingly there is a need for

an information environment tool which can manipulate the same set of data in a variety

of fashions, establishing one which is suitable for the specific needs of a given

application.

Undoubtedly, a major factor influencing the success of such a presentation is the

visual impact. Given that much of the data will be stored and prepared beforehand,

and subsequently manipulated, probably using the same machine, it would make sense

to use the preparation machine as a multi-purpose tool for constructing the visual

presentation as well. Furthermore, the process of turning data into a satisfactory visual

52

Chapter 2

depiction would remain under the control of the data originators, and so is less likely

to suffer from inaccuracies that could be introduced through misunderstanding.

Until approximately ten years ago, the only computers that could give reasonable

visual presentation were the larger and more expensive dedicated workstations. The

arrival of the desk top personal computer brought the promise of cheaper alternatives

for graphics which are now being realised. The early personal computers had the

capability to construct monochrome slides by printing graphic information onto

overhead transparencies using a high-quality printer, but the problem of colour depiction

was a major obstacle until the arrival of the cheaper-cost, high-performance graphic

standards such as IBM’s EGA (Enhanced Graphics Adaptor) and the more recent VGA

(Video Graphics Array). These improved displays - and similar technology on other

computers - provide the facility to construct clear and appealing displays which can be

photographed and then projected for an audience.

However, there are few packages which allow for the appropriate configuration

of all possible peripheral devices. This limits the ways in which computer systems can

be configured. In other words, although a computer may be operational in the same

room as a slide projector, a video unit, and a sound reproduction system (voice or

music); there is no straightforward way in which the computer can be connected to all

of the devices at the same time in a sensible and flexible fashion. A number of

packages are directed to using a host computer to control a specific peripheral, such

as an overhead projection system - a good example being the ‘StoryBoard’ program

from IBM^°. This allows the user to construct a series of story ‘frames’, which can

then be projected for an audience.

There seems to be a clear requirement for developing systems that can use the

computer host as a controlling mechanism, rather than centralising the processing tasks.

Only then will it be possible to develop more flexible multimedia systems, as these

normally require fast and dedicated processing of the varied media types. As an

example of the problem, some packages provide basic visual presentation facilities

10: Storyboard is a trademark of IBM Corp.

53

Chapter 2

already, such as Lotus 1-2-3. But in most cases the options available for the

construction of the display are severely limited. An alternative would be ‘professional’

style graphic or art packages controlling dedicated graphics processors, but many users

do not require the sometimes daunting range of options available in these systems, nor

do they have the time to experiment with the package.

Accordingly, the need seems to be not just for painting or drawing programs,

but instead for packages which understand the various kinds of data that users wish to

present; and which provide a range of tools for constructing a visual presentation using

the data with various peripheral devices. This also means that, for example, when

charting information, a sensible set of defaults should be used in the construction of

the image, and each of the components of the image can be easily identified and

altered according to need and for maximum visual appeal within the context of the

presentation device.

Section 2.5: Idea Processors.

When developing material, it is often recommended to have a working plan of

how the content will be organised for presentation. The three basic components of the

structure are of course Introduction, Main, and Summary/Conclusion, and within this

general organisation, there can be many sub components, each requiring careful thought

in order to ensure that they fit neatly within the overall plan of the material. The use

of computers for document construction through word-processing helps to speed up the

construction process, but this same increase in speed also implies that the structure of

a document can rapidly change and become confused.

An Idea Processor is simply defined as a package that helps organise blocks of

information - typically text [Hershey 85]. They closely resemble word-processors in

that they will often incorporate text editing facilities, but the emphasis is on the

positioning of material within the structure of the document, rather than upon its visual

appearance or content. Idea Processors tend to come in two basic forms: the indexing

system and the outline organiser. The former work by helping with the management

54

Chapter 2

of large quantities of data which need to be arranged into some sort of structure before

the main document construction begins. Outline organisers, on the other hand, work

in a ‘top-down’ style to represent each of the blocks of information within the

document [Foster 74]. The user should then be able to enter indiscriminate data from

a variety of sources (thoughts, plans, ideas, etc.) which can supposedly be organised

into the hierarchical structure offered by the Processor.

For most systems, there seems to be little consideration given to the way in

which data might need to be modified in order to fit the structure imposed by the Idea

Processor. Often, the ideas must be broken down or rearranged to fit the enforced

hierarchical structure. There are, however, certain categories of data do not fit neatly

into a hierarchical structure of any form, such as images or pictures.

However, once data has been entered into the Idea Processor, it can be reviewed

in a variety of ways. The data blocks can be labelled with titles or headings, and can

be relocated within the document structure to experiment with improvements in the

style. Minimising the amount of information on display, with the aim of reducing

confusion can be done by ‘collapsing’ the various blocks of data to show only their

headings. This means that the structure of the data should be much more easily

determined. Examples of Idea Processors include Brainstorm", ThinkTank", and

PC-Outline^^.

More recently, products have been released which combine the structuring

objectives of Idea Processors with more detailed data base concepts and

indexing/cross-referencing facilities to provide much more comprehensive capabilities.

These are called Personal Information Managers (PIM) and are intended to do for

textual material what spreadsheets and databases have done for numbers and

relationships: to allow users to enter, retrieve, analyse and cross-reference potentially

arbitrary pieces of data at will.

11: Brainstorm is a trademark of Caxton,

12: ThinkTank is a trademark of Living Videotext.

13: PC-Outline is a trademark of Brown Bag Software.

55

Chapter 2

A typical design goal of the PIM packages is to help you access data in an

orderly fashion, and further to help identify relationships that might not otherwise be

noticed. Two major PIM products in this category are Grandview '̂*, and Agenda^^.

The former package is directed slightly more towards an outlining style, while the latter

package is based more upon a database cross-referencing facility.

Section 2.6: Data Flow Control.

In the micro computer world, the main operating systems are DOS, which is

fundamentally a single-user, single-tasking operating system; and the Apple Macintosh

Operating System (although UNIX and OS/2 are also contenders). The latter system

was designed from the outset to incorporate strategies to facilitate data exchange

between applications, and at the launch of the Macintosh computer, a number of tools

were provided that - amongst other things - enabled the user to ‘cut-and-paste’ data

between different packages.

When the Microsoft Corporation announced the ‘Windows’ graphics environment

for the IBM-compatible PC, the intended strategy was to provide a facility whereby

limited multi-tasking in the PC environment would be enabled, and also to support data

exchange between programs. This is achieved in part by allowing applications running

under the windows system to exchange data in an agreed form, called Dynamic Data

Exchange (DDE) [Schifreen 88]. This is a protocol providing for the exchange of

data between applications mnning under Windows. It works because Windows is

essentially a message-passing operating system. This means that any event which

occurs within the system - such as a key-press or mouse movement - causes a message

to be generated. This message describes what happened, why, which application was

involved, and various other information. A ‘well-behaved’ application running under

Windows simply reacts to the messages that it receives. Messages can be generated

by other applications, as well as the Windows kernel itself. It is quite permissible for

14: Grandview is a trademark of Symantec.

15: Agenda is a trademaik of Lotus Development Corporation.

56

Chapter 2

an application to send itself messages in order to invoke additional functions.

Messages can be sent to other applications, and these messages form the basis of the

DDE concept.

A number of data exchange formats are understood by applications supporting

DDE. Some of these are specific to PC applications, including Lotus 1-2-3, but others

are more general. Amongst the general formats are:

1) Plain ASCII text, with a standard Line-Feed Carriage-Retum

sequence to delimit each line.

2) Bit image data in the form of a series of binary information

representing blocks of pixels.

3) A metafile, which is similar to a P o st S c r ipt file in that it consists

of a series of instructions which describe the way the object

should appear.

4) A comma-separated variable format, where each record is

separated by comma, allowing the record to be of variable rather

than fixed length. If the length were to be fixed, then padding

or truncation might be necessary.

The format for interchange of information among remote heterogeneous

components is a much more complex issue. However, there are a number of standards

which are directed towards this problem, including ODA (Office Document

Architecture), which is the ISO standard for a logical document structure used

primarily for information interchange [ISO 84].

57

Chapter 2

Section 2.7: Discussion of Current Svstems.

The examples of current systems can be summarised as follows: The

management systems attempt to analyse a problem. The development systems are

aimed at a similar objective, but are concerned more with the coordination of resources

used for solving problems, and specifying the use of applications and packages at a

lower level. In effect, they produce a more formal specification of the problem. The

Software Engineering systems - C.A.S.E. tools and I.P.S.E. workbenches - all highlight

the problems of coordinating information handling, even within the specific

environment of software development.

The difficulty is that at most of the stages, any given system works to produce

a specific result, at which point its work may be considered complete. However, in

some cases, the results may be applied to other (possibly lower level) systems, but the

results may not always be sufficient, adequate, or even in the correct form for the

lower level application. In other words, the higher level or administrative systems

produce results that may be of use only within a limited scope. Typical of the

high-level results would be a detailed diagram showing how resources and tasks

inter-relate in order to achieve the desired corporate objectives. Yet the diagrams

cannot be used by other systems outside the original generation package, they must

first be understood by a human user, who then uses the knowledge to instruct the

lower-level systems. In a similar way, the middle-level systems such as the Analysis

and Design packages produce specifications which may well reflect the desired tasks,

and yet only 25 to 30 percent of specifications generated by these systems are actually

used and submitted to the lower level program specifiers or application generators

[Gibson 89]. Thus, despite the apparent advantages of using C.A.S.E. and similar

tools, there would seem to be limitations regarding the actual exportation and

applicability of the results obtained from the higher- and middle-level layers.

The categories of current systems described are important, because they are each

closely involved with providing for the handling of data in some fashion. These

approaches to the manipulation of data leads to two important observations that are

pertinent to the development of an enhanced architecture:

58

Chapter 2

1) It may be necessary to design a better information handling

architecture that offers more supportive and valuable information

processing.

2) That powerful data handling on its own may not be sufficient for

an enhanced information system architecture; there could be

additional requirements for incorporating higher-level ‘abstract’

issues relevant to the processing of data, such as administration,

control; and identification and support for data relationships and

attributes.

Both of these observations form the substance for exploration in section 5.3 of

this thesis, as an exploratory architecture for enhancing information systems - and the

information environment derivative - are discussed. In order to develop an architecture,

it is considered vital to review the work that has been carried out to date, in order to

assess what has been learnt. Without this review, there is a danger that errors or

misconceptions introduced during the development of the other systems may not be

recognised and removed, resulting in less reliable systems of reduced benefit.

59

Chapter 3.

Current Research.

Section 3.1: Overview of Current Research.

The research areas considered here do not necessarily have the primary

background of trying to address the topic of general information systems. However,

in their direction and treatment of subjects, they provide evidence in the form of many

pointers identifying the components contributing to information handling. When

grouped together, the clues suggest reasons why an Information Environment is

desirable and how it might be designed. Further, this leads to the suggested

requirement for a suitable generator package to be specified.

As indicated previously, a major factor in an information system is the vital

contribution of each user as part of the working environment. In order to function

more effectively, the user must be presented with as much data as is minimally desired

for information transfer to be successfully accomplished, and for adequate - as defined

by the user - interaction to be facilitated. In order to make this feasible, the maximum

possible range of data types and presentation styles must be supportable within the

environment. The presentation styles used must necessarily reflect the data and data

relationships, and since the user directly influences these aspects, the user’s activities

and preferences must be taken into account.

Accordingly, we must examine the general nature of information system

methodologies, before moving on to consider those areas of current research work

which are specifically directed towards the handling of many data types and

relationships, as well as the corresponding variety of methods used for the presentation

of the work: multimedia and hypertext systems.

Multimedia systems address the problems of handling potentially large groups

of data which are formed from a number of varying media types. This objective

60

Chapter 3

introduces significant difficulties, not just for the real-time manipulation of data, but

also regarding the establishment of suitable mechanisms for the communication and

presentation of the data.

By way of contrast, in hypertext systems a structure is already imposed on the

data. Text fragments are embedded in a directed graph with labelled edges and

reference mechanisms are supported, allowing the user to traverse those edges,

hypertext system user-interfaces are built using state-of-the-art technology such as high

resolution graphic displays, sophisticated pointing devices, and Icons for command

options. However, these systems typically lack a database-derived content query

facility. Elementary string search facilities may be supported.

Following these two major research areas, we briefly appraise more general

research components, before looking at the architecture of computer systems with a

view to seeing how the techniques of information handling are currently being

facilitated.

The conclusions gained from considering these research areas will lead to a

better understanding of the derivation of the components of the Information

Environment concept and its benefits to information system users. However, we must

begin by considering the nature of methodologies which may be used for developing

and organising information systems.

Fitzgerald et al [Fitzgerald 85] carried out a survey analysing the features of

contemporary information system methodologies, describing a framework for the

evaluation and comparison of such methodologies, and using it to analyse seven

examples. They considered the background, philosophy, assumptions, scope and skills

required, as weU as considering the analysis and design phases of each.

They emphasised that the methodologies were intended for use during the

development of an information system, and consequently focus upon such problems as

delivery failures, poor resource usage or maintainability, and failures to meet overall

objectives. Many methodologies solve large and complex problems by breaking them

61

Chapter 3

down into smaller, more manageable units, which could be tasks, problem areas, or

even simpler but complete information sub-systems. As a result, the methodologies

that Fitzgerald et al considered have a close relationship with the various phases of the

software development cycle. In practice, the analysis performed by the studied

methodologies was directed more towards the early development stages, particularly

those of problem analysis and logical design.

The analysis of the methodologies was broken down into five categories:

1) The scope of the methodology, to establish which system

development phases it dealt with.

2) The objectives and deliverables that would be achieved or

obtained through the use of the methodology.

3) The philosophy underlying the methodology.

4) The explicit and implicit assumptions made by the authors of the

methodology.

5) The hardware and software support (if any) for the methodology.

The Fitzgerald paper concluded that methodologies appear to be enlarging the

scope of activities covered, and that organisations would increasingly use them as a

standard for information system development. While welcoming such a trend, the

authors pointed out that:

‘there is still a long way to go to make it effective. We do not foresee

any one methodology becoming dominant in the immediate future, and

we expect more organisations to take one of the many methodologies

available and tailor it by use to their particular needs and preferences.’

62

Chapter 3

Many of the methodologies made certain assumptions, including the implicit

requirement that information can be modelled, that models used by the methodologies

for their tasks are adequate, and that extrapolation of those models is meaningful and

‘easy’. Fitzgerald et al felt that there was:

‘a need for more empirical studies to examine how methodologies are

used in practice and to determine how effective they are.’

In another paper, Galliers and Land [Galliers 87] consider it important to extend

the viewpoint used to study Information Systems, in order to incorporate:

‘behavioral and organisational considerations’.

This is explained by a wish:

‘to improve the effectiveness of Information System implementation in

organisations and to assess that impact on individuals or organisations.’

Galliers and Land point out that if the research work carried out in ‘the real

world’ has little applicability, then there is no relevance to carrying out the work itself.

Accordingly, the research must take into account the nature of the subject and the

complexity of the real world. These issues are of course fundamental to all kinds of

research, not limited to Information Systems study, but nevertheless they highlight the

importance of using the correct approach in our efforts.

In the research described in this thesis, we are interested in the modelling of

information, such that a model used for a particular information handling activity

should be as effective as possible. In order to understand this, we must examine the

current techniques for simple to complex data handling, before considering the use of

structures for larger-scale modelling of data groups.

63

Chapter 3

Section 3.2: Multimedia Systems.

Where potentially large quantities of possibly widely varying data types are to

be bandied as a whole, then there is the requirement for correspondingly complex data

handlers. A typical approach to these issues is categorised under the area of

multimedia Systems. Generally, research involving multimedia systems falls under the

wider category of study into multimedia communications, and is defined [Aceves 85]

as that which:

‘refers to the representation and dissemination of machine processable

information expressed in multiple media.’

This means that with the increasing power of appropriate technology, the

familiar tasks of data collection, processing and distribution have now become

increasingly dependent upon computers. In fact, computers are considered as an

essential tool which must be used for these processing tasks. As Aceves et al point

out, the use of improved computer technology:

‘...will permit user applications that require [simultaneous] processing and

distribution of information in several media, including alphanumeric data,

text, voice, computer graphics, and images.’

In fact, for reasons in section 7.2, it seems reasonable to suggest that this list

should also include less obvious data types, such as environmental and attribute data,

for example temperature or brightness.

Since computer systems are often considered to be a prerequisite for there to

be any hope of achieving successful multimedia document systems, a natural trend of

the current research is towards using the computer system to assist actively in all

aspects of the data collation, manipulation and presentation. This idea has been

proposed in [Negroponte 76], with the suggestion - or caveat - that:

64

Chapter 3

‘electronic displays (should) adaptively display not only what materials

readers wish to see, but also how they would like it presented.’

The various features of current multimedia information systems can be evaluated

to help with the task of identifying the minimal facilities that must be supported in

order for the multimedia system to be classified as such, and in order for it to offer

the maximum benefit to users. The main requisite features concern the interconnection

of data; support for retrieval, editing and presentation; and maintaining historical

integrity.

The first of these topics concerns the establishing of links between (potentially)

related topics or ideas. Taken in conjunction with the problems of presentation and

‘location depiction’, the associated research area of hypertext systems is identified. A

great deal of importance is attached to the objective of associating varying data types,

and further being able to integrate them into a single conceptual document.

Establishing the mechanisms for control and presentation of multimedia data is

work of considerable interest to current researchers at present. A number of systems

have been designed which address this particular issue, taking into account the variety

of peripheral presentation devices that may (or may not!) be attached to the processing

host machine. In certain projects, specific control devices have been developed in

conjunction with work done by human-computer interaction specialists. A good

example of this is the small ‘piano-like’ keyboard used on the NLS/Augment system

described in section 3.3.

If presentation of the data and inter-connections is of clear importance, then the

mechanisms offered for modifying the data and the inter-connections must be at least

as versatile. The need for flexible editing tools is paramount in order to assist with

the rapid but (hopefully) improving status of a multimedia document. As data is

modified either by the user or by external events, so the structure used for organising

or categorising all the data within the multimedia system must also be updated. This

updating process continually poses the threat of a confused resultant data structure.

The matter is complicated by the fact that hierarchically organised tree structures are

65

Chapter 3

unable to represent plainly all the potential data relationships that may be required

during a given information processing task. The user’s editing tools cannot realistically

be permitted to focus exclusively on the single job of data modification, as this makes

no allowance for the effects of alterations upon the potentially complex data

interrelationships, and so data alteration alone is a coarse strategy that inevitably

promotes disorder by overlooking the context of the data. There is a need for the

implications of such modifications upon structure to be incorporated in the editing

tasks - and accordingly recognition of the data context must be facilitated.

The issues of retrieving relevant data from within a storage structure are studied

primarily by research into database concepts, but there is an additional and

wider-ranging research area of information browsing. This topic will be addressed in

more detail in section 3.5, but is concerned in part with incorporating techniques of

accessing the specific data from general data sets. The final problem of historical

integrity is considerable. On the one hand, it is desirable to ensure that a given

document be as up-to-date as possible, yet it is easy to envisage circumstances when

it is desirable or essential to recover previous or even original versions, or to ‘fix’ the

current version of the document so that it cannot be altered. Such requirements

inevitably influence the nature of the control and manipulation mechanisms.

Section 3.2.1: Example Svstems.

One project that emphasises the integration of multiple data types into a single

document object is the Diamond Multimedia Document system [Forsdick 82 &

Thomas 85], which is:

‘a computer-based system for creating, editing, transmitting, printing and

managing multimedia documents.’

Diamond works with five basic media types: Text, Graphics, Images, Voice and

Spreadsheets. Each of these exist as ‘objects’ in a Diamond document, and can be

thought of as having a ‘physical presence’ within the document - thus permitting a

variety of editing and manipulative operations [Diamond 85].

6 6

Chapter 3

The text and graphic data types are the familiar kinds, while the image, voice

and spreadsheet types require a little more explanation. An image object is a digitised

picture, a voice object is a digitised voice passage encoded by a vocoder, and a

spreadsheet is a conventional tabular array containing numbers, labels, dates and

formulae. When a voice object is to be depicted on a workstation that does not

support a voice object peripheral, a small icon (a loudspeaker) is used to indicate that

a voice object would appear at this point. The document author is able to associate

a small text caption with this icon, that describes the content of the spoken passage.

Despite the general success of the techniques used in the Diamond system, the

developers felt that there was still significant room for further work. Diamond

permitted the construction and exchange of some extremely complicated multimedia

messages, but:

‘...even with this greatly improved means for communication, there is still

an aspect of human communication missing because of the static nature

of documents: When interaction between two or more people over the

contents of a multimedia document must occur, the relatively long time

... needed to send a document and receive a reply impedes progress. It

soon becomes obvious that engaging in a real-time conference over

multimedia objects adds perhaps another important dimension to the

process of communicating.’ [Forsdick 85]

In other words, there is a clear requirement that data processing systems being

used for data communication (presentation) must take into account the continually

changing state of the real-world, and furthermore that the changes should be recognised

and incorporated in real-time.

As part of the work towards development of real-time multimedia systems,

attention must be paid towards the problem of storage of the data. A suitable system

must offer flexible document retrieval of potentially very large data groups, and almost

certainly there will be a need for the storage to function within a distributed

environment.

67

Chapter 3

One of the systems to address this area is the Muse filing system [Gibbs 87].

Its objectives include providing basic filing operations, a distributed architecture, very

large storage capacity, support for optical disk technology, content-based document

retrieval and standard encoding of document information. Muse works with the same

five basic data types as described for the Diamond system.

Of particular importance in the construction of Muse is the concept of the

‘document servers’. These are processes which provide basic filing and query

operations on documents - furthermore, servers can be added or removed without

affecting other servers. In order to achieve this capability, certain restrictions were

imposed upon the server’s operation:

‘the storage managed by one document server does not overlap that of

any other server; the storage managed by a particular document server

resides on a single network node (but a node may support more than one

server); and a server itself does not communicate with the other

document servers, so it need not be aware that they exist’.

While making implementation somewhat easier for the Muse system, such

limitations nevertheless have repercussions concerning the final flexibility of the overall

architecture. In order to control the operation of the servers, user requests have to be

communicated by the use of processes called ‘clients’. The clients encode all the

server requests and replies for communication through the server interface. This

interface is in fact the only common ground between server and client - the actual

execution of either the client or the server is of no relevance to the other. The

advantages of this client/server-based architecture are clear:

‘Performance appears to be adequate ... the modular design and the

separation of the clients from servers allow easy experimentation with the

system’.

The Pleiade System [Nanard 87] is intended to be a professional quality

document manipulation system, that interactively manipulates structured documents that

6 8

Chapter 3

include text, graphics, formulae, tables, and any kind of structured objects defined by

the user. It incorporates an integrated editor/formatter that offers a ‘nearly-WYSIWYG’

display on the screen. The architecture assumes a structured description of the

document, and utilises user-defined logical types to specify the formatting rules. Its

approach is primarily declarative (rule-based), although it uses an ‘iconic language’ and

object-orientated approach to operate directly on the visual entities depicted on the

screen.

The underlying structures for a document consist of three parts. The logical

structure in Pleiade:

.. is a set of independent trees, one per page area. Logical types

decorate [format] the nodes of the trees. The leaves of the trees are the

elementary components (tokens) of the document.’

This logical structure is used to express how the document components are

hierarchically ordered, and provides the framework on which the formatting rules are

applied. A page structure is used to represent the macroscopic geometrical aspect of

the page. Areas on the page are used as containers into which document data is

poured, similar to that employed by the Interscript system [Ayers 84]. Finally, a

geometric structure is ‘induced’ by the positional rules associated with logical

components, using the box model offered by Knuth [Knuth 79].

The system developers recognise the importance of the underlying document

structure with regard to the system, although they are aware that the abstractions

involved are perhaps more advanced than most users are currently acquainted with:

‘We take up the wager [sic] that abstractions such as structuration,

logical types and declarative approach can be accepted and used

efficiently by common users, as far as they will be presented in a user

friendly way.’

69

Chapter 3

However, they recognise that the Pleiade architecture is such that the structure

used for working with a document is a consequence of the operation of Pleiade, and

does not represent a model of the actual document itself.

Other multimedia systems include MINOS [Christodoulakis 86], which is an

object-orientated system; and CCWS, developed for military command and control

activities [Poggio 85].

Section 3.3: Hvpertext.

It is only in the last one or two years that hypertext systems have begun to

offer commercially successful real-world applications, despite the fact that their

conceptual origins date from the very earliest days of computers. Writing in 1945, the

author Vannevar Bush proposed an electronic system called Memex, which would have

resource control over unlimited amounts of data [Bush 45]. The idea was that it

should be able to find any piece of data almost instantly, and further that it should be

able to make connections to any other data item.

It was not until 1965 that Ted Nelson coined the term ‘hypertext’, subsequently

defining it as:

‘a combination of natural language text with the computer’s capacity for

interactive branching, or dynamic display ... of a nonlinear text ... which

cannot be printed conveniently on a conventional page.’ [Nelson 67]

In 1968 Douglas Engelbart [Engelbart 68] demonstrated a graphical workstation

system called NLS (oN Line System). This could change data context both between

documents and through different levels within the same document - thus depicting the

basics of hypertext operation. In order to achieve this functionality, NLS used a

hierarchical structure which allowed reference links to be established between levels

and between files.

70

Chapter 3

If multimedia research is directed towards the handling of varying data types

and their subsequent storage and retrieval, then research into hypertext (also known as

nonlinear text) is perhaps directed towards the representation and development of paths,

links and annotations for the body of data - albeit of limited type.

However, despite the considerable effort being directed at hypertext systems,

there is still a considerable paucity of applications that require and benefit from the use

of hypertext as an information processing architecture. A good overview of hypertext

systems appears in [Smith 88], while another more recent review of hypertext

technology is contained in [Ritchie 89]. Here, the author points out that in fact, the

use of non-linear stmctures such as that epitomising hypertext documents is not new.

For example:

‘Medical textbooks such as G ray 's Anatom y (first published in 1858) rely

heavily on cross-references including links between text and diagrams,

text and text, and diagrams and text.’

Hypertext systems are generally very straightforward - a requirement that is

justified by the desire to make the systems easy to use for the non-expert. Typically,

presentations on a screen are closely connected with the internal storage of data or

objects within a database. Links connecting the objects are provided as pointers within

the database itself, and sometimes depicted graphically on the screen to help the user

with control and selection tasks. Hypertext systems have therefore been described as

‘networks’, where nodes store the data, and links exist between the nodes. The

reasoning behind the concept is that not all data which forms information can be

represented or stored in traditional database architectures - for example large-scale text

storage of library material, where cross-referencing (but not word-by-word indexing) is

required. The linkages which can be established and used within a hypertext system

represent the more important aspects of the system, as it is these which facilitate the

nonlinear organisation and retrieval of material. The importance of links within

hypertext is strong evidence of the requirement to provide relationship as well as data

storage within a generalised information processing system.

71

Chapter 3

Many hypertext systems operate with the assumption that the blocks of material

to be displayed on the screen must have a one-to-one correspondence with the data

nodes stored in the internal system. This is perhaps one of the more notable

limitations on the implementation - and more importantly, visualisation - of hypertext

systems. Additionally, there is the possibility that the suggestive emphasis of the word

hvpertext might limit the ways in which a user perceives or visualises the possibilities

of working with the application.

The presentation of hypertext appears to have much in common with ordinary

Windowing systems, but the difference is in the relationship with the underlying

database - in fact, there is no requirement for any database in a genuine Windowing

system (perhaps illustrating why the use of windows with hypertext or as a description

of hypertext is misleading). This is because windowing systems have the primary goal

of partitioning and supporting tasks, and are not normally concerned with the data

being manipulated by the tasks. Similarly, existing database architectures on their own

are not really suitable to qualify as hypertext systems, since the latter requires

considerably more from the linking and user-interfacing facilities than is provided in

even the best of database implementation or interrogation architectures: typically the

database linkages will be based on inquiry using specific frames in rigid formats, and

user interaction is provided by rigidly defined text-orientated command lines. The

outline processors described in section 2.5 do not support any form of cross-referencing

between material - although more recent versions are moving towards this feature, and

hence become closer to implementing the hypertext concept.

A list of the main definitive features supported by a hypertext system could be

as follows [Conklin 87]:

1) A database with a network of textual (possibly graphical) nodes,

forming the hyperdocument.

2) Windows on the screen corresponding to nodes within the

database. Names or titles are always displayed, but only a limited

number of nodes (windows) are open at any one time.

72

Chapter 3

3) Standard windowing system operators are permitted, including

repositioning, sizing, and expansion from or reduction to icons.

4) Link icons are portrayed within the open window to show links

to other nodes within the database.

5) Additional nodes and links can be easily created by the user.

This may be to annotate, comment or elaborate.

6) Database interrogation can be by three methods:

a) Following links and opening the corresponding windows

for the located nodes.

b) Searching the network or a subset for a specific string.

c) Navigating the database using a browser that displays the

network in a graphical form.

This latter facility illustrates a major aspect of hypertext usage, in that the

nonlinear nature of the text, coupled with the on-screen representation of nodes, means

that it is surprisingly easy for the user to lose the ‘context’ of where they are within

the network. This problem is aggravated if the context changes as a result of indirect

commands, rather than at the explicit direction of the user.

An example of this might occur during a search operation, where the

appearance of the located item is the result of the user’s command. However, the

actual ‘jump’ of context in order to permit the item to be presented is an implied

side-effect that causes the user to lose track of the stages of context change.

Another example concerns the ‘Doomsday Project’, which combined CD-ROM

technology with a database of facts and figures about the United Kingdom. The

CD-ROM system can be used to depict appropriate images, but it is comparatively

easy to ‘get lost’ within the system, necessitating a back-tracking process to a known

‘meeting point’.

73

Chapter 3

The use of a browser or ‘graphical view finder’ should offer help by the

portrayal of the interconnections in the database, coupled with a display of the exact

route used to reach the current context. These finders could operate using principles

which have been well established by researchers investigating structure editors and

hierarchy editors [Allen 81, Furuta 89, Kimura 86 & Pitman 85].

However, all of the above description has been directed at the implementation

of hypertext systems, and it is important not to neglect the contribution of such

systems as a powerful mechanism for establishing and developing ideas. Traditional

recording mechanisms (such as pen and paper, or conventional text or word processors)

lead to ‘flat’ text.

This means that any exceptions to the linear flow of the idea have to be

indicated with artificial digression signs such as parentheses (like this) or footnotes’̂ .

A hypertext architecture, by contrast, not only provides for but encourages such literary

‘asides’ which are of equal priority and status. The ‘scattered’ nature of data using

networks supported by hypertext is thought by some researchers to be much closer to

the normal human mechanism for associating ideas and concepts, resulting in a much

more realistic and natural way of working.

Section 3.3.1: Example Svstems.

A limited form of a hypertext system is that of the BLEND Experimental

Electronic Journal Programme [Maude 85]. This project is less presentation-orientated

than most hypertext systems, and studies the user requirements for electronic journals.

The results are used to develop prototype software that incorporates the newly derived

features. The BLEND program functions through an ordinary computer monitor,

without assuming high-resolution graphics or even mouse control. As such, there are

limitations on both the quantity and range of material available on screen at any one

time.

16: Like this.

74

Chapter 3

Development of the system began with a study of the approaches used by

scientists to evaluate whether papers in journals were considered interesting to read.

Three main techniques were found, all of which were considered inappropriate for

ordinary linear display of text on computer monitors:

1) A filtering process, looking at the Title, Abstract,

Results/Conclusions, References and finally the main text.

2) A preliminary filter of Title and Abstract only, then a decision is

made as to whether the entire article is read.

3) Skimming through the entire article for new ideas without detailed

consideration of content.

With these techniques in mind, the BLEND system was specified which

structures text by splitting it into ‘entries’. These can be of any length, but are

normally restricted to single paragraphs or figures which can be depicted in their

entirety on a single screen page. For any given document being displayed, the reader

is allowed to step forwards or backwards through the text, or to jump to previously

marked or searched-for locations.

These facilities on their own would make BLEND little more than a

text-browsing system. Accordingly, the system has extensions to allow the addition

of comments relating to specific parts of a document. Every entry in a document can

have a comment ‘tied’ to it which may be read upon request. Furthermore, the

comments can be read independently of the paper itself, and in fact accessed in the

same manner as the paper.

Perhaps the most well-known hypertext system is the HyperCard system for the

Apple Macintosh computers. Although it is a commercial product, it remains the focus

of much research and experimentation in related fields. Its fame is primarily the result

of being easily available, since it is ‘bundled’ as standard with all Macintosh

computers. The official description of this package is:

75

Chapter 3

‘HyperCard is a personal tool kit that gives users the power to use,

customise, and create new information using ... text, graphics, video,

music and animation. In addition, it offers an easy-to-use English

language-based scripting language*' ̂ that gives users and opportunity to

write their own programs.’

Furthermore, the official policy from Apple is that HyperCard is intended for

use as system software, and as such it provides services for use within application

software, rather than being a complete turn-key or end-user system in its own right.

In practice, however, HyperCard exhibits many of the basic characteristics of a true

hypertext system, although it has certain limitations which make it less than a ‘pure’

implementation.

The user’s view of HyperCard is that of a collection of cards (342 pixels high,

and 512 pixels wide - the same size as the Macintosh screen), which can be grouped

into a file called a Stack. A single stack can hold theoretically 16 milhon objects, not

exceeding a total size of 0.5 GBytes. Cards can hold text and/or graphics, and

furthermore information can be shared between cards within the same stack. On a

card, text (up to 30,(X)0 characters) is stored in fields.

Actions can be implemented by the use of ‘button’ fields. Using the Macintosh

mouse to ‘click’ on a button causes a specific event to occur, depending on the

purpose of the button. The cards can also have a common background image (which

is shared between all cards in the stack), or individual images which belong to a single

card only. There are five basic levels of accessing a HyperCard stack:

1) Browsing: A limited set of menus are displayed, searching is

permitted, but data entry or modification is not.

2) Typing: New data can be entered, or existing data altered.

17: This language is called HyperTalk.

76

Chapter 3

3) Painting: Graphic images for cards can be created and edited.

4) Authoring: Buttons and fields can be created and altered.

'Hot keys' can be defined^*.

5) Scripting: HyperTalk scripts can be created or edited.

HyperTalk scripts work using events - when one occurs, the appropriate script

is executed. HyperTalk has aspects of a simple object-orientated language. Examples

of events include pressing certain keys, using the mouse, or even recognising the

inactivity of significant idle time. These events therefore cause messages, which search

through script code for the HyperCard objects (stacks, backgrounds, cards, buttons and

fields) until a code section is found that applies to the event. If no code can be

found, then a Macintosh dialogue box appears explaining that the command is not

understood.

Despite its ease of use, there are limitations on HyperCard which reflect its

differences from hypertext systems. For example, HyperCard has restricted database

facilities, with searching confined to short character strings. Perhaps more significant

is the fact that a HyperCard stack abandons the use of true windowing systems and

instead uses the entire screen̂ ®. Although it has a superficial similarity with Object-

Orientated systems, HyperCard lacks inheritance for the cards or stacks which are

defined, and the stacks themselves cannot be nested.

A major problem concerns the representation of location within the stack, and

HyperCard does not have any form of Graphical View Finder to help with either visual

portrayal of position (a fundamental requirement for hypertext), or to allow structure

editing (with dynamic updating). Finally, although the HyperTalk scripts allow a

reasonable level of control of the system, it is comparatively easy to identify

18: A Hot-Key is a ‘short-cut’ key sequence that allows a specific task to be invoked, without having
to follow a potentially extensive series of command options.

19: The SuperCard product from Silicon Valley Systems offers an extended form of HyperCard, which
uses true windows on a virtual screen.

77

Chapter 3

specifications which require the use of external commands, which must be implemented

using ordinary programming languages such as Pascal or C.

The Guide system [Brown 86 & Brown 87], developed at the University of

Kent and subsequently marketed by Office Workstations Ltd. of Edinburgh, is a tool

intended to allow readers to display and also tailor on-line electronic documents

according to their own reading needs. The goal was to produce a system that offered

on-line document interaction that complemented paper-based documents. Providing

continuous negative feedback, a simple and flexible user control mechanism, and

supporting a good user interface would mean that the workstation software would help

the reader work with the document.

Guide documents can incorporate glossary buttons. When activated, these cause

a glossary sub-window to appear during the document reading. The sub-window is

used for explaining jargon, for citations to books or people, or for footnotes.

The success of the Apple Macintosh HyperCard system provoked much research

into equivalent systems for the IBM PC machines, but the results so far seem to have

met with only limited success. An example of a hypertext system for the IBM

machines is HyperPAD^, which implements many of the HyperCard facilities, differing

mainly in terminology rather than function. However, HyperPAD does differ from

HyperCard in two important - and related - aspects. Firstly, HyperPAD avoids the

problem of multiple graphics standard on IBM machines by not supporting graphics -

it is text-only; and secondly, HyperPAD has ample facilities for colour usage.

However, despite having the HyperCard system as a form of ‘prototype’ on

which to base the product, the HyperPAD package has a number of functional

limitations which reduce its initial appeal, particularly with regard to its stability and

reliability. As such, it is an example of an information handling system which is

desired by end-users, but which suffers in its application. Accordingly, it is less likely

to be applied in important tasks by the users.

20: HyperPAD is a trademark of Brightbill-Roberts.

78

Chapter 3

Section 3.4: Hypermedia.

Given the recognisable advantages of functionally hypertext architectures, there

is a natural derivative of the concept which extends the systems to include such

additional heterogeneous components as two- and three-dimensional graphics,

spreadsheets, video, sound and animation. In some ways, the hypertext concept is

enhanced by the results of work on multimedia systems, while retaining the hypertext

operation mechanisms. The term hypermedia is used when extending the hypertext

functionality to these extended or hybrid systems. A hypermedia system should be

able to create links within a database including not only text, but also complex

diagrams, photographs, video disks, audio recordings and so on [Yankelovich 85]. In

[Akscyn 88], the authors define hypermedia as being similar to hypertext systems, but

additionally supporting:

‘other kinds of information such as vector graphics, bitmapped images,

sound and animation.’

A number of hypermedia examples exist, including MIT’s Spatial Data-

Management System (SDMS), and the Digital Equipment Corporation’s Interactive

Video Information System (IVIS), which integrates a variety of data types onto the

same display screen.

Intermedia is a system under development at Brown University

[Yankelovich 88], and proposes a framework for a set of tools that allow links and

connections between the many possible heterogeneous data types, resulting in a larger

document structure. In order for this to be implemented, there is a clear requirement

for an alteration in the way that documents are perceived by the end-user and/or author.

Furthermore, the heterogeneous data types require a variety of hardware devices beyond

the standard system unit for computation, and keyboard with high-resolution display for

input and output interaction. In practice, supplementary devices are required for the

portrayal of the non-standardised data types such as sound and video.

79

Chapter 3

It is important to emphasise that the Intermedia system is not intended to be an

end-user application so much as a collection of tools grouped into a framework for use

by end-user applications. This distinction is one that has significant implications for

the work described here, and will be referred in section 8.2. For the moment, it is

sufficient to note that Intermedia is in effect providing an architecture for a combined

multimedia/hypertext system. In other words, by providing the infrastructure for data

control and representation, it supports rather than directs the application. However, the

control of the system is still based upon hypertext systems, which deliberately restrict

user options in order to provide a more friendly and less confusing user interface. One

can conclude that in any information processing system, the nature of the architecture

must necessarily influence the potential of that system, and that restrictions on the

architecture will inevitably restrict the processing capability.

The KMS system described in [Akscyn 88] is a distributed hypermedia system.

The authors of this system note that:

‘In shared hypermedia systems, multiple users may simultaneously access

the hypermedia database. Shared systems may be implemented as

distributed systems, in which portions of the database are distributed

across multiple workstations and file server on the network. ... The

database can be as large as available disk space permits.’

During the development of the system, the designers concluded that their

experiences encouraged them to:

‘... practice a design philosophy of voluntary design simplicity, striving

to make do with fewer concepts and mechanisms.’

Future development of hypermedia systems is discussed in the context of the

‘Notecards’ system developed at Xerox PARC [Halasz 88]. By examining the

limitations and strengths of Notecards, the following issues were described as being

important for consideration in the next generation of hypermedia systems:

80

Chapter 3

1) Search and query in a hypermedia network.

Navigational access is not sufficient for hypermedia, instead

effective access requires query-based access to complement

navigation.

2) Composites augmenting the basic node and link model.

The two primitives of the node and the link are successful but

insufficient. Halasz states that Notecards suffers from a lack of

a composition mechanism, and the nearest approximation involves

using a ‘filebox concept’ which was intended to provide a

hierarchical organisational structure.

3) Virtual structures for dealing with changing information.

The hypermedia data model of Notecards is essentially static and

fragmentary. Unless explicitly edited, the network does not alter.

In particular, Halasz points out that a network cannot reconfigure

itself in response to changes in the information it contains. A

virtual structure would support dynamically determined

reorganisation.

4) Computation in (over) hypermedia networks.

Hypermedia systems do not actively direct the creation or

modification of the network. Accordingly, it may be necessary

to augment a system by inclusion of an active computational

engine for specific applications.

5) Versioning.

This would allow users to maintain and manipulate a history of

changes to their network. Some systems - such as Intermedia -

do provide aspects of this facility, however, only single copies of

nodes are kept, but alternative versions of the entire web (the

interconnection links) can be constructed.

81

Chapter 3

6) Support for collaborative work.

Notecards is designed as a single-user system, while KMS and

Intermedia support simultaneous multi-user access.

7) Extensibility and tailorability.

The generic nature of hypermedia systems supports a wide variety

of task domains (creating, editing, displaying, storing, retrieving

and interconnecting), but is not especially good at any specific

task. In effect, the systems are useful but not well adapted to

tasks. It would be preferable for users to extend systems with

new functionality or to tailor existing functionality to better match

the exact requirements of the application.

Section 3.5: Information Browsing, Presentation and Preparation.

Given that a suitable architecture can be found for supporting multimedia

manipulation tasks, the next major problems that must be addressed concern data (or

knowledge) exploration in the resulting mixed-media environment. Results of work on

the problems of knowledge exploration comes from such fields as computer-aided

instruction (CAI) [Osin 76] and the nonlinear text or hypertext systems referred to in

section 3.3. Some database systems, such as the MIT Spatial Data Management

System (SDMS), have also adopted a hypertext approach to allow users to wander

among the information in a database. SDMS [Herot 80] provides a user with graphical

querying and presentation of the database, and will be discussed in section 3.6.

Shasha [Shasha 85 & Shasha 86] suggests a fragment theory for retrieval and

knowledge exploration in his data model called NetBook. The knowledge is

represented in the forms of text fragments (including a picture, an experimental

simulation, or a live performance) with relations defined among them, and queries in

a natural language form helps users to access the appropriate fragments. This system

clearly has a requirement for an information architecture that provides a structure for

representing not only the data of either mixed or single types, using concepts that

82

Chapter 3

resemble in some ways the NetBook text fragments, but also the relations between the

fragments. In practice, however, the primarily text-orientated model offers rather

limited control or variety in presentation content, and minimal interaction options.

A complex mass of information can often be more clearly presented with the

appropriate use of colour and dynamic representations which are available on most

examples of graphics and engineering workstation technology. The graphics editing

system developed by Feiner, Nagy, and Van Dam at Brown University [Feiner 82] uses

this approach in preparing and presenting technical manuals. Their system uses colour,

very high resolution graphics, and menu selection to provide flexibility in scanning and

re-presentation of a document. Brown and Sedgewick of Brown University have

demonstrated the ability to see dataflow and control structures of algorithms and

software as they execute in their algorithm simulator and animator, BALSA

[Brown 84]. BALSA uses a dynamic graphic interface as the natural mode of

interaction. All these tools aid software engineers and computer scientists in

understanding and ‘feeling’ the action of software or algorithms.

Another important and relevant research issue concerns systems used for the

preparation of documents. Examples of existing systems that allow for interactive

document editing and formatting operations are Janus [Chamberlin 82] and Andra

[Gutknecht 84], of which Andra provides additional hardcopy capability on a laser

printer. Other document systems like CD-GUIDE [Brown 86b]^ ̂ allow for interactive

viewing and storage using a CD-ROM disk.

A renewed interest in text processing research has resulted in new text editors

and document formatters producing integrated programs that format documents

dynamically during the editing session. Examples are described in [Furuta 82a],

[Gutknecht 85], and [Peels 85]. General hierarchy editors for documents, programs,

and graphics are in existence.

21: An extension to the GUIDE Hypertext system described earlier.

83

Chapter 3

Hierarchy editors consist of interactive programs which browse through and

modify, tree-like structures of data. Text-based editors such as Walker’s ‘Document

Editor’ [Walker 81] and PEN [Allen 81] are used specifically for document editing.

Some editors (such as Walker’s) include facilities for cross-referencing to show

inter-structural linking, though these are not explicitly shown in final presentations of

the hierarchical structure. Both cross-linking and topological data organisations can be

derived as natural products of one uniform structure, as seen in other systems such as

ZOG [McCracken 84] and Textnet [Trigg 86].

The design of a user interface management tool to improve human-machine

interactions is also an important concept. A discussion of User Interface Management

Systems (UIMS) is presented by Olsen et. al. in [Olsen 84], and identifies some of the

major problems that UIMS research should be addressing. Other discussions on the

UIMS concept can be found in the papers [Thomas 83], [Enderle 84a] and

[Enderle 84b]. Interesting topics covered include: the interface of the UIMS to the

application and graphics; the structure of a UIMS; and special CAD aspects of UIMS.

Traditional document systems show very little of their internal state to the user.

Developments in screen editors, spreadsheets, and electronic desktops are making use

of powerful graphics on workstations to show as much of the system state as possible

on the computer screen. Examples are Xerox Star [Smith 82], Apple’s Lisa and

Macintosh machines [Ehardt 83], Alis [Applix 84], and Framework [Harrison 84]. A

concise review of the current approaches to the use of windows in screen dialogues by

application systems can be found in [Konsynski 85].

Commercial document environments like Framework by Ashton-Tate and

Symphony by Lotus Development Corporation [Jadmicek 84], and others, provide

extended capabilities, such as spreadsheets, word processing, database management

systems, graphics, and communication software. Framework provides an ‘outline’

function that allows users to create documents with an outline; entries in the outline,

such as a graph or a spreadsheet item, can be imported from different component

packages. The way these systems integrate different tasks has caused an imbalance in

that each package has grown around the success of one subsection of the task activities

84

Chapter 3

(for example, spreadsheet or word processing), and the others are only half-heartedly

supported.

We have seen that an important aspect of information presentation concerns the

tools used to support the presentation. Extending this further, we must mention the

current research into Graphical User Interfaces (GUI’s). A loose definition of a GUI

is that it is a user interface that operates in a computer’s graphics mode. However,

this can exclude some packages that would otherwise be categorised as GUI’s^. The

Microsoft company has become very interested in GUI concepts, not least because it

is a primary developer for the OS/2 Presentation Manager package, which embodies

many of the fundamental GUI concepts. Microsoft has defined a true GUI system as

satisfying six requirements [PCMag 89]:

1) It exploits bit mapped displays, offering true WYSIWYG screen

representation of printed output.

2) It is a graphically orientated interface that makes extensive use of

icons.

3) It has good screen aesthetics: it looks good and is a pleasure to

work with.

4) It allows direct manipulation of on-screen elements.

5) It embraces the object-action paradigm^’.

6) It offers standard, expected elements such as menus, windows and

dialogue controls; in order to provide consistency across

applications.

22: For example, Desqview from Quarterdeck, or the HyperPad product discussed earlier.

23: The user chooses an object first, then selects the action.

85

Chapter 3

The above list is rather subjective, considering its source, and is rather selective

in describing what a GUI is. By including such elements as multiple-application

support, and inter-application communication, we can envisage more accurately the

facilities expected from a GUI. In theory, a GUI should make applications more

powerful, not least because of the common application interface. However, many

applications are sufficiently complicated that it would be impractical to standardise on

a specific interface orientation.

Despite this, the goals of GUI’s - to save time, to make programs easier to use

and more powerful, and to ease the learning curve - are all important features that are

demanded more frequently from current applications.

Research into GUI’s is being carried out and has resulted in a number of

applications, including NewWave (Hewlett-Packard), Open Look (Sun Microsystems)

and OSF/Motif (Open Software Foundation). NewWave in particular is interesting,

because it runs under another GUI, the simpler Microsoft Windows package. It

incorporates an object-orientated paradigm into its construction to extend the normal

level of GUI capability. As a simple example, by moving a document icon to a

printer icon, the document will be printed without further operator control being

required.

Section 3.6: Information Structuring.

The drawback of existing integrated editor/formatters is that the high-level

structure of the document is not well-represented [Furuta 82b]. Aldus Pagemaker on

the Apple Macintosh is a good example, in that it exhibits cut-and-paste operations in

preparing mixed-media documents, but with no proper support for overall data

structuring.

Hewitt [Hewitt 77] demonstrates the use of ‘actor message passing’ in viewing

control structures, where the actors are purely active objects with no recognition of any

data structures. The OPAL system [Ahlsen 84] has the same focus with the concept

8 6

Chapter 3

of a ‘packet’ as the principal data and action structuring mechanism. A related area

of research into actors formalism is used in a programming system by Byrd et. al. at

IBM Thomas J. Watson Research Center [Byrd 82].

Taking the concept of information stmcturing to a more formal level moves us

into the domain of databases, and particularly relational database systems. Notably, the

earlier work of E. F. Codd [Codd 70] in developing a relational theory for data was

to be used as a framework for database systems. His model covered three aspects that

all database management systems have to address, including integrity, manipulation, and

importantly, structure.

Structuring of information is particularly important if the data is being used

within a distributed environment. The structure must necessarily reflect limitations in

the storage mechanism unless the structure is defined in terms of virtual storage - a

concept that is as yet undeveloped. Clearly, centralising the information storage makes

backup and transaction processing more straightforward. Centralising also has the

immediate drawbacks of reducing localised control (implying reduced independence)

and further a dependency that the central information store remains operational at all

times.

Sarin et al have considered the processing of data updates in a database

architecture, particularly in a distributed architecture [Sarin 87]. The problem is to

ensure that data updates which arrive at a site must be saved in a fashion that

preserves mutual consistency, while at the same time allowing for removal of sites that

are excluded for reasons of site crashes or other causes. In effect, the multiple sites

must be able to allow updates at any time, and to reconcile database copies after they

are notified of updates at other sites.

There are examples of information processing systems that have been developed

with minimal concern for the actual storage of the potentially large scale quantities of

varying data types. Mayer [Mayer 85] describes work carried out during the

development of a computer conferencing system, in which emphasis was initially upon

the user viewpoint:

87

Chapter 3

we did not immediately start worrying about file layouts, record

structures and the like. We started thinking about how the user would

view and use the system and then worked backward from there. Of

course, the design process is never quite that simple. We had to go

through several iterations, because something that we’d thought might be

a great idea at the user level turned out to be impossibly complicated to

implement but could be done easily with a small change to the user

interface.’

This strategy of developing first the specification of the system and then using

this to design the architecture - with inevitable requirements for re-design - is one that

was applied for the prototype system described in this thesis. Mayer recognises that

this ideal is more difficult to achieve in practice, but an analysis of the various

information processing strategies is very helpful in deciding upon the primary

requirements for a general information processing architecture. The importance of the

storage architecture is further acknowledged by Mayer:

‘In a system of this sort, the files created by the prototype tend to get

inherited by successive generations of the software. Think how annoyed

users would become if the old conferences became unreadable whenever

a change to the software was made. Thus, the organisation of the

information (storage architecture) in the system can have profound

implications to later development of the software. You can’t just say

(that) with version 4 we’ll go to a totally new file organisation because

then conversion programs will need writing, and some of the imaginable

conversions may not even make sense because certain necessary data was

never stored in the original files.’

As mentioned in section 3.5, Herot has discussed the concept of spatial data

management, describing it as a technique for organising and retrieving information by

positioning it in a Graphical Data Space (CDS) [Herot 80]. In contrast to conventional

database management systems, a spatial data management system (SDMS) presents the

information graphically in a form that encourages browsing and requires less prior

8 8

Chapter 3

knowledge of the contents and organisation of the database. Herot summarises the

differences between spatial data management and standard database management

systems as follows:

1) Motion through the database is simple and natural. A single

control, the joystick, allows the user to explore the entire database.

Conversely, conventional symbolic query languages require the use

of special syntax and semantics.

2) The database is its own dictionary. Conventional DBMS require

a data dictionary to define the structure of the database. In the

SDMS, the graphical data space is its own description, and rather

than specifying a relation and attribute name, the user traverses

the data space until he reaches the desired information.

3) The presentation of the data encourages browsing. An SDMS

display almost always gives more information that is needed. In

conventional DBMS, every piece of data must be explicitly

requested, and it is difficult to place related data together. An

SDMS allows the database administrator to arrange the

information according to any chosen attributes.

4) The placement of data can convey information. This works in

much the same way that a person can find some needed

information by recalling where the paper is that has the required

information. Examples of this concept in an SDMS include the

arrangement of data according to freshness or priority.

5) Graphics can be used to convey information. The most familiar

forms are histograms and graphs. Representations can also be

used to depict trends that would otherwise be hard to formulate

into symbolic queries.

89

Chapter 3

6) The system can accommodate new data types, such as

photographs.

Section 3.7: Computer Architectures.

In several of the current systems, there has been the implicit requirement for

further devices beyond those available on most workstations. As well as the now

standard workstation combination of keyboard, mouse and high-resolution display, there

is a need for such peripheral devices as sound, video, and graphics drivers. Currently,

computer architecture - particularly that of workstations - makes no provision for such

features as part of the orthodox system paradigm. Accordingly, where such

mechanisms are to be attached, the resulting connection is not optimised for the

architecture, with resulting delays to the operation of the devices.

Such difficulties are especially prevalent when the system is intended for

multi-user application, and large quantities of data must be transmitted at very high

speeds. The extremely high bandwidth required for - say - video signal exchange

precludes all but the highest performance data transmission systems from accomplishing

the desired results.

Much research is directed towards the problems posed by Distributed

Multimedia Information Systems (DMIS) [Aceves 85b], particularly for those

environments where workstations are to be connected using high-speed local area

networks. Such systems have two main requirements:

1) Provision for store-and-forward data interchange (such as

electronic mail), where the interchange is not required on a real

time basis.

2) Real-time interchange (such as for conferencing), where immediate

response is required.

90

Chapter 3

A good summary of the problems and issues can be found in [Ngoh 89], which

concludes amongst other points that standard data transport technologies:

‘do not provide an adequate mechanism (for information interchange

between DMIS workstations)’.

Nor is a broadcast technology sufficient. Although such a system would have

the advantage that only one transmission is required to send data to those hosts

participating in the DMIS, it follows equally that hosts not participating in the DMIS,

or not requiring the transmitted data, have a considerable increase in their workload in

order to identify and filter out the extraneous material. Unfortunately, DMIS tend to

produce large quantities of data that would require broadcasting, so the issue is not one

than can be discarded as being of minimal implication.

With regard to the actual processing of data, there is little doubt that a

multi-tasking architecture is mandatory as the operational paradigm. The more

important question is regarding the nature of the multi-tasking implementation. Current

popular realisations of the concept are based upon the simplistic model of a single

central processing resource allocating units of job time to a series of tasks. As the

number of tasks that must function concurrently rises, so the inadequacies of this

approach become manifest. Furthermore, for a single processing unit to be capable of

executing all the possible jobs that will be required, the processor must be generalised

in its capability - regardless of whether it is based upon CISC^ or RISC“ technology.

However, if it is accepted that significant numbers of multi-tasking jobs require

only a limited instruction processing capability, and further that the individual tasks

executing under the multi-tasking environment are modest and concise, then the need

for complex processors is reduced. Instead, it is perhaps worth considering the

alternative of a multi-processor computer architecture, with a large pool of elementary

processors for the normal and simplistic tasks that form the ‘bread-and-butter’ of

24: Complex Instruction Set Computer.

25: Reduced Instruction Set Computer.

91

Chapter 3

multi-tasking computation, and a smaller administrator pool of more powerful

processors to coordinate and control the lower level processors.

The problem then arises of how to control the resulting architectural complexity.

As [Randell 86] indicates:

‘The task of implementing a large and sophisticated computing system

is often unduly costly and time-consuming, with the resulting system

exhibiting inadequate performance and reliability, because of excessive

system complexity.’

Recognising that a good way to cope with system complexity is through the

principal technique of ‘divide and conquer’, Randell states that:

‘Complexity can be reduced significantly by ensuring that the system is

constructed out of a well-chosen set of largely independent components,

which interact in well-understood ways. However, the task of structuring

a system, i.e. of choosing and defining appropriate components, can be

very difficult.’

The problem is considerable, and one of on-going research; not just in terms of

pure computer architecture, but also with regard to network-based distributed systems.

Randell proposes a system based on a hierarchical approach, with specific research

work implemented on an addition to the UNIX file system structure. The file-naming

scheme within the system is extended up beyond the hosting machine so that the file

systems are further categorised by machine, department, and so on. Naturally this

raises further problems of security, performance and reliability; but these issues fall

outside the scope of the current discussion. Randell’s work emphasises the following

points:

1) The principal system component is an ‘ability’ that: "I have

termed ‘distributedness’, which makes a single set of hitherto

independent systems function as a single coherent system."

92

Chapter 3

2) That the approach taken to provide system abilities is one of

‘ simplifying generalisation ’

3) That the computer science world has concentrated unduly on the

design of sequential and centralised systems: "This concentration

is perhaps the true Von Neumann bottleneck."

4) The environment of people, procedures, machinery, etc., that a

typical large-scale computing system is intended to fit into, and

contribute to, is itself a distributed system, usually possessing an

enviable degree of flexibility and resilience.

Section 3.8: Groupware.

The purpose of Groupware is to provide both stmcture and support mechanisms

to aid users in working together. Accordingly, [Tazelaar 88] defines it as either

‘software for a group’ or alternatively ‘computer-supported cooperative work.’

Engelbart et al discuss the groupware concept under the name of Computer

Supported Cooperative Work (CSCW), and define it as dealing with the study and

development of systems that encourage organisational collaboration. They describe

CSCW systems as falling into three categories [Engelbart 88]:

1) Tools for augmenting collaboration and problem solving within a

group geographically co-located in real-time.

2) Real-time tools for collaboration among people who are

geographically distributed.

3) Tools for asynchronous collaboration among teams distributed

geographically.

93

Chapter 3

Engelbart’s system (NLS/Augment) was designed to support members working

in varied disciplines, including software engineers, managers and social scientists. The

underlying architecture was hierarchically structured, with the file structure separated

from its content. Originally, nodes were strictly textual in nature, but later referred to

a ‘property list' of content nodes of varying types, including other hierarchies. The

goal of developing the system was based on the belief that creating tools for

collaborative knowledge work was essential to the necessary evolution of work groups

in increasingly knowledge-rich societies and for increasing organisational effectiveness.

Until the recent interest in CSCW or groupware systems:

... most developers limited their analyses to technical issues and ignored

the social and organisational implications of the introduction of their

tools; such considerations were, however, key to our work. '

[Engelbart 88]

Engelbart et al go on to discuss the value of such systems:

‘There is growing recognition that some of the barriers to acceptance of

fully integrated systems for augmenting groups of knowledge workers

may be more significantly social, not solely technical. The availability

of rapidly evolving new technologies implies the need for concomitant

evolution in the ways in which work is done in local and geographically

distributed groups.’

Going further with regard to the issues of integration, the writers state that:

‘Aspects other than introducing new technological tools into the work

space (e.g. conventions, methods and roles) are at least as important to

the success of any CSCW system. The elegant tools available now and

in the future - superlative graphics, artificial intelligence services, and so

on - only make sense in an integrated workshop of tools in which

information may be exchanged. The tools in such an integrated

workshop need to be conceptually and procedurally consistent.’

94

Chapter 3

In effect, Engelbart et al are agreeing with many other researchers in regarding

a generalising of information processing and handling strategies.

Work by Terry Winograd puts the groupware concept into the perspective of

communication issues:

‘Whenever you convey information, you are embedded in a context that

makes it relevant to getting something done. The meaning of the words

serves as a starting point for interpretation that leads to networks of

interconnected actions. By directly addressing this universal dimension

of human communication, we are beginning to develop groupware that

offers a new simplicity of design and effectiveness of management.’

[Winograd 88]

Section 3.9: Summary.

Much of the work of the researchers described here has focused on diverse

issues. However, from a more general perspective, there are a number of conclusions

that have been reached by each research project that can be applied across a much

wider range of applications, thus having significant effect on the development of an

enhanced information system architecture. Such a structure will require consistent

mechanisms for control and data organisation, as well as the integration of components

other than the basic technological tools.

During the discussion of multimedia systems, a series of five points were raised

which represented definitive characteristics for such systems. We can reiterate the

points as follows:

1) Promotion of connections between ideas and comments.

2) Support for flexible control and presentation.

95

Chapter 3

3) Flexible editing tools.

4) Flexible retrieval, reading, and searching capability.

5) Preservation of historical integrity.

These issues are clearly of relevance, not just to multimedia systems, but to any

system purporting to provide information processing support. Some aspects may be

less important than others in certain circumstances, and vary depending on the focus

of the application system itself.

For example, hypertext systems are particularly concerned with the way in

which the linkage mechanism between the data fragments can be used in a variety of

ways according to the users preferences. The nature of the links is rather simplistic,

but does indicate the value of the property of a relationship existing between items of

data. Furthermore, links hint at the fact that relationships are of different value to

different users - some links are followed, others are not, according to requirements.

Correspondingly, relationships may mean something to certain users, but nothing to

others.

As [Brown 87] suggests:

‘If presentation software simply tries to imitate a paper document on the

workstation screen, we believe that, in spite of future hardware

improvements, readers will continue to prefer paper. The reason is

simple: the imitation will always be inferior to the real thing.’

By way of contrast, a system for on-line documents can offer great advantages

as a result of the facilities for interaction. Multiple windows allow the comparison of

different pieces of information.

Herot’s work gives a large number of clues to the structuring of data within an

information architecture, in such a manner as to offer a number of advantages to the

96

Chapter 3

ways in which the data can be organised, accessed and extended. Taken in conjunction

with RandelTs preference for simplifying generalisation, we are in a position to work

towards the derivation of an enhanced information architecture.

97

Chapter 4.

Consideration of Current Systems and Related Research.

Section 4.1: Overview.

In this chapter, we are interested in considering the implications of the results

of current work on computer-based information systems. The introduction of

potentially powerful generation systems has seen only limited success, despite the fact

that they should in theory produce more capable systems at reduced cost or effort.

Even systems such as C.A.S.E. tools, which incorporate aspects of application purpose

as well as application function, have been less successful than had been hoped.

In part, this may be seen as being a result of pre-occupation with compatibility

while steadfastly refusing to backtrack and consider implications and applications of

lessons leamt. Integration is often promoted as being ‘a good thing’, but in a manner

which implies that a fast car is ‘better’ than a farming tractor because it is more

‘flash’, although the fast car is probably incapable of ploughing fields. In other words,

integration is often viewed as a good idea, because it makes data exchange easier. But

little consideration is given as to why the data exchange is being performed, or the

implications of the exchange. The support for integration is generally at a very

low-level within a system, which means that effects on the higher-level abstract tasks

are poorly planned.

Integration is sometimes viewed as being a prototype mechanism for supporting

computerised lateral thinking. By making provision for cross-connections between

multiple applications and multiple users, it is hoped that good ideas may result. But

using existing analogies as the first design stages is not necessarily a good thing. An

electronic book would be severely curtailed if it could only mimic a paper-based book,

because of the exclusion of potential cross-referencing advantages.

98

Chapter 4

Similarly, attempting to use the human brain as a processing model implies that

we are trying to enable computer systems to imitate human thought processes, which

may not necessarily be a productive approach. Management concepts generally

recognise the potential advantages of assigning groups to certain problems, rather than

individuals. A group or team may be able to draw on individual talents, expertise or

experience in assigning specific sub-tasks or problems, so that the overall efficiency of

the team is improved. However, this relies upon the fundamental assumption that the

team can be organised in a manner conducive towards cooperation and productivity

rather than constraint and inaction.

This means that for problems where multiple tasks can be identified, suitable for

solution by multiple processes, there must be a coordinating mechanism to ensure

successful integration of the activities. The coordinating mechanism itself will be

dependent upon the fundamental understanding of the problems of group organisation.

Thus, simply forming groups of people to solve complex problems does not of itself

guarantee greater productivity or a successful result. Similarly, constructing

computerised systems that attempt to mimic human processing by duplicating specific

processing tasks cannot guarantee any benefits, because there is as yet no real

understanding of the coordination or integration tasks that we perform automatically.

However, the concept of integration does have direct relevance regarding the

arrangement or structuring of data. In order to data to flow, there must be reasoned

organisation to the routing or paths. The implications of this in terms of results and

conceptual re-adjustments must be incorporated: this requires that feedback be modelled

and incorporated. Understanding these issues would appear to be vital if we are to

attempt the construction of systems that support our work.

Section 4.2: Introduction.

We have now considered some examples from the range of current products and

research projects, each of which addresses or uses specific instances of the many tasks

of information organisation and processing. Some of the products described attempt

99

Chapter 4

to provide a generalised package that deals with problems as a whole - other systems

are intended to contribute to the overall solution, but leave the specification and

implementation of that solution to the user or to other packages. Similarly, the

research material discussed tends to address specific issues or cases within larger scale

topics. The projects have normally been very successful in achieving the target goals.

However, the act of establishing a target goal means that an end-point has been

identified, and upon reaching the goal, the work will often be deemed complete and so

is concluded.

In this thesis, we will attempt to go further than the original end-points by

considering in some detail the material conclusions of the various research studies.

Significantly, we will discuss the work from a perspective that is not limited by

focusing on the original study direction. Using this approach, it should be easier to

recognise and evaluate some of the implications of both intended and accidental study

results. This will help with the task of identifying alternative applications and

contributions from the research conclusions.

In this chapter, we will be looking in more detail at those characteristics of

current systems and research which relate to general information administration and

handling. This will enable us to work towards identifying the problems that are the

focus of this research, and subsequently lead to the development of possible solutions.

Consideration of existing products will help to identify not the actual attributes of what

an information system should offer, but instead to evaluate what attributes are actually

desired in the light of the success (or failure) of specific systems.

Section 4.3: Discussion of Current Svstems.

A common and key feature of the example systems is that they are all

‘self-interested’. In other words, it is assumed that the system is intended as a

clearly-defined component in a task, and may even attempt to describe the entire

solution for carrying out that task. Such products can be labelled ‘focused application

systems’ as distinct from the more open-ended ‘diverse application systems’. Fourth

1 0 0

Chapter 4

Generation Languages (4GLs) and Applications Generators are good examples of

focused systems, although at first sight they might appear to be more ‘cosmopolitan’

in their approach. The purpose of the packages is to attempt to specify as much as

possible of the final program code for an end-user application. Yet in most cases, the

4GL or applications generator never produces more than 80% of the final code, and

even that is produced by working with established modules [Gibson 89]. The

remaining 20% of application code still has to be carefully appraised by a human

system developer - at best to fine-tune its performance, and at worst to re-engineer

from scratch using guidelines issued by the initial generator. Thus such packages could

be viewed as little more than advanced library managers that have analogies in the

object-code handlers of straightforward program linkers. Furthermore, the material

produced by a 4GL or Applications Generator is frequently self-referencing, imposing

limitations on the customisation that can be carried out by developers.

This inflexible approach for system development can also make it very difficult

for the end user - who should in fact be the main focus of interest and support - to

develop a complete system with the required flexibility for the task at hand. Only in

certain special cases will development systems acknowledge the existence of other

packages, a characteristic which is even more prominent for packages from different

software houses.

The exceptions tend to involve recognising the existence of indisputable

standards, such as the Lotus or dBase programs on the IBM compatible machines, and

an acceptance of the standard format used by the data files of those programs.

However, the acknowledgment of such a standard is usually rather ‘grudging’, and

typically takes the form of a data conversion process that is typically one-way. For

example, Ventura Publisher, a powerful Desk Top Publishing package for the IBM

machines, is perfectly capable of incorporating text or graphic images from ‘external’

packages into the specific document; but once those components have been correctly

integrated within Ventura Publisher, it is not particularly easy to ‘export’ the

components out again as they will have been ‘glued’ together into a larger (and

hopefully better) whole. Other packages will often provide conversion programs that

convert external data to the preferred format. For example, the IBM-based Word

1 0 1

Chapter 4

Perfect word processing package provides a multi-purpose conversion program to

convert data files created by other word processors. But the conversion program only

works one way.

An alternative approach is to try and standardise on an agreed format for data,

and this has been the objective of the ODA and SGML document description standards.

Any systems that work using these standards should be able to successfully exchange

documents. However, the origins of these two standards places restrictions on their

suitability for general purpose data exchange, particularly with regard to those

processing tasks which do not necessarily have a meaningful representation as a

document - for example compiling a program.

Moving to consider the issue of development systems such as C.A.S.E., there

is little doubt that the objectives of the concept are earnestly sought after, particularly

in view of the generally recognised backlog in development of software [Akass 89].

The problem is that the current implementations of C.A.S.E. concepts suffer from

over-promotion coupled with a lack of tool standards and integration. According to

Cally Ware [Ware 89]:

‘Too much has been written about how C.A.S.E. will solve all your

software development problems at a stroke. How it is, in short, a

panacea that will automatically compensate for poorly designed systems,

untrained or unmotivated staff, or a lack of real commitment to get

things right, now.’

In order to be of benefit. Ware suggests that it is important to recognise that:

‘C.A.S.E. is not simply a collection of tools. It requires a combination

of skills and good management to make it work.’

Amongst other vital factors. Ware includes the following as being essential to

the success of C.A.S.E.:

1 0 2

Chapter 4

1) A methodical, structured approach to development is essential; and

must be rigorously enforced.

2) Any software project must be managed.

3) A C.A.S.E. tool that will not easily link to other tools (word

processing, desktop publishing, project management, application

generators, mainframe dictionaries, etc.) will only ever be of

restricted usefulness.

The concept of C.A.S.E. is fundamental in depicting an important aspect of

information systems. No matter how good the underlying tools used for processing the

raw data, this can all be wasted if the higher level administration, control and

integration tasks are neglected. C.A.S.E. does not of itself have a direct relevance to

information systems, except that it embodies a high-level administrative function of the

kind that must be present in any information system of value.

Inevitably, however, as a focused application system becomes more detailed, so

the data and control structures become increasingly low-level but complex, with a

corresponding reduction in export capability. If there exists a clear industry standard

(such as Lotus 1-2-3 for spreadsheets on personal computers) then there is concerted

effort on the part of system developers to permit relatively easy accommodation of the

standard as a sub-set of the product capabilities. But for applications which do not

have a notable market leader (for example, the ‘Personal Information Manager’

applications on personal computers, or C.A.S.E. tools on larger systems) then there is

little in the way of consensus in development of standards or even agreement on

exactly what facilities should actually comprise the application. Each developer is

attempting to produce the definitive program or package that will become the standard

in that application.

Nevertheless, the desire for greater cooperation between packages running on

more powerful computers has led to the development of extensive and advanced

architectures such as the PC multi-tasking system Microsoft Windows and its derivative

103

Chapter 4

OS/2 [White 87], as well as the associated Dynamic Data Exchange (DDE) concept

[Schifreen 88]. Any application package which is intended to run successfully ‘within’

Windows must be capable of handling DDE satisfactorily. This enforces a degree of

integration between packages. DDE has a number of defined data exchange formats,

any of which may be used between any two existing Windows applications.

However, the DDE concept only provides for a higher conceptual level of raw

data exchange. This is insufficient to provide for the exchange of information, because

data alone - no matter how detailed or complex - is not a complete definition of true

information. Accordingly, while DDE is to be welcomed for its advance upon existing

systems, it must be acknowledged that there is much work yet to be done to extend

integration beyond mere data exchange.

Thus, current systems based on clearly defined applications (such as

spreadsheets) still bypass the major issue of the integration of information handling

processes. This means that although the raw data can now be exchanged and

processed reasonably well, there is little or no cooperation between the applications

themselves with regard to the data. Typically, at any one moment in time, only a

single application will have ‘exclusive’ rights to a set of data - it will define the

format used for storage of the data, and only that application can be ‘trusted’ to

modify the values in the data set.

The problems of sharing form the subject of considerable research, and this is

particularly true with regard to the sharing of ‘resources’ available on computers -

especially multi-user systems. One approach used is to view the mechanics of resource

access as being similar to data access mechanics. In effect, the representation of

resources can be handled as a form of data type (in much the same way that certain

operating systems^ treat all devices as files). Considerable research has gone into the

complex intricacies of resource sharing, but generally with emphasis upon the particular

problem of resource control which is required to prevent the ‘deadlock’ situation,

where two or more applications both seek access to a given resource, but will not yield

26: For example, UNIX.

104

Chapter 4

the rights they currently have on other resources. Thus this research is only of limited

assistance to the problem of data exchange. For multi-user and multi-processing

systems, where our definition of resource can be taken to much higher and more

abstract levels, there is a need for study into the problems of rights of access, ensuring

integrity of the resources, and consideration of what forms of access are considered

valid, as well as when they may be permitted.

Section 4.4: Discussion of Current Research.

More successful aspects of modem application systems can be found in those

technologies that have evolved out of meticulous research^^, and which have a more

considered viewpoint for the end-user. Many of the systems go to great lengths to

ensure that the user is given a more coherent presentation of the data - reflecting the

importance of the environment in which the user is working. However, systems based

on - for example - hypertext or multimedia data architectures do not always take to

the ultimate conclusions all the analysis and development ideas which are necessary to

provide the user with a truly enhanced environment in which to work.

In spite of some of the current trends in research emphasis, it is not enough

merely to try and ‘computerise’ existing techniques for data handling, because existing

‘normal’ computer data types“ are low-level and limited in their scope. This remains

true even when the manipulation of data types is performed within the context of

‘integrated’ systems. There are strengths and weaknesses to both static print and

dynamic electronic media handling, not least in regard to the tools needed for

performing the tasks necessary for production in each area. Much work has been done

with regard to computerising the data normally held in paper form; the primary

objective being the development of the ‘electronic book’. A major trend of research

in this area [Yankelovich 85] is to identify the strengths and weaknesses of existing

paper-based books, and use them:

27: For example. Hypertext systems (HyperCard), Parallel processing (the INMOS Transputer), and
Object-Orientated systems.

28: Numbers, Characters (or strings), and Logical (boolean) values.

105

Chapter 4

‘to formulate the capabilities that electronic document systems should

have in order to maximise the advantages of the electronic medium and

overcome some of the disadvantages inherent in the print medium.’

In other words, the attributes of paper-based documents (both positive and

negative) are being used as the first specification of the capabilities of the electronic

book. This is sometimes done without questioning the validity of such an approach,

or regarding the possibility that subtle but implicit restrictions could be incorporated

into the elementary design. There is little consideration of the fact that such a strategy

offers little opportunity to introduce the potential improvements facilitated by computer

systems, and which must necessarily be incorporated at an early stage of the system

design. Yankelovich et al point out that the most important property of paper-based

material - such as books - is that the data is static. Once committed to paper, a book

cannot be altered except by reprinting or physically damaging the record; normally,

readers are not able to change or manipulate the contents. In their study, Yankelovich

et al conclude that:

‘the static nature of books is both their biggest asset and their most

serious shortcoming.’

For some reason, this statement is not fully justified, and the only apparent

examples of the disadvantageous nature of static print offered are that it cannot handle

sound or motion, and that it is difficult to create multiple indices. There is minimal

comment on the advantages of static existence, beyond the mention that integrity of

information results in (potential?) historical value, and that providing information

integrity within a system can reduce problems of unreliable hardware. Other

advantages would surely range from the trivial (relatively impervious from damage by

coffee spills) to the significant (legal admissibility), not to mention the simple aesthetic

benefits and convenience of being able to hold a printed page, the ease of scribbling

notes, and the extremely low cost.

Disadvantages of paper documents would primarily emphasise issues relating to

the need for skimming or browsing. Readers often require merely an overview of a

106

Chapter 4

text, or quick and easy access to relevant material in depth but which is not obscured

by irrelevant detail from other topics. Indexing, good structuring and complete tables

of contents help reduce the dilemma, and an abstract is good for an overview - but

each scheme depends upon someone else’s viewpoint, and so remains as merely a patch

for the problems.

However, the advantages of an electronic book were much easier to define,

having been described as early as 1968 [Engelbart 68]. The benefits of using

computers in the construction of electronic books can be seen when they are used for

creating connections, or ‘webs’ between related material. With normal printed text,

ideas which result from the reading should ideally be recorded somewhere, and

typically they are kept as annotations next to the material that induces them, or as

totally separate records which may subsequently be lost.

Yet both of these have the disadvantage of not promoting easy cross-referencing,

nor is it a simple matter to locate such notes at a later date. Consider as a single

example the loss to mathematicians of Fermat’s last theorem^®. Many researchers have

stressed the benefits of working with connections between data, and the value of ideas

leading to the derivation of new connections. The clear implication is that material

held by an electronic book would be much more suitable for linking with connections,

because of the potential for flexible organisation of material. It is this concept that

subsequently introduces the idea of hypertext.

Yet the intrusion of enforced structure into the material can also result in less

flexibility for the computer based document, when compared with the paper document.

According to Hansen et al [Hansen 88]:

29: Fermat’s last theorem was a proof of the hypothesis that the diophantine equation:
x” + y” = z"

only has integer solutions for n = 2. He noted in the margin of a text that he had found ‘a marvellous
solution to the problem, but do not have space here to record it’. For many years, mathematicians
expended considerable effort in trying to reproduce the proof, but without success. Current thinking is
that Fermat’s proof may have been flawed. The loss to mathematics could therefore be described in
terms of effort rather than result Equally, however, the effort resulted in the gaining of many other
theorems and a greater understanding of the subject.

107

Chapter 4

‘Several factors can influence the behaviour of users as they read and

write with computers.'

Such factors include page size, legibility and responsiveness. Yet it would seem

that the links and structure of the computer-based document, and the mechanisms used

to follow them, are more significant in channelling the options available to the reader

into a specific but limited set of possibilities at any one time.

Once the webs of connections have been established, it is possible to use the

computers to focus on the connections themselves rather than the data that they

interconnect. This enables an ‘overview’ of the data to be considered, providing a

visualisation of the structure of the data. Beyond the manipulative advantages of

computer-based electronic books themselves, comes the additional and significant

potential for supporting inter-communication between users of the material, whether

they are originators (the authors) or everyday readers. Clearly, this offers much in the

way of enhancement for learning, discussion and general research; but there is also the

issue of information integrity, and this becomes a more significant problem with the

incorporation of the ‘multiple book’ concept. An electronic book could come in a

number of ‘editions’, each of which could be selected or viewed by multiple readers

according to need or preference. Extending the idea, academic (textbook) material

would rarely be considered complete, but instead viewed as offering only a limited

contribution to a potentially massive linkage. In order for this extensive data group to

retain its consistency, revision access must be directed or controlled. Therefore, it

should be possible for the data to have associated attribute records, which - amongst

other things - will describe the various permissions that the reader or reader category

has with regard to that data object. Such attributes would enable a ‘filtering process’

to identify material that can be altered by the reader.

Such a system naturally lends itself well to placing restrictions upon certain

sections of the data (perhaps for security reasons), since unauthorised readers would not

be permitted to retrieve the secured sections of data. This further means that multiple

readers with selective read- and write- permissions can have varying views of the

electronic book - in effect they would have different ‘editions’ of the same book.

108

Chapter 4

However, this same flexibility introduces potential problems with regard to the

organisation of the data, as recognised by Yankelovich et al:

‘as the number of connections and quantity of information increases, so

does the difficulty of generating maps of the entire information web.’

Indeed, it is perfectly possible to envisage circumstances where the resultant data

‘webs’ could be considerably more complex than the data that they refer to, and in an

expanding state following multiple user accesses and manipulations or updates. This

is a major problem that overshadows all current work, and as yet has no

straightforward solution.

In a sense, multimedia systems are the precursor to hypertext systems, even

though hypertext as an idea has been around in one form or another since around 1945

[Bush 45]. The main difference is that multimedia systems are essentially directed

towards the simply specified task of handling potentially large quantities of varying

(multimedia) data types. The actual usage of the system, and indeed, the presentation

of the manipulated data, is either left almost entirely to the user of the system, or

limited to falling within exact constraints imposed by the system developers.

In a similar way, despite the great lengths to which hypertext developers go to

ensure that the presentation of data is easy, natural, and intuitive; there is still the

underlying concept of treating data (normally text) in lumps for presentation ‘a page

at a time’. The justification for this is that if information takes more than a ‘page’ to

present, it probably needs to be broken down further still, into smaller pieces. This is

deemed necessary in order to make it easier to find a way around the data, thus

establishing paths that follow links between the sections of data. As evidence of this

point, it is generally recognised that much hypertext research is addressed towards the

presentation of only a partial component of the hyperverse^, instead of first considering

the relationship between data presentation and the end-user ‘assimilating’ the data.

30: The HyperVerse is the logical extension of Hypertext systems, whereby all Hypertext systems will
merge and handle all data and media types.

109

Chapter 4

Additional questions of complexity can rapidly arise within a hypertext system

because of the ease with which jumps across the links can be made. Engelbart

[Engelbart 87] has suggested that in fact, a ‘hypergrammar’ should be developed in

order to constrain the authors from ‘leaping around’. It may be true that human

perception of ‘information’ is ‘spaghetti-like’ in form, yet to minimise user confusion,

the presentation of that information should be as straightforward as possible -

multiple-link possibilities will quickly begin to confuse the presentation by literally

drawing a ‘web’ over the data. These two aspects introduce a paradoxical difficulty:

to represent a complex network of data without using a complex net for exposition.

Furthermore, tools for the formation and use of hypertext systems are still at

a very primitive stage. The ability to search structures, to check links, and to detect

‘stubs’ within links is of great importance, but as yet there is no hint of an emergent

technology for the development of such tools. Despite the widespread use of word-

processing technologies, the strategies for the construction and development of

documents are derived primarily from publishing technologies dating back centuries.

And yet there is already a serious (and impatient) proposal to jump ahead to work on

the hyperverse concept, which will extend the ideas of hypertext to all media types.

Without a better understanding of the principles embodied within hypertext system

creation and access, there is a danger that hyperverse systems may be constructed upon

inconsistent or inadequate foundations. A question that must also be answered as a

matter of urgency concerns the practicality of working with the large systems implied

by a hyperverse architecture. The larger the system, the more likely that there will be

multiple contributing authors importing multiple data types, and this introduces

significant problems concerning the integrity and coherence of the data which is to be

integrated into the resultant document system.

As indicated in section 3.6, many systems are developed using specifications that

arise from examining the characteristics of existing concepts. Although this has the

advantage that much of the basic work stems from familiar circumstances, in that the

objectives are initially definable and tangible; there is nevertheless a contradictory

component deriving from the tendency to implement systems in terms of generally well

understood implementation techniques and characteristics. In other words, if an existing

1 1 0

Chapter 4

system has any basic components in common with the desired application, then it is

natural for these elementary units to be incorporated. However, the ease with which

this can be done means that often, these fundamental components are ducted artificially

into structures or circumstances for which they were never intended, and in order to

achieve the modifications, the unit could conceivably be compromised with regard to

its validity and/or accuracy. An example of this could be found in some spreadsheet

systems, which are ‘enhanced’ to include database facilities. The database functions

operate by treating the spreadsheet cells as record fields. However, many spreadsheet

functions are capable of modifying entire groups of cells, and there is the danger that

unless cells are specifically ‘locked’ or ‘protected’, then the data held in those cells

could be altered or modified thus invalidating the database application. The problem

would not arise if the spreadsheet system was not compromised by the database

extensions.

The desire to include features because they seem like a good idea or because

they reflect popular trends can be pervasive. Notably, the current tendency for

poorly-planned evolutionary patching can manifest itself throughout all levels of a

computer system, including that of the operating system or machine architecture. A

good example is found in the IBM compatible personal computer systems, which

require the PC-DOS (or similar) operating system to perform its functions. The actual

operating system itself has undergone a considerable number of changes from its

original (version one) form, which in turn was largely derived from an 8-bit

microprocessor architecture operating system (CP/M^^. Consequently, most installations

of ‘super-workstation’ hardware - as typified by current 80386- or 80486-based

machines - still assume and accordingly require an older operating system technology

in order to maintain compatibihty with the previous systems. This naturally inhibits

the machine functionality to a worrying degree^ .̂ The majority of computer technology

31: CP/M is a trademark of Digital Research, Inc.

32: Tests were carried out and reported in [Powell 89]. An Intel 80386-based machine running a ‘C’
program under PC-DOS took 49 seconds to calculate some results, and 35 seconds to output those results.
The same machine executing the same (re-compiled) ‘C’ program under Xenix (a UNIX implementation
that utilises the 80386 resources to the full) took 16 seconds for the calculations and 4 seconds to output
the results. These figures represent 306% and 875% improvements respectively when the machine
architecture is less constrained by the operating system.

I l l

Chapter 4

architectures, which are perfectly empowered to support multiple users and execute

multiple tasks, are thus restricted to single-user, single-tasking operation in order to

provide application porting facilitation favoured by implementors, but spumed by end-

users. This is clearly demonstrated in the Microsoft OS/2 operating system, which on

the one hand promotes multi-tasking and a more consistent and considered machine

architecture, yet at the same time seeks to maintain a high degree of compatibility with

the essentially contradictory PC-DOS architecture.

Section 4.5: Focused Svstems and User Confusion.

The research into groupware systems has arisen from the need to look into the

communication and sharing issues in more detail. Engelbart’s conclusions

[Engelbart 88] concerning the issues required for successful implementation of

Computer Supported Cooperative Work can be summarised as follows:

1) There should be a common, coordinated set of principles over the

application areas. This particularly applies to the existence of a

common style of communication.

2) Grades of user proficiency should be recognised, as even expert

users will be novices in less frequently used domains. As

proficiency increases, users gain access to richer tool

environments.

3) There should be easier communication between domains, as well

as easier expansion of the domains. It should be possible to

move and communicate information between domains easily, and

now tools should be installed as required.

4) The system should be easily configurable by the user, adding new

tools or extending environments to suit their needs.

1 1 2

Chapter 4

5) Support services will be required, for such tasks as design and

administration, training and cataloguing.

6) There must be recognition of standards for information interchange

and ranges of hardware. It should not be necessary to presume

a particular machine or environment. Information exchange and

representation should be possible across system environments.

7) Methodologies will be required to augment the knowledge

workers’ community, as CSCW technology alone contributes only

to the tool system.

8) There must be reconsideration of the roles and organisational

structures within groups, which necessarily have the potential for

change with each introduction of new technology.

As an example of the first point, Engelbart cites the standard user interface for

Apple Macintosh applications, which are consistent in their common method of

interacting. However, the preferences or suitability depend also on circumstance, so

that the HyperCard system on the same machines has a different interaction

mechanism.

Given the data presentation capability of existing systems, it is clear that the

ideas and technology necessary to handle individual information components already

exist, but in isolation from each other. In order to build more advanced information

systems of the type described in this thesis, it is vital to give consideration to the

integration of the components in accordance with the ideas developed during groupware

research. Amongst other things, this will directly affect the ability of user to control

or ‘navigate’ the process of data adminstration and presentation. In order to increase

the potential of the system, it must be possible to ensure that the components of the

system can be as closely associated (or integrated) as possible, since it is unlikely that

any one system will supply sufficient tools to deal with all eventualities. Associating

the tools will mean that it will not be necessary for any one tool to try and do all the

113

Chapter 4

potential tasks, and instead to concentrate on the specific job that can be done well -

at maximum efficiency and speed. The more integrated a set of system tools are, the

less easy it is for a user to become confused through having to learn a new set of

techniques for using each tool.

Additionally, an extension to the processing model providing integration of

resources means that positive and negative feedback properties present within most

systems can be modelled, reflecting more accurately the actual circumstances of the

tasks. Feedback can be defined in computer terms as the ability of a machine to use

the results of its own performance as self-regulating information and so to adjust itself

as part of an on-going process” . Certain authors go further in stating the importance

of the feedback property, with Weiner:

‘[regarding] it as an essential characteristic of mind and of life.’ [Weiner 50]

Going further, he stated that:

‘It is my thesis that the physical functioning of the living individual and

the operation of some of the new communications machines^ are

precisely parallel in their analogous attempts to control entropy through

feedback.’

The need for modelling feedback within a system is justified in terms of

accuracy and efficiency of operation, combined with minimising redundancy and danger

of error. Supporting the mind in its tasks of processing real-world data and building

realistic models is a responsibility that must not be limited by the use of restricted

(incomplete) information systems.

Ultimately, the problem resolves to one of determining the control that the user

has during information handling tasks. At present, the control facilities supplied to the

33: Homeostasis.

34: He is referring to the first computers. One of the most famous early American computers, UNI VAC,
was operational at the time.

114

Chapter 4

user are generally hierarchical in nature and limited in their range, usually with regard

to the options available to the user at each stage of a given task. Although a large

number of data handling options may be supplied, the actual manipulation of that data,

the number of ways in which the data may be interpreted, can all be strictly limited.

For example, the way in which a data file is represented varies according to the type

of application which is using the data file. Word Perfect, WordStar and EDLIN all

handle text to a greater or lesser extent. Yet the default storage method for each of

these text processors is different, resulting in a basic incompatibility between files that

are supposed to be of textual form. As a result, although the user is permitted to edit

text information with each of the programs, once editing has occurred with a given

tool, it is not such a simple matter to exchange the results of the editing with one of

the other programs.

This means that control over the data currently remains in the province of the

focused application program. The user is ‘permitted’ to ask the application program

to perform a task. Until such time as applications start to facilitate considered data

exchange and support recognition of the working environment of the data, it will be

impossible to construct true information systems where the control of the system resides

with the user. This statement is supported by Benyon et al [Benyon 87], who pointed

out that:

‘..we feel that there are still several areas of information systems activity

which await adequate modelling.’

Their reasons for stating this dealt with several areas, including the modelling

of the interface between systems and user, where:

‘Defining the data or information which has to flow between systems is

necessary for a successful design, but not sufficient. ... The designer

often has a bewildering range of options along a continuum, all with

different technical requirement and implications for the system’s users.

... In most instances, the interface is determined by the designer’s

stereotype of the user or likely users.’

115

Chapter 4

Such is the limitation on integration of current systems that there is still

hesitancy in recommending the use of products labelled as ‘integrated office systems’.

This is particularly the case for multi-worker environments, and typically the advice is:

‘Unless the study team [evaluating the proposed system] finds a product

that is both excellent today and likely to become even more in the

future, it would probably be well advised to wait until the market

situation clears somewhat. Instead, it can move forward to discrete

services such as electronic mail and add more functionality later.’

[Panko 88]

The reasons for this reluctance are straightforward to identify. As Panko goes

on to point out:

‘[Integrated Office Systems] fail to provide many needed functions ...

lashing lOSs from different vendors together with electronic mail

standards alone may not be satisfactory.’

The systems which do exist are extremely proprietary, typifying the problem of

focused application systems. However, it is not merely the application that will be

focused, but the products themselves will be deliberately distinguished, re-enforcing the

problems of integration. Even in the established application of electronic mail, Panko

states that:

‘The existence of a multivendor electronic messaging system environment

should be completely hidden from users if possible. In most multivendor

environments today, it is extrem ely obvious when a user crosses vendor

boundaries.’

The required direction for integration is to eliminate the boundaries that exist

between applications. Panko concludes that:

116

Chapter 4

‘Second generation integrated office systems will end this artificial

separation by providing integrated access to most or all End-User

computing tools. At first, this integration is likely to be limited to

putting all of these functions under a menu and offering file conversion

among selected tools, and even this limited integration will be valuable.

In the longer term, second-generation integrated office systems should be

able to provide seamless integration by offering a common set of user

interface features, even if the underlying programs are diverse and, when

used in stand-alone mode, offer different use interfaces.’

Paraphrasing, the current state of application development technology is probably

barely adequate for most purposes. Panko’s ideas suggest that what is required is an

operating environment - an architecture - that will support the integration of all the

interacting components, including the user.

Section 4.6: Conclusion.

The integration of applications within systems seems to be accepted as being of

benefit. However, the modelling required for the development of a genuinely useful

information processing support tool requires rather more than flexible consideration of

the construction of data manipulation systems, beyond a direction towards enhancing

communication of data. A more general model for representing data is required, where

its context and environment must also be taken in to account.

This means that consideration must be given to much more than merely

computerising certain techniques. Further thought must be applied to establish more

useful conclusions, and it is this issue that must be addressed next.

117

Chapter 5.

Requirements for Genuine Information Systems:

A Fresh Consideration.

Section 5.1: Introduction.

A major question that follows from the analysis of current systems is that of

identifying the attributes that computer-based information systems should have. In

other words, what features are minimally required in order that the application can be

categorised as a computerised information system.

This is an issue which many researchers are studying in detail, and accordingly

this research has a different primary goal. We are not attempting a formal

identification or definition of exactly what a computerised information system is.

Instead, we are particularly interested in classifying and supporting the architectural

requirements that any given information system may require. Such an approach falls

between the two more usual strategies of:

1) Identifying or specifying the problem and then providing the tools

for solving it.

2) Providing general purpose tools that can be applied as suitable

utilities for solving any/all problems.

This latter approach often manifests itself in the construction of a prototype

system which can then be used for experimentation. In many cases, the prototype is

extended to become the end product, rather than being discarded in favour of an

improved system that is constructed in the light of results obtained from the original

prototype.

118

Chapter 5

Typically, developers intending to produce some form of information processing

system take as their starting point a study of the existing and more-easily identifiable

attributes of paper-based information system, and use those to build the initial

specification for the electronic system. Such an approach has its merits - such as

simplicity and general awareness, but has the inherent danger of restraining the scope

of the resulting applications, precisely because they may unwittingly incorporate certain

of the limitations imposed by paper-based information handling. Some restrictions can

be quickly identified and eliminated, for example the quantity of information that can

be held on a sheet of paper, or the ease with which information can be updated and

manipulated. However, other weaknesses are not so easily dealt with. Paper-based

systems have no way of representing links that may exist between information on

separate sheets, other than the straightforward but abstract notions of relationship via

adjacency, reference or footnote. In the former case, sheets close (or next) to each

other probably have a closer correlation than sheets further apart - the association

normally being that one sheet follows on after the other when read in sequence” .

Researchers have quickly realised that computer-based systems offer the

potential for many more links, of many more kinds, and with explicit detail as to the

nature of the link. However, ordinary information users are not yet acquainted with

how to use information linkages in this fashion - they are unable to make use of such

linkages because the possibility for such understandable linkages simply does not exist

outside the computer system, it is not an instinctively understood concept. Of course,

it may be possible to leam how to use such facilities” , and as understanding is gained,

so the user would be able to experiment with such linkages, and so the system would

become of greater value. But the learning itself is an abstract example of a focused

application, in that the skills learnt in using any new system which has some unique

features (such as the manner of establishing new kinds of linkages between information

items) may be usable only on that one package. Other systems may offer similar

features, but which are implemented in different fashions, or with a different

philosophy behind them.

35: Although this itself is a result of the limit on the amount of information that can be held on any one
sheet

36: An issue which the prototype architecture described later is intended to test.

119

Chapter 5

Accordingly, there is reason to conclude that using paper-based technology as

a prototype model for a computer-based system may result in a product which is

digressional or even divergent from the end-goal, because it is inherently focused rather

than diverse. The earlier quote by Negroponte^ gave support to the role of the

computer-based system in helping with the presentation of data to the user. But it also

has a more subde implication concerning the nature of presentation of materials to the

reader. Determining how the reader would like to have materials presented is not a

matter to be taken lightly, as it may directly influence the way in which the data that

is presented can be assimilated and interpreted (or understood) to provide information

value.

A further point concerns flexibility of systems. Having totally flexible systems,

which can be completely controlled by the user, may not necessarily be a good thing.

Indeed, it is easy to envisage circumstance where it could be counter-productive, such

as when end-users are so confused by the number of command options available at

various stages in the package that they subconsciously reject it by refusing to leam or

use the system. The question of whether flexibility is a good thing is an important

one that will be returned to in section 6.1.

For the moment, it is becoming clear that paper-based technology is a clearly

defined and implemented system. It has been rigorously tested and proven, and as

such is a completed system. It has no real prospect of further development, because

although the underlying technology may change or improve (from quill pens through

to fountain pens, pencils and ball-point pens, and currently the ‘state-of-the-art’ laser

printers), the manner in which the technology is used is almost completely unchanged.

To try and extend the system is in effect to simply change (update) the technology, not

the manner of working - and trying such an extension is unlikely to have measurably

beneficial results. Indeed, it is important to consider whether we really want to extend

the system. The next stage would almost certainly be computerised systems, but

following this path may not be desirable in practice.

37: ‘electronic displays (should) adaptively display not only what materials readers wish to see, but also
how they would like it presented.’ [Negroponte 76]

1 2 0

Chapter 5

An alternative approach is required. With computer technology, we have a tool

which can perform a multitude of tasks according to the instructions we give. The

difficulty therefore is to identify what tasks we wish the computer to perform, and thus

we must identify what we require from an information system. The idea of

computerising paper should now be discarded in favour of a more considered

recognition process. We must move to consider what tasks are actually required during

all the stages of data handling by us, the human users.

Carrying out an examination of the various systems used for handling data will

enable us to identify some of the key components which are involved in performing

the various tasks desired by end users, and for which Information Technology systems

can make a valuable contribution. Many of the systems described in chapters 2 and 3

deal with the components to an extent, but none of them deal with all the components

as a group. This thesis therefore involves in part the development of an architecture

that permits a wide range of application activities.

There is an important proviso to consider when dealing with generalised

information systems, however. There is the possibility that such universal designs

cannot be defined in a machine-independent fashion because of the limitations of

existing hardware architectures. Non-dedicated systems may be constrained by the host

operating system and/or hardware, while dedicated systems may be implicitly focused.

Consideration must therefore be given to the question of whether this implies that the

validity and efficiency of a computer-based information system depends directly upon

the hosting machine or software architecture.

In other words, we must consider the possibility that any computer-based

information system will be directly and intrinsically affected by the technology that

supports it, whether it be hardware or software. If it turns out that this is the case,

that the system is directly influenced by its environment, then we must consider to

what extent is it true that a reconfiguration of the architecture is a vital and mandatory

task that must be performed in order to orientate the information system towards

another application.

1 2 1

Chapter 5

Section 5.2: Identifying System Components.

In chapters 2 and 3, we described some examples of commercial and research

systems which have typical components identifying some of the processing tasks that

should be provided in most data handling systems. We can examine the components

to help with the derivation of an interaction diagram that portrays the inter-relationships

of the common tasks that could be carried out during information processing. The

diagram details how these component tasks contribute to the overall system by

specifying how they work and interact with each other. This approach of exploratory

system development using characteristic identification has the advantage over other

approaches in that we are working towards a second generation model of information

system attributes, based on the first generation approximations^. At the same time, we

are attempting to eliminate pre conceived ideas which may be dependent on

constraining suppositions. Initially, however, we will consider the major system

components as they are currently implemented or viewed, before reviewing how they

can be consolidated as required for the more enhanced information system and later the

information environment.

Of particular interest is to consider the normal working environment of each of

the identified components as depicted in Figure 4. As a top-down sequence is

followed, it is obvious that the components become more technical but lower-level in

their nature. Equally, however, the provision of the component within a specific

application package becomes less probable; instead more of the functions would be

found within the standard operating system resources of the supporting computer

system. This dependency on the hosting architecture will clearly influence the nature

of the component and the nature of its operation within the application. This leads in

turn to the suspicion that an enhanced information system cannot be defined in

completely machine-independent terms. If this is so, then any application or use of an

information system will also have a corresponding optimal implementation of the

system itself. Otherwise, the application will in the least case be inefficient, and in the

38: First generation models for information systems are those which have a clearly defined set of tasks
devoted to the handling of a limited set of data that purports to represent information. Such models are
inevitably focused application systems.

1 2 2

Chapter 5

PresentationUser

Control Report

Integration

Communication

Processes

Interfaces

Data

Data
Unit

Data
Unit

Data
Unit

Figure 4: Fundamental components in Information Processing architectures.

123

Chapter 5

worst case will simply not function at all. The process of using an information system

for another task̂ ® would therefore imply that a reconfiguration of the system

components must occur - in other words the information system architecture must be

reorganised. Thus the implementation of the architecture would have to be inherently

reconfigurable, almost to the point of amorphous existence. This naturally introduces

enormous difficulties regarding control and data flow, which are specific instances of

classic problems that must be dealt with by operating systems: namely multi-tasking and

sharing of resources without deadlock. The discussion in section 3.7 of the work by

Randell is relevant in this context.

Section 5.2.1: The User and Presentation to the User.

This is the top-most level of the information system, and as such has the most

direct relevance to the end-user. However, for most applications packages, the top-most

level is defined as being exclusively devoted to presentation of data to the user. A

considerable amount of work is being done in the field of Human-Computer Interaction,

and it is at this level that the results obtained are applied. However, for most

applications, an actual recognition of who the user is or what they might require is

casually dismissed, in preference to the ‘standard’ user. In practice, the established

model of a human operator seems to bear as much relevance to the real-world end-user

as regular shoe sizes bear to human feet. Certain customisation may be offered through

changing specific application attributes. The range of variables offered typically fall

into three categories:

1) How much help is wanted, on a scale ranging from minimal up

to maximum.

2) What colour scheme would be preferred, and occasionally how

many lines on the screen.

3) What key-strokes should be used to carry out the ordained tasks.

39: Sometimes called ‘launching’ an application.

124

Chapter 5

In practice, the provision of help is at best a screen-based copy of text that is

already provided within the user manual. Although there are some instances of

packages supporting the idea of truly context-sensitive help facilities, it is inevitable

that such features require significant processing by the application in order to establish

what the difficulty is, or what the user wants help with. As a result, system designers

are somewhat reluctant to devote time and energy to a feature that would - by

definition - reduce the amount of computer resources available for the tasks of the

main application. Certain computer architectures can help by supporting the basic idea

of switching between tasks or sections of code^, but this will often take a noticeable

amount of time and so is deemed unrewarding effort.

Clearly, there is a need for a support mechanism recognising individual

characteristics of multiple users. This concept needs to be incorporated into the

working model of the information architecture, although the degree to which the

incorporation of support is necessary would be influenced by the adaptability of the

users. Aside from the obvious issue of ensuring that the user can actually operate the

system, the user is also the upper-most command level for the entire information

handling process, endowed with considerable decision making skills as well as the

ability to make intuitive selections on the basis of meagre data. Moreover, much

computer-based information handling assumes that only a single user is involved in

giving direction to the processing. As discussed earlier in section 3.8, a few notable

exceptions (under the category of ‘groupware’) attempt to offer working environment

that permits multiple users to cooperate in information handling, although in practice

their functions seem to be directed exclusively to sharing access to a common diary

and provision of electronic mail. Currently, multiple users are unable to work

concurrently with each other except within very specific and restricted circumstances.

In order to achieve a reasonable degree of efficiency, all possible processing

components - including multiple human users - must be modelled or at least

represented within the information architecture so that communication and cooperation

can be supported, and feedback included. This is a point which will be discussed in

section 6.2.

40: Called ‘swapping’ on truly multi-tasking machines such as UNIX computers, or by the use of
‘overlays’ on single-tasking machines such as IBM PC compatible processors.

125

Chapter 5

Section 5.2.2: Control and Report.

At this level of information processing, directional commands are being passed

down to the main application control section, and results or reports are being passed

back up to the user(s). Here, the modularity of application systems means that it is

possible for many packages to isolate clearly the tasks from the main application code,

thus enabling the user interface sections to operate independently of the underlying

application. Indeed, there are certain examples of packages where this is considered

a bonus^\ as the code can be re-used with minimal modification, enabling a ‘similar

look-and-feel’ to be promoted, and so reducing the apparent learning time before the

package can be understood. Equally, the module segregation means that extensions can

be more easily accommodated, for example to allow a mouse to be used (often for

exactly the same tasks as arc already performed by the cursor keys).

However, distinguishing between modules and incorporating two distinct and

unidirectional paths between the user and the internal system means that the

information passing along the paths must necessarily be formatted in a variety of

fashions, suitable for passage along the differing communication routes. Thus for the

control component, this will probably entail parsing the user’s instructions into a

known format - defined by the system designers, and often at an early stage of the

design process - that can be accepted by the internal modules, which is a perfectly

reasonable mode of operation.

Nevertheless, when this same technique is applied to data passing from the

internal system to the user presentation components, then there are problems concerning

the need for re-formatting according to the presentation device(s). In effect, this is a

limitation imposed by the design which concerns the range of data representation

styles, as well as introducing the danger of losing data context. This is an issue that

will be addressed in section 6.2.

41: For example, the ‘Turbo’ family of compilers from Borland International, which have very similar
editing environments and control mechanisms.

126

Chapter 5

With regard to the control aspects, there are certain circumstances in which

control should not be as absolute as is commonplace at present. Obvious examples

would include requesting confirmation before a user is permitted to delete large groups

of files, or to re-format a disk that has data on it. The user has absolute freedom to

instruct - thus controlling - the system to perform an erasure. Despite the confirmation

check, users quickly become immune to the request and will reply in the affirmative

automatically. Normally, this gives the desired result, but in the single exception will

result in devastating consequences. The blind obedience of a system in executing a

command must be tempered by interpretation of the command within the circumstance

of the actual event.

Taking an analogy from the motor-car industry, a driver may instruct the

vehicle to stop quickly (by pressing hard on the brake), but to do so may cause the

wheels to lock causing the vehicle to skid (complete loss of control over vehicle). The

solution to this is to have advanced braking features fitted, so that the car can

‘measure’ if a wheel is about to lock, and automatically release the brake pressure a

fraction until the threat of wheel lock is over. In other words, the command to ‘stop

the car’ is obeyed by applying the brakes, but the environment of the command is also

taken into account so that if obeying the command literally could cause additional

problems, then the interpretation of the command can be relaxed slightly.

Control of information processing must be made context-sensitive in all its

aspects'^ .̂ In the same way as inexperienced users can do a lot of damage through lack

of knowledge, so experienced users can do a lot of damage through overconfidence.

A command affecting data items may directly influence past, present or future work of

other users, and so must be evaluated in the light of this. Obvious examples are

addressed by normal security measures, including the access rights to files (who can

delete, read or write to them), or who has access to resources.

42: As with all things, there are exceptions. The Paris ‘Airbus’ disaster on June 27th, 1988 [Times 88]
was a ‘no-win’ situation for the system: If the aircraft attempted to climb too steeply, it would stall and
crash, so the control system rejected the pilot’s instruction to climb sharply. But by rejecting the
command, the aircraft system prohibited any possibility of avoiding the ensuing crash into nearby woods.
The system behaved correctly, but the pilot was found to be at fault [Times 88b] in ignoring warnings
of being too low.

127

Chapter 5

This inevitably leads on to the matter of reporting the results of commands.

Clearly, the initiator of a command should be advised of the result - whatever it may

be - but there are instances when other users should be notified. The system/security

manager should be alerted if a security transgression has been attempted or completed,

and co-workers should be notified of modifications to any data which they are using

in their work.

Much of the research into Human-Computer Integration is directed at this

particular level of information processing, and the results include such concepts as the

WIMP environment (Windows, Icons, Mouse, Pull-Down menus), and this technology

has been gratefully adopted in other systems, such as hypertext packages.

Section 5.2.3: Integration.

At this level of system operation, data exchange can occur. Specifically, two

distinct forms of integration can be implemented within application packages. Firstly,

control instructions from the user (or, in certain cases, from external events) are

combined with existing status information to identify the appropriate tasks that must be

obeyed, within the context of the environment. Secondly, an integration can be offered

whereby control or result data can be transmitted to or received from external modules,

which exist outside the scope of the application. This latter form of integration is

comparatively primitive but more widely implemented, and where it is offered will

normally support only clearly defined (and often limited) standard systems. Typically,

the implementation is found in either a dedicated and cooperative set of application

tools, or else in some form of distributed system. In each of these cases, it is

important to recognise that the underlying task is to transmit the required data in the

desired form. The selectivity of access to data and the need for appropriate methods

of presentation of results are both issues that are relevant to database systems.

Accordingly, much of the technology that has been developed for supporting such data

organisation and retrieval in information systems has been derived directly from

existing database management system (DBMS) technology.

128

Chapter 5

In this case, however, we are particularly interested in expanding the

implementation of integration to work with all data types, and to retain the benefits of

context sensitivity and relationships between data, wherever this is possible. This

requires that there be some form of manipulation model that can operate with typeless

data, specifically to avoid problems of proprietary architecture in any form.

Unfortunately, typeless data is a rather low-level entity, and can suffer from the

inherent dangers of inadequate specification of context. As a result, this may lead to

data being interpreted in a meaningless or even erroneous fashion. However, as will

be seen in section 7.2, we can deal with this difficulty by the incorporation of

environmental attributes which will be used - in the minimal case - to provide state

associations to the typeless data. The advantage of such an approach is that by

distinguishing between the characteristic attributes of data, of relationships, and of the

environment; we can develop application models that are equipped to support

interpretation of the data in terms of its purpose rather than exclusively on the basis

of what type it possesses. The elimination of any dependency on implied type

definition means not only that we can reduce'^ ̂ the likelihood of producing focused

information systems, but furthermore that we can reduce problems that may be caused

by the system being dependant upon specific host technology architectures. It must be

re-emphasised that we are not excluding the attribute of ‘type-ness’ for a data item,

merely distinguishing clearly between the two. For genuine integration to occur in an

enhanced information processing architecture, it seems necessary firstly to recognise

that there is a distinction between a datum and its attributes, and secondly to provide

a means for communicating the two associated components.

Section 5.2.4: Communication.

Although this component is dealt with as a middle-level component within the

interaction diagram, it has influence over all of the components within the interaction

diagram because it directly affects the movement of data and attributes (as described

in section 5.2.3), and also the flow of control throughout the entire information

processing architecture. In its elemental form, communication is concerned with the

43: Ideally, exclude.

129

Chapter 5

movement of objects between object users, whether they be computers or consumers'^.

Considerable expertise and technology exists to handle the material tasks for

fundamental data communication. But including the concepts derived at the higher

levels of the interaction diagram means that the necessary communication techniques

must become more abstract in nature, as they also depend upon the method of

portrayal rather than just the mechanism of transport.

Despite the large quantity of research that is carried out concerning

communication of data within and between computer systems, it is a notable fact that

much of the work is carried out with little regard to the nature of the data itself.

Typically, researchers will refer to packets or ‘lumps’ of data being carried around the

messaging system, and this proves quite sufficient for the advanced implementation of

powerful systems. The actual interpretation of the data is (correctly) conditional upon

the objectives and operations of the initiating and receiving applications. The result of

this is that some extremely powerful mechanisms exists for conveying data, but in

many cases the client applications that use the conveyancing tools are much less

developed or advanced. This has resulted in a slow acceptance of communication

technology, other than at rather low or elementary levels where the applications are

straightforward and unquestionably beneficial'^ .̂ However, there is little doubt that an

enhanced information processing system must expand upon the fundamental data

communications technologies to support the wider requirements of context, attribute and

relationship communication along with the data itself.

Enhanced systems will inevitably require a portability of data between the

multiple applications within the system, and this is achieved in most cases by having

a standard data representation format. Hypertext systems will implement

communications in only limited ways, as there is in fact rarely any requirement to

share data, only to be able to follow the links that can be established between the data

44: Computer in this context meaning some form of processor - not just technology-based - and consumer
meaning a data source or destination.

45: Data exchange between incompatible machine architectures, message passing across long distances
(inter-machine), and memorandum-based dialogues. This latter example may not necessarily be beneficial,
but is a social rather than technological issue, and so will be not be discussed further here.

130

Chapter 5

items. Indeed, Oren has pointed out in [Oren 88] that such requirements make

CD-ROM an ideal technology for hypertext systems, because:

‘The fact that CD-ROM is static (i.e. it cannot be altered) is a selling

point, because large editable hypertext systems can be difficult to update.

Every time you edit, ... links connected to that node may have to be

changed. Although suitable data structures do this, it can place quite a

computational load on your computer if you are dealing with a database

consisting of hundreds or thousands of nodes.’ [Oren 88]

Section 5.2.5: Processing and Computation.

The processing and computational tasks performed by most information handling

tools are characteristic of focused application systems. As described in section 5.2.3,

the constituent data has been stripped of all but the most fundamental (scalar) qualities.

Context has been removed, or at best deferred. The application tool can now proceed

to manipulate in accordance with the direction of its design goal, which is inevitably

focused. Almost without exception, the nature of the activities performed in carrying

out any data processing within an information handling system will reflect the fact that

the in form ation system , and not the user, imposes the pattern and manner of operation.

Thus, the implementation of mechanisms for processing are a result of the nature of

the permitted functions; whereas it would be preferable to have generalised tools for

use across multiple applications and functional environments.

This is clearly demonstrated in so-called integrated systems, where the multiple

tools require the ability to share the data. This can only be done if the data storage

is in a known and agreed format, and this can often impose limitations on the ways

in which it can be accessed or communicated. Consequently, the tools which can be

used for this exchange have to be limited, and so constrain the application. A simple

example of the problem can be seen concerning the use of different operating systems

on otherwise identical machines, which may sometimes disagree on the representation

of apparently standard data types.

131

Chapter 5

For example, a text-file on a UNIX system has the <LF> character (ASCII code

decimal 10) as the delimiter for the end of line, while a similar file on a personal

computer using DOS will store the file with the end of line delimited by the sequence

<CR> and <LF> (ASCII code decimal 13 then 10). This subtle difference can cause

problems if the same data is to be used by separate processing tools, a possibility made

more likely with the introduction of UNIX machines into the PC working

environment"^.

In a similar way, the representation of other data types can cause problems, for

example the representation of integer or floating point values. Taking the example of

UNIX again, there are invariably at least three forms of integer available in the C

programming environment, namely SHORT INT, INT, and LONG INT. The only

guarantee about their representation is that SHORT INT can hold a range of integers

that is less than or equal to that of INT, while LONG INT can hold a range of

integers that is larger than or equal to INT.

Non-computational devices are not immune either. The method for representing

a graphic line on an output device can vary dramatically between (say) printers,

raster-scan or vector-scan monitors. Accordingly, appropriate processing to produce the

required graphic line is not simply a task of computing the end-points, but recognising

the output environment.

Section 5.2.6: Data Groups.

The collection of data into groups is a complicated issue, that is further

restricted by the design of the hosting machine and operating system architecture. Files

may be stored in a variety of fashions according to their type, while certain

environments will simply store data in a byte-wise fashion"̂ .̂ Considering the matter

46: In order to help introduce UNIX into the PC market, certain manufacturers offer DOS emulator tools
that run under UNIX. The emulators mimic standard PC with graphics, memory, disks and (normally)
an 8086 processor.

47: Under UNIX, a byte is not so simple a concept. What is the difference between a byte and a
character? Signed and Unsigned? Some systems store characters as short integers, or even full integers.

132

Chapter 5

from a higher level, hypertext systems will normally work with a basic unit of a page

or node, which can actually contain several kinds of data: text, graphics, references,

‘buttons’, etc. The representation of these complex data groups is a major problem for

the portability of information across systems and architectures. Yet this same grouping

ability is desirable because it enables us to work with more complex problems, by

allowing us to categorise and then associate or relate the possible sub-divisions of the

more detailed and higher-level task. By working with a group rather than a single

entity, we can apply a particular technique to a potentially complex object which is

represented in a much simpler working form. This has the advantage that the

otherwise complicating issue of extensive detail is less likely to obscure the approach

used to solve the problem.

Section 5.2.7: Data Basics.

It is very difficult for computer systems to agree on even the simplest concept:

the bit. Bits being transmitted across a communications link can be represented in a

number of forms: sometimes by varying voltages, sometimes by phase changes in the

carrier waveform. Storage on a disk can vary also, with GCR (Group Code Recording)

being completely incompatible with MFM (Modified Frequency Modulation).

Even assuming that it is possible to agree on the storage of bits, other problems

arise concerning what the values represent or even with regard to the order in which

they should appear. Certain microprocessors require data to be stored or accessed in

high-byte/low-byte sequence, while other processors require the opposite sequence. Any

given data value can be interpreted in a variety of ways. A single 8-bit byte can

represent 256 possible combinations - but of what type? Different colours, voltage

levels from an analogue device, speed of transmission, etc.

This confusion over potential meanings results in difficulties for integrated

systems, which must necessarily include some agreed way of determining what data

values represent - attributes must be defined. Unless the attribute mechanism itself is

agreed upon, then data exchange between integrated systems is an impossibility.

Furthermore, the representation of attributes normally occurs at a very low-level, with

133

Chapter 5

close association to the data; while in fact there may be circumstances where a

higher-level attribute concept may be preferable.

Section 5.3: Suggested Requirements.

Having identified the components that appear as tasks within information

processing domains, we must now collect the elements into an integrated architecture

which will represent the structure for a possible second generation information system.

From the interaction diagram of section 5.2, it is clear that there is a path from the

lowest levels of data representation through to the highest level of user presentation and

awareness. Accordingly, it is important to ensure that the data representation chosen

can be used throughout the whole of the interaction model. The data handling itself

would then be built upon the standardised representation. For the inevitable

circumstances where the representation is not adequate, then either the model must be

enhanced or an automatic (transparent) conversion facility must be offered. The former

option is preferable, not least because it promotes the cause of genuine integration of

processing components, although it initially requires more effort to achieve.

As we move down through the interaction diagram, so our understanding of the

components becomes more thorough. Indeed, it can be argued that each of the

components represents historical stages during the development of information

systems - especially those which are computer-based. The problem is that this

promotes an imbalance with regard to the quality and scope of understanding, as well

as an inevitable bias towards lower-level system development on the part of system

designers.

Nevertheless, our objective must involve an attempt to understand in practical

terms what is required in order to support the mind that is processing information.

Furthermore, as discussed in section 6.1, there is no reason to suppose that there should

necessarily be any precise correspondence between the processing within the mind, and

the processing within a computer-based information system. As Roszak has indicated

[Roszak 86]:

134

__ Chapter 5

‘there is a vital distinction between what machines do when they process

information and what minds do when they think...that distinction needs

to be kept plainly in view.’

In order to understand the goal of our desired information system, we require

a working definition of Information. An uncomplicated explanation was provided by

Roszak [Roszak 86]:

‘information ... is ... discrete little bundles of fact, sometimes useful, sometimes

trivial, and never the substance of thought.’

Such an interpretation, unfortunately, lacks the detail or precision that we require

for developing our working model. However, it does promote clarity, which is to be

desired in preference to complexity or obscurity. Accordingly, for our model, we

define information as being that which is gained by the observer’s interpretation of

data presented within a dynamic environment. The term data refers to the raw material

used in all kinds of computation and inference, whether by man or machine, and

regardless of source or destination. The term observer refers to the end-recipient of

one or more results, or alternatively to the supplier of data. Typically, this will be

the mind of a human user, but it could equally refer to a data storage mechanism. The

environment is a concept which is discussed at length in section 6.2, but taken in

conjunction with the dynamic nature of changing circumstances, is vital to incorporate

feedback within the system. The observer’s interpretation of data is the key to

understanding information in terms of computer-based information systems, data, no

matter how presented, is meaningless until interpreted by an observer. Since the

experience of the observer will directly affect how he or she considers the data

presented, the interpretation will influence the information derived from the data. For

example, most people can interpret pictorial data more easily than numerical tabular

data. Accordingly, we can examine each of the defined components in the light of our

interaction diagram to establish a model of the required information system architecture.

This concept of interpretation seems to be supported by Roszak, although he

gives it a different name of generalisation. He first states as a paramount truth:

135

Chapter 5

‘the mind thinks with ideas, not with information.’

Using this, he suggests that:

‘The relationship of ideas to information is ... [called] ... a generalisation.

... Generalisation is the process of creating or seeking for a sensible,

connecting pattern; possibly by enlarging upon a very few facts to

produce a conclusion. After more facts are gathered, the pattern may

fall apart or yield to another, more convincing possibility.’

Elsewhere, he states that:

‘The relationship of ideas to facts are that ideas are the integrating patterns.’

The direction of these statements is that in order to function, the mind must

have access to facts. These facts are then grouped, collected and arranged into patterns

which relate the facts. The patterns themselves form ideas, which is what the mind

thinks (works) with. An information system which purports to support the mind in its

thinking (processing) would therefore have to assist the mind in accessing facts, and

subsequently provide the facilities for experimenting with relationships and subsequently

arranging facts into patterns.

Facts, or data, is the collection of raw material worked with. The great

difficulty with data is that understanding what it is can be intuitively obvious, but hard

to formalise. However, in computing terms, we can simply define it as being fixed or

altering values of variable type, suitable for processing. The observer can similarly be

defined as a human user of the information system.

This means that we have two further aspects to work with in order for our

model to become an information system: presentation and the environment. Both of

these issues must therefore be addressed and supported by the architecture of our

system. Indeed, in section 7.2 it was shown that both of these issues can be unified

by modelling the entire environment within a suitable architectural structure.

136

Chapter 5

The issue of presentation of the data to the observer is an important one, as

implied by its relevance to the tasks of interpretation. The problem lies in determining

what form of presentation is the correct (or preferable) manner for a particular set of

data. For some data types, this is a comparatively simple matter: sound can only be

presented in one way, with essentially uncomplicated variables concerning tone, volume

or speed.

If alternative variables are introduced, or permitted variables are forced outside

‘reasonable’ limits, then the result will normally be data of zero value, because it

becomes (literally) noise. Equally, sensible lighting or temperature control decisions

fall within the range band of ‘minimal’ through to ‘optimal’, but can eventually be

extended through to ‘too much’ or reduced to ‘too little’' .̂

However, certain other data types are not so easily fitted into a uniform

presentation scheme. Numeric data, for example, can be extremely precise, but taken

in quantity can ‘blur’ to the point of becoming a meaningless jumble when perceived

by the observer (hence large tables of numbers are confusing), whereas redrawing the

numeric data in the form of a suitable diagram^® should result in a much clearer

display - as long as it is not deliberately constructed to confuse or misguide - although

with reduced precision. It is a recognised fact that visual presentation of data to

humans has a higher priority than almost any other form of data acquisition through

the five senses, not least because of the vastly greater rate of data transfer and

recognition that is possible. Accordingly, visual presentation is by default a primary

component of any computer-based information system. Consider the tasks of depicting

petrol consumption over a period of time to a car owner. There are three forms of

presentation of the data alone:

1) Raw tables of numeric data.

2) Graphical representation only (using patterns to depict the

differences or relationships between the values).

48: Exactly what constitutes ‘too much’, or even ‘none’, will depend on the observer, but there is little
doubt that the observer will intuitively be aware of how much is too much.

49: Deferring the problem of what exactly constitutes ‘suitable’.

137

Chapter 5

3) Labelled graphs, which combine the graphical

representation with context (legend) and sample values.

It is probably agreed that the latter form is the more valuable since it has the

potential for communicating the data in a clearer manner. Thus we have the

requirement for working with not just data, but also the patterns that can be formed

with them, in accordance with the work of Roszak described in this section. Thus we

require an architecture to support pattern/relationship establishment. This same

architecture must go on to offer a suitable presentation mechanism as well.

A significant problem, however, is that because a computer is used as the host

for such an information system, it is relatively easy to offer the same data in a variety

of visual forms (the numeric or graphical presentation referred to in this section), and

so the complexity of this issue is increased.

Equally, however, as a user is trained and gains experience in interpreting data

that is presented, so the quantity of data presented can be increased, and the precision

of the presentation improved. Thus, we must allow for the fact that any given data

item or group could be displayed in a variety of ways, according to the competence of

the user. In effect, we must be able to take some data, and submit it to a range of

potential transformations, determined by the circumstances of the environment which

includes the hosting technology and also the user’s abilities. The actual working

environment is thus instrumental in dealing with the problems of data presentation, and

as such must be taken into account.

Facts grouped into patterns form ideas. Ideas generate information (according

Roszak). Therefore, given the two options of:to

1) Data presentation, and

2) Data and Pattern (relationship) presentation,

the second option will give you more information. Examining that is a purpose of

generating the proposed enhanced information system architecture.

138

Chapter 5

Section 5.4: Data and Information. Flow and Control.

We now have two domains of interest with regard to the development of a

second generation information system model. The first concerns the means of

representation of the complete circumstances of data manipulation, from the initial

stages of acquisition, through the tasks of control and manipulation which are

preparatory to presentation. The second field concerns the inclusion of all the

interaction stages of information handling into the architecture, as concluded from the

studies of existing systems and research. The derived interaction diagram leads us to

deduce that flow of data in various forms will be mandatory, but that associative with

that data flow will be control and command directives, tailored and influenced by other

operations occurring within the application model of the environment.

Distinguishing between data and information is key to the problem of

implementing an architecture, because as we have seen, information is only partly

defined in terms of data^, and unless the data manipulation is complete and sufficient

in its context, then information cannot be acquired. Too often, existing systems have

confused the problems of data processing with information representation and so have

misconstrued simple data value for system validity.

Furthermore, we must develop in parallel a mechanism for specifying the

control of data manipulation within the architecture. The data must be managed with

respect to its circumstances, and as such the circumstances affect and influence the

data; equally, control implies manipulation and alteration of circumstances or status as

well as affecting data, and so must also be modelled.

The provision for complete (but sensible) user control is essential in order to

reduce the likelihood of the information system architecture becoming focused upon a

single or specific set of application tasks. Extending the focus will bring in many

intricate problems that are associated with any large scale architectures, but to do so

is imperative if fuller integration of all data processing tasks is to be achieved.

50: According to our definition.

139

Chapter 5

Focused application systems impose the pattern or idea (possibly through an imposition

of the operational technique). Conversely, an enhanced information system should let

the user build and work with their own patterns and ideas, thus giving greater

information value.

Accomplishing this will require the derivation of an architecture for modelling

the basics of data and directives with the tools of flow and control, influenced by the

inherent representation of environmental circumstances. The production of this

architecture forms the major thrust of this research.

140

Chapter 6.

The Information Environment:

A Basis for an Enhancement Strategy for Information Systems.

Section 6.1: Introduction.

In previous chapters, we have worked towards establishing the key characteristic

components that would be required for any system purporting to be an information

system. More accurately, those components which seem to be required as a minimum

in order to support an information processing system have been identified. However,

it has been established that it is limiting to group only these components, even in an

integrated fashion, unless some context is applied to the resulting system so that the

scope of its functionality can be increased. In effect, we must move to consider the

extension of information system processing to the greater goal of the Information

Environment.

It is reasonable to suppose that humans store information to build models of

reality so that they can deal with the world. The models will be comprised of

components, such as factual images (basic data), or relationships (such as ‘mother

of ...’). These components are combined to form views of the world. As Roszak has

indicated [Roszak 86]:

‘Information does not create ideas, by itself it does not validate or invalidate

them.’

But the components must derive from somewhere, as signals arriving from the

environment in which we exist. Thus as the environment changes, so our working

model must inevitably alter as well. As Machlup et al have discussed [Machlup 83]:

141

Chapter 6

‘Experiences may initiate cognitive processes leading to changes in a

person’s knowledge. Thus, new knowledge can be acquired without new

information being received.’

Putting this in context with the work of Roszak, we can interpret this as

meaning that as the mind develops the ideas which model the relationships between

data, so those relationships can be used to generate more data. This is an important

suggestion concerning the behaviour of humans in processing data, and if it can be

accepted as true or at least valid, then we can use the concept in building

computer-moderated systems that will attempt to support some of the processing

activities of the brain. However, in order to accept the concept as tenable, we must

establish whether the use of relationships in generating further data is a defensible

technique. In order to do this, we must experiment upon the generated data to verify

whether it fits as a genuine member of the original pattern from which the relationship

was derived. However, it is difficult to prove that a relationship is valid in all possible

cases, because we may not be able to obtain or test all possible cases.

Furthermore, if our ability to receive the data is limited, then our model of

reality will inevitably remain restricted. It could not be extended through the reception

of additional facts which either support or refute the model. Such a restriction has

significant implications for information-using organisations which assume that in order

to maintain continuation of success, they must continually remain up-to-date with

computer-based information systems technology. Such a view is popular at the present

time, even though it is easy to establish examples where automatically upgrading or

incorporating the latest systems can be detrimental to an organisation. Translating

information as being the essence of perceptual images, Toffler indicates [Toffler 80]:

‘New information reaches us and we are forced to revise our image-file

continuously at a faster and faster rate. Older images based on past

reality must be replaced, for, unless we update them, our actions become

divorced from reality and we become progressively less competent. We

find it impossible to cope.’

142

Chapter 6

A straightforward interpretation of this statement is that to remain competent,

we (and consequently organisations) must have up-to-date information. However, there

are equal risks associated with information overload, where excessive data can either

overwhelm or confuse the recipient. Nevertheless, an implication of the stated need for

accurate information is that in order to progress and develop, a flexible response model

must be developed which can receive the maximum scope of data, and respond

appropriately. Such a strategy would be used by computer-based information systems

to implement a working model of the real world. In effect, the strategy would then

reduce the limitations that currently constrain computer-based information systems.

Thus, if used correctly, the computer can help with information processing, as indicated

by Toffler:

‘Because it can remember and interrelate large numbers of causal forces,

the computer can help us cope with problems, ... sift vast masses of data

to find subtle patterns. ... It can even suggest imaginative solutions to

certain problems by identifying novel or hitherto unnoticed relationships

between people and resources.’

Although this view is somewhat idealistic, it does identify possibly the most

valuable ‘skill’ of the computer, namely its prodigious data storage and scanning

capabilities, although the resulting value would inevitably depend directly upon the

nature of the scanning facility.

However, given the potential for advantages derived from using the fundamental

capabilities, it is suggested that a new computer-based information system model be

achieved by working towards the implementation of an architecture which allows for

the modelling and refinement of the data and relationships, each forming components

that build a model of the information being processed. Certain current systems allow

for representation of individual components. But few offer the ability to construct

anything other than simplistic models from them. Much of this is due to the lack of

ability to construct supplementary relationships and flexible models of the underlying

structure, and this in turn is due to two things:

143

Chapter 6

1) No one processing object can build a sufficiently large model to

complete a description of anything other than the most elementary

information environment or application circumstance.

2) The alternative mechanism of grouping together lesser but

cooperating components to build a more powerful

system-manipulating ‘organism’ is currently restrained through the

current inability to offer suitably powerful cooperation and

communication facilities: in other words the absence of true

interaction between the constituent parts.

From all that has been discussed before in section 5.2 and 5.3, it is clearly vital

to achieve a genuine consolidation of all components that can exist within an

Information System in order to expand the concept into the Information Environment.

The combination must be enhanced beyond the current popular conceptions, in order

to support information feedback within and with respect to all components of the

environment.

In order to improve the operation of computer-based information systems, an

architecture would be required that permits and promotes modelling of the entire

Information Environment. We can view each of the elements portrayed in the

interaction diagram discussed in section 5.2 within the context of general information

processing. The three top-most levels - User/Presentation, Control/Report and

Integration - are clearly relevant to the objectives of the given information processing

application, but should be further refined to include environmental considerations.

Concerning integration, this affects the operation of the tools selected and used for

performing the necessary tasks, primarily with regard to the scope of the tools. The

middle levels responsible for communication and processing are relevant to the tools

themselves, because they control the manner in which the tools operate on the data

which is received and generated. Finally, the lower-levels of data groups and raw

data relate to the materials being worked with during the application activities.

Accordingly, any information processing architecture must incorporate all of these

components as a minimum in order to offer the potential for enhanced functionality.

144

Chapter 6

An associated comparison may be drawn from more generalised systems

research work. Traditional thought has emphasised analysis of the components, often

at the expense of the value of context, whereas the systems approach stresses

[Ramo 69]:

‘a total, rather than fragmentary, look at problems.’

This has lead to a movement towards recognising and incorporating the feedback

relationships among both subsystems and the larger wholes formed by these units

[Toffler 80]. This is clearly urging a move towards a more consolidated way of

looking at problems, an emphasis supported and promoted within many other disciplines

[Lopez 73]:

‘Environmentalists tend to see things quite differently ... Their instinct

is to balance the whole, not to solve a single part.’

There is an inherent danger from attempting to group together smaller

components into a cooperative whole, that of chaos or breakdown resulting from

runaway fluctuations within the system. In any complex system, from molecules in a

liquid to the neurons in a brain or the traffic in a city, the parts of the system are

always undergoing small-scale change, they are in constant flux. When negative

feedback is applied (through user control), the fluctuations are damped out or

suppressed, and the homeostasis or equilibrium is maintained. But if amplifying or

positive feedback is at work, the fluctuations may be magnified so as to threaten the

equilibrium of the entire system. Such fluctuations may arise from changes in

environmental circumstances. However, in the event of breakup of the equilibrium, the

result is often the creation of a new structure at an entirely higher level, called a

dissipative structure [Nicolis 77].

Accordingly, in the proposed information processing environment, a monitoring

process must be built into all contributing components, in order to minimise the

difficulties of destructive fluctuation. Given that an Information Environment model

would be implemented using a truly multi-tasking architecture, then there is justification

145

Chapter 6

in requiring that some system resources should be dedicated to monitoring performance

of the system (breakdowns, fluctuations etc.), as well as to oversee security aspects of

the system. In essence, the system should attempt to maintain a fail-safe operational

state, so that all potential kinds of insufficiency or failure (hardware, software,

communication, integrity, secrecy) could be prevented, or repaired.

Section 6.2: The Information Environment.

It is clear from the discussion in section 6.1 that an Information Environment

is in some way an extension to the concept of the computer-based information system,

but it may not be clear how such an extension may be represented or defined,

particularly in terms of computer technology. We can define an ‘Information

Environment* to be the representation of the complete set of all components - processes

and variables - that take part in the entry, manipulation or presentation of any data to

any number of users. Constants within the environment effectively define the

application under consideration. Hence the users are modelled as part of the

environment, as are their workstations, their data, the input and output devices, the

co-workers, and so on.

There is no reason why a user should be prevented from achieving any desired

task in precisely the way that he or she wishes, and the key objective of developing

an Information Environment architecture is to provide the required flexibility. By

working with data in groups of known form as the basic units, processing modules

existing within the environment can use data in any way desired. Data intended for

use in a particular application is stored in a ‘global’ form, so that these same stored

items can be examined by any other module within the environment (subject to a

number of possible security considerations), optionally using other modules to perform

conversion or interrogation duties.

By viewing the environment as being responsible and requisite for modelling

and defining the application or task at hand, a number of potential extensions to current

work techniques become possible. These extensions will require changes in current

146

Chapter 6

thinking so that users do not remain restricted. By this, we mean that users must be

educated to think in terms of the Information Environment as a whole, and not be

limited in their conception of what can or cannot be done, simply because - say - a

given I/O device appears not to support the desired facility.

In the proposed development of a second-generation computer-based information

system as the first stage in developing an Information Environment system, we are

trying to break away from some established ideas such as the imposition of purely

algebraic descriptions of data and environment, because it is felt that it is impossible

to describe the dynamic attributes of a complete Information Environment using algebra

alone.

As an example of limitation by focused perception, consider the situation of

users at work with a computer system. When working at a terminal attached to a

remote computer, the use of a dumb terminal operating invisibly as it provides the

ability to work interactively means that the user may fall into the habit of thinking that

the terminal is actually part of the computer.

In other words, the computer and the terminal are merged into one processing

resource sitting in front of the user, even if the machine itself is known to be

elsewhere. Similarly, some people using a small or personal computer tend to associate

the ‘brains’ of the machine with the VDU that sits on top, even though the ‘real’

brain - the system unit - is quite clearly visible undemeath^\ This

‘ anthropomorphising’ of the technology means that some users may misinterpret the

relative worth of the different boxes, both in terms of monetary value as well as

resources offered.

Following from this recognition of perceptual illusions, we can extend the

example. Since most interaction with a computer is via a VDU and keyboard/mouse

combination, there is perhaps a tendency to think of any applications also being limited

51: Cartoons which anthropomoiphise computers will typically depict eyes/nose/mouth features on the
screen of a computer system, reinforcing the idea of the monitor as die ‘head’ - and implicitly the
brain - of the equipment

147

Chapter 6

to only these devices as the primary means of Input and Output, simply because these

are the only interaction mechanisms. This instinctive reaction is further enhanced

because the devices are designed to interact through one (or more) of the five human

senses, and input to humans from any one of these senses (but particularly visual) has

an extremely high priority for the human brain.

Imposing the hardware limitations upon data processing systems also promotes

the traditional form of document which is text- or diagram-based, and considered to be

one large entity. However, there is no real reason why this should be the case, and

for the construction of an enhanced computer-based information system, we propose an

alternative architecture extended to provide increased flexibility. This promotes freer

thought by encouraging interaction with a conceptual ‘Information Document’, which

describes and models the current Information Environment.

An example of this concerns group projects. Any work involving more than

one person becomes a team effort, and for the best results to be achieved, the team

must work effectively. A team leader has the task of overseeing the progress made,

and amalgamating all results obtained, as well as ensuring the compatibility of all of

the results. All of these responsibilities would be aided by the fast and effective

sharing of data and its context, as offered by the model of the Information

Environment. Each co-worker could be viewed as a contributory component of the

model, building and specifying the application on a real-time basis. The use of the

Information Environment means that the application can be examined quickly and easily

by any authorised user at any time, and furthermore can be updated or enhanced

automatically to reflect real-time alterations in circumstances as well as data.

The facility for sharing data becomes an augmented variation on the theme of

electronic mail or a conferencing facility, and would permit discussions between one

or more users on various aspects of the application design. But, equally, extending the

same architecture by the inclusion of additional processing components (modules) would

allow experiments to be carried out using duplicate sets of data, possibly with the

assistance of expert system modules to simulate the working of the entire application.

148

Chapter 6

The generation of the Information Document which forms a representation of

an Information Environment is consequently a complex and vital objective towards the

construction of a second-generation information system. Within such an environment,

all possible components of the given application - users, devices and data - must be

specified and portrayed. The distinction between specification and portrayal is that the

specification is typeless in keeping with the ideally typeless nature of the data being

processed; while the portrayal of a component within the environment is

context-sensitive, depending on the nature of the component and the presentation

mechanism. In effect, the portrayal of a component is an instance of an interpretation

being applied to a specification.

The environment is then used to enhance the data components by introducing

the representation of connections or relationships that exist between them. The value

of relationships can be depicted in general terms by a simple example. Stacks of paper

have indeterminate value. But, quite possibly, the topmost sheet of any stack is likely

to be more important than the lower sheets. This could be because it details the nature

or content of the remaining sheets. Thus, regardless of the data content, we have an

identified an attribute derived solely in terms of the relationship between data objects,

and so dependent upon the user’s interpretation of that relationship. The validity of

this can be seen on most office desks. The often seen ‘clutter’ of paperwork rarely has

meaning or sense to an external observer, but to the originator of the mess, it has

pattern and so almost any one item can be located instantly - precisely because

relationships exist as perceived by that user.

Thus components can have relationships or patterns which may be meaningful

only to those who understand or created them. The perception of the relationships can

therefore portray (convey) value that is potentially as important but more abstract than

the concrete data itself.

Finally, we can use the representation of the application environment to form

an abstract model of the application itself. Considering each of the components as a

whole means that we have effectively defined the application that is being processed.

As components are added or removed - regardless of whether they are data, devices or

149

Chapter 6

users - so the application is altered. Sometimes, the alteration would be terminating,

in that the application is halted in its current form. For example, if the user finishes

a word-processing task, then the word-processor can be removed from the workspace.

Nothing has ceased to exist, it is merely removed from the application, and accordingly

the application has been terminated, because the environment has changed. This is a

familiar concept to multi-tasking W.I.M.P. environment users, who will habitually

change ‘context’ frequently and easily.

Alternatively, the alteration to an application may be transformative rather than

abortive, as other components are added (possibly in place of existing components).

For example, the user may complete a given word-processing session, and move to

work with a different manuscript. In this instance, the application continues but in a

completely different context.

The provision of a mechanism for modelling an application by the use of the

Information Environment implies that the environment itself can also be modelled.

This apparently recursive statement has a number of useful implications for information

processing, specifically with regard to enhancing computer-based information system

architectures. For example, modelling the behaviour of a computer network can be a

complex task for simulation. But the ideal circumstances for any simulation

experiments would actually be to use the real-world instance. However, any program

which monitors the status of communicating hosts (as opposed to merely monitoring

the passage of messages along the communications medium) must inevitably influence

the behaviour of those hosts, thus altering the measurements taken“ . Such intrusions

must be taken into account, but the difficulty is in establishing how it should be done.

By actually including the communicating hosts and monitor program into the

environment, a more representative picture can be derived. The intrusion of the

monitoring program cannot be avoided, but it can be more accurately incorporated into

the performance figures.

52: This is a variation of the classic problem of whether the light always go off inside a refrigerator
when the door is closed. When you open the door to look, it is always on. If you could climb inside
(with suitable warm clothing), perhaps the refrigerator is ‘intelligent’ enough to recognise that you are
inside and so the light must be left on - in effect you would be changing the circumstances of the
measurement.

150

Chapter 6

Section 6.3: The Information Document.

Although applications within the Information Environment will be perfectly able

to produce high-quality documents in the usual sense, the second-generation information

system architecture is conducive towards the production of more advanced ‘Information

Documents’ which have enhancements that considerably improve the presentation and

context of multimedia data. By including environmental data as part of the document

specification, extensions or enhancements in the form of prominent or subtle effects and

emphasis can be readily incorporated. The actual circumstances of the data existence

becomes contributory to the value of the data, and as such must be available for

inclusion whenever the data is being used.

Thus, the entire Information Environment must be modelled by building

collections of data, environmental and processing components into computer-based

Information Documents, which are called IDEA’S (Information Document Electronic

Abstraction). The IDEAs are complete descriptions of all components being modelled

within the application system. This includes the user, devices, data and the working

environment.

This use of global data forms in creating each IDEA means that the IDEA can

be thought of as an information ‘picture’. The topological and geometric relationships

between the data items themselves provide considerable enhancement of the value of

the material being worked with, and it is this amplification of the raw data that will

improve the quality of work that can done using an Information Environment

architecture.

Such IDEA’S are subsets of the concepts embodied in Roszak’s definition of the

‘idea’, which is generated by the mind in forming patterns that relate facts or data

[Roszak 86].

151

Chapter 6

Section 6.4: Designing an Information Document Architecture.

In order to implement the IDEA, we require an architecture for representing the

information ‘pictures’. Earlier work has been described in section 6.2 and leads us to

envisage that the pictures could be built up using smaller and smaller data groups,

which are then used to develop an extended hierarchy for the document specification.

Each group of data can be collected together to form the document as a whole, in

much the same way that words build up into sentences, which are assembled into

paragraphs, and chapters. Attribute information would be associated with the groups

for describing the environment of both the data items and the application as a whole,

thus providing a more complete model of the application.

The resulting specification is clearly complex, and has the requirement for

multiple processing activities, so that a multi-tasking host would be mandatory in order

to support it. As a result, the architecture would also be better suited to a truly

parallel machine architecture. It should not be necessary to assume that a single

machine is running an application or module, and so a given application could run

equally well on several machines, with application tasks allocated appropriately. An

inevitable consequence of such a design is that the architecture is more suitable for the

next generation of machines, where reduced costs enable greater processing power

within a machine. Hence, instead of using software to simulate multi-tasking as on

current technology, the second-generation information system would access multiple

processors sited on multiple hosts, which would run tasks as and when needed.

All processors within the system would have two components: executable code,

and local data. Their operation would be specifically hidden from all other tasks

running on the host or other machines, and this would allow the processors to be

developed and extended independently of each other. Although the isolated tasking

concept is not innovative, the requirement that all tasks operate in terms of typeless

data groups is new, and it is this requirement that provides the flexibility in the

proposed architecture. Subsets of environments would be easily constructed by omitting

those tasks not required for a given application.

152

Chapter 6

In order to support the potential for typeless data processing, the active tasks are

defined as independent execution routines, that need not necessarily carry out their task

in a context dependent fashion. With few exceptions, the tasks would have to operate

only upon the data supplied to them from the recognised grouping mechanism. The

results of their work would, similarly expressed, be submitted as groups, either by

modifying the originally supplied group; or by creating a new group for the purpose.

Specifically, as long as the task is performed in the fashion required of it, there

is no obligation for it to function in a specific way. Consequently, it would be

perfectly acceptable for the tasks to be developed in any desired computer language,

depending only on the builders preference and experience.

In some cases, previously written tools may be preferred, and in this case

special supporting tasks would perform the jobs necessary to make both internal tasks

and the external tool think that their operating environments were as normal. An

extension to this means that a dedicated conversion task might take the data provided

in a group, convert it for use by an external tool, and subsequently convert the tool

output back into the recognised format of groups. The operation of this would lie

within the scope of the enhancement objective, because it would inherently support data

exchange regardless of the generating or processing tasks.

Several tasks identified for use with a system may be grouped together because

they have a common type of application, or for physical reasons such as being located

on a specific machine within the system. For example, device processors that handle

keyboard I/O, light-pen and mouse input or VDU output, could all be grouped together

as user-interaction tasks. Such related tasks are also said to be assembled into a

Group, because there is no requirement to distinguish data from tasks except by

circumstance. Such groups could be specifically sited on a machine which is optimised

for the corresponding jobs - for example a front-end processor.

Given that there could be a number of different components associated with a

given application, but that there is also a desire for a common architecture to be

suitable for the varied tasks, it would be preferable to have the possibility of automatic

153

Chapter 6

reconfiguration within the system. This reconfiguration would in the most simple

situations refer to the incorporation of appropriate devices according to what was

available and/or required for the application. For example, any devices which are

suitable for data presentation must be incorporated into the architecture, not only so

that data can actually be presented, but so that the correct (or optimal) presentation

device is selected. Sound data cannot possibly be presented to the user through a

visual display, but visual data could be presented in a number of ways, depending on

its type. Text data presentation can appear on almost any visual device, whereas

graphic (static or dynamic) data is considerably more restricted in the choice of devices

that may be used for its depiction.

More complex situations or applications would require more extensive

reconfigurations. This would necessitate replacing application modules or task

processors with more suitable or relevant tasks, in order to perform the new application

or to support alternative users.

Section 6.5: Summarv.

The work by both Randell and Engelbart referred to in chapter 3 is important

in justifying the extension of computer-based information system architectures to

develop the higher-level abstract concept of the entire Information Environment. The

technology for simple focused system development is well established, but is limited

in its potential. The enhancements can only come with a re-evaluation of exactly what

such systems attempt to model, and we are now finding that the models currently used

may be handicapped through architectural limitations. The reappraised architecture

takes into account recent research into information representation, as well as

incorporating those lessons learnt from the acceptance or rejection of specific

information processing ideas. Unless the ideas currently employed as the basis of

systems are demonstrably useful, their validity must be questioned.

An example can be seen concerning the dominance of the IBM PC architecture

within the personal computer marketplace, which is significant when compared with the

154

Chapter 6

smaller market share of the Apple Macintosh computers. And yet the operating

environment of the Macintosh is generally accepted as being a better one than the

standard PC environment - for certain users or types of application. Accordingly, the

environment - and implicitly the information processing architecture - is being cloned

onto the underlying hardware of the IBM PC, because it is this which is perceived as

the benefit, and not the Macintosh computer itself. Thus the success of the Macintosh

is perhaps not due to the hardware, but in the organisation of the processing

components in providing a ‘better’ working environment.

Accordingly, it is suggested that a reasonable requirement for enhancing future

computer-based information systems is a consistent and cooperative architecture to

support interaction and collaboration between all the contributing components, which

are present at many levels of abstraction from the lowest operating systems functions

to the higher user-constructed directives.

Section 6.6: Research Method.

In section 6.5, it was implied that for ideas to be accepted and utilised, it must

be possible to demonstrate their usefulness. This has a direct implication on the

method chosen for carrying out the research described in this thesis. A formalised

approach that would focus upon development of rigorous statements and definitions was

considered, but it was discarded for two main reasons.

Firstly, it was felt that for a computer-based information system to be widely

accepted, complex definitions and abstract arguments might deter the ordinary user.

Employing formal statements and definitions during design and implementation might

require their use throughout subsequent development or configuration of the system.

Since a desirable attribute of an enhanced computer-based information system is that

it should be understandable and configurable for all users, it would not be beneficial

to require users to have a formal understanding of computer science.

155

Chapter 6

Secondly, the development of formal definitions at any stage of the research

would naturally influence the subsequent work, or at the very least require a significant

amount of review and redesign as new ideas or concepts were established. However,

the very nature of the research was such that the concepts have evolved continuously,

requiring frequent and sometimes far-reaching re-evaluation of accepted conclusions.

Accordingly, it was felt that a prototyping approach to the research would be

more in keeping with the nature of the work, experimenting with ideas by

implementing and evaluating the results. Since a significant aspect of the work has

been to develop a prototype system, then the use of prototyping is consistent with the

research method. In particular, the prototype was at all times considered to be a

‘deliverable’. As various components or concepts were established, they were evaluated

by the author and also a ‘captive audience’ of postgraduate students and colleagues.

In retrospect, this decision had the advantage of enabling rapid incorporation of new

ideas, but the disadvantage that some of the new ideas might not always be based on

sound foundations. Nevertheless, the construction of the prototype system described in

chapters 8 and 9 has enabled the author to study the requirements much more clearly.

The working system can be evaluated and used as a test-bed for future development.

156

Chapter 7.

The Information Environment and GENIE-M:

Description. Generation and Control.

Section 7.1: Introduction.

This chapter considers the description and control of an Information

Environment, and proposes a mechanism for its implementation. The ideal generator

of an Information Environment will allow the construction of environments for a variety

of applications. The environment would then allow the mixing, integration and

interaction with static media types such as text and graphics, as well as dynamic types

such as sound, video, film, text and graphic animation. There would also be provision

for real-world control and feedback through a screen or digital and analogue switches.

The proposed model described in section 8.2 uses a homogeneous geometrical data

structure to represent associated data spatially and discretely. This is the theoretical

basis for the construction of the prototype system. The system architecture that is

proposed encourages the user to organise the sub-application environment in a more

responsive fashion.

The Environment brings together the tasks of accepting data into the system,

manipulating and performing computation upon that data, and presenting the results

obtained. The jobs involved in accepting, manipulating or presenting data range from

simple to complex, and it follows that each job being performed within the environment

must ultimately be considered on an individual basis. For example, the system should

be capable of handling interactive document editing and formatting operations, and

providing hardcopy on any printer, and this can be facilitated using modules and a

uniform data structure. The description of the environment tasks therefore consists of

detailing all jobs or modules. These modules operate by manipulating data using

software tools and object-orientated techniques, and also by interacting with other

modules in the environment.

157

Chapter 7

The flow of data and results between modules takes place within the

Environment using ‘Module Links’. These links should ideally connect across intra-

and inter-machine boundaries, although links between machines would usually be

handled by modules dedicated to supporting communication standards between

machines. Module operation consists of the following three simple stages:

1) Data is presented to the module, with instructions on exactly what

task is required.

2) The module performs the task as efficiently as possible.

3) The results are made available in accordance with the instructions

or design of the module links.

This description means that environment modules can behave in a similar

fashion to the process nodes used in data-flow diagram theory [Yourdon 78] and Petri

Nets [Peterson 77]. In general, modules may only execute when all data and

instructions for manipulating the data and processing the results have been obtained.

Some modules will be purely computational; others take results and prepare them for

presentation, or else accept data into the environment. The proposed modular

architecture, which is derived on principles described in object-orientated programming

methodologies such as those detailed in [Goldberg 83], [Cox 83] and [Cox 84],

supports high-level integration of applications, and allows the task activities to be

performed within a consistent user environment.

The presentation or acceptance of data takes place at the Interaction Boundary

which conceptually exists between the user and the rest of the environment. The

interaction boundary is delimited by a number of Interface Modules, which consist of

software on the system side of the boundary, and (typically) a hardware link on the

other side to a data source/sink such as a database or other machines. A human

observer can therefore be considered to be an interactive data source/sink, thus

conforming with the ideal of being viewed as part of the Environment.

158

Chapter 7

As well as being a passive receiver of data into the environment, the system

can be an active controller by presenting data to the real world across the interaction

boundary. If the data passed through an interface module is considered to be the

digital equivalent of analogue values, then the interface module can become a

controller of a device in the real world, such as a lighting circuit or projection system.

Such control of the real world helps in the presentation of data, and allows the system

user greater flexibility in many applications.

The system has been given the name GENIE-M as an acronym obtained from

the title: ‘Generator of Multimedia Information Environments’. As this full name

suggests, GENIE-M provides an experimental architecture for supporting an Information

Environment that handles many varied types of data (multimedia data), for the purposes

of dynamic presentation and interaction by one or more users. A complete GENIE-M

system is designed to work with data such as text, sound, graphics, video, and so on;

but it would also handle ‘environmental’ data: projection devices, external sensing and

measurement, lighting, temperature control, and other peripherals.

As a result of collecting these various forms together, GENIE-M systems could

depict and manipulate Information Environments by building descriptions in the form

of the IDEAs described in section 6.3. Instead of promoting complex but limited task

of data processing, the GENIE-M concept promotes the broader area of information

handling within the Information Environment.

The GENIE-M architecture is ultimately intended to be a generator of working

Information Environments. This is because all contributing aspects of the Information

Environment under consideration can, and indeed should, be modelled within

GENIE-M. Having provided the tools to model and document the Information

Environment, GENIE-M could then be used to monitor and manipulate any or all

aspects of an application environment through the control of the corresponding

application IDEA.

159

Chapter 7

Section 1 2 : Geometrical Data Structures.

Section 7.2.1: Philosophy.

The prototype version of GENIE-M is an experimental data modelling system,

and the key feature to the operation of this concept is the Tile. These tiles will hold

the data which can subsequently be manipulated and displayed. It should be noted that

use of the term ‘displayed’ does not imply a restriction to portrayal in visual terms

only. Indeed, by using the word ‘presented’, we mean that there is movement of some

object from a source to a destination, where the destination may be either terminal -

for example a graphics display device - or transactional - for example another tile

manipulation process. GENIE-M data can be presented visually to the user through

user-controlled windows on the display device. Any given tile can include sound data

(as well as other data types), and this sound - for example, speech - could be

represented in an alternative form if that is required by the presentation device. The

implicit topological and geometrical structures of a GENIE-M document is therefore

apparent, rather than deliberately obscured as in existing systems. This permits more

flexible manipulation of logical document entities, in terms which reflect user

preferences, because the user is allowed to be more aware of the architecture.

Alternative presentation schemes would make it possible to hide the underlying

document architecture, if this is preferred.

The tiles are partly ‘intelligent’ objects, which interact with their neighbouring

tiles depending on their relationship with those tiles. Each of the tiles will behave

according to the relationship it is intended to portray. A tile can examine its relation

with other tiles to establish areas of overlap and intersection. If a number of tiles are

geometrically positioned relatively to a ‘reference’ tile, and this reference tile is altered

or moved in some fashion, then the relative tiles must be able to adjust themselves

appropriately. If one tile is moved to a new location within the tile space, then all the

others must move as well. The tiles can be used for document production by more

than one author. There could be many people working on the material, and such

interaction leads naturally to the use of GENIE-M in multimedia conferencing. The

display device windows will usually be controlled by the user, but could also be

160

Chapter 7

coordinated by the conference manager to ensure that the appropriate material is being

presented and updated correctly.

Section 7.2.2: Physical Description.

All modules in GENIE-M interact with a homogeneous geometrical data

structure, which is composed of the tiles. Within the GENIE-M system, tiles are

subdivided into two forms for processing: topological and geometrical tiles. The

former are tiles that are primarily used for storage of data, and descriptions of the

relationships between tiles. Geometrical tiles, by contrast, hold identical data but

which has been processed or formatted to take into account the geometry of the

presentation mechanisms. In other words, the topological tiles are the internal record

of the data and environment being processed, while the geometrical tiles are the

presentation form of the data and environment. In effect, the geometrical tiles are

those which are enhanced by the use of geometry in their provision, processing and

presentation.

A tile can be envisaged as being rectangular in shape, and of a size that can

vary relatively or absolutely with other tiles. The tiles are positioned in a stack of

two-dimensional planes, called the tile space. Each tile has a tile record which

contains information about that tile, such as type of contents (text, graphics,

spreadsheets, sound, programs, etc), attributes (character fonts, colour schemes,

language used, etc), and most importantly, the relationships with other tiles.

Any kind of data can exist within a tile. Examples of simpler data types would

include text stored as ASCII (or EBCDIC) codes, or graphic images stored as bit-map

or vector codes, or digitised sound. More complex tiles could hold references to

devices, so that - for example - sending data to a printer device tile would effectively

cause output of this data to the printer device. Similarly, a mouse device tile could

hold data describing the current state of the mouse input device, while other tiles could

reference large data bases facilities. GENIE-M data would be formatted prior to being

placed in a display tile ready for presentation to a display device, with the kind of

formatting used dependent on the type of display device. As an example, a tile could

161

Chapter 7

hold digitised sound, such as speech, which cannot be meaningfully ‘seen’ on a printer

or VDU. The speech display data could either be presented (correctly) through a

sound output device, or else a speech icon would be presented to a printer or some

other visual display device.

Tiles can contain three main types of object: raw data, formatted data (for

display), and reference or executable program code. Depending on the primary use to

which they will be put, such tiles are called Data Tiles, Display Tiles, or

Reference/Program Tiles. Reference/Program tiles would not normally be displayed,

display tiles would not normally be used for holding raw data, and data tiles would not

normally be executed. However, tiles can always be handled by modules in the same

way, regardless of their content. Thus tiles are as global and typeless as possible, not

restricted to holding only data.

The data held within a tile can be dynamic. For example, a data tile could

hold a reference to a current share price for use in a financial report. Each time that

the tile is accessed, the latest up-to-date value would be obtained. Under suitable

circumstances, any references to that dynamic tile would cause real-time changes to the

presented results. A reference/program tile could access a data tile holding references

to spreadsheet values, and take the data to produce, say, a pie chart which is

constructed and held in a display tile. Reference/program tiles will often bind closely

to one or more data tiles, although they can also be for general purpose use by the

system.

The geometric positioning of display tiles in the tile space reflects their actual

location within a particular document or application. The position is represented using

the topological relationship between tiles described in the tile record, in a similar

fashion to Knuth’s concept of nested boxes connected by stretchable glue in the TgX

system [Knuth 83]. Tiles cannot overlap on the same plane and are affected by any

changes in size of neighbouring tiles. For example, a display tile of graphical data

which is located below another display tile of text in the tile space would be placed

accordingly in the document presented on the display device.

162

Chapter 7

Tiles holding text data to be formatted for display must also take into account

the effect of that formatting on related tiles. For example, if a tile is required to

divide its text into a number of columns with a diagram in the centre, then the

formatting must allow for the size and position of the diagram. If the diagram changes

size, then the text layout will probably need to be altered as well. Similarly, tiles that

hold sound data should be able to detect two or more voices ‘speaking’ at once.

Formatting takes place by ‘flying’ through the tile space, examining all those tiles

required for the presentation. A ‘filtering’ process may be carried out at the same

time, to identify required or unnecessary items of data. As each tile is ‘seen’, its

formatted contents are added to the display tile, ready for the end result. In practice,

a number of sub-display tiles may be used to build up the final display tile, so that

small (local) changes to tiles do not require such a major change to the overall

presentation.

Tiles may themselves refer to sub-tiles. If a tile contains text and it is desired

to emphasise certain portions of the text (possibly by italics or underlining), then either

the text could be subdivided into more and smaller tiles, or the tile could have sub-tile

references which hold the emphasised portions of text. Tiles which store animation

material will bind very closely to each other. Although each is an independent unit,

any alteration made to one of the tiles in the group will probably affect other tiles

within the same group. The method by which animation is achieved can vary - the

simplest technique would be to have a number of ‘frames’ stored, one per tile, and the

frames can then be cycled, in a similar fashion to that used in ordinary cinema films.

The frames would be stored in a ‘stacked’ fashion within the tile space, so that by

‘descending’ through the levels of tiles, each frame can be displayed in turn.

The organisation of tiles, and the relationships that are explicitly or implicitly

formed between them, are all referred to by the generic name of a ‘Web’. This

concept has certain similarities with Knuth’s cweb model [Knuth 84], in that it implies

the existence of a structure relating and controlhng all the entities within the formation.

However, the GENIE-M concept of the web is a much less formal concept, more

useful for envisaging the geometric modelling of tiles within the tile space.

163

Chapter 7

Section 7.3: GENIE-M Architecture.

Section 7.3.1: Modules and the Environment.

All modules within a GENIE-M environment have the same structure:

executable code, and local data. Their operation is specifically hidden from all other

modules or tasks running on that or other machines, allowing modules to be written

independently of each other. This means that subsets of GENIE-M environments are

easily constructed by omitting those modules not required for a given application. A

further advantage of the modular architecture is that GENIE-M is well suited to

making use of multi-processor computers, as opposed to running on a time-shared basis

on single-processor machines.

One unique module which must be present is the central administrator, or ‘hub’.

This module has the same structure as the other modules, but rather than manipulating

data, supervises the relationships between modules. The hub does not oversee modules,

because each module normally functions independently of any other module. However,

the hub does examine the overall running of the system to ensure that no problems or

deadlocks occur. The hub also has the responsibility of introducing and removing

modules from the environment, and generally serving the needs of all modules present

in the system. The hub maintains a record of which modules are present in the

environment by using its own geometrical data structure. Any modifications to the

environment are reflected by updating this structure^’.

Several modules present on a system may perform similar or related tasks.

They may be grouped together because they have a common type of task; or for

physical reasons such as being distributed between one or more other machines in the

system. For example, modules that handle keyboard I/O, light-pen and mouse input or

VDU output, could all be grouped together as user-interaction modules. Such related

modules are said to be grouped together into a Sub-Environment. Just as the main

GENIE-M system has a hub to control the environment, so each sub-environment will

53: In this way, it is possible for the information environment to ‘examine’ itself, by looking at the
stored model of the environment

164

Chapter 7

have its own Sub-Hub. Since the hub is responsible for activating all modules in its

environment, a bootstrapping technique can be used in initial construction of a

GENIE-M system, and later activations.

Section 7.3.2: Tile Transfer and Manipulation.

Each module within the environment only inputs or outputs data in tiles, so that

a module can work with any kind of data, regardless of what it actually represents.

The exceptions to this are the interface modules which accept raw data for conversion

into a tile format, or present results having extracted them from display tiles.

A tile which contains - for example - bit-map information could readily be

transferred to another module which manipulates the bit-map, without actually knowing

what the data is. In a simple case, the bit-map image would perhaps be ‘reversed’; in

a more complicated case, the image could be ‘skewed’ or ‘slanted’. Tiles can be read

and converted by Intermediary Modules which are used to supply data to programs or

machine processes that would not otherwise understand data tiles.

Section 7.3.3: Module Organisation within the Environment.

The main feature of GENIE-M module organisation is the hierarchy of module

invocation. Initial work in preparing a GENIE-M prototype has suggested that a

typical system will have a large number of fairly small modules performing elementary

tasks. A system which retains modules on a most-recently used basis will allow

frequently used modules to ‘float’ to the top of the priority table, giving faster overall

response. Most modules will connect to only a few other modules, and typically two

connections will provide input, while one or two routes produce output.

The organisation of modules is therefore very important in order that data may

flow as quickly and as efficiently as possible around the environment. The data

communications concept of a ‘packet’ as the primary data and action structuring

mechanism is reflected in a similar message passing technique used by modules for

working with the GENIE-M geometrical data structure. At the ‘centre’ of the

165

Chapter 7

environment will be the hub module, and around it is (conceptually) placed inner

service or core modules. These core modules will tend to perform tasks of an

administrative nature within the environment. Frequently, they will initiate activity

without user interaction. Most sub-environments will be located near to the hub, since

they form a natural division of tasks into related areas - they also follow a similar

organisation to that being considered. Further from the hub, elementary rather than

compound modules or sub-environments will begin to predominate. These perform

tasks of a more operational nature.

Finally, nearer the interaction boundary, the modules will become more machine

dependent in nature with hardware connections and dependencies. The majority of user

interface modules will be located here, because they are closely linked with the

interaction boundary.

Section 7.4: The User Interface.

The users of GENIE-M will need sophisticated software tools for entering and

viewing information. This support is likely to include editors for knowledge networks,

or composition tools for creating useful video or audio sequences and animation. The

GENIE-M infrastructure allows convenient communication with editors and users at

remote sites.

The ‘User’ is a general term used here for both the human user and the display

device being utilised to portray GENIE-M data from a display tile. The display device

is defined to consist of objects such as vocoders for sound reproduction; VDUs for

visual information; keyboards, mice and light-pens for information and command entry,

and so on. The GENIE-M user interface adopts the dynamic representation features

which are facilitated by the tile architecture (as discussed in section 7.2) for circulating

data within GENIE-M system.

At the user interface level, all internal communication tasks are performed in a

manner transparent to the user or users by the interface modules of a particular

166

Chapter 7

application. Each of these modules within the system has a specific and clearly

defined set of tasks to perform in order that GENIE-M data may be edited and

presented as desired. An example is the window administrator module, which is one

of the fundamental components in GENIE-M. This module has a full knowledge of

the devices under its control. For every display window or viewport, the window

administrator will keep an internal record of its structure, current contents,

inter-relationship with other windows, ownership, and other details. This module is

primarily responsible for presenting display tiles on the display device by creating

windows and removing them when not required. It therefore ‘knows’ about the

geometric and implicit topological organisation of data for a specific application, in

order to map accurately the data onto one or more display windows.

Another module of importance is the geometric structure editor, which

manipulates, creates and organises tiles of data in a tile space. It is capable of

grouping tiles into larger structures such as a tile plane. Inter-relationships between

tiles, for example, cross-referencing of data within an application, or even among

applications, are defined in this way. This type of linking, cross-referencing and

ordering of data in some instances resembles that of structure editors [Kimura 86] and

hierarchy editors such as PEN [Allen 81]. Accordingly, the GENIE-M geometric editor

has features that are in common with the hierarchy editor concept. Some editors

include facilities for cross-referencing to show inter-structural linking, though these

cannot be explicitly shown in the hierarchical structure.

However, GENIE-M’s linking capability is implicitly portrayed by the geometric

structure. Using a geometric representation for the relationships of tiles within the tile

space allows us to depict both cross-linkage of data and relative - and hence

topological - data organisation. Both of the cross-linking and topological concepts used

in GENIE-M are the natural and preferred products of one uniform structure, and

reflect similar concepts found in the ZOG [Akscyn 84 & McCracken 84] and Textnet

[Trigg 86] systems.

The geometric structure, when regarded as an abstract data structure, has an

additional advantage in providing an implicit indexing scheme. An indexing scheme

167

Chapter 7

is a technique of organising data for the purpose of accessing it efficiently, and can be

used to assist a human user in the search for certain information. Tile attributes are

inserted using a generic tile template that is accessible via menus available at that stage

of the interaction. Specific tile templates may be maintained for particular applications.

The human user forms the highest level of GENIE-M administration and

control. Tasks performed within GENIE-M are initiated by real-time events. A major

subset of the real-time events is the issuing of commands by one or more users while

directing the tasks performed by the system. Alternative real-time events would

include the continually changing time-of-day, or the current status of peripheral devices.

Human users ‘interact’ with an application via GENIE-M windows, which in turn

associate with relevant display tiles. The means of user interaction are usually locator

devices - a mouse is the most likely choice or a keyboard on a windowing system.

Other means such as a vocoder could be easily introduced into the proposed system.

The windows are used to depict the current state of the system in a manner determined

by the specific application. A monitoring task would depict the multiple processes or

activities being monitored, while information retrieval tasks would depict the requested

data (assuming it could be located).

Section 7.5: Application Examples.

Given the complexity of the concept, it is a good idea to give some examples

of how the system works. The process of understanding the GENIE-M concept is

helped by considering diverse examples of uses to which it can be put. We therefore

elaborate upon the GENIE-M concepts in order to clarify any confusion which may

occur while trying to understand GENIE-M. Following this are some detailed views

of differing applications where GENIE-M would offer a powerful range of abilities in

coping with the given task, as well as providing ample potential for further expansion

in that area.

168

Chapter 7

Section 7.5.1: Mixed Media Documents.

GENIE-M’s philosophy is realised by applying interactive multimedia documents

for presentation, manipulation, storage, and final hard-copy. The geometric data

structure interface allows the human participant to interact with presented data. The

participant selects relevant data by traversing the geometric planes using a locator

device (a mouse, foot-pedal or cursor keys, etc.). The inter-relationships between

different data objects (for example, text or dynamic graphics) within a document are

represented by tiles in a geometric space. The tiles are associated with processes such

as text or graphics editors. At any time, the participant is presented with an accurate

portrayal of the portion of data associated with selected tiles. Data hiding could be

effected using access rights defined on the tile for data security, or by simply ‘hiding’

the tile ‘behind’ other tiles - an action that it facilitated through the use of the

geometrical organisation.

Modification of or addition to the currently presented document is performed by

editing old or inserting new tiles within the geometric space using a geometric editor

at the interaction boundary. The tiles are associated with processes created and

coordinated by the hub. The geometric planes provide a simple mechanism for

generating and organising animated graphics, text or images in a dynamic document

structure or lecture scripts.

Section 7.5.2: Newspaper Lavout Construction.

Daily newspapers have many features in common. The majority of the

information and news is printed in black ink on white paper, and so in order to present

the reader with some variety and also to catch the eye, a number of type-sizes, fonts,

styles, and photographs are included. Each of the main news stories has its own block

somewhere on the page, sometimes with a relevant photograph placed at some location

within the block. It is not always the case that such a photo would be in line with the

block of text, and indeed photographs to one side of the text (and so forming an ‘L ’

shape block) are common.

169

Chapter 7

Given the somewhat haphazard nature of block layout, it is a difficult job to lay

out the page in a readable and presentable fashion, while fitting in the maximum

amount of information on the page. Furthermore, as news stories are updated or

invalidated, the block could be altered by being increased, or reduced, or removed

altogether.

There has been considerable discussion recently [Honeywell 87] over the use of

high-technology in producing newspapers, because such use would enable the layout

editor to perform the task more effectively and quickly. However, the techniques being

introduced make little attempt to integrate the entire process - if a block is being

manipulated on a VDU, it is unlikely that the contents of the block will be considered,

and if a block is later re-written then the layout process must be repeated again to

ensure that the material still fits.

GENIE-M would allow the concept of newspaper to be broken down into

smaller and smaller logical units: newspaper to pages to blocks to paragraphs to words,

and so on. Each one of these units corresponds to a GENIE-M tile. A high-level tile

(for example, the page tile) would hold references to lower tiles (the blocks on that

page). Block tiles would refer to paragraph tiles holding text, or possibly photographs.

Each one of these dies would be individually edited by the journalist, directly into the

GENIE-M newspaper database. As the tiles are entered into the system, the section or

feature editors can combine the tiles into tile groups, for example all international news

items would be collected together into a local number of pages.

These tile groups can themselves be built up into groups to build the entire

paper. Each of the tiles is at this stage a topological tile - the layout is comparatively

free, although there will naturally have been specification of paragraphs, emphasised

text or fonts, position of photos relative to the text (for example, between two text

paragraphs, or to one side of a paragraph or another photo). Most importantly, the

entire news item is considered to be one unit, and the author is rarely required to

consider the possibility of splitting the text over a number of pages. If editorial

constraints require that the material must be split, then a tile would be separated down

into two - or more - subtiles.

170

Chapter 7

Once the topological tiles have been entered, the GENIE-M system can begin

automatically formatting the document. It will know from the structure of the tile web

which tiles relate to each other, and so it can build up the geometric tiles knowing the

contents and attributes of a tile, and also its relation to other tiles. In the event of a

tile being too large for the available space, the GENIE-M system can create a new tile

to hold the extra material, and this new tile can then be submitted into the tile web for

another convenient page, along with bi-directional cross-referencing of the form

‘continued on page XX’ and ‘continued from page YY’ (possibly including column

numbers also).

;
The author of each item will have already specified information such as type

of tile contents, paragraphs, size of font, type-face, and other details. The section or

feature editor will have included further information regarding the relation of items to

each other - for example major news items would be expected to appear above and/or

to the left of minor items. Within these constraints, the GENIE-M system will

construct geometric tiles that reflect the individual layout of blocks, as well as the

combined page layout of all the blocks on that page. The display of these tiles allows

the overall view of the page to be considered, as well as the layout within each of the

blocks. If any one block needs changing, only the relevant tile needs to be altered,

and then the reformatting process to re-construct the relevant geometric tiles can be

repeated.

Time-sensitive material can easily be included - for example many newspapers

carry information on stock prices or exchange rates, and topological tiles can be

entered into the document that describe the layout of the information they carry, as

well as references as to the source of the information, but not the actual information

itself. At any time when any geometric tile is constructed which uses such topological

tiles, the cross-reference is followed and the latest and most up-to-date value is

automatically inserted.

GENIE-M is ideally suited to the high-speed and quickly changing environment

of newspaper publishing. Since all contributors to a paper (in whatever context -

journalist, editor, and others) all have direct access to the relevant portions of the

171

Chapter 7

paper, which can then be combined and manipulated within the same system, the

overall effect is of a much higher production rate, at lower costs to both the publisher

and the reader. Since GENIE-M is context-sensitive to the display device being used,

the material can be formatted appropriately for the device - for example if a publisher

wishes to place selected material into micro-film format, the exact same geometric tile

constmction process is followed, but using the micro-film device filter. Each one of

the topological tiles would be stored in the core and later archived into a news file,

and the very nature of the topological tiles makes cross-referencing an easy and trivial

task (albeit on a large scale).

Section 7.5.3: Lecture and Presentation Control and Structure.

Better lectures and seminars have a structure to them. After an initial

introduction to the topic being discussed, the main body of the presentation consists of

a submission of fact, information and views, which may possibly be discussed among

the group. Finally, a summary and conclusion is presented. Throughout, there is often

use of diagrams and pictures to help explain ideas or portray facts more clearly. The

diagrams could be in the form of slides (and overhead projections), films, and (more

recently) television and video. Some presentations may also draw on audio material

from tapes or records.

Given that the material and portrayal of material has a structure, it becomes

apparent that GENIE-M offers a number of useful capabilities in this application. The

entire lecture could be prepared by the lecturer, with each constituent object being

allocated a topological tile.

For example, each section of text in the notes could be allocated its own tile.

The tiles would be displayed to the lecturer in turn (using some form of

head-up-display), who can then present the material - alternatively, if the lecturer is

running behind schedule, it would be an easy matter to skip onto the next section,

knowing that all the cross-referencing of related material will be carried out

appropriately.

172

Chapter 7

Other tiles could be used as ‘channels’ for the input of information from outside

sources. For example, in a large auditorium, televisions may be used to display

camera views of the lecturer or diagrams. A camera could be used to ‘channel’ the

image directly into a GENIE-M tile. The lecturer then has real-time control of this

image around the auditorium, and as each new diagram is to be displayed, can simply

direct the appropriate tile to the televisions. A tile which holds pictorial information

for projection on a large cinema-type screen could have an associated attribute file that

would automatically dim the hall lights while the tile is active; once finished with the

image, the lights could be restored to their normal intensity. Alternatively, the lecturer

could have a ‘control panel’ presented on the display device so that personal control

of the environment can be obtained as and when desired.

The display device for the lecturer’s use would ideally be of the ‘electronic

lectern’ device frequently seen today at major conferences and seminars. This device

has a transparent display screen in front of the speaker, onto which is projected the

text of the speech from a projector underneath. The angles involved in this

‘head-up-display’ mean that the audience does not see any of the speech notes, and

further the transparency of the screen means that the speaker is not obscured in any

way. A small foot control device could be installed to control the speed of the

presentation of material onto the screen, thus leaving the lecturer’s arms free.

Setting up such a lecturing system would require that the lecturer arrive early

with a technician to connect-up the appropriate apparatus and its control mechanisms.

As each device is identified and a driver incorporated into the GENIE-M system, the

driver can be permanently kept on record for later re-use.

With all the material on hand in this form, the lecturer could display actual

copies of the notes in the form of projections, simply by redirecting tile contents to the

display device. A mobile pointer (possibly driven by a mouse) could be superimposed

on the projected image, in a similar fashion to a multimedia conferencing system.

Finally, having all the material stored in this way would allow hard-copy notes for the

audience to be produced easily and quickly.

173

Chapter 7

The construction of the lecture notes would be made easier by the probable

existence of a large amount of material already in GENIE-M tile format - it would

then be a simple matter of constructing a new lecture web from the information tiles

already stored in the core.

Section 7.5.4: Prototyping Methodologies.

When designing any system or device, it is useful to be able to build and study

a test system or prototype. The prototyping stage allows a more detailed evaluation

to be made of the system at an earlier stage of development, prior to a more detailed

(and probably more expensive) implementation of ‘the real thing’. In the case of data

processing tasks, where information is continually being moved and manipulated in

various ways, it is important that the movement and manipulation is carried out in a

clear and correct fashion. For small models, this may be easy to describe and

implement, but for larger models, the possible types, quantities, sources and

destinations of information easily become impossibly large to wield and test.

GENIE-M offers a structure mechanism that is designed to cope with large

inter-relating and interacting items of information. A web is constructed which shows

the relationship between any number of tiles. If the tiles become items of information,

and the connections are used to represent the flow of this information about the

system, then GENIE-M becomes a powerful prototyping methodology for the design

and implementation of such an information web. Command modules could be created

that will accept this web as input, and either mimic and so portray the flow of

information, or possibly produce statistical results as desired.

Section 7.6: Problems with the Concept.

For a developed version of GENIE-M we would choose to use a menu-driven,

windowed user interface that makes use of the ‘cluttered desktop’ concept of

overlapping windows (examples are Xerox Star, Apple Lisa and Macintosh, etc). Such

a depiction can rapidly become confusing due to the many objects displayed.

174

Chapter 7

However, the user or users currently directing the tasks will be familiar with the steps

taken to reach the current state, and so in effect the multiple objects on the screen -

which relate directly to objects within the tile space - can be considered to be a

‘viewpoint’ from the current perspective into the web.

The mechanism used by the windowing interface to associate with the

underlying geometrical model must allow users to transfer information between

windows in more structured manner than that provided in less developed systems. For

example, a user can work on the text for a document in one window, and draw a

figure for the document in another, which can then be transferred to the text window

at any selected position in the document. Furthermore, each user would have

personalised sub-tile-spaces, a set of common tile layers that are distinct from, but

associated with, the common tile layers that all users have access to. In this way,

multiple users can share tiles by placing them in common tile space, while private or

individual information can be located within the local tile space.

A more obvious problem concerning the concept rather than the implementation

pertains to the initial creation of the multimedia document or IDEA. The authors who

have contributed to the material to be displayed clearly have an initial responsibility for

its accuracy, but subsequently, as other authors contribute, or the scope of accessing

the material increases, so the ‘ownership’ of the IDEA may be increased. The problem

of updating the IDEA becomes increasingly difficult, especially with regard to ensuring

integrity of the stored material.

One temporary solution might be to archive permanently the original material

and all subsequent alterations. However, for important or popular IDEA storage, this

would rapidly become unwieldy. In effect, the concept of the IDEA becomes akin to

the ‘customised’ working environment, where each user has their own ‘version’ of the

application. While the potential for multiple and conceivably complex structures is

responsible for posing such problems, to reduce the same potential would in effect be

to limit the flexibility of the system and the architecture. This latter option would

counteract the perceived benefits of flexibility, as discussed in section 5.4.

175

Chapter 7

The actual implementation of the architecture may appear to be a retrograde

step, in that there are certain aspects which redesign existing systems. However, this

is considered vital in order to avoid the problems inherent in ‘patching’ systems: all

too often, attempting to patch an existing system will result in a new system that

remains constrained by the limitations of the original. If the limitations are to be

specifically removed, this would usually require a considerable amount of work; and

would in any event lead to potential conflicts with the original system design. The

less ‘efficient’ approach of identifying the essential aspects of the system before

commencing implementation results in a design architecture which reflects the original

specification much more accurately.

In terms of implementation, however, there are a number of aspects which

appear to be derived from the domain of operating systems, rather than application

systems. For example, certain elements of the data or tile handling, or the use of

drivers for specific presentation devices. [Scott 86] has said that rather than including

device specific code in an application, device drivers accessed through a virtual device

interface (VDI) provide:

‘applications with peripheral independence and system integrators with

a clearer route to completed applications.’

This can be further justified by the realisation that in order to provide a more

enhanced form of integration - as necessitated in any attempt to extend computer-based

information systems - we require that the distinction between operating system and

application system must be made less distinct in order to provide a better representation

of the working environment. [Halasz 88] has pointed out that joining an application

system closer to a support system is likely to produce a more efficient result, although

the actual joining may be more complex than keeping the two systems distinct.

Partitioning tasks between several domains means that interfaces would also have to be

defined, when in fact we are attempting to provide a contiguous model of an

operational environment.

176

Chapter 7

The approach used to envisage the individual application modules is rather

similar to the ‘black box’ concept of current software engineering techniques, whereby

the operation of a component may be safely ignored and will often be specifically

hidden. This may be contrary to existing standards such as Office Document

Architecture (ODA), where an ‘open architecture’ is seen as essential to promoting

standardisation.

However, it is often the case that such standard architectures cannot benefit from

environmentally-specific advantages. Constraining a system so that it must use a given

standard must at the very least reduce the overall performance of the system. By

contrast, using a proprietary architecture means that the system can be optimised for

specific circumstances, and when necessary conversion or environment-support modules

can be applied.

Finally, the actual implementation of the experimental system has made clear the

need for advanced hardware technology, particularly with regard to true multi-tasking

and parallel processing. In order for the proposed system to run at optimum

performance, there is a requirement for advanced host machines that are not as yet

available, although the indications are that such machines may appear before long.

Section 7.7: Conclusion.

GENIE-M is an implementation of an architecture for developing computer-based

information systems. In order to increase its power and capability, it has a number of

language-like and Operating-System-like features, but it is still nevertheless a system

for data processing and editing. GENIE-M’s basic units are tiles. These (and only

these) are what GENIE-M components are expected to handle or manipulate. However,

GENIE-M applications are not required to give consideration to the actual information

that is contained, portrayed-in or referenced by those tiles; except in those situations

where interpretation is mandatory. As a result, tiles can be data of any kind, or

command files, or programs (source or executable), spreadsheets, processes, and so on.

This enables a more generalised approach to be used in system construction. In order

177

Chapter 7

to make the handling of these tiles both easier and more powerful, certain specifications

have been included within GENIE-M such as allowing external execution to be invoked

(for example, remote procedure calls).

GENIE-M is very much suited to a parallel architecture - it has in fact been

designed that way. GENIE-M does not have to assume a single machine running the

system, and so GENIE-M could equally well run on multiple machines (one dedicated

to each task). For example, we envisage the probability of having one machine per

display window as being as likely as one machine running ‘n’ display windows.

The thinking has been in terms of the true next generation of machines,

whereby rather than using software to achieve multi-tasking, in fact the system would

have multi-processors which could run tasks as and when needed. The problem is

getting such parallel-ism working, but the GENIE-M concept is designed for

parallel-ism.

It is realised that GENIE-M might never work efficiently or quickly on a single

machine system - and it was neither intended or expected to. However, subsets of

GENIE-M could run on present systems, in a similar way to having word-processors

or spreadsheets performing jobs one at a time, depending on which program modules

you have installed on your system.

Section 7.7.1: Use of GENIE-M on Existing Svstems.

GENIE-M can be used by existing systems. A possible objection to this might

be that depending on the construction of the existing system, there could be a need for

a considerable amount of work to convert formats and file-types, so that GENIE-M and

the existing system can communicate. However, GENIE-M is intended not only to use

its own general-purpose, multimedia editor, but also to invoke any external system and

supply it with the desired input, and then re-direct the output as required. GENIE-M

would effectively simulate the environment in which the external application would

normally expect to run.

178

Chapter 7

It is possible that the size and complexity of the final system would increase,

but the degree to which this is true will be environment dependent. If there is likely

to be regular use of a non-GENIE-M facility - for example an external

word-processor - then it would be more sensible to remove the unused portions from

GENIE-M. It has been described elsewhere that GENIE-M is constructed from

modules, and if any one of these modules is either not used, or already implemented

as (say) an operating system command or through use of an external program, then it

would be sensible to make use of the ‘host-supplied’ tool.

Conversely, if the intention is to move fully over to a GENIE-M system, then

after an initial conversion phase for formatting information, the older system could be

removed in the same way as redundant modules are removed from GENIE-M. This

would not reduce the overall performance of the system, unless GENIE-M is being

prevented from operating at its full potential, in which case the older application would

slow down the system, rather than GENIE-M being the cause of any bottleneck. If it

is desired to use video, sound, text and graphics all in the same document, then it is

inevitable that formatting will be required, and further that only GENIE-M will be able

to handle the resulting new document. This formatting would normally be one-way

(since a text-only editor could not handle the intricacies of a multimedia document),

although because GENIE-M holds each type of information in separate tiles, it would

be reasonably straightforward to extract the text-only portions of a document and

submit them to a text-only editor.

Section 7.7.2: GENIE-M Users.

Those users who are already using a system which performs some of the tasks

that are supported by GENIE-M will naturally prefer not to have to learn new

techniques and instructions. For GENIE-M to be used in a multi-user environment, it

must offer similar or better performance than their existing system(s). However,

GENIE-M’s module concept makes not only upgrading easy, but the entire environment

can be altered as the user desires. Each module can be individually tailored, so that

whenever a user invokes GENIE-M, the appropriate modules are loaded into the local

workstation for use as normal. These modules can be user-written, in any language.

179

Chapter 7

and could easily be OS or system calls if they are suitable. It must be stressed that

GENIE-M is not a system, but an architecture. The distinction is that using the

architecture and the generating tools allows users to specify, develop and configure

their own personalised systems and applications.

Section 7.7.3: Future Svstems and the GENIE-M Architecture.

It is generally recognised that with decreasing costs for more powerful hardware,

the machines of the future will offer greater processing capability, possibly in the form

of multiple-processors within the machine. GENIE-M is organised around such an

architecture, and indeed presents a viable mechanism for organising the multiple-tasking

activities of the machine. The important feature for such machine organisation is the

internal communications to ensure that parallelism is achieved where possible, but that

events do not clash or cause deadlocks of resources. Using the GENIE-M system as

a design approach should allow a software test-bed to be quickly implemented as final

hardware.

The GENIE-M model has the following objectives and advantages over

non-integrated systems:

1) Providing an integrated framework for handling data from diverse

media types in a coherent fashion.

2) Specifying and directing the manipulation of objects and

relationships stored within a geometric data structure.

3) Aiding the user in the processing and presentation of data using

simple structure traversing and editing or formatting techniques.

4) Monitoring and controlling the movement and modification of

objects within an application environment, using access rights

associated with parts or the whole of the object.

180

Chapter 7

5) Ensuring efficient use of the processing powers of different

devices during data preparation and presentation through a

modular architecture.

6) Providing multiple-process message-passing primitives for intra-

and inter-communication between data processing modules.

The model is widely applicable in many areas: a computer conferencing system

where the ordered control of information is important; electronic multimedia documents;

photo-typesetting; distributed and semi-automated lecturing sessions where control of

lecture devices (e.g. lectern, slides, projectors) and lecture notes are to be pre-specified

within the document structure for interactive presentation; newspaper publication

requiring a structured layout of information using current computer technology.

181

Chapter 8.

Design of the Prototype System.

Section 8.1: Introduction - Analysis and Design of the System.

In the first chapter of this thesis, we identified the goal of this research as

being the production of an architecture that will support the development and operation

of a second generation computer-based information system. In order to do this, we

have had to identify in general terms what is actually required from such an

information system, particularly with reference to the human users of such systems.

A working definition of information has been given, and used to define a

computer-based information system as that which enables and supports the

computerised processing of information for human users.

Having established these concepts, it became important to identify the

architectural features that a generalised computer-based information system should have

in order to eliminate many of the current constraints found within the first generation

examples of such systems. Consideration was given to examples of current production

packages, such as management systems, data handling tools, and idea processors; as

well as to the cases of research work that have not necessarily seen commercial

success as yet, such as multimedia systems, hypertext^ and information structuring

systems. This enabled us to isolate those features that seem essential ideals or key

aspects of the tools, but which were not always incorporated as part of the end-result

of each of the systems studied^ .̂

54: The Apple HyperCard product being a notable exception to the lack of popular acceptance for
research products, although it remains to be seen whether it proves to be a resounding commercial
success.

55: For example, a graphic user interface is not provided with the HyperPad systems, although this
package implements most other features of a Hypertext system.

182

Chapter 8

In effect, we were able to establish the fundamental features that seem

mandatory for the construction of an enhanced or second-generation computer-based

information system architecture. The features were categorised and grouped together

appropriately, so that an information interaction diagram was produced, thus forming

a pictorial statement of the architectural requirements.

With the architectural requirements defined, the next stage in the development

was to identify a suitable architectural mechanism which would support those

requirements. A uniform and consistent model was required, and the result was called

the GENIE-M generator of computer-based information systems. This provides support

for the concept of the information document, a computer-moderated instance of an

information-processing application, which is modelled using electronic abstractions of

the data, relationships between the data, and the environmental circumstances of data

and the relationships themselves. Chapter 7 discussed the architecture in detail,

showing examples of how such a structure would operate for a variety of cases.

However, while the structure has been identified in its abstract form, the major task

remaining concerns the development of a prototype system to evaluate this architecture.

This done, experiments can be carried out to test and improve the model to the point

where a second-generation information system architecture is firmly established in terms

of current work.

Section 8.1.1: The Contribution and Incorporation of Software Engineering Techniques.

In section 2.3, we examined the concept of development systems, and discussed

the contribution of computers to Software Engineering (C.A.S.E.). Although it was

established that there are limitations to the concept, there are nevertheless many reasons

for following an organised and structured development process for the construction of

the prototype system. Firstly, the requirements for most systems (particularly

commercial applications) change far more rapidly than the corresponding software can

be developed. Secondly, the users who issue the requirements hardly ever know in

advance the functional details that are required from a new system - until it becomes

clear that they are missing. Accordingly, if a system is to gain or retain its value, the

development methodology used for its production and subsequent maintenance has to

183

Chapter 8

be able to respond quickly in accommodating new directions. The application of

software engineering techniques has been intrinsic in supporting the design and

development process of the current project.

However, while recognising that methodologies already exist which enable the

developer to establish a full specification and implementation plan from conception

almost to completion of the finished product; there are alternative approaches which are

not so definitive in their strategy. This is inevitable because there are several instances

of systems which cannot be specified in advance^.

In the absence of a suitable specification, it is difficult to develop a design or

production strategy. However, current thinking in software engineering makes

allowance for systems which cannot be specified in advance, and there are techniques

for the design of such products.

Specifically, the concept of prototyping [Gomaa 83] is used for certain kinds of

system development and design, and seems to be of particular relevance to the research

being carried out in this project. The difficulty is that for many new systems, and

particularly those for which the concepts embodied can be large or complex, it is

almost impossible to make any form of meaningful assessment of validity before the

system is built and put to use. Rephrasing in general terms, the problem is to carry

out evaluation of a complete system, without necessarily expending a great deal of

resources on implementing the complete system in the first instance. As Jones

indicates [Jones 89]:

‘Prototyping offers hope to software developers faced with the complex

problem of having to provide less than prescient users with computerised

support in next to no time. By enabling I.S. staff and users to "grow"

applications, prototyping supports an iterative method of software

development.’

56: For example, Expert Systems or those designed to offer Artificial Intelligence.

184

Chapter 8

Accordingly, the scope of this research was extended to incorporate the

associated issue of evaluating the benefits of a prototyping approach in general terms,

as well as in the specific instance of the implementation of the prototype system. Of

particular interest was the study of the handling of development in two categories:

1) Management of the system development. Each developer (system

internal and graphic front-end) was totally independent, to the

point of working on separate sites with only telephone links to

communicate. Actual meetings were held occasionally, and were

used to provide progress reports and encouragement, as well as

to discuss problems in development.

2) Incorporating changes into the architecture, while recognising that

a major concern is that of quality, not productivity.

Section 8.1.2: Evolutionarv Prototvping.

In general terms, prototyping is the adoption of an exploratory form of system

development, where the products are knowingly incomplete, but which can be modified

and augmented as the real requirements or modified specifications are derived. Two

major forms of prototyping can be identified, the first being to modify and improve the

prototype until it reaches the point where it meets the specified requirements - which

may themselves be changing during the development process. The second form of

prototyping is deliberately to build a ‘disposable’ system, which can be jettisoned as

and where necessary. In this form of prototyping, a (possibly expensive) model is

built to identify problems or areas of extended benefit, preparatory to discarding the

prototype completely in preference to a ‘production-quality’ version. As Sommerville

indicates [Sommerville 89], the appeal to patch and improve the prototype in order to

retain it may be strong, primarily in a desire to minimise development time and costs;

but this temptation should be resisted because:

1) Some system characteristics may have been deliberately omitted,

such as security, performance, robustness and reliability.

185

Chapter 8

2) Changes made to the prototype reflecting user needs may not have

been made in a controlled way. Thus the only design

specification which exists is the prototype code - an inadequate

basis for long-term maintenance.

3) Development changes may well degrade the system structure,

making maintenance more and more difficult.

The mechanism of prototyping depends on the nature of the task at hand, and

almost any software tool can be used for certain aspects. For example, any screen

painting package could be used to design the appearance on the screen of the final

product, long before it is finished. More complex tasks generally require more

complex tools, however, and current tools specifically intended for prototyping are

frequently built upon powerful 4GLs and code generators. One of the problems with

this, however, is that while 4GL technology, in particular, is in reasonably widespread

use within information centres, it is still unproven for building the core of strategic

systems. Certainly, 4GL-developed applications consume more resources^ than 3GL

equivalents [Gibson 89], and further tie the developers to a proprietary (focused)

system. However, if the prototyping approach is used as intended, to produce a

throw-away model at the end, then the disadvantages are considerably reduced.

In the case of the present research, a considerable amount of thought and

consideration has been applied to establish the architecture, but there are a number of

questions that simply cannot be answered without recourse to an examination of a

working example - does it work as intended, what are its practical limitations, is it

adequately defined, etc. Therefore, a major goal in developing the prototype generator

system is simply in order to help with assessing the validity of the proposed generator

architecture, thus aiding evaluation of how the existence of ideas embodied in a

production system would affect the development of future computer-based information

processing systems.

57: Including processing time.

186

Chapter 8

Section 8.2: The Structural Specification.

In order for the system to function efficiently and quickly, the design of the

architecture must be considered carefully. All items that form part of the working

whole must be defined with a view to avoid the danger of inadvertently incorporating

restrictions. From the system implementation perspective, the architecture which

operates within the environment can be split into three basic sections, as depicted in

Figure 5.

User

Kernel

User Interface

Server

System Environment

Figure 5: Overview of Structural Specification,

The User component represents the user aspect of the interaction diagram

referred to in section 5.2. It delineates the domain of presentation from, and command

submission into, the computer-based domain of the remaining system environment.

The computer-based domain consists of the User-Interface/Server and Kernel domains.

Interaction with the computer-based domain is implemented via a series of interaction

tools, depicted in the diagram by the User Interface block. This section is responsible

for handling all communication between the internal GENIE-M system and the user.

Closely associated with this block - and in many ways indistinguishable from it - is

187

Chapter 8

the server domain. This section contains the specific application tools and modules

which are necessary or desirable for the tasks at hand. Higher level administration

tasks are instigated and processed in this domain. This in turn will invoke and utilise

the internal architecture of the system, which is provided by the Kernel facilities. The

kernel is the main storage and access controller, handling many of the filing and

administration tasks, including distribution and transmission of information to remote

GENIE-M hosts and applications. These domains combine to support the fundamental

concepts underlying the GENIE-M system.

Section 8.2.1: The Kernel.

The kernel will supply tiles as requested by the application (via the server).

Updated tiles are returned to the kernel when no longer required, or when a time-out

mechanism indicates that the tile is unlikely to be accessed because it has been left

unused for a considerable amount of time (perhaps one second or so). As the tiles are

updated and altered, the kernel provides a historical or archiving function so that

cross-referencing can be supported. Tiles within the system are always related by a

master web structure that describes the overall organisation of the complete tile space.

Any given application or user will have a localised copy of a web subset, which relates

the tiles stored in the local workspace or ‘Topological Tilestore’.

Tiles and their contents are never actually deleted. Instead, they would be

relocated to increasingly ‘remote’ storage. Thus, a typical sequence would be RAM

chip memory, magnetic disk memory, magnetic tape memory, and possibly optical

disks in the form of write-once, read-many (W.O.R.M.) drives.

The kernel is intended for connection to at least a local area network (L.A.N.),

and possibly further afield. Accordingly, it would be directly responsible for connection

to, and interaction with, other (remote) processing hosts. There is no architectural

requirement for the kernel to be resident on any particular workstation or processor, the

important point is to isolate the kernel activities so that the server and user-interface

domains can be directed towards the more specific tasks required for the portrayal and

manipulation of GENIE-M applications.

188

Chapter 8

Section 8.2.2: The Server and User Interface.

The server and user interface domains represent the main components of a

GENIE-M application. They perform all internal communication tasks in a manner

transparent to the user(s), as well as using the kernel to manipulate and relate tiles in

an organised fashion (see Figure 6). Each of the modules within the domains have a

specific and clearly defined set of tasks to perform, depending on the actual application.

Certain of the modules may perform tasks of an administrative as opposed to

operational nature, in that they are capable of initiating actions - or responding to

external real-time events - without requiring user directives; but the majority of the

modules would only operate when they are given specific tasks to perform from the

user or from higher modules.

External
Event

Execute

Known

Execute
Unknown

Kernel

Geometric

Tilestore

Users and Devices

Presentation
Manager

Event
Handler

Sub-Application

Manager

Geometric

Tile

Builder

Localised

Topological

Tilestore

Application
Administration

Figure 6: Internal Structure of Server and User Interface Domains.

Section 8.2.2.1: The Application Administrator.

The Application Administrator domain is responsible for receiving user or

real-time event input and converting the commands and initiating circumstances into the

189

Chapter 8

appropriate directives to other modules to achieve the desired result or response. Given

the complex nature of this domain, it is envisaged that it could be constructed using

an intelligent or expert system, in order to be able to serve the users in a more relevant

manner. The parameters of this domain will define precisely the application at hand,

and the execution and responses specified in the construction of the functional

components will determine the method of interaction. In practice, modules within this

domain (along with those in the kernel domain) would be the first to be activated in

order to request initiation of the supplementary support modules. Once activated, and

all I/O channels have been constructed, modules in this domain can await user

instructions. These are then interpreted and appropriate directives passed to other

domains within the GENIE-M application architecture.

An application-aware multimedia editor would be mandatory for this domain,

and would perform the actual editing of the contents of topological tiles.

Section S.2.2.2: The Presentation Manager.

This domain has a clear knowledge of the presentation devices under its control.

For every presentation ‘window’ or ‘viewport’, the manager will have an internal record

of its architecture, current contents, relationship with other viewports, ownership,

priority, and other details. The presentation information is usually supplied from the

Application Administrator, using data from the kernel. Responses from users would

be directed towards the event handling domain modules, since the presentation domain

is responsible purely for implementing directives from within the system.

A primary aspect of the presentation manager tasks will be the presentation of

geometric tiles that have been constructed from the contents of the relevant geometrical

tilestore. The geometric tiles have, in turn, been built up using the configuration and

content data held in the topological tilestore. The geometric tiles are primarily intended

for submission to the user via the presentation manager, and so are available to the

presentation domain in their entirety. The advantage of this approach is that the actual

presentation of data does not reflect the devices used, except at the final stage of

computation.

190

Chapter 8

However, the fact that the geometric tiles have been constructed and exist within

the tile space means that they can themselves be referenced by other tiles using a

linking mechanism similar to that used within hypertext systems. This would be useful

for incorporating copies of the material as references into other electronic documents.

Additionally, minor alterations to the presentation can be made without having to

interrupt or reconfigure the remaining domains within the architecture. Instead, simple

adjustments (such as scrolling or moving display windows on the presentation device)

can be performed locally by the presentation manager.

Section 8.2.2.3: The Event Handler.

This domain handles the introduction of input events into the architecture. For

the prototype system, such events would include keyboard or mouse activity, but for

the generalised system the events would include voice, power-supply monitors, motion

detectors, and any peripheral device that can generate an external interrupt requiring

attention. The event handler domain modules ensure that the events are converted into

a form that can be recognised and acted upon by the application administrator.

Section S.2.2.4: The Sub-Application Manager.

This domain provides a mechanism by which the architecture of a GENIE-M

application can be extended with new facilities or by incorporating existing tools. If

the current application administrator is supphed with a directive that does not make

sense within the current application, then the command can be passed to the

sub-application manager to determine whether an external tool or module can recognise

and process the directive. For external applications - which do not necessarily know

about the GENIE-M architecture - modules in this domain can simply pass the requisite

data to the external application, and wait for the output results to be obtained. In

effect, the GENIE-M architecture will provide an operating environment for the external

application.

This architectural provision also enables the use of tiles as executable objects,

possibly in the form of programs or command files. Clearly, such a facility presents

191

Chapter 8

potential integrity risks with regard to the system validity, and so would be treated as

external applications.

Section 8.2.2.5: The Geometric Tile Builder.

This domain is responsible for such tasks as storage and tile conversion.

Topological tiles are referenced according to the generated web structure that relates

them. Any request for tile material would be directed through or initiated from the

application administrator, which will instruct modules in this domain to ready the

appropriate topological tile for access. If not available, then a suitable error message

would be generated.

The next stage of tile access requires the conversion of the topological tile

contents into geometrical contents. This conversion process will be extremely

application-specific, and may involve any combination of expert system, device driver

and filter tools.

Section S.2.2.6: The Tilestore Domains.

The tilestore domains are populated by controlling modules which perform

physical storage and filing tasks, as directed by the Geometric Tile Building modules.

The tilestore domain modules would have responsibility for keeping track of all the tiles

currently in use within the system, as well as incorporating new tiles and disposing

(archiving) outdated or unused tiles. As described in section 7.2, tiles are stored within

a tile space; but for convenience tiles may be stored in different domains within the

tile space, in order to help categorise them according to their type. This has the

additional advantage that manipulation of tiles can be controlled according to

ownership - privately owned tile would be stored in one domain, while publicly

available tiles would be stored in a more accessible domain. The two main tilestore

domains are as follows.

192

Chapter 8

Section 8.2.2»6.1: The Localised Topological Tilestore.

This storage domain holds and provides access to the topological tiles, according

to requests from the Application Administrator. Certain of the topological tiles will be

specific to individual users, while others will be for multiple/general access by many

users. In effect, individual users accessing this tilestore will have their own sub-space

within the tilestore. In order to implement this facility, users would have a Privileged

Access Descriptor (P.A.D.) entry within the administration storage of the tilestore,

which is used to determine the validity of the user’s request. Such a mechanism allows

a single tile to be shared amongst several users, but with only one copy being held

within the entire tilestore; the individual users will have their own P A D. in their own

sub-space.

Section S.2.2.6.2: The Geometrical Tilestore.

Modules within this domain perform very similar tasks to those performed within

the Topological Tilestore domain: the major difference is that there is no need for users

to have their own sub-areas - if the user was not permitted to access a topological tile,

then a corresponding geometrical tile could not have been created. This tilestore holds

the geometric tiles that are the result of formatting the topological tiles, and which will

be manipulated by the presentation system. In practice, tiles within this tilestore can

still be referenced by external tiles that are located within other tilestores, but for

administrative purposes it is convenient to distinguish the tilestores.

Section 8.3: Hardware and Software Considerations.

As discussed in section 7.3, the separation of processing tasks into distinct

components reflects the definition of individual processing modules, rather akin to the

‘processes’ on a multi-tasking computer architecture; an approach made more important

by the inevitable real-time nature of certain data items (e.g. date, time, etc.), and the

fact that many changes could occur concurrently within the information environment.

Accordingly, the development of any second-generation computer-based information

193

Chapter 8

system must reflect the nature of the distinct modules by implementation using a truly

multi-tasking computer system.

The initial development for this research work was carried out in the Computer

Science Department at University College London. The department has an extensive

range of resources, particularly with regard to machines suitable for real-time

multi-tasking^. The main machine is a Pyramid computer, with additional support

provided by VAX 11/750 machines, all running UNIX in a variety of forms. At the

lower end of the computer spectrum, some Sun Workstations (running the SunOS

implementation of UNIX) and several IBM-compatible Olivetti Personal Computers are

available. The range of possible hosts therefore was greatly beneficial with regard to

the development of multi-tasking components of the architecture, as a large number of

experiments could be carried out to evaluate the nature of the multi-tasking and

communications required by the multiple modules of the architecture.

An immediate result established was that the hosting machine architecture is

directly relevant to the performance of multiple process activity. In general, if a

computer is multi-tasking, it will attempt to ‘load’ a number of programs into its

primary memory, and these are formed into active processes which can then be

executed logically according to a given scheduling strategy. The number of processes

which can be loaded at any one time depends on the amount of memory, the size of

the processes, and the nature of the jobs being carried out by each of the processes.

Naturally, evaluation of the behaviour of such systems can only be carried out in

general terms, by taking statistical measurements. However, even without detailed

analysis, it is clear that multiple, small tasks which function only on an occasional basis

(when needed) are very likely to be temporarily ‘swapped out’ from computer’s

memory, resulting in a noticeable performance degradation when they are retrieved from

the swap space [Madnick 83]. Consequently, the only way in which an architecture

such as that proposed - which has many such processes - could operate feasibly is

when each of the modules can be guaranteed to remain in memory for the maximum

58: A major reason for this is that the department has a special interest in computer communications
research.

194

Chapter 8

amount of time, with a high scheduling priority®. Such a property is normally

associated with operating system processes, and those of system manager privileges.

Naturally, this was not possible for the ‘public’ machines within the department, a

problem which was not allayed until a small workstation became available for dedicated

use.

The provision by the Science and Engineering Research Council (S.E.R.C.) of

an I.C.L. Perq computer, running a version of UNIX called PNX was extremely helpful.

The machine itself had a high-resolution monochrome monitor that enabled initial

development work on a graphics front-end to the architecture. Unfortunately, however,

the version of UNIX used as the basis of PNX was rather old, and as such had little

in the way of support for communication between multiple processes. As a result, the

early system development work had to be carried out in two separate forms. Modules

that could be tested in a stand-alone fashion and those for use in the graphic front-end

were developed on the Perq, while the kernel modules and options for communications

routines were evaluated using the Pyramid and/or VAX computers.

The initial development work had to be carried out using UNIX (or UNIX-like)

hosts, because these were the only multi-tasking machines readily available. However,

serious consideration was given to alternative architectures for development work,

including using IBM PC hosts for low-end implementations of the architecture, and

alternative operating systems for high-level but UNIX-independent implementation, the

most obvious example being VMS. However, the hosting operating system chosen was

UNIX primarily for convenience in that it was provided across multiple machine

architectures; but also because it clearly had support for the features required in order

to develop the prototype system ready for evaluation.

The decision was later to prove correct following the relocation of the research

project to the site of the Department of Information Systems at the London School of

Economics and Political Science. The department had procured two of the latest Sun

Workstations for the research, which supported not only a superb development

59: Such modules are said to be ‘sticky’, because they remain in the computer’s memory even if they
are not currently running.

195

Chapter 8

environment for both graphics and system architecture work, but also one of the most

recent versions of UNIX with numerous extensions, especially in the area of

inter-process communications (see section 9.2).

Nevertheless, the work carried out using the Perq and Pyramid/VAX machines

was invaluable in the pre-prototype development, as it enabled the study of such

components as module communication when modules were situated on the same or on

different hosts“ . Such an approach proved highly successful, in that when the modules

were ported to the Sun environment, no modifications were required for successful

compilation and operation, although the modules have since been ‘fine-tuned’ to take

advantage of Sun-specific features and improve overall performance.

The choice of development language was inevitably limited by those available

on the hosting machines. The one common language was ‘C’, and so this was chosen

for the purposes of primary development. However, with the exception of certain

aspects of module communication - which was closely dependant upon the facilities

available with the UNIX environment - the majority of the prototype code could be

written in any language of choice, as long as it fitted within the general architecture.

In accordance with the module philosophy, as long as any given module could function

using tiles, and communicate with any necessary external modules, then the exact

operation and even nature of the module was completely irrelevant. This relaxation of

constraints upon module development immediately means that the most efficient or

familiar language could be used for any specific module, but one of the inconveniences

would be that it would not be possible to specify a limit on the execution environment

of any module. A module must be able to operate within what would be perceived as

a virtual machine, and so not be required to take into account the available memory

60: Experiments concerning module communication between two heterogenous architecture computers
(Pyramid and VAX) were extremely enlightening. In particular, it was found that the then state-of-the-art
UMX implementation had certain limitations. Quoting from the documentation [UCL 83]:

‘[Some sections] are an experimental part of the operating system more subject to
change and prone to bugs than other parts,’

In practice, it was found that under certain program conditions, code would be executed that
would literally halt a Pyramid computer. Normally, this should be completely impossible for an ordinary
user applications program. Needless to say, this was an unpopular experiment with other users, and so
not repeated,

196

Chapter 8

or resources. This is one of the reasons why a truly parallel architecture host machine

would be preferable for a production version of the GENIE-M system.

There are certain other considerations, however, particularly with regard to the

presentation of data to the user and the range of devices that can be attached.

Although UNIX hosts are ideally suited to the development of the multi-tasking nature

of the proposed architecture, the hosts are often limited with regard to the range of

presentation options. Specifically, it is true to say that the only standard mechanism

for presenting data from a UNIX machine is through a text-only V.D.U.

Certain limited exceptions do exist (for example, the Sun View windowing

environment), but there is almost no predominant standard for graphic presentation of

data. One possible exception that is gaining support amongst UNIX system developers

concerns the X-Windows interface, which is intended to provide a common graphics

tool kit for applications programs. An alternative that may prove competitive is the

Adobe toolkit called Display P o st S c r ipt , a screen-based version of the definitive

printer-orientated Page Description Language P o s t S c r ipt .

In the absence of a clear choice for display generation, it seemed sensible (and

a beneficial use of the modular architecture of the information system model) to

relocate experimental versions of display modules onto machines or devices other than

the UNIX hosts. Accordingly, consideration was given to developing a prototype

system that could be controlled either directly via the UNIX hosts, or through a simpler

control system running on an independent personal computer that supported

high-resolution graphics. Two forms of direct interaction with the UNIX hosts were

defined:

1) A powerful and detailed graphics environment for user interaction,

in accordance with the ideals specified in chapter 7.

2) An elementary command-based interface that offers a ‘universal’

portability, but which is achieved by omitting graphics

enhancements.

197

Chapter 8

For the second case, the UNIX hosts would be controlled by the commands

entered at the elementary interface, and respond or present results according to the

application configuration. Two configurations were designed. The first was to use the

GENIE-M generator architecture to present data to an output-only graphics device,

called the IKON Pixel Engine, a graphics processor which was successfully connected

to the Sun Workstations using a serial cable and serial device-driver software. This

would allow demonstrations of how a system module generated by GENIE-M could

construct a graphic representation of the data presentation, which could then be

displayed for the user to interpret.

The second configuration required the combining of the second interface with

the personal computer control system - in effect turning the PC into a semi-intelligent^^

front-end host. This second configuration was embodied in the development goal of

a simple system which was generated using the prototype system developed by the

author (see Figure 7). An advantage of this configuration is that it would demonstrate

very neatly many of the objectives of the GENIE-M computer-based information

system generator. The vast majority of the complex and multi-task processing jobs

could be carried out on a dedicated host, while the more straightforward and distinct

tasks for data I/O could be carried on a dedicated front-end machine.

Section 8.4: Summarv.

In this chapter, we have considered the overall analysis and design of the

GENIE-M generator. An exploratory prototyping approach was used to specify the

system, which was seen to be a sensible approach in the hght of the changing

environment being used for the final development. The architecture of the generator

has been discussed in detail, since it is this - rather than the actual implementation -

that is of key importance to the practical research.

61: Semi-intelligent because although the PC would in effect be under the control of the UNIX host with
regard to the display of data, a complex program package would have to be running on the PC to
provide the command processing and result reception/presentation.

198

Chapter 8

Laser
Printer

Ikon
Pixel

Engine

I I
Driver Driver

\ /
Data
Store Kernel

/ \
Driver Driver

I I
Sun PCConsole

Figure 7: Overview of simple system architecture generated by GENIE-M.

199

Chapter 8

The implementation itself is naturally influenced by the development

environment, and where possible the constraints on design that resulted from the

particular environment have been described. In the next chapter, we will consider the

actual implementation of the generator, describing in detail the construction of the

resources within the major generator domains.

2 0 0

Chapter 9.

Implementation of the Prototype System.

Section 9.1: Implementation Details.

As discussed in chapter 8, the implementation work was partitioned into two

stages. In the first stage, a set of pre-prototype experiments were carried out, the

results of which were used in determining the course of the second stage: developing

the prototype generator system. The pre-prototype experiments were carried out using

Pyramid and VAX machines at University College London, while prototype

development was carried out primarily using the Sun Workstations at the L.S.E. This

section of the report discusses the implementation details of the prototype system,

taking into account the experimental and design work described in chapter 8. The

implementation work built directly upon that carried out at U.C.L., but where additional

points arise that were unique to the research at U.C.L., these will be identified.

Given the availability of a stable hardware platform in the form of the Sun

Workstations, it was necessary to carry out a thorough evaluation of the extensions to

UNIX that were offered by these machines, in the light of the experimental results

obtained from the Pyramid and VAX machines. The initial implementation of UNIX

offered was SunOS 3.2, with new releases of the operating system progressing during

the development work from SunOS 3.4 to SunOS 4.0. The latter version introduced

a completely new organisation for the file system on the host computer, but this had

minimal effect for the implementation of the prototype system, since the design was as

host-independent as possible. However, the reorganisation proved invaluable in

identifying host architecture dependencies, which were noted so that for a production

system, which would necessarily have to provide for potentially extreme variations in

architecture detail in both hardware and software, the mechanism of storing files and

data could be variable, especially when exchanging and communicating data between

hosts.

2 0 1

Chapter 9

The pre-prototype experiments were broken down into two distinct groups. The

first concerned the communication mechanism between multiple independent modules

that need not necessarily be resident on the same host. The second concerned the

development of module architecture for handling the data tiles.

Section 9.1.1: Implementation Concepts.

For the following material, a number of terms are used which have a specific

meaning in the context of this thesis.

A ‘tree’ is considered to be the internal representation of the current application.

It is the internal construct which describes the information environment of an

application, and models the data space within which tiles exist. Changing to a different

application involves installing a different ‘application tree’. In practice, several trees

can exist for an application, and this mechanism is used for partitioning the tile space

into the domains which are described in section S.2.2.6.

A ‘group’ is a collection of tiles, which would normally be independent of each

other. The use of the group concept allows the information environment to be

manipulated while taking into account the relationships that exist between tiles. The

prototype described in this chapter uses the group mechanism to provide a means of

applying transformations to multiple tiles within a tile space.

The ‘name’ of a tile is simply the label by which it can be uniquely identified

within the system. Any strategy can be used for naming, and for direct interaction with

the system, a naming policy is used whereby tile names reflect their contents.

Application modules are free to generate and use their own names.

A ‘buffer’ is a storage space used by modules for storing or retrieving blocks

of data. The main buffer of any significance is GENIE_buf f e r , which is used for

the exchange of data between modules. When a message is received, the contents are

placed into a temporary analysis buffer while they are analysed, however this buffer is

not normally available to users or modules.

2 0 2

Chapter 9

The concept of the ‘current’ tile, tree or group simply refers to the tile, tree or

group upon which operations will take effect, unless otherwise specified.

Section 9.2: Module Communication.

The UNIX Operating System (having been selected for reasons described in

section 8.3) provides a number of mechanisms for communicating data between

processes, with the range of mechanisms being dependent partly on the version of the

Operating System being used. The first and only standard mechanism is that of the

‘pipe’. This is a shared communications link that exists between two processes

spawned from a single parent which carries out the f o r k system call®. Although the

pipe mechanism is straightforward, and for many problems represents an ideal solution;

it nevertheless has the major snag of requiring that any processes wishing to

communicate via a pipe must share a common ancestor. This is particularly difficult

to achieve if the processes are running on separate host computers. Accordingly, the

pipe mechanism had to be discarded as being too limited in its facilities.

The limitations of pipes are so severe that certain implementations of UNIX

have worked to provide alternatives to pipes. The result has been a number of

alternatives, including the reasonably common concept of the ‘named pipe’, where pipes

can be created and connected using names. However, more divergent implementation

of UNIX have gone further, so that B.S.D. UNIX® offers ‘sockets’, while System V

62: The fo r k system call works on a running process in much the same was as a ‘copy’ command
works on a stored file - a duplicate of the original is produced. In the case of the fo r k , any process
which executes such a command causes the generation of an exact duplicate process - called a child -
which inherits (amongst other things) access to aU the currently open files and one end of a
communications pipe. The original forking processes continues and is called the parent process.

63: The original UNIX Operating System was developed by Dennis Ritchie and Ken Thompson at AT&T
Bell Laboratories on an unused PDP-11 [Ritchie 74]. It was not viewed as a commercially viable
product, but was available to Universities and academic establishments at minimal costs, although without
support. Development of UNIX continued in particular at the University of California at Berkeley, which
unofficially took over the role of distributing UNIX to other academic establishments. UNIX quickly
became more popular, and as students graduated and entered the commercial world they wanted to take
UNIX with them. AT&T recognised the existence of the commercial market, and so released their own
versions, with the most recent being called System V. The most recent Berkeley Software Distribution
(B.S.D.) version is called 4.4 The differences between the two versions are the main background for

(continued...)
203

Chapter 9

UNIX offers the combined resources of message streams, ‘shared memory’ and

semaphores, as an implementation of the concepts proposed by Dijkstra [Dijkstra 68].

Sockets are analogous to hardware ports on a computer. Any process can

establish (create) one or more sockets within the file system of the hosting machine.

Any other process wishing to communicate with the original process simply ‘connects’

to the socket with a socket of its own, and thus establishes a link down which data can

be communicated. In practice, data is transmitted by considering the socket to be a

variation on the theme of a file handle, so that data can be conveyed by using the

r e a d or w r i t e system calls that are often used for ordinary file handling. The

parameters used at the stage of the socket creation determine whether the data

transmission is simplex, half-duplex or full duplex^. An extension to socket

communication is the concept of ‘domains’. Sockets which exist within the UNIX

domain effectively exist on the same UNIX host, thus allowing processes on the same

machine to communicate. Sockets which exist in the Internet domain exist on different

hosts - and so the sockets actually require to have a hardware connection associated

with them - and this enables communication between processes on different hosts^.

The System V paradigm of messages allow independent processes to send

formatted data streams to arbitrary processes. Having established a message mechanism

within the file space, the process can transmit and receive messages that are formatted

according to a user-chosen integer type [Bach 86].

The shared memory communication offered by UNIX System V is a more

complex technique involving much more work on the part of the operating system.

Two processes which require to communicate will effectively specify an area of main

memory to which they both have access. This enables the processes to exchange data

63: (...continued)
the difficulty in developing not just a genuine UNIX standard, but also for such problems of designing
a common graphics or user interface.

64: Simplex: One-way only; Half-duplex: Two-way but not at the same time; Full-duplex: Two-way and
at the same time if desired.

65: Internet domain sockets are still very new forms of software technology, and it was during
experimentation with these that the Pyramid crashes described earlier took place.

204

__ Chapter 9

by reading or writing from the appropriate areas of the shared memory. A number of

system calls have been implemented to facilitate this form of communication. The

shared memory space cannot overlap any other regions within the virtual space of the

machine, and there is no apparent way in which to use this mechanism between

independent machines.

The semaphore mechanism is a well-understood implementation of Dijkstra’s

work on process rendezvous, allowing them to synchronise their actions. There are

inevitable but recognised and understood difficulties involving semaphores, which

include the possibility of a semaphore locking access to a resource and leaving it

locked either by accident - following a system crash - or erroneously resulting from

poor programming. In practice, the System V semaphore implementation allows the

unattached semaphore information to be discarded in appropriate error situations.

Interestingly, while the SunOS implementation of UNIX is based primarily on

the B.S.D. version, the most recent version follows an agreement with AT&T

Laboratories such that the ‘official’ line of development for UNIX will assume AT&T

software running on Sun workstation hardware. Accordingly, the more recent versions

of SunOS (4.0 and 4.0.3) all support B.S.D. and AT&T extensions - although not

simultaneously.

The implementation of UNIX at U.C.L. was the B.S.D. 4.2 version, and

accordingly supported sockets rather than the System V options of messages,

semaphores and shared memory. Consequently, it was the former means of

inter-process communication that was adopted for implementing module communication

in the prototype information system. An additional bonus of the socket technique is

that is builds upon the established mechanism of input and output to ordinary files, and

so should be easier to understand and extend.

One peculiarity that was encountered and has not as yet been resolved concerns

the sequencing of data transmitted through sockets. When a socket is created, a

number of connections can be left outstanding if a connection is already in progress.

As soon as the current connection finishes, the next connection should be automatically

205

Chapter 9

made, and the invoking process released from its ‘blocked’ state. The number of

outstanding connections can be defined when the socket is first created, and currently

ranges from zero to five connections being kept in a blocked state. Within the UNIX

domain for socket creation, certain protocols for the data exchange can be defined, one

of which concerns the sequencing of the data messages*.

For the prototype system, a stream connection mechanism was employed which

consumes rather more machine resources but ensures a reliable and sequenced exchange

of data. However, during the implementation of the module communication on the Sun

Workstations, it was found that for some reason, the messages were arriving out of

their correct order. An additional mechanism was introduced to try and eliminate the

problem, in that a locking file was associated with any given socket. Only if the

serving module was willing to accept a message would the lock file be ‘opened’. Thus

any module wanting to transmit would simply check the status of the lock file rather

than waiting to try and establish a connection with a possibly busy socket. Hence

communication simply could not occur unless the serving module was willing to receive

the data.

Yet the errors in sequencing still occurred. When the number of outstanding

connections was reduced to zero (so that any module wanting to communicate simply

had to wait until the socket was free), the sequencing problem disappeared, although

the elapsed time increased slightly as there were more delays. It is certainly possible

that the problem was caused by errors in the module communication software, but the

actual coding was as correct as possible, and in accordance with text-book examples

such as they existed. One possibility is that modules might still be swapping out of

the execution space while waiting for transmission or reception of data, and the delay

in swapping in or out could possibly be connected with the sequencing errors. The

matter is one that remains unresolved, and would merit closer investigation at a later

date.

66: ‘Stream’ sockets provide sequential, pipe-like data exchange. ‘Datagram’ sockets provide datagram
or packet-like data exchange. Stream sockets model connection-based virtual circuits, two-way byte
streams with no record boundaries. Datagram sockets model datagrams in network communications.
Additional work is required to deal with the problems of messages being lost, duplicated, or arriving
out-of-order.

206

Chapter 9

Given that the communication between modules had now been implemented in

theory, the next problem was to decide on the nature of the messages being passed.

Any module could theoretically receive messages from any other module at any time.

This introduces the possibility of horrendous deadlock problems, but the establishment

of a hierarchical structure to the module communication meant that a form of message

flow could be imposed upon the design. A standard series of transmission primitives

were identified as being the minimum required for module communications. Although

more primitives could be implemented, the number is restricted to the smallest possible

set that maintains full functionality. This was considered important so that optimising

of the commands could be achieved more easily, and in order to reduce the problems

of validation and verification. The actual data itself was readied for transmission by

being placed into a buffer of known size (for the prototype system this is a contiguous

block of 1000 bytes, called GENIE_buffer), which can then be communicated to the

required destination. The transmission primitives are described in the remainder of this

section.

Section 9.2.1: GENIE i n i t () ;

This is the initiating primitive for any module that wishes to have access to the

information system communications structure. The only parameter required is the name

by which this module desires to be addressed by other modules within the system. The

jobs performed by the primitive include the estabhshment of the socket and locking

mechanisms, and initialisation of the module’s communications resources. For

debugging purposes in the prototype version, an automatic log file is also created that

records all data transmission involving the module. In a production version of the

system, this log file would be used as an audit trail for - amongst other things -

security, reliabihty and reconstruction purposes. The success or failure of this system

call is described using the appropriate return code®̂ .

67: In order to match the UNIX host operating system more closely, the error codes returned are
consistent with the existing UNIX error handling mechanism. Any system call which fails will return
the error code -1, while a successful system call will return the error code 0. If an error has occurred
(resulting in the -1 return), an error identifier will be returned using the external variable G E N lE _ er rn o .
The complete list of error codes returned by the system appears in the Appendix.

207

Chapter 9

Section 9.2.2: GENIE sendO ;

This module will attempt transmission of the data held in the buffer

GENIE_buffer to the module named in the parameter of the call. If the desired

destination does not exist, then an error code is returned. In any other case, the

transmission mechanism will wait or ‘block’ until the destination is ready to receive a

message. This is established by continually examining the status of the lock file.

When the lock file is ‘opened’, a connection is made, and the data transmitted. As part

of the process, any transmission is preceded by an announcement that identifies the

name of the sending module. This is required for those serving modules which may

require to be selective with regard to reception of messages.

A major problem concerns the use of the GENIE-M primitives in a distributed

environment. Specifically, there is the probability that modules may be activated on

remote machines, and so some mechanism is required whereby local modules can

access and utilise the functions of remote modules. The implication is that a Remote

Procedure Call (RPC) facility is required, but in practice this may not always be

provided by the host operating system®. A discussion of this particular problem

follows later in section 9.6.

Section 9.2.3: GENIE recv O ;

This module is the main message reception primitive. Its first task is to clear

out the message reception buffer, and then announce that the module is ready to receive

messages. This is achieved by opening the lock file. The module can then wait until

a connection is made from another module (at which point the lock file is closed), and

the reception of a message takes place. The message is placed into the reception buffer

(in the prototype system this is the 10(X) byte GENIE_buffer block), ready for return

to the invoking module. The lock file is closed throughout these tasks to show that

the module is otherwise engaged, and is not listening for messages.

68: The SunOs implementation does provided RPC facilities, but they were deliberately excluded for the
GENIE-M development.

208

Chapter 9

Finally, the complete message is parsed into its component units. This is

achieved by copying the contents of the buffer into a working store, which can then

be scanned without risking damage to the original contents. The start of any

constituent unit is defined as being the first occurrence of a non-white-space character^

in the buffer since the scan started. As each component location is identified, a pointer

is created that addresses the correct position in the message copy. This task is repeated

until the entire buffer has been parsed. At the end, the complete message remains

unmodified in the GENIE_buffer block, but an additional set of pointers (stored in

an array called GENIE_parsewords []) points to the start position of each ‘word’

within the copy of the buffer. In this way, it is much easier for a user module to

decode any message received. In practice, the parsing process is also provided as a

separate primitive (GENIE_parse ()) which requires no parameters because it always

operates using the contents of GENIE_buffer. This enables user modules to

re-initialise the pointers to the original tokens, or alternatively to load a specific parse

string into GENIE_buffer ready for parsing in special circumstances.

At the end of these tasks, the GENIE_recv() primitive finishes, and control

passes back to the invoking module. As a final assistance, a special string variable

GENIE_from is set to indicate the name of the module that sent the message which

has just been received and parsed. This can be useful in certain circumstances, for

example if the message is a request for data to be supplied, then the serving module

must know where to direct the reply.

Section 9.2.4: GENIE recvfrom O ;

There are many circumstances where a given module requires to be selective in

its reception of messages from other modules. For example, if a module X requests

some data from module Y, the X module is then interested only in receiving a response

from module Y and not from any other module. Accordingly, the

GENIE_recvf rom () primitive is offered, which takes as its sole parameter the name

69: Any character other than a space, tab, form feed or similar position-changing character.

209

Chapter 9

of the module from which a message is sought. This primitive invokes the fundamental

GENIE_recv() primitive in order to await a message, and if it arrives from the

specified module (this can be checked by examining the GENIE_from variable), then

the receive is carried out exactly as described in section 9.2.3.

However, it is possible that a message might arrive from a module other than

the desired source, and this poses the problem of what to do with the currently

unwanted message. The solution was to implement a dynamic buffer, which invisibly

stores any and all received messages that are not from the desired source. Later, when

a general message is sought by invoking the ordinary GENIE_recv() primitive, the

first step is in fact to scan the dynamic buffer to see if some temporarily ignored

messages are outstanding. If so, they are removed from the dynamic buffer, parsed,

and the results returned to the invoking module. If no messages are outstanding in the

buffer, the module can announce its readiness to accept messages once again (by

opening the lock file), and the receive process can continue as normal.

For the implementation of the prototype system, this mechanism works well.

However, it is possible to envisage circumstances where a production system would be

required to react to high-priority messages, for example during a system shutdown.

Accordingly, the message passing scheme should be extended in a variety of ways, such

as those described in section 10.5.

Section 9.2.5: GENIE s to p Q ;

This primitive is used as the final message handling task for any communicating

module. It will remove all the socket and lock files from the host system, and free all

the unused space from the process, in preparation for process termination. One possible

extension to this primitive may be to make it a one-way invocation, so that to use it

will cause the call to finish without returning to the invoking process^. However, the

experiments carried out using the prototype system have not produced evidence of any

clear advantage to this.

70: In a fashion similar to the UNIX _ e x i t call.

2 1 0

Chapter 9

Section 9.3: Module and Tile Architecture.

As indicated in section 7.3, the specification for the information system

architecture required that the contributing modules should be as independent as possible.

The exact operation of the modules was considered to be of little relevance, with the

sole condition that they performed the specified task(s). However, it was preferable

that they should be able to communicate using a common understanding of tiles, so that

the data could remain type-less as far as possible.

In an ideal implementation of a production system, the modules would actually

communicate using tiles rather than messages - specifically by sharing common access

to the tile storage space, but for actual implementation using multiple modules in a

UNIX environment, this would require a move away from the B.S.D. UNIX socket

communication techniques towards the shared memory options of System V UNIX.

Much of the development work for the prototype system had to assume socket-based

communication, and so some re-appraisal of the mechanics of data exchange between

modules had to take place. The common understanding of tiles has been retained for

the prototype, but the preference for actual communication using tiles has had to be

deferred. Instead, tile data is transmitted using messages, so that modules can build

up their own working copies of the tiles as required. Inevitably, this slows down the

data exchange, although it has the advantage that modules processing data need only

access the data and attributes that are relevant to their operation. Additionally, the

logging or audit-trail tasks implemented for debugging purposes in the prototype is

greatly facilitated by the messaging mechanisms. In a production system, the logging

activities would be invaluable for performing system integrity and reconstruction tasks.

However, a significant problem with this form of serial data exchange concerns

the need to ensure that all aspects of the tile content and status storage are maintained

correctly. Specifically, which module has accountability for the ‘current’ version of a

given tile? The solution involved the implementation of a tile administration module,

as originally detailed in the early work on the architecture. This module has the

overall responsibility for maintaining the working copy of the tile space which is

relevant to the current application. Modules which need to access tiles are required to

2 1 1

Chapter 9

obtain the relevant tile material by passing a request to the application administrator,

processing the tile contents as necessary, and finally request and update of the tile

space by advising the application administrator of the changes. In practical terms, this

has meant that the prototype system requires that modules obtain a working copy of

a given tile, process it, then send a revised copy back to the administrator for inclusion

as the new version of the tile within the tile space, subject to user privilege

permissions.

The implementation of tile storage within the administrator module has proved

a complex process, as it is immediately obvious that the tile space is necessarily a

dynamic structure. Any given tile can hold a theoretically unlimited quantity of data,

with correspondingly variable number of attributes associated with the data - thus

maintaining the distinction between data and its type. Building a series of functions

into the administration module has been perhaps the most complex task within the

prototype development, as much of the work has necessitated testing to ensure

consistency. It is in this category that the value of software engineering through

prototyping became apparent, by imposing a ordered discipline on the development

process. In many cases, the use of software engineering techniques has focused upon

the culminating activity of producing working software. However, for this research,

software engineering principles are advocated as being invaluable in the design stages

which underlie the development philosophy. Experimentation was therefore essential

to compare what was provided with what was desired, throughout the construction of

the prototype. Functions had to be incorporated that supported multiple modules, and

in several cases the modules could have similar purpose but contradictory

implementation - for example, modules that presented data through an elementary

text-only display, or complex graphical front-ends that had to be able to direct data to

multiple display ports.

A family of tile and structural processing functions are provided within the

prototype system, which combine to provide mechanisms for inter-module directive

passing. The functions are invoked by messages which are normally constructed by the

application administrator modules, since it is to this domain that users address their

specific command requirements. The general format for a message would be:

2 1 2

Chapter 9

COMMAND [SUB-TASK [g o a l]] [datum [datum [. . .]]]

The following commands are some examples of those provided within the

prototype system.

Section 9.3.1: ABORT

This command will be received by modules and treated as the shutdown

instruction. Any module subservient to the current module will first be sent the ABORT

command, before the current module brings its own operations to a halt. This

command is required in order to provide an coherent termination mechanism.

Section 9.3.2: DEVICE

This command requires the following parameters:

DEVICE name typ e

Any module which provides a service - possibly by controlling or participating

in the administration of a device - can ‘announce’ itself to the remainder of the

architecture (or at the very least, to associated modules in the domain) by using this

command. The name parameter is used to label this module, and is necessary for use

with the GENIE_send () command described in section 9.2.2. The ty p e parameter

is for reference puiposes, and would describe in very simple terms the general nature

of the module. Common examples which are used within the prototype system are:

DISPLAY used for describing a V.D.U.

INPUT used for describing a general ASCII input device.

OUTPUT used for describing a general ASCII output device.

This list is not exhaustive, and can be extended owing to the design of the architecture.

Section 9.3.3: GROUP

This family of commands is directed towards the manipulation of groups of

topological tiles. The use of these commands facilitates the maintenance of certain of

213

Chapter 9

the geometric relationships that are depicted between tiles, rather than ignoring or

discarding them. In practical terms, they allow the prototype system to apply

commands to multiple entities. Only one group per user can exist at any one time, so

that for multiple users the number of groups active within the system could be larger.

A number of GROUP commands are provided, as described in the remainder of this

section.

Section 9.3.3.1: GROUP ADD

This command has the form:

GROUP ADD name

The referenced (named) tile is added to the current group. If no name is given,

then the currently active tile (see TILE SELECT in section 9.3.5.7) is added. If there

is no currently active tile, then no addition can be performed. If this is the first tile

in the group, then the group is initialised to consist only of the identified tile. Tile

reference names are generated either by applications or directly by the user(s)^\ Tiles

can only be added once into a group. Any attempt at duplication is simply ignored,

as it has no meaning.

Section 9.3.3.2: GROUP DELETE

This command has the form:

GROUP DELETE

All referenced tiles in the group are removed from the group (but not the tile

space). The function of this command is to remove the relationship of the group, thus

re-instating the independence of each of the tiles within the group.

71: UNIX provides a tmpnam system call for the generation of unique names. A bug in the Sun
implementation means that the generation will cycle after the 17,576th invocation.

214

Chapter 9

Section 9.3.33: GROUP MOVE

This command has the form:

GROUP MOVE X y z

All tiles which are members of the current group can be relocated within the

tile space. This command will identify the relocation necessary to move the current

tile (see the TILE SELECT in section 9.3.5.7), and apply the relocation values to all

tiles within the group.

Section 9.3.3.4: GROUP RMOVE

This command has the form:

GROUP RMOVE x y z

All tiles which have been selected and added to the current group can be

relocated within the tile space. This command will apply the specified relative

relocation values to all tiles within the group.

Section 9.3.4: SHOW

This family of commands is intended purely for debugging purposes. It is

provided as a command directive to examine interactively the current status of various

aspects of the system. The output is directed to the primary output device, ignoring

the normal tile presentation mechanism. Accordingly, the command set should not be

considered part of the standard GENIE-M directives.

Section 9.3.4.1: SHOW DEVICE

This command has two possible forms:

SHOW DEVICE

SHOW DEVICES

The system will output a list of the currently known devices and their type onto

the primary monitor. This provides a facility to ensure that all modules and device

215

Chapter 9

drivers are correctly operational within the system. The list has been constructed

during the initial start-up of the system, and subsequently updated as modules and

devices are introduced or withdrawn from the system. The list is verified by sending

a test message to all modules or drivers supposedly present, which will then respond

in some fashion. The nature of the response can generally be ignored, it is sufficient

that a response was received in order to recognise that the module or device is present

within the system.

Section 9.3.4.2: SHOW GROUP

This command has the form:

SHOW GROUP

This command will cause the system to present a list of the tiles currently

within the active group, if any.

Section 9.3.4.3: SHOW TILE

This command has the form:

SHOW TILE

This command returns the complete set of data, parameters and attributes

associated with the current tile. The data will include name, location and dimension

within the tile space, and current content.

Section 9.3.4.4: SHOW TREE

This command has the form:

SHOW TREE

This command returns the complete set of tiles which comprise the current

application tree. All data, parameters and attributes associated with each of the tiles

within the tree are identified.

216

Chapter 9

Section 9.3.5: TILE

The family of TILE commands is concerned with the direct manipulation of a

specific tile, or some aspect of its circumstances. Certain of the commands are

intended to support interaction with the host operating system, but following the

intentions described in section 7.3 such that individual modules should be independent

from each other, there is no specific provision for display or presentation. These latter

tasks would be invoked according to the application itself, and in effect are accessed

at a higher abstract level than the tile manipulation commands.

Section 9.3.5.1: TILE CREATE

This command has the form:

TILE CREATE name

This command is used to create an empty tile within the tile space. It is added

to the current application tree, using the supplied name, but has undefined content,

location and dimensions. Having been created, the tile is automatically selected as the

current tile for subsequent tile manipulation tasks.

Section 9.3.5.2: TILE GET

This command family is supplied to provide tile interrogation facilities for the

application, and comes in a number of forms.

Section 9.3.5.2.1: TILE GET ATTRIBUTE

This command has the form:

TILE GET ATTRIBUTE name

Tiles can have any number of attributes associated with them, for any purpose

and containing any type of value. This command is used to establish the current value

of the attribute identified by the name parameter. A series of messages will be

returned to the requesting module, in the sequence as specified in Figure 8.

217

Chapter 9

END

Data-Line

Figure 8: Message Sequence for Data transmission between Modules.

If there is no attribute identified by the given name, then the syntax provides

for the return of the message END alone. However, if there is an attribute, then one

or more data messages can be returned, in a similar fashion to that described in section

9.3.5.2.2 under TILE GET DATA and in Figiu*e 9.

Section 9.3.5.2.2: TILE GET DATA

This command comes in the form:

TILE GET DATA

The complete set of data in the currently selected tile is returned to the

requesting module. If there is no current tile, or no data, then only the END message

is returned in accordance with the syntax diagram specified in Figure 8. Clearly, there

is the possibility that the quantity of data to be transmitted will be very large.

For the prototype system, this is dealt with by automatically splitting the data

messages into small packets, which must be reassembled by the receiving module. For

218

Chapter 9

a production version of the system, all participating modules would be able to access

the tile space directly, rather than having to request copies of the tiles, and so the

problem of segmenting the data would not arise.

In order for the receiving module to identify correctly the start and end locations

of the data (and to allow for the possibility for unusual byte values in the data stream),

the transmission of the data packets is such that each message has the form:

DATA ~<data>~

where the contents of the buffer between the ~ characters is assumed to be defined as

bytes rather than as characters, and so may contain any value (see Figure 9). Should

it be necessary to transmit the byte value of the ~ character itself, this can be achieved

by using the sequence ~~ which is decoded as representing the single ~ character by

the receiving module. To assist in the parsing of the received message, the

GENIE_parse () function will ignore the contents of the analysis buffer between

bracketing ~ characters.

D A T A -

Figure 9: Syntax Diagram defining a Data Line,

219

__ Chapter 9

Section 93.5.2.3: TILE GET POSITION

This command comes in the form:

TILE GET POSITION

The location of the currently selected tile is returned to the requesting module

in the form:

DATA X y z

where x, y, and z are the location coordinates of the tile within the tile space. The

z parameter refers to the ‘plane’ of the tile, and is useful for representing attributes of

the tile that pertain to the overlap potential of geometric representation. No END

message is returned, since only the single message would be required. In a production

version of the system, this command would refer to locations within a potentially

‘n’-dimensional tile space (according to the application), and so the number of

parameters returned could be variable.

Section 9.3.5.2.4: TILE GET SIZE

This command comes in the form:

TILE GET SIZE

The dimensions of the currently selected tile is returned to the requesting module

in the form:

DATA X y

where x, and y are the linear dimensions of the tile within the tile space. No END

message is returned, since only the single message would be required.

Section 9.3.5.3: TILE IDENTIFY

This command has the form:

TILE IDENTIFY o b je c t

This command is used by modules to establish (identify) specific tiles according

to the parameter specified in o b je c t . If no tile can be located, or the end of that

search direction is encountered, then an empty result is returned. In all other cases, the

2 2 0

Chapter 9

unique identifier (suitable for use by a TILE SELECT command) would be returned

as the sole value. A number of sub-forms of the command are provided.

Section 9.3.5.3.1: TILE IDENTIFY NEXT

This command has the form:

TILE IDENTIFY NEXT ty p e d i r e c t io n

This complex command is used to return the identifier of the tile which most

closely relates to the current tile (identified using TILE SELECT), according to the

relationship specified in the parameters of the command, ty p e is used to select

between INTERSECT, NEAREST or TREE. An intersection is considered to occur if

the two tiles overlap in any way when examined according to their current locations

and dimensions within their respective planes. A near tile is one that is simply closer

within the tile space than any other, in the direction specified. A TREE tile is simply

the next tile that is stored according to the internal architecture of the tile space

representation. This representation is highly implementation-specific, and should not

be considered a standard feature of GENIE-M implementations. It is included

specifically to facilitate debugging of application modules, by enabling a module to

construct a complete list of all tiles within the tile space, regardless of their relative

location within the tile space.

Direction is given in one of three forms: UP, DOWN or PLANE. The upwards

direction is considered to be nearer to the root of the tile space (see

TILE IDENTIFY ROOT), while the downwards direction is considered to be away

from the root. The planar direction searches within the current plane of the tile space

to find any matching tile. Searching for an intersection within the current plane has

no meaning within the current definition of the geometric tile space, and so attempting

to request a planar intersection is simply converted into a request for the nearest tile

in the same plane. Specifying a direction with the TREE type will be ignored.

This command is perhaps the most complex of the function set described in this

section. It is a fundamental command to be used by applications in searching for - and

2 2 1

Chapter 9

establishing the nature of - relationships. Use of the TILE IDENTIFY ROOT

command enables applications to re-orientate themselves with respect to the tile space,

and thereafter the relative nature of the tile space may be used to navigate the

application. As tiles are identified and located, they can be modified and relocated

according to the nature of the apphcation.

Section 9.3.5.3.2: TILE IDENTIFY ROOT

This command has the form:

TILE IDENTIFY ROOT

The identifier for the tile nearest the root of the tile space - or application tree -

is returned to the invoking module. This allows applications to return to the ‘start’ of

the geometric representation.

Section 9 3 .5 A: TILE MOVE

This command has the form:

T I L E MOVE X y z

The location of the currently selected tile is set to the specified values, where

z is the desired plane. The internal structure of the application tree will be

automatically updated, and an error state produced if the resulting move produces

intersecting tiles within the tile space. For the prototype system, the precise action

taken on the announcement of the error state will depend on the application. Some

applications may ignore the state, while others will take corrective or preventative

action.

Section 9.3.5.5: TILE READ

This command comes in the form:

TILE READ name

This provides a highly simplistic interface between the GENIE-M system and

the host environment. The file identified using name is read into the currently select

2 2 2

Chapter 9

tile, without performing any conversion of any kind. In practice, a reference is created

to the original file within the host file system, so that optimum efficiency is maintained.

Only if the tile contents are modified in any way is it necessary to actually incorporate

the file contents into the tile. Since the command can be executed without intervention

from the instructing module, the actual delay to the overall execution time of the

application can be minimised. When the file contents are read in, an uncomplicated

analysis is performed on the contents (assuming simple ASCII content) to establish

some working dimensions for the tile. The algorithm used is similar to that employed

by the UNIX wc^ command and determines maximum values for the linear dimensions

of the tile. These initial values can be modified using the TILE SET SIZE

command, but are useful starting points in most cases.

Section 9.3.5.6: TILE RMOVE

This command comes in the form:

TILE RMOVE x y z

The location of the currently selected tile is moved relative to the tile space,

according to the specified values, where z is change in the desired plane. This

command is functionally very similar to the TILE MOVE command, and further

relevant details can be found under the corresponding description (Section 9.3.5.4).

Section 9.3.5.T: TILE SELECT

This command has the form:

TILE SELECT name

The objective of this command is to provide a facility for selecting tiles within

the tile space. The name of the tile must be unique, but can be in any form. Once

selected, a tile can be manipulated or interrogated without requiring further

identification. In effect, it becomes the default tile for subsequent tile-specific

operations. This command is automatically performed when a tile is first created, to

72: The wc command is intended to ‘word-count’ an input file, producing counts of the number of
lines, words and columns in the input, assuming simple ASCII files.

223

Chapter 9

facilitate the ensuing configuration tasks. If the named tile cannot be located within

the tile space, an error is returned. Until a tile is successfully selected or created, any

following tile-specific commands will return an error.

Section 9.3.5.S: TILE SET

This command family is supplied to provide tile modification, update and

configuration instruction facilities to the application. For convenience, a variation on

the command family is provided in that whenever the sequence TILE SET is used, the

text TILE PUT can also be applied. The command parsing process will automatically

match the appropriate command to the sub-command. The family of commands comes

in a number of forms, described in the remainder of this section.

Section 9.3.5.8.1: TILE SET ATTRIBUTE

This command comes in the form:

TILE SET ATTRIBUTE name v a lu e

Tiles can have any number of attributes associated with them, for any purpose

and containing any kind of value. This command operates on the currently selected

tile, and is used to set the current v a lu e of the attribute identified by the name

parameter. If the parameter already exists, its old value is overwritten by the newly

specified value. Attributes can never be deleted, as specifying no v a lu e will merely

set the named attribute to the null value. The advantage of this mechanism is that

certain attributes for tiles do not need to specify or represent values, it is sufficient to

note merely that they exist.

Section 9.3.5.S.2: TILE SET DATA

This command comes in the form:

TILE SET DATA

This command announces that the complete set of data in the currently selected

tile is to be updated by the instructing module. If there is no current tile, then an

224

Chapter 9

appropriate error message would be returned before any data can be exchanged.

However, given that a tile is currently selected, and is eligible for updating (according

to access permissions), then the instructing module proceeds to issue a number of DATA

lines terminated by a single END message, as depicted in Figure 8. As with the

TILE GET DATA message, there is the possibility that the set data will be very large.

This is dealt with by automatically splitting the data messages into small packets, which

are automatically reassembled by the receiving module. For a production version of

the system, all participating modules would be able to access the tile space directly,

rather than having to specifically update copies of the tiles, and so the problem of

segmenting the data would not arise.

The same mechanism as described in the TILE GET DATA command is utilised

in order for the receiving module to identify correctly the start and end locations of the

multiple data packets (and to allow for the possibility for unusual byte values in the

data stream).

Section 9.3.5.S.3: TILE SET POSITION

This command comes in the form:

TILE SET POSITION x y z

The location of the currently selected tile is specified by the instructing module

where x, y, and z are the location coordinates of the tile within the tile space. The

z parameter refers to the ‘plane’ of the tile, and is useful for representing attributes of

the tile that pertain to the overlap potential of geometric representation. In a

production version of the system, this command would specify locations within a

potentially ‘n’-dimensional tile space (according to the application), and so the number

of parameters listed could be variable. This command functions in precisely the same

manner as the TILE MOVE command listed in section 9.3.5.4, and is included to

preserve orthogonality in the command set.

225

Chapter 9

Section 93.5.8.4: TILE SET SIZE

This command comes in the form:

TILE SET SIZE x y

The dimensions of the currently selected tile is specified by the instructing

module where x, and y are the linear dimensions of the tile within the tile space. This

command is provided for those applications where modules will modify the tile

contents. The modification may result in an adjust to the dimensions of the tiles,

which must be notified to the internal tile administration. Certain commands will cause

a size adjustment to occur automatically - see TILE READ in section 9.3.5.5.

Section 9.3.6: TREE

The TREE family of commands are provided to enable manipulation of the tile

space as a whole. In practical terms, these commands facilitate the management of the

particular application by administering to the electronic abstraction (the I.D.E.A.) in

toto.

For the prototype system, the commands are limited by the assumption that tiles

within the tile space are unlikely to separated into distinct domains. However, as

described in section 7.2, in a production system the tile would be categorised according

to their nature (topological or geometric), as well as according to their accessibility

(private, group, or global access).

Section 9.3.6.1: TREE LOAD

This command comes in the form:

TREE LOAD name

The first task for this command is to ensure that the named electronic

application document exists within the host file system. Having verified its existence,

the original application document can be replaced into the host system (if it has been

updated in any way), before the new application is loaded ready for access. After this

226

Chapter 9

command is completed, the internal application status of the entire system will be

exactly as if the named application had not been interrupted.

Section 9.3.6.2: TREE SAVE

This command has the form:

TREE SAVE name

This command is provided primarily for backup purposes. Normally an

application never needs to be explicitly stored, because any changes to the application

are automatically recorded before a new application can be accessed. However, there

are circumstances where an explicit save may be required. For example, in cases

where system reliability is doubtful, or where a backup using an alternative storage

device is required. The saving process uses a version mechanism which is hidden from

the user, so that no save can erase previous information.

Use of this mechanism naturally leads to a steady increase in the use of the host

file system storage space, and for the prototype system this is dealt with by running

a support program to purge the older copies to an alternative store. For a production

system, the purging mechanism would be incorporated explicitly on the assumption that

a high-capacity tertiary storage device^^ would be available for automatic archiving.

Section 9.4: Coding - the Sun Workstation Development Environment.

Generally speaking, a development environment consists of an operating system

and a collection of tools provided on a host machine. As far as possible, the

development tools used in the production of the GENIE-M prototype system are

expected to be available as standard on most UNIX machines, but there were two

Sun-specific features that proved of assistance.

73: Such as a dedicated Write-Once-Read-Many (W.O.R.M.) optical disk drive. Current systems already
offer in excess of 1 Gigabyte (1280 MByte formatted) storage capacity.

227

Chapter 9

The first and by far the most important was the multiple window display

provided by SunView. This enables the depiction of multiple UNIX ‘sessions’ on the

same display, as if several terminals were attached and operational. During the

development of communications between modules, the multiple window display was

invaluable in providing debugging data. Normally, modules would not be required to

output any status data, although one standard component was the incorporation of log

files of all transactions through the communications schema.

This mechanism was intended primarily for ‘post-event diagnosis’, and was of

little assistance during the actual execution of modules. The use of multiple windows

meant that, for debugging purposes, a module could be temporarily assigned its own

window, and thus direct status data to the screen. As an example of the benefit of

this, the sequencing problem referred to above (during the discussion of data

communication) was quickly detected by simply echoing received messages onto the

screen.

The second, and less-often used resource was an enhancement of the standard

UNIX debugging tool dbx. The Sun-enhanced program d b x to o l provides a useful

way to examine visually problems which arise with sections of code, particularly when

unexpected UNIX core dumps '̂* have been produced^^

During production of the code, the multiple source programs went through

numerous revisions, partly for error-correction, partly for inclusion of enhancements.

In order to administer the evolution of code, most UNIX hosts provide a Source Code

Control System (S.C.C.S.) This is an extensive set of utility programs that are used

to maintain a record of program (source code) changes, and to support the

reconstruction of any previous version at any time. This is enabled by the production

of ‘deltas’, which are records of the line-by-line differences associated with a given

version of the file. One of the more useful aspects of the S.C.C.S. resource is the

74: A core dump is a ‘snapshot’ of the process status at the exact moment that a fatal error occurred,
and is invaluable in post-mortem debugging.

75: The UNIX operating system can be rather uninformative with regard to fatal program errors. By far
the most common error message encountered is the singularly bland ‘Segmentation fault (core dumped)’.

228

Chapter 9

facility to include comments with each of the revisions, identifying why and how

particular changes were made.

The multiple modules present and requisite for the development of the prototype

GENIE-M generator represented a potentially complex problem with regard to the

multiple compilation tasks. This was aided by the use of the make tool, which takes

instructions from a ‘M a k e f i le ’ that guides the construction of multiple and closely

associated programs.

Section 9.5: Tile Space Storage Mechanisms.

In an idealised model of a tile space, which provides storage for tiles used

during the processing tasks within the information environment, data storage should be

based upon random-access techniques. This would permit multiple modules and

processes to access the data in a non-sequential manner, according to the directives

supplied by the user(s) or higher-level application modules. Inevitably, random access

implementations of data storage are affected directly by the operating system, and

indeed it is this aspect that provides the greatest restraint upon the portability of the

internal environmental architecture. The kernel of the tile storage system is responsible

for controlling the actions of processes in their tile manipulation tasks, and consequently

it co-ordinates any accesses to data storage. The . kernel is implemented in the

prototype architecture by a single ‘matrix’ module.

Section 9.5.1: The ‘matrix’ module.

This module has two major functions. Firstly, it is responsible for building a

three-dimensional matrix-like structure to represent the data space - and as such

supports the primary tasks required within the core domain of the architecture. A

three-dimensional tree is constructed (using generalised algorithms which could be easily

extended for use in ‘n’-dimensions), and this tree depicts the various tiles and hooks

into the file system for physical storage of tile data. This allows a given information

document to be described using a tree, and consequently alternative applications can be

229

Chapter 9

accessed by installing new trees. The trees themselves provide tile reference

mechanisms which permit tiles to be shared across multiple applications and many

users.

A disadvantage of this approach is that there is an overhead for the processing

machine in providing support for the tree representation. Ideally, the tile storage could

be more object-orientated, so that access and updating could be performed at a higher

abstract level, rather than requiring the current machine and file-handling dependencies.

The second major task of the matrix module in the prototype system is the

administration and provision of the internal GENIE-M commands. All directives

intended for accessing and controlling given aspects of the application within the

experimental system are directed towards the matrix module using the GENIE_send ()

command. The matrix module then identifies the nature of the directive and passes the

instruction to the corresponding module within the system. This activity is performed

automatically. Commands which are not understood by the matrix module can be

offered to all known modules within the application. The modules can then respond

according to whether the command is recognised or not. If the command is recognised,

the matrix module can build a list of where that command should be directed if it is

required in future tasks.

Section 9.6: GENIE-M and Distributed Svstems.

At no point does any implementation of GENIE-M require a specific host or

operating system architecture. To do so would be to impose constraints upon a system

that is specifically intended to be generalised. One of the more complicated areas of

GENIE-M concerns the inter-communication between modules on distributed systems.

There is no requirement for any module to be resident on any particular computer

within a given GENIE-M application, and accordingly, it makes sense for modules to

be invoked on computers to which they are better suited. Thus graphic modules might

be closely associated with computers enhanced for Computer Aided Design (C.A.D.)

work, while computationally-intensive modules might require computers with numeric

processor enhancement or floating-point accelerators.

230

Chapter 9

The problem arises that a module may require the services of any other module,

but will not - in the first instance - ‘know’ where in the distributed system the module

is to be located. Certain operating systems do offer a form of Remote Procedure Call,

where processes can access resources on other hosts, but such a facility is often highly

host- or operating system specific. With a distributed UNIX implementation of

GENIE-M, there is also the inevitable problem of multiple ‘sessions’ being activated,

such that a single user can be ‘logged-in’ to the same machine, using the same

directory structure, but with each session being completely independent from the other.

Thus, an invocation of a GENIE-M module within one session cannot normally be

accessed by any other session on the same or any other computer.

As a solution, the GENIE_send() command has been enhanced to allow for

the possibility that communication is required with a module that is not present within

the current session. The parameter for GENIE_send() requests that a message be

transmitted to the named module. However, if the module does not appear within the

current work-space, then normally transmission could not be implemented. This can

cause peculiar effects if one user is accessing a high-level module at the root level of

a UNIX machine - thus causing the creation of an access point for the module within

the UNIX file system - yet another user cannot connect to that access point because

it is not considered to be ‘live’ from within the current session.

In order to deal with this problem, GENIE_send () has been modified to test

for the presence of the destination module as a live access point within the current

processing session. If no such access point can be located, then the module is deemed

to be inactive. However, rather than simply abandoning the transmission,

GENIE_send() will attempt to pass the transmission through a gateway module in

order to access other sessions that may be in progress on remote - or even local -

machines. Two gateway modules are provided, g a t e in and g a teo u t . The former

module ‘listens’ on a hardware communications port for any data being transmitted

from an external session. The data will have been configured for inter-session

communication, and will be parsed to identify the desired destination module. As

before, a test is carried out to determine whether the requisite module exists and is

231

Chapter 9

active within the current session, and either the message will be rejected or else it will

be successfully forwarded to the desired destination.

The g a te o u t module is automatically addressed if GENIE_send() fails to

locate the desired destination module. This module identifies the destination of the

transmission, to determine where the message should be sent. If no known module

exists, g a te o u t will offer the message to any and all g a t e in modules active within

any session of the host machines anywhere within the distributed system. If a willing

recipient is located, the destination address is recorded for future use, and the message

forwarded as required. If no recipient is located, the message will be returned to its

sender with the appropriate notification.

The implementation of this mechanism is essential in supporting the use of

GENIE-M within a distributed environment, particularly since the actual provision of

the resource must be as host independent as possible. A number of check mechanisms

have been implemented in order to minimise the danger of an inter-machine loop

situation being created, yet at the same time the activation of this mechanism should

be as transparent as possible in order to facilitate the straightforward nature of the

GENIE-M implementation.

Section 9.7: Summarv.

In this chapter, we have considered in some detail the technicalities of how the

GENIE-M prototype was constructed. The prototype system uses the limited set of

commands described in section 9.3 with a high degree of success, and was suitable for

generating a demonstration system which suggests that the concepts upon which

GENIE-M is based have some degree of validity. In particular, the architecture has

been constructed upon the combined principles of minimal complexity with maximum

extendability. Additions to a computer-based information system of this form can be

provided by the simple expedient of incorporating the corresponding module into the

information environment. The command recognition process and message-forwarding

facility detailed in section 9.6 enables the extensions to incorporated rapidly.

232

Chapter 9

Navigation through the system depends in part upon the application being able

to identify the relationships that exist between the tiles. Support for this requirement

is provided by the TILE IDENTIFY family of commands, which can be used by

application modules to build up a complete working record of all tiles (and their

inter-relationships) for any given tile space - and hence for any ‘unfamiliar’ application.

Reference has been made to production versions of the system. This would

entail extending and improving certain aspects of the prototype with regard to storage

capacity and improving the speed of the intercommunication, but in practice this could

be achieved by a process of replacing modules with implementations of higher

functionality. The commands described in section 9.3 are intended primarily for use

by application modules, but they are also suitable for controlling an application by

direct instruction.

233

Chapter 10.

Conclusions.

Section 10.1: Introduction.

This thesis has described the development of an architecture which uses an

innovative geometric concept as a basis for proposing an enhancement for the

development of computer-based information systems. The nature of the enhancement

centres upon the description and construction of extensive manipulation models called

Information Environments. These are computer-based representations of all the key

components which contribute to and participate in a given set of information processing

tasks for particular applications.

The derivation of a specification for the Information Environment concept has

resulted from a wide-ranging examination and reappraisal of many aspects of computer

science; considering in particular two main fields. Firstly, the use of data structures

in the depiction of geometric relationships; and secondly, the construction - or

generation - of application systems using the resulting fundamental components. The

construction of systems which utilise the geometric paradigm should be facilitated, and

the systems themselves should benefit from the additional capabilities that the geometric

representations appear to offer in terms of problem representation and solution

implementation.

In this chapter, we reassess all of the research work in a final analysis. This

is felt to be essential in view of the diversity and number of topics that have fallen

under scrutiny, and it is considered important to recognise the overall contribution of

the independent but related and interactive nature of much of the material. It is also

hoped that this commentary on the work should be of assistance in identifying and

inspiring further avenues of research.

234

Chapter 10

Section 10.2: Review of the GENIE-M Philosophy.

A common problem with many application systems based on existing

architectures and development strategies is that, traditionally, they focus upon very

specific problem areas or tasks. This often has the consequence that only limited

consideration is given to how the tools constructed and supplied within the system

might cooperate in complementing each other and alternative application systems within

the human operating environment. As a result, these focused systems often impose a

set of constraining patterns or ideas on the users, possibly through the imposition of

a set of limited operational techniques. Indeed, the traditional emphasis of data

processing - which emphasises the technology - perhaps indicates that the use of a

computer-based information system itself imposes the pattern and manner of operation.

More recently, systems have been developed with the intention of providing

more consistent and cooperative tools; but these often seem to concede performance

elsewhere, for example in terms of reduced functionality, ease-of-use or expandability.

The underlying model which is used in the construction of the focused systems is

usually derived directly from the application under consideration, and consequently the

opportunity for use or re-use of components from previous work is rather less than

might be desirable [Sommerville 89].

A more generalised approach would seem to be that the system should support

the users in ways that reflect rather than hinder their personal preferences and natural

skills. The tools used for performing the tasks should therefore be more compliant with

the needs and circumstances of the application, and also build on the strengths of other

tools. The recent trends towards more advanced and integrated tasks of greatly varying

nature, such as those that would be performed during multimedia information processing

[McCandless 90], further justifies the move towards comprehensive models of the

working environments. These environment models are envisaged as a means of

enabling a more detailed representation of the diverse components that contribute to

data processing tasks, with the aim of assisting in the advancement of computer-aided

information handling activities.

235

Chapter 10

These requirements for improving computer-based information systems suggest

that provision must be made for alternative approaches in preference to purely

objective-orientated design and development. Specifically, the need for greater

productivity in information processing activities means that techniques must be derived

for more considered overall strategies for the development of tools and systems. A

corollary of this is that greater recognition must be given to the overall circumstances

of the tasks being performed, and consequently the nature of operational environment

is a factor that should be incorporated more precisely within the application

development model.

It is therefore suggested that in order to achieve the desired enhancements to

information systems, design and development strategies should from the beginning have

two major goals: firstly that of strengthening the support for the users in performing

their tasks of work, and in constructing their own patterns and ideas. Secondly, the

underlying architecture should be considerably more portable and generalised in order

to support not only the flexibility of the system but also ease the development process.

Thus, a major emphasis of the research work described here has been the

production of an architecture that permits a wider range of more flexible application

activities. This is achieved by the construction of a totally new computer-based

representation of the information processing environment. The work on GENIE-M has

suggested that using a geometrical representation as a foundation for some of the data

representation and manipulation may provide the necessary computer-moderated support.

Accordingly, the use of geometry may be an appropriate technique to achieve the

higher objective of a more flexible architecture.

The use of a geometric architecture within computer-based information systems

makes provision for the required enhancement by incorporating a diagrammatic aspect

to the data representation and manipulation activities. Rather than imposing a

potentially complex and mathematically intensive set of rules and regulations upon the -

possibly ‘computer-naive’ - users, a pictorial approach is used not only for problem

representation but also for the architecture used to implement the solution. The use of

geometry should therefore be of value in guiding efforts towards the construction,

236

Chapter 10

combination and re-use of appropriate tools for implementing the solution to the

identified tasks. At the same time, it enables the representation of a variety of

additional relationship expressions that might not otherwise be so easily expressed.

Using these concepts, a model of computer-based representation of information

systems was proposed, which has been deliberately extended beyond other existing

models in order to recognise the existence and benefits of multiple users and peripheral

devices within the application environment.

In constructing the GENIE-M prototype, we are trying to provide an

experimental testbed upon which the suggested geometric framework can be evaluated.

This is achieved by constructing actual components, which can then be placed and

configured according to requirement. The internal architecture upon which GENIE-M

functions is intended to provide simplicity and consistency in accessing and

manipulating resources and facilities within the environment, in a manner similar to that

provided by operating systems in relation to the underlying hardware. An internal

processing structure is constructed for the geometric representation which uses an

innovative tile-orientated data concept. The tile mechanism provides an appropriate

means of depicting the enhanced geometry and relational orchestration of the data being

managed.

A unified command mechanism provided by the prototype system results in a

user-understandable instruction set for controlling the operation of the multimedia

environment. The overall simplicity of the architecture which underlies GENIE-M has

been deliberate, and indeed reflects the conclusions reached by the development team

working on the KMS hypermedia system (described in section 3.4). End-users would

be able to tailor their own systems by locally redefining specific application modules

or tiles, knowing that compatibility with the lower levels remains intact.

However, it is recognised that the nature of the concept makes it unsuitable for

immediate implementation or configuration by inexperienced users: in its current

realisation it is not a form of ‘Lego’ kit for information systems. Instead it should be

viewed as a mechanism to aid in establishing an understanding and subsequently

237

Chapter 10

producing a representation or description of problems. It is important to recognise that

for each instance of a new problem, new mechanisms or tools must be generated from

first principles. However, as each mechanism is completed, the underlying architecture

promotes its reuse and reapplicability in alternative circumstances with minimal

reconfiguration.

A major thrust of the author’s work has been the development and

implementation of the innovative internal system structures, but it is obvious that in

order to communicate with the outside world, computer-based information systems

generated from a GENIE-M system would require access to a range of input and output

(control and presentation) devices. The prototype system used in generating the

demonstration system to be described in section 10.3 has an input and output control

mechanism that is primarily text-orientated. The decision was taken by the author to

implement access to the system via a text-based front end in order to concentrate more

effort on the internal mechanisms.

However, the nature of the textual commands (as described in section 9.3) are

the result of design intentions to ensure suitability for use by more powerful graphic

front-end packages. More advanced systems would therefore make use of the enhanced

detail and power provided by the graphical front-end packages, thus utilising the facility

to employ additional applications modules and associated peripheral devices within the

information processing environment.

An important section of the work concerns the software engineering approach

used. A concurrent goal throughout the research was to experiment with the use of

evolutionary prototyping as a technique for development of the concept and the

implementation. This method has actually been promoted by the circumstances of the

development, and as pointed out in [Ince 89], is ‘a useful way to develop software’.

The considerable amount of thought and design work that has gone into the

development of the concepts that GENIE-M embodies appears to be justifiable. Much

of the time was spent looking at current system objectives in order to develop fully an

understanding of what the specific objectives of this research should be, and only then

238

Chapter 10

could a fundamental set of specifications be derived. Some of the results from this

early work have been presented at conferences in order to publicise them and invite

commentary from professional researchers and system developers [Angell 87 &

Warman 87]. The various reactions were very helpful in strengthening otherwise weak

areas, and in identifying points which needed further clarification or development.

Section 10.3: The Demonstration Svstem.

In order to provide a reahstic demonstration of the concepts behind the

geometric architecture of GENIE-M, a specific configuration has been constructed to

illustrate the major features of the work. Borrowing from the lecture-support idea

suggested in section 7.5.3, the system is used to construct an apphcation that will be

used for demonstrating itself. A single presenter will be provided with a small control

environment running on a personal computer, which will be used to direct the

proceedings. A script of the presentation will be provided, with key aspects highlighted

and echoed onto large-scale ‘repeating’ displays for the audience.

Graphical information will be presented using two devices, a purely PC-based

display, and a high-quality graphic device. Hard-copy of the relevant notes would also

be provided automatically through an attached printer driver. The consistency of the

underlying architecture will further be depicted in two forms; firstly by the use of

different languages in constructing some of the contributory components, and secondly

by supporting the operation of an external (non-GENIE-M specific) application.

The agenda for the demonstration will consist of an introduction to the

GENIE-M philosophy and architecture, with diagrams to illustrate the tile and tile-space

concepts. The use of drivers within the system will be shown with modest examples

at the relevant stages of the proceedings.

It is planned that by using the system to construct a demonstration of itself, the

feasibility of using geometry to enhance computer-based information systems will be

clearly illustrated. The key feature is the fact that the demonstration will be

239

Chapter 10

constructed upon a completely consistent underlying architecture, such that

reconfiguration is an uncomplicated process.

Section 10.4: Successes of the Work.

It is believed that there are certain application areas in which systems could

benefit from the incorporation of some of the ideas. In research fields especially,

GENIE-M suggests a number of mechanisms which may be of assistance for solving

current problems. The multi-tasking nature of the architecture means that GENIE-M

systems may be of value in the development of future parallel machines architectures,

where multiple processors (rather than simulations of multiple processors by a single

C.P.U. implementing some form of time-sharing mechanism) will be provided physically

within the hardware. Indeed, the design for GENIE-M has recognised from the outset

that implementation on currently available hardware is unlikely to produce fast or

efficient systems. However, the design has been guided by the nature of resources that

will probably be provided with the next generations of hardware. In the meantime,

current implementations enable the design to be evaluated and tested in advance of the

more suitable technology to come.

An example of a simpler software-orientated application that is practical at the

moment would be a notebook, whereby a tile could hold text information, while another

tile could hold graphic information entered via mouse, keyboard or light-pen/stylus.

Any access to one or the other tile would automatically call up the other tile(s), in

order to retain the relationship that is implied. A more complex application is the

lecture support environment, which must take into account a number of apparently

rudimentary objectives in terms of presentation requirements, yet maintain the

application for a number of otherwise incompatible devices. A complete and structured

script would be generated that includes not just textual material, but also graphics,

pictures and other support elements. Each of these components is combined within the

architecture to form single application ‘documents’, which can subsequently be used and

re-used as required.

240

Chapter 10

With reference to more advanced applications, the fields of multimedia and

hypermedia systems would seem to be prime candidates for GENIE-M development.

As discussed in section 3.4, Halasz raises a number of questions concerning hypermedia

systems - with particular reference to the Notecaids system, and suggests how they

should perhaps be extended in future versions or generations. These problems include

providing search-and-query facilities, where navigational access alone may be

insufficient; the use of composites to augment the basic model; the use of virtual

structures to support information reorganisation; computation over networks and

distributed collaboration; versioning; and extendability and configurability.

The architecture used in constructing GENIE-M systems, and in particular the

geometric nature of tiles, provides possible solutions to a number of these problems.

For example, concerning composition^®, a GENIE-M mechanism allows a given node

to be included in more than one composite. The use of geometry to portray

relationships between objects, as defined within GENIE-M systems, allows any node

(tile) to be perceived (geometrically) either as part of a given composite (IDEA) or by

the concept of the group. Versions of nodes can be introduced by placing more recent

tiles geometrically above (or relatively ‘before’ or in advance of) older versions of the

tile, and as stated previously, GENIE-M does not explicitly enable destruction of a tile,

it merely provides for its relocation to a remote zone within the tile space.

Dynamic reorganisation of the tiles - and correspondingly the incorporation of

changes to information - is supported in two ways: firstly, by using the modules which

manipulate the tile space; and secondly by using the links which can exist explicitly

(references) or implicitly (geometrically) between tiles. Inclusion of external systems

for specific applications is provided using the concept of the external function supported

within a complete environment.

Mechanisms for promoting consistent and coherent movement of data between

multiple cooperating processes have been investigated and implemented. The same

modular architecture which supports these processes is also conducive towards

76: Composition in this context is a way of dealing with groups of objects without necessarily having
to consider their components.

241

Chapter 10

upgrading and improvement by a simple and demonstrable mechanism for module

replacement. The multi-tasking nature of GENIE-M has been referred to in section 7.7

as an example of an application technology suitable for employing advances in parallel

computing hardware. Similarly, the use of higher level modules suggests the possibility

of simulation tools with independent entities that perhaps may not be so cooperative,

while an overseeing module can monitor the activities that ensue.

Having spent much time discussing the system specification, two implementation

development areas were clearly defined. The emphasis of the present research work

has been upon the development of a theoretical basis on which to design system

internals, essential for constructing a prototype system. The goal of developing a true

computer-based multimedia information environment generator naturally suggests the

second major development area, concerning the construction of a very highly developed

graphical front end. However, for the research under discussion at present, such a front

end is a separate entity that requires the focus of an alternative research project. The

primarily text-orientated mechanisms used for controlling the underlying multimedia

manipulations are sufficient for the prototype. The text-based commands are designed

to be used by application modules, of which an important example would be the

graphical front-end.

As stated in section 10.2, the architecture is not suitable for construction or

configuration by inexperienced users. Generating application modules is not necessarily

as simple as fitting together basic components - although the architecture would

eventually be developed to the point where such an approach would be mandatory.

Instead, the present emphasis should be on the construction of applications within the

higher-level of the information environment. Failing to incorporate this philosophy into

the development of applications would be to undermine the conceptual advantages

provided by the architecture.

The development of the architecture has been guided throughout by the desire

to implement a technology for supporting information environments, and this in turn

has meant that much of the work has had to be constructed from first principles. Use

of existing tools may have unintentionally directed the skeleton of the project away

242

Chapter 10

from the generalised goal. For each instance of a problem, its nature has been

categorised prior to an appropriate mechanism being generated. The mechanisms have

included control tools, or device drivers, or higher level concepts such as presentation

models.

The development experiments carried out have been both interesting and

extremely instructive. The author’s knowledge and experience has benefitted

enormously in the many areas studied. The internal mechanisms developed to facilitate

the functioning of GENIE-M have been seen to work, and have enabled the generation

of a demonstration system which may already be of practical value.

The prototype system is helpful in identifying how the geometric mechanism can

be used in analysing certain problems, and in the construction of the information

environments to be used for contributing to tasks. In particular, the prototype has

indicated areas where further research must be carried out. Even without the goal of

generating information environments, the architecture suggests a number of mechanisms

for implementing simpler apphcations, and in particular those involving multiple,

concurrent processes.

Section 10.5: Limitations of the Current Svstem: Threads for Future Development.

The prototype system represents a form of ‘enabling technology’. The study of

its construction and development is of inestimable value in providing pointers and

guidance for future work. Limitations of the prototype focus more upon its included

capabilities rather than faults in the basic concepts, and in this sense the prototype

remains viable. However, in practical terms there are many ways in which the

prototype could be extended into a more comprehensive ‘production’ system.

For example, the current form of the GENIE-M generator does not provide for

the automatic construction of information systems. Instead it provides a series of tools

(such that the word ‘generate’ is taken to mean provision of service) which can be used

in the construction (generation) of a computer-based information system. Consequently,

243

Chapter 10

the generation has to be performed by an operator familiar with the system. However,

this has the advantage that specific applications can be constructed and tailored to

individual requirements, while maintaining the underlying system concepts.

The communication mechanisms are fully functional, but have room for

improvement. In particular, the problem of multiple asynchronous message passing

needs to be examined in more detail. This is partly to identify any machine- or

operating-system dependencies or difficulties with using UNIX-based inter-process

communications; and partly to improve the overall speed of module

inter-communication. Messages can already pass between several modules concurrently,

but the prototype restricts this so that the flow of messages through the system kernel

can be controlled to avoid deadlock. As research into ‘deadly embrace’ problems

progresses, so the results can be incorporated into the prototype. Other extensions to

the message passing mechanism could incorporate a priority category, so that imperative

messages such as ‘imminent system failure’ could be dealt with promptly.

The nature of the interconnection assumes reliable connections. A transaction

log has been implemented to record all exchanges, but this is only of interest at present

for debugging purposes. A useful enhancement to the system would incorporate a

restart mechanism which would reconstmct the exact state of the application to the

precise moment when any failure occurred.

Although UNIX provides the host operating system, and the majority of the

prototype implementation was written using ‘C’, the design has been such that there are

few restrictions on the choice of language used to implement similar versions, or to

enhance the existing system. Those restrictions which do exist relate to the

multi-tasking natiu*e of the entire concept, and in particular to the need for suitable

inter-module communications. The provision of fundamental primitives is intended to

minimise the constraints that would otherwise be imposed by host machine, operating

system or language. Deliberately changing machines to study implementation

dependencies would be a very interesting task, but the experiences gained in

implementing the demonstration system suggest that the implementation areas most

likely to cause difficulties during any porting process have been clearly identified.

244

Chapter 10

A clear objective in the future development of GENIE-M is the construction of

a primarily graphics-orientated front-end. In much the same way that certain Graphic

User Interfaces (GUI’s) ‘sit upon’ otherwise complex operating system control

mechanisms, so a graphic front-end for GENIE-M should provide much better

accommodation of individual user requirements. This is because the graphic

representation would be able to associate more closely with the underlying geometry

of the application. Therefore, the key distinction between most GUI technology

implementations and a GENIE-M graphic front-end would be the recognition of the

geometric architecture which forms the basis of GENIE-M.

The GENIE-M work has suggested a mechanism for solving some of the

problems of current strategies for developing computer-based information system. In

particular, it suggests a direction to be taken in providing for multiple users wishing

to perform multiple tasks across a distributed and potentially incompatible architecture.

The work does not in any way represent a complete solution to this problem, but by

providing a consistent control mechanism based upon a new approach to representing

the problem domain, GENIE-M provides a way forward that is generalised and

extendable.

A major issue to be addressed is the construction of a formal methodology

which would be used to identifying those problems suited to representation using

geometry, followed by derivation of the geometrical nature of the solution. Having

been so closely involved with the construction of the internal architecture, the author

is sometimes able to identify appropriate mechanisms on the basis of experience; but

this is clearly lacking in precision. The existence of the GENIE-M prototype system

would enable future research to proceed on the basis that a working system can be used

as an experimental testbed to validate the formal methods.

Section 10.6: Final Thoughts.

There are almost no fields of computer science and computer-based information

system construction that are not in some way associated with the work carried out

245

Chapter 10

during this research - at times it seemed that the work would draw upon all fields of

expertise throughout computer science and computer-based information system

development. The implications of some of the resulting work perhaps suggest that a

more detailed exposition and study may be of value, possibly to investigate whether a

unification mechanism is a viable prospect for future work.

In hindsight, the scope of this work has increased dramatically since its original

conceptions as a mechanism for providing multiple editions of electronic books. Behind

all of the work was a desire to seek consistency and applicability. The primary

objective has been to identify a core which is suitable for use as the basis of an

information architecture, that is expandable and widely applicable. In doing so, the

specification of the core was guided by the preference for a minimal system, without

a large number of procedures. A workable core could be extended in any desirable

manner by use of appropriate procedures which would themselves be suggested by the

nature of the core itself. Consequently, any concepts suggested during the work were

explored in depth and at length, simply to ensure that limitations or restrictions would

be minimal and that the core objectives would remain consistent.

The prototype system has been highly experimental in nature, and was never

intended to be a production system. It forms an experimental test-bed on which ideas

can be evaluated and examined, and so represents an ‘enabling technology’. The focus

has been directed towards recognition, definition, implementation and testing of totally

new principles. The representation of the information environment is a complex task,

that starts with the construction of device drivers to support the first approximation to

the problem. All the drivers have had to be constructed with the requirement for

underlying consistency always in mind. Construction of a production system is

straightforward given the extensible nature of GENIE-M, but would require the effort

of a complete research team for a long term enterprise. Consequently, the prototype

should be viewed as a paradigm to be used as the starting point in the development of

the more advanced system.

246

Appendix.

References.

[Aceves 85] J. J. Garcia Luna Aceves & A. A. Poggio, ‘Computer-Based Multimedia

Communications’, COMPUTER, October 1985.

[Aceves 85b] J. J. Garcia Luna Aceves, ‘Towards Computer-Based Multimedia

Information Systems’, Computer Message Systems 85, ed. R. Uhlig, pp. 61-77,

1985.

[Ackoff 67] R. L. Ackoff, ‘Management Misinformation Systems’, Management Science,

Vol. 14, No. 4, December 1967, pp. B147-B156.

[Ahlsen 84] M. Ahlsen, A. Bjomerstedt, S. Britts, C. Hulten & L. Soderlund, ‘An

Architecture for Object Management in OIS’, ACM Transactions on Office

Information Systems, Vol. 2, No. 3, July 1984.

[Akass 89] C. Akass, News article on Software Development delays, Datalink,

September 1989.

[Akscyn 84] R. Akscyn & D. L. McCracken, ‘The ZOG Approach to Database

Management’, Proc. Trends and Applications Conf: Making Database Work, May

1984.

[Akscyn 87] R. M. Akscyn, D. L. McCracken & E. A. Yoder, ‘KMS: A Distributed

Hypertext System for Sharing Knowledge in Organisations’, Hypertext 87 Papers,

November 13-15, 1987.

[Akscyn 88] R. M. Akscyn, D. L. McCracken & E. A. Yoder, ‘KMS: A Distributed

Hypermedia System for Managing Knowledge in Organisations’, Comms. ACM,

Vol. 31, No. 7, July 1988, pp. 820-835.

247

Appendix

[Allen 81] T. Allen, R. Nix & A. Perils, ‘PEN: A Hierarchical Document Editor’, Proc.

ACM SIGPLAN/SIGOA Symposium on Text Manipulation, Oregon, Vol. 2, Nos.

1 & 2, June 1981.

[Angell 86] I. O. Angell, Y. P. Low & A. R. Warman, ‘GEODOC: An Overview’,

Internal Note 1906, Department of Computer Science, University of London, 19

February 1986.

[Angell 87] I. O. Angell, Y. P. Low & A. R. Warman, ‘GENIE-M: A Generator for

Multimedia Information Environments’, British Computer Society Conference:

‘Workstations and Publication Systems’, London, 22-23 October 1986, papers

published by Springer-Verlag 1987.

[Applix 84] Applix Inc., ‘Alls - A next-generation office software system from Applix:

Application Summary’, 1984.

[Avison 85] D. E. A vison, ‘Information Systems Development: A Data Base Approach’,

Blackwell Scientific Publications, 1985.

[Avison 88] D. E. Avison & G. Fitzgerald, ‘Information Systems Development:

Methodologies, Techniques and Tools’, Blackwell Scientific Publications, 1988.

[Ayers 84] R. M. Ayers, J. T. Homing, & B. W. Lampson, ‘Interscript: A Proposal for

a Standard for the Interchange of Editable Documents’, Xerox Palo Alto

Research Center, California, 1984.

[Bach 86] M. J. Bach, ‘The Design of the UNIX Operating System’, Prentice-Hall,

1986.

[Backer 82] D. Backer & S. Gano, ‘Dynamically Alterable Videodisk Displays’, Proc.

Graphics Interface 82, May 1982.

248

Appendix

[Baker 72] F. T. Baker, ‘Chief programmer team management of production

programming’, IBM Systems Journal, Vol. 11, No. 1

[Barber 83] G. R. Barber, ‘Supporting Organisational Problem Solving with a

Workstation’, ACM Trans, on Office Information Systems, Vol. 1, No. 1,

January 1983, pp. 45-67

[Baskin 80] A. B. Baskin, ‘Logic Nets: Variable-valued Logic plus Semantic Networks’,

International Journal on Policy Analysis and Information Systems, Vol. 4, No.

269, 1980.

[Beeman 87] W. O. Beeman, K. T. Anderson, G. Bader, J. Larkin, A. P. McClard, P.

J. McQuillan & M. Shields, ‘Hypertext and Pluralism: From Lineal to Non-

Lineal Thinking’, Hypertext 87 Papers, November 13-15, 1987.

[Begeman 86] M. L. Begeman, P. Cook, C. Ellis, M. Graf, G. Rein & T. Smith,

‘PROJECT NICK: Meetings Augmentation and Analysis’, Computer-Supported

Cooperative Work 86 Proceedings, December 3-5, 1986.

[Bender 84] W. Bender, ‘Imaging and Interactivity’, Fifteenth Joint Conf. on Image

Technology, November 1984.

[Benyon 87] D. Benyon & S. Skidmore, ‘Towards a Tool Kit for the Systems Analyst’,

The Computer Journal, Vol. 30, No. 1, February 1987.

[Bersoff 81] E. H. Bersoff, V. D. Henderson & S. G. Siegel, ‘Software Configuration

Management’, Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[Bigelow 87] J. Bigelow & V. Riley, ‘Manipulating Source Code in Dynamic Design’,

Hypertext 87 Papers, November 13-15, 1987.

[Birrel 80] A. D. Birrell & R. M. Needham, ‘A Universal File Server’, IEEE Trans.

Soft. Eng., Vol. SE-6, No. 5, September 1980, pp. 450-453.

249

Appendix

[Blank 83] J. Blank & M. J. Krijger, ‘Software Engineering: Methods and Techniques’,

Wiley Interscience, 1983.

[Boehm 75] B. W. Boehm, ‘The High Cost of Software’, Practical Strategies for

Developing Large Software Systems, ed. E. Horowitz, Addison-Wesley, 1975.

[Bolt 80] R. A. Bolt, ‘Put-that-there: Voice and Gesture at the Graphics Interface’,

Computer Graphics, Vol. 15, No. 3, pp. 262-270, August 1980.

[Bolter 87] J. D. Bolter, ‘Hypertext and Creative Writing’, Hypertext 87 Papers,

November 13-15, 1987.

[Bono 85] P. R. Bono, A Survey of Graphics Standards and their Role in Information

Interchange’, IEEE Computer, October 1985, pp. 63-75.

[Bourne 83] S. R. Bourne, ‘The UNIX System’, Addison-Wesley, 1983.

[Boyle 85] C. D. B. Boyle & M. R. B. Clarke, ‘An Intelligent Mail Filter’, People and

Computers: Designing the Interface, Proc. BCS HCI Conf. 17-20 September

1985, pp. 331-341.

[Brown 84] M. H. Brown & R. Sedgewick, ‘A System for Algorithm Animation’,

Computer Graphics, Vol. 18, No. 3, July 1984.

[Brown 86] P. J. Brown, ‘Interactive Documentation’, Software: Practice and

Experience, pp. 291-299, March 1986.

[Brown 86b] P. J. Brown, ‘Viewing Documents on a Screen’, from CD-ROM: The

New Papyrus’, Lambert and Ropiequet (Eds.), Microsoft Press, 1986.

[Brown 87] P. J. Brown, ‘Turning Ideas into Products: the Guide System’, Hypertext

87 Papers, November 13-15, 1987.

250

Appendix

[Brown 89] H. Brown, ‘Standards for Structured Documents’, Computer Journal, Vol.

32, No. 6, December 1989, pp. 505-514.

[Buckle 82] J. K. Buckle, ‘Software Configuration Management’, Macmillan, London,

1982.

[Bush 45] Vannevar Bush, ‘As We May Think’, Atlantic Monthly No. 176, pg 101-

108, July 1945.

[Bush 67] Vannevar Bush, ‘Memex Revisited’, Science is Not Enough (Vannevar Bush),

pp. 75-101, 1967.

[Butler 88] R. Butler, ‘CIS - Geographic Information Systems - An Introduction’,

Mapping Awareness, Vol. 2, No. 2, May 1988, pp. 31-34.

[Byrd 82] R. J. Byrd, S. E. Smith & S. P de Jong, ‘An Actor-Based Programming

System’, ACM SIGOA Conference on Office Information System, Vol. 3, Nos.

1 & 2, 1982.

[Campbell 87] B. Campbell & J. M. Goodman, ‘HAM: A General Purpose Hypertext

Abstract Machine’, Hypertext 87 Papers, November 13-15, 1987.

[Campbell 88] J. Campbell, ‘The C Programmer’s Guide to Serial Communications’,

Howard Sams & Company, 1988.

[Cashin 73] P. Cashin, M. Robinson & D. Yates, ‘Experience with SCRAPBOOK, a

Non-Formatted Data Base System’, Proc. IFIPS Congress, 1973.

[Chamberlin 82] D. D. Chamberlin, J. C. King, D. R. Slutz, S. J. P. Todd & B. W.

Wade, ‘JANUS: An Interactive Document Formatter based on Declarative Tags’,

IBM Systems Journal, Vol. 21, No. 3, 1982, pp. 250-271.

251

Appendix

[Chamey 87] D. Chamey, ‘Comprehending Non-Linear Text: The Role of Discourse

Cues and Reading Strategies’, Hypertext 87 Papers, November 13-15, 1987.

[Christodoulakis 86] S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa & A. Pathira,

‘Multimedia Document Presentation, Information Extraction, and Document

Formation in MINOS: A Model and a System’, ACM Trans. Office Information

Systems, Vol. 4, No. 4, October 1986, pp. 345-383.

[Clark 83] P. A. Clark, BYTE Magazine, May 1983, McGraw-Hill Inc.

[Codd 70] E. F. Codd, ‘A Relational Model of Data for Large Shared Data Banks’,

Communications of the ACM, June 1970.

[Coleman 88] D. Coleman & R. Gallimore, ‘A Framework for Program Development’,

Computing Techniques, March 1988, pp 36-40.

[Collier 87] G. H. Collier, ‘Thoth-II: Hypertext with Explicit Semantics’, Hypertext 87

Papers, November 13-15, 1987.

[Conklin 87] J. Conklin, ‘Hypertext: An Introduction and Survey’, IEEE Computer,

September 1987, pp. 17-41.

[Constantine 79] L. L. Constantine & E. Yourdon, ‘Structured Design’, Prentice-Hall,

Englewood Cliffs, New Jersey, 1979.

[Cook 80] R. P. Cook, ‘*MOD - A Language for Distributed Programming’, IEEE

Trans. Soft. Eng., Vol. SE-6, No. 6, November 1980, pp. 563-571.

[Corda 86] U. Corda & G. Facchetti, ‘Concept Browser: A System for Interactive

Creation of Dynamic Documentation’, Text Processing and Document

Manipulation: Proceedings of the International Conference, ed. J. C. van Vliet,

Cambridge University Press, 1986.

252

Appendix

[Cox 83] Brad J. Cox, ‘The Object Oriented Pre-Compiler’, SIGPLAN Notices, Vol.

18, No. 1, January 1983.

[Cox 84] Brad J. Cox, ‘Message/Object Programming: An Evolutionary Change in

Programming Technology’, IEEE Software, January 1984.

[Croft 88] W. B. Croft & L. S. Lefkowitz, ‘Using a Planner to Support Office Work’,

Proc. Conf. Office Information Systems, ACM, 1988.

[deMarco 78] T. deMarco, ‘Stmctured Analysis and System Specification’, Yourdon

Press, 1978.

[Denning 82] P. Denning, ‘Electronic Junk’, Comms. ACM, Vol. 23, 1982, pp. 163-

165.

[Diamond 85] Bolt Beranek & Newman Inc., ‘The Diamond Multimedia Document

System: User’s Reference Guide’, Technical Report 6006, November 1985.

[di Sessa 85] A. di Sessa, ‘A Principled Design for an Integrated Computational

Environment’, Human-Computer Interaction, Vol. 1, No. 1, 1985, pp. 1-47.

[di Sessa 86] A. di Sessa & H. Abelson, ‘Boxer: A Reconstructable Computational

Medium’, Communications of the ACM, Vol. 29, No. 9, September 1986, pp.

859-868.

[Dijkstra 68] E. W. Dijkstra, ‘Cooperating Sequential Processes’, Programming

Languages, Academic Press, New York, 1968.

[Downs 88] E. Downs, P. Clare & I. Coe, ‘Structured Systems Analysis and Design

Method: Application and Context’, Prentice Hall International, 1988.

[DTI 87] Department of Trade and Industry, ‘Software Tools for Application to Large

Real Time Systems (STARTS)’, H.M.S.O, 1987.

253

Appendix

[ECMA 85] European Computer Manufacturers Association, ‘Office Document

Architecture’, Standard ECMA-101, September 1985.

[Ehardt 83] J. L. Ehardt, ‘Apple’s Lisa: A Personal Office System’, The Seybold Report

on Office Systems, Vol. 6, No. 2, 24 January 1983.

[Ein-Dor 86] P. Ein-Dor & E. Segev, ‘Attitudes, Association and Success of MIS:

Some Empirical results from Research in the Context of a Business Game’,

Computer Journal, Vol. 29, No. 3, June 1986, pp. 212-221.

[Enderle 84a] G. Enderle, ‘The Interface of the UIMS to the Application (Working

Group Report)’, Computer Graphics Forum 3, North Holland, 1984.

[Enderle 84b] G. Enderle, ‘Seeheim Workshop on User Interface Management Systems

(First Report)’, Computer Graphics Forum 3, North Holland 1984.

[Engelbart 68] D. C. Engelbart & W. K. English, ‘A Research Center for Augmenting

Human Intellect’, Proc. FJCC, Vol. 33, No. 1, December 9-11, 1968.

[Engelbart 78] D. C. Engelbart, ‘Toward Integrated Evolutionary Office Automation

Systems’, Proceedings of the International Engineering Management Conference,

October 16-18, 1978.

[Englebart 87] D. C. Engelbart, ‘Hypertext 1987: Conference Proceedings’, Chapel Hill,

N.C., November 1987.

[Engelbart 88] D. C. Engelbart & H. Lehtman, ‘Working Together’, Byte Magazine,

Vol. 13, No. 13, pp. 245-252, December 1988.

[Feiner 81] S. Feiner, S. Nagy & A. van Dam, ‘An Integrated System for Creating and

Presenting Complex Computer-Based Documents’, Computer Graphics, Vol. 15,

No. 3, August 1981, pp. 181-189.

254

Appendix

[Feiner 82] S. Feiner, S. Nagy & A. Van Dam, ‘An Experimental System for Creating

and Presenting Interactive Graphical Documents’, ACM Transactions of Graphics,

Vol. 1, No. 1, January 1982, pp. 59-77.

[Fitzgerald 85] G. Fitzgerald, N. Stokes & J. R. G. Wood, ‘Feature Analysis of

Contemporary Information System Methodologies’, The Computer Journal,

Vol. 28, No. 3, 1985, pp. 223-230.

[Forsdick 82] H. C. Forsdick & R. H. Thomas, ‘The Design of Diamond: A Distributed

Multimedia Document System’, Technical Report 5402, Bolt Beranek & Newman

Inc., October 1982.

[Forsdick 85] H. C. Forsdick, ‘Explorations into Real-Time Multimedia Conferencing’,

Proceeding of the Second International Symposium on Computer Messaging

Systems, Sept. 1985.

[Foster 85] E. Foster, ‘Outliners: A New Way of Thinking’, Personal Computing, May

1985, pg. 74.

[Furuta 82a] R. Furuta, J. Scofield & S. Shaw, ‘Document Formatting Systems: Survey,

Concepts, and Issues’, Computing Surveys, Vol. 14, No. 3, September 1982.

[Furuta 82b] R. Furuta, J. Scofield, & A. Shaw, ‘Document Formatting Systems:

Survey, Concepts and Issues: Document Preparation Systems’, J. Nievergelt, G.

Coray, J.D. Nicoud and A C. Shaw (Eds.), North-Holland, 1982.

[Furuta 89] R. Furuta, ‘An Object-based Taxonomy for Abstract Structure in Document

Models’, Computer Journal, Vol. 32, No. 6, December 1989, pp. 494-504.

[Gaines 86] B. R. Gaines & M. L. G. Shaw, ‘Foundations of Dialog Engineering: The

Development of Human-Computer Interaction’, Int. J. Man-Machine Studies, Vol.

24, 1986, pp. 101-123.

255

Appendix

[Galliers 87] R. D. Galliers & F. F. Land, ‘Choosing Appropriate Information Systems

Research Methodologies’, Comms. ACM, Vol. 30, No. 11, pp. 900-902.

[Gane 79] C. Gane & T. Sarson, ‘Structured Systems Analysis’, Prentice-Hall, 1979.

[Gibbs 87] S. Gibbs, D. Tsichritzis, A. Fitas, D. Konstantas & Y. Yeorgaroudakis,

‘Muse: A Multimedia Filing System’, IEEE SOFTWARE, March 1987, pp. 4-15.

[Gibson 89] M. L. Gibson, ‘The CASE Philosophy’, Byte, April 1989, pp. 209-218.

[Goldberg 83] A. Goldberg & D. Robson, ‘Smalltalk-80: The Language and its

Implementation’, Reading, MA: Addison-Wesley, 1983.

[Gomaa 83] H. Gomaa, ‘The Impact of Rapid Prototyping on Specifying User

Requirements’, ACM Software Engineering Notes, Vol. 8, No. 2, pp. 17-28,

1983.

[Grindley 89] The Price Waterhouse 1989/90 Information Technology Survey,

ed. C. P. P. Grindley.

[Gutknecht 84] J. Gutknecht & W. Winiger, ‘Andra: The Document Preparation System

of the Personal Workstation Lilith’, Software - Practice and Experience, Vol. 14,

pp. 73-100 1984.

[Gutknecht 85] J. Gutknecht, ‘Concepts of the Text Editor Lara’, Communications of

the ACM, Vol. 28, No. 9, September 1985.

[Hakiel 87] S. R. Hakiel, ‘Issues in the Design of Icons’, Internal Research Paper,

PLessey Telecommunications, 1987.

[Halasz 88] F. G. Halasz, ‘Reflections on Notecards: Seven Issues for the Next

Generation of Hypermedia Systems’, Comms. ACM, Vol. 31, No. 7, July 1988,

pp. 836-852.

256

Appendix

[Hall 87] N. S. Hall, S. Laflin, W. P. Dodd, ‘Integration of Graphic with Text in an

Electronic Journal’, Workstations and Publication Systems, Springer-Verlag, 1987.

[Hansen 88] W. J. Hansen & C. Haas, ‘Reading and Writing with Computers: A

Framework for Explaining Differences in Performance’, Comms. ACM, Vol. 31,

No. 9, September 1988, pp. 1080-1089.

[Harke 87] U. Harke, M. Burger & D. Gall, ‘Embedding Graphics into Documents by

Using a Graphics Editor’, Workstations and Publication Systems, Springer-

Verlag, 1987.

[Harrison 84] B. Harrison, ‘FRAMEWORK: An Introduction’, Ashton-Tate Publications,

1984.

[Henderson 86] D. A. Henderson & S. K. Card, ‘Rooms: The Use of Multiple Virtual

Workspaces to Reduce Space Contention in a Window-Based Graphical User

Interface’, ACM Trans. Graphics, Vol. 5, No. 3, July 1986, pp. 211-243.

[Heppe 85] D. L. Heppe, W. H. Edmondson & R. Spence, ‘Helping Both the Novice

and Advanced User in Menu-Driven Information Retrieval Systems’, People and

Computers: Designing the Interface, Proc. BCS HCI Conf. 17-20 September

1985, pp. 92-101.

[Herot 80] C. P. Herot, ‘Spatial Management of Data’, ACM Transactions on Database

Systems, Vol. 5, No.4, December 1980.

[Hershey 85] W. Hershey, ‘Idea Processors’, Byte, pp 337-350, June 1985.

[Hewitt 77] C. Hewitt, ‘Viewing Control Structures as Patterns of Passing Messages’,

Artificial Intelligence, Vol. 8, 1977.

[Hoare 78] C. A. R. Hoare, ‘Communicating Sequential Processes’, Communications of

the ACM, Vol. 21, No. 8, August 1978, pp. 666-677.

257

Appendix

[Honeywell 87] J. Honeywell, ‘Publication Systems at TODAY’, Workstations and

Publication Systems, Springer-Verlag, 1987.

[Ince 89] D. Ince, ‘The Software Prototype’, .EXE Magazine, Vol. 4, No. 4, September

1989.

[ISO 84] ISO, ‘Information Processing - Text Preparation and Interchange - Text

Structures - Part 2: Office Document Architecture’, ISO/TC 97/SC 18 N 267,

April 1984.

[ISO SGML] ‘Information Processing - Text and Office Systems - Standard Generalised

Markup Language (SGML)’, ISO Draft International Standard, ISO/DIS 8879

TC/97.

[Jackson 75] M. A. Jackson, ‘Principles of Program Design’, Academic Press, London,

1975.

[Jackson 83] M. A. Jackson, ‘System Development’, Prentice-Hall, London, 1983.

[Jadmicek 84] R. Jadmicek, ‘SYMPHONY: A Full-Orchestra Version of Lotus 1-2-3’,

BYTE, July 1984.

[Jones 89] R. Jones, ‘Prototyping: Roughing it up’, Datalink, 25 September 1989.

[Kiesler 89] S. Kiesler, ‘Are Friends Electric: E-mail behaviour’, PC Business World,

October 1989.

[Kimura 86] G. D. Kimura, ‘A Structure Editor for Abstract Document Objects’, IEEE

Transactions on Software Engineering, Vol. SE-12, No. 3, March 1986.

[Konsynski 85] B. R. Konsynski, A. Greenfield & W. E. Bracker Jr., ‘A View on

Windows: Current Approaches and Neglected Opportunities’, AFIPS Conference

Proceedings, 1985 National Computer Conference, Vol. 54, AFIPS Press 1985.

258

Appendix

[Knuth 79] D. E. Knuth, ‘TgX and METAFONT: A New Direction in Typesetting’,

Digital Press, 1979.

[Knuth 84] D. E. Knuth, ‘Literate Programming’, The Computer Journal, Vol. 27, No.

2, 1984, pp. 97-111.

[Knuth 86] D. E. Knuth, ‘The TgXbook’, Addison-Wesley Publishing, Reading, MA

1986.

[Lopez 73] B. Lopez, writing in ‘Environment Action’, 31 March, 1973.

[Machlup 83] F. Machlup & U. Mansfield, eds., ‘The Study of Information’, Wiley,

1983.

[Maddison 83] R. N. Maddison, ‘Information System Methodologies’, Wiley, London,

1983.

[Madnick 83] S. E. Madnick & J. J. Donovan, ‘Operating Systems’, McGraw-Hill,

9th edition, 1983.

[Malone 87] T. W. Malone, K. R. Grant, F. A. Turbak, S. A. Brobst & M. D. Cohen,

‘Intelligent Information Sharing Systems’, Comms. ACM, Vol. 30, 1987,

pp. 390-402.

[MASCOT 83] ‘The Official Handbook of MASCOT’, RSRE Malvern, 1983.

[Maude 85] T. I. Maude & D. J. Pullinger, ‘Software for Reading, Refereeing and

Browsing in the BLEND System’, Computer Journal, Vol. 28, No. 1, February

1985, pp. 1-4.

[Mayer 85] A. J. W. Mayer, ‘Storage Architectures’, Byte Magazine, December 1985,

pp. 221-234.

259

Appendix

[McCandless 90] H. McCandless, ‘Mimic the mind’s eye’, Practical Computing,

February 1990, pp. 38-42.

[McCracken 84] D. L. McCracken & R. M. Akscyn, ‘Experience with the ZOG

Human-Computer Interface System’, International Journal of Man-Machine

Studies, Vol. 21, 1984.

[Nanard 87] J. Nanard, M. Nanard & G. Cottin, ‘Pleiade: A System for Interactive

Manipulation of Structured Documents’, Workstations and Publication Systems,

Springer-Verlag, 1987.

[NCC 86] National Computing Centre, ‘SSADM Manual’, NCC Publications, 1986.

[Negroponte 76] N. Negroponte, ‘An Idiosyncratic Systems Approach to Interactive

Graphics’, ACM/SIGGRAPH Workshop paper, Pittsburgh, Penn., October 14-15,

1976.

[Nelson 67] T. H. Nelson, ‘Getting It Out of Our System’, Information Retrieval: A

Critical Review, editor G. Schechter, Thompson Books, 1967.

[Ngoh 89] L. H. Ngoh & T. P. Hopkins, ‘Transport Protocol Requirements for

Distributed Multimedia Information Systems’, The Computer Journal, Vol. 32,

No. 3, pp. 252-261, June 1989.

[Nicolis 77] G. Nicolis & I. Prigogine, ‘Self-Organisation in Non-Equilibrium Systems:

From Dissipative Structures to Order through Fluctuations’, Wiley, 1977.

[Olsen 84] D. R. Olsen Jr., W. Buxton, R. Ehrich, D. J. Kasik, J. R. Rhyne & J.

Sibert, ‘A Context for User Interface Management’, IEEE Computer Graphics

and Application, December 1984.

[Oren 88] T. Oren, ‘The CD-ROM Connection’, BYTE Magazine, Vol. 13, No. 13,

December 1988, pp. 315-320.

260

Appendix

[Osin 76] L. Osin, ‘SMITH: How to produce CAI Courses without Programming.’

International Journal of Man-Machine Studies, Vol. 8, 1976.

[Ovum 87] Ovum, ‘Computer Aided Software Engineering: Commercial Strategies’,

1987.

[Panko 88] R. R. Panko, ‘End User Computing: Management, Applications, and

Technology’, Wiley, 1988.

[PCMag 89] Of Mice and Menus’, PC Magazine, October 1989, pp. 44-68.

[PCWeek 88] Report on Information Centre survey by Crwth Computer Coursewares,

PC Week, 4 October 1988, p. 46.

[Pearce 89] A. Pearce, ‘A Model of Analysis’, Systems International, June 1989, pp.

71-74.

[Peels 85] A. J. H. M. Peels et. al., ‘Document Architecture and Text Formatting’,

ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

[Peters 80] L. J. Peters, ‘Software Representation and Composition Techniques’,

Proceedings of the IEEE, Vol. 68, No. 9, August 1980, pp 1085-1093.

[Peterson 77] J. L. Peterson, ‘Petri Nets’, Computing Surveys, Vol. 9, No. 3, September

1977.

[Pitman 85] K. M. Pitman, ‘CREE: An Editing Facility for Managing Structured Text’,

A.I. Memo No. 829, M.I.T. A.I. Laboratory, Cambridge, Mass., February 1985.

[Poggio 85] A. Poggio, J. J. Garcia Luna Aceves, E. J. Craighill, D. Moran, L. Aguilar,

D. Worthington & J. Hight, CCWS: A Computer-Based Multimedia Information

System’, IEEE Computer, October 1985, pp. 92-103.

261

Appendix

[Powell 89] M. Powell, ‘Power Ahead with a 386’, Computer Weekly, July 20, 1989,

pg. 22.

[Ramo 69] S. Ramo, ‘Cure for Chaos: Fresh Solutions to Social Problems Through the

Systems Approach’, New York, 1969.

[Randell 86] B. Randell, ‘System Design and Structuring’, Computer Journal, Vol. 29,

No. 4, 1986, pp. 300-306.

[Reynolds 85] J. K. Reynolds, J. B. Postel, A. R. Katz, G. G. Finn & A. L. DeSchon,

‘The DARPA Experimental Multimedia Mail System’, IEEE Computer, October

1985, pp. 82-89.

[Rheingold 87] H. Rheingold, ‘Tools for Thought’, New York, 1987.

[Ritchie 74] D. M. Ritchie & K. Thompson, ‘The UNIX Time-Sharing System’,

Communications of the ACM, Vol. 17, No. 7, July 1974, pp. 365-375.

[Ritchie 89] I. Ritchie, ‘HYPERTEXT - Moving Towards Large Volumes’, Computer

Journal, Vol. 32, No. 6, December 1989, pp. 516-523.

[Roszak 86] T. Roszak, ‘The Cult of Information’, Lutterworth Press, 1986.

[Rummens 89] N. Rummens & R. Sucher, ‘Competitive Edge’, Systems International,

March 1989.

[Sakata 85] S. Sakata & T. Ueda, ‘A Distributed Interoffice Mail System’, IEEE

Computer, October 1985, pp. 106-116

[Sarin 85] S. Sarin & I. Greif, ‘Computer-Based Real-Time Conferencing Systems’,

IEEE COMPUTER, October 1985, pp. 33-45.

262

Appendix

[Sarin 87] S. K. Sarin & N. A. Lynch, ‘Discarding Obsolete Information in a

Replicated Database System’, IEEE Trans. Software Engineering, Vol. SE-13,

No. 1, January 1987, pp. 39-47.

[Scarrott 85] G. G. Scarrott, ‘Information, the Life Blood of Organisations’, Computer

Journal, Vol. 28, No. 3, July 1985, pp. 203-205.

[Schifreen 88] R. Schifreen, ‘Exchanging Data Dynamically’, Personal Computer World,

January 1988, pp. 158-162.

[Scott 86] J. Scott, ‘Drivers Free Users from Device Dependence’, Mini-Micro Systems,

April 15, 1986, pp. 19-27.

[Shasha 85] D. Shasha, ‘NetBook - a Data Model to Support Knowledge Exploration’,

Proceedings of VLDB 85, Stockholm, August 1985.

[Shasha 86] D. Shasha, ‘When Does Non-Linear Text Help?’, Proc. First International

Conf. Expert Database Systems, pp. 109-121, April 1986.

[Shneiderman 87] B. Shneiderman, ‘Designing the User Interface: Strategies for

Effective Human-Computer Interaction’, Addison-Wesley, 1987.

[Smith 82] D. C. Smith, C. Irby, R. Kimball & B. Verplank, ‘Designing the Star User

Interface’, BYTE, April 1982.

[Smith 88] J. B. Smith & S. F. Weiss, ‘Hypertext’, Comms. ACM (Special Issue on

Hypertext), Vol. 31, No. 7, July 1988, pp. 816-819.

[Sommerville 89] I. Sommerville, ‘Software Engineering, 3rd Ed.’, Addison-Wesley,

1989.

[Stamper 71] R. K. Stamper, ‘Some Ways of Measuring Information’, Computer

Bulletin, December 1971, pp. 432-436.

263

Appendix

[Stamper 85] R. K. Stamper, ‘Information: Mystical Fluid or a Subject for Scientific

Enquiry’, Computer Journal, Vol. 28, No. 3, July 1985, pp. 195-199.

[Stobie 87] I. Stobie, ‘The Integrated Office: When Technologies Converge’, Practical

Computing, September 1987.

[Straub 89] B. Straub & I. O. Angell, ‘A Question of System’, Working Paper Series

No. 7, Department of Information Systems: London School of Economics, 1989.

[Tagg 87] R. Tagg, ‘Software Engineering from the End User Angle’, Computer

Bulletin, December 1987, pp 12-13.

[Tazelaar 88] J. M. Tazelaar, ‘Groupware in Depth’, Byte Magazine, Vol. 13, No. 13,

pg. 242, December 1988.

[Teichroew 77] D. Teichroew & E. A. Hershey, ‘PSL/PSA: A computer-aided technique

for structured documentation and analysis of information processing systems’,

IEEE Trans. Soft. Eng., Vol. SE-3, No. 1.

[Thoma 85] G. R. Thoma, S. Suthasinekul, F. L. Walker, J. Cookson & M. Rashidian,

‘A Prototype System for the Electronic Storage and Retrieval of Document

Images’, ACM Trans, on Office Information Systems, Vol. 3, No. 3, July 1985,

pp. 279-291.

[Thomas 83] J. J. Thomas (Workshop Chairman), ‘Graphical Input Interaction

Technique Workshop Summary’, Computer Graphics, Vol. 17, No. 1, January

1983.

[Thomas 85] R. H. Thomas, H. C. Forsdick, T. R. Crowley, G. G. Robertson, R. W.

Schaaf, R. S. Tomlinson & V. M. Travers, ‘Diamond: A Multimedia Message

System Built Upon a Distributed Architecture’, COMPUTER, October 1985.

[Times 88] The Times, June 27th 1988. First report on Paris Airshow disaster.

264

Appendix

[Times 88b] The Times, June 29th 1988. Preliminary report on Paris Airshow Disaster

lays blame on pilot for ignoring ‘too low’ height warnings.

[Toffler 80] A. Toffler, ‘The Third Wave’, Morrow, 1980.

[Trigg 86] R. H. Trigg & M. Weiser, ‘TEXTNET: A Network-Based Approach to Text

Handling’, ACM Trans. Office Information Systems, Vol. 4. No. 1, January

1986.

[UCL 83] University College London Department of Computer Science, ‘UNIX

Programmer’s Manual, 4th Ed.’, 1983.

[Walker 81] J. H. Walker, ‘The Document Editor: A Support Environment for Preparing

Technical Documents’, Proc. ACM SIGPLAN/SIGOA Symposium on Text

Manipulation, Oregon, Vol. 2, Nos. 1 & 2, June 1981.

[Walker 85] J. H. Walker, ‘The Document Examiner’, SIGGRAPH Video Review,

CHI’85: Human Factors in Computing Systems, 1985.

[Ware 89] C. Ware, ‘A C.A.S.E. in Point’, Datalink, 25 September 1989.

[Warman 87] A. R. Warman, ‘GENIE-M: Applications of Multimedia Information

Environments’, ‘ED’87: Electronic Displays and Information Display Systems’,

London, 17-19 November 1987.

[Weiner 50] N. Weiner, ‘The Human Use of Human Beings’, Houghton Mifflin, 1950.

[Weyer 82] S. A. Weyer, ‘The Design of a Dynamic Book for Information Search’,

International Journal of Man-Machine Studies, Vol. 17, 1982.

[Weyer 85] S. A. Weyer & A. H. Boming, ‘A Prototype Electronic Encyclopedia’,

ACM Trans, on Office Information Systems, Vol. 3, No. 1, January 1985, pp.

63-88.

265

Appendix

[White 87] E. White & R. Grehan, ‘OS/2: Microsoft’s New DOS’, Byte Magazine, June

1987, pp. 116-126

[Whybrow 89] M. Whybrow, ‘Substantiate the CASE Mirage’, Infomatics: Software

Tools, pp. 6-10, June 1989.

[Wilson 85] M. D. Wilson, P. J. Barnard & A. MacLean, ‘Analysing the Learning of

Command Sequences in a Menu System’, People and Computers: Designing the

Interface, Proc. BCS HCI Conf. 17-20 September 1985, pp. 63-75.

[Wilson 85b] P. A. Wilson, ‘Mailbox Advances and MMI Needs’, People and

Computers: Designing the Interface, Proc. BCS HCI Conf. 17-20 September

1985, pp. 317-330.

[Winograd 87] T. Winograd, A Language/Action Perspective on the Design of

Cooperative Work’, Human-Computer Interaction, Vol. 3, No. 1, pp. 3-30, 1987.

[Winograd 88] T. Winograd, ‘Where the Action Is’, Byte Magazine, Vol. 13, No. 13,

pp. 256-268, December 1988.

[Witten 85] I. H. Witten & B. Bramwell, ‘A System for Interactive Viewing of

Structured Documents’, Comms. ACM, Vol. 28, No. 3, pp. 280-288

[Yankelovich 85] N. Yankelovich, N. Meyrowitz & A. van Dam, ‘Reading and Writing

the Electronic Book’, IEEE COMPUTER, pp. 15-30, October 1985.

[Yankelovich 88] N. Yankelovich, B. J. Haan, N. Meyrowitz & S. M. Drucker,

‘Intermedia: The Concept and the Construction of a Seamless Information

Environment’, IEEE Computer, Vol. 21, No. 1, January 1988, pp. 81-86.

[Yourdon 78] E. Yourdon & L. L. Constantine, ‘Structured Design: Fundamentals of

a Discipline of Computer Program and Systems Design’, New York: Yourdon

Press, 1978.

266

Appendix

Error Codes returned by the Communications Routines.

These codes are described in the form of UNIX-like error numbers, as UNIX

is the host system used for constructing the prototype of the GENIE-M generator. The

actual codes are declared as constants within the source for the GENIE-M

implementation, and may be referenced by any program. The non-sequential values are

a result of attempting to match the error codes to similar returns from standard UNIX

system calls.

All GENIE-M functions and utilities will return a 0 error code on success, and

a non-zero code if an error occurs. The non-zero code returned does not necessarily

correspond with the actual error, instead the actual error code will be stored in the

global variable GENIE_errno. This variable is not cleared on each successful call,

and so should only be tested after an error has been detected.

0 GNOK Error state 0, no error.

GNHOST A host error has occurred. For the UNIX operating system, the

error code will be located in the global access errno variable.

GNOENT The requested entity does not exist. May refer to a tile, group,

device or module.

GNIO I/O error, typically the result of attempting to give an illegal

instruction to a specific device, for example reading from a screen

display.

GN2BIG A parameter has been provided that is too long. This would occur

if the destination of a GENIE_send () is not available in the

current session, and is being referred to external hosts.

267

Appendix

12 GNOMEM Not enough memory. Caused by a variety of conditions -

normally reflects a problem interacting with the host operating

system.

13 ON ACCESS General permission denied.

14 GNFAULT Faulty address or name. Could not identify the requested name

or address.

16 GNBUSY The requested resource is busy.

17 GNEXISTS An entity of that name already exists.

22 GNINVAL An invalid argument has been encountered in the message.

26 GNOBJBSY The requested object (tile, group, device, module) is already in

use.

32 GNSEND The send operation has failed. This is probably due to a

communications failure rather than a fault in locating the

destination.

39 GNDEST Could not locate the required destination anywhere in the

application system.

58 GNSHUTDN Cannot use this command, the system has been shutdown - or is

not yet active.

60 GNTIMOUT The requested operation timed out (could not be performed in a

reasonable amount of time).

100 GNBADOP Instruction would result in illegal state - for example tiles

intersecting within the tile space.

268

Appendix

Script of Demonstration Session.

In keeping with the philosophy of the GENIE-M architecture, each instance of

an electronic document would be tailored to meet the individual requirements of each

reader. Such an objective is not possible with a purely paper-based document, but to

reflect the principles, this section of the appendix includes a record of the script and

diagrams used during the presentation of the demonstration system.

GENIE-M
A presentation

by A. R. Warman

Developing Complex Inhxmaion Syftems.

The Use of a OeomeMc Data Stnjclure to Aid tfie Specif cadon

of a Mullimedia Information Environment

This presentation is Intended to introduce die GENIE-M arcfxiectjre.

The primary ob^edve is lo lluslrate die design and implementadon of

the undeitykig concepb, and demonstrate Its applicafailty to potenfsl

enhancement of computer-based informafon systems.

Basic Concepts: Origins in GEODOC

The GENIE-M ooncepk are derived fom earfer work on a project

called GEODOC. This was directed towards an implementaion of

etectronic books, using geometry as die tiasis for describing die

consftuenls of die tiook. Different versions of die sam e book would tie

quickly generated by modifying die geometric relafonships between

pages and diagrams.

However, it was otiserved tfiat geometry could be used tor more

general cases dian simply reiadng objects vatiki die book. Extending

the kindamental principles suggested a wider appfcabifty with regard

to modeling larger scale Informafon Environments'.

269

Appendix

tn fo m a lio n . P a rt I

In o rder lo provide a g e n e ra lise d m odel. H w a s n e o e s sa ry lo

p ro d u ce a w orking d e in i io n o l 'k ifo tm alion '. A o o n side raU e am ounl

of w ork w en i inlo o o n s lru c tn g a su ilaU e d e fr ilio n , inH uenoed by

IrequenI re fe re n c e s lo bo lh frigfr-qualily A cadem ic sk rd ies, a s we# a s

p rac io a f/o o m m erd a l im p lem enla lions of 'inform ation prooessing '

p roducts .

Sim ple m ode ls w ere o o n s k u d e d to e sp erim e n l wtlfi su g g e s lions of

flow inform ation' w as m a n ipU ated by u se rs a n d u se r suppo rt p a clrag e s

"Die prim ary oonsliluen is w ere idenlHied, a n d unoom pkcaled d iag ram s

User

ReportControl

Integration

P ro cesses

Presentation

Communication

Inform ation, Part II

A w orking definition of inform ation w as s u g g e s te d a s follows:

Both t i e u se r, a n d th e u se r 's in terpre tation , a re a sp e c ts which

fall o u ts id e the in fluence of a com pu ter b a s e d sy s te m D ata

m anipula tion (an d a lso p rese n ta tio n) is d e a r ly a n a sp e c t w h ere

co m p u ters could b e of g rea t he lp.

H ow ever, a key point is toc ale d in t i e u se of t i e w ord Environm ent,

Data
Unit

Data
Unit

Data
Unit

P ro cesses

Interlaces

DATA

Communication

T he E nvirorm ent

T h e env ironm en t is c o n sidered to b e a rep rese n ta tio n of the

com plete d rc u m s ta n o e s w itiin w hich t i e d a ta , th e u se r, a n d t i e u se r

p ro c e s s e s a e d e e m e d to ex ist a nd function. As a ny of th e se com ponen ts

ch an g e , so the d rc u m s ta n o e s - a n d h e n c e environm ent c h a n g e s .

It is im portan t to in d u d e the u se r a s c e n ta l to t i e environm enta l

m odel. T he na tu re of th e u se r w it d ired ly affect t i e opera tion ,

operability, a n d productivity of the Inform ation p ro ce ss in g ' ta sk s.

Environment

System

Tilo* and A ltribules, P a rt I

Im plem enlalion of t i e g eom elric d a la t t u d u r e i t fadN laled by Ifie

Tile. Tfiis i t an otijecf w fich c a n tio re da la c o n le n it in m ucti tfie ta m e

w ay Itial a ny oltier d a la tlruc fu ro , objeef at «le cou ld tlo re da la .

H ow ever, t i e p fiytical oonlen i t for a g e it in d e p en d e n i of tfie type of

d a ta T h it e n a b le t a c o e t t by ex ternal e n t l ie t lo b e m ore g e n e ra * te d

In addition to tfie d a la oon len i. two o the r m ajor da ta

c f ia r a c te r i t t c t c a n b e d e p id e d . R tttly . a t e l of a t t ib u te t ' can be

a t t o d a l e d w ith Ifie t ie . T he t e m ay b e u t e d lo tia le eigilic ity any

a llr ib u le t of t i e d a ta . T he a t t ib u te t could dep ict e n v to n m en la l

req u ire m en tt . or a c c e ts p r iv te g e t. a n d of c o u r te a n e x p td t tta te m en i

of t i e type of the d a ta he ld within tfie tie

Tile

Data within tile.

270

Appendix

Tüee and Attribute*. P a r t II

T he se c o n d d a ta a sp e c t is ge o m e^ ic a i relationsh ip tha t ex ists

b e tw ee n th e tiles. G eom etry c a n b e of va lue in depicting pictoriaHy

c erta in k inds of inform ation re la tionsh ips tha t m ight be m ore difficult

Of com plex to e x p re ss in o the r form s.

EquaNy. t w u se of g e o m ek y (or topology) in Mhjskaling so m e

kiryfs of d a ta c h arac teris tics m e a n s tha t u n n e c e s sa ry or e x c e s s d a ta can

b e rem oved . An analogy c an b e found in a ny u rtderground transporta tion

T he TMe S p a c e . P a rt I

T he tiles a re s to red in a virtual s to ra g e a re a called t i e Tile

S p a c e . T his can b e e n v isag e d a s consisting of n ' p la n es , upo n w hich

tiles c a n b e positioned.

Any ex ternal entity w hich req u ire s a c c e s s to tiles c an exam ine the

ttie sp a c e to locale no t only th e de sired tile, bu t a lso o ther tAes

w hich m ay b e re la ted in so m e w ay to t i e original tile, a s d e scrib e d

earlie r. T he external entities - or m odu les - a re d e em e d to be

‘view ing’ th e tile sp a c e , a n d it is t r ts facility w hich builds upon t i e

g e o m e tic b asis

M ullp leT les
paw waned upon planes

T h e THe S p a c e . P » t II

As well a s storing d a ta . tWes can sto re r e fe ren c es lo o t ie r

ob jec ts w hich e a s t w itiin the environm ent. M odules w tiich function

within th e environm ent c a n h a v e ex is te n ce within the Wle sp a c e by

term ing pro tru sions’ Wes into the I te sp a c e w h id i re p re se n t t i e

s p e d ic m odule T h e s e tiles c an b e m an ipu la ied in e x a c ty the sa m e

w ay a s a ny o ther We. w iti Ifie additional effect tfiai any opera tions

affecting tfiem a re c o n n ec ted d r e d y to the p a re n t m odule.

S im ple e x am p le s m ight include a r e d lime even t m ork jies su c h a s

c locks, or m odu les th a t c a n re a c t dy n a m ica iy to c h a n g e s in t i e

environm ent a s m ode lled witfiin tfie tile sp a ce .

m e Space

Module protrudes’
(nto Wle space.

A rchitectural Im plem entation

A fundam enta l requ irem en t is ter com m unication b e tw ee n any a n d all

co m p o n en ts tha t ex is t within t i e environm ent. In o rder to m ake Ifie

im p lem enta tion a s h o s t in d e p en d e n t a s possib le , com m unication is

prov ided by a se rie s of sim ple prim itives t i a t a re responsib le for

trans lating any local d e p en d e n c ie s . T he co n ten t of t i e com m unication

is a lso c o n sid ere d to b e a s f io s t^ n d ep e n d en l a s possib le, partly to

im prove portability, bu t a lso to in c re ase tfie e a s e w ith w hich external

m odu les c a n be d e s ig n ed a n d inco rpo ra ted . C om m unication be tw ee n

m a ch in e s is hand led by ne tw ork-aw are’ g a tew a y s , w hich effectively

provide a n invisible link a c ro ss inter m ach ine boundarie s .

Machine Boundary.

C om m unkslion to
External Machine

271

Appendix

TMe S p a c e ImplementaW on

T he adm inifitration of Ihe We sp a c e is h a n d led by a centra*

sw itch ' m odu le , ca lled MATRIX on th e p ro to type sy stem . T his m odU e

im plem ents th e m ain l ie a c c e s s facMties, a s w e# a s d irecting and

oon#olling # ie s to ra g e a n d recovery of liles a n d m orW e

re p rese n ta tio n s

T he In ternal rep rese n ta tio n of Hies is facilitated by u sin g a d a ta

s o u d u r e th a t im plem enis a topological équ iv ale n ce to the absfrac t

depiction of th e tile s p a c e itself

Machine Boumdary

M o d ite s a re active en tities w hich c a n ex ist a n d o p e ra te within tfie

env ironm en t Im plem entation of #ie m odu les is by a ny o f t i e norm al

p ro c e ss construction te chn iques, w iti th e so le r e q u re m e n t be ing a

c onnec tion t v o u ^ into the com m unications m ech an ism

T he rep rese n ta tio n of tfie m odule w itiin t i e t ie sp a c e - in the

form of a tile pro trusion ' • c a n b e im p lem en ted e i t ie r witfiin GENIE M

(w hich w ould be t i e norm al c a s e for ex ternal a ^ c a t i o n s) . or within

t i e m odu le itself. T he latter c a se is p referab le a s H re p re se n ts a

lower d e g re e of coupling t>etw een m odules

Internal Module

Pro tuekm ol
External Appkcakon

tjnk to External

External Pe rspec tive

T he pro to type im plem enta tion is configured for two Unix w orlista tions.

two IBM P C s, a s la n d e d printer, a n d a n externW grépfiics p resen ta tio n

T he num ber of dev ices is lim ited only by the num ber of ha rdw are

com m unication ports availab le on t i e various m a ch in e s

Printer

SUN SUN

External Perspective

Internal P e rspective

T h e o e n t d tHe sp a c e adm instrafion p rogram is loc ate d on tfie

la rger of tfie two w orftstakons, in o rder to m axim ise pe rfo rm ance. Tfie

im plem enta tion of t i e com m cn ica tion m e ch a n ism s is such t ia t peripheral

m odu les c a n b e s itua ted on any multi task ing m ach ine : a ltio u g h in

p rac tice t ie y sfiould be loc ate d in a m a n n er t i a t reflects pe rfo rm ance

requ irem en ts

C ertain m o d u le s a re im p lem en ted to support ex ternal applications:

t io s e w hich a re no t aw are of the ex is te n ce of G E N IE S . E xam ples on the

p ro to type sy s te m a re BACKEND a n d FRO NTEN D , w N ch in terface with the two

IBM P C s, a n d a lso IKONDRV wfiich p rov ides dev ice c tiver facilities for

t i e y a p h ic s eng ine.

BACKEND
FRONTEND
Com ms & G ales

MATRIX
Com m unica to n s

D n«™

Inlemal Perspective

272

Appendix

E xam ples; P resen ta lron S y s tem

T h e first e xam p le of how th e GENIE-M arch itectu re m i ^ t b e u s e d is

now in opera tion , in the form of this p rese n ta tio n sy stem . C om ptele

conk-ol is p rovided from a sing le oonso le , w hich supp lies d irec tives to

aM co m p o n en ts within th e cu rren t applica tion tha t Is m odelled within

the environm ent.

C on tex t sensitivity d e m o n sfra te s the ge o m etric p ropertie s of the

tile s p a c e , in tha t a s tiles a re ex am in ed (p re sen ted) , a s s o d d e d

inform ation c a n b e subm itted lo th e ap p ro p n a te m echan ism .

GENIE-M
A presentation

by A. R. Warman

E xam ples. Sim ulaiion S ys tem

S in ce m odu les can h ave ac tive p ro trusions into f re tHe s p a c e , arrd

the tWes m odu les c an u s e th e se p ro fu s io n s lo exam irre the s ta tu s of

t>e com plete env ironm ent, it follows tha t m odu les c an b e co m e 'a w are ' of

the environm ent. O n e application of this m ight b e a s im iia b o n system .

E ach of the co m p o n en ts c a n b e m ode lled a s a (potentially com plex)

entity , wtiich is then in se rted into the env ironm ent be ing u se d to m odel

the s im u laled sy stem . Active c o m ponen ts c an be p rog ram m ed a s m odules

which c a n re a c t in rea l -time and/or in r e sp o n se to e v en ts . Furtherm ore ,

just a s so m e en tities be ing m odelled m ay in so m e fashion re locate

t ie m s e lv e s (a c lass ic exam p le being a n e leva lor). so t i e p ro fu s io n s

into the tWe sp a c e c an relocate t ie m se lv e s geom eficaH y.

Other objects witiin
tie tüe space in luence

»>e Ktt model.

represented
witiin h e tie space .

E xam ples: fA dtim edia S ys tem

A m ultim edia sy stem would b e tha t w hich m a n ipu la tes m ed ia of varying

types. T he pro to type sy ste m is lim ited in the availab le ha rdw are w hich

could b e a ttac h ed , bu t the u s e of d e m o n s f a to n d ev ices s u g g e s ts that

equally , K irtie r m edia types could b e inco rpo ra ted into the env ironm ent

m odel by (he im p lem e n ta io n an d Inclusion of the a pp rop ria te (fiver

G ra p h ic sT E X T

C on tro l

D ev ice E n v iro n m e n ta l

C on tro l

ConcKjsion

T h e objective of this p rese n ta tio n h a s b e e n to W lusfale

interactively the fundam en ta l p rincip les of the GENIE-M a rch itecture ,

a n d fcjrfier to d e m o n s tra te the sy ste m itself in opera tion

C o n s fu c tio n of the pro to type sy ste m h a s b e en invaluable in

providing a w orking te s tb e d u p o n w hich id e as c a n b e f ie d and te sted ,

a s w gH a s helping with identifying a re a s vd iere im piem enta lion

im provem en ts oould b e m ade.

T h e furtfier (tevelopm ent of GENIE-M r e q u r e s m any individual

p ro jec ts to b e perform ed. A prim ary goal is tfie c onstructon of a

g raph ic fo n t-e n d tha t wilt in terac t with the underlying arch itecture .

The End

273

