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Abstract.

The symbol processing or "classical cognitivist" approach to mental computation
suggests that the cognitive architecture operates rather like a digital computer. The
components of the architecture are input, output and central systems. The input and
output systems communicate with both the internal and external environments of the
cognizer and transmit codes to and from the rule governed, central processing
system which operates on structured representational expressions in the internal
environment. The connectionist approach, by contrast, suggests that the cognitive
architecture should be thought of as a network of interconhected neuron-like
processing elements (nodes) which operates rather like a brain. Connectionism
distinguishes input, output and central or "hidden" layers of nodes. Connectionists
claim that internal processing consists not of the rule governed manipulation of
structured symbolic expressions, but of the excitation and inhibition of activity and
the alteration of connection strengths via message passing within and between layers
of nodes in the network. A central claim of the thesis is that neither symbol
processing nor connectionism provides an adequate characterization of the role of
the external environment in cognitive computation. An alternative approach, called
the External Tape Hypothesis (ETH), is developed which claims, on the basis of
Turing’s analysis of routine computation, that the Turing machine model can be
used as the basis for a theory which includes the environment as an essential part
of the cognitive architecture. The environment is thought of as the tape, and the
brain as the control of a Turing machine. Finite state automata, Turing machines,
and universal Turing machines are described, including details of Turing’s original
universal machine constructiori. A short account of relevant aspects of the history
of digital computation is followed by a critique of the Ssymbol processing approach
as it is construed by influential proponents such as Allen Newell and Zenon
Pylyshyn among others. The External Tape Hypothesis is then developed as an
alternative theoretical basis. In the final chapter, the ETH is combined with the
notion of a self-describing Turing machine to proyide the basis for an account of

thinking and the development of internal representations.
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Chapter 1. Introduction.

Cognitive science has recently enjoyed a resurgence of main stream interest in a
style of theorizing and computational modelling known variously as
"connectionism", "neural networks" and "paralle] distributed processing", which has
existed in one form or another since the pioneering work of McCulloch and Pitts in
the 1940’s. Within the connectionist' framework, there are numerous, sometimes
substantial, differences of approach, but there is a unifying, shared belief that the
rule based, symbol processing approach to cognitive computation, which has been
dominant since the early days of computer modelling of mental structures and
processes, has fundamental limitations. Proponents of the symbol processing
approach have responded to the challenge of connectionism and a substantial debate
about the foundations of cognitive science has been engendered. Since
connectionism and symbol processing are both computational approaches to the
study of cognition, one way to characterize the major differences between them is
in terms of their relationship to Turing’s machine model of computation which
constitutes one member of the class of formally equivalent, basic models of routine
computation. Roughly speaking, proponents of the symbol processing approach
argue that the brain implements a Turing machine and that the mind can be
described as a system in which symbolic expressions are processed according to
rules. By contrast, connectionists argue that Turing’s machine model is, by and
large, irrelevant to the study of cognitive computation and urge the adoption of what
is sometimes called "brain style" modelling, in which closer attention is paid to the
neural basis of cognitive computation. At least one connectionist theorist,
Smolensky (1988), has argued that connectionism may challenge the view that the
class of well defined computations is co-extensive with the class of Turing machine
computations. The position defended in this thesis claims that neither of these views

is entirely correct and that a third approach based closely on Turing’s original

'Throughout this thesis I have used the term "connectionism" as a generic label for the whole
framework.



analysis can illuminate both the others.

1.1 Giant electronic brains.

The possible links between computers and brains have been evident from the start,
and in the early days of their development, digital computers were sometimes called
"electronic brains" (cf. Bowden, 1953). Not many people knew much about them,
but they were said to be capable of prodigious feats of calculation far outstripping

the capacities of the apparently rather feeble human intellect.

"These machines are similar to what a brain would be if it were
made of hardware and wire instead of flesh and nerves. It is
therefore natural to call these machines mechanical brains. Also,
since their powers are like those of a giant, we may call them giant
brains."

Berkeley (1949, p.1)

The early optimism, although accompanied by some limited successes in the
production of apparently "intelligent" behaviour, quickly gave way to the realization
that simulating the full scope of human cognition was a task of daunting scale and
complexity. Curiously, perhaps, the capacity for more "intellectual” tasks such as
chess and theorem proving turned out to be much easier to capture than the
mundane business of "peripheral” tasks such as perception. The soubriquet
“electronic brain" fell into disuse and unflattering comparisons were made, and
continue to be made, between the computer metaphor and other, earlier
technological metaphors. It iS a commonplace that successive generations try to
explain the mind in terms of their own technological innovations, and perhaps the
sceptics are right to insist that the "computational metaphor” is just that; a metaphor
which will, in due course, be seen to be no more substantial than its predecessors.
The greater the effort made, the harder it seems to be to get a computer to produce
anything like the flexibility of behaviour which is a characteristic product of the

brain’s activity.

1.2 Alan Turing and the universal computing machine.
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Despite the practical failure to realize early hopes, many cognitive scientists are
convinced that computational ideas form a much more principled basis for the study
of cognition than the term "metaphor" implies. The basis of this conviction lies in
the work of Alan Turing and other mathematical logicians of the 1930’s who
developed formal models of the processes involved in routine computation. In his
seminal paper "On Computable Numbers, With An Application To The
Entscheidungsproblem", Turing showed that machines were, in principle,
behaviourally much more flexible than had previously been suspected. He did this
by providing a detailed logical blueprint for the construction of a machine which he
called the universal computing machine. In the context of his paper, the machine
was applied to the computation of functions of real numbers, but its true significance
lay not in its initial realm of application but in its modus operandi. The machine
merited the adjective "universal" because it was a general purpose instruction
obeying mechanism which could carry out any task for which a complete and
unambiguous set of instructions could be written. Turing showed that the
specification of a set of task instructions was formally equivalent to the specification
of a machine to carry out that task, and hence that a general purpose instruction
follower was ipso facto a general purpose machine because it could do, by

simulation, any task which could be done by a machine built specially for the
purpose.

1.3 Logical and Physical Descriptions.

One of Turing’s central ideas was "that mental processes are correctly described in
the logical model independently of the particular physical embodiment, and so can
be embodied in a physical form other than the brain." Hodges (1988,p.9). It may
be useful to think of this idea as proposing a two tiered explanatory hierarchy and
hence as an intellectual forebear of Marr’s (1982) influential three level model.
Turing’s logical model corresponds to Marr’s algorithmic level, i.e. the formal

specification of what needs to be done to complete the task in hand, and Turing’s
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physical embodiment description corresponds closely to Marr’s implementation level?.

A fundamental implication of Turing’s work for cognitive science is that the
operations of the mind, at least in so far as it engages in thinking and reasoning, can
be described functionally in terms of sets of instructions or programs, independently
of their medium of realization. This leads, at a minimum, to the possibility of
studying mental processes with computer simulations, because a computer program
could mimic the "relation structure” (Craik 1943) obtaining among the elements of
a mental process. More importantly, if mental processes are correctly characterized
functionally, a powerful argument can be developed for the independence of

psychology from neuroscience.

1.4 Artificial Intelligence and Physical Symbol Systems.

A further radical consequence of Turing’s work which obtains if the criterial
features of mentation are purely functional, is that an appropriately programmed
computer would be as capable of cognitive processing as a human cognitive agent.
This possibility provides a theoretical basis for the discipline of Artificial
Intelligence and for the Physical Symbol Systems hypothesis (PSSH), first
articulated by Newell and Simon (1976). According to this hypothesis, computers
can quite properly be thought of as "electronic brains", because brains and
computers have common organizational principles. This claim leads quite naturally
to a symmetrical claim about brains, viz. that they are "biological digital
computers”. On this approach, human behavioural flexibility depends primarily on
the fact that the brain is computationally universal, rather than, for example, on its

being made of a biologically responsive stuff.

The extent to which mental processes can be studied independently of their medium

’This invites a question about what, if anything, in Turing’s work corresponds to Marr’s
computational level. For Marr, (1982,p.24), this level is "an abstract computational theory", which
specifies the goal of a computation. The goal of Turing’s 1936-37 paper was to provide a means "to
somehow survey the class of all possible algorithms” Davis (1988a,p.154) so as to tackle "the
Hilbertian Entscheidungsproblem”, Turing(1936-37,p117). Turing’s algorithmic specification of a
unjversal machine showed, among other things, that the problem had no solution.
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of implementation is an interesting and important question. Turing’s abstraction of
the logical steps of a computation from the details of its implementation certainly
allowed him to describe the universal machine purely functionally in terms of finite
sets of discrete states and discrete symbols. However, his analysis did not show,
nor did he claim, that there were no physical constraints on the kinds of substrate

which could be used to generate mind like behaviour using computational structures.

Consider, as an uncontroversial example, the can opener, whose function is to
enable its operator to gain access to the contents of a sealed metallic container. The
fact that there is more than one way of implementing the can opening function
suggests, by analogy with Turing’s treatment of mental processes, that "can opening
processes are correctly described in the logical model independently of the
particular physical embodiment, and so can be embodied in a physical form other
than the usual metallic one.” While this is clearly true, and allows for diamond can
openers, laser light can openers among others, it does not follow that can openers
can be made from anything at all. The design of a can opener is constrained by
facts such as the relative hardness of different materials which are relevant to the
performance of the task. It would, for example, be difficult to make a can opener
from rice pudding or from string and brown paper simply because these materials
are too soft. Constraints on the suitability of various media for can opening arise
from a clear understanding of what the functional description of can opening implies
for its practical implementation, given the nature of the physical world as we
currently understand it to be. Conversely, a given medium will be capable of
supporting some functions but not others and an understanding of the nature and
limitations of a medium will illuminate the study of the functionality it can support.
A six storey building can be built of brick, but a sixty storey building cannot,

because the structure will collapse under its own weight.

Given that a function as simple as can opening has constraints limiting the media in
which it can be realized, it is inevitable that there will also be constraints on the
media in which the complex functionality of minds can be realized. Itis also highly
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likely that the functions of the mind will be illuminated by a study of its medium of

implementation, and it is possible that various hypotheses about the nature of mind,
including the hypothesis that the mind is a computer, will be ruled out when the
functionality of its medium of implementation is understood. Unfortunately, there
is a regrettable tendency on the part of some cognitive theorists to move prematurely
from the conditional "If the mind is a computer then mental processes can be studied
independently of their medium of realization" to the bald assertion that "because the
mind i1s a computer psychology is independent of neuroscience”. One of the
possibilities which needs to be considered is that neural tissue is not the sort of stuff
in which binary switches can be implemented and hence that the mind is not a

computer as they are commonly understood.

1.5 Turing machine architecture and the generic computer theory of mind.

Despite the cautionary tale about functionalism above, a computational account of
mental phenomena is widely expected to succeed, and various theories of cognitive
architecture have been developed on the basis of the idea that the brain realizes a
Turing machine or digital computer of some kind. Turing machines and their
computations are defined formally and discussed in Chapter 2. Informalily, a Turing
machine is a system consisting of two parts, a finite control machine and a
potentially infinite, one dimensional tape. The tape is divided into squares, each of
which can be blank or can contain a token of one of a finite alphabet -of symbols.
The control machine has access to the contents of just one square of the tape at any
moment and can move along the tape in either direction. The control is equipped
with a scanner with which it recognizes symbol tokens, and a printer with which it
writes them. The single tape square to which the control has access is called the
"scanned square” and the symbol on it is called the "scanned symbol". The control
machine has a finite number of internal states and its operations are usually
described in a machine table. Because the machine works with a finite symbol
alphabet and has a finite number of internal states, its operations can be exhaustively
described by specifying how it behaves for each combination of internal state and
scanned symbol. The essential characteristics of a Turing machine are the

distinction between the tape and the control, the potential infinitude of the tape and
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the fixed finite nature of the control. The tape serves as a symbolic memory.
Digital computers are essentially practical versions of Turing machines, i.e. they
exhibit the separation of control from memory but their memories are more tractable
than uni-dimensional tapes. They are also equipped with transducers which translate
external inputs into symbolic codings and vice versa. The keyboard and VDU of
a computer are transducers. In normal operation, information about the outside
world consists exclusively of symbolic representations of stimulus energies written

into memory by the transducers.

The first digital electronic computer, the ENIAC, spent much of its time idle
because it suffered from a severe information input bottleneck as a result of its tiny
internal memory. With the expansion of high speed memory in later machines, and
with the development of the stored program concept it became possible to
incorporate more and more of what was needed to complete a computation in high
speed memory. The whole thrust of computer design thinking from von Neumann
onwards was to cut down on the need for frequent communication with the low
speed outside world. The goal was the communication of a completely specified
task, i.e. both program and data, in a single transaction from the outside world,
such that the machine could then complete its computation without the need for
further external intervention. A properly functioning computer is a system in which
everything of computational interest happens inside the vmachine. The environment
serves as a source of data and as a repository for results, but computationally, the

machine is autonomous.

Proponents of the physical symbol systems hypothesis and related theories are
committed to the view that the brain implements a practical version of the Turing
machine architecture just as digital computers do. Theoretical differences of course
abound, but the commitment to a fundamental architectural isomorphism between
minds, digital computers and Turing machines is a hall mark of what may usefully
be called the "generic computer theory of mind", or "generic theory”. According
to the generic theory the senses provide input to, or function as, transducers which

produce representations in the symbolic code with which the brain-ware Turing
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machine does its computations. The cognitive computer does not have direct access
to its environment but only to symbolic representations of it. Putnam (1975)

provides a very clear example;

"The Turing Machines I want to consider will differ from the abstract
Turing Machines considered in logical theory in that we will consider
them to be equipped with sense organs by means of which they can
scan their environment, and with suitable motor organs which they
are capable of controlling. We may think of the sense organs as
causing certain ’reports’ to be printed on the tape of the machine at
certain times, and we may think of the machine as being constructed
so that when certain ’operant’ symnbols are printed by the machine
on its tape, its motor organs execute appropriate actions. This is the
natural generalization of a Turing Machine to allow for interaction
with an environment."

Putnam (1975, p.409)

Putnam was one of the first theorists to develop the comparison between Turing
machines and minds and his work has been very influential. One of the major
claims of this thesis is that Putnam’s and other similar models are not in fact the
most "natural generalization" of a Turing machine for purposes of cognitive
modelling.

Jerry Fodor’s (1980) arguments for methodologicat solipsism as a research strategy
provide another example of the way in which ideas rather similar to Putnam’s can
inform the development of a cognitive theory. Fodor argues that computational
processing depends purely on the syntactic relations among the elements of a
computational system. This is very clear in the case of a Turing machine. Fodor
also assumes that the mental Turing machine communicates with its environment
solely by having access to "oracles" which enter symbolic representations of
ambient environmental energies on to parts of the tape from time fo time.
Following Putnam, Fodor describes this model as "a natural extension of the

computational picture of the mind", from which it follows that if computational

*The term "oracle” was first used, in roughly Fodor’s sense, by Turing in his 1939 paper on
ordinal logics.
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processes are purely formal then "the bearing of environmental information on such
processes is exhausted by the formal character of whatever the oracles write on the
tape", and the proper study for psychology is just the character of the internal
symbolic representations. The argument is similar to one which he deploys for

slightly different purposes in "The Modularity of Mind", as follows;

"...if, as many of us now suppose, minds are essentially symbol-
manipulating devices, it ought to be useful to think of minds on the
Turing-machine model ...However ...Turing machines are closed
computational systems...the rest of the world being quite irrelevant
to the character of their performance...If, therefore, we are to start
with anything like Turing machines as models in cognitive
psychology, we must think of them as embedded in a matrix of
subsidiary systems which affect their computations in ways that are
responsive to the flow of environmental events."

Fodor (1983,pp.38-39).

Newell (1980) provides a further example of the architectural assumptions of the
generic theory. A physical symbol system, according to Newell, communicates with
its environment by means of two operators "input" and "behave". Newell
acknowledges that "without some reliable transduction from external structure to
symbols, the symbol system will not be able to produce reliable functional
dependence on the external environment”, Newell (1980,p.167), but he does not
find this at all problematic. He assumes that reliable transduction will be achieved
and that "From a formal viewpoint, the operation of these two operators [input &
behave] can just be taken as given, providing in effect a boundary condition for the
internal behavior of the system." Newell (1980,p.147).

In general, accounts of cognitive architecture belonging to the generic theory
tradition propose two sets of scanners. The first set consists of sensory transducers
which convert ambient stimulus energy into tokens of symbols in the internal
cognitive code, and the second set consists of mechanisms which read, write and
manipulate expressions in the cognitive code produced by the sensory transducers.

Cognitive computation is thus isolated from direct contact with sensory processes.
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1.6 Connectionism and cognitive architecture.

Connectionists are unconvinced by a number of characteristics of the generic
account of the basic structuring of human cognitive architecture. Some theorists
(e.g. Kohonen, 1988), explicitly question the suggestion that the brain has
mechanisms reliable enough to support the complex articulated data structures,
random access location addressing and extended chaining of logical steps which are
characteristic of digital computation. It is of interest to note that von Neumann
expressed similar reservations as early as 1948 when he argued that the "logical
depth” of digital computation was of a different order from that of human
computation and that a new system of logic would be needed to understand complex
automata of both natural and artificial origins. It is not widely recognized by
psychologists* how farsighted von Neumann was in this respect. Those who believe
that the Boltzmann machine (Hinton & Sejnowski, 1986) represents an entirely new
departure will find food for thought in the following;

"...there are numerous indications to make us believe that this new
system of formal logic will move closer to another discipline which
has been little linked in the past with logic. This is thermodynamics,
primarily in the form it was received from Boltzmann, and is that
part of theoretical physics which comes nearest in some of its aspects
to manipulating and measuring information. "

von Neumann (1987,p.407).

Apart from questions about the nature of the basic mechanisms, most connectionists
take issue with the notion that cognitive computation consists of the manipulation
of explicit symbolic representations, and numerous connectionist counter proposals
to the generic view are now being developed. However, much connectionist work
consists of the development of models of specific cognitive capacities using
feedforward networks and the backpropagation learning algorithm and it is not clear
exactly how to relate such models to each other or to models derived from generic
theory. There is, as yet, no fundamental theory which unites connectionist research

in the way in which Turing machine theory unites proponents of the generic theory,

“For an exception, see Boden (1988, p.2).
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although useful theoretical work is being done, cf. Smolensky (1988), Churchland
(1989), Bechtel & Abrahamson (1991), Clark (1993). One of the claims of the
thesis is that a proper understanding of the nature of Turing’s analysis of
computation provides an account of the conceptual linkage between connectionism

and the generic theory.

A fuller discussion of connectionism and its relations to the External Tape
Hypothesis is given in chapter 7. As an introduction to the approach taken here, it
is useful to think of connectionist models as having two distinct phases, which might
be called the training phase and the operational phase. One common way in which
a connectionist project is conducted is to identify a cognitive capacity, such as the
capacity to form the past tenses of verbs or to exhibit the functional asymmetry of
the Stroop colour word naming phenomenon, as a target. A network with a given
basic architecture is then trained using a suitable corpus of exemplars until a
predetermined criterion of performance is reached with respect to that target
capacity. During the training phase, the strengths of the connections between nodes
in the network are modifiable. When criterial performance has been achieved,
connection strength modification is discontinued and the structure can be considered
fixed. During the operational phase, the network’s capacity to produce the desired
associations is assessed. In some cases, such as the modelling of past-tense
acquisition, the training phase is of primary psychological interest as a model of part
of the process of language acquisition. In such a case the performance of the
network in the operational phase is significant only in so far as it provides a
measure of the extent to which performance criteria have been met. In other cases,
for example models of concept acquisition, the operational phase is of more
psychological interest and the training phase is used solely to induce the connectivity
needed to establish the set of input-output paired associations which constitute the
basic performance of the system. What is generally then of most interest is the
study of the extent to which performance generalizes to unfamiliar inputs and the
exploration of the internal structures of connectivity which support such
performance. These have been investigated using techniques such as cluster analysis

and principal components analysis and are explored for the insights they might
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provide into the way conceptual information is stored in the human cognitive
system. Another technique which has been used is to alter the connectivity so as
to simulate the effect of a brain lesion, for example, and to note whether observed
changes in performance bear some measurable similarity to the pathology of actual

cases of brain damage.

The question which is raised briefly here, and discussed in more detail later, is how
a network might best be characterized when it is considered as a fixed, entity, i.e.
after its training has been completed, or, when a snapshot is taken of its structures
at some moment during the training regime. The proposal made is that a fixed
connectionist network, i.e. one which is not learning, is accurately construed as a
finite state machine. The argument for this view is based on considering the set of
inputs and outputs which such a network can handle, and the character of its internal
activation states when it is in operation. In the light of the characterization of fixed
nets as finite automata, the learning process can be thought of as transforming an
initial finite automaton which may not compute a recognizable function, but none
the less computes some function, into one which computes, to a more or less
accurate degree, the associative function specified by the set of input-output pairs
which form the corpus of training examples. The corpus of training examples, as
well as providing data for the machine, also provide the means of specifying the

error feedback which the machine receives at each training step.

If this view is correct it suggests that in so far as connectionist models are intended
to have realist interpretations they can be construed broadly as proposing that the
brain is a finite state automaton. The importance of this point is that it agrees very
closely with the view of Turing’s analysis of computation which the thesis argues
is the proper view to take. The basic operation of a finite automaton is the state
transition; this is a rule following operation, but it need not be explicitly rule
governed. Itis relatively easy to think of neurally plausible implementation schemes
for state transitions. It seems quite reasonable, for example, to think of a state
transition as a function from one stable pattern of neural firing to another, or as a

network energy function of a Boltzmann machine. If we do think in this way, and
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identify patterns of activation as the internal states of a connectionist network, then
a system with n processing units or nodes each capable of k activation states, may
be thought of as a finite state automaton with up to k" internal states. These states
are determined by the activation function thresholds and connection strengths of the
nodes in the network. A learning rule applied to a network alters the set of
activation patterns which the network produces, primarily by modifying the
weighted connections between pairs of nodes. Thus a learning rule changes the set
of internal states of an automaton. Since an automaton is identified by its internal
states and its state transition table, changing the internal states amounts to
constructing a new automaton. Both supervised and unsupervised connectionist
learning techniques can be seen in this light as methods for constructing finite

automata.

1.7 Implications of the finite state account of connectionist models.

Connectionists have not yet gone far enough in following through the implications
of the above account because they have not considered sufficiently carefully how
radically the functional relationship between the machine in the head and the
external stimulus environment changes when the internal machine is hypothesized
to be a finite state automaton rather than a Turing machine. In the latter case, the
external environment is of limited direct interest because the computational
environment of a Turing machine is its tape and the tape of the cognitive Turing
machine is hypothesized to be in the head. If the internal machine is considered to
be a finite state automaton the situation is very different. The fundamental
separation of memory from control seen in a Turing machine is absent and an
independent internal memory capable of storing symbol tokens representing states
of affairs in the external environment is not essential. The only mandatory internal
machinery is that required to manage state transitions. Finite automata use the same
set of internal states for control and for memory and state transitions are directly
driven by the input. The neural networks of McCulloch and Pitts (1943) provide
an example. Such networks, which do not learn, are equivalent to finite state
automata; a finite state automaton can be constructed to compute the same function

as any neural network and vice versa (Minsky, 1967). This point may be taken to
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support the claim made above about the characterization of connectionist networks
when their connections are considered fixed. Neural networks are not equivalent
to Turing machines although the claim that they are has sometimes been made.
McCulioch and Pitts were clear about this and their original paper bears careful

reading. What they actually say is this;

"every net, if furnished with a tape, scanners connected to afferents,
and suitable efferents to perform the necessary motor-operations, can
compute only such numbers as can a Turing machine".

McCulloch & Pitts (1943, p.37)

Thus, a neural net connected to an appropriate environment computes like a
Turing machine. This suggests that if the brain is a neural network and hence also
a finite state automaton, then, to argue that the cognitive system has the
computational power of a Turing machine, should require an argument to the effect
that aspects of the external environment constitute a tape, and that the sensory and
motor pathways of the peripheral nervous system provide the scanners and
transducers. To a first approximation, the argument should be that human cognitive
architecture is a synergetic system of organism and environment realizing a Turing
machine. That seems to be the direction in which connectionist philosophy naturally

leads.

It is not clear that connectionists do, in fact, give the real environment such a
prominent place in their models. Consider the following passage from Rumelhart,
Hinton & McClelland (1986). Having argued in line with the suggestion above that
a clear model of the environment is crucial and that both the history of inputs to the

system and its responses may be relevant to that model, they then say;

“In practice, most PDP models involve a much simpler
characterization of the environment. Typically, the environment is
characterized by a stable probability distribution over the set of
possible input patterns independent of past inputs and past responses
of the system. In this case, we can imagine listing the set of possible
inputs to the system and numbering them from 1 to M. The
environment is then characterized by a set of probabilities, p; for i =
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It is clear from this quotation that the primary focus of interest in PDP models is
not the environment, but the processing characteristics of internal configurations of
nodes and the learning rules which modify the connections among them. This
emphasis is in one way entirely natural, since it is the presence of hidden units
which enables connectionist systems to transcend the limitations on the powers of
single layer perceptrons so notably identified by Minsky and Papert (1969). It is
also possible that the capacity to deal with real world complexity will emerge from
these initial restrictions to impoverished environments. Nevertheless, the
methodology is curious given that one of the stated goals of connectionism is to

overcome the domain specificity and "brittleness" of symbol processing systems.

The input and output node layers of connectionist networks show a strong and
perhaps more than coincidental resemblance to Newell’s "input" and "behave"
operators. In fact, in some respects they are weaker. Hanson & Burr (1990)
remarked that the environment for a connectionist system will typically consist of
"a set of stimuli defined in an arbitrary feature space." It may be, of course, that
impoverished environments are chosen for sound methodological reasons. But it is
dangerous to suppose that a model which works well in a restricted environment will

also work under more realistic and complex stimulus conditions.

1.8 Arguments for a new model.

The moral to be drawn from both generic and connectionist architectures is that
generic theory and connectionism, while differing (sometimes fundamentally) with
respect to the details of structures and processing, nevertheless share the view that
the important computational parts of the cognitive system are located entirely inside
the skin of the organism which maintains contact with the external world by
processing representations of it. Such a view is encouraged by the digital computer
systems on which models are usually built and tested. Connectionism focuses on
developing internal representational structure via associative learning, whereas

generic theory focuses on exploiting existing internal structure by developing search
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and proof techniques for managing symbolic knowledge bases. Neither position
represents an entirely adequate approach to the problems of embodied cognition and
a new approach is needed. The generic theory has produced models which are
markedly brittle, despite the maximal behavioural flexibility which they enjoy, in
principle, by virtue of their computational universality. Connectionist models by
contrast, while less brittle and more able to handie degraded input, are known to
have difficulty with tasks such as drawing inferences which require temporally
extended sequences of processing. Even their celebrated capacity for generalization

from training inputs to novel stimuli has been called into question (Norris, 1991).

A particular point of focus for the thesis is that neither the generic approach nor
connectionism offers a satisfactory treatment of the environment. The central point
is that both approaches suppose that what the cognitive system has to do is to build
or manipulate internal structure which reflects, represents, or imposes structure on
the external world. The question is why this should be thought to be the best way
to proceed. Given that there is elaborate and relatively permanent structure in the
external world, why not use it directly? Brooks (1990, 1991) has reported work,
admittedly with rather simple and strictly bounded systems, in which one of the
guiding principles is that the world can, and must, serve as its own model in this

way. Brooks’s work is discussed in Chapter 6.

It may be objected that such a suggestion represents a regressive move towards a
behaviourist analysis in which the causes of action are sought in the organism’s
environment. The objection loses what force it might otherwise have when it is
understood that the behaviour of a Turing machine is a function of two parameters,
its current internal state and its current input. The choice of which of these to focus
on is very much dependent on the nature of the activity the machine is engaged in.
Likewise with human activity; sometimes we need to concentrate on what is
happening internally, sometimes on what is going on in the outside world. Take a
simple example. Suppose someone asks for directions and is told "Go straight
along the road until you come to the first set of traffic lights and turn left." How
should we think about their subsequent behaviour? While they are walking along
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the road, it might be appropriate to think of control as being exercised by the state
of mind "looking for a set of traffic lights." Behaviour will continue to be
responsive to aspects of the environment, such as side turnings, roundabouts, etc.
but is not controlled by them, except perhaps negatively, in the sense that these
other things are recognized as "non traffic lights." The point is that they do not
lead to changes of internal state. When the traffic lights are reached, however, it
might be appropriate to think of them as exercising control, because they, or at least
the perceptions they generate, do lead to a change of internal state. Thus, the
question of where control is said to be exercised is a matter of emphasis. Strictly
speaking it is actually a matter for internal states and external structure equally. So
it is with a Turing machine. A rather natural analogue of the pedestrian looking for
traffic lights and then changing direction, is the Turing machine searching for a
particular symbol on its tape and changing direction when it finds it. This sort of
activity is fundamental to Turing’s original analysis. While the machine is moving
in a particular direction, and before it has found the required symbol, it is
appropriate to think of its behaviour as being controlled by its internal state, and
when the symbol is found as being determined by that symbol, which triggers a
change of direction, but in fact a Turing machine’s action is always locally caused
by the pair (current state, symbol scanned). Further analysis of the relations among

internal states, inputs and outputs is given in Chapter 2.6 and Chapter 3.8.

1.9 The External Tape Hypothesis (ETH).

The central claim of the thesis is that a computational account of cognition must be
based on a proper understanding of the interactions between the human organism
and the external environment. It is argued that these interactions are best modelled
by regarding the embodied central nervous system as the finite state control of a
Turing machine and selected aspects of the external environment as its tape. This
approach is called the external tape hypothesis (ETH) and is derived directly from
Turing’s seminal analysis of routine computation. The ETH implies that the
cognitive architecture is a synergetic system of organism and environment which
realizes a Turing machine and the claim is that this is much the most natural

generalization of Turing’s original analysis. The argument is developed in detail in
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Chapter 3. The term "synergetic" is not intended to convey the idea that the whole
is greater than the sum of its parts, but to denote precisely, the notion of combined
or co-ordinated action. Thus, the implication of the ETH is that cognitive activity
is based on the combined and co-ordinated activities of an organism and its
environment, interacting as the control and tape of a Turing machine. The approach
is unbiased by the engineering considerations inherent in the design of digital
computers and offers a new perspective on a variety of interesting problems in
psychology. Cognition, according to the ETH, involves external objects directly.
A crucial point is that cognitive processing need not involve internal, symbolic
representations of the kind fundamental to the generic theory. There is a need for
stable internal states, but these need not be representational in the sense of
"designating” something other than themselves. The issues here are related to a
fundamental distinction between tape memory and control memory which is
introduced in Chapter 2 and subsequently explored and argued for extensively. It
is a central claim of the ETH that this type of memory has been ignored and
seriously underplayed by cognitive scientists, primarily because it does not figure
prominently in the operation of digital computers owing to their design aims and
construction methods. The claim is that internal states need not be semantically
interpretable in the way argued by Pylyshyn (1984) and Newell (1980) for example.
It is an empirical rather than a conceptual matter to determine whether there are
representational states of the traditional kind. The ETH suggests that the primary
relation between external stimuli and internal mechanisms is one of registration
rather than representation. The view is consonant with, but not committed to, a
connectionist account of internal states. The ETH goes beyond the predominant
connectionist concern with the way in which stable spatial structures (often thought
of in terms of sets of micro-features) form and interact with internal states, to the
ways in which stable temporal structures of events and objects might also form and
interact with internal states. This is an area with which connectionists are beginning
to become concemned as difficulties become more manifest (Elman, 1990; Chater,
1991). Recent important work in this area has been reported by Cleeremans (1993).
The ETH differs from the generic theory in a variety of ways, perhaps most
importantly in allowing that the nature of the computational substrate may be of
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fundamental importance to the development of a satisfactory account of human
cognition. Evidence from theoretical computer science and from the emerging
technology of analogue VLSI, which models neural circuits in silicon, is presented
to support this suggestion.

1.9.1 Linear Tapes and Human motion.

The linear nature of a Turing machine’s tape imposes on the control the need for
repeated traverses to retrieve information. This constraint, which has been cited as
a major barrier to the practical utility of the Turing machine, becomes a source of
interesting hypotheses when Turing’s machine is adopted as a serious model of the
human cognitive architecture considered as a system in which the organism interacts
with the external environment, because it highlights human mobility as a factor in
cognitive processing. It may be a simple minded observation, but it is striking that,
like Turing machines, humans do not have random access to different parts of the
environment. Moving from A to B involves traversing all intervening points, and
moving back to A from B involves traversing them again. It may be
computationally inefficient, but it has to be done. Thinking of the organism,
walking around, sensing its environment, as akin to the Turing machine control
shuttling up and down its tape, suggests that human mobility may be connected to
our memory capabilities in a fundamental way. In Chapter 6, neurobiological

evidence is cited which supports this view.

Treating the mobile organism as a component of the cognitive system also aligns
cognitive psychology more closely with robotics than has previously been
conventional, and treating the brain and other parts of the CNS as a finite state
automaton sharpens the links with neuroscience. The latter point is particularly
important. If, as the physical symbol systems hypothesis suggests, the brain is
organized like a digital computer, then arguments that neural structures are not, in
and of themselves, representationally significant have considerable foi:ce. If,
however, the brain is a finite state automaton, then structures realizing states of the
automaton will have representational significance, because the states of a finite

automaton both represent and control, and understanding the implementation of
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cognitive states in the brain will need to be treated as a central part of the cognitive
science enterprise. Churchland (1986) and Pellionisz (1988) offer arguments to this
effect.

1.9.2 Parallel and Serial Operation.

The ETH assumes that the cognitive system is both parallel and serial in operation,
thus suggesting that an either/or debate about the issue is sterile. Viewed from
outside, i.e. from the perspective of an observer, the system can be seen to be
producing behaviour in a serial fashion. This is literally so; it is not just as
Smolensky (1989) puts it "an approximate description of the global behavior of a
lot of parallel computation.” The operations of the control, i.e. the brain, however,
are obviously parallel. Curiously enough, although the early computer designers
opted for serial operation for very good reasons, from the beginning parallel control
was seen to be simpler in some respects. At a conference held in 1951 to
inaugurate the Manchester University computer, Maurice Wilkes, read a paper in
which he introduced the important concept of microprogramming. In the course of
this paper he argued that control in a parallel machine was simpler because the

electronic waveforms needed were easier to produce and of less critical shape.

"In the case of a serial synchronous machine the waveform must rise
at some critical moment relative to the clock and must fall at another
critical moment, and its edges must be sharp. In a parallel
asynchronous machine all that is needed is a single pulse whose time
of occurrence, length, and shape are all non-critical."

Wilkes (1951, p.182)

There is an important general point implicit in these remarks. Computers are now
so reliable that it is easy to forget the precision of the engineering required to make
them work as they do, and all too easy to attribute to neural tissue, the same
functional qualities (cf. Dennett 1984, p.149 note 21; 1987, pp.231-2 on wonder
tissue.). Johnson-Laird does something of the sort at the start of "Mental Models".
Having argued that mind can be studied independently of brain because programs

can be studied independently of hardware, an argument which is reviewed in
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Chapter 5, he goes on to suggest that

* "The neurophysiological substrate must provide a physical basis for
the processes of the mind, but granted that the substrate offers the
computational power of recursive functions, its physical nature places
no constraint on the patterns of thought."

Johnson-Laird (1983, p.9).

This argument only goes through if it has already been shown that the brain is
actually organized like a Turing machine and that mental processes stand in the
same relation to brain processes as the software of a computer stands to its
hardware. Johnson-Laird offers no argument to show that this is so. Without such

an argument the observation above is of limited value.

1.9.3 Representational Structures and Thinking.

The ETH reduces the representational burden on internal structures and paves the
way for a naturalistic approach to the semantics of mental states. If the primary
relation between the brain and the external world is one of registration rather than
representation, then there is no obligation to postulate internal structures which are
articulated in ways which reflect the full combinatorial variety of object-event
relations. It is argued that this approach not only reduces the representational
burden on internal states, but also provides a way of considering how thinking and
perception might be linked. It is clear that the cognitive system of the neonate is
far from being a tabula rasa and that the perceptual system is innately structured to
respond (i.e. to make state transitions) in highly specific ways to given forms of
external input. Evidence that this is so comes from sources such as Spelke (1985,
1990) It is hypothesized in Chapter 7 that thinking is enabled by the development
of internal state transition trajectories, i.e. virtual machine processes, produced by
a Turing computable process of self-description originally described by Lee (1963).
The process redescribes internally, sequences of states and the external events and
objects which cause transitions between them, in a form which is decoupled from
the specific triggering objects/events, and provides free floating schemata which are
proposed as the "vehicles” of thought. The innate structures with which the neonate
1s endowed get the process off the ground. A case may be made for thinking that
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such a process may underlie the process of representational redescription which
Karmiloff-Smith (1992) argues is an important part of the process of normal

intellectual development.

1.9.4 Program and Observer Perspectives.

A further interesting consequence of the ETH is that it brings into play more social
considerations than have customarily been favoured in cognitive theories. One way
to see what is involved here is to consider two possible perspectives on a
computation, that of the machine and that of an observer. Newell (1980, p.166),
describing the behaviour of a universal machine program, summarized the

perspectives succinctly as follows;

"From the perspective of the program there is no choice and no
decision; it simply puts one foot in front of the other so to speak.
From the perspective of the outside observer a choice is being made
dependent on the data."”

This is a very interesting observation. It is suggested that there may be grounds
for identifying our own perspective on our actions with something like the program
perspective and another’s perspective on our actions with the observer’s point of
view. Thus it would appear that the observer is better placed to understand some
aspects of our actions than we are ourselves. This suggests that a complete
understanding of cognitive behaviour may require a social context in which
feedback is available. G.H. Mead made just such a proposal in "Mind, Self, and
Society" (1934). Mead’s work, although rarely quoted by cognitive scientists®, is
remarkably contemporary in its preoccupations, which is particularly striking since
it pre-dated not only the digital computer, but also the computer’s prefiguration in
the theoretical work of Turing and Church. von Neumann also, was concerned with
the distinction between an observed system and its observer as early as 1932
(Schnelle 1988, p.543). Schnelle suggests that von Neumann’s concerns then were

important precursors of the ideas set out in his General and Logical Theory of

The only reference I have encountered is again in the work of Allen Newell (1982,p.109
footnote 10).
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Automata. The distinction between program and observer perspectives comes into
play strongly in the context of the external tape hypothesis, by virtue of the fact that
more of the cognitive machine is assumed to be on public view than is the case in
most cognitive theories. Observers can see the objects which provide the
computational symbols driving the cognitive Turing machine, and can see the
responses of the machine. The only parts of the machine which are hidden are the

internal mechanisms which constitute the control.

The ETH also makes contact with the "intentional stance” of Dennett (1978,1987).
Dennett sees himself as balanced "firmly on the knife-edge between the intolerable
extremes of simple realism and simple relativism” (1987,p.37). He wants to argue
that the observer’s ascription of intentional states to a system, resulting from the
perception of data dependent choices, is objective because observable patterns of
action do exist, and at the same time observer dependent and potentially

indeterminate.

"it is always possible in principle for rival intentional stance
interpretations of those patterns to tie for first place, so that no
further fact could settle what the intentional system in question really
believed."

Dennett (1987, p.40)

Treating the environmentally sitnated organism as a Turing machine seems to
provide some support for Dennett’s position. Some aspects of cognitive
computation are visible since an observer can see what a person is doing. Other
aspects, the internal states and transitions among them, are not visible. Hence
ascriptions of intentional states, although based on objective patterns of behaviour,
are defeasible because they are based on partial information. Further, even if state
transitions were available for inspection, it would still be the case that a unique
ascription of intentional content might be unavailable because multiple consistent

interpretations of a Turing machine computation are always possible in principle.

1.10 Objections to the External Tape Hypothesis.
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Numerous objections to the ETH have been raised, both by its opponents and by
those who are sympathetic towards the point of view. One important problem is
precisely that which from another angle makes it so attractive, namely the
immediacy of its interaction with the environment. What models based on the
generic theory seem to provide is an autonomous internal computational environment
in which such paradigmatically cognitive activities as planning and anticipation can
be carried out (cf. Dennett 1978, ch.5; Newell 1990). A Turing machine control,
by contrast, stands in a completely deterministic relation to its input, and appears
to offer no scope for judgment, planning and deliberation. There seem to be two

main ways of approaching this problem and it is not clear which is the better.

The first approach accepts that although the relation is deterministic it allows more
flexible responding than appears possible initially, particularly when the number of
states of the system in question is large. This is obviously true of the brain. Even
if it is supposed that all the information processing work of the brain is done by
neurons, which is a conservative supposition, and that the operation of neurons is
essentially digital, then the brain which has something like 10*° neurons would have
approximately 21® or 1.27 x 10 total states. Even allowing for the fact that many
of these neural states might be computationally identical, such a huge number means
that behaviour can be dependent on input in highly complex ways and over extended
time spans. This approach is discussed in more detail in the context of Turing’s

analysis of computation in Chapter 3.

The second approach argues for a distinction between primary and secondary
computational relations which is associated with the way in which thinking might
be derived from experience via self-description as mentioned in Section 1.9.3. This
is treated at greater length in Chapter 7 in the context of representational
redescription. The essence of this approach perhaps represents a weakening of the
most radical version of the ETH in that it allows a limited place for explicit,
semantically transparent symbolic representations.

Another problem area concerns the representational inadequacy of the state and
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symbol form in which descriptions of Turing machines are normally couched. For
the ETH to have any practical value, it will be necessary to have much richer

descriptive forms for internal states and symbols.

"In order that we can apply any insights which we may have about
mechanisms we want this description to reflect the actual, concrete,
structure of the device in a given state. On the other hand, we want
the form of description to be sufficiently abstract to apply uniformly
to mechanical, electrical or merely notional devices."

Gandy (1980, p.127).

In the paper from which the quotation was taken, Gandy used hereditarily finite sets
to extend the scope of Turing’s original analysis. One of the attractions of Gandy’s
approach is that it shows how to incorporate parallelism into the control of a
machine whose global behaviour is serial. Gandy’s work is more fully discussed
in Chapter 6. Alternative forms of description which might be used are those of
Hoare (1985) and Milner (1989).

Another area of problems clusters around the character of a Turing machine tape
and the symbols which are printed upon it. There are four principal characteristics
as follows;

1) that the number of symbols be finite,

2) that the portion of the tape which can be observed by the control at any one
time is finitely bounded.

3) that the tape itself is, in principle, of unbounded length.

4) that symbols remain unchanged once written, unless or until the control
encounters them again.

With respect to 4), the ETH is not in greater difficulty than the generic theory even
though objects in the world do not behave like Turing machine symbols. Both
accounts have difficulties. Another aspect of the same general problem focuses on
the kinds of things that could count as computational symbols. The physical symbol
systems hypothesis, for example, suggests that the right kinds of things are neural
circuits (Newell 1990, p.132). The ETH suggests that they are primarily objects
and events in the external environment. However, the kinds of results reported by

Hochberg (1968) show how difficult it will be to give a satisfactory account of the
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physical characteristics of objects which give rise to form perception independently

of a perceiver.

With respect to 3) the ETH faces no greater difficulty than any other computational
account which requires computational universality and hence unbounded memory.
In fact the proposal is more principled since large chunks of the external
environment are potentially available as memory and the idealization is thus less

severe.

With respect to 2), it is clear that the limited acuity of our sensory systems,
attention span and short term memory mean that there are indeed bounds on how
much of the environment can be scanned at any one time. The ETH implies that
cognitive theories of attention should constitute a central part of cognitive science.
Attention is discussed in greater detail in the context of Turing’s analysis of routine

computation in Chapter 3.

The problem with the finite bound on the number of symbols in 1) is more serious,
in that there appears to be an unbounded number of environmental contingencies
which could be sensed by an organism and which might therefore count as
computational symbols for that organism. At least two separate sorts of problem

can be discerned.

Kirk (1986, p.443), discussing what he takes to be a fundamental disanalogy
between a machine tape and the world, poses one sort of problem. He says "there
is no definite limit to the number of kinds of human performance that could produce
a token of, say ’3’, nor any definite limit to the number of things that would be
acceptable as a token of ’3’." The point is that something can count as a token of
"3’ if it is intended by its producer to be such a token, and, if it can be perceived
as such. Thus, as Kirk points out, we can perceive a pattern of stones in the desert
or a vapour trail in the sky as a token of ’3’. I think a possible line of defence to
this objection is to distinguish the primitive symbols forming the “"alphabet" of a

system from the interpretation placed on them. A universal Turing machine may
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have a much smaller repertoire of symbols than a machine whose operations it
simulates and yet be capable of simulation by encoding the target machine’s symbols
as sequences of the smaller set which it can handle. Thus the vapour trail and the
pattern of stones need not, perhaps, be considered as separate symbols but may be

thought of as composites.

A second sort of problem with respect to environmental symbols is that many
environmental quantities are continuous whereas Turing machine symbols are
discrete. Headway may be made with this problem by considering the phenomena
of categorical perception (cf. Harnad 1987), in which physically continuous stimuli
are perceived to belong to discrete categories. Three more specific problems with
the ETH are as follows®.

5) The world, unlike a tape, cannot be run backwards.

6) The world, unlike a tape, cannot be blank.

7 Since there are identical symbols on the tape (world) and TM control (brain)
the ETH trivializes the whole problem of perception (and perhaps learning).

Problem 7 is the most important and is addressed in Chapter 2.6. In outline, the
argument presented is that the control and tape need have identical symbols on them
only if the control is implemented literally as a machine table. However, since the
machine table is a form of description of an abstract machine rather than a blueprint
for the implementation of a real machine, there is no need for explicit symbols as
part of an implemented control although they are so convenient as to be almost

inescapable as a means of describing an abstract control.

Problem 6, that the world, unlike a tape, cannot be blank, is perhaps less difficult
to resolve than it might initially seem. First, although a Turing machine’s tape can
be blank, it is not part of its definition that it ever must be and there are Turing
machines, among them all universal machines, which must have non-blank tapes in
order to function correctly. What is mandatory for a Turing machine is that no

more than a finite number of squares can be non-blank at the start of a computation.

¢l am grateful to Professor Yorick Wilks for raising these problems.
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This appears to amount to the stipulation that the world can be only finitely

complex. Whether this is a serious problem is hard to determine. Second, and
perhaps more convincingly, if the objection is well founded, it ought also to apply
to the generic theory. The generic theory proposes that human memory is modelled
as the tape of a Turing machine. But memory, unlike a tape, also cannot be blank.
The various forms of amnesia which might seem to refute this suggestion are best
thought of not as blanking the memory but as affecting retrieval, or, in extreme
cases, as destroying the tape. Thus problem 6 appears to apply to many
computational theories of cognitive architecture if it applies at all and is not

therefore, specifically a problem for the ETH.

Problem 5 can be resolved by considering the differences between the tape of a
Turing machine and a reel of cinema film. These may be thought to be similar
media in the sense that the one is divided into squares and the other into frames.
If a cinema film is run backwards, effects appear to precede their causes which is,
of course, physically impossible in the real world. This idea, applied to a Turing
machine tape, appears to capture the intended force of the objection. The tape of
a Turing machine, it is claimed, has the capacity of running backwards in time
which is not characteristic of the real world in which time is uni-directional.
However, for this objection to hold, it would have to be the case that the time of
inscription of a symbol is uniquely associated with its position in the sequence of
squares on the tape. It is an association of this kind which confers on a reel of film
its own internal "film time" and hence the possibility of running it backwards.
Consider a sequence of frames, f,...f,, of a cinema film. Each of the f has a
unique time at which it was shot, t(f), such that t(f) < t(f) @ i < j. Itis this
biconditional association of position in the sequence of frames with time of shooting
which gives sense to the notions of running a film "forwards" and "backwards".
These notions, of course, apply only to "film time" and not to real time, because
running a film backwards in "film time" requires forward movement in real time.
There is no analogous internal notion of "tape time" in the case of a Turing
machine, because there is no relationship of entailment between position on a Turing

machine tape and the time of inscription of a symbol. In consequence, there is no
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sense in which the tape can be said to run backwards. The proper terms for
describing movement relative to a Turing machine tape are "left" and "right" not
"forwards" and "backwards". Itis, of course, quite possible for a sequence of state
transitions and tape movements to occur which exactly reverses a prior sequence of
actions, leaving the tape as it was before the pattern of symbols resulting from the
original sequence was inscribed. However, suppose the original sequence to have
been started at some arbitrary time t; and to have been completed k-1 time steps
later at time t,. To reverse the sequence requires a further k time steps t,; to ty.
Thus time continues to move forward as a sequence is reversed. The sense in which
reversing a sequence would have undesirable theoretical consequences would be that
in which reversing the sequence also reversed the flow of time such that the time
at the end of the reversal of the sequence was the original t; rather than t,.. But this
is not the case with a Turing machine. It appears therefore, that the only
satisfactory formulation of the notion of running a tape backwards, i.e. reversal of

a sequence of transitions, is one which does not damage the ETH.

1.11. Outline of the thesis.

In Chapter 2 formal definitions of finite automata and Turing machines are given
and the properties of such machines are discussed. The application of the Turing
machine concept to the study of cognitive architecture is expanded beyond the
introduction given in chapter 1. In chapter 3, Turing’s analysis of computation is
discussed in detail and its divergence from the assumptions of the generic theory is
documented. In Chapter 4, a short account of some of the principal features of
digital computers and the history of their development is given with a view to
reinforcing the notion that the digital computer is unsuitable as a literal model of
human cognitive architecture. In Chapter 5. some prominent examples of the
generic computer theory of mind are discussed in the light of Turing’s analysis. In
Chapter 6 the External Tape Hypothesis is developed in detail. Chapter 7 gives an
account of the development of thought in terms of the ETH and self-reproducing
machines. Chapter 8 summarizes the claims made, outlines areas of importance for
further research and relates the ETH to other theoretical enterprises in cognitive

science.
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Chapter 2. Turing Machines and Finite Automata

In this chapter the formal foundations on which the ETH is based are described.
A Turing machine is essentially a mathematical abstraction which describes a
potentially infinite output such as the decimal expansion of =, in terms of a finite
set of rules for its production, but Turing developed his ideas in the context of
machines which might realize such sets of rules. Thus, in addition to the formal
definition of a Turing machine, it is important to understand what kind of machine
Turing had in mind and what one might be like if it were actually constructed. This
is particularly important for the study of cognition where the concern is with the
embodiment of intelligence rather than with the purely formal or functional means
of its specification. Turing’s genius lay in showing how the formal and the physical
might be combined. What Turing aimed to produce was a mechanical model of the
system consisting of a human "computer" working out a routine calculation with
paper and pencil. The details of Turing’s machine model and his analysis of
computation are the basis for the ETH and are discussed in detail in Chapter 3.
Turing’s biographer suggests that he may have used the typewriter as his basic
model for a machine, Hodges (1983, pp.96-98), whereas Hendriks-Jansen (1994)
has claimed, much less plausibly, that Turing had in mind a manufacturing
assembly-line as his basic model. Whatever the case, Turing was definitely a man
with a practical bent, although apparently somewhat maladroit in his dealings with
machinery, and it is clear that he had in mind the idea of a real machine, albeit one
that was as simple as possible. In order for such a machine to do useful work it
would need to be equipped with the means for reading symbols and for writing and
erasing them. It would also need an indefinitely large supply of paper on which to
record the potentially infinite results of its computations.

2.1. The description and definition of Turing machines.

Informally, a Turing machine consists of two parts. The first is a control machine
which embodies or contains the rules defining the procedure it is to execute. The
second part, which replaces the paper on which a human computer writes is a one-

dimensional tape, divided into squares, each of which can contain one of the finite



38

number of symbols which the machine can recognize. Its format is like a single line
taken from a page of squared arithmetic paper. The tape is assumed to be
indefinitely extendable so as to be able to contain an indefinitely long symbolic
expression. The control machine is equipped with a scanner which enables it to
read the symbol on a square, and with a printer which enables it to write a symbol
on a square or erase the symbol currently there. The control machine is also able
to move to the left or the right relative to the tape, so as to scan a different square.
The way in which the control machine embodies or contains the rules defining the
procedure which it executes is a matter which requires substantial discussion.
Turing’s analysis, arising as it did from the consideration of a human computer,
treated the rules as a set of "states of mind" which were defined functionally in

terms of their relations to each other and to the inputs and outputs of the machine.

The Turing machine concept can be defined formally in a number of ways. These
ways differ in detail, but turn out ultimately to be equivalent in the sense of
encompassing the same set of functions. The following, slightly adapted, definition
is taken from Lewis & Papadimitriou (1981,p.170);

Definition 2.1

A Turing machine is a quadruple (X,L,d,s), where
K is a finite set of states, not containing the halt state 4;
L is a finite alphabet of symbols, containing the blank symbol #, but
not containing the symbols L and R;
s € K is the initial state;
§ is a function from K X L to (K U {h}) X (¥ U {L,R}).

Ifg € K, a € X, and d(g,a) = (p,b), then the machine M, when in state g and
scanning symbol a, will enter state p, and (1) if b is a symbol in Z, rewrite the a
in the currently scanned tape square as b, or (2) if b is L or R, move its head in
direction b relative to the currently scanned square. Since 6 is a function, the
operation of the machine M is deterministic and it will stop only when 6(g,a) =
(h,b), or because the machine reaches a configuration for which the transition

function 6 is undefined. In the latter case the machine is said to "hang".
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Definition 2.1 differs from Turing’s original specification in a number of details.

The most noticeable of these is that at each invocation of the transition function §
the machines of Def. 2.1 either move or print a symbol but do not do both, whereas
Turing’s original machine design included both printing and moving as part of each
instruction. However, definition 2.1 coincides with Turing’s definition in the
fundamental matter which is the nature of the transition function. This is a function
of two arguments, ¢ and a, the first of which is the current internal state of the
machine, and the second of which is the currently scanned symbol. The internal
state and scanned symbol together determine the behaviour of the machine. Turing
called the pair (g,a) a "configuration”, and distinguished this from the internal state
alone, which he called an "m-configuration”, and from the complete description of
the current state of a machine, including the sequence of symbols on its tape which
he called a "complete configuration". These are important distinctions and the
terms are used throughout the thesis in Turing’s sense. Because both the set K of
internal states and the set ¥ of symbols are finite by definition, the number of
possible configurations is also finite. In principle, the domain of the transition
function é can be the whole of K x ¥ but need not be. It is not the case, for

example, in the example machine M described below.

As an example of a rather simple Turing machine, consider the following machine
M = (K,E,a,S) Whel'e K = {qO:qI’q.Z}’ E ={#)(,)’X’Y’N} and s = qO- ThiS
machine is a slightly modified version of a machine described by Minsky (1967).

The transition function § can be described in terms of a machine table as follows;

q o 6(q,0) q o 6(q,0) q o 6(q,0)
qO # (q2:L) ql # (h:N) q2 # (h’Y)
Q@ X (qo,R) q X (q;,1) & X (q,1)
do ( (Qo,R) q ( (qo:X) G ( (h,N)
do ) (@1, X)

M is a machine which takes strings of left and right parentheses as input, and, when
started in state q, on the leftmost element of such a string, eventually halts and
prints "Y’ if the string is a member of a set P, *N’ if it is not. The tape is assumed
to be blank throughout except for the expression which M is to evaluate. P is
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defined recursively as follows as the set of strings of parentheses which are

’grammatical’;

1. Qisin P.

2. If E is in P, (E) is also in P.

3. If E and F are in P, EF (the concatenation of E and F) is also in P.
4. Nothing else is in P.

The machine table is a common way of describing the logical structure of a Turing
machine control which dates back to Turing’s original analysis. An alternative
means of description which has been developed since his pioneering work is the
state transition diagram, usually abbreviated to "state diagram”. This is a very
useful notation, which is often both more compact and easier to follow than a

machine table. A state diagram for the machine M is shown in Figure 2.1.

Figure 2.1 The State Diagram for machine M.

States are shown as circles labelled with their identifiers. State transitions are
shown as labelled arrows. It is clear that a transition can be made from a state back
to itself. The symbol near the tail of an arrow is the symbol on the currently

scanned square of the tape, and the symbol near the middle of an arrow indicates
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the action taken which is either a movement or a printing action. Since the sets of
print symbols and movement symbols are disjoint there is no confusion.
Comparison of the machine table and state diagram for machine M shows that they

contain exactly the same information.

The operational characteristics of machine M and the strings it can evaluate are
worth describing in greater detail, because they serve to introduce a number of
important general features of the Turing machine. One distinction which is worth
making at the start is between configurations with which the machine can deal and
those with which it cannot. This is the distinction between recognizable and
unrecognizable configurations. It is not the same as the distinction between well-
formed and ill-formed strings as defined by membership of the set P. The set of
recognizable configurations contains all those for which M can reach the correct
decision, i.e. it contains all those configurations which consist of an unbroken
sequence of parentheses contained between blanks, such that M is started in state q0
scanning the leftmost parenthesis of the expression. The point of making this
distinction is to emphasize that a Turing machine computation requires not just that
the string of input symbols meets some pre-defined criteria, but also that the
relationship between the control and the input string is similarly constrained. This
observation shows how closely intermeshed external structures on the tape and the
internal organization of states of the control need to be in order for a computation
to be executed correctly. The ETH hypothesizes that this intermeshing can be used
to model the interlocking of organisms and environment which constitutes part of

the ecology of a species.

An example of a recognizable, well-formed string which the machine M might be
required to evaluate is "#()(()#’. Given this string M works as follows; from the
starting configuration in which the machine is in state q0 scanning the leftmost
parenthesis of the expression, it moves right still in state q0, until it encounters a
right parenthesis, which it erases, writing an "X’ in its place. If the string is well
formed, there will be a matching left parenthesis somewhere to the left of the

current position. To determine whether or not this is so, the machine goes into state
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ql and searches to the left. If it encounters a ’# while searching, there is no
matching left parenthesis, the string is not well formed and the machine halts and
reports the result. If a left partner for the "X-ed’ right parenthesis is found, this is
also erased and replaced with an ’X’. The machine then re-starts its rightward
search in q0 for another right parenthesis. When a ’#’ is encountered in this state,
the right end of the string has been reached which means that all right parentheses
have been accounted for. The machine then goes into state g2 and moves left. In
this state if it encounters a left parenthesis the string is ill formed but if it
encounters the *#’ at the left end of the string, the string is well formed. In either
case the machine halts and reports accordingly. For the string #((()# above,
successive operations will produce the sequence of expressions #(X(0)#, #XX(0)#,
FXX(X)#, #XXXX)#, #FXXXXXH#, #XXXXXX#, and the machine will report the
string to be well formed. What happens, in general, is that a target string is treated
as a concatenation of substrings, which are dealt with one at a time moving from
left to right. Within each substring pairs are matched working outwards from the
deepest to the shallowest nestings. The technique can be applied recursively to
strings of arbitrary length and embeddedness. Broadly speaking, the individual
states of the machine can be described as follows; state q0 is a state characterized
by left to right movement with respect to the expression on the tape. Its sole
purpose is to find an occurrence of -a right parenthesis. State ql is a state
characterized by right to left movement. Its basic purpose is to find a matching left
parenthesis for the right parenthesis located by state q0. States q0 and gl act as a
pair, locating and *X-ing’ pairs of matching left and right parentheses. State q1 has
an additional function, which is to report the target expression ill-formed if a left
parenthesis is not found. State 2 is a right to left moving state. Its task is to
determine whether there are any unmatched left parentheses in the expression. If
there are it reports the expression to be ill-formed, if not, it reports the expression
to be well-formed.

2.2, The memories of Turing machines.
A point of fundamental importance for the thesis is the fact that machine M can be

said to have two sorts of memory. The first is the obvious symbolic memory
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provided by the tape. The tape is the repository of the target symbolic expression

and of all changes made to it while the machine is in operation. This memory is
essentially static but fundamental. Without a tape, the class of computations which
can be carried out is reduced. The second kind of memory is a dynamic memory,

which might be thought of as a kind of working memory.

Before describing this memory, it is important to distinguish the claim being made
from another which, emphatically, is not being made. It is not being claimed that
the machine has any memory, either implicit or explicit, of the sequence of states
it has passed through or of the number of moments of time during which it has
occupied the current state. The machine M does not know that it is "in" a particular
state at a particular time. Thus when it is in q0, for example, the machine does not
know whether it has just been started, whether it has always been in q0 or whether
it was in gl at the previous time step and has just arrived back in state q0 as the
result of a state transition caused by a ’(’ when the machine was in ql. Similarly,
when it is in q1, even though at some prior moment of time the machine must have
been in state g0, it has no knowledge or memory of this or of any other fact. The
machine’s horizons at a given moment, so to speak, are entirely local. Perhaps,
more picturesquely, it might be described as living solely in the present or as being
profoundly amnesic. Although, to an outside observer, a Turing machine like M
has a history, the machine itself is entirely unconscious and knows nothing of its
own history. To say this is not to claim that no Turing machine could be conscious.
It might be that consciousness is a property, just like computational universality, of
certain Turing machines which are organized in a particular way. Like universality,
however, consciousness is not a defining feature of a Turing machine and machine
M is certainly not conscious. Further, the control has no explicit knowledge of
what is on the tape, even at the moment at which it scans a symbol. It does not
know which tape square it is scanning because its horizons are limited to just the
currently scanned square which is indistinguishable from any other square on the
tape. Indeed, a simple Turing machine could not even be said to know that it had
a tape.
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The positive sense in which the machine can be said to have a memory other than
the static memory of the tape, is that it can have an implicit memory for a symbol
scanned at some indeterminate time in the past. Note that it is an implicit memory
for a symbol not for a state. In the case of machine M, state q1 constitutes an
implicit memory for the occurrence of a right parenthesis. Despite the very limited
capacities which a machine such as M enjoys, this way of speaking is justified by
the following considerations. First, the machine never scans a right parenthesis
when in state q1, i.e. in a manner of speaking it never has any direct experience of
right parentheses in q1. Thus any effect of a right parenthesis on the machine in
ql must be indirect or implicit. Second, however, a transition to q1 from qO is
made if and only if a right parenthesis is encountered when the machine is in q0.
In the case of a null expression or an expression consisting entirely of left
parentheses the machine never enters state q1. Thus it is apparent that state ql is
fundamentally connected to the occurrence of right parentheses in some way. The
nature of this connection becomes apparent from considering the behaviour of the
machine if it scans a blank i.e. ’#’ in q1. In such a circumstance the machine halts
and reports that the target expression was ill-formed. What this means, looking at
the behaviour of M from the outside, is that M has failed to find a left parenthesis
to match a previously scanned right parenthesis. It is for this reason that it is
appropriate to talk of the machine in-ql as having an implicit memory for the
previous occurrence of a right parenthesis even though it has no awareness, of any
kind, of this fact. Finally, since the implicit memory lasts precisely for as long as
the machine remains in state ql it seems appropriate to think of it as a kind of
"short term" or "dynamic" or "working" memory. This terminology is perhaps not
entirely felicitous because it is not a short term or working memory in the sense in
which these terms are understood in cognitive psychology, cf. Baddeley (1986) for
example, if only because there is no set limit on how long the implicit memory can
last. Nevertheless some such usage captures the required distinction between the
static memory of the tape and the more active memory of the control. The state
diagram for M shows that the machine remains in q1 for as long as it takes to
traverse the current sequence of *X’es on the tape. Since expressions in parentheses

may be arbitrarily long, there may be also be arbitrarily many ’X’s on the tape and
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hence there can be no upper bound on the time that the machine spends in state q1
implicitly remembering that a right parenthesis had been encountered. To avoid
confusion with the normal psychological terminology, the implicit memory which
machines may have for symbols as a result of the organization of their internal states
is referred to from here onwards as "control" memory to distinguish it from tape
memory. An additional point which may be worth emphasizing is that although the
memory for a previously scanned symbol is implicit, the behavioural consequences

of that implicit memory are, of course, quite explicit.

The fundamental place of control memory in the approach to cognitive architecture
which follows from the ETH cannot be overstressed and the issues are discussed
further in Chapters 3 & 6. The basic point is that if the brain is not a complete
Turing machine but is a finite automaton like the control of a Turing machine as the
ETH suggests, then control memory must form an important part of human memory
resources. Another point which emerges from the above discussion of states is that
they may have multiple, overlapping functions. State q1 implements the search for
a left parenthesis at the same time as serving as an implicit memory for a right
parenthesis. In more complex machines, which may have multiply embedded
sequences of states, the complete functional description of a state may need to advert
to descriptions at numerous levels of. functioning. More is said about this in

Chapter 3.

Another point which should also be mentioned here briefly is the caveat that internal
states or m-configurations as they appear in machine tables and state diagrams are
logical not physical entities. Part of Turing’s achievement was to show clearly that
the logical specification of a mental activity such as calculation could be specified
independently of questions of its physical implementation. This does not mean, as
the discussion in Chapter 1 shows, that there are no constraints on media for
implementation. In practice, as the history of the development of digital computers
shows, satisfactory implementations of logical states are hard to come by and the
implementation of the set of instructions constituting a single logical state will

typically be highly complex.
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Furthermore, the internal states of a Turing machine are logically global, i.e. they

are states of the whole machine. Thus the temptation to see a state diagram as a
diagram of the parts of a physical machine must be treated carefully. There will
always be numerous ways in which the logic of a system of states may be realized
in practice. The interesting and psychologically important question of the
relationship between logical and physical descriptions is discussed further below and
in Chapter 3 in the context of Turing’s universal machine description.

2.3. The description and definition of finite automata. _

Two other classes of machine need to be discussed in this chapter. These are finite
automata and universal Turing machines. The essential difference between finite
automata and Turing machines is that the former cannot use a tape as memory in
the way that Turing machines can. A deterministic finite automaton (DFA) consists
of a finite state control machine and a tape. In these respects such a machine
resembles a Turing machine. However, the control of a DFA can only read
symbols from its tape, it cannot write on the tape, and it can move only to the right,
assuming it to be started scanning the leftmost element of an input string. The tape
is, therefore, nothing more than an input device which presents successive elements
of a string of symbols to the machine. A subset of the finite set of internal states
of the automaton is designated as the set of "final" or "accepting" states, and if the
automaton ends up in one of these states at the end of a particular input string, that
string is said to be "accepted” by the automaton, otherwise it is "rejected”. The
language accepted by an automaton is the set of strings it accepts. Formally, again
borrowing from Lewis & Papadimitriou (1981, p.51), a deterministic finite

automaton can be defined as follows;

Definition 2.2.

A deterministic finite automaton is a quintuple D = (X,%,4,s,F) where
K is a finite set of states,
T is a finite alphabet of symbols,
§ € K is the initial state,
F < K is the set of final states,
and 8, the transition function, is a function from K X ¥ to K.
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The rules by which the next state is selected are built into the transition function,
as is the case with Turing machines. Thus if D is in state ¢ € K and the symbol
read from the input tape is ¢ € L, then 6(g,0) € K is the uniquely determined state
to which D passes.

There are two principal differences between definition 2.2 and definition 2.1. First,
definition 2.2 specifies a set of "final" states rather than the halt state h, and second
the transition function of definition 2.2 does not specify an output symbol or a
movement relative to the tape. Both of these points have been raised informally in
the introduction to finite automata above. Apart from these differences it is readily
apparent that the definition of a deterministic finite automaton is very much like that
of a Turing machine. Hence it is appropriate to think of the control of a Turing
machine as a deterministic finite automaton with added output and movement
capacities. Some authors, e.g. Lipschutz (1976) use the term "finite state machine"

to describe a finite automaton which is capable of output.

There is one further class of finite machines, the non-deterministic finite automata,
which need to be mentioned here. Such machines have a transition relation rather
than a transition function describing their actions. A non-deterministic finite
automaton is one in which a number of alternative actions may be available for a
given configuration. Although non-determinism might seem to be a powerful
property of a machine, the classes of deterministic and non-deterministic finite
automata are provably equivalent because a non-deterministic machine can always
be converted into an equivalent deterministic one. It has been argued, for example
by Nelson (1989), that the class of non-deterministic finite automata is the
appropriate class of machine models for modelling cognitive behaviour. For the
purposes of the thesis however, the distinction between deterministic and non-
deterministic automata is not of primary importance and all further references to
finite automata are to deterministic machines unless otherwise specified. The
primary distinction which is explored in the thesis is that between Turing machines

and finite automata.
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2.4. The computational capacities of finite automata.

Because they cannot write on their tapes and because they cannot change direction
and revisit previously scanned squares, finite automata are more restricted in the
computations they can perform than are Turing machines. The limits of their
computations are well understood. They are restricted to recognizing members of
the class of regular languages which are those languages which can be defined by
regular expressions. Informally, the regular languages are those in which the
amount of memory needed to determine whether or not a string is a member of the
language can be fixed in advance and is dependent solely on the structure of the
language and not on the length of the input string. This relates very naturally to the
idea of a finite automaton as a machine which cannot use a tape as an auxiliary
memory. The memories of finite automata are limited to what can be built into
their internal state structures. One of the interesting features of the machine M, is
that the language which it accepts, i.e. the set of strings which are elements of the
set P defined above, is not regular. Thus, although the machine has a simple
structure and the function it computes is also simple, it is a function which cannot
be computed in its full generality by a finite automaton. The reason is easily
understood. Consider expressions of the form (9)* for some natural number k,
which consist of k instances of *(’ followed by k instances of *)’. Thus ¢)* = ((0)).
All such expressions are elements of P. Machine M evaluates such an expression
by traversing the k left parentheses and then ticking off successive matching pairs
from the inside out, i.e. ((XX)), (XXXX), XXXXXX. Suppose, however, that the
expression was to be evaluated by a finite automaton. Because elements of the
string cannot be revisited the machine would have to be structured so as to
increment a count of the number of left parentheses as each was presented and to
decrement the count as matching right parentheses were presented. A machine such

as F in Figure 2.2 would suffice for the task with k = 3.

State qO0 is the starting state for the machine and also its only final or accepting
state. It accepts all and only those strings for which it is in g0 when the end of the
string is reached. Apart from accepting strings such as ((())), it also accepts (00Q)
and ((0)(0)) and any other of the countably infinite set of strings of parentheses
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Figure 2.2. F: A finite automaton for parenthesis string recognition.

which do not contain any nesting deeper than 3. However given any expression
containing a substring of (*), for k > 3, the machine will hang in g3, because its
input will be a left parenthesis and the configuration "(",q3 is one for which no
transition is defined. Machine F is, therefore, limited to accepting only a subset of
the elements of P, and it is clear that for any fixed machine with n states qy,...q,,
which has to count its inputs in this way, it will always be possible to specify an
element of P which contains a substring of the form (*)" which the machine cannot
accept. Thus no finite automaton can be structured which can accept all and only
the strings in P. This is, of course, a limitation but it is worth flagging some
considerations which are mathematically perhaps of no interest but which might be
of considerable interest in the context of real creatures solving real problems in real
time. Suppose a limit on the depth of nesting had been established such that it was
known that the machine would not need to evaluate strings with nesting deeper than
some arbitrary value n. In such a case an adequate automaton could be constructed
for the task. Might there be any reason to prefer a machine of type F rather than
type M? At first sight it seems improbable. Suppose, for example, the depth of
nesting to be limited to 50. An automaton following the design of machine F would
have to have 51 states in order to deal with inputs of maximum depth of nesting,
whereas machine M with its three states would be adequate. However, if efficiency,
defined as the number of state transitions needed to evaluate a string, is taken as the
criterion of assessment the picture looks rather different. Considering strings of the
form ()%, a finite automaton designed like F has to make just 2k state transitions in
order to complete such tasks, whereas machine M has to make 2(k+1)>+2k
transitions. This means that machine M becomes relatively less and less efficient
as the size of the input increases. For a depth of 50, 2(k+1)*+2k = 2701. Clearly

the example is artificial and its connection with psychological subject matter is
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remote, but it may be that the obvious limitations of finite automata have shifted
attention unduly away from their possible advantages. By way of conclusion it is
worth noting that automaton F provides another example of implicit memory. State
ql implicitly remembers that one more left than right parentheses have thus far

appeared in the input, g2 that two more left than right have appeared and so on.

2.5. Universal Turing machines.

Whereas a finite automaton is essentially a Turing machine without a tape, a
universal machine, architecturally, is just like any other Turing machine, i.e. it
consists of a finite state control and an indefinitely extendable tape. The differences
come in the organization of its internal states and the nature of its data. The first
machine table for a universal machine was constructed by Turing in his seminal
paper Turing (1936-7). A universal machine is a single Turing machine, which can
carry out any of the countably infinite number of different tasks or computable
functions for which a special purpose Turing machine can be specified. At first
sight the task of constructing a universal machine seems impossible. The difficulty
lies in the finitude of K and X, the sets of states and symbols respectively, which
define a Turing machine. Since the universal machine, U, is a Turing machine it
has, by definition, a fixed, finite set of states K and a fixed, finite alphabet of
symbols X. It would seem, therefore, that for any given specification for U, we
could always think of a task which required a machine with a set K’ of states where
|K’| > |K]| and/or an alphabet X’ where |Z’| > [Z|. Such a task would be
beyond the capacity of U which would therefore not be universal. The problem is
similar to the difficulties faced in trying to design a finite automaton to tackle
arbitrary depths of nesting in the parenthesis checking task.

Turing’s solution, which has not been improved upon in the essentials, required two
techniques, the symbolic encoding of machine tables and the interpretive execution
of symbolic encodings. First he showed that a code could be defined using a fixed,
finite alphabet I, to represent any Turing machine. Turing called the encoding of
a machine a "standard description”, and it is analogous to a computer program.

Second he showed that a machine table could be specified which would take the
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“"standard description" of a Turing machine as input, and produce the same output,
for given input data, as the encoded machine would have produced. So, the
universal machine consisted of a finite state control which could interpret and
execute the standard description of any other Turing machine, plus a tape on which
a standard description could be written as well as any other input. It is important
to be quite clear that a universal Turing machine requires both a "program" or
“standard description” and data on its tape, whereas a special purpose Turing
machine requires only data. Turing’s machine table for U was of the same kind as
that for M above, in that it specified exactly how U was to behave while leaving
open the question of its possible physical realizations.

In one sense the universal machine was special purpose because it was "hard-wired"
to carry out a single function, the execution of a standard description. This can be
called the interpretive function. In another sense, however, it was multi-functional
because its behaviour depended on the encoding of the particular Turing machine
wriften on its tape. The machine’s behavior was changed by substituting one
encoding on its tape for another, which changed the function computed while
leaving the "hardware" interpreter unchanged. Thus the essential difference
between a special purpose and a universal Turing machine is that the latter is
"programmed” to compute a function, whereas the former is "hard-wired". Minsky
(1967) gives an interesting and straightforward construction for a universal machine
which has just over twenty internal states and uses a binary encoding for its target
machines.

Two points about universal machines which are relevant to their use as models of
cognitive architecture are the following. First, because universal machines are
Turing machines they conform to definition 2.1 and have a fixed alphabet of
symbols and a fixed set of internal states. Their characteristic flexibility is derived
entirely from their being structured so as to execute encodings of the machine tables
of other Turing machines. This means that any cognitive theory which hypothesizes
that the mind is, or contains, a universal Turing machine has to be committed to the
notion that the mind deals with inputs which are rendered into a standard internal

code. If this is so, it ought to be possible to obtain some evidence for the nature
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of the internal code, for the basic symbolic resources from which it is structured and
for the mechanisms which implement such encodings. If such evidence is not
forthcoming after extensive empirical enquiry, the probability of the hypothesis
being correct must be reduced. Fodor (1975) was one of the first theorists to take
this challenge seriously. The second point is a point about efficiency. Universal
machines are necessarily less efficient than the machines they simulate because for
each configuration of the target machine, the universal machine must execute a set
of transitions of its own to determine what the appropriate instruction for the target
configuration is and to carry it out. Using a programmed version of Minsky’s
(1967) universal machine and an appropriate encoding of machine M, the universal
machine required more than 80000 transitions to evaluate the binary equivalent of
the input string *#(#’ for which M requires 10 transitions. Part of this prodigality
derives from the linearity of the tape, but a modified version of the machine using
two tapes still required more than 5000 transitions to carry out the same task. In
modemn digital computers which are essentially practical versions of universal
machines, these costs are minimized or masked in two ways. First computers use
addressing schemes which provide much more efficient memory access than the
linear tapes of universal Turing machines and second, computers achieve state
transitions at speeds of the order of micro-seconds or better, whereas neurons
operate in the milli-second speed range. Despite these savings, however, the
inefficiency of the universal machine method of function execution must lead to
questions about its suitability as the architectural basis for the human cognitive

system in which temporal efficiency is a matter of obvious importance.

2.6. Logical and physical machine descriptions.

The issue of the relationship between logical and physical machine descriptions
which was raised briefly earlier in the chapter needs some further discussion,
particularly in the context of one of the objections to the ETH raised in Chapter 1
which can now be considered in the light of the formal definitions of Turing
machines and finite automata discussed above. Problem 7 objects that since there
are identical symbols on the tape and control of a Turing machine, the ETH
trivializes the whole problem of perception and perhaps also the problem of
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learning. It will be useful to have a name for the problem and a suitable one

appears to be "the identical symbol problem".

The image of an implemented Turing machine which supports the thinking leading
to the identical symbol problem must suppose the control to be an explicit
implementation of the machine table plus a reader. The reader observes the tape to
pick up the input symbol, checks the internal state record to see what the current
state is and uses this pair, i.e. the configuration, to determine which entry in the
machine table is to executed. Having found the appropriate entry, the output
symbol is inscribed on the tape, the state record is updated, and the next instruction
can be executed. A Turing machine implementation of this kind is described by
Wilks (1975). The fundamental question is whether a Turing machine control
implementation must always have an explicit machine table and a reader. If the
identical symbol problem is to be a problem for all implementations of Turing
machines the answer must be yes, but it is far from clear that this is so, even though
our experience with computers pushes us in this direction because computers are

explicitly syntactic machines.

Consider the parenthesis checking machine M and how it might be implemented.
First M needs perceptual capacities to read symbols from its tape. These can be
minimal. What is required is not recognition but discrimination. M does not need
anything like the capacity to say "Now I am perceiving a ’#’". Because M’s symbol
alphabet has just four symbols, its perceptual system needs only to be able to pass
one of four distinct messages to the control. These messages might be four different
voltage levels, four different positions of a lever, four different neural firing rates
over a given interval or whatever else might reliably signal four different inputs.
Similarly at the output side, we might imagine M to be equipped with something
like a daisywheel, or more flexibly, the print head of an ink-jet printer, which
responds differentially to appropriate output signal differences. As a slight
complication, output capacity must include movement left or right but it is not hard

to see how this might be done.
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In addition to input and output capacities, an implementation of the transition
function is also required. The way in which this is to be done lies at the heart of
the identical symbol problem. Multiple internal states provide the capacity for a
machine be able to make more than one response to a given input. If a given input
is always paired with the same output, then no more than one internal state need be
postulated. Indeed, in such a case the notion of internal state is rendered
superfluous because the state notion explains nothing which is not captured by the
simple and more parsimonious specification of the associative pair. It was just this
superfluity which early behaviourists originally hoped to demonstrate with respect
to the idea of mental states. The demonstration that a one state universal Turing
machine is not possible, ought then, in theory, to be taken to constitute a refutation
of radical behaviourism, because it shows that there are mechanical processes which
cannot be reduced to a set of I-O pairs. If a behavioural capacity is to be given a
deterministic form, i.e. specified by an input output function, and yet to encompass
the many cases in which a single input can be paired with more than one output, a
second argument is needed to cope with the additional variability because a function
can be a one-to-one, or a many-to-one but not a one-to-many relation. The role of
the "state" parameter in the specification of a deterministic machine is to provide
that second argument. As is apparent from the machine table method of specifying
a transition function, the state need be nothing more than a column index.
However, there is nothing in the functional specification of the state notion which

precludes its being realized in other, less syntactic forms.

Consider machine M in receipt of input *X’. One of three different responses is
required, (q0,R), (q1,L) or (q2,L), with the choice depending on the current state
of the machine. On the assumption that the input can be organized in terms of,
say, a set of distinct voltage levels, it is perfectly plausible to think of the internal
states of a real M being implemented as, say, a system of servomechanisms and a
switching network. Such a system would be an embodiment of the transition
function of M, but need not contain anywhere, an explicit rendering of the machine
table. It might assist clarity to call such a system a non-tabular implementation of

a Turing machine control. Given the notion of a non-tabular implementation the
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identical symbol problem can be
restated as the claim that all Turing
machine control implementations must
be tabular, and the ETH can be stated
as including the claim that non-tabular
control implementations are perfectly

plausible.

For a familiar example of a function

which can be given both tabular and

non-tabular implementations consider h
the logical function XOR of two binary
inputs. This is commonly specified as
a truth table. A Turing machine to
implement this function can easily be
specified. XOR1 with K =
{q0,q1,q2}, £ = {#,0,1} and s = q0 is
such a machine. The state diagram for
XOR1 is shown in Figure 2.3. XOR1

reads its first input in q0, replaces it

Figure 2.4. The state diagram for XOR2.

with a blank and goes to state ql if the input was a "0" and to g2 if it was a "1".
In either of these states the machine then moves right to scan the second input,
which is replaced by the value of the function, following which the machine halts.
XORI1 is a simple machine, but if the pairs 00,01,10,11 are defined as single
symbols an even simpler machine XOR2 can be specified with K = {q0}, £ =
{00,01,10,11,0,1,#} and s = q0. The state diagram for XOR2 is shown in Figure
2.4. XOR2 is particularly simple because it embodies the function, as it were,
directly. It is of interest in the current context because it has a non-tabular

implementation which is shown in Figure 2.5.

Figure 2.5 shows a network of threshold elements. Two of these take input, one

produces output and three, using connectionist terminology, are hidden units. If the
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two inputs together are specified to
. Output 1 or O
constitute a complex symbol of the kind
defined in the alphabet of XOR2, and if

the output is printed on a square of the

tape, then it is apparent that the network
constitutes a realization of the control

automaton of a Turing machine. One
might imagine the network to be
contained within a black box which is
schematized by the dotted line in Figure
2.5. Clearly the network is functionally
equivalent to XOR2, it does not contain

Input 1 or O Input 1 or 0

Figure 2.5. A non-tabular implementation of
XOR2.

any explicit symbol tokens, it is non-
tabular and is therefore not a system to
which the identical symbol problem applies. These points alone are insufficient to
establish that the network is uniquely an implementation of XOR2 because it is also
functionally equivalent, in the input-output sense, to XOR1. However, the point at
issue is not whether a given implementation can be identified uniquely as the
implementation of a particular Turing machine but whether a non-tabular
implementation of a Turing machine control can be specified. The fixed XOR
network of Figure 2.5 shows that such an implementation can be specified. This
is of course to be expected from the work of McCulloch & Pitts (1943) who
demonstrated the formal equivalence of finite automata and neural networks
composed of fixed threshold elements.

It is sometimes suggested, as discussed in Chapter 1, that McCulloch & Pitts
demonstrated the logical equivalence between neural networks and Turing machines
rather than finite automata. The basis for the suggestion may be a remark made by
McCulloch in the discussion following von Neumann’s talk at the Hixon symposium
in 1948. McCulloch is reported as saying of his work with Pitts, "What we thought
we were doing (and I think we succeeded fairly well) was treating the brain as a
Turing machine". Aspray & Burks (1987,p.422)
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Examination of the 1943 paper shows that McCulloch’s later remark was perhaps
not recorded entirely precisely. What the 1943 paper proves is that a McCulloch-
Pitts net can be used to model the finite automaton which constitutes the control of
a Turing machine. In order for a net to compute exactly what is computed by a
Turing machine it has to be supplemented by perceptual organs and a tape. "It is
easily shown: first, that every net, if furnished with a tape, scanners connected to
afferents, and suitable efferents to perform the necessary motor-operations, can
compute only such numbers as can a Turing machine; second, that each of the latter
numbers can be computed by such a net; and that nets with circles can be computed
by such a net; and that nets with circles can compute, without scanners and a tape,
some of the numbers the machine can, but no others, and not all of them."
McCulloch & Pitts (1943, p.37).

Another important point is that although the network connection strengths and
thresholds are fixed in the network of Figure 2.5 it is clear that a network of this
type could be trained to achieve the functionality displayed using error
backpropagation. Notice, in this instance, that the tape plays no essential role as an
external memory, and that the system can therefore, properly be thought of as a
finite state machine with output. It is this sort of example which, in part, justifies
the claim made in Chapter 1 that a connectionist network, whose connection

strengths have been fixed after training, constitutes a finite automaton.

To summarize, two main classes of computing machines have been defined and
discussed. These are the classes of Turing machines and finite automata. The class
of Turing machines includes both mono-functional and universal machines. The
latter are those which are organized so as to treat part of their input as the
specification of another Turing machine whose coded machine table they can decode
and simulate. The class of finite automata can be divided into deterministic and
non-deterministic automata, but the two classes are equivalent in computational

power.

In addition to these basic definitions, a number of points which are of importance
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to the main argument of the thesis have been introduced. The first of these is that
Turing machines have two sorts of memory, tape memory and control memory.
Control memory is an implicit memory for one or more specific symbols which
have appeared on a Turing machine’s tape at some point in the past. The second
point which relates to the issue of implementation is the demonstration that the
"identical symbol problem" need not affect all Turing machine implementations.

Non-tabular machine implementations are not open to this objection.

The third point is the claim that a fixed neural network has the power of a finite
automaton. This is a point which was first proved by McCulloch & Pitts (1943)
with respect to networks constructed from fixed threshold elements. The novelty,
if any, of the present approach is to claim that this result extends to networks whose
architecture is such as to make them amenable to training of the kind studied by
contemporary connectionism. It has been suggested that the capacity to learn
falsifies the claim that a connectionist network has the power of a finite automaton
because a network with hidden layers and the capacity to adjust its connection

strengths can compute any arbitrary function and is thus a Turing machine’.

It is hard to see how this can be the case for connectionist networks as they are
currently studied. The critical point is that with regard to its input, output and
potential for using auxiliary memory, a connectionist network is like a finite
automaton. The sequence of inputs is not subsequently available to the network on
a tape and the outputs of the network do not modify its inputs. Thus, like a finite
automaton, a connectionist network has no auxiliary memory available to it and is
therefore restricted, in its memory capacity, to whatever internal capacity it has in
the fixed system of nodes and connections among them which constitutes its
architecture. The implication of this fact is that unless such a network has infinite
internal capacity, there will be functions, of which the parenthesis checking function
of machine M is one, which can be computed by a Turing machine but not by the

network, which cannot therefore be a Turing machine. The question then is whether

] am grateful to Professors Wilks and Marslen-Wilson for raising this objection.
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a network can have infinite internal capacity, and the answer seems to be no.
Infinite storage capacity would have to be bought by making connection strengths
infinitely variable or by making thresholds infinitely sensitive, and neither of these
options is plausibie for realistic modelling and certainly not for implementation.

The claim that connectionist networks are Turing machines by virtue of their
capacity to be trained to implement arbitrary functions appears to take the flexibility
of universal Turing machines to be a defining characteristic of Turing machines
generally. That is not the case. Machine M is an example. It is a Turing machine,
but it computes only a single function. If it computed a different function it would
be a different Turing machine. What distinguishes a Turing machine from a finite
automaton and also from a connectionist network is the capacity to use an
indefinitely expandable auxiliary memory. A connectionist network which was
capable of multiple internal states and which was able to take input from a tape and
to write output on that tape is a different matter. A system of this kind would have
the requisite capacity. But such a system would be more than just a network, and
connectionists, with some exceptions, typically do not think of their nets as
embedded in a larger system in this way. They are, of course, right to concentrate
on the formidable Jearning capacities of networks with hidden unit layers, but they
need also to think about how these nets should be brought into co-ooperative

interaction with structured environments.

In summary, Chapter 2 has prepared the ground for the detailed presentation of
Turing’s analysis of computation in Chapter 3 and for the subsequent elaboration of
the External Tape Hypothesis. This chapter has defined and discussed Turing
machines and finite automata. The major issue to which the thesis is devoted is
which of these classes of machine is appropriate for modelling the human mind.
The generic theory, introduced in Chapter 1 argues that the mind supervenes on the
brain and that the brain should be considered as implementing a Turing machine.
The ETH argues, on the basis of Turing’s analysis of computation, that it is
incorrect to think of the brain as a Turing machine. The brain should be construed

as a finite automaton. This suggests, since minds obviously have at least the power
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of Turing machines, that mind does not supervene on brain, but extends to those
portions of the external environment with which the finite control system of the
brain interacts. Thus mind is a property of the situated organism and the
environment serves as an auxiliary memory for the human just as the tape serves as

an auxiliary memory for a Turing machine.
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Chapter 3. Turing’s Analysis of Computation.

The analysis of computation in terms of abstract machines which established Alan
Turing as one of the most important mathematical logicians of the twentieth century
is contained in his paper Turing (1936-7). The significance of this paper for the
External Tape Hypothesis is twofold. First, it provides a machine model, of greater
complexity than the Turing machines commonly discussed in the literature, which
makes an excellent vehicle for a discussion of the nature of control memory. The
concept of control memory was introduced in Chapter 2. It is the memory which a
Turing machine’s states provide and is distinct from its tape memory. Normally
such memory is not thought of as particularly important because it is fixed and is,
as it were, swamped by the unbounded memory provided by the tape. However,
if the hypothesis that the brain realizes the finite state control automaton of a Turing
machine rather than a whole Turing machine including a tape is correct, then control
memory must be of primary importance for modelling human cognition. This
represents a major departure from the tradition of modelling in cognitive science

which has been referred to as the generic theory in Chapter 1.

The second, more fundamental, contribution of Turing’s analysis to the ETH is that
it provides evidence for the hypothesis that the brain should be modelled as the
finite state control of a Turing machine, rather than as a whole Turing machine
including a tape. The evidence consists of Turing’s own arguments to the effect that
the brain is a finite automaton and that the tape is an external, auxiliary memory.
The idea that the brain might be modelled as a whole Turing machine, and, in
particular, the idea that the tape of a Turing machine might provide a model for
human memory are not ideas which are found in Turing’s paper. They are the ideas
of a later generation of theorists whose primary inspiration was the digital computer
rather than the abstract model on which the computer was based. The idea that
human memory can be modelled as the tape of an internal Turing machine in fact
contradicts Turing’s arguments for the separation of the tape which is an external,
unbounded memory resource from the mind of the human computer which is a
finite, bounded resource.
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3.1. Turing’s introduction to computing machines.

In his famous paper on computable numbers, Turing (1936-7) introduced the notion
of a computing machine by considering what a person did in the process of
computing a number. In 1936 when the work was written, a "computer” was a

person who calculated rather than a machine.

"We may compare a man in the process of computing a real number to a
machine which is only capable of a finite number of conditions q,,q,,-.-,qx
which will be called "m-configurations". The machine is supplied with a
"tape" (the analogue of paper) running through it, and divided into sections
(called "squares") each capable of bearing a "symbol". At any moment
there is just one square, say the r-th, bearing the symbol S(r) which is "in
the machine". We may call this square the "scanned square". The symbol
on the scanned square may be called the "scanned symbol". The "scanned
symbol" is the only one of which the machine is, so to speak, "directly
aware". However, by altering its m-configuration the machine can
effectively remember some of the symbols which it has "seen" (scanned)
previously. The possible behaviour of the machine at any moment is
determined by the m-configuration q, and the scanned symbol S(r). This
pair q,, S(r) will be called the "configuration": thus the configuration
determines the possible behaviour of the machine. In some of the
configurations in which the scanned square is blank (i.e. bears no symbol)
the machine writes down a new symbol on the scanned square: in other
configurations it erases the scanned symbol. The machine may also change
the square which is being scanned, but only by shifting it one place to right
or left. In addition to any of these operations the m-configuration may be
changed. Some of the symbols written down will form the sequence of
figures which is the decimal of the real number which is being computed.
The others are just rough notes to "assist the memory". It will only be these
rough notes which will be liable to erasure. It is my contention that these
operations include all those which are used in the computation of a number.’

Turing (1936-7, pp.117-118)

The first point to notice about this definition is that Turing derived the idea for a
computing machine from considering a human "computer" in the process of
calculating a real number using paper and pencil. Thus, although the Turing
machine is abstract, it is an abstraction from a very familiar situation and the
distinction between computing paper and human memory 1S neither arcane nor

abstruse.

A second important point is the distinction Turing makes between an "m-
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configuration" which is an internal state of the finite control part of the system, and
a "configuration" which is a pair consisting of an m-configuration and an external
symbol. Configurations rather than either m-configurations or symbols alone control
the behaviour of the machine from moment to moment. The implication is that
although behaviour is directly responsive to external input it is not uniquely
controlled by that input; behaviour is a function of two parameters, the input and

the current internal state. This point was discussed in Chapter 2.

The final, and most important, point for present concerns is that the person doing
the computing is compared with "a machine which is only capable of a finite
number of conditions.” Turing’s claim is that the appropriate model for the mind
of the person is a finite automaton. The automaton is supplied with a tape which
is the analogue of the paper on which a human computer calculates. Thus, the
original Turing machine was a model of a system consisting of a person working
with pencil and paper, and at the outset Turing established a clear distinction
between the automaton with a finite number of states which models the human mind
and the tape which models the paper on which the human computes.

This is important because there is already a prima facie incompatibility between
Turing’s picture and those painted by various proponents of the generic theory.
Pylyshyn (1984, p.69), for example, maintains that "a computer (or a brain, for that
matter) is more appropriately described as a Turing machine than as a finite-state
automaton, though clearly it is finite in its resources". Pylyshyn’s argument for this
claim is slightly different from the language of thought and symbol systems
arguments described briefly in Chapter 1. Pylyshyn’s argument is based on the
notion that a sequence of state transitions can count as a computation only if the
constituent states are capable of semantic interpretation, and his claim is that this is
true of the states of Turing machines but not of finite automata. Hence if the mind
is to meet the dual requirements that its states be computable and semantically
interpretable, it must be thought of as a Turing machine. Pylyshyn’s approach has
been criticized by Nelson (1987). If the approach described in this thesis is correct,

Pylyshyn is right about computers but wrong about brains.
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Briefly, the issues can be resolved by considering different ways of thinking about
what constitutes a computational state. Turing distinguished three possible
construals of the notion of "state", to each of which he gave a different name. The
first is the "state of mind"; this is what Turing refers to as an m-configuration. It
is an element of the set {q;,...q,}. The second is an ordered pair (g;,S;), where S;
is an element of the alphabet of the machine. Turing called such a pair a
"configuration" and it is configurations which determine the moment by moment
behaviour of a machine. In terms of the discussion of Chapter 2, the elements of
configurations constitute the arguments to the transition function d(q,@). The third
construal of the "state" notion is the global picture of the machine at a given time.
It includes the current configuration plus the entire sequence of symbols on the tape
of the machine and the position of the reading head with respect to that sequence.
Turing called this the "complete configuration". It seems reasonable to require that
successive complete configurations must be semantically interpretable for a
computation to be of any value, but there can be no requirement that either
configurations or m-configurations must be semantically interpretable independently
of the context in which they occur. By insisting that states of mind must be
semantically interpretable Pylyshyn is, in effect, insisting that they must be
construed as complete configurations, and various passages in Pylyshyn (1984)
support this reading. However, it is clear that Turing did not intend the tape of the
machine to be construed as part of the "state of mind", and hence that Pylyshyn’s

proposal is in conflict with Turing’s analysis.

Another example of the conflict between Turing and the generic theory is to be
found in the influential work of Newell and Simon (1976) who describe the mind
as a physical symbol system, which is a universal machine by definition, and thus
clearly not a finite automaton. Both Pylyshyn and Newell & Simon, identify the
mind with a whole Turing machine, whereas Turing clearly identifies the mind with

just the finite state control of a Turing machine, and not with the tape as well.

Newell & Simon make a point about the study of Turing machines which bears on

the discussion of control memory. "The finite state control system was always
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viewed as a small controller, and logical games were played to see how small a state
system could be used without destroying the universality of the machine. No
games, as far as we can tell, were ever played to add new states dynamically to the
finite control -- to think of the control memory as holding the bulk of the system’s
knowledge." Newell & Simon (1976, p.44) From a technical point of view there
would, of course, be interest only in the attempt to reduce the number of states
needed for a universal controller, cf. Minsky (1967, Ch.14) but it by no means
follows that this is the right tactic for psychological research. Indeed, given that
Turing had good reasons for thinking of the human mind as a finite control system,
it seems clear that the predominant focus of interest on symbolic structures on the
tape is simply misleading from the point of view of psychological research into
memory. If Turing’s model is taken seriously as a model of human cognitive
architecture, then knowledge is indeed encoded in the states of a finite automaton
and so is memory. Turing is explicit about this point; ’...by altering its m-
configuration the machine can effectively remember some of the symbols which it
has "seen" (scanned) previously.” Turing (1936-7, p.117). This suggests the
implicit storage of symbols in states of the control and opens up the whole question
of how knowledge is represented. The possibility of implicit representation makes
plausible a very different picture of cognitive architecture from the traditional

computer based model.

3.2. Turing’s definition of a computable number and his characterization of
mind.

Further evidence for the identification of the human mind with a finite automaton
comes from Turing’s definition of a "computable number”. Computable numbers
are the raison d’étre of his paper and Turing defined them in the opening sentence
as "the real numbers whose expressions as a decimal are calculable by finite
means.” The point of particular interest in the present context is the reason Turing
gave for the restriction to finite means, namely "the fact that the human memory is
necessarily limited." Turing (1936-7, p.117). This observation lies at the heart of

Turing’s analysis.
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The fact that a number is computable by finite means does not imply that the
number must have a finite decimal expression. =, for example, is a computable
number. Similarly, the fact that a computable number may have a non-terminating
decimal expansion is not a reason for claiming that it cannot, in principle, be
computed by a finite agent. What is required is that the finite agent be capable of
cyclic processing and have access to unbounded resources of time and space. The
essence of the Turing machine is thus the specification of a set of interactions
between a finite agent and a potentially unbounded reservoir of external symbolic
resources. Such a specification constitutes the production process for a particular
computable number. Seen in this light, the identification of the (bounded) human
memory with the (unbounded) tape of a Turing machine which is characteristic of

the generic theory quite clearly runs directly counter to Turing’s original analysis.

Turing’s argument for the assertion that the mind is "necessarily limited" is brief
but clear. It is similar to the argument he advanced to show that the number of
symbols allowed for computation must also be finite. Both arguments are presented
in §9 of his paper. The argument for a finite number of symbols rests on the claim
that ’If we were to allow an infinity of symbols, then there would be symbols
differing to an arbitrarily small extent.” Turing (1936-7, p.135). This argument has
a physical basis which is characteristic of Turing’s style and which distinguishes his
approach from purely abstract characterizations of computability. The emphasis on
physical constraints on computability is, of course, entirely appropriate when
considering questions about the nature of human cognitive architecture. Turing is
making two particular points with his argument. The first is that for mechanical
computation we must be able to regard symbols as "literally printed” Turing (1936-
7, p.135, footnote ) on a unit square and unless we are prepared to think of the
square as divisible into an indefinitely large number of pixel like regions, we have
to acknowledge a limit on the number of distinct points onto which symbols can be
mapped. The second point arises from the fact that symbols must also be
recognized. Members of an infinite set of symbols constrained to be printed on a

square of a certain fixed size would not always be pairwise discriminable owing to
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limitations on the resolving power of a finite recognition system. Thus the
argument for a finite alphabet of symbols is an argument about perceivability. If
the difference between a pair of symbols were made arbitrarily small they would
become indistinguishable and deterministic computation would be impossible. But,
as Turing pointed out, the effect of accepting such physical limitations on symbols
is not serious, because compound symbols, consisting of sequences of tokens from
the fixed alphabet, can always be used instead.

The related argument for a finite number of states of mind is equally briefly stated
but also perfectly clear. *We will also suppose that the number of states of mind
which need be taken into account is finite. The reasons for this are of the same
character as those which restrict the number of symbols. If we admitted an infinity
of states of mind, some of them will be "arbitrarily close” and will be confused.’
(Turing, op.cit. p.136). This is an assertion of the supervenience of states of mind
on the brain. In his biography of Turing, Hodges (1983, p.108) suggests that by
the time the work on computable numbers was written, Turing was becoming “"a
forceful exponent of the materialist view". A finite bound on the number of states
of mind follows from the finitude of the brain and the supervenience of states of
mind on the brain. A significant point about this argument is Turing’s further
observation that "the restriction is not one which seriously affects computation, since
the use of more complicated states of mind can be avoided by writing more symbols
on the tape." Turing (1936-7, p.136). Clearly this observation has weight only if
“states of mind" and "symbols on the tape" are distinct parts of the system.

In summary, Turing’s paper explores the notion of a computable number, which is
a number whose expression as a decimal is calculable by finite means, i.e. by an
algorithm. The algorithm will, in many cases, require unbounded resources of time
and space. There is, therefore, a fundamental distinction to be made between the
fixed structure realizing the algorithm and the resources needed for temporary
storage and for recording the output of the computation. From consideration of the
example of a human engaged in a routine calculation, Turing developed a machine

model to capture the essential processes involved; the model consisted of a finite
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control automaton which modelled the algorithm embodied in the mind of the
human, and an indefinitely expandable tape which modelled the paper on which the
calculation was worked. The identification of the human mind with the finite
control system was supported by an argument for the claim that the human brain

was capable of being in only finitely many different states.

3.3. Turing’s later work on computers.

Turing’s later work on computers is consistent with the ideas of his 1936 paper. In
1946 he produced a report for the National Physical Laboratory, in which he
provided a detailed design for a stored program computer to be called the ACE.
The report had elements in common with von Neumann’s influential draft design
document for the EDVAC computer which Turing recommended should be read in
conjunction with his report. This is discussed in more detail in Chapter 4.
Although von Neumann suggested in passing that there was a correspondence
between computer memory and the nervous system, there is no suggestion of such
a parallel in Turing’s ACE document. With respect to the storage requirements,
Turing’s outline is very much of a piece with the thinking of his 1936 paper. "It
is evident that if the machine is to do all that is done by the normal human operator
it must be provided with the analogues of three things, viz. firstly, the computing
paper on which the computer writes down his results and his rough workings;
secondly the instructions as to what processes are to be applied; these the computer
will normally carry in his head; thirdly, the function tables used by the computer
must be available in appropriate form to the machine. These requirements all
involve storage of information or mechanical memory." Turing (1946, pp.20-21).
Notice the clear distinction between the computing paper on which results are

written and the instructions which are in the head of the computer.

In 1947 Turing gave a lecture about the ACE project to the London Mathematical
Society, in which he was quite explicit about the relationship between universal
Turing machines and digital computers and also about the nature of the memory of
digital machines. Digital computers were, he said, "practical versions of the

universal machine." Turing (1947, p.112), and their memories were analogous to
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the infinite tape of the universal machine. The major problem was that access to
a one dimensional tape memory was unsatisfactory for a practical machine because
of the time spent shuttling up and down looking for a particular piece of
information. "This difficulty”, he remarked, "presumably used to worry the
Egyptians when their books were written on papyrus scrolls. It must have been
slow work looking up references in them, and the present arrangement of written
matter in books which can be opened at any point is greatly to be preferred." Turing
(1947, p.107) The organization and size of the memory of the proposed ACE
computer was clearly of paramount importance and Turing used a good deal of the
lecture to talk about it, "because I believe that the provision of proper storage is the
key to the problem of the digital computer, and certainly if they are to be persuaded
to show any sort of genuine intelligence much larger capacities than are yet available
must be provided." Turing (1947, p.112). This is an interesting observation because
it shows that Turing was thinking even at that early stage about the possibility of
digital computers displaying intelligence and had identified a large memory as a
crucial requirement. However, the fact that a computer would require a large
symbolic memory with tape like characteristics in order to display intelligence is not
an argument for supposing that human memory is of the same form, and Turing did
not advance such an argument despite his interest in machine intelligence and his
likely sensitivity to useful paraliels between minds and computers. The reason why
a computer requires a large internal symbolic memory is precisely because it lacks
the complex perceptual apparatus which enables humans to engage in direct
transactions with the external environment as required. By contrast, a computer
which lacks such communicative ability must be provided in advance with all the
information which will be relevant to the performance of whatever task it is engaged
on plus storage for intermediate results and so forth. Hence the requirement for a
large symbolic memory. It is clear that pre-storage of all the relevant information
needed by a mobile machine interacting with a real environment poses formidable
problems of both technical and conceptual origin. Technical problems include the
development of representational and search methods which can cope with the ever
present threat of combinatorial explosion, and conceptual problems include the

difficulty of determining which aspects of the environment are relevant to a
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machine.

Finally, there are references in the very well known paper Turing (1950) which
point to the identification of symbolic computer memory with the paper on which
a human computer calculates and not with human memory. In the 1950 work
Turing described the digital computer as a machine intended to carry out any
operations which could be done by a human computer. The human computer "has
an unlimited supply of paper on which he does his calculations" Turing (1950, p.43)
and the digital computer has a store which "is a source of information, and
corresponds to the human computer’s paper" Turing (1950, p.44). Slightly further
on, this correspondence is re-iterated. "The computer includes a store corresponding
to the paper used by a human computer. It must be possible to write into the store
any one of the combinations of symbols which might have been written on the
paper. " Turing (1950, p.47). These remarks are firm indicators of a continuing link
in Turing’s thinking to the idea of the universal machine and to the distinction made
there between the finite state control which modelled human memory and the tape

which modelled the paper on which the human computer wrote.

Turing also explicitly recognized a distinction, at least at one level, between the
nervous system and computers. "The nervous system is certainly not a discrete-state
machine. A small error in the information about the size of a nervous impulse
impinging on a neurone, may make a large difference to the size of the outgoing
impulse." Turing (1950, p.57). This is a somewhat puzzling observation because
it appears to be in conflict with the notion of a "state of mind" which is a
fundamental component of the Turing machine concept and of Turing’s analysis of
computation. The "state of mind" in the 1936 paper was certainly intended to be
a discrete state in the sense in which Turing used the term in the 1950 paper. In
an article written to mark the fiftieth anniversary of the Turing machine concept,
Turing’s biographer, Andrew Hodges, suggested that Turing’s thinking about this

issue was incomplete. "...we cannot feel that Turing had arrived at a complete
theory of what he meant by modeling the mental functions of the brain by a logical

machine structure." Hodges (1988, p.11). One possible answer is that Turing was
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feeling his way towards an analysis of the issues in terms of a hierarchy of levels
of explanation such as that proposed by Marr (1982). In Marr’s terms the "state of
mind" as Turing understood it is a construct at the algorithmic level whereas
Turing’s discussion of nervous activity is pitched at the implementation level. This,
of course, is not an explanation of how discrete algorithmic states can be obtained
from continuous nervous activity, but it replaces the apparent conflict with a
question about how it might be possible to construct reliable discrete states from
assemblies of real neural elements. von Neumann also gave some consideration to
these issues at about the same time and wrote a notable early paper on the topic,
which is reprinted in Aspray & Burks (1987, ch.13). von Neumann proposed a
multiplexing scheme to control the global behaviour of circuits made from unreliable
basic components and showed how the probability of a signalling error could be
made arbitrarily small. From a different perspective, the phenomena of categorical
perception, cf. Harnad (1987), whereby continuously varying physical dimensions
are perceived as having discrete characteristics, suggest that Turing’s analysis of
mental functioning in terms of discrete states of mind enjoys considerable empirical
support at an appropriate level of analysis. Notwithstanding the problems in
understanding how to reconcile Turing’s apparently divergent remarks, they do, in
any case, provide further evidence for the suggestion that he was not trying to

explain the workings of the nervous system in terms of digital computation.

To summarize, the evidence of Turing’s published work over more than a decade
clearly supports the claim that to treat the tape of a Turing machine or the symbolic
memory of a computer as a model of human memory is to make a major departure
from the Turing machine concept as its originator understood it. The generic
computer theory of mind makes just such a departure and cannot therefore be
considered to enjoy the support of Turing’s theoretical analysis. The ETH, by
contrast, by treating the brain as a finite automaton and modelling memory as

control memory, argues for precisely the distinction that Turing made.

3.4. Turing’s universal machine design.

Part of the difficulty with the concept of control memory is that for the sorts of
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reasons given by Newell & Simon (1976) which were briefly discussed earlier it has
been a neglected topic. In a modern computer, control memory is nothing more
than the contents of the registers of the CPU plus the set of basic operations which
constitute the behavioural repertoire of the processor. The control of Turing’s
universal machine is a large, complex automaton which provides numerous
interesting examples of the nature and uses of the control memory concept. For this
reason it is worth examining in greater detail. From the point of view of the ETH
it is the size and complexity of the automaton rather than the fact that it functions
as a universal interpreter which is of primary interest. To understand the structures
of the control it is necessary to introduce Turing’s encoding scheme for the target
machines which the universal interpreter was to simulate and to say something about
Turing’s notation and construction methodology. These are particularly interesting

in the context of implementation issues.

The universal machine operates by interpreting and acting upon the description of
another machine which is known as the "target machine". This description, which
Turing called the “"standard description", has to conform to certain syntactic
conventions. Each instruction has five components; if one thinks of the instruction
as a whole as a condition-action rule the first two components constitute the left
hand side or condition, the remaining three the right hand side or action. The five
components, in the order in which they appear in an instruction, are the current state
(g, 1=i=<m), the scanned symbol (S;, 0<j=<n), the output symbol (S;), the tape
movement indicator (M;;) and the next state (q;). This formulation differs slightly
from the definition of a Turing machine given in Chapter 2. In that definition an
instruction had four terms only, because a machine could either print a symbol or
move, but not do both as part of the same instruction. The point is a purely
technical detail. Turing’s syntax specified that states were to be encoded by "D"
followed by i occurrences of "A", symbols by "D" followed by j occurrences of
“C", and tape movements by "L", "R" or "N" for left, right or no movement
respectively. Thus, for example, the encoding of the instruction q;,S,,S3,R,q4, was
the string "DADDCCCRDAAAA". Instructions were separated from each other by
semi-colons. Turing also specified that target machines had to be started in state q,
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= "DA" scanning a blank tape, and that the encodings for "blank”, "0" and "1" had
to be §; = "D", §; = "DC" and S, = "DCC" respectively. These specifications
can be understood in the light of Turing’s primary concern with computable
numbers. His formalism specified machines which printed out the binary encoding
of a real number. Turing called this encoding the "sequence" computed by the
machine. When he came to consider the universal machine, one of the requirements
was that it too should print the sequence computed by the target machine. This
would only be possible if the encoding used for the digits "0" and "1" was known
in advance and was the same for all targets. The encodings for "0" and "1" are the
only two which the universal machine "interprets" in the sense of substituting what
they stand for. The specific encoding for "blank" was needed in order to make the
first configuration of every target machine the same and hence to provide a starting

point for the universal machine’s interpretive operations.

As a familiar example, consider machine M of Chapter 2. The definition of M, and
its machine table are reproduced below. M = (K,Z,4,5) where K = {q0,q1,q2},
={#,(,),X,Y,N} and s = q0. The machine table is;

q o 0(q,0) q o 6(q,0) q o &(q,0)
qQ # (q2,L) ql # (h,N) Q2 # (t,Y)

@ X (qO,R) ql X (qi,L) 2 X (q2,1)
qQ0 ( (qO,R) gl  ( (q0,X) Q2 ( (h,N)

qQ ) @q1,X)

As it stands, M is not suited to simulation by Turing’s machine, partly because its
starting state is not q1, partly because its starting symbol is not a blank, and partly
because its instructions are specified as quadruples rather than as quintuples.
Further, Turing did not specify a distinguished halt state. His machines would halt
if they reached a configuration for which no action was defined. However, with
minor modifications, a standard description for M can be produced. The first
requirement is to change the state identifiers so that the starting state is q1. The halt
state will be q4. Since no instructions are specified for g4, a transition which
specifies g4 as the next state will cause the machine to hang which is the desired
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result. The second requirement is to change the quadruples to quintuples. This is
easily done as follows; first, whenever M prints an output symbol it does not move.
So the movement symbol N’ can be used in these cases. Second, whenever M does
move, it does not print a symbol. The same effect can be had by specifying that the
output symbol be the same as the input symbol. The use of N’ as a movement
symbol introduces a conflict with its use in the alphabet of M as an indicator of the
status of a string at the end of a computation. This can be got round by replacing
Y’ and *N’ for *Yes’ and 'No’ with "1’ and *0’. It is also evident that the condition
that the machine be started in state q1 scanning a blank could easily be implemented
at the cost of an additional state. However, this is omitted here as the exercise is
intended simply as an example. Putting the changes in place gives a revised
machine table for a machine M’ = (X,L,5,s5) where K = {ql,q2,q3}, £ =
{#,(,),X,Y,0,1} and s = ql. M’ is functionally equivalent to M. The machine
table for M’ is;

q o 6(q,0) q o 6(q,0) q o 6(q,0)
ql # (#,L,q3) Q2 # (O,N,q4) Q3 # (1,N,q4)
ql X X,R,q1) @2z X X,L,q2) @B X X,L,q3)
ql ( (GR,q1) 2 | (X,N,ql) a3 (O,N,q4)
ql ) (X,N,q2)

All that is then required is to specify standard encodings for the symbols ’(’,’)’, and
"X’ and to make the appropriate substitutions. Setting ’("’ = DCCC, ’)’ = DCCCC
and X’ = DCCCCC, the machine table for M’ in standard description format
appears as follows;

DADDLDAAA;
DADCCCCCDCCCCCRDA;
DADCCCDCCCRDA;
DADCCCCDCCCCCNDAA;

DAADDCNDAAAA,;
DAADCCCCCDCCCCCLDAA;
DAADCCCDCCCCCNDA;

DAAADDCCNDAAAA;
DAAADCCCCCDCCCCCLDAAA;
DAAADCCCDCNDAAAA
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Two points are worth making. First it is clear that the encoding scheme could, in
principle, be applied to transform any machine description into a standard
description. Perhaps more important for present concerns is the obvious price paid
for the behavioural flexibility of the universal machine. That price is complete
inflexibility with respect to the encoding conventions. What this implies is that if,
as the generic theory suggests, thinking is essentially the activity of an internal
Turing machine, a process of encoding external stimulus energies into expressions
in an internal alphabet which corresponds, however weakly to the process

exemplified above, must be hypothesized to exist.

In addition to the alphabet used to encode standard descriptions, Turing’s universal
machine required additional symbols to act as markers. One set of temporary
markers was specified; Turing used the letters "u", "v", "w", "x", "y" and "2" for
this purpose. He also used the colon, a double colon serving as a single symbol,
and an inverted and reversed lower case "e", as permanent markers. For
convenience here, the double colon is replaced by the asterisk "*" and the inverted
"e" is replaced by "e". Turing called the digits "0" and "1" "figures" or "symbols
of the first kind"; all other symbols were "symbols of the second kind".

The tape of the universal machine was one-way infinite to the right of a fixed
starting point which consisted of the symbol "e" printed on two consecutive squares.
Turing considered the tape to consist of two alternating sequences of squares.
Counting squares from the left, he called the odd numbered sequence "F-squares”
and the even numbered sequence "E-squares”. E-squares were used exclusively for
markers which could be erased, whereas the symbols on F-squares formed an
unbroken sequence. Once a symbol was printed on an F-square it was never
altered. Thus the end of the sequence printed on F-squares could be identified by
finding two consecutive blank squares and the start by finding the marker string
"ee". A symbol ’B’ on an F-square, and also the F-square itself were said to be
marked by a symbol ’o’, if ’a’ appeared on the E-square immediately to the right
of the F-square containing ’#’. Marking is a highly significant operation in the

context of the universal machine. For example, it is the method by which the
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current configuration is compared with the configuration of an instruction in the
standard description of the machine being simulated. The universal machine was
started on a tape which was blank except for the standard description of a target
machine printed immediately to the right of the marker string "ee" and terminated
with the symbol "*".

Given the large symbol alphabet and the task of producing a universal interpreter
which Turing was tackling de novo, it is unsurprising that the finite state control of
the first universal Turing machine is a complex structure of several hundred states.
To handle the complexity Turing developed an economical notation for the
description of commonly used processes which includes ancestors of the concepts
of a subroutine and of a formal parameter. It is not, however, a programming
language in the modern sense, but a way of abbreviating the machine table
description of a structural unit. The notation can be seen to point in two rather
different ways when one is thinking of implementation. These different
implementation possibilities are profoundly interesting in the context of the study of
real cognitive systems because they relate to the nature of control memory. They

can be explored by studying Turing’s notation with the help of state diagrams.

The essential elements of the notation were what Turing called "skeleton tables" or

"m-functions". An important example is shown in Table 1.

m-config. Symbol Behaviour Final m-config.
e L f1(C,B,0)
f(C,B,x) not e L f(C,B,0)
None L f(C,B,a)
o C
f1(C,B,q) not o R f1(C,B,a)
None R 2(C,B,a)
o C
f2(C,B,) not o R f1(C,B,)
None R B

Table I. The skeleton table for f(C,B,q).
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The process described in Table I finds the leftmost occurrence on the tape of a
symbol "«" if there is one. The scanning head is moved to the left until the end of
tape marker "e" is encountered. Then it is moved to the right looking for the target
symbol but also checking for the occurrence of two consecutive blanks indicating
the other end of the tape and showing that the target symbol does not occur.
Whereas an ordinary machine table would have named configurations in the first
column, Table I has the parameterized expressions f(C,B,a), f;(C,B,a) and
f,(C,B,a). These are m-configurations and the table as a whole is a skeleton table.
Parameters C and B are also m-configurations and « is a symbol. A final transition

is made to C if « is found and to B otherwise.

Turing said that "skeleton tables are to be regarded as nothing but abbreviations:
they are not essential." While this is true in a sense, it displays Turing’s
characteristic modesty and underestimates the value of the technique. Two points
are particularly worth making. First, the m-function notation is very economical
although it can be difficult to comprehend. Second, the technique invites the
specification of complex structures in terms of simple parts. Turing used this
technique wherever possible in the specification of the control of the universal
machine even when simple, much more efficient alternative state structures could
have been devised. In fact, all but 14 of the 420 states in the universal machine
control were specified in terms of m-functions. To understand the technique both
Turing’s notation and state diagrams are useful. In Figure 3.1 the state diagram of
f(C,B,a) and its relation to the machine table are shown.

The states f, f1 and f2 of Figure 3.1 are the realizations of f(C,B,«), f1(C,B,a) and
f2(C,B, ) respectively and the target symbol « is ’a’. The three internal states of
the structure and the relations among them are what would be common to any
instance of the m-function. The transition arcs to states C and B are shown rather
than the final states themselves. Although the "f-unit" as it can usefully be called,
is an abstract logical structure, there is no reason why it should not be thought of
as a structural unit akin to a logic chip. This kinship becomes even more apparent
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‘&' stands for any symbol not explicitly
accounted for elsewhere

Figure 3.1. The f-unit, the basic building block of Turing’s machine.

when its use in the specification of a more complex structure is examined. Suppose
the task was to search for the first instance of symbol ’x’ followed by the first
instance of symbol 'y’ if an ’x’ was found, with a final transition to state C given
both 'x’ and 'y’ found, and a final transition to state 'B’ if either was not found.
In Turing’s notation this would be expressed as f(f(C,B,y),B,x), i.e. a nesting of
two f-units. f(C,B,y) is specified as the state to which a transition is made if ’x’ is

found®. By contrast, in f(C,f(C,B,y),x), the search for ’y’ is carried out only if ’x’

is not found, because f(C,B,y) is parameter B in f(C,B,x). State diagrams for both
of these nested structures are shown in Figure 3.2.

Turing used a variety of other structures in addition to the f-unit as foundations for

the universal machine construction. Like the f-unit these structures reflect the

organization of the tape.

Figure 3.3 shows the structures f(a), q(e) and con(a) as well as the f-unit f(a).

f’(«) is an f-unit augmented by a single state which positions the control one square

¥The order of evaluation may initially be confusing for programmers. The outermost function
is carried out first, followed by whatever is conditionally specified to follow. For example, in

f(f(C,B,y),f(C,B,2),X) a search for ’x’ is made first followed by a search for 'y’ if *x’ is found or
for ’z’ if ’x’ is not found.
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TCTCC.B,x).BLy)

TC(C,f(C,B,yJ.x)

Figure 3.2. Examples of function specification using nested f-units.

to the left of the symbol found. In such instances the symbol found is almost
invariably a marker. q(«) finds the rightmost occurrence of the symbol «. It is
assumed that there is at least one instance of « on the tape. Con(e) is used to mark
a configuration with the symbol . A configuration is a sequence of symbols on F-
squares of the form DA(A*)D(C*), where (A*) and (C*) stand for zero or more
occurrences of A and C respectively. Configurations determine the operations of
Turing machines, hence their identification is a matter of fundamental importance.
Since a configuration is a sequence on F-squares, the E-squares between them can
be used for markers. DxAxDxCxCx is how the configuration DADCC marked with
’x’ would appear on the tape of the universal machine.

In addition to structures for searching and marking, structures for erasing markers
are also needed. Figure 3.4 shows the e{a), eall(e) and er(M) structures. e(w) is
an f-unit to which a single state has been added which erases the symbol found.
eall(c) has the same state structure as e(a) but the transition after an instance of the
target symbol has been erased, reruns the whole process. er(M) is a simple

structure which erases any markers found on the tape.

The final m-functions which constitute components of the universal machine are

those which write output on the tape. They represent a second order of complexity
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Figure 3.3. m-functions for searching and marking.

as they include other m-functions as parts. Ce(v), pe(D) and pe2(0,:) are shown in
Figure 3.5. ce(v) copies each symbol marked by a ’v’ to the end of the tape and
erases the markers. pe(D) is a component of ce(v). Ituses an f-unit to position the
scanning head over the first F-square and then scans successive F-squares until a
blank one is found. Given Turing’s conventions, the first blank F-square will be
at the end of the used portion of tape. pe2(0,:) illustrates very clearly the

inefficiency to which simple concatenation of structures can give rise because it
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Figure 3.4. m-functions for erasing markers.

involves an entirely unnecessary traverse of the used portion of the tape in both

directions.

With these preliminaries in place, Figure 3.6. shows the complete set of structures
comprising the control of Turing’s universal machine and Table II shows the
machine table as Turing presented it. Figure 3.6 provides the basis for a discussion
of control memory and implementation options. The circles indicate single states,
the solid rectangles m-functions, and the dashed rectangles indicate regions of the
structure which have a common purpose and are defined as multi-levelled m-
functions. The previous figures provide all the components needed to complete the
full state diagram. A brief description of the processing cycle will motivate the
discussion. The machine works by writing out successive complete configurations

of the target machine, interspersed with the sequence of ’0’s and ’1’s which
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constituted the number computed by the target. The machine is started on a tape
which is blank apart from the standard description of the target machine which is
written on F-squares at the left end of the tape and terminated with the symbol **’.
Processing is initialized by having the machine write the first configuration, marked
with ’y’ at the end of the tape. This will always be DyAyDy indicating that the
target machine was started in state ql scanning a blank. The matching configuration
in the standard description of the target is found by a pattern matching search using
the *kom’ and ’kmp’ structures. The *kmp’ structure is particularly interesting both
for the brevity of its definition and for the complex task which is executed by a
system composed of nothing other than f-units and erasers. It is an outstanding
example of the concatenation of simple structures to produce a complex outcome
and is discussed further below. Once the appropriate instruction in the standard
description of the target has been identified, the ’sim’ structures mark this

instruction in preparation for the next stage of processing. The configuration, which
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Figure 3.6. The state diagram for Turing’s universal machine.

was used to identify the instruction, is now redundant and is marked with blanks.
The operations, i.e. the symbol to write and the movement indicator are marked

with ’u’, and the next state is marked with ’y’. Any remaining 'z’ markers from
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the pattern matching process are erased. Having marked the instruction, the

machine then marks out the most recent complete configuration on the tape. The

components of this, along with the appropriate parts of the marked instruction in the

standard description make up the next complete configuration. To simulate the

movement
m-config symbol operations final m-config
b f(b1,b1,*)
bl RR:RRDRRA anf
anf g(anfl,:)
anfl con(kom,y)
kom ; RzL con(kmp,x)
kom z LL kom
kom not z or ; L kom
kmp cpe(e(e(ant, y),sim,x,y)
sim f’(sim1,sim1,z)
sim2 A sim3
sim?2 not A LuRRR sim?2
sim3 not A Ly e(mk,z)
sim3 A LyRRR sim3
mk q(mk,:)
mkl not A RR mkl1
mkl A LLLL mk2
mk2 C RxLLL mk2
mk2 mkd4
mk2 D RxLLL mk3
mk3 not : RvLLL mk3
mk3 mk4
mk4 con(1(1(mk5)),B)
mk5 Any RwR mk5
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mk5 None : sh

sh f(shl,inst,u)
shl LLL sh2

sh2 D RRRR sh3

sh2 not D inst

sh3 C RR sh4

sh3 not C inst

sh4 C RR sh5

sh4 not C pe2(inst,0,:)
sh5 C Inst

sh5 not C pe2(inst,1,:)
inst q(1(inst1),u)
instl o RE inst1(c)
inst1(L) ce5(ov,v,y,X,u,w)
inst1(R) ceS(ov,v,x,u,y,w)
inst1(N) ce5(ov,v,Xy,u,w)
ov er(anf)

Table II. The machine table for Turing’s universal machine.

of the target machine relative to its tape, Turing used a convention in which the m-
configuration was written immediately to the left of the scanned symbol in the
complete configuration. Thus the sting DCCDCCDADCDCCDCC
represents a machine in state q1 scanning the 0’ of the string *11011°. Suppose the
instruction for configuration D A D C specified a move left and a transition to state
g2, the complete configuraion DCCDCCDADCD C CD C C would need
to be replaced by DCCDAADCCDCDCCDCC. Turing managed this
with the following marking convention. The original complete configuration is
marked by the *mk’ structures as DvCvCvDxCxCxD A D_C DwCwCwDwCwCw,

where the underscore ’_’ indicates marking with a blank. The part of the instruction
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in the standard description indicating the output symbol and a transition to state g2
would have been previously marked as DuCuDyAyAy by the ’sim’ structures. The
simulation of movement is achieved by writing out the marked parts in the
appropriate order. Turing did this with the set of ce(a) structures which is
discussed below. For a move left the order is 'v’,’y’,’x’,’v’,’w’ which, for the
example given, yields D C C followed by D A A followed by D C C followed by
D C followed by D C C D C C. Having written out the new complete
configuration the machine makes a transition to state ’anf’ to begin the next

instruction matching cycle.

3.5. Control memory in Turing’s universal machine.

The most significant portions of the universal machine control for demonstrating the
control memory concept are the ’kmp’ set of structures and the 'ce(a)’ structures.
The *kmp’ structures carry out a symbol by symbol configuration matching process
given a pair of configurations, somewhere on the tape, one of which has been
marked with *x’s and one with ’y’s. Turing defined ’kmp’ as a complex m-function
with a single entry point, and two exit points. The two exit points implement a
branching operation which is conditional on the success of the configuration
matching process. Thus the function of *kmp’ is to compute the conditional "If the

marked configurations are the same go to ’sim’, else go to ’anf™.

The first important point to note is how ’same’ is implicitly defined in terms of the
symbol structures which can appear on the machine’s tape and the possible routes
through the ’kmp’ function. Two configurations are the same if and only if the
machine fails to find a 'y’ marker while executing f(y), structure number [2] in the
state diagram for ’kmp’ (Figure 3.6). Consider a hypothetical tape expression
DxAxDx#####DyAyDy, where ##### stands for an arbitrary number of intervening
squares with no ’x’ or 'y’ markers on them. ’kmp’ works through this expression
by finding the first *x’ marker and noting the symbol it marks. Then it finds the
first ’y’ marker and notes that the symbol it marks matches the symbol marked by
the ’x’ marker. The first ’x’ marker and the first 'y’ marker are deleted and the

process is repeated on the expression D_AxDx#####D_AyDy. This cycle is
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repeated twice more successfully but on the fourth invocation the machine finds
neither an ’x’ nor a ’y’ marker. This must signal that the configurations matched.
Consider the alternatives. First, the expressions marked with ’x’ and ’y’ might have
been of different lengths. In such a case the instances of either the ’x’ or the ’y’
marker would be exhausted first leaving at least one instance of the other marker
still on the tape. If the 'x’ markers had been exhausted there would still be at least
one 'y’ marker on the tape which would be found by the machine executing
structure [2]. If the 'y’ markers had been exhausted the machine would not have
entered structure [2] because an ’x’ marker would have been found by £’(x), and the
lack of a 'y’ marker would then have been detected by the appropriate f’(y) unit.
Alternatively a pair of symbols might have failed to match at some stage in the
processing. In such cases also, the machine would not have entered structure
number [2] and the mismatch would have been detected by one of the ’cp2’ states.
Thus the only case in which the machine can be executing structure [2] and can fail
to find a ’y’ marker is when there were equal numbers of ’x’ and ’y’ markers to
begin with and each pair marked a token of the same symbol. Bearing in mind that
the ’kmp’ structure is ’internal’ to the machine because it is part of the state
structure of the control automaton, and that the marked expressions are ’external’ |
because they are on the tape and the tape, by definition, is an external, auxiliary
memory resource, the notion of ’same’ is derived from the interaction of internal
and external structures and is implicit in the actions of the control. Given the
standpoint of the ETH which equates the brain with the control of a Turing
machine, it follows that cognitive operations resulting in intentional notions like
’sameness’ may also result from, or be modelled as, the interactions of internal and

external structure.

A second important point about the *kmp’ m-function is that it provides a very clear
example of a second form of implicit control memory for symbols. The first form,
discussed in Chapter 2, was a functional type of implicit memory. It was
appropriate to identify state q1 of machine M as maintaining an implicit memory for
a right parenthesis because of its subsequent behaviour. The form discussed here

is a positional type of implicit memory. The relevant elements of the structure are
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the ’cpl’ state, the three f’(y) m-functions to which it leads and the three *cp2’ states

to which they lead. The example is particularly clear because it does not matter
how symbol recognition is carried out by the ’cpl’ and ’cp2’ states. The first aspect
of the structure to note is that the three f’(y) structures are functionally identical in
terms of their internal operations. This amounts to the claim that if they were real
objects which could be plugged into three positions in a printed circuit board they
could be swapped around without affecting the functionality of the system. Despite
their internal, functional identity their functional roles in the wider system of the
"kmp’ m-function are different. One functions as an implicit memory for a 'D’, one
for a °’C’ and one for an ’A’. Two points justify this claim. The first is that exactly
three f’(y) structures are needed because the machine has to deal with three different
symbols at this stage of processing. If only two f’(y) units were available the
machine could not make all the necessary discriminations and would not be able to
carry out the configuration matching process. The second point is to note what
would happen if, for example, the ’cp2’ state, numbered [3] were to make a
transition to e(x) if the symbol marked by ’y’ were a 'C’ rather than a ’D’. This
would constitute an error and would lead to failure of the configuration matching
process. The reason is that the path to the *cp2’ state numbered [3] is that used ‘
when the symbol scanned by the ’cpl’ state is a "D’. Thus the f’(y) unit that lies
on the path between the *cpl’ state and the ’cp2’ state numbered [3] functions as an
implicit memory for a D’ by virtue of its position in the larger ’kmp’ structure.

Positional implicit memory is a significant feature of the control memory of Turing
machines in the context of the ETH and there is good reason to believe that position
is a significant organizational principle in the nervous system. Kuffler, Nicholls &
Martin (1984, p.6), for example, describe a fundmental principle of organization in
the brain in the following terms; "The quality or meaning of a signal depends on the
origins and destinations of the nerve fibers, that is, on their connections.” Thus it
would seem that the nervous system makes substantial use of a form of memory
which is characteristic of finite automata. If the brain is better thought of as a finite
automaton rather than as a whole Turing machine as is claimed by the ETH, and if,

in consequence, human memory should be thought of as modelled by control
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memory rather than tape memory, then it is of course important that the principles

of operation of control memory should be plausible for the brain.

The idea of positional implicit memory is interestingly linked to an apparently rather
plausible hypothesis about the relationship between memory and modular structure.
Control memory appears to imply modular structure in a way that symbolic, tape
memory does not. ’kmp’ again provides an interesting example. The point to
notice is that although the behaviour of the machine in the states represented by each
of the three £’(y) units is essentially identical, there must be no cross-talk between
them because they are subserving different memory functions. The logical state
structure thus implies an implementation constraint given the assumption that
memory is non-symbolic. This leads to an interesting secondary way of interpreting
state diagrams. Complex state diagrams look very much like printed circuit board
diagrams and although this can be very misleading the resemblance is not entirely
coincidental. Although a node in a state diagram is properly thought of as
identifying a global logical state of a machine, it can also be thought of as a marker
for a sub-assembly of parts which might be used to construct a machine with the set
of logical properties exhibited in the state diagram. The possibility of using a
simple network to implement the XOR function discussed in Chapter 2 suggested
as much, as does Turing’s method of constructing complex m-functions from
multiple copies of simple units. Nodes linked by arrows imply sub-assemblies
linked causally, and nodes unlinked by arrows imply autonomous sub-assemblies.
The linkage between position and content seen in control memory is not a principle
which is characteristic of the symbolic memories of computers or the tapes of
Turing machines. The fundamental point about these memories, although they are
modular in the sense of being divided into separate locations, is precisely that they
are undedicated in terms of content. It seems clear, therefore, that to distinguish,
as Turing did, between external symbolic memory, and internal, brain like, control
memory, is to make a distinction which accords to a first approximation with what

is known about the brain.

The other part of the universal machine construction which is of interest, both from
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the point of view of the organization of control memory and as an example of
Turing’s ingenuity in using existing definitions, is the set of ce(e) structures which
implement the copying of marked regions of tape in order to construct successive
complete configurations. As is apparent from Figure 3.6 these structures are
divided into three sets of five units, the choice among the three sets being
determined by the movement symbol in the active instruction of the target machine.
Although the set of ce(e) structures accounts for 315 of the 420 states of the
machine, the organization is entirely regular and straightforward. The major
structuring principle is the division into three separate paths corresponding, as
already observed, to the three possible movement symbols. Itis appropriate to think
of each path as constituting an implicit memory for its originating movement
symbol, if only because it is the identity of this symbol which determines the order
in which the different marked regions are dealt with within the path. Each ce(a)
unit consists of an () unit which finds the first occurrence of a symbol marked
with a, a ’cl’ state which determines what action to take, three pe(8) units which
print the appropriate symbol *D’,’C’, or A’ at the end of the tape, and an e(«) unit
which erases the marker. This unit makes a transition back to the f’(¢) unit to

repeat the process which is terminated when no further instances of the marker are |
found. Control is then passed to the next ce(y) unit. The large scale replication of
functional units, which is the most striking aspect of the ce(x) set of structures,
simplifies what would otherwise be a complex control problem at the cost of a

considerable increase in the size of the machine.

3.6. Styles of implementation.

This observation leads naturally to a question about implementation style. It is
important to remember that although it is tempting to treat diagrams like Figure 3.6
as a sketch for a printed circuit board, it is in fact a picture of logical structure
which is compatible with a variety of realizations. Two broad strategies, at opposite
ends of the spectrum are of particular interest. There is the strategy of using
multiple replications of functional units with minimal control circuitry and content
specified by position which is clearly seen in Figure 3.6 or there is the strategy of

using fewer functional units with parameter passing and more complex control
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circuitry. These might reasonably be called the MAXH-MINC (maximum

hardware-minimum control) and MINH-MAXC (minimum hardware-maximum
control) strategies. Consider the ce(v) unit shown in Figure 3.5. Most of its
structure is identical to that of all the other ce(a) units. The only variation is in the
identity of the marker which is relevant at the finding and erasing stages. So the
question very naturally arises, when considering implementation, whether it might
be possible to find a way of passing this variable information to a real structure at
execution time. If this could be done, the physical replication of units could be
avoided in favour of a single unit plus an appropriate stream of instructions. The
seeds of the idea are to be found in Turing’s notion of a skeleton table and it is this
which makes his own assessment of skeleton tables as mere abbreviations less than
generous. One obvious way of passing variable information is in the form of
explicit symbols. Figure 3.7 shows a schematic view of the sort of mechanism
which might be constructed pursuing the MINH-MAXC strategy. It is purely

notional and is intended solely as an illustration.

CE UNIT
Execute Next
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Figure 3.7. A hypothetical implementation scheme using only one ce(c:) unit.

From whatever structure implements ’instl’, control is passed to a ’Load’ unit
which contains symbolic information about the marker parameters for the second,
third and fourth cycles through the CE unit. The first and fifth are fixed as v’ and
'w’ respectively which saves a certain amount of control wiring. The load unit
installs the appropriate values in the variable marker registers and initiates the
execution cycle which starts with the first marker register containing ’v’. This is

passed to the CE unit, whose internal operation would be as shown
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in Figure 3.5. After all the v’ markers are exhausted a signal is sent on the *next’
line. Precise details are unimportant but the idea is that on the first pass the 'next’
signal would activate ’c1’ in the v’ marker register which would pass control to the
second marker register. This would send its marker to the CE unit and set ’c2’

ready to receive its own 'next’ signal. And so on.

If the ETH is correct, discussion of implementation options is particularly important
and the issues which are considered here in the context of Turing’s universal
machine are issues which would arise with respect to the implementation of any
complex machine. The ETH proposes a MAXH-MINC implementation, but if the
cognitive system is an implementation of a Turing machine, roughly of the same
type as digital computers as the generic theory suggests, then there is a strong
presumption in favour of the minimal replication, symbol based, complex control,
MINH-MAXC strategy. Some of the reasons for this are considered in Chapter 4.
‘What this strategy does, in effect, is to exchange hardware for software. One aspect
of the trade-off is ease of modifiability, and hence greater flexibility of function at
the cost of increased control complexity, and probably at the cost of slower

execution given the need to initialize components like marker registers.

One profound difference between the two strategies is the need, in the MINH-
MAXC case for the passing of symbolic parameters, whereas in the MAXH-MINC
strategy, which would be exemplified by a direct implementation of Turing’s design,
what is needed is an activation signal rather than a symbolic parameter. In the
former, but not the latter case, explicit symbolic information is passed and thus it
is appropriate to think of the system as a symbolic information processor. When
the brain is considered, it seems almost certain that signals rather than explicit
information are what is passed at the level of neurons and this tends to suggest,
along with the evidence for the importance of position as a principle of brain
organization, that the brain implements a MAXH-MINC strategy and should perhaps
be thought of primarily as a signal processor rather than a symbolic information

processor. It is important to be clear just what this claim amounts to and it is



93

easiest to understand first in the context of the Turing machine. That the Turing
machine as a whole is an information processor is not in question. The information
which is processed is found on the machine’s tape and the transformation of input
into output which constitutes the function computed is a paradigmatic information
process. The question at issue is whether the finite state control of a Turing
machine is also an information processor and the answer to this question appears to
depend on the implementation strategy adopted. It seems perfectly possible for a
system as a whole to be an information processor while its separate parts are not.
Broadly speaking, the MAXH-MINC strategy implies a view of automata which
takes them to be signal processors, and the MINH-MAXC strategy implies a view
which takes them to be information processors. Thus the suggestion that the brain,
construed as a finite control automaton is not an information processor does not
entail or imply the false claim that the cognitive system as a whole is not an
information processor. What is at stake is the description of the internal system of
components and their arrangement which implements the control system for the

information processes which the system as a whole executes.

To summarize the arguments of Chapter 3 thus far: from consideration of the
example of a human engaged in a routine calculation, Turing developed a machine
model to capture the essential processes involved; the model consisted of a finite
control automaton which modelled the algorithm embodied in the mind of the
human, and an indefinitely expandable tape which modelled the paper on which the
calculation was worked. The identification of the human mind with the finite
control system, and not with the tape, was supported by an argument for the claim
that the human brain was capable of being in only finitely many different states.
Turing’s further published work over a period of more than a decade supports this
understanding of his analysis of computation. To treat the brain as a whole Turing
machine and human memory as modelled by symbolic tape memory is thus a misuse
of the model.

It has further been argued on the basis of an analysis of Turing’s universal machine

construction that a positional form of control memory, in addition to the functional
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form of control memory discussed in Chapter 2, can be identified and that a
distinction can be made between implementations of finite control automata which
take them to be information processors and those which take them to be signal
processors.  Turing’s machine model is compatible with both styles of
implementation. On the basis of the above, the idea that the brain is a finite, signal
processing automaton is perfectly compatible with the view that it is internally non-
symbolic but that it is a component of an information processing cognitive system
which makes use of explicit symbols externally. The ETH thus appears to be well
supported by Turing’s analysis of computation.

3.7. Serial and parallel architectures.

Two further points are worthy of brief consideration here. First is the issue of
serial versus parallel architectures and processing. It has sometimes been suggested
that the brain cannot be a Turing machine because it is a parallel system whereas
a Turing machine is a serial system. This criticism might be thought to apply to the
ETH as well, even though it denies that the brain is a Turing machine, because a
finite automaton is also a serial processing system in that it passes from one global
state to the next. The first point to make is to distinguish the issues of architectures
and processing. A serial architecture is essentially one built according to the
MINH-MAXC strategy. In such an architecture simultaneous processes are
impossible if each process requires the same operation and only one hardware
component implementing the operation is available. This is the case with most
commercial computers which have a single CPU. A parallel architecture is one in
which multiple processors are available for a given operation thus allowing process
parallelism. It is apparent, however, that although a serial architecture rules out
parallel processing, a parallel architecture does not rule out sequential processing.
The architecture of the ce(x) units, for example, would be parallel if a MAXH-
MINC implementation were built, but processing would still be sequential. Parallel
architectures are discussed in greater detail in Chapter 4. For the present however,
the fact that the brain has a parallel architecture does not rule out its functioning as

a sequential system at the level of global state transitions.
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3.8. Configurations, thought and behaviour.

The second point to make concerns the nature of the relationship between the
control of a Turing machine and its inputs. One of the most valuable features of the
generic computer theory of mind is that it seems to give a good account of how it
might be possible for the cognitive system to operate so as to make thought more
or less independent of the external stimulus environment. The picture of the mind
as an internal Turing machine communicating with the outside world via sensory
and motor transducers appears to give just the right sort of account, because internal
computational processing is independent of the world and yet connected to it. At
first sight it might appear that this semi-autonomy is sacrificed by the ETH, because
the ETH takes the concept of a configuration, i.e. the combination of current
internal state and current symbol scanned which determines the next step of a Turing
machine, to be a relation between the organism and the world whereas for the
generic theory it is an internal relation between different parts of the neural Turing
machine. Thus it might appear that the possibility of autonomous internal
processing is ruled out by the ETH.

In one sense this is true and part of the purpose of the ETH is to encourage a view |
of the organism as more closely tied to the external environment than the generic
theory suggests. However, the grip of the environment as a component of
computational configurations is much less unyielding than might at first appear. As
before, it is necessary to examine Turing machines of considerable internal
compiexity to get a true feel for what the relationship between symbol and state
amounts to and what is ruled out by supposing configurations to involve the external

world.

It was observed in Chapter 2 that the point of having a system with more than one
internal state was to enable more than one response to a given stimulus to be
possible while still retaining a deterministic approach to processing. What this
suggests is that it is not independence from external input which promotes autonomy
but an appropriately extensive set of internal states. The fact is that human

organisms are not insensate, unsituated entities in the way that computers are. In
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ordinary circumstances the awake human cannot choose not to see or hear or feel.
But this does not diminish the human capacity for voluntary action. Thus the
immediacy of interaction with the environment implied by the ETH is not a recipe
for ironclad determinism. More significantly, in the Orwellian world of the Turing
machine, some symbols are more equal than others. Consider the f-unit, the basic
building block of Turing’s machine, whose state diagram is shown in Figure 3.3.
For the f-unitin state ’f’, its inputs are divided into two classes, instances of ’e’ and
everything else, the point, of course, being that the occurrence of an ’e’ causes a
state transition to state ’f1’ while any other input leaves the machine in state ’f.
Once in state ’f1’, e’ loses its more equal status and becomes just another animal
in the farmyard while the target symbol and the blank become the ’privileged’
members of the alphabet. One might even want to assign the target symbol higher
status than the blank because it represents the acme of the f-unit’s processing.
Another way of expressing the same point might be to say that different states are
sensitive to different symbols. The familiar example of driving a car while pre-
occupied and arriving at a destination with a very uncertain grip on how the journey
was achieved shows that this kind of differential sensitivity is characteristic of
humans as well. It is not that the cues to which one responds automatically when |
driving are unimportant but that they are means to an end rather than ends in
themselves. Similarly, one might plausibly regard the sequence of symbols which
the f-unit has to traverse in pursuit of its target symbol as a means to an end. This
is not to deny that the behaviour of the Turing machine is determined by its
configurations. What it does imply is that the internal state provides the element of
control. Perhaps it would not be too confusing to suggest that behaviour is
determined by configurations and controlled by internal states. This idea can be
interpreted in a way which has an air of plausibility to it when thinking of the
sources of ordinary behaviour. If I were walking in the mountains and were
overtaken by an unexpected thunderstorm, I would be exercising a remarkably
intransigent notion of freedom if I continued to walk without putting on my
waterproofs and took no heed of the possibility of a lightning strike. That I would,
in such circumstances take the appropriate steps to weatherproof myself and get off

an exposed summit is to allow that my behaviour is determined by the weather. But
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it is not a form of determination which robs me of freedom to act since my
behaviour in acting thus is controlled by my internal state. Furthermore, the
internal state which recommends the donning of waterproofs is subordinate to the
overarching state or set of states which constitute my wanting to continue my walk
without being soaked or blasted by a thunderbolt. It is very interesting to note that
the nesting of states within structures in complex machines echoes this dependence
of human behaviour on hierarchical mental state structures. The processing of an
f-unit in Turing’s machine always constitutes a stage in a higher level process and
the processes which have f-units as their constituents may themselves be components
of still higher level processes. The erasers in the ’kmp’ m-function are a good
example. These structures have f-units as components and are themselves
components of the pattern matching process which identifies the appropriate
configuration in the target machine. Thus, although it is clear that the moment by
moment behaviour of the machine is determined by its configuration, it is less easy
to say exactly which process is controlling behaviour. Is it the f-unit, the eraser or
the pattern matching process carried out by the 'kmp’ m-function, or is it a
combination of all of these or even of some still more remote constellation of state

structures. Quite clearly then, the control of behaviour by internal states, as distinct |
from the determination of immediate behaviour by the current configuration, can
extend over lengthy time sequences and embrace multifarious inputs. This is a view
which seems at least as plausible as the idea that behaviour is controlled by a semi-
autonomous internal computer which is isolated from direct contact with the world

in which the behaviour it controls has to happen.

In conclusion, both Turing’s analysis of computation and the design methods he
used to develop the universal machine appear to support the claims of the ETH that
the brain should be considered as a finite control automaton rather than a complete
Turing machine. Control memory turns out to be a complex, multifaceted concept
which is at least as plausible a model of human memory as the more familiar model
based on symbolic, tape style memory. In addition the range of interactions
between internal states and external symbols appears to offer a plausible basis for

an account of the relationship between human cognizers and their environments.
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Clearly such an account needs elaboration. What the present chapter has shown is

that it 'is not a task which is doomed from the start.



99
Chapter 4. Digital Computer Models.

In Chapter 3, Turing’s analysis of computation was used to support the basic claim
of the ETH that the brain should not be considered to implement a whole Turing
machine, but the finite state control of a Turing machine. This suggestion runs
counter to a wide variety of well established and respected theories which have been
grouped together under the general label of the generic theory. It is characteristic
of generic theorists to argue that the brain does implement a Turing machine of
some kind and that the mind is essentially the program or set of programs which are

executed by this machine.

Clearly it would be absurd to suggest that generic theorists are committed to the
idea that the brain contains an infinite, linear tape which is traversed by a finite state
control, and it is relevant to ask what the generic theory proposes in the absence of
such an arrangement. Broadly speaking, digital computers have provided the model
for the architecture which the brain is hypothesized to implement and the purpose

of this chapter is to examine briefly what the commitments of such a model are.

4.1. The architectural commitments of the generic theory.

Clearly, the major commitments are to an internal separation of memory from
control and to explicit symbolic expressions. Although the generic theory is not
committed to the notion of a linear tape, it is committed to the notion of an internal
memory system which is symbolic, and which may provide both data and programs
for the executive system of the cognitive computer. The memory system is
separate, at least functionally, from the control system which manipulates the
symbolic expressions contained in the memory to produce such characteristic

phenomena of cognition as reasoning and decision making.

4.1.1. Location addressing.
One of the reasons why the generic theory is not committed to the idea of a linear
tape and a mobile control is the difficulty of access which such a medium imposes.

It is clear, therefore, that the generic theory must be committed to some form of
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addressing scheme other than traversing a linear tape. The most common form of
addressing scheme in digital computers is location addressing. One way to think
about such a scheme which retains a contact with the material of Chapter 3, is in
terms of a Turing machine with a finite tape, each of whose squares has a hard-
wired connection to the control. The connection may be thought of as enabling the
control to read and write from the square as though it were scanning it. On the
assumption that the difference in distance between the nearest and most remote
squares contributes little if anything to the access time, such hard wired connections
provide constant time access to each element of the memory. The central processors
of digital computers enjoy connectivity to their memories of essentially this kind
even though the memory is normally two-dimensional. It is reasonable to consider
the byte as the unit of computer memory analogous to the square of a Turing
machine tape. Human memory may also be essentially two-dimensional if the

cerebral cortex is its seat.

The advantages of a memory whose locations are systematically addressable extend
beyond the simple fact of constant time access, important though this is, to the
organization of both programs and data. One of the pronounced inefficiencies of |
Turing’s universal machine is that it has to hunt through successive instructions of
the standard description of its target machine in order to find the one to execute.
By contrast it is standard practice in computers to arrange the instructions in
sequential locations so that the next to be executed is normally to be found in the
location following the location of the current instruction. Only when the current
instruction is a conditional branching instruction will this not normally be so since
the alternatives cannot both be next in line. The process whereby the central
processor gains its next instruction, known as the instruction fetch, is therefore both
fast and simple by comparison with the contortions of matching and marking which

Turing’s universal machine has to carry out to achieve the same effect.

4.1.2. Virtual architecture.
The advantages of addressable memory locations are perhaps even more noticeable

when it comes to organizing data items. Although the basic unit is the byte or tape
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square, which can hold a single symbol, larger aggregates are normally required for
computing. Given a system of addressable locations, larger scale structures can
easily be defined. This is done in terms of address arithmetic given a base address
which serves as the entry point to the structure. Suppose, for example, that a two
dimensional array of n x n squares or bytes were required given a linear tape as the
medium. From a base address k at which the first element of the first row, element
(1,1) was to be stored, the second element of that row would be at address k+1, the
third at k+2 and so on up to the n’th and final element of the first row (1,n) at
address k+n-1. The second row with element (2,1) would start at address k-+n,
and its final element would be at k+2n-1. The final row would start at address
k+n%n and the final element of the whole array (n,n) would be at address k+n?-1.
To access a given element at location (r,c) a simple calculation of k+n(r-1)+c-1
gives the offset from the base address. This is an example of a virtual structure
which uses address arithmetic. There are few limits, other than space available and
the imagination, on the types of virtual structure which can be specified in this way.
The utility of such a structure, from the point of view of the programmer, depends
of course on the programmer’s being able to think of the structure in terms of its
virtual characteristics rather than having to make the requisite address calculations,
and much of the effort in developing programming languages has had the provision
of virtual structure as a goal. When, as is commonly the case, the programmer has
no access to the real machine structures but only to virtual structures presented
through the constructs of a programming language, the language is taken to define
a virtual machine or virtual architecture. Many cognitive scientists believe that the
notion of virtual architecture is one of the keys to understanding the relationship
between mind and brain, and claim that the mind is a virtual architecture. It is
broadly for this reason that theorists of such persuasion tend also to argue that the
study of mind can be carried out independently of the study of brain because what
is of psychological interest is the virtual architecture whereas what is of
neuroscientific interest is the physical architecture which provides the medium in
which the virtual architecture is implemented. Given that thoughts appear to obey
principles of rationality, for example, whereas neurons obey principles of

biochemistry, the attraction of such a position is considerable.
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4.1.3. Virtual architecture and control circuitry.

Although the attractions of thinking of mind as a virtual architecture are
considerable the view has costs as well as benefits. The costs are best appreciated
by thinking of the control circuitry needed for the real architecture which supports
the virtual structures. The need for address arithmetic and addressable locations
have already been introduced, and the latter have been seen to entail a finite store
with fixed data paths between control and memory locations. This implies a great
deal of wiring and switching capacity, in addition to the capacity for transmitting
symbols rather than just signals. The distinction between symbols and signals was
introduced in Chapter 3. Taking a crude example, if we imagine a line of people,
each standing within touching distance of the next, a signal can be passed down the
line by each poking the next in the ribs, whereas a symbol requires the passing of
a piece of paper with the symbol written on it as well as the poke in the ribs to draw

attention.

The extent of the constraints on implementation arising from the need for control
circuitry to manage information access and transfer can be understood from brief
consideration of the way they are managed in digital computers. Digital computers
operate almost exclusively with two state basic memory units known as bistables or
flip-flops. These units have been chosen for logical simplicity and because they

offer the easiest means of achieving the required reliability.

"Although other numbers of states are possible, and ternary (three-
state) machines have been proposed occasionally, digital technology
has developed exclusively to handle binary information. There are
several reasons for this. The first is the requirement for high
reliability... The second reason is the simplicity of the logic design
for binary representations... A final reason... is that no one has ever
found striking advantages from the resulting processing structure in
having more than two states."

Siewiorek, Bell & Newell (1982, pp.66-67)

Two states units can store only one binary digit or bit and have to be aggregated in

order to represent a wider variety of states or entities. Typically, the eight bit byte
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is the basic unit of aggregation and can represent 2® = 256 different states.
Encoding schemes such as ASCII assign symbolic values to various of the 256
states. The fact that symbolic representations are encodings over aggregates of
binary digits means that the hard wired data paths from memory to the control have
to have at least as many bits as there are bits in the representation. Contrasting this
with the case of a signal for which a single wire suffices, the amount of wire needed

by symbolic encoding can be seen to be considerable.
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Figure 4.1. A three bit address decoder for an eight byte memory.

The load imposed by a location addressing scheme is even more substantial.
Consider the simple address decoder for an eight byte memory shown in Figure 4.1.
The addresses are three bit numbers and are presented on the address input lines
shown at the left of the figure. The address lines are connected to eight AND gates
labelled AO to A7. The gates produce an output when all three of their inputs are
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positive. The connections from the address lines to the gate inputs are shown as
filled circles. The unfilled circles represent inverters, which turn an input of ’Q’
from the address line into an input of ’1’ at the gate and vice versa. Inspection of
the pattern of inverters shows that each of the eight possible addresses produces an
output from just one of the AND gates. The address pattern 000’ produces an
output from gate AQ, pattern 001’ from gate Al and so on. This output is the
address selection mechanism which, in conjunction with the appropriate control
signals on the read-write lines, will either send the pattern stored in the byte to the
control or write into the byte the pattern supplied by the control. - For simplicity,
the read-write lines are shown connected only to Byte 0. Clearly the number of
locations which can be addressed by k address lines is 25. Thus for a memory of
2% bytes, i.e. 1 Mb. organized using an addressing scheme of the kind shown,
twenty address lines would be needed plus 22° AND gates each with 20 inputs. In
practice, decoding strategies which are more economical in terms of the number of
gates needed are generally used, but they tend either to be slower than the type
shown or to require more complex circuitry at memory locations. A further
important point about all such systems is the need for almost flawless reliability in
the base components. If the address decoder is to work correctly, addresses must
appear correctly on the input lines, and the multi-input AND gates must also work
precisely so as to select the item required. Similarly, the read-write lines must
operate correctly. All of these requirements impose wiring and reliability

constraints of a kind which it may not be plausible to suppose that neurons support.

It may be objected that content addressing rather than location addressing is clearly
the method of choice for the neural system, particularly since human memory
appears to work in such a way. It is far from clear, however, that content
addressing eases the burden of control circuitry required. On the assumption that
the memory consists of a series of independently modifiable locations, which seems
to be required for a Turing machine, the control problem is in some ways worse for
content addressing schemes than for location addressing and may explain why the
great majority of computer architectures use location addressing. A variety of

content addressing schemes have been proposed but they all have in common the
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specification of a tag or key which may be part of the data item required or may
constifute a separate but connected field. The requisite item is found by comparing
the relevant parts of the contents of each location with the key or tag to find a
match. Thus it may be necessary, in principle, to compare the contents of every
location in the memory with the search key in order to find the appropriate data
item. The control circuitry needed to manage the search process is at least as
complex as that required for an address decoder, and read-write circuitry is needed
just as in the location addressing scheme. Furthermore, content addressable
memories tend to be slow because of the search process, may yield multiple matches
to the search key which need to be dealt with and also pose problems when data
have to be written to the store. While on the subject of content addressable
memories, it is appropriate to note that Turing’s universal machine uses content
addressing to locate the appropriate instruction in the standard description of its
target machine, using the configuration from the most recent complete configuration

as the key.

It seems most likely that when people think about content addressing and its
advantages they have in mind the sort of associative memory which is characteristic
of connectionist networks in which the input constitutes the search key, the set of
connection strengths of the network constitutes the stored data and the output
constitutes the recalled item. However, this style of memory is not available to
theorists who claim that the brain implements a Turing machine, first because the
control is not separated from the memory and second because the memory does not

consist of a set of independently modifiable locations whose contents are symbolic.

It seems clear, therefore, that the claim that the brain implements a whole Turing
machine carries substantial implications for the amount of control circuitry needed
and imposes rigorous requirements on the reliability of the basic components. It has

been suggested that these requirements make the claim implausible.

"The principles of computer memories can hardly be realized in biological
organisms for the following reasons: i) All signals in computers are binary



106

whereas the nerual signals are usually trains of pulses with variable
_frequency. ii) Ideal bistable circuits which could act as reliable binary
memory elements have not been found in the nervous systems. "

Kohonen (1988,p.12)

One further point which is of some interest is the implication that if the brain is a
Turing machine rather than a finite automaton its memory will be both less efficient
and of lower capacity. The reason is that control and memory states are not
distinguished in a finite automaton and thus the physical substrate can serve both
purposes simultaneously as discussed in Chapters 2 and 3. Assuming the brain to
implement the control circuitry for accessing a tape as well as whatever is required
to implement locations, it is clear that a large amount of neural capacity will simply
be unavailable for memory purposes in a way that is not the case for a finite

automaton implementation.

A further point which is of great significance is that in addition to the burden of
control circuitry which the internal Turing machine model entails, the generic theory
has also to specify how external stimulus energy is translated into symbolic input
which the internal computer can use and how the outputs of that computer can be
translated into behaviour. The characteristics of these mechanisms and the
conceptual problems to which they lead are explored further in the discussion in
Chapter 5. For the present, it is clear that they also represent an additional call on

neural resources which may be substantial.

In summary, in the light of Turing’s analysis which specifically separated the finite
state control unit modelling the brain, from the tape modelling the paper on which
a human computer might write, and given the costs in terms of control circuitry
which would be needed if the brain were indeed structured like a digital computer
of some kind, the thesis that the brain does implement a Turing machine of a kind
must be questionable. In the remainder of this chapter, a short review of some of
the history of the development of computers and the means of using them is
presented. It is apparent that many of the decisions were dictated by engineering

considerations which while essential for the development of efficient machines
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contribute to the implausibility of the view that the mind resembles or is
architecturally similar to a digital computer. Computer design is essentially
concerned with harnessing the power of the universal machine concept and, at least
until recently, has been directed towards the MINH-MAXC end of the
implementation dimension for a variety of sound engineering reasons. Both of these
choices focus attention on the exploitation of a large auxiliary memory. However,
in the absence of evidence either that the brain implements a universal machine
interpreter or that evolution has adopted the MINH-MAXC strategy, and given the
principled distinction which Turing made between human memory and auxiliary
memory, there is no good reason to suppose that the computer provides a
satisfactory model of the architecture of the mind. Indeed, the ETH suggests that
the strategic choices made in the development of computer architecture are precisely
the wrong ones from the point of view of developing a model of human cognitive
architecture. This is not, of course, to claim that the architecture of the mind could
not be simulated on a computer nor that the mind is not a computational system.
If the mind is a mechanical system then the Church-Turing thesis strongly suggests
the possibility of simulating its operations in the form of a program. But this is not
at all the same as claiming that the architecture of the mind is itself organized in the
way a digital computer is. Not all computational machines are universal. The
existence of an infinity of Turing machines which compute but are not universal

demonstrates this point.

4.2 The First Electronic Computers.

Although Turing’s work was in print in 1937 and the first electronic computer was
not commissioned until 1946, the theory of computable numbers appears not to have
had a direct impact on the development of the very earliest machines which were
constructed in the U.S.A. Throughout the 1930°s the most sophisticated calculating
machines available were analogue differential analyzers, most notably those built by
Vannevar Bush and his colleagues at MIT, which approximated solutions to
differential equations, cf. Goldstine (1972, Chapter 10) and electro-mechanical
digital calculators based on Herman Hollerith’s tabulating machines which were used

for the construction of astronomical tables among other things.
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4.2.1 The ENIAC’.

In 1943 funds were made available to the Moore School of Electrical Engineering
at the University of Pennsylvania to construct an electronic computer for the
Ballistic Research Laboratory of the Ordnance Department of the United States
Army. Herman Goldstine, who was the Ballistic Research Laboratory’s
representative at the Moore School during this period said

“...one of the main functions of the Ballistic Research Laboratory
was the production of firing and bombing tables and related gun
control data. ...The automation of this process was to be the raison
d’étre for the first electronic digital computer. "

Goldstine (1972,p.135)
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