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ABSTRACT

The objective of this thesis is to avoid misspecifications and to seek efficiency 

improvements in cross sectional and tim e series econometric applications using 

semiparametric methods. We restrict our attention to  single equation models and the 

use of conditional moment restrictions as well as maximum likelihood methods. The 

first part of the thesis deals with cross sectional studies on the United Kingdom car 

market and the second part deals with tim e series studies of the United States 

consumption function. There are five main contributions of the thesis.

First of all, we have suggested minor extensions of existing semiparametric 

models; secondly, we have suggested the use of a dimensional reduction method prior 

to nonparam etric estimation; thirdly, we have investigated the use of various rules of 

subjective and autom atic bandwidth selection methods using real and simulated data; 

fourthly, we have suggested a new approach to overcome problems in the hedonic 

approach for cross sectional studies,; and finally, we have established a relationship 

between expected real interest ra te  and consumption using US tim e series data.
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1.1 PRELIMINARIES

Econometrics are useful for policy analysis and counter factual purposes. For 

policy studies in general, economists are interested in finding the effects of the change 

of some controlled instrum ents on the dependent variables. Notable examples of 

policy studies are the measurement of environmental benefits of improving certain 

neighbourhood qualities and the impact upon car attributes brought about by the 

government restriction on fuel efficiency, in view of the hike in the price of petrol. As 

for counter factual purposes, diagnostic or specification tests are usually employed to 

cross examine empirical facts with theory. For example, economists are interested in 

finding whether anticipated and unanticipated inflation variables and stock prices 

m atter in the consumption model.

One approach of econometric modeling is to formulate an economic model and 

end up with the relationship in a param etric form relating the variables of interest. In 

the process, econometricians almost always place some additional restrictions on the 

economic model under study for empirical tractab ility  with little  economic 

motivations. Generally, the restrictions are in the form of param etric assumptions 

regarding functional form or distribution of some variables or the disturbances. The 

stronger the assumptions, the simpler the structure of the econometric model. For 

easy interpretability , the resulting models are usually of a very simple form, e.g., a 

linear or log linear model. However, if one proceeds to conduct policy analysis based 

on the model, there are always some doubts on whether these additional assumptions 

embodied in the model are valid. These doubts will inevitably affect one's faith  in the 

estimates.

If one's interest is in hypothesis testing and the null is rejected, one cannot 

know for sure whether the theory is at fault or th a t the additional param etric 

assumptions are being incorrectly imposed on the model. It is in fact a joint test of 

param etric assumptions and the theory.
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Sometimes, these additional assumptions imposed by the econometrician can 

be tested using the data. Diagnostic and specification tests are usually employed to 

perform the task. However, in many instances, successive rejections of these tests 

leave the econometrician stranded with little  idea of how to proceed.

Another approach known as measurement w ithout or w ith little  theory is to 

specify a very general statistical model and seek the best representation of the 

relationship and then reconcile the results with existing economic theory. The 

existing theory is not necessarily consistent with the best fitted models. Indeed, it 

may indicate th a t the best model is impossible within a certain theoretical 

framework. If the "best" model is inconsistent with the theory, then new explanations 

has to be offered and indeed a new theory. Unfortunately, the refined theory will 

often lead to empirical intractability unless some additional param etric assumptions 

are added. This leads us to the same problems as in the first approach.

Therefore, it would be desirable to proceed with policy studies or hypothesis 

testing without further assumptions besides those imposed or implied by the 

economic model. In this study, we use the economic framework as a bench mark for 

our studies; when economic information is lacking in assisting us in functional form 

selection, we resort to nonparametric technique which relieves us from making any 

further assumptions. When this is not possible, we will compromise by relaxing at 

least some restrictions so tha t we have a more flexible model. Since we combine the 

use of param etric and nonparametric components, the approach can be termed 

semiparametric.

In order to  understand the work in this thesis, we will have to present the 

econometric models in this chapter. The motivations are discussed in details in the 

following chapters as we encounter them. This chapter is intended to  serve only as an 

introduction to  the empirical work in later chapters.
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Let Y be a continuous random variable, X a kxl vector of continuous variables 

and Z a px l vector of predetermined continuous independent variable. The 

econometricians observed the values of Y, X and Z, where {y.;i= l,...,N }, 

v jk } ?  { z j j 5 i = l v î P} î  X. =  {x.ji j= l,...,k } , and z. =  {z-; 

j= l,...,p } . Let us assume for the moment th a t the y^, and =  (xj,z.) are related by

the model:

'^y(yi5'^) — ^w^^i'^^ ^  ^i’ i= l,...,N

where A and 6 are some parameters to  be estim ated, E[e. | w ĵ =  0, E[e.ej| w-j =  0 and 
2 2E[e. I w.] =  cr(wj) . and are transformations or functions to  be defined.

1.2 AVOIDING MISSPECIFICATIONS

Misspecification of the model usually leads to loss of consistency or efficiency. 

In general, consistent estimates can usually be obtained at the expense of loss of 

efficiency. The existence of a true model is im portant in theoretical work. However, 

many believe that in empirical work, the true model is generally unknown and the 

trade off between consistency and efficiency does not really exist. Therefore, the 

preferred strategy for modelling should be to allow for possible misspecifications with 

minimal assumptions. This brings us to focus on some statistical concepts which we 

will now discuss.

These three aspects of statistical modelling are best summarized by Stone

(1985):

Flexibility is the ability o f  the model to provide accurate fits in a wide variety o f  

situations, inaccuracy here leading to bias in estimation.

Dimensionality can be thought o f  in terms o f  variance in estimation, the ’’curse 

o f dim ensionality” being that the amount o f  data required to avoid an unacceptably 

large variance increases rapidly with increasing dimensionality, or, as usually put, 

between bias and variance.

Interpretability lies in the potential for shielding light on the underlying
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structure.

While flexibility is positively correlated w ith dimensionality, there is always 

some trade off between these two aspects and interpretability  in model building. Our 

foremost concern is to have "enough" flexibility in order to give us an accurate fit. 

Unfortunately, the more flexible a model is, the higher the dimension of param eter 

space th a t one has to deal with. Furthermore, it would generally be much harder for 

one to visualize or comprehend the relationship between the dependent and 

independent variables. Therefore, the three aspects are not entirely independent of 

each other and having a more flexible model will in general incur inflated variance 

and reduced interpretability. The particular class of sem iparam etric models tha t we 

employ in general, trade off inflated variance (efficiency) for flexibility (consistency). 

We are particularly concerned with in the following models in our applications:

(1) M ethod of Moments

The following models all have the common conditional moment restrictions of 

the form E[e|(w,y;^)| w.] =  0, where 9 is the vector of param eters of interest. The 

most efficient of the method of moments (MM) estim ator requires the estim ation of 

Wj] =  h(w.;^) which is generally unknown.

(a) Transform ation model 

A transform ation model can be expressed as

TyCypAy) =  Sj2i^jTj(Wij,Aj) + ej, i= l,...,N  (1)
2

where Efc. Iw-j =  a, T and T. are some known transform ations, A and A-'s areL 1 I p  ’ y  1 ’ y  J

some transform ation param eters to be estim ated, and /?j's are some unknown 

param eters to  be estimated.

One of the reasons for using transform ation is to  induce independence of the 

independent variables. Although th’ere are models which consider cross product terms 

between the w's, we restrict ourselves to the additive form. Transform ation models
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have the advantage of inducing flexibility but as we have mentioned, this will 

increase the dimension of parameters of interest. In the case of a param etric model 

with a single transformation param eter for each T , the increase in the number of 

parameters to be estim ated is two fold. Interpretability is complicated by the fact 

tha t the relationship is between functions of y and functions of the w's.

Various transformations will be introduced in Chapter 3. It should be 

mentioned tha t the model is semiparametric only in the sense th a t no distributional 

assumptions are imposed on The contribution from this relaxation should not be 

overlooked, the reasons being tha t many transform ation models, e.g., logarithmic 

transformation, exclude certain distributional assumptions and estim ators obtained 

by imposing distributions are not robust. The use of MM will at least guarantee 

consistent estimates and correct inference.

Nonlinear two stage least squares, a special case of MM, is an appropriate 

estimation procedure for transformation models. It involves finding "optimal" 

instrum ents ŵ ] which is usually assumed to be linear in w. However, the

expectation is unknown in this case and we can apply the method of Robinson 

(1988e) in obtaining the optimal instrum ents rather than estim ating the conditional 

expectations nonparametrically as in Newey (1987).

(2) Partial Linear Model

Now, consider the following model which is partly  linear 
*

^i ~  ^ij ^ ’" ’̂ ip)”̂  ^i’ i= l,...,N

Compare this model with (1), we have T^ and some T j's  all equal to  1. The

transformations T^ and some T j's, are known from economic theory or have good

reasons to be linear in this case. But T^ is an unknown function which maps the

remaining variables z onto the real line. This model is applied to cross sectional study

in Chapter 4. We can then nonparametrically estim ate T^ and then proceed to

estim ate /? after eliminating T^. If the interest lies in the shape of T^, an estim ate of
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can be recovered. In the event that we have a large number of z's in and only a 

set of medium sized data, we may have to employ a more restrictive model of the 

form

Yj — ^j/^j ^i’ i= l,...,N

where aj is a vector of known coefficiencts. This device is to overcome some of

the problems in nonparametric estimation. The issues of high dimensionality and

inflated variance encountered in m ultivariate estim ation are discussed in Chapter 2.

This partly linear model is used in the time series study in Chapter 7. z ’s cannot be

known with certainty in this case and rules out any dummy variables or constant.

This is in consequence of relaxing the assumption th a t T^ is unknown. However, this

consequence has a very useful purpose as we shall see in Chapter 4. In many

instances, one is only interested in the policy changes of some or all of the z's on the

y.. In other words, we are concerned with distributional changes of y from, e.g., z to 
*

z . Let D be a vector of dummy variables and 6 the coefficients. We may then be able
*

to deal with dummy variables easily since we are only interested in E[yj—E[y ] =  

E[D(^+T^(z)] — E[D6+T^(z )] =  E[T^(.)—T^(.)j. Thus, a nonparam etric policy 

analysis can be conducted using the suggestions of Stock (1985a). Unlike the case of 

MM, where it is known tha t it is most efficient within a class, the partly  linear model 

estim ator is only known to be root—N—consistent and asym ptotically normally 

distributed (Robinson (1988a)).

1.3 EFFICIENCY IMPROVEMENTS

Allowing for flexibility as in the above models may have the consequence of 

inflated variance. For example, if the error term  in the transform ation model is 

assumed to be of a param etric form, efficiency can be improved; and if T^ is assumed 

to be known in the partly linear model, efficiency can again be improved. However, in 

both cases, if these assumptions are not correct, then one has to pay a heavy price of 

having inconsistent estimates.



Introduction [ch 1. 23]

As mentioned above, the problem in applied work is th a t the true functional 

form is seldom known although economic theory may provide or impose some 

restrictions on the functional form. In many other instances, there is virtually no 

information to guide one in selection. Given the level of generality, the usual 

approach is to use an ad hoc functional form. In m any instances, especially when the 

functional form itself is not of intrinsic interest, e.g., when the nuisance function is 

involved, linear functional form is employed. A more respectable approach is to use 

diagnostic and specification tests in aiding one to select the correct functional form. 

The problem arises when successive tests are rejected, one finds it difficult to suggest 

a suitable functional form.

Recent work has progressed in the direction of adaptive estim ation. In simple 

terms, the adaptive semiparametric estim ator has the same efficiency under unknown 

distribution o r/and  functional form as a param etric estim ator under known 

distribution o r/and  functional form. Some of our models are of this class, but we limit 

ourselves to maximum likelihood (ML) estim ation when the error term  is known to 

be from a param etric family.

Our main concern under the heading of efficiency improvement is efficiency of 

the estim ators and consistency is taken for granted. In other words, if we use the 

incorrect param etric functional form for the functions, we will still have consistent 

estimates. The nonparam etric technique is only used to estim ate the nuisance 

functions, i.e., the functions are itself not of intrinsic interest. Of course, in the case 

of misspecification of the nuisance function, the standard errors are usually 

inconsistent and therefore the semiparametric model has advantage.

The main m otivation of efficiency improvement here is th a t statistical 

inference is the main objective. In the case of conditional maximum likelihood 

estimation of heteroscedastic models, e.g., autoregressive conditional heteroscedastic 

(ARCH) models, misspecification of the conditional variance may invalidate the
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variance—covariance matrix. Therefore, flexibility of the nuisance functions in ARCH 

and other conditional heteroscedastic models is im portant. The other estimators 

which belong to this class are the method of moments estim ators which include the 

linear and nonlinear heteroscedastic, transform ation and errors—in—variables models.

(1) Maximum Likelihood Method

Maximum likelihood estim ators for the following models are not robust to 

slight misspecifications of the error distribution or nuisance functions. However, 

efficiency improvement c an . be attained if additional information, such as the 

information on the error distribution, is used for estimation.

(a) Transformation model

The error term  of the transformation model can be known to have certain 

distributions, e.g., normal. Gamma or t—distribution. The normal distribution is 

favoured if it is perm itted by the transformation used. In fact, one of the purposes of 

transformation is to reduce skewness. These distribution assumptions can be checked 

but if it is known with certainty, then making use of the information will usually lead 

to efficiency improvement.

Although one of the intentions of transform ation is to  induce 

homoscedasticity, a direct heteroscedasticity correction m ay still be desirable. This 

can be done by nonparametrically estimating the conditional variance and a model is 

introduced and applied to real data  in Chapter 3.

(b) ARCH

In the ARCH model, the conditional variance is usually assumed to be a 

function of the squared lagged residuals. However, there is no reason to believe tha t 

this is known a priori. It is natural to consider nonparam etric estim ates for the 

conditional variance. We also argue tha t inclusion of the lagged dependent variable in 

the conditional variance is a good practice to avoid possible inconsistency of the so 

called Engle's ARCH model (Engle (1982)).



Introduction [ch 1. 25]

(2) Method of Moments

In the following models, E[ej|zj] =  0 and possibly E[c.Cj|zJ =  cr-. Since our 

MM estim ators have the interpretation of IV (Instrum ental Variable) estimators, 

efficiency improvement can be attained by using more efficient instrum ents.

(a) Transform ation model

In cross sectional studies, the efficiency of most transform ation models can be 

improved by taking into account heteroscedasticity. It is easy to see tha t the 

generalized non-linear two—stage least squares (GNL2SLS) estim ator is more efficient 

than the non-linear two—stage least squares (NL2SLS) estim ator. If the 

heteroscedasticity is of an unknown form but ctj =  cr(zj), then it is natural to employ 

nonpar am etric estim ates for the conditional variance. This class of model is dealt 

with in C hapter 3. Of course, failure to take heteroscedasticity into account in this 

case will also invalidate the statistical inference.

(b) Errors—in—variables

By imposing suitable restrictions on the T 's in (1), we can have the linear GLS 

model and this model is used in Chapter 3. However, if the explanatory variables 

contain conditional expectation terms, we have an errors—in—variable model. 

Consider the linear rational expectations models as in Chapters 6 and 7, 

ŷ  =  /?Q + Sj/?|E[xjj I Zj] + (., i= l,...,N

In some models where the conditional expectations are unknown functions, we 

may use the nonparam etric estimates as instrum ents. Of course, it is well known tha t 

in IV estim ation, consistency is taken for granted while efficiency can be improved by 

finding the instrum ents closely related to the explanatory variable.

1.4 TH E SCO PE AND OUTLINE OF TH E THESIS

The thesis is organized into nine chapters and we now provide a brief outline. 

One of the  most im portant nonparametric techniques th a t we employed is the 

method of kernels. In particular, kernel nonparam etric "regression" will be the
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essence of the nonparametric technique in the applications. Of course, regression 

analysis in economics has usually been referred in relation to  param etric linear or 

nonlinear regression ones. In fact, regression analysis extends beyond this class of 

param etric models and many other topics should be included in this broad heading, 

e.g., biased estimations (Stein, Ridge, principal components regressions and indeed 

the nonparametric regression tha t we are interested in). It is therefore im portant to 

understand the concept of nonparametric regression and the distinctions from 

param etric regression. We have presented and discussed the formulae, motivations 

and properties of the nonparametric estimators in C hapter 2. This will give us some 

understanding of the working of the nonparametric techniques and will serve as a 

reference in later chapters.

Two areas of economics will particularly benefit from the use of 

semiparametric models mentioned in Section 2 and 3. The first is the hedonic price 

function and the second is the consumption function.

The hedonic price and related functions were modelled by linear models in the 

early 70's and it is not until recently tha t transform ation models have been favoured. 

One of the reasons is tha t most of the theories of the hedonic literature do not 

provide any information on the functional form of the price function. The usual way 

to approach it is to select a formula that will provide adequate description of the 

data. For application purposes and practicality, linear functions of the variable and 

the transformed variables (e.g., logarithmic) are preferred and indeed perform 

reasonably well in most studies. However, there are always some doubts and concern 

over the simple functional form. In the late 70's, the discussions of the choice of 

functional form were the focus of research in the hedonic literature. The results were 

mixed and it is still difficult to draw any firm conclusion as there is little  uniformity 

among the different studies. This is in part due to  the large number of independent 

variables in the studies and multicollinearity is often encountered. In the hedonic
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literature on vehicles, there is however a clear pattern  evolving regarding the choice 

of variables. But this is still somewhat dependent on the functional form employed.

In Chapter 3, we have introduced a different methodology which makes use of 

the two—stage hypothesis of O hta and Griliches (1976). The procedures overcome the 

the problem of multicollinearity and extract more information from the fuel efficiency 

and rental cost function then other approaches, such as the discrete choice model. In 

this study of petrol price elasticities of fuel efficiency as well as attribu tes, an 

intertem poral economic model is constructed. The fuel efficiency function and the 

rental cost function need to be estim ated before we can construct the elasticity. 

However, there is virtually no information on the functional forms. Transform ation 

models may be a desirable robust approach to overcome the problem because of the 

relatively simplicity of the model structure. In this case, efficiency improvement can 

be attained by correcting for heteroscedasticity which is of an unknown form, but 

known to be function of the parameters and the attributes. Further efficiency 

improvement can be achieved in some cases using maximum likelihood method. Of 

course, this efficiency improvement is at the expense of making the additional 

distribution assumption on the error term.

However, recent interest on the hedonic literature lies in the choice of 

instrum ents in Rosen (1974)'s two—stage estim ation procedure discussed in Chapter

4. The absence of appropriate instrum ents in single car m arket da ta  makes Rosen's 

approach undesirable. If only policy studies are concerned, the partly  linear model 

will offer partial solution and minimize the im pact of misspecifications. For example, 

if one is interested in the fuel efficiency standard, then the variable which one should 

change is the fuel efficiency variable. While historically, linear functional form is 

prevalent, the benefits estim ates are not robust to  misspecifications. The more 

flexible partial linear model provides one of the solutions to this problem. In our 

investigation into the change in capitalized value of new cars , we have avoided
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making too many assumptions on the hedonic price function.

In order to  better understand and m otivate the work in Chapters 6 and 7, 

Chapter 5 is devoted to the review of some of the surprise consumption literature. 

The applications in this second part of the thesis will use only tim e series data.

In Chapter 6, we have tested the consumption capital asset pricing model by 

assuming th a t the conditional variance of inflation follows an ARCH process. We 

have suggested and applied a Pseudo—Gaussian m aximum likelihood criterion for 

bandwidth selection. We found no evidence of expected inflation being an explanatory 

variable in this consumption model. We have also attem pted to establish a 

relationship between consumption and expected inflation in the presence of possibly 

non-linear rational expectations formation. The one quarter expected interest rate  

has no role in explaining consumption. We have also discovered some interesting 

properties of the cross-validation function.

In Chapter 7, a different data set and an extended model is used to  analyze 

the surprise consumption function. Our intention is to examine if lagged variable and 

possibly non-linear expectations should m atter in a linear rational expectations 

model. We have also suggested preliminary non-linear projection to lower 

dimensional space prior to nonparametric estimation. Bean (1986)'s model is used as 

a bench m ark and following Blinder and Deaton (1985)'s rational expectations 

approach, we have relaxed the assumption of linear expectations formation in the 

surprise consumption model. The anticipated term s can be viewed as estim ates from 

the errors—in—variables models and unanticipated term s from the partially linear 

model. In the formal case, we are only interested in efficiency improvement as 

instrum ental estimates are consistent. In the la tter case, we are interested in 

attaining consistency estimates as any slight misspecification of the expectations will 

generally lead to  inconsistent estimates. The resulting semiparametric surprise 

consumption may provide an approach to rational expectations of unknown form in
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other linear rational expectations models. Two sem iparam etric test statistics, namely 

R test (Robinson (1988c)) and Hausman (1978)'s test, are used for testing zero—type 

restrictions and diagnostic checking. We have obtained the estim ates of interest 

under less restrictive environrrient with results opposite to  those obtained under the 

more restrictive regime. We have also established a relationship between expected 

real interest ra te  and consumption in this extended model.

In Chapter 8, we have evaluated the performance of the autom atic bandwidth 

selection criterion and various subjective rule—of—the—thum b methods by means of 

M onte-C arlo simulations. The results favour the use of autom atic bandwidth 

selection m ethod th a t we have suggested, but only w ith reasonably large sample size 

based on the sim ulation results.

Finally, in C hapter 9, we have suggested further extensions and potential 

areas for research.
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2.1 INTRODUCTION

Consider the regression function or curve

yj =  m(Xj) + Cj i= l,...,N  (1)
2 2where is a scalar, x. =  (x^^.,...,x^.)', E[ej|x.] =  0, E[c.ej|x-] =  0 for i / j ,  E[e. ] = (r ■ 

m(x) is the regression function and can be estim ated by param etric or nonparam etric 

methods. W hile param etric models is familiar to  most economists, the use of 

nonparam etric models are a relative new idea in the field of economics.

The most common approach to modelling (1) is to specify a param etric form 

for m thus giving rise to a linear or nonlinear regression model. It is assumed th a t the 

form of the regression function is known and there are a finite number of param eters, 

e.g., slope coefficients, to be estimated. In this case, the practitioner selects one 

particular curve from a whole family. W hatever results and inference obtained from 

the da ta  is heavily dependent on the choice of the functional form of m(x).

An alternative approach to estim ating the regression function is to use a 

nonparam etric regression model. In this case, we make no param etric assumptions on 

m(x) except th a t it belongs to some infinite dimensional collection of functions. 

However, some weak smoothness assumptions may still be imposed on m (x), e.g., m 

is r th  times differentiable. But the nonparam etric model is less restrictive than  the 

param etric models and relies more on the data  for information.

W hile a nonparam etric model is less restrictive than  a param etric model, it 

has little  practical interest in economics for various reasons. The most im portant of 

these is th a t economic applications generally involve many independent variables. 

The nonparam etric estim ators have a very slow rate  of convergence and this is 

usually worsened when the dimension of x increases. The second reason is th a t there 

is usually physical economic meaning associated with simpler models. These reasons, 

among others, have prom pted economists to use param etric models even when there
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is inadequate information on the functional form of m(x).

From  the theoretical point of view, it is believed th a t param etric models have 

desirable properties over the nonparametric models, e.g., gains in asym ptotic 

efficiency. However, this belief may in fact be unw arranted if the param etric model is 

misspecified. Furtherm ore, any subsequent policy analysis and conclusions from 

hypothesis testing may be erroneous if the model is indeed misspecified. Therefore, it 

is unwise to adhere to param etric models when in fact there are undesirable side 

effects as opposed to possible efficiency improvements and ease of interpretability.

The methodology which underlies our study is dominated by the use of 

semiparametric models. In other words, the model under study has two components: 

a param etric and a nonparametric component. The main difference between its 

param etric component and nonparametric component is th a t the former has finitely 

many unknown parameters while the la tter has infinite number of param eters to be 

estimated. The most interesting property of the sem iparam etric model is tha t not 

only does it allow for unknown functions to  be estim ated, it sometimes has the same 

rate  of convergence, and indeed the same efficiency, as param etric estim ators.

There are numerous methods of nonparam etric estim ation including Fourier 

inversion, histogram, nearest neighbour, orthogonal series, penalty functions, splines, 

delta sequences, kernels and others. These methods have been surveyed in Prakasa 

Rao (1983), and brief discussions of some methods are given in Silverman (1986). 

Eubank (1988) has also described various methods of estim ating regression functions.

This chapter is devoted purely to the discussion of a particular m ethod of 

nonparam etric estimation: the method of kernels. Although kernel regression is only 

im portant as an input to our semiparametric estim ation procedures, it is still 

essential to understand some basic concepts and the workings of nonparam etric 

estim ation and related procedures. It will also be useful to point out several 

shortcomings of purely nonparam etric models and to  m otivate the use of
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semiparametric models in empirical work. Furtherm ore, the asym ptotic properties of 

semiparametric estim ators are much easier to understand after some discussion of the 

theorems on nonparam etric estimators.

We begin by discussing the method of kernels in estim ating the density 

function and regression function of the identical and independently distributed (i.i.d.) 

case. After presenting some asymptotic results and properties, extensions to other 

cases will also be discussed.

2.2 SOME PRELIMINARIES

Let us assume th a t (x.,y.) =  (x^.,...,x^.,y.), i= l,...,N  are identically and 

independently distributed as continuous m ultivariate random  variable (X,Y). We are 

interested in the estim ation of the density, f(x), as well as conditional expectations or 

moments, E[y|x] and E[g(y)|x]. F irst, consider (1) again: 

yj =  m(x.) + e. i= l,...,N

where m is the regression function or conditional expectation. Let us assume th a t the 

problem here is to  construct consistent estim ator of m(x) =  E[y|x]. Extension to  the 

conditional expectation of g(y) on x is straight forward. Assume th a t we have a joint 

density f(y,x). The associated marginal density for x is given by

% (x) =  0 ( y . x ) d y  (2)

The conditional density of Y given X is

~  ( 3 )

and appealing to the definition of conditional moment, we have

m ( x )  =  J _ ^ y  f y  I x ( y  I ^ ) d y -  ( 4 )

We can estim ate the conditional m ultivariate density (3) and use (4) to obtain 

the conditional expectation. (4) is what we are really interested in for most of our 

applied work. Since we have to estim ate the conditional m ultivariate density (2) first 

before we can obtain the conditional expectation (4), naturally, we begin our 

discussions by presenting the method of kernels for univariate and m ultivariate
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density estimation.

2.3 ESTIMATION OF UNIVARIATE AND MULTIVARIATE DENSITIES

The literature on the estim ation of density functions is vast. The bibliography 

up to the late 70's is provided by W ertz and Schneider (1979) and up to  the early 80's 

by Collomb (1981). The number of articles quoted in the two bibliographies will 

demonstrate the enormous interest shown in this field. We do not intend to survey 

the whole literature. We re—iterate tha t our main purpose is to  present the 

methodology and sufficient asymptotic results in order to understand the properties 

of the estimators of interest to us. It will also serve as a  useful reference chapter as 

the same techniques are repeatedly used in later chapters.

The work on m ultivariate density has its origin in the statistical literature of 

the 1950's. In particular, the first published paper on univariate kernel density 

estim ation was by Rosenblatt (1956). Univariate kernel estim ators are unlikely to be 

very useful in economic problems as m ultivariate applications are usually encountered 

in econometric studies. However, to  give some initial insights into the working and 

the properties of the method of kernels, it is useful to discuss univariate estim ators. 

The use of univariate kernels is also useful in simplifying the notations when we are 

discussing extensions and more complicated applications of the method of kernels. Let 

us give a very brief introduction of the working of a univariate kernel.

UNIVARIATE DENSITY

For this sub—section, let us consider the i.i.d. observations on the scalar 

random variables x^, 1=1,...,N drawn from the density function f(x). Our intention is 

to estim ate f(x) and by definition

f(x) =  d /d x  F(x) =  lim ^_^Q(a)~^[F(x+a/2)-F(x-a/2)] 

where F(x) is the distribution function. A uniform kernel estim ator can be derived as 

follows:
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f(x) =  [F (x + a /2 )-F (x -a /2 )] /a

=  a  ̂ [average number of Xj, j= l,..,N , in the interval a 

centred at x]

=  a ^[number of Xj in the interval (x + a /2 , x—a/2)]/N  

=  (Na)“ ^ S j^ ^ I( |X j-x |<  a /2 )

=  (N a )~ ^ E j^ ^ I ( |x j-x |/a < l/2  )

=  (N a ) -^ E j^ ^ I(a - \x j-x ) )  

where a =  a ^  is a sequence of positive number which satisfies the condition 

lim ^ _ ^ a^  =  0, and is sometimes known as window width, bandwidth, or smoothing 

parameter. As these names suggest, a actually controls the number of Xj to be 

averaged. I(u) is the indicator function which takes the value of 1 if |u |  < 1 / 2  and 

zero otherwise, and has the properties th a t JI(u)du =  1 and I(u) > 0.

Rosenblatt (1956) has suggested replacing the indicator function I(u) by any 

function K(u) which possesses the properties (a) jK (u)du  =  1 and (b) K(u) > 0. In 

his case

f(x) =  (Na)~^EjK(a~^(Xj-x))

This kernel estim ator has the advantage tha t more weight can be given to the 

observations closer to x and less weight to those further away. For example, the 

normal kernel, K(u) =  (27r) ^/^exp(—u^/2), has the property of giving most weight 

to the observation x itself and the weight decays exponentially. Rosenblatt (1956) 

established the consistency of this univariate kernel estim ator.

However, alternative kernels may be desired including relaxing the assumption 

th a t K(u) > 0 o r/and  symmetric K(u) for superior performance. In fact, Parzen 

(1962) was the first to generalize the results to non—negative kernels. Under the 

following regularity conditions on the kernel 

(A l) jK (u)du  =  1,
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(A2) Sup^ |K (u ) | < 0 0 ,

(A3) JI K(u) I du <  0 0 , and

(A4) l im |^ |_ ^ |u K (u ) | =  0,

together with some conditions on the rate  of convergence of the bandwidth a,

(B l) ^™N->oo ^ ^ &nd

(B2)

the kernel estim ator is asymptotically unbiased and mean square consistent at every 

continuity point of f. (B2) requires th a t as the number of observations increases, the 

bandwidth has to  converge at a slower rate. This is just to make sure th a t as we have 

more observations, we must have a smaller bandwidth in order to delete observations 

further from the point of interest x.

Under conditions A l—A4 and B l—B2, ( f—E f) /v a r ( f )^ /^  is asymptotically 

distributed as standard normal. Notice tha t we are centering around E f rather than 

the true f (see Cacoullos (1964)'s result below which deals with the la tte r case).

In fact, these conditions are fairly standard in the kernel literature though the 

following conditions are usually imposed on the kernels:

(A la) JK(u)du =  1,

(A2a) JuK(u)du =  0,

(A3a) Ju^K(u)du =  ĉ  ̂ f  0,

(A4a) JK(u)^du < o o ,

(A la) is equivalent to the weights summing to one, (A2a) is autom atically 

satisfied if K is symmetric about zero. (A3a) and (A4a) will be easy to comprehend as 

we come to the asym ptotic properties of the density estimates. Kernels which satisfy 

conditions (A la) to  (A4a) are usually called second order kernels or simply kernel. 

The discussions of kernels with higher order than  the second will be presented. 

M ULTIVARIATE DENSITY
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It was Cacoullos (1964) who extended the univariate nonparam etric estim ator 

to. a m ultivariate framework. Consider the case where we have i.i.d. observations on 

the d—vector x., i= l,..,N  drawn from the density function f(xp ...,x^). Let us ignore 

the i subscripts. The estimates f(x) of the density function of f(x) is: 

f(x) =  (Na^a2 ...a^)“ ^SjK(a^“ ^ (x j-X jj) ,...,a j“ \ x j - x ^ j ) )  

where K(u) is a m ultivariate kernel satisfying certain conditions. For reasons best 

suited to our purpose, we restrict our attention to product kernels and a common 

bandwidth a^ = ...=  a^ =  a, where a is a sequence of positive constant satisfying 

lim^_^^a =  0. A diagonal bandwidth m atrix or a full bandw idth m atrix  may be

desired in some circumstances. Indeed, empirical worker usually use a diagonal

bandwidth with p th  diagonal element a^ =  s.d. (x^) x constant x N^, where a  is a 

negative fraction.

The bandwidth param eter controls the degree of smoothness of our estimates. 

In this case, the bandwidth is in fact the size of the neighbourhood which controls 

how many observations of x around x̂  should be used for local regressions or 

averages. If we have a common bandwidth, we end up with a simple form 

f(x) =  (Na‘̂ )“ ^ E .K (a " \x -x .) )

=  (N ad)-lS j{npkp(a-l(X p-X pj))}  (5)

where 11  ̂ refers to the product from 1 to  d and k^ is usually but not necessary a 

probability density function. For example, the normal kernel can be expressed as 

k(u) =  (27r) ^/^exp(—u^/2) (6)

In some cases, the k are not confined to be non—negative.

In our empirical work, we usually divide each x^ by the individual standard 

deviation. Constraining the covariance m atrix  of x to be an identity m atrix  is 

im portant in empirical work for the kernel estim ator to  be operational. I t is also 

difficult to  justify the use of the method of kernels if each x^ is of different units of
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measurement. In the case of nonparametric regression discussed below, the 

Nadaraya—W atson estim ator with product kernels and unit covariance m atrix  can be 

interpreted as an estim ator using diagonal bandwidth m atrix  with p—pth  element as 

[a X standard error (x^)].

2.4 NADARAYA-W ATSON KERNEL ESTIM ATOR FO R  CONDITIONAL 

MOMENTS

We shall return to our original problem of estim ating the conditional 

moments. W hile there are a number of choices for kernel estim ator of conditional 

moments, what we are about to present is known as the Nadaraya—W atson (N—W) 

estim ator which originated independently from Nadaraya (1964) and W atson (1964). 

This estim ator will be the most commonly used nonparam etric technique in our work.

Let Y be a random variable and X be a dx l vector of random  variables. We 

consider the  estim ation of the regression function E[Y |X]. Extension to the  second 

and higher moments, E[g(Y)|X], is straight forward. The joint density can be 

estim ated by

f(y,x) =  (N a^ ‘̂ ^)~^EjK(a'“ ^(x-Xj))K(a“ ^(y-y j)).

Using (2), the estim ator for the marginal density is 

f(y-x)dy 

=  (Na*^) ^S.K(a \ x —x.).

Using (3), the conditional density is estim ated as

Using (4), the estim ator for the conditional moment is therefore

m(x) = y fY |x(y  |x)dy = fx W ~ h _ ^  y f(y>x)dy

=  (aSjK(a“ \x -X j) )“ ^SjK(a“ \x -X j) )  yK (a~^(y-y j))dy  

By a change of variable, u =  a (y—y,), i.e., y =  (y .+au) and dy =  adu, we have 

m(x) =  (SjK(a“ \x -X j) )“ ^£jK(a“ ^(x-X j)J_^ (yj+au)K (u)du 

The classical assumption in these literature is th a t the kernel K(u) integrates to 1
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(see A (la)). If we make the assumption (A2a) th a t JuK (u)du =  0, we shall arrive at 

the N—W estim ator

m(x) =  (E j^ jK (a“ \x - X j) ) “ ^E j^jyjK (a“ \x -X j) )

-  SjKjy. (7)

or in m atrix form,

M(x) =  Ky.
*  1

where K . =  (E .K ,(u)) K .(u), K is known as the smoothing m atrix  with K-.
J ^ ^ J i j

elements and y is vector with elements y .̂ Since m(x) is a linear combination of the
*

yj, the N—W estim ator belongs to the class of linear estim ators given a. If K j is 

nonnegative and sum to one, it can be taken as a weighted average of yj. In this case, 

it is not too difficult to  understand how the N—W estim ator works. If m(x) is a 

smooth function, then it is plausible tha t the observations close to  x. contain useful 

information about m at Xj. One would want to  place more weight on the observations 

close to  X. and less or none of the weight on the observations further away from x.. 

Since the N—W estim ator is constructed by taking local average of the data  close to 

Xj, it can be taken to  be a local average estim ator. The bandw idth therefore controls 

how wide the interval should be and so how many observations should be used for 

averaging.

To implement the estim ator, we have to make several choices. One of these is 

the choice of the kernel. The most popular in applied work have been the normal 

density and uniform density. It is known from Monte Carlo results th a t the choice of 

kernel is not very im portant as long as more weight is given to observations nearer to 

Xj and less weight to observations further away. Notice th a t in the extrem e case by 

choosing a large enough bandwidth and K(u) =  I ( |u |< l /2 ) ,  we have K(u) =  1. We 

are in effect taking averages over all the observed yj and end up w ith the sample 

mean m =  N



The Method o f Kernels [ch 2. p^.40]

In some cases, in order to overcome technical difficulties, the N—W estim ator 

is augmented to prevent the denominator from going to  zero. The trim m ed N—W 

estim ator is defined to be

m(x) =  [I(fj>b)(EjK(a“ ^(x-Xj))“ ^]EjyjK(a“ \x -X j) )  (8)

where I is the usual indicator function and b is a user chosen trim m ing constant.

In other cases, in order to minimize the influence of outliers or for the 

construction of cross-validation or other autom atic bandwidth selection criteria, we 

use the leave—one—out estimator

=  (Sj^iK(a“ ^(x-Xj))“ ^Sj^jyjK(a~\x-Xj)) (9)

In order to  gain more insight into the estim ators, we have to discuss the 

asym ptotic properties. In particular, it is interesting to know under what regularity 

conditions are the estimators asymptotically unbiased, consistent and have a limiting 

normal distribution.

2.5 ASYMPTOTIC PROPERTIES OF DENSITY ESTIMATOR

First of all, let us discuss some of the asymptotic properties of f(x).

Theorem 5.1. (Asymptotic unbiasedness of f(x)). Suppose

(i) sup^ |K (u )| <  CO,

(ii) ;  . |K (u )ld u <  00,
R“

(iii) l i n i |^ |^ |u |^ K ( u )  =  0,

(iv) J , K(u)du =  1,
R“

(v) 1™N-400  ̂ =  0 .

Then at every continuity point of x of f,

=  f(x)

Proof: Cacoullos (1964)'s Theorem 3.1.

The result can be straightforwardly extended to the estim ation of functional of 

y ,̂ i.e., g(y.) replaces ŷ  in the kernel density estimates. In th a t case, the estim ate is
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asymptotically unbiased if h(x) =  E[g(y)|x] is continuous a t x and E h(x) <  oo. 

Theorem 5.2. (Mean square consistency of f(x)). If (i) to (v) hold and

(vi) =  0 .

Then at every continuity point x of f,

=  O'

Proof: Cacoullos (1964)'s Theorem 3.2.

The results can again be straightforwardly extended to  the case of g(y) with 

additional regularity conditions on the moments of g(y) and h(x). Besides being 

asym ptotically unbiased and consistent, the estim ator has a lim iting normal 

distribution.

Theorem 5.3. (Asymptotic Normality of f(x)). If (i) to (v) are satisfied 

Then at every continuity point x of f,

(N a"^)l/^(f(x)-f(x)) - N (0,^2)

where

(P" =  f(x)JK^(u)du.

Proof: Cacoullos (1964) and Prakasa Rao (1983).

We have now centred around the true f as opposed to Parzen (1972)'s E f.

Therefore, one can now construct confidence intervals for f(x) at each point of x with 
2

the estim ator of a as

P  =  f(x)jK ^(u)du . (10)

In fact, the density estimates are also known to be strongly consistent and 

uniformly strongly consistent. The last property is one of the measures of the global 

performance of the estim ator.

2.6 CONDITIONAL EXPECTATION

There are a lot of results on the N—W estim ator. Under some regularity 

conditions, the estim ator possesses consistent properties and is asym ptotically 

normally distributed. Let us present some results in more detail. Consider the more
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general estim ators of m(x) =  E[g(x) |x], at distinct x^ i= l,...N .

Theorem 6.1. If the conditions of Theorem 2 and for function of derivative hold, m(x) 

is mean square consistent.

Proof: Since both the num erator and denominator can be shown to be mean square 

consistent, we apply Slutsky's theorem to obtain the results.

Consider the N—W estim ator as a ratio 

m(x) =  (EjK(a“ \x -X j) )“ ^EjyjK(a“ V -X j) )

=  ^(x)/f(x )

where f(x) =  (E-K(a \ x —x.)) (11)

^(x) =  S jy jK (a~ \x -X j)) (12)

Since the N—W estim ator is a ratio, some authors have looked at the approximation 

of the ratios and obtained the asymptotic results. Let w(x) =  Jyf(x,y)dy and v(x) =  

Jy f(x,y)dy. The following theorem demonstrates th a t the N—W and some other 

nonparam etric regression estim ators are asymptotically normally distributed.

Theorem 6.2. Let Xp...Xj^ be distinct point. If

(i)(a) K(u) and |u K (u )| are bounded,

(b) JuK(u)du =  0, and

(c) Ju^K(u)du <  0 0 ,

(d) lim^_^^Na^ =  oo and lim ^^^N a^ =  0.

(ii) f(x.) >  0, 1 < i < k,

(iii) E |y |^ < « ,

(iv) the derivative of v exists and is bounded, w and f are twice 

differentiable and bounded,then

(Na)^/^[m (x^)-m (xj),...,m (xj^)-m (xj^)] '  Nj^(0,n), 

where H is a diagonal m atrix with the ith  element with

^ ii ^^var[y . |x.]j"K^(u)du, 1 < i < k.

Proof: Schuster (1972).
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This suggests tha t interval estimates can be easily constructed for

nonparam etric regression estimates. We also know th a t var[y|x] =  v(x)/f(x) —
2 2 2 (w (x)/f(x)) =  E[y |x] — {E[y|x]} . It is therefore easy to  suggest how to  construct

the estim ate for the conditional variance since we can express the variance as two

regression functions. Indeed, nonparametric variance estim ates are useful for

heteroscedastic problems.

2.7 DERIVATIVES OF CONDITIONAL EXPECTATION

In some of our problems, especially in those cases where we have to maximize 

or minimize a function with respect to the param eters of interest, we will have to 

consider the derivative of the N—W estim ator. In particular, we have in mind the 

problem of constructing two step or linearized ML estim ators. Suppose th a t m adm its 

r derivatives and we wish to estim ate the r^th  (r^ <  r) derivative.

Theorem 7.1 If the following conditions are satisfied,

(i) E[y2] < « ,,

(ii) f(x) >  0,

(iii) m(x) is r times differentiable,

(iv) If the characteristic function of K is ÿ ,  then J |u |^ ÿ (u )d u  <  oo, i.e.,

^(u) =  Jexp(iux)K(u)du, where i = —1.

W  ■ l i m |^ |^ |u K ( u ) |  =  0,

(vii) f is continuous in [a,b],

(viii) I f(u) I du<  0 0 , for ^  < c < a < b < d < 0 0 ,

(ix) J |uK (u) |du is finite,

(x) K '̂® (̂u) be a continuous function of bounded variation for j= 0 ,l,..,r .

(xi) f and its first r+1 derivatives are bounded,

(xii) lim j^^^a/e =  0,

(xiii) K,f,g are r + 1 times differentiable,
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then there is a constant C such tha t for any positive

I I  >  e 1 < C( Na ^ ’̂ ' ^^£^)“ ^

Proof: Schuster and Yakowitz (1974).

From the theorem, we can see tha t the rate  of convergence depends on r. The 

problems th a t we will be concerned with only requires first derivative.

2-8 HIGHER ORDER KERNELS AND OPTIMAL BANDWIDTH

As we have mentioned above, it is sometimes desirable to relax the 

non—negative kernel and take advantage of the smoothness of m. Improved 

asym ptotic rates of convergence can be attained via the use of a higher—order kernels. 

Of course, what we are about to  describe is not the only way to reduce bias, the 

method of Jackknife (see Schucany and Sommers (1977)) has also been used by other 

authors in semiparametric models. In fact, it would be useful to introduce the higher 

order kernel of Barlett (1963).

Definition 8.1: Let f be  ̂ times differentiable in the neighbourhood of x, kernel of 

order i  is to satisfy

(i) Ju^K(u)du =  6.Q, 0 < i < &-1;

(ii) J |u |^ K (u )d u  /  0;

(iii) Sup^ ( l+ |u |^ '^ ^ ) |K (u ) | < o o ;

where 6- is the Kronecker's delta, (i) ensures th a t we have enough zero moments. 

Sometimes, it may be desirable to relax (ii) and (iii) as in other higher—order kernel 

literature (see, Prakasa Rao (1983)).

Higher—order kernels are unlikely to  be very popular in purely nonparam etric 

models and indeed few empirical work has used the higher—order kernels because they 

can take negative values. However, as we shall see in later chapters, it is im portant in 

establishing root N consistency in some semiparametric problems. Higher—order 

kernels can usually be taken as functions whose lower moments are zeros. The 

following theorem will dem onstrate the advantage of a higher—order kernels.
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Theorem 8.1: Let f be  ̂ times differentiable in the neighbourhood of x and K is a 

higher—order kernel given in Definition 1. Then 

E f(x) =  f(x) + 0 ( / )

Proof: Robinson (1989).

This theorem shows tha t the bias decreases "sufficiently fast" with a. We have 

assumed th a t K(u) integrates to 1 and tha t we have a sufficiently smooth function 

with enough zero moments. Thus, it is easy to suggest a e K. W ith i  even and (/? a 

even function, we can suggest each kp(u) as a product of ^ (u ) and ^(u) where ^ (u ) is 

an even polynomial in u, i.e.,

k(u) =  (13)

we can easily find c^'s which satisfy (i), e.g.,

(a) if ÿ(u) =  l / 2 I ( |u |< l ) ,  then the moments are

m^=0 if r is odd;

m^= Ju^^(u)du =  [r+1]  ̂ if r is even;

(b) if ^(u) =  (27t) ^/^exp(—u^ /2), then the moments are

m^=0 if r is odd;

m^=j"u^ÿi(u)du =  r![(r/2)!(2^/^)]~^ if r is even; 

substituting k(u) into (i), we will have a system of (&-2)/2 equations of the form 

M c =  d,

where

c =

M =

*̂0 ■ 1 ■

^1 d = 0

V - 2 ) /2 - Ô
■ 1 m.2 m^ . . . ™(&2)

“ 2 m^ . . . .

■ “ (f-2 )
•

™2(f-2)

Thus, there is little  problem in finding c^. Conditions (ii) and (iii) may be replaced by
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a stronger condition K(u) =  0 ((l4 - ^), for some e >  0. W hen r =  2, we

have the simple density estimates. Although the theorem holds for a variety of

distributions for K(u), it rules out Cauchy distribution because its moments do not 

exist.

To understand the bandwidth selection problem in higher—order kernels, let us 

look at the MSE. The MSE of a higher—order kernel can be expressed as :

MSE (f) =  b ias(f)^ + var(f)

where

bias(f) =  jK (u){f(x—an)-f(x)}du

var(f) =  N ^[a ^jK(u)% (x—au)du — (jK (u)f(x—au)du)^]

W ith the Taylor series expansion, given tha t au is small, we have 

f(x—au) =  f(x) — auf'(x) + 1/2 a \% " ( x )  + ....

But from the definitions of higher—order kernel, the first r—1 moments of the kernel is 

zero. This implies the moments of f are all zeros except the term  associated with ar. 

Therefore, we are left with

bias =  constant x f^(x) Ju^K(u)du x a^

Similarly,

var (f) =  (Na) ^J{f(x)—auf'(x)

+ 1/2 (au)% "(x)-...}K ^(u)du + 0 (N

» (Na) %(x)J’K^(u)du 

=  Cg(Na)^^

We can now consider the "optimal bandwidth" a^^^ =  min^ MSE with 

MSE =  {CgCNa)^^ + (C^a*^)^}.

Consider the use of simple calculus,

SM SE/aa =  -CgCNa^)”  ̂ + 2rC ja^’'~^ =  0
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From  this first order condition, we have

V t  =  C N - “

where C =  (C 2 / ( 2 rC ^))a, a  =  l / ( 2 r+ l) .

C is a function of f(x) since both and Cg are functions of f(x). As 

mentioned above, the problem in obtaining the optim al a in practice is th a t f(x) is 

unknown! It appears tha t we may be able to work out the unknown constant and 

Cg if we take the average a^^^'s corresponding to  two different N's: and The

results on optimal bandwidth can be extended to d—dimension m ultivariate density 

estim ates straightforwardly. In the case of Cacoulous (1964)'s m ultivariate kernel, we 

have a^p^ =  constant x (N where a  =  d + 2r.

Since depends on JK (u)du, Epanechnikov (1969) has gone further by

finding the optim um  kernel by minimizing jK  (u)du subject to the constraints tha t 

(i) the kernel integrates to one, (ii) a symmetric kernel and (iii) Ju K(u)du =  1. This 

produces what is now known as the Epanechnikov kernel which is non—negative. 

Notice also tha t replacing (ii) by (ii)' JuK (u)du =  0 allows for non—symmetric 

kernels. However, it has been known from Epanechnikov (1969) th a t there is very 

little  difference in using different kernels and the choice of kernels should be based on 

com putational and technical considerations. For these reasons, the uniform and 

normal kernels have been favoured in most applied studies and indeed our work in 

this thesis.

2.9 DEPENDENT OBSERVATIONS

In economics, we often deal with time series. It is therefore useful to 

understand some dependence conditions used in the study of the asymptotic 

properties of the estimators. We generally assume th a t the observed economic 

variables {W^, - o o < t < o o }  is strictly stationary. Let denotes the cr—algebra of 

events generated by for - o o  < a < b < oo . W e say W^ is

(i) Strong Mixing (SM) if
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ttj =  sup |P ( A n B ) - P ( A ) P ( B ) |0, as j -> 0 0 .
BeM*^ ,AeM “

-® J
(i) Absolute Regular (ARE) if

/? .=  E { s u p  |P (A |M _ ^ ) -P (A ) |} - .0 ,  a s j - œ .

AeM ?

(iii) Uniform Mixing (UM) if

ÿj =  sup I P(A I B )-P (A ) I -4 0, as j 0 0 .
B êM ‘',AeM°?

J
It is known tha t (iii) ^  (ii) ^  (i) since . (ÿj) > (/?j) > (nj).W hile there are 

asym ptotic results under various stationary processes for the kernel estim ators, some 

results for strong mixing have been provided in Robinson (1983). Under some 

regularity conditions, additional to the usual conditions imposed on the kernels, rate 

of convergence of a as well as the condition tha t W is SM, f(x) and m(x) have the 

same limiting distribution as in the case where x /s  are i.i.d.. However, he warned 

against placing too much faith in the estimates because the performance of the kernel 

estim ates clearly depend crucially on the choice of bandwidth. It is perhaps not 

surprising tha t stronger conditions have to be imposed for the central lim it theorem, 

what is surprising is tha t the same rate of convergence and covariance m atrix  are 

identical to the case of i.i.d.. The results thus justify the use of kernel estim ation in 

the tim e series case. Recent work of Robinson (1986) discovered th a t the bandwidth 

chosen should be larger than tha t for i.i.d case.

2.10 OUTLIERS AND TAIL EFFEC T

Unfortunately, the N—W estim ator is sensitive to  outliers in the data. Take 

the case of a normal kernel. If the point x. lies far away from the rest of the 

observations with the exception of one or two points, the N—W  estim ate will be 

heavily influenced by these two points as the normal kernel places little  weight on 

other observations further away. In the extreme case, where x^ is far away from the
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rest of the observations, SjKjyj/EjKj =  y^. The same problem will occur if one uses 

too small a common bandwidth which controls the number of observations to  be used 

for averaging. This is exactly the problem one faces in the case of density estimates 

when estim ating the tails where there are only a few observations around.

There are solutions to these problems, such as using the leave—one-out 

estim ator to exclude the ith  observation when summing over the N observations in 

the density or N—W estimates. Another solution may be to  use a variable bandwidth 

which may generate further problems in practice.

2.11 HIGH DIMENSIONALITY

Applying the kernel estim ator to m ultivariate economic problems has its 

shortcomings. One serious problem with the kernel estim ator is the "curse of 

dimensionality". This problem arises when we have a large number of explanatory 

variables as we often encounter in economic applications. The scarcity of da ta  in a 

m ultivariate environment will generally make the kernel estim ators undesirable. As 

we shall see from the theorem, the bias of the N—W estim ator reduces with increased 

bandwidth. If one desires a small bias, then a smaller bandwidth should be used. 

Unfortunately, the variance of the estim ate increases (variance is proportional to  Na^ 

in the N—W estim ator) as we increase the bandwidth. At the same tim e, the variance 

increases as we increase the dimension of our explanatory variables. Conceiving the 

kernel estim ator as a local regression or average estim ator, we can see th a t unless we 

have a large number of observations, in a very high dimension space, we are unlikely 

to find enough observations around Xj to give us a good enough estim ate. This empty 

space phenomena associated with rapidly increasing variance w ith increasing 

dimension has been termed the "curse of dimensionality".

Another problem with m ultivariate application is interpretability . One will 

find it difficult to comprehend the relationship between dependent and independent 

variables. To visualize the relationship between the dependent variable and just two
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independent variables is not too difficult as a plot of three dimensional diagram will 

give some idea of the dependency. However, it becomes more of a problem when one 

has more than four dimensions. Failure to detect certain features may in fact be 

counter productive in using nonparametric regression.

From the theoretical point, there are always some assumptions to  be made 

when one is dealing with m ultivariate nonparam etric estimations. If the variables are 

highly correlated or are of different unit of measurements, it may be hard to justify 

the use of m ultivariate kernels. Furthermore, from the com putational point of view, a 

m ultivariate kernel is very expensive to compute.

One of the solutions is to apply a preliminary dimension reduction technique 

so th a t we may additively approximate m(x). We may then apply the N—W 

estim ator to the additive approximation, e.g., we may find

m(x) =  a  + SjTj(Xj)

The discussion of the this type of additive approxim ation is presented 

in Stone (1985). One possibility is to  find Tj to minimize

E [m (x )-a -E jT j(X j)^ ]

subject to the zero mean constraint, i.e., Emj =  0, j= l,. . ,d . One may let a  =  y =  

N &nd mj be estim ated by spline nonparam etric estim ators. Under some

regularity conditions. Stone (1985) has shown tha t the estim ator is consistent.

An alternative method of additive approximation is suggested by Friedman 

and Stuetzle (1981). Their backfitting algorithm allows for different smoothers for 

different m j's, such as splines, kernel, nearest neighbour, etc., to  be used. The 

procedure involves estim ating the Tj holding all other T j's  constant. Assume th a t the 

current estim ates are T,. We can update Tj^ by any nonparam etric method smoothing 

e over Xj, where e is partial residual vector such tha t e =  y — Sj^j^Tj(Xj). Further 

improvement is attained by repeating the process.

Another method is the projection pursuit regression of Friedm an and Stuetzle
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(1981) which is a generalization of the methods mentioned above. The technique is to 

apply nonparametric regression on the linear combinations of the explanatory 

variables rather than on the individual variable. The main advantage over the 

previous methods being tha t multiplicative form, e.g., Cobb—Douglas function Y =  

can be accommodated. More specifically, we have 

m(x) = a  + SjTj(/?j'Zj) 

which can easily handle interaction terms between the explanatory variables and 

thus, it is more flexible.

But most of the methods discussed above involve heavy computing and it will 

be difficult to justify their use as a preliminary dimension reduction technique for 

subsequent kernel estimation. A conceptually easy to  understand and computational 

efficient method is outlined in a later chapter. In particular, we have 

m(x) =  a  + m(Ej/?j'Zj).

The model is discussed in Chapter 7. Various additive models have been proposed and 

applied in the statistical literature. For recent developments and further discussions, 

see Buja, Hastie and Tibshirani (1989).
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A SEMIPARAMETRIC HEDONIC APPROACH

52
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3.1 INTRODUCTION

The use of hedonic price methods in transportation research has been less 

favoured in recent years for various reasons. The most im portant of these has been 

the focus of discrete choice modelling in transport economics. The advancement of 

computing facilities and econometric theory has allowed more elaborate models to be 

used (e.g. Boyd and Mellman (1980)). Discrete choice modelling makes good 

economic sense and is intuitively more appealing but some argue th a t it does not 

utilize as much market information as in the case of hedonic method.

Rosen (1974)'s seminal contribution has given the hedonic price function a 

firm theoretical foundation. His theory suggests th a t the price function reflects the 

points where marginal bids of buyers and marginal offers of sellers are equal. The 

hedonic price function thus represents the valuation of the attribu tes of the 

commodity jointly supplied by the sellers and purchased by the buyers in the market. 

His view has led to a lot of discussions of the "two—stage" estim ation procedures in 

recent econometric literature which we will discuss in Chapter 4.

In the semiparametric literature, Stock (1985a) has suggested a 

semiparametric hedonic two—stage model but his method does not allow for discrete 

and dummy variables which are frequently encountered. In another paper, Stock 

(1985b)'s semiparametric method for valuation of benefits allows for the presence of 

dummy variables and has been applied in the next chapter.

In this chapter, we adopt O hta and Griliches (1976)'s "two—stage" hypothesis 

in asserting th a t there are two kinds of car attributes: the first enters the utility 

function directly since the consumer derives utility  from them; and the second enters 

only through the budget constraint. As noticed by Atkinson and Halvorsen (1984), 

the main difficulty, among others, in applying Rosen's two—stage procedure is the 

problem of multicollinearity among the attributes. This problem has led to  estimates
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with the wrong signs, especially in estimating the implicit price of fuel efficiency, e.g., 

Goodman (1983). In order to avoid the m ulticollinearity problem, Atkinson and 

Halvorsen (1984) have constructed a static model and suggested the use of an 

augmented hedonic price equation which excludes fuel efficiency, and allows the 

efficiency to enter the consumer's optimization problem via the budget constraint.

In our case, a non—stochastic intertem poral model is constructed and the 

comparative static analysis of the rental market is conducted. The elasticities can be 

constructed from the system of nonhomogeneous equations. Identification of the 

param eters of the utility  function is achieved via a log—linear augmented 

semiparametric hedonic price equation by imposing the homogeneity assumption.

One of the main contributions of this chapter is the use of MM in obtaining 

the estim ates for transformation models. These techniques are used to estim ate the 

rental cost function and the fuel efficient function which have little, if any, a priori 

economic information in formulation of the function forms.

Recently, Robinson (1988e) and Newey (1987) have proposed methods to 

construct efficient instrum ents for nonlinear system of equations of which 

transform ation models is a special class. Robinson's method is param etric in the sense 

th a t one has to be able to obtain a closed form expression for the dependent variable 

and forms the instrum ents by taking sample averages. Newey's method is 

sem iparam etric in the sense that the efficient instrum ents and conditional variance 

(or variance—covariance matrix) are formed by nonparam etric regression using 

nearest neighbours. In both cases, no specification of the distribution of disturbance 

term  is required. We augment Robinson (1988e)'s method by forming the instrum ent 

with sample averages and adapting for heteroscedasticity using kernel regression. We 

require a smoothing number as a consequence of nonparam etrically estim ating the 

conditional variance which is a nuisance function. This bandwidth, which controls the 

smoothness of the nuisance function, is chosen autom atically by Gaussian pseudo
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log—likelihood criterion. For completeness, we have also presented a semiparametric 

maximum likelihood (SML) method for the estim ation of the heteroscedastic 

hyperbolic Box—Cox model.

The results for the elasticities are consistent w ith previous cross section and 

tim e series findings, and indicate that the petrol price elasticity of demand for fuel 

efficiency is close to unity and the own price elasticity of fuel is likely to  be elastic.

The organization of the chapter is as follows: Section 2 introduces the 

economic model; Section 3 discusses the inverse hyperbolic sine and Box—Cox 

transformations and associated models; MM and ML method for these models are 

presented in Section 4; the results are presented and analyzed in Section 5; The 

problems associated with the identification of the taste  param eters and construction 

of the elasticities are addressed in Section 6; finally, the conclusion is presented in 

Section 7.

3.2 A NON-STOCHASTIC MODEL OF UTILITY MAXIMIZATION

Our intention is to construct the petrol price elasticity of demand for 

attributes. Fuel efficiency with respect to the change in the price of petrol can be 

constructed easily from these price elasticities. Application of comparative static 

analysis to  an intertem poral model will avoid the problems of m ulticollinearity and 

identification, which affect the traditional approach of hedonic studies. Let us 

consider a  non—stochastic model of an individual making consumption plan over an 

infinite period. The individual consumer is assumed to have a well defined preference 

ordering over car a ttributes demand z and consumption C in each period. The 

consumer m axim ization problem can be written as:

Ma^z Ç U(zpZg , ,CpCg, )

subject to

P .C , R(z)M. P„fM.
^ t = l - ^  + ^ t : l  + ^ t = l ^ ^  = Y z  + Y ,
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where =  a m xl vector of attributes in year t

=  consumption of other goods in year t 

=  price of consumption good in year t 

=  price of petrol in year t 

R =  rental cost per m ile/ running and m aintenance cost per mile 

=  miles travelled in year t 

E =  car efficiency

d^ =  (1+r)^ =  discount factor in year t 

r =  real interest rate

=  budget allocation to car ownership 

=  budget allocation to other consumption 

The model allows for lending and borrowing at the m arket ra te  of interest r. 

The crux of the model is tha t the individual faces only a single budget constraint, 

which is a function of car efficiency, running and maintenance cost. These variables 

are in turn  functions of car attributes. Here, we employ the hedonic hypothesis that 

car prices or costs are a function of their characteristics. The other basic m aintained 

hypothesis, which has been employed in Atkinson and Halvorsen (1984) and O hta 

and Griliches (1986), is tha t there are two kinds of car characteristics: the first kind 

of attributes, namely z =  (z^Zg^.-.z^), enters the utility  function directly; the second 

kind, namely, E and R, enters the u tility  function indirectly. Those physical 

characteristics which enter the utility function directly are attributes such as 

specifications, dimensions and performance variables of the car desired by the 

consumer. The la tter hypothesis has been term ed "Two—Stage" hypothesis by O hta 

and Griliches (1976). At this point, we make the following assumptions on U:

(i) U is weakly separable in car a ttributes (z) and all other consumption goods

(C);
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(ii) U is separable over time and U =  E^U/s^, where s  ̂ =  ( l+ /? ) \  and p is the 

nonzero rate  of time preference.

The assumptions permit us to write the subutility maximization problem as:

subject to
R(z)M, voo t , v > o o

4 = 1 ----- 3^ + 4 = 1  d " Ë ( z )  ~  ^z

The Lagrangian function is

L = S U(z) +  ̂[Y  ̂ -  R(z) -  Gg E (z r^ ) 

where S =  Sj(l+p) 4  G j =  Gg =  4 ^ g t

which gives the following m+1 first order conditions:

S Uj + f[G jR j-B E j]  =  0, i=l,2,..., m (1) 

[Ŷ  -  G^R(z) -  GgE(zr^] =  0 

B =  GgE"^

The first m equations are just the usual marginal conditions which state  that 

marginal u tility  is equal to marginal cost, where marginal cost is the sum of marginal 

rental cost and marginal petrol expenditure. The (m + l) th  equation is just the budget 

constraint. Given these first order conditions, we can proceed with our analysis the 

effect of a change of the price of petrol on the a ttributes by using com parative static. 

Differentiate with respect to the base period price P q, we have

Ej[S U ; j - f { - G j R ; j  + [B E jj-2B E -^E jE j]}]

[G^R. — BE.] d l j^Pq =  — i= l,2 ....,m

E j[G ^R j-B E j] & y ^ p  =  - B p E

and in partitioned m atrix form 

w =  bA a 
a 0

where

A(ij) =  [S Uj. -  ff-G jR jj + [BEjj -  2BE ^EjEj]}]
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a(i) =  [GjRj -  BEj]

b =  - ( ^ B p E i , f f lp E 2 „ .,f f ip E ^ ,B p E ) '

w =  (ôz^ / ôPq, ô z g /^ ’o’- ’

Bp =  -a O g /a P q  E -2

The negative of the partial derivative of to ta l present value of petrol

expenditure with respect to fuel efficiency, —B, can be interpreted as the marginal

benefits of increased fuel efficiency. The derivative of B with respect to Pq, d B /d ? ^  ,

is the effect of marginal benefit of a change in the base period price, P q. The

comparative static equations form a nonhomogeneous system of equations and

therefore one can solve numerically for the m + 1  unknowns. We need, however, to

specify the cost as well as the fuel efficiency function to obtain the estimates before

we can construct the petrol elasticities of a ttribu te  with the help of the elements in w.

We can also construct the elasticity of demand for fuel efficiency with respect to the

change in the price of petrol which is of interest, i.e.,
^logE P q 5z .

^d “  ^logPQ “  ~TT  ^Zj ^

There are two implicit simplifying assumptions. First of all, miles driven is 

exogenously given. It is equivalent to the alternative assumption th a t is 

endogenous and dependent on z and E(z), and tha t the increase in miles driven 

caused by the increase in an a ttribu te  is entirely offset by the decrease in fuel

efficiency brought about by the increase in the a ttribute , i.e.,
m  _  m  dE 
d z  j ~ dW ~  c>Zj

Secondly, we rule out technological improvement in fuel efficiency. In other words, 

fuel efficiency improvements are brought about strictly by decreasing at least one of 

the attributes desired by the individual.
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The following sections will discuss the appropriate procedures for estim ating 

the rental cost function, R(z), and the fuel efficiency function E(z). In the absence of 

a priori information on the functional form, a new class of heteroscedastic 

transform ation models is introduced. But some discussions on the Box—Cox 

transform ation model are presented to m otivate the use of the new procedures.

3.3 TRANSFORM ATION MODELS

There is no economic information to assist one in choosing the appropriate 

functional form for the cost and fuel efficiency functions. Most param etric methods 

will be too restrictive and unlikely to be consistent in the presence of slight 

misspecifications. Purely nonparam etric methods are unsuitable for m ultivariate 

applications unless one has a very large data set. The usual approach is to  employ 

robust techniques where flexibility of functional form is allowed.

However, the presence of dummy variables in cross sectional studies does not 

allow the use of some of the interesting and relevant techniques which allow the 

param eter to be consistently estim ated up to a scalar multiple, e.g.. Stoker (1986) 

and Powell, Stock and Stoker (1986).

Transform ation models are favoured by many applied economists for these 

models embody most flexible functional forms. Let us define some notations: the 

summation sign, Ej refers to the summing from a ttribu te  1  to m and E. refers to the 

summing from observation 1  to  N throughout the chapter.

There are four classes of transformation models:

( 1 ) Single transform ation model

— c + + Ej7 jZjj + u- i= l,2 ,...,N
2 2with E(U| |z .) =  0 and E(u. |zj) =  cr . T is a transform ation to be defined and ii is the 

transform ation param eter, 6  is a scalar param eter, and 7 j's  are param eters to be 

estim ated. D is a dummy variable and Zj's are attributes.

Single transform ation model refers to the transform ation of only the dependent
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variable. This has been an area of interest for theoretical research for many years. It 

originated from the biostatistical literature (see, e.g., Curtiss (1943)) and recent 

attention has been on nonparametric estim ation. The most commonly used 

transform ation model in applied economics has been the Box—Cox model which is 

discussed below.

(ii) Double transformation model

“  T 2 ([c + 6 D| + Ej7 jZj|]; + u. i= l,2 ,...,N
2 2with E(u. |z.) =  0 and E(u- |zj) =  cr . T^ and Tg are transform ations to be defined 

and the /ij's are the transformation parameters. The double transform ation model has 

only appeared recently in empirical work (See Carroll and Ruppert (1988) and 

references thereafter). It refers to models which have both the dependent variable and 

the mean transformed. This model is of interest if only one can justify th a t y =  

f(D j,Z p..,z^) with f linear, and wish to correct for skewness (induce normality) 

and /o r correct for heteroscedasticity.

(iii) Multiple transformation model

^^(yp/^) =  c + &D. + Ej7 jT 2 (Zjj;/ij) + u. i= l,2 ,,..N
2 2with E (u j|z j) =  0 and E(uj |z.) =  < 7 . T^ and T 2  are transform ations to be defined

and the p  and the p-'s are the transform ation param eters. This model is also of great 
J

interest to economists for reasons discussed below. Here we have each Zj transformed 

either by (a) the same p as y.; (b) the same p for all other ẑ ; or (c) different p.

(iv) Quadratic transformation model

^^(yp/^) =  c + 6 D. + Ej7 jT 2 (Zjj;//j)

+ *  " i 1=1,2,.,.N

The quadratic transformation model (QTM) is highly parameterized and 

involves the cross product terms. This approach is now favoured in many empirical 

studies. The Gaussian Box—Cox QTM is without doubt, the most used (mis—used) 

models in economics.
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For our purpose, we define a class of heteroscedastic multiple transform ation

model which takes the form

—  c  +  +  E j 7 j T 2 ( Z j - ; / / j )  +  u .  i = l , 2 , . . . N  ( 2 )

2 2with E (u j|z j) =  0 and E(u. |z .) =  cr(zj) . and Tg are transformations to be

defined and p and p-̂ 's are the transformation parameters. The rental cost and fuel

efficiency models can be described by

T j ^ ( R j ; A )  =  Cj^ 4 -  ^  i = l , 2 , . . . N  ( 1 )

T ^ ( E . ; ÿ )  =  C g  +  +  E j 7 T j T 2 ( Z j . ; ÿ j )  +  u ^ ^  i = l , 2 , . . . N  ( 2 )

with E(uj^.|zj) =  E (u 2 *|z.) =  0  and we are not ruling out heteroscedasticity

th rough-ou t the discussions.

Of course, as Curtiss (1943), B arlett (1947) and others have noted,

transform ation can stabilize the variance. For example, if E[yj] =  W j, var(y^) =  cr. =
*

crf(Wj) and var(T (y.)) =  cr. , then by approximation using Taylor series expansion

= E [T (y i)-E T (y i ) ] 2

« E[T(y;)-T(W ;)]^

« {(5T/9W j)E[yj-W j]}2 

=  {(5T/0Wj)<7i}2 

=  {(5T/0W j)<rf(W j)}2 .

*
Therefore, if &T/dW.^ = constant/f(W ^), then cr. is constant. However, this is not 

always possible. If heteroscedasticity remains, a heteroscedastic model is more 

appropriate.

The a ttribu tes we have included to capture the essential elements are engine 

size, spaciousness, power and acceleration. The dummy D. (denoted by D y  .) is 

included to  give some idea of the  effect of introducing cars which can use unleaded 

petrol w ithout adjustm ent on its cost and fuel efficiency, as there have been some 

recent discussions and controversies surrounding the use of unleaded petrol. Our
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discussions below centre around various transform ation models.

3.3.1 HETEROSCEDASTIC BOX-COX (HBC) TRANSFORMATION MODEL

The scaled heteroscedastic Box—Cox (HBC) transform ation model is obtained 

by replacing T^ and T^ in (2 ) by T g ^ :

T gcC yi’̂ ) ~  c + 6 D. + Sj7 jTgç(Zjj;//j) + u. i= l,2 ,...N

where

T gç(Z ;A ) =  I(AjtO)(Z^-c'')/Ac'^) + I(A=0)Log(Z/c)

I is the usual indicator function, c is the scaling constant which depends on Z, and A

is a transform ation (or scaling parameter) to be estim ated. The scaling constant is

usually employed in empirical work (see Dagenais, Gaudry and Tran (1987)) in order

to avoid numerical problems.

Notice th a t if A =  0, then the transformation is scale invariant while the usual

approach to deal with the transformation when A ^ 0  is to m ultiply the coefficients by

the appropriate scale in order to reflect the units of measurement (except under the

inappropriate MLE framework which will be discuss below). We can take c to be 10
 1 *

to the power of pog^Q N E^Z.], where [Z ] is the largest integer less than or equal to 
*

Z . Some alternative definitions for scaled transform ation families can be found in 

Schlesselman (1971).

For various reasons, the Box—Cox transform ation has received special 

atten tion  in economics. Despite the original intentions of Box and Cox (1964) for 

transform ation to  induce normality, constancy of the error variance, independence of 

the observations, and additivity of the independent variables, the Box—Cox model 

has been extended to accommodate all the violations of these assumptions for valid 

reasons. In particular, the quadratic Box—Cox model listed in (iv) above with =  0, 

embodies most of the functional forms, e.g., translog [p = = = 0 ), quadratic {p,

~  (/̂  =  //j =  =  0 ), linear {p and all /ij =  1 , =  0 ),
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sem i-log (// =  0 , //j =  1 , =  0 ), inverse log [p =  1 , //̂  =  0 , =  0 ), generalized

square root quadratic (p = 1 , p̂  ̂ =  p^^ = 2 ), generalized Leontief (p = 1 / 2 , p.̂  = p^^ 

=  1 ), generalized Leontief with homogeneity imposed {p =  1 / 2 , p^^ =  1 , 7 j =  0), etc.

This is accepted as the model to use in various areas of applied 

microeconomics (Halvorsen and Pollakowski (1981)) though it is not without 

criticisms (Cassel and Mendelsohn (1985)). Extensions to heteroscedasticity and 

serial correlation within the ML principle have also been discussed and applied (see, 

e.g., Gaudry and Dagenais (1979), Lahiri and Egy (1981), Savin and W hite (1978) 

and others).

A desirable estim ation procedure for the Box—Cox model is MM. Although 

MM is the more appropriate technique, the most commonly used technique is the so 

called Gaussian "maximum likelihood" which suffers from various defects discussed 

below. Most applied work in urban economics failed to  m ention any of the following 

defects when using the likelihood maximand.

First of all, while it is true tha t ML estim ation is first order efficient, it is 

known th a t the disturbance term  cannot be normally distributed, as the dependent 

variable has to  be positive. There are various modifications, such as Bickel and 

Docksum (1981)'s approach to induce normality, or the approach of defining a proper 

ML function (e.g.. Gamma distribution as assumed in Amemiya and Powell (1981) or 

truncated normal as in Poirier (1978)). However, these have not been adopted in 

empirical work despite the Monte Carlo evidence of Amemiya and Powell (1981) tha t 

MM out—performs the ML method in many cases, even when the true Gam m a error 

distribution is known.

W hile some (e.g. Dagenais et. al. (1987)) acknowledged th a t the so called 

"maximum likelihood" function is a maximand rather than  a Gaussian likelihood 

function, none of the applied econometric work defined a proper likelihood or devoted 

any a tten tion  to the issue of consistency. One argument has been tha t all economic
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variables are some sort of limited dependent variable and it is rarely in economic 

applications th a t the dependent variable admits non—positive values. Draper and Cox 

(1969)’s result has also been quoted frequently in support of the fact th a t the if the 

disturbance distribution is nearly symmetric, the bias is negligible. Many would 

conclude th a t the impossibility of normality is only a theoretical curiosum and of no 

practical significance. However, further observations described below rem ind us that 

more care should be taken when Gaussianity is assumed.

The second point which one needs to bear in mind is th a t the Gaussian ML 

estim ator for models which are nonlinear in the dependent variable is unlikely to be 

consistent when u is in fact not normally distributed (Amemiya (1977)). In this 

respect, one should therefore use robust methods which can at least retain  consistency 

if not efficiency.

The th ird  point is related to the estim ation of the variance—covariance m atrix 

and statistical inference. The true asymptotic variance-covariance m atrix  from the 

method mentioned above is not the expression derived from the usual ML method, for 

the fact th a t

lim T ~ ^E ( 5 ^LogL/9 tf5 ^') # lim T“ ^E(5LogL/ô« dLogLjdff),  

where T  E(LogL) is the maximand and 0 is a  vector of unknown param eters. It is in 

fact equal to

lim T [E (g^L ogL /gm ')]"^E (aL ogL /ag  dLogLjdff)[Y,{d^'LogLldedff)]~^ 

evaluated at the estimates 9 obtained using the maximand (Amemiya (1985)). Thus, 

one would assume tha t the standard errors reported in the literature are incorrect. 

Many empirical studies also ignore the fact th a t Gaussianity is logically impossible 

and proceed to discuss the selection of functional form in the classical ML framework. 

The test s ta tistic  so widely used in the literature is not in fact the likelihood ratio 

test statistic.

In view of these observations, we argue th a t MM, which is asym ptotically
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efficient within a class of models with conditional moment restrictions, should be used 

in Box—Cox estimation. However, there are other transform ation models which may 

be useful to economic applications and two such models are described below.

3.3.2 HETEROSCEDASTIC INVERSE HYPERBOLIC SINE (HIHS)

TRANSFORMATION MODEL

Replacing T̂  ̂ and Tg in ( 2 ) by Tg gives the heteroscedastic inverse hyperbolic 

sine (HIHS) model

^S^^i’̂ ^ ~  ^ ^j?jTg(Zj.;/ij) + Uj i= l,2 ,...N

where

or

Tg(Z;A) = I(AjfO)A ^sinh \ aZ/c) + I(A=0)(Z/c)

Tg(Z;A) =  I(A9É0 )Log(AZ+Vâ)A  ̂ + I(A=0)(Z/c)
2   1

where a =  ( 1  + (AZ) ). The sinh transform ation first appeared in Beall (1942) on 

the square root transform ation literature and later discussed by Curtiss (1943), 

Johnson (1949) and many others. Johnson (1949) was the first to mention Tg, i.e., 

the use of AZ rather than -/(AZ) as in previous studies. Recent interest on ML 

estim ation has been shown in Burbidge, Magee and Robb (1988), MacKinnon and 

Magee (1989). The advantage is tha t the transform ation applies to all real values and 

it embodies both the level and logarithm as special cases. Gaussian ML function is 

not ruled out but MM is the preferred procedure because of its robustness. However, 

this model is more prone to multicollinearity problem when the independent variables 

are transformed. Notice tha t the transformation is applied to the product of the 

scaling param eter A and Z, thus causing problem when A is very small or large. The 

following proposed model which combines both Box—Cox and sinh”  ̂ transform ation 

has advantages over the HIHS model.
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3.3.3 HETEROSCEDASTIC HYPERBOLIC B O X -C O X  (HHBC) 

TRANSFORM ATION MODEL

A desirable transformation model for many economic applications is the 

following:

^S^^i'^^ ~  ^ ^ ® i ^ ^  ^i i= l,2 ,...N

which is a model with both hyperbolic and Box—Cox transform ations. This can be 

termed heteroscedastic hyperbolic Box—Cox (HHBC) transform ation model. There 

are various advantages to this model. First of all, like the HIHS model, the 

transform ation can be applied to all real values of the dependent variable. Secondly, 

the distribution of the u can be Gaussian and the usual classical theory on Gaussian 

ML can be applied if one desires. Finally, we can have more efficient instrum ents by 

employing Robinson's method. Although Robinson's m ethod can also be applied to 

the HBC model and may indeed produce more efficient estim ates when it works, the 

method will most certainly fail if the 7 's are mostly negative. We will return  to this 

point in a later section.

Thus, we have proposed a model which retains the desired properties of IHS 

transform ation and yet less prone to multicollinearity. Both MM and ML method can 

be used for estim ation when the dependent variable is transformed by IHS. However, 

as we have mentioned before, ML is unlikely to be robust and it should be standard 

practice to  produce MM estimates together with the ML estim ates. Let us present 

MM and ML method.

3.4. M ETHOD O F MOMENTS AND MAXIMUM LIKELIHOOD M ETHOD

We proceed to discuss MM in a general set up. The conditional moment 

restriction of a transform ation model is

E[u(x.,^)|z.] =  0

where u can be a vector with E[ujUj'|z.] =  D, x. =  (y .,z .') ', z. =  (c, D pT 2 (zj^j,//j^), 

..,T 2  ^ =  (c, 6, a)'- The MM estim ator of 0 can be obtained



A Semiparametric Hedonic Approach [ch 3. pÿ.67]

as e =  argmin^gg[EjV(Zj)u(Xj,«)]'Aj^[EjV(zj)u(x;,5/)] (4) 

where V(Zj) =  Sj =  E[D (xj,^)|zj], D(xj,«) =  5u(xj,^)/0« '.

The method which can achieve the asymptotic variance—covariance bound E(A) for 

the model is in fact the best nonlinear three—stage least squares estim ator. However, 

this is not feasible because S- is generally unknown unless one is willing to assume a 

particular distribution for u. In tha t case, MLE may be preferred although the MM is 

still more robust.

There have been suggestions for a feasible version of (4). Newey (1987) has 

suggested using nonparametric regression by nearest neighbours because S- is in fact a 

regression function. However, this method is unlikely to work well in our case because 

of the dimension of z. relative to the finite sample th a t we have. Another way of 

approxim ating S(uj,^) is to use the sample analogue, i.e., approxim ate S- by N  ̂

Ej^j^D(xj,Uj,^) from simulating u N times independently. This is practically 

cumbersome and u nonlinearity in the dependent variable poses problems in 

suggesting a justifiable distribution for u though it is not impossible.

Recently, Robinson (1988e) has suggested using the Uj obtained from first 

stage consistent estimates. Robinson's method may be more efficient in small sample 

than  th a t of nonparametrically estimating the nuisance param eters S., because the 

m ethod makes use of the entire sample.

The problem of heteroscedasticity and the functional form of the conditional 

variance, =  E [u .|z J  =  g(z), which is unlikely to be known a priori, can be 

overcome by using nonparametric methods. There are usually some hints on the 

variables which will affect cr, but it is generally difficult to suggest the choice of the 

functional form. In such instances, nonparametrically estim ating g may be one way to 

avoid guessing at the functional form of heteroscedasticity. In particular, we resort to 

nonparam etric kernel estimation. The discussion of kernel nonparam etric regression is
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presented in Section 4.4.

It is natural to consider the case th a t a is an unknown function of z, e.g., a is 

dependent on z via the mean, Wj. Though it may be a bit restrictive, it is 

computationally valuable and should register some improvement in efficiency in finite 

samples because of the reduction in dimension. Of course, there are devices to reduce 

z to a manageable dimension (see Lee (1988) or Chapter 7) for nonparametric 

estim ation but we avoid using them  here.

Our strategy is to extend Robinson's approach to take into account 

heteroscedasticity. We obtain the consistent estim ates in the first stage, and then use 

the consistent estimates to obtain efficient estim ates via Robinson's method taking 

into account heteroscedasticity. To induce homoscedasticity, consider the following 

model:

with z/j =  u./(7.(z),

<7? =  var(Uj|Zj) =  g(Wj),

W. =  (c + 6D. 4- Sj7jT2 (Zj.;//j)).

We estim ate the rental cost function and fuel efficiency function separately 

rather than  as a system for various reasons. First of all, in view of the fact that 

autom atic bandwidth selection is used, estim ating the equations as a system is 

ambitious and not practical. Secondly, we wish to  guard against incorrect choice of 

bandwidth and avoid estimating the covariance nonparam etrically. Finally, the rental 

cost function and fuel efficiency function may be of interest individually. By not 

estim ating the equations as a system, we may be sacrificing efficiency but we do have 

more robust estim ates.

3.4.1 CONSISTENT INSTRUMENTAL VARIABLE ESTIMATES

The problem with the transform ation model is in finding the most efficient 

instrum ents for the last element of 0. For consistency, there is not too much of a
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problem as the choices of instruments are vast. For the transform ation param eters of 

the independent variables, the problem also does not exist and the instrum ents can be 

formed straightforwardly. Notice th a t for the Box—Cox model,

Ôu/Ô/J =  /j-^y^Log(y^) -ju“ ^ (y ^ -l)  

and for the hyperbolic model,

dyijdpi =  + - / / " ^ s in h " \ / /y ) .

As discussed above, the difficulty is in finding efficient instrum ents for p as we have 

to deal with the conditional expectations of dn-^ldp on z. The number of instrum ents 

can be greater than the dimension of 9, and it has been suggested tha t the squared or 

cross product of Zj be used. However, this is unlikely to work well in practice because 

multicollinearity is often encountered. Therefore, it may be im portant to limit the 

number of instrum ents and in our case, we have lim ited the number to 2m+3.

We may resort to linear projection of d\i/dO on instrum ents Z and form the 

instrum ents for //, i.e.,

Sj =  z . { ^ . ^ ^ z p f \ z . ' d n / d 0 )

Zj =  (Zj', da-Jdn^, Wj^)

One iterative scheme for consistent estimates is 
/ k  + l)  ^  g(k) _

where

$ =  (N-^EjSj'Sj)

Ï  =  (N-^EjSj'ù(Xj,g)))

T =  Step  le n g th

and the term s with are evaluated at 9^^^ which means tha t iterated instrum ents 

(i.e. the instrum ents are updated in each iteration) are used. The step length is 

obtained by using a combination of stepback and golden line search. As noticed by 

various authors (see Robinson (1988f)), theoretically, golden line search is preferred, 

but in practice, it is too time consuming. The strategy to  use in empirical work is
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generally to use the stepback (inexact search) initially, i.e., by taking "backsteps" 

until an acceptable value is found. When it fails after several times to reduce the 

objective function, then golden search (exact search) is called upon to  perform the 

task. The starting values are im portant in obtaining the estim ates. Near collinearity 

is hard to detect and in general will still give a very low value of the objective 

function. Therefore, it is a good practice to check for near collinearity by examining 

the transformed data.

Fortunately, economic theory provides some a priori information on the sign of 

the parameters. For example, good starting points will be those values obtained with 

p and all the /z '̂s of BC model set equal to zeros, i.e., from the log—linear model. We 

then start the iteration with different values of p and //j's between 0  and 1  to ensure 

th a t the converged values do give the minimum. We denote the NL2SLS consistent 

estim ates tha t we obtained here by 0.

3.4.2 EFFICIENT INSTRUMENTAL VARIABLE ESTIMATES

Having obtained the consistent estimates, we seek to improve the efficiency of 

the estimates. While we are not assuming homoscedasticity, the following iterative 

scheme is employed to obtain the efficient estimates, 9,

w h ere

$ =  (N -lS jS j'S i)

=  Zj*

du-J ÔS =  (Tj  ̂3Uj/ d9

Zj =  (ZjCTj“ \  & j /% j  d n ^  (Tj“ \  hj)
-  *  -  —1 w . = w . (T. ^

T =  Step  le n g th

^j2 =  Ê(Uj2|z) =  g(Wj)
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For HHBC and HIHS, we have

h. =  {^“ ^tanh(/i(Wj*+^j)

For HBC, we have

hi = {l+h(Wi*+hj))rV(l+Â(Wi*+hj)) -/j-%i*}.
The instruments here are fixed instrum ents evaluated at the consistent 

estimates, obtained from the first stage and does not need to be updated. This is in 

fact the GLS analogue for nonlinear least squares, i.e., nonlinear generalized two 

stage least squares (NLG2SLS).

If the form of heteroscedasticity is known, then we can substitute the 
_2

param etric estimates for <%.. If the param etric specification of the variance is 

unknown, it is natural to estim ate the conditional variance nonparam etrically by 

kernel estimator.

Newey (1987) has suggested estimating the instrum ents nonparametrically.
o  1 9

Under some regularity conditions in his case, ~ N(0,cr (|) ), where a =
2  2   1

E[i/. |zj]. We cannot do better than the lower bound o (|) unless - we have further

restrictions (see Chamberlain (1987)). We have not worked out the regularity

conditions in our case but it is reasonable to conjecture th a t 6 is asymptotically

efficient.

An estim ator for the asymptotic variance—covariance m atrix  can be estim ated

as

V =

where a =  and it is possible to have inferences which are valid and almost
2   1

optim al with respect to the bound a (j) with a large sample size N. If one wishes to

protect oneself against a poor choice of "bandwidth", a heteroscedasticity—robust

covariance m atrix  estim ator for — 6) can be taken to be ÿ \  where $

=  (N ~ S.S/Uj S.). It remains to construct the nonparam etric estim ates for the
2

unknown variance function a
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3.4.3 NONPARAM ETRIC SMOOTHING AND BANDW IDTH SELECTION

If the heteroscedasticity is of an unknown'form but it is a function of then

it can be w ritten either as a? =  E[T(y.) | W^] — {E[T(y.) | W.]}^ or a? =  E[u.^|W .].

Using the la tter, we can estim ate the conditional variance by a weighted average of

the residuals from a consistent estim ate of 9. Recall the discussion in Chapter 2 , we

would like to give largest weight to those observations closest to W^. Therefore, we

can estim ate the conditional variance g(W|) using the Nadaraya—W atson kernel
_2

estim ator by regressing u on w.. The Uj's are obtained from the consistent 

estim ates. The formula is given by equation (7) in Chapter 2 .

The computation of these estim ates is straight forward but heavy. For 

FORTRAN program, we refer the reader to  Delgado (1988a). For the estim ation of 

the derivatives of the nonparametric estim ates, see Chapter 2 .

For nonparam etric estimation, the choice of bandwidth is crucial. We prefer 

the less subjective way of bandwidth selection rather than  the more popular so called 

"rule-of—the—thum b" method th a t sets the bandwidth proportional to a number 

which minimizes the mean squared error. However, we avoid calling our method of 

bandwidth selection criterion objective, as the criterion function is still chosen by the 

practitioner.

The "autom atic" selected bandwidth is 

a ^ v  =  argmin^ N“ ^Sj(logCT^^  ̂ + u?)

where is the leave-one-out nonparam etric kernel regression estim ates for the 

conditional variance. The leave—one-out estimates used in the bandwidth selection 

criterion are just the same estimates with replaced by .^j (see Chapter 2). 

The performance and discussions on this pseudo likelihood criterion will be studied in 

a much simpler setting in a later chapter. It is first suggested and is shown to be 

consistent by Robinson (1988d) in Hannan’s GLS estim ator in the frequency domain.
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3.4.4 MAXIMUM LIKELIHOOD ESTIMATION

Transform ation can also reduce skewness and in certain cases, to transform the 

original distribution to  normal. Indeed, if the transform ation T^ for the dependent 

variable is convex, left skewness is reduced. If T^ is concave, right skewness is 

reduced. But simple calculation or plotting of graphs, one can easily determine 

whether we have reduced right or left skewness. Of course, a single transform ation 

param eter for the dependent variable may not simultaneously deal with both 

skewness and heteroscedasticity. Therefore, it is also wise to  guard against 

heteroscedasticity in the unlikely event tha t the error distribution is known to be 

from a particular param etric family. In this instance, since the distribution is known, 

efficiency can be improved via ML estimation.

In the case of HIHS and HHBC, u can be normally distributed. If u is known 

to be conditionally normally distributed with zero mean and the variance a (z), then 

a SML estim ation method can be employed. The log likelihood function is given by

Log L =  — ^  E. {Log 27t + Log g(W .) + u.^/g(W.) + Log a.} 

where â  =  l  + (//yj)^ is a term  from the Jacobian | J |  =  H.a. Consider the case

where g is known and differentiable with G =  - , then we have

51 nL
u 2

- 1 gj ^ " 1  z 1 '  gj

'-A t  =

 «

We can also suggest a Gauss—Newton iterative scheme for the model here, but
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a linearized ML or two step estimator, ^ ^ , i s  asym ptotically as efficient 

=  9 -N " \D lo g L ( ? )  DlogL(5)')“ ^DlogL(ê)

Under regularity conditions, 5LogL/^^ ~ N(0,A) at the true where A =  

E[DLogL DLogL'|z]. The ML estim ator can be shown to be asym ptotically normal, 

i.e., #  -  9) '  N(0,A“ ^).

In the case where g is unknown, we use kernel methods for estim ating g and its 

derivative G. Using kernel estimation, we can predict g by 

g(W) =

for given 0. K is the standard normal density. In order to estim ate the derivatives of

the regression curve, G, we can use the nonparam etric estim ation (see, e.g., Schuster

and Yakowitz (1979)):

% ( W ;)  E.{1 2 L j .( 0 )
G(W .) =  — ^  =  — -LJ— J  _ U — J _ — J— 1-------

' S jK ij(ô ) ( E jK ij ( 0 ) ) 2

where L - is the derivative of the standard normal density, i.e.,

Ly ( 0  =  L (a " \W j-W j))  
d (K ;.(x ))

~  dx
where x =  a ^(W .—Wj) and a is the bandwidth here. This class of SML is not new 

and was pioneered by Robinson (1987). One of his suggestions is sem iparam etric 

ARCH model which has been modified and applied in W histler (1988) and C hapter 6  

(or Lee (1989)) with the later suggesting an autom atic bandwidth selection method.

A sem iparam etric linearized two step estim ator is 

^ M L  ^  ^ _ N -l(D lo g L (5 ) D logL(g)T^DlogL(g)

Under regularity conditions, is adaptive in the sense th a t it has the

same asym ptotic distribution as the case where g is known. The method also produces 

a consistent A ^ ^ ^  =  {N DLogL(^) DLogL'(^)}  ̂ as a by product.
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3.5 RESULTS

W e report the parametric estimates for constrained transform ation models, 

i.e., linear, log—linear, and semi—log, as well as NL2SLS and ML estimates for 

selected unconstrained transformation models. The data  set consists of 399 

observations on different models taken from the W hat Car? (June, 1988) magazine. 

The data  on market shares are obtained from Car Buyer's Guide 1988. The 

descriptions of these data together with the data  are given in an appendix available 

from the author.

In Table 3.1 and 3.2, we have presented the param etric estim ates for the cost 

function and fuel efficiency function respectively. These linear, semi—log and 

log—linear models are constrained transform ation models because the Box—Cox 

transform ation is equivalent to the log transform ation when p, = ^ and level if ^  =  1 ; 

similarly, IHS transformation is equivalent to the log transform ation if p, is large and 

level if ^  =  0 .

The diagnostic test statistics reported, where appropriate, are the Breusch and 

Pagan (1979) multiplicity heteroscedasticity (BPM ) test, Breusch and Pagan 

heteroscedasticity (BP) test, F test for all the coefficients are zeros, and the J arque

and Bera (1980) normality test. The BPM and BP test statistic  is LM =  0.5 (r'Q
 1 _ ^ 2

(Q 'Q ) Q 'r), where r^= (u^ /a  —1 ) is constructed from ols residuals, with Q g p j^  =
2  2  2  (1, (logW.) ) and Q g p  =  (1,W. ). The test statistic  is distributed as X y  Jerque and

Q
Bera (1980) normality test statistic is based on the formula JB  =  N {m g/6 m 2  + 

1/24 — 3)^} where m. =  Ej^^UjVn ; i =  2, 3, 4 and JB  ‘

The estim ates reported in Table 3.1 and 3.2 are statistically significant at the

5% level w ith the exception of the acceleration in the linear model of Table 3.1 and

all models of Table 3.2, indicating tha t we may have constrained some of the

variables unnecessarily. However, the signs of all the models are correct according to

our a priori belief. In particular, the fit of the fuel efficiency function for all three
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different specifications is .good and there is no sign of heteroscedasticity in the 

semi—log and log—linear specifications.

Let us now concentrate on the estimates for rental cost function reported in 

Table 3.3. We have allowed for more flexible functional form for the rental cost 

function. There are six different transformation models. The first column presents the 

consistent NL2SLS estimates for the hyperbolic Box—Cox (HPBC) model.

Besides the param eter none of the estimates are significant at the 5% level. 

There are two reasons for this: first of all, it is reasonable to assume th a t by allowing 

for flexible functional form, one has to pay the price of inflated variance reflecting the 

uncertainty of the transformation parameters. There are debates on whether one 

should make use of the information tha t we possess regarding the transform ation 

param eters and whether the results make any scientific sense. One view is tha t an 

experienced practitioner will have more information about the functional form than 

an inexperienced one, and it is reasonable to assume tha t the experienced practitioner 

will get a better fit. The question is whether one should make use of the information 

on the transformation parameters and obtain the variance—covariance m atrix. This 

will give good t—ratios in our case but we do not follow this approach. We take into 

account the fact tha t the transformation parameters are unknown and estimated. 

Secondly, the heteroscedasticity is severe and the instrum ents used may be far from 

efficient. We believe tha t both reasons are valid in our case. We seek to improve 

efficiency of our estimates by concentrating on the use of efficient instrum ents and 

adjustm ent for heteroscedasticity using the method mentioned in the previous 

section.

We have assumed that the conditional variance depends on W. and we have 

selected the bandwidth for estimating g via a Gaussian log—likelihood criterion. 

Although the variance may depend on the m arket share, it is not appropriate in the 

estim ation of the cost function and fuel efficiency function because we are also
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interested in the effect of unleaded petrol.

The HHBC estimates in second column are obtained using the Robinson 

(1988e)'s method with adjustment to induce homoscedasticity. Thus we expect the 

choice of instruments and the adjustm ent for homoscedasticity will help to improve 

the accuracy of the estimates. This is indeed the case. These efficient estimates 

obtained using the "automatic" bandwidth have smaller standard errors and besides 

fjL̂  ̂ all the t—ratios are statistically significant and positive. The t—ratios reported are 

the robust t—ratios to guard against incorrect choice of bandwidth and these t —ratios 

differ only slightly from those obtained 

using

We have also produced the ML estim ates for the HPBC and HHBC 

respectively in the third column and the fourth column. The HHBC estimates are 

obtained from one step update from the NL2SLS estim ates reported in the first 

column and the same bandwidth is used. The log likelihood function has increased by 

a massive 71.75 and would give a likelihood ratio test s tatistic  of 143.5. However, one 

should not place too much faith on the ML estim ates as they are unlikely to be robust 

to  very slight misspecifi cat ions.

The BC and HBC estimates are reported in the fifth column and the sixth 

column. They are both obtained using Wi as instrum ents for p. The reasons for using 

this instrum ent are:

(i) Amemiya (1985) has recommended the use of the squares and the cross 

products of the independent variables but this does not work in our case;

(ii) Robinson's method, unfortunately, breaks down if there are negative
  ^

ÿ(W. + Uj), and this is the case for the fuel efficiency function in our application 

because the estim ates tt are negative and ÿ  positive.
9

In view of this, Wj will be a very good choice as it is a linear combination of 

the squares and cross products, and indeed Newey (1987) has argued th a t it is close to
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efficient. This perhaps is the case as the t —ratios of the fifth column are much better 

than  those in the first column. However, when heteroscedasticity is corrected, the 

sign of the estim ate for the acceleration variable is inconsistent with a priori belief as 

in the case of log—linear regression.

Finally, the sinh~~  ̂ (IHS) and the heteroscedastic sinh~^ (HIHS) models are 

reported in the last two columns. The t-^ratios for the estim ates for both models are 

not statistically significant. The function and rss values are extremely small. These 

are symptoms of multicollinearity, thus confirming our initial fear.

The picture for the fuel efficiency function is almost identical. The HHBC 

estimates seem to be the most plausible. The estim ates for the independent variables 

are statistically significant and negative, with the exception of the acceleration 

variable which is inconsistent with our prediction.

We do not have any criterion for selecting among the different models. It is 

perhaps unwise to look at the objective function because different models and 

instrum ents are being used. However, the HHBC models have lower function values 

and rss, good t—ratios and the signs of the estim ates are mostly consistent according 

to our a priori prediction. The HHBC estimates for both rental cost and fuel 

efficiency functions seem to be the most plausible. These estim ates are therefore used 

to construct the price elasticities.

3.6 IDENTIFICATION AND CONSTRUCTION OF ELASTICITIES

There is a growing literature on identifying the param eters of the demand 

functions and thus the utility function in recent years. Since there are no observations 

on the individual household, the best tha t one can do is to estim ate the parameters 

from the model level. This is a common problem in studies using model and make 

data.

There are two usual ways in the literature of obtaining the parameters. The 

first is the two—stage method of Rosen (1974) which has been applied by Goodman



A Semiparametric Hedonic Approach [ch 3. pgH9]

(1983). However, this two stage (TS) method of Rosen (1974) has generated a lot of 

discussions recently because it suffers from identification problem. The problem is 

especially difficult to handle when dealing with the car m arket because there are 

virtually no appropriate instruments as we are dealing with a single m arket data 

here. This issue is discussed briefly in the next chapter. The second is the use of 

discrete choice modelling as in Boyd and Mellman (1980). This method requires sales 

data of all individual models and the cost of collection is extremely high. We 

therefore adopted the following method.

For identification and other purposes mentioned above, we have assumed that 

the subutility function is Cobb—Douglas, i.e., U =  b^ + bjLogZj. The procedures tha t 

we have proposed does not specify the functional form of utility  function except that 

it should be intertem poral separable. In other words, if Cobb—Douglas function is not 

suitable for some reasons, any other intertem poral separable utility  function can be 

used. The reason why we have chosen this particular form of u tility  function is 

because it has been widely used in the literature and has certain well known 

properties. This is a maintained hypothesis and we merely use it to dem onstrate the 

methodology.

To identify the parameters of the utility  function, we have imposed the

constant expenditure share restrictions and let b- =  a -zJF ,  where E.b. =  1  and a .'s
J J J J J J

are the slope estimates in the log—linear capital cost (P) function for new cars. In

other words, in addition to assumptions (i) and (ii) in Section 2 , we assume tha t

(iii) the utility function is of Cobb—Douglas form i.e.

b.
exp(U(z)) =  exp(bQ) H j^^ Zj-̂  where Ejbj =  1 .

We obtain the approximation at the mean of the Zj's and C. Consider

Ts(Pi)A) ~  + EjTgç(Zj.;//j) + u. i =1,2,...,N

where S = ( 6 j ,  <̂4 )' &nd D =  (D y, D g, Dg, Dg)'. We have restricted fi to  be
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fairly large, =  0  in the HPBC model which is the simple semiparametric linear 

GLS case. We have also included several 0 — 1  dummy variables to capture the 

consumer's perception of the makes and models which are not captured by the 

a ttributes that we are interested in. D y  is the dummy for car which can run on 

unleaded petrol without adjustment. The British made dummy (D g) is to  capture the 

difference between locally and foreign made cars. The luxury (Dg) and speciality 

(Dg) dummies are used to  capture the effect of the more distinguished and high 

performance cars. Observations on individuals would be helpful but we did not pursue 

along this line. In any case, at any one instant in time, the supply is assumed to be 

perfectly elastic and the consumer's preferences can be identified. We are also making 

the strong assumption tha t the preferences are the same across the rental and new car 

m arket.

The fit of the price function (see Table 3.5) is consistent with previous results. 

W e allowed for heteroscedasticity and obtained the sem iparam etric GLS estimates 

using the autom atic bandwidth selection method. The sem iparam etric GLS literature 

is now well developed (see e.g., Carroll (1982), Robinson (1987), Rose (1978) for using 

kernel estimates for the conditional variance which is relevant to our application). 

Since it is a special case of the heteroscedastic transform ation model, we will not 

devote any more space for discussion.

The heteroscedastic estimates are obtained by using the bandwidth from 

minimizing the same criterion as before which has been suggested by Robinson 

(1988d) in a separate problem in the frequency domain. In this case, the conditional 

variance is assumed to be a function of the m arket shares. The elasticities are 

constructed based on the estimates in the last column in Table 3.5.

To obtain the estimates for the equation for the comparative static  equations 

in Section 2 , we have to consider the following approximations for the HPBC model:
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dy I dz.̂  =

P-—1 9 /i' — 2  -, / 9

^ /â s j â z j  =  ( 7 j/jzj ) y -H 7i(/'j-l)Z i a ' i= j

l \ - ^  2

=  TjTjZj Zj y

The advantage of using HPBC rather than BC is apparent because the BC

model is essentially a limited dependent model. Huang and Kelingos (1979) and

Huang and Grawe (1980) have discussed the various issues regarding the conditional

mean and elasticity from Box—Cox model under the assumed truncated normal

distribution of the disturbance term. In particular, one should realize th a t the

conditional mean of the BC model does not not exist when p  falls in the the interval 0

and — 1  under the assumed distribution. Notice tha t in the log—linear case, the second

derivative is not equal to zero as claimed by Atkinson and Halvorsen (1984). In tha t
 2

case, the second derivative should have been —TjẐ y

It remains for us to work out the lagrange m ultiplier L It is obtained by using 

( 1 ) summing over j from 1  to m.

Uj — b j /  Z» 1 — 1,... ,m

Ujj — h '/z . i= j i =  1 ,2 ,...,m

— 0  i / j  j — 1 ,2 ,...,m

We are also interested in the effect of unleaded petrol on the dependent 

variables. One must be careful in interpreting the effect of dummy on the dependent 

variable in log—linear model and transformed models (see e.g. Blaylock and 

Smallwood (1983)). It will be incorrect to interpret the effect as 6 since the dummy 

variable is clearly not continuous. The correct interpretation of the dummy D on a 

dependent variable y in our HPBC models is perhaps to look at the proportion change 

in y due to a unit change in D, i.e.,

A =  (y i -Yq )/yo 

where =  /i sinh[//(a-H(5 -HS.7 .T(z.;/jj)]
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Xq =  /<“ ^sinh[//(a+Ej7 jT(Zj;/jj)]

The log—linear case is just a special case of the formula. One could of course 

extend this formula to include 2  dummies and so on, but the analysis would be more 

cumbersome as the number of perm utations increases. Dagenais, Gaudry and Tran 

(1987) have suggested other criteria. In this chapter, we will look at the effects and 

elasticities based on sample mean rather than conditional expectation as these other 

suggestions generally require one to assume a particular distribution which we have 

tried very hard to avoid in the first place. Of course, under conventional consumer 

theory, with Shepherd's Lemma and Roy's identity, various elasticities can be 

consistently estim ated without knowing the form of the cost or indirect utility 

function, (see e.g., Elbadawi, Gallant and Souza (1983)) using Fourier series (Gallant 

(1981) to approxim ate the unknown function concerned).

Corresponding to the second column of Table 3.3 and Table 3.4, A are 0.003 

and —0.026 respectively. The results indicate th a t there is a  slight difference in cars 

which can use unleaded petrol without adjustm ent and suggest th a t rental cost will 

be 0.3% higher and fuel efficiency will be 2.6% lower with these cars.

In Table 3.6, we have presented the price elasticity of demand for attributes 

for the 5 most popular models, the two extrem e cases of fuel effuciency with the 

highest and lowest fuel consumption in our data, and the overall mean value. The 

elasticities are constructed under various assumptions stated in the Table. We would 

just like to  mention tha t S =.993 which corresponds t o p  =  2.3% estim ated in 

Attanasio and W eber (1989) and r is set at 23% to reflect the high interest rate 

charged. A unitary  elastic price expectation with respect to the base period price P q 

is assumed, i.e., =  (l+f)^PQ. The justifications for the assumptions are presented

together w ith the source of data in the appendix. We tried different assumed values 

and found th a t the  elasticities are not sensitive to these assumptions but very 

sensitive to  the estim ates from the three equations. These observations are confirmed
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by evidence in Table 3.7 using different assumed param eters. In particular, we find 

th a t setting r at the treasury bill rate as well as taking the planning horizon to be the 

average length of the life of a car (T), makes little  difference.

The program used in constructing these elasticities and all those w ritten for 

this study can be obtained from the author. They are w ritten  in GAUSS 

programming language with the exception of the programs which involve considerable 

amount of element—by—element operations and take a fair amount of tim e in the 

m atrix  programming environment. These include programs for bandw idth selection, 

nonparam etric regression and Robinson's method of forming instrum ents. They are 

w ritten in FORTRAN for computational efficiency.

All the price elasticities of attributes are generally inelastic with the exception 

of the elasticity for spaciousness. The smaller cars seem to be generally more 

responsive than larger cars. The price elasticity of demand for size is generally 

slightly greater than —0.10 but less than —0.26, which is very inelastic. While the 

price elasticity for power is generally inelastic, the price elasticity for spaciousness is 

elastic and can be as high as —2 . 8  as in the Citron model. As for the price elasticity of 

acceleration, it is positive. This perhaps reflects th a t cars w ith faster acceleration is 

favoured. W e have also reported the price elasticities of demand for fuel efficiency 

and they are generally close to unity.

As for Table 3.7, the results are very similar although we have used different r, 

T  and bj's. Furtherm ore, we find tha t the elasticity for fuel efficiency estim ates from 

the linear, log—linear and semi—log are fairly similar. But the other a ttrib u te  

elasticities (not reported) are substantially different from each other.

Our approach is interesting in the sense tha t we are able to  construct the 

elasticities, and by the fact th a t they are constructed and not estim ated directly, we 

are not able to say much about their properties. In particular, we cannot obtain the 

standard errors. In the absence of the standard errors for these constructed
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elasticities, one perhaps should compare the results with those obtained elsewhere. As 

noted by Atkinson and Halvorsen (1984), Pindyck (1979) used pooled cross section 

d a ta  for 11 OECD countries and found tha t the long run fuel efficiency elasticity to 

be 1.43. Griffin (1979)'s results also indicate the long run elasticity of fuel efficiency 

has a lower bound of 0.79 and an upper bound of 1.43 using 18 OECD countries. Our 

elasticity lies in between.

We can also infer the own price elasticity from our estimates. Consider the 

to ta l petrol consumption Q =  M C /E , where C is the stock of cars. The relationship

among the elasticities is rj  ̂ = + y/g — Since the price elasticity of demand for

miles travel (Py^) and stock (p^) are both negative and p-^ is close to one in

magnitude, this implies that the own price elasticity is likely to be greater than

unity.

3.7 CONCLUSION

We have presented an intertem poral model and apply comparative statics 

analysis to the consumer's choice of attributes. The main purpose of the approach is 

to avoid the problems of multicollinearity and identification which are common in 

previous hedonic studies. The method does not require variations in the price of 

petrol.

Recently, there is some interest surrounding the use of the IHS transform ation 

model. Unlike the Box—Cox model, the IHS model can be normally distributed and 

can deal with observations with non—positive value. We argue in favour of the use of 

HPBC model because of the associated advantages.

We have presented the ML method and an alternative robust method of 

estim ating the parameters from various heteroscedastic transform ation models. The 

la tte r procedure does not make distributional assumptions and is asymptotically 

efficient within a class of models based on conditional moment restrictions. In the 

HPBC model, it is easy to find efficient instrum ents via Robinson (1988e)'s method.



A Semiparametric Hedonic Approach [ch 3. p^.85]

In particular, the approach of Robinson (1988e) does not require nonparam etric 

regression in forming instrum ent and makes fuller use of the  sample of data. It can be 

combined with the use of nonparametric conditional variance estimates. We are not 

required to make any assumption of the form of heteroscedasticity when the 

assumption of homoscedasticity is violated. The bandwidths are chosen autom atically 

using the pseudo Gaussian log—likelihood criterion suggested by Robinson (1988d). 

Although the asymptotic properties for data—dependent bandwidths are unknown in 

the transform ation models, we can perhaps draw upon the frequency domain results 

of Robinson (1988d) to our time domain case in the linear GLS model by analogy. In 

any case, one believes tha t the rate of convergence will be very slow for the 

bandwidth estim ate if it is consistent.

Our elasticities are constructed from these efficient estimates. This prevents us 

from giving the standard errors. Comparison with previous results is one way of 

indicating the accuracy of these elasticities. There was not a large discrepancy 

between our results and previous findings. The petrol price elasticity of demand for 

a ttributes is close to unity and the own price elasticity of petrol is very likely to  be in 

excess of one according to our results.
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Table 3.1

Linear Semi—log Log—linear
intercept -0.2702 -3.4732 1.2113

(-5.8773) (35.2212) (5.9849)
unleaded 0.0063 0 . 0 1 0 1 0.0282

(0.7714) (0.5760) (1.5050)
size 1.3797 2.2308 0.8022

(16.3557) (12.3310) (14.647)
spaciousness 1.1247 7.7701 0.4912

(3.5107) (11.3094) (3.7063)
power 0.2389 0.5876 0 . 2 1 0 2

(4.0648) (4.6611) (2.9459)
acceleration 0.0284 0.2951 0.1465

(0.8357) (4.0501) (1.9846)
R squared 0.816 0.862 0.842
R bar squared 0.814 0.860 0.840
se 0.074 0.159 0.170
rss 2.152 9.896 11.331
tss 11.725 71.718 71.718
F ( 6  ,393) 349.670 491.012 418.869

BP 26.700 8.230 4.270

BPM Xi 26.438

JB x l 1255.122 178.525 200.579

Figures in parentheses are the estim ated t—ratios.
F: Testing the null hypothesis th a t all the coefficients are zeros.

BPM: Breusch—Pagan M ultiplicity Heteroscedasticity LM test based on the 
square of mean.

BP: Breusch—Pagan Heteroscedasticity LM test.
JB: Jarque—Bera Normality test.
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Table 3.2

Param etric Estimates for Fuel Efficiency Function

Linear Semi—log Log—linear
intercept 0.7415 -0.0691 -2.2437

(35.1350) (-1.1592) (-19.7539)
unleaded -0.0046 -0.0155 -0.0247

(-1.2454) (-1.4638) (-2.3428)
size -0.2970 -1.2639 -0.4611

(-7.6709) (-11.5450) (-15.002)
spaciousness -1.6362 -3.6397 -0.1776

(-11.1278) (-8.7540) (-2.3878)
power -0.1004 -0.2995 -0.0995

(-3.7229) (-3.9258) (-2.4858)
acceleration -0.0214 -0.0186 0.0681

(-1.3759) (-0.4238) ( 1.6544)
R squared 0.755 0.782 0.786
R bar squared 0.752 0.779 0.783
se 0.034 0.096 0.095
rss 0.453 3.624 3.569
tss 1.851 16.641 16.641
F ( 6  ,393) 242.289 282.298 287.875

B P x \ 6 . 2 0 2 0.642 0.091

BPM  Xl 14.642

JB  x \ 33.269 89.166 106.984

Figures in parentheses are the estim ated t—ratios.
F: Testing the null hypothesis tha t all the coefficients are zeros.

BPM: Breusch—Pagan M ultiplicity Heteroscedasticity LM test based on the 
square of mean.

BP: Breusch—Pagan Heteroscedasticity LM test.
JB: Jarque—Bera Normality test.
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Table 3.3

Box—Cox and Inverse Hyperbolic Sine Estim ates for Running Cost Function

NL2SLS MLE NL2SLS NL2SLS
HPBC HHBC HPBC HHBC BC HBC IHS HIH

^CV 0.044 0.044 0 . 0 1 0 0.03

cons 1.359 1.365 1.452 1.364 1.053 1.031 -0.174 0 . 0 1 0

(0.142) (3.174) (0.387) (0.569) (0.168) (8.424) (-0.93 (0.084)
Dum. 0.004 0 . 0 0 1 0.005 0.004 0 . 0 0 1 0 . 0 0 0 0.004 0 . 0 0 1

(0.533) (2.272) (0.720) (0.959) (0.385) (16.94) (0.833 (0.486)
size 0.721 0.750 0.819 0.721 1.518 1.520 0.912 0.224

(1.813) (32.04) (3.273) (3.225) (2.925) (66.14) (3.992 (0.455)
spac 0.373 0.378 0.353 0.380 0.724 0.729 1.041 0.430

(0.587) (12.56) (0.049) (0.088) (0.195) (10.33) (0.536 (0.324)
pwr. 0.153 0.138 0.117 0.153 0.411 0.354 0.126 0.055

(0.191) (7.823) (1.863) (1.590) (4.359) (210.9) (1.541 (0.611)
acc. 0.143 0.090 0.058 0.143 0.123 -0.118 0.062 0.007

(0.603) (6.366) (2.070) (5.395) (0.687) (-38.2) (1.358 (0.441)
transform ation parameters
size 0.833 0.845 0.727 0.833 1.925 1.946 0.972 0.806

(1.457) (75.09) (3.145) (3.856) (2.812) (139.1) (0.118 (0.005)
spac 0.995 0.999 1.041 1.006 1.427 1.427 0.999 0.999

(0 .0 0 0 ) (0 .0 0 2 ) (0.093) (0.168) (0 .0 0 0 ) (0.008) (0 . 0 0 0 (0 .0 0 0 )
pwr. 0.935 0.942 1.123 0.935 1.773 1.742 -0.551 -0.806

( 1 .2 2 1 ) (50.08) (1.830) (1.342) (26.86) (724.1) (-1.27 (-^.89)
acc. 1.005 0.977 1.006 1.006 0.980 1.005 0.028 0.024

(3.206) (45.10) (0.580) (1.626) (7.579) (441.7) (0 . 0 2 0 (0.006)
y 1.017 1.031 1.367 1.017 2.904 2.896 2.328 13.128

(0.343) (29.98) (5.218) (4.459) (2.978) (95.37) (2.023 (0.490)
ftn. 0.615 128.1 513.382 585.136 0.124 276.6 0.128 2.801
se 0.0049 0.0050 0 . 0 0 1 1 0 . 0 0 1 0 0 . 0 0 2 2 0 . 0 0 0 1

Note: The attributes are size, spaciousness (spac), power (pwr), accelearation (acc), and 
the dummy variable (Dum) is for unleaded petrol.
HPBC: Hyperbolic Box—Cox.
HHBC: Heteroscedastic Hyperbolic Box—Cox.

BC: Box—Cox.
HBC: Heteroscedastic Box—Cox.
IHS: Inverse Hyperbolic Sine.

HIHS: Heteroscedastic Inverse Hyperbolic Sine.
The NL2SLS estimates are converged estimates while the MLE estimates are one step 
update from the consistent NL2SLS estimates. Models with heteroscedasticity of unknown 
form are obtained using the "autom atic" bandwidth and Robinson (1988d)'s method of 
forming efficient instruments.
Figures in parentheses are the estim ated t—ratios for MLE robust t—ratios for NL2SLS.
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Table 3.4

Box—Cox And Inverse Hyperbolic Sine Estim ates For Fuel Efficiency Function

NL2SLS MLE NL2SLS NL2SLS
HPBC HHBC HPBC HHBC BC HBC IHS HIH

^CV 0.031 0.031 0.031 0 . 0 1

cons -1.155 -1.156 -1.059 -1.061 -1.680 -1.676 0.524 0.646
(-0.29) ( - 1 2 .0 ) (-0.40) (-0.53) (-0.51) (-14.8) (3.103) (150.3)

Dum. - 0 . 0 1 0 —0.009 -0.013 - 0 . 0 1 0 -0.007 -0.006 -0.004 -0.004
(—1.99) (-59.6) (-2.28) (-2.91) (-1.34) (—31.0) (-1.20) (^ 3 .7 )

size —1.308 -1.308 -1.040 -1.038 -1.090 -1.091 -0.618 -0.504
(-0.49) ( - 1 1 .0 ) ( - 0 .2 1 ) ( - 0 .2 0 ) (-0.71) (—1 2 .6 ) (-3.25) (-84.0)

spac -1.106 -1.107 -1.046 -1.032 -0.689 -0.693 -0.096 -1.052
(—1.09) (-54.9) (-0.25) (-0.34) (-1.23) (-37.6) (-0.07) (-32.3)

pwr. -0.496 -0.493 -0.444 -0.494 -0.339 -0.332 0.025 -0.083
(-2.92) (-70.4) (-0.76) (-8.05) (-2.33) (-49.7) (0.334) (^ 2 .0 )

acc. 0.105 0.103 0.074 0.105 -0.016 -0.004 -0.073 —0.009
(0.609) (15.97) (4.968) (6.414) (—0 .1 0 ) (—0.55) (-0.71) (-2.61)

transform ation parameters
size 3.567 3.567 3.341 3.369 3.220 3.221 0.953 0.875

(0.490) (16.59) (0.836) (0.958) (0.780) (20.99) (0.326) (9.032)
spac 1 . 0 1 2 1 . 0 1 2 0.977 0.972 1.108 1.108 0.999 0.999

(0.003) (0.127) (0.487) (0.670) (0 .0 0 2 ) (0.070) (0.000) (0.003)
pwr. 1.230 1.225 1.141 1.228 1.046 1.036 1 . 0 2 2 1.018

(14.15) (302.3) (15.04) (5.462) (12.05) (196.6) (2.758) (60.60)
acc. 0.860 0.865 0.911 0.851 1.076 1.060 1.075 1.174

(12.70) (353.0) (1.155) (1.512) (8.990) (174.0) (0.499) (152.0)
y 1.017 1.017 1.096 0.998 0.999 1 . 0 0 2 1.190 1.527

(0.323) (16.83) (0.961) (3.335) (3.861) ( 1 2 2 .2 ) (0.793) (40.71)
ftn. 0.355 174.710 673.921 720.170 0.479 218.8 0.169 50.21
se 0.0018 0.0018 0 . 0 0 2 2 0 . 0 0 2 1 0 . 0 0 1 2 0.0009

Note: The a ttribu tes are size, spaciousness (spac), power (pwr), accelearation (acc), and 
the dummy variable (Dum) is for unleaded petrol.
HPBC: Hyperbolic Box—Cox.
HHBC: Heteroscedastic Hyperbolic Box—Cox.

BC: Box—Cox.
HBC: Heteroscedastic Box—Cox.
IHS: Inverse Hyperbolic Sine.

HIHS: Heteroscedastic Inverse Hyperbolic Sine.
The NL2SLS estim ates are converged estim ates while the MLE estim ates are one step 
update from the consistent NL2SLS estim ates. Models with heteroscedasticity of unknown 
form are obtained using the "autom atic" bandwidth and Robinson (1988d)'s method of 
forming efficient instruments.
Figures in parentheses are the estim ated t—ratios for MLE robust t—ratios for NL2SLS.
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Table 3.5 

Estim ates For Capital Cost Function

Log—Linear Heteroscedastic
bandwidth 5.0798
intercept 0.2760 0.1499

(1.0799) (0.2615)
unleaded 0.0339 0.0367

(1.4285) (1.5983)
British made -0.0275 -0.0280

(-1.1304) (-1.1818)
luxury car 0.0988 0.1053

(3.6440) (4.1254)
specialty car 0.4942 0.4679

(4.5449) (4.5293)
size 0.9921 1.0315

(14.6612) (17.2117)
spaciousness 0.3683 0.1906

(2.2554) (2.3344)
power 0.2047 0.2304

(2.3687) (2.7843)
acceleration 0.3005 0.2357

(3.3416) (2.6682)
R squared 0.870 0.894
R bar squared 0 . 8 6 8 0.892
se 0.204 1.126
rss 16.185 494.114
tss 124.921 4674.219
F ( 6  ,390) 327.507 412.415

BP x \ 9.653

JB  x l 72.782

Figures in parentheses are the estim ated t—ratios.
F: Testing the null hypothesis th a t all the coefficients are zeros.

BP: Breusch—Pagan Heteroscedasticity LM test based on m arket shares. 
JB: Jarque—Bera Normality test.
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Table 3.6

Constructed Price Elasticity Of Demand For A ttributes

Vehicle Ford Ford Ford Austin
Model Escort Sierra Fiesta /M G

1.6 L 1 . 6 1 . 6 M etro 1.3
A ttrib. ( 1 ) (2 ) ( 1 ) (2 ) ( 1 ) (2 ) ( 1 ) (2 )
size 1597.0 -0.143 1593.0 -0.128 1392.0 -0.139 1275.0 -0.159
space. 14.7 - 1 . 6 8 8 16.2 -1.663 13.6 -1.822 12.4 -2.116
power 5.3 -0.421 3.7 -0.278 4.7 -0.432 4.3 -0.496
accel. 0.106 0.053 0.083 0.042 0.093 0.064 0.090 0.084
c.p.m 2 1 . 8 2 1 . 6 19.8 21.3
eff. 41.0 0.981 36.6 0.984 39.7 0.983 42.0 0.981

Vehicle Vauxhall Ferrari Citron Mean
Model Cavalier 412 AX lOE value

1.6 L
A ttrib. ( 1 ) (2 ) ( 1 ) (2 ) ( 1 ) (2 ) ( 1 ) (2 )
size 1598.0 0.981 4942.0 -0.032 954.0 -0.255 1914.1 -0.116
space. 16.0 - 0 . 1 2 0 17.6 -0.350 1 2 . 6 -2.862 15.7 -1.433
power 4.5 -1.561 9.5 -0.151 3.6 -0.543 5.2 -0.342
accel. 0.084 0.040 0.149 0.024 0.056 0.033 0.098 0.049
c.p.m. 23.2 84.4 13.2 32.6
eff. 36.0 0.985 14.7 0.996 55.9 0.968 35.1 0.985

c.p.m.: cost per mile 
eff.: fuel efficiency

( 1 ) refers to the observed values and (2 ) refers to the constructed price elasticities.
is the price elasticity of demand for fuel efficiency constructed from HHBC 

estimates. The values are constructed under the following assumptions:
Miles travelled, M =  8701.05
Interest rate, r =  23.00%
Growth rate, f =  10%
Infinity life time set a t T =  100 years
Rate of time preference, p = 2.3%

and b j =  0.34; bg =  0.05; bg =  0.20; b^ =  0.39.
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Table 3.7

Constructed Price Elasticity Of Demand For A ttributes

Vehicle Ford Ford Ford Austin
Model Escort Sierra Fiesta /M G

1.6 L 1 . 6 1 . 6 Metro 1.3
A ttrib . ( 1 ) (2 ) ( 1 ) (2 ) ( 1 ) ( 2 ) ( 1 ) (2 )
size 1597.0 -0.134 1593.0 -0.115 1392.0 -0.130 1275.0 -0.149
space. 14.7 -1.231 16.2 -1.359 13.6 -1.348 12.4 -1.560
power 5.3 - 0 . 6 8 6 3.7 -0.553 4.7 -0.713 4.3 -0.821
accel. 0.106 0.164 0.083 0.192 0.093 0 . 2 1 0 0.090 0.271
cpm 2 1 . 8 2 1 . 6 19.8 21.3
eff. 41.0 36.6 39.7 42.0
^ 1

0.982 0.985 0.984 0.982

% 0.953 0.965 0.957 0.952

% 0.920 0.905 0.933 0.923

\ 0.940 0.947 0.947 0.940

Vehicle Vauxhall Ferrari Citron Mean
Model Cavalier 412 AX lOE value

1.6 L
A ttrib . ( 1 ) ( 2 ) ( 1 ) (2 ) ( 1 ) (2 ) ( 1 ) (2 )
size 1598.0 -0.109 4942.0 -0.027 954.0 -0.236 1914.1 -0.106
space. 16.0 - 1 . 2 2 2 17.6 -0.195 1 2 . 6 -2.334 15.7 -1.046
power 4.5 -0.567 9.5 -0.203 3.6 -0.994 5.2 -0.581
accel. 0.084 0.165 0.149 0.066 0.056 0.155 0.098 0.171
c.p.m. 23.2 84.4 13.2 32.6
eff. 36.0 14.7 55.9 35.1
h 0.985 0.997 0.966 0.986

% 0.965 0.992 0.921 0.965

% 0.777 0.916 0.948 0.946

’’i 0.945 0.919 0.950 0.925

c.p.m.: cost per mile 
eff.: fuel efficiency

( 1 ) refers to the observed values and (2 ) refers to the constructed price elasticities, r/p

and rj-̂  are price elasticity of demand for fuel efficiency constructed from HHBC, linear,

semi—log and log—linear estimates respectively. The values are constructed under the 
following assumptions:

Miles travelled, M =  8701.05
Interest rate, r =  9.24%
Growth rate, f =  10%
Life of vehicle, T  =  13 years
Rate of tim e preference, p =  2.3%

and b^ =  0.61; bg =  0.11; bg =  0.13; b^ =  0.13.



CHAPTER 4

FURTHER SEMIPARAMETRIC POLICY ANALYSIS

93



Semiparametric policy analysis [ch 4 pÿ.94]

4.1 INTRODUCTION

Fuel efficiency has been an im portant issue in the U.S. for more than two 

decades. The main interest on automobile efficiency was brought on by the two severe 

oil price shocks. This is because fuel efficiency, measured in miles per gallon (M PG), 

is an im portant component in energy conservation. It is also one of the most 

im portant attributes to potential buyers.

In the U.K., recent interest on fuel efficiency was brought about by the 

introduction of unleaded petrol. Better understanding of the damage of leaded petrol 

to the surrounding has led to the introduction of legislation th a t favours the use of 

unleaded petrol. Eventually, new laws will be imposed to bring about production of 

all new cars th a t will run on unleaded petrol.

In last chapter, there is indirect evidence tha t the use of unleaded petrol will 

lead to  lower fuel efficiency, ceteris paribus. If the results are reliable, then one of the 

issues confronting the policy maker is the loss of efficiency in those cars th a t can use 

both leaded and unleaded petrol. The question then is whether one should introduce 

tax  incentives to increase fuel efficiency.

There are two ways to improve fuel efficiency. First of all, one can reduce 

certain features of the car, e.g., one can reduce the weight of the vehicle to gain 

efficiency. Secondly, fuel efficiency improvement may be brought about by technical 

improvements independent of other attributes, e.g., the refinement of the petrol itself 

or the use of higher performance engineering parts. By introducing new regulations or 

providing tax  incentives, both types of improvements can be achieved.

The benefits of the use of unleaded petrol to the environment is enormous. It 

is therefore not surprising tha t there is an asymmetric emphasis on the benefits and 

costs of using unleaded petrol. In the context of econometric policy analysis, it is of 

interest to  find out the cost of such technical inefficiency associated with using 

unleaded petrol. If the benefits of increased fuel efficiency are high, it provides some
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justification for introducing legislations for improvement. This information may also

be of interest to the producers as the average change in the capitalized values can be

used as a guideline for pricing decision.

In this chapter, we evaluate the effect of an increase (a decrease) in the fuel

efficiency on the hedonic price a t the model level. It addresses the problem of

estim ating the average capitalized gains (or costs) brought about by increased

(decreased) M PG. The procedure tha t we have adopted to  estim ate the

"willingness—to—pay" for increased fuel efficiency has been adopted in the analysis of

environmental benefits in the U.S. (see Stock (1985a)). There are advantages over the

two—stage method of Rosen (1974) and most im portant of all, our semiparametric

approach avoids misspecifications.

Econometric policy evaluation can be viewed as measuring the effects of a

change of distribution of the exogenous variables on the mean value of an endogenous

variable. The general approach tha t has been adopted in the profession is to

parameterize a model, e.g., P =  f(x), and then evaluate the unconditional expectation

of the change in the endogenous variable. However, in many instances, the param etric

model itself is ad hoc, formulated with very little  economic justification, e.g.,

assuming th a t f is approximately linear, and thus the consistency of the benefits or

costs estim ates is called into question.

Stock (1984, 1985a) suggested using a nonparam etric approach to the problem

of evaluating econometric policy which offers a solution when the conditional
* *

distribution of P on x , where x is the policy variable after the change, is unknown.
*

By estim ating the conditional expectation of y condition on x nonparametrically, 

one has the advantage of utilizing all the information concerning the structure of the 

policy and the  effect of the policy change on the distribution of the exogenous 

variable.

There are two main contributions in this chapter. First of all, we have
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attem pted to model the hedonic price function using a semiparametric approach. The 

resulting slope estimates for the dummy variables from the semiparametric hedonic 

model are interpreted as the characteristic or shadow prices. Although this 

semiparametric approach has the advantage in th a t the estim ates are more robust 

than  the traditional param etric approach, we have discovered th a t it is highly 

sensitive to the bandwidth used. Secondly, we have attem pted to estim ate the 

average benefits or costs associated with a change in fuel efficiency. We have 

discovered tha t these estimates are also very sensitive to  the bandwidth used.

4.2 TH E HEDONIC PR IC E FUNCTION

The hedonic price function is originally proposed to reflect quality 

improvement in the price index. The first published paper on hedonic price function 

was by Court (1939). In the 60's, economists and national income statisticians alike, 

were worried tha t the price indices would be defective as they did not take fully into 

account quality changes. Much research, spearheaded by the efforts of Griliches and 

his colleagues (see Griliches (1971)), was then underway to construct price indices 

which would reflect quality improvements. The basic idea of an index incorporating 

quantity  and quality change was to construct by dividing an index of money values 

by quality adjusted price index. The analysis is based on the price function 

P  =

where P is the sales price, and the z's are the attributes of the car. The hedonic 

implicit or characteristic price of a component z is the partial derivative of P with 

respect to  z. Typically, the function f is assumed to be linear, log—linear or semi—log 

in empirical work. The semi—log form was more popular for two reasons: the first was 

th a t the semi—log function was able to reflect varying marginal valuations; the second 

was th a t the statistical fit was thought to be much better based on R in the earlier 

studies, and Gaussian Box—Cox likelihood criterion in recent studies (Goodman 

(1983)). However, there remain problems with the reasoning.
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On the first point, semi—log form may not be consistent with the theory 

(Lucas (1975)). On the second point, we have known th a t the use of Gaussian 

Box—Cox transform ation has various problems (see Chapter 3). The most troubled 

evidence from many of the results using Gaussian Box—Cox model has been the 

values of the transform ation parameter of P lying inside the inadmissible range of — 1  

and zero. Goodman (1983) found that one of his two transform ation param eters of the 

dependent variable was —0 .6 . The findings of negative transform ation param eters is 

also common to the empirical studies in housing economics. Based on these reasons, 

the bias towards a semi—log formulation may be unwarranted.

In view of this, quadratic Box—Cox transform ation has been used very often in 

the literature. However, this highly parameterized flexible functional form has the 

problem of giving imprecise estimates and is not suitable for prediction.

W ith both linear and semi—log forms rejected by either the statistical fit or 

economic theory, and the fact tha t the flexible functional from may not be desirable 

for prediction and yielding imprecise estimates, a large proportion of the literature on 

transport economics in recent years have reverted to  the log—linear form. The 

log—linear transform ation is favoured because of (i) easy interpretation; (ii) its ability 

to transform  the error distribution to symmetry; and (iii) its ability to  stabilize the 

variance as in most transformations. But, this functional from is still chosen 

subjectively and hardly satisfactorily. Many agree th a t the price function reflect 

underlying demand and supply in the market, but specifying the functional form 

remains very difficult. On the one hand, if one rules out certain arbitrage activities 

and abandons the divisibility assumption of the product (e.g. in Rosen (1974)'s 

model, he rules out the possibility of combining lOOOcc car with a 2000cc car to form 

a new car), then one rules out the possibility of P(z) being linear. On the other hand, 

if one is interested in modelling a perfect rental m arket with no transaction or 

assembly costs, then the linear characteristic model (Lancaster (1971)) where the
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price of a typical good is formulated as a sum of the characteristic price m ultiplied by 

the quantity  of the characteristic embodied in the good may be useful. This is of 

course consistent with earlier household production approach to  quality variation 

which assumes th a t the consumers are also the producers. They purchase the goods 

not for consumption but as inputs into self production functions for characteristics 

(see, e.g., Lancaster (1971)).

In the la tter case, Jones (1988) has shown th a t the hedonic linear 

decomposition of equilibrium prices need not hold, thus raising the possibility of 

nonlinearity. Indeed, some may argue tha t the former model is more realistic for the 

new car market in the sense that it rules out any repackaging attem pts by the 

consumers. This implies th a t the hedonic function cannot be linear.

It was thought tha t if nonlinearity was the rule, then the econometricians were 

left with a difficult situation. There was no satisfactory framework to  elim inate the 

element of subjectivity involved in functional form selection. As a consequence, there 

was usually a heavy bias in the choice of functional form.

Although the theory of Rosen (1974) presented the econometricians with a 

specification problem, it provided more insight into the hedonic price function than 

earlier studies. In his competitive market framework, consumers do not act as their 

own middle men. There is a clear distinction between buyers and sellers in the market 

for new goods simply for pure consumption. The consumers' basic problem is to 

maximize their utility U(x,z) subject to a nonlinear budget constraint x + P(z) =  y, 

where x is a composite good and y is the household income. The producers' basic 

problem is to maximize their profits j  =  M P(z) — C(M,z), where M is the number of 

units and C is the cost function. In order to interpret and analyze the hedonic price 

function in this setting, it is useful to introduce the bid functions for consumers and 

the offer functions for producers. Extensions to allow for the consumers to purchase 

more than one unit of a model as well as different tastes across consumers are fairly
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straightforward in Rosen's model.

The general idea is tha t the consumers are bidding for goods and the bid 

functions depend on the attributes, given a level of u tility , u, and income, i.e., 

BID(z;u,y). The bid function, BID(z;u,y), describes how much a consumer is willing 

to  pay for different amounts of z given the level of u tility  and income. The hedonic 

function P(z) describes the corresponding minimum price the consumer has to  pay to 

consume an amount z in the market. Consider a single dimension z., when the two 

curves are tangential to each other, u tility  is maximized. Notice th a t the derivative of 

BID wrt z., BID^ , is the marginal reservation demand price for a ttribu te  z., given u

and y, and it is decreasing in z-. In this case, BID^ =  , thus the derivative of P

wrt Z| has the same interpretation in equilibrium.

On the other hand, we have the producers offering their models for sale with 

an offer function OFF(z; tt, /?)./? is a shift param eter and depends on the prices of 

factor of production as well as the parameters of the production function. Given a 

level of M, and constant 0  , the offer function describes the the unit price of the car 

model corresponding to different designs of z the producer is willing to  accept when M 

is optim ally chosen. O FF is the marginal reservation supply price for a ttrib u te  i at
h

constant tt and is increasing in z.. Again, the profit is maximized when OFF^ =  P^ ,

for all i, in equilibrium.

Rosen (1974)'s model suffers from the drawback th a t the consumer only 

purchases a single model but nevertheless, the implications are fairly interesting. 

F irst of all, the hedonic price function is the locus of points where the bidding and 

offer functions are tangential to each other. In other words, it reflects the equilibrium 

points where buyers and sellers are perfectly matched. This is an in terpretation  of 

hedonic price function in an equilibrium framework. Secondly, if the producers or 

firms are identical, i.e., 0  is the same across, the offer functions collapse to  a single
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surface. This means tha t the hedonic function is identical with a unique offer 

function. On the other hand, if the consumers are identical, then the hedonic price 

function is identical with a value or bidding function.

The theory of Rosen (1974) predicts tha t the hedonic function is nonlinear but 

provides little  information on the functional form. Since purely nonparam etric 

methods are unlikely to work in the presence of dummy variables and because of the 

lack of a large sample size, a semiparametric model may be desirable. This is 

especially true when only a sub—vector of the a ttribu tes are of interest or one is 

interested only in the predicted price. Take the sem iparam etric model

^ i “  ^ '^ i ^ ^^^li’' ” ’̂ (m—k)i^ ^ î i= l,2 ,...,N

where is a kx l vector of continuous (possibly in log) or dummy variables where the

characteristic price vector Ô is of interest, and g is an unknown function of the

remaining attributes. This is a more flexible model than the param etric ones and

allows for nonlinear interactions among the remaining attributes. Robinson (1988a)'s

method can be used to estim ate the shadow price of a ttrib u te  D^. Besides having the

desired property tha t the estimates are consistent and even efficient when f is indeed

linear, the model can be used for prediction.

4.3 PROBLEMS WITH THE TWO-STAGE PROCEDURES

Hedonic price function can also be used to estim ate demand and supply

functions and Rosen (1974) has suggested a two—stage procedure. In order to

m otivate the use of the new procedure, we have to understand Rosen's approach and

its main problems. The two—stage procedure is as follows:

(i) the first stage involves estim ating the marginal prices P , usually from a

param etric hedonic price model:

P =  f(z) + Tj

(ii) the second stage of the technique is to identify the demand and supply
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functions and involves estim ating the following simultaneous equations:

Demand: (z) =  D D -'(z^,...,z^,Y j; A^) + «j

Supply: Pg (z) =  SSJ(zj,...,Zjjj,Yg; A )̂ + (g

where and are the variables which characterize demand and supply 

respectively, and are the parameters of interest. The two equations in the 

second stage are derived from the first order conditions from both the consumers' and 

producers' optimization problem respectively. Basically, the equations describe tha t 

the marginal price is equal to the marginal rate of substitu tion and m arginal ra te  of 

transform ation respectively.

Two special cases are of interest. If we have identical consumers, but different 

producers, then the hedonic function identifies the value function. Y^^ drops out of 

DD^'s and single cross-sectional observations traces out the marginal ra te  of 

substitutions. Assuming constant u tility  of money, we have the inverse compensated 

demand functions. If consumers differ and producers are identical, we have Y^^ 

dropping out from SS^'s with P(z) identifying the offer functions. Therefore, we can 

identify the inverse compensated supply functions.

The more realistic and interesting question is whether we can in terpret DD^'s 

as the inverse demand functions if consumers are not alike. In this case, we have to 

take into account the supply side. If we have perfectly elastic supply as in the  new car 

m arket, then the implicit price P can be treated as exogenous. In this case, DD^'s
j

still identify the demand functions. This suggests th a t new car prices be used rather 

than  used car prices. In the event of perfectly inelastic supply, we cannot interpret 

the DD^'s as inverse demand functions because the DD| for Zj and household i, are 

different for different households. Unless the consumers are identical, no easy 

solutions exist. In the event of sluggish adjustm ent of supply, we have to  model the 

m arket using a system of simultaneous equations as above.
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The problems of estimation of the simultaneous equations system are the focus 

in housing economics. There is a growing literature on the econometrics of structural 

hedonic price model, e.g., W itt, Sumka and Erekson (1979), Brown and Rosen (1982), 

Mendelsohn (1984, 1985), Bartik (1987a, 1987b), Epple (1988) and Kahn and Lang 

(1988).

We are only interested in one Zj (e.g., fuel efficiency variable) and proceed to 

discuss the estimation with a single Zy The market for new car is assumed to consist 

of a large number of consumers who only purchase one model. We can write the 

typical consumer or household problem as maximizing the u tility  function subject to 

a budget constraint:
* ^

Max * * U (x,t,t , Z p . . , z  ,z )
x ,t,t ,z,z 

*
subject to X + P(z,z ) =  y, where

z =  m xl vector of observable car attributes 
*

z =  car attributes not observed by the econometrician

t =  kx l observable taste  variables 
*

t =  unobservable taste  variables 

X =  a composite good

y =  income of the household or consumer
* *

P(z,z ) =  sale price of the car with attributes z and z

the first order conditions is

ôP(z,z )/âZj =  U%.( )/U (( ) j= l,2 ,..,m

which describes tha t the marginal price is equal to the marginal ra te  of substitution.

Assuming th a t we are only interested in estimating the MRS of Z p  and the marginal
* *

price can be w ritten as P =  P (z,z ). Then we can model the willingness to payZf z^

function as

Pg =  g(zi,t;A) + q
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with the possibly unknown nonlinear hedonic function

P(z,z ) =  f(z) + 7/(z )

where A is the param eter of interest. Many studies including Goodman (1983),

estim ated the hedonic function at the model level using Box—Cox transform ation

model. In the second stage, ols is applied to  obtain the estimates for A.

Unfortunately, ols estimates from the second stage are inconsistent, will be

correlated with z because of the simultaneous choice problem. This problem arises

because the consumer can simultaneously choose the amount of z^ to consume as well

as the marginal price 5P(z,z ) / d z y  So, z is usually a function of the attributes

and €p thus correlated with 6 p  which rules out ols estim ation for consistency.
*

Unobservable tastes, t (a source of error in f^), also rule out some of the and 

other z's as instrum ents as they are correlated with 6 p  Obviously, in a problem of 

this sort, IV has to be used in estimating A. The two—stage procedures simplifies to 

the following:

(i) As Stock (1985b) has noticed, since we are interested in the derivative of P 

w rt to z^ and not z in this problem, we can use nonparam etric techniques to estim ate 

the derivative. Denote these nonparam etric estim ates as P^ .

(ii) Replace P^ by P^ and we have 

Pg =  g(zi,t;A) + + u
*

u arises because of the replacement, and EP — P 0 almost surely (a.s). Then weZj 2j

can apply Amemiya (1974) NL2 SLS estim ator. Stock (1985b) has shown th a t 

’N'
a —r’rwrofi on/̂ û mo-hriv HTVna Kioo lo

problem in finite sample. The use of higher—order kernels of B arlett (1963) to reduce 

bias may be desirable. However, there may be arguments against using kernels which 

adm its negative values since some marginal prices are believed to be non—negative a

N ^ (Â—A—bj^) ^  N (0,n).
2

where Ü is the variance-covariance m atrix. The bias b ^  is of 0 ( a ^  ) and may be a
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priori in cases when the attributes are "goods" rather than  "bads".

Rosen’s approach suffers from two major problems. The first being tha t there 

may be problems with identification of the willingness—to—pay function. Even if one 

is able to  solve the identification problem by imposing some restrictions on the 

nonlinearity of the hedonic price function, it is still an undesirable procedure if one 

has only data  from a single market as correct instrum ents are still lacking. Therefore, 

in our case, the main difficulty is the availability of the appropriate instrum ents.

One solution is to use instrum ents from other markets. If however, 

m ulti—market data  set is used, one has to make the implausible assumptions tha t the 

preferences across the markets are the same. This problem also relates to  general 

equilibrium effects. If the changes in a particular a ttributes are large, then some 

owners will be tem pted to move on to another model. If the changes in the attributes 

are across the models, then many owners will switch models and this may alter the 

hedonic price structure.

This suggests th a t an alternative approach has to be suggested for the 

estim ation of the costs or benefits without resorting to Rosen's two—stage method. In 

particular, we refer to a procedure which involves no second stage and evaluate the 

willingness—to—pay for fuel efficiency directly using the hedonic price function.

4.4 THE MODEL

The use of the change in property values as a measure for benefits of improved 

environmental quality has been discussed by a number of authors (Freeman (1979), 

Chapter 6 , Harrison and Stock (1984)). Our estim ation strategy is th a t of Stock 

(1985a) and the main purpose is to produce estim ates of the expected value and 

variance of the benefits of a change in the fuel efficiency. As in most transport 

problems, we have to work at the model level. Ideally, we should m ultiply the 

a ttribu tes of each model by its market share to reflect the im portance of tha t 

particular model in the market. In the absence of reliable data  on the sales of each
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model, we have not adopted this approach. So, all the models are assumed to be of 

equal weight in this study.

We will first estim ate the semiparametric hedonic price function by Robinson 

(1988a)'s method using the data  on individual models. Then, a change in the fuel 

efficiency is assumed and we evaluate the differences between the price of the model 

before and after the change. To obtain the average costs, we have to aggregate these 

differences and then divide the to tal difference by the number of models. We shall 

now outline the model formally.

Let P and x be scalar random variables, z be (m—k—l)x l  vector of identically 

and independently distributed random variables. A hedonic function can be 

represented as

Pj =  Dj'(Ç + g(Z|,Xj) + Uj i =  1,2,..,,N

where P. is the price of a new car, z. is a (m—k—l)x l  vector of a ttribu tes which are

continuous, x. is the measure of fuel efficiency in M PG, D. is kx l vector of dummy
2

specification or performance variables, Uj is assumed to be i.i.d. (0,cr ) independent of

Z| and D., and g is continuous in z- and Xj. Let F(z,x,D) be the distribution of

(zj,x.,D.), and H(z,x) be the unconditional distribution of the a ttributes (zj,Xj).
*

Our policy can be stated formally as transforming x to  x . After the shift of
* * 

the policy, we have the distribution of (z.,Xj,Dj) as F (z,x,D) and th a t of (z.,x. ) as
*

H (z,x). We are interested in evaluating the costs (benefits) of such a mapping as the

unconditional expectation of the change in p, i.e.,

C =  E * ( P ) - E  (P) =  E *(D.'(^ + g ( z . ,x . ) ) - E  + g(z.,x.))
p  p  F F

=  E *(g(z.,x.)) -  E (g(z.,x.)) (1)
p   ̂  ̂ F

The second inequality is achieved by exploiting th a t our model is partly  linear and 

tha t the policy does not affect Dj. Let us pretend th a t g is linear in a scalar policy 

variable x. for the moment with g(xj) =  tx., and th a t =  0. Then we have.
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The cost estim ator is

C  =  N “ ^ E j { g ( X j  ) - g ( X j ) }

Denote 7  as the ols estimate, the x as the sample mean. Replacing g(x.) by tx ., we 

have

C =  N "^E.(7 x. -TX.) =  t(x  -x )  =  tA x  =  EjAx(xj/E.x.^) Pj

=  N E.q(x.) p.
-  - *  -  2 w ith Ax =  (x —x) and q(xj) =  NAx(xj/EjX. ). This says th a t the estim ate is a sum

of the product of a function of Xj and Pj implying th a t C is a linear estim ator. If the

policy has the effect of altering the observation cell, than  this has to be taken into

account. For easy expositions, let us introduce a simplified model with only a scalar

dummy variable dj and policy variable x., i.e.

Model 1: P. =  ad. + tx. + f. i= l,2 ,... ,N

Assume th a t a  is known for the time being. We may want to rewrite the model as

P| — adj =  TJc. + 6. i= l,2 ,... ,N

Pi"^ =  T^i + fi

w ith p. '*' =  p. — ad | and the cost estim ator which corrects for cell—specific effect is

C ' ^ = N  )-g'^(Xj)}.

But g ^ (x .)  =  T^x., while 7 ^ is the ols estimates from regressing P .^  =  P. — ad. on

X..  From  above, we have

=  T^(x —x)

= N"^{Ejq(Xj)(Pj -  odj)} (2)

Now, assume th a t a  is not known, then it can be estim ated by ols,
2

=  argm in^ Sj(Pj - a d ; -  g'^(Xj)) (3)

+ 2

=  argm in^ Sj{p; -  ad; -  7  Xj) .

Notice th a t in (2 ), we have the sum of the product of (P. — ad.) and q.. Stock
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(1985a) has outlined a similar strategy for the nonparam etric cost estim ates which is

also linear in P. We now relax the assumption th a t g is linear and assume tha t it is
*

fairly smooth by imposing some smoothness conditions on H and H .

It is also assumed tha t the conditional expectations of d | on x and P. on Xj are

continuous in x.. The unknown E *(g(x.)) and E (g(x.)) can be estim ated by the 
1 F V F ^

N adaraya—W atson kernel estim ator described by equation (7) in Chapter 2, i.e., : 

g ' " ^ )  =  SjWjP.+ =  S jK jjP j'" / EjKjj (4)

r ( x ; ) = E . w . P / = E . K ^ P / / E . K . ;

with the semiparametric cost estimates:

c'^ =  N“ ^£j{g'^(xj =  N“ ^SjSj(Wj(Xj) -Wj(Xj))Pj +

= N"^E.WjP.+

where P. =  P. — a^d . and the unknown a is estimated as

- +  - +  2a = argmin^ Ej(Pj-adj-g (xj))

Using (4), we have

. 2  

a  = argm in^ E .(P .-A d .-S jW j(P j-ad .))

In m atrix  from, with M =  I—W and the corresponding D and P vectors for d- and P.,

we have

o+ =  argmin^ ((I-W )P-(I-W )D )'((I-W )P-(I-W )D )

=  argm in^ (P—D)'M ^ (P—D)

=  (D'M D)“  ̂ D'M^ P 

It should be obvious now why we have to assume th a t the conditional 

expectations E[d|x] and E [P |x] have to be continuous in x. It is also im portant tha t 

the m atrix  D'M D is positive definite. Returning to Model 1, taking conditional 

expectations on x, we have

E [P .|x .] =  nE[d.|xj] + TX. i= l,2 ,...,N  (5)

Subtracting (5) from Model 1 , we have
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P .-E [P jx .]  =  Of(d.-E[d.|x.]) + e. i= l,2 ,...,N  

is then obtained by regressing P .—E[P. |x^] on d-—É[dj|x .], i.e., regressing My on 

(M D) if the conditional expectation is estim ated by the method of kernel. The 

existence of the conditional expectations is essential for the non—singularity of (D'M 

D). The positive definiteness of E{(dj—E[dj|xj])(dj—E[d-|x.])'} is in fact given as the 

identifying condition for the Robinson (1988a)'s estim ator th a t we will discuss below. 

Of course, if we have no cell specific effects, a  =  0 , we are reduced to a 

nonparam etric framework and the problem does not exists. As long as g is smooth, we 

have

C =  N -^^{g(x;*)-g(x})} =  N -ls.Sj(W j(X i)*-W j(X i))Pj 

=  N“ ^E.W.P.

The parallel of the param etric and nonparam etric estim ators is apparent from 

the discussion above regarding the estimation of the expected value of dependent 

variable. Stock (1985a) has shown tha t, with non—negative kernel bounded above and 

below, and under the usual conditions on bandwidth, i.e., a->0, Na -̂»oo as N->oo, the 

fixed effect estim ator, and the semiparametric cost estim ates, C ^ , are consistent. 

Furtherm ore, he established tha t N ^ /^ (C ^ —E[C | (x^d-), i = l , 2 ,...,N]) is

asymptotically normally distributed with mean 0 and covariance m atrix  V where

V =  P ( l  + R 'L“ ^R)

with R =  N ^W 'D, L =  N \ ô 'D )  and D =  MD. The individual nonparam etric 

estim ate for conditional expectations, (m^ — m .), converges to (m^ —m^) at th^ rate 

of (N a^)^/^. The results of Stock (1984, 1985a) show th a t the average of these 

individual estimates converges to its expectation and achieves the usual rate  of VN — 

a fact which Stock (1984, 1985a) emphasized. This implies th a t although the 

individual estim ates may converge at a  slower rate, but taking the average of these 

estimates, we are able to exploit more information from the whole sample and thus 

get an estim ate which converges at the usual rate.
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The usual root—N convergence rate can also be achieved for the param eter of 

interests, a  (for dummy variables d) or 7  (for continuous variables x), in a partial 

linear model: linear in d and possibly nonlinear in z and x. Robinson (1988a), using 

higher—order kernels, has shown tha t this is possible. Speckman (1988), has also 

exploited the correlation of z and x with d, and showed th a t the estim ator for 

achieves the usual rate of convergence.

It may also be useful to relax the assumption th a t w is a non—negative 

functions by using higher—order kernels. This suggests th a t if one is interested in the 

dummy variables, then as Robinson (1988a) has shown with higher—order kernels,

^  N(0,fi) 

where = (D 'D) ^D'P

D =  M d iag (Ip l 2 v ? I ^ )  D 

P =  M d iag (Ip l 2 ,...,I|^) P 

I. =  I(f .> b )

Q = (D 'D )"^

The indicator function is a device to trim  out small f , the density estim ates, in 

order to  avoid technical difficulties. Further discussions of the Robinson ( 1988a)'s 

estim ator are presented in Chapter 7. At present, we confine our discussions to the 

estim ation of cost in this chapter. Recall that the cost estim ate is 

=  N“ ^E.W.P.'^ =  N ^^E .W .(P .-â+ d .)
«/ «J J «J «/ «/

In m atrix  terms, we have

=  N“ ^[W  -D (D 'D )“ ^D'M diag(I^,...,I^)] y =  N“ U 'P  

where À =  [W  — D(D 'D)~^D 'M  d iag (Ip ...,I^ )] '. A consistent covariance m atrix 

estim ator for C ̂  is
’ -w O  — 1 — ^

V =  U A '
^  O __________ __ 1 -V -V I o

where cr =  N E.(PpOf d.) . Stock (1985a) has also suggested and evaluated the 

performance of three other choices of consistent V, which have com putational
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advantage. We have adopted Stock ( 1985a)'s third suggestion, i.e.,

V =  (l + R'L“ ^R)(N“ ^£jWj).

4.5 RESULTS

The same set of data and attributes as in Chapter 3 is used. The attributes are 

size (zj), spaciousness (zg), power (zg), acceleration ( z j  and fuel efficiency (zg). We 

have included several dummy variables to capture possible taste  differences and to 

account for the two—stage hypothesis of Griliches. The individual dummy will take 

the value 1  if the car possess the following facilities or characteristics: air condition 

( d j ,  sunroof (dg), electric window (dg), autom atic transmission ( d j ,  5 speed (dg), 

power steering (dg), unleaded (dy) and British made (dg). We have therefore allowed 

for the possibility tha t the change in fuel efficiency standard affects these 

characteristics. This assumption is crucial for the identification of the parameters. If 

the conditional expectations do not exist, the param eters are not identified and the 

estim ates have no meaning. In tha t case, we can take advantage of the fact and a 

nonparam etric policy analysis can be conducted instead. All the coefficients, with the 

exception of the unleaded and British made dummies, are expected to be positive as 

these are desired attributes.

Table 4.1 reports the results for the estim ation of the hedonic price function.

Following previous research, we present results for hedonic price functions of different

param etric specifications. The first four columns of the results correspond to the

hedonic function with level, log—log, semi—log and inverse—log specifications
2

respectively. As expected, the semi—log hedonic model has the best fit based on R , F 

statistics and in terms of the number of coefficients which are consistent with a priori 

belief. Indeed, when the coefficients are negative in the semi—log specification, the 

t—ratios are not statistically significant at the 1 % level. Unfortunately, the policy 

variable — fuel efficiency (zg) has negative coefficients in three out of the four 

specifications. Two explanations are offered. First of all, m ulticollinearity may be the
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source of the problem. Secondly, the relationship may well be nonlinear and we have 

not allowed a flexible enough formulation. In particular, cross-product term s have 

not been allowed into the models. It is most likely th a t th e  problem arises from these 

two sources simultaneously giving rise to what is known as nonlinear singularity.

The last three columns are the results for the sem iparam etric hedonic model. 

The results reported are for second, fourth and sixth order kernel estimates 

corresponding to the bandwidth a =  N where i  is the order of the kernel.

This bandwidth is chosen because it is known tha t the MSE of the density estimates 

is minimized with a^^^ =  constant x N o f  course, the bandwidth is only

subjectively chosen to be proportional to a^^^ and may not be the "optimum" 

bandwidth, because it may indeed be greater or smaller than the one tha t we have 

chosen.

The question is: how sensitive is the estimates to  the bandwidth? We plotted 

the estimates for each dummy variable corresponding to Hg and for the 

bandwidth interval [0.1, 2 .0 ] in Figures 1  and 2 respectively.

First of all, let us look at the plots of the estim ates in Figures 4.1(a) to (h). 

Although the estimates are very smooth over the range of bandwidth, these figures 

dem onstrate tha t the choice of bandwidth is very crucial. The only consolation is that 

the estim ates are fairly well behaved and they fluctuate less in the range of [0.5,0.7]. 

w ith the exception of five speed and autom atic transmission dummy variables.

The picture from Figures 4.2(a) to (h) is very different. Since the higher—order 

kernels can take negative values, the plots are not as smooth as those in Figures 4.1. 

The plots are still fairly well behaved in the interval [0.5,0.7].

The most interesting results are those for H 2  and H^. Higher—order kernels 

have the advantage of bias—reduction and perhaps as a consequence, the results in the 

last column are consistent with a priori belief. Comparing the estim ates across the 

three kernels, it seems to be tha t the larger the standard error, the larger the change
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in the magnitude as we increase the order.

Some conclusions can be drawn from these results and plots. F irst of all, there 

is little  doubt th a t most of the attributes are desired, w ith the exception of sunroof 

and autom atic transmission. Secondly, it would be fair to say th a t the interpretation 

on the British dummy is unfavourable to the local manufacturers.

The interpretation on the unleaded dummy is not so clear cut although it 

appears th a t the evidence is against those cars which can run on both leaded and 

unleaded petrol.

Turning to the cost estimates in Table 4.2, we have reported results 

corresponding to both param etric and semiparametric specifications for general 

increases in the fuel efficiency. We consider a general increase of 10 and 2 0 %. The 

level specification has the highest estim ate with both the log—log and inverse—log 

failing to  detect any changes thus giving zero estimates.

The semiparametric estimates are hard to  interpret because of the sensitivity 

to the bandwidth choice. Figure 4.3(a) presents the plot of the cost estim ates for Hg 

(costl) and (cost2 ). The upper bound for costl is 17.1740 and the plot is fairly 

smooth as compared to the more erratic cost2 . We should remind the readers tha t 

Stock's theorem does not hold for non—negative kernels. Looking at Figure 4.3b for 

the plot of the absolute t—ratios, we can see th a t the t —ratios are fairly sensitive to 

the bandwidth used. The unpredictability of the t—ratios for cost2 is again caused by 

the use of trimming and negative weights.

Figure 4.4(a) and (b) are the plots of the cost estim ates and t—ratios. We can 

see th a t the conclusion is fairly similar to the previous one: t—ratios of costl indicate 

th a t the estimates are statistically significant while th a t of cost2  are generally 

insignificant

We have also presented the estimates for the case where there is imposition of 

minimum efficiency standards in Figure 4.5. We can see th a t the cost estim ates are
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also sensitive to the bandwidth. The message seems to be th a t for the da ta  set on 

hand, the hedonic marginal price estimates and cost estim ates obtained are actually 

not as ideal as it were unless some method of bandwidth selection criterion is defined. 

It is understood th a t the choice of bandwidth actually corresponds to  choice of the 

functional form in finite sample. According to the asym ptotic theory, the  choice of 

bandwidth does not make any difference to  the ra te  of convergence and the curse of 

dimensionality is not a problem in semiparametric problems. Empirically, these issues 

have to be dealt with before one can have any faith in the estimates. There are, 

however, exceptional circumstances, e.g., when one has a very large da ta  set which 

itself poses a computational problem, or when the estim ates are fairly insensitive to 

the bandwidth. Furtherm ore, we have to decide on which order of kernel to  use which 

in tu rn  depends on the smoothness of the unknown regression functions. The 

estim ates here have really provided a very good example against a subjective 

rule—of—the—thum b method for bandwidth selection. Therefore, we use the 

cross-validation (CV) criterion function suggested by Robinson (1988a) for the 

selection of bandwidth:

^CV “  &rgmin^^^ ^ iP —i ~  ^

The results provided in Table 4.4 are obtained using the bandw idth and the 

order of kernel which minimize the CV function. The signs of the semiparametric 

hedonic function estimates are all consistent to a priori belief. For policy analysis, we 

have investigated the case when the minimum fuel efficiency standard of 35 MPG is 

imposed. Since the semiparametric estimates can be downward biased and therefore, 

we have also reported the cross—validated nonparam etric estim ates. The 

semiparametric results suggest tha t the average willingness—to—pay is just 31.0 

Sterling pounds per car. The statistical significant estim ated value of 657.8 Sterling 

pounds per car seems too high a value.
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4.6 CONCLUSION

In summary, our findings suggest tha t the sem iparam etric estim ates are too 

sensitive to the bandwidth. We argue in favour of the less-subjective but 

com putational more expensive cross—validated estimates. Unlike the semiparametric 

estim ates, most of the ols estimates for the hedonic price function are not consistent 

with a priori belief. If this is an indication of misspecifications, then we should not 

place too much faith on the ols cost estimates.

The cross—validated bandwidths were used to calculate the hedonic price and 

cost estimates. The advantage of the semiparametric model over the  quadratic 

transform ation model is tha t we can use the sem iparam etric model for prediction. 

Since the semiparametric model is less prone to misspecifications, it is useful as a first 

stage estim ation procedure for secondary hedonic applications in many areas of 

economics.

On the other hand, the semiparametric cost estim ates could be downward 

biased due to the inclusion of unrelated dummy variables although we have chosen 

them  carefully. However, the semiparametric estim ates are all consistent w ith a priori 

belief and based on this, it is fair to suggest tha t the cost estim ates are realistic and 

perhaps close to the true values. Finally, the nonparam etric and semiparametric 

estim ates suggest tha t there is at least 31 sterling pounds gain per car if a minimum 

standard of 35 MPG is imposed.
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FIGURE 4.1a PLOT OF SEMIPARAMETRIC ESTIMATES AGAINST
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FIGURE 4.1b PLOT OF SEMIPARAMETRIC ESTIMATES AGAINST
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FIGURE 4.1c PLOT OF SEMIPARAMETRIC ESTIMATES AGAINST

BANDWIDTH: ELECTRIC W INDOW
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FIGURE 4.1d PLOT OF SEMIPARAMETRIC Hg ESTIMATES AGAINST

BANDWIDTH: AUTOMATIC TRANSMISSION
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FIGURE 4.le  PLOT OF SEMIPARAMETRIC ESTIMATES AGAINST

BANDWIDTH: 5 SPEED
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FIGURE 4. If PLOT OF SEMIPARAMETRIC ESTIMATES AGAINST

BANDWIDTH: PO W ER  STEERING

I

CDCDCD

OD

A

<CPQ
f=
O

PQE—
g
2

CDCM CD
v jOCDCM



Semiparametric policy analysis [ch 4 PS-121]

FIGURE 4.1g PLOT OF SEMIPARAMETRIC H„ ESTIMATES AGAINST

BANDWIDTH: UNLEADED
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FIGURE 4.1h PLOT OF SEMIPARAMETRIC ESTIMATES AGAINST

BANDWIDTH: BRITISH MADE
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FIGURE 4.2a PLOT OF SEMIPARAMETRIC ESTIMATES AGAINST

BANDWIDTH: AIR CONDITIONED
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FIGURE 4.2b PLOT OF SEMIPARAMETRIC ESTIMATES AGAINST
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FIGURE 4.2c PLOT OF SEMIPARAMETRIC ESTIMATES AGAINST

BANDWIDTH: ELECTRIC WINDOW
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FIGURE 4.2d PLOT OF SEMIPARAMETRIC ESTIMATES AGAINST

BANDWIDTH: AUTOMATIC TRANSMISSION
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FIGURE 4.2e PLOT OF SEMIPARAMETRIC ESTIMATES AGAINST

BANDWIDTH: 5 SPEED
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FIGURE 4.2f PLOT OF SEMIPARAMETRIC ESTIMATES AGAINST

BANDWIDTH: PO W ER  STEERING
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FIGURE 4.2g PLOT OF SEMIPARAMETRIC ESTIMATES AGAINST

BANDWIDTH: UNLEADED
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FIGURE 4.2h PLOT OF SEMIPARAMETRIC ESTIMATES AGAINST

BANDWIDTH: BRITISH MADE
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FIGURE 4.3a: PLOT OF COST ESTIMATES FOR AND AGAINST

BANDWIDTH: 10% INCREASE IN FUEL EFFICIENCY
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FIGURE 4.3b: PLOT OF t-RATIOS FOR AND AGAINST

BANDWIDTH: 10% INCREASE IN FUEL EFFICIENCY
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FIGURE 4.4a: PLOT OF COST ESTIMATES FOR AND AGAINST

BANDWIDTH: 10% INCREASE IN EUEL EEEICIENCY
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FIGURE 4.4b: PLOT OF t-RATIOS FOR AND AGAINST

BANDWIDTH: 10% INCREASE IN FUEL EFFICIENCY
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FIGURE 4.5: PLOT OF COST ESTIMATES FOR H , AGAINST

BANDWIDTH: MINIMUM STANDARD OF 35 MPG
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Table 4.1

level log-log semi—log inverse—log
constant -14729.008 3.743 7.048 -60488.303

(-2.61) (3.986) (29.451) (-2.556)
air con 8960.593 0.274 0.195 11016.140

sunroof
(8.58) (5.963) (4.423) (9.495)

-1163.959 -0.035 -0.025 -1347.444

elec. wind.
(-2.32) (-1.571) (-1.181) (-2.391)
239.931 0.054 0.051 386.434
(0.40) (2.094) (2.079) (0.587)

auto, trans -826.067 0 . 0 0 0 0.024 -1415.464

5 speed
(—1.31) (0.007) (0.932) (-1.982)

-1784.539 0.044 0.073 -2545.595
(-2.64) (1.515) (2.580) (-3.411)

pwr. str. 1380.004 0.119 0.106 2003.631

unleaded
(1.80) (3.527) (3.269) (2.349)

615.293 0.014 - 0 . 0 0 1 751.049

British
( 1 .2 0 ) (0.620) (-0.068) (1.304)

-1573.991 -0.017 -0.017 -1453.221
( - 2 .8 8 ) (-0.737) (-0.771) (-2.367)

size 6.682 0.720 0 . 0 0 0 16204.004
(11.29) (8.993) (8.739) (8.024)

spacious 337.941 0.383 0.067 -8538.774

accel.
(1.41) (2.314) (6.681) (-2.043)

1932.375 0.278 0.080 4651.727
(5.480) (3.392) (5.384) (2.250)

power 4263.804 0.260 3.616 368.801

fuel eff.
(0.195) (2.789) (3.900) (0.156)
3.336 -0.230 —0.003 -8347.505

R squared
(0.050) (-2.144) (-1.129) (-3.088)
0.834 0.887 0.897 0.791

RSS 7.1E+009 14.113 12.815 8.9E+009
TSS 4.2E+010 124.921 124.921 4.2E+010
SE 4299.377 0.191 0.182 4823.407
F(14,385)

Note:

149.125 232.520 259.086 112.396

t —ratios are in parentheses.
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Table 4.2

Semiparametric Estimates For Hedonic Price Function

« 2 «4 « 6

Bandwidth 0.5 0 . 6 0.7
air condition 3483.858 3492.590 3581.135

sunroof
(4.921) (4.973) (5.121)
^ 6 .9 5 8 -32.487 2.797
(-0.179) (-0.130) (0 .0 1 1 )

electric window 366.994 411.705 441.336
(1.255) (1.480) (1.600)

autom atic transmission -95.929 -105.924 1 2 . 2 1 0

5 speed
(-0.264) (-0.298) (0.034)
777.894 584.825 511.163
(2.027) (1.604) (1.418)

power steering 1868.881 1810.794 1837.222
(4.264) (4.298) (4.387)

unleaded -35.216 -37.970 —3.110

British made
(-0.130) (-0.146) ( - 0 .0 1 2 )
-208.592 -239.746 -166.583
(-0.722) ( - 0 .8 6 8 ) (-0.611)

Note:
t—ratios are in parentheses.

Table 4.3 

Willingness—To—Pay Estim ates 

1 . Param etric estim ates

Average

Average

Bandwidth

Average

Average

level log-log semi—log inverse—log
1 0 % increase in fuel efficiency

11.740 0 . 0 0 0 0 . 0 1 1 0 . 0 0 0

(0.050) (0 .0 0 0 ) (1.205) (0 .0 0 0 )
2 0 % increase in fuel efficiency

23.481 0 . 0 0 0 0.00014 0 . 0 0 0

(0.050) (0 .0 0 0 ) (0.007) ( 0 .0 0 0 )
2 . Semiparametric estim ates

^ 2 «4 « 6

0.5 0 . 6

1 0 % increase
0.7

in fuel efficiency
6.589 2.713 5.045

(0.057) (1.129) 
2 0 % increase

(2.239) 
in fuel efficiency

12.509 4.705 7.718
(1.118) (1.047) (1.867)

Note:
t—ratios are in parentheses.
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Table 4.4

Cross—Validated Hedonic Price and Willingness—to—Pay Estim ates

Semiparametric Nonpar ametric
« 6 « 4

Bandwidth 0.34 0.36
air condition 4776.07

sunroof
(7.74)

224.96967

electric window
(1.38)

596.16173

autom atic transmission
(3.02)

237.64663

5 speed
(0.92)

568.82756

power steering
(1.91)

257.03949

unleaded
(0.64)

105.83126

British made
(0.56)

-141.62120

Average

(-0.67)

1 0 % increased in fuel efficiency standard 
0.54

Average

(1.29)

2 0 % increased in fuel efficiency standard 
1 . 0 0

Average

( 1 .2 1 )

Minimum Standard =  35 M PG 
31.00 657.84
(0 .0 2 ) (4.13)

Note:
t—ratios are in parentheses.
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5.1 INTRODUCTION

In this chapter, we present the econometric methods used in previous studies 

of life cycle—permanent income hypothesis. There is a voluminous literature on 

econometrics studies and it will not be desirable to review all the models. The range 

of empirical studies covered is fairly broad, but we do not a ttem pt to give a detailed 

description of the theory and methodology. Indeed, our intention is to  provide an 

introduction for our empirical work in Chapter 6  and 7. We will focus on the 

interesting econometric testing procedures using tim e series and define the problems 

to  be investigated.

The stochastic life cycle implications of the life cycle — perm anent income 

hypothesis (LCPIH) were derived in Hall (1978)'s paper. Under rational expectations, 

the LCPIH model of consumption predicts th a t consumers' expenditure (C) should be 

a random walk with drift, i.e.,

AC^ =  a  + 6  ̂ ( 1 )

where A is the difference operator, n  is a constant and e. is white noise. In general. 

Hall's empirical results conform to the random walk hypothesis. However, he did find 

a significant role for lagged stock prices thus violating the hypothesis.

The findings of Hall's paper m otivated a whole new generation of empirical 

and theoretical work on the stochastic life cycle model and to a certain extent, the 

consumption capital asset pricing model (CCAPM ). Two models are introduced 

below as our bench mark for discussions.

5.2 TH E STOCHASTIC IM PLICATIONS O F TH E LCPIH

We begin by looking at a model with stochastic interest rates and wage rate. 

There are two explanations for the rejection of the Hall model in response to the 

findings of significant coefficients for lagged stock prices. The first being tha t the 

interest rates were treated as constant and the second explanation is th a t the stock 

market has more information.
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The model presented below for discussion can be easily modified and extended 

to a more general model. The LCPIH assumes th a t the consumer is forward looking. 

He is faced with the problem of dividing his consumption between now and the 

future. He can either save more for a possibly longer future life or enjoy the current 

consumption which is certain. In the model, there are other variables th a t are 

uncertain such as his future earnings, future rates of interest and changes in 

household consumption which have to be taken into consideration when planning. 

These variables are therefore stochastic.

The market structure is such tha t only spot m arkets exist in any period and 

the future markets do not exist. In this setting, current real wage will be known with 

certainty, whereas future wage rates and asset returns are uncertain and therefore 

stochastic. The consumer can invest in bonds, equity or banks and enter into any 

financial contracts. (There is a stochastic return ( 1  + r^^^) for some assets and there 

may also be a nonstochastic return (l + r^^^^) for other nonstochastic assets which we 

call the risk free rate  of return. Empirical evidence suggests th a t the US 3 months 

treasury bill rate  is the best hedge against inflation and some researchers consider it 

to be the riskless ra te  of return. Hall's original model treated  the return as 

nonstochastic. However, the r here is treated as stochastic.)

Consider an economic agent whose utility  function within a tim e period is

defined over consumption (C) and labour supply (L). This one period u tility  function

is strictly concave. The optimization problem is to maximize the expected utility 

subject to  the life tim e budget constraint, i.e.,

subject to the life tim e budget constraint

S j i o A f - + = At  + (2)

where
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E^(.) =  m athem atical expectation condition on information set 

=  E ( . |n j )

=  the discount factor =  rijj_Q (l+ r^^ j)(l+ r^) ^

Tj =  the tim e preference factor =  IIjj_Q(l+/9 ^ ^ j) ( l+ / 9 ^) ^

1 + r^^ j =  the rate of return between t+ i and t+ i  + 1  

= discount rate.

=  consumption at tim e t+ j 

=  labour supply at time t+ j 

=  the real wage at tim e t+ j 

=  assets at beginning of period t 

Notice th a t in (2 ), the life time budget constraint states th a t the total 

expenditure on consumption and the to tal expenditure on leisure (the two term s on 

the left hand side) should exactly equal to the life tim e non—human and human 

wealth (the last two terms on the right hand side). There are no bequests in this 

model. The stochastic variables at period t are known at the beginning of period t (as 

we assume th a t they are in the information set available to  the agent), and all 

transactions take place in the beginning of the period.

The first order conditions for the consumer's optim al consumption plan consist 

of stochastic and nonstochastic Euler equations (necessary and sufficient conditions 

are provided in Lucas (1978), Breeden (1979) and others). But we are only interested

in the following equations between period t and t + 1  :

) +
TJ

^ t + 1  , t  + l 1 - 0

(3) is the first order static condition and the following two equations are the 

stochastic Euler equations:

(l + ̂ t i)
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(1 + r, , ,)W ,

These equations together describe an optimal plan for the individual under 

intertem poral optimization. is the marginal utility  of consumption. So, (4) states 

th a t the expected gain in utility  from having an extra unit of consumption at period 

t + 1  discounted to tim e period t  (left hand side) should offset the lost in utility  from 

sacrificing a unit of consumption at period t. This condition is derived from the 

assumption th a t the economic agent has free access to a capital m arket which he 

could either borrow or lend. (5) has the same interpretation with respect to leisure 

and require the assumptions tha t the individual is not constrained in both the labour 

and capital m arkets. The addition of variables to the u tility  function or the exclusion 

variables from the budget constraint can be easily accommodated as we shall see in 

the discussions below.

Macroeconomists are interested in the coefficient of elasticity of intertem poral 

substitution of consumption (cr) and the corresponding elasticity for leisure (A)

respectively. Therefore, it is useful to define the following before we proceed:
d[log(Ct^l/C^) 
d[log(l + r J ]

_  % change in the ra tio  of consumption
~  % change in the real in te rest ra te s

_  d[log(Lj^l/L^)
d[log(l + rj)Wj/W^^J

_  % change in the ra tio  of leisure
■ ~  7 o change in the real interest rates

5.3 ASSET PRICIN G  AND CONSUMPTION

In financial economics, it is generally believed th a t asset prices react 

sensitively to economic news and tha t financial market agents are risk averse. These 

believes are brought about by the following reasons:

First of all, there is empirical evidence to suggest th a t macroeconomic
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variables and surprises in the macroeconomic terms affect asset premia, such as those 

studies of Chen, Roll and Ross (1986), and Tallm an (1986).

Secondly, there are also empirical results to suggest th a t the joint hypothesis 

of efficient m arket hypothesis and risk neutral agents are rejected, such as those 

studies of Hansen and Hodrick (1980), Baillie, Lippens and McMahon (1983), and 

Fam a (1984) for the foreign exchange market, Mankiw and Summers (1983), and 

Shiller (1979) for the bond market, Campbell and Shiller (1986) for the stock market.

Therefore, it is not surprising tha t many researchers are interested in the 

question of whether movement in asset premia is related to  the development in the 

real economy and whether one should a ttribu te  any deviation of expected excess 

returns from zero to risk premia (there are many examples, see Wolfe (1986) for the 

foreign exchange market and the references thereafter). W hat we are interested here, 

however, is not the issue of which macroeconomic variables affect asset premia and 

which do not. We are interested in a special class of the asset pricing model which 

has been named consumption CAPM or Consumption—/? model.

The CCAPM model describes a relationship between the returns of a financial 

asset and consumption from an intertem poral optimal portfolio composition setting. 

The assumptions of the model are identical to tha t of LCPIH and th a t individuals 

choose to  invest in N financial assets so as to smooth their consumption. Although 

the m otivations (see, e.g., Shiller (1982)) may be different in the LCPIH and the 

CCAPM, the tim e series econometric techniques used are common as most of them  

hinges on the Euler equation approach.

Assuming the utility function is separable in consumption and leisure, we may 

then derive the Euler equations with respect to consumption alone. The Euler 

equation between period t and t+ M  is:
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where -  (P j,t + M +

=  the real par value of the j asset

at the m aturity  date t + M.

p . . =  the ex—dividend real price of asset j a t tim e t.

Dj  ̂ =  the dividend of asset a t tim e t.

N =  Total number of assets held by the individual.

If we are interested in shares of stock of a firm or a one period index bond,
*

then M = l. For example, the one period index bond where the ra te  of return  R . , is
J 5^

known at tim e t, (6 ) can be expressed as (e.g. see Grossman and Shiller (1981) and 

Shiller (1982)):

l  =  E [ R * j S j n j  (7)

where R],* r  (P j ,t+ i + D. t ^ l ) / P .

=  the ra te  of return  of the asset j 

a t tim e t

St =  (l+/>t) ' ( U c , t + i / U c , t )
=  the marginal rate  of substitu tion between 

present and future consumption (MRS) 

between tim e t and t + 1  

The left hand side of (7) is a constant 1 . We can take unconditional 

expectation of (7). This will yield the unconditional expectation of the return  (on the 

R.H.S.), weighted by the MRS between now and future consumption, is always equal 

to 1  for all assets (on the L.H.S.), i.e.,

1  =

Furtherm ore, a relation between expected return  of an asset and the MRS can be 

easily derived using this relationship, and asset returns will have a predictive 

component. Consider
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E[Rj J  =  E[SJ“ 1 (l-cov(R*^^,Sj)),
)K

the covariance between R and S will be negative. The larger the  m agnitude of the 

covariance between payoff and MRS, the riskier the  asset and the higher the ra te  of

expected returns. Financial economists are more interested in the m easurement of the 

coefficient of risk aversion. For example, if we make the assum ption th a t the utility 

function is of the constant relative risk aversion type discussed below, then the 

coefficient of risk aversion is the inverse of a.

5.4 SOME GENERAL PROBLEM S

Before we engage in any further discussion, it may be appropriate to give a 

general idea of the common problems concerning all early empirical studies in this 

area. While some recent studies have attem pted to overcome these problems, there 

are generally four major problems inherent in the investigations and testing of these 

param etric models using either aggregate or household data.

(1) It is obvious th a t the changes in family size and composition will normally 

alter the optim al consumption path. But, it is difficult to identify the effects of 

household composition on consumption pattern  in empirical studies. Most studies do 

not model for these effects explicitly. In effect, most of the models also assume that 

individual lives forever. Although some reasons have been offered, they may be hard 

to  accept based on empirical results. These and other related problems have been 

discussed and investigated in Deaton (1986).

(2 ) The definition of consumption variable poses problems for econometricians 

as in m any other works on demand analysis. The variable used is usually the value of 

consumption of non durables and services and inputed services flow from durable 

goods. Most studies exclude durables as it is believed tha t there is cost of adjustm ent. 

In order to justify a specification of consumption excluding durables, one has to make 

the assumption th a t the preferences are separable in consumption for non durables 

and durables. There are studies (e.g. Hayashi (1982) and Bean (1986)) which assume
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th a t the individual derives services a t a constant rate over time. This flow of services 

from durables can be modelled as depreciation at a specific rate. But the user defined 

rate  is arbitrary  and debatable.

(3) Studies using tim e series and panel da ta  have to  make assumption 

regarding the length of planning period of the consumers. If the data  interval is 

different from the planning interval, then there will be aggregation bias arising from 

the serial correlation of the error term . So, if the consumer does his planning every 

month, then the use of quarterly and yearly data  will not give consistent estimates. 

These issues have been discussed by Wickens and Molana (1984), Hall (1988) and 

Harvey (1988).

(4) It is assumed th a t the lifetime utility  function is intertem poral separable in 

almost all the empirical studies so th a t a tractable form can be derived for estim ation 

and test. Most of studies assume th a t the preferences are intratem poral separable 

between consumption and labour supply. This has been criticized by many 

researchers as too strong a restriction. There are studies which use intertem poral but 

not intratem poral separable u tility  function (Mankiw, Rotemberg and Summers

(1985)). Though the assumption of intertem poral separable u tility  function can be 

accepted, the rejections using intratem poral separable preferences are not taken to  be 

conclusive.

Most of these problems have been extensively and carefully discussed in 

surveys by King (1985) and Hayashi (1987). These problems are the focus of recent 

research and some studies discussed below have addressed and a ttem pted  to tackle 

these problems.

5.5 TH E ECONOM ETRIC METHODS

Recent empirical tests can be grouped into five main headings:

(i) constant interest rates

Some empirical studies have assumed th a t interest rates are constant as in the
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seminar paper of Hall (1978). We will describe Hall's approach below.

(ii) Sensitivity test

The applications here involves what is known as the excess sensitivity test. 

For example, we can include current labour income innovations in the regression to  

see if consumption is more sensitive to labour income than  predicted by the LCPIH. 

Two studies, Flavin (1981) and Hayashi (1982) are of particular importance.

(iii) Euler equation approach with stochastic interest rates

We further break down the approach to three different categories:

(a) Approximation approach

We are referring to the certainty equivalent approach of M uellbauer (1983), 

and Wickens and Molana (1984) rather than  the more recent approach of Hall (1988).

(b) Generalized method of moments

This group of applications embodies the CCAPM models as well as related 

extensions by including additional variables into the model. They usually involve the 

use of generalized method of moments, e.g., Hansen and Singleton (1982), Mankiw, 

Rotemberg and Summers (1985). One of the implications of the model is tha t any 

variable in the information set should be orthogonal to the consumption innovation. 

Therefore, in order to test this implication, an orthogonality test is usually 

performed.

(c) Log-norm ality approach

This group of applications makes use of the additional assumption th a t the 

macroeconomic variables are jointly log-norm ally distributed. It includes A ttanasio 

and Weber (1989), Bean (1986), Hansen and Singleton (1983) and others. A test of 

the over identifying restrictions implied by the rational expectation hypothesis is 

usually conducted.

(iv) Consumption function approach

This different approach is more interested in finding a statistical relationship
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between consumption and other macroeconomic variables. Our atten tion  is focused on 

the surprise consumption function of Blinder and Deaton (1985) and Deaton (1986).

As we are more interested in the econometric methods, our discussions are 

centred on the econometric models and techniques. The studies and techniques are by 

no means independent of each other as some of them  employ more than  one technique 

in the empirical work.

(i) Constant interest rates

In Hall's paper, he has assumed separability of consumption and leisure. In 

tha t case, the u tility  function can be taken to be 

U(Cj,Lj) =  U(C^) + U(Lj)

Furtherm ore, it is assumed tha t the utility  function is quadratic, and both r^ 

and are constants. These assumptions give rise to a very simple regression model. 

Suppose th a t the utility  function is

U(Cj) =  -  (C* -  c f / 2  
*

where C is the bliss level of consumption. Then the Euler equation can be simplified 

to ( 1 ) since r^ and p^ are constant and equal to r and p respectively.

0  ̂ =  0  ( r - /? ) /( l+ r)  + ( 1 +/?)/(l + r)C^_j^

The equation can be expressed as a regression model

where

“o ^

«1 = (1+/>)/(!+r)

E t_ i(e f t)  =  0  and is the news in period t + 1  or the surprise term  which is

orthogonal to  the information set If rap, then a^^al. This is known as the

random walk w ith drift consumer expenditure model and it simply says th a t 

consumption in this period is approximately the same as the last period plus a 

constant. Besides consumption from the last period, only additional news from this
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period will affect current consumption.

Consider the following model

=  ^ 0  + “ l ^ t - 1  + + 2̂ t
where a(L) =  £ ^ ,a - L '

and L is the lag operator. Hall's procedure involved running regressions of on 

with a constant, plus one other set of variables (X) such as lagged consumptions, 

lagged incomes or lagged stock indices separately. The null hypothesis was th a t all 

the a /s  were zeros. The model can be interpreted as being rejected because the 

regression coefficients of the lagged stock indices were statistically  significant. These 

results have therefore violated the prediction from the optim al consumption path  tha t 

no variables other than lagged consumption, should have explanatory power in 

predicting current consumption C^.

(ii) Excess sensitivity test

(a) Indirect or M ultivariate Least Squares

Since Hall's seminal contribution, other authors have extended the model and 

conducted similar tests by adding variables to the random walk plus drift model. In 

particular. Flavin (1981) reconciled the conflicting results obtained from Hall (1978) 

and Sargent (1978)'s model by modelling income as an ARMA (Autoregressive 

Moving—Average) process. Sargent's results were different from th a t of Hall, and 

Flavin argued th a t Sargent by om itting capital gains from his definition of permanent 

income, had in fact imposed incorrect restrictions across the param eters of the vector 

autoregression of (C^,Y^). Flavin's model is of the form

Y* =  + 4

ACj = a + k$(Y^ - 0  + + 02^t-2 +'"+ ^p^t-p)

+ ÿgAY^ + ...+  + fgj (8 )

where
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/?(L) =  Ej£ q/?.L

------------
( 1  + r) ( 1  + r) ( l + r)P

is the income forecast error and 6 ^^ is the consumption disturbance term . The

model suggests th a t the revisions in planned consumption are caused by the revisions

in the expectation about future income (second term  on the right of (8 )). The ÿ.'s are

the measures of excess sensitivity of consumption to  current income, and therefore

should be zeros if the model is consistent w ith the LCPIH. The appropriate

methodology for estimation and testing are the full information maxim um  likelihood

(FIML) and likelihood ratio (LR) tests. But it turns out th a t the model is just

identified. Therefore, the m ultivariate least squares (MLS) on the reduced form is

equivalent to FIML on the structural form. All the coefficients can be recovered from

MLS on the reduced form. Flavin also ran a Hall's reduced form test of the  form

where 7r(L) =  E.£q;t.L^

Flavin's evidence indicated th a t there was a strong excess response of 

consumption to current income thus against the joint hypothesis of rational 

expectations and life cycle. The procedure of Flavin has been questioned recently in 

the literature on unit roots. If income is in fact a random  walk process, then  there is a 

danger th a t the conventional test statistics give incorrect rejection probabilities. We 

shall return  to  the discussion of tests in the presence of unit roots in section 6 .

(b) Non Linear Instrum ental Variable Estim ation

Hayashi (1982) dealt with constant relative risk aversion (CRRA) utility 

function U(C)=U ^ "^/l— 7  with 7  > 0, where 7  is the coefficient of relative risk 

aversion. He was the first to use a consumption series which included service flows 

from consumer durables. Previous studies had om itted durables altogether to avoid 

the problem with serial correlations. If future labour income is stochastic subject to a
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m ultiplicative shock e.g.

Yt =  Y*(l + e,)

where e^'s are i.i.d. with mean zero. Hayashi asserted th a t the Euler equation would

be the form (ignoring the time subscripts)

C (A ,Y *)-T  =  ^  E[C { ( 1  +/))[A+Y*(l +e)-C(A ,Y *)] , Y *}]"^

The optim al consumption is a nonlinear function of initial nonhuman wealth, 
*

A, and Y . Even for this simple case, the closed—form solution to  the Euler equation 

is tedious to derive. In general, it is even more complicated. So, the optimal 

consumption rule is assumed to take the form

H^, the expected future income, can be taken to be

+ ( 2 t ( 1 0 )

where fj, = discount rate  for expected future labour income.

u^ =  transitory consumption which may be interpreted 

as a shock to the utility  function or as 

measurement errors in Ct and At.

^2 t “  surprise term.

This discount rate, p, is not equal to the risk free ra te  of interest, r. In fact, the 

discount ra te  is risk free ra te  of interest plus a risk premium. Since the expected 

future income, H^, is not observable by econometricians, it has to be replaced by the 

observable variables, namely, consumption, and assets holdings using equation (9). It 

can be shown th a t by eliminating from the equations (9) and (10), we get

Cj = (l+A)Ct_i + a[At-(l+/i)(A,._j+Yj_j)] + fgj

where

^5t =  “ t “  ( l + ' ' ) V l
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not forgetting th a t is a surprise term  which is a discounted stream  of revisions of

the expectations of ^ ĵ . There are reasons to believe th a t the simple nonlinear least

squares (NLLS) estim ators will not be consistent. We have following points to 

consider:

(i) cov(u,Y) /  0 and hence cov(c^,Y) f  0.

(ii) may be correlated with since it does not include A^, which

implies cov(A^,e^^) /  0 .

(iii) Simultaneous bias associated with u, A, C and Y due to  endogeneity and 

and may be cov($ 2 ,u) ^ 0 .

Therefore, nonlinear instrum ental variable estim ation (NLIV) is the 

appropriate technique (see Amemiya (1974), Jorgenson and Laffont (1974)). Using a 

set of instrum ents from i.e. where E[Z^_j^uJ =  0  and E[Z^_^^u^_J= 0  so 

th a t E[Z^_^c^J=0, one can get consistent estim ates (see Chapter 3 for the choice of 

efficient instrum ents). However, Hayashi estim ated various models including one 

which took into account liquidity constrained households. Unfortunately, Hayashi's 

results suggest th a t a sizable proportion of the population are liquidity constrained 

and thus against the LCPIH.

(iii) variable interest rates

(a) Approximation or Errors—in—Variables Methods

Those studies which do not impose the log-norm ality  assumption can be 

included in this group, e.g., Muellbauer (1983), and Wickens and Molana (1984). 

Muellbauer (1983) extended Hall's model to one which embodies time varying 

interest rates.

The first order condition can be approximated by

Acj =  a  + + i  + fgt

where a  = — crln(l + ^), a  is the elasticity of intertem poral substitu tion and c is the 

log of consumption, we shall assume tha t all lower-case letters represent natural
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logarithm.

Since there is a rational expectation term  (i.e. E^_j^r^), one can parameterize 

the expectations formulation for interest rates. One usually characterizes the income 

process as an autoregressive moving average (ARMA). The main argum ent offered 

being th a t the process is not to imply th a t individuals form rational expectations in 

this particular param etric setting, rather, the individuals exploit the serial correlation 

of the income variable. But, this argument may be difficult to justified with surprise 

models discussed below.

Empirically, this ARMA process can be approxim ated by a finite AR process 

thus giving an attractive approach from the practical point of view. The rational 

expectations hypothesis does not specify how individuals should form expectations 

but only assumes th a t individuals form their expectations conditional on all currently 

available information. Therefore, SM (substitution methods) can be employed to 

estim ate the model. In other words, one simply needs to apply indirect least squares 

on the reduced form of the just—identified system and the estim ates should be as 

efficient as FIML.

M uellbauer models can be written as

ACt =  Û + + eyj ( 1 1 )

The estim ation techniques and problems of this errors—in—variables model 

have been widely discussed in McCallum (1976a,1976b,1979), Nelson (1975), Wickens 

(1982), Pagan (1984, 1986) and Bean (1986). By choosing appropriate instrum ents for 

^t + 1’ ^t’ estim ation will yield efficient estim ates for a. This is known as the

errors—in—variables methods (EVM).

The variables are in logarithm so tha t the model can also be taken to  be from 

a CRRA utility  function. There is a simple relationship between a  and 7 , i.e., a = 

7  \  But there is evidence of misspecifications in the model using d a ta  from the
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United Kingdom as a sometimes turned out to be statistically insignificant.

However, it may be interesting to note th a t consistent estim ation of 

M uellbauer's model does not require the estim ation of Indeed, simple IV

(instrum ental variable) will yield consistent estim ates. The most commonly used 

efficient method is the two steps or two stage methods. One of the methods is to  run 

an autoregression of r^ in the first step and then in the second step, regress Ac^ on 

the predicted values of r^ obtained from the first stage. However, the standard errors 

from the second stage are not the true standard errors. To obtain the correct 

standard errors, one needs to  apply two stage least squares on ( 1 1 ) with the r values 

replaced by those obtained from the first step. O ther procedures to improve efficiency 

are available, e.g. generalized methods of moments (GMM) of Hansen (1982) 

discussed below, semiparametric methods using conditional moment restrictions 

discussed in C hapter 6  and 7.

However, consistency of the surprise term s cannot generally be taken for 

granted in the surprise consumption function when there is misspecification in the 

param etric formulations of expectations. Therefore, other procedures such as 

semiparametric techniques are required if one were to safeguard against the 

possibility of nonlinear rational expectation formulations. These semiparametric 

models are characterized by the fact th a t the model has two components, param etric 

and nonparam etric. One can model the unknown expectations by nonparam etric 

regressions which involves infinite number of param eters and then run the usual ols 

technique in the second stage. This indeed is the method th a t we are to introduce in 

Chapter 7.

(b) The generalized methods of moments

Assuming th a t the subjective discount ra te  is constant as in the case of 

Muellbauer (1983), the first order condition (4) can be w ritten as:



A Survey o f Consumption Models with R.E. [ch 5. pgAbC\

Depending on the formulation of the budget constraint in CCAPM  model, we get 

slightly different forms. By letting the brackets equal to  h(X ^^pbQ) which is a vector 

function and where b is the vector of unknown coefficients and as some forcing 

variables i.e. those observable in the information set of the agent and observable by 

the econometrician, then

E jh (X j^ j ,b ) ]  =  0  ( 1 2 )

+ ®
Hansen and Singleton (1982) used the GMM to estim ate and test the nonlinear 

rational expectations model directly from the stochastic Euler equations without 

making any strong a priori assumptions about the nature of the forcing variables X. 

The Euler equation can be expressed using the function h as in equation (12). The 

u tility  function was again assumed to be the CRRA type. Since marginal u tility  is 

equal to

Uc.t =
Then (12) simplifies to

+ l  =  j =  1 ,2 ,3 .

So, one can simply set

h(Xt + i,b) = ( X , , ) - \ / ( l + , ) - l

b =  (7,/)}'

and we have an equation which states tha t the unconditional expectation of u^^ 

with any variable in the information set should be equal to zero. Hansen and 

Singleton (1982) suggested an estim ator for b th a t minimized the weighted sum of
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squares of the product of instrum ents at t (say Z^) and h. The optim um  weight which 

minimizes the asym ptotic covariance m atrix is derived in Hansen (1982). There is 

also a  J  statistic  for testing the overidentifying restrictions. These restrictions require 

th a t any extra  instrum ents used in estim ation should not increase the  J statistics too 

much, because of the fact tha t the expectation of the product of h w ith the new 

instrum ents should be zero. The evidence presented is against the models as these 

overidentifying restrictions were rejected.

Mankiw, Rotemberg and Summers (1985) by making the additional 

assumptions th a t h was conditional homoscedasticity rather than  heteroscedasticity 

as in Hansen and Singleton (1982), estim ated both the three first order conditions (3), 

(4) and (5) as a system and separately. In fact, in this case the GMM simplified to 

NL3SLS (nonlinear three stage least squares). They were the first to  use a utility 

function not separable in consumption and leisure

-7
________   t________
1 — 1/0  1 — 1/A

It is interesting to note tha t when the coefficient of relative risk aversion is 

zero, we have an additive separable utility  function in consumption and leisure. 6 and 

A represent the elasticity of intertem poral substitution in consumption and the 

corresponding elasticity for leisure respectively. They produced empirical evidence 

against the model. The estim ated utility function appears to be convex and when it is 

concave, the overidentifying restrictions are often rejected.

Miron (1986) allowed for seasonal shocks to preferences and technology. It is 

sensible to assume th a t there is seasonality in consumer purchases and therefore one 

should allow the use of seasonally unadjusted data  on real consumption purchases. 

Miron constructed the seasonally adjusted data. He divided the seasonally unadjusted 

data on nominal consumption purchases by the seasonally unadjusted components of 

the consumer price index. Since the model is nonlinear in param eters as well as
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variables, NLIV is again the appropriate technique for similar reasons.

The evidence he produced did not contradict the implications of the model as 

the J statistics were not rejected except for transportation at the 5% level but not at 

1% (see below for the discussion on J statistics). The J  statistics were however, 

rejected for most of the cases when seasonally adjusted consumption purchases were 

used (without seasonal dummies in the model). This suggests th a t seasonally 

adjustm ent may have accounted for most of the earlier rejections. This is not 

surprising as filtering may have caused the orthogonal conditions to  be violated. So, 

lagged variables and the J test for overidentifying conditions will always be 

significant.

(c) The Log—normality Approach

Hansen and Singleton (1983) imposed restrictions on preferences and the joint 

distribution of consumption and returns to study the tim e—series behaviour of asset 

returns and aggregate consumption.

The im portant assumption one has to  make in deriving a linear relationship is 

tha t consumption and asset returns are jointly log-norm ally distributed. In other 

words. Hall could have derived his random walk equation by imposing this 

assumption. Also, the maximum likelihood approach is actually Hansen's method of 

moments with some other conditions. One of them  is the log-norm ality  assumption, 

which states th a t =  (x^, r^ ^,..., r ^  ^)} is a stationary Gaussian process. W ith

this strong assumption, the first order condition (4) can be simplified into a.tractable 

form. We can get a simple linear regression model of the form:

=  [lo g (l+ P )-(< ^ i^ / 2 )l + 7 E t_ i(x j)  

or r ;^  =  a + 7  E^_j(x^) + 

with x j =  E j_j(X j) +

where j  =  log =  log of i asset return
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’' t  + l  ^  ^ t  + 1 + ^  ^ ^ t  + 1

a =  log (l+/>) — (<Tj^/2 )

<Tj2  = var[logX-^Rij^j|nj 

and the error term s are normally distributed. Recently, Hall (1988) and Harvey 

(1988) have made consumption a dependent variable.

To estim ate the model by maximum likelihood, E^(X^^^) is param eterized as 

a linear function of past values of y with a finite lagged length as in many previous 

empirical work th a t we have discussed. This linear param etric specification of the 

expectation term  is a consequence of the log-norm ality assumption and rational 

expectations (e.g. see Bray (1981,1985) about the connection between linearity and 

norm ality assumptions). The maximum likelihood procedure assumes th a t the 

observable variables are log-norm ally distributed and th a t the lagged length 

specification of the vector autoregression is correct. So, if either of these assumptions 

is violated, the model can again be rejected. Of course, there are specification tests 

for these underlying assumptions.

A ttanasio and Weber (1989) obtained unfavourable evidence under the ordinal 

certainty equivalence (OCE) framework of Selden (1978), using return  on shares and 

return for building society respectively. They found implausibly low intertem poral 

substitution and high p for shares and a more plausible value for intertem poral 

substitution but a negative p for building societies. Furtherm ore, the coefficients for 

elasticity of intertem poral substitution were associated large standard errors. This 

suggests tha t their model is misspecified indicating th a t one or some of the underlying 

assumptions are inappropriate.

One of the im portant contributions of A ttanasio and W eber (1989), among 

others, is the use of cohort data. In the model, individuals were assumed to  live 

indefinitely so th a t aggregation problem could be ignored (see Deaton (1986)). 

However, as we have mentioned in point (1) above, the aggregate Euler equation
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would reflect demographic changes if there were real growth in the economy and if 

the households had finite time horizon. To alleviate this problem, they used the data 

from a single cohort of married couples between 25 and 40 in 1970. The results can be 

interpreted as unfavourable to the hypothesis.

Bean (1986) used similar approach adopted in Hansen and Singleton (1983). 

But, in his case, the utility function m ultiplicatively is not separable in consumption 

and leisure. Two extra variables, namely, leisure (L) and government expenditure 

(G), were added to the utility function taking into account the effects of wages and 

government spendings. It has been argued tha t government expenditure can act as 

substitute for private consumption. By assuming th a t {Ac^, Ag^, r^} is

generated by a covariance stationary Gaussian process, the Euler equation can be 

simplified to  a regression equation as in the case of Hansen and Singleton (1983).

Aĉ  = &Q + &! ^t-l^t ^2^t-l"^4 ^3^t-l^^t 7̂t
To test the LCPIH model, Ay^ ̂   ̂ was added to the equation as an extra

regressor. The augmented equation was estim ated jointly with a vector autoregressive 

system describing the evolution of the other variables of the system. A significant 

coefficient for E^Ay^^^ will indicate a rejection of the model because of sensitivity to 

expected income growth. Bean, like Miron, presented limited support for the 

hypothesis as the model was able to capture the salient features of the data  but the 

overidentifying restrictions were marginally rejected.

(v) Consumption Function Approach

There are researchers interested in modelling the consumption function where 

the regressions used are taken as the test of the LCPIH. Deaton (1986) and Blinder 

and Deaton (1985) tested the LCPIH using a surprise consumption function. The 

method involves running the supplementary equation for expectations followed by the 

main regression w ith the expectations and surprises replaced by their calculated 

values from the first stage (the usual two stage method). Newey's (1984) method is
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used in calculating the covariance m atrix  because of the presence of the surprise 

terms. The standard errors are identical to the OLS standard errors for the surprised 

terms, and to  the two stage least squares standard errors for the others. The 

procedure is asymptotically efficient as in the case of Pagan (1984), Bean (1986) and 

Baillie (1987).

Various nested models are proposed and the full model included both 

anticipated and unanticipated terms which are features of most rational expectations 

model. The full model of Deaton (1986) is:

Acj =  a.Q +

+ ag E j _ j A y j  + a^(Ay^ -E j_ g A y ^ )

+ a^ E^_^Awh^ + ag(Awh^ —E^_^Awh^) (13)

+ ay + ag(R^ -E^_^R^)

+ ag t fgj

where wh is wealth. However, Deaton (1986) has argued tha t if the hypothesis is true, 

permanent income, measured income and consumption are of the same random  walk. 

In this case, as Dickey and Fuller (1979, 1981) have pointed out, the t—distribution is 

a poor guide to the actual distribution of the t—statistics, even asymptotically. 

Deaton (1986) excluded the tim e trend from the regression and justified his action by 

a simple M onte Carlo experiment. The LCPIH is still rejected as the a^ coefficient 

was still statistically significant indicating excess sensitivity of consumption to 

current income.

Blinder and Deaton (1985) have also a detailed discussion on the tim e series 

consumption function. Various formulations of the consumption function was put 

forward for discussions and a number of hypothesis was tested. Some of the equations 

are of the form described above and are tests of the LCPIH. The results are in general 

against the model.
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Koskela and Viren (1987) have also rejected the model as they found 

significant roles for anticipated and unanticipated inflation, thus confirming the 

findings in Blinder and Deaton (1985) in various more general models w ith a lagged 

term  added for each expected term. Further research needs to be done in this area as 

inflation should not m atter within an intertem poral optim ization framework.

O ther recent contributions from this approach include Kugler and Bossard 

(1987) and Davidson, Hendry , Srba and Yeo (1978). Kugler and Bossard (1987) have 

obtained autocorrelation patterns for five different countries, and Davidson, Hendry, 

Srba and Yeo (1978) have conducted a study using the data  on the United Kingdom. 

Notice th a t in (13), if the coefficients for the surprise term s are equal to the 

corresponding coefficients of the expected terms, then the model breaks down to an 

error correction model.

5.6 GENERAL OBSERVATIONS

The results from these tests have been disappointing. Many explanations have 

been given for the rejections of the LCPIH models and most of them  are objections to 

the econometric specifications. In general, rejections of LCPIH using aggregate data 

includes studies by Hall (1978) for stock prices, Sargent (1978), Flavin (1981), 

Hansen and Singleton (1982,1983), Hayashi (1982), Mankiw, Rotemberg and 

Summers (1985), Deaton (1986) and others th a t we have mentioned above. However, 

more recent studies have produced favourable results. Bean (1986) and Miron (1986) 

both produced evidence to support the LCPIH. Our intention in the next two 

chapters is to  examine various statistical issues, some of which are outlined below. 

The earlier rejections and empirical results lead to the following observations:

(1) It is difficult to determine the relationship between consumption and real 

interest rates using quarterly data. Many results have dem onstrated tha t 

log—norm ality approach has given rise to the wrong sign, e.g. Koskela and Viren 

(1987). The rational expectation formation may not be linear and therefore it is
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im portant to accommodate rational expectations of unknown form. An alternate 

source of problem is discussed in point (3) below. Our intention in the next two 

chapters is to investigate the proposition th a t there is no linear relationship between 

consumption and expected real interest rates and other macroeconomic variables 

using U.S. quarterly data. Our interests are statistical estim ation and hypothesis 

testing, and we allow for possible nonlinear rational expectations formation.

(2) If indeed there is no relationship between consumption and expected 

interest rates, it may be im portant to include a separate param eter, independent of 

the risk param eter within the CCAPM, to measure the intertem poral elasticity of 

substitu tion of consumption. In this spirit. Hall’s (1988) model derived a bivariate 

regression model:

Ct =  A + ' 7 E ^ r ^ _ l  + (7t 

^  =  E t V l  + ^

where a is interpreted as the intertem poral elasticity of consumption or the inverse of 

the risk aversion param eter I / 7  under the usual intertem poral framework. 

Consumption (C) is in log form. Both and 1/ are assumed to be normally 

distributed. In Hansen and Singleton (1983)'s expected u tility  framework, a is also 

the reciprocal of the coefficient of relative risk aversion. Under the OCE framework, 

the two equations do not give any information about risk aversion as it is 

independent of the  coefficient of risk aversion.

A ttanasio and Weber (1989) dealt with returns on two different assets and 

were able to  identify 7 . Using this two period model, one can compare the difference 

between the two estim ates, i.e. (cr—1 / 7 ) and see if indeed the difference is too large 

for the expected utility  approach to be taken seriously. However, the resulting 

estim ates from their work were not reliable enough to draw any firm conclusions. 

More research along the OCE approach has been fruitful and further discussions are 

presented in C hapter 6 .
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T(3) If there is a component of transitory consumption denoted by C , then the 

random  walk equation for quadratic utility  will have a moving average error term  i.e.

^ t  + 1  =  ^ 0  

then we have

^ t  + l  =  ^ 0  + + l

Therefore, the consumption model is a model with M A(1 ) error term . In 

aggregate studies, it has been assumed th a t the transitory consumptions are cancelled 

out. Most studies do not report the LM test for the serial correlation and normality 

test. It is not clear how well these models conform to the assumption and thus 

whether ols is consistent.

The time framework may also be an im portant issue in these studies as 

Wickens and Molana (1984) have discovered. If the planning is revised monthly and 

the econometrician employs quarterly data, then the error term  will be correlated 

w ith the regressors. However, if one were to use the regressors which are lagged more 

than  one quarter, one can avoid the problem (Hall (1988) and Harvey (1988)). In 

view of the possible presence of transitory components and incorrect tim ing, it may 

be useful to guard against the possibility of serial correlation in some of our 

estimations as in Chapter 6 .

(4) Hansen and Singleton's (1982) method of moments allows for nonlinear 

expectations. All the other studies assume linear rational expectations implied by the 

log—norm ality assumption. Although every stationary series can be approximated by 

an ARMA series, rational expectations do not necessarily follow a linear stochastic 

specification as such. If one is interested in a statistical relationship, there is no 

reason why one should restrict rational expectations as a linear function. A more 

robust formulation seems appropriate and possibly one can employ some 

nonpar ametric techniques to infer rational expectations from the da ta  itself.
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In the case of the model consisting of surprise term s, the estim ators will 

generally fail to be consistent if the rational expectations are not linear. Furtherm ore, 

most test statistics will give incorrect rejection probabilities. Therefore, it is vital to 

take a flexible approach to surprise consumption modelling.

The problem of nonlinearity has been ignored by econometricians as 

technically, it is difficult to tackle. But, in economics, nonlinearity is the rule rather 

than exception. One can test for the misspecification of the linear functional form by 

using • a variety of the traditional techniques. In Chapter 7, we investigate the 

adequacy of the specification of the supplem entary regression and the normality 

assumptions.

But once the null hypothesis of a particular param etric formation is rejected, 

there is no a priori reason to model nonlinearity in a particular form. Since the 

expectations are generally not of interest as far as estim ation is concerned in some of 

the studies, it may be worthwhile to attem pt to  tackle the expectations in a 

non—traditional manner as in Chapter 6  and 7.

(5) There has been a lot of attention on cointegration and unit roots in recent 

years since the contributions of Nelson and Plosser (1982), who suggested tha t unit 

roots were common in macroeconomic time series. There are a lot of econometric 

papers on the subject of whether we reject the hypothesis too often. But it is of 

interest to  mention the results of Mankiw and Shapiro (1985, 1986), Banerjee and 

Dolado (1987a, 1987b), Banerjee, Dolado and G albraith (1987) and Nelson (1987). 

Let us consider a simple test of the LCPIH:

A C j =  !To + + «t

We wish to test the null hypothesis tha t there is no excess sensitive to income, i.e. 

HqI =  0 . The equation may in fact be the reduced form from Flavin's 

just—identified system of equations:
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Yt =  « +/> Y j_ j + i/j

A Ct =  û  + / î ( V l - T O  + e;

If is non—stationary, e.g. /? =  1 or is M A(1 ), then as Mankiw and 

Shapiro (1985)’s Monte Carlo results have shown, the t—statistics are biased towards 

rejection of LCPIH (i.e. bias towards rejecting H ). These results are not surprising to 

econometricians, as discovered earlier by other tim e series researchers such as Dickey 

and Fuller (1981). They obtained further results th a t if were to follow a strongly 

autoregressive or borderline stationary process (i.e. \p\ <  1 ) , the bias would still be 

too large to be taken lightly. So, conventional test statistics are misleading in the 

presence of unit roots or strong autoregressive process because they do not give 

correct rejection probabilities. One can therefore find a significant tim e trend when in 

fact there is none, and worst of all, inappropriate detrending will give rise to  spurious 

cycles when there are none.

Although Mankiw and Shapiro (1985)'s results are based on a small sample 

size of 100, it nevertheless is relevant to macroeconomic tim e series studies. Similar 

conclusion is obtained in a later paper by Mankiw and Shapiro (1986) for 

orthogonality tests. Barnerjee et.al. (1987a) provide an analytical M onte Carlo 

interpretation using Nagar expansions of the moments for the t—statistics.

However, Barnerjee et. al. (1987) present results which suggest tha t the 

critical values for the t and F tests are sensitive to the data  generation process. The 

inclusion of extra regressors may in fact bring the critical values to the nominal ones. 

So, the initial fear of overrejections may be exaggerated. In a later paper, Banerjee et. 

al. (1987b)'s results confirmed their previous findings. The point here is tha t the 

magnitude of the bias of the test is sensitive to  the inclusion and exclusion of certain 

regressors. One cannot place too much faith in the test results obtained in the 

presence of unit roots. Surely, such an issue will need to be settle in the future.

Although we do not address the issue of co—integration directly, we included
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lagged nominal consumption and income in our surprise consumption function in 

C hapter 7. It will be interesting to see whether the magnitude of these coefficients are 

close to  one, thus suggesting tha t we may simply take the difference of the two 

variables as a regressor.

(6 ) It is easy to believe tha t a proportion of the consumer is liquidity 

constrained or simply myopic, i.e. they consume all of their disposable income. These 

consumers will explain why the models are rejected, as they cannot conform to the 

predictions of the model. However, empirical results have dem onstrated th a t this is 

only a small proportion, perhaps much less than 20%. It is hard to explain for the 

rejections a t the aggregate level.

(7) Most studies assume a very restrictive functional form for preferences e.g. 

CRRA, in ter— and in tra— temporal separability. Perhaps one other area of fruitful 

research is the use of semiparametric techniques which combine both param etric and 

nonparam etric components. We, however, do not pursue along this line as one of our 

objectives is to compare the semiparametric estim ates with previous param etric 

results.

(8 ) W ith the exception of Miron (1986) and Sargent (1978), the other studies 

use seasonally adjusted data. Sargent's definition of perm anent income includes 

capital income and thus the results are not conclusive. Miron pointed out the 

rejections of the LCPIH may be due to the treatm ent of seasonal adjustm ents. He has 

presented evidence tha t is favourable to the LCPIH by using seasonally unadjusted 

data. This result is perhaps not too surprising. It is easy to argue th a t seasonal 

adjustm ents are predictable and thus must be taken into account in the model. 

Again, in order to compare our results with previous studies, we have not taken 

seasonality into account.

5.7 STUDIES USING HOUSEHOLD DATA

There are several studies which employed individual household data. Cross
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sectional studies allow the testing of the existence of liquidity constrained consumers. 

Panel data  is now favoured by econometricians for investigation in consumption but 

suffers from problems which are only too well known.

The quality of data may not be as good as one would like it to be. Although

panel da ta  may have several advantages over the cross sectional data, there are 

problems such as measurement errors and household dropping out of the survey. The 

results would be sensitive to  these defects. It may be necessary to  study the method 

of collection so tha t one can adopt the appropriate techniques of estim ation.

There may be difficulties in identifying the param eters of the model. As there 

are heterogeneous preferences and these preference param eters are correlated with 

observable variables, it may be hard to identify the model.

There are many studies which involved micro data, such as Hall and Mishkin

(1982). Most of these works included a test of liquidity constraints. The survey by 

Hayashi (1987) gave some insights into the future directions of research in this area.
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6.1 RELATIONSHIP BETWEEN CONSUMPTION AND REAL INTEREST 

RATES

As described in last chapter, there have been numerous empirical studies on 

the relationship between consumption growth and expected real interest rates. The 

linear rational expectations model which describes th a t expected consumption growth 

alone predicts real returns or vice versa has its foundation in the expected utility 

framework and is generally obtained by imposing distribution assumptions on 

observable variables in the Euler equation. W hile financial economists are more 

interested in the coefficient of relative risk aversion, macroeconomists are more 

concerned with the elasticity of intertem poral substitution between adjacent periods.

The earlier studies of the consumption capital asset pricing model assumed 

th a t the coefficient of relative risk aversion was inversely related to  the coefficient of 

the elasticity of intertem poral substitution. Hansen and Singleton (1983) have applied 

the linear model, which is consistent with intertem poral separable isoelastic utility 

and the log—norm ality assumption of the data, to U.S. macroeconomic consumption 

series and asset returns and have found tha t the evidence were unfavourable to the 

model. In particular, the overidentifying restrictions were rejected, indicating 

misspecifications.

The earlier empirical studies using U.K. tim e series da ta  on the life 

cycle—perm anent income hypothesis have in fact arrived at the approxim ate linear 

relationship w ithout resorting to the distribution assumption, e.g., Muellbauer

(1983), Wickens and Molana (1984). These models, like many others, originated from 

the work of Hall (1978) which assumed tha t the interest rates was constant.

There are three contributions in this chapter. First of all, we have examined 

the role of inflation variables in the consumption model. Koskela and Viren (1987) 

have found roles for expected inflation and variability of inflation which contradicts 

the prediction of the model. In this chapter, we have modelled the inflation
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expectations using the general to specific methodology. We have allowed for the 

presence of an ARCH effect of unknown form. We call this a sem iparam etric ARCH 

(SARCH) model. The SARCH specification is more realistic for two reasons. First of 

all, inflation tends to persist and secondly, the true  functional form of the ARCH 

process may not be known. If indeed the consumers form their inflation expectations 

in such a fashion, we find no evidence of the expected inflation or variability having 

any roles in the linear model.

Secondly, we have attem pted to estim ate the coefficient of intertem poral 

substitution using method of moments and allowing for rational expectations of 

unknown functional form. It is known tha t consistent estim ate of the intertem poral 

elasticity of substitution can be obtained from a linear rational expectations model by 

two stage least squares. It is also known th a t the log—norm ality assumption implies 

linear formation of expectation and this has been the favourite approach. In view of 

recent contradicting results of Hall (1988) and previous studies, we assume th a t the 

approximate linear relationship holds and allows for possible nonlinear formation of 

expectation.

Finally, we have studied and compared the behaviour of two autom atic 

bandwidth selection criteria with other rules-of—the—thum b (RT). Most of the 

semiparametric models are not truly "adaptive" because a bandwidth has to be 

selected subjectively. Our main contribution here is the use of autom atic bandwidth 

selection which renders the two semiparametric models used in this study to  be fully 

autom atic and less subjective. We have compared these with other estim ates obtained 

under various bandwidth selection rules which minimize the MSB in density 

estimation.

The plan of the chapter is as follows: in Section 2 , we outline one derivation 

th a t will give rise to a linear regression model; in Section 3, we present the 

semiparametric ARCH model for the formation of inflation expectation; in Section 4,
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a pseudo Gaussian log—likelihood criterion is suggested for bandwidth selection; the 

results for ARCH modelling of inflation expectation are discussed in Section 5; 

Section 6  discusses the consistency of the two stage procedure and test; Section 7 

presents the results of the test using different models for expectation formation; in 

Section 8 , some semiparametric estimates of the intertem poral elasticity of 

substitution are presented for quarterly U.S. data; and finally, we give the conclusion 

and further comments in Section 9.

6.2 TH E MODEL

The following is the simplest alternative derivation tha t will give rise to the 

linear regression model discussed in the last chapter. As in Hall (1988), we assume 

tha t the consumer maximizes the expected utility

where E^ is the expectation conditional on the information set 0 ^, p is the discount 

factor and is intertem porally separable and isoelastic, i.e.,

=  I(a# l)C j^ “ “ /( l-a )+ I(a = l)L o g C ^ , a  >  0

where I is the usual indicator function, a  is the inverse of the elasticity of 

substitution, a. It is not necessary tha t a  is the coefficient of risk aversion ( 7 ) in this 

case. As Hall (1988) have argued, it is also not necessary to s ta te  the budget 

constraint explicitly as the model is consistent with a full contingent of commodity 

markets as well as the representative consumer holding a single risky asset. Assuming 

tha t the stochastic return on a single asset is exp(R^) in year t, then the stochastic 

Euler equation between t+ j and t is

E J ( C t ^ j / C ^ r “exp(R.  ̂ + jp)] =  1  

where R . . is the real j—period return on the asset from tim e t to t+j .  The equation 

states th a t the marginal ra te  of substitution is equal to  the prices of present and 

future consumption. At this point, if one were willing to make the log—normality 

assumption on consumption growth and interest rate, one will end up with the
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following exact relationship between consumption growth and expected real interest 

rates for j= l :

Ac^ =  o?q(p) + (jE|.(R^) + t= l , . . . ,T  (1)

( 1 ) may still hold approximately without the assumption of log-norm ality. 

The coefficient of intertem poral elasticity of substitution determines the relationship 

between consumption growth and expected interest rates with a constant. This 

describes tha t the rate  of growth of consumption can be predicted by expected 

interest rates alone, and any past information should not have explanatory power. 

The intercept «q is a function of p which cannot be identified when a single asset is 

used. ( 7  is the elasticity of intertem poral substitution. If a  is high, consumers will 

defer a great deal of their consumption to a later period when the real interest rates is 

expected to be high. While we are working with only j = l  here, in general, it may also 

be of interest to look at j of other values. Harvey (1988) has looked at the 

relationships between two, three and four quarter growth rates and expected real 

interest rate. First of all, we are interested in the role of inflation variables on 

consumption. In particular, we are interested in the expectation of inflation and 

variability of inflation.

6.3 SEMIPARAMETRIC ARCH (SARCH) MODEL AND BANDWIDTH 

SELECTION

There are numerous ways to  obtain the expected real rates of interest. One can 

model the interest rates as an autoregressive process. A lternatively, the expected 

interest rates is the difference between nominal interest rates and expected inflation. 

W e adopt the la tter approach as in Harvey (1988) and Koskela and Viren (1987).

Inflation expectations can be taken from surveys as in Hall (1988) and others. 

Harvey (1988) has modelled inflation as an IM A(1 , 1 ) process while Koskela and Viren 

(1987) have used AR(3) and rolling AR(3) specifications. In order to  allow for 

inflation to persist, we resort to modelling inflation using the the semiparametric
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ARCH process. Consider the following model

infl^ =  w^'6 + t= l , . . . ,T  (2)
2 2where E(n^) =  0, E(u^ ) = a , and w^ is a vector of weakly exogenous variables. Let 

be the information set. In Engle (1982, 1983), u^/H^ is normally distributed with 

mean zero and variance h^ =  b(u^_p...,u^_p), where h is linear in the square of the 

lagged residuals. We shall refer to  the model with linear ARCH process as Engle's 

model. Here, it is assumed tha t the u^'s are uncorrelated and w^ may include lagged 

pt. The appropriateness of conditional normal distribution can be checked by 

diagnostic test. In other financial models with nonlinearity, Engle and Bollerslev 

(1986) have dem onstrated tha t a conditional t—distribution might give a better fit. 

The sem iparam etric ARCH (SARCH) model was first suggested by Robinson (1987) 

and an augm ented version has been applied in W histler (1988).

We seek to  improve efficiency, and at the same tim e wish to guard against 

misspecification in Gaussian ARCH model. Param etric ARCH process is not only 

restrictive, it may also be inconsistent when the param etric form is incorrectly 

specified. W hen h i s  a function of 6, misspecification of the conditional variance will 

generally lead to inconsistent 6. Weiss (1984) has in fact found th a t, for many 

macroeconomic tim e series, terms such as infl^_^  ̂ (a function of w^_^ ' 6 )̂ appear in 

the conditional variance.

Pagan and Sabau (1987) have shown th a t the Gaussian model of Engle is 

robust under various forms of misspecifications. Notably, if h is even function of 

{u^_j;j= l,...p} , u^/n^ is symmetric around zero, 6 remains consistent. This includes 

the log—linear formulation of Geweke (1986) and G ARCH process of Bollerslev

(1986). Under further restrictive assumptions, the presence of the strongly exogenous 

w^ in hp  the Engle's specification may still retain consistency for 6. This is not true if 

w^ is weakly exogenous as in our case. OLS standard errors are also incorrect but a
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consistent variance—covariance m atrix is available, e.g.,

We assume includes lagged u^_^ as well as lagged conditional mean, i.e.,

=  h(u^_p...,u^_p,w^_^'(^,...,w^_^'(Ç). The specification will be able to  handle the case 

where lagged p's are present. However, extensions to  G ARCH and ARCH—M models 

which are much sought after in financial economics would be difficult if not 

impossible. Pagan and Ullah (1988) have instead suggested the use of IV 

semiparametric estim ation for consistency in such cases, as the estim ates from more 

complicated models are not likely to  be robust.

The conditional log—likelihood function for SARCH(p,q) is

Log L(f) =  -(2 T ) % = p q + i ( lo g  2x + log + ---------- W ---} (3)

where pq =  max(p,q). Our model also embodies the case where h^ depends on lagged 

infl^ (Engle's ARCH model is inconsistent in this case). It can be seen from the fact 

tha t if u^ =  Ag + a^infl^_^ =  + a^(w^_^'(^ + u^_^), h^ is a function of lagged

mean and residuals. This is the main advantage of making h^ a function of lagged u^ 

rather than lagged squared u^. Consider the Gauss—Newton iteration scheme:

S = â — A(Â ^d)

Â =  T DLogL(^) DLogL(^)'

1 T w ,w /  H. H.

d =  DLogL
" 2

1 T w. u /  H. u.

H^ is the derivative of the conditional variance with respect to the unknown 

param eter S. The second term  of (4) and (5) on the right hand side reflects the
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presence of the ARCH effect. If ARCH is not present (e.g., independent of lagged 

and is strongly exogenous), H^ disappears and we are left w ith a GLS model. 

Denote

û _  _  v P  v q
^ t  “  m  ^ = 1  duj^

Further iterations may be conducted and convergence can be achieved if A is

chosen appropriately (e.g. Berndt, Hall, Hall and Hausman (1974)). 8 is the OLS

estim ate and the one—step update with A =  1  is asym ptotically efficient, ft can easily

be seen tha t under some regularity conditions, T^/^DLogL(Q is asymptotically

normally distributed with zero mean and covariance m atrix  A at the true  8. Then ? is

adaptive as it has the same limiting distribution as param etric ARCH estim ator

obtained under the assumption th a t h^ is known with certainty.

The nonparametric elements come in when we try  to estim ate the conditional

variance E [ u j n j  and its derivative. Although there are numerous methods for

nonparametric estim ation of the conditional variance, our preferred choice here is the

method of kernel because of its ease in dealing with m ultivariate tim e series and its

properties are well known as we have mentioned in C hapter 2 (see also Robinson

(1983, 1986a, 1986b)). Using the OLS estim ates, we can estim ate h^ by

nonparametric regression of u^^ on u^_p..,u^_p,w ^_j^'^,..,w ^_^'ï. In particular, we

adopt the N—W estim ator and its derivative described in Chapter 2 . We estim ate the
" 2conditional variance by regressing u on lagged u ’s and w's. In term s of the notations 

here, we have;

\  ~  S ( ^ t - r " ’̂ t - p ’^ t - l ’” ’^ t- < i) /^ ( ^ t- l ’“ ’̂ t - p ’^ t - l ’" ’^ t-q )

where

ĝ  =  ( T a P " V s 4 q , i U % ^ , ( u , . )
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Kj^(u,w) =  (2 ? rr^ /^ex p  - 1 / 2  u^_ j_^)/a}^  x

(27r)"^/^exp -1 /2  -  w^_^_j^)/a}^

To estim ate the derivative, we need to  consider the nonparam etric 

estimation of derivative of regression curves. Consider

* t  St
~ W 7  f f 2

t t

â j  _  dg^!du>^ gt 
àUp i  r 2

 ̂ % n

5 y 5 u ^ = - ( T a P " V s ^ J q , l U t , K ^ , ( u )

6.4 LIKELIHOOD BANDWIDTH SELECTION IN SARCH MODEL

The bandwidth in empirical work is generally subjectively chosen and set to a 

number proportion to  n, e.g. W histler (1988) which let a =  std dev (u) x n x 

constant. There is no justification for choosing the standard deviation as the constant 

C except the consolation th a t it at least depends on the data. There are autom atic 

methods of choosing bandwidth in density estim ation and indeed for regression 

function. As for semiparametric models, very few results exist. Robinson (1988d) has 

shown th a t his bandwidth selection rule for Hannan (1963)'s GLS estim ators gives a 

consistent bandwidth. It seems reasonable to m otivate a similar criterion function 

following Robinson (1988d)'s results.

We therefore adopt the more objective way of selecting the bandwidth. 

Automatic bandwidth selection usually involves the use of the sample to  help us in 

selecting a plausible bandwidth and then re—use the sample to estim ate the 

parameters, i.e., we are using a subsample to estim ate the bandwidth a, which in turn  

provides us with the nonparam etric estimates.
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The log—likelihood criterion of choosing a bandw idth is to find an a to 

minimize the function CV:

T  * V)
= argmin^ T S j^ p q ^ ^ { lo g  h^(a) + — --------- }

The first derivative is given by

æ v  _  T . * - l r ,  _
ĉ a t= p q + l  àa t  ̂ ^

* ; ( a )  V t % T  ^ T ^ tT

where denotes summation from observation p q + 1  to T for r  f  t and

u,

*
h^ is the leave—one—out nonparametric regression estim ates, i.e.,

* * *
=  St ! h

g ;  =  ( T a P - W p q + l V \ > > ‘̂ )
r ^ t

f ;  =  ( T a P + T \ = p q + i K ^ , ( u ,w )
Tf t

The leave-one-out estimates of the conditional variance h^ are the predictions 

from using the subsample of T — 1  observations. In forcing the CV function to atta in  

its m inim um  is to estim ate 6 well. Practical experience suggests th a t this function is 

fairly well behaved and not difficult to  locate the global minimum in most cases. 

However, it is always wise to check for local minimum because sometimes they do 

occur. Of course, grid search can be used. In general, a simple quadratic 

interpolations optimization routine will be adequate in dealing with the function. The 

results and more discussions are presented in the next section.

6.5 INFLATION EXPECTATIONS

As in Koskela and Viren (1987), we have used seasonally adjusted U.S.
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quarterly da ta  on nondurable consumption (C) over the period 1951Q1 to 1986Q2 

from the Business Conditions Digest. The consumption series a t constant 1982 prices 

^1982’ inflation ra te  is a standard measure, i.e.,

INFLj =  400 (1 + log(Pj/Pj_j)^)“ ^
*

The interest rates variable (R ) is the yield on 3—m onth Treasury bills. Real interest 

rates (R) variable is obtained by deflating the nominal ra te  by the inflation rate. To 

be consistent with Koskela and Viren (1987), we ignore any adjustm ent to  take into 

account taxation.

W e have obtained the OLS estimates using the general to specific methodology 

of Hendry (see Pagan (1987)). We included six lags each of log of real interest rates 

(r), consumption growth (Ac) and ra te  of change of inflation (Ainfl) w ith a constant 

in the information set. The parsimonious model is reported in Table 6 . 1  with the 

associated test statistics. The interest rates variable is not statistically significant at 

all but we will retain it for theoretical reasons. The t—ratios are presented in 

parentheses w ith heteroscedasticity—robust (Bicker (1963), W hite (1980)) t—ratios in 

the parentheses below.

W hile the model has captured the salient features of the data, the null 

hypothesis th a t the residuals follow Engle (1982)'s A RCH (l) process is rejected. 

There is no indication of any rejection of the hypothesis th a t the residuals are 

Gaussian. However, the ARCH test is unlikely to be powerful when there is 

misspecification of the conditional variance, e.g., when the conditional variance is not 

linear function. In view of this, we proceed to  estim ate the models with A R CH (l), 

SA RCH (l) and SARCH(1 ,1 ) error processes and compare the results. Of course, one 

of the roles th a t semiparametric models can serve is diagnostic checking.

The estimates of the param etric ARCH model are obtained by the standard 

procedures described in Engle (1982) and the one step estim ates are reported in Table 

6.2. The A R CH (l) estimates are fairly similar to the OLS estim ates except for lagged
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consumption growth variables.

The SA RCH (l) estimates are also reported in Table 6.2. W e shall denote the 

bandw idth from minimizing CV as and denote a ^ ^  =  s.d.(u) x n and =

n. The estim ates obtained by a ^ y ,  a ^ ^  and are reported under the heading

CV, SD and UNIT respectively. The optimized CV bandwidth is almost double tha t 

of agj^ and three and a half times tha t of This suggests th a t the conditional

variance from CV is much smoother than tha t from using the SD and UNIT rules.

It is worth looking at the CV function for SA RCH(l) and SARCH(1 , 1 ) as 

plotted in Figure 6.1a and 6.1b respectively. Both functions are very well behaved 

convex functions and there is no problem in locating the minima.

Although it may be desired to scale the lagged u^ and to have unit 

variance, we did not employ this device here. There is, however, not too large a 

difference in the semiparametric estimates. The estim ates are fairly similar except for 

the interest rates variable and consumption growth lagged five quarters. The 

standard errors of these estimates are larger than those of A RCH (l).

The SARCH(1 ,1 ) estimates are presented in Table 6.3. a ^ y  is again very large 

relative to agj^ and ^ y ^ ^ T  use n =  instead of n =  suggesting

that u^ is a fairly smooth function of u^_j  ̂ and the mean. This may be due to the 

fact th a t there is not a presence of strong ARCH effect. The CV estim ates are almost 

identical to the CV SARCH(l) estimates although the standard errors are slightly 

larger for SARCH(1 ,I) estimates. The expectation of inflation from ARCH and 

SARCH are fairly similar since the estimates are similar.

Having obtained these estimates, it is relatively straightforward to form the 

interest rates expectation by subtracting the inflation expectation from the  nominal 

ra te  of interest. The conditional variance can be used as a proxy for the variability or 

risk associated w ith inflation. We will use these estim ates in Section 7 on examining 

the effect of inflation variables on consumption growth.
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6 . 6  SURPRISES MODELS AND CONDITIONAL VARIANCE

Consider the following model:

y t =  + 4  (G)

"'t =  + ''t  =  + ''t

\

The results below hold for the case where is a vector. If we replace E^x^, 

(x^—E^x^) and cr̂ 2  in ( 6 ) by appropriate estimates, the estim ates from regressing 

on these generated regressors are consistent under some regularity conditions. Pagan 

and Ullah (1988) have recently studied the consistency of models containing risk 

terms which is similar to ours here. The difference is th a t the analysis is complicated 

by the presence of expectation and surprise terms. We are content to  present the 

arguments th a t the OLS t—ratios will provide a consistent test for the model using 

fairly high level assumptions which exist under some regularity conditions. We can 

rewrite (6 ) as

The following proposition is a slight modification of Pagan (1984)'s Theorem

12 .

2Proposition: If we have =  w^ ' 6  + u^ as in ARCH model and 

(A l) x^ and w^ are jointly stationary and ergodic process.

(A 2 ) =  0 , = o.

p lin ip _ ^ (^ # )  =  0, plimrp_^T =  0

(A3) ( i-S )  - N(0,V)

Then

(i) plim^^^ = ^

(ii) '  N(0,BEB')

where B =  (plim,j,_^T ^S^x^Xj') ^
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The proof is a straightforward extension of Pagan's and it is not worth 

repeating the process but a sketch is provided. W rite

yt =  + Qt

= /}+  (x^x^') 1 (7)

 1 ..  1 ■ ' 2  2

By construction, plimrp_^^T S^x^(7 /̂ —77^), plim,p_^^T E^x^((j^^ ~ '^ u  )’

plim ^_^T aud plinirp_^T are all zeros. Thus P is

consistent.

(ii) follows by looking at the distribution of T^^'^(p—l3) which depends on 

T^/^E^x^Q^, and the la tter is asymptotically normally distributed with zero mean 

and variance—covariance m atrix E by assumption. Since [plimrp_^^T ^E^x^x^']  ̂ =  B, 

applying Cramer's Theorem completes the proof.

We are interested in testing the hypothesis th a t =  0 . The standard

errors from OLS are clearly understated and equal to the true standard errors under 

the null. Therefore, we will have a consistent test of the hypothesis tha t the 

individual coefficient is statistically insignificant from zero.

Similarly, if h is estim ated nonparametrically by kernel estim ation, then as 

Robinson (1983, 1986a, 1986b) has shown, under some regularity conditions, h is 

(T a^ ^ ^ )^ /^  consistent and asymptotically normal. We can replace 'ip^ by h^ in (6 ) 

and the consistency result holds. Of course, the ra te  of convergence would be
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expected to be slower in the nonparam etric case. Nevertheless, a similar expression 

should exist for the case when h^ is used except th a t the last term  for E will be 

different. We have therefore established th a t the OLS standard errors are generally 

lower than the true standard errors and we have a consistent test for zero—type 

restrictions.

6.7 RESULTS

Returning to our model which is similar to th a t of Koskela and Viren (1987),

i.e.

=  a  + (tE jR j + /? iE jin flj + /^^(infl^-E^infl^) +

^ t ^ t  ~  ^ t —1 ~  ^t^^^t

The results using conditional variance from A R CH (l) and SA RCH(l) models 

are reported in Table 6.4 while tha t of SARCH(1 , 1 ) are reported in Table 6.5. The 

conclusion from using A RCH (l), SARCH(l) and SARCH(1 ,1 ) estim ates is the same. 

If we use the conditional variance to measure variability of inflation, we find th a t the 

coefficient is not significant in both models. Semiparametric estim ation reduces the 

conditional variance estim ates by a great deal and this is reflected in the increase in 

value of its coefficient. Expected inflation variable is not statistically  significant 

suggesting th a t it does not help to predict consumption growth. As for inflation 

surprises, there may be roles of unanticipated inflation, e.g., price confusion effect. 

There is therefore no significant evidence to  suggest th a t expected inflation or 

inflation variability m atters. The puzzle of negative estim ates for expected interest 

rates in empirical studies is not a new one. The conclusion is unchanged if log of real 

rates rather than the level is used. This implies th a t the utility  function is 

non—concave thus violating the assumption of the model. There are various 

explanations for the presence of negative estim ates such as the violations of 

underlying assumptions of the model, e.g., separable isoelastic u tility  function and 

log-norm ality assumption. It may well be tha t the model does not allow for other
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behaviour, motives or the omission of some im portant variables in the utility 

function.

From the time series point of view, we make the following observations. First 

of all, the real rates th a t we used may be an inappropriate instrum ent. Secondly, we 

have used seasonally adjusted data  which will not be able to  capture seasonal change 

in taste. But recent results suggest th a t a is insignificantly negative for one period 

growth rate using seasonally unadjusted data (Harvey (1988)). Thirdly, the incorrect 

choice of instrum ents due to incorrect assumption on revision periods will give rise to 

the tim e aggregation problem. Recently, Hall (1988) has argued th a t the tim e 

aggregation problem is severe and correction generally brings a lower non—negative 

estim ate for a. His results dem onstrate tha t by using appropriate instrum ents, one 

should in fact find no evidence of strong intertem poral substitution. However, there is 

still a problem in establishing a relationship.

In the next section, we confine ourselves to the statistical relationship between 

consumption growth and expected real rates of interest. We seek to answer the 

question of whether the semiparametric estimates support the results of Hall (1988), 

th a t there is very little  evidence to suggest the presence of strong intertem poral 

substitution. We therefore attem pt to seek more efficient instrum ents in forming the 

expectations in the next section.

6 . 8  AUTOMATIC BANDWIDTH SELECTION AND ELASTICITY ESTIM ATES

Consider the model

yt =  ^ 0  + h  + ( i t

^  +  " t

or yj =  ^ 0  +/?iXj + (fj + -  x^))

= 0Q + +« 2 t

The usual assumption in this model is tha t rĵ  is normally distributed and 

therefore E^x^ is linear in its mean. As we have mentioned above, the relationship
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holds approximately even without the log-norm ality  assumption. W e relax this 

assumption here and a ttem pt to seek a more efficient instrum ent for E^x^ which may 

be nonlinear. In our problem, we are interested in finding appropriate instrum ents x  ̂

such th a t the conditional moment restrictions E[x^ | =  0 is satisfied. The

consistency and asymptotic normality of IV or method of moments estimators 

appropriate for tim e series has been studied in the econometric literature. For 

consistency, any appropriate instrum ents (param etric or nonparam etric) would do as 

long as the instrum ents are not correlated with the error term  In the case of 

independent observations, Newey (1987) has shown th a t we can achieve the same 

asymptotic efficiency if we replace x^ of known functional form with one which does 

not assume any functional form using nearest neighbours estim ates for z. Recently, 

Pagan and Ullah (1988) have discussed the use of instrum ental variable estim ation in 

the model with risk term s in the case of stationary tim e series. In brief, with the help 

of higher—order kernels (Barlett (1963)) and the device to  trim  out small density 

estimates, one should be able to show tha t under some regularity conditions 

T - 1 / 2 ( ^ ^ )  - N(o,V)

*
where x^ is the nonparametric regression of x^ on the information set, j3 is the initial

consistent estim ate and V achieves the semiparametric efficiency bound

(Chamberlain (1987)). Consider the average squared prediction error (ASPE)

cross-validation criterion, we have

a c v  =  argmiiig  ̂ E^(y^-b (8)
* . *

b is the tw o-stage—least—squares estimates and x^ leave-one—out estim ates as

discussed above, i.e. for nonparametric regression

=  g ( n j ) / f ( n j )  i ( | f | > ( )

where
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r / t

f(fij)  =  {T hT \ I i

r / t
I(.) is the usual indicator function, s is the number of instrum ents in and (  is the 

user—defined trimming constant. This trim m ing device is needed to  trim  out very 

small values of density estimates which may cause problems both technically and in 

practice (e.g. Robinson (1988a)).

As we have mentioned, we also use the higher—order kernels of B arlett (1963) 

which exploit the smoothness of the function and take negative values. Here, 

may not necessarily be a probability density function, as in some classes of K, it is 

not restricted to non—negative estimates. These higher—order kernels, play the 

role of bias—reduction and ensure a certain ra te  of convergence.

The shape of the criterion function (8 ) will be of interest. The exact details of 

how these higher—order kernels are worked out are explained in an appendix. 

Incidentally, the ASPE CV criterion can also be used for models with risk terms.

Let us look at the param etric results presented in Table 6 . 6  before we discuss 

the sem iparam etric estimates. Four different columns of estim ates corresponding to 

different instrum ents are reported. Column ( 1 ), (2 ) and (3) are results from using 

first, second or fifth lagged variables as instrum ents. Lagged 2 and 5 are used because 

of the tim e aggregation problems mentioned in Hall (1988) and Wickens and Molana 

(1984). According to Hall (1988), the lag 1  variables are not appropriate instrum ents 

and efficiency can be improved by noting th a t the error term  is a M A(1 ) process. 

Wickens and Molana (1984) have also dem onstrated th a t if the planning period is less 

than a quarter, serial correlation will again be present in the error term  and variables 

from lag 1  to 4 are inappropriate instruments. Efficiency improvements can again be
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achieved by using further restrictions. We did not pursue efficiency improvement in 

this respect.

Notice tha t the normality assumption is rejected but there is no evidence of 

serial correlation or inappropriate use of instrum ents. The estim ates of a  is around

0.2 for ( 1 ) and (3) but negative for (2 ). Clearly, the instrum ents set is too short to 

capture the features of the data  and so we use the same instrum ents as in Hall (1988),

1.e., real interest rates and consumption growth both lag 2  and 3. The results are in 

the last column. The fit for the model is the best of those reported and the elasticity 

of substitution is close to zero.

Next, we turn  to  the semiparametric estim ates and see whether they are useful 

as an aid to diagnosis. The semiparametric results are presented in Table 6.7. We 

estim ated the model using three different orders of kernel. The individual 

instrum ental variable is prescaled by its standard deviation.

Let us look at some interesting observations on the cross-validation function. 

For model 1 , the shape of the function Hg is shown in Figure 6.2a. It illustrates the 

not so uncommon functional shape with multiple local minimum points one 

encounters in cross-validation. The function is reasonably smooth and the global 

minimum is located at 1.562. W hen the bandwidth is very small, we are actually 

evaluating at the tails of the normal distribution which is very close to zero. As the 

truncated normal kernel is generally used because of com putation problems, some 

peaks reflect more of computation design rather than  the underlying cross-validation 

function. W hat is typical of the cross-validation function of H2  is th a t after attaining 

its global minimum, it reaches a peak and then starts to decrease very gently. The 

minimum occurs immediately after the disappearance of the very spiky curves. There 

is a lower bound at the far right but global minimum point is not difficult to locate.

We now turn to the functions of and Hg which are not as well behaved. As 

one can see from Figure 6.2b and 6.2c tha t the functions are not as smooth as the case
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w ith H . There are also interesting spikes at various points especially when there is 

undersmoothing. When there is oversmoothing, the function is extremely flat thus 

creating problems for minimization routine if it is started  at points too far right. 

There is also a tendency for the minimum to occur after the spiky regions but not in 

the examples tha t we have provided. The examples have revealed an interesting 

shape which occurs between 3.4 and 6.7. The curve starts  to increase and then it 

reaches a peak. After th a t peak, its value drops and then increases again before the 

usual dying out effect takes place. Again, there is a lower bound at the far right of the 

curve. Not surprisingly, functions of this form, which may be unpredictable at times 

due to the fact th a t the kernel can take negative values, pose problems for 

m inimization routines if used. This suggests th a t when higher—order kernels are 

involved, the ASPE criterion can give rise to problems in locating the global 

minimum, especially when one is minimizing with respect to a vector of parameters. 

In th a t case, the problem is more severe because line—minimization routine cannot be 

used. We now present the results.

The UNIT bandwidth, is equal to n =  T (V(8+2^)) ^vrhen s is the

num ber of instrum ents and i  is the order of kernels. This bandw idth is proportional 

to  the bandwidth which minimizes the MSB of the higher—order density estimates, 

not forgetting th a t the instrum ents are of unit variance.

The trim m ing constant (  is set to l.Oe—16. All our sem iparam etric estimates 

suggest tha t the elasticity is not statistically significantly different from zero, 

regardless of which instrum ent set is used. In particular, our higher—order estimates 

are extremely small suggesting th a t the estimates for model (3) and (4) of 0.006 may 

be a lower bound for a. The estimates are very much lower than  those obtained by 

param etric estimates above and elsewhere.

The fact tha t there is a fixed relationship between risk aversion and 

intertem poral substitution makes it difficult to in terpret the empirical results. The
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results of near zero elasticity will be very difficult to  reconcile with theory if a is the 

inverse of the coefficient of risk aversion. In particular, a very low elasticity of 

intertem poral substitution will imply a very large coefficient of risk aversion and vice 

versa.

However, recent theories suggest tha t the coefficient of relative risk aversion 

and the intertem poral elasticity of substitution need not be related. One can trea t the 

two variables as independent and eliminate the fixed relationship between risk 

aversion and intertem poral substitution. Two interpretations have been offered in 

A ttanasio and Weber (1989). The most plausible models have been the Selden 

(1978)'s OCE framework or th a t of Kreps and Porteus (1978).

Consider the problem of a consumer, with a choice of N assets and a single 

commodity, maximizing the following u tility  subject to  a budget constraint

Sj=0/^U{V-l[EjV(Cj^.)]} (9)

is consumption in period t and p is the discount factor. The usual isoelastic 

functional form for V and U, i.e.

V(C) =  I ( t# 0 )C^“ ^ / ( 1 - 7 ) + I( 7 = 0 )logC 

and U(C) =  I ( d ^ l) C ^ " ^ /( l - a )  + I(o= l)logC ,

where a  =  < 7 is assumed. W ithin the Selden's OCE framework, we are in effect
*

converting future consumption to its certainty equivalence, C. ., which is the term  

in the curly brackets in (9). If U =  V, the model is reduced to the familiar case where 

the coefficient of risk aversion, 7 , is the reciprocal of the intertem poral elasticity of 

substitution, a. The consumption of future C to its current certainty equivalence is 

dependent on the curvature of V which is determined by the coefficient of risk 

aversion. The ordering of the consumption choice is.dependent on the curvature of U 

which depends on the elasticity of intertemporal substitution. Assuming the forcing 

variables, i.e., log of real return and consumption growth are jointly normally 

distributed, we can obtain a usual regression model from the Euler equation. All
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seems well except th a t the intertem poral optim ization problem is not tim e consistent 

because it does not take into account tha t the consumer can revise his plan if news 

arrive.

An alternative interpretation involves the optim ization of the following 

function subject to a budget constraint

where 0  is stochastic and a, 7  > 0. A ttanasio and W eber (1989) have shown th a t the 

usual linear relationship holds. However, they did not explain how to interpret when 

the elasticity of substitution is unity. In tha t case, the Euler equations are not 

defined for a  =  1. It seems tha t one has to rule out the case of unit elasticity, but 

judging from our results, th a t does not seem to pose any potential problems.

6.9 CONCLUSION

We have conducted a test of the model by assuming th a t inflation follows an 

ARCH process. A new semiparametric technique is introduced to estim ate the ARCH 

model with autom atic bandwidth selection. These estim ates are then used to  form the 

inflation and interest rates expectations. When this slightly more flexible form of 

expectations is used in the test of the model, there is no convincing evidence of the 

presence of expectation variables besides the surprise variable in the model. The only 

evidence against the model comes from the negative significant estim ates for 

elasticity of substitution. The model we have used is one which allows for a flexible 

modelling of the second conditional moment for inflation and yet retains the main 

param etric component implicit in the log—normality assumption.

While we have established some evidence of the im portance of allowing more 

flexibility in obtaining generated regressors, we have also tried to model expectations 

by relaxing the assumption of normality and linearity. Although similar

techniques have been used in Pagan and Ullah (1988), Pagan and Hong (1988) on 

model with risk terms, it is a first a ttem pt in using cross-validation in determining
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the optim um  bandwidth for the semiparametric models used. It appears th a t the 

earlier rejections cannot be a ttributed  entirely to the rigid structure of the 

expectations formation although our technique here may have yielded more efficient 

estim ates.

O ur evidence demonstrates tha t the construction of instrum ents as well as the 

selection of instrum ents are im portant in param etric models as they both affect the 

efficiency of the estimates. While param etric techniques may be robust and give 

consistent estimates, the use of semiparametric techniques serves the role of 

diagnostic checking. In particular, our estim ates from different information sets (some 

not reported) have led to the same conclusion. If the param etric and nonparam etric 

techniques lead to identical conclusion, then one's faith in the results is increased. On 

the other hand, if the results are in contradiction to one another, then a more careful 

exam ination is required before a firm conclusion can be drawn. As the semiparametric 

estim ates of the elasticity of intertem poral substitution are generally insignificant, we 

would like to conclude tha t the evidence here suggests th a t there is weak support for 

a large elasticity for intertem poral substitution. Furtherm ore, there is no strong 

evidence as in the previous param etric study th a t there is a significant relationship 

between consumption growth and real rates in a simple model.

We should mention tha t some assumptions of the model using expected utility  

framework can be relaxed as in Hansen and Singleton (1982, 1984) for distribution 

and Dunn and Singleton (1986) for separability. We have not directly address these 

issues here. There is another issue which we have not investigated here. This concerns 

the relationship between real interest rates and consumption when the model is 

extended to include other macroeconomic variables. In next chapter, using 

non-durable plus services from durable consumption data, we seek to answer this 

question.

Finally, we have presented an alternative method of bandwidth selection by
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minimizing either the log—likelihood or cross-validation functions. The method is less 

subjective but its properties need to be studied further in order to claim th a t we have 

truly adaptive estimates. This is done in Chapter 8 . At present, we could at least be 

able to  label the estimates as "autom atic". The word "objective" is best avoided as 

the choice of criterion function, which minimizes either the log—likelihood function or 

average squared prediction error, is by no means objective. We have also found, 

unlike the likelihood function, the ASPE criterion function can be very well-behaved 

smooth functions in some instances but generally not. The use of higher—order kernels 

introduces spikes, but it is still not difficult to locate the minimum points. In 

particular, our optimization routine using quadratic interpolations performs 

reasonably well. All the programs used in this paper are w ritten in FORTRAN with 

double precision and the results are all obtained using micro—computer within a 

reasonably short time.
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Table 6.1

Ordinary Least Squares Estimates: 
Dependent Variable is infl^

140 observations used for estim ation from 51Q3 to 8 6 Q 2  

OLS
Constant

infl

infl
t - 1

t—2

n - 1

Act - 1

R—Squared 
R—B ar—Squared 
rs s /(T -k )
Diagnostic test 
F -s ta tis tic  F(4,134)

1 2Serial Correlation
2 2Functional Form 

Normality^ % 2  

ARCH^ 4

% 2

^3

- 1.000 
(-2.840) 
-0.290 

(-4.028) 
-0.209 

(-2.89 ) 
0.057 

(0.291) 
0.961 

(4.080) 
0.867 

(4.059) 
0.310 
0.285 
2.175

12.080
4.687

2.401

2.197

4.49

5.22

5.55

6.70

1 LM test of residual serial correlation.
2 Based on the regression of squared residuals on squared fitted values.
3 J arque and Bera's normality test.
4 Fngle's Test of autoregressive conditional heteroscedasticity.

The F—statistic is for the test of the null hypothesis th a t the coefficients are zero. The 
t—ratios are in parentheses. Adjusted heteroscedasticity—robust t —ratios are in the bracket 
below.



for estimation from 51Q3 to 8 6 Q 2

ARCH (l) SARCH(l)
CV SD UNIT
1.280 0.540 0.372

-1.007 -0.969 -0.963 -0.951
(-3.72) (-2.89) (-2.94) (-2.93)
-0.290 -0.288 -0.289 -0.292
H - 7 9 ) (-3 .96) H .0 7 ) H .3 2 )
- 0 . 2 1 1 -0.208 -0.208 - 0 . 2 1 2

(-3 .76) (-3 .03) (-3 .14) (-3.63)
0.054 0.063 0.064 0.063
(0.36) (0.34) (0.35) (0.35)
0.957 0.966 0.966 0.964
(5.02) (4.16) (4.25) (4.30)
0.899 0.775 0.758 0.741
(5.89) (3.86) (3.88) (3.89)
2.174 2.184 2.186 2.187

natic log—likelihood bandwidth. The SD bandw idth is equal to the
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Table 6.2

Autoregressive Conditional Heteroscedastic Estimates: 
Dependent Variable is infl^

bandwidth 
Constant

V i

rss /(T -k )

CV refers to the autom atic log—likelihood bandwidth 
product of the standard deviation of the data  and The UNIT bandw idth is equal
to The t—ratios are in parentheses.

Table 6.3

Autoregressive Conditional Heteroscedastic Estimates:
Dependent Variable is infl.

bandwidth 
Constant

V i

rss /(T -k )

CV refers to the autom atic log—likelihood bandwidth. The SD bandwidth is equal to the 
product of the standard deviation of the data  and T The UNIT bandw idth is equal

to T  The t—ratios are in parentheses.

for estim ation from 5103 to 86Q2
SARCH(1,1)

1.647 0.462 0.372
-0.968 -0.968 -0.961
(-2.85) (-3.09) (—3.10)
-0.288 -0.291 -0.293
(-3.93) (-4 .52) (-4.71)
-0.208 -0.210 -0.213
(-3.04) (-3 .68) (^ .3 5 )
0.063 0.061 0.059
(0.34) (0.35) (0.34)
0.966 0.960 0.960
(4.14) (4.46) (4.50)
0.772 0.788 0.779
(3.81) (4.30) (4.39)
2.184 2.181 2.182
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Table 6.4

Ordinary Least Squares Estimates: 
Dependent Variable is Ac^

139 observations used for estim ation from 51Q4 to 86Q2

Constant

ARCH(l)
CV

SARCH(l)
SD UNIT

.722 2.508 -5.006 -0.803
(4.874) (1.336) (-1.919) (-0.967)
( 5.19) (2.48) (—1.63) (-1.29)
-0.040 -0.042 -0.050 -0.044
(-2.99) (-3 .12) (-3 .62) (-3.32)
(-2.05) (-3.23) (-3.86) (-3.48)
-0.048 -0 . 0 2 2 -0.073 -0.016
( “ 1  • 0 2 ) (-0 .45) (-1 .44) (-0.34)
(-0.89) (-0.42) (-1.72) (-0.33)

-0.099 - 0 . 1 0 2 - 0 . 1 0 2 - 0 . 1 0 1

(-3 .33) (-3 .46) (-3 .50) (-3.47)
(-2.81) (-3.05) (-3.05) (-2.96)
-0.016 -0.939 3.104 0.832
(-.27) (-.97) (2.18) (1.80)
(-.34) (-1.82) ( l . 8 6 ) (2.42)
.127 .137 .162 .153
. 1 0 1 . 1 1 2 .137 .128
.257 .254 .247 .250

4.883 5.358 6.493 6.065

7.297 5.949 8.285 6 . 1 2 1

% 1

5.726 5.024 5.370 3.110

2.901 2.504 2.273 2.727

V artj_^(inflj)

R—Squared 
R—Bar—Squared 
rs s /(T -k ) 
Diagnostic test 
F -s ta tis tic  
F(4,134)

Functional Form

2

Normality

CV refers to the autom atic log—likelihood bandwidth. The SD bandwidth is equal to the
product of the standard deviation of the data and The UNIT bandwidth is equal

to T The t—ratios are in parentheses and heteroscedasticity—consistent t —ratios are
given below. See also the footnote of Table 6 .1 .
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Table 6.5

Ordinary Least Squares Estimates: 
Dependent Variable is Ac^

139 observations used for estimation from 51Q4 to 86Q2
SARCH(1 , 1 )

Regressor CV SD UNIT
Constant 3.866 0.207 0.269

(2.06) (0.26) (0.45)
(1.54) (0.28) (0.65)
-0.047 -0.043 -0.043
(-3 .40) (-3 .04) (-3.08)
(-3.66) (-3.20) (-3.21)

E t_ iin flt -0.032 -0.031 -0.029
(-0.69) (-0 .65) (-0.60)
(-0.73) (—0.61) (-0.56)
-0.105 - 0 . 1 0 0 - 0 . 1 0 0

(-3 .57) (-3 .36) (-3.37)

V arj_ j(in flj)
(-3.11) (-2.87) (-2.87)
-1.611 0.287 0.258
(-1.69) (0.61) (0.70)
(—1.25) (0.67) (1.03)

R—Squared .150 .133 .134
R—Bar—Squared .124 .107 .108
rss/(T —k) .251 .256 .255
Diagnostic test 
F—statistic  F(4,134) 5.919 5.160 5.196
Serial Correlation 5.739 6.473 6.437

2

Functional Form 1.955 5.821 6.162
2

Normality 1.562 2.649 2.801

CV refers to the autom atic log—likelihood bandwidth. The SD bandwidth is equal to the

product of the standard deviation of the data  and T The UNIT bandwidth is equal
to  T The t—ratios are in parentheses and heteroscedasticity—consistent t —ratios are
given below. See also the footnote of Table 6 .1 .



Semiparametric Analysis: Consumption Model [ch 6. pg.l97]

Table 6 . 6

Instrum ental Variable Estimates: 
Dependent Variable is Ac^

140 observations used for estim ation from 51Q3 to 86Q2 
Regressor 
Constant

^ t - l ^ t
rss /(T -k ) 

Sargan's test %

Serial Correlation

2
Normality

%4

( 1 ) (2 ) ( 3 ) ( 4 )
0.148 1.092 0.129 0.369
(0.51) (1.59) (0.51) (2.09)
0 . 2 1 1 -0.400 0.223 0.068
(1.16) (-0.90) (1.39) (0.61)
0.414 0.428 0.978 0.290

3.725 1.364 0.322 6.750

3.112 2.841 3.095 12.064

81.75 2068. 116.9 1.990

colunui ( 1 ), we use constant. R t_ p  A c^_p infl^_ For column (2)

we use constant, R^ ^, Ac^_2 , infl^_2 - For column (3), we use constant, R^_g, Ac^_g, 
infl^_g. The Sargan (1964)'s test is the test of the hypothesis th a t the set of s instruments 
are valid instruments.
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« 2 «4 « 6 « 2 «4 « 6

CV CV CV UNIT UNIT UNIT
1.562 0.401 1.786 0.493 0.638 0.719
0.443 0.436 0.503 0.443 0.438 0.435
(2.14) (6.82) (4.94) (6.70) (7.05) (7.21)
0 . 0 1 1 0.015 0.029 0 . 0 1 0 0.013 0.016
(0.08) (0.56) (0.48) (0.36) (0.53) ( 0 . 6 6 )
0.312 0.313 0.317 0.312 0.312 0.313

CV CV CV UNIT UNIT UNIT
1.745 0.435 0.919 0.493 0.638 0.719
0.245 0.425 0.409 0.418 0.409 0.409
(0.61) (4.47) (3.21) (3.74) (3.39) (3.546)
0.137 0.224 0.033 0.026 0.033 0.032
(0.54) (0.42) (0.42) (0.41) (0.46) (0.48)
0.377 0.313 0.315 0.314 0.315 0.315

Table 6.7

Instrum ental Variable Estimates: 
Dependent Variable is Ac^

140 observations used for estim ation from 51Q3 to 8 6 Q 2  

( 1 )

bandwidth
Constant

rs s /(T -k )

(2)

Bandwidth
Constant

^ t - l ^ t
rss /(T -k )

( 3 )

Bandwidth
Constant

rss /(T -k )

(4)

Bandwidth 
Constant

rss /(T -k )

List of instruments: The constant is excluded in the nonparam etric estim ation of 
conditional expectation. For ( 1 ), we use R ^_pA c^_p  infl^_^. For (2), we use 2
infl^_2 . For (3), we use R^ g, Ac^ g, infl^_g. corresponds to  the order of higher kernel
used in the estimation. CV refers to the cross—validated bandwidth. The UNIT bandwidth

is equal to  The t—ratios are in parentheses.

CV CV CV UNIT UNIT UNIT
0.158 0.299 0.367 0.493 0.638 0.719
0.449 0.449 0.450 0.458 0.471 0.484
(7.31) (6.96) (6.90) (5.48) (5.17) (5.25)
0.006 0.007 0.006 0 . 0 0 1 -0.006 -0.015
(0.27) (0.25) (0.23) (0.23) (-0 .13) (-0.29)
0.312 0.312 0.312 0.312 0.313 0.314

CV CV CV UNIT UNIT UNIT
0.129 0.223 0.139 0.539 0.662 0.734
0.451 0.450 0.451 0.438 0.432 0.431
(7.43) (7.32) (7.44) (5.51) (4.71) (4.67)
0.006 0.006 0.006 0.014 0.017 0.019
(0.24) (0.24) (0.24) (0.34) (0.34) (0.37)
0.312 0.312 0.312 0.312 0.313 0.313
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Figure 6.1a Plot of Criterion Function Values Against Bandwidth: 

for SARCH(1,1)
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Figure 6 . 1 b Plot of Criterion Function Values Against Bandwidth: 

for SARCH(1,1)

COCDCDCD
CD

s

CO

csi
§

<EPQ
P
O

g

% csj



Semiparametric Analysis: Consumption Model [ch 6. p^.201]

Figure 6 .2 a Plot of Criterion Function Values Against Bandwidth: 

for Model 1
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Figure 6 .2 b Plot of Criterion Function Values Against Bandwidth: 

for Model 1
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Figure 6.2c Plot of Hg Criterion Function Values Against Bandwidth; 

for Model 1
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CHAPTER 7

FURTHER SEMIPARAMETRIC ANALYSIS OF 

"SURPRISE" CONSUMPTION FUNCTION

204
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7.1 INTRODUCTION

The reliability of the results obtained from purely param etric models depends 

on the plausibility of the assumptions and this in tu rn  depends on the quality and 

extent of information one can extract from economic theory. If the amount of 

economic information is not sufficient to assist us in forming certain functional forms, 

then we cannot trea t the param etric model itself seriously.

In some rational expectations models, e.g., the surprise consumption function 

of Deaton (1986) and Blinder and Deaton (1985), the param etric specification of the 

main regression function is m otivated from economic theory. In these models, we 

would place more faith on some specifications than  others. In particular, the 

form ation of rational expectations is one issue th a t one can debate on.

On the other hand, the models of Bean (1986) and Hansen and Singleton 

(1983) are derived within an intertem poral optimizing framework of an individual 

agent incorporating rational expectations and the log-norm ality  assumption. In this 

case, the formation of expectation for some variables is well defined. However, many 

of these m aintained hypothesis such as the linearity assumption in vector 

autoregression can be checked, and indeed there are many useful specification tests. 

B ut, if the hypothesis is rejected indicating tha t the functional form is misspecified, 

then it may well be a nonlinear autoregression. W hen nonlinearity is thought to exist, 

the question of which nonlinear function to employ for estim ation is not generally 

easy to  answer. To safeguard the vast possibilities in the specification of rational 

expectations, a semiparametric treatm ent of the models seems desirable in applied 

work.

In this chapter, we outline a procedure within the class of "generated 

regressor" models. The method requires nonparam etric estim ation of the unknown 

conditional expectations. These nonparametric generated regressors are used for 

estim ating the coefficients for the anticipated and unanticipated term s in the surprise
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model respectively. The main contribution of this paper is the application of these 

semiparametric techniques to the surprise consumption function. However, the large 

number of lagged variables in the information set makes direct application of the 

nonparam etric in finite sample undesirable. We have therefore resorted to  applying 

nonlinear principal components analysis to the lagged variables, some of which are 

nonstationary, to reduce the dimension of the variables used for nonparam etric 

estimations. We have also discovered tha t the resulting principal components are in 

fact stationary.

Two tests, namely, the Hausman (1978)'s type specification test and the 

Robinson ( 1988c)'s semiparametric test are of interest. In fact, many of the ideas 

developed here are m otivated from the paper by Robinson (1988b).

7.2 BEAN'S MODEL

The economic model of Bean (1986) is presented below as a bench mark for 

discussions. As we have shown in Chapter 5, under rational expectations, the life 

cycle—permanent income model of consumption should be random —walk plus drift. 

Bean (1986)'s model is one of the many extensions with stochastic interest rates and 

allows for the possibility of government expenditure being substitutes for private 

expenditure. As in Chapter 5, we assume tha t the individual is forward looking. The 

individual will have to decide how much to consume now, which is certain, or save 

more for a possibly longer future life. The utility function is Cobb—Douglas. It 

is strictly concave and not (multiplicative) separable in consumption, leisure and 

government expenditure. His problem is to maximize the expected utility  subject to 

his budget constraint, i.e.

T
with

M axg [ 7  > 0 ,

U; =  0<A,  g < l ,
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subjected to the budget constraint where

=  U tility function in period t + i 

=  Consumption in period t 

L^= leisure in period t 

G^= Government expenditure in period t 

=  Assets held at end of period t 

=  Rate of return  between periods t—1 and t

6 = the discount factor

7  =  the coefficient of relative risk aversion 

A, 0 are parameters

E^(.) =  the m athem atical expectation conditioned on 

information set 

=  information set available to agent at tim e t 

The first order conditions consist of stochastic as well as non—stochastic Euler 

equations. Since we are mainly concerned with consumption, we are only interested in 

the following equation between period t and t + 1 (see Bean (1986) regarding the Euler 

equation for leisure):

If we let denote the expression in the squared brackets, then we have 

E j M t^ i l  =

As mentioned in the Chapter 5, one can test the hypothesis by working with 

this Euler equation directly. We may also work with a system of Euler equations as 

in Mankiw, Rotemberg and Summers (1985). There has been considerable interest in 

the estimation by generalized method of moments and testing of the overidentifying 

restrictions using Hansen (1982)'s J test in the literature. For a more recent 

semi—nonparametric approach, see Gallant and Tauchen (1989).
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But, the log—norm ality assumption will simplify the conditional expectation to 

a linear expectation model. This is a strong assumption but it has been argued tha t 

empirically the macroeconomic variables behave as if they are generated by a 

covariance stationary Gaussian process. Introduce the notation th a t r^ =  log R^, x^ =  

InX^—lnX^_^ and assuming th a t =  {Ac^,A^^,Ag^,r^} is jointly normally 

distributed. Then

+ l  • N

W ith the help of this normality assumption, and expressing leisure in terms of 

observable average per capita hours (H), we have a model of the form

ACj = ag + ajE^rj + a^E^AH  ̂ + a^E^Ag  ̂ + ( 1 )

ao^O;

a  ̂ >  0;

a 2  ^  0  if 7 ^  0 ; 

ag ^  0  if 7  ^  0 .

where AH^ % —A i j L ,  L is the total leisure endowment. Since we are only concerned 

with the change of consumption along the optimal path, equation ( 1 ) alone is of 

interest. Although ( 1 ) has been known as the "surprise" consumption function, it is 

not a consumption function. It only describes the optim al consumption plan. The 

name "surprise" consumption function arises because the error term  represents 

"surprises" or "news" arriving between period t— 1  and t. "Surprise" is defined as the 

discrepancy between the expected and the realized values of the particular variable or 

the innovations in the variable.

To proceed with estim ation, one normally assumes th a t the true expectation 

formation is linear, e.g.. Bean assumed

x^ =  Rq + a(L)'x^_^ + k^t + kgt + 

where a(L) is a vector of finite order polynomials in the lag operator and k /s  are the
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2

parameters. The variables t and t are included here because some of the variables in 

X are not stationary. So either the substitution m ethod (SM) or errors—in—variables 

method (EVM) should be used. But since each equation is just—identified, two stage 

least squares (2SLS) estimates for ( 1 ) are asymptotically efficient and there is no need 

to estim ate all the equations jointly.

Our interest lies in finding what macroeconomic variables have explanatory 

power in a surprise consumption function. Following Blinder and Deaton (1985) in 

the statistical study of the consumption function, we include expectations of 

macroeconomic variables to see if they have any explanatory power. Following that, 

y^ =  logY^_^ and c^=logC^_^ can be included to test for sensitivity of consumption 

to income as well as habit persistence (see Deaton (1986)).

U.S. quarterly data  are used and the descriptions of variables are clearly spelt 

out in Bean (1986). A brief description is given in the appendix. Throughout the text, 

the S sign shall refer to the summation from observation 1  to N unless otherwise 

stated.

Semiparametric results on three surprise models will be presented. These 

models are under the class of linear rational expectations models of the form:

yt =  * ^ 0  + + (t (2 )

t= l,2 ,..N

E [£ jx j,Z tl =  0 

where y^ is a scalar dependent variable

x^ is pxl vector of exogenous variables

is qxl vector of stationary variables
* * 

is sxl vector and z^ is a subset of

bg is a scalar unknown param eter
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is a sxl unknown parameters

A 7T are px l unknown parameters

Notice tha t our is not necessary the information set here, but a linear or

nonlinear combination of the weakly exogenous variables in The reason why we

have taken to be a linear or nonlinear combination is explained in the next section. 
* *

z^ is a subset of the and thus z^ may, for example, be lagged consumption or 

lagged income. The following notations are used in the following sections: 0 =

7.3 RESULTS: USING STANDARD TWO STAGE METHODS

Three basic surprise models are of interest. Model 1 has two anticipated

variables: anticipated real interest rates and income. Model 2 replaces anticipated

income by anticipated inflation. Model 3 is the general model with six anticipated

variables. When lagged consumption and inçome are included, each model is

subscripted with an a, i.e., la , 2a and 3a respectively.

All the results tha t we have presented in the first three tables and discussed

this section employ the usual param etric 2 stage method. In the first stage, the

expectations and surprises are obtained by regression on a constant, three lags of
*

consumption expenditure (c), nominal interest rates (r ), average hours of work per 

week per capita (H), government expenditure (g), income (y), inflation (I), stock 

prices (S), time trend (t) and tim e squared (t ). In the second stage, we have applied 

the ordinary least squares to the main equation containing both the anticipated and 

the unanticipated terms treating them  as given. However, the standard errors are 

different for the anticipated and the unanticipated terms. The standard errors for 

the unanticipated terms are just the standard errors from ols and the standard errors 

for others are corrected using Newey (1984)'s method. In other words, they are the 

standard errors from applying 2 SLS on the remaining variables w ith the expected
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term s replaced by those obtained from the first stage. Since each of these equations is

exactly identified, our procedure is as efficient as 2SLS and 3SLS. The results

reported in this section can be easily reproduced on the m enu-driven computer

package DATAFIT.

The diagnostic test statistics are reported at the bottom  each table and all of

them  are Lagrange Multiplier (LM) tests. Some of them  have been used in previous

chapters and we have only very briefly described them. All these test statistics are

standard output from the DATAFIT package. The serial correlation test is the

standard LM test of serial correlation up to order 4 (see Harvey (1981), Godfrey

(1978a, 1978b) and is asymptotically distributed as under the null hypothesis. The

RESET LM test of functional form (with quadratic terms) and is th a t of Ramsey

(1969)'s, the statistic is asymptotically distributed as X y  The Jarque—Bera's (Ja rque

and Bera (1980)) LM test of the normality of regression residuals is asymptotically 
2

distributed as Xg- The LM test of heteroscedasticity is based on the auxiliary

regression of residuals on the squared of the forecast w ith an intercept and the
2

statistic is asymptotically under the null hypothesis. We have also reported the 

Chow test, which is a test of the stability of the regression coefficients where 

appropriate and the LM version is distributed as X]y where k is the number of periods 

used in the predictive test. The Sargan misspecification test is proposed by Sargan 

(1964) to test the null hypothesis tha t the equation with only anticipated terms is 

correctly specified and th a t the instrum ental variables z are valid instrum ents. 

This general misspecification test is distributed as All the formulae used for

these tests are described in detail in Appendix B of the m anual of D A TA FIT and we 

have decided not to give any further details.

Our findings are similar to those in the previous studies. In Table 7.1, we have 

reported the results for Model 1  and 2  in column 1  and 3 respectively. In column 2
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and 4, we have also included additional surprise terms. Based on the estim ates, there 

are two observations which are inconsistent with the theory. First of all, the sign of 

the expected interest rates variable is negative in both models and statistically 

insignificant. Secondly, consumption is too sensitive to expected income, as well as 

inflation. The diagnostic statistics in column 1  indicate misspecification when income 

is included, a high value for the normality test is recorded. The results confirm 

Flavin's findings and tha t of Koskela and Viren (1987).

We have reported the results for Model 3 and 3a in Table 7.2a and 7.2b. 

Model 3a is familiar as there have been various studies of consumption function using 

similar form, e.g. Blinder and Deaton (1985) and Deaton (1986). The models can be 

taken as a surprise consumption function though the wealth variable is not included. 

The wealth variable can be constructed as in Blinder and Deaton (1986). The 

inclusion of the lagged variables in Model 3a is a lim ited a ttem pt to test for over 

sensitivity to income and habit persistence respectively.

In Table 7.2a, column 1  and 3 are results for the period 1949Q1 to 1982Q4 

while column 2 and 3 are for 1949Q4 to 1979Q4. The sign of the interest rates 

expectation is now consistent with the theory and statistically  significant. 

Unfortunately, all the additional variables to the models are highly significant. There 

are clear indications of over—sensitivity to  current income. The conclusion is 

unchanged if we use the same period for estim ation as Bean (1949Q1 to 1979Q4).

Let us turn  to the diagnostic test statistics reported in Table 7.2b. One can see 

th a t the test statistics have not detected any m isspecif cations of the consumption 

function, with the exception of the Sargan's test. We have conducted two other 

hypothesis tests as in Blinder and Deaton (1985), i.e., the "anticipation only" and the 

"surprise only" hypothesis. The first one is a purely statistical test corresponding to 

testing the significance of all the surprise variables while the second one corresponds 

to testing the economic hypothesis th a t anticipated variables has no explanatory
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power. From the results reported in Table 7.2b, the conclusion is th a t we can neither 

omit the anticipated nor the unanticipated terms judging from the test statistics.

Clearly, the empirical evidence from the param etric models are not consistent 

with the theory. While many explanations have been offered in the previous chapter, 

we are interested in modelling a surprise consumption function allowing for 

expectation of an unknown form. In particular, we are interested in finding the 

m agnitude of the surprise terms.

We argue tha t the use of the vector autoregression on inflation and stock 

prices may be inappropriate. In fact, it is generally difficult to infer the expectation of 

inflation using vector autoregression using 2 or 3 lags as shown by the results in Table

7.3. In fact, some believe th a t long lags are usually needed to "soak up" some model 

misspecifications in linear tim e series.

The results in Table 7.3 dem onstrate tha t this may indeed be the case. We 

have allowed for 3 lags of each variable in (I) and 2 Lags in (II) to  see how well each 

of the individual variable captures the features of the data. AY, AI and AS have 

enormous values for norm ality test in both cases indicating th a t the residuals may 

have departed from the normality assumption. From the results in Table 7.1, 7.2 and

7.3, it seems fair to conclude tha t the expectations formation is not consistent with 

the data.

In view of our observations, we repeat the similar exercise using the 

semiparametric techniques. The only difference between the param etric and 

semiparametric models is intended to be the formation of rational expectations. But 

there are minor differences. While we have included tim e trend and time squared in 

the information set for the param etric models, we have excluded these from the 

semiparametric models. Furtherm ore, we have taken logarithmic transform ation for 

H and th a t we have included quadratic functions for S and I before applying PCA. It
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remains to  see if our semiparametric estim ates are very different from these 

param etric estimates.

7.4 NONPARAM ETRIC REGRESSION AND REDUCTION OF 

DIMENSIONALITY

We have to estim ate the conditional expectation as well as density in our 

application. As in Chapter 6 , N—W estim ator with trim m ing and higher—order kernel 

is used. The asymptotic distribution of many sem iparam etric estim ators does not 

depend on dimensionality of z. This is indeed the case for the estim ators th a t we are 

about to  introduce and has been shown to be so in the i.i.d. case. However, the 

application in this chapter is complicated by the fact th a t we have a lim ited number 

of observations and a large number of variables in the information set. It is 

reasonable to believe th a t in finite sample, high dimensionality may have deleterious 

effect. We may encounter a problem in density estim ation caused by the high 

dimension of z since we only have a finite sample. This problem has been discussed in 

Chapter 2 and known as the "curse" of high dimensionality in the nonparam etric 

literature. The reason being tha t some regions of the high density may not be filled 

with observations thus giving rise to what is known as the 'em pty space phenomena'.

Silverman (1986) has provided some hints on the number of observations 

required for density estim ation in order to ensure th a t the relative mean squared 

error at zero is less than 0 . 1  using a normal kernel when the true density is a standard 

m ultivariate normal density. His results suggest th a t for a sample size of around 130 

observations (say quarterly data for around 32 years), the maxim um  desired 

dimension for q is between three and four for density estim ation. One may argue tha t 

since density estim ation may be used only for the nuisance functions in some of the 

economic applications and we are not interested in the density estim ates itself, the 

problem of 'em pty space' is not as severe as in purely nonparam etric models. 

Robinson (1988a)'s simulation results provided lim ited support of this view in finite
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sample using higher—order kernels. But this requires further investigation.

In empirical work, we seldom work with less than  4 dimensions, especially for 

the estim ation of rational expectations condition on a large information set. In fact, 

our information set consists of no less than 7 variables of 3 lags each.

Therefore, in the absence of firm theoretical evidence supporting the use of q 

larger than those suggested by nonparametric density literature, it may seem 

desirable to reduce the dimension q. This can be done by some linear m ultivariate 

methods such as principal components (PC) or projection pursuit (P P ) (see e.g. 

Huber (1985) for some discussion on the PP  version of PC); or nonlinear methods 

such as generalized principal components (Gnanadesikan (1977)). There is also an 

enormous amount of literature on PC including techniques for tim e series and 

nonlinear projections (see Jolliffi (1986)).

We have decided to use the linear and generalized principal component (GPC)

to reduce the dimension. The reasons are th a t GPC is easy to  understand and has

practical advantage. Gnanadesikan's GPC method is an extension of the method of

linear PC to nonlinear projection. Consider the simple case of q =  2 , so z =  (zp

we can add any functions g (zp  Zg) to z and then apply the usual m ethod of finding

the PCs which give the maximum variance. Gnanadesikan has concentrated on the
*  2 2quadratic functions, z =  (zp  ẑ  ̂ , z^ , z^Zg). Thus his procedures has amounted 

to finding quadratic functions of z which maximize variance ra ther than  the usual 

linear function of z. This method requires the application of the regular PCs analysis 

on q original variables with q =  q + q(q—1 ) / 2  derived variables which can be 

expensive (for 10 variables, one needs to apply regular PCA to 65 variables). One 

way of getting over this problem is to apply linear PCA to the original variables and 

then polynomial PCA on the first few PCs with the highest variance. Alternatively, 

one can augment the method to only searching for quadratic, cubic or indeed any 

other polynomial functions over a limited number of variables. The linear PCs will be
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a special case of the nonlinear PCs and each eigenvector provides a nonlinear 

coordinate of the original space.

It is well known th a t PCA based on covariance m atrix  suffers from the 

sensitivity of the PCs to the unit of measurements of z. Therefore we define the 

principal components as principal components from minimizing the correlation 

m atrix, i.e.,

W =  A'Z

where W is Nxk m atrix and the kth column is the kth  PC with the k th  largest 

variance. A is an Nxk m atrix  whose kth column is the k th  eigenvector of the 

correlation m atrix of Z . Z is a Nxq m atrix  of standardized variables

(z^**,....,Zp ) each possesses the property of unit variance, i.e., z. =  z./or(zp. 

Singular Value Decomposition (SVD) is used to obtain the eigenvalues and the 

eigenvectors.

We have implicitly assumed tha t W admits a pdf f and have to ensure tha t the 

W .'s are stationary after such a preliminary step of dimensionality reduction by 

PCA.

In the application tha t follows, the original information set includes 22

variables, namely, a constant (strictly speaking, constant should not be included but

it makes no difference in practice since there are no variations in a vector of ones),
*

three lags each of the consumer expenditure (c), nominal interest rates (r ), average 

per capita hours worked (H), Government expenditure (g), income (y), inflation (I) 

and stock prices (S). The results of PCA on these variables are reported in Table 7.4. 

All the variables are in logarithm except H, I and S. Using linear PCA, the first PC is 

able to capture 98.07% of the variations. However, we feel th a t linear projection may 

be inadequate in summarizing the information and th a t a nonlinear projection may be 

more appropriate.

The first two PCs from the linear PCA are used to form quadratic functions
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before another PCA are applied to the five resulting variables. To capture more than 

90% of the variations, we need at least 4 PCs.

A number of other transformations and combinations were tried. We have
*

tried using lag values of Ac^, Ar^ , Ay^, AH^, Ag^, AI^ and AS^ as our information 

set and have applied PCA to reduce the dimension. However, we were unable to 

reduce q to less than 6  in order to capture a t least 90% of the variations. We have 

also reported the case where we included 3 lags each of 5 variables w ith logarithmic 

transform ation and quadratic functions of S and I in our PCA. There are therefore 15 

variables from the variables in log and 27 variables from the quadratic functions of 3 

lags each of S and I. Together with the constant, we have a to tal of 43 variables. In 

this case, we are able to capture 95.94% of the variations with just the first 2  PCs. 

An examination of the correlogram of the first two PCs (not reported) up to 20 lags 

revealed tha t there were no signs of nonstationarity. We have therefore decided to use 

these two PCs for all the semiparametric analysis th a t follows.

The use of a single smoothing param eter implies th a t PCs have to  be 

individually scaled by its standard deviation. The PCs are prescaled to avoid extreme 

differences and spread in the various coordinate directions. So, after the scaling, we 

have the two W /s  which are orthogonal to each other and also possess the property of 

unit variance.

From  the practical point of view, our procedure for nonparam etric estim ation 

has introduced an element of param etric modelling. By making use of this additional 

information, we have introduced a more general version of conditional expectation 

estim ation than tha t of a purely param etric one. Our procedure is closely related to 

the class of additive models. The following procedures can also be viewed as a 

nonparametric approach to the "generated regressor" problem.

7.5 ESTIM ATION O F ANTICIPATED TERMS

The anticipated terms in (2) can be consistently estim ated by instrum ental
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variable. It is well known th a t the consistency of the instrum ental variable 

estim ations is not affected by the specification of the instrum ents, bu t efficiency may 

be affected. Our main concern here is efficiency improvement. W e employ an 

augmented asymptotically efficient estim ator proposed by Newey (1987) using the 

conditional moment restrictions of the model for the expectation term s. Consider (2 ) 

again, if we replace the expectation terms by their realized values, we may yield 

the errors—in—variables model of the form :

=  bo + b^'z* + /?'Xj + + {ir-0)' Q

= + 1/̂  t =  1, 2 , ,N

Let us assume that the following conditional moment restriction is satisfied: 

E [h(X j,^)|z j] =  0 (3)

where h(X^,^) =  y^ — ^'X^. The conditional moment restriction (3) implies tha t the 

disturbance is uncorrelated with the instrum ents z^, i.e.,

E[h(X^,0 z J  =  0 .

This in tu rn  implies tha t any function of the instrum ents, i.e. T(z^), has to satisfy the 

orthogonality condition

E[T(zj)h(Xj,^)] =  0 .

In this case, 9 is obtained by minimizing the objective function, i.e.,: 

è =  argm in^g, S(tf)'Pj^S(ff) 

where is a positive definite m atrix, ® is some set of feasible values for 0 and S(^) 

=  N ^[E^T(z^)h(X^,^)]. The feasible approach is to  let P j^=Ij^ and

X =  T(z^) =  D(zj)'[v(zj)] 1

with

D(z^) E E [% (X ^ ,g )/ag |zJ  (4)

v(Z j.)EE [b{X j,»)2 |zJ (5)

Notice th a t (4) and (5) are conditional expectations and can be estim ated by 

nonparam etric regression. In this case the optimal instrum ents X are obtained via the
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nonparam etric kernel regression estimates. Under the conditional moment restrictions

and the assumption tha t the variables are i.i.d., Chamberlain (1987) has shown that
*  1

the infeasible optimal instrum ent T (z^) = C D(z^)'[v(z^)] , where C is a

nonsingular constant m atrix, attains the semiparametric asym ptotic variance bound

A =  [D(z^)'D(Zj)/v(Zj)]“ l

Furtherm ore, it is shown in proposition 1  of Chamberlain (1987, pp.324) tha t
*

the asym ptotic covariance m atrix of 9, A, is no smaller than A . However, Newey

(1987) noted th a t if T(z^) e D ( z^)'[v ( z^)]~^, then A =  Â, and thus 9 a ttains the

sem iparam etric efficiency bound.

One may choose to work with the linearized version of the feasible IV

estim ator which only requires a one step update from an initial 2SLS estim ator,

^S L S  equation (2 ) with homoscedasticity, v(z^) is independent of z  ̂ and equal 
2

to a constant a  . We have 

9 =

We can also replace ^  by any other consistent estim ates. The asym ptotic

covariance m atrix  can be estim ated as

where

t^* t̂ t '
Notice th a t we have not imposed any functional form on the conditional expectations.

We have therefore relaxed the linearity assumption of the expectation formation of

using the nonparam etric regression of on Zp It should also be obvious th a t the

conditional expectation and therefore the optim al instrum ent of the constant and the 
*

z are the variables themselves. Newey (1987) proves the efficiency of the estim ator 9 

using the method of nearest neighbours for the estim ation of conditional expectations 

for the case with i.i.d. observations. His procedures involve a prelim inary step of 

"trend removal" suggested by Stone (1977), to improve the finite sample performance
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of the nonparam etric estimates. Newey’s estim ator is as efficient as the class of 

instrum ental variable estim ators under homoscedasticity with the restriction th a t the 

disturbance term s have mean zero conditional on exogenous variables.

Our estim ator is "augmented" because it differs from Newey's original 

proposal on two counts: we use kernel regression instead of nearest neighbours; 

higher—order kernels are also used to deal with high dimension common in tim e series 

application. W e have resorted to  using the higher—order kernel estim ator with 

trim m ing device for various reasons. In particular, the properties of kernel estim ator 

for tim e series are better known and also because of its facilities to deal with 

m ultivariate observations in the technical sense.

7.6 ESTIM ATION O F TH E SURPRISE TERMS

We focus our attention on the estim ation of the surprise term s in this section. 

The estim ator proposed in Robinson (1988a) for the estim ation of the surprise 

parameters are used in our empirical work. Consider equation (2) again, rearranging 

the model, we get

(6)

where g is an unknown function of and b are some unknown param eters, tt is the 

param eter of interest. For our purpose, we have taken expectation as an unknown 

function of z^. Thus, we have relaxed the assumption made in most param etric 

models th a t the expectation formation is linear. The proposed augmented Robinson 

root—N consistent estim ator (R estim ator) is

where
 ̂% A

^ t ^ t ~  ^ t

ÿ î  =  y t - ÿ t
f  ̂ =  the nonparam etric kernel estimates of the density f(z^)
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(  =  a trim m ing constant chosen by the practitioner 

The and are kernel estimates of the respective conditional expectations on z^. 

Consider the following

=  + [ ( g t - g t )  + ( « t - ê j ) ]

=  n 'k l  + ej

The term s e  ̂ can be considered as the residuals. Therefore, the R estim ator has the 

interpretation of a no—intercept ols estim ator. The main idea is to  ensure th a t e  ̂ is 

orthogonal to x^. However, in order to achieve yN consistency for 7r, we have to 

ensure th a t plim g ^ ' l ( | f j  > () =  0. The presence of the biased term

(g^—g^) poses a technical problem. However, we know from Chapter 2 th a t the bias of 

g^ can be reduced using higher—order kernels provided g possesses some smoothness 

properties.

One can resort to the bias—reduction device of B arlett (1963). Although we 

have used GPC to reduce the dimensionality q to a manageable num ber for kernel 

estim ation, the use of higher—order kernels may still have some advantage in finite 

sample. It should be mentioned tha t the theorem is independent of the kernel k and 

suggests tha t the higher the order of kernel, the wider the band of admissible a and (  

sequence. Although the simulation results of Robinson (1988a) suggest th a t there 

may be improvement when using higher order kernels in finite sample, we should be 

aware of the side effects of increased variance from using too large an order. It is clear 

th a t the R estim ator is a linear estim ator and it can easily be shown to  have the MM 

and OLS interpretations as well.

The asym ptotic covariance m atrix  can be estim ated as

f=.2[N-iE^x;x;'i(ifj>or'
W here

(T̂  =  [N K ) ]  ^

The main advantage of the R estim ator is th a t although it is consistent, it
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is in fact as efficient as OLS computed under the correct assumption th a t g is in fact 

constant. Thus, if the expectation formulation is linear, as assumed in the empirical 

work of many authors such as Hansen and Singleton (1983) and Bean (1986), the 

estim ator is just as efficient as the param etric two stage estim ators. However, if the 

is serially dependent, then the estim ator is inconsistent. But, this is also true for 

OLS estim ator.

Newey's estim ator is as efficient as other estim ators which only made use of 

the conditional restrictions. The R  estim ator, however, is consistent in the sense 

th a t the lim iting distribution is normally distributed, but it is not clear whether the 

estim ator achieves the semiparametric efficient bound. Of course, these results hold 

under the assumptions of i.i.d. observations.

As for the tim e series case, it is known th a t the simple nonparam etric 

regression estim ates are V(Na^) consistent and asym ptotically normal (Robinson 

(1983, 1986a)). We conjectured tha t under some strengthening of the regularity 

conditions such as weak dependence and smoothness conditions, the asymptotic 

distributions for both estimators should be the same as in the i.i.d. case. In this spirit, 

we apply both the augmented Newey and Robinson's estim ators to our tim e series 

data  in the second part of our paper.

7.7 HAUSMAN AND ROBINSON TEST STATISTICS

Before we present the results, we will discuss two useful test statistics: the 

Hausman—type specification test and the Robinson's test for significance of tt and its 

subvector of param eters. In the case of (6 ), if g is indeed linear, then we can write it 

as

yt =  bfl + + bgZj + Uj

We can rearrange the equation when E[x|z] =  + CgZ and yield

yt =  (*̂ 0 + + ’r'(Xt-EjX^) + ( / C g  + bj'jzj + Uj

We have E[x^ — E^xJ =  0  and E[(x^ — E^x^)zJ =  0 by construction. OLS
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OLSestim ator for tt, tt , and indeed the R estim ator is asym ptotically efficient in the 

Cramer—Rao sense if E [u Jx ^ ,z J  =  0 and is normally distributed. Under the null 

hypothesis of no misspecification (linear expectation), OLS and R  estim ators are both 

consistent and asymptotically efficient. Under the alternative hypothesis (nonlinear 

expectation), OLS is inconsistent but R estim ator is consistent. A Hausman's type 

test can therefore be constructed.

Define V to  be the consistent estim ator for the asym ptotic variance of ( tt —

OLS
7T ), then according to Lemma 2.1 of Hausman (1978), under the null hypothesis 

th a t there is no misspecification, an asymptotically valid level—a  statistic  for 

rejecting the linear formation of rational expectations is

where

H =  V  ̂ • Xp

^t (I 'Z f') '

The decision rule is to reject the linear specification of expectation if H exceeds 

1 0 0 ( 1 —a )th  percentile of the distribution.

We also introduce the test statistic of Robinson (1988c), which we should refer 

to as R test, for testing zero—type restrictions (e.g. tt =  0  or ttj =  0 ) on our 

semiparametric model. The test will be useful for testing the the significance of a 

vector or the individual surprise term  in the rational expectations models.

The m otivation of employing the R test is tha t if E^x^ is param eterized as 

linear when in fact it is nonlinear, then the associated test statistics will give us 

incorrect rejection probabilities. The conclusion may then be invalid, though it may 

not necessarily be so.

Many authors do not pay much attention to  the fit of these rational 

expectation terms. In fact, in many applied studies, the authors do not bother to
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report the fit of the linear formation of expectations and test whether the param etric 

assumptions in these models (for example, the model of Hansen and Singleton (1983)) 

are satisfied. If the param etric assumptions are not satisfied, the expectations may be 

misspecified and may well be nonlinear. The R test has the advantage, in tha t the 

practitioner does not have to specify a param etric form for the expectations.

Let w^ =  w(z^) be a scalar function. The null hypothesis depends crucially on 

the understanding of the following Lemma:

Lemma 1: If E[(x^—E^x^)(x^—E^x^)'wJ is positive definite, tt =  0 if and only if

Lemma 1  is crucial in the construction of the test statistics. The hypothesis states 

th a t y^—E^y^ and x^ are uncorrelated.

Lemma 2 : A sufficient condition for (7) is

E[yjx^,z^] =  E [y J z J , almost surely. (8 )

We can see tha t if (8 ) is rejected, we can conclude th a t in a param etric or 

nonparam etric regression of y on x and z, we cannot omit x. Lemma 2 states tha t (8 ) 

implies (7). So if (7) is rejected, (8 ) is also rejected. But if (7) is not rejected, we 

cannot say much about (8 ).

The following discussions may be helpful in understanding the general 

structure of the test statistics. We deliberately leave out the technical discussions in 

order to  avoid introducing further notations.

We need to express the restriction or null hypothesis in the form r  =  0 . r  is a 

px l vector if we are interested in testing the whole vector tt, and a scalar if we are 

interested in oply one of the element of tt. Let us introduce the notation

and Robinson (1988c) has shown tha t we can in fact construct

Compare d^^ with (7) and one may see some similarities. We have set the
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scalar function =  v(z^) =  1  and so =  v^f(z^) =  f(z^). f(z) is probability density 

function of z which is of an unknown form. Under some regularity conditions, r  is 

asym ptotically normally distributed with zero mean under the null hypothesis of r  =  

0. In order to form a correctly scaled statistic, one has resorted to spectral estim ation 

for the autocovariance of r. The test statistic is 

R =  N /4 ?  Ù~^ T

where

^  =  C - m  (9)

+ dgt) / 2

(9) is the weighted—autocovariance nonparam etric estim ator. The weight, H, is 

known as the lag window and has to be chosen by the practitioner to  satisfy the 

conditions of the theorem. The lag number m should be larger, the larger N is. There 

are a variety of lag windows to choose from and the properties of these lag windows 

have been studied in the tim e series literature. Our preferred choice for lag window H  

is the Hanning window (see the next section), i.e., ^ (u )=  (1 + cos 7tu) / 2 .  Finally, 

under some regularity conditions,

R ~ Xpî as N - 4  0 0

R has the usual asymptotic chi—squared distribution and it is easy to adopt 

the decision rule for an o^-level test of significance, i.e., to reject the null hypothesis 

th a t 7T =  0 if R exceeds the upper lOOo percentile of the % distribution, given a 

probability level a.

Let us partition  tt = ( 7Tp TTg) and x =  (x^Xg), where is a scalar and Tg is

(p—l)x l .  Then we may test the hypothesis th a t =  0 by replacing as

expectation conditional on both z as well as Xg. R is then distributed asymptotically 
2

as X y  R should be mentioned tha t we have not employed the trim m ing device and
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the higher—order kernels in the computation of the R  statistics, instead we have 

resorted to  the simple density estim ator.

Some further remarks are given below. The asym ptotic relative efficiency 

(ARE(R;b)) of the R test is non zero. In other words, test statistic  R  based on a 

—consistent estim ate compared to one based on a consistent and fully efficient 

estim ates is non zero, i.e. ARE(R;b) =  0  if b <  1 / 2  and ARE(R;b) >0 if b =  1 / 2 .

The ARE for the R statistic  can be calculated based on a true param etric 

model (see, e.g. Stock (1985)). Although the R statistic  is positive, it may be much 

less than one in value. Nevertheless, it may be better than some param etric statistics 

based on consistent but inefficient estimates. The R test is not confined to just 

the surprise model, in fact, it has wider applications than tha t. The proof of the 

asym ptotic distribution of the test s tatistic  is set up with tim e series in mind. 

Therefore the test allows direct application to tim e series data.

Further discussions and interpretations of the regularity conditions can be 

found in Robinson (1988c). In general, the conditions on the class of kernels is the 

same as the R estim ator. We require some weak dependence conditions (absolute 

regularity), sm oothness/moment conditions similar to those for the R estim ator and 

some conditions on the lag window. Finally, some conditions need to be imposed on 

the ra te  of convergence of the bandwidth a and lag number m.

7.8 CHOICE O F BANDW IDTH, KERNELS, LAG W INDOW  AND NUM BER

We discuss various intuitions regarding the choice of the bandw idth a, the 

choice of order i  of kernels H^, the choice of kernels k, the choice of lag window and 

the choice of lag number m. Some of these choices are guided by the theorems but 

others are not. We have to  limit the scope of our discussion to the following and 

describe the course of action tha t we have taken in applied work. The first two points 

apply to both estim ators and test statistics while the last two apply only to  the test. 

The user has to decide on the choice of bandwidth, kernel, lag window, and lag
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number, in either estim ation or statistical inference:

(i) Bandw idth a

One of our intentions, as in Chapter 4, is to examine the sensitivity of our 

estim ates to  the choice of a and (  after a preliminary step of dimensional reduction. 

We have estim ated the models under various bandwidth. The strategy is th a t if in 

this case, the estim ates are not very sensitive to  bandwidth choice, we may avoid 

using the expensive "autom atic" estimates.

(ii) Order of kernel k, H^, and the choice of ÿ

Although we have applied principal component analysis to z and 

reduced the dimension to q =  2 , we report the results obtained under H^, and Hg 

to have an idea of the sensitivity of these estimates to the choice of t

(iii) Lag Window H

Like the kernels, the choice of lag window is less crucial than  the choice of lag 

number. The advantages and disadvantages of using certain lag windows have been 

discussed extensively in the spectral density literature. The theorem of Robinson 

(1988c) has emphasized the Hanning window because of its ease of com putations and 

its ability to  protect against the influence of spectral peaks a t d istant frequencies. We 

will therefore adopt the Hanning window.

(iv) Lag number m

In using the R test, we have to decide on the choice of the lag number. We 

have conducted a very simple simulation (not reported here) on the set of real data 

th a t we have. The simplest model possible was used for the simulations. W e took p =  

q =  1 , x^ =  r^, z  ̂ =  r^_ p  and E^r^ =  r^_^^/(l+r^_^). We generated u^ as first order 

Gaussian autoregressions with mean zero and variance 1, and the lag— 1  

autocorrelation coefficient p =  0 .0 , 0.5, 0.7, 0.9, 0.95 and 0.99. The number of 

replications were 5000. Similar conclusions were reached as those from the 

simulations of Robinson (1988c). The results suggested the maximum desirable value
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for m  was 6  for our sample size of 133. We will report the results for m  =  6  in our 

empirical work.

7.9 RESULTS FROM SEMIPARAMETRIC METHODS

We are interested in building a surprise consumption function and Model la  

and Model 2a are two simple models to s tart with. The results for Model la  and 2a 

are reported in Table 7.5. The trimming constant (  is set equal to  0 . 0 0 0 0 0 1  and the 

bandwidth a is selected to be 0.30. The results are in fact insensitive to the trimming 

constant for the data set on hand for a wide range of values. We have estim ated the 

models using many different values of a. However, we have decided not to  report all 

the results.

The estimates for expected interest rates are not statistically significant, 

providing very little  support for intertem poral substitution. The estim ates vary 

widely with the bandwidth, but the general conclusion is th a t consumption is 

sensitive to current income but not inflation. This is consistent with the results tha t 

we have obtained in the last chapter.

According to the t —ratios, significant news come from income and inflation 

respectively in Model la  and 2a. But this is not confirmed by the R test statistics. 

The Hausman statistics rejected the null hypothesis of linear rational expectation 

formation in Model la  but not Model 2a.

The most interesting results come from Model 3 reported in Table 7.6a, 7.6b 

and 7.6c. The trimming constant is set at 0.001 and three different bandwidths are 

used. All the coefficients for the anticipated terms are of the "correct" signs and 

mostly significant for estimates obtained using H^ and Hg in all the tables. In 

particular, the estimates obtained with a =  0.3 and Hg in Table 7.6a are most 

promising. All the anticipated variables are significant at the 1 % level, except 

inflation.

From the t—ratios and R test statistics in the three tables, there is little  doubt
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th a t significant news are from hours, income, and inflation, judging from the t—ratios. 

The most significant news is from hours followed by income. The anticipation—only 

hypothesis can be taken as rejected because the test statistics for a =  0.6 and 0.9 

exceed the critical value.

Comparing the results in Table 7.2a and 7.6a, we observe th a t semiparametric 

estim ates are all larger in magnitude. The long run steady state  income elasticity are 

2.8 and 3.4 for param etric and semiparametric models respectively, which appear to 

be far in excess of the findings of Blinder and Deaton (1985)'s 0.78.

We summarized our results in the following discussions. F irst of all, the 

semiparametric estim ates are sensitive to the bandwidth a but not over sensitive. In 

some cases, the range of estimates we obtained is relatively small compared to the 

range of bandwidth used. The larger the bandwidth, the lower the t—ratios.

Secondly, the results are not sensitive to the trim m ing constant (  as far as the 

set of data  tha t we used are concerned but the t—ratios are smaller as we increase (.

Thirdly, the estim ates for the anticipated terms for both methods are fairly 

similar despite these differences, with the semiparametric estim ates mostly larger in 

m agnitude. This supports the view tha t the linear instrum ents are closed to  efficient 

and therefore nonparam etric instrum ents may not have gained much efficiency. This 

perhaps suggests th a t in future application, one need not use the com putational more 

expensive kernel estim ates, but this requires further investigation. However, the 

results for the surprise terms cannot claim to be similar for both methods. This 

reinforces the point tha t expectation formation is crucial for consistent estimates.

One interesting question is whether most of the nonlinearity was generated by 

the GPC analysis. If this is the case, then we can also obtain the results simply using 

the PCs without resorting to kernel estimation. While this may be the case for the 

anticipated terms, the Hausman statistics do not support this claim for the 

unanticipated terms. We would like to believe tha t we have captured the nonlinearity
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in the formation of rational expectations in the la tte r case while the param etric 

methods are clearly inappropriate.

The fourth observation is th a t the (statistical significant) estim ates for lagged 

consumption and income seem to suggest tha t they are cointegrated. Blinder and 

Deaton (1985)’s have rejected this hypothesis. However, all the estim ates reported 

here for lagged consumption and income are almost identical in magnitude and 

opposite in sign which suggests th a t we may take the difference ra ther than  treat 

these two variables as separate.

7.10 CONCLUSION

In some rational expectations models, the conditional expectations are only 

nuisance functions. Unfortunately, misspecification of these nuisance param eters may 

still lead to loss of efficiency in estim ating some param eters of interest and 

consistency in others.

A semiparametric method has been proposed to estim ate the anticipated and 

unanticipated terms. The augmented Newey's estim ator for expected terms are as 

efficient as our param etric estimates. However, Robinson's estim ator for the 

unanticipated terms only achieves the same efficiency as param etric two stage 

methods under the restrictive assumption th a t the error term  is normally distributed 

and the expectation formation is linear. A Hausman—type misspecification test and 

Robinson's test of zero—type restrictions are introduced and applied to the surprise 

consumption function.

We have used semiparametric methods to analyze the "surprise" consumption 

model. We have found tha t the results using param etric methods are fairly similar to 

those using semiparametric methods for the anticipated terms. But, there are 

differences for the unanticipated terms from both methods. The differences cannot be 

entirely due to the fact tha t we have om itted the tim e trend and tim e squared in our 

information set or to the nonlinear projection th a t we used to reduce the dimension
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for nonparam etric estimations. Furtherm ore, the linear vector autoregression used in 

most of the param etric studies may not be appropriate when additional variables such 

as inflation and stock prices are added to the system of equations. The breakdown of 

the norm ality and other param etric assumptions are confirmed by the diagnostic tests 

on the autoregression and the semiparametric test statistics. It would seem th a t we 

have captured some of the nonlinearity in the formation of expectations.

The traditional belief tha t lagged variables of income and consumption 

expenditure are always significant in the consumption regressions is once again 

confirmed by both param etric and semiparametric methods. We have also found 

significant roles for real rates of interest which is generally hard to  establish 

empirically in param etric models. This is perhaps one of our main contributions.

We have also found tha t inflation variables m atter in the consumption 

function thus confirming the findings of Koskela and Viren (1987). There.m ay be 

roles for inflation because of price confusion effect of Deaton (1977) (see Blinder and 

Deaton (1985)) and because of imperfect capital m arket (see Jackm an and Sutton 

(1982)). It is not clear why expected inflation and stock prices w ith positive 

coefficients should m atter in the regression function, though Hall (1978) did find it 

difficult to reject stock prices' significant roles in his regression. Perhaps they simply 

reflect specific symptoms of the US economy and the importance of the underlying 

demand and supply conditions. Having obtained these results, more can be done in 

the future. The role of wealth is im portant and it is interesting to  see what effect it 

has on consumption. The regularity conditions of the estim ators have to be worked 

out though it is reasonable to assume tha t the asym ptotic distribution of both the 

augmented estimators should hold in the tim e series case.
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Model

Table 7.1

Regression results using standard two stage methods

( 1 ): Ac^ =  constant + + /̂ 2 ^ t^ t  surprise term s +
(2 ): Ac^ =  constant + + surprise term s +
variable

constant

anticipated term s 
Int. rates

Income

Inflation

surprise term s 
Int. rates

Hours

Govt, expend. 

Income 

Inflation 

Stock Prices

(la )

0.0035**
(0.0005)

0.091
(0.98)
0.322

(0.58)

-0.094
(0 . 12)

0.13**
(0.05)

(lb)

0.00278

-0.070
(0.19)
0.25’‘

(0 .10)
0.028

(0.05)
O.OS’̂

(0.05)
- 0.0002
(0.0004)
0.00008

(0.00009)

0.00260

6.08

11.35**

53.29**

3.65

54.27**

9.37

6.93*

54.64**

2.41

(2 a)

-0.203
(0 .21)

-0.0003
(0.0004)

0.00346RSS
Serial corr.

x \
Functional form

4
Normality

4
Heteroscedasticity

4
Sargan's test 

2 
^21 
Note:
* indicates th a t the coefficient is significant a t 5% level.
** indicates th a t the coefficient is significant at 1 % level. 
Asymptotic standard errors are reported in the parentheses.

9.07

1.47

3.86

0.36

65.26

(2b)

0.0050**
(0.0005)

-0.145
(O.II)

0.0007**
(0 .0002)

-0.070
(0 .21)
0.25=̂

(O.IO)
0.028

(0.05)
0.08^

(0.05) 
- 0.0002 
(0.0004) 
0.0008 

(0 .00010) 
critical value 
0.00310

9.04

0.12

1.23

3.29

5% 1%

9.49 13.28

3.84 6.64

5.99 9.21

3.84 6.64

32.6 38.9
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Table 7.2a

Regression results using standard two stage methods

( 1 ): Ac^ =  constant + + Tr'(x^-E^x^) +

(2 ): Ac^ =  constant + ^ 2 l h —l  ^ 2 2 ^ t - l

+ '4 t
(2)(1)

133

0.0047**
(0.0007)

0.040**
(0.10)
0.310**

(0 .12)
-0.119*
(0.06)
0.177*

(0.082)
0.0006**

(0 .00021)
0.00027*

(0.00015)

-0.070
(0.109)
0.249**

(0.09)
0.028**

(0.041)
0.083*

(0.041)
-0.00024
(0.00032)
0.00007**

(0.00008)

124

0.0071**
(0.0010)

variable 

no.of obs n 

constant 

lag c. 

lag y

anticipated terms 
Int. rates

Hours

Govt, expend.

Income

Inflation

Stock prices

surprise terms 
Int. rates

Hours

Govt, expend.

Income 

Inflation 

Stock prices

Note:
* indicates th a t the coefficient is significant a t 5 % level.
** indicates th a t the coefficient is significant at 1 % level. 
Asymptotic standard errors are reported in the parentheses.

0.333*
(0.14)
0.376**

(0.13)
-0.301**
(0.09)
0.066

(0.093)
0.00046*

(0 .00022)
0.00019

(0.00016)

0.018
(0.179)
0.231**

(0.09)
0.014

(0.042)
0.082*

(0.042)
-0.00015
(0.00032)

0.00012
(0.00008)

( 3 )

133

0.0028 
(0.0028) 
-0.088** 
(0.025) 
0.090** 

(0.023)

0.284* 
(0 .12) 
0.285** 

(0 .11) 
-0.146* 
(0.08) 
0 .210** 

(0.078) 
0.0005** 

(0.00019) 
0.0004** 

(0.00015)

-0.070
(0.159)
0.249**

(0.08)
0.028

(0.039)
0.083*

(0.039)
-0.00024
(0.00030)
0.000078**

(0.00007)

( 4 )

124

0.0036
(0.0029)
-0.080*
(0.032)
0.082**

(0.032)

0.402**
(0.14)
0.340**

(0.13)
-0.214*
(0 .10)
0.144

(0.095)
0.00042*

(0 .00021)
0.0004*

(0.00017)

- 0.012
(0.172)
0.339**

(0.08)
0.023

(0.040)
0.080*

(0.041)
-0.00014
(0.00030)

- 0.00010
(0.00008)
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Table 7.2b 

Diagnostic tests results

RSS
Serial corr.

( 1 )

0 . 0 0 2 0 1

(2 )

0.00182

(3)

0.00173

(4) . ,
critical

0.00165
values 

5% :1 %

3.21 5.07 8.37 8.17 9.49 13.28

Functional form
0 . 6 6 0.76 0.62 0.29 3.84 6.64

Normality

^ 2
1.64 0.15 0.78 0.87 5.99 6.64

Heteroscedasticity
1.40 1.36 0 . 6 6 0 . 8 8 3.84 6.64

Predictive failure
11.35 5.72 16.9 2 1 . 6

Sargan's Test

^15 34.59** 29.06* 22.37 20.94 25.0 30.5

Tests of "surprises only" and "anticipated only" hypothesis

Surprises only
critical values 

5% 1 %

L M xg 53.62** 51.29** 60.56** 52.13** 12.5 16.8

68.64** 6 6 .2 0 ** 80.80** 67.63** 12.5 16.81

F(6,120)
F 6,111 
F(6,118 
F(6,109)
Anticipation only

13.51**
13.05**

16.44**
13.18**

3.6
3.6
3.67
3.67

6 . 8 8

6 . 8 8

6 . 8 8

6 . 8 8

LM Xg 21.26** 19.52** 24.02** 2 1 .2 1 ** 12.59 16.81

23.17** 21.24** 26.50** 23.27** 12.59 16.81

F(6,120) 
F ( 6 , l l l )  
3.67 6 . 8 8  

F(6,118) 
F(6,109)

3.81*
3.47

4.34*
3.75*

3.67

3.67
3.67

6 . 8 8

6 . 8 8

6 . 8 8

Note:
* indicates tha t the coefficient is significant a t 5% level. 
** indicates tha t the coefficient is significant at 1 % level.
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Table 7.3

Specification tests for supplementary regression

2

X , =  constant + a(L)z, , + b j t  + bgt +

(I) 3 LAGS

r AH Ag Ay A I AS

Serial corr.
x l  51.36** 15.23** 27.07** 5.93 1.71 1.67

Functional form
X? 0.20 4.84* 6.71** 3.42 10.83** 0.42

Normality
Xg 5.66 1.56 13.63** 181.4** 188.6** 65.54**

Heteroscedasticity

%î 9.63** 0.34 1.17 13.47** 6.97** 0.20

(II) 2 LAGS

' r AH Ag Ay AI AS

Serial corr.
X4  42.36** 13.95** 8.10 6.62 4.24 1.74
Functional form
x^ 0.09 5.03* 5.85* 1.02 10.13** 0.35
Normality

4
Heteroscedasticity

4

^ 16.75** 1.65 8.62* 229.2** 246.6** 82.73**

teroscedasti
^ 19.78** 0.28 2.46 7.03** 5.21* 0.80

Note:
* indicates th a t the coefficient is significant a t 5% level. 
** indicates th a t the coefficient is significant at 1 % level.
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Table 7.4 

Principal component analysis

(a) Linear PCA (3 lags of each variable and constant). 
Total number of variables =  2 2 .

Principal Components Variance Explained Total Variance

1

2

3
4

98.07
0 . 2 2

0.44
0.08

98.07
99.29
99.73
99.81

(b) Nonlinear PCA

(i) quadratic functions of first two PCs obtained from (a). 
Total number of variables =  5.

Principal Components 
1  

2

3
4

Variance Explained 
42.89 
2 0 . 8 6  

19.73 
10.95

Total Variance 
42.89 
63.75 
83.48 
94.43

(ii) 2 2  variables as in (a) in addition to the quadratic 
functions of S and I.
Total number of variables =  43.

Principal Components 
1  

2

3
4

Variance Explained 
89.63
6.31
2.32 
0.46

Total Variance 
89.63 
95.94 
98.26 
98.72

Correlation m atrix  is used for the PGA.
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Table 7.5

Semiparametric regression results for Model la  and 2 a

Model
(la): Ac^ = constant + + b ^ 2 y t - 1

+ P E  I + + surprise term s + € r,
(2 a): Ac^ =: constant + + b^g y t - 1

+ + + surprise term s + Cg,
variable % «4 « 6 » 2 « 4 « 6

a =  0.30 b =  0 . 0 0 0 0 0 1

constant 0.0062 0.0062 0.0062 0 . 0 0 0 0 0.0007 0 . 0 0 1 2

(0.0038) (0.0038) (0.0038) (0.0450) (0.0449) (0.0450)
lag c -0.078* -0.081* -0.084* -0.1351 -0.1178 -0.1031

(0.039) (0.039) (0.039) (0.4621) (0.4601) (0.4633)
lag y 0 .0 8 F 0.084* 0.087* 0.0455 0.0274 0 . 0 1 2 0

(0.039) (0.039) (0.039) (0.4599) (0.4572) (0.4603)
anticipated terms
Interest 0.283 0.301 0.317 1.257 0.317 - 0 . 1 0 2

Income
(0.384)
0.507^^*

(0.268)
0.493**

(0.238)
0.481**

(5.433) (3.826) (3.212)

(0.155) (0 . 1 1 0 ) (0.094)
Inflation 0.0026 0.0014 0.0009

(0.0099) (0.0067) (0.0057)
surprise term s
Interest -0.045 -0.007 0.034 -0.019 0.028 0.071

(0.076) (0.076) (0.077) (0.085) (0.082) (0.082)

R test Xl 1.147 1.736
Income 0 .2 0 1 ** 0.187** 0.193**

(0.037) (0.037) (0.038)

R test Xl 3.367
Inflation 0.0003* 0.0005** 0.0006**

(0 .0 0 0 1 ) ( 0 .0 0 0 1 ) (0 .0 0 0 1 )
R test %? 0.488
Hausman's Test

% 2
12.30** 10.18** 10.49** 1.17 1.33 1.04

R test Anticipation Hypo. 

x l 5.045

Note:
* indicates th a t the coefficient is significant a t 5% level.
** indicates th a t the coefficient is significant at 1 % level. 
Asymptotic standard errors are reported in the parentheses.

1.151
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Table 7.6a

Model (3a): Ac^ = constant + ^ 2 2 ^ t - l +

"t + + ^4t
v a r ia b le

« 2 «4 « 6

a =  0.30 b =  0 . 0 0 1

constant 0.0052 0.0054 0.0053
(0.0069) (0.0048) (0.0041)

lag c -0.125* -0.125** -0.124**

lag y
(0.062)
0.125’̂

(0.047)
0.126**

(0.041)
0.125**

(0.062) (0.046) (0.041)
anticipated term s

0.575**Interest 0.565 0.559*
(0.373) (0.250)

0.344*
(0 .2 1 2 )
0.353**Hours 0.327

(0.244) (0.163) (0.129)
Govt -0.287* -0.313** -0.320**

Income
(0.145)
0.277’̂

(0.092)
0.240**

(0.071)
0.228**

(0.123) (0.087) (0.075)
Inflation 0.00086 0.00077 0.00080*

Stock prices
(0.00063)
0.00070*

(0.00044)
0.00075**

(0.00038)
0.00077**

(0.00027) (0.00017) (0.00015)
surprise term s
Interest rates 0.164** 0 .2 2 2 ** 0.258**

(0.074) (0.072) (0.072)

R Test x ^ (l) 1.132
Hours 0.337** 0.370** 0.350**

(0.070) (0.073) (0.074)

R test %^(1) 11.973**
Govt. -0.024 -0.043 -0.047

(0.037) (0.038) (0.037)

R test %^(1 ) 0.016
Income 0 . 1 1 2 ** 0.094** 0.104**

(0.041) (0.040) (0.041)

R test %^(1 ) 5.515*
Inflation 0.00043** 0.00046** 0.00052**

(0.00015) (0.00015) (0.00014)

R test %^(1 ) 3.717
Stock prices 0 . 0 0 0 1 0 0 . 0 0 0 1 1 0 . 0 0 0 1 0

(0.00007) (0.00007) (0.00007)

R test %^(1 ) 0.910
R Test: Anticipation Hypo. % (6 ) 12.264
Note: * indicates th a t the coefficient is significant a t 5% level. 
** indicates th a t the coefficient is significant at 1 % level. 
Asymptotic standard errors are reported in the parentheses.
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Table 7.6b
Semiparametric regression results for Model 3a 

Model (3a): Ac^ =  constant + i - l

v a r ia b le

a — 0.60 
constant

la g c

lag y

anticipated terms 
Interest

Hours

Govt.

Income

Inflation

Stock prices

surprise terms 
Interest

R test X (I) 
Hours

R test X (1) 
Govt.

R test X (1) 
Income

R test % (1) 
Inflation

R test X (I) 
Stock prices

R test %^(1 )

« 2

b =  0 . 0 0 1  

0.0073 
(0.0218) 
- 0 . 1 1 2  

(0.159) 
0 . 1 1 0  

(0.170)

0.636
(1.325)
0.309

(0.575)
-0.252
(0.494)
0.330

(0.380)
0.00137

(0.00182)
0.00060

(0.00105)

0.125*
(0.076)

0.316**
(0.067)

-0.013
(0.035)

0.132**
(0.038)

0.00033**
(0.00015)

0.00014*
(0.00007)

«4

0.0055
(0.0073)
- 0 . 122*
(0.063)
0.122^

(0.063)

0.565
(0.404)
0.334

(0.241)
-0.275*
(0.155)
0.276’‘

(0.128)
0.00091

(0.00066)
0.00069

(0.00029)

0.131*
(0.076)
0.883
0.317**

(0.068)
11.941**
-0.013
(0.035)

0.069
0.125**

(0.039)
5.954*
0.00035**

(0.00015)

4.719*
0 .00012*

(0.00007)
0.892

12.694*

« 6

0.0055
(0.0058)
-0.123*
(0.052)
0.123^

(0.051)

0.539*
(0.301)
0.332^

(0.199)
-0.286*
(0.117)
0.260*

(0.102)
0.00082

(0.00051)
0.00069**

(0 .00020)

0.133*
(0.076)

0.319**
(0.068)

—0.018 
(0.036)

0.123**
(0.039)

0.00035**
(0.00015)

0 .00011* *
(0.00007)

R  test Anticipation Hypo. \  (6 )
Note:
* indicates th a t the coefficient is significant a t 5% level.
** indicates th a t the coefficient is significant at 1 % levei. 
Asymptotic standard errors are reported in the parentheses.
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Table 7.6c

Model (3a): Ac^ =  constant + +

t + + '4 t
variable

« 2 «4 « 6

a =  0.30 b =  0 . 0 0 1

constant 0.0091 0.0058 0.0055
(0.0918) (0.0125) (0.0082

la g c -0.089 - 0 . 1 2 0 -0.118*
(0.485) (0.096) (0.068)

0.119*lag y 0.085 0.119
(0.555) (0 .1 0 0 ) (0.068)

anticipated term s
Interest 0.795 0.650 0.578

(5.045) (0.719) (0.467)
Hours 0.319 0.340 0.331

(2.312) (0.334) (0.250)
Govt. -0.162 -0.269 —0.268

(1.645) (0.253) (0.173)
0.280*Income 0.297 0.296

Inflation
(1.530) (0.206) (0.139)
0.00185 0.00114 0.00099

Stock prices
(0.00727) (0.00103), (0.00074)

0.00068*0.00032 0.00068
(0.00281) (0.00055) (0.00034)

surprise terms
Interest 0.113 0.125* 0.127*

(0.076) (0.076) (0.076)
R test %^(1 ) 0.997
Hours 0.309** 0.316** 0.315**

(0.066) (0.067) (0.067)

R test %^(1 ) 12.141**
Govt. -0.015 -0.014 - 0 . 0 1 1

(0.035) (0.035) (0.035)

R test %^(1) 0.117
Income 0.136** 0.133** 0.128**

(0.036) (0.037) (0.038)

R test x ^ (l) 6.583*
Interest 0.00031** 0.00031** 0.00031**

(0.00015) (0.00015) (0.00015)

R test %^(1 ) 5.558*
Stock prices 0.00015** 0.00015** 0.00014**

(0.00007) (0.00007) (0.00007)

R test %^(1 ) 0.882

R test A nticipation Hypo. % (6 ) 12.946*
Note:
* indicates th a t the coefficient is significant at 5% level.
** indicates th a t the coefficient is significant at 1 % level. 
Asymptotic standard errors are reported in the parentheses.
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8.1 INTRODUCTION

The sem iparam etric estimators th a t we have employed in this thesis have 

desirable properties, such as being efficient or consistent when the competing 

param etric ones are not. However, in order to implement the semiparametric 

procedures, decisions have to be made about how to calculate the nonparam etric 

components. The most im portant of these choices th a t an empiricist has to  make is 

the choice of bandwidth, or equivalently, the choice regarding the  size of the 

neighbourhood.

The asym ptotic properties of the estim ators th a t we have quoted in the text 

usually assert th a t the 'optim al' bandwidth should vary directly with the sample size. 

Besides this, there is little  useful information regarding the choice for a practitioner. 

Most researchers are content with a subjective choice, e.g., by plotting graphs and 

examining the smoothness of the nonparametric estim ates, or setting a =  constant x 

N These subjective rules are usually ad hoc, and is equivalent to choosing a 

particular param etric form to work with. Although the theorems for consistency or 

asym ptotic norm ality only require tha t a has a suitable ra te  of convergence as N^oo, it 

should be fair to  say tha t in finite sample, the selection of the bandw idth in a 

sem iparam etric setting should be as crucial as the selection of a param etric from in a 

param etric model.

As we have mentioned in Chapter 2 , various autom atic methods have been 

suggested for bandw idth selection in nonparam etric methods and some of these have 

been adopted for semiparametric models. Since in this case the bandwidth is 

dependent on the data, the resulting estim ator obtained by substituting the selected 

bandwidth into the formula will be data-dependent too. The bandw idth being data 

dependent has several consequences. In the case where the sem iparam etric estim ator 

can be regarded as a linear estim ator without data—independent bandwidth, it has 

now become nonlinear with the data—dependent bandwidth. Furtherm ore, the



Monte Carlo Results • [ch S. 243]

consistency and asym ptotic norm ality of the param eters of interest, denoted by Â is 

difficult to  show in the presence of data—dependent bandwidth. This is because there 

is now an element of "endogeneity" in the estim ator. Of course, it is not impossible to 

prove consistency and normality and indeed a few results exist, e.g., Robinson 

(1988d)'s results on the Hannan's GLS estim ator in the frequency domain are derived 

under da ta—dependent bandwidth. His results are to  be exploited in this study here.

Although there are few asymptotic results for sem iparam etric models, we can 

perhaps use the methods by appealing to the knowledge th a t we have from those 

purely nonparam etric models. In fact, some of the literature on autom atic bandwidth 

selection for semiparametric models depends heavily on the results from purely 

nonparam etric problems.

In view of the importance of bandwidth selection in sem iparam etric models, 

this chapter presents some Monte Carlo results on various models of interest. In 

particular, we are interested in the finite sample properties of various so called 

rules-of—the—thum b and autom atic bandwidth selection methods. We have only 

reported the results for the i.i.d. case corresponding to different dimensions of 

smoothing.

The basic cost function used in previous studies is usually the quadratic loss or 

expected loss th a t we have m entioned Some other approaches have also

been used as stopping rule for selection of regressors, fitting autoregressions when the 

true model is unknown. These approaches are related and have been adopted for 

different problems and discussed. But the criteria th a t we are to

speculate are closely related to Robinson (1988d) and based on the principle of 

cross-validation.

8.2 TH E PSEUDO LOG-LIKELIHOOD AND CROSS-VALIDATION CRITERIA

The first criterion tha t is being proposed is tha t of Gaussian pseudo 

log—likelihood criterion of Robinson (1988d):
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6 = argm ax^ L(^)

=  a rg m a x ^ -( 2 N)“ ^E.{log 27t + log g_.(a) + RSS_.(/?,a)/g_.(a)} 

where 9 =  (/?,a), gj is the conditional variance, RSS_j is the residual sum of squares 

obtained using the leave-one-out estimates, and the subscript —i refers to the 

leave—one—out estimates. Although the general approach in the literature  is to study 

the properties of the 'autom atic' selected bandwidth, the eventual interest lies in a 

sem iparam etric estim ator /?. We are interested in finding a suitable bandwidth and 

we have suggested maximizing L(^) simultaneously with respect to (3 and a. This 

likelihood criterion has the advantage of being able to take into account 

heteroscedasticity and is useful for models with nonparam etric variance estimates. 

From the com putational point of view, we may follow the tim e series problem of 

Robinson (1988d) by concentrating the a out of the likelihood function. Indeed, if we 

can replace 0  by any root N consistent estim ator, 0\ we need only to optimize the 

simplified function over some subset of a—values, such th a t a m aximum exists: 

â =  argmax^ -(2N)"^E.{log 27t + log g_.(a) + R S S _j(^a)/g_ j(a)}

Although the two procedures are asymptotically equivalent in Robinson (1988d)'s 

problem, the la tte r has enormous computation advantage as we have reduced a 

m ulti—dimensional optim ization problem to a mere one—dimensional problem.

In the event of homoscedasticity, it appears th a t we may concentrate a out of 

the likelihood. This reduces the function to  the cross-validation (CV) criterion. The 

CV criterion is computationally more expensive than  some other criteria but has the 

advantage th a t it can be easily adapted to many sem iparam etric problems th a t we 

are interested in. Three models of particular interest are investigated here:

(i) Partial and partly  linear model

There has been some work on the partly linear model. One of the more 

popular criteria is the generalized cross-validation (GCV), introduced by Craven and 

W ahba (1979). It has been used in some semiparametric studies of the partial linear
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model (Speckman (1988)) with kernel estimation. Engle et al (1986) have also 

suggested GCV for partial liner model using smoothing splines. Green (1985) has also 

addressed the issue in the context of field trials. Most of this work take g to be 

non—stochastic. The main problem with g being stochastic is th a t the MSB may not 

exist. Consider the model

yj = /5xj + g(Zj) + fj

with E[e. I z.j =  0. In m atrix terms, we have

y =  X/? + g(z) + e (1)

and denote

y  =  X 0  + g

In the case of purely nonparametric regression, i.e. 0=0, we can show that the 

optim um  bandwidth from minimizing the mse (call it msCg) is proportional to 

N (V^^+d)^ where £ is the order of kernels and d is the dimension of smoothing. This 

gives us the optim um  rate of E(mseQ) being proportion to N Speckman

(1988), in his study of the relationship between the average mse of the model (1) (call 

it mse^) with th a t of a nested one with 0 = 0 ,  has shown th a t under some regularity 

conditions

E(mse^(a)) =  E(m seQ(a))[l+o(l)] 

where ms6 Q(a) =  N“ ^ ||E (y )-K y |p  , 

mse^(a) =  N - ^ | |E ( y ) - X H f  

and K m atrix  consist of the ij—th  element K^j/EjK-j. This shows th a t the optimum 

rate for the E(mseQ) is also optim um  for E(mse^). W ith this result, one can then 

apply the powerful GCV theorem of Craven and W ahba (1979) to  prove the 

following:

E(G CV (a)) =  <7 ^ + E(ms8 j(a )){ l+ o (l)}  

given th a t

GCV =  R S S /[l-N “ Hr(A(a))]
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RSS =  N -l||[ I-A (a )]y ||2  

A(a) =  K + X (X 'X r^ X '(I -K )

X =  (I-K ) X

Of course, if one is able to express y as a linear estim ator of y, such as the case 

of Speckman (1988) and Robinson ( 1988a)'s estim ator with higher-order and 

trim m ing, the idea of GCV can easily be applied. His results suggest tha t the 

bandw idth th a t minimizes the GCV criterion is asym ptotically equivalent to the 

minimizer of E[mse^(a)]. By similar argument and provided th a t the MSE exists, we 

can apply the theorem  to Robinson (1988a)'s estim ator which is the estim ator tha t 

we are interested in.

But we have taken the suggestions by Allen (1974) and apply the PRESS 

criterion or simply known as cross-validation. In this case, as noticed by Robinson 

(1988d), the problem with the cross-validation in partial linear model is tha t 

minimizing the E[mse^(a)j wrt a alone will yield the optim um  bandwidth of zero as 

th a t is the value which gives E[mse^^(a)] =  0. Therefore, an alternative method has to 

be devised in this case. That is to minimize the criterion wrt to  /? and a together with 

a. In fact, if there is no heteroscedasticity, maximizing the likelihood function wrt 9 

should be equivalent to minimizing the cross-validation criterion. Robinson (1988a)'s 

estim ator can be expressed as

where

X =  (I—R) D iag(Ip I2 , -, 

ÿ =  (I-K ) D iag(Ip  Ig,..., I^ )y  

Ij =  I( f  >  C)

(  is the trim m ing constant and I is the indicator function. We obtain the bandwidth 

by minimizing the criterion function

CV = Ej(y_j-/3 ĵX_j)2
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wrt a. x_j is the nonparametric regression leave-one—out estim ates of x on the 

instrum ents z. This bandwidth is then used to  estim ate 0.

(ii) Errors—in—variables model

In this case, we can suggest the cross-validation (CV) criterion in the absence 

of heteroscedasticity. Define the model to be

y .  =  X . / )  +  r/j ( 2 )

X. =  E[x. IZ-] + (J.

where E[t/jÇj | zj] =  0 and E[t/. |zj] =  0. Newey (1987)'s estim ator can be expressed as

= /?iv + (x’xr^x'7/
/?jY is obtained by 2SLS estim ation and X is the nonparam etric estim ate for E[x. |z.j. 

We obtain the bandwidth by minimizing the criterion function 

CV =  Sj(yj — /?jyX_j) 

wrt a. x_j is the nonparam etric regression leave—one—out estim ates of x on the 

instrum ents z. This bandwidth is then used to  estim ate 0.

(iii) Generalized least squares model

Let us define the model as 

y. =  /?x. + z/.

w ith E[z/. I x] =  g.. The log—likelihood criterion can be straightforwardly implemented 

in this case as suggested by Robinson (1988d), i.e.,

a =  a rg m a x ^ -( 2 N)“ ^Ej{log 27t + log g_.(a) + R S S _ j(^^^^ ,a)/g_ .(a )}  

and the semiparametric GLS estim ator is 

^ G L S  ^  (x 'f lX )” ^X 'ny
-  * _ 1  -  * _ 1

where H is a diagonal m atrix with i—th element gj , and g. 's are the 

cross—validated variance estimates. In all the cases, we have only taken a one—step 

procedure. Further iterations in some models may be desired (Matloff, Rose and Tai 

(1984)) . For example, we may want to obtain the residuals from the one step 

semiparametric GLS estimates and repeat the procedures of finding the optimum
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bandwidth. The back—and—forth process can be repeated until the GLS estimates 

converge. We offer no evidence of the performance of these estim ates as it may be 

com putationally too expensive for Monte Carlo simulations.

8.3 MEAN SQUARE ERRO R CRITERION

Throughout the analysis, the bias, standard deviation and mse are reported for 

comparison. Normal density is used for construction of kernels. Higher—order product 

kernels are used where appropriate. As we can see from Chapter 2  th a t the optimum 

bandwidths for nonparametric problems in the mean square error sense are usually of 

the order N Several so called rules—of—the—thum b (RT) for bandwidth

selection are used in the literature because they are easy to understand. These RT are 

especially popular in the applied literature:

(i) O PT criterion: since a^^^ =  CN this criterion set the

bandwidth a t N i,e., C =  1.0. Some empirical work employed this rule for

bandwidth selection. One example is Pagan and Ullah (1989)

(ii) SD criterion: one can also take the constant C to be the standard deviation 

of the data  to be smoothed, e.g. W histler (1989) sets her bandwidth based on this 

idea.

(iii) UNIT criterion: this criterion corresponds to using a diagonal bandwidth 

m atrix  h but taking a- =  sd(z.) x In other words, dividing the z. by

the individual bandwidth and then using a single bandwidth as in (i). The division of 

the z by the individual sd is essential in applied work to take into account the spread 

of the data. For an example, see very recent work of Sentana and W adhwani (1989)'s 

choice of bandwidth a =  c x h. where c corresponds to a different constant.

There are reasons to believe th a t the O PT criterion will not work in practice 

for q >  1  if the z's have large standard deviations and a non—zero mean. One of the 

main reasons is the empty space phenomenon caused by the grouping of the z and 

therefore the product kernels are not operational with a single a. Furtherm ore, it is
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difficult to justify the use of product kernels when the z's are of different units of 

measurement. Nevertheless, we produce results for the O PT criterion bearing in mind 

th a t we have adopted a design th a t enables it to work.

8.4 TH E SIMULATION RESULTS

All the programs are w ritten in double precision FORTRAN—77. The results 

are obtained using the AMDHALL—5890/300 computer at the University of London 

Computer Centre (ULCC). The subroutines for generation of random  variables are 

from NAG—13 library and the minimization routines are taken from Numerical 

Recipes (Press, Flannery, Teukolsky and Vetterling (1987), we shall refer to this as 

PFTV ). The bandwidths reported are the average for CV and SD criteria.

(i) Partly  Linear model

In order to study the finite sample property of the partly linear model, we use 

similar design as th a t of Robinson (1988a). This will enable us to compare the results 

obtained. The model is

y\ = 0Q + /^i^i + g(Z|) + fj i =  I v ,  N.

g(z.) =

=  ^1 =  7 i  =  ?2 '̂ d ^

where e- is N(0,1), x, Zq ^'s are equicorrelated and identically distributed N (l,l)

variables with correlation /̂2. Notice tha t we have to minimize the CV criterion

simultaneously wrt both and a, as we cannot minimize 0-̂  holding a constant. This

suggests th a t any minimization routines which use the line minimization will not

work for the same reason. One routine tha t will work in this case will be the method

of downhill simplex of Nelda and Mead (1965). The AMOEBA routine given in

PFTV  (Section 10.4) has performed reasonably well in this case. However, global

minimum is not guaranteed and therefore we have to  try  various initial starting

points in order to  make sure th a t we have the minim um  over a certain interval. The

larger the number of restarts for each replication, the better the chances of getting
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the minimum. At the same time, the higher the cpu tim e charges, the fewer 

replications allowed. Since the maximum of the cpu tim e allowed on the ULCC 

AMDHALL is 60 minutes, we stretches this to the limit whenever possible. The 

number of restarts ranges from 3 to just none depending on d. In other words, for N 

greater than  300, we have no restart.

One im portant point to bear in mind is the use of large d is highly susceptible 

to com putational rounding off errors. To see this, recall th a t when m ultiplicative 

kernels are used as in all the cases here, the individual normal kernel k(u) =  (2 %) 

exp(u ) is between zero and one. Therefore successive m ultiplication of k for d >  1 

will give a very small number. It is strongly advisable to do the com putation in 

higher order as d increases. The rounding off errors have considerable effects over the 

estim ates from some simulation results not reported.

In Table 8.1.a, the bias, standard deviation (std dev) and mean square error 

(mse) are reported. Directly below the results, we have the ratios of the values of the 

first three columns to the fourth.

There is little  doubt tha t the O PT criteria gives considerably better results. 

This suggests th a t if a single a is operational with the data, it is perhaps good news to 

the empiricist. If it is not operational, then the CV criterion is desirable. Indeed, 

there is an enormous difference between the mse of the CV criteria and th a t of the SD 

or UNIT Z.

In Table S .l.b , we have reported the results for d =  2 and the difference in the 

performance of CV w ith the last two criteria is substantial. Further justification for 

the use of CV is provided by the evidence in Table S .l.c and Table S.l.d. In both 

Tables, with N =  400, the results clearly indicate the performance of SD and UNIT 

criterion deteriorates with increased d.
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Table 8 . L a  Results for Partly  Linear Model; y =  /̂ q + + g(z) + e

Replications =  5000, N =  100, d =  1

1 = 2
l.CV 2 .0 P T 3.SD 4.UNIT Z

a 2.89811 0.39811 2.13579 0.39811
bias 0.05302 0.00173 0.05168 0.05168
std dev 0.07256 0.07169 0.07390 0.07390
mse 0.00808 0.00514 0.00813 0.00813
bias 1.02590 0.03351 1 . 0 0 0 0 0 1 . 0 0 0 0 0

std dev 0.98180 0.96999 1 . 0 0 0 0 0 1 . 0 0 0 0 0

mse 
/ =  4

0.99301 0.63225 1 . 0 0 0 0 0 1 . 0 0 0 0 0

a 3.09948 0.59948 3.21615 0.59948
bias 0.06302 0.00198 0.06059 0.06059
std dev 0.09625 0.07170 0.09954 0.09954
mse 0.01324 0.00515 0.01358 0.01358
bias 1.04018 0.03261 1 . 0 0 0 0 0 1 . 0 0 0 0 0

std dev 0.96701 0.72038 1 . 0 0 0 0 0 1 . 0 0 0 0 0

mse 
t =  6

0.97481 0.37895 1 . 0 0 0 0 0 1 . 0 0 0 0 0

a 3.20170 0.70170 3.76455 0.70170
bias 0.08785 0.00209 0.08690 0.08690
std dev 0.15506 0.07196 0.20062 0.20062
mse 0.03176 0.00518 0.04780 0.04780
bias 1.01097 0.02402 1 . 0 0 0 0 0 1 . 0 0 0 0 0

std dev 0.77288 0.35868 1 . 0 0 0 0 0 1 . 0 0 0 0 0

mse 0.66443 0.10842 1 . 0 0 0 0 0 1 . 0 0 0 0 0
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Table S .l.b  Results for Partly  Linear Model: y = + g(z) + e

Replications =  5000, N =  100, d =  2

£ = 2
l.CV 2 .0 P T 3.SD 4.UNIT Z

a 2.73208 0.46416 2.49660 0.46416
bias 0.02817 0.00402 0.11327 0.11295
std dev 0.08741 0.10446 0.10161 0.10167
mse 0.00843 0.01093 0.02316 0.02309
bias 0.24942 0.03560 1.00279 1 . 0 0 0 0 0

std dev 0.85973 1.02749 0.99950 1 . 0 0 0 0 0

mse
£=4:

0.36516 0.47319 1.00264 1 . 0 0 0 0 0

a 2.81548 0.63096 3.39377 0.63096
bias 0.03192 0.00462 0.20679 0.21525
std dev 0.09917 0.10725 1.09309 0.62566
mse 0.01085 0.01152 1.23760 0.43778
bias 0.14828 0.02145 0.96071 1 . 0 0 0 0 0

std dev 0.15851 0.17143 1.74710 1 . 0 0 0 0 0

mse 
£ =  6

0.02479 0.02633 2.82701 1 . 0 0 0 0 0

a 2.85984 0.71969 3.87101 0.71969
bias 0.04754 0.00685 0.48317 0.53778
std dev 0.16375 0.12788 2.23694 2.42992
mse 0.02907 0.01640 5.23737 6.19370
bias 0.08840 0.01273 0.89846 1 . 0 0 0 0 0

std dev 0.06739 0.05263 0.92058 1 . 0 0 0 0 0

mse 0.00469 0.00265 0.84560 1 . 0 0 0 0 0
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Table S .l.c  Results for Partly  Linear Model: Y = Pq 

Replications =  100, N =  400, d =  4

/?,x + g(z) +

i = 2
l.CV 2 .0 P T 3.SD 4.UNIT Z

a 2.73644 0.47287 2.58340 0.47287
bias 0.04233 0.00961 0.16785 0.16718
std dev 0.04555 0.08227 0.05623 0.05591
mse 0.00387 0.00686 0.03134 0.03108
bias 0.25322 0.05748 1.00400 1 . 0 0 0 0 0

std dev 0.81471 1.47148 1.00566 1 . 0 0 0 0 0

mse
i = A

0.12444 0.22079 1.00836 1 . 0 0 0 0 0

a 3.10696 0.60696 3.31598 0.60696
bias 0.80166 0.01033 0.46334 1.13667
std dev 1.50886 0.09019 3.64520 7.57469
mse 2.91931 0.00824 13.50214 58.6680
bias 0.70527 0.00909 0.40763 1 . 0 0 0 0 0

std dev 0.19920 0.01191 0.48123 1 . 0 0 0 0 0

mse 
i =  6

0.04976 0.00014 0.23014 1 . 0 0 0 0 0

a 3.18766 0.68766 3.75682 0.68766
bias 2.90043 0.01151 2.92993 3.25039
std dev 3.62257 0.09418 6.19412 8.09106
mse 21.5354 0.00900 46.9515 76.0302
bias 0.89233 0.00354 0.90141 1 . 0 0 0 0 0

std dev 0.44773 0.01164 0.76555 1 . 0 0 0 0 0

mse 0.28325 0 . 0 0 0 1 2 0.61754 1 . 0 0 0 0 0



Monte Carlo Results [ch 254]

Table S.l.d: Results for Partly  Linear Model: Y = Pq + + g(z) + e

Replications =  100, N =  400, d =  5,

i =  2

l.C V 2 .0 P T 3.SD 4.UNIT Z
a 2.75695- 0.51390 2.81250 0.51390
bias 0.06069 0.01849 0.23416 0.23251
std dev 0.06392 0.10527 0.08213 0.08214
mse 0.00777 0.01142 0.06158 0.06081
bias 0.26101 0.07952 1.00709 1 . 0 0 0 0 0

std dev 0.77816 1.28154 0.99981 1 . 0 0 0 0 0

mse 0.12776 0.18787 1.01262 1 . 0 0 0 0 0

i = 4 .
a 2.81536 0.63073 3.45185 0.63073
bias 0.05449 0.01376 0.63361 2.27120
std dev 0.07244 0.12174 9.62024 6.68173
mse 0.00822 0.01501 92.9505 49.8038
bias 0.02399 0.00606 0.27898 1 . 0 0 0 0 0

std dev 0.01084 0.01822 1.43978 1 . 0 0 0 0 0

mse 0.00016 0.00030 1.86633 1 . 0 0 0 0 0

i =  6  

a 2.85149 0.70297 3.84723 0.70297
bias 0.06879 0.01171 3.84792 6.11724
std dev 0.52846 0.13025 8.05438 24.0566
mse 0.28400 0.01710 79.6794 616.142
bias 0.01124 0.00191 0.62903 1 . 0 0 0 0 0

std  dev 0.02197 0.00541 0.33481 1 . 0 0 0 0 0

mse 0.00046 0.00003 0.12932 1 . 0 0 0 0 0
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ii) Errors—in—variables model

Consider the following model

yj =  a  + /?E (x .|z j) + . i= l,2 ,...,N

Xj =  Ej S ÿ . ?  +  C;

a  = P = S = 1

7/. is NID(0,1), NID(0,0.5), and z. is NID(0,2.0). and are independent. The

results are reported in Table 8.2a and Table 8.2b. We have reported the ratio of the 

estim ates in the first three columns to tha t of the last. The estim ates in the last 

column is the actual values and not ratios. In other words, for  ̂=  4, we have the bias 

for the last column as —0.02706 and the bias for the CV criteria as ratio(first column) 

X bias(UNIT Z) =  0.13612 x-0.02706 =  -0.00368.

From  the results in Table 8.2, we can see th a t there is very little  difference 

between the CV and the O PT criterion. However, the performance of the SD and 

UNIT criterion is not reliable a t all. We must remind the readers again th a t the O PT 

criteria may not work in practice and there are no justifications for its use from the 

theory. The main point tha t we want to illustrate is the difference in performance of 

the different criteria in response to the use of rules—of—the thum b m ethod in applied 

work.
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Table 8 .2.a Results for E rrer—In—Variable Model: y =  a  + /ÎE[x|z] +r) 

Replications =  100, N =  400, d =  1, 

i =  2

l.CV 2 .0 P T 3.SD 4.UNIT Z
0.06608 0.30171 0.60245 0.30171

j3 coefficient
bias 0.06711 0.24836 1 . 0 0 0 0 0 -0.0523
std dev 0.81882 0.80134 1 . 0 0 0 0 0 0.01178
mse 0.03666 0.08971 1 . 0 0 0 0 0 0.00288
Q coefficient
bias 0.06495 0.26377 1 . 0 0 0 0 0 0.47355
std  dev 0.96972 0.86728 1 . 0 0 0 0 0 0.07586
mse 0.02764 0.08665 1 . 0 0 0 0 0 0.23001

a 0.14678 0.51390 1.02615 0.51390
0  coefficient
bias -0.0797 -0.00264 1 . 0 0 0 0 0 0.00874
std dev 0.16827 0.16183 1 . 0 0 0 0 0 0.05659
mse 0.02780 0.02558 1 . 0 0 0 0 0 0.00328
a  coefficient
bias 0.07831 -0.14216 1 . 0 0 0 0 0 0.02268
std dev 0.11365 0.10987 . 1 . 0 0 0 0 0 0.59921
mse 0.01291 0.01208 1 . 0 0 0 0 0 0.35957
i =  6

a 0.15928 0.63073 1.25942 0.63073
0  coefficient
bias -0.0365 0.09044 1 . 0 0 0 0 0 0.01123
std dev 0.11499 0.11309 1 . 0 0 0 0 0 0.08117
mse 0.01300 0.01270 1 . 0 0 0 0 0 0.00671
Q coefficient
bias 0.01860 0.11597 1 . 0 0 0 0 0 -0.1178
std dev 0.14153 0.14260 1 . 0 0 0 0 0 0.46840
mse 0.01886 0.01992 1 . 0 0 0 0 0 0.23328
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Table 8.2.b Results for Error—In—Variable Model: y =  a  + /7E[x|z] +rj

Replications = 100, N =  400, d =  2 .

i  = 4:
l.CV 2 .0 P T 3.SD 4.UNIT Z

a 0.19981 0.54928 1.09688 0.54928
0  coefficient
bias 0.09383 -0.06496 0.98138 -0.0129
std dev 0.63944 0.63400 0.98638 0.01073
mse 0.17218 0.16663 0.96713 0.00028
Oi coefficient
bias 0.03053 -0.10639 0.98082 0.18694
std dev 0.59493 0.57163 0.98941 0.13819
mse 0.12567 0.12278 0.96798 0.05404
1 =  6

a 0.17651 0.65184 1.30168 0.65184
13 coefficient
bias -0.1283 0.48109 1.11402 0.00802
std dev 0.28118 0.26230 0.90678 0.02661
mse 0.07385 0.08233 0.85708 0.00077
a  coefficient
bias 0.00634 0.44804 1.08308 -0.1457
std dev 0.24567 0.24760 0.92420 0.33902
mse 0.05095 0.08305 0.90390 0.13617
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(iii) Generalized least squares model

y. =  a  + /?x. + 6 .(7 (x.) i= l,...,N

with E[e. I Zj] =  0. This model is perhaps the most studied sem iparam etric models in 

terms of simulations. Therefore, the design is identical to  many previous studies on 

the GLS estim ators (e.g. Cragg (1983), Delgado (1987, 1988)). We have x. =  exp (z.), 

z. is NID(0,1) and e. is NID(0,1) and both e- and z. are independent. Besides 

reporting the results for criterion CV, O PT (identical to UNIT Z as d = l)  and SD, we 

have also reported the results for GLS and Aitken's GLS estim ator (where the 

weights are the true variance). In the following tables, the results in the first four 

columns are ratios to the last GLS. The GLS results are the the actual values.

The following variance model is considered:

(7^(x.) = \ + A2 X. + AgX.  ̂ I ^ i= l,2 ,...,N .

The results reported below are all replicated using a-̂  =  1.0, =  0.3 and Ag =  0.5

with 7  taking values between 0.5 and 3.
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Table 8.3.a Results for GLS Model: y. =  a  + /?x. + e-a-

Replications =  1 0 0 , N =  300, d =  1

— 1.0, 0 ^ 2  — 0.3, — 0.5,
7  =  1.0

CV O PT SD OLS GLS
a 0.10848 0.31958 0.72184
bias -11.325 -14.689 -12.404 1.04390 0.01817
std  dev 1.98776 2.02622 2.07766 1.54117 0.19238
mse 5.05050 5.97740 5.63906 2.36383 0.03734
bias -8.6793 -9.5362 -9.4887 1.05945 - 0 . 0 2 0 1

std dev 1.66812 1.59662 1.74115 1.91111 0.21262
mse 3.43032 3.33834 3.80835 3.62977 0.04561
7 =  2 . 0

a 0.12596 0.31958 4.46143
bias -1.9513 -1.2348 2.89794 7.69189 0.02597
std dev 1.06021 1.04478 2.28089 9.50548 0.35698
mse 1.13819 1.18026 5.21931 90.1899 0.12811
bias -1.1749 -2.2646 2.90373 11.3529 -0.0246
std dev 1.06662 1.01650 2.67573 16.9378 0.29824
mse 1.13933 1.06108 7.16819 285.816 0.08955
7 =  2.5
a 0.20048 0.31958 14.4231
bias 0.00767 -2.3851 5.71154 33.28519 0.02269
std dev 1.18483 0.95703 20.2228 29.26604 0.42050
mse 1.39975 0.92975 407.871 857.2309 0.17734
bias 0.54312 -0.70889 6.16638 49.63785 -0.0227
std dev 1.25942 0.95958 37.4914 57.80669 0.32302
mse 1.57978 0.91873 1398.86 3337.281 0.10486
7 =  3.0
a 0.05522 0.31958 50.14846
bias 4.89216 -1.61716 153.0128 193.0087 0.01532
std dev 1.45632 0.93527 92.22610 95.71482 0.47431
mse 2.14358 0.87654 8521.186 9190.596 0.22520
bias 4.03927 0.15555 181.8416 237.1477 -4.0192
std dev 1.62472 0.94945 195.3171 204.0701 0.34083
mse 2.68319 0.89867 38132.63 41691.01 0.11653
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Table 8.3.b Results for GLS Model: y. =  a  +

Replications -  1 0 0 , N = 400, d =  1

= 1 .0 , 0̂ 2 =  0.3, Ag == 0.5;
7  =  0.5

CV O PT SD OLS GLS
a 0.34292 0.30171 0.40557
bias 0.51533 -1.3013 -0.5652 0.85725 0.00910
std dev 1.35891 1.49582 1.52649 0.94047 0.10757
mse 1.83541 2.23362 2.31589 0.88342 0.01165
bias 0.70990 -0.1139 0.17492 0.74173 -0.0089
std dev 1.23184 1.31481 1.31402 0.98032 0.14718
mse 1.51368 1.72239 1.72038 0.95951 0.02174
7 =  1 . 0

a 0.05828 0.30171 0.66277
bias -12.370 -15.683 -13.392 1.25344 0.01547
std dev 2.01561 2.03370 2.08446 1.45617 0.18607
mse 5.08518 5.79595 5.54621 2.11666 0.03486
bias -11.793 -13.163 -13.039 1.38806 -0.0135
std dev 1.69555 1.62920 1.76357 1.78595 0.20317
mse 3.48075 3.41315 3.85253 3.18401 0.04146
7  =  1.5
a 0.08942 0.30171 1.41565
bias -5.1837 -8.1719 -3.1800 2.84674 0.02004
std dev 1.20796 1.22422 1.19039 3.20561 0.26644
mse 1.60208 1.86587 1.46594 10.2637 0.07139
bias -4.9522 -6.6979 -3.6870 4.16701 -0.0159
std dev 1.18120 1.15145 1.21860 4.79149 0.24935
mse 1.48958 1.50342 1.53438 22.9356 0.06243
7  =  2 . 0

a 0.00800 0.30171 3.84941
bias -2.1183 -4.7617 3.33550 9.25769 0.02065
std dev 0.98846 1.04068 2.13306 8.77247 0.33575
mse 0.99029 1.16440 4.57473 76.9892 0.11316
bias -1.8955 -3.5151 3.85717 16.2288 -0.01566
std dev 1.00469 1.01048 2.39801 15.1404 0.28251
mse 1.01732 1.05577 5.77838 229.338 0.08005
7  =  2.5
a 0 . 0 0 0 0 0 0.30171 12.2281
bias -0.4942 -2.8691 7.65564 40.92894 0.01702
std dev 1.07382 0.94772 16.5291 27.10506 0.39141
mse 1.15137 0.91201 272.806 736.4586 0.15349
bias -0.2347 -1.5196 10.0253 75.35350 -0.0132
std dev 1 . 1 1 2 2 2 0.94668 28.9602 51.54245 0.30498
mse 1.23482 0.89885 837.307 2662.302 0.09319
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We can see tha t the CV criteria is the best criteria based on the results.

However, the O PT criteria seems to  be better than th a t of the CV and indeed GLS

when 7  is greater than or equal to 2.5. We see th a t the OLS and SD estim ates

deteriorate rapidly with 7 .

We have also plotted the bias, std dev and mse for the various ratios in Figure

8.1 to  8.9 for N in between 80 and 180. R l, R2 and R3 are the ratios of CV to UNIT, 

O PT and GLS respectively. Look at the ratios for bias, CV is always better than 

UNIT and O PT criteria. As for standard deviation, CV is only better than  UNIT 

criterion when N is greater than 160, and CV is always better than O PT. As for 

MSE, marked improvement over UNIT and O PT is registered only after N =  160. It 

is also true tha t the ratio of CV to GLS is never better than  3.6605 but the 

performance of CV becomes better when N is greater than 120.
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Figure 8.1 Plot of Ratio of Bias of CV Estimates to UNIT for Model 3
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Monte Carlo Results [ch 8. 263]

Figure 8.2 Plot of Ratio of Bias of CV Estimates to OPT for Model 3
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Monte Carlo Results [ch 8. 264]

Figure 8.3 Plot of Ratio of Bias of CV Estimates to GLS for Model 3
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Monte Carlo Results [ch 8. 265]

Figure 8.4 Plot of Ratio of Standard Deviation of CV Estimates

to UNIT for Model 3
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Monte Carlo Results [ch 8. 266]

Figure 8.5 Plot of Ratio of Standard Deviation of CV Estimates

to O PT for Model 3
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Monte Carlo Results [ch 267]

Figure 8.6 Plot of Ratio of Standard Deviation of CV Estimates

to GLS for Model 3
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Monte Carlo Results [ch 268]

Figure 8.7 Plot of Ratio of MSE of CV Estimates to UNIT for Model 3
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Monte Carlo Results [ch 269]

Figure 8.8 Plot of Ratio of MSE of CV Estimates to OPT for Model 3
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Monte Carlo Results [ch 8. 270]

Figure 8.9 Plot of Ratio of MSE of CV Estimates to GLS for Model 3
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In this concluding chapter, we briefly list some general problems related to  the 

techniques used as well as specific problems in relation to  our empirical work, to be 

investigated and suggest some possible course of action for future research.

GENERAL PROBLEMS

( 1 ) Bandwidth Selection

The issue of bandwidth selection is perhaps the most im portant of all the 

issues th a t we have raised in this thesis. First of all, the asym ptotic results of the 

sem iparam etric estim ators with data—dependent bandwidth need to  be worked out. In 

particular, we have to work out the regularity conditions under which the 

"autom atic" bandwidth is consistent and possibly the rate  of convergence.

Secondly, the performance of the different criteria needs to be compared in 

order to  select a satisfactory criterion for practical applications with finite sample. In 

particular, most of the autom atic bandwidth criteria are com putationally expensive. 

One solution may be to split the sample into subsample and minimize each subsample 

criterion function with respect to the bandwidth a. An average of these subsample 

autom atic bandwidths is used for the semiparametric estim ator. Although this 

approach may have computational advantage when N is large, it introduces another 

source of problem discussed below.

There may also be reasons to believe tha t some of these criteria are subjected 

to sample noise. In order to overcome this across sample variability, partitioning the 

sample into subsample may also be desirable. Recently, M arron (1988) has suggested 

partitioned cross-validation for nonparam etric curve estim ation. The procedure 

involves working out the value of the CV function for each subsample and then 

minimizing the average of these subsample CV values.

Of course, this introduces another source of problem, i.e., the choice of the 

number of subsamples, m. We have a similar dilemma as th a t of bandw idth selection; 

having too larger a m induces large bias and having too small a m  induces large
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variance.

Define a ^ y  as the minimizer of the CV criterion and the minimizer

of the Mean Integrated Squared Error, i.e., MISE =  E[ISE] =  E (J[f(x )—f(x)]^dx). 

Hall and Marron (1987) have shown tha t the ra te  of convergence of a ^ y  to  is

fairly slow and subjected to  a good deal of sample noise. In particular, if the density 

function f is no more than twice differentiable and under some other regularity 

conditions,

—1/5 ''*  ''*Define the partitioned CV bandwidth as a p ^ y = m  ' a ^ y  where a ^ y  is the a 

* _ 1  m
which minimizes CV =  m CVj. Then under an appropriate choice of m and

regularity conditions,

which is an improvement over ( 1 ). This idea of partitioning the sample is also very 

useful for time—series problem and semiparametric models. It appears th a t if we can 

partition  the serially correlated data  sample so th a t these subsamples are 

independent, then we can simultaneously reduce across sample variability and 

overcome the potential problems of serial correlation in the sample.

(2) Nonpar ametric smoothing and Dimension Reduction

Another pressing issue is the problem of the curse of dimensionality in 

nonpar am etric smoothing. There are suggestions which can be employed in future 

empirical work.

We have only used the kernel estim ators in our empirical work. However, this 

is not the only nonparametric smoother tha t one can use. Two other favoured 

competitors are the nearest neighbour and spline smoothers. While spline smoothing 

has been applied in various areas, the method of nearest neighbour is relatively new 

in economics. The first semiparametric model which combines the use of nearest
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neighbour nonparametric component and param etric component is the GLS estim ator 

of Robinson (1988). A nearest neighbour estim ators for E[yj|x.] can be expressed as: 

Ê[yj|x-] =  ^ i^ i j  

where W .j =  I( i/j)q - | + I(i= j) 0

Pij =  1 + S^(r^. <  r. .)  i^j

Qij =  1 + E^(r^j =  rjj) i^j

"■ij =  ^m =l  ̂ ifj-

and 8 ^  =  ( N - l ) “ ^Sj(Xijjj-(&jXjjjj/N))2 , 1  < m  < d.

W e can see th a t nearest neighbour estim ator is also a linear estim ator. The im portant 

differences between kernel and nearest neighbour estim ators are th a t (i) we are 

averaging over a same k number of nearest neighbour rather than  over a fixed size of 

neighbourhood as in kernel estimation; (ii) the x^'s are of unit variance in this nearest 

neighbour setting. The first will correspond to using a kernel with different 

bandw idth and the second will overcome the problem of having different unit of 

measurement for different explanatory variables in economic applications. For a given 

constant k < N, the weight c^is a non—negative constant chosen by the practitioner if 

1  <  ̂ < k and equal to zero if  ̂ > k. Of course, this weight is equal to one if it is 

summed from 1 to k. Popular choice of weights are Uniform, Triangular and 

Quadratic.

As for the choice of dimensional reduction technique, we have not worked out 

the asym ptotic properties in our case. In fact, the asym ptotic properties of many 

additive models have not been worked out and is a current area of research. There is 

very few useful results for projection pursuit regression which is very closely related 

to the approach tha t we have suggested.

(3) Transform ation models
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W e have suggested param etric transform ation models. However, it may also 

be of interest to look at some of the economic relationships th a t we have investigated 

using the  alternating conditional expectations (ACE) of Breiman and Friedman 

(1985). Their procedures are useful for preliminary data  analysis when one is seeking 

"optim al" transform ations. In particular, the semiparametric model 

Ty(yi) =

which seeks the optim al transform ation for and Tj may be use as a preliminary 

step for subsequent param etric transformation. The procedures involve minimizing 

the objective function

E[€i^]/E[Ty(yj)]2

subject to the constraint of zero expectations:

E[Ty(yj)] = E[T^(xp] = .....=  E[Tj(Xj)] =  0.

There is no doubt tha t by plotting graphs, this method will lead to  better 

understanding of the nonlinear relationships between the dependent and independent 

variables and it is possible to detect any nonlinear singularity of the data  as in the 

case of the fuel efficiency and rental cost function.

SPECIFIC  PROBLEM S

We outline some further specific problems for Chapters 3 to 8  to be 

investigated in future empirical studies.

C H A PTER  3

In Chapter 3, we have constructed an intertem poral model w ith the 

assumption th a t the miles driven, M, is exogenously given. It is plausible th a t both 

E(z) and z will affect M, and thus M =  M (E(z),z). If da ta  on individual m otorists can 

be collected, then a distance travel function can also be estim ated. Such a function 

may perhaps be of interest to policy analysts, e.g., in relation to electronic road 

pricing.

The constructed model does not take into account technological improvement.



Some Open Problems [ch 9. p^.276]

It is also plausible tha t fuel efficiency improvement can be brought about by 

technical factors independent of the attributes. While it is easy to include such a 

variable in the model, it is not clear how we can proceed with the estim ation.

W e have not provided the standard errors of the elasticity estim ates. It is 

worthwhile considering the options of bootstrapping or computing the standard errors 

conditional on some of the parameters. However, these methods are also likely to be 

com putationally very expensive.

Although our work has concentrated on the hedonic approach, it may be 

fruitful to proceed along other lines of investigation. One such approach is to use of 

survey methods (see e.g. Goodman (1989)). Many studies in housing economics have 

addressed the issue.

C H A PTER  4

Despite some of the criticisms of the two—stage method of Rosen (1974), it is 

still worthwhile to compare the semiparametric and nonparam etric estim ates with the 

param etric estimates obtained under appropriate instrum ents. It is still worthwhile to 

estim ate the benefits using the TS method if individual household data  from multiple 

m arkets are available,.

Besides the usual problem of bandwidth selection, one may want to conduct 

hypothesis testing to select appropriate variables to be included in the 

semiparametric hedonic price function. This can be done by, say, Robinson's test 

statistics.

C H A PTER  6

While the relaxation of the distribution assumptions has been adopted in some 

studies, the relationship between consumption growth and real interest rates should 

be investigated further along the line of Harvey (1988). It would be desirable to 

confirm the results tha t there are relationship between these two macroeconomic 

variables using data  on returns of more than  a quarter.
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It is of also of interest to work out the regularity conditions under which the 

SARCH estim ates are asymptotically efficient. Furtherm ore, the asymptotic 

properties of the autom atic bandwidth need to be investigated.

CHAPTER 7

In C hapter 7, we have investigated the statistical relationship between 

macroeconomic variables and consumption. The most im portant task is to  suggest a 

economic framework which is consistent with the data. In particular, we have to 

explain why inflation and stock prices should m atter. The explanatory power and the 

m agnitude of lagged consumption and income variables pose some further questions 

from the theoretical point of view.

CHAPTER 8

There are two very im portant observations from Chapter 8 . First of all, while 

it is relatively cheap to compute some of the sem iparam etric estim ators, it is 

com putationally expensive to conduct cross-validation or other autom atic methods 

for bandwidth selection in multidimensional problems. This is clearly reflected in the 

number of replications tha t we have. A search for com putationally efficient 

algorithms will be im portant for future m ultivariate sem iparam etric applications. 

Secondly, the simulation results using finite sample produced some insights into the 

interesting behaviour of the autom atic semiparametric estim ators. While there are 

few asym ptotic results on the autom atic semiparametric estim ators, it is obvious tha t 

further investigations are fruitful. This lack of asym ptotic results also suggests tha t 

investigation into the finite properties of the semiparametirc estim ators will no doubt 

be more difficult bu t highly desirable.
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Appendix A: Cross Sectional Data

The same set of cross sectional data  is used in Chapter 3 and 4. There are 

various known sources for the required data  but the one which has been widely used 

in empirical studies and considered reliable is« collected by Haymarket Magazines 

Lim ited (reported in W HAT CAR?). The number of a ttributes th a t can be included 

in our model is enormous. Many of these variables are highly collinear. However, 

there is some consensus of what variables should be included in the model which are 

the main determ inants of consumer choice and fuel efficiency among the models and 

makes. Basically, we can classify these attributes into three classes, namely, 

performance, specification and dimension variables. The a ttributes th a t we used are 

general representations of these three classes and are constructed from these variables 

to be consistent with the more recent studies on car efficiency in the United States. 

The variables used in the study are reported below and can be found in W HAT CAR? 

unless otherwise stated.

(a) Price, P

The actual prices used are the list price of new cars inclusive of car tax. Value 

Added Tax and delivery costs. Standard equipment is included in the list price. 

Ideally, one would prefer a measure of the price which excludes these standard 

equipment but lack of data prevent us from doing so. There have been attem pts by 

other authors to subtract these costs from the prices by treating standard equipment 

in different makes at a fixed price. This may not be a good practice because it is 

unlikely th a t prices of these standard equipment are the same across different models, 

and one would end up with severe measurement errors. The alternative approach is to 

obtain the information from the dealers. We left the prices as they were. This is 

measured in UK sterling and the prices are given in June 1988 issue.

(b) Size, z^

This is the engine capacity measured in cubic centimetres.
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(c) Spaciousness,

We adopt the usual approach of using the the product of length, width and 

height as a proxy for spaciousness. It is not intended to be a variable to capture the 

aesthetic qualities which will distinguish one make of car from another. This is the 

usual constraint th a t empiricalist has to face but it is believed tha t this variable will 

be a good proxy.

(d) Power, Zg

This variable is constructed by dividing the brake horse power by the kerb 

weight and is generally taken to reflect the performance of the car.

(e) Acceleration,

This is the inverse of the tim ing in seconds from 0—60 miles per hour.

(f) Fuel Efficiency, E

Fuel consumption is measured by miles per gallon (M PG). Three figures are 

given for travelling in urban, at 56 miles per hour and at 75 miles per hour 

respectively. We adopt the approach of taking the weighted average of the three 

consumption figures shown for each model on the following basis: 2xUrban figure + 

56mph figure + 75mph figure.

(g) Fuel, D y

This is a dummy variable for car which can run on unleaded fuel without 

adjustm ents. It takes the value of 1 if unleaded and 0 otherwise.

(h) Running Cost Per Mile, R

This figure is calculated for three years over three thousands miles and quoted 

in pence by Emmerson Hill Associates. The original observations include fuel 

consumption, servicing cost, insurance payment and other funding and maintenance 

costs. W ith the information provided by Emmerson Hill Associates, we are able to 

exclude fuel consumption from the data.

Given in more details, the figure includes insurance, based on the average
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prem ium  for the grouping of the model; depreciation over 3 years, based on past 

performance through Auction houses (CAP Black Book); the cost of financing the 

purchase of the vehicle (a flat rate of 1 0 % per annum  of the purchase price) allowing 

for discount where available. The cost of servicing, repair and m aintenance is 

included in the operating cost constructed according to M anufacturers' frequency and 

standard, and the replacement of parts such as tyres, brake and clutch linings.

(i) m arket shares

W e use the information provided by the Consumer Association in Car Buyer's 

Guide for June 1988. This variable is the firm's share of the market.

(j) B ritish made, D g

This is a dummy variable which takes the value of 1  if the car is manufactured 

in the  Great B ritain  and zero otherwise.

(k) Luxury car, Dg

This is a dummy variable which takes the value of 1  if there are more than 6  

extra features included in the standard equipment lists. The features refer to air 

conditioning, central locking, manual sunroof, electric sunroof, electric front windows, 

four electric windows, power seats, cruise control, headlamp cleaning features, electric 

mirrors, trip  computer, split/fold rear seats, pre radio kit, radio, radio/cassette, five 

speed, power steering and ABS brakes.

(1) Speciality car, Dg

This is also a dummy variable which takes the value of 1 if the rating of 

insurance group exceeds 8 . The ratings are according to the Association of British 

Insurers.

(m) interest rate, r

Treasury bill rate at June 1988 taken from Table 39, pp. 6 8 , Economic trends, 

CSO, number 423, Jan. 89, HMSO. We have also used an r close to  the m arket rate 

used by credit card companies.
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(n) Miles travelled, M

This is converted to miles from 14,000 kilometers for cars and Taxis in 1987. It 

is taken from Table 2.5, pp. 69, Transport Statistics of Great Britain, 1977—87, 

D epartm ent of Transport.

(o) Price of Petrol, P , and growth rate, f

Price per gallon of 4 star petrol includes excise duties and tax. Petrol prices 

has been growing at a slow rate  since 1980 after the second oil shock. There is also 

indication of price deflation in recent years, f is assumed to  be 10%. We have not 

taken into account the price differential of leaded and unleaded petrol which is 

negligible during the preparation of this chapter. Table 1.28, pp. 46, Transport 

Statistics of Great Britain, 1977—1987, Departm ent of Transport.

(p) Life of car, T

We have tried to  evaluate the elasticities using different planning horizons. 

One of them  is the average life tim e of a car. This is taken to be 13 by observing the 

age distribution of stock and vehicle survival ra te  for cars in all taxation classes in 

1987. W hile there are 45.5% of the cars of age between 1 0 — 1 2  years survived, only 

24.8% survived in the age group 12—14. Therefore, it is reasonable to assume tha t the 

average length of the life is around 13. Source: Table 2.25, Transport Statistics of 

Great B ritain, 1977—1987, Departm ent of Transport.

Our data consist of 399 observations which are only a subset of those reported 

in W hat Car?. This is because we have to exclude those models which do not have 

complete observations on all the variables. We have also excluded diesel engine 

models as well as some minor variations of the same model.
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A PPEN D IX  B: TIM E SERIES DATA

The data set used in Chapter 6  is described in the text. This appendix 

describes only the data  used in Chapter 7. The U.S. seasonally adjusted quarterly 

da ta  from the period 1949Q2 to 1979Q4 can be obtained from the Survey of Current 

Business and the 13 raw data  are taken from Bean (1986). I am grateful to Charles 

Bean for supplying the set of raw data. A ttem pts have been made to  transform  the 

da ta  in the same way as Bean did, so tha t some comparisons can be made with the 

estim ates obtained there. There are 138 observations in to ta l, but we will use only 

133 observations for estimation. The transformed data  are described in the data 

appendix of Bean.

The expenditure on non—durables and services plus services are calculated at 

1972 prices. To compute the services from durables which is taken to  be equal to the 

value of exponential depreciation, we have to make assumptions on the depreciation 

rate. This is assumed to be constant at 4% per quarter. The benchmark value of stock 

at the beginning of 1948 is 726.7 bn. dollars at 1972 prices. The series of consumption 

measure is divided by the population size to get the consumption expenditure per 

capita. The non—property income per capita (Y) is defined as

Y =  (Personal disposable—rent—dividends—interest rate)

X retention ratio.

The 3 m onth treasury bill ra te  (-7400) is the ra te  at the end of the quarter. 

R ate of Inflation (I) is calculated as I^ =  100x(P^/P^_^)^—100. Ex—post Real Rate of 

Interest (r) is nominal rate net of tax deflated by inflation. Standard and Poor's 

Corporation 500 index (S) is the index at end of the quarter deflated by P^. Hours 

(H) is the aggregate hours of wages and salary workers in non—agriculture 

establishm ent per capita. The Government expenditure (G) is state  and local 

spending on goods and services per capita at 1972 prices. We have also excluded 

Federal expenditures which are largely defense expenditures, and as Bean has argued
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th a t they are unlikely to  be a substitute of private consumption.
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