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Abstract  

This thesis has two distinct parts. The second and third chapters 

concern the theory and practical implementation of computing the value of the 

(possibly multivariate) distribution function from the known characteristic function. 

The remaining four chapters consist of a study of the distributional behaviour of the 

maximum likelihood estimator of some local trend models. 

The motivation of the work is the paucity of our knowledge of the 

behaviour of the maximum likelihood estimator of local trend models. These types of 

models are being increasingly used in the social sciences, but little is actually known 

about their theoretical behaviour, especially when we have only small sample sizes. 
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Chapter One 

Introduction  

Summary The idea of using local, rather than global, trend models is introduced. It 

is noted that deterministic components can result if various signal—noise ratios are 

zero. The two major sections of the thesis are summarized. The first, which consists 

of the second and third chapters, will be concerned with characteristic functions 

Chapters four, five, six and seven make up the second section and deal with the 

probabilities of estimating deterministic components. 

Key Words LOCAL TREND MODELS, SIGNAL—NOISE RATIOS, LOCAL 

LINEAR TREND MODEL, LOCAL LEVEL MODEL, CHARACTERISTIC 

FUNCTIONS. 
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(1.1) Motivation 

In the classical decomposition of non—seasonal time series data the 

observations are regarded as the sum of two components; a trend and an irregular. 

This can be written as 

Yt --I' At + Et ,  

where yt  is the observed series, kit  is interpreted as a trend, and et  is thought of as an 

additive irregular component. 

Traditionally, global trend models have been specified for A t  by 

writing, in the linear case, 

At = A + OA, 	 (1.2) 

which allows the model to be consistently estimated by ordinary least squares, under 

weak regularity on the irregular term. Unfortunately, imposing a deterministic trend 

in this way, can have highly misleading consequences since there are many series for 

which it is simply not appropriate — see Nelson and Kang(1984), Granger and 

Newbold(1974) and Harvey(1989). 

A more flexible model for the trend allows the level and slope to evolve 

over time. Such models are called local or stochastic trends. In the linear case 

would be given by, 

itt = At-1 + 	fit-1 -"V 
	 (1.3a) 

'8t = 	 13t-1 	(t' 
	 (1.3b) 
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where (ct)' (77t ) ' and ((t ) are assumed to be uncorrelated, zero mean, white noise 

processes with variances u2 , go-2 and pu2 respectively. We will call q and p 

signal—noise ratios. The practical implication of such a formulation is that forecasts 

depend more on the more recent observations. 

When q and p are both zero (1.3) collapses into equation (1.2) and we 

say that the trend has two (A andfi) deterministic components. We can deduce from 

this that (1.2) is encompassed within the more general trend model (1.3). 

A similar story can be told about the simpler process, the local level 

model, given by (1.1) and (1.4), 

= 
	 (1 .4) 

This model is a classic model in time series analysis as it provides a 

rationale for the exponentially weighted moving average forecasting scheme (c.f. 

Muth(1960)). When q is zero this model collapses to a constant observed with 

irregular error. Hence, the model given in equations (1.1) and (1.4) has a 

deterministic component if q is zero. 

Little has been written about the possibility that deterministic 

components are estimated in these types of models. Recently, Newbold(1988) has 

drawn attention to this problem. Harvey(1989, chapter 4) has attempted to link up 

this possibility, in the local level model, with that of estimating noninvertible moving 

average process of order one. 

The report given in this thesis is the first full scale analysis of this 

problem. 
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(1.2) The Structure of the Thesis 

This work has two major sections. The first, which comprises chapters 

two and three, is concerned with developing algorithms for computing the (possibly 

multivariate) distribution function from the characteristic function. The second, 

made up of chapters four, five , six and seven, looks at the probability of estimating 

deterministic components in various local trend models. 

Chapter two provides a unified framework for the theoretical study of 

inverting known characteristic functions to compute distribution functions. This 

provides a comparatively easy proof of Gil—Pelaez's(1951) and Gurland's(1948) 

univariate result. Furthermore, it will give a basis of a simple derivation of a 

rigorously justified multivariate inversion formula. 

The third chapter investigates, in detail, the numerical implementation 

of the theories discussed in chapter two. An algorithm for a positive variable is 

given, paying particular attention to a square root problem which frequently arises 

when dealing with Fredholm determinants. Davies'(1973) algorithm for an 

unconstrained, univariate random variable is developed in a rigorous fashion. Then a 

bivariate inversion is given, which is a generalization of a result first suggested by 

Shively(1986). Finally, a multivariate inversion is derived. 

The second section of this thesis starts, in chapter four, with a 

literature review which brings out the connection between the published results on 

estimated noninvertible moving averages and the local trend models we analyze here. 

This chapter also presents a valid Edgeworth expansion for the maximum likelihood 

estimator of q in the local level model, allowing us to understand the process which 

occurs as we approach a breakdown in the central limit theorem. 

The fifth chapter is the pivotal piece of the work of this thesis. It 

analyses the possibility of estimating a deterministic component in the local level 
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model. It is shown that this probability is highly sensitive to the way we initialize 

the nonstationary state, pt . 

Explanatory variables are introduced into the measurement equation, 

(1.1), of the local level model in the penultimate chapter. The analysis, which is 

similar to that given by Sargan and Bhargava(1983b), centres around the use of time 

trends as explanatory variables. It is shown that the introduction of these types of 

variables will have a dramatic effect on the possibility of estimating a deterministic 

component if the regression coefficients are viewed as fixed. On the other hand, if 

they are deterministic, in the sense of Wold, their effect will be mild. 

In the final chapter a local linear trend model is analyzed. This is of 

particular interest to us, as the occurrence of two deterministic components is 

equivalent to estimating two unit roots in a moving average process of order two 

which is a theoretical problem which has previously escaped solution. 



Chapter Two  

From Characteristic Function to Distribution Function:— 
The Theory  

Summary  A unified framework is established for the study of the computation of the 

distribution function from the characteristic function. A new approach to the proof 

of Gurland's and Gil—Pelaez's univariate inversion theorem is suggested. A 

multivariate inversion theorem is then derived using this technique. 

Key Words  CHARACTERISTIC FUNCTIONS, INVERSION THEOREMS. 

16 
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(2.1) Introduction.  

It is often easier to manipulate characteristic functions than 

distribution functions. If the characteristic function is known then we can compute 

the distribution function by using an inversion theorem. This chapter reviews the 

theoretical basis of inverting characteristic functions, presenting the work within a 

unified framework based on the well known results of Fourier analysis. Only 

Theorem 2.5 (and hence Theorem 2.7) of this work is a new result. The proof of 

Theorem 2.3, however, (and hence Theorem 2.4) is substantially different from the 

one given in the literature. 

Inverting the characteristic function to find the distribution function 

has a long history, c.f. Lukacs(1970, chapter 2). Levy's(1925) result is the most 

famous of these theorems, although in this context its practical use is limited to some 

special cases unless the random variable of interest is always strictly positive (see 

Bohmann (1970, pg 238) and Knott(1974, pg 431)). Gurland's(1948) paper gave a 

more useful inversion theorem, but it is the paper of Gil—Pelaez(1951) which has 

provided the basis of most of the distributional work completed in this field (c.f. 

Davies(1973, 1980) and Imhof(1961)). Gurland's and Gil—Pelaez's results are almost 

identical. Gurland's is based on the principal value of a Lebesgue integral, while 

Gil—Pelaez removes the need for principal values by using a Riemann integral. 

Recently Shively(1986) has generalized Gil—Pelaez's work on Riemann 

integrals to provide a bivariate inversion theorem, while Shively(1988) used this 

expression to tabulate critical values of a statistic proposed by Watson and 

Engle(1985) for testing the stability of the parameters in a regression model. Only 

Gurland(1948) has attempted to provide a multivariate inversion theorem. Our 

results are slightly different from those obtained by Gurland. In this chapter we 

develop a framework for the analysis of univariate inversion theorems which offers an 
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easy multivariate generalization. The result, which is given in Theorem 2.5, is an 

expression which involves terms which are straightforward to compute. The advent 

of the wide availability of powerful computers will mean that such multivariate 

inversions will join univariate inversions, (c.f. Farebrother(1980, 1981) and 

Davies(1980)), in being a tool which theoretical statisticians can employ routinely 

when tackling difficult distributional problems. 

(2.2) The Univariate Inversion Theorem.  

Bohmann(1961) provided an elegant and unified framework for the 

study of inversion theorems based on the results of Fourier analysis. His work, which 

relies on the properties of convolutions, is in keeping with the discussion of 

characteristic functions given by Feller(1971, chapter XV). Although the subject 

matter of this chapter is rather different from that considered by Bohmann, our work 

will remain firmly within the framework he suggested. 

To establish our notation we introduce some definitions. Let F denote 

the distribution function of interest. Suppose its corresponding density, f, is 

integrable in the Lebesgue sense (written f e L) and that its characteristic function is 

defined as 

co 
so(t) = 	ehx  f(x) dx. 	 (2.1) 

We suppose that so is known and we wish to compute F directly from it. The basic 

result we will use to perform this calculation is the Fourier inversion theorem. 
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Theorem 2.1 (Fo-urier inversion theorem)  Suppose g, çü E L, and 

(p(t) = 

g(x) = —1 

-OD 

e x g(x) dx, then 

e—itx yo(t) dt, everywhere. 

(2.2) 

(2.3) 
2 'r 	—00 

Proof.  C.f. Hewitt and Stromberg(1965, pg 409). 

The other result which will be central to our development concerns convolutions and 

is given below. 

Theorem 2.2  If g, h E L, 

OD 

g*h(x) = f g(x—y)h(y) dy, 
--co 

(2.4) 

and g and h have Fourier transforms 0 and then the Fourier transform of g*h(x) is 

6(0 = 0(0 7p(t). 	 (2.5) 

Proof. C.f. Hewitt and Stromberg(1965) theorem (21.31) and theorem (21.41). 

g * h is called the convolution of g and h. These two results will be 

nearly sufficient to enable us to develop all the results we want in this chapter. A 

simple application of the Fourier inversion theorem gives us the following well known 

result. 
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Corollary 2.1  If f, ço e L, then 

f(x) = L 	 e—itx cow dt. 
2r JW 

(2.6) 

Proof.  This follows trivially from theorem 2.1. 

Equally, following, for example, Feller, we can convolute F with the 

uniform distribution on [—h,h] and then use corollary 2.1 to produce Levy's important 

theorem. 

Corollary 2.2 (Levy(1925))  If f, E L, then 

F(x+h)—F(x—h)  _ 1 f m  sin ht —itx 
2h 	 e 	cp(t) dt. 

2r —co 

Proof.  By corollary 2.1, as left hand side is a density function. 

This corollary has been of use to statisticians working in many fields, as 

it allows the derivation of an algorithm for the calculation of the distribution function 

from the characteristic function when the random variable of interest is strictly 

positive, c.f. Bohmann(1970, pg 238) and independently Knott(1974, pg 431). 

However, as Gil—Pelaez(1951) noted, when It is not positive this expression cannot be 

used for this purpose. As a result many writers have abandoned the idea of using 

convolutions. Gil—Pelaez employed the notion of a Riemann integral (see the proof in 

Kendall, Stuart and Ord(1987, pg 120-21)), while Gurland used a similar idea, but 

his proof involved the manipulation of principal values of Lebesgue integrals. 

Theorem 2.3 shows that under weak regularity (which will be relaxed to some extent 

(2.7) 
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in theorem 2.4) this diversion was unnecessary and so allows us to get away from a 

type of derivation which "...detracts from the logical structure of the 

theory."(Feller(1971, pg 511)). 

Theorem 2.3  If f, co E L, then under the assumption of the existence of a mean for 

the random variable of interest 

F(x) = —2— 	t 	it 
1 	1 I A [w(t)e—itl dt 

where n(t) = n(t) + 7(—t). 

Proof.  The function h(y) = sign(y), y e [—h,h], has the transform 

geh(t) = 	eitYsign(y) dy  2(sin ht —1)  
—h 	 it 

which is bounded for all t. 

The convolution, written uh(x), of h(y) with the continuous density 

f(x) is 2F(x) — F(x+h) — F(x—h) which although bounded, is not integrable as h-+w. 

The convolution has the transform 2co(t)(sin ht —1)/it, which is bounded by the 

existence of a mean and is integrable as co c L. Hence, for fixed h we can use the 

inversion theorem to give the equality 

—2.1m (sin ht 1) [(p
(t)e—ixt 

dt 
2ir 	 it 

co 

(2.8) 

(2.9) 
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icp(t)e—ixt  2 = 2-7-rf (sin ht —1)   ]dt — 
t I_ 	it 

(2.10) 

When h-'w the left hand side of the (2.10) can be manipulated, using the 

Riemann—Lebesgue theorem (c.f. Feller(1971), pg 513) and so reduces to 

—2 i coNe—itx] 	 dt = 2F(x) —1 
27r 	c) 	it 

o. 

The requirement that go e L can be removed by using an additional 

convolution to improve the behaviour of the tails of the integrand. In the next 

theorem we do this by employing Fejer's kernel (there are, of course, many other 

kernels we could have used, eg. Abel's or Gauss's). 

Theorem 2.4  If f EL, then under the assumption of the existence of a mean 

1 	1 urn 	r 	tiAr 
F(x) = -2--  - 	f [1- n t C9(t)e—itx]  dt. 

t 
(2.11) 

Proof.  Given in the appendix. 
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(2.3) The Multivariate Inversion Theorem.  

Suppose we now become interested in the multivariate generalizations 

of the above theorems. We suppose f e LP and that 

co(t) 	1
.

... 	
co 

eit'x f(x) dx 
-CO 	-0) 

(2.12) 

where x.(xp Xp and t=(t...,tp ) 1  where p is some positive integer. It is well 

known that the Fourier inversion theorem and convolution theory go through to the 

multivariate case, so allowing us trivial proofs of the following well known corollaries. 

Corollary 2.3 (c.f. Cramer(1946, eqn. 10.6.3))  If f, co c LP, then 

f(x) =  1 f
m

(t) 
d
t. 

(27r)P —co 
(2. 13) 

Proof.  The proof follows using a generalization of the proof of corollary 2.1. 

Corollary 2.4 (c.f. Cramer(1946, eqn. 10.6.2))  If f, w c LP, and we define an 

interval R by the inequalities x i—h<Xj<xj+h for j=1,...,p, then 

Pr(R)  =  1  f°  f w 	rsin h.tj1 e—it'xyo(t) dt. 
( 2h )P 	(2/1-)P —co —  —co j=11.  h.t 

(2.14) 

Proof.  The proof follows using a generalization of the proof of corollary 2.2. 
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Little has been written about the theory of computing the distribution 

function by inverting multivariate characteristic functions. Gurland(1948) extended 

his univariate procedure to p dimensions using the notion of a principal value of a 

Lebesgue integral. His result is slightly different from the result we present here. 

Further, his proof is much more complicated than the one given here. Recently 

Shively(1986, 1988) has extended Gil—Pelaez's(1951) result to two variables in order 

to calculate some critical values of a test statistic which arises in econometrics. He 

used Riemann integrals in his derivation and so his proof does not conform with 

modern work on integrals, as well as being rather obscure. 

As we have seen in section two there is no need to use these techniques. 

The advantage of using a convolution approach is that the multivariate 

generalisations now follow using standard results. 

Theorem 2.5  If f, cp e LP, then under the assumption of the existence of a mean, the 

following equality holds 

co 
I pA 	A [co(t)e—ixit  - 

(2 7 )P 	0  —• 0  t 1  t •" t 	it 1  it2.. ' itp 2 	p  
dt = u+ (x) 	 (2.15) 

where u+ (x) = 2PF(x1 ,...,xp) — 2P-1  [F(x2 ,x3 ,...,xp)+...+F(x 1 ,...,xp_2 ,xp_1 )] 

+ 2P-2  [F(x3 ,x4 ,...,xp)-F...+F(x i ,...,xp_3 ,xp_2)] +...+ (-1)P. 
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Proof.  Define 

=1-1 sign(y) , where yi E[—h,h] 	 (2.16) 
j= 1 

so it has the transform 

coh(t) 	2(sifl t.h. —1) 
J J 	• 

i= 1 	• t 
(2.17) 

Consider the convolution of the density function, f, with h(y i ,...,yp ), which we will 

write as uh 

h 	h 

uh(x) = Jr _h—  . _h  f(x1—Y1 ,x2—y2 , ••• ,xp—yp) h(Y) dY ,  

Aha1'ha2'''•'hap 

(2.18) 

(2.19) 

 

where the summation is taken over all the values(a •=±1), with 
J 

A (-1)b 1 + ••" +bp 
bb 2 ' • . "bp 

(2.20) 

where the summation is taken over the binary numbers (13..0,1) and F denotes a 

generic distribution function. By the (multivariate) Fourier inversion theorem, 
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2P 	w jmw co(t)e-ix't II)  [sin 	i  -41 dt  
(2 1)P JP — 	5=1 it. 

 

(sin t j  .h. -1) dt = uh  (x). 

 

(2.21) 

Allowing h-ko the left hand side can be simplified by exploiting the 

Riemann-Lebesgue theorem. The result is that we have 

w irm 
(-2)P  I 	A A A co(t)e-ixit  

(27)P 	• • " 	t 	t 	t p  it it 	it 	dt = u+ (x)o. 
J0 ...0 	 1 2—  p 

(2.22) 

Theorem 2.6  Under the existence of a mean the following equality holds. 

A A 
t 1 * - • t p 

yo(t)e-ix1t  
it 1 it 2" • itp 

go 	ix  2p-1 -1 A A 	(t)e it  
= 2 	.p 	1, if p 	is odd t 2 "' t pim 	t 1  t 2. . . tp 

  

2p-1 .p A A Re = 2 	1 t 	t p 
 t 1 t2" ' 	tp

1' if p is even. 
w(t)e-ixit  

(2.23) 

Proof.  Trivial. 



2 2  	w wA A [g°(t)e—ixit  f(27)2 0 0 tit2  
it 1 it 2 

—2 3 	
rcof 

A 	A (P(t)e-ixit  

(27)3 	t i  t 2  t 3  it i  it2  it 
o 	o 

dt l dt 2 dt 3 

corm co 
2 7 	

i  i 
A A 	co(t)e-ixIt 

	1 t  dt i  dt2  dt 3 
 P 

Im 
(27°3 0 0 o t 2 t  3 	t 1 t 2 
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Examples p=2  

dt l dt2 

2  5 	 co(t)e—ixit  
9 

(271)- f 
t 2  Re 	t2  dt 1 dt 2 

Jo o 

	

= 4F(x1 ,x2 ) — 2[F(x 1 ) + F(x2 ) ] + 1 	 (2.24) 

P=3  

= 8F(x1 ,x2 ,x3 ) — 4[F(x1 ,x2 )+F(x1 ,x3 )+F(x2 ,x3 )] 

+ 2[F(x1 )+F(x2 ) +F(x3 ) ] — 1 	 (2.25) 



co(t)e—ix't 1 
i t it it it 	dt 1 dt 2 dt 3 dt4 1 2 3 4 
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p=4  

0:1001C010) 

2 4  A—A A A 
(27) 4  fo o o o t l t 2 t 3 t 4 

CO/ COTOJ f 	
Re 

03 

9 	 A A A .  2  

t 2 t  3 t  4 (27) 4  To o o o 

yo(t)e—ixi t  

t
l 

t 2 t 3 t4 
dt 1  dt

2 
dt

3 
dt4 

..- 16F(x1 ,x2 ,x3 ,x4 ) — 8[F(x1 ,x2 ,x3 ) + F(x1 ,x2 ,x4) + F(x1 ,x3 ,x4 ) + F(x2 ,x3 ,x4 )] 

+ 4[F(x1 ,x2) + F(x1 ,x3 ) + F(x1 ,x4) + F(x2 ,x3 ) + F(x2 ,x4) + F(x3 ,x4 )] 

— 2[F(x1 ) + F(x2 ) + F(x3 ) + F(x4 )] + 1 	 (2.26) 

The assumption of the integrability of co can be removed by following 

the approach given in the proof of theorem 2.4. This yields a straightforward, 

although rather ugly, proof of theorem 2.7. 
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Theorem 2.7  If f c LP, then under the assumption of the existence of a mean, the 

following equality holds 

(-2)P  1 ira 	 t A A 	A [1. 	 1.. 	ni t t 2—  t p (27r)P 	 j=1 

- 
cp(t)e—ixit  
it 1 it 2'• .it p_ 

 

dt = u+ (x) 

 

where u+ (x) = 2PF(x1 ,... 7xp) — 2P-1  [F(x2 ,x3 ,...,xp)+...+F(x1 ,...,xp_2 ,xp_1 )] 

21:12  [F(X3 ,X4,• • • ,Xp )+ • • • + F(X1 • • • 	x 	)] +.. .+ (-1) P . 
(2.27) 
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Mathematical Appendix.  

Proof of Theorem 2.4  Recall the proof of theorem 2.3. To improve the behaviour 

of the tails of uh (x) we convolute it with Fejer's kernel 

kri(x)  = 2r- 11. sijillrilE2) 	1 2  

It is important to note that 

(1) 	
1 	

—co 
k (x) dx = I, 

27r 	n  
(ii) the transform of Fejer's kernel is 

(A2.1) 

(A2.2) 

gon(t) = 	[ 1 	41.  - I( I t I <n) 	 (A2.3) 

where I(.) is an indicator function. 

For fixed n the convolution of uh(x) with kn(x) ' and its transform, are 

integrable, as co(t) is bounded. Hence we can use the inversion theorem to give the 

equality 

2 j' w  [1 — ill] I( I t <n)(sin ht 1) r 40(t)e—  
L 	dt 

27r —co 	 it 

2 = 	[ 2-Trifow  1 — L_HI(t<n)(sin ht —I) A [C4t)e—ixt 
 dt 

t 	it 

= uh  * kn(x). 	 (A2.4) 
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When h-Ico the left hand side of the (A2.4) can be manipulated using the 

Riemann—Lebesgue theorem (c.f. Feller(1971), pg 513) because for fixed n 

[1—lii]I(t<n) 	r(p(t)e—ixti 
t L it 

(A2.5) 

is integrable, as At  (co(t)e)/it is bounded due to the assumption of the existence 

of a mean for the density f(x). Hence the left hand side of (A2.4) reduces to 

--2 f [1—  t I(t<n) A rP
(+
"

)
I`

—ixt 
 dt. 

2r o 	n 	t 	it 

Now think of the right hand side of (A2.4) as h-403. Remember it is 

J w 
[2F(x—y)—F(x—y—h)—F(x—y+h)] k(y) dy 

(A2.6) 

(A2.7) 

so using the boundedness of 2F(x—y)—F(x—y—h)—F(x—y+h) and the integrability of 

k(y) we can employ the Lebesgue dominated convergence theorem (see Hewitt and 

Stromberg(1965, section 12.34)) to imply 

1 im uh  * kn(x) = u+  * kn(x) 
co 

(A2.8) 

where u+ (x) = 2F(x)-1. Thus, 

—2f 	 co(t)e—ixt] — 	 n  2r 	[1 — t]I(t<n) A [ 	 dt = u+  * k(x). 
o 	 t 	it 

(A2.9) 
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We now become interested in the behaviour of this equality as n-403. 

Proposition 2.1 deals with the right hand side. This is a well known theory (cf. 

Hewitt and Stromberg(1965, section 21.42)) although we are using slightly different 

assumptions from those usually employed and so we include its proof in this 

appendix. Hence 

n - 2 	i 	[1—t urn 
n--)co 

f 
 0 

 

A  pp(t)e—ixti  dt = 2F(x) — 1 o. 
t I_ 	it 
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Proposition 2.1  

Proof.  u+ *kn(x) — u+ (x) 

m  u+  * kn(x) = u+(x) n-} 

= 	(u+(x—t) — u+ (x))kn(t) dt 
JR 

= 	fi(t)kn (t) dt 	 (A2.10) 

where 13(t)=u+(x+t)+u+ (x—t)-2u+(t), which is bounded but not integrable. 

Choose E 1 >0, then using the continuity of the distribution function we can choose 

e>0 so small  that 1)3(01 <E l  Vte[0,6). So write k(t) = 4/(1+t 2 ) and note that 

kn(t)<nu(nt), then 

JR kn(t)fi(t) dt Jo kn(t),6(t) dt JE 
 

k(t)0(t) dt 

E1  suPt  I 40 I JE  n k(nt) dt 

< e1  + 4 sup I fi(t) I -  En t 
(A2.11) 

so for n>4sup IOW I /Ee l  we have the required result by choosing e l  sufficiently 

small 



Chapter Three  

From Characteristic Function to Distribution Function:— 
The Algorithms  

Summary Algorithms for the implementation of the theorems discussed in chapter 

two are derived in detail. Attention is concentrated on the errors induced by the use 

of numerical integration rules. Algorithms for inverting characteristic functions are 

outlined for the following :— (i) a positive random variable, (ii) an unconstrained 

variable, (iii) a quadratic form in normal variables, (iv) two unconstrained variables, 

(v) two quadratic forms in normal variables, (vi) p unconstrained variables, and 

(vii) p quadratic forms in normal variables. 

Key Words.  CHARACTERISTIC FUNCTIONS, INVERSION THEOREMS, 

FREDHOLM DETERMINANTS, DAVIES' ALGORITHM, RIEMANN SUMS, 

TRAPEZOIDAL RULES, IMHOF PROCEDURE, SERIAL CORRELATION 

COEFFICIENTS, EIGENVALUE—FREE. 
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(3.1) Introduction 

In chapter two we reviewed the theory of inverting characteristic 

functions to compute the distribution function. Typically this inversion will be 

carried out numerically, resulting in the employment of some numerical integration 

routine. 

In this chapter we see how various writers have attempted to 

implement the theories discussed above. Efficient algorithms have employed the 

structure of particular problems of interest and so we will have to describe a variety 

of techniques here. In section (3.2) we look at the case where the variables are 

strictly positive, using the work of Bohmann and Knott. Section (3.3) looks at the 

most important of the inversion algorithm, that of Davies, which will be presented in 

general. In sections (3.4) and (3.5) we see how this algorithm is changed when we 

work with a variable which is a quadratic form in normal variables. 

A bivariate inversion formula will then be discussed at length in section 

(3.6). This development will then be used in section (3.7) where we discuss two 

quadratic forms in normal variables. Two examples of the use of the bivariate 

inversion will also be given in this section to illustrate the feasibility of the method. 

Finally, in section (3.8) we will generalize Davies' algorithm to cope with p variables. 

(3.2) A Positive Random Variable 

If a random variable is strictly positive then we can employ 

Levy's(1925) theory to invert the characteristic function. An algorithm for 

performing this inversion has been developed, independently, by Bohmann(1970) and 

Knott(1974) who used Fourier analysis to show the following result held. 
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Theorem 3.1  If F(0) = 0, co, f e L, then 

co 
h 	2 	sin hIc7r./ 0)   5_ + 	 Re( (p(kri  0))  < F  ft) 	— F(0)) F(h) - 0 	Tr  

k=1 
(3.1) 

where Re(.) denotes the real part of a complex function. 

Proof.  Given in Bohmann(1970). 

To implement this algorithm we need to produce a decision rule for the 

choice of 0 and a cutoff point in the infinite sum after M terms. Knott(1974) did not 

offer a general procedure for achieving this, although his discussion on page 433 is 

useful in this context. We can produce an automatic criteria for the selection of 0 

and suggest a sensible way of choosing M. If the moment generating function of the 

random variable, written X, exists ( if yo is analytic then it will exist, c.f. 

Lukacs(1970, pg 196)) and is written Mx(t), then for small u>0 we have (c.f. 

Feller(1966, pg 525) and Davies(1973)) 

E [I(X>x) — exp(u(X—x))] = 1 — F(x) — Mx(u)exp(—ux) 0 

(3.2) 

where I(.) is an indicator function. Hence, 

1 — F(x) Mx(u)exp(—ux). 	 (3.3) 

Write OM = log Mx(u) and choose x = (u) = d(u)/du, then we have that 
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1 —F( b' (u)) .< Mx(u).exp (—u ?Pi (u)) = exp(—u co' (u) + (p(u)) 

(3.4) 

and so we can find u such that 1— F(7P' (u) )<e, where e has to be selected. 

It seems difficult to control the error induced by truncating the sum 

after M terms, unless we know more about the analytic structure of the characteristic 

function of interest. However, we can introduce sensible decision rules so that it is 

unlikely that we will make a large mistake. If the characteristic function is expensive 

to compute then it is worthwhile spending considerable efforts in studying the 

evolution of the sum as M increases in order to deduce a sensible stopping point. 

However, usually (p(t) is quite cheap to evaluate, in which case a semi—automatic 

criterion could be used, eg. stop after N occurrences of the terms in the sum being less 

than in absolute value. Typically we might take N to be 20 and 7) as 1.0x10-8 . 

Finally, before we leave this section, we must introduce a problem 

which is sometimes encountered when computing the real part of a characteristic 

function. Frequently, analytic characteristic functions, such as those derived from 

Fredholm determinants (see chapter six of this thesis), involve the square root of a 

complex number. For example, the characteristic function of the large sample 

Cramer—von Mises statistic (c.f. Anderson and Darling(1952)) is 

Anit  
Ca(t)  = I sin AT' (3.5) 

This square root is not ,immediately defined. To see this write a complex number z as 

a + b.i, where i -,-- \F-T, then we can reexpress z as 
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so 

z = 

= 

r{cos 0 + i.sin 0}, 	 where r = .42  + b2 	(3.6) 

and 0 = arc cos a/r, where 0 e 

[ cos{0/2 + kr} + i.sin{0/2 + kr}], where k = 0, 1. 

iv), 

(3. 7) 

Hence fi has two distinct values. Anderson and Darling(1952) 

overcame the problem of the non—uniqueness of the square root in (3.5) by taking it 

to be real and positive when the characteristic function is real and positive. 

Recently, Perron(1989) has proposed an algorithm for the correct selection of k. Our 

alternative to this, which was developed independently from Perron's, is similar to 

this technique. 

Computers will choose k such that the real part of Vi is non—negative, 

which means the resulting imaginary part may be positive or negative. This 

automatic choice of k will sometimes give us the wrong root because the real part of 

the characteristic function can be negative. We will need to use the properties of the 

characteristic function to ensure that the correct k, and hence the sign of the real 

part, is selected. This means that in practice we will have to alter the sign of the 

computed function for some values of t. Although we can suggest an algorithm for 

achieving this sign change, we will see latter that it will not guarantee that the sign 

will be allocated correctly. 

The algorithm we suggest is motivated by two properties of 

characteristic functions. Firstly, characteristic functions are continuous (c.f. 

Grimmett and Stirzaker(1982, pg 101)), which of course means we must choose k so 

that both the real and imaginary parts of co do not exhibit discontinuous jumps. 

Secondly, 	- characteristic functions are always unity at the origin. 
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Suppose we write 	. 

at the value
'  . where t o E 0 < t 1 < 

ti 
can use the following check for j = 1,. 

as the value of. returned by 
W(ti )  

.< tm . Then, by noting kt o) = 

..,M to change the sign of 

the computer 

cp(to) = 1, we 

If we write 

co = 0 and so = 1 ' then if 

then put 

and 

+ m{(t. 	< 	 }I, 

çj 
kt))}  J-1 	 3 

= 1, ..., m), 

5 = 1 '  if c.J-1 = 0, 

= 0 if c -1  . = 1 ' 	3 	' 

if c.j  = 1. 

(3.8) 

(3.9a) 

(3.9b) 

(3.9c) 

Otherwise we let s. = s. j )-1' Then we write 

 

At.) = 
) j 

 

(3.10) 

(3.8) will be satisfied if there is a sign change in the imaginary 

component of the characteristic function. 

There are three possibilities of serious errors using this technique. The 

first, and the most important, is that the characteristic function is moving so fast 

that there are sign changes which we miss completely. This should not happen unless 

we choose the value of 0 to be very small. In any case, if there is an error it will 

occur when k is small (as yo(t) moves quickest when t is small), so it is sensible to 

inspect a printout of the first few terms of the series. If it looks like there may be 

problems 0 should be increased (this means the procedure will be slightly more 
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expensive). 

The second possible error is easily avoidable by using a numerical check 

on the value of the imaginary part when inequality (3.8) is satisfied. This check is 

necessary because the imaginary part of (p t. changes sign when it passes through 

zero, as well as when it makes discontinuous jumps (which is when we want to change 

the sign). When it is progressing through zero we should ignore the (3.8) and so not 

change si  or 5 . 

The final possible error is connected to the one just discussed above. If 

the real and imaginary parts of w(t) are both close to zero then it is quite conceivable 

that there will be a discontinuous jump in the imaginary part which i S difficult to 

distinguish from a continuous movement through zero. Careful numerical checks will 

be required to ensure that an error is not induced because of this problem. However, 

in practice this type of error should not be common. 

(3.3) A Real Univariate Random Variable  

Suppose the conditions for theorem 2.3 hold, then we can use 

equation (2.8) 

F(x) = i — 1 c°  '6' H t ) e—  1 T? 	t 	it 1  dt. 
0 

Following Davies(1973) we will exploit the work of Bohmann(1961) to 

rewrite (2.8) to give us an expression which can be used to numerically invert 

characteristic functions. Our proof, however, is somewhat different to that used by 

Davies(1973). 
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Theorem 3.2 (Davies(1973, equation 6))  If co, f e L, and the mean exists and 

Pr(X<x) = Pr(X<x—t) — Pr(X>x+t), then 
x,t 

03 

F(X) 	cos 2/1-zj [x (527rj Pr(X<x)] 
, A 

j=1 

co 
1  

— 1,in 
ko(Az)exp[—ixAz] 1 	1 7 A im  rco(A(z+v))exp [ —ixA(z+v)i 

] =2 Ti l [ 	 j Ti L, z L z  v=1 	 (z+v) 

(3.11) 

where Im(.) denotes the imaginary part of a complex function. 

Proof.  Given in the appendix. 
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Coronary 3.1(Trapezoidal Rule)  If co, f E L and the mean exists and 

5 Pr(X<x) = Pr(X<x—t) — Pr(X>x+t) then, 
x,t 

co 
F(x) + 	[ 52i  Pr(X<x)] 

7  A 

co 
1 	1 1 i m 	

[ L 
r(p(Av)exp[—ixAv]

j 	
2 v 1  kg( Av)exp [—ixAvi]  . 

=2 — 2Tr v-io 	 2-7r I, in  v 	 v v=1 
(3.12) 

Proof.  Put z=0 in theorem 3.2. 

The integrating error which results from using a trapezoidal rule is 
m 

given by 	[22  rj  Pr(X<x)] , which is rather difficult to manipulate. Hence, the 
j=1 

trapezoidal rule has not been used for this type of inversion. An alternative form of 

the inversion is given below. 

j=1 
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Corollary 3.2(Riemann Sum)  If go, f e L and the mean exists and 

Pr(X<x) Pr(X<x—t) — Pr(X>x+t) then, 
x,t 

Go 
F(x) + 	(-1)j [2, 2 6,7rj  Pr(X .<x)1 

j=1 

co 
21 	im [co(64v+1/2))ex1) [ ixA(v+1/2)1  ]. 

v=0 	 (v+1/2) 
(3.13) 

Proof.  Put z.1/2 in theorem 3.2. 

The Riemann sum is the most popular of the integration rules as it 

leads to a simple numerical integration error. The absolute value of the error is less 

than, 

I (5.2„;  prpc<,0 ] Lx, 
j=1 

max[F(x — 	1_ F (x akr)] . 	 (3.14) 

Equation (3.4) showed us that 1—F(x) can be bounded, but using the 

same type of argument we can see that we can also bound F(x) as 

F(,b' (u)) Mx(—u)exp(wV(u)) 

= exp(7,4—u) + u7P'(u)) 	 (3.15) 
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Therefore, by appropriate choice of A, we can bound this induced error by any small 

positive real e. 

(3.4) Quadratic Form in Normal Variables:— Eigenvalue Based Algorithms  

Consider the problem of finding the distribution function of 

Y = U'AU 	 (3.16) 

where A is some Tx T matrix and U N N(A, E). This problem has been addressed by 

many writers in the last 50 years in connection with, for instance, the 

Durbin—Watson statistic. 

If A is non—negative, then a comparatively cheap algorithm is given by 

Sheil and O'Muircheartaigh(1977), which has been improved upon by 

Farebrother(1984a). If p. is a vector of zeros and T is small (less than 70) then 

Pan's(1964) procedure, highlighted by Durbin and Watson(1971), is usually thought 

to be efficient, and is programmed in Pascal by Farebrother(1980, 1981) and in 

FORTRAN by White(1978). An alternative, but very specialized algorithm) has 

been suggested by Sargan and Bhargava(1983a, appendix A). 

A more flexible algorithm has been given by Imhof(1961), which was 

programmed in FORTRAN by Koerts and Abrahamse(1968). Farebrother(1984c) 

showed that this subroutine had been improved upon by Davies'(1973) algorithm 

which has been programmed in Algol by Davies(1980). Imhof's(1961) contribution 

can now be introduced. He gave a simple expression for Im[Ca(Av)expf—ixAvi 1. 

This allowed the procedure to be carried out in real, rather than complex, arithmetic. 
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Although Imhof's arguments are well known we go through them here since we will 

use them in the multivariate case later. For simplicity of exposition, we will assume 

is a vector of zeros and E = I. 

Recalling the characteristic function of Y is (c.f. Kendall, Stuart and 

Ord(1987, pg 489)) 

lco(t) = II (1 — 2itA — / 2  = I I — 2itA I —1 /2 , 
j=1 	

i) (3.17 ) 

where (Ai) are the eigenvalues of the matrix A and using the following results 

Im(z) = sin{arg(z)}. I z I , 	 (3.18a) 

I wz1 	jw1.1zI, 	 (3.18b) 

arg(wz) = arg(w) + arg(z), 	 (3.18c) 

arg((1 — 2itAi)-1 /2) = arctan 2tA 

leitx 1  = 1, 	 (3.18g) 

(3.18d) 

arg(eitx) = tx, 	 (3.18e) 

1(1 — 2itAj ) 1 / 2 1 = (1 + 4t 2) 2.) 
J 	

(3.180 

we have the following corollary: 
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Corollary 3.3 (The Trnhof  Procedure)  If 8 Pr(X<x) = Pr(X<x—t) — Pr(X>x+t), 
x,t 

then 

F(x) 	(-1).1  [x6:2 A7rj  Pr(X<x)] 

1 	1 = 	t" 	sin c(A(v+ 1 /2)) 7(A(v+1/2))  — — 2,  
v=0 	(v+1/2) 

(3.19) 

w 	 there e(t) = 	arctan 2tA. x 
j= 1  

and 	'y(t) = II (1 + 4t 2) 2. 1-1 / 4
• j=1 	J)  

(3.20) 

(3.20) 

Truncating the infinite sum after M terms implies the introduction of the error, 

1 	sin e(A(v+1/2)) -0(v+1/2))  
Tr 2, 

v=m+1 	(v+1/2) 
(3.21) 

  

Davies(1980) gave a useful upper bound on this error which allows M to be chosen so 

that the error is less than some arbitrarily small number i. We will not reproduce 

them here as they turn out not to be useful in our later discussion. 

j= 1- 
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(3.5) A Quadratic Form in Normal Variables:— Eigenvalue—Free Algorithms  

Frequently the eigenvalues of A are unknown, which means that they 

have to be computed numerically if (3.20) is to be used to compute the distribution 

function. It is known (c.f. Golub and van Loan(1983) and Press et al(1986, chapter 

11)) that eigenvalue routines require, in general, 0(T 3 ) operations for their 

completion, which means that the inversion procedure becomes expensive when T is 

large. In the last decade there has been considerable interest in developing 

eigenvalue—free inversion algorithms which, it is hoped, will be less expensive when T 

is large. This section describes some of this work. 

Evans and Savin(1984) used a difference equation. Another 0(T) 

algorithm has been recently suggested by Shively, Ansley and Kohn(1988) who 

employed an extended Kalman filter. This approach is of more interest and so we 

discuss it here in a little detail. 

Suppose we again think of the matrix 

I — 2it(B — dl) = noI + n/B 	 (3.22) 

where no = 1 + 2it.d and is1 = —2it. Suppose for a moment that instead of n o and lc1 
being complex they were both positive and real. Then we could view noI + niB as 

the covariance matrix of (Y1,... 'VT)'  where Yt  is the stochastic process given below, 

in state space form. 

Yt  = (1 0) at  + et , 

ro 11 
at = [0 1 at-1 + Rot , and a_.= , 

0 

(3.23a) 

(3.23b) 
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with Rt = [ 	for t=1,...,T-1 and RT  = [1, and where (e t ) and (74) are Gaussian 
—1 	 0 

white noise processes with variances n o  and xi  respectively. Then, the product of the 

one step ahead prediction error variances, which are given by the Kalman filter, 

would give the required determinant. Of course no  and ni  are neither real, or in 

general, positive, but we could use an analytic continuation theorem to show that we 

can still formally proceed with the Kalman filter to calculate the determinant. 

(There is a problem with the square root of a complex number, but we shall not be 

concerned with that here; see Shively et al appendix B). 

The Shively et al procedure will also cope with the introduction of 

explanatory variables into the covariance matrix, by using the modified Kalman filter 

of Ansley and Kohn(1985), and Kohn and Ansley(1986). 

Two other sets of authors have also proposed eigenvalue—free methods 

for evaluating the characteristic function of this type. Palm and Sneek(1984) and 

Farebrother(1985) have studied the use of algorithms which produce tridiagonal 

matrices, which allows an eigenvalue—free calculation of the characteristic function. 

Farebrother(1989) has implemented his technique in a Pascal algorithm. 
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(3.6) A Bivariate Generalisation of Davies' Algorithm 

Shively(1988a,b) has derived a bivariate generalization to Davies'(1973) 

Riemann sum algorithm (corollary 3.2). In this section we show that the work we 

presented in section (3.3) can be easily transferred across to the bivariate framework. 

We require no new manipulative theorems to do this, and the proof of the theorem 

follows exactly the same lines as the theorem given above. Our starting point is 

equation (2.24) 

22 	wf w  A 

1 

A 

 2 r it 	1 it 2 

(t) e-ixit  

(270 2  1 	i 
dt = 4F(x1 ,x2 ) — 2[F(x 1 ) + F(x2 )] + 1 t t 

0 

= n+ (x1 ,x2 ). 	 (2.24) 
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Theorem 3.3  If f E L2  and the mean of the relevant random variable exists and 

8 Pr(X<x) = Pr(X<x—t) — Pr(X>x+t), then 
x,t 

2-2u+ (x1 ,x2) + 	 (cos 2 1j 1  cos 27z z  ,j„) 
XP 2 ji r 	2 • F(x1'x2 )  

7 '1 2  
j2=° 	 A l 	A 2 

j12=C)  

—2 =(27)2A 1 A 2 

co z a / 

	

A  Re LP(  zl'a2)e
( 	

2 ) z 2 —co 1z 1 	a2 v2=  

  

co 	co 
Az 	Rel- cp(a)e—ixIal  

1 2 	L al a2 j v 1 =1 v2 =—co 
(3.25) 

where a = 	+ v 1 ), A 2 (z2  + v2))' = 	a2)' 

Proof.  Given in the appendix. 
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Corollary 3.4(Trapezium Rule) If go, f e L2 and the mean exists for the relevant 

random variable and 6 Pr(X<x) = Pr(X<x-t) - Pr(X>x+t), then 
x,t 

2-2u+ (x1 ,x2 ) 	 6 	6  x1 ,2 71 j x2 ,2 71j2 F(x1 ,x2 ) 

j1 =-C)  j2=° 	A l 	A 2 

-1/2  
(2 7) 2  

lirn lirn 	 Re pp(z i ,a2 )e-ix (z 1'a2 )/  1 
z1o z2o 	z  2 	L 

-,0 v2= 	 z 1 (v2 +z2 )  

  

lirn lim 	\, 	A A Rercp(ai , a2)e- x ' (apa ) 
+ z i -)o z2 -fo 

v1 = 1 1 	-03 
Z  1 z  2 I_ (v id-zo(v2+z2 ) 	 

(3.26) 

Proof.  Put z 1 =z2=0 in theorem 3.3. 

Bounding the resulting integration error is difficult. Here it is given by 

co 	co 
6 	6 Flx x1 ,2 j i  x2 ,2 rj 2 	l'x  2 (3.27) ji=0 j2=0 	 A 2 "1 
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Corollary 3.5(Riemann Sum)  If ço, f c L2  and the mean exists, and if 

8 Pr(X<x) = Pr(X<x—t) — Pr(X>x+t), then 
x,t 

w 
2-2u+ (x1,x2) + 	 (-1)jl+i2 6 

x 1 ,2  r j1  x2 ,2  r  2 
 F(x,x

2
) 

il=°  j2=° 	 A l 	A 2 
3l2 0  

w 
Re [Ca(Aibi,A2b2)elb l'A2b2)1  

b b2 v 1 =0 v2=—co 

(3.28) 

where b = (v 1  + 1/2, v2  + 1/2) = (b 1 , b2 ). 

Proof.  Put z 1 =z2=1/2 in theorem 3.3, and then use the symmetry with respect to z 2 , 

as v2 is as an integer. 

—2 
(27) 
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This error bound is much more amenable, as 

w 	w 
8 (-1)ji+j2 

x1 ,2 irj 1  x2 ,2 irj2 F(x 1 ,x2 ) 
j 1=0 j2=0 	 A 1 	A 2 

j1 1 j2=0  

max[[1—F(x i  + kr)] + [1—F(x2  + g)1, F(xi 	+ F(x2  — kr)i. 
( 3.29)  

Thus we can use the bounds employed in sections (3.2) and (3.3) to 

provide a way of selecting the step sizes, A i  and A2. 
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(3.7) Two Quadratic Forms in Normal Variables  

Suppose we are interested in the joint distribution of the two quadratic 

forms in Rtirrrhi variables 

Y1 = U'AU 	 (3.30a) 

Y2 = U'BU, 	 (3.30b) 

where A and B are T.T matrices and, for sake of simplicity U N  N(0, I). 

The joint characteristic function of Y i  and Y2  is given by 

co(t 1 , t 2 ) = E exp [HP (t iA + t2B)U] 

= 11 (1 — 2i8j (t 1 , t 2 ))-112 
j=1 

(3.31) 

where Si(t 1 ,t2 ) denotes the j—th eigenvalue of the (t iA + t2B) matrix. For this case, 

we have sufficient regularity to allow us to write the equality 

w 	w 
2-2u+ (x1 ,x2) +  

4=0 j2=0 

j11j2=0  

x1 ,2 irj i  x2 ,2 rj2 F(xl ,x2 ) 

A 2 1 

—2  
(271-) 2  

,A2b2)e—ixl (Aibi,A2b2 )/e [(1b1
/  

v 1 =0 v2=—E0 	 b 1 b2 

  

  

(3.32) 
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Using the arguments of Imhof(1961) we have 

[ 
T 

	

arg [co(t)e—ixit] = 	arctan 28j(t l' t2) — x' t 
j=1 

	

+ 	T 	 —1/4 
I co(t)e—ix ' b I . u [1 + 452j(t i ,t2 )] 

j=1 

 

(3.33a) 

(3 .33b) 

So writing e(t) = arg[yo(t)e—ixit] and 7(t) = lgo(t)e—ixit  I , we have that 

Re 	  

	

rio(Aibi,A2b2)e (A1b1,6,2b2)/ ] 	7(A ibi , A 2b2 ).cos e(A ib i , A 2b2 ) 
. 

	

	  b b 1 b2 	
b 1 b

2 
(3.33c) 

This expression is not very useful for numerical work as it depends on the eigenvalues 

of the matrix (t iA + t2B), which change as t 1  and t2  vary, thus requiring many 

numerical eigenvalue calculations if the matrices A and B do not share the same 

eigenvectors.If A and B do not share the same eigenvectors, then it seems as if this 

technique could be expensive. This prompts us to investigate the possibility of 

employing eigenvalue—free techniques. Shively et al(1988) discuss this possibility at 

some length, when the matrices of interest are band matrices, or slight variants of 

them. 

If the Davies(1973) procedure is abandoned then we can resurrect the 

eigenvalue technique. Suppose we consider equation (2.32) again. We can then prove 

the following corollary by thinking about the transform u = 2t 1  and v = t2/t1 
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Corollary 3.8  

W co A  ( 4. \ 	t 
t 1  t 2  [C t Jo 	 ku)e 	dt dt Jo 	i 1 it 2 	

1 2 

1 ry(u,uv) cos 
= 	JO 	

'U. V E(u ' uv)  du dv (3.34a) 

where e(u,uv) = [ 	arc tan u.5(v) _x/ t ] 

i= 1  
(3.34b) 

2 -1/4 
ry(u,uv) 	= 	[ 1. 	u2

6)  
t(v\] 

j=1  
(3.34c) 

and where( 	 4- v) is the j—th eigenvalue of (A vB). J 

Proof.  o nr, 
t t [co(t)e-ix'  ti dt 1 dt 2 (-.) 	1 	2 	it 1it 2 

r w  fw A A 	( 	-ix/(u 'uv)]  du dv [so u,u.v)e  
U uv Jo 	 11  iv 

:I: A A  [co(u uv)e-ixi  u v iu. iv (u,uv)] du dv. (3.35) 

The use of the Imhof result proves the corollary n. 
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This representation has substantial advantages over the previous one, 

as now we only need eigenvalue calculations with respect to a single variable. 

It does not seem possible to produce an explicit numerical integration 

routine using this form of the expression. This should cause us little difficulty as we 

can use standard routines to do this. 

Example 3.7.1 	Independent Chi—Squared Variables  

Suppose we choose A and B as diagonal matrices, with diagonal 

elements being unity and zero. They are given below 

1 T/2 
.e/•■• A= , B = 	 (3.36) 

••••■■•• 

	 IT/2 

when T is an even integer and Ir  denotes an order r identity matrix. Y i  and Y2  are 

independent chi—squared variables with T/2 degrees of freedom. Then, of course, 

their joint distribution function is then the product of the marginal distribution 

functions and so their distribution function is exactly known. However, this case is 

an interesting one which will allow us to study the feasibility of the bivariate 

inversions. 

The infinite sums in (3.32) have to be truncated at finite points. 

Unlike the case of the univariate inversion (c.f. Davies(1980)), no useful bound is 

possible on the resulting truncation error; sensible ad hoc rules can be invented which 

should mean that it is unlikely that this error will be large. The rule we employ is to 

truncate an inner sum if there has been ICOI consecutive terms less than, in absolute 

value, EPSI. Likewise, the outer sum is truncated using the 
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corresponding numbers ICOO and EPSO. It is important to check the evolution of 

these sums to ensure that they do not oscillate so slowly that they cause a major 

truncation error. A simple visual check of the evolution of the outer sum and a small 

sub—sample of the inner sums should be sufficient to guard against this in practice. 

Table 3.1 reports the number of terms used in the summation when we 

take MI=10, MO=10, EPSA1=1.0.10-6 , EPSA2=1.0.10-6 . In these tables we allow 

T ' x1 and x2 to vary. Throughout, there was no error in the calculation of the 

distribution function, which exceeded 1.10-6. The tables have elements 

corresponding to (X 1 , X2). 
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Table 3.1  

Number of Terms in the Summation before the Truncation 

T= 16 0.01 0.1 0.5 0.9 0.99 0.999 

0.01 1843 1723 1656 1473 1257 1253 

0.1 1829 1769 1636 1495 1277 1218 

0.5 735 695 711 693 665 621 

0.9 1688 1531 1587 1375 1182 997 

0.99 1630 1569 1368 1296 1081 969 

0.999 611 1484 1355 1265 1068 1043 

T=32 0.01 0.1 0.5 0.9 0.99 0.999 

0.01 696 655 586 496 436 479 

0.1 654 659 590 470 414 469 

0.5 441 435 431 415 381 401 

0.9 608 577 534 461 352 384 

0.99 526 547 508 453 362 389 

0.999 592 561 478 461 393 424 
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T=64 0.01 0.1 0.5 0.9 0.99 0.999 

0.01 386 362 320 284 257 320 

0.1 390 352 324 258 251 306 

0.5 357 359 295 263 237 295 

0.9 352 301 296 265 230 238 

0.99 323 317 292 230 228 259 

0.999 340 329 302 242 236 263 

T=128 0.01 0.1 0.5 0.9 0.99 0.999 

0.01 312 278 240 211 219 252 

0.1 277 274 238 206 211 238 

0.5 257 255 221 193 195 227 

0.9 276 252 197 166 191 222 

0.99 288 256 199 168 197 226 

0.999 294 238 234 176 203 238 
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T=256 0.01 0.1 0.5 0.9 0.99 0.999 

0.01 242 238 209 174 207 234 

0.1 260 234 197 172 205 230 

0.5 250 194 165 137 169 192 

0.9 222 220 185 160 187 195 

0.99 230 228 195 164 197 224 

0.999 238 230 195 172 201 232 

T=512 0.01 0.1 0.5 0.9 0.99 0.999 

0.01 234 204 147 172 205 207 

0.1 228 196 172 168 197 205 

0.5 212 191 159 159 183 189 

0.9 220 190 164 160 189 214 

0.99 226 196 166 166 193 218 

0.999 230 206 170 172 197 234 
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T=1024 0.01 0.1 0.5 0.9 0.99 0.999 

0.01 232 176 170 170 203 231 

0.1 224 197 139 166 197 223 

0.5 211 185 155 157 182 213 

0.9 193 189 160 164 189 195 

0.99 201 195 164 166 197 199 

0.999 205 199 172 172 199 209 

T=2048 0.01 0.1 0.5 0.9 0.99 0.999 

0.01 201 197 170 170 201 207 

0.1 195 168 162 168 197 201 

0.5 188 158 129 156 184 186 

0.9 193 187 160 135 193 218 

0.99 203 195 166 170 195 224 

0.999 209 203 168 172 176 226 
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Example 3.7.2 	Non—Circular Correlation Coefficients  

Consider the joint distribution function of the first two non—circular 

serial correlation coefficients. We follow Durbin(1980) in defining 

y'A.y 
r. = 	3  

J 	Y Y 
(j=1,2) 	 (3.37) 

as the serial correlation coefficients, where A 1  and A2  are given below 

110  • • • 	0 
101  • • • 	0 
010  • • • 	0 and A2  = 2A2 — I • • • 	• • 	 1 	' • • 	• 	• 	• 
• • 	• 	• 	• 

_0 0 0 • • • 1 1 _ 

2.A 1 = (3.38) 

For sake of simplicity we allow y to be a Tx1 vector containing independent and 

identically distributed zero mean Gaussian variables. 

The eigenvalues ofA are j  

rj = cos [jr(r-1)/T] 	 (r=1,...,T) 	 (3.39) 

while they share the same eigenvectors (see Anderson(1971, pg 282-290). This means 

that we can write 



Characteristic Functions: Algorithms 	 [ch.3 	64 

Pr(ri  < d1 , r2  < d2 ) 

=Pr 
 [

u2t (gri  — d 1 ) < 0, 	u2t (p,r2  — d2 ) < 
t=1 	 t=1 

(3.40) 

where utNNID(0,1). 

In table 3.2, are the results for various joint probabilities for the serial 

correlation coefficients. We took d 1  d2  = d , where d = 11.96/j, which 

represents the critical values for r 1  and r2  at a 5% level using the usual asymptotic 

theory. Bracketed beneath these probabilities are the number of terms in the sum 

(32) used in their computation. Throughout we took ICOI = I000=8, 

EPSI = 1x10-6 , EPSO = 1x10 	e = 6x10-7 . The marginal distribution 

functions were evaluated using Davies(1980) algorithm, with the corresponding 

induced error chosen to be negligible. 



 

Pr(yd,X 2<-d) Ft(y-d,X2>d) Pr(yd,X2>d) Pr(y-d,X 2 <-d) 

 

8 

16 

32 

64 

128 

256 

512 

1024 

2048 

0.00000 	0.00001 	0.00446 	0.00000 
(5209) 	(5829) 	(5822) 	(5350) 

0.00000 	0.00007 	0.00389 	0.00000 
(1856) 	(1338) 	(1684) 	(1565) 

0.00000 	0.00100 	0.00279 	0.00000 
( 601) 	( 664) 	( 640) 	( 686) 

0.00007 	0.00107 	0.00204 	0.00004 
( 373) 	( 356) 	( 374) 	( 358) 

0.00020 	0.00101 	0.00157 	0.00014 
( 253) 	( 261) 	( 234) 	( 236) 

0.00031 	0.00092 	0.00125 	0.00023 
( 209) 	( 214) 	( 214) 	( 211) 

0.00040 	0.00085 	0.00105 	0.00033 
( 201) 	( 181) 	( 199) 	( 203) 

0.00047 	0.00079 	0.00092 	0.00041 
( 248) 	( 246) 	( 246) 	( 248) 

0.00054 	0.00077 	0.00085 	0.00049 
( 434) 	( 432) 	( 440) 	( 434) 

 

   

   

0.00062 	0.00062 0.00062 	0.00062 co 
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Table 3.2 

Exact Joint Probability for the First Two Serial Correlation Coefficients  

Note:- The last digit in all these probabilities should be viewed as unreliable. The 

asymptotic result is calculated using large sample theory. 

A Monte Carlo experiment was performed to check the accuracy of 
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these calculations. When T was less than 100, one million replications were used in 

the experiment, while for larger T we slowly reduced the number of replications. The 

Gaussian white noise variables were generated using the Numerical Algorithms Group 

routines GO5DDF and GO5CBF. Throughout the results were found to be accurate to 

four decimal figures. 

The results are very surprising. They indicate that unless the sample 

size is large (well over 100), the joint distribution function is significantly 

asymmetrical. We can explain this rather peculiar behaviour by studying diagram 

3.1. This depicts the eigenvalues associated with r 1  and r2  for T=8. It indicates that 

there exist values of t for which both /ill  and go  are substantially positive, and 

which will cause Pr(X i>d, X2>d) to be comparatively large. The same type of 

behaviour should also be expected for Pr(X i<—d, X2>d) as there exist some values of 

t for which Ati  is significantly negative, while A t2  is strongly positive. This 

probability is small for small T because of the "end effect" on the eigenvalues (ie. 

they only go up to cos 7r( TT-1)  and cos 2 T-1) ), although when T rises above 10, 

this value will grow rapidly until T reaches 100. The other two probabilities will be 

small as their influential eigenvalues are small, in absolute value. Only when T 

becomes large will these probabilities start to converge from below, to 0.000625. 

This pattern in the eigenvalues generalizes to the whole correlogram. 

We can see that there is a surprisingly large probability of observing all the serial 

correlation coefficients to be positive, and a smaller, but non—negligible, probability 

that they alternate in sign— starting with r 1  being negative. 
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Eigenvalues 
1 

0 

  

Sample Size 8 

 

 

2 

 

1 1 

denotes an eigenvalue 
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(3.8) A Multivariate Generalisation of Davies' Algorithm 

Recall equation (2.15), 

(-2 ) P  f a' rw  A A 	A f(t)e-xit  it dt = u+ (x). 
(27r)P Jo 	Jo 	t1 t  2.- t p  it 1' ' 	p 

ao 
Introducing the notation that 	denotes a sum over the variables j 1 ,...,jp  which 

j=0 
vary between zero and infinity, but never all equal zero simultaneously, we have the 

following theorem. 



- m 	m 

+ 
-co v 1 =1 v2=  

0) 
'• ''' ... 	Re[ (P(a)e 	1 

1 	2 	p 	La 1  a„..2 ...a j  P VP  =-o) 
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Theorem 3.4  If co, f e LP and the mean of the relevant random variable exists, and if 

S Pr(X<x) = Pr(X<x-t) - Pr(X>x+t), then 
x,t 

2 u+(x) + 
m 

j= 0 

P 
[ 	II 

k =1 

8 	; 
(cos 27rzkjk ) xk'"

9 
 Irj k 1 F(x) 
Ak 

_(-i)P2P-1  
- 	(271)P 	l• -•  P 

m 	m 	m 

v2 =-0) v3 =-m P 

 

A A A 
t 	 t "• t p Re [ (P( z  l' a2r* ''ap )e  
2 3 

-  
A lz 1 al a2 a3 • • • ap 

if p is even, and 
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co 	co 	co 

= 	1  
(27r)P

` 	
P1.-Ap x  

V 0 = -CD v3 =-03 v =--co 
P_ - 

A A A 

co 	co 	co 
ice(a)e-ixl 

+ 	 L 	t 1 t 2 .-  t p ' [al a2...ap vp= -03 v1 =1 172 =-133 

if p is odd, where 

a  = (A 1 (z1 + v1 ), A 2 (z2 + v2 ),"" A p (zp + vp ))/  = (al'  

im [cp( z p a2 ,...,ap )e—ix/(z i ,a2 ,...,ap) / 
 t2 t 3 —  t p 	A 1 z 1 a l a2 a3 ' . . aP 

(3.41) 



Characteristic Functions: Algorithms 	 [ch.3 	71 

Proof.  Trivial generalization of the proof of theorem 3.3. The sole problem is 

ensuring that the constant on the right hand side of (3.41) is correct. In the case of p 

being even this constant is, because of proposition 1, 

(2)--2P.2 2P—l1P(-2)P  . (—i)P2P 4  . In the case of p being odd, it is 
(271)P 	 (27r)P 

(2)-4 .2 2P 41P 4 (-2)P  . (—i)P42P 4  . 
(27)P 	 (27)P 

Again we can employ either a Trapezoidal Rule in the integration or a 

Riemann sum. As in the univariate case, the Trapezoidal Rule does not offer a very 

convenient form to work with. Thus we only present here the Riemann sum. 
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Corllary 3.9 (Riemann Sum)  If S Pr(X<x) = Pr(X<x—t) — Pr(X>x+t), then, 
x,t 

CO 
P 

2u(x) + 	[
k 
 II (-1)3k xk 6:27r ik  1 F(x) 

. 	= 1 j =0 	 Ak 

   

_ (—i)P2 2P-1  A 	A  
— 	(270 13  

co 	co 	a) 

v l= v3=  0 	—co V = —co P 

Re [ gip) e-ix'13 1 
Lb 1 b2" • bpj 

   

if p is even, and 

  

:= 	k 1  
(-9p-122p-1 
 AA 
(27r)P 	1 "• p 

w 	w 	w 

v 1 =0 v3=-0) v =-0) 
P 

Re [CD( b )e-ixib i 
Lb 1 b2" • bpj 

(3.42) 

  

if p is odd, where 

b = (A 1 (1/2 + v 1 ), A 2 (1/2 + v2),..., L(1/2 + vp )) 1  = (b 1 , b2, 

Proof.  Trivial. 
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Mathematical Appendix 

Proof of Theorem 3.2  Define 5 Pr(X<x) = Pr(X<x—t) — Pr(X>x+t). Using (2.8) 
x,t 

we have 

03 
4UX 1 [ 	 cO(U) e  S F(x) = —2 i cos 	ut L A 	du. 	 (Al) 

x,t 	27- 	u 	ui 
0 

03 

Hence 	cos 27T-zj [ 52 rj  Pr(X<x)] x,  A  
j.0 

= F(x) + 

1 	P 

03 

j=1 

CO 

cos 27rzj 

exp[-27rijz] 

Pr(X<x)]  [x °27rj  

A 	  Y rgAY)e—ixAY1 dy. i Ay 	i 

, A 

CO 

cos 271-jy = 

(A2) 

The second term on the left hand side of (A2) can be viewed as an error caused by 

approximating the inversion formula. Using proposition 3.1, which is a slight variant 

of a well known theorem (Poisson's formula, c.f. Bohmann(1961) or Zygmund(1955, 

pg 37)) given in the appendix for completeness, we have, for p = 1 

co 
1 1 A 7 	A rco(A(z+v) ) exp [-ixA(z+v)] ] 

[ A ( z+v)i v=--to 

i -=- --co 	o 
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=
1 1 A A [cp(Az ) expr—ixAz] ] 

 2- — 2-27 z L Azi 

co 
1 A 7 A A  

— 	L 	z+v L rcp(A(z+v) ) exp [—ixA(z+v)1 
] 

	

2- 27 	z  A(z+v)i v=1 

(A3) 

co 
1 	1  
2 — 27

, 
 ni[ 

kp(A,(z))expf—ixA 
J 

zi 1 	1 \i A i  ko(A(z+v))exp { --ixA(z+v)} 1 = r I 	 2-71r.  L Z m  L 

	

z 	 ( z+v) v=1 

o. 



4.0 

(A4) 

co CO A A  [co(t e-1 31 
[cos s it /  . cos s2t2] t 

1 t  2 	it 1 it2 	
dt. 
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Proof of Theorem 3.3  

5 	5 (-2) 2  F(x i ,x0 ) = 
(20 

2  x2 ,L, 2 	 !a 1 

Hence 

5 
x1' 27 -1 1 x2' 2 7-12 F(x1,x2) 

.1 1=°  -12=° 	 Al 	A2 

1  = 
(27r) 2 A 1 A2 	exp[-27ri[j 1 z 1 	j2z2]] x 

   

2 irj i 	27rj 2 	A A  
[cos  A 	. cos  A  	t2 1 	t  

1 	2 	" 1 2 

go(A it i  , A2t2) e —ixi(A 1t 1 A2t2 )/  
i A t 	t 1  1 	2 2 

dt 

   

(A5) 

So, using proposition 3.1, we have for p = 2 

	

co 	co 
1 	1 A A  = 	 A(2 	 A  co(a)e-ixi al 7)2' (2)  2 ' 12 	 [ L 	z z 1 2 	la1 ia2 j —to 	—co v1= v2=  

CO 	 03 

2-2u+ (x1 ,x2 ) + (cos 27rz 1j 1  . cos 2 7z2j2 ) 



CO 	 W 

+ 	A A A 
L 	z i z 2 a l 

[

p(a)e-ixi  1 
la1 ia2 

(A6) 

v 1 =.1 v2 =--m 
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1 	1 = 
(271) 2'  (2)2 12 (271)  

OD 

A A  i ci9(z 1 ' 
aoe—i. x' (z i ,a2)' 1 

 z2 z 1 L 	iA 1 z 1 la2 	J -. v2 =  

  

Thus 

m 	co 
6 	6 2-2u±(x1 ,x2 ) + 	 (cos 27rz 1 j1  . cos 2irz2j2) x 2 r • 	• F(x  'x  ) 1 , 	3 /  x2 ,2 Ir j 2 	1 2 

j1 =0 j2=0 

	

A 1 	A 2 
ill i2=. ° 

7cci  A R.r(zi,a2)e 	( z l' a2 )/  1 

i + 
L z 2 ' 	  

--co v2= 	
z 1 	(v2+z2) 

  

- 

co 	co 
Az 	Reko(a)e—ix'a  

	

v1 =1  v2= 	

1 
1 2 L(v 1 +z 1 )(v2 +z2 )j 

—03 

Proposition 3.1 is a slight variant of Poisson's formula, c.f. 

Bohmann(1961, pg 124). 

a. 
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Proposition 3.1 Assume the condition 

B1 A  -• A  g(z 	z c L and is both continuous and bounded. — z 1 z p 1" p 

Then 

CO 	 CD 

V1 =. —CO  

A ... +z„...,v d-z = 
z  1 	p 	P P 

2' 
n 1 = —co = —co 

00 	w 
e-27rin'z 

	

...f ( 	cos2 	gYl 7rn.y.) • 	( 	" -Y 	37  ) d 	.d p 	1 .  Yp .fo 	o j=1 	J J Yi Y p  

(A7) 

where n = 

 

, z = 
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Proof of Proposition 3.1  Define 

A  •" 	G(z i ,...,zp) = 
z  1 	p 

03 

A ... A 
z 	z g(vi+zi,...,vp+zp). 

1 	p v ..---co 
P 

	

Then, by Bl, A  •" 	G(z..,...,z) is integrable, continuous and bounded. It has the z 1 	p 	p  

Fourier coefficients 

	

of 0.5 

	O. 5 
A A 

	

•••1 	e27rin't t 1'•• t p 
G(t l'—,tp ) dt 1* ..dtp 

0.5 j, 0.5 	p 

	

= 219 	"• 	(II cos 27rn 't . ) A  •• "A  G(t i ,...,tp) dt 	dt f
o  J 	j=1 	jj t l t p 	 r" p 

so using B1 and the Fourier inversion theorem 

co 	co 
A ... A = 2P 

11 = co 
1— 	

e-27rin'z 

np =--co 

	

0- 5 	0.5 

	

\ A  ••• A  G(t 	) dt,...dt. p  

	

( 	cos 27rniti  t 1  t p 	1 	P Jo :1=1  

The integral can be reexpressed as 

(A8) 

(A9) 



Characteristic Functions: Algorithms 	 [ch. 3 	79 

0• 5 	0. 5 f 	P 	A...A '•• 	( II cos 27rnit i ) t 	t  g(v i+t i ,...,vp+tp )dt i ...dtp  
j=1 v P =—co o 	o 

so using a change of integrating variable, and noting n ivi  is an integer, it becomes 

co 	co p 
fo  A ...A _So  (H cos 27rn. . JY) Y 1 Y p  g(Y1).. "YP)  dY1.-clYP 

and so the proposition is proved o. 



Chapter Four 

The Connection between the Maximum Likelihood  
Estimation of Moving Averages and Local Trend Models  

Summary  This chapter gives a detailed description of the existing simulation and 

analytic literature on the properties of maximum likelihood (ML) estimators of 

moving average processes. The connection between moving averages and the local 

trend models is derived. It is shown that although the existing work on the 

estimation of noninvertible processes does aid our understanding of the estimation of 

deterministic components in local trend models, there are substantial gaps in our 

knowledge which are identifiable. 

Finally, a valid Edgeworth expansion for the ML estimator of the local 

level model is derived. It allows us to describe the process of breakdown in the 

usefulness of the usual asymptotic results. 

Keywords  MAXIMUM LIKELIHOOD ESTIMATION, NONINVERTIBILITY, 

LOCAL TREND MODELS, EDGEWORTH EXPANSIONS. 
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(4.1) Introduction 

Over the last twenty years there has been considerable interest in the 

properties of maximum likelihood (ML) estimators of moving average processes. In 

this chapter we focus on the relevance of this substantial literature to the issue of this 

thesis. 

The connection between the local level model and a moving average of 

order one is easy to show. Recall the local level model is 

Yt = At 	+E, 

[It = lit-1 + Tit' 
	 (1.2) 

where (ct)' (

nt

) are uncorrelated, zero mean, white noise processes with variances o -2 

 and qa2 respectively. The differenced version of this is 

= Yt — Yt-1 ----: 7/t + 	Et' 
	 (4.1) 

and so the autocorrelation function for this, Ay t , stationary process is 

p(1) = {2-_1F 0 ,  p(s) = 0, V s> 1. 	 (4.2) 

Thus Ayt  can be written as a first order moving average process 

'6' yt = et + C 
	

(4.3) 

where 6) p(1) .-- it_i_T-i , (4.4) 
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with 

q= (4.5) 

and 0 is constrained to obey the invertibility convention (which is an identifiability 

condition) that 1 01 < 1. 

As q is always non—negative, it must be the case that 0 e [-1, 0]. 

Hence, we see that A yt  is a special case of a first order moving average process. The 

occurrence of q being zero is also of interest, as it implies U must be minus one, ie. the 

MA(1) process is noninvertible. 

Although this result connects the occurrence of deterministic 

components with noninvertibility, it is not a straightforward matter to deduce the 

behaviour of q from what we already know about noninvertible processes. The 

principle reason for this is that the likelihood function for the local level model will be 

influenced by the assumption we make about the startup procedure we use to 

initialize the nonstationary state (1.2). 

The connection between the local linear trend model and a second order 

moving average process is derived in chapter seven. In this case, the constraint on 

the parameter space, imposed by use of the local trend model, is quite severe. As no 

significantly detailed work has been done on noninvertible second order moving 

average processes, we do not discuss this model in detail here, but wait until chapter 

seven to do so. 

The rest of this chapter is split into two sections. The first reviews the 

literature on the estimation of first order noninvertible moving average processes:The 

second derives a valid Edgeworth expansion for the ML estimator of a local level 

model. 
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(4.2) Estimating Noninvertible MA(1)s.  

In an unpublished manuscript, Kang(1975) reported that in a 

simulation experiment she had found that a variety of commonly used estimators of 

first order moving average processes behaved strangely when 101 was close to one, 

and that estimated boundary cases frequently cropped up. This point was reinforced 

by a battery of simulation studies that were conducted over the following few years 

by Cooper and Thompson(1977), Harvey and Phillips(1978) [reported in 

Harvey(1981, pg 136-9)], Dent and Min(1978), Ansley and Newbold(1980) and 

Davidson(1981a,b). 

The work of Ansley and Newbold(1980) is perhaps the most revealing 

of these studies. They compared exact ML, exact least squares and conditional least 

squares estimators of a variety of models, reporting mainly on bias, mean square error 

and predictive ability. They found that ML estimators were generally more reliable 

than the other forms of estimators they looked at (see page 181). However, the ML 

estimator of the parameter in the MA(1) process was shown to have a large 

probability of occurring near the boundary. Indeed, of the 10,000 simulations they 

conducted, when the true value of 0 was —0.9, 3,278 were between —0.99 and —1.0. 

This result seemed to confuse these authors as they argued that these values were not 

exactly minus one but were nearly this value, since "it can be shown that 0̂ (MLE of 

0) will take the value —1.0 with probability zero." (My italics). 

This assertion was shown to be false by Cryer and Ledoulter(1981), 

who derived the exact sampling distribution of the ML estimator when T = 2. This 

distribution was seen to be discontinuous at minus one and one, but continuous 

between these two points. They were also the first to compute the exact probability 

of observing a boundary case for any value of T. 

The first analytic work on noninvertibility was carried out by 
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Sargan(1977). This was improved and generalized in the published paper of Sargan 

and Bhargava(1983b). In this they proved T—consistency of the ML estimator of 0 

when the true process was noninvertible, and derived the limiting probability of 

observing an estimated noninvertible process. Similar results were obtained in a 

regression model with MA(1) errors. 

Pesaran(1983) produced a slightly simpler analysis of the above setup, 

but his work did not yield any significantly new results. Anderson and 

Takemura(1986)'s paper gave a neat and simple analysis of the ML estimation of 

noninvertible processes. They produced two advances. The first was a proof that the 

probability that a noninvertible process is estimated, when the true process is not 

invertible, is o(T 11) when n is any integer. The second was to begin to set down a 

framework for the analysis of estimated noninvertibility in moving averages of a 

general order. The authors were less successful at the second of these tasks and 

seemed to have made little headway on this very difficult problem. 

More recently, Tanaka and Satchell(1987) attempted to produce an 

approximation to the whole of the distribution of the ML estimator of 0, when the 

true process is noninvertible. Although they failed to give a useful approximation, 

their approach was interesting. They also analyzed a constrained moving average of 

a general order of the form 

Yt = Et 
	 (4.5) 

which is noninvertible if 101 = 1 (see figure 7.1 for a detailed look at the case of 

k = 2). They found that the probability of estimating a noninvertible process was 

sensitive to the choice of k, and tabulated the relevant large sample probabilities on 

the assumption that the true process was noninvertible. Although their analysis was 

interesting, it does not provide us with any direct help in our analysis of local trend 



Moving Averages 	[Ch. 	85 

models. 

(4.3) A Valid Edgeworth Expansion for the Local Level Model 

Little is known about the sampling distribution of the ML estimator of 

the parameters of even the simplest of the local trend models. The first work on this 

topic was carried out by Harvey and Peters(1984),who used the stationary form of 

the models (ie. they differenced the process until they were stationary) in the 

frequency domain. This allowed a reasonably simple derivation of the expected 

information in a sample of size T. Although their form of the information matrix is 

easy to implement on a computer, it does not significantly aid our understanding as it 

is a rather complicated trigonometric sum. Although they noted that the limit of 

these quantities, as the sample size goes to infinity, could be calculated analytically 

by evaluating some integrals, they were unable to carry out the required 

manipulations. 

In this section we present some very simple results for the local level 

model. The first is a central limit theorem. This result allows us to study precisely 

the structure of the information matrix. The second result is an Edgeworth 

expansion for the ML estimation of the signal noise ratio when u2  is known. This 

enables us to describe the breakdown in the central limit theorem, as the true value 

of q approaches zero. Throughout, we will assume that (et), (77t ) are Gaussian white 

noise processes, and we will write T 	T — 1; q and u*2 as the true values of q and 

a2 respectively and u t  N  NID(0, 1). 

Using the results in chapter five, if /to  N N(0, ic), where K-ic, we have 

that the probability law of the log—likelihood is, apart from the log ts, 



Moving Averages 	[Ch. 	86 

T 	*22 

	

cr  il t 	A t 41(o-2 ,q)) = t[ — I log 	o-2  — 	log(1 + qAt ) — 	(1 	q 	) 1 .  qAt)  
t=1 	 t=1 	

0.20. 
 

(4.6) 

Then if the ML estimators, written cr z 
 and q, are interior points on the 

-2 - permissible parameter space (o-  , q > 0) and q * is away from zero, we can derive the 

following result. 

-2 - Theorem 4.1  If o-  , q> 0 and q* 
> 0, then 

NE-1 ;.2 _ (72 c_41 N  [01 

[ 	[0i' 
2 o-4 ( q+2 ) 

—a-2q ( q+4) 
-a-2q(q+4) 	11 
(q(q+4 ) 3/2 ii q -q 	j (q+2) — Vq(q+4) 

(4.7) 

Proof.  Given in the appendix. 

As q 0, for fixed T , the variance of the scaled (by root T ) ML 

estimator of q contracts to zero, while the variance of -O-2  converges to 20.4 . The 
2 - correlation between a and q is 

-q(q+4)  

j (q+2)(q( q+4))3/2 

4 , 	 
— q( q+4)  

q + 2 
(4.8) 

(4.8) goes to zero as q 0, while it converges to minus one as q co. 

More information about the sampling behaviour of the ML estimators 

can be gleaned from performing an Edgeworth expansion. Theorem 4.2 provides this 



Proof.  Given in the appendix. 

where A(q) = +2 
(q(q+4)) 
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under the assumption that a2  is known. This assumption is made in order to simplify 

the work, and to allow us to concentrate on the estimation of the signal noise ratio, q, 

which is the major issue of this thesis. 

Theorem 4.2  If q, q > 0 then writing g(q;q) as the density of q for a given true 

value of q, we have that 

1/2 
g(q; 	T*A(q)  

2ir . 2 

.[ 1 + K( q ) .[ -1  	+ (j T* (4 — q)) 311(1 + 0(T*— 1 )). 
T* 	A(q) 

(4.9) 

, and K(q) = 6  + cl(c1+4  
(q(q+4) ) 5 / 2.  

The important feature of this expression is K(q) which is positive for 

all q. This means that 4 is positively skewed. Further, as q -4 0, this skewness 

explodes, while for q co it goes to zero. 

Examples of the density are given in the diagrams 4.1, 4.2 and 4.3, 

which are displayed below. In the first diagram we keep q = 0.1 and allow T to 

increase through the values 10, 30, 50 and 100. We do the same operation in the 

other two diagrams, with the second diagram having q = 0.5, while the final diagram 

has q = 1.0. 

The diagrams indicate that the first order approximation is very 
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* 
accurate if q is significantly away from zero and T is 30 or more. Smaller values of q 

will mean this approximation will be worse, unless the sample size increases 

significantly. 
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* 
T 
---4 2a 

- 

* 
T x, 

— L 
t=1 

* 
T 

*22  
a 	u ,t 	1 + q

*
), t )1 

(A4.1) 

(A4.2) 

6 
a  (1  ± cl A t )  

*22 a 	ut  ( 1 + q  

i 

t=1 
0. 4, 1  4,1  + qAt) 2 

these quantities using the result that 
* 

T 	Atr 1 	 = 1 1 7  *- 
T ti  (1 + qAt ) r 	IT  o (4sin2 1A/2 + q)r 

dA + 0(T 1) ----g  
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Mathematical Appendix.  

* 
Proof of Theorem 4.1  All the derivatives of the log-likelihood exist (if q > 0) and 

so all we need to compute is the matrix of second derivatives (c.f. Cox and 

Hinkley(1974, pg 297)). But 

	

* 	 * 

	

T 	*2 2 2 a u t (1 + q* A )A2 	T 

	

t=1 	 2  t!1 (1 4- qAt )2  I .  

_ 	 t t  +  
0.2 (1  + qAt) 3 

(A4.3) 

Evaluating q and a2  at their true values, we can look at the limits of 

(A4.4) 

(c.f. Grenander and Szego(1958, pg 221, equation 7) or Hannan(1970, pg 353)) 

r  \

)

r-1 dr-1 (q(q+4))-1/2 
	 + 0(T*-1 ). .  i r-1)! • 	dqr-1 (A4.5) 



2 u4 1 = 
T (q+2) — 8/q(q+4) 
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(Computer algebra is useful to evaluate correctly these types of terms— c.f 

REDUCE (see Rayna(1987) or Hearn(1985)) and MATHEMATICA (see 

Wolfram(1988))). Hence, the asymptotic covariance matrix is 

—4 	 —1 

2u4 
	 0.2 jig( q +4) 	

(A4.6) 
+2 

0.2vq(q+4) 	(q( q+ 4  )) 

(q+2) 	1  
(q(q+ 4  ) ) 3/2 (72vq(q+4)  

—4 0.2vg  q +4) 	a 

2a4 (q(q+4) 31 2  
= 

T (q+2) — A/q(q+4) 
(A4.7) 

3/2 

o. 	 (A4.8) 
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Proof of Theorem 4.2  

Write 	* (z,q) = E exp (izT q), and assume 

(A4.9) 

Al. Where they exists, the j—th cumulant K * (q) of T q, satisfies the 
T j 

relationship 

ij K  * (q) 	di log  
T j 	 Tj 

 

(A4.10) 

A2. For all integers T greater than T 1 , T q has cumulants of order up to and 

including three, and they are continuous functions of q in an open subset of 

R+ containing q . 

Abril(1985) demonstrated that Al is stronger than Durbin's(1980) 

assumption 3, while A2 implies assumption 4. Durbin's third assumption is difficult 

to check directly, but Abril shows that Al and A2 imply that it holds. This means 

Durbin's valid Edgeworth expansion for the ML estimator can be used (his theorem 

one). Abril also showed that Al and A2 are stronger than the conditions used by 

Taniguchi(1984) to prove the validity of the expansion for the distribution function. 

If q > 0, then for q> 0 both Al and A2 hold by using the arguments 

of Shenton and Bowman(1977) or Peers(1978) or Peers and Iqbal(1985), who showed 
*. 

that the cumulants of T q are related to the expected value of various derivative of 

the log—likelihood function. We require q to be strictly positive so that we satisfy the 

open subset requirement in A2. 
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Having satisfied Durbin's(1980) assumptions 2-4, we can use his 

theorem one, which states that for a scalar case 

gc4; 	T  * .r(q) 1 1/2 

27r 

13/2 (q). KT*3 (q) .  

6. 11 3 / 2  

[T3/2 (q)T*3/2 (4 _ Eci) 3 _ 3 ,1/2 (q)T*1/2 (4 _ Eq-. ) (1   

(A4. 1 1) 

where /(q) is the limiting mean information in an observation, while 

K * (q) ET*3 (q̂  E4)3 . Note that K * (q) measure the skewness of q. 
T3 	 T3 

Following Abril we will use Peers(1978) to produce a tractable 

expression for land K. He derives the equalities 

E 	1 E [c13.1.3g1 E  [dlogL  (12_1;)gi,11 [E  4_2_4L1- 2  0(T*-2 ),  
dq 	dq dq 	dq 

/ *(q* ) = — T*-1[E d2lo  

dq 

,431 

K * (ci = 2.E  [u 

dq 

(A4.12) 

+ 0(T* 1 ), 	 (A4.13) 

+ 3.E  [dlogL  ci2_*11 [E c l241 -3  + 0(1) 
 dq dq 	dq 

(A4.14) 

where I * (q) is the mean information in an observation. 
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Although we are conditioning on q > 0, we do not have to adjust the 

expectations to take this into account because, following Anderson and 

Takemura's(1986) work on MA(1)s, we show in chapter five that 

*_n  
p(q = 01q > 0) = o(T 	) for n being any integer. 	 (A4.15) 

Hence the validity of the Edgeworth expansion is not affected by our ignoring this 

conditioning. 

Noting that 

* T 	3 
E [1:1 3 l_ig_.) LI 	= 2 	A  t 	 (2 E and 

T * 
A 3t  

. 
dq 	t=1 

and using the result given 

Eq" = q + 0(T*-2 ), 

A = 	+  

K * (q) = —T
*3 

 T3 

8T K + 

(1  + clAt)3' 

in equation (A4.4), 

*— 

4 T
* 
 K — 3 T *  

0(1) 

[dl°gL 

 we have 

* 
T [— —2- 

dq 
-1-14E-1-1] 

dq 

that 

_3 
+ 0(1). 

til  1 (1  + clA t )3)  
(A4.16) 

(A4.17) 

(A4.18) 

(A4.19) 

(A4.20) 
A3 

Noting the higher order unbiasedness of 4 gives the result 
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immediately.o 



Chapter Five  

On the Probability of Estimating a Deterministic  
Component in the Local Level Model  

Summary  A local level model has a deterministic level when the signal noise ratio, 

written q, is zero. This chapter investigates the properties of the maximum 

likelihood estimator of q, paying particular attention to the case where the true value 

of q is zero. These properties are shown to be crucially dependent on the initial 

conditions employed. 

Key Words.  BOUNDARY ESTIMATES, NONINVERTIBILITY, 

CHARACTERISTIC FUNCTION, INITIAL CONDITIONS, STRUCTURAL TIME 

SERIES MODELS. 
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(5.1) Introduction and Summary  

In studies of least—squares estimates of autoregressive models many 

writers, for example Phillips(1987), have found their results to be very sensitive to 

the initial conditions, when the models are nearly non—stationary. As a result of this, 

it is very natural to enquire about the effect the initial conditions have on the 

maximum likelihood (ML) estimator of the Gaussian local level model 

Yt  = t  + Et, EtNNID(0,0-2) 	 ,t=1,2,...,T 
	

(5.1a) 

?it  , 7/tNNID(0,q0-2 ) 
	

(5.1b) 

where (ct )(77t ) are serially and mutually independent. 

Muth(1960) showed that this model provides a rationale for 

exponentially weighted moving averages. Subsequently it has proved to be the basis 

of more complicated systems, such as the structural time series models suggested by 

Harvey and Durbin(1986), and the parameter variation models of Cooley and 

Prescott(1973,1976). 

The reduced form of the local level model is an ARIMA(0,1,1) process. 

When q, the signal noise ratio, goes to zero, the model has a deterministic 

component, while its reduced form becomes strictly noninvertible. Hence, following 

the work of Kang(1975), Sargan and Bhargava(1983b), Anderson and 

Takemura(1986) and Tanaka and Satchell(1987) on MA processes, we may expect the 

ML estimator to behave in an unusual way when q is near to zero, and to be very 

sensitive to the specification of the initial conditions for the level (At ). 

There are three important startup procedures which have received 

substantial attention in the literature:— 
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Al. The initial level A0  is a fixed, known constant. 

A2. ito  N N(0, is) rs-ico where po  is distributed independently from (Et ),(77t ). 

This diffuse prior has been commonly used in non—stationary state space models, c.f. 

de Jong(1988). 

A3. p,o  is a fixed, unknown constant. This particular assumption has been 

used extensively, c.f. Cooley and Prescott(1973,1976), Rosenberg(1973), 

Nyblom(1986) and Shively(1988b). 

In this chapter we study the probability that a (local) ML estimator of 

q is exactly zero for various true values of q, written q , for the local level model 

under these three startup procedures. We also derive consistency rates for the mle 

when q =0. Sections two and three show that the results for the fixed and known 

startup and the diffuse prior are not too different. However, in section four, we 

demonstrate that the sampling distribution of the ML estimator will change 

dramatically when we specify a fixed but unknown startup procedure. Finally, in 

section five, we use a simulation study to show that these results carry over to the 

case of the (global) ML estimator. 

(5.2) A Fixed and Known Starting Value.  

Back substituting into the system, we can write (yt ) as 

Yt 	+ 771 + 772 +—+ 77t + Et 
	 (5.2) 

Writing i as a Txl vector of ones, y=(y i ,...,yT)', C as a Tx T matrix with typical 

element ((b. .)) where takes the value one if i>j and zero elsewhere, and d is a 

generic constant, we can express the log—likelihood as 
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ku2,q)=d- I log a-2  - flog I  I+qA  I  - (y-A0i)' I +ciA)-1 (Y-110i )  
2 	2 2a 2 

where A=CC'. So concentrating / at 

;2 (q) 	( I +qA)-1 (y-p,0 1) ,  

which is positive with probability one (wp1), yields the profile log-likelihood, 

written M(q) 

-1 	1 M(q) = d - -2- log (y-p.o .i)' (I+qA) (y-pir i) - 2log I I+qA I . 

(5.5) 

Although M(q) only has statistical meaning for q>0, it is continuous for 

small q approaching zero from below, so that the score function, which is the 

derivative of the profile log-likelihood, exists over the whole non-negative real line, 

wpl, and is given by 

- s(q)=(O .1) ' (I+qA) 1 A(I+qA) 1 (y-po .i) _ .12.. tr((i+ciA)-1 A)  

("10' i 	(i+clA)- 1  
(5.6) 

But what does the score function actually tell us? Think of some of the typical 

shapes M(q) might take when mapped against q. Perhaps the three most important 

(5.3) 

(5.4) 



are given below. 
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Figure 5.1  

Stylised Shapes of M(q) Against q 

M(q) 
(a) 

M(q) M(q) 

    

Figure 5.1(a) and 5.1(c) implies a local maximum occurs at q=0 iff 

s(0)<O, while 5.1(3) and 5.1(c) tell us that maxima occur at q' >0 iff, for small E>0, 

s(q' +E)<0. These ideas will be central in our development of the sampling 

distribution of the ML estimator of q. Figure 5.1(c) will be of particular importance 

when we come to study global ML estimator in section 5.5. 

Rutherford(1946) showed that the eigen.values of A are given by 

1  
= 	 (t=1,2,...,T), 	 (5.7) 8t  

so noting y—p,0 .i.N(0,o-2 (Ii-q*A)), we can see that the probability law of the score is 

. 4sin2  r(t-0 .5)  
2T+1 
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T 	ut  5 t  (1+q* St ) 2 

7 t=1 (1+q5 t ) 2 

t.1(l+cot ) 

(5. 8) 

  

1 
T 2 	* 	 t=1 u t (l+q S t ) 

where ut,NID(0,1). If we write the probability of observing a local maximum at 

zero, for a given q , as p(q ), then using figure 5.1(a) 

P(ci ) = Pr V 2 	* 
L 	 1-+q 6t)(5t (r+1))  < 0  

ut (  
2  t=1  

(5. 9) 

   

   

as St = tr A .(ILF1)r/2. 

This probability can be evaluated for any T by the Imhof(1961) 

procedure. The results of these calculations are reported in table 5.1 given below. 

Table 5.1  

p(q ) for the Local Level Model, using a Known, Fixed Start—up.  
True Value of q 

0.01 0.1 1 10 

10 .654 .572 .329 .146 .099 
20 .666 .447 .180 .058 .034 
30 .670 .343 .109 .028 .016 
40 .672 .270 .070 .015 .008 
50 .673 .216 .047 .009 .005 

A special case is when q =0. Allowing T-)co we can enforce some simplifications on 
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-O  the above expression as r 1 [t. 5 ] 271-2 + o(r). This yields 
T2 

 

2 
1 im p (0) = Pr 	ut 	<1/2 
T-)co 

t=1 (t-1/2)2T2 

 

(5.10) 

  

The random variables' characteristic function can be shown to be 

1//c-o7:4-17. By analytically inverting this function Nabeya and Tanaka(1988) 

demonstrated that its distribution function given by 

Go 

F(x) 24 -1 /21 r  -2.1-1/ 2 1 
i=o [ ii L 

(5.11) 

where (I)(.) is the standard normal distribution. We deduced the required limiting 

probability by using this expression with x=1/2. It was found to be 0.6778. 

Finally, in this section, we derive the rate of convergence of the ML 

estimate to zero. Recall the figure 5.1. These diagrams imply the likelihood will be 

maximized, (perhaps a local maximum though), in the region [0,r) if the gradient of 

the likelihood is negative at the point r. It thus becomes important to look at the 

score function in deriving the consistency of the ML estimate. This is done in the 

proof of the following theorem. Our method of proof is similar in style to that used 

by Tanaka and Satchell(1987, proposition one) in their analysis of strictly 

non-invertible MA (1) processes. 
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Theorem 5.1.  The ML estimator of q is O(T 2 ) when q
*
=0, ie. for any e>0, 3 T o 

and c>0 such that 

Pr(s(c/T 2 ;0) > 0 ) < e, V T> T. 

Proof.  Remember, on q =0 we are concerned with the probability law of the score 

which we write as 

1  2 s(---2 ;°)] T T i[ 

 

T u2 T2 18 1 s 	t 	t  
(c+T2  St )2  

  

= T 

1  (c+T2 /5t ) 

 

    

 

T u2 T2 / 1 	t 	t 
(c+T2  I St ) 

(5.12) 

   

By employing a weak law of large numbers on the denominator of the first term we 

have the limiting form of the scaled score 

• 	g 	 C 	ri N 	g 
1111

[ f 	
;L.1 )] 	c 

T-ice 	T 	T 

2 	22 1 ,co ut [t_0.5]7  
	  1 vw 	1 

ti 
(c+[t_0.5]22)2 2-t=„Li (c _F[t_0.5] 2 72 )  

  

(5.13) 

Writing X(c) to denote this limiting random variable, and using the moments of 

chi—squared random variables, we can see that 
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co 
EX(c) = 	—c  

t.i (c-F[t-0.5]2r2)2 	< 0, 	 (5.14) 

CO 

VX(C) = 	
[ t -0.514 7r4  

(c+[t_0.5] 272)4 (5.15) 

Employing Chebyshev's inequality we have 

1 	VX(c)  
1 	c  .°) 	< EX(c)? 

1 im Pr [--2. 	, _ 
T-i ce 	T 	'-u 	 [ 

_ 2 t= 
- 

Lt =1 

I t  43.51 4 74 
(c+ft _0.51 2 r2 )4 Ey .  

1 2 	 1  
(c+ [t -0.5? 7 2 ) 2  

(5.16) 

The function g must be bounded for all values of c, which means 3 b 

such that V c g(c)<b, so setting c= 1/b/c gives the desired result immediately.o 

This result should not surprise us as we know that the ML estimator of 

the MA(1) coefficient, 0, is 1+0p (T-1 ), (see Sargan and Bhargava(1983b)), when 

the true value of 0=11 and that q is related to U quadratically. 

(5.3) The Diffuse Prior.  

Although the likelihood for this type of model is usually constructed via 

the prediction error decomposition, (c.f. Harvey(1984)), our analysis requires it to be 

explicitly expressed in terms of the parameters of interest. To this end we write H t  

as the information set available at time t, thus allowing the diffuse prior to be written 
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as /to  'Ho N N(0,n) so that when rs-903, it/  I H 1  -9 N(y 1 ,u2 ). Ignoring the log term in 

the likelihood (see de Jong(1988)), the likelihood simplifies to L(a 2 ,q;y2 ,...,y,T  I H i ) as 

ic-w, and so the likelihood for (y i ,...,y,r) is the same as that for the vector random 

variable v, defined by v=y - y id, where i and y are (T-1)x1 vectors such that 

i=(1,...,1)' and  

Back substituting into the local level yields 

(5.17a) 

(5. 17b ) 

Thus vA, N i (0,a2(I+ii'+qA)). The log-likelihood is 

vi(I+ii'+qA) iv  2 1 logo-  - 	I I+ii +qA I 
2 o 2 

(5.18) 

Concentrating a2  out of the likelihood function yields the following profile 

log-likelihood 

M(q) = d (T-21)1ogv (I+ii +qA)-iv - .121.og I I+ii +qA I , 

(5.19) 

with the corresponding score 

T- 	'(I+i i '+qA) -1A(I+ii'+qA)-1v  1 2tr [(I+ii +qA) 1 A] . 
v' ( I+i i '+qA)-iv 

(5.20) 

s(q) 
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2 	. * 

	

Noting that vNN(0,a 	+q A)), theorem 5.2 of the appendix, and 

the properties of the eigenvalue solution, the probability law of the score can be 

written as 

2 
(r_i)T-1 ut A t  ( 1+q A t ) 

2 t=1 	(1+qAt ) 2 
1T-1 	A t 

(5.21) 2 T-1 u,( 1+q A t ) 
E 	  

2- t =1 (1+ qA t )  

t=1 (1+qA t ) 

1 where ut .NID(0,1) and A t  
= 4sin 

  

t=1,2,... ,T-1. The proof of this is 

straightforward but messy. The easiest part is showing that 

tr [(I+iii+qA)-1A] = tr [(A-1 (I+ii')+qI)-1] to give the second term. The 

denominator of the first term follows using the same kind of argument, while the 

numerator is simply its derivative with respect to q. 

Expression (5.21) implies 

T-1 
p(q ) = Pr(s(0;q ) < 0). Pr 	u2

t(At 
 a+_611)(1+q  *, 

At) <0 
t 

(5.22) 

as tr 
	

T-1 T+1 . The Imhof procedure was used to calculate this 

probability and the results are presented in table 5.2. 
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Table 5.2  

Tabulation of the Probability of a Local 
Maximum Occuring at q=0 for a Diffuse Prior.  

True Value of q 

T-1 0 0.01 0.1 1 10 

10 .637 .612 .468 .215 .116 
20 .647 .559 .287 .075 .032 
30 .650 .487 .176 .030 .011 
40 .652 .414 .110 .013 .004 
50 .653 .349 .070 .006 .002 

If we compare these results with those given in table 5.1 and diagram 

5.2, we see that they are slightly smaller for q =0 and tend to be larger for q >0. 

In the case where q is exactly zero, the outcome is particularly 

interesting. Then p(0) is exactly  analogous to the probability of obtaining a strictly 

non-invertible MA parameter in an overdifferenced MA(1) model (see Sargan and 

Bhargava(1983b) corollary one, when corrected). This is not surprising, since the 

likelihood function for the local level model corresponds to the exact  likelihood 

function for an MA(1), applied to first differences. 

As T-'ao there are some simplifications which can be enforced on p(0). 

-1 t 

 
2 2 Since A t  = —2-- + 0(T-4) we can use the weak law of large numbers to see that 

co 	2 u +  
1 im p(0) = Pr 	< 1  • 

t 2 72 	B- 
t=1 

(5.23) 

The distribution function of the random variable Eu 2it 2 712 has been tabulated by 
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Anderson and Darling(1952). Using their tables, we deduced that the required 

limiting probability is 0.6574, which is not very different from the case considered in 

section two. 
2 i We can also prove that the mle of q s T —consistent when q =0. The 

proof of this proposition follows exactly the same lines as for theorem 5.1 when one 

-1 	t 

 
2 2 recalls that A +  = 	+ 0(T-4), so giving the limiting score T" 

co 	2 	22 	OD 
11 +  t 7 

1 iM 	S( C 	()] -4  1 	222 	(c+ 1t 2 72 )  • T-300 	T- 	 t=1 (c+t 	t=1 
(5.24) 

Another interesting property of the ML estimator is the rate at which 

p(q ) goes to zero when q = 0. This problem was first tackled for the MA(1) case 

by Anderson and Takemura(1986) and their work is carried over to our case in the 

proof of the following theorem. 

Theorem 5.3 Define c>0 and n as any fixed constants. Then 3 T o  such that V T>T0  

Tn  p(q* ) < c, when q > 0. 

Proof. Given in the appendix. 

Finally, we can see that a multivariate version of the local level model 

is discussed in the appendix of this chapter. 
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(5.4) A Fixed Unknown Starting Value.  

Using assumption A3 we can back substitute to obtain 

Yt = 	+ 772 +...+ 	+ et 
	 (5.25) 

Writing v=y—p,o .i, where y=(y i ,...,yT)/ and i.(1,1,...,1) 1 , the log—likelihood is given 

by 

u2 ,q,A0 ) = d — log I o-2(I-FqA) I — v' (I+qA)-1v/ 

(5.26) 

Concentrating cr2  and A from yields the following profile log—likelihood 

M(q) = d — —1^  loge (I+qA) v — 1 —log I Id-qA 
2 

(5.27) 

where 1,r=y-1T(q).i. We will use P(q) to denote I—i(i/(I-FqA)-10-1i, (i+q  • A) 1  thus 

allowing the profile log—likelihood to be written as 

1 M(q) = d 	y P (q) (I+qA) 1 P (q)y — 	I-FqA I 

(5.28) 

Now as dP( g) (I—P(q))A(I+qA)-1 (I—P(q)), and (I+qA)-1P(q)=P(q)' 

we can see that the score is 
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s(q)  T2  yiP(q)/(I+qA) 1A( I+qA) -1P(q)y  1 tr [(I+qA)-1A] 
yiP(q)/ ( I+qA)-1P ( q) y  

(5.29) 

by observing the equality P(q)(I—P(q))=0. 

However, P(q)(y—g0 .i) = P(q)y N(0,cr2P(q)(I+q*A)P(q)/), so using 

the symmetry and idempotency of P(0) we can see that 

T u 1 13 (0)AP(OHP (0 ) (I+q A)P(0)1u 	1 (T+1)T  p(q ) = Pr [-2-- 2.  ui[P(0)(1+q A)P ( 0) ]u 	
01 

2 	j 

(5.30) 

since the trace of A is 

 

and where u is a Tx1 vector of independent standard 

 

normals. So if we write the non—zero eigenvalues of P(0)AP(0) as (wt ), and note that 

the eigenvectors of this matrix also diagonalise P(0), then we can see that this 

probability can be written as 

T-1 
p(q*) 	Pr[ 	u2t (wt 	. * 

A l+q wt )  < 
t=1 

(5.31) 

Theorem 5.4 of the appendix states that the non—zero eigenvalues of 

the matrix P(0)AP(0) are wf = 1 2 	, t=1,2,...,T-1. Hence the Imhof  t  4sin L  
2T 

procedure can be employed to calculate this probability. The results of these 

calculations are given below in table 5.3. 
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Table 5.3  

p(q ) for the Local Level Model using a Fixed,  
But Unknown, Starting Value.  

True Value of q  

T-1 0.01 0.1 1 10 

10 .964 .955 .878 .597 .445 
20 .961 .921 .665 .333 .237 
30 .961 .866 .494 .199 .129 
40 .961 .798 .373 .124 .077 
50 .960 .725 .285 .081 .049 

When q =0 and T-4w we can enforce some simplifications on the above 

expression to give 

1 im p(0) = Pr 
T->co 

2 	1 
u t 

t=1 t2 7r2 	2 
(5.32) 

   

Again using the Anderson and Darling(1952) tables it was found that this probability 

was 0.9602. Note that this value is dramatically bigger than for the first two cases. 

Finally we prove the following theorem for the mle of q. 
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Theorem 5.5  The ML estimator of the signal-noise ratio q is O(T 2 ) when q =0, 

ie. for any e>0, 3 T o  and c>0 such that 

Pr(s(c/T2 ;0) > 0 ) < E, V T> T o 	 (5.33) 

Proof.  Remember at q =0 we are concerned with the probability law of the score, 

which we write as 

L 	
s( 	1 2  ;0) > 	= 

 T T 

-1 urP(q)'(I-1-qA) 	A(lid-qA)-1 P(q)u  71tr[(i+qA)-1A]  ]. 1 
u/P(q)/ (Id-qA) P(q)u 

(5.34) 

Then if we write Q(q).(i+qA)"°' 5P(q)(Id-qA)°' 5 , and note Q(q) is symmetric and 

idempotent for all q, and write the eigenvalues of Q(q)AQ(q) as (( t ) we have that 

1 im Pr [-12-- s(--ec2- ;0) > 
T-ico 	T 	T 

2  1 TT-1 u t T2 /Ct 

-11- t=1 (c+T2/(t )2 

2 	  1 T-1 u t T2  / 

t=1 (c+T2/( ) 

s 	1 	>0 
t=1 (c+T2

/5t ) 
= 1 im Pr 

T-103 
-111-  

(5.35) 

The denominator of the first term can be bounded from above for every c by using 

Poincare's theorem (see Magnus and Neudecker(1988), pg 209-210)) and by ignoring 
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the largest eigenvalue of the matrix A. This sum then converges to unity as T-i0). 

The numerator can be bounded from below by dropping the smallest eigenvalue of A. 

Thus, as T-ico, we have the result that the required probability is less than 

W2 
Pr [i 7 I 

ut [t-0.5i272 	co 

2.  Z t.i c+[t-0.5}272)2 11 	
1  

t.i (c+[t--0.5]2r2) >0 

(5.36) 

Hence, theorem 5.5 follows by the method given in the proof of theorem 5.1.0 
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(5.5) The (Global) Maximum of the Profile Likelihood.  

In section two we saw that a local maximum of the profile likelihood 

occurs at zero iff s(0)<0, but that this event did not imply the (global) ML estimate 

is zero. Instead we can see that the probability of a (global) ML estimate being zero 

has an upper bound p(q ). In this section we use a simulation experiment to show 

that this upper bound is a good approximation to the desired probability. Our study 

is based on 10,000 replications for the cases where T=10,50(10) and q=0,0.01,0.1,1. 

The gaussian white noise variables were generated using the NAG routine GO5DDF. 

The results using a known, but fixed, startup are almost identical to those using a 

diffuse prior and so are not reported here. Table IV shows the proportion of (global) 

ML estimates which are exactly at zero. Bracketed beneath these results are the 

corresponding proportion of local maximums at zero. The results in the table 

indicate that the occurrences of boundary cases for the (global) maximum likelihood 

estimator is almost as common as for the local case discussed at length above. This is 

consistent with the observation made by Cryer and Ledolter(1981) in connection with 

the estimation of non—invertible moving average processes. Only when the true value 

of q becomes quite large (in the region of one) does this result break down. 

Nevertheless, even for these values, the fixed, but unknown, startup procedure gives 

many more boundary cases than does the diffuse prior. 



Diffuse Prior  

T-1 q 	0.0 	0.01 0.1 	1.0 

Fixed, Unknown Startup 

0.0 	0.01 0.1 	1.0 

60 	59 	44 	18 
(63) (62) 	(47) 	(21) 

62 	55 	27 	6 
(64) (57) 	(29) 	( 8) 

94 	92 	83 	48 
(97) 	(97) 	(91) 	(64) 

93 	88 	58 	16 
(97) 	(93) 	(68) 	(35) 

10 

20 

64 	48 
(65) (49) 

16 	1 
( 18 ) 	( 3 ) 

30 93 	81 	37 	5 
(96) 	(88) 	(50) 	(21) 

63 	40 	9 	1 
(64) 	(41) 	(11) 	( 1) 

64 	33 	6 	0 
(65) 	(34) 	( 7) 	( 0) 

93 	74 	24 	2 
(96) 	(80) 	(38) 	(12) 

93 	65 	15 	1 
(96) 	(73) 	(29) 	( 8) 

40 

50 
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Table 5.4  
Simulation Results. Percentage of Global and Local Zeros  

(5.6) Conclusion.  

ML estimation of the signal—noise ratio, q, generally requires that a 

diffuse prior be assumed for the initial level, or that it be treated as a fixed but 

unknown constant. This chapter has shown that the small sample properties of the 

two estimators may be quite different when the true value of q is close or equal to 

zero. This result holds for local as well as global maxima in the likelihood function. 

Treating the initial level as an unknown constant to be estimated 

results in a much higher probability of estimating q to be zero. When the true q is 

zero, this probability is 0.96 against 0.66 for the diffuse prior. While this is clearly 

good if q really is zero, the fact that the fixed initial level estimator has, for example, 
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a 0.24 probability of being zero when q=0.1 and T=40, while the corresponding 

probability for the diffuse prior estimator is only 0.09, is much less attractive. 

Overall, the assumption of a fixed initial level will lead to a deterministic level being 

found far too often. This is undesirable from the point of view of forecasting since 

then there is no discounting of past observations. 
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Mathematical Appendix.  

Theorem 5.2  The eigenvalues of the (T-1)x(T-1) matrix C'(I+ii') -1C are given by 

1  A = 	, 
t 	4sin2  Lt  Tr 

Proof.  Recall 
- 1 
01 

• 
• 

0 

1 

0 

• 
• 

• 

•• 
•• 

• 
• 

•• 

1 
1 
• • 
• 

1 

I i ' 

1 
1 

11 

0 
".0 

• 
• 1 

g--21 	. :. ..23  

1 	2 	..•. (T-1)_ 

say. It is well known that 

= F 	 (5.A1) 

 

—1 	2 -1 
2 —1 

F-1 	—1 2 -1 

 

(5.A2) 

—1 2 

  

A simple application of Anderson's(1971) theorem 6.5.5 proves the theorem by the 

properties of the eigenvalue solution.o 
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Proof of Theorem 5.3  Recall the expression for p(q ) and note that (At ) is 

monotonically decreasing in t. Then we can write 

T-1 2  
u t {A t  — (T+1)/6}(q* At  + 1) <0 

t =1 

=Pr[ 	u t 2 {At At  +1)< 	u t2{(T+1)/6 _
}(q 

 * + 

(5.A3) 

1_1T+1 	*2-4 	2 <Pr[ 	u t  2  {At--(T+1)/6} 
(q 

 * +) < 6_ 11+q 	6  1 	
2, 

u
t 	]. 

,(T+1 , < (r+1) 
At> 	

 At 	 6 	 6 
(5.A4) 

To improve tractability, it is useful to discover how many A t >(T+1)/6, for large T. 

But the event 1/4sin2 t7/2T > (T+1)/6 #). the event t<(2T//r) arcsinIV(.1.5/[T+1])}. 

The RHS of this inequality is approximately (2T/7)Ag1.5/[T+1]), ie 0(1 112). If we 

define m as any fixed positive integer, then 3 T o  such that V T>T0 

At  > (T+1)/6 , 

Thus V T>T 0 

T-1 
p(q )<Pr[ 	ut2 {At--(T+1)/6} (q* A t +1) < ((T+1)/6) {1+q * (T+1)/6} 	ut2] 

t=1 	 t=m+1 
(5.A5) 

Pr 

A  > ( T+1 ) A t < (T+1)  
6 	 6 
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T-1 
*A rft+1) 	ut2 < ((T+1)/6) {1+q* (T+1)/6} 	u t  

t=1 	 t =m+1 
(5.A6) 

Writing the first sum as 4 we note the independence of the two 

chi—squared variables and that r = 0(T), as m is fixed. Hence, using an expectations 
2 operator defined on the measures of the x r  variable, and employing the density 

function of a x 2 variable yields 

= a E ibxr
2 

((m/2 )—x/2 dx, 
x  

(5.A6) 

= [(T+1)/6 {1+q [(T+1) /61}  where a =1/(21n/ 2 .1'(1/2)) and b 
{ A m—[(T+1) / 6 B  {q*Am+1} 

(5 .A7) 

—2 . * 	— . * But it is easy to see that b=0(T ) q >0 (and 0(T 1 ) if q =0), which means that 

2 
(111/2  — 1)  dx VT>To' p(q ) < a E bXr  x 

,Jo 

(2a/m)E(b4) ini 2  

(5.A8) 

(5.A9) 

so for even m 

= (2a/m) (b) 111 " 2  . r(r+2)(r+4)...(r+m-2) 	 (5.A10) 
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= 0(T-111)0(Tin/2 ) 

if q >0 (and OM of q =0) 

= 0 (T
—

m/2 ). 
	 (5.A1 1) 

Hence, it is not possible to scale p(q ) by a factor T n , where n is any fixed constant, 

to stop p(q ) from going to zero as T-ico.o 
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Theorem 5.4  The (T-1) non—zero eigenvalues of the TxT matrix C' (I— Prii-)C are 

given by 

wt 
1 t=1,2,...,T-1. 

4sin2 t  I LTri 

1 1 •• 	• 1 • • 0 
01 •• 	• 1 • • • 	o 

Proof.  C' (I-14- 1T-)C = I — -7— • 

00 . 1 11 • • • 	1 

*/ 
0 

	

* g--213 2 TT--22 3 ...2 	1 

	

...3 	2 0 

1 	2 	... (T-1) 

(5.Al2) 

where 0 is a (T-1)x1 vector of zeros. Hence using the properties of the eigenvalue 

solution and theorem 5.2, the theorem has been proved. 
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A Multivariate Appendix 

A multivariate local level model has recently received some attention in 

the literature; see Enns et al(1982), and Harvey(1986). The general form of this 

model for a P dimensional series is 

Yt 	Ait 
	Et  , et  A.,  NID(0,E) 

	
(5.B1a) 

,N NID(0,E n) 
	

(5.B 1b) 

N N(0,KI), and ts-ko 	 (5.B1c) 

where (et), (lit) , 	are totally independent and the "true value" of S E  is positive 

definite, while E is positive semi—definite. 

Such a group of equations are called "seemingly unrelated time series 

equations", or SUTSE, after the so called seemingly unrelated equation model in 

econometrics. 

A special case of this model has been studied by Fernandez—Macho and 

Harvey(1989). This model, which is called a "homogeneous" system, is given below. 

Yt := At 	-I- 	Et  , Et  N NID(0,E) 	 (5.B2a) 

I/t = At-1 	+ 	lit , lit  , NID(0,qE) 	 (5.B2b) 

Ao  , I■1(04), and is-to 	 (5.B2c) 

where q is a non—negative scalar. 

In this section we will study the probability that the maximum 

likelihood estimator of q will be exactly zero. 

Using precisely the projection technique employed earlier in this 

chapter we have the result that the likelihood for y.(y i ',...,yTY is the same, apart 
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from a log lc term, as that given for v = y — ion . , where i is a (T-1)x1 vector of ones. 

Now, v N NP(T-1) (O,(I+ii  +clA)°E) so the desired log—likelihood is 

= — log I (I+ii +qA)® I — v' ((I+ii ' +qA)0E)-1v. 
2 

(5.B3) 

Writing vec(V')=v, where V' is Px(T-1), allows us to see that (5.B3) is equal to 

1 	—. 	— = — -7 log I I+ii' +qA —-2-1  log E I — tr{VE 1 V' (I-Fil'-1-qA) 1 }. 

(5.B4) 

So using Magnus and Neudecker(1988, pg 314-317) we can concentrate at 

t(q) = 	(I+ i +qA)-1V. 	 (5.B5) 
T-1 

Noting that t(q) is positive definite wpl, the concentrated support is 

M(q) = /(q,E(q);y) = — 	I 	-4-qA I — —2— T-1 log I v , (i+ii +o)V , 

(5.B6) 

which leads to 

s(q) = - tr((I+ii -FqA)-1A) 

T-1 -1 	.. + --2— tr [C\P (I-Fii H-qA)— )— 1V 1V' (I+ii +qA) A(I-Fn -FqA -1) 	. 

(5.B7) 
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Evaluating the score at q = 0 and its resulting probability law under 

q = 0 we have 

p(0) = Pr(s(0) < 0) 

=Pr [tr [(U' 	(I+ii )-1 / 2A(I+ii 1 )-1 /2U] < P. T+1 . 

Using a weak law of large numbers, (U'U)/T E  J., so 

(5.B8) 

co 	P u. 2 
urn p(0) = Pr [ t  	< p 
T-ico t=1 i=1 

t2r2 

  

 

(5.B9) 

  

Nwhere uit  ID(0,1) V i = 1,• • • ,P and t=1,2,... . We become interested in the 

characteristic function of the random variable on the left hand side of this inequality. 

It is easy to show that this is given by 

(Xs) = H {1 — (2is / t 2  7r2 )}—P 12  = f(2is) / siaj2is)}—I  / 2  
t=1 

(5.B10) 

which allows the limiting probability to be evaluated. 

Using the results of Tanaka and Satchell(1987) we can tabulate the 

limiting probability, as T-ico, of the estimated parameter being on the boundary for 

various values of P. The results are given in table 5.5. 
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Table 5.5  

lim 
T„ P (0 ; P)  

1 0.65744 
2 0.61673 
3 0.59659 
4 0.58411 
5 0.57545 
6 0.56899 
7 0.56894 
8 0.55986 
9 0.55646 
10 0.55359 
11 0.55111 
12 0.54895 

0.50000 

This table indicates that the high probability of observing an estimate 

of q which is exactly zero diminishes as P, the dimension of the system, increases. 



Chapter Six 

On the Probability of Estimating a Deterministic 
Component in the Dynamic Regression Model  

Summary A dynamic regression model has a fixed intercept when the signal noise 

ratio, written q, is zero. This chapter investigates the properties of the maximum 

likelihood estimator of q, paying particular attention to the case where the true value 

of q is zero. These properties are shown to be crucially dependent on whether the 

regressors' coefficients are viewed as fixed or deterministic. If they are treated as 

fixed, then their presence will tend to have a dramatically distorting effect on the mle 

of q. If, on the other hand, they are initialized using a diffuse prior, then their effect 

will be mild. 

Key Words DYNAMIC REGRESSION, STARTUP PROCEDURES, FREDITOLM 

DETERMINANTS, TIME TRENDS. 
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(6.1) Introduction 

In chapter five we studied some aspects of the local level model, which 

is given by 

Yt = At 
	+ e t 
	etNNID(0,(72 ) 
	

(6.1a) 

At = At-i 
	 nt .NID(0,qcr2 ). 	 (6.1b) 

When the signal noise ratio q is zero, the local level model has a fixed 

level. In the last chapter we looked at the probability that the maximum likelihood 

(ML) estimator of q is zero. In practice, we are likely to initialize Aho  using a diffuse 

prior, or by regarding it as a fixed, but unknown, constant which has to be estimated. 

In that work we demonstrated that this probability is sensitive to the assumption 

made about the initial value of the level component, p,o . We showed that when the 

true value of q is zero, the respective probabilities are 0.66 and 0.96 for these two 

start—up procedures. While this is advantageous for the fixed starting value method, 

if q is really zero, the fact that it has, for example, a 0.24 probability of being zero 

when q=0.1 and T=40, is much less attractive compared to the corresponding 

probability of 0.09 for the diffuse prior estimator. Overall the assumption of a fixed 

initial level will lead to a deterministic level being found too often. This is 

undesirable from the point of view of forecasting since a deterministic level implies 

there is no discounting of past observations. 

In this chapter we show that the same issue arises in the dynamic 

regression model (also called the intercept variation model) 
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Yt 	3q° 	+ et , t NNID(0,g2 ) 
	

(6.2a) 

= At-1 	+ Tit , rit,NID(0,qo-2 ) 
	

(6.21)) 

o ,NID(0,n), 	 (6.2c) 

where (x t ) is a (N.1) vector of fixed regressors, with A0  assumed to follow a diffuse 

prior, independent of (ct ) and (74). This model has received considerable attention 

in econometrics; c.f. Cooley and Prescott(1973), Cooley(1975), Brown, Kleidon and 

Marsh(1983), Fama and Gibbons(1982), Trzcinka(1982), Hendrick(1973), Raj and 

Ullah(1981), Nabeya and Tanaka(1988), Leybourne and McCabe(1989) and 

Rosenberg(1973). 

In this chapter we focus our attention on the assumption we make 

about fi, and the effect this has on the probability of estimating a fixed intercept. We 

study two possible start—up regimes for O. The first is that 0 is a fixed, unknown 

constant, which we will have to estimate. This corresponds to the "classical" 

regression model and has been briefly studied by Sargan and Bhargava(1983b) in the 

context of MA(1) errors; that is a differenced version of the above model. The 

alternative is to regard 0 as deterministic in the sense of Wold (c.f. Chatfield(1984, 

pg 54-55)), by specifying the model 

yt  = At  + xi0 	+ e 	ct r.NID(0,o-2 ) 	 (6.3a) 

At = 111-1 	+ nt , 74,NID(0,qa2) 	 (6.313) 

fit = fit-1 	 (6.3c) 

[AO]N NN+1 (0,KI),  
130 

Thus 0 here has been given a diffuse prior. We will see that the assumption we place 
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on fi will be extremely influential in determining the probability of estimating a fixed 

intercept. 

In the rest of this paper we study the effect these two assumptions have 

on the probability that a (local) ML estimator of q is exactly zero for various true 

values of q for the dynamic regression model. In all cases, however, we will assume 

that po  has a diffuse prior. 

Section two looks at the case of the fixed, but unknown constant, which 

has to be estimated. Section three investigates the diffuse case. Finally, in section 

four we use a simulation study to show that these results carry over to the case of the 

(global) ML estimator. 

(6.2) The Fixed, Dynamic Regression Model 

(6.2.1) The General Fixed, Dynamic Regression Model  

Following the development given in chapter five, we can show that if 

we ignore a log n term in the log likelihood, the likelihood for (y 1 ,...,y,r)' is the same 

as that for the vector random variable v, defined by v = y — (y 1  — xifi)i, where i and 

y are (T-1)xl vectors such that i.(1,...,1) 1  and y.(y2 ,...,y1,)'. Back substitution 

gives us 

y1 x1 13  = 	+ el 
	 (6.4a) 

(6.4b) 

	

* 	2 	. 

	

Thus v N  N(X 	+qA)), where A = CC', with C=((I(i>j))) and I(.) being 

the usual indicator function. Writing X.--.(x2 ,...,xT )' — ioxi and z = y — y ii, then 

the log—likelihood is 
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(T-1) 	1, 	 1 	 — /(q,cr2 ,fi) c 	2  logo-2  — -2-Log I+ii +qA — —2 (z—XONI+ i 1-qA) 1 (z—X0). 
0•2 

(6.5) 

Assuming X is of full rank, we can concentrate the nuisance parameters o -2  and fi out 

of the likelihood function at 

= (T-1) (z—Xfi) ' (Id-ii ' +qA) 1 (z—X,(3) 
	

(6.6) 

and(q) =XX' (I+ii ' + qA)-1X)-1x, (i+ji , +qA)-1 z  . [I — Q(q)1 z, say, 

allowing us to write the profile log—likelihood function compactly as 

M(q) = C (T-2 l)log z Q(q) (I+ii +qA) -1Q(q)z — 	I 	-PqA I . 

(6.7) 

Then, writing the probability of observing a (local) maximum at zero, for a given true 

value of q, written q , as Pr (q ) we have (see chapter five, figure 5.1) that 

Pr (q* ) = Pr < 0 1. 
q=0 

(6.8) 

This probability is given in the following theorem. 
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Theorem 6.1  Writing P(0) = (I+ii 1 )-1 / 2 Q(0)(I+iii ) 1 /2  and the (T-1-N) non-zero 

eigenvalues of P(0)(I+iii) -° ' 5A(I+ii') -° * 513 (0) as (0t ) we have that 

Pr(q ) = Pr 
T-1--N 

t=1 

u2t (ot  (T-16-1) 	* (6.9) )(1+qOt ) < 0 

where ut r,NID(0,(72 ). 

Proof.  Given in the appendix. 

Of course ' (V) t ) depends on the particular design in use and so this 

probability cannot be evaluated explicitly once and for all. However, we can find 

bounds on it using the idempotency of P(0) and Poincare's theory (c.f. Magnus and 

Neudecker(1988, pg 209-211)). Notice that these bounds are not necessarily 

achievable. 

The eigenvalues of (I+iii) -1 /2A(I+ii 1 )-1 / 2  are the same as those of 

the matrix C'(I+ii') 1 C, and are given by A, = 	2 1 	(see chapter five, 
4sin (t7I/2T) 

T-1-N 
Pr (q ) < Pr 	u2 5()  (' q T) < 0 t 	t  

t=1 
= PruN (6.10) 

   

whilst the lower bound is given by 

theorem 5.2)). Writing St (q* ,T) = (At 	)(1d-q*At ) we have an upper bound T+1 

on this probability of 



1 	 2 	 3 	4 

T Pr1(0) Pr(0) 	Pr1(0) Pr(0) 	Pr1(0)  Pr(0)  Pri(0)Pru(0) 

10 .580 .988 .513 1.00 .433 1.00 .335 1.00 
20 .622 .977 .596 1.00 .567 1.00 .536 1.00 
30 .635 .975 .618 1.00 .601 1.00 .583 1.00 
40 .641 .973 .629 1.00 .616 1.00 .603 1.00 
50 .644 .972 .635 1.00 .625 1.00 .615 1.00 
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T-1 
Pr (q ) Pr 	u2 () (q T) <0 t 	t 	' 

_ t=1+N 
= Prl ( q (6.11) 

   

where S(1) (q ,T)<8(2) (q 	1) (q ,T) are the ordered 
(q 

 *,)• These 
* 

bounds are tabulated below in table 6.1 for q = 0 using Davies'(1973) procedure. 

Table 6.1  
Upper and Lower Bounds on Pr(0) for the Fixed,  

Dynamic Regression Model  

These are precisely the bounds found by Sargan and Bhargava(1983b) 

in their study of regression models with non—invertible MA(1) disturbances. 
* 

We must also be interested in Pr i(q ) and Pru (q
* 
 ) for q >O. To 

illustrate the behaviour of these probabilities we take N=1 and calculate the 

following table for the upper bound. 



True Value of q 

T 	0 0.01 0.1 1 10 

10 	.988 .988 .982 .932 .830 
20 	.977 .971 .912 .621 .423 
30 	.975 .958 .800 .379 .212 
40 	.973 .940 .671 .226 .110 
50 	.973 .917 .547 .137 .057 
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Table 6.2  

Upper Bound on Pr(q ) for the Fixed t 

 Dynamic Regression Model with N=1  

The lower bound behaves so like that for the local level that it is not 

reproduced here (see table 5.2). 

Finally, in this section we can derive the consistency rate of the mle of 

q, when the true value of the signal noise ratio is zero. This is done in the proof of 

the following theorem. 

Theorem 6.2  The ML estimator of q is O(T 2 ) when q*:=0, ie for any e>0, 3 

T o ,c>0 such that 

Pr 
q=c/T2 ° < e , V T>T o . 	 (6.13). 

   

Proof.  Given in the appendix. 



Pr (q  ) = Pr  [ 	u2t(4  (.1.--16-41+q  4) <0 

t=1  

T-2 
(6.17) 
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(6.2.2) A Univariate Model with A Partially Deterministic Linear Trend 

An important special case of the above dynamic regression model is the 

partially deterministic linear time trend model. This type of model has frequently 

been used as part of some more complicated model; see Watson(1986), Nelson and 

Plosser(1982) and Clark(1987). We will write this model as 

(6.14a) 

(6.14b) 

(6.14c) 

Yt = It + "3' t  + Et 

= ,Ut Ptl 	+17 

p,o N N(0,n) tc-ico 

Writing d=(1,2,...,T-1)', we have that P(0) is 

P(0) = 	(I+ii 1-1/2dd, (i+ii,)_1/2 

d' (I+ii 

so that we become interested in the eigenvalues of the matrix 

C'(I+i i')-1dd/(I+ii)-1 C  
-1 d'(I+ii ' ) d 

(6. 15) 

(6.16) 

Writing the (T-2) non—zero eigenvalues of this matrix as (4), then the exact 

probability of observing the mle of being zero is given by 

where ( t ) are given in the following theorem. 
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Theorem 6.3  ( t ) are given by 

4sin2 (t7r/T)
,  

1 , if T is odd 

1 , if T is even 

(6.18a) 

and 

e2t 4s1n2 (0/2)' 

1 , if T is odd 

1 , if T is even. 

(6.1813) 

tan where 0 is the smallest solution to the equation tan  

interval TO e (21-t,27(t+0.5)). 

T, which is in the 

Proof.  Given in the appendix. 

It is unfortunate that this does not yield a closed form solution for 

but its values can be found comparatively cheaply. The resultant eigenvalues 

can be used in the Davies procedure to produce the following table. 



True Value of q 
T 0.0 0.01 0.1 1.0 10.0 

10 	.988 .987 .981 .930 .827 
20 	.976 .970 .908 .603 .394 
30 	.973 .956 .790 .354 .192 
40 	.971 .937 .655 .208 .099 
50 	.971 .912 .526 .124 .053 
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Table 6.3 

Tabulation of p(q ) for the Partially Deterministic Trend Model 

Note how extremely close this is to the upper bound for the dynamic 

regression model. 

In the case where q = 0, and T-itn, the outcome is particularly 

interesting. As we do not have a close form solution for all the eigenvalues, we resort 

to using the Fredholm approach (see Kac, Keifer and Wolfowitz(1955) and Nabeya 

and Tanaka(1988)) to derive the characteristic function of interest. We first find its 

limiting kernel 

[ i  u'C' (I+ii')-1 C u,—,.:C' (I-Fiil-1ddi(I+iii)-1C  u 
T 	 Tct r (Ski c' Y'd 

(6.19) 

 

= 
T-2 

K* (4, , 14) ujuk  
j,k=1 

(6.20) 

   

4 5 5  1 
K(s,t) dw(s) dw(t)1 as 

o o 
(6.21) 

where K(s,t)=min(s,t)—st-3st(1—s)(1—t) and w(t) is Brownian motion with Ew(t)=0 
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and Ew(s)w(t)=min(s,t). This implies that the limiting random variable has a 

characteristic function given is (D(2it)) -1/2 , where D(A) is the Fredholm 

determinant associated with the integral equation 

f(t) = 	K(s,t) f(s) ds. 	 (6.22) 

This Fredholm determinant was derived in theorem 6 (the case of m=1) of Nabeya 

and Tanaka(1988) and is given below 

D(A) = 	[2 _ Na. sin j— 2cosj] . 	 (6.23) 
A 

This allows the limiting probability to be evaluated. Using Knott(1974)'s numerical 

inversion theorem we calculate that 

1 im Pr (0) = 0.96787, 	 (6.24) 
T-ico 

which is near the upper bound for the dynamic regression model when N=1. 

A similar manipulation can be employed on the dynamic regression 

model when xt=(t,t2)/ using the second Fredholm determinant given in theorem 7 of 

Nabeya and Tanaka(1988). It is 

8640[2  + 4 + vx(_2+,A )sin,,a+ (-2+4)cos,rx]. D(A) 
A 

(6.25) 

This gives a limiting result of 0.99874, which is very close to the upper bound 

associated with the dynamic regression model when N=2. 
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(6.2.3) Regression Models Containing Partially Deterministic Trends  

Suppose we now go back to the general fixed, dynamic regression 

model, but with xt .(t;x t  ')/ where x t  is a (N .1) vector of regressors. 

The bounds given in section one can be tightened using the explicit 

time trend regressor incorporated in the design. The effect of this is studied in 

King(1981) in connection with the Durbin—Watson statistic. 

Supposing X=[X 1 ,X2] is of full rank. Then, if we write P y  = I — 

Y(Y Y)-11/ 1  , it is well known that 

PX PX 1PPX 'X2 ' 
1 

(6.26) 

We apply this to our model by writing P 1 (0) = I 	1' 	
/2dd , (I+ii , )-1/2 

 .. 	-1 d'(I+11 1 ) 	d 
Then there exists a symmetric matrix P 2 (0) such that P(0)=P 2 (0)P 1 (0). Thus 

P(0) (I+ii')-1112Ag+ii ,r112p(0) 

= P2(0)131(0)(I+iii)-1 12A(i+iii)- 	q". ip
ri(o)P2( 0 ) ,  (6.27) 

Poincare's theorem can be used again but this time on 
P1(0) (i+ii , )-1/2A(T+ii , )-112- 1 ,-. - (i). we have already denoted the non—zero 

eigenvalues of this matrix (4). So writing A t(q ,T) = (4 

have 

 we )(1+A) 



1 	 2 	 3 	 4 
T Pr1(0) Pr(0) 	Pr1(0) Pr(0) 	Pr1(0)  Pr(0)  Pri(0)Pru(0) 

10 .977 1.00 .957 1.00 .919 1.00 .846 1.00 
20 .970 1.00 .962 1.00 .951 1.00 .939 1.00 
30 .969 1.00 .964 1.00 .958 1.00 .952 1.00 
40 .968 1.00 .965 1.00 .961 1.00 .957 1.00 
50 .968 1.00 .965 1.00 .962 1.00 .959 1.00 
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Pr (q*) < Pr 

Pr (q* ) 	Pr 

T-2--N 
[ 

t=1 

T-2 
[ 

2 ut(t)(q*
'T) < 

* u2t  A (t) (q ,T) < 

= Pru(q* ) 

= Pri(q ), 

(6.28) 

(6.29) 

* 	* 	 * 	 * 
where A (1) (q ,T)<A (2) (q ,T)<...<A(r_2) (q ,T) are the ordered A t (q ,T). These 

probabilities are of some importance. Table 6.4 gives them for q * =0 for various N * 

 and T. 

Table 6.4  

Upper and Lower Bounds on Pr(0) for the Fixed,  
Dynamic Regression Model  

If we compare this table with table 6.1 we can see that the presence of the 

deterministic drift component dramatically changes Pr 1(0) and Pru(0). In effect, for 

N = 1, the Pr1 (0) and Pr(0)  now correspond to the upper bounds for N=1 and N=2 

respectively. A similar pattern holds for N > 1. 

Likewise, when we consider q>0 and N =1, Pri(q ) behaves in a 

similar way to that already reported in table 6.2 for the upper bound in the dynamic 

t=l+N 



True Value of q 
T 	0.0 0.01 0.1 1 .0 10.0 

10 1.00 1.00 1.00 1.00 1.00 
20 1.00 1.00 1.00 .986 .926 
30 1.00 1.00 .994 .861 .693 
40 1.00 .999 .973 .695 .489 
50 	.999 .998 .932 .535 .334 
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regression model. Pru(q ) is reported in the table given below. The table is also 

instructive since it is a good approximation to Pr u(q ) for N=2 in the intercept 

variation model. 

Table 6.5  

Tabulation of the Upper Bound for Pr(q*) for Various q  

Table 6.5 implies that if q =0 the probability of observing a local maximum on the 

boundary is almost one. Equally, when q >0 Pr(q ) may be sizable for large T and 

moderate q . Thus, observing an estimated value of q to be exactly zero is little 

evidence for the hypothesis that the true value of q is in fact zero. 

(6.3) The Diffuse, Dynamic Regression Model  

(6.3.1) The General Diffuse, Dynamic Linear Regression Model  

The ML estimator of q is sensitive to the design matrix because of the 

inability of the determinant term in the log—likelihood, equation (6.5), to reflect our 

uncertainty about O. This is a familiar problem which can be solved by using a 

conditioning argument. To illustrate this approach we will first think about a simple 

case. Suppose we have observed (y 1 ,...,y,r)' and that 
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Yt  = A + Et , where etNNID(0, o-2 ). 	 (6.30) 

Then the ML estimator of A, Y is unbiased, but the corresponding estimator of a2  is 

biased. To overcome the effect of the presence of the unknown A on the estimator of 

a2 we could condition on the first observation. This "approximation" to the 

likelihood leads to the ML estimators of both A and (72  being unbiased. 

The above "approximation" is exact if we consider a slightly different 

model, 

yt  = 	+ Et , where etNNID(0, cr2 ) (6.31a) 

At = At-1 (6.31b) 

N N(0, lc), Is-kJ°, where tco  is independent from the (e t ). 

(6.31c) 

Here the diffuse prior annihilates the marginal distribution of y l , making the 

approximation become exact. 

A more complicated example is 

Yt = xi/3 + et , where et  N NID(0, o-2 ). 	 (6.32) 

We can condition on the first N observations to enable us to construct an unbiased 

estimator of a-2 . Alternatively, we can set down the following model which performs 

this approximation directly 
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yt  . 	 t  + Et , where etNNID(0, o-2 ) 
	

(6.33a) 

I; = fit-1 
	 (6.33b) 

00  , N(0, tc), K-Ico, where fio  is independent from the 

(6.33c) 

It is the dynamic generalization of this model which will form the basis 

of our discussion in this section. Remember, the diffuse dynamic regression model is 

given by 

+ xtfit  + Yt = lit 	 ft 
+ lit = lit-1 	 nt 

; = fit—i 

(6.34a) 

(6.34b) 

(6.34c) 

where we initialize the state equation by employing a (N+1)xl dimensional diffuse 

prior 

[

40] N N (0, id), tc-fico. 
SO 

(6.34d) 

If we use the projection technique we employed in section two, then it is not difficult 

to show that 
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Theorem 6.4 

	

1 	 1 v' (F+qG) 	(T-N-1)  log 2 

	

i(o-2 ,q) = - 	I F+qG I 7  2 o• 2 

(6.35) 

where F = I + ii' + X* (X+ )-1D(X+ )-1  ' X* ' +X* (X+ )-1E +  

1.6,x 
G = A + X* (X+ )-1 (X+ ) -11 X* ' , where X += 

AxN+1 

X = 
* r+ 2 xN+1) 

XT 	xN+1 

   

2-1 	0 • •• 	0 

	

-1 2 -1 • • • 	0 
0-i 	2 • • • 	0 

2 -1 
0 0 0 	-1 2 

and E = ED as a Nx(N-n) matrix and D = 

    

Proof.  Given in the appendix. 

Although this is a reasonably convenient form for the numerical 

evaluation of Pr(q ), it does not allow us to compare its analytic form with the 

expressions given in section two. However, we can use de Jong's(1988) result to 

rewrite the probability law of the log-likelihood. This new expression has the same 

probability law as (6.35) when it is evaluated under the assumption that the 

observations are generated under the fixed startup. 
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1 i(o-2 ,q) = - z'Q(q)/(I+i 	i ' +qA) 1 Q(q)z (T-N-1) 	2 I F+qGI 	 2  	log cr 
a-2 

(6.36) 

T-N-1 
1 	 1 z/Q(q)/(I+iii+qA) 1 Q(q)z  + 7 	log At [Q(q)'(I+ii` +qA) 1 Q(q)] 

c

cr2 
t=1 

r-4-11. log  2 - 	l o-  (6.37) 

where t [Q(q)'(I+ii'+qA)-1 Q(q)] denotes the non-zero eigenvalues of 

Q(q) 1 (I+iii+qA)-1Q(q). If we compare this with 6.5 we see that we have merely 

altered a log-determinant term. 

It is then not difficult to show that 

T-N-1 
Pr(q ) = Pr[ 	14(0t  - V)(1+q* ?,bt ) < 

	
(6.38) 

t=1 

T-N-1 
where V = 	libt /(T-N-1). 

t=1 

This probability can be evaluated routinely by using the Davies algorithm for any 

given set of regressors. However, it does not seem clear how one might bound this 

probability in the way we did for the fixed startup parameterization, since the 

regressors enter the likelihood function in quite a complicated way. 

Before we look at some leading examples of this result, the following 

theorem is proved. 
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Theorem 6.5  The mle of q is O(T 2 ) when q*=0, ie for e>0, 3 To'  c>0 such that P  

Pr (s(c/T 2 ;0) < 0) < E V T>To . 	 (6.39). 

Proof.  Given in the appendix. 

(6.3.2) A Univariate Model With A Partially Deterministic Trend  

One of the models considered in section 6.2.2 was the partially 

deterministic trend model 

Yt = At 
	-OA + et 	 (6.40a) 

At = At-i 
	

+ nt' 
	 (6.40b) 

The relevant eigenvalues are given by theorem 6.3 and are used in the 

Davies algorithm to produce the following table. 



True Value of q 

T 	0.0 0.01 0. 1 1. 0 10.0 

10 	.595 .590 .548 .367 .214 
20 	.610 .585 .433 .141 .049 
30 	.614 .558 .305 .052 .013 
40 	.617 .521 .205 .020 .004 
50 	.618 .477 .136 .008 .001 
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Table 6.6  

Tabulation of Pr(q ) for the Diffuse,  
Partially Deterministic Linear Trend Model 

A number of features of this table are remarkable. Firstly, if we compare it to results 

from the fixed, dynamic regression model we can see that Pr(0) is considerably lower 

in this case; 0.62 compared to 0.96. While it is good to have such a high value if q 

really is zero, the fact that the fixed startup for the dynamic regression model results 

in Pr(q ) being, for example, 0.655 when q = 0.1 and T = 40, compared to 0.205, is 

much less attractive. Secondly, the results are very similar to those found in chapter 

five for the local level model initialized by a diffuse prior. For example, for the local 

level model Pr(0) was 0.66 while Pr(0.1), when T = 40, was 0.110. 

The limiting probability as T-ko when q =0 is of some interest. In this 

case, we can use the results which we derived in the second part of section 6.3.1. 

Remember the appropriate Fredholm determinant was 

D(A) = 	[2 — VX. sin VX — 2cosVX] 	 (6.23) 

and note that 
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tr [P(0)(Id-ii ) 	) -°' 5P(0)] = tr 	 (i+ji,)-1 

d'(I+i i 

But tr 	 (T-1(T-1-1)  d , (i+ii , )-1d  _ T(T-1)(T+1)  
- 	12 	

-1 d 
T-1 

so tr 	 )-1 C] = 	t2 (T-t) 2  
t=1 

the equalities in Anderson(1971, pg 83). 

- 	 - 	 _ 	_ 1 	1 	1 So 1 im T 2  tr[P(0)(I-Fill -1/2  A(I+ii1-1 /2p (0 1  

	

- 	 —16* T-)03 

We can use Knott(1974)'s inversion formulation to work out the required limiting 

probability, which turns out to be 1 im Pr(0) = 0.62257. 

A similar extension can be employed on the dynamic regression model 

when )q=(t,t2 ). We give here only the limiting result for q*=0, but the exact 

probability for q >0 can be evaluated. To find the 1 im Pr(0) we can use the 
T-4 03 

Fredholm approach. The required Fredholm determinant is 

_48640 [2  + 	vA7_2+r2A 	 2A D(A) 	 )sinj (-2+-7)cosj] 
A 

(6.25) 

while we must also look at 1 im 1  tr [P(0)(I-Fii') -°' 5A(I-1-ii1 -0.5P(0)]. This is a 
T-) co T 

rather intractable expression; but by noting that it is the expectation of the kernel 

which generated the Fredholm determinant given above we can find the value of the 

limit of the trace by calculating the first cumulant associated with the corresponding 

characteristic function. It turns out, after a great deal of simple but tedious algebra, 

that 

has the typical element t(T-t)2  	, 

T( T-1)43+T24.T+1] using 120 L 
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dlog D(X)° 5  
dA 

_ 36x8640x2  _  3 
 A=o — 10!x4 	— 70' (6.41) 

   

Using Knott's formulation we find that 1 im Pr(0) = 0.60699. This value is slightly 
T-■ m 

lower than in the case of a linear trend. Note also how dramatically lower this value 

is compared to that recorded for the fixed, dynamic regression model. 

(6.4) The (Global) Maximum of the Profile Likelihood  

In this section we use a simulation experiment to show that Pr(q ) is a 

good approximation of the probability of a global maximum being observed at q = 0 

for the case of a partially deterministic linear trend. The study is based on 10,000 

replications for the cases where T=10,50(10) and q=0,0.01,0.1,1. The gaussian white 

noise variables were generated using the NAG routine GO5DDF. Table 	shows the 

proportion of (global) ML estimates which are exactly at zero. Bracketed beneath 

these results are the corresponding proportion of local maximums at zero. The results 

in the table indicate that the occurrences of boundary cases for the (global) maximum 

likelihood estimator is almost as common for this model as for the local maximum 

analyzed in the proceeding section. This is consistent with the observation made by 

Cryer and Ledolter(1981) in connection with the estimation of non—invertible moving 

average processes. Only when the true value of q becomes quite large, (in the region 

of one), does this result break down. 
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Table 6.7  

Simulation Results. Percentage of Global and Local Zeros.  

Diffuse Prior Fixed, Unknown Startup 

T-1 q 

10 

20 

30 

40 

50 

* 
0.0 

59 
(61) 

61 
(62) 

61 
(62) 

61 
(61) 

61 
(62) 

0.01 

58 
(60) 

57 
(58) 

55 
(55) 

50 
(51) 

45 
(46) 

0.1 

52 
(54) 

40 
(41) 

28 
(29) 

18 
(18) 

11 
(12) 

1.0 

30 
(31) 

10 
(11) 

4 
( 	4) 

1 
( 	2) 

0 
( 	1) 

0.0 

96 
(98) 

95 
(97) 

95 
(97) 

95 
(97) 

95 
(97) 

0.01 

96 
(98) 

93 
(96) 

92 
(95) 

90 
(93) 

86 
(91) 

0.1 

94 
(97) 

83 
(88) 

68 
(77) 

53 
(63)  

39 
(49) 

1.0 

78 
(87) 

40 
(55) 

16 
(32) 

7 
(18) 

2 
(10) 

(6.5) Conclusion 

We saw in chapter five that the probability that the signal noise ratio q 

is estimated to be exactly zero is very sensitive to the choice of the initial conditions 

we place on At . In this chapter we have developed this idea, and have shown that the 

probability is also sensitive to the selection of regressing coefficients. 

This finding is rather surprising. The sensitivity of the distributional 

behaviour of q to the regression design matrix is a very disturbing characteristic of 

the fixed, unknown startup procedure. It can be removed by the use of a diffuse prior 
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on the coefficients. This acts like a conditioning argument, with the first N 

observations being used to provide initial values for the coefficients. 
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Mathematical Appendix 

Proof of Theorem 6.1  As (I-Q(q) )A(I+ii +qA)-1 (I-Q(q)), 

(6.A1) 

we can use the fact that (I-Q(q))Q(q) = 0 to show that 

s(q) = S1144-qd 

(T-1) z'Q( 	(I+i '+qA) 1A( I +ii'd-qA) 1 Q(q)z 
 2 	

, +qA)-1A] PTh  z 1 Q(q)/ (I+i '+qA) 1 Q ( q)z 
(6.A2) 

However, Q(q)(z-X/3) = Q(q)z N  N(0,0-2 Q(q)(I+ii'+q*A)Q(q)'). So 

writing P(0).(I+iii) -1 / 2Q(0)(i+ii , ) 112 ,  which is an idempotent matrix, leads us to 

the observation that 

Pr(q ) = Pr 

 

'P(0)(I+q D)P(0) P(0)DP(0)u  1 (T-TT+1)  < 1 
u`13  (0)10P(0)u 	 7 

(1t0) 	 (6.A3) 

 

where D = (I+ii ) 	and u N  N(0, I). If we write the eigenvalues of 

P(0)DP(0) as NO and note that the eigenvectors of this matrix also diagonalise the 

idempotent, symmetric matrix P(0), then this probability can be written as 

Pr(q ) =Pr 

 

T-1 -N 
u1' 	(T-1) < 0  

t=1 
a. 	 (6.A4) 
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Proof of Theorem 6.2  On q = 0, we have the probability law of the score 

As(o)  = i [(T-2 1) u'R(CP(CD(q)P(q)R(eu  tr 
u'R(q)P(ORNYu 

(6.A5) 

where P(q) = (I+ii'+qA)-1 / 2 c2(q)(i+ii , +qA) 1 /2 , 

D(q) (144i , +qA)-1/2A(i+ii , +qA)-1/ and 

R(q) = (i±iii) 1 / 2 (i+ii , +qA)-1 / 2 .  

Proposition 6.1 states that R(q)R(q)' and D(q) have the same 

eigenvectors, which implies that we can use Poincare's theorem to prove that 

	

2 	 

	

ut 
	

(1+ t 	1 	]' qA 2  t=1 	 ti (t) 
(6.A6) 

where the bracketed subscript denotes the ordered index. 

It is easier to see 

t[u.'It(q)P()R(q)tu] 	1 t - T 

while tr [(I+iii+qA)-1A] = 

that 

T-1 	2 u t 123 1,  
(6.A7) 

(6.A8) 

t=N+ , (1 + q) t ) 

T-1 A
t 

t =1 	(1  + clA t )  
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Thus, 

T-1 -N 	 co 
1  U 	 2 Urn  2   / 	 At  	1-4 

T-) 	 ut coT (1 + qAt ) 21 t=1 	 t=1 

t2  7r2 	1 
_ (c + t 2r2 ) 21 (t)- 

(6.A9) 

Clearly for all  finite c the smallest values are occurring when t is infinite, so 

2 	t 	ii 	Ii  
u t  

t=1 	(c + t 2 7r2 ) 211• (6.A10) 

Hence we have that 
	

41/T2  s(c/T2 ;0)) 

co 	2 
1 	N' 	U t 	1 	\' 	 

L 	2 2,2 —2—  L 

	

(c+t 	 ( c+t12 7r2 ) t=1 	 t=1 
(6.A11) 

Then, using the arguments deployed in the proof of theorem 5.1, we get the required 

consistency result immediately o. 
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Proof of Theorem 6.3  We need to solve the following equation 

 

[C
1  

' (I+ii')--1C Cia+ii 	dd'(I+iii)-1 C1  
1 d 

(6.Al2) 

Writing z=C'(I-Fiii) ---1 Cy, F=C/(I+iii) -1C and noting the equality 

2 -1 
0 0 0 	-1 1 

so that we see that d' (CC ' )-1C = i', we look at the problem of solving 

C' (I+ ill -I-di '1 z 

The left hand side of this equality is simply z-ev, where v=i'z and 

.. -1 C' (I+11') d  

..' d 

(6.A14) 

(6.A15) 

2-i 	0 • • • 	0 - 

	

-1 2-i • • • 	0 
0-1 	2 • • • 	Q.  (6.A13) 

6t(T-t 
)(T  )  which gives the typical term e.t=1.'( 	 1) .  This allows us to write out the + 

above eigenvalue equation term by term, to give 

'Yzt = 7ve t  2z - 	- zt+i , where 	 (6.A16) 

with the three boundary conditions that 
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(1) zo  = 0 
	

(6.A17a) 

(2) zT  = 0 
	

(6.A17b) 

(3) = 	= z i+zT_1  = O. 	 (6.A17c) 

Thus to find the required eigenvalues, we need to solve a second order 

difference equation subject to three constraints. Goldberg(1968, pg 184-8) has given 

the general solution to the above equation as 

zt = sin(tO+W), 	 (6.A18 ) 

where B' is some constant and Ois such that 7=4sin2 (0/2). 

To achieve a particular solution to the equation we use the method of 
* v2 undermined coefficients. This yields z t =-6 [-7 + Tt — t 2] so giving the solution 

zt=sin(t 0+B') + 14, y  + Tt —t 2]. 
2v Imposing the constraint z 0=0 implies 0=sinB' + -67y. Hence we can 

write z t as 

tO 	 tO zt  = 2cos 	+ B , ] sin-72  + (Tt—t 2  )sinB'(cos0-1). (6.A 19) 

Imposing z =0 implies 0=cos [q. B'] sin 	implies that either 

2 k r 0 = —T— , k being some integer, 	 (6.A20a) 

2rr+r—B '  0  or 	 , r being some integer. 	 (6.A20b) 

The final constraint implies that sin —,2T°  cos 	 = 

T(1 — cos 0)sin B', so if we impose the first of the conditions implied by zT  = 0, we 



Dynamic Regression 	[Ch. 6 	158 

obtain sin B' =0, so giving the first part of the theorem using the definition of the 

eigenvalue solution. The imposition of the the second condition is more complicated. 

It implies, as 

cos(rr + 0.57r—O) = sin(rir + 0.570sin 	 (6.A21a) 

sin(r7+0.57 	T ) = sin(r7+0.570cosq, 	 (6.A21b) 

that sin---9sin0sin(rir+) = Tsin(r7r+ir)2sin2 (2)-cos.1- 1-7/ 
	

(6.A21c) 

we need to solve the equation tan T, which, of course, has no closed form 

solution. However, it is easy to see that the rth smallest solution to this equation has 
1 to be in the interval T 06(27rr,27(r+I)), which proves the theorem o. 



2-1 0 	• • • 0 
—1 	2 —1 • • • 0 
0-1 2 • • • 0 

2 —1 
0 	0 0 —1 1 

If we write E = ED as a (NxN—n) matrix, and D = 
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Proof of Theorem 6.4  It is not difficult to see that we will have to use (N+1) 

observations in the construction of a proper prior. Given the information set 

available at time N+1, we can write 

1LN+1 
X+0 

where X+= 

= YN+1 
+ = y — 

Z:Saq 

N+1 

+ y-1 + 6_1 

_L  
Y = 

xN+113N+1 
+ — E 

Y2 

YN+1 

EN+1' 
+ 	+ —77 	, 

= 
Y1 

YN 

(6.A22a) 

(6.A22b) 

 1772 	) 
and • ' 6 —1 = 

E 	 LEINI ' 	= 

Thus we have the result that 

vs = Ys Ys I N+1 
= (xs  — xN _Fi ) (X+ )-1 (e+  — 6+  — 77+ ) + Es 6N+1 71N+1 -****+ ns • 

'  

then 

v.N(0, cr2  (I + qA + 	+ X* (X+ )-1 (D+qI)(X+ )-1  ' X*  ' 
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+X* (X+ )-1E + E ' (X+ ) --1 ' X* ' ) 

* where y.(vyT)/ and X = (xN+2— xN+1 ,...,xT—xN+/ )'. Hence the 
log—likelihood function for (y i ,y2 ,...,yT )' is simply 

a-2,q). (T—N-1) 1 	2 1 k 	 , 	 —1 
2 	log G.  — &-ogi F+qG1 v i (F+qG) y  

2 	, (6.A23) 

where F = I + ii' + X * (X+ )-1D(X+ )-1-  ' X* ' +X* (X+ )—  E + E' (X+ )-1  ' X*1  and 

* * 	—1- 	—1-  G = A + X(X+)(X+)'X / o. 



Dynamic Regression 	[Ch. 6 	161 

Proof of Theorem 6.5  Now 

T.-N-1 
s(q) = — 	A t (P(q)(I+ii +qA)-1 l2A(I+ii +ciA )-1/2P ( C1)) 

t=1 

(T—N-1) z'Q(q) 1  ( 	A) 1  A (i+i i 1 +qA.) 1 Q(q)z  — 
+ 	 (6.A24) 2 

Using the same methodology as in the proof of theorem 6.2, we can manipulate the 

ratio of quadratic forms under the assumption that q = 0. The sum of eigenvakes 

can be tackled in the same way using a lower, rather than upper, bound on the 

eigenvalues. This means that this sum is greater than 

T-1 
A t  

t=N-i-i 	( 1  + clAt) 

T-1 
1  	as T-)03, for q = c/T2 . 

(c + 

So, 

1 im £(1/T 2  s(c/T 2 ;0) ) 
T-qo 

co co 
1 7 	1  2 	

t 27r2 
t2 r2  t=1 

ut (c+t 2 R.2 )2 	2- I, 
t=N+1 

(6.A25) 

= 

z 1 Q(q) 1 (I-Fiii-hqA)-1 Q(q)z 
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co 
—1 	1 	t 2 R-2 

Now EX(c) c z 
(c 	t 2 r2 ) 2  t.N+1(c-Ft272)2 

	2 
t=1 

(6.A26) 

co 	 N 
1 	 t 	2 'K2  and both   and 	 are bounded for all c. Hence 2 2 \ 2 	 ( 	2 2 \ 2 

t=N+1 Ì, c+t 7r  i 	t=1 ‘ c  + t 7r  ) 
the expectation is of order c 2 . However, the variance of X(c) is simply 

co 
t 474 	which is bounded for all c. 

7 t= i (c+t 22)4, 

Thus, following the proof of theorem 5.1, the theorem is proved using Chebyshev's 

theorem by allowing c to be chosen arbitrarily large.° 
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Proposition 6.1  (I+ii +qA)-1/2A(i+n1+qA) -1/2 and  

(i+ii , +qA)-1/2 (i+ji , )(i+ii , +qA)-1/2 have the same eigenvectors. 

Proof.  (I+ii'l-qA)-1/2A(i+ii, +0..-112 ) 	is of full rank. So 3 P such that 

P'P = 	and A is a (T-1)x(T-1) diagonal matrix, such that 

(I+ii +qA)-1 /2A(I-Fii -1-qA)-1 /2  P = P A. 	 (6.A27) 

Writing P * = (I+ii`+qA) 1/2 P, we have that 

qP *  = P *A-1 . 	 (6.A28) 

Equally, (I+ii'd-qA)(i+ii, )(i+ji , +qA .-1/2 ) 	is of full rank So 3 R such 

that P'P = IT-1' and A is (T-1)x(T-1) diagonal matrix such that 

(I-Fii 	 +qA)-1 /2  R = R A. 	 (6.A29) 

So writing R*  = (Id-ii'd-qA) 1 /2R, we have that 

R*  = R* 
	

(6.A30) 

Thus by comparing (6.A30) with (6.A28) we have proved the theorem by using trivial 

eigenvalue manipulations .o 



Chapter Seven 

On the Probability of Estimating 
Deterministic Components in the  

Local Linear Trend Model  

Summary  The link between the local linear trend and an unconstrained second order 

moving average process is established. This suggests there maybe three cases which 

generate irregular asymptotic results. 

Kitagawa's trend model is analyzed in some detail. An approximation to 

the log—likelihood is suggested for this model. The result is that we can prove 

T4—consistency on the ML estimator of the signal—noise ratio on the slope component 

Gad 
The local linear trend is much harder to analyze as the score vector has 

two components. Consistency results are established for the ML estimator of the two 

signal—noise ratios under various assumptions. Finally, the probability of estimating 

deterministic components in this model is found. 

Key Words  CHARACTERISTIC FUNCTIONS, NUMERICAL INVERSIONS, 

SIGNAL NOISE RATIOS, NONINVERTIBILITY OF MOVING AVERAGES. 
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(7.1) Introduction.  

The local linear trend model has provided the framework for much of the 

work in the structural modelling of time series which has occurred in the last decade. 

The model is given by 

Yt 
	 + et , et  N NID(0, o2 ) 	 (7.1a) 

fit-i 
	 N NID(0, qu2  ) 	 (7.1b) 

fit 	fit-1 
	

▪ 

q,N NID(0, pu2 ) 	 (7.1c) 

where (et ), (77t ) and ((t) are assumed to be independent. (ic t ) can be viewed as a 

stochastic level, while (fi t ) is a stochastic increment term. 

The local linear trend can be viewed as a rationalization of Holt's(1957) 

(see Chatfield(1984)) forecasting scheme. Its natural interpretability has meant that it 

has found applications as a part of a wider class of models used in the work of, for 

instance, Harrison and Stevens(1976), Harvey(1989), Clark(1987) and Watson(1986). 

This paper deals with the important case where the initialization of the 

model takes the form of a bivariate diffuse prior, where 

[Pobol 
N N(0, KI), K-ko 	 (7.2) 

with ,a0  and 00  assumed to be totally independent of the noise in (7--0. 

Of course, when twice differenced, this model has a restricted moving 

average representation. To understand this we look at the autocovariance generating 

function (AGF) of an unrestricted MA(2) model and the twice differenced local linear 

trend. The parameters of the MA(2) process will be taken to follow the convention 
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that the associated characteristic equation will have roots which are on or inside  the 

unit circle. This is merely an identification condition. -y(t) will denote the t—th 

autocovariance of the random variable of interest. 

The AGF of the MA(2) z t  = ut  + O1u 	+ 02u 2  ( where ut  is defined 

as white noise, with variance o-+2 ) is 

co 
g(L) = 	-y(r) L T  = cr+2 [{1 + 0 L + 02  L2}{1 + 0 L-1  + 21'-2}J 1 	 1  

0-4- 2{{1 + 021 + 022} + L{01  + 01  02} + L202  + L-1 {01 + 01  02}+ L-2 021, 

(7.3) 

while for the twice differenced local linear trend, we have 

g(L) = 	7-) LT  = 0.2 [{(1_44)(1_L-1 )q} p {(1—L) 2 (1—L-1 )2 }]  1,(  

= o-2 [{2q+p+6}+ 14—q-41 + L-1{} + L2 + L-2]. 	(7.4) 

Equating the first two autocorrelations achieves the following relationships: 

Theorem 7.1  

q = —4 — {01 (1+ On
4
)} p = {1 + 021  + 	— 2q — 6 

7 

0 2 	 02 
(7.5) 

Proof  Given in the appendix. 
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These relationships will allow us to display the precise relationship 

between the parameters of the unrestricted MA(2) process and the differenced local 

linear trend. This is best done in diagram 7.1, which displays the region of 

invertibility of the unrestricted MA(2) (see theorem 4.2, pg 172, of Goldberg(1958)), 

and the corresponding permissible parameter space for the local linear trend. This is 

similar to the one given by Godolphin and Stone(1980). Note their results are 

concerned with a slightly different local linear trend. 
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Diagram 7.1  

Shaded area is given by the invertibility convention, 0 / <0, 02 >0 and the equation 

0 = —4— {01 (1+02 )} . 
6 2 

1 
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The diagram 7.1 allows us to pick out the main features of the various 

stochastic trend models proposed in the literature. In particular, we can see that the 

local linear trend model considerably restricts the permissible parameter space. 

Further, the imposition of q = 0, as suggested by Kitagawa(1981) and Kitagawa and 

Gersch(1984), has an enormous effect on this space. 

The diagram suggests that there will be three non—standard distribution 

problems associated with the ML estimation of this model:— 

(i) under the restriction q = 0, if the true value of p is zero, 

(ii) if the true value of q is positive, but the true value of p is zero, 

(iii) if the true value of q and p are both zero. 

It turns out that each of these problems will give rise to significantly 

different results. 

The third case is of particular importance for it corresponds to the 

estimation of two unit roots for the restricted MA(2) model. This is of interest as no 

researchers have been able to make any progress with the unrestricted model. 

The distributional work associated with the estimation of noninvertible 

MA(2) is very difficult and as a result, little progress has been made in this area. Only 

Anderson and Takemura(1986) and Tanaka and Satchell(1987) have written in this 

area and even they have made limited progress. Tanaka and Satchell's work is the 

most advanced of the two. In their paper they analyzed the following model 

(7.6) 

where (et ) is a gaussian white noise process. Thus (7.6) is a constrained MA(q) 

process. If we look at diagram 7.1 we can see that their analysis for the case q = 2 is a 
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irery specialized one. We can also see that their work gives us few clues for the 

Inalysis we want to pursue because it does not conform to the shaded area which is of 

nterest to us. 

:7.2) Kitagawa's Local Trend Model 

Suppose we think of the local linear trend model, given by equation (7.1) 

Ind (7.2). The log—likelihood for (y i ,...,y,r ) is the same, apart from a log k term (see 

Jong(1988)), as that for v=(v3 ,...,v,r ) /  , where 

2 vt 	= 	Yt 

= Yt 2Yt-1 Yt-2' (t=3,...,T) 	(7.7) 

ft is therefore not difficult to show that 

v.N(0, o-2 (Bd-qA-1-pI)), where 	 (7.8) 

6-4 1 0 . 	. 0 0 0 - 
—4 6 —4 1 . . . 000  
1 -4 6 —4 . . .000  
0 1 —4 6 . . .000 

	

O.. 	. 

	

o 0 0 0.. 	6-4 
0 0 0 0 . . . 1-46 

B (7.9) 



2-1 0. . . 0 0 
—1 2 —1 . . . 0 0 
0-1 2. . . 0 0 
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(7.10) and A= 

0. 	O... 
0 0 0. . .-1 2_ 

When q is constrained to be zero the model corresponds to the 

Kitagawa(1981) and Kitagawa and Gersch(1984) trend model. Young(1984, pg 74) 

calls this model a double integrated random walk. It can also be shown to be a cubic 

spline (see Wecker and Ansley(1983)) for equally spaced observations. Imposing this 

constraint tends to result in a smoother estimated trend (see Harvey(1989, ch. 6.1)) 

The log—likelihood function is 

— (T-2) 	2 1 	 v (BIT) lv /(o-  2,p) — 	2   log a 	n- log1B-FpIi  
2 

(7.11) 

and this this yields the following profile log—likelihood by concentrating a2  out of the 

log—likelihood, 

M(p) =  (T— 	' 22)  logy   (B+A-1v  log I B-1-pI I. 

The probability law of the score is 

-1 1(11E21] ipL4 v (B-Fp I ) (ITT -4) v  tr [(B+pI)-11 
dP 	 v (B-EpI) v 

(7.12) 



0 	. 	 . . 	 0 	0 
0 	. 	 . . 	 0 	0 
0 	. 	. . 	0 	0 

0' 	. . 	 0' 
0 . 	 . . 	 0 	1 _ 

1 0 
0 0 
0 0 

G = 

0 0 

(7.16) 
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T-2 2  * 
ilt ( P 	+ 61 )  T-2 

(T-2)  t=1 (p + 5+) 2 	1 	1  
2 T-2 	2 	4' 	+ 	2 t =1 (13+  84 ) ut  ( p + S t  ) 

t =1 ( p+ 84t-  ) 

 

=- I (7.13) 

  

where et-  denotes the t—th eigenvalue of B, u t  N  NID(0,1), and 

p denotes the true value of p. 

The probability of having an estimated value of p being zero is 

Pr(p*) = Pr [dM  

   

( 7.14) 

  

< 	. 
p=0 

  

   

Some convenient simplifications can be achieved if we analyze the 

structure of the matrix B. Marshall(1989) noted that if we write 

0 1 0 . . . 0 0 
1 0 1 . . . 0 0 
0 1 0 . . . 0 0 

F = (7.15) 

0. 	0' 	. . 0.  1 
0 0 0 . . . 10 _ 

then B = 41 + F 2 — 4F + G, where 



T-2 
7 u 2 ( I)  +St)  [5t-1  — S-1 ] < 0 t 	S t  

Pr(p ) = Pr 
t =1 

(7.19) 
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Hence, if we were to make the mild assumptions that e 1 =0 and eT=0, we can use the 

eigenvalues of F (c.f. Anderson(1971, theorem 6.5.5)) to deduce that the exact 

eigenvalues of 41 + F 2  — 4F are 

t 7r  St = 4 + w 2
t — 4wt' where w t = 2 cos T-1 

(2 — wt ) 2  

2 
= [ 4sin2 	

4. 	
, (t=1,. ..,T-2) 

2(T-1) 

(7.17) 

(7.18) 

We can either calculate t numerically, or use the approximate values 

St' when we come to compute Pr(p ). We showed in chapter five that this probability 

is not sensitive to these types of assumptions and so we use St  here. It is easy to show 

that 

    

T-2 

6.  t 	• 
=1 

where b--1 	1  = 

   

( T-2 ) 

Using Davies'(1980) algorithm we can compute the following table. 
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Table 7.1  

Tabulation of Pr(p ) for Kitagawa's Trend Model 

True Value of p  

0 0.001 0.01 0.1 1.0 

10 .649 .634 .534 .276 .115 
20 .667 .477 .207 .068 .028 
30 .673 .268 .087 .023 .016 
40 .675 .155 .035 .015 .015 
50 .677 .094 .019 .012 .012 

Of particular interest is the case where p =0. For this case we can use 

the fact that 

4 4.  4 = 	I! 	+ 0 (T "....-6) 
°t 

T 4 

m 	2 	m u 
L 4 t 4 < 	1  

	

t r 	A474 
t=1 	t= 

to see that 

1 im Pr(0) = Pr 
T-3c0 

(7.20) 

(7.21) 

(7.22) 

It is known (c.f. Abramowitz and Stegun(1965, pg 807)) that 

t-4 =  27)
4 
 1B4 1, 

2 . 4 ! t=1 
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1— where B4 is the 4—th Bernoulli number. This is 	, so 

1 im Pr(0) = Pr 
T-90, 

\, 	u t  c° 	2  1 
L 44 < 	 90 t=1 t  

(7.23) 

   

   

co 	2 

	

The characteristic function of \‘ ut 	 is known to be (c.f. Tanaka and L t4 74 
t=1 

Satchell(1987)) 

30 

[ com  . sin(2i0) 1 /4 . sin h(2i 0 1 /4  

(2i 6) 1 /4 	(2i0) 1 /4  

—1/2 

 

(7.24) 

  

Using Knott's(1974) numerical inversion this value is 0.6815. 

Finally, in this section, the following theorem will be proved. 

Theorem 7.2  When p =0, the ML estimator of p in 0(T) 1  i.e. for any e>0, 3 To 

 and c>0 such that 

[dlyljp1 
p=c/T4  > 	< E, V T > T0 . 	 (7.25) 

Proof.  Given in the appendix. 
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(7.3) The Local Linear Trend Model  

When both p and q are unknown, the log-likelihood is 

kp,q,a2 )  = (T-2)  log 2 1 2   l u / log I B+qA-EpI) 	v (B+qA+pI)-iv  
2 0. 2  

(7.26) 

giving the profile log-likelihood as 

M(p,q) 

 

-1 	1 log v (Bd-qA+pI) v - log I B+qA+pI I. 

 

(7.27) 

The score vector has two elements; the first is 

- dM(p,q)_ (T-2) .v (BtqA+p I ) 1 A(131 -1-qA+pI) iv  1 tr  {(B+ciA+pirli 

	

dq 	2 	v (B+qA-FpI ) v 	 2 I.  
(7.28) 

while the second is 

- dnp,q)  = (T-2) v (B-FqA+p I ) -1   (Bd-qA-FpI) lv 	tri(B+qA-Fpl -1 

	

P 	2 	v 	 v 	 [ 
(7.29) 

As we can write 

A= 21 - F, 	 (7.30) 
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if we were to assume that 6 1 =0 and eT=0, the probability law of the first element of 

the score would be 

   

* 	* 
u t

2 A t (A t
2 + q A t +p ) 

(A 2+0,+0 2  

 

1 

T-2 

(T-2) t=1  
2 'T-2 

t=1 

 

T-2 
1 \ 	A t  
/ L 	2 

t =1 (At +clA t +P )  

 

u t 
2 (A t 

2 +q * A t -PP
* 
 ) 

 

  

(Al 2 +qA t+P ) 

  

      

      

(7.31) 

where A t  are the eigenvalues of A and are such that St =A t2 The second element of 

the score is 

T-2 u2 ( A 2 +q * A +p ) * 
t 	t 	t  

(T-2) t =1 	
(At2+qAt+p)2 

2 • 

	

	 * 	* T,-.2 u t
2 (A t 

2 +q A t +p ) 
L 

t=1 

1 
T-2 

/ 
1 1  

t =1 (A2t +clA t+P )  

(A t 2 +qA t +p) 

(7.32) 

Hence, the probability that both q and p are estimated to be zero is 
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T-2 2 ut 	(A t  2 
	* +qA t +p ) 

(At-1  — A-1 ) < 0 
2, 	2 

t=1 	A t 
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(7.33) 

ut 2 (At 2 +q * A t -Fp ) 

t=1 	A 2 
 t 

   

(A t-2 — A -2 ) <0 

This probability can be evaluated exactly using the routines discussed in 

chapter 3. The results of these calculations are given below. The marginal 

probabilities are computed using Davies'(1980) algorithm for evaluating the 

distribution function of a univariate random variable. 

The joint probability reported here is of some interest as it represents 

the probability that a deterministic trend is estimated from the data. The marginal 

probabilities are unfortunately less informative. They are upper bounds on the 

probability that the parameter is estimated to be exactly zero. 

Pr 



q 	P p and q 

.00 	.000 0.668 0.647 0.625 

.00 	.001 0.478 0.461 0.442 

.00 	.010 0.207 0.180 0.172 

.01 	.000 0.597 0.573 0.553 

.01 	.001 0.451 0.429 0.412 

.01 	.010 0.205 0.176 0.169 

.10 	.000 0.365 0.318 0.307 

.10 	.001 0.325 0.280 0.270 

.10 	.010 0.192 0.150 0.146 

Parameter Value of Estimate Probability a zero 
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Tabulation of the Probability of Boundary Cases  

Sample Size of 10 

Parameter Value Probability of a zero Estimate 

q P p and q 

.00 .000 0.649 0.632 0.615 

.00 .001 0.634 0.618 0.601 

.00 .010 0.534 0.520 0.503 

.01 .000 0.632 0.618 0.598 

.01 .001 0.619 0.602 0.585 

.01 .010 0.526 0.510 0.494 

.10 .000 0.529 0.509 0.493 

.10 .001 0.521 0.501 0.485 

.10 .010 0.464 0.445 0.430 

the marginal probabilities are upper bounds. See the text. 

Sample Size of 20 
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Sample Size of 30 

Parameter Value Probability of a zero Estimate 

q P p q p and q 

.00 .000 0.672 0.650 0.628 

.00 .001 0.270 0.248 0.236 

.00 .010 0.080 0.052 0.039 

.01 .000 0.531 0.502 0.482 

.01 .001 0.259 0.230 0.220 

.01 .010 0.080 0.051 0.038 

.10 .000 0.260 0.194 0.187 

.10 .001 0.197 0.139 0.136 

.10 .010 0.077 0.045 0.032 

Sample Size of 40 

Parameter Value Probability of a zero Estimate 

q A p q p and q 

.00 .000 0.675 0.652 0.629 

.00 .001 0.156 0.124 0.121 

.00 .010 0.038 0.022 0.009 

.01 .000 0.464 0.428 0.411 

.01 .001 0.150 0.114 0.112 

.01 .010 0.038 0.022 0.009 

.10 .000 0.194 0.119 0.112 

.10 .001 0.117 0.066 0.063 

.10 .0 10 0.038 0.021 0.009 
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Sample Size of 50 

Parameter Value Probability of a zero Estimate 
q P p q p and q 

.00 .000 0.677 0.653 0.630 

.00 .001 0.087 0.059 0.050 

.00 .010 0.027 0.016 0.004 

.01 .000 0.404 0.361 0.347 

.01 .001 0.091 0.058 0.057 

.01 .010 0.018 0.005 0.004 

.10 .000 0.147 0.077 0.075 

.10 .001 0.074 0.034 0.033 

.10 .010 0.019 0.005 0.004 
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These tables indicate that the true value of p is very important in 

determining the probability that p and/or q are estimated to be zero. Although this is 

not particularly surprising, it is interesting that the value of p does change the 

probability of a boundary value for q so dramatically. It would seem that the 

estimation procedure does sometimes mix up the presence of variation due to noise on 

the /it  term and that due to noise on the fi t  term. 

Finally, we prove the following consistency theorems. 

Theorem 7.3 When q >0 is known, and if p =0 then the ML estimator of p is 

O(T 2 ) i.e. for any e>0, 3 T o and c>0 such that 

Pr 2  > 	< e, V T > To . 
q=q ,p=c/T 

(7.34) 

   

Proof  Given in the appendix. 

Corollary 7.1  When q >0 but is unknown, and if p =0 then the ML estimator of p is 

O (T 2 ) i.e. for any E>0, 3 T o  and c>0 

Pr[ N/2)- > = e, VT > To q=q, p=c/T` 
(7.35) 

 

where 4 is the ML estimator of q. 

- 	2 Proof.  Follows precisely the arguments of the proof of theorem 3.1 as 	+0 (1) even 

when p2 is possibly zero; see Dunsmuir and Hannan(1976) o. 
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* * 
Theorem 7.4  If p =q =0, then the ML estimator of q is O(T 2) and the ML 

estimator of p is O p(T-4), 

P 1 
= pr  

i.e. 

q) 

q=c/T" 
p=d/T4  

for any 77, 

> 

0  
q=c/T` 
p=d/T4  

e>O, 

< 

> 

3 To  and d, c>0 such that 

77, and 	 (7.36) 

< E, V T>T0 . 	 (7.37) 

[dM(p,q)  
dq 

P 2 	
p r [dM P  

d p 

Proof.  Given in the appendix. 

These theorems indicate that the rate at which the estimator of p 

approaches zero is very rapid. This speed is accelerated when the true value of q is 

also zero. 
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Mathematical Appendix 

Proof of Theorem 7.1  Equating the first two autocorrelations we have 

1 	_ 	0
2 	and 2q 	p + 6 — 1°4_1(1021+ +020 

__N+4) 	_ 	 
2q + P 6  1 + 	+ 022 

(A7.1) 

	

01  (1 + 02 	) So —q —4 = 	, which gives the first result, while 

1+ 4+ 

	

p + 6 = —2p + 	02 	, allows the second result a. 
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Proof of Theorem 7.2  

The probability law of the score, when p =0, is 

 

T-2 

(T-2)  t =1 
2 T-2 

t=1 

 

t[T-4  s(p;0)] = 
T-2 

1  

t =1 (P+6±t 

  

T-2 
ut 

2 
t  Noting 	1  

(T-2) t =1  (p t +Ot ) 

 

(A7.2) 

(A7.3) 
p=c/T4 -4 I" 

 

1 we have that 1 im t [ T 	= 2  
T-)co 

	

T-j2 2 4 t4 	T-2 ut ir 1 
 Z 

 
	442 

	

 (c-i-r t ) 	t  = 	c+r4t4 

  

(A7.4) 

Following theorem 5.1, the proof is completed o. 
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Proof of Theorem 7.3  

Recall in-40-13.  

T-2 u t 2  (A 2t  + q*) 

(A t  2+q* A t +p) 2 	T-2 
(T-2) t=1 	1 	1  
22 * T=2 ut 2 (At  2+ q * A t  ) 	t1 (A t +cl A t +P )  

2,  
t= 	(A t 2 +q * A t  +p) 1 

(A7.5) 

But 1 	\, u t (A t +cl A t )  
T-2 L 	  

t=1 (A t 2 +q * A t +(c/T 2 )) 

2 
At   as 	— 	2 27r t + O(T) = 0(T-2 ), so 

1 im[T-2 dM( q 
* 

T--) 	 d p 
P 

CD 

1 
2 t=1 

2 * 2 	2 u t  q t 	ir co 
1 	1 

(q* t 2 712+c)2 2 t.L' i c+q 2 t  2 	2 71  

(A7.6) 

Using the usual argument, the theorem follows o. 
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Proof of Theorem 7.4 

- 	d It is easy to see that 1iin T 	M —4  
T-ico 2 e=c/T4  

p=d/T 

= 1 

co 

 

co co u t 
2t 6 76 

1 7 	t 2 7r2 1 7 
L 	4 4 2 2 2 — L 4 4 	2 2 t=i  (t 7 +ct 7 +d) 	2 t=i  (t 	+ct r +d ) 

= 

   

(A7.7) 

and 1 ina / 1 dM(P' cl )  
[T4  T-ico 	dp 2 q=c/TA  

p=d/T' 

244 	co 
ir_1 7 	11 t 	7r 	1 \, 	1  

7  L 
2  til l (t4r4+ct27r2-Fd)2 	(t474+ct272+d  

t=1 

 

= AY(c,d)). 

  

(A7.8) 

So EX(c,d) = — 	ct 47 4 +dt 2 7r 2 

t=1 (t4 714+ C t 2 72 +d) 2 

co 
t 4  74  

< 	(0,4+ct 2,2+d) 2 

CD 

and VX(c,d) = 1 	t 12 712 
-2- t=i (t4 r4+ct 2 72+d)4' 

So 1 im P <VX(c,d)  
T- 	1 .) [ E ( c , d) 2  

(A7.9) 

(A7 .10) 
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co 	12 12 2 	t 	7F 2 < 	 = 	g(c,d). 	(A7.11) 
2 c 2 t=1 (t4 4 7 +ct2 2  7r +d) 4 	c 

co 44 t 	7r  

	

4 4 	2 2 	2 (t 7r +ct 7r +d) 
t=1 

But g(c,d) is bounded from above for all c and d, so 1 im P 1  can be made arbitrarily 
T-ico 

small by choosing a large enough c. 

Having chosen c, we can now work on the value of d. 

EY(c,d) = _ 1 	et 2  72+d  
(074+ ct  2 72+d) 2 

(A7.12) _ 	24 
( 

4 4+ct 2 7r2+d) t=1 7  

oa 
and VY(c,d) = 1 	t 8  78  

t=1 (t474+ct27r2+d)4 

So 1 i m P 2 can be made arbitrarily small by choosing d appropriately 

large o. 
t —ico 

(A7.13) 
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