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ABSTRACT

Most of the results in this thesis are obtained for the 

logit/probit model for binary response data given by 

Bartholomew (1980), which is sometimes called the two-parameter 

logistic model. In most the cases the results also hold for other 

common binary response models.

By profiling and an approximation, we investigate the behaviour of 

the likelihood function, to see if it is suitable for ML estimation. 

Particular attention is given to the shape of the likelihood around 

the maximum point in order to see whether the information matrix will 

give a good guide to the variability of the estimates.

The adequacy of the asymptotic variance-covariance matrix is 

investigated through jackknife and bootstrap techniques.

We obtain the marginal ML estimators for the Rasch model and

compare them with those obtained from conditional ML estimation. We 

also test the fit of the Rasch model against a logit/probit model with

a likelihood ratio test, and investigate the behaviour of the

likelihood function for the Rasch model and its bootstrap estimates 

together with approximate methods.

For both fixed and decreasing sample size, we investigate the

stability of the discrimination parameter estimates , when the 

number of items is reduced.
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We study the conditions which give rise to large discrimination 

parameter estimates. This leads to a method for the generation of a 

(p+l)th item with any fixed , and g.

In practice it is importante to measure the latent variable and 

this is usually done by using the posterior mean or the component 

scores. We give some theoretical and applied results for the relation 

between the linearity of the plot of the posterior mean latent 

variable values, the component scores and the normality of those 

posterior distributions.
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Figure 4.3- Comparison between *,'s from fitting a logit/probit and 
the Rasch model to 30 normal bootstrap samples from the ART on
black women.

Figure 4.4- Comparison between t '̂s from fitting a logit/probit and 
the Rasch model to 30 normal bootstrap samples from the ART on
black women.

Figure 4.5- Comparison between *^'s from fitting a logit/probit and 
the Rasch model to 30 normal bootstrap samples from the ART on
black women.

Figure 4.6- Comparison between t ^'s from fitting a logit/probit and 
the Rasch model to 30 normal bootstrap samples from the ART on
black women.

Figure 7.1- Relation between E(Z|x) and ^ ^i.i^i when fitting a 
logit/probit model to the Law School Admission Test, section 6.

Figure 7.2- Posterior densities h(z|x) when fitting a logit/probit 
model to the LSAT VI, for the score patterns '00000', '01000',
'00101', '01101', '10111' and '11111'.

Figure 7.3- Relation between E(Z|x) and ^ ^x^ when fitting a
logit/probit model to Test llA (Ireland, items 1 to 6 , 8 to 10).

Figure 7.4- Relation between E(Zlx) and ^ ,x^ when fitting a
logit/probit model to Test llA (Ireland, items 1 to 10).

Figure 7.5- Relation between E(Z|x) and ^ ^x^ when fitting a
logit/probit model to Test 12.

Figure 7.6- Relation between E(Zlx) and J x̂̂ , assuming , and
a,g , equal to infinity, when fitting a logit/probit model to Test 12.
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Figure 7.7- Relation between E(Zlx) and ^ when fitting a
logit/probit model to Test 13.

Figure 7.8- Posterior densities h(zix) for the first ten different 
score patterns of Test 12, for which -2.26 < E(Ztx) < -1.67).

Figure 7.9- Posterior densities h(zix) for some score patterns of Test 
12, for which -0.81 < E(Zix) < -0.66).

Figure 7.10- Posterior densities h(zix) for the last ten different 
score patterns of Test 12, for which 1.39 < E(Z|x) < 1.90).

Figure 7.11- Representative collection of posterior densities h(zix) 
for the observed score patterns of Test 12.

Figure 7.12- Representative collection of posterior densities h(zix) 
for the observed score patterns of Test 13.
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Chapter 1

LATENT TRAIT MODELS FOR BINARY RESPONSES

1- Introduction

In this thesis variables will be either categorical or metrical. 

Categorical variables are measured in a nominal or ordinal scale while 

metrical variables assume values in an interval or ratio scale 

(discrete or continuous).

Whether categorical or metrical a variable will be either 

manifest (directly observable) or latent (not directly observable, and 

generally called a factor in factor analysis).

Bartholomew (1987) has classified latent variable models according 

to the type of latent and manifest variables: factor analysis (both

variables are metrical), latent trait analysis and factor analysis of 

categorical data (latent variables are metrical and manifest variables 

are categorical), latent structure analysis (latent variables are 

categorical) divided into latent profile analysis (metrical manifest 

variables) and latent class analysis (categorical manifest variables). 

Bartholomew discusses these models from a new point of view, starting 

from a general model(1.5) that allows these techniques and some ones 

to emerge as special cases.
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When discussing factor analysis for categorical data and latent 

trait analysis, two approaches are considered for the construction of 

the models : the Underlying Variable (UV) approach used in the factor 

analysis tradition, where the categorical manifest variables are 

supposedly produced by underlying continuous variables, and the 

Response Function (RF) approach with its origin in the theory of 

educational testing and developed further in Bartholomew (1980,1981), 

It starts with a response function giving the probability of a 

positive response for an individual with variable value y .

He shows that the two models can be equivalent for binary 

variables, but not for polytomous variables. He also points out that 

when they are equivalent the choice between them depends on taste.

In this thesis we shall use the Response Function approach to 

latent trait analysis, for which follows a review of the literature.

2- Definition of the Model

2.1- Notation and Assumptions

We shall consider the case when the manifest variables are binary 

and the latent variables are metrical. This situation happens, for 

example, in a survey where individuals are asked to answer questions 

by yes or no, agree or disagree, or in educational testing where the 

students may answer an item in a test right or wrong. Usually the two 

possible outcomes are coded as 1 (positive), otherwise O(negative).

Thus if the test has p items and is answered by n individuals then 

the data matrix will be an (n x p) array of zeros and ones. We shall
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refer to any row of the data matrix as a response or score pattern, 
which is the set of responses of a given individual. Therefore there 

are 2P different possible response patterns, which number increases 

quickly with p so that some patterns will probably not appear in the 

sample. For practical purposes in the samples we shall list only those 

response patterns which occur at least once.

Notation

Let X-=(X, ,Xj, . . . ,Xĵ ) be a vector of p manifest variables, where 

X^ is equal to 1 or 0 for all i, and Y-(Y, ,Yj, . . . ,Yp) ' a vector of 

latent variables. Then the joint distribution of the X's is given by

f(x) h(y) g(xiy) dy (1.1)
Ry

where

Ry the range space of y ,

h(.) is the prior density of y ,

g(.iy) is the conditional density of x given y .

Our main interest is what we can know about Y after X has been 

observed. This comes from the conditional density

h(yix) - h(y) g(xiy) / f(x), 

which depends on our knowledge about h, g and f.

Obviously f(x) is the only density function about which inferences 

can be directly made, and therefore all the information we can get
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about g and h comes from knowledge of f. It follows that they are not 

uniquely determined (Bartholomew,1980). As we cannot obtain a complete 

specification of h(yix), we need to make some restrictions on the 

class of functions to be considered.

The assumption of conditional independence

P
g(xiy) -= n gi(xiiy) (1.2)

i=l

is usually considered necessary for effective theoretical work with 

response functions. It is almost the definition of the concept of 

underlying factor in factor analysis. For it means that the 

association between X's is wholly explained by their dependence on 

the Y's. Consequently, if Y is held fixed there will be no correlation 

between X's. This assumption cannot be tested empirically, since it is 

part at the definition of Y. We will come back to this point later on.

Conditional independence for g means that the set of latent 

variable is complete, i.e, Y is sufficient to explain the dependence 

between the X's.

As the X's are binary.

gi(xiiy) = [^i(y)] *1 [i-%^(y)]^"*i i=i,...,p (1.3)

where tt̂ (y)=P [Xĵ =l Iy] is called response function by

Bartholomew (1980). In educational testing, where most of the models 

have been developed for a one-dimensional latent variable representing 

an ability of some kind, ^^(y) is called item characteristic curve 

(ICC) or item response function (IRF).
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Consequently from (1.2) and (1,3), the joint density function of 

the x's (1.1) can be written as

f(x) h(y) n { } dy. (1.4)
Ry i = l

2.2- Response Function

Many suggestions about the shape of response functions and prior 

distribution of the latent variables have been made over the years. 

These have given rise to different models.

We shall present some of these models, starting from a general 

model (1.5) and deriving them as special cases.

The choice of a suitable response function was discussed by 

Bartholomew (1980), where he gave a set of properties that a family of 

response functions is desirable to possess. For instance, he says 

that the response function should be monotonie nondecreasing in the 

latent space, a property also implied by the normal ogive and logistic 

models, as we will see later. This implies, for example, that the 

probability of a correct response increases with ability (educational 

testing). Bartholomew also proposed a class of linear models with 

response functions satisfying:

q
G-i(%i(y)) - + I %i,j H-i(yj), i=l.... p (1.5)

where
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%i(y) is the response function,

yj (j=l,2,...,q) are independently and uniformly distributed 

on (0,1) and functions G and H are distribution functions of 

random variables symmetrically distributed about zero.

In practice he limits the choice of C ’ and H"’ to the commonly 

used functions, the logit (logit(v)-=log[v/(l-v) ]} and the probit 

[probit(v)=$"i(v), where $ is the standard normal distribution]. 

Considering these functions, the following models can be derived:

Logit when both G"’ and H"’ are logit functions 

Probit when both G"’ and H"’ are probit functions and 

Logit/Probit when G"’ is a logit and H"’ is a probit function.

The logistic and normal distributions are very similar in shape, 

and the choice between them is without practical importance so that 

from one model we can obtain the approximately corresponding estimates 

of the parameters for the other since

logit(v) = 7r/y3 $"i(v)

Hence the logit/probit model

logit[Ti(y)] = oi 0 + ^ Oi j *-'(yj)
j=l

is approximately the same as the logit model, i.e.

q
logit[?i(y)] = 2 (/3/%) Oi 4 *-i(yi)

j=l
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Thus if we fit the logit/logit model we would expect the slope 

parameter j to be ys/* times what we would have obtained from the 

logit/probit model.

Similarly, the probit model

is approximately the same as the logit/probit model

q
logit[*i(y)] - T//3 [ #1,0 + 2 *i,j *"'(yj)]

In this case both parameters (ai g) and {0̂  j) have to be 

multiplied by r/jz.

By transformation of H"’(y) “ z, Bartholomew (1987, Chapter 5) has 

proved that logit/probit model can be written in terms of normally 

distributed variables, as

q
logit[%i(z)] - «i 0 + J Qi j Zj i-l,...,p (1.6)

j-1

Several response functions presented in the literature are special 

cases of the general model (1.5).

We shall give the logistic and normal ogive models as they are 

usually presented in the literature, following by showing how they can 

be written as special cases of model (1.5).
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2.2,1- Normal Ogive or Probit model

Lawley (1943) introduced a response function called the normal 

ogive model (Lord and Novick, 1968, p365) specified by

Ti(y) - *(ai (y - b^)) i-l,...,p

where

is the cumulative distribution function of the standard normal 

distribution,

y , for q-1, is the latent ability parameter normally distributed 

with mean ft and variance which characterizes the individuals and 

a^ and bĵ  are parameters characterizing the item, called 

discriminating power and difficulty of item i.

Furthermore, it is assumed that a^^O, which means that %i(y) is a 

nondecreasing function of y .

The normal ogive model is equivalent to the probit model

where
*i(y) - *(Oi,o + Oi,i z),

bi - -*i,o / Oi,i &i = *1,1-

As the location and scale of the parameter estimates depend on the 

mean and variance of the distribution of the latent variable (or 

ability parameter), the equivalence between the parameter estimates is 

done by scaling. Bock and Aitkin (1981), for example, suggest that

P P -*i,o
% bi - %   - 0
i-1 i-1

and
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p p
n — n #1 1 — 1. 
1-1 i-1

This model is the basis for numerous developments in psychometric 

theory, see for example, Lord (1952), Lord and Novick (1968), Bock and 

Lieberman (1970), Samejima (1974). Bock and Aitkin (1981) give also an 

extension for more than one latent variable for binary response.

2.2.2- Logistic or Logit/Probit Model 

Two-parameter logistic model

Birnbaum (Lord and Novick (1968, Chapter 17) gave the 

two-parameter logistic model determined by assuming that the response 

function has the form of a logistic cumulative distribution function

exp[-dai(y - b^)]
*i(y) -

1 + exp[ -da^(y - b^) ] 

where

y , is a latent ability parameter normally distributed with mean p. 

and variance

a a n d  b^ have the same meaning as in the normal ogive model and 

d is a number that serves, at our convenience, as a unit scaling 

factor, with a value 1.7 corresponding to the maximum agreement 

between normal and logistic distributions.
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The equivalence between the two-parameter logistic and the 

logit/probit model, i.e,

exp(Qi 0 + Oi , z)
*i(y) - 1 + exp(Qi 0 + Oi , z)

may be seen by taking

d - -1, bi _ -«i,o/"i,1 and ai - Oi,i

As for the normal ogive model, aj_ - Oi , and the possible 

different mean and variance for the normal distribution of Y is

corrected by scaling.

Lord and Novick (1968b, Chapter 17) estimate the parameters a^ and

bĵ  assuming that Y is N(0,1).

Rasch model

A random effect form of the model due to Rasch (1960), is a

simplified form of the two-parameter logistic model with

exp(y - bi)
*i(y) =

1 4- exp(y - bi)

Here all the item discriminating powers are equal to 1, i.e, ai=l,

i-1 p. Thus %i(y) depends only on the distance between the latent

value y and the item difficulty bi and as the value of bi increases 

fewer individuals will be likely to answer correctly or positively 

item i.
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Therefore the Rasch model is equivalent to the logit/probit model 

when ,-l and b^^-a^ ,3 for all manifest variables or items i. The 

equivalence between the parameter estimates is obtained by scaling if 

a standard normal distribution is not assumed for Y.

The main advantage of this simplification is the existence of a 

sufficient statistic for Y, the total number of positive responses of 

an individual (or the total raw score of the data matrix).

There are many papers on the Rasch model and its extensions, among 

them Andersen (1970,1972,1973b), Gustafsson (1980a,1980b),

Fischer (1981), Molenaar (1983), Thissen (1982) and many others to 

which we will give references later on.

Three-parameter logistic model

If in addition it is assumed that if an individual does not know 

the answer he will guess, and with probability c^ will guess 

positively then according to Lord and Novick (1968b, Chapter 17), the 

response function for the three-parameter logistic model is given by

(1-Ci) exp[dai(y-bi)
*i(y) - Ci +

1 + exp[da^(y-bi)

Then the two-parameter logistic model is a particular case of this 

model, when c^-O for all i.

The three-parameter logistic model cannot be written in the 

general form (1,5), since that does not have guessing parameters.

-33



This model has been applied by, for example, Lord (1968a,1983a), 

Hullin, Lissak and Drasgow (1982), Lord and Wingersky (1985), Thissen 

and Wainer (1982).

Since the normal ogive is equivalent to the probit model and the 

two-parameter logistic is equivalent to the logit/probit model, we 

shall use both names to refer to the same model, although we shall 

generally use the notation following the general model(1.5) and 

consider Y as a latent variable.

2.2.3- Properties of the Response Function

Let us consider a logit/probit model, though the same approach is 

valid also for the logit and probit models.

The two most important properties which response functions produce

are :

(1) The choice of which the two possible outcomes is to be regarded as 

positive is totally arbitrary. If the positive answer has probability 

%i(z) then the negative has probability which are given by

q
exp (Oi (, + J Zj )

j-1
▼i(z) - -------------------------------

[ 1 + exp (-01,0 - 2 »i,j Zj )j

and
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f q l ' il-*i(z) ( 1 + exp [Oi o + ^ aij Zj ] j
j-1

This means that increasing any z, increases the probability of a 

positive response and decreases, as expected, the probability of a 

negative response by the same amount. Thus, when q-1, it is possible 

to obtain all ,'s positive or zero by suitable choice of which 

outcome is to be considered as positive.

(2) The direction in which most latent variables are measured is 

arbitrary. Changing the direction of measurement involves replacing zj 

by -Zj in (1.6). This is equivalent to changing the sign of the 

corresponding j without changing the model.

2.3- Interpretation of the Parameters

The parameters of the logit/probit model may be interpreted in 

several ways.

The coefficient g is the value of logit it£(z ) at z=0 and thus 

is the probability of a positive response from a median individual. 

In the context of educational testing, g or would be called the 

item difficulty.

The coefficients j may be interpreted in three related ways.

First, as a measure of the extent to which Zj discriminates 

between individuals. For two individuals a given distance apart on the 

Zj-scale, the bigger the absolute value of j the greater the 

difference in their probabilities of given a positive response to
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item 1 and thus easier to discriminate between them in relation to 

item i. Therefore 0:̂ j is a parameter that indicates the value of an 

item in the sense of the amount of information that the item provides 

about Zj. In educational testing, this is the Interpretation usually 

adopted, and 0̂  j is called item discriminating power.

A second interpretation of the j is by analogy with linear

factor analysis or principal components, where the j's are

equivalent to the loadings. They are the weights of the x^'s in the
P

determination of the component scores Xj*s, i.e, Xj - J ^i,j ^i •
i—1

Finally the j are related to correspondence analysis, where 

they are equivalent to the category scores. This is done by 

attributing the value of j to a positive response on manifest 

variable j and zero to a negative response. Then for each latent 

variable Zj the data matrix constituted by 1 and 0 is replaced by j 

and 0. The individual score is thus the sum of the category scores for 

that latent variable Zj.

For the general model (1.5), considering Y either as a parameter 

or a variable has given rise to different procedures when looking for 

more information about Y, after the model has been fitted.

In educational testing, where Y is usually treated as a parameter, 

some work has been done in estimating the parameters of the latent 

distribution function; see for example. Lord (1983b), Andersen and 

Madsen (1977), Samanthanan and Blumenthal (1978) and Mislevy (1984).

Bartholomew (1984), treating Y as a latent variable has deal with 

the situation by scaling the latent variable, i.e, locating the
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individuals in the Y-space on the basis of their observed values of X, 

Since in this thesis we are treating Y as a latent variable, we 

look at the scaling, instead of the estimation of the parameters of 

the latent distribution.

2.4- Scaling a Latent Variable

According to Bartholomew (1984) scaling a latent variable should

be done via the posterior distribution of y given x, and he suggested

the mean E(Yix). Since the prior distribution of Y is uniform on

(0 ,1), this measure may be interpreted as the expected proportion of

the population lying below an individual with that value of x. The

practical advantage is that when q-1, E(Y|x) is approximately a
P

linear function of the quantity X - ^ if all ,'s are
i—1

small for G"’-logit, regardless of the form of H. However, if the G*’ 

is the probit function this relation does not work though the 

similarity of the logit and probit models should ensure that the 

linear form is still a good approximation.

Bartholomew (1984) shows that an approximation can be obtained 

doing

where

E(Ylx) s (1 + X)/(2 + A)

P P
X - % *i,i %i and A - % «i,,

i-1 i-1

This result is exact if xĵ -0.5 and ,-l for all i.

-37



He also points out that even when the approximation is not good, 

then E(Yix) still provides the correct ranking of individuals.

Obviously, X and E(Y|x) are almost equivalent for purposes of scaling, 

since both give the same ranking on the latent scale. This result does 

depend on the choice of a uniform prior density for Y.

If the #1 ,'s are very similar then the ranking determined by
P P

X •= ^ #i i%i and ^ x^ are likely to be the same whichever latent
i-1 ’ i-1

models (logit/probit, logit or probit) we are using.When this

situation happens the convergence of the algorithm for estimation of

the parameters (section 3.2) is obtained quicker than when at least

one of the estimates differs from the other.

The definition of X implies that, we may interpret the  ̂ as 

item discriminating power, and thus the item with larger  ̂ will 

carry more weight in the determination of X.

We shall come back to the scaling of a latent variable in Chapter

7, in which we present some new results.
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3- Maximum Likelihood Estimation

3,1- Estimation Procedures: joint, conditional and 

marginal likelihood functions

In the literature we have found that the parameter of latent 

models for binary data are estimated essentially through 3 different 

procedures: joint maximum likelihood (ML), conditional ML and marginal 

ML.

As we have already pointed out when describing different shapes of 

response functions for the general latent model(1,5), Y is usually 

defined in the literature as a person parameter rather than a latent 

variable, as used in the context of this thesis. However we shall 

refer to Y as a person or ability parameter, if necessary, when 

reporting research using that approach.

Joint Maximum Likelihood

A joint maximum likelihood estimation was proposed by 

Birnbaum (1968) for the two- and three-parameter logistic model, and 

for the Rasch model by Wright and Panchapakesan (1969), among others. 

In this approach, person abilities and item parameters (discrimination 

and difficulty) are estimated simultaneously so that the procedure is 

not conditioned on the ability parameters.

The joint ML estimation of the person and item parameters is not 

generally possible because the number of parameters increases with the 

sample size and thus standard limit theorems do not apply. Several 

researchers, including Wood, Wingerkly and Lord (1976) have avoided

-39-



this problem by assuming that respondents who have the same score 

pattern, or same number of positive responses or who have been 

assigned provisionally to homogeneous ability groups, have the same 

ability. On this assumption, the number of parameters is finite and 

standard asymptotic theorems apply.

The assumption that abilities are fixed in size, when in fact they 

are not identifiable and have a distribution in the population of 

persons, is difficult to justify statistically. A better approach to 

estimation in the presence of a random nuisance parameter (person 

ability) is that of integrating over the parameter distribution and 

estimating the item parameters by maximum likelihood in the marginal 

distribution, which is done when using marginal ML procedure.

Lord (1983a) derives asymptotic formulas for the statistical bias 

in the joint ML estimation of the parameters for the three-parameter 

logistic model. The derivation deals with a single fixed manifest 

variable and assumes the single latent variable as a known parameter.

In order to investigate the characteristics of the asymptotic 

biases. Lord used simulated data having parameter values roughly equal 

to the estimates yielded by 2995 respondents on a Verbal Scholastic 

Aptitude Test of length 90. The results showed that, in general, if 

the parameter estimates had large standard deviations the biases were 

also large. However, the magnitude of the bias of an estimator was 

typically about 0.1 of and seldom greater than 0.2 of its standard 

deviation. Lord concluded that because the standard deviations are 

inversely proportional to the sample size, when the later is large the 

numerical value of the biases are probably negligible.
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Van den Wollenberg, Wierda and Jansen (1988) have shown through 

simulation studies that the joint ML estimation procedure for the 

Rasch model gives rise to biased estimators. This bias cannot be 

removed by a correction factor (p*l)/p (where p is the number of 

items). The bias is dependent not only on the number of items, but 

also on the distribution of the item parameters, which makes 

correction for bias practically impossible. They concluded that the 

joint ML method is not a good alternative to the conditional ML 

method, at least when small number of items are involved. However when 

the number of items becomes large, the bias becomes relatively small 

and a correction is no longer needed. In that case the joint ML could 

be used as a fast alternative to the conditional ML estimation 

procedure,

Baker (1988) reviews the ML estimation procedures for the one-, 

two- and three-logistic models.

Conditional Maximum Likelihood (CML)

Rasch (1960) showed that under his probabilistic model the 'item 

totals' (number of positive responses given by every person) and the 

'row scores' (number of positive responses given to every item) are 

sufficient statistics for the person and difficulty parameters. Using 

Rasch results as a starting point, Andersen (1970, 1972, 1973a)

developed a conditional ML procedure to estimate the difficulty 

parameters that did not involve the latent individual parameters. The 

difficulty parameter estimates are obtained from the likelihood 

function conditioned upon the item total scores.
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Wright and Douglas (1977) have shown that the conditional ML 

estimation is inaccurate when a test has more than 10 or 15 items due 

to round-off-error. They proposed a simplified alternative procedure 

for conditional estimation, which is limited to 20 or 30 items due to 

the same precision problem, especially in the presence of extreme 

difficulty parameter estimates.

In order to compare the joint ML and conditional ML for tests with 

more than 20 items, Wright and Douglas carried out a simulation study 

based on 15 replications of 500 individuals each for tests of size 20 

and 40. They assumed that the ability was normally distributed with 

mean 0, 1 and 2, and the difficulty parameters were generated from a 

normal distribution with mean zero. The comparison between both 

procedures was done in terms of MAX DIFF (maximum difference between a 

generated difficulty parameter and the mean over the 15 replications 

of its estimates), RMS (root mean square of these differences over 

items) and the MEAN ABS (mean of the absolute value of these 

differences over items) . They found out that in terms of RMS and MEAN 

ABS both estimation procedures, conditional ML and joint ML, give 

approximately the same results, while the MAX DIFF's tend to increase 

for both algorithms, but strongly for conditional, when the mean of 

the sample shifts away from zero (equal 1 or 2). This later result was 

found to be due to the increasing discrepancy between item and sample 

characteristics, which made estimation difficult for the conditional 

ML because of accumulated round-off-error.
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Marginal Maximum Likelihood (MML)

Thissen (1982) developed marginal ML procedures for the Rasch 

model making use of the fact that all response patterns which have the 

same number of positive responses have proportional likelihoods for 

the single latent variable. Unlike the conditional solution (CML), 

this estimation procedure is not conditional on the sufficient 

statistic for the person parameter and requires specification of the 

prior distribution for the person parameters.

The formulation of the model explicitly includes the item 

discriminating power common to all items and it is assumed that the 

latent ability is distributed as N(0,1).

Two algorithms have been described by Thissen (1982) for MML 

estimation:

(a) A gradient solution, following Bock and Lieberman (1970), where 

the parameters are estimated by maximum likelihood and

(b) An alternative solution, following the algorithm described by Bock 

and Aitkin (1981), uses Gauss-Hermite quadrature points for the N(0,1) 

prior distribution for latent ability (person parameters).

They also show that the MML procedure is similar to a combination 

of CML of the item parameters with estimation of the mean and variance 

of the population distribution as described by Andersen and 

Madsen (1977). The mean of the item difficulty parameters is 

essentially equivalent to Andersen and Madsen's population mean and 

the estimated discrimination parameter is the same as the standard 

deviation of the population distribution (normal) for conventionally
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standardized CML estimates. For this procedure the population 

distribution is not required to be normal, but must have finite mean 

and variance.

Tsutakawa (1984) derived a MML procedure employing the 

two-parameter logistic model. His method differs from Bock and 

Aitkin's method in the manner in which the prior distribution of the 

latent variable is handled, but it is equivalent for the special case 

of a discrete empirical prior. He analysed a 50-item arthritis 

knowledge test administered to 162 individuals, using both the joint 

and the marginal ML procedures. After appropriate scaling to take 

metric differences into account, the values of the discrimination and 

difficulty parameters yielded by the two methods were very similar.

Tsutakawa also used simulated data to evaluate the parameter 

recovery capability of the two procedures. This investigation involved 

two hundred simulated respondents'^ having a unit normal distribution 

and a 50-item test with representative values of the item parameters. 

The estimated item parameters were plotted against tha underlying 

parameter values. The plots showed a close agreement between the two 

methods as well as a general 45° line relating the estimates and the 

parameters. The scatter of the item discriminating power about the 

line was much greater than of the item difficulty.

It follows a description of the ML procedure used in this thesis 

to estimate the parameters of the general model(1.5).
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3.2- Marginal Maximum Likelihood Estimation

For any model of the family (1.5) the joint probability function 

of X,,...,Xp is

f(x)
P
n [*i(y)] [l-%i(y)] h(y)dy (1.7)

Ry i-1

If Xg is the observed response vector for the s^^ sample member 
then the loglikelihood is

n
L =  J log f(Xg) (1.8)

s=l

Bock and Lieberman (1970) maximised this function with the normal 

ogive model for the response function and for one latent variable 

distributed as N(0,1), i.e, using the probit model. The likelihood 

equations were solved iteratively by a Newton-Raphson method and 

Gauss-Hermite quadrature was employed to perform the necessary 

integrations. Due to the heavy numerical integration the method was 

considered to be limited to one latent variable and not more than 10 

manifest variables.

Bock and Aitkin (1981) by a simple transformation of the Bock and 

Lieberman (1970) likelihood equations, found a computational solution 

so that the method could be applied for more than one latent variable 

and a large number of manifest variables. This reformulation is 

related to the E-M algorithm for maximum likelihood estimation as 

discussed by Dempster, Laird and Rubin (1977).
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We shall give the main results of this method as described by 

Bartholomew (1987, Chapter 6).

3.2.1- An E-M Algorithm

We shall consider the logit/probit model for one latent variable 

expressed by Z as defined in (1.6), i.e, 

logit(TTi(z)) - Oi 0 + Oi 1 z

Each iteration of this E-M algorithm involves two steps called the 

expectation step (E) and the maximization step (M) and the method 

starts with arbitrary values for the parameters.

E-step : Using the current values for {ck̂ q} and (Oi,), predict Zg 

for s=l,2,...,n, through

E(ZglXg) =
r 00 p _ ..

Zg n [%i(zg)]*i [l-%i(zg)] h(zg) dzg / f(x) 
-00 i=l

The value of E(ZglXg) has to be found by numerical integration.

M-sten: Treating the expected values E(ZgiXg), s=l,2,...,n, as if 

they were true values Zg, estimate the parameters 

and by maximum likelihood, as follows:

Let the conditional loglikelihood defined by

n p
L  = 2  2  { %is [ l o g % i ( Z g ) ]  + (1-Xig) [ l o g ( l - X i ( Z g )  ]

s=l i=l
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n
- 2 1  

s-1 i-1
Xis logit[%i(Zg)] + log(l-Ti(Zg) (1.9)

where logit *i(Zg)-  ̂  ̂ Zg.

Then the partial derivatives with respect to the parameters {cx̂  q) 

and are

a L n

9 *i,o

a L

J [ X^g - Tĵ (Zg) ]
s=l

n

s-1

(1.10)

^ Zg [ X£g - *i(Zg) ] for i-1,2,...,p.

Thus estimating equations are obtained setting (1.10) equal to 

zero and for each variable i there is a pair of non-linear equations 

which can be solved for Q and Methods of solving these

equations are reviewed by McFadden (1982) ,

Having completed the M-step, the E-step is done again, and the 

cycle is repeated until the estimates become stable, according to some 

criterion.

Bock and Aitkin (1981) reported that the convergence of the E-M 

algorithm is only geometric and slows up as the solution point is 

approached. They suggested using the acceleration technique of 

Ramsey (1975) to speed convergence.

The convergence properties of the E-M algorithm has been studied 

analytically by Wu (1983). He showed that if the likelihood function
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is unlmodal and certain differentiability conditions are satisfied, 

any E-M sequence converges to the unique ML estimates of the 

parameters.

More than one latent variable 

If there is more than one latent variable, the term , Zg in
q

(1.9) is replaced by ^ ^i,j ^j,s» 9 equations replace the second

member of (1.10)— one for each {0̂  j) — and ^^(Zg) becomes it£(z). In 

this case, the determination of  ̂ and j, for j=l,2,...,q,

involves the solution of q+1 simultaneous non-linear equations for 

each i.

In order to get unique solutions, when q>l, we must impose some 

constraints. One possibility is to fix the values of enough a's to 

ensure a unique solution. For example, it is sufficient to fix ,=0 

for some i, when q=2.

3.2.2- A Variation of the E-M Algorithm

A variation of the E-M algorithm was proposed by Bock and 

Aitkin (1981) also for the probit model. Bartholomew (1987, Chapter 6) 

discusses the same variation from a rather different perspective 

setting G" ̂ in (1.5) as the logit function. It follows the main 

results for one latent variable.
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Even though the latent variable Z is distributed as N(0,1), it is 

proposed as an approximation that Z assumes values z ,,z 2, . . . , with 

probabilities h(z, ) .hCzj) , • • • ,h(zî )̂ chosen so that the joint 

probability function

f(Xg) - . p  g(Xgiz) h(z) dz s-1,2.... n
-00 - 00

can be approximated with high accuracy by Gauss-Hermite quadrature, 
i.e,

k
f(Xg) - 2 g(XglZt) h(zt) s-1,2,...,n (1.11)

t-1

where z^ is a tabled quadrature point (node) and h(z^) is the 

corresponding weight (see Straud and Sechrest,1966) .

The quadrature weights, h(z^), are approximately the normalized, 

k
i.e., ^ h(zt)-l, values of the probability density of a N(0,1)

t-1

random variable at the points z^, which are choosen to best 

approximate the marginal probability function f(Xg). This 

approximation becomes more accurate as the number of quadrature points 

increases.

From the maximization of

n
L - I log f(Xg) 

s-1

we obtain, for v-0,1
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a L y 9 *i(zt) [ %i,t - Nt »i(zt)]

^ “i.v t-1 3 *i,v *i(zc) [ l-*i(zt)]
(1.12)

where

n
Rit - 1 Xis h(ztlXg) (1.13)

s-1

n
Nt - 2 h(ztlXg) (1.14)

s-1

and h(ztlXg) is the posterior probability of given Xg

Before defining an E-M algorithm in this approach, it is useful 

look at the meaning of Nt and Rif the quantity h(ztlx) is the

probability that an individual with response vector x is located at 

Zt, N is the expected number of individuals at Zt. By analogy, Rit is 

the expected number of positive responses to item i among those 

individuals at Zf

Consequently if we know the allocation of each individual on the 

Z-scale then N^ is the number of individuals at z^ and R^^ is the 

observed frequency of positive response at ẑ .

The estimation of the parameters is performed by choosing any 

starting values for (0^ g) and followed by repeated

applications of (1,12), (1.13) and (1.14) over the set of items, using 

an E-M algorithm defined as

E-step : Calculate the values of R^t and using equations (1.13) 

and (1.14).
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M-step: Obtain improved estimates of the q) and (0^ ,) solving

equation (1.12), using the values of and from the 

E-step.

The E-M cycles are continued until convergence is obtained. In 

this case the number of values that the latent variable assumes is 

fixed and the set of values constitues the distribution of Z.

If we use the logit/probit model for r^{z) then

*i(z) - [ 1 + expC-Oi 0 - Oi , z) ]'̂

and

a Ti(z) ^
• - z *i(z) [ l-*i(z) ] (1.15)

9 V

for v-0,1

Substituting (1.12) and (1.15) the equations become

k
2 [ Xis - *i(zt)] h(ztlXg) - 0 (1.16)
t-1

for v-0,1 and i-l,2,...,p, which may be compared with (1.10).

Even though we have presented these methods for a response 

function, in which G’’ in (1.5) was the logit function and the prior 

distribution of the single latent variable was approximated using 

Gauss-Hermite quadrature points, it may be applied for any response 

function and any discrete prior distribution.
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If some other prior distribution of the latent variable is

assumed, other points may be chosen and a normalized density point t 

substituted for h(ẑ -) in (1,11). For example, if a rectangular prior 

is assumed then k points may be set at equal intervals over an

appropriate range and the quadrature weight set (h(zt)) equal to 1/k.

Bock and Aitkin (1981) have considered besides a prior standard 

normal distribution, a rectangular and an empirical distribution for 

the single latent variable and taken k-10 (see their paper for more 

details) . Working through the data of Section 6 and 7 for the Law 

School Aptitude Test (LSAT) presented in Bock and Lieberman (1970), 

they have obtained practically the same estimates of the parameters 

from these three different prior distributions. They also suggested 

that adequate solutions could be obtained with even smaller k, for 

example, k=3,5 or 7 and this would make it feasible to generalize the 

method to several latent variables. On the other hand, investigations 

made by Shea (1984) show that at least k=20 may be necessary to obtain 

reasonable accuracy and this puts much greater demands on computing 

resources.

The general model (1.5) as defined by Bartholomew (1980) involves 

an arbitrary assumption about the form of the prior distribution of

the latent variable. Although the form of the analysis does not depend 

on this assumption, as shown by Bartholomew (1984), it does affect the 

estimation of the parameters. Therefore it is important to know 

whether the values of the estimates are sensitive to the choice of the 

prior distribution.

Bartholomew (1988) answered this question mainly through numerical 

evidence that the choice of the prior has negligible effect on the
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expected first- and second-marginal proportions. He concludes that the 

estimates are not sensitive to the choice of the prior based upon some 

results reported in Bartholomew (1980,1987) that the ML estimates 

which depend on margins of all order are usually very close to those 

depending only on the first-and-second order margins.

4-On the Existence and Uniqueness of the ML Estimates in a Rasch Model

If we intend to apply the Rasch model to a set of data, it may 

seem worthwhile to check first whether the parameters can be

estimated.

The necessary and sufficient (n.s.) condition for the existence 

and uniqueness of the joint and conditional ML estimates for the Rasch 

model has been studied by Fischer (1981), Haberman (1977) and 

Andersen (1980), among others.

Fischer (1981)'s paper deals with both ML estimation procedures in 

a dichotomous Rasch model for complete and incomplete (omitted

responses) data matrix. The basic condition is essentially the same,

but we shall just present the main results for the joint ML estimation 

for a complete data matrix.

Let x^j be equal to 1 if individual j has answered item i

positively, and x^j equal to 0, otherwise for i-1 p. Then

P
tj - ^ Xĵ j is the total number of positive responses given 

i—1
by individual j for j-1 n, and

n
^ x 4̂ is the total number of positive responses of

j-1
item i for i-1,...,p.
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Fischer (1981) defines a data matrix A as well-conditioned iff in 

every partition of the items into two nonempty subsets I, and I^, some 

individual has answered positively to some item in the first set I, 

and answered negatively to some item in the second set I^. Otherwise, 

A is called ill-conditioned.

Let I ̂ and Ij be some partition of the items. Then the subjects 

can be partitioned into the following three mutually exclusive 

subsets, any of which may be empty: S, consists of all subjects who

solved all the items in I ̂ ; S^ consists of all subjects who solved 

none of the items in I,, except for those subjects who already belong 

to S,; S3 consists of all subjects not belonging to Ŝ  or to .

He shows that if A is well-conditioned, for every partition of the 

items into two non-empty subsets I, and I^, the set S3 is non-empty, 

i.e., after appropriate permutation of rows, the data matrix A attains 

the following structure:

1. . .1
1 A 3 Ai

1. . .1
A 3 1 A^

0. . .0
As 1 Ag

0. . .0
A4

As As

That is, there is at least one row in

A 5 and one or more O's in Ag, and S, and/or S ̂ may be empty 

Consequently, if S3 is empty, A is ill-conditioned.
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Finally, the ML estimates of the Rasch model are finite and unique 

iff the data matrix A is well-conditioned and 0<tj<p, for j-1.... n.

It is a consequence of A being well-conditioned that 0<S£<n, 

i-l,...,p, that is, we neglect all items that have got all responses 

positive or negative, and the same is valid for the individuals.

In practice, for determining whether a complete data matrix A is 

well-conditioned or not, all we have to do is to order the item 

statistics ŝ , s,< s ...<Sp, and to check whether the following 

equality is not fulfilled for any of the every index value p' , 

l<p’Cp-1,

P P P
i t nt - 2 Si + (p-p’) i Tip

t-p-p' i-1 t-p-p'

where n^ is the number of individuals with tj-t.

If this equality is fulfilled by some index p ' , the data matrix A 

is ill-conditioned and thus the parameter of the Rasch model cannot be 

estimated.

5- Breakdown of the Estimation Procedure

There are some configurations of data, analogous to those called 

Heywood cases in factor analysis (underlying variable model), in which 

the 'true' ML estimate is infinite and the iterative system proceeds 

in that direction indefinitely. In this situation, after some number 

of cycles most of the discrimination parameter estimates and the
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likelihood remain roughly constant while one or a few parameters

increase indefinitely. The difference in goodness-of-fit with such a 

high discrimination parameter estimate (3.0 or bigger) is negligible. 

In practice in these cases the value of the estimate is a function of 

the stopping rule of the iterative procedure.

A Heywood case, on the other hand, is the occurence of a negative 

or zero estimate of the error variance ^ for one or more variables. In 

the underlying model representation, j = , where X

is the factor loading, so that a diverging discrimination parameter 

j in the response function model is equivalent to a (error 

variance) approaching zero.

In summary, according to Anderson and Gerbing (1984),

Boomsma (1985) and Fachel (1986), the occurrence of Heywood cases

increases as

(1)- the sample size decreases;

(2)- the number of indicators per factor and consequently the number 

of variables decreases, although Fachel has observed small variation 

between 5 and 100 variables;

(3)- the population values of the error variance are close to zero;

(4)- the factor loading are not uniform, for example, when only one 

factor loading increases up to 0.90 while the others remain equal to 

0.5.

Van Driel (1978) identifies 3 causes for Heywood cases: 

sampling fluctuations combined with true values of the error

variance close to zero;

- there does not exist any factor analysis model that fits the data;
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- indefiniteness of the model (i.e.,too many true factor loadings are 

zero).

Bartholomew (1987) affirms, from his experience with binary 

estimation procedures, that the circumstances under which a slope 

parameter become larger and larger in the response function model are 

when

- the sample size is small, a few hundred or less,

- the number of variables is small and

- the discrimination parameters are very unequal,

which are equivalent to those leading to (1) , (2) and (4) given above 

for the Heywood cases in factor analysis.

6- Simulation Studies: comparison between the Rasch and the

Logit/Probit Models

Dinero and Haertel (1977) investigate the impact of variation in 

discrimination parameters on the correlation between parameter 

values (difficulties as well as abilities). From a Monte Carlo study, 

responses of 75 individuals to 30 items were simulated under a 

two-parameter logistic (logit/probit) model, and then fitted with the 

Rasch model.

The degree of fit was examined as a function of the variance of 

the item discriminations (0.05, 0.10, 0.15, 0.20 and 0.25) within

distributions of different forms (uniform, normal and positively 

skewed), all with mean equal to 1.0 .

For each distribution there was only a slight increase in the lack 

of fit as the variances increased. The poorest overall fit was when
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the discrimination parameters were uniformly distributed.

They also investigate the impact of variation in item 

discriminations on the correlation between difficulty parameters and 

estimates. Again, the uniform distribution yielded very low 

correlations (-0.20) for the difficulty parameter estimates, while for 

either the normal or skewed distributions, there was no evidence that 

the variance of the distribution has any affect on the accuracy of the 

difficulty estimates.

A major part of this study was replicated by Van de Vijver (1986), 

but he found that the shape of the discrimination parameter 

distribution does not influence the robustness of the Rasch estimates 

dramatically, even for the uniform distribution.

Another simulation study was done by Van de Vijver (1986) in order 

to investigate the robustness of the Rasch model against violations of 

the homogeneity of discrimination parameters. The study was carried 

out simulating discrimination parameters that assumed values between 

0.0 and 2.0, for sets of 10 to 50 items and sample size of 25 to 500 

individuals.

He observed that the correlation between difficulty parameters and 

corresponding estimates increases with the sample size, while the 

correlation between person parameters and estimates increases with 

test length. Furthermore, correlations were not very sensitive to the 

heterogeneity of the discrimination parameters, but a decrease could 

be observed between the difficulty parameters and estimates when 

discrimination parameters assumed values equal to 2.0 (the most 

extreme situation). The same relation is valid for bias and RMSE (root 

mean squared error). They concluded that even in small samples and for 

short tests, heterogeneity of the discrimination parameter hardly
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affects the accuracy of the Rasch estimates.

Hulin, Lissak and Drasgow (1982) investigate the accuracy of 

simultaneous estimation of item and person parameters from simulated 

two-parameter logistic model, samples of 200 to 2000 individuals and 

tests of 15, 30 and 60 items. The ability values were drawn from

N(0,1) distribution, the discrimination and difficulty parameters from 

U(0.3;1.4) and U(-3,3), respectively..

The accuracy of the item parameters (difficulty and 

discrimination) was measured by the RMSE (root mean squared error) 

between recovered and actual response function, while the accuracy of 

ability was measured by both correlation and RMSE. This measure of the 

accuracy of the recovered response function corresponds to the mean 

squared error of prediction in multiple regression.

The main result was that for a fixed test length, sample size has 

a small influence on the accuracy of the ability parameter estimates, 

while the effect of decreasing the number of items is pronounced. 

Correlations between difficulty parameters and estimates are all 

high (^0.94) and stable, and larger than those between discrimination 

parameters and estimates. Correlations are less well behaved than the 

RMSE's, since they do not display the effects of test length within a 

constant sample size, for example. RMSE show a substantial increase in 

estimation accuracy as the test length increased from 15 to 60 items. 

Finally, they found tradeoffs between test length and sample size, 

since doubling the number of items and halving sample size resulted in 

comparable response function average RMSE's, at least for tests of 30 

and 60 items and sample sizes of 500, 1000 and 2000.
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7- Goodness-of-fit

If the sample size (n) is large compared with 2P (number of 

possible response patterns) a chi-square or log-likelihood 

goodness-of-fit test can be carried out on the observed and expected 

frequencies of the response patterns. Often, there are many small 

expected frequencies so that pooling becomes necessary. Since the 

number of degrees of freedom in the unpooled case is 2P-p(q+l)-l, then 

situations may occur where there will be no degrees of freedom to 

judge the goodness of fit.

When a formal test cannot be carried out and p is not too large , 

the goodness of fit of the model may be judged by comparing the 

observed and expected frequencies of the response patterns. An 

additional check maybe done by comparing the observed and the fitted 

values of the one-and-two way marginal frequencies.

There are other checks which can be made on the data before or 

after fitting a model. For example, Bartholomew (1980) showed that if 

a one-latent variable model applies then it must be possible to label 

the categories so that, in the population, all the cross-product 

ratios exceed one. A systematic approach to the question of whether 

the data are consistent with an unidimensional model has been 

developed by Holland (1981) and extended by Rosenbaum (1984).

According to Rosenbaum, theorem 1, if a latent variable model is 

unidimensional for P[X-x] with nondecreasing response function then X 

is conditional associated, i.e, for all nondecreasing functions g(.) 

and f(.), all functions h(.) and all partitions and rearrangements of
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X into two nonoverlapping groups of items, (S,T),

Cov(g(S),f(S)lh(T)) > 0 

where Cov(.,,|.) denotes conditional population covariance.

In particular, if we take S-(Xi,Xj), and T equal to the remaining

p-2 items with h(T) - E X% then a unidimensional latent variable
kfi,j

model for P[X -x] with nondecreasing response function implies that

Cov((Xi ,X,)| I %k - t) > 0 
k^i.j

for all pairs of manifest variables and all values of t in the 

population.

Equivalently, such a model implies that there is a population 

cross-product ratio of at least equal 1 in every 2x2 subtable of the 

(p-1) layer of the 2x2x(p-l) population contingency table recording 

X,- X X; X Z Xv
' k,i.j

Tatsuoka (1984) describes the use of caution indices to identify 

individuals with unusual response patterns relative to a given model.

Due to the special properties of the Rasch model several 

goodness-of-fit test have been developed, of these, the conditional 

likelihood ratio test, introduced by Andersen (1973b), is perhaps the 

best known. The test is based on a comparison between item 

difficulties estimated from different subsamples formed according to 

the number of positive responses on the test and overall estimates
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obtained from the whole sample. If the Rasch model fits the data well 

then consistent difficulty estimates should be obtained for any 

subdivision of the sample into two or more groups. It was shown that, 

when the sample is large, the test statistic has approximately a 

distributed random variable with (p-l)(g-l) degrees of freedom, where 

p is the number of items and g is the number of subsamples considered.

The problem of fit of the Rasch model has been further discussed 

by Gustafsson (1980b), Van den Wollenberg (1982), Molenaar (1983), and 

Kelderman (1984), among others.

Gustafsson (1980b) presented a test for the hypothesis that two 

disjoint groups of items measure the same construct. This provides a 

test of unidimensionality when items are grouped a priori. Van den 

Wollenberg (1982) also developed test statistics for lack of equality 

of discrimination parameters and unidimensionality.

These type of tests are global measures of how all the items in a 

test fit the Rasch model. To assess goodness-of-fit to a given item 

response function, Gustafsson (1980b) suggested using graphical 

procedures. On the other hand, Molenaar (1983) has provided procedures 

for a more detailed analysis under the Rasch model, which also 

involves information about the goodness-of-fit for a given item 

response function.

McKinley and Mills (1985) conducted an extensive investigation of 

goodness-of-fit indices for a given item response fuction. They 

compared four such indices, those developed by Bock (1972), 

Yen (1981), Wright and Mead (1978), and the Likelihood Ratio (LR) 

statistic. The first three of these employ the standard chi-square
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goodness-of-fit formula and vary only with respect to the number of 

groups and the definition of the latent level used to compute the 

expected proportion of positive responses.

Nine tests with length 75 and sample sizes of 500, 1000 and 2000 

individuals were used to generate the simulated data under each of the 

one-, two-,and three-parameter models. In addition, the normally 

distributed samples had means of -1, 0 and 1 on the latent scale. When 

the data generated by the two and three parameter models were analysed 

under a one-parameter model, the results indicated a consistent lack 

of fit. As was the case with Yen's (1981) study, analising 

three-parameter data using the two parameter model worked quite well,

McKinley and Mill (1985) concluded that the LR index appeared to 

yield the fewest erroneous rejections of the hypothesis of fit, while 

the Bock index yielded fewer erroneous conclusions of fit. However, 

the differences were slight. They also applied the four procedures to 

an additional 9 tests having an underlying multidimensional latent 

structure. In all cases, the analysis yielded a high proportion of 

misfits. Thus, the underlying assumption of unidimensionality appears 

to be critical to obtaining good fit between the ICC and the observed 

data.
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8- Sampling Variation of the Maximum Likelihood Estimators

There has been little discussion about the magnitudes of the 

standard deviations of estimated parameters for commonly used latent 

variable models. This may be due to the fact that no simple closed 

formulae exist for the standard deviations as a function of the sample 

size and the parameters. The usual way to estimate the standard 

deviations for maximum likelihood estimates of the parameters is to 

compute the asymptotic variance-covariance matrix, using the elements 

of the inverse of the information matrix evaluated at the solution 

point. Thus if we have a set of parameters |S then

[ D(0) ] = E
-82 L -1

• 9|3i 3|3j 0-0
(1.17)

where

02 L n
IS=1

1 9' fs 1 9fs Bfs 1
8^i 8/3j fs 8/3 i 8|3j fs 8^i 8/3j 0=0

and fg=f(Xg). On taking the expectation, the first term vanishes 

leaving

[D((3) ]■' = n E
1 9fs 9fs

fs a^i 8/3j
(1.18)

In our case X is a response pattern taking 2P different values 

and the expectation in (1.18) is thus

n 1
%  — —   -----s=l f (Xg) 0|3i
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If p is small it is feasible to evaluate this sum for all i and j 

and then to invert the resulting matrix. However if p is large some 

probabilities will become very small so that the computation of

l/f(Xg) will cause overflow on most of computers. In this case an

approximation may be used, replacing the expectation of the

information matrix by its observed value. This requires the 

computation of (1.17) and the inversion of the resulting matrix. Since 

the first term has expectation zero a further approximation may be

obtained from

D*(6)
n 1 9f(Xg) 9f(Xg)
1 —         ----S-1 f (Xg) 9Pj

(1.20)

The number of distinct terms in the sum of (1.20) will usually be 

less than n since more than one individual may have the same response 

pattern.

Louis (1982) developed a technique for computing the observed 

information matrix when the E-M algorithm ir. used to find the maximum 

likelihood estimates in incomplete data problems. It requires 

computation of the complete-data gradient and second derivative matrix 

which can be implemented quite simply in the E-M iterations. This 

procedure can be applied to obtain the asymptotic variance-covariance 

matrix in latent variable models, since they involve 

observable (manifest) variables and not directly observable (latent) 

variables which corresponds to a case of incomplete data, as defined 

by Dempster, Laird and Rubin (1977).
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Thissen and Wainer (1982) investigated the asymptotic standard 

errors of the item parameters for the one-, two-,and three-parameter 

models under the assumption that the latent value of the respondents 

were known and normally distributed with zero mean and unit variance. 

Tables of the minimum asymptotic standard errors were reported for 

combinations of parameter values under the three models.

An interesting set of results was given by the two-parameter and 

the three-parameter model with c-0 (guessing parameter). Even though 

the numerical values of the difficulty and the discrimination 

parameters would be the same, the information matrices are not. The 

three-parameter matrix still has a row and column corresponding to the 

guessing parameter. When one item was easy and had low discriminating 

power, the standard errors under the two-parameter model were roughly 

0.09 of those reported for the three-parameter model. Clearly, the two 

and the three-parameter model with c-0 are not the same with respect 

to the standard errors of the item parameter estimates. The asymptotic 

standard errors for the item difficulty under the Rasch model were 

consistently smaller than those obtained for the other two models. In 

particular, the increase in standard error with departure of item 

difficulty from zero was much less pronounced.

Based upon the results, Thissen and Wainer (1982) suggested that 

when working with logistic response models we should try to fit the 

simplest model first, and only if it is found to be inadequate move to 

the more complex ones.

Lord and Wingersky (1983) have developed a method for computing 

the asymptotic variance-covariance matrix for the three-parameter 

logistic model, considering the unidimensional latent variable as a 

person parameter. The derivation assumes that both item and person
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parameters are unknown. They demonstrate that the size of the error 

variances are affected strongly by the restrictions introduced in 

order to fix the latent scale. One disadvantage of this method is that 

the information matrix to be inverted is very large.

On the other hand, Gruijter (1985) has shown that the method can 

be simplified for the Rasch model when we are only interested in the 

item parameters. This is done under a suitable restriction on the 

difficulty parameters, as for example, assuming that the mean b
p-1

is equal to zero,i.e, bp - - ^ b^, or setting bp-0. Although the
i-1

variance-covariance matrix for the item parameters can be obtained 

without difficulty, it depends on the restrictions. He points out that 

the first restriction seems to be preferable to the others due to its 

simplicity and relative accuracy of the mean.

9- Adequacy of the Asymptotic Variance-Covariance Matrix

When interpreting the asymptotic variance-covariance matrix of the 

parameter estimates it is assumed that the model is appropriate for 

the data. Since this assumption may be false in practice, or the 

sample size is not large enough for the number of parameters which 

have been estimated or even the standard asymptotic theory does not 

apply, the standard deviation and covariances obtained asymptotically 

will probably represent lower limits for the actual ones, and they 

must be analysed carefully.

Another way to look at the variance-covariance matrix that may 

give some idea about how the asymptotic theory is working, is through

jackknife and bootstrap techniques.
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9,1- Jackknife

Jackknifing is a statistical technique first proposed by 

Quenouille (1956), which is used for reducing bias in the estimation 

of parameters and for estimating the variance-covariance matrix of the 

estimates. Miller (1974) gives an review of the subject.

In the basic jackknife the observations are randomly divided into 

g groups of size h each.

Let X2,...,Xp be a sample of independent and identically

distributed(iid) random variables and be an estimator of the 

parameter vector 0 based on the sample size n , where n=gh.

Let be the corresponding estimator based on the sample of size 

(g-l)h, where the i^^ group of size h has been deleted.

Then jackknife pseudovalues are defined by

Pi = g P - (g-1) P-i

for i=l,2,...,g.

The jackknife estimates 0 and its estimated variance-covariance 

matrix are obtained from the g pseudovalues by treating them as 

independently identically distributed observations from a multivariate 

normal distribution (Tukey,1958). These estimates are given by

Z 01
0 -    (1.21)
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g

and

% ( Pi - f ) ( e'l . fi
I (g) -   (1 22)

g(g-l)

Since it often happens that /S and /5 are asymptotically equivalent, 

^ (/5) is sometimes used to estimate the variance-covariance matrix of

p.

The jackknife estimate of bias is the difference between the 

parameter estimate 0 and /3 multiplied by the correction factor 

n/(n-l), i.e.,

n A _
bias - ----- ( 0 - 0 ) (1.23)

n-1

In most of the applications the number of groups, g, is equal to 

n, i.e, each observation corresponds to one group and the is

obtained from the sample, deleting the i^^ observation, i.e, h=l.

The jackknife technique has been applied in many areas, including 

factor analysis. Pennell (1972) demonstrated how the method can be 

used to find confidence intervals for the factor loadings, while 

Clarkson (1979) discussed the results of simulation studies using 

jackknife techniques and proposed modifications.

Clarkson's studies do not include the jackknife samples which 

provide Heywood cases. He argue that in these cases the jackknife
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estimates of the factor loadings are not representative of the 'usual' 

jackknife results because they are too large in absolute value.

Jorgensen (1987) gave a modification of the jackknife method for 

estimating the dispersion of the parameter estimates that are obtained 

as limits of iterative processes. He also gave examples to show how 

the method can be applied to the E-M algorithm and to iteratively 

reweighted least-squares.

9.2- Bootstrap

The bootstrap is a general resampling procedure introduced by 

Efron (1979) to estimate the distribution of statistics based on 

independent observations. It can be carried out non-parametrically and 

parametrically, depending on the distribution from which the bootstrap 

samples are drawn.

We shall first present the non-parametric or empirical bootstrap 

method.

Suppose X,,X2,...,Xp are independent and identically 

distributed(iid) random variables from a population with unknown 

distribution function F, and suppose the goal is to make inferences 

about the parameter vector /S of the population.

Let ^(x, .Xj,...,Xp) be an estimator of |9 based on the sample size 

n and let F be the empirical distribution, that is, the distribution 

function that assign mass 1/n to each Xĵ .
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The bootstrap approximates the sampling distribution of 0 under F 

by the sampling distribution of 0 under F. This procedure is carried 

out using Monte Carlo method as follow:

(1) Construct F

(2) Draw a bootstrap sample, X*,X*, . . . ,X*p iid with cdf F and 

calculate

0* - )
(3) Independently do B times the step 2 (for some large B), obtaining 

^  , b“l,2,...,B. The distribution function of ^ is approximated

by

Ffi^y) - #(3b < y) / B-

The bootstrap estimate of /5 based on the B replications is the 

mean of the ^  estimates, i.e,

&* - I 0b / B (1 24)

and the bootstrap variance-covariance matrix estimate of /5 based on 

the B replications is the variance-covariance matrix of the ^

estimates, i.e,

IB - (B-1)-' 2 ( 0b - 0^ ) ( 0b - X  ) " (1.25)

As the number of replications B will approach the

bootstrap estimate of (3 and Ig the corresponding bootstrap estimate of 

the variance-covariance matrix I.

For example, if X,,X2,...,Xĵ  are drawn from a normal distribution 

with mean fi and standard error a. Then
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X* - J xg / B and

& - { (B-1)-’ 2 (Xg . X* ): } ^

can be used to estimate and a.

The bootstrap estimate of bias is the difference between the 

parameter estimate ^ and the bootstrap estimate ^ , that is,

bias - ^ (1.26)

The basic result of the bootstrap theory is that the empirical 

distributions of the parameter estimates obtained by this method are 

asymptotically the same as the sampling distribution of those 

parameters in sampling from the population from which the original 

sample was drawn.

There is nothing which says that the bootstrap must be carried out 

non-parametrically. If we have reason to believe that the true 

distribution F is Normal, for example, then we can estimate F by its 

parametric ML estimate F, The bootstrap samples at step (1) of the 

algorithm could them be drawn from F^ormal instead of F (empirical 

distribution) and steps (2) and (3) carried out as before.

Efron (1979) also suggests that Taylor series expansion method can 

be used to obtain the approximate mean and variance of the bootstrap 

distribution of ^ , and he shows that it turns out to be the same as 

Jaeckel's infinitesimal jackknife (Miller,1974), which differ only in 

detail from the standard jackknife described before.
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Efron and Tibshirani (1986) discuss the number of replications B 

necessary to give reasonable results when we are estimating the 

standard deviation of one parameter. They set out the following 

approximation

CV(&B) - { CV(&) 2 + [ (E(5) + 2)/4B ] }*

where CV(â) is the limiting coefficient of variation of O’ as B -> , 6

is the kurtosis of the bootstrap distribution of ^ , given the 

observed data x-(x, .Xj, . . . ,Xĵ ) , and E(6) its expected value average 

over X For typical situations, CV(a) lies between 0.10 and 0.30.

From this approximation and assuming that E(5)-0, they point out 

that for values of CV(â)>0.10, there is little improvement when B is 

bigger than 100. In fact B as small as 25 gives reasonable results. 

However the situation is quite different for setting bootstrap 

confidence intervals.

Efron (1984) discusses different kinds of confidence intervals 

using the bootstrap and he shows that it is necessary to have at least 

1000 samples to compute the BC (bias corrected percentile interval) as 

defined in the same paper, and BĈ  ̂ intervals while for the simplest 

method, percentile interval, 250 replications can give useful results.

The percentile interval is obtained by taking 

^ f ( F'i(a), F ’ (l-£>) ) as an approximate l-2o central interval for

Confidence intervals are a fundamentally more ambitious measure of 

statistical accuracy than standard errors, so it is not surprising 

that they require more computational effort.
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Chatterjee (1984) gives an application of the non-parametric 

bootstrap method to the problem of estimating the variability of the 

estimates of factor loadings. The number of bootstrap samples was 

settled empirically; it appeared that 300 gave reasonable stability. 

Combining the bootstrap with graphical techniques he examines the 

variability of the estimator of the factor loadings. He points out 

that bootstrap may very well reveal when the asymptotic results are 

poor approximations.

Gronroos (1985) applies bootstrap methods to confirmatory factor 

analysis of a LISREL submodel (Jbreskog and Sbrbom, 1984) to estimate 

factor loadings and their standard deviations.

His simulation studies involve artificial data with sample size 

100, 150 and 300 and initially 300 replications. However the number of 

bootstrap samples become smaller, since he deletes from the analysis 

all those which provide the occurrence of Heywood cases.

Comparing asymptotic theory with bootstrap and Normal bootstrap 

results, he points out that the difference between the two bootstrap

methods is very small, but it is larger, even though not essential

significant, when compared with the asymptotic results.

Beran and Srivastava (1985) use bootstrap test and confidence 

regions for functions of the population covariance matrix, for

example, eigenvalues and eigenvectors, which have the desired

asymptotic levels if model restrictions, such as multiple eigenvalues, 

are taken into account in designing the bootstrap algorithm.

-74-



Efron and Tibshirani (1986) give a review of bootstrap methods for 

estimating standard errors and confidence intervals. The bootstrap is 

also extended to other measures of statistical accuracy such as bias 

and prediction error, and to complicated data structures such as time 

series, censored data, and regression models.

Bootstrap confidence intervals have been discussed with new 

improvements by Efron (1987) and their applications to problems in a 

wide range of situations is given by Diciccio and Tibshirani (1987).
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Chapter 2

BEHAVIOUR of the LIKELIHOOD FUNCTION

1- Comparison between the Profile and an Approximate Method

Since the parameters of the latent variable models under 

investigation are usually estimated by the method of maximum 

likelihood (ML), it is very important to check if the behaviour of the 

likelihood function is suitable for the method.

We are interested in checking on whether the likelihood has a 

smooth unimodal shape, or whether it has multiple relative maxima. The 

shape of the likelihood around the maximum point will show whether the 

information matrix will give a good guide to the variability of the 

estimates. It is a counter-indication to the use of maximum likelihood 

estimates if there is a flat plateau, or a ridge moving off to 

infinity.

A badly behaved likelihood function suggests either that a 

reparametrization is necessary, or that the model is a poor fit for 

the data, or that the inference is particularly difficult.

How can we investigate the behaviour of the likelihood function?

Let us consider the latent variable model for fitting binary 

responses given by (1.5) in the case of a single latent variable. Thus

the likelihood is a function of q and ,, i-1,2 p. A profile

likelihood can be obtained for «i ̂ q “i, i maximising the
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likelihood over the remaining variables j , j-l,2,...,p and j^i. We

repeat this procedure to get the profile likelihood at a 

representative set of values of («i^g*^i,i^•

We usually choose to look at the profile likelihood for those 

parameters for which the likelihood seems to be less satisfactory. One 

guide to possible poor behaviour is the size of the ML estimate 

A value of , greater than 3.0 may be a sign of a badly behaved 

likelihood function.

Obtaining the behaviour of the likelihood function using the 

profile method, described above, takes much computer time, since if we 

evaluate it for eighty (#i,o,#i,i) points we have to maximise the 

likelihood function that number of times.

Clearly it would be useful to have a quicker method that gives the 

same information as the profile likelihood.

A simple alternative is to replace the maximisation procedure by 

some approximation. We have tried using the original marginal ML 

estimates for oj  ̂ ^nd #j,i for j?̂ i instead of maximising again for 

each new choice of values for o;̂  g and

We shall call the latter approach method A, the profile likelihood 

method B . Put

fA(#i,o'^i,i) loglikelihood value obtained by fixing the remaining 

parameter at these ML values âj g and âj ,̂ 

j . . . , p , jî̂ i.

LB(^i,o'^i,i) ^ loglikelihood value obtained by maximising over 

«j,0 and oj j=l,2,...,p, jfi.
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We apply and compare both methods by contouring the values for 

Lg as a function of aj_  ̂ and as defined above, using the

subroutine library GINO-SURF. This is done using 3 sets of data that 

have been analysed in Bartholomew (1987, Chapter 9), using a single 

latent variable logit/probit model and marginal maximum likelihood 

estimation procedure. The computer program used for fitting the model 

was FACONE written by Dr. Brian Shea at London School of Economics, 

using 48 quadrature points and considering that the convergence of the 

estimation procedure is obtained when the maximum gradient of the 

parameter estimates is smaller or equal 0.001. The asymptotic standard 

deviations of the parameter estimates are obtained by inverting the 

observed second derivative matrix at the ML solution point. We shall 

take Bartholomew's results of the fitting model as a starting point 

for our analysis.

1.1- Arithmetic Reasoning Test on White Women

The frequency distribution of the response patterns for the first 

and second examples are samples of the Arithmetic Reasoning Test (ART) 

from the American Youth on the Armed Services Vocational Aptitude 

Battery, given by Mislevy (1985). The individuals were classified by 

sex and colour, but the results given here relate to white and black 

women.
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Table 2.1- Score distribution and results obtained by fitting 
a logit/probit model to the Arithmetic Reasoning Test on 
white women.

Response Observed Expected Total Component
pattern frequency frequency score score

0000 20 26.79 0 0.00
0010 14 9.83 1 1.00
1000 23 18.43 1 1.04
0100 20 15.78 1 1.24
0001 8 4.86 1 1.44
1010 9 11.24 2 2.04
0110 11 10.55 2 2.24
1100 18 20.21 2 2.28
0011 2 3.57 2 2.44
1001 8 6.86 2 2.48
0101 5 6.70 2 2.68
1110 20 21.87 3 3.28
1011 6 8.16 3 3.48
0111 7 8.74 3 3.68
1101 15 17.18 3 3.72
1111 42 37.23 4 4.72

Total 228 228.00 - -

_ 8.39 on 6 degrees of freedom (p -= 0.21)

Thus it is reasonable to infer that the data are consistent with a 

single latent variable indicating the arithmetic reasoning ability. 

The scaling given by the component is consistent with that of the 

total score because the /s are very similar as we can see in 

Table 2.2.
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Table 2.2- Parameter estimates and asymptotic standard deviations 
from fitting a logit/probit model to the Arithmetic Reasoning 
Test on white women.

Item i *i,i SE(*i,,) * 1,0 SE(*i, 0 ) ^ i

1 1.04 0.32 0.59 0.17 0.64
2 1.24 0.39 0.56 0.17 0.64
3 1.00 0.30 -0.06 0.16 0.48
4 1.44 0.45 -0.51 0.21 0.38

The parameter estimates show that the items are neither very easy 

nor too difficult with approximately equal discriminating power.

We apply below methods A and B to discover the behaviour of the

likelihood for the data in Table 2.1 and parameter estimates in

Table 2.2.

Let us choose the first item as our item i. Since all the slope 

parameters are approximately the same, we would expect to get the same 

behaviour by choosing any other item.

Figures 2.1 and 2.2 have been obtained from 183 pairs (ot, q.q , ,), 

where â, q c (-3.50,3.50) and â ,  ̂ e (0.10,12.00).

According to Table 2.2, the ML estimates for item 1 are q , ,-1.04

and a, q-0,59. However Figure 2.1 suggests that the value of the

likelihood does not change much along a whole straight line of values 

for Ô, , and a, g. Close inspection of the input data shows that there 

is a slight decrease but not enough to show up in the contouring. 

Figure 2.2 shows a result much closer to Figure 2.1 than one might 

expect, though the peak is slightly better defined. Comparing both

-80



graphs this is the only difference between them and it is due to the 

fact that in method A the likelihood decrease faster than in method B.

The most striking aspect of both figures is the long ridge in the 

picture going off in a vaguely North Easterly direction. This suggests 

that there is very little information in the data to choose between 

(q , ,) values along that ridge, and casts doubt on the validity

of the ML estimates for (o, q,q , ,),

2 • 0 —

0.0 0.2 0.4 0 . 6 0.8 1 .21 . 0
X axis *10

Figure 2.1- Loglikelihood values as a function of a, , and â, q, using 
method B (profile) to the ART on white women.
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I . 20.6 0.80.0 0.2 0.4

X axis * 10
Figure 2.2- Loglikelihood values as a function of q , , and q , using 
approximate method A to the ART on white women.

-82-



1.2- Arithmetic Reasoning Test on Black Women

As a second example, we analyse the results of the Arithmetic 

Reasoning Test on black women.

Table 2.3- Score distribution and results obtained by fitting 
a logit/probit model to the Arithmetic Reasoning Test on 
black women.

Response Observed Expected Total Component
pattern frequency frequency score score

0000 29 28.39 0 0.00
0001 8 8.19 1 0.19
0010 7 7.99 1 0.37
0100 14 14.95 1 0.38
0011 3 2.36 2 0.56
0101 5 4.42 2 0.57
0110 6 4.41 2 0.75
0111 0 1.33 3 0.94
1000 14 17.74 1 14.39
1001 10 6.88 2 14.58
1010 11 8.90 2 14.76
1100 19 16.77 2 14.77
1011 2 3.54 3 14.95
1101 5 6.66 3 14.96
1110 8 8.84 3 15.14
1111 4 3.62 4 15.33

Total 145 145.00 - -

X" - 6.42 on 3 degrees of freedom (p - 0 .10)

As for the test on white women (Table 2.1) we can also infer that 

the logit/probit model with one latent variable fits reasonably well.
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Note that Table 2.4 below shows significant differences between 

the slope parameter estimates (âĵ  ̂ t , i-l,...,4).

Table 2.4- Parameter estimates and asymptotic standard deviations 
from fitting a logit/probit model to the Arithmetic Reasoning 
Test on black women.

Item i *i,i *i,o SE(*i,o) ^ i

1 14.39 67.78 0.25 4.63 0.56
2 0.38 0.22 -0.33 0.16 0.42
3 0.37 0.24 -0.96 0.20 0.28
4 0.19 0.24 -1.08 0.21 0.25

The results show that item 1, due its large discriminating power, 

divides the sample into two totally separate groups, those answering 

the item positively and those who do not. On the other hand, its 

standard deviation is too large to be trusted. Even for the other â, , 

the standard deviations may be considered so large that little 

information is present about them.

Due to the very large slope parameter estimate of item 1 and its 

strikingly wild standard deviation, it is an obvious choice to look at 

the behaviour of the likelihood function for 185 pairs (â, i)-

Since both methods give exactly the same picture, we present just 

one (Figure 2.3). There is only a tiny difference between the 185 

loglikelihood values from methods A and B, for â,  ̂ bigger than 3.0 

and any âg
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Figure 2.3 shows that the likelihood function assumes practically 

the same values for all o, ,, and as ô , , increases the best values

for â, 0 cover all its interval of variation. Although the subroutine 

used to draw the graph does not show small differences, analysing the 

input data we can confirm that the likelihood continues to increase 

indefinitely, indicating that the actual value for â, , is infinity, 

which is not sensible.

This is one example where the loglikelihood does not behave 

appropriately for ML method of estimation.

The broad ridge going from West to East strongly suggests that 

a, Q is not a meaningful parameter for values of  ̂ giving the

highest likelihood, since every value of a,  ̂ larger than -1.0 will 

provide the same maximum for loglikelihood function.

4 .

3 • 0 —

2 .

I . 0 —

0 ' 0—

I . 0 —

3 • 0 —  

3 . 5-

1 . 0 I .2
X axis * 10

Figure 2.3- Loglikelihood values as a function of q , , and a, using
methods A or B to the ART on black women.
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1.3- Cancer Knowledge

The data in Table 2.5 cornes from a study on knowledge about cancer 

by Lombard and Doering (1947). Questions were asked about whether or 

not the following were sources of general information:

(l)radio (2)newspaper (3)solid reading (4)lectures

Table 2.5- Score distribution and results obtained by fitting 
a logit/probit model to the Lombard and Doering's data.

Response Observed Expected Total Component
pattern frequency frequency score score

0000 477 467.37 0 0.00
1000 63 70.80 1 0.72
0001 12 16.62 1 0.77
0010 150 155.93 1 1.34
1001 7 3.10 2 1.49
1010 32 33.30 2 2.06
0011 11 7.98 2 2.11
1011 4 2.02 3 2.83
0100 231 240.52 1 3.40
1100 94 82.16 2 4.12
0101 13 20.29 2 4.16
0110 378 362.29 2 4.74
1101 12 8.51 3 4.89
1110 169 181.61 3 5.46
0111 45 46.04 3 5.51
1111 31 30.49 4 6.23

Total 1729 1729.00 - -

x" - 11.,68 with 6 degrees of freedom (0.05<p<0,.10)
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Table 2.5 shows that these data are fitted reasonably well by a 

logit/probit model with one single latent variable as a measure of how 

well-informed a person is.

The scaling of the sample is not exactly the same when using the 

total and the component scores. This is due to the large value assumed 

by , as showed in Table 2.6.

Table 2.6- Parameter estimates and asymptotic standard 
deviations from fitting a logit/probit model to the Lombard 
and Doering data.

Item i SE(&i,,) “ i.o SE(&i,o) ^ i

1 0.72 0.09 -1.29 0.06 0.22
2 3.40 1.14 0.60 0.17 0.64
3 1.34 0.17 -0.14 0.08 0.46
4 0.77 0.14 -2.70 0.18 0.06

The large value for the discriminating power of item 2 indicates 

that the newspaper has the largest effect on getting information about 

cancer. Its standard deviation, however, is relatively large. The 

difficulty parameter estimates range from 'popular source of 

information' (item 4) to 'not very popular' (item 2).

To carry out the analysis of the behaviour of the likelihood, we 

used 138 values for (o? since a 2,1 very large compared

with the other parameter estimates
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X axis * 10

Figure 2.4- Loglikelihood values as a function of Qj , and a^ using 
method B (profile) for the Lombard and Doering data.

2 . 2 5—

. 2 5—

0.25-J

0 . 1 0.5 1 . 1  1 . 2
X axis * 10

Figure 2.5- Loglikelihood values as a function of Q j , and using
approximate method A for the Lombard and Doering data.
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According to Table 2.6 the likelihood function assumes its maximum 

value when ,-3.40 and q-0.60 for item 2. Both Figures 2.5 and 

2.6 show that , could be equal to any number bigger than 1.0 and 

the range of q increases as a ̂ , also increases. As when analysing 

Figures 2.1 and 2.2, this happens because the likelihood values change 

very little for i bigger than 3.40.

In this case too, methods A and B give the same information about 

the shape of the likelihood function, which does not seem suitable for 

the ML method.

Conclusion

We have compared 3 sets of data for which a logit/probit model 

with one latent variable seemed to fit reasonably well.

The results suggest that when one of the , is large this

probably indicates bad behaviour of the likelihood.

It is difficult to say exactly how large each , can be before

the ridge in the likelihood appears and the second observed

derivatives or the information matrix are not good guides to the

variability of this estimates.

There is strong evidence that we can use the approximate method A 

instead of the profile likelihood, since they give the same

information about the behaviour of the likelihood function.
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2- Another Look at the Likelihood Function

Working with the contoured likelihood is not always easy, since a 

lot of points are required and it is hard to see small changes in the 

likelihood values. It is useful to plot the shape of the likelihood 

function along the ridge that is evident in Figures 2.1 to 2,6. This 

corresponds to maximising the previously obtained loglikelihood values 

over o;j[ Q, Using the data points (âi, i,&i,o) f^om Figures 2,1 to 2,5, 

results are in the plotting points of Tables 2,7 to 2,9 and the 

likelihood functions in Figures 2.6 to 2,8,

Table 2,7-Maximum loglikelihood Table 2,8-Maximum loglikelihood
value over fixing a, 1 value over ^ ,o , fixing & , 1
to the ART on white women. to the ART on black women.

^1,1 La Lfi « 1,1 L a L b

0,0 -601.37 -601,14 0,0 -368.08 -367,48
1.0 -592,14 -592,12 1,0 -365,66 -365,33
2,0 -594,59 -594.22 2,0 -365,01 -364,90
3,0 -598.28 -596,62 3,0 -364,83 -364,78
4.0 -601.03 -597,87 4,0 -364,77 -364,74
5.0 -602.99 -598,51 5,0 -364,74 -364,72
6.0 -604.17 -598,85 6,0 -364.72 -364.71
7,0 -604.96 -599,06 7,0 -364.71 -364.70
8,0 -605,50 -599,19 8.0 -364.71 -364.69
9.0 -605,85 -599,28 9.0 -364.70 -364.69
10.0 -605,99 -599,33 10.0 -364.70 -364.69
11.0 -606.13 -599,37 11.0 -364.70 -364.69
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Figure 2.6- Maximum loglikelihood value over a,  ̂for each ct 
for the ART on white women presented in Table 2.7.

fixed

Table 2.9- Maximum loglikelihood value over ct̂ q, fixing ô ̂ 
to the Lombard and Doering data.

La Lb 02 , 1 La Lb

0.1 -3758.59 -3755.13 6.0 -3624.05 -3622.90
1.0 -3656.02 -3645.49 7.0 -3624.71 -3623.17
2.0 -3637.84 -3625.53 8.0 -3625.10 -3623.24
3.0 -3622.71 -3622.47 9.0 -3625.29 -3623.27
4.0 -3622.68 -3622.52 10.0 -3625.47 -3623.31
5.0 -3623.54 -3622.80 11.0 -3625.62 -3623.39

Figure 2.6 shows that both methods give approximately the same 

loglikelihood values for a, , smaller than 2, increasing up to 

Q, ,-1.04 (ML estimate) and decreasing faster when using method A than 

the profile likelihood. This result agrees with our analysis of 

Figures 2.1 and 2.2. -91-
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Figure 2.7- Maximum loglikelihood value over â,  ̂for each â, , fixed, 
to the ART on black women, presented in Table 2.8.
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Figure 2.8- Maximum loglikelihood value over q 
to the Lombard and Doering data, presented in Table 2.9.

2^0 for each o , fixed,

-92-



As in the three dimensional graph, Figures 2.7 and 2.8 confirm 

that both methods give roughly the same information about the 

behaviour of the likelihood. Inspection of the data in Table 2.8 shows 

that the likelihood continues increasing, while in Table 2.9 the 

likelihood assumes a maximum value, but after that decreases so 

slightly that the change is insignificant when plotting the data.

Plotting the results for all items

Since approximate method A followed by a simple plot is easy to 

apply, we shall look at the shape of the likelihood for all items, 

instead of only one, for the ART on white and black women, and the 

Lombard and Doering data.

Table 2.10- Maximum loglikelihood value, L^(i), over g, 
fixing i-l,2..,4, to the ART on white women, using
approximate method A.

*i,i LA(1) LA(2) La (3) LA(4)

0.0 -601.37 -603.57 -601.63 -606.09
1.0 -592.14 -592.22 -592.05 -592.74
2.0 -595.06 -593.84 -595.18 -592.68
3.0 -598.28 -595.98 -599.43 -595.06
4.0 -601.22 -598.18 -602.58 -596.31
5.0 -602.88 -599.46 -604.71 -597.47
6.0 -604.17 -600.42 -606.19 -598.33
7.0 -604.90 -600.99 -607.26 -598.71
8.0 -605.50 -601.37 -608.07 -599.13
9.0 -605.77 -601.66 -608.71 -599.27
10.0 -606.10 -601.79 -609.22 -599.44
11.0 -606.13 -601.93 -609.63 -599.51
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Figure 2.9- Maximum loglikelihood value over  ̂for each , fixed, 
i=l,...,4, to the ART on white women, presented in Table 2.10, using 
approximate method A.
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Figure 2.10- Maximum loglikelihood value over  ̂ for each a ,
fixed, i-l,...,4, to the ART on black women, presented in Table 2.11, 
using approximate method A.
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Table 2.11- Maxlmuin loglikelihood values, L^(i), over cr̂  ̂
fixing i-l,2,..,4, to the ART on black women, using
approximate method A.

*i,i La(1) LA(2) La (3) LA(4)

0.0 -368.08 -366.79 -366.01 -365.07
1.0 -365.66 -368.07 -367.59 -369.97
2.0 -365.01 -379.56 -377.88 -381.54
3.0 -364.83 -392.35 -389.50 -394.39
4.0 -364.77 -404.22 -400.20 -406.07
5.0 -364.74 -415.00 -409.66 -416.58
6.0 -364.72 -424.78 -418.04 -425.29
7.0 -364.71 -433.57 -424.92 -432.68
8.0 -364.71 -441.96 -430.51 -438.91
9.0 -364.70 -449.16 -435.21 -443.32
10.0 -364.70 -455.29 -438.39 -446.98
11.0 -364.70 -460.03 -441.16 -449.43

Table 2.12- Maximum loglikelihood values, Lŷ (i) , over ^
fixing âi,i, i-1,2,..,4, to the Lombard and Doering data.
using the approximate method A.

LA(1) LA(2) La(3) LA(4)

0.0 -3666.35 -3790.44 -3755.44 -3640.81
1.0 -3626.13 -3660.79 -3630.09 -3624.84
2.0 -3680.93 -3627.58 -3635.98 -3650.53
3.0 -3739.91 -3622.71 -3666.38 -3682.70
4.0 -3785.70 -3623.91 -3693.62 -3710.37
5.0 -3818.87 -3623.95 -3714.12 -3730.04
6.0 -3842.86 -3624.05 -3728.73 -3743.71
7.0 -3859.40 -3624.97 -3740.07 -3752.89
8.0 -3871.61 -3625.30 -3749.21 -3759.02
9.0 -3881.08 -3625.29 -3756.80 -3763.18
10.0 -3886.42 -3625.97 -3762.16 -3765.29
11.0 -3890.69 -3625.62 -3766.36 -3766.72
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Figure 2.11- Maximum loglikelihood value over Q for each ô ̂ ,
fixed, i=l,...,4, for the Lombard and Doering data, presented in Table 
2.12, using approximate method A.

Figure 2.9 shows that whichever item we choose, all items are 

well-behaved. However it is interesting to point out that the order of 

the curves is inversely related to size of the , ,i-l,...,4, since 

here they all have the same coefficient of variation (0.31).

As we can see in Figure 2.10, the bad behaviour of the likelihood 

is indicated by item 1, with very large q, , and its large standard 

deviation. Item 2 and 3 present very similar , (0.38 and 0.37), 

with coefficient of variation 0.58 and 0.65, respectively, but the 

latter loglikelihood decreases slowly. The value of , is half the 

size of item 2 or 3, but with a large coefficient of variation (1.26).
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Working through the values of , and Figure 2.11 we see that 

Q 3 , is bigger than a, , (1.34 and 0.77), but the former has a smaller 

coefficient of variation, and both items give approximately the same 

likelihood shape. Item 1 has the smallest a, , and the smallest 

coefficient of variation (0.12) and the biggest likelihood function 

decrease, while item 2 has a large value for , and large

coefficient of variation (0.34) and effectively its likelihood 

function never decreases.

Conclusions

These results suggest that there is strong evidence that we can 

look at the behaviour of the likelihood function by the approximate 

method A, using a graph like those in Figures 2.6 to 2.8. However, we 

should remember that the likelihood values from this method are equal 

or smaller than the real values and small decreases in the likelihood 

function should actually be still smaller.

Finally we can conclude that large discriminating power 

values (ôĵ  ,) and large standard deviation point to bad likelihood 

behaviour. The results also indicate that for the same test the shapes 

of the approximate profile likelihoods obtained for different items i 

are related to the size of , and its coefficient of variation.
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3- Reparametrization

The investigation of the behaviour of the likelihood function that 

has been carried out suggests that, at least for the ART on black 

women (Table 2.3) and the Lombard and Doering data (Table 2.5) a 

reparametrization is necessary.

We have worked through many reparametrizations, as for example,

*
%i,i - &i,i / ( 1 + exp(&i , ) )

- 1 / &i,i 

“i,i - «i,i / ( 1 + «i,i ) ^

ai,o - *i,o / ( 1 + *i,i )

ai,o - - &i,o/ *i,i

where i-1 for the ART on black women data and i-2 for the Lombard and 

Doering data.

We shall present the results just for the reparametrizations that 

gave useful results, in the sense that it showed better behaviour of 

the likelihood function, that is, for

 ̂* ^2  ̂ * 2 Ï
Gi,o - Gi,o / ( 1 + & i  ̂  ) and & i,,- & i,,/ ( 1 + & i,,)

using the profile and the approximate methods (B and A, respectively),

3.1- Arithmetic Reasoning Test on White Women

The data related to this example are presented in Table 2.1
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Both Figures 2.12 and 2.13 show the same shape of the likelihood 

function and their parallel and almost horizontal lines indicate that 

the values of the loglikelihood almost do not change for a fixed Ô*  ̂

over all range of There is a peak inside the ellipse, although

the contouring does not show the small differences in the 

loglikelihood values. We can see it in Figure 2.15, where we have the 

maximum loglikelihood values over  ̂for each  ̂fixed.

That only one line represents the behaviour of the likelihood 

function in Figure 2.14 is due to the fact that methods A and B give 

the same results for all values assumed by ct*

From Figures 2.14 and 2.15 we can see that the loglikelihood

function behaves well in both reparametrizations and that the maximum 

loglikelihood values for o* , range in a larger interval than for

Ô* Q, since maximum loglikelihood a* , € (-916.11 ; - 592.27) while the

maximum loglikelihood o*  ̂ ( (-606.23;-592.14).

Comparing Figures 2.1, 2.2 and 2.6 with 2.12 to 2.15 we can

conclude that the the reparametrization a*  ̂ and  ̂ give a

likelihood function with better behaviour than q .,  ̂and & ̂ .̂
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Figure 2.17- Loglikelihood values as a function of a*  ̂ and 
using approximate method A for the ART on black women.

- 3 6 0 -
- 3 7 0 -
— 380 —
- 3 9 0 -
- 4 0 0 -

— 410 —
— 420 —
- 4 3 0 -
- 4 4 0 -
- 4 5 0 -
— 460 —
— 470 —
- 4 8 0 -
- 4 9 0 -
- 5 0 0 -
-5 1 0
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Figure 2.19- Maximum loglikelihood value over a,  ̂for each q *  ̂fixed 
for the ART on black women, using methods A and B.

The apparent increased likelihood function shown in Figure 2.19 

is,actually, almost constant since it assumes values in a small 

interval (in the profile method from -367.48 to -364.68 and in the 

approximate method from -368.08 to -364.69), corresponding to an 

increase of 0.9%. Thus the reparametrization q* , provides a 

likelihood function that is monotone increasing.

On the other hand, Figure 2.18 indicates that the 

reparametrization

0* 0 - 0^0  ̂ works very well, since the likelihood function

is unimodal, assuming values from -510.35 to -364.68 in both 

methods (profile and approximate).

-104-



3.3- Cancer Knowledge

This example corresponds to the Lombard and Doering data(Table 

2.5) .

The small difference between methods A and B (Figures 2.20 and 

2.21) is because the loglikelihood function for 1 -1 in the

profile method is bigger than in the approximate method.

The behaviour of the likelihood function after reparametrization 

in these example is very similar to the former one.

Although Figure 2.23 seems to show an increased loglikelihood 

function for â* it is almost constant, since it ranges from 

-3758.59 to -3755.13 which represents a small increase of 3.8%. 

Therefore the reparametrization a*,! provides a likelihood function 

that is monotone increasing.

As in the preceding example, the only useful reparametrization is 

given by n* q, as we can see in Figure 2.22 an unimodal likelihood 

function that assumes values between -5813.38 and -3625.14.
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Conclusion

The search of better behaviour for the likelihood function through 

reparametrization indicated that the only one that works well for the 

3 different sets of data is given by

#i,o" ^i,o/ (  ̂ i, 1 )

where i=l for the ART on white and black women data and i=2 for the 

Lombard and Doering data.

Interpretation of o* q

* . iThe reparametrization &i,o =  ̂/ ( 1 + ^ i ,i ) corresponds to

the probit of the expected value of o'̂ '̂i 1%)' the response

function of a probit model, i.e.,

‘i , o  “  ’ { E  ( <f( Q +  & i , i Z  ) ) )

For convenience, let us consider

Oi 0 - a and o^ , - b

Then

E(f(a+bz)) = j  ̂ cf(a+bz) (2x)'i exp(-^ z^) dz

If we take

bz = u and bdz=du

Then
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Then

E(<Jj(a+bz)) - j 2 $(a+u) (2%)"i b"’ exp(-i b"Z)du

- J ” P(Z-u<a) (density for W ~ N(0,b2) at u)du

- P(Z+W < a), Z+W ~ N(0,l+b2)

and therefore

or

E($(a+bz)) - $( a/(l+b2)i )

a/(l+b2)i - $-i(E($(a+bz))).
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Chapter 3

ADEQUACY of the ASYMPTOTIC VARIANCE-COVARIANCE MATRIX 

using BOOTSTRAP and JACKKNIFE TECHNIQUES

1- Introduction

The aim of this chapter is to investigate the adequacy of the 

asymptotic variance-covariance matrix in latent trait analysis for 

binary data through the jackknife and bootstrap techniques described 

in Chapter 1, sections 9.1 and 9.2. This investigation will be carried 

out using 5 examples, the three sets of data that we have worked in 

Chapter 2 and two, which will be introduced in this chapter, for the 

logit/probit model. These examples have a good range of different 

patterns of parameter estimates and sample sizes.

We shall compare the bootstrap, jackknife and the original ML

parameter estimates for ,, g and g - ^ ±,o / ( 1 + & i  ̂),

i*=l,...,4, their variability and how close is the bootstrap 

distribution of these parameter estimates and their jackknife 

pseudovalues to a Normal distribution.

We shall look also at the jackknife and bootstrap bias of the 

parameter estimates ,, i-l,...,4, as defined in Chapter 1, sections

9.1 and 9.2.
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We shall look at standard deviations and correlations between the 

parameter estimates, rather than covariances.

The asymptotic covariance matrix will be obtained in two different 

ways: from both the observed second derivative matrix and the

information matrix, and they will be also compared.

The standard deviation of the ML parameter estimate a*  ̂ is 

obtained from the following approximation:

Var(&i,o) **
3a+, 

3ûi ̂
Var(aio) + 2

9“i,o M .

9oi,,

* 29°l,o

3“i,i
Var(ai ,)

Therefore

Var(Q* o) =
1 + O',

Var(aio) ‘ %
*i,o *i,i

Cov(ai o,ai .,) +

(°̂ i ,0 ^i , 1 ̂+   Var(Oi ,),

( 1 + *i,i )'

when 1 and  ̂ are replaced by their ML parameter estimates  ̂

and Q, i-1,...,p.

As pointed out in Chapter 1, the empirical distributions of these 

bootstrap parameter estimates are asymptotically the same as the 

sampling distribution of those parameters in sampling from the 

population from which the original sample was drawn. On the other
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hand, so far we have not found in the literature any reference about 

the shape of the distribution of the pseudovalues. For this reason we 

expect that the asymptotic theory will work better for the bootstrap 

than the jackknife results.

The investigation of the normality of the bootstrap distribution 

of the parameter estimates and the jackknife distribution of the 

pseudovalues will be done by Normal probability plotting and looking 

at R 2, the proportion of variance explained by the fitted straight 

line.

As we show later that, at least in this set of 5 examples, the 

fitting of the jackknife pseudovalues by a Normal distribution is not 

associated with the degree of similarity between the jackknife and the 

original ML parameter estimates, so we only present Normal probability 

plots of some bootstrap distributions. Maybe this apparent 

non-association is due to the small number of different jackknife 

pseudovalues (16), and a larger number of variable would provide 

satisfactory results.

The results will take into account all bootstrap and jackknife 

samples, even those when fitted by a logit/probit model provide very 

large estimates for

The decision about what number of bootstrap samples to take in 

order to check the adequacy of the asymptotic variance-covariance 

matrix, was based on the bootstrap parameter estimates , and  ̂

and their standard deviations, obtained from 50, 100 and 200

replications.

-112-



In every example we have compared the bootstrap parameter 

estimates obtained from 50 and 100 replications. The results show 

stability. To

check further on stability we have increased the bootstrap sample size 

to 200 for the Arithmetic Reasoning Test (ART) on white women data, 

and Stouffer and Toby data. Since the doubling of the number of 

replication still shows the same stability observed when comparing 50 

and 100 replications, we decided to give results based on 100

bootstrap samples in all examples.

In the application of the jackknife technique to the 5 set of

data, we consider the case where we delete only one observation each 

time. Although the number of jackknife estimates is equal to the

number of observations, a score pattern with frequency n provides n 

equal jackknife samples. Therefore the number of different jackknife 

parameter estimates for each parameter is equal to the number of 

different score patterns in the sample.

If the jackknife gives the same information as the bootstrap about 

the applicability of the asymptotic theory to estimating of the

variability of the parameter estimates then it is more practical to 

use the jackknife, since it is quicker .

In the following we shall compare the original ML parameter 

estimates with the bootstrap and jackknife results for the five sets 

of data referred before.
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2- Attitudes towards the U.S.Army

The data in Table 3.1 was presented by Stouffer, Guttman, Suchman, 

Lazarfeld, Star and Clauser (1950, p.21-22), where the four items were 

intended to measure attitudes towards the U.S.Army held by 1000 

noncomissioned officers in 1945. The questions asked were;

(i) how well is the Army run
(ii) whether you will return to civilian life with a favourable 
attitude towards the Army
(iii) whether you have got a square deal in the Army and
(iv) whether the Army has tried its best to look out for the welfare 
of enlisted men.

Table 3.1-Score distribution and results obtained by fitting 
a logit/probit model to the Attitudes towards the U.S.Army.

Response Observed Expected Total Component
pattern frequency frequency score score

0000 229 227.39 0 0.00
0100 52 52.57 1 1.12
0010 25 27.91 1 1.41
0001 16 17.78 1 1.60
1000 199 194.97 1 1.64
0110 16 13.00 2 2.53
0101 8 9.03 2 2.72
1100 96 100.99 2 2.76
0011 10 5.84 2 3.02
1010 60 65.60 2 3.06
1001 45 47.40 2 3.25
0111 3 5.57 3 4.13
1110 69 63.72 3 4.18
1101 55 50.03 3 4.36
1011 42 39.24 3 4 .66
1111 75 78.95 4 5.78

Total 1000 1000.00 - -

X'2- 7.39 with 7 degrees: of fre4S4ffl (p=0.40).



It is reasonable to infer from the low %  ̂value that the data are 

consistent with a single latent variable measuring attitudes towards 

the U.S.Army. The scaling given by the component scores is consistent 

with that of the total scores because the ,'s are very similar as 

we can see in Table 3.2.

Table 3.2- Comparison between the bootstrap, original ML(in brackets) 
and the jackknife parameter estimates , to the Attitudes towards 
the U.S.Army.

i SD(&i,i ) cv(âi,, ) R i,i)

1 1.68 (1.64) 2.14 .25 (.24) .22 .15 (.15) .10 97.9 77.0
2 1.13 (1.12) 1.08 .15 (.14) .14 .13 (.13) .13 98.0 82.1
3 1.45 (1.41) 1.50 .20 (.19) .19 .14 (.13) .13 99.0 81.5
4 1.63 (1.60) 2.24 .20 (.22) .22 .12 (.14) .10 97.9 77.5

Table 3.3- Comparison between the bootstrap, original ML(in brackets
and the jackknife parameter estimates ai 0 to the Attitudes towards
the U.S.Army.

i *i,o SD(&i,o ) ^:v(&i,o ) R"(^i,o)

1 0.88 ( 0.85) 1.53 .11 (.09) .12 .12 (.10) .08 93.9 95.6
2 -0.65 (-0.66) -0.90 .08 (.09) .08 .12 (.14) .09 98.5 94.6
3 -1.18 (-1.15) -0.82 .12 (.11) .11 .10 (.10) .13 97.1 84.9
4 -1.57 (-1.58) -1.81 .14 (.14) .14 .09 (.09) .08 98.0 78.2
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Table 3.4- Comparison between the bootstrap, original ML(in brackets) 
and the jackknife parameter estimates a*  ̂to the Attitudes towards 
the U.S.Army,

i **,0 SD(«i,o ) CV(«î,o ) R Ka î.o)

1 0.45 ( 0.44) 0.69 .04 (.04) .05 .09 (.09) .07 99.4 83.7
2 -0.43 (-0.44) -0.60 .05 (.05) .05 .12 (.11) .08 99.1 82.2
3 -0.67 (-0.67) -0.44 .06 (.05) .06 .09 (.09) .14 98.6 85.3
4 -0.82 (-0.84) -0.71 .06 (.06) .06 .07 (.07) .08 99.4 80.2

Tables 3,2 to 3.4 show an excellent agreement between all the 

bootstrap results and original ML parameter estimates. This is, 

perhaps, to be expected since all the bootstrap distributions of the 

parameter estimates are approximated very well by a normal 

distribution. The asymptotic theory works well in this example, where 

the sample size is 1000 and the ML parameter estimates  ̂are nearly 

equal.

The jackknife parameter estimates ,, for i-2,3, and their 

standard deviations are very similar to the corresponding original ML, 

while for items 1 and 4, they are slightly bigger with smaller 

coefficients of variation.

The relation between the jackknife and the original ML q* q has 

the same pattern as g, showing similar results, but not as close as 

that given by the bootstrap.

Bootstrap biases of , ( equation 1.26), for i-l,...,4, are 

equal to 0.04, 0.01, 0.04 and 0.03, while the jackknife 

biases (equation 1.23), are equal to 0.50, -0.04, 0.09 and 0.64,
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respectively. Thus, boostrap has provide estimates , with equal or 

less bias than the jackknife.

The bootstrap distribution of the parameter estimates are as well 

or better fitted by a normal distribution then the corresponding 

jackknife pseudovalues.

Figures 3.1 to 3.3 present the bootstrap distribution of the 

parameter estimates â, ,, ô,  ̂ and cr*  ̂and their fit by a normal 

distribution.
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Figure 3.1- Normal probability plotting of the bootstrap parameter 
estimate q,  ̂ to the Attitudes towards the U.S.Army (original ML 

1 - 1. 6 4 bootstrap ô ̂ - 1.68 and R ̂ - 97.9%).
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Figure 3.2- Normal probability plotting of the bootstrap parameter 
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Q = 0.85,’ bootstrap q ,  ̂ 0.88 and R ̂ - 93.9%).
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Figure 3.3- Normal probability plotting of the bootstrap parameter 
estimate q*  ̂to the Attitudes towards the U.S.Army (original ML 
Ô* Q - 0.44, bootstrap q *  ̂- 0.45 and 99.4%).
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The correlation matrix of the original ML, bootstrap, the 

jackknife parameter estimates are displayed in Tables 3.5 and 3.6.

Table 3.5- Correlations between the original ML parameter estimates 
based on the observed 2^^ derivative matrix (under the diagonal) 
and on the information matrix (above the diagonal) to the Attitudes 
towards the U.S.Army.

*1 , 1 * 2 , 1 * 3 , 1 * 4 , 1 * 1.0 *  2,0 *  3,0 *  4,0

*1,1 -0.11 -0.13 -0.14 0.54 0.05 0.10 0.13
*2,1 -0.10 -0.04 -0.06 -0.08 -0.33 0.04 0.07

*3,1 -0.18 -0.01 -0.13 -0.10 0.02 -0.58 0.11

* 4 , 1 -0.12 -0.10 -0.11 -0.10 0.03 0.09 -0.72

* 1 , 0 0.54 -0.08 -0.12 -0.09 0.22 0.24 0.24
* 2 . 0 0.05 -0.33 0.01 0.04 0.22 0.15 0.13
* 3 , 0 0.13 0.02 -0.59 0.08 0.26 0.16 0.07
* 4 , 0 0.12 0.09 0.10 -0.72 0.23 0.12 0.08

From Table 3.5 we can see that both methods give approximately the 

same asymptotic correlations between the original parameter estimates 

1 and o Q .  The highest correlations (-0.72 to 0.54) are between 

1 and Q for all items. The remaining correlations are smaller 

than 0.26 (in absolute value), showing weak or no correlation between 

these parameter estimates.
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Table 3.6- Bootstrap (under the diagonal) and jackknife (above the 
diagonal) estimates of correlations between the parameter estimates 
of the Attitudes towards the U.S.Army.

*1 , 1 * 2 , 1 * 3 , 1 * 4 . 1 *  1.0 *  2,0 * 3 , 0 *  4.0

* 1 , 1 -0.06 -0.17 -0.09 0.60 0 . 0 2 0.14 0.10

* 2 , 1 0.10 -0.03 -0.14 -0.05 -0.36 0.03 0.10

* 3 , 1 -0.39 -0.23 -0.12 -0.16 0.00 -0.59 0.07

* 4 , 1 0.01 -0.23 0.04 -0.12 0.03 0.06 -0.73
* 1 , 0 0.67 0.07 -0.24 0.07 0.20 0.22 0.34

* 2 , 0 -0.01 -0.27 -0.03 0.06 0.26 0.11 0.14
Ct3 , 0 0.41 0.05 -0.62 -0.03 0.35 0.12 0.09
* 4 , 0 0.14 0.19 -0.13 -0.66 0.23 0.14 0.30

We shall compare the correlations in Table 3.6 to those in Table

3.5 obtained from the observed second derivatives, though the same 

results are valid if we use the information matrix instead.

The jackknife estimates of the correlations are nearly equal to 

the asymptotic correlations between the original ML parameter 

estimates , and g, for i and j equal to 1, ... ,4.

The largest differences between bootstrap estimates of the 

correlations and the asymptotic of the original ML are the 

correlations between , and i (-0 23 compared to -0.001); â g  ̂

and âj Q (-0.13 compared to 0.10); âg g and & ̂ ̂  (0.41 compared to 

0.13);0gQ and a,  ̂(0.30 compared to 0.08). Whether these 

correlations are different of zero is difficult to say.

Tables 3.2 and 3.3 seem not to provide any straight reason for the 

biggest differences being associated to item 3,
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The agreement between the bootstrap estimates of the correlations 

with the corresponding asymptotic ML correlations are not as good as 

that showed by the jackknife results. Actually the biggest differences 

between bootstrap and the original ML , shown above, are between the 

same parameter estimates as showed by the comparison of the former 

with jackknife estimates of the correlations.

3- Arithmetic Reasoning Test on White Women

The full set of data for the Arithmetic Reasoning Test (ART) on 

white women is described in Table 2.1, followed by an extensive 

analysis for the logit/probit model in Chapter 2.

Table 3.7- Comparison between the bootstrap, original ML(in brackets) 
and the jackknife parameter estimates , for the ART on white women.

i *i,i SD(&i,, ) ) R Kcc )

1 1.14 (1.04) 1.37 .42 (.32) .36 .37 (.31) .26 88.5 89.4
2 1.26 (1.24) 1.14 .40 (.39) .40 .32 (.31) .35 94.2 80.9
3 1.04 (1.00) 0.93 .34 (.30) .32 .33 (.30) .34 96.9 78.7
4 1.51 (1.44) 1.41 .56 (.45) .50 .37 (.31) .35 94.2 73.0
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Table 3.8- Comparison between the bootstrap, original ML(in brackets) 
and the jackknife parameter estimates q for the ART on white women,

i &i,o SD(&i,o )

1 0.59 (0.59) 0.59 .17 (.18) .17 29 ( .29) .29 99.0 85.7
2 0.56 (0.56) 0.56 .19 (.19) .18 34 ( .30) .32 97.1 87.8
3 -0.08(-0.08)-0.06 .16 (.16) .16 00 (2.00)2.67 98.4 68.7
4 -0.53(-0.51)-0.51 .23 (.21) .20 43 ( .41) .39 99.2 86.1

Table 3.9- Comparison between the bootstrap, original ML(in brackets)
and the jackknife parameter estimates â*i,o for the ART on white
women.

i %î,o SD(a*,o ) R"(^i,o)

1 0.41 ( 0.41) 0.32 .12 (.12) .12 .29 ( .29) .38 99.2 82.8
2 0.35 ( 0.35) 0.35 .11 (.10) .11 .31 ( .28) .38 98.4 79.4
3 -0.06 (-0.06)-0.04 .10 (.10) .11 1.67 (1.67)2. 75 98.3 72.2
4 -0.29 (-0.29)-0.28 .11 (.11) .10 .38 ( .38) .36 99.4 77.2

The bootstrap CV(&i ,) of items 1 and 4 are slightly bigger than 

the original ML (0.37 compared with 0.31). In item 1 this difference 

is probably due to the two extreme values of ^, as we can see in 

Figure 3.4. If we take them out then the fit of a normal distribution 

will be even better and the similarity between the bootstrap and 

original ML results will increase. This result illustrates that large 

values (a, ,=3.19) can happen even when the original ML parameter 

estimate o , , is small (a, ,=1.04). However two bootstrap samples give 

2 extreme values for &, ,, the same does not happen when estimating 

0, 0 and a*, g, as we can see from Figures 3.5 and 3.6.
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Tables 3,8 and 3.9 display a very good agreement between all the 

bootstrap parameter estimates q and Of* p and they are fitted well 

by a normal distribution, giving strong evidence that the original ML 

estimates and their standard deviations can probably be trusted.

Therefore there is very good agreement between the bootstrap and 

original ML parameter estimates and their corresponding standard 

deviations, though in the former example is better for ,, probably

because the sample size is bigger (1000), since the ,'s are also

very similar to each other.

From Table 3.7 we can see that jackknife gives very close results 

to the original ML, except for item 1, for which the jackknife

CV(q , ,) is slightly smaller, 0.25 compared to 0.31, and a, , is 

bigger than the corresponding the original ML and bootstrap

estimates (1.37 compared to 1.04 and 1.14).

The jackknife parameter estimates p and a* q are nearly equal 

to the corresponding original ML estimates, except for the coefficient 

of variation of p, which is bigger (2.67 compared to 2.0), h* pis 

smaller (0.32 compared to 0.41) with larger coefficient of 

variation (0.38 compared to 0.29) and the coefficient of variation of 

a* pis larger (2.75 compared to 1.67),

The boostrap estimates of the bias of ,, i-l,...,4, are equal 

to 0.10, 0.02, 0.04 and 0.07, while the jackknife estimates are 0.33, 

-0.10, -0.07 and -0.03, respectively. Therefore, both methods are

nearly equally biased, except for a, ,, for which the bootstrap bias

is slightly smaller.
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As in the preceding example, bootstrap parameter estimates are 

equal or closer to the original ML estimates than the corresponding 

jackknife ones.

While the bootstrap R^>88.55%, R^ for the jackknife pseudovalues 

varies between 68.7% and 89.4%, indicating that bootstrap distribution 

of , and Q is fitted better by a normal distribution than the 

jackknife pseudovalues.
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Figure 3.4- Normal probability plotting of the bootstrap parameter 
estimate o,  ̂ to the ART on white women (original ML cr, , - 1.04,
bootstrap q , , - 1.14 and R ̂ - 88.5%).
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Figure 3.5- Normal probability plotting of the bootstrap parameter 
estimate â,  ̂to the ART on white women (original ML and bootstrap 
Q, Q equal to 0.59 and R ̂ - 99.2%).
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Figure 3.6- Normal probability plotting of the bootstrap parameter 
estimate q*  ̂to the ART on white women (original ML and bootstrap 
0*0 equal to 0.41 and R ̂ - 99.2%).

In the following two tables we present the correlation matrix of 

the original ML, bootstrap and the jackknife parameter estimates.
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Table 3.10- Correlations between the original ML parameter estimates 
based on the observed 2^^ derivative matrix (under the diagonal)
and on 
white '

the information 
women.

matrix (above the diagonal) for the ART on

* 1 , 1 * 2.1 * 3 , 1 * 4 , 1 * 1.0 * 2.0 * 3.0 *  4,0

-0.08 -0.04 -0.13 0.32 -0.04 0.00 0.06
* 2 , 1 -0.18 -0.07 -0.20 -0.03 0.35 0.01 0.09

* 3 , 1 -0.13 0.07 -0.14 -0.02 -0.03 -0.03 0.06

Q4 , 1 0.02 -0.28 -0.21 -0.05 -0.08 0.00 -0.36

* 1 , 0 0.34 -0.07 0.05 0.01 0.16 0.17 0.21

* 2 . 0 -0.07 0.38 0.02 -0.12 0.15 0.19 0.25

* 3 , 0 0.01 0.00 -0.02 0.00 0.17 0.18 0.20

*4,0 0.01 0.11 0.09 -0.34 0.20 0.26 0.20

Both methods give approximately the same correlations with t]

maximum difference equal to 0.15, related to the correlation betwei

a,^, and a, 1 (0 .02, based on the observed second derivatives <compare

to - 0 .13 obtained from the information matrix),

Table 3.11- Bootstrap (under the diagonal) and jackknife (above the
diagonal) estimates of correlations between the parameter estimates
of the ART on white women.

*1,1 * 2 , 1 * 3 , 1 * 4 , 1 *  1,0 * 2,0 *  3,0 &4 , 0

*1.1 -0.22 -0.20 0.13 0.22 -0.10 0.02 -0.04
0:2 , 1 -0.28 0.19 -0.38 -0.02 0.36 0.07 0.23

*3,1 -0.33 0.06 -0.33 -0.01 0.13 -0.08 0.22
04 , 1 0.08 -0.23 -0.33 0.07 -0.08 0.08 -0.46
* 1 , 0 0.21 -0.14 0.08 0.04 0.17 0.17 0.20
* 2 . 0 -0.03 0.40 0.04 -0.07 0.07 0.24 0.25
^ 3 , 0 0.13 0.09 -0.07 -0.02 0.23 0.18 0.14
*4,0 -0.10 0.15 0.26 -0.47 0.22 0.07 0.28
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We shall compare the bootstrap and jackknife correlations with the 

asymptotic ones obtained from the observed second derivative matrix, 

although the same conclusions are valid when comparing with the 

information matrix.

The largest differences between the bootstrap estimates of the 

correlations and the original ML correlations between , and oj Q 

are equal to 0.20 between , and  ̂ (-0.33 compared to -0.13); 

0.19 between q and Q (0.07 compared to 0.26) and 0.17 between 

1 and Q (0.26 compared to 0.09).

The magnitude of the discrepancies between the jackknife estimates 

of the correlations and the original ML correlations are up to 0.13, 

and it is between âg , and a, g.

In this example the results show that the jackknife estimates of 

the correlations between , and g, i,j-l,..,4, are equal or 

closer to the asymptotic ML correlations than the bootstrap estimates.

4- Attitudes towards Situations of Conflict

Stouffer and Toby (1951) report the answers of 216 respondents in 

4 situations of conflict. For each situation the respondents can react 

either by a universalistic attitude (negative response) or 

particularistic attitude (positive response), which results are given 

in Table 3.12.
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Table 3.12- Score distribution and results obtained by fitting 
a logit/probit model for the Stouffer and Toby data.

Response Observed Expected Total Component
pattern frequency frequency score score

0000 20 22.49 0 0.00
1000 38 38.40 1 1.15
0010 9 6.92 1 1.35
0100 6 5.62 1 1.58
0001 2 1.17 1 2.10
1010 24 22.93 2 2.50
1100 25 20.67 2 2.73
0110 4 4.21 2 2.93
1001 7 5.39 2 3.25
0011 2 1.14 2 3.45
0101 1 1.11 2 3.68
1110 23 27.38 3 4.08
1011 6 9.18 3 4.60
1101 6 9.86 3 4.83
0111 1 2.34 3 5.03
1111 42 37.19 4 6.18

Total 216 216.00 - -

%2-5.85 with 3 degrees of freedom (0 .20<p<0 ,.10).

Table 3.12 shows that these data are fitted well by a logit/probit 

model with one single latent variable as a measure of the attitude of 

a person when under different situations of conflict. The scaling 

given by the total and the component scores is the same though the ML 

1 varies from 1.15 to 2.10, as we can see in Table 3.13.

Andersen and Madsen (1977), using conditional maximum likelihood 

estimation found that the Rasch model fits these data very well, since
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the item difficulties estimated from different subsamples formed 

according to the number of positive responses on the test are very 

similar to the overall estimates obtained from the whole sample of 

items. However when investigating the latent distribution, taking into 

account these values for the parameter estimates, they found a lack of 

fit by a latent normal distribution.

There is no contradiction between a conditional fit of the Rasch 

model and the logit/probit model, since the Rasch model is fitted 

without any assumption about the distribution of the latent variable, 

and as we pointed out in Chapter 1, section 3,2.2, the parameter 

estimates are little affected by the choice of the prior distribution. 

What may also happen is that the ,'s in the logit/probit model are

not statistically different from each other.

Table 3,13- Comparison between the bootstrap, original ML(in brackets) 
and the jackknife parameter estimates  ̂ for the Stouffer and Toby 
data,

i SD(&i,, ) CV(&i , ) R )

1 1,19 (1.15) 1,33 .38 (.36) ,28 .32 (.31) .21 93,5 90,8
2 1,82 (1.58) 1,44 ,83 (.44) ,42 .46 (.28) .29 66,4 75,5
3 1,44 (1.35) 1,24 . 46 (.36) ,34 .32 (.27) .27 93,0 77,0
4 2,72 (2,10) 2,18 2,99 (.66) ,66 1.10 (.31) .30 35,3 63,5

The similarity between the bootstrap and the original ML results 

related to ,, i-1 and 3, can be considered very good, since the

parameter estimates and their standard deviations are nearly equal. 

This similarity could improve even more for item 1 if we delete the 

bootstrap sample that have provided an extreme value equal to 3,0, as
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we can see in Figure 3.7. However there are significant differences 

for the remaining items (i-2 and 4), especially for item 4, where 

is equal to 35.30%. Looking at the bootstrap distribution of

, (Figure 3.11), we can see that this is due to a sample with 

,-28.12. On deleting this sample it is found that the only changes 

on the bootstrap results in Tables 3.13 to 3.15 are related to item 

4,that is,

a, 1 - 2.46 SD(a, , )- 1.41 CV(&, , )- 0.57 and R = - 71.1%

— 1.47 SD(&, 0 )- 0.38 CV(%,  ̂)- 0.26 and R 2- 68.4%.

The improvement is not significant since we still have a large

difference between the bootstrap and the ML parameter estimates ,,

i=2 and 4 (1.82 compared to 1.58 and 2.46 compared to 2.10,

respectively). Their R^ are equal to 66.4% and 71.1%, respectively, 

which do not indicate a good approximation of the bootstrap 

distribution of parameter estimates by a normal distribution, probably 

responsible for the values 0.89 and 1.14 for the ratios of bootstrap 

standard deviations to the corresponding asymptotic standard

deviations.

On the other hand, a joint analysis of Figures 3.11 and 3.12 

suggests that the bootstrap distribution Og , and & 2,o that is either 

very skewed or a mixture of a normal distribution and some infinite 

values for O; i» which are estimated to be only large due to 

inaccurate computing.

We can get a better idea about the bootstrap distribution of the 

parameter estimates for items 1 and 4 by looking at Figures 3.7 and 

3.13.
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There is good agreement between jackknife and original ML

parameter estimates , for items 1 and 3, As bootstrap is very close 

to the original ML parameter estimates for these items, both methods 

give practically the same information about them. However for items 2 

and 4, jackknife results are closer to the original ML than the

bootstrap results. This is not desirable, especially because bootstrap 

is warning that the standard deviations probably are bigger than those 

given by the asymptotic theory.

Bootstrap biases of ,, i-1.... 4, are equal to 0.04, 0.24, 0.11

and 0.62, while the jackknife estimates are 0.18, -0.14, -0.11 and

0.08, respectively. The largest biases are yielded by bootstrap and

related to followed by hence, in terms of bias of ,,

jackknife provides estimates equal or less biased than bootstrap.

Table 3.14- Comparison between the bootstrap, original ML(in brackets) 
and the jackknife parameter estimates  ̂for the Stouffer and Toby 
data.

1 SD(&i,, ) CV(&i , ) R=Ü%i,o)

1 1.70 ( 1.66) 1.81 .28 (.22) .20 .16( .13) .11 94.3 72.6
2 -0.01 ( 0.01) 0.01 .25 (.24) .19 25.00(24.00)14.32 92.5 71.9
3 0.08 ( 0.08) 0.08 .19 (.20) .18 2.38( 2.50) 2.12 98.0 74.2
4 -1.53 (-1.33)-1.41 .90 (.36) .35 .59( .27) 0.24 55.0 70.7
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Table 3.15- Comparison between the bootstrap, original ML(in brackets) 
and the jackknife parameter estimates Q for the Stouffer and Toby
data.

i »i,0 SD(*ï,o ) 0 ) R Ka î.o)

1 1.10 ( 1.09) 1.04 .16 (.14) .15 .14 ( .13) .14 98.0 72.3
2 0.002 (0.005)0.07 .10 (.13) .10 50.00(26.00) 1.43 98.0 71.1
3 -0.05 ( 0.05) 0.05 .10 (.12) .10 2.00 ( .40) 2.00 97.8 68.9
4 -0.56 (-0.57)-0.55 .11 (.10) .11 .20 ( .18) .20 99.0 80.0

According to the bootstrap results, the asymptotic theory can 

probably be applied to the estimation of the variability of all 

parameter estimates  ̂and â* q, except for ^ which is not well 

fitted by a normal distribution, since RZ-55.0% (Figure 3,12). In 

contrast the bootstrap distribution of the parameter estimate can 

be approximated by a normal distribution since the is equal to

94.4% (Figure 3.13). It seems that the fit of a normal distribution to 

the bootstrap distribution of x^ is usually as good as for û;̂   ̂but 

much better when  ̂ is not well approximated by a normal

distribution.

The bootstrap and the original ML coefficient of variation of q * q 

are very large, 50.00 and 26.00, respectively, due to the large 

CVCQj q) in both cases.

The bootstrap distribution for ,, a,  ̂and x, given by Figures 

3.7 to 3.9 show a good fit to a normal distribution (R^>93.5%) and 

great similarity in the display of the points. The biggest values for 

the estimates in these graphs come from the same sample, but it is not 

the one that has , -28.12.
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Bootstrap results suggest that the application of the asymptotic 

theory to determine the variance matrix may not be adequate when both 

the sample size is small and at least one of the , is bigger than

2.0 and almost double size of the smallest (1,15).

Tables 3.14 and 3.15 show that the jackknife parameter estimates 

0 and Of* Q and their coefficients of variation are very similar to 

the original ML, except for items 2 and 3, for which they are smaller, 

indicating that the jackknife standard deviations are probably 

underestimating the true ones.

As in the preceding examples, the pattern of of the jackknife 

pseudovalues seems not to be associated to the degree of similarity 

between its estimates and the original ML as showed by the bootstrap 

results.

Jackknife parameter estimates are equal or closer to the original 

ML than the bootstrap ones. Furthermore, while some jackknife 

estimates of the standard deviation are even smaller than the 

asymptotic ones, bootstrap results are warning that the true standard 

deviations are probably bigger.
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Figure 3.7- Normal probability plotting of the bootstrap parameter 
estimate q , , for the Stouffer and Toby data (original ML 
Q,  ̂= 1.15,’ bootstrap û , ̂ , - 1.19 and R^- 93.5%).
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Figure 3.9- Normal probability plotting of the bootstrap parameter 
estimate % ̂ for the Stouffer and Toby data (original ML and 
bootstrap %, - 0.84 and R ̂ - 99.2%).
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ML - 2.10, bootstrap  ̂- 2.72 and R ̂ - 35.3%).

*
*
3

1.5+ 4
24
8

46
+

0.0+ +*
56
55
53

*32
-1.5+ ****

* ★★

..... +........ +.........  +........ +........ 04,0-7.5 -6.0 -4.5 -3.0 -1.5

Figure 3.12- Normal probability plotting of the bootstrap
parameter estimate  ̂ for the Stouffer and Toby data (original
ML 0 - -1.33, bootstrap  ̂- -1.53 and R ̂  - 55.0%).

-136-



★
★

*2
1.5+ 22

***3
26

2*42*
83

0.0+ *83
4* 6

2 233 
2222  

* 3 2
-1.5+ 2 * *

* 2
*

, '3*:

0.00 0.06 0.12 0.18 0.24 0.30

Figure 3.13- Normal probability plotting of the boostrap parameter 
estimate for the Stouffer and Toby data (original ML % ̂ 0.21,
bootstrap •= 0.18 and R ̂ •= 94.4%).

-k'k
1.5+ 3*

32*
2 42 

244 
*324*

0.0+ 2 235
3224

*423
22* 2*

* 2*2
-1.5+ ** 2

- *

 1------    -4....  1-  H---------   1--------- 1--Q*
-0.80 -0.70 -0.60 -0.50 -0.40 -0.30

Figure 3.14- Normal probability plotting of the bootstrap 
parameter estimate  ̂for the Stouffer and Toby data (original 
ML Ô* Q- -0.57, bootstrap -0.56 and R ̂ - 99.0%).

-137-



The analysis of the adequacy of the asymptotic covariance matrix 

will be complemented with a comparison between the correlation 

matrices of the original ML, the bootstrap and the jackknife parameter 

estimates , and g, for i-1,,.,,4, based on Tables 3.16 and 3.17.

Table 3.16- Correlations between the original ML parameter estimates 
based on the observed 2^^ derivative matrix (under the diagonal) and 
on the information matrix (above the diagonal) for the Stouffer and 
Toby data.

*1.1 * 2 , 1 * 3 , 1 * 4 , 1 *  1,0 *  2,0 *  3,0 a  4,0

-0.05 -0.03 -0.05 0.64 0.01 0.01 0.06
*2 , 1 0.05 -0.06 -0.26 -0.05 0.01 0.00 0.22

*3 , 1 -0.10 -0.13 -0.16 -0.04 0.00 0.05 0.15

* 4 , 1 -0.11 -0.29 -0.06 -0.05 -0.01 -0.02 -0.74

* 1 , 0 0.66 0.02 -0.09 -0.09 0.17 0.15 0.16
& 2 , 0 0.02 0.04 0.00 -0.02 0.17 0.28 0.24
* 3 , 0 0.00 -0.01 0.07 -0.02 0.15 0.28 0.22
& 4 , 0 0.11 0.24 0.07 -0.71 0.19 0.25 0.22

The correlations based on the observed second derivative are 

nearly equal to those obtained from the information matrix, since the 

maximum difference is 0 .10, the asymptotic correlation between â, , 

and 1 (0 05 compared to -0.05).

The strongest correlations are between a, , and a, q (0.66 and 

0.64) and between a, , and q (-0.71 and -0.74), while the remaining 

parameter are not or weakly correlated.
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Table 3.17- Bootstrap (under the diagonal) and jackknife (above the 
diagonal) estimates of correlations between the parameter estimates 
for the Stouffer and Toby data.

* 2,1 * 3.1 * 4,1 * 1,0 * 2,0 * 3.0 * 4,0

*1,1 0.22 -0.11 -0.10 0.49 0.11 0.09 0.16
«2,1 0.12 -0.13 -0.34 0.10 -0.04 0.08 0.32
&3,i -0.29 -0.22 0.01 -0.06 0.10 0.01 0.08
«.,1 -0.16 -0.20 0.07 -0.03 0.07 0.06 -0.80
« 1,0 0.66 0.06 -0.24 -0.03 0.22 0.15 0.13
&2,o 0.09 -0.24 0.20 0.17 0.29 0.27 0.14
« 3,0 0.01 -0.16 0.09 0.22 0.22 0.27 0.16
«4,0 0.16 0.22 0.01 -0.92 0.12 -0.14 -0.19

Comparing Tables 3.15 and 3.16, we can see that the large

differences between the bootstrap estimates of the correlations and 

the asymptotic ML correlations based on the observed second derivative 

matrix are equal to 0.41 between a, g and âg Q (-0.19 compared to 

0.22) and 0.39, between a, g and # 2,0 ("0.1^ compared to 0.25). They 

are followed by a difference of 0.24 for the correlation between &g  ̂

and , (0.22 compared to -0.02) and other 4 differences around 0.20, 

while the remaining are smaller than lO.lOl. There are no significant 

differences between these results, for which the correlations are 

based on the observed second derivatives, and those based on the 

information matrix.

The maximum difference between the jackknife estimates of the 

correlations and the asymptotic correlations based on the second 

observed derivative matrix is 0.17 between â, , and â , q (0.49 

compared to 0.66) and also between â, , and 01 ̂ 1 (0.22 compared to
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0.05). If we use the results from the information matrix instead all 

the differences remain nearly the same, except for the correlation 

between a, , and O; , that increases to 0.27.

Therefore the jackknife estimates of the correlations between , 

and bj Q, for i,j-l,..,4, are equal or closer to the asymptotics than 

the bootstrap estimates.

5- Cancer Knowledge

The data from a study on knowledge about cancer were given by 

Lombard and Doering (1947). They are displayed in Table 2.5, 

Chapter 2.

Table 3.18- Comparison between the bootstrap, original ML(in brackets) 
and the jackknife parameter estimates , for the Lombard and Doering 
data.

i *i,i SD(bi,, ) cv(bi,, ) R 2(b i.i)

1 0.73 (0.72) 0.72 .09( .09) .09 .12 (.12) .12 98.3 87.5
2 4.14 (3.40) 3.01 2.71(1.14)1.19 .65 (.34) .40 67.4 73.9
3 1.39 (1.34) 1.31 .19( .17) .17 .14 (.13) .13 95.4 72.5
4 0.82 (0.77) 0.80 .14 (.14) .15 .17 (.18) .19 99.2 65.7

140-



Table 3.19- Comparison between the bootstrap, original ML(in brackets) 
and the jackknife parameter estimates  ̂for the Lombard and 
Doering data.

i *i,o SD(ôi,0 ) cv(&i, 0 ) R Ka i, 0 )

1 -1.29 (-1.29) -1.28 .07 (.06) .07 .05 (.05) .05 99.4 79.8
2 0.74 ( 0.60) 0.55 .50 (.17) .20 .68 (.28) .36 66.4 81.3
3 -0.14 (-0.14) -0.13 .07 (.08) .06 .50 (.57) .46 99.2 79.8
4 -2.75 (-2.75) -2.74 .12 (.18) .12 .04 (.06) .04 99.4 48.2

From Tables 3.18 and 3.19 we can see that. except for item 2

there is very good agreement between all the bootstrap and the 

original ML results and the bootstrap distributions of the parameter 

estimates , and  ̂ are fitted very well by a Normal

distribution (RZ>95.4%).

For item 2, the differences between the two results are 

significant and the fittings by a normal distribution are not good, 

since equals 67.4% and 66.4% (see Figures 3.15 and 3.16).

Actually, these two figures suggest that either the bootstrap 

distributions of ôg i ^ 2,0 fitted by two distributions, one

normal and another with , equal to infinity) or they are fitted by 

only one normal distribution extremely skewed. The bootstrap parameter 

estimates are larger than the original ML so that the bootstrap 

CV(cr2,,) and CV(&2,o) 91% and 143% larger than the corresponding

original ML ones.

There is very good agreement between all jackknife estimates and 

their standard deviations and the corresponding original ML ones,
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except for , , for which the jackknife estimate is even

smaller (3.01 compared to 3.40).

For item 2, jackknife estimates are closer to the original ML than 

to the bootstrap (4.14), indicating that jackknife tends to be closer 

to ML estimates than to bootstrap when one of the , is large

compared with the other.

Bootstrap and jackknife estimates of ,, for i-1,3,4, are 

approximately unbiased, since the boostrap biases are 0.01, -0.05 and 

-0.05 and the jackknife biases are 0.00, -0.03 and 0.03, respectively. 

The jackknife bias of ,i (“0.39) is smaller than the corresponding 

bootstrap one (0.74).

The fit by a normal distribution of the pseudovalues does not give 

information, as in bootstrap, about the relation between the jackknife 

results and original ML ones.

Table 3.20- Comparison between the bootstrap, original ML(in brackets) 
and the jackknife parameter estimates q for the Lombard and
Doering data.

i -Î.0 SD(&ï,o ) CV(&t,o ) R Ka t o )

1 -1.04 (-1.04) -1.03 .06 (.06) .05 .06 (.06) .05 98.7 77.6
2 0.17 ( 0.17) 0.18 .03 (.03) .03 .18 (.19) .17 98.8 79.8
3 -0.08 (-0.08) -0.09 .04 (.05) .04 .50 (.62) .44 99.5 70.7
4 -2.12 (-2.18) -2.13 .11 (.12) .11 .05 (.05) .05 98.1 56.7

Table 3.20 shows that the 3 methods give approximately the same 

estimates for a* q and their standard deviations. For item 3, the 

coefficient of variation of the original ML estimates is slightly 

bigger than the corresponding bootstrap and jackknife parameter
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estimates (0.62 compared to 0.52 and 0.44, respectively).

As in all preceding examples, in this case too the bootstrap 

distribution a* g, i-l,...,4, has an excellent fit by a normal 

distribution and most of the â* and their standard deviations are

equal to the original ML ones.

The approximately normal bootstrap distributions of the parameter 

estimates for item 4 are presented in Figures 3.18 to 3.20.

According to the bootstrap results, this example seems to indicate 

that the asymptotic variance matrix may not be trusted when one of the 

1 is large (3.40 or more). Table 3.18, even for a large sample 

size (1729). On the other hand, jackknife does not provide any warning 

about possible underestimation of the asymptotic standard deviations.
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Figure 3.15- Normal probability plotting of the bootstrap
parameter estimate Q j , for the Lombard and Doering data (original
ML ^ 2  , } *" 3.40, bootstrap ô j , - 4.14 and R ̂  - 67.4%).
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In the following two tables we shall present and compare the 

bootstrap, the jackknife correlation matrices with asymptotic 

correlations between the parameter estimates.

Table 3.21- Correlations between the original ML parameter estimates 
based on the observed 2̂ *̂  derivative matrix (under the diagonal) and 
on the information matrix (above the diagonal) for the Lombard and 
Doering data.

* 1.1 * 2.1 *3,1 *4.1 * 1 , 0 * 2 , 0 * 3 , 0 * 4 , 0

* 1,1 -0.30 0.22 0.04 -0.44 -0.26 -0.03 -0.02
* 2,1 -0.22 -0.75 -0.16 0.14 0.82 0.10 0.11

*3.1 0.13 -0.73 0.12 -0.09 -0.63 -0.12 -0.07

*^.1 0.12 -0.35 0.27 -0.01 -0.15 -0.02 -0.65
* 1 . 0 -0.43 0.10 -0.05 -0.05 0.22 0.14 0.05
* 2  , 0 -0.20 0.81 -0.60 -0.30 0.19 0.29 0.15
^ 3 , 0 0.13 0.10 -0.12 -0.04 0.13 0.30 0.08
* ^ , 0 0.12 0.24 -0.17 -0.67 0.07 0.26 0.10
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The similarity between the correlations based on the observed 

second derivative and the information matrix is good, since the larger 

difference between them is equal to 0.15 and corresponds to the 

correlation between a, , and a 3 q (0.13 and -0.03); “ 4,1 and 

&3 , (0.27 and 0.12); and a, , and a 2 q (-0.30 and -0.15).

As in the preceding examples, most of the highest estimated 

correlations are between the discrimination and difficulty parameter 

estimates , and Oj Q, i,j-l,..4.

Table 3.22- Bootstrap (under the diagonal) and jackknife (above the 
diagonal) estimates of correlations between the parameter estimates 
of the Lombard and Doering data.

* 1,1 * 2.1 * 3,1 * 4,1 * 1,0 * 2,0 * 3,0 * 4,0

-0.17 0.06 0.21 -0.42 -0.17 -0.04 -0.13

^2 , 1 -0.11 -0.74 -0.44 0.08 0.84 0.08 0.24

* 3 , 1 -0.11 -0.51 0.36 -0.06 -0.63 -0.11 -0.21

*4,1 0.23 -0.13 0.30 -0.11 -0.37 -0.06 -0.68
*1,0 -0.40 0.19 -0.18 -0.28 0.18 0.12 0.14

*2,0 -0.12 0,97 -0.49 -0.11 0.25 0.28 0.25
* 3 , 0 0.02 -0.04 -0.15 0.03 0.15 0.03 0.12
* 4 , 0 -0.18 0.09 -0.16 -0.71 0.24 0.10 0.02

The largest difference between the bootstrap estimates of the 

correlations and the original ML based on the observed second 

derivative matrix is equal to 0,27, between oĉ q and a 3  ̂(0.03 

against 0.30), followed by a difference of 0.24 between ck, , and 

Ô 3 1 (-0.11 against 0.13), and 0.22 between Og ,1 and « 3̂ 1 (-0.51 

against -0.73) and between ô; i and a, , (-0.13 against -0.35). These 

results are the same when comparing with the correlations based on the
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information matrix, except for the correlation between , and 

for which the difference is smaller, 0,09.

Comparisons between the jackknife estimates and the asymptotic 

correlations for the original KL parameter estimates, based on the 

observed second derivative matrix, show that the biggest difference is 

equal to 0.25 between a,  ̂ and a, g (-0.13 compared to 0.12), followed 

by 0.17 between a, , and âg  ̂(-0.04 and 0.13). If we do the same 

comparison in relation to the correlations from the information 

matrix, these two differences will decrease to 0.11 and 0.01, 

respectively, and the remaining will change even less.

Therefore bootstrap and jackknife estimates of the correlations 

show the same degree of agreement with the asymptotic correlations 

between the original ML parameter estimates whether based on the 

observed 2^^ derivative or on the information matrix.

6- Arithmetic Reasoning Test on Black Women

The last example corresponds to the data presented in Table 2.3 

about the Arithmetic Reasoning Test (ART) on black women.

Table 3.23- Comparison between the bootstrap, original ML(in brackets) 
and the jackknife parameter estimates , for the ART on black women.

i “i.i SD(*i,,) CV(&i,i) R %&i,J

1 6.79(14.39)38.82 7.16(67.78)6.77 1.05 (4.71) .17 83.8 95.4
2 1.63 (0.38) 0.32 3.32 ( .22) .21 2.04 (0.58) .66 49.6 80.8
3 1.56 (0.37) 0.32 3.62 ( .24) .22 2.32 (0.65) .69 47.3 91.4
4 0.14 (0.19) 0.16 2.94 ( .24) .22 21.00 (1.26)1.38 44.0 93.2
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Table 3.24- Comparison between the bootstrap, original ML(in brackets) 
and the jackknife parameter estimates Ofj;  ̂for the ART on black women.

i *1,0 SD(âi,o ) CV(&i,o) R Ka i,o)

1 0.01 (0.24)130.10 1.27(4.63)3.05 127.00(18.52).02 93.2 76.0
2 -0.59(-0.33) -0.32 0.72 (.16) .16 1.22 ( .48).50 54.3 75.8
3 -1.62(-0.96) -0.93 1.89 (.14) .18 1.17 ( .14).19 45.7 70.8
4 -1.56(-1.08) -1.08 1.60 (.16) .18 1.02 ( .15).17 36.7 67.7

This is an example of an extreme case where one ^, dominates all

the other items by its very large value (14.39), and the sample

size (145) is very small.

Comparing the bootstrap with the original ML results in Tables 

3.23 and 3.24 we can see some disagreement for all the results, the 

bootstrap estimates being larger than the original ML estimates, 

except for item 1. It seems that the dominating item 1 has affected 

all the other items, which show an even bigger discrepancy between the

bootstrap and the original ML estimates.

The results also show that large values of the bootstrap parameter 

estimate ,, that is, , > 1.42 for i-2,3,4, are always associated 

with small values of â, ,, that is, -0.38 < a, , < 0.77.

While the bootstrap a, ,'s are spread from -0.38 to 26.84, at

least 90% of the bootstrap , are concentrated between -1.48 and 

1.48 for i-2,3,4. In items 2 and 3, up to 10% of the bootstrap / s

assume values from 1.48 to 17.96 while a, , varies between -12.75 and 

14.98 (Figure 3.24).
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The performance of the bootstrap distribution of the parameter 

estimates  ̂ with the corresponding g is very similar, so that 

large values for , are always associated with large g in

absolute value, as we can see in Figures 3.21, 3.22, 3.24 and 3.25 and 

Tables 3.23 and 3.24.

Figure 3.21 shows that the bootstrap distribution of a, , either 

could be fitted by a mixture of two Normal distributions or by two 

different distributions: one normal and another with a , , equal to

infinity. Although the normal probability plotting for the bootstrap 

distribution of  ̂provides equal to 93.2%, we may see a mixed of 

two normal distributions.

Figures 3.24 and 3.25 the normal probability plottings for , 

and Q for izT. In these cases, it is more evident that most of the 

bootstrap estimates are fitted by a normal distribution, except for 

those sample for which ,, i^l, is very large. In this later case, 

it could be fitted by a distribution with ,, i^l, equal to

infinity.

The jackknife estimates and standard deviations are very close to 

the corresponding original ML ones, except for item 1 where jackknife

1 and a , Q are bigger (38.82 and 130.10 compared to 14.39 and 0.24, 

respectively) with smaller coefficients of variation(0.17 and 0.20 

compared to 4.71 and 18.52), probably underestimating the true 

standard deviations.

On the other hand, when comparing bootstrap with the original ML 

results we have seen that they disagree strongly and bootstrap gives a 

warning that the asymptotic theory probably is not working well.
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The bootstrap estimates of bias of ,, i-l,...,4, are equal to

-7.60, 1.25, 1.19 and -0.05, while the corresponding jackknife

estimates are 24.60, -0.06, -0.05 and -0.03, respectively. Therefore 

jackknife has provided estimates equal or less biased than bootstrap, 

except for item 1.

The results for all items show great discrepancies between 

jackknife and bootstrap techniques. These discrepancies are related to 

the size of the parameter estimates, standard deviations and fit of a 

normal distribution.

Table 3.25- Comparison between the bootstrap, original ML(in brackets) 
and the jackknife parameter estimates g for the ART on black
women.

i -Î.0 SD(&î,o ) CV(«i,o ) R 2(0t o )

1 0.01 ( 0.02) 0.05 .14 (.24) .20 14.00(12.00)4.00 97.1 72.7
2 -0.31 (-0.31) -0.31 .15 (.13) .15 .48 ( .42) .48 98.7 69.9
3 -0.85 (-0.90) -0.94 .20 (.11) .17 .24 ( .12) .18 99.1 69.6
4 -1.04 (-1.06) -1.13 .20 (.14) .17 .19 ( .13) .15 99.0 64.3

The bootstrap parameter estimates â* q are not affected by the 

skewness of , and g, i-l,...,4, showing substantial agreement 

with the original ML ones. This is to be expected, since they are very 

well approximated by a normal distribution, as we can see in Table 

3.25 and Figures 3.23 and 3.27.

Jackknife results for or* q are very close to the original ML, 

except for item 1, which coefficient of variation is smaller (4.00 

compared to 12.00). This is due to the fact that the reparametrization
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depends on , and g, for with the coefficient of variations are 

also smaller than those given by the asymptotic theory.
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Figure 3.21- Normal probability plotting of the bootstrap 
parameter estimate , to the ART on black women (original ML 
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In order to complete the comparison between bootstrap,jackknife

and the original ML parameter estimates we shall consider the 

correlation matrix given by Tables 3.26 and 3.27.

Table 3.26- Correlation matrix of the original ML parameter estimates 
based on the observed 2̂ ^̂  derivative matrix (under the diagonal) and 
on the information matrix (above the diagonal) for the ART on black 
women.

* 1,1 *2,1 * 3 , 1 * 4  , 1 *1,0 * 2 , 0 *  3,0 *  4,0

* 1 , 1 -0.90 -0.87 -0.66 1.00 0.14 0.33 0 10

*2 , 1 -0.17 0.78 0.59 -0.89 -0.16 -0.29 -0.09

0 ^ , 1 -0.15 0.03 0.57 -0.87 -0.12 -0.37 -0.09

04 , 1 -0.01 -0.02 -0.02 -0.65 -0.09 -0.21 -0.15

* u , o 0.73 0.10 0.10 0.04 0.16 0.34 0.10

0 ^ , 0 0.01 -0.07 0.00 0.00 0.10 0.07 0.03

* 3 , 0 0.03 0.00 -0.19 0.01 0.10 0.03 0.04

* 4 , 0 0.00 0.00 0.00 -0.11 0.04 0.01 0.01
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There is strong disagreement between the correlation matrix of the 

original ML parameter estimates based on the observed second 

derivative and on the information matrix, with the later presenting 

equal or bigger values.

The largest discrepancies are related to the correlation between 

all the  ̂ and Oj , and between a,  ̂and â £  ̂ i-l,..,4. While the

correlations, based on the observed second derivative matrix, between 

, and , range from -0.17 to 0.03, those from the information 

matrix range from -0.90 to -0.66 and from 0.57 to 0.78. Thus while in 

the former the parameter seems not to be correlated, in the latter 

some are even strongly correlated. Furthermore, while the correlations 

based on the observed second derivative matrix between a, q and 

i-l,..,4, are equal to 0.73, 0.10, 0.10 and 0.04, which based on the

information matrix are equal to 1.00, -0.89, -0.87 and -0.65,

respectively.

The presence of the parameter estimates of item 1 in most of the 

largest discrepancies between both methods, may be associated with the 

large value assumed by a, , (14.39) and the untrusted estimated

standard deviations of a, , and o,^ (67.78 and 4.63).
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Table 3.27- Bootstrap (under the diagonal) and the jackknife (above 
the diagonal) estimates of correlations between the parameter estimate 
of the ART on black women.

* 1 , 1 * 2 , 1 * 3 , 1 * 4 , 1 *  1,0 *  2,0 *  3,0 * 4,0

* 1 , 1 0.09 0.10 0.54 -0.11 -0.05 -0.03 -0.02
* 2 , 1 -0.30 0.01 -0.10 0.02 -0.07 -0.02 -0.01

* 3 , 1 -0.27 -0.18 -0.10 0.02 -0.02 -0.20 0.00
«4 , 1 0.07 -0.07 -0.12 0.06 -0.01 0.00 -0.12
* 1 , 0 0.04 0.01 -0.02 0.00 0.11 0.10 0.01
* 2 , 0 0.26 -0.90 0.18 0.06 0.01 0.03 -0.05

« 3 , 0 0.29 0.15 -0.98 0.04 0.05 -0.16 -0.05
« 4 , 0 0.24 0.11 0.12 -0.11 -0.02 -0.08 -0.07

The bootstrap estimates of the correlations between the parameter 

estimates assume values from -0.30 to 0.29 and from -0.90 to -0.98. 

the bootstrap estimate -0.90 corresponds to the correlation between 

Qj , and Q, for which the observed second derivative provides a

value equal to -0.07, the information matrix, -0.16, and the 

jackknife, -0.07. On the other hand, -0.98 is the correlation between 

«3 , and &3 Q, which is equal to -0.19 when based on the observed 

second derivatives, and equal to -0.37 on the information matrix, and 

finally -0.20 for the jackknife estimate.

The only large asymptotic correlation based on the observed second 

derivative matrix is between a, , and â,  ̂and equal to 0.73, but it 

assumes a small value 0.04 in the bootstrap and -0.11 in the jackknife 

estimation.
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Table 3.27 shows that jackknife estimates of the correlation 

assume values between -0.11 and 0.11 and one value 0.54 associated to 

1 and ,. For the later estimates the asymptotic correlations are 

-0.01 (observed second derivatives) and -0.66 (information matrix), 

and 0.07 for the bootstrap estimate.

These results indicate that although there are some large 

discrepancies between the bootstrap and jackknife results compared 

with the asymptotic correlation matrix, they are closer to the 

correlation based on the observed second derivative than those based 

on the information matrix.

7- Comparison of Bootstrap, Normal Bootstrap and ML Estimates

The aim of this section is to investigate how close 

the (empirical) bootstrap parameter estimates /s are to the

corresponding normal bootstrap ones, in order to obtain more evidence 

which confirm the bootstrap results about the adequacy of the 

asymptotic variance-covariance matrix presented above.

We shall carried out this study considering 100 normal bootstrap 

samples for each one of the 5 sets of data, which will be drawn from a 

multinomial distribution with parameters Tĵ (z) , i-l,...,4, where rĵ (z) 

is the response function of a logit/probit model with parameters , 

and 0 equal to the ML estimates from the real data, and the latent 

variable Z is distributed as N(0,1).
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We shall compare the bootstrap methods (empirical and normal) in 

relation to the mean, median, interquartile difference Qg-Q, and 

standard deviation of the corresponding bootstrap distribution of 

q;̂ ,, i-l,...,4. We complement the analysis comparing both bootstrap 

estimates with the original ML results.

Table 3.28- Comparison between the bootstrap, original ML (in 
brackets) and the normal bootstrap parameter estimates , to the 
Attitudes towards the U.S.Army.

i *i,i SD(*i,, ) Q 3 - Q i Median

1 1.68 (1.64) 1.68 .25 (.24) .24 .34 (.32) .32 1.67 1.63
2 1.13 (1.12) 1.11 .15 (.14) .15 .20 (.19) .16 1.13 1.10
3 1.45 (1.41) 1.41 .20 (.19) .18 .31 (.26) .21 1.44 1.39
4 1.63 (1.60) 1.60 .20 (.22) .22 .27 (.30) .28 1.64 1.58

Table 3.28 shows an excellent agreement between the three 

procedures. The fitting of both bootstrap parameter estimates by a 

normal distribution (R^ > 92.1%) is shown by the similarity between 

mean and median, and as well by Qg-Q,.

Table 3.29- Comparison between the bootstrap, original ML (in 
brackets) and the normal bootstrap parameter estimates  ̂ for the 
ART on white women.

i SD(&i,i ) Q 3 - Qi Median

1 1.14 (1.04) 1.08 .42 (.32) .31 .41 (.43) .47 1.09 1.04
2 1.26 (1.24) 1.29 .40 (.39) .44 .45 (.42) .49 1.17 1.27
3 1.04 (1.00) 0.97 .34 (.30) .33 .44 (.40) .42 1.04 0.92
4 1.51 (1.44) 1.69 .56 (.45) .85 .73 (.61) .72 1.38 1.46
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The similarity between both bootstrap methods and the original ML 

results is very good, except for item 4 where both bootstrap n, , are 

slightly bigger than the ML estimate (1.51 and 1.69 compared to 

1.44).

For item 4 the normal bootstrap median is closer to the ML 

parameter estimate than the mean. The interquartile differences Q^-Q, 

are equal for both bootstrap methods, but they are different from the 

corresponding asymptotics.

Table 3.30- Comparison between the bootstrap, original ML (in 
brackets) and the normal bootstrap parameter estimates  ̂ for the 
Stouffer and Toby data.

i SD(&i,i ) Q 3 - Q  1 Median

1 1.19 (1.15) 1.24 .38 (.36) .37 .49 (.48) .54 1.12 1.25
2 1.82 (1.58) 1.69 .83 (.44) .64 .62 (.59) .62 1.61 1.56
3 1.44 (1.35) 1.34 .46 (.36) .36 .52 (.48) .48 1.36 1.33
4 2.72 (2.10) 2.90 2.99 (.66)2.23 .99 (.89)1.37 2.12 2.32

Items 1 and 3 present estimates nearly equal when comparing the 3 

methods. Items 2 and 4 present some discrepancies, which are stronger 

for item 4.

The larger bootstrap estimates of , than the original ML is due 

to the occurence of some large values when , was small. This shows 

some instability of the bootstrap distribution, probably because of 

the small sample size (216) .

Both bootstrap estimates , are closer to each other than to the 

corresponding ML estimate (2.72 and 2.90 compared to 2.21). The 

bootstrap medians are closer to the ML estimate than to the means due
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to the skewness of the bootstrap distribution.

Comparing Q3-Q, , we can say that the only difference is for item 

4, and the (empirical) bootstrap estimate is closer to the ML than the 

normal bootstrap.

The higher estimates for the normal bootstrap of item 4 is due to 

the variation in a, which assumes values from 1.14 to 14.75 with 

25% of them bigger than 3.15. Although there are some small 

differences in item 4, we can still say that both bootstrap methods 

present very similar results.

Table 3.31- Comparison between the bootstrap, original ML (in 
brackets) and the normal bootstrap parameter estimates , for the 
Lombard and Doering data.

i *i,i SD(&i,, ) Q 3 ■ Qi Median

1 0.73 (0.72) 0.73 .09 (.09) .10 .13 (.12) .11 .71 0.72
2 4.14 (3.40) 3.79 2.71(1.14)1.92 2.07(1.54)1.28 3.29 3.40
3 1.39 (1.34) 1.38 .19 (.19) .18 .25 (.23) .24 1.37 1.38
4 0.82 (0.77) 0.78 .14 (.22) .13 .18 (.19) .18 .81 .77

We can see from Table 3.31 that all result are nearly equal, 

except for item 2. Both bootstrap methods present larger estimates 

1 than the original ML, though the normal bootstrap estimate is 

closer to the latter than to the empirical bootstrap (3.79, 4,14

compared to 3.40). The bootstrap medians for item 2 are closer to the 

ML estimates than the means.
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The differences between both bootstrap methods for , can be 

better understood is we look at their distributions.

The bootstrap distribution of âg , assumes values between 1.67 and 

16.90 with 25% of them smaller than 2.67 and others 25% bigger than 

4.74. On the other hand, in the normal bootstrap , ranges from 2.03 

to 13.54, with Q, equal to 2.75 and Qg equal to 4,03. Therefore in the 

normal bootstrap the spread of the estimates «2,1 smaller.

Some instability observed in the Stouffer and Toby data reflected

by item 4 not occur in this example, though the larger value of ML

Û 2 1 (3.40 compared to 2.10), as we can see by the strong similarity

among the 3 procedures for items 1, 3 and 4. This is probably due to

the larger sample size (1729) of the Lombard and Doering data.

Table 3.32- Comparison between the bootstrap, original ML (in 
brackets) and the Normal bootstrap parameter estimates , for the
ART on black women.

i *i,i SD(&i,i ) Q 3 - Qi Median

1 6.79(14.39)5.70 7.16(67.78)5.33 12.37(91.43)10.68 2.96 2.53
2 1.63 ( .38) .71 3.32 (.14) .15 .20 (.19) .16 1.13 1.10
3 1.56 ( .37)1.17 .20 (.19) .18 .31 (.26) .21 1.44 1.39
4 .14 ( .19) .24 .20 (.22) . 22 .27 (.30) .28 1.64 1.58

The original ML parameter estimates ,, i-2,3, are smaller than 

the bootstrap ones, while the ML estimate , is similar, but with 

much smaller standard deviation.

Medians of both bootstrap methods are closer to the original ML 

parameter estimates than the corresponding means, except for item 1.
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The interquartile differences Qg-Q, are very similar for both 

bootstrap methods, but they are very different from the asymptotic 

approximation, specially for a,

The original ML parameter estimate a,^, and its standard deviation 

are much larger than the bootstrap estimates, 14.39 compared to 6.79 

and 5.70, and 67.78 compared to 7.16 and 5.33, respectively.

As we have already pointed out in Chapter 2, when fitting a 

logit/probit model to the Arithmetic Reasoning Test on black women, 

the ML parameter estimate a,  ̂could be equal to any value bigger than 

3 or 4,since the likelihood function is flat after this point.

It is worth saying that when carrying out the bootstrap methods we 

have always considered the same stopping rule for the iterative 

procedure of the estimation of the parameters. Hence, using the same 

stop rule, the normal bootstrap estimate of , is equal to 5.70, 

though the bootstrap samples are drawn from a distribution with a, , 

equal to 14.39.

The normal bootstrap distribution of  ̂ assumes values between 

0.09 and 15.79 with equal to 0.69 and Qg equal to 11.37. The 

fitting by a normal distribution is the same as for the empirical 

bootstrap (83.6%). Furthermore, 52% of the parameter estimates are 

bigger than 3.0 and the median is 2.53. These results seem to indicate 

that the 'true' parameter could be equal to 3.0.

The disagreement between the bootstrap results for the remaining 

items are strongly due to the influence of item 1, since ,,

i=2,3,4, assume only large values in the bootstrap samples with â, , 

small. That is, 8% of the normal bootstrap samples with â, ,<1.0,
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have one of the ,'s, , bigger than 3.0.

The empirical bootstrap distribution of a, , ranges from -0.39 to 

26.84, with Q, equal to 0.55 and Qg equal to 12.92. Besides, the 

median is 2,96 and 28% of the bootstrap samples present ,< 3.0 and

0£ ^>3.0, for some i^l. This suggests that as in the normal bootstrap, 

item 1 is strongly affecting the remaining items, producing skewed 

distributions and larger estimates.

8- Conclusions

The results from the comparison between the bootstrap, jackknife 

and ML parameter estimates g, , and ^and the corresponding

variance-covariance matrix suggest that

(1) The results from the Attitudes towards the U.S.Army and Arithmetic 

Reasoning Test on white women data suggest that when ,'s

are nearly equal, the asymptotic variance matrix probably can be 

trusted, since the bootstrap standard deviations are very close to the 

asymptotic ones. Furthermore, this similarity increases as the sample 

size become larger.

(2) In the Stouffer and Toby data, n-216, the biggest values for , 

are 1.58 and 2.10, usually not considered large, the discrepancy 

between the bootstrap standard deviations and that from the asymptotic 

theory is bigger than in the Lombard and Doering data, where n-1729 

and max(&i ,)-3.14. These results suggest that large values for  ̂

are associated with skewed Normal distributions or a mixture of two
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distributions, one Normal and another with , equal to infinity, and 

probably the asymptotic standard deviations of the parameter estimates 

are smaller than the true ones. There is also some evidence that the 

size of , to be considered large depends on the sample size.

(3) The results from the Arithmetic Reasoning Test on black women 

suggest that when one of the  ̂ is very large compared with the 

remaining , and the sample size is small, we should probably not 

trust any estimates, since this item affects all the other.

(4) The bootstrap standard deviation and the coefficient of variation 

of Qi T, &i 0 and Q* q are always equal to or bigger than those 

obtained from the asymptotic theory.

(5) The better the bootstrap distribution of the parameter estimates 

Qi 1, Qi 0 and Q*^o is fitted by a Normal distribution the better is 

the agreement between the bootstrap standard deviation and the 

asymptotic standard deviation, using the observed 2^^ derivatives.

(6) As the bootstrap distribution of the parameter estimates cr*  ̂ is 

fitted by a Normal distribution very well, most of the bootstrap 

results are equal to the corresponding original ML and their 

asymptotic variance parameter estimates. This shows that a*  ̂ is not 

affected by the skewness of the bootstrap , and q, though their 

variability is shown through large coefficient of variation of q*

(7) Jackknife parameter estimates , and  ̂ and their standard 

deviations tend to be very similar to the original ML ones, 

independent of the patterns of the Q^ , and the sample size.
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(8) The jackknife pseudovalue distribution tends not to fit a Normal 

distribution as well as the bootstrap distribution of the parameter 

estimates,

(9) Jackknife is not as good as bootstrap in warning about possible 

failings in the asymptotic standard deviations of , and Q. 

Therefore the bootstrap results should be trusted more than the 

jackknife ones,

(10) Regarding to the comparison between the asymptotic, bootstrap and 

jackknife estimates of correlations this study suggests that

Except for the Arithmetic Reasoning Test (ART) on black women, 

there is no difference between correlations based on the observed 

second derivative matrix and those obtained from the information 

matrix.

Except for the ART on black women, jackknife estimates of the 

correlations are equal or closer to the asymptotic ones than the 

corresponding bootstrap. Actually, the jackknife estimates of the 

correlations are closer to the asymptotic than to the bootstrap 

estimates only for the Lombard and Doering data, where the bootstrap 

largest difference in relation to the asymptotic estimate is 0.41, 

while for the jackknife it is 0.17. For the first 3 sets of data, the 

differences in relation to the asymptotic correlations are up to 0.20, 

and whether they are significant or not it is difficult to say.
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For the ART on black women, there are strong discrepancies among 

all results, whether comparing the asymptotic correlations or those 

with the corresponding bootstrap or jackknife estimates of the 

correlations. These results suggest that the asymptotic correlations 

probably can not be trusted.

(11)- Considering the results from the comparison between the 

bootstrap, the normal bootstrap and the original ML discrimination 

parameter estimates ,, this study suggests that

In general, when there is some difference between the bootstrap, 

normal bootstrap and the ML results for cxĵ ,, bootstrap estimates are 

closer to each other than to the ML estimates. The strongest 

similarity among them is related to the interquartile difference 

Qg-Q,, which could be expected since most or all of the estimates 

responsible for the skweness of the distributions are not considered.

The significant agreement between most of the (empirical) 

bootstrap and the normal bootstrap results is probably because the ML 

parameter estimates , and  ̂ are very close to the 'true' 

values.

At the same time, it is supporting the evidence that in some 

situations (&i , very large) the asymptotic theory is likely 

underestimating the standard deviations and most of the estimates 

related to the ART on black women can not be trusted.
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Chapter 4

RAS CH MODEL

The main purpose of this chapter is to compare the fittings of 

one- and two-parameter logistic models, that is to compare the Rasch 

model and a logit/probit model. Parameters are estimated using the

marginal maximum likelihood (MML) procedure through E-M algorithms.

First of all, we shall describe the MML procedure for the Rasch 

model, followed by a comparison between conditional maximum 

likelihood (CML) and MML estimation.

Essentially, the comparison between both models, Rasch and

logit/probit, will be done using data sets, which are well-fitted by a

logit/probit model and represent a broad range of patterns of the

discrimination parameter , .

Detailed investigation will be carried out for a data set where 

both models give a reasonable fit, even though, in the logit/probit 

model, one of the estimates of  ̂ is very large compared with the 

remaining ones and has a large standard deviation.
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1- Marginal Maximum Likelihood Estimation

The Rasch model for one latent variable, according to the general 

model(1.5), Chapter 1, may be defined as

logit(%i(z))- 0 + a, z, i-1 p

where

%i(z) is the response function,

z is the latent variable distributed as N(0,1),

Q is the difficulty parameter of item i and

is the discrimination parameter, the same for all items.

As the Rasch model is a special case of the general model(1.5), 

when all the slope parameters , are equal, we can estimate a, and 

Ql Q, i-=l,...,p, using the E-M algorithm for the marginal maximum 

likelihood (MML) procedure described in Chapter 1, section 3.2.2, just 

altering the maximization step.

Recall that even though the latent variable Z is distributed as 

N(0,1), we approximate by assuming that Z takes values z, 

with probabilities h(z,),h(z2),...,h(z;̂ ) which are chosen so that the 

joint probability function

0̂0 00
f(Xg) - J ••• J g(Xs'z) h(z)dz, s-1 n

can be approximated with high accuracy by Gauss-Hermite quadrature as

k
f(%s) - 1 g(Xs'Zt) h(zt). s-l,...,n

t-1
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where is a tabled quadrature point and hCz^) is the corresponding 

weight.

The parameter estimates â, and g, i-l,...,p, are obtained from 

the maximization of the likelihood function 

n
L - 2 log f(Xs)

S-1

The E-M algorithm used to maximise L is described in Chapter 1, 

section 3,2.2. The maximization step is changed, since the Rasch model 

has just one slope parameter to be estimated, instead of p.

The estimation of the parameters is performed by choosing any 

starting values for a, and g), followed by repeated applications

of E-M steps over the set of items until convergence is obtained. In 

detail we proceed as follows

E- step : Calculate the values of and given by

n
Rit - I Xis h(ztlXg) and 

s-1

n
Nt - I h(ztlXg) 

s-1

where h(z^|Xg) is the posterior probability of z^ given Xg.

M-step : Obtain improved estimates of o, and g), given by equations

(4.1) and (4.2) below, using the values of R^^ and from 

the E-step.
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In the following we justify the use of equations (4.1) and (4.2) 

in the maximization step of the E-M algorithm for the Rasch model.

As the latent variable Z assumes values z, , Zj, . . . , zĵ , is the

observed number of individuals at z^ who answer item i positively and 

is the expected number of individuals at z^. The response function 

of the Rasch model is given by

logit(%i(zt)) - Oi 0 + a, zt , i-l,...,p and t-l,...,k

and the estimation of the parameters corresponds to a standard 

logistic regression problem for binomial results.

Therefore the ML estimation may be done through weighted least 

squares iterations and

&i,o + =t + [ N t ̂  i(z t) (1-Tj(z^) ] ( Rit- N t* i(z 4 )

- 0 4- z ̂  + ££, i-1, . . . ,p and t-1, . . . ,k

where c^'s are independent with variance [ N̂ - (l-x^(z^) ] " L

Hence a routine method is to obtain an estimate of a, and ^, so

an estimate of for all i,t and then use a weighted least square

fit to update one iteration at a time.

We have carried out this estimation procedure using the ANCOVAR 

technique, which consists of the following steps (i-l,..p and 

t-1,..,k):
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(1) Take estimates and and obtain % j_(z (o).

(2) From Var °) ) - xi(2 -̂)(°) (1-t ̂ (z obtain

- [Var(Rit(o)) ]i ( + a,(o) z^)

+ [Var(Rit(°))]'i ( - Nt %i(zt)(o) ).

k
Z [Var(Ric(°))]i Sit(°) 
t—1

(3) Take Q(o^) *   and form
k
2 Var(Ric(o))
t=l

k
2 Var(Rit(°)) zt
t—1

(4) Put a^Cov) _   and form
k
2 Var(Rit(o) 
t-1

9jit(ov) - [Var(Rit(o)]i [ z^ - a^Cov)]

1 Z
i—1 t—1

(5) Then 0,(0 -   (4.1)

Z Z [i—1 t—1

and _ 0i_„(ov) . 0 ^(1) â ĵ (ov), i-l...,p (4.2)
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Replace and by a , ( ̂ ) and a  ̂) and iterate

again.

When we are using an E-M algorithm, in the next iteration of the 

maximization step, we must use the new value of and N̂ - from the

expectation step.

2- Goodness-of-fit

As the Rasch model is a particular case of the logit/probit model, 

the same considerations about the goodness-of-fit given in Chapter 1, 

section 7, hold here.

If a statistic chi-squared based on the observed and expected

frequencies can be applied then, for the Rasch model, the number of 

degrees of freedom for the unpooled case is 2P-p-2.

However, in practice, very often the sample size (n) is small

compared with 2P (number of possible score patterns). In this case, 

there will be many small expected frequencies so that pooling becomes 

necessary. Since the number of degrees of freedom in the pooled case

is equal to (number of pooled categories with expected frequencies

bigger or equal to 5)-p-l, there may no be degrees of freedom to judge 

the goodness-of-fit.

Furthermore, when the sample size is small compared with 2P, most 

of the expected frequencies will be very small, while the observed 

frequencies will be integer and almost always 0 and 1. This implies 

that the fitting of the model cannot be judged comparing the expected 

and observed frequencies of the score patterns.
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3- Applications of the Rasch Model

We present below some applications of the Rasch model, which are 

carried out using a program based on Facone (Program used to fit the 

models we are working with), but substituting the maximization step of 

the E-M algorithm as described above and doing the necessary 

reformulations, in order to obtain the new variance-covariance matrix.

We shall analyse how the Rasch model fits the 5 sets of data , for 

which we have fitted before with a logit/probit model, with response 

function

logit(*i(z)) - Qi 0 + ai 1 z.

Attitudes towards the U.S.Army

In the following, we fit the Rasch model to the 'Attitudes towards 

the U.S.Army', which data was displayed in Table 3.1, Chapter 3. The 

fitting by a logit/probit model is discussed in section 2 of the same 

chapter.

Table 4.1- Parameter estimates and asymptotic standard deviations 
from fitting the Rasch model to the Attitudes towards the U.S.Army

Item 1 2 3 4

*i 0.69 0.33 0.24 0.19

*i,o 0.79 -0.71 -1.16 -1.46 *1-1.41
SD(&i,o) 0.09 0.09 0.09 0.10 SD(a,)-0.10

- 12.07 on 10 degrees of freedom (p«0.25).
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These results show that the Rasch model also fits the data well. 

This might be expected, since the ,'s in the logit/probit model are 

very similar to each other. The loglikelihood values are also very 

similar, -2347.65 for the logit/probit and -2349.99 for the Rasch 

model.

Arithmetic Reasoning Test on white women

Table 4.2 presents the parameter estimates from fitting the Rasch 

model to the ART on white women. These data are described in Table

2.1, Chapter 2, followed by fitting a logit/probit model.

Table 4.2- Parameter estimates and asymptotic standard deviations 
from fitting the Rasch model to the ART on white women.

Item 1 2 3 4

*i 0.65 0.63 0.48 0.38

*i,o 0.62 0.55 -0.06 -0.47 a,-1.16
SD(*i,o) 0.17 0.17 0.17 0.17 SD(ô,)-0.16

- 0.84 on 6 degrees of freedom (p=0.99).

As in the preceding example, both Rasch and logit/probit fit the 

data very well, which could be expected since , ranges from 1.00 to 

1.44 in the logit/probit model. The loglikelihood values are nearly 

equal, -591.97 (logit/probit model) and -592.41 (Rasch model).
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Attitudes under situations of conflict

These data are given by Stouffer and Toby(1951) and they are 

presented In Table 3,12, Chapter 3, followed by fitting a loglt/problt 

model,

Table 4.3- Parameter estimates and asymptotic standard deviations 
from fitting the Rasch model to the Stouffer and Toby data.

Item 1 2 3 4

*1 0.86 0.50 0.52 0.24

*i,o 1.86 0.01 0.09 1.12 «1-1.51
SD(&i,o) 0.24 0.19 0.19 0.21 SD(a,)-0.1

X'̂ - 10.51 on 7 degrees of freedom (p«0.15) .

Note that although Stouffer and Toby's data are fitted by a 

loglt/problt model In which , assumes values between 1.14 and 

2.10, Rasch model also fits well as measured by , though Oj q has an 

extremely large standard deviation. This suggests that there are no 

significant differences among the I's, which Is also shown by the 

similarity between the loglikelihood values, -507.42 (loglt/problt) 

and -508.53 (Rasch).
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Cancer Knowledge

The data for this study on knowledge about cancer are given by 

Lombard and Doering (1947). They are displayed in Table 2.5, Chapter 

2, followed by fitting a logit/probit model.

Table 4.4- Parameter estimates and asymptotic standard deviations 
from fitting the Rasch model to the Lombard and Doering data.

Item 1 2 3 4

*i 0.18 0.58 0.46 0.04

“i.o -1.52 0.33 -0.14 -3.09 1.30
SD(&i,o) 0.08 0.06 0.06 0.11 SD(&,)- 0.06

-= 67.13 on 10 degrees of freedom (p«0.001).

As it would reasonable to expect, the Rasch model does not fit 

Lombard and Doering's data, since they are fitted well by a 

logit/probit model in which i is clearly larger than the

others (0.72; 3.40; 1.34; 0.77) for approximately the same coefficient 

of variation. The loglikelihood of the logit/probit model is -3622.68 

compared to a smaller value -3651.75 for the Rasch model.
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Arithmetic Reasoning Test on black women

Table 4.5 shows the fitting by the Rasch model to the ART on black 

women, displayed in Table 2.3, Chapter 2, followed by fitting a 

logit/probit model.

Table 4.5- Parameter estimates and asymptotic standard deviations 
from fitting the Rasch model to the ART on black women.

Item 1 2 3 4

*i 0.50 0.42 0.27 0.25

*i,o 0.01 -0.34 -0.98 1.13 a 1-0. 50
SD(&i,o) 0.18 0.18 0.20 0.21 SD(&i)-0.19

- 11.81 on 6 degrees of freedom (0.05ZpZ0.,10).

As we can see from Table 4.5 the ART on black women's data are 

reasonably fitted by the Rasch model, though the value of the 

loglikelihood statistic (11.81) judged as a chi-squared random 

variable is close to the 5% significance level (12.59). Even so, this 

is an unexpected result, since the same data are fitted by a 

logit/probit model with very large a, , (14.39), while the remaining 

,'s are very similar. Moreover the loglikelihood values are nearly 

equal on the log-scale, -366,84 (Rasch) compared to -364.69 

(logit/probit).

This result seems to indicate that item 1, in the logit/probit 

model, does not contain any information about the data, also showed 

through its large standard deviation. The untrustworthy result for 

item 1 can also be seen in the Rasch model through the large standard 

deviation of ck, q, what provides a coefficient of variation equal to 

18.
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4- Looking aC the Behaviour of the Likelihood Function

In order to obtain more information about how the ART on black 

women can also be fitted by a Rasch model, we shall look at the 

behaviour of its likelihood function. This will be done through the 

profile method proceeding, in the same way as described in Chapter 2 

for a logit/probit model.

2 .0-

-385 — --380 ---
--375 --

.0-
-375

-370
0.0-J

^--- 370 -— -
■-— -375 ----
. = z ^ % 5 : = :

 370 ■
--375 —  
^ ! § 8 5

- 2 .0-

- 3.0
7.0 9.05.01 .0 3.0

X * 10-1
Figure 4.1- Loglikelihood values as a function of the parameter 
estimates and Q,  ̂by fitting a Rasch model to the ART on black
women.

The parallel lines in Figure 4.1 indicate that the values of the 

likelihood function are almost unchanging over all the range of q ,, 

for a fixed o, Q. However, although the contouring shows a broad ridge 

going from West to East suggesting that â, is not a meaningful
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parameter, there is a peak inside it, that can be seen from Figure

4.2. Therefore the likelihood function from fitting the Rasch model to 

the ART on black women behaves well, i.e, is unimodal though the 

increase is small, from -367.79 to -366.84.

-3 6 6  6 -

- 367.2 -

- 367.8 -

-3 6 8  4 -

-3 6 9  6 -

- 370.2
0 10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0 90 1.00

X * 10-1
Figure 4.2- Maximum likelihood values over a,  ̂ for each a, fixed by 
fitting a Rasch model to the ART on black women.

On the other hand, the likelihood function from fitting this data 

by a logit/probit model is not unimodal, since it continues increasing 

indefinitely as we found out in Chapter 2, Figures 2.3 and 2.10.

From these results we can conclude that the likelihood behaves 

better when ART on black women are fitted by the Rasch than by a 

logit/probit model. Therefore the Rasch model fits better this data 

than the logit/probit model.
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In order to investigate whether one is likely to have a set of 

data with the same pattern of the ,'s as in this example, fitted 

well by both the Rasch and a logit/probit model, we have done a study 

based on the normal bootstrap method for the ART on black women.

5- formal Bootstrapping

We have generated 30 normal bootstrap samples from a multinomial 

distribution with parameters %i(z), i-1,,.,4, the response function of 

a logit/probit model, assuming that the latent variable Z is 

distributed as N(0,1), and 0̂  , and 0 ^0 are equal to the ML parameter 

estimates of the ART on black women's data (Tables 2.2, Chapter 2, 

where ,, i-l,...,4, are equal to 14.39, 0.38, 0.39 and 0.19,

respectively).

In Table 4.6 we give the parameter estimates from fitting a 

logit/probit model to each of the 30 normal bootstrap samples. We 

shall consider that the model fits the data well if the null 

hypothesis cannot be rejected on a significance level of 5%.
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Table 4.6- Parameter estimates and asymptotic standard deviations(in 
brackets) from fitting two and one-parameter logistic (logit/probit 
and Rasch) models to each of the 30 normal bootstrap samples.

item logit/probit Rasch
s i *1,1 *1,0 » i *1,0 ^ i

1 1 0.50 (0.43) 0.13 (0.18) 0.53 0.13 0.18) 0.53
2 1.89 (3.30) -0.90 (0.92) 0.29 -0.59 0.19) 0.36
3 -0.12 (0.30) -0.80 (0.18) 0.31 -0.85 0.19) 0.30
4 0.65 (0.63) -1.09 (0.26) 0.25 -1.07 0.20) 0.26

2 1 10.95(51.31) -0.80 (8.83) 0.31 -0.07 0.18) 0.48
2 0.37 (0.23) -0.60 (0.18) 0.35 -0.62 0.19) 0.35
3 0.32 (0.24) -0.99 (0.19) 0.27 -1.03 0.20) 0.26
4 0.27 (0.24) -0.87 (0.18) 0.29 -0.92 0.20) 0.28

3 1 0.65 (0.36) 0.08 (0.18) 0.52 0.08 0.18) 0.52
2 0.10 (0.23) -0.18 (0.16) 0.46 -0.21 0.19) 0.45
3 0.59 (0.31) -1.00 (0.21) 0.27 -1.03 0.21) 0.26
4 8.76(49.12) -4.96(18.18) 0.01 -1.00 0.21) 0.27

4 1 0.35 (0.23) 0.18 (0.17) 0.55 0.18 0.17) 0.54
2 -0.22 (0.23) -0.32 (0.17) 0.42 -0.31 0.17) 0.42
3 12.10(45.45) -5.44 (6.26) 0.01 -0.80 0.18) 0.31
4 -0.18 (0.26) -1.12 (0.19) 0.25 -1.11 0.19) 0.25

5 1 0.11 (0.22) 0.12 (0.17) 0.53 0.13 0.18) 0.53
2 0.52 (0.25) -0.52 (0.18) 0.37 -0.52 0.18) 0.37
3 13.06(59.99) -7.26(22.02) 0.00 -0.96 0.20) 0.28
4 0.39 (0.25) -0.96 (0.19) 0.28 -0.99 0.20) 0.27

6 1 1.15 (1.08) -0.02 (0.21) 0.50 -0.01 0.19) 0.50
2 1.66 (2.04) -0.60 (0.46) 0.35 -0.46 0.19) 0.39
3 -0.27 (0.43) -1.24 (0.21) 0.22 -1.23 0.20) 0.22
4 -0.49 (0.34) -1.09 (0.21) 0.25 -1.04 0.19) 0.26

7 1 5.82(42.29) -1.14 (8.60) 0.24 -0.31 0.18) 0.42
2 0.32 (0.30) -0.42 (0.18) 0.40 -0.42 0.18) 0.39
3 0.14 (0.27) -1.19 (0.20) 0.23 -1.24 0.21) 0.22
4 0.02 (0.25) -1.07 (0.19) 0.26 -1.12 0.20) 0.24

8 1 9.96(53.38) -0.18 (2.90) 0.46 -0.01 0.18) 0.50
2 0.62 (0.30) -0.32 (0.18) 0.42 -0.32 0.18) 0.42
3 0.52 (0.28) -0.59 (0.19) 0.36 -0.62 0.19) 0.35
4 -0.26 (0.24) -1.02 (0.14) 0.26 -1.09 0.21) 0.25

9 1 1.03 (0.69) -0.02 (0.20) 0.49 -0.02 0.19) 0.49
2 0.78 (0.51) -0.56 (0.21) 0.36 -0.57 0.19) 0.36
3 0.83 (0.57) -1.10 (0.27) 0.25 -1.11 0.21) 0.25
4 0.75 (0.46) -0.68 (0.21) 0.33 -0.70 0.20) 0.33

continue
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item loglt/problt Rasch
s 1 *1,0 *1 *1.0 » 1

10 1 0.60 (0.25) 0.10 (0.18) 0.53 0.10 0.18) 0.52
2 10.31(42.92) -2.33(11.29) 0.09 -0.34 0.18) 0.42
3 -0.40 (0.25) -0.83 (0.19) 0.70 -0.84 0.19) 0.30
4 0.16 (0.24) -0.97 (0.19) 0.27 -1.01 0.20) 0.27

11 1 11.37(52.26) 0.56 (7.12) 0.64 0.05 0.19) 0.51
2 0.50 (0.23) -0.28 (0.18) 0.43 -0.31 0.19) 0.42
3 0.31 (0.25) -1.25 (0.21) 0.22 -1.40 0.23) 0.20
4 0.89 (0.33) -0.86 (0.21) 0.30 -0.85 0.21) 0.30

12 1 11.43(45.24) -1.64(11.31) 0.16 -0.16 0.17) 0.46
2 0.29 (0.23) -0.65 (0.18) 0.34 -0.66 0.18) 0.34
3 0.42 (0.25) -0.97 (0.19) 0.28 -0.96 0.19) 0.28
4 -0.31 (0.26) -1.25 (0.21) 0.22 -1.26 0.21) 0.22

13 1 0.30 (0.32) -0.41 (0.18) 0.40 -0.44 0.18) 0.39
2 0.82 (0.88) -0.34 (0.21) 0.42 -0.32 0.18) 0.42
3 -0.38 (0.31) -0.96 (0.19) 0.28 -1.01 0.20) 0.27
4 3.40(11.99) -2.53 (7.46) 0.07 -1.16 0.21) 0.24

14 1 16.01(46.89) -0.77 (9.24) 0.32 -0.02 0.19) 0.49
2 0.93 (0.28) -0.21 (0.20) 0.45 -0.21 0.19) 0.45
3 0.45 (0.24) -0.97 (0.20) 0.27 -1.06 0.21) 0.26
4 0.14 (0.23) -1.00 (0.20) 0.27 -1.14 0.22) 0.24

15 1 0.36 (0.72) -0.04 (0.17) 0.49 -0.05 0.18) 0.49
2 0.60 (1.28) -0.16 (0.17) 0.46 -0.16 0.18) 0.46
3 -0.06 (0.50) -0.61 (0.18) 0.35 -0.66 0.19) 0.34
4 2.57(15.26) -1.98 (8.28) 0.12 -1.11 0.21) 0.25

16 1 11.13(43.92) 2.27(11.96) 0.91 0.27 0.17) 0.57
2 0.23 (0.22) -0.47 (0.17) 0.38 -0.48 0.18) 0.38
3 0.46 (0.46) -0.84 (0.19) 0.30 -0.82 0.19) 0.30
4 -0.20 (0.25) -1.19 (0.20) 0.33 -1.22 0.21) 0.33

17 1 0.54 (0.42) -0.19 (0.18) 0.45 -0.20 0.18) 0.45
2 3.87(15.82) -0.48 (1.74) 0.38 -0.20 0.18) 0.45
3 0.35 (0.48) -0.66 (0.18) 0.34 -0.72 0.19) 0.33
4 0.49 (0.36) -1.13 (0.21) 0.24 -1.20 0.21) 0.23

18 1 4.44(25.81) -0.46 (2.53) 0.39 -0.15 0.17) 0.46
2 -0.36 (0.37) -0.30 (0.17) 0.42 -0.30 0.17) 0.43
3 0.18 (0.25) -0.74 (0.18) 0.32 -0.75 0.18) 0.32
4 0.48 (0.51) -1.32 (0.24) 0.21 -1.28 0.21) 0.22

19 1 0.60 (0.40) 0.01 (0.18) 0.50 0.01 0.18) 0.50
2 0.87 (0.55) -0.40 (0.21) 0.40 -0.39 0.19) 0.40
3 0.25 (0.36) -0.98 (0.19) 0.27 -1.07 0.21) 0.25
4 1.35 (1.10) -1.15 (0.44) 0.24 -0.96 0.20) 0.28
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item logit/probit Rasch
s i *1,1 *i. 0 *i *1,0 ^ i

20 1 0.95 (1.04) 0.38 (0.23) 0.59 0.36 0.19) 0.59
2 0.53 (0.46) -0.31 (0.18) 0.42 -0.32 0.19) 0.42
3 1.06 (1.17) -1.06 (0.42) 0.26 -0.96 0.20) 0.28
4 0.39 (0.55) -1.26 (0.23) 0.22 -1.34 0.22) 0.21

21 1 5.92(36.26) 0.94 (6.35) 0.72 0.25 0.18) 0.56
2 0.32 (0.28) -0.50 (0.17) 0.38 -0.53 0.18) 0.37
3 0.10 (0.27) -1.04 (0.19) 0.26 -1.11 0.21) 0.37
4 0.38 (0.31) -0.69 (0.18) 0.33 -0.72 0.19) 0.33

22 1 7.13(39.14) -0.24 (2.23) 0.44 -0.05 0.19) 0.49
2 0.68 (0.40) -0.51 (0.19) 0.37 -0.53 0.20) 0.37
3 0.51 (0.33) -0.85 (0.20) 0.30 -0.91 0.21) 0.29
4 0.26 (0.29) -1.64 (0.23) 0.16 -1.82 0.26) 0.14

23 1 0.60 (0.59) -0.16 (0.18) 0.46 -0.16 0.18) 0.46
2 2.81 (8.63) -1.14 (2.60) 0.24 -0.59 0.19) 0.36
3 -0.16 (0.27) -0.87 (0.18) 0.31 -0.92 0.20) 0.28
4 0.53 (0.56) -1.61 (0.28) 0.17 -1.62 0.24) 0.16

24 1 0.96 (0.44) -0.12 (0.20) 0.47 -0.12 0.17) 0.47
2 0.90 (0.48) -0.82 (0.24) 0.30 -0.84 0.18) 0.30
3 0.60 (0.41) -1.54 (0.26) 0.18 -1.68 0.24) 0.16
4 1.50 (0.89) -1.31 (0.45) 0.21 -1.11 0.20) 0.25

25 1 1.61 (1.35) -0.14 (0.24) 0.46 -0.10 0.18) 0.47
2 1.40 (1.01) -0.55 (0.29) 0.36 -0.43 0.18) 0.39
3 0.45 (0.31) -0.83 (0.20) 0.30 -0.85 0.19) 0.30
4 -0.18 (0.32) -1.27 (0.20) 0.22 -1.34 0.22) 0.21

26 1 12.67(45.56) 1.73(11.61) 0.85 0.13 0.17) 0.53
2 0.12 (0.21) -0.44 (0.17) 0.39 -0.44 0.17) 0.39
3 0.26 (0.24) -0.84 (0.18) 0.30 -0.85 0.19) 0.30
4 0.34 (0.24) -0.96 (0.19) 0.28 -0.95 0.19) 0.28

27 1 0.63 (0.39) -0.20 (0.18) 0.45 -0.20 0.19) 0.45
2 0.92 (0.54) -0.34 (0.21) 0.41 -0.33 0.19) 0.42
3 1.49 (1.19) -1.30 (0.55) 0.21 -1.04 0.21) 0.27
4 -0.22 (0.33) -1.05 (0.19) 0.26 -1.10 0.21) 0.25

28 1 8.64(45.73) 1.20 (9.65) 0.77 0.19 0.18) 0.55
2 0.08 (0.21) 0.01 (0.17) 0.50 0.01 0.18) 0.50
3 0.38 (0.26) -0.99 (0.19) 0.27 -1.02 0.20) 0.26
4 0.37 (0.26) -0.99 (0.19) 0.27 -1.02 0.20) 0.26

29 1 14.56(47.13) -1.91(12.26) 0.13 -0.10 0.18) 0.47
2 0.34 (0.22) -0.41 (0.18) 0.40 -0.44 0.18) 0.39
3 0.70 (0.27) -0.99 (0.21) 0.27 -0.97 0.20) 0.27
4 0.30 (0.23) -0.88 (0.19) 0.29 -0.93 0.20) 0.28

continue.,.
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item 
S i

logit/probit 

*i,i «i.o *i
Rasch

*1,0 » i

30 1 11.96(45.80) -1.56(11.40) 0.17 -0.13 (0.18) 0.47
2 0.37 (0.22) -0.39 (0.18) 0.40 -0.40 (0.18) 0.40
3 0.37 (0.25) -0.99 (0.19) 0.27 -1.02 (0.20) 0.26
4 0.22 (0.25) -1.16 (0.20) 0.24 -1.21 (0.21) 0.23

In order to complement the information from fitting a logit/probit 

and the Rasch model to each one of the 30 normal bootstrap samples 

obtained from the ART on black women data, we shall present Table 4.7, 

which displays for each model and sample the corresponding 

loglikelihood values and the observed chi-squared obtained when using 

the loglikelihood ratio statistics

- -2 2 Oi log
i

Oi

Ei

where and (Eĵ ) are the observed and expected frequencies

Table 4 
and the 
samples

.7- Goodness-of-fit results 
Rasch model to each one of 
obtained from ART on black

from fitting a logit/probit 
the 30 normal bootstrap 
women data.

Sample Model a. SD(&,) loglik. X ̂ d .f

1 LP 1.89 3.30 -366.28 4.36 3
R 0.55 0.22 -368.24 6.60 6

2 LP 10.92 51.31 -365.57 8.12 4
R 0.56 0.22 -367.02 12.77 8

3 LP 8.77 49.12 -367.24 7.04 5
R 0.73 0.20 -370.25 12.11 9

4 LP 12.10 45.45 -367.54 4.77 4
R 0.00 0.62 -369.67 8.53 

continue...

7
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Sample Model a, SD(a,) loglik. X = d.f

5 LP 13.06 59.99 -366.01 7.25 5
R 0.54 0.22 -368.71 8.92 6

6 LP 1.66 2.04 -352.75 6.66 3
R 0.15 0.62 -359.25 18.46 * 6

7 LP 5.82 42.29 -356.70 1.86 4
R 0.46 0.25 -357.17 3.48 7

8 LP 9.96 53.38 -371.82 3.56 3
R 0.64 0.20 -376.59 11.14 7

9 LP 1.03 0.69 -370.14 3.96 6
R 0.84 0.00 -370.24 5.73 9

10 LP 10.31 42.92 -368.79 7.34 3
R 0.48 0.23 -373.31 15.48 * 7

11 LP 11.37 52.26 -358.88 4.88 4
R 0.85 0.20 -363.16 14.16 * 6

12 LP 11.44 45.24 -354.28 3.17 1
R 0.36 0.29 -357.33 11.15 6

13 LP 3.40 11.99 -359.39 12.26 * 3
R 0.63 0.21 -363.06 19.77 * 8

14 LP 16.01 46.89 -360.62 5.25 3
R 0.81 0.20 -366.25 19.44 9

15 LP 2.57 15.26 -374.92 3.11 4
R 0.60 0.21 -376.01 4.46 8

16 LP 11.13 43.92 -361.85 1.42 1
R 0.38 0.28 -364.40 10.23 6

17 LP 3.87 15.82 -370.28 7.34 5
R 0.76 0.00 -371.30 11.02 8

18 LP 4.44 25.81 -363.93 1.83 2
R 0.26 0.38 -366.86 5.09 6

19 LP 1.35 1.10 -368.07 7.71 4
R 0.72 0.20 -368.82 9.61 8

20 LP 1.06 1.17 -359.92 4.57 2
R 0.70 0.20 -360.49 6.02 5

21 LP 5.92 36.26 -369.46 3.32 4
R 0.58 0.21 -370.16 5.08 7

22 LP 7.13 39.14 -344.92 1.71 2
R 0.82 0.20 -347.48 5.80 6
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Sample Model *1 SD(a,) loglik. X : d.f

23 LP 2.81 8.63 -347.58 3.31 2
R 0.56 0.23 -350.24 9.94 6

24 LP 1.50 0.89 -341.90 1.76 3
R 0.96 0.00 -342.41 2.24 6

25 LP 1.61 1.35 -356.68 3.33 1
R 0.55 0.22 -362.89 13.97 * 6

26 LP 12.67 45.56 -370.71 12.28 * 4
R 0.30 0.32 -372.59 16.97 * 8

27 LP 1.50 1.19 -363.72 8.00 4
R 0.52 0.23 -367.50 15.01 8

28 LP 8.64 45.73 -368.72 2.60 5
R 0.49 0.23 -370.29 5.37 8

29 LP 14.56 47.13 -366.81 5.23 5
R 0.62 0.21 -371.18 12.14 7

30 LP 11.96 45.80 -360.50 4.81 4
R 0.52 0.23 -362.62 9.35 7

a, - max(&i ,) for LP model *:the model does not flt(a-5%)

Both, the Rasch and the loglt/problt models fit well

four (80%) of the bootstrap samples, from which sixteen h

max(a^ ,)>3.0 with coefficient of varlatlon larger than 2.93.

Four bootstrap samples are fitted well by a loglt/problt model, 

but not by the Rasch model. Although In 3 of them the observed 

chi-squares are very close to the tabulated value. The maximum values 

of , In these 4 samples are 1.61, 1.65, 10.31 and 11.37.

Thus only 2 bootstrap samples are not fitted by the Rasch or a 

loglt/problt model.
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Therefore this study suggests that it is likely that the Rasch 

model fits well a set of data fitted by a logit/probit model when one 

of the ,'s is very large compared with the remaining and it has 

large standard deviation.

On the other hand, if a logit/probit model fits the data well and 

none of the discrimination parameter estimates , is different from 

the others then it is likely that the Rasch model also fits the data 

well.

6- The Distribution of Irj

In searching for reasons that might explain why both models, Rasch 

and logit/probit, can fit the same data set when one of the 

discrimination parameter estimates , is very large (bigger than

4.0), we decided to investigate the relation between difficulty

parameter estimates ^, i=l, . . . , 4, from fitting both models to each

one of the bootstrap samples.

As 0  ̂ 0 = logit(ir^ (z) ) at z=0, where is then the probability of 

a positive response from the median individual, and since has a

rather more useful interpretation, making easier the comparison, we 

shall look at the frequency distribution of for each item i,

instead of ^, for both models.

Table 4.8 displays the median, mean, standard deviation of the 30

estimates i=l,...,4, obtained from fitting a logit/probit and the

Rasch model to the 30 normal bootstrap samples refered in the 

preceding section.
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Let min and max be the smallest and the largest of the 30 

bootstrap estimates % for each item i.

Table 4.8- Frequency distribution of the parameter estimates *1, 
i-l,...,4, from fitting a logit/probit model and the Rasch model 
to each one of the 30 normal bootstrap samples (ART on black 
women),

Item Model Median Mean SD(xi) CV(xi) Min Max

1 log/prob 0.48 0.48 0.18 0.38 0.13 0.91
Rasch 0.50 0.50 0.04 0.08 0.39 0.59

2 log/prob 0.39 0.38 0.08 0.20 0.09 0.50
Rasch 0.40 0.40 0.04 0.10 0.30 0.50

3 log/prob 0.27 0.26 0.08 0.30 0.00 0.36
Rasch 0.28 0.27 0.04 0.15 0.16 0.35

4 log/prob 0.25 0.23 0.07 0.28 0.01 0.34
Rasch 0.25 0.25 0.04 0.16 0.14 0.33

As we can see from Table 4.8, both models yield distributions that 

have approximately the same mean and median for all items. However 

the standard deviation of v̂  is significantly higher from fitting a 

logit/probit model than the Rasch model to the data. This difference 

is because logit/probit yielded a more spread distribution in both 

directions, as t , is assuming values from 0.13 to 0.91 compared with 

0.39 to 0.59 from the Rasch model.
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If we look at the spread of % for the remaining items, we can see 

that logit/probit model produced values that are more spread to the 

left than those from the Rasch model. That is the minimum of

distribution, for each item i, from logit/probit model is always

smaller than the corresponding one from Rasch, for the same maximum.

In the following we shall display in histograms for each item i 

the frequency distribution of i-l,...,4, from fitting both models

and we look closely at the relation between them through a

bi-dimensional graph.

Item 1

Histogram of t , from fitting 
a logit/probit model, 
midpoint count

Histogram of t , from fitting 
the Rasch model. 
midpoint count

0.15 3 *★* 0.15 0
0.20 0 0.20 0
0.25 1 * 0.25 0
0.30 2 0.30 0
0.35 0 0.35 0
0.40 2 ** 0.40 2 **
0.45 7 ******* 0.45 7 *******
0.50 6 ****** 0.50 13 *************
0.55 3 *** 0.55 7 *******
0.60 1 * 0.60 1 *
0.65 1 * 0.65 0
0.70 1 * 0.70 0
0.75 1 * 0.75 0
0.80 0 0.80 0
0.85 1 * 0.85 0
0.90 1 * 0.90 0

Figure 4.3 below shows two distinct groups, the first where there 

is a linear relation with slope 1.0 between T^ig obtained from both 

models. In this case ranges from 0.40 to 0.60, which represents 60% 

of the sample distribution. The second group, where from Rasch
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model is approximately constant and equal to 0.50, while from 

logit/probit model assumes values between 0.13 and 0.41 and from 

0.61 and 0.91.

;,(R)

0 .60+ *
* * * *

★ 3+ ★ ★
* ** 2 * *3*3

* 2 
0.40+ *

0 .20+

0 .00+
4---   1------------- 1------------4-------------- 1---------  X (L P )
0.00 0.20 0.40 0.60 0.80

Figure 4.3- Comparison between x,'s from fitting a logit/probit 
and the Rasch model to 30 normal bootstrap samples from the ART 
on black women's data.

We can see from the histogram of x ̂ from fitting a logit/probit 

model that the second group is situated in the tails of the 

distribution of x,.

Fourteen out of these 30 bootstrap samples have q , , bigger than 

3.40 with very large standard deviation, from which only 3 samples 

belong to the first group. This means that the second group is formed 

by 11 samples with q , , bigger than 3.40 and one sample with q , , 

smaller than 2.0, which is located on the border of these two groups.

-191-



These results seem to indicate that the samples for which r, 

assumes different values according to which model is fitted to the 

data, are those samples for which fitting a logit/probit model gives 

large a,^

Item 2

Histogram of from fitting Histogram of T 2 from fitting
a logit/probit model. the Rasch model.
midpoint count midpoint count

0.10 1 * 0.10 0
0.15 0 0.15 0
0.20 0 0.20 0
0.25 1 * 0.25 0
0.30 2 ** 0.30 1 *
0.35 6 ****** 0.35 8 ********
0.40 14 ************** 0.40 15 *************
0.45 5 ***** 0.45 5 *****
0.50 1 * 0.50 1 *

Figure 4.4 shows that if we take out the 3 points on the left, 

then we can fit a straight line passing through the origin. This means 

that, except for 3 samples, the Rasch and a logit/probit model give 

approximately equal (the probability of positive response for a 

median individual).

The largest difference between *^'s from fitting both models comes 

from sample 10, where , is equal to 10.31, %% is equal to 0.42 from 

the Rasch(R) and 0.09 from the logit/probit (LP). This smaller 

corresponds to the isolated point on the left of the distribution of 

Tj from fitting a logit/probit model displayed in the histogram 

above.
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0.45+ * 2*
* 6*

2 33 
* * 23

*
0.30+ *

0.15+

0 .00+
0.00 0.15 0.30 0.45 0.60

Figure 4.4- Comparison between T j's from fitting a logit/probit 
and the Rasch model to 30 normal bootstrap samples from the ART 
on black women's data.

For the other two samples the difference between t^'s is smaller. 

For sample 23, *^(R)-0.24 and t 2(LP)-0.36, where ô ̂  ̂ ̂ is equal to 2.81. 

The next largest difference is from sample 1 where t 2(R)-0.29 and 

T 2(LP)-=0 .36 and ô ̂ îs equal to 1.89. These 3 samples are among the 4 

that have the highest values of . The fourth highest â ̂ , is from

sample 17 with ctj ̂ , equal to 3.87 and % . 45 , Tj(LP)=0.36.

Therefore for only sample 10 the estimates t ^'s obtained from 

Rasch and logit/probit models are significantly different.
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Item 3

Histogram of Tg from fitting Histogram of T 3 from fittin
a logit/probit model. the Rasch model.
midpoint count midpoint count

0.00 2 ** 0.00 0
0.05 0 0.05 0
0.10 0 0.10 0
0.15 0 0.15 1 *
0.20 4 **** 0.20 2 **
0.25 12 ************ 0.25 12 ************
0.30 9 ********* 0.30 12 ************
0.35 3 *** 0.35 3 ***

;,(R)

- ★
0. 30+

- *

0 .20+

★ *
4*

* * 2  2 
6*

★*
**
■k

0 .10+

0 .00+

0.00 0.10 0.20 0.30 0.40

Figure 4.5- Comparison between from fitting a logit/probit
and the Rasch model to 30 normal bootstrap samples from the ART 
on black women's data.

Looking at Figure 4.5 we can see that the relation between the 

parameter estimates t  ̂from fitting the Rasch and a logit/probit model 

can be expressed by a straight line passing through the origin; except
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for samples 4 and 5. These samples are the only ones which present 

large values for , (12.10 and 13.06) and v^'s equal to zero (shown 

in the histogram above),

Item 4

Histogram of from fitting 
a logit/probit model, 
midpoint count

Histogram of from fitting 
the Rasch model, 
midpoint count

0.00 1 * 0.00 0
0.05 1 * 0.05 0
0.10 1 * 0.10 0
0.15 2 ** 0.15 2 **
0.20 5 ***** 0.20 4 ****
0.25 13 ************* 0.25 17 *****************
0.30 5 ***** 0.30 5 *****
0.35 2 ** 0.35 2 **

;,(R)

0.30+

0 .20+

*
* 2** 
2*3 

* **■*■*

2

0 .10+

0 .00+
+  - - • 

0.00
- + -  - ■ 

0.10
- + -  - • 

0.20
- +  - -  ■

0.30
- + -  - • 

0.40
;,(LP)

Figure 4.5- Comparison between t ^'s from fitting a logit/probit 
and the Rasch model to 30 normal bootstrap samples from the ART 
on black women's data.
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From Figure 4.6, item 4 presents the same relation as item 3 in 

terms of obtained from fitting the Rasch or a logit/probit model to 

the same sample. Both models give approximately the same except

for the three samples (3,13,15) in which , is bigger than 1.50, 

that is, 2.57, 3.40 and 8.76 and while from the Rasch model

assumes values around 0.25, the logit/probit model gives ranging 

from 0.01 to 0.12 (the three points on the left of the distribution of 

x^ shown in the histogram above).

Conclusion

If the logit/probit model fits well, and the discrimination 

parameter estimate aj , is large (>3.0) and has a large standard 

deviation, then in those cases where the Rasch model also fits well, 

there is agreement between the two models about the values x̂ , 

i-l,...,p, except sometimes for j-i.

These results also show that when one of the logit/probit 

discrimination parameter estimates cti , is large and has large 

standard deviation, we cannot conclude in general that a model, in 

which xĵ (z) assume only two values 0 and 1, would fit the data any 

better than a Rasch model.
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7- Approximate Methods

As we know from the literature that the ML estimation procedure 

seems to be prone to Heywood cases in factor analysis, we thought this 

might apply to the logit/probit model here and that approximate 

methods might possibly give better estimates for the Arithmetic 

Reasoning Test on black women.

We shall apply to the Arithmetic Reasoning Test on black women two 

approximate methods based directly on cross-product ratios j , which 

stem from a result of Bartholomew (1980) for logit/logit and 

logit/probit models, and are described in Bartholomew (1987, 

Chapter 6 ) .

Method 1

The first method is based on the idea that if we equate the 

expected and observed values of

P
V ( Tii - 1 ), i=l p

j=l

where j is the cross-product ratio between the variables i and j 

and the  ̂' s can be determined uniquely.

The solution of the system of equations 

P P
Gi,i I ^ (Ti,j - 1) ■= Ti i-l,...,p

where j is the sample estimator of j, can be done iterativelv
-197-



using

(r+1 )
‘1, 1

p
% Ti + 2 I r 1i*l i-1 .

(4.3)

Method 2

The second method is essentially the 'minres* method of Harman 

and Jones (1966), which is based on minimizing

P P 
SS - % 2 (Tij

i-1 j-1 
ifj

The solution of the equations by setting the derivatives equal to 

zero can be done through the following iterative formula

âi,,(r+0 I (Tij - 1) &j,,(r) + I ]

1*1
(4.4)

The criterion used to stop the iterative process carried out 

during the approximate methods of estimation of , was to stop when 

the difference between consecutive iterations r and r+1 was smaller 

than 0.00001 for
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,(f+i) - ,(f) for ail i, in method 1

and

SS(f+i) - SS(f) in method 2,

where SS(r) - ^ 2 ( ?i,j "  ̂ ]
i-1 j-1

and T is the estimated cross product ratio between variables i and j,

ifj.

We have applied both approximate methods described above to the 

ART on black women's data. Even starting from many different points, 

there is no convergent solution for since it continues

increasing indefinitely as the iterative procedure is carried out.

When applied to Lombard and Doering's data (Bartholomew, 1987, 

p.161), these two approximate methods both yield discrimination 

parameter estimates which are similar to ML ones in the relative 

importance assigned to the four items.

We have also applied approximate methods 1 and 2 to the 30 normal 

bootstrap samples we have been working with. This allows a check on 

whether these approximate methods would give the same pattern of , 

or would confirm statements in the literature that maximum likelihood 

estimation often gives larger estimates than other methods.
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Table 4.9- Discrimination parameter estimates , from MLE,
approximate methods 1 and 2, respectively, for the 30 normal bootstrap 
samples obtained from the ART on black women data.

*1 , 1 * 2 , 1 * 3 , 1 * < U i * 1 , 1 *  2,1 *  3.1 * 4,1

1 0.50 1.89 0.12 0.65 16 11.13 0.23 0.46 0.20
0.34 1.44 0.12 0.96 43.87 0.00 0.01 0.00
0.52 1.42 0.16 0.73 4.30 0.11 0.26 0.09

2 10.95 0.37 0.32 0.27 17 0.54 3.87 0.35 0.49
3.88 0.16 0.19 0.16 0.59 1.54 0.68 0.55
0.00 0.23 0.01 -0.08 0.63 1.77 0.44 0.58

3 0.65 0.10 0.59 8.76 18 4.44 0.36 0.18 0.48
1.14 0.21 0.48 1.90 2.02 0.28 0.08 0.55
0.64 0.09 0.57 2.75 1.66 0.42 0.16 0.60

4 0.35 0.22 12.10 0.18 19 0.60 0.87 0.25 1.35
0.01 0.00 54.76 -0.01 0.83 0.87 0.35 1.04
0.19 0.11 4.14 0.11 0.57 0.92 0.21 1.37

5 0.11 0.52 13.06 0.39 20 0.95 0.53 1.06 0.39
0.01 0.10 15.23 0.05 1.22 0.50 0.91 0.42
0.07 0.37 3.57 0.26 1.25 0.45 0.85 0.50

6 1.15 1.66 0.27 0.49 21 5.92 0.32 0.10 0.38
1.39 1.31 0.32 0.50 1.18 0.41 0.36 0.58
1.20 1.62 0.24 0.47 2.08 0.31 0.11 0.38

7 5.82 0.32 0.14 0.02 22 7.13 0.68 0.51 0.26
0.62 0.23 0.78 0.49 2.73 0.63 0.49 0.17
0.10 -0.03 2.43 0.36 2.50 0.71 0.48 0.21

8 9.96 0.62 0.52 0.26 23 0.60 2.81 0.16 0.53
3.15 0.55 0.43 0.11 0.58 1.87 0.10 0.63
2.38 0.66 0.53 0.21 0.70 1.68 0.13 0.59
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a a 2 .1 a 3 . 1 a 4 . 1 a 1.1 a 2 ,1 a 3 ,1 Q 4 , 1

9 1.03 0.78 0.83 0.75 24 0.96 0. 90 0.60 1.50
1.02 0. 86 0.92 0. 73 0.91 1.15 0. 69 1.32
0. 95 0.90 0. 92 0.75 1.05 0. 94 0. 61 1.45

10 0,,60 10.,31 0.40 0.,16 25 1.,61 1.,40 0.,45 0.18
0,,06 28.,78 0.,02 0,,00 1.,08 1,,08 1,,07 0. 66
0,,40 3,,90 0,,24 0,,09 1,,56 1,.50 0,,44 0. 23

11 11 .37 0,,50 0,,31 0,.89 26 12,,67 0,.12 0,.26 0.,34
2.79 0 .34 0 .22 1 .09 52,.54 0,.00 0 .00 0,,00
2.65 0 .42 0 .26 1 .06 4 .40 0 .05 0 .13 0,,18

12 11 .43 0 .29 0 .42 0 .31 27 0 .63 0 .92 1..49 0,,22
29 .42 0 .02 0 .02 0 .02 0 .83 0 .88 1 .21 0,,27
4 .16 0 .14 0 .24 0 .16 0 .59 0 .99 1 .42 0,,18

13 0.30 0 .82 0 .38 3.40 28 8 . 64 0 .08 0 .38 0,,37
0 .20 1.10 0 .24 2.27 13 .15 0 .01 0 .07 0,,05
0 .32 1.01 0 .44 1.93 3.37 0 .04 0 .24 0,,24

14 16 .01 0 .93 0 .45 0.14 29 14 .56 0 .34 0 .70 0 .30
3.43 0.82 0 .37 0.15 21 .78 0 .01 0 .10 0 .04
4 .68 0.67 0 .25 0.06 4 .44 0 .18 0.45 0,,14

15 0.36 0 .60 0 .06 2.57 30 11 .96 0 .37 0.37 0..22
0.02 0 .06 -0 .01 25 .52 26 .54 0 .02 0.04 0 ,01
0.34 0 .64 0 .07 1.90 3.87 0 .21 0 .21 0 .12

Since for sample 2, the approximate Method 2 did not converge, the 

results below are for 29 bootstrap samples.
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In 66% of the samples, a logit/probit model and both approximate 

methods give the same pattern for the discrimination parameter 

estimates. That is, in 9 samples, all ,'s were smaller than 3.0 

for the same relative importance assigned to all items, while in 10 

samples, one of the ,'s was large (^3.4).

In nine (31%) samples, one of the ML estimates of , was bigger 

than 4.0, while the approximate methods estimates were small.

Finally, for only one sample, the approximate method 1 has 

produced one very large estimate of , while for the other methods 

all were smaller than 2.6.

These results seem to indicate that the ML procedure is more 

likely to produce large estimates of the discrimination parameter than 

these 2 approximate methods. Even so it might happen that one of these 

approximate methods will produce large , the corresponding ML

estimate would be small.
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8- Comparison between Marginal and

Conditional Maximum Likelihood Estimation

The estimation procedure developed above, using an E-M algorithm 

for the Rasch model with one latent variable, and defined as a special 

case of the general model(l.S), is equivalent to the marginal maximum 

likelihood (MML) estimation for the one parameter logistic 

model (Rasch model) given by Thissen (1982).

As we have already discussed in Chapter 1, section 3,1, in this 

paper Thissen points out that if we assume that the distribution of 

the latent variable is N(0,1) then the MML procedure is similar to a 

combination of the conditional maximum likelihood (CML) estimation of 

the item (difficulty) parameters with estimation of mean and variance 

of the population (latent) distribution as described by Andersen and 

Madsen (1977) . The mean of the difficulty parameters is equivalent to 

Andersen and Madsen's population mean and the square of the estimated 

discrimination parameter is the same as the variance of the population 

distribution for conventionally standardized MML estimates.

Recall that in the context of CML the response function of the 

Rasch model is defined as

exp (y-bi)
*i(y) - -------------- . i“l,...,p

1 + exp(y-b^)

where b^ is the difficulty parameter of item i and y is a latent 

ability parameter normally distributed with mean p and variance .
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The CML procedure used to estimate is conditioned on the

observed number of positive responses given to item i and it does not 

require any assumption about the distribution of the latent variable. 

Furthermore, since only the differences between y and bj_ appear in the 

model, adding a constant to all difficulty parameters and 'person 

parameters' does not affect the model at all. This implies that one 

must impose a constraint, typically, that Ib^ is equal to zero in 

order to obtain a unique solution.

As the MML in this thesis assumes that the latent variable is 

distributed as N(0,1) and the response function of the Rasch model is 

defined as

logit(%i(z)) - Qi 0 + a, z, i-l,...,p

then the standardization of the MML difficulty parameter estimates

Q is done by setting

^i " -Oi,0/̂ 1 (4.5)

and multiplying by the same correction factor k

b* - b*, i-1,...,p (4.6)

where b is the arithmetic mean of b^ and 

^ Z*

where k

I I bf - b* I
i-1

P
I I bil
i-1
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Note that the similarity between MML and CML estimation combined 

with the estimation of the latent distribution as described by 

Andersen and Madsen (1977) is not in terms of equality of the 

corresponding standardized MML and the CML difficulty parameter 

estimates, but in terms of equality of k(b*^-b*> ((4.5) and (4.6)) and 

a, to the mean and standard deviation of the latent distribution.

In the following we shall consider as examples the Law School 

Admission Test (LSAT) data, sections 6 and 7, in order to compare the 

corresponding difficulty parameter estimates obtained from fitting the 

Rasch model, using CML and MML procedures.

The results for the CML estimation will be taken from Andersen and 

Madsen (1977) and Andersen (1980), and the MML estimates will be 

obtained by applying the E-M algorithm described at the begining of 

this chapter.

Table 4.10- Difficulty parameter estimates from fitting the 
Rasch model to the LSAT, section 6.

item MML MML* CML

1 2.729 -1.255 -1.256
2 0.999 0.476 0.475
3 0.240 1.235 1.236
4 1.306 0.169 0.166
5 2.099 0.624 0.623

b* =-1.97 mean=l.47 mean=l.47
a, = 0.75 variance=0.56 variance-0.55

M.ML'̂ : standardized MML
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According to Andersen and Madsen (1977), the Rasch model fits 

these data very well (i.e.,on significance level 0.05), which agrees 

with the results obtained from using the MML procedure, since in this 

case the observed chi-squared is equal to 17.90 with 17 degrees of 

freedom.

The standardized MML difficulty parameter estimates match with the 

corresponding CML estimates closely, and the estimated mean difficulty 

and discrimination match with the mean and standard deviation of the 

latent distribution obtained from the CML estimates.

Table 4.11- Difficulty parameter estimates from fitting the 
Rasch model to the LSAT, section 7.

item MML MML* CML

1 1.868 -0.541 -0.641
2 0.791 0.535 0.583
3 1.461 -0.134 -0.134
4 0.522 0.804 0.758
5 1.993 -0.666 -0.566

b* —  1.31 mean=l.33
«1 - 1.01 variance-1.02

MML*; standardized MML

Section 7 of the LSAT data is not fitted by the Rasch model on 

0.05 significance level, either using CML (Andersen (1973b)) or MML 

methods ( observed chi-squared equal to 36.24 with 22 degrees of 

freedom).
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The similarity between the corresponding standardized MML and CML 

difficulty parameter estimates is not as close as in the first 

example, where the data were fitted well by the Rasch model.

From these examples and many others that we have used to compare 

CML and MML methods, there is some evidence that the standardized MML 

difficulty parameter estimates are likely to be very similar to the 

corresponding CML estimates when the Rasch model fits the data well, 

but they can be quite different when the discrimination parameters are 

not the same for all items. This result could be expected since the 

estimation of the CML difficulty parameter of item i is based on the 

total number of positive responses to this item , while the MML 

estimates is obtained taking into account the score patterns. Hence 

when the Rasch model does not fit the data there is a source of 

variation in the data which tends to increase the difference between 

CML and MML estimates.

9- Comparison between Rasch and Logit/Probit Models 

in terms of the Likelihood Ratio Statistic

Our main objective in this section is to compare a logit/probit 

model with response function given by

logit(%i(z)) - Qi 0 + z i-l,...,p

with the Rasch model, defined by

logit(Ti(z)) - o'i.o + a, z i-1,...,p.
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That is, compare a logit/probit with the Rasch model testing

^ 0 '  ^ 1 , 1  "  "  ^ p , 1  "  ® 1

using the likelihood ratio (LR) test

n
Let L - n f(Xg) be the likelihood function. 

s-1

Then the LR statistic may be taken as 

L (Rasch I p+1 parameters)

L (logit/probit | 2p parameters)

If H q is true then the asymptotic distribution of -21n(l) is 

chi-squared with p-1 degrees of freedom (Kendall and Stuart, 1979, 

page 247).

Therefore, using a LR test is asymptotically equivalent to basing 

a test on the ML estimators of the parameter tested. However these 

results only hold if the conditions of the asymptotic normality and 

efficiency of the ML estimators are satisfied.

As we have already pointed out in this chapter, section 2, in 

practice very often we cannot use the chi-squared statistic as a 

goodness-of-fit for either Rasch or logit/probit models, since the 

number of degrees of freedom is negative, for instance.

If the conditions of the asymptotic distribution of the LR 

statistic hold, then we can compare the fitting of the Rasch model 

with the logit/probit model based on the difference between the number 

of parameters, which is fixed. If the difference between the 2 models 

is significant then at least one of the ,'s is different from the
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others. This implies that a logit/probit model will fit better than 

the Rasch model.

Application

Now we use the LR to compare the logit/probit and the Rasch model

on the data from Test llA of the NFER (20 items). We assume that the

conditions of asymptotic normality and efficiency of the ML estimator 

are satisfied.

Let us consider the case when the sample was stratified according 

to the location of the school: England(342), Wales(86) and

Ireland(73). Chapter 5 , section 2, contains an extensive discussion 

about the pattern of the parameter estimates '̂s when fitting a

logit/probit model to those subtests obtaining by deleting some items

from Test llA. Here, using the LR test, we compare the fittings of a 

logit/probit and the Rasch model to those subtests, which vary in 

number of items, sample sizes and pattern of

It is convenient to remember that the parameter estimates 

^i,1 (^0*50) and the standard deviations are approximately linearly 

related so that larger estimates have larger standard deviations.
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Table 4.12- Comparison between Rasch and logit/probit models in
terms of the 
England.

LR statistic. when fitting subtests of Test llA -

Items *i,i
(min,max)

Loglikelihood 
Rasch Log/Prob

df -21n(l)

1 to 20 0.84 3.15 -3435.37 -3390.92 19 88.90*
del 7,12 0.84 3.44 -3123.95 -3080.76 17 86.38*
1 to 10 0.70 3.95 -1790.21 -1746.36 9 87.70*
lto6,BtolO 0.71 3.09 -1649.99 -1623.18 8 53.62*
1 to 7 0.78 4.76 -1223.09 -1197.63 6 50.92*
1 to 6 0.79 3.22 -1062.86 -1049.58 5 26.56*
1 to 5 0.83 2.67 -919.37 -911.62 4 15.50*
2 to 6 1.37 3.64 -835.58 -828.80 4 21.56*
3 to 7 1.30 6.14 -885.75 -866.53 4 38.44*
11 to 20 1.04 3.98 -1743.93 -1718.91 9 50.04*
ll,13to20 1.08 4.36 -1563.85 -1541.63 8 44.44*
11 to 15 1.63 3.97 -762.78 -756.60 4 12.36*
ll,13tol5 1.60 7.12 -590.68 -583.63 3 14.10*

*: H q is rejected with 0<p<0,05.

For all subtests Table 4.12 shows that H q is rejected, that is, at 

least one of the a / s is different from the others. This implies 

that the logit/probit model fits the data better than the Rasch model.

The minimum values assumed by , range from 0.70 to 1.63 and the 

maximum values from 2.67 and 4.76. Therefore the subtest of items 1 to 

5 represents the smallest variation (from 0.83 to 2.67) among the 

values assumed by ,, for which at least on of the is

different from the others.
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Table 4.13- Comparison between Rasch and logit/probit models in 
terms of the LR statistic, when fitting subtests of Test llA-Wales

Items *1,1
(min,max)

Loglikelihood 
Rasch Log/Prob

df -21n(l)

1 to 20 0.25 2.73 -911.86 -893.23 19 37.26*
del 7,12 0.20 2.12 -831.18 -817.26 17 27.84*
1 to 10 0.85 4.59 -470.32 -459.36 9 21.92*
lto6,8tolO 0.87 4.41 -431.65 -427.34 8 8.62
1 to 7 0.88 3.34 -327.35 -323.61 6 7.48
1 to 6 0.88 2.58 -282.98 -281.16 5 3.64
1 to 5 0.74 4.38 -238.07 -235.10 4 5.94
2 to 6 1.00 1.97 -231.59 -231.12 4 0.94
3 to 7 0.82 4.76 -250.10 -244.38 4 11.44*
11 to 20 0.46 2.61 -463.68 -455.52 9 16.32
ll,13to20 0.47 2.95 -421.32 -414.82 8 13.00
11 to 15 0.99 16.03 -209.91 -205.22 4 9.38
ll,13tol5 0.64 1.87 -164.66 -163.44 3 2.44

*: H q is rejected with 0/pZ0.05.

The equality among all ,'s is rejected for four subtests, for 

which the number of items ranges from 20 to 5. For these subtests, the 

smallest variation for the ,'s is when deleting items 7 and 12 from

the original test, in which , assumes values between 0.20 and 2.12;

the biggest variation is for the subtest of items 3 to 7, in which 

Oi , ranges from 0.82 to 4.76.

Comparison between the pattern of the ,'s and the results from 

the LR test show some contradictions, which are probably due to the 

violation of the assumptions of this test.

Thus, for instance. Table 5.8 in Chapter 5, shows that the subtest 

of items 1 to 10 have two large ,'s, 3.72 and 4.59 for items 6 and 

7. When deleting item 7 from this subset, the pattern of ,'s 

practically does not change and âg , is equal to 4.41. As Hq is
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rejected for the subtest of items 1 to 10, but accepted when deleting 

item 7, this suggests that the difference among the / s for the 

first case is due to item 7.

On the other hand, H q is accepted for the subset of items 1 to 7,

but it is rejected for items 3 to 7. The comparison between the

patterns of , for the subset of items 1 to 7 and 3 to 7 shows that

the minimum , are nearly the same, 0.88 and 0,82, and both have two

/s bigger than 3.0, for items 6 and 7. In the first subset these 

estimates and standard deviations (in parenthesis) are 3.21 (1.43) and

3.34 (1.56), while for items 3 to 7 they are equal to 3.39 (1.70) and

4.76 (3.97). As the largest a, ̂ has also the largest coefficient of

variation, one could expect the same result when applying the LR test,

instead of rejecting only one of them.

Table 4.14- Comparison between Rasch and logit/probit models in 
terms of the LR statistic, when fitting subtests of Test llA -Ireland.

Items “i.i
(min.max)

Loglikelihood -21n(l)
Rasch Log/Prob

1 to 20 0 .29 16 24 -748. 87 -723 56 19 50. 62*
del 7.12 0.29 2 43 -693 34 -682 02 17 22 64
1 to 10 1 00 16 72 -386 62 -370 43 9 32 38*
lto6,8tol0 1 01 16 38 -356 23 -350 23 8 12 00
1 to 7 1 34 16 29 -264 92 -260 44 6 8 96
1 to 6 1 20 2 73 -231 36 -229 96 5 2 80
1 to 5 0 99 3 23 -198 30 -196 37 4 3 86
2 to 6 1 25 2.40 -191 80 -190 84 4 1 92
3 to 7 1 16 16 .58 -190 21 -185 40 4 9 62*
11 to 20 0 42 16 .36 -372 67 -358 .24 9 28 86*
11 ,13to20 0 37 2.67 -347 25 -337 .89 8 18 72*
11 to 15 1 82 16 .13 -158 .36 -155 .67 4 5 38
11 ,13tol5 1 75 3.26 -132 30 -131 .80 3 0 .80

*: Ho is rej ected wi th 0/pZO 05.
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As for Wales, most of the hypothesis H q are not rejected. In this 

case , can often assume very large values both in subtests, for

which H q is accepted and in subtests for which it is rejected.

Table 5.5, Chapter 5, shows that , assumes two values bigger 

than 3.0 that is, 5.32 and 16.24, for items 7 and 12 respectively. 

When deleting these two items, although the ,'s change very little, 

Hq is no longer rejected. This would lead one to infer that the 

rejection of equality of all the ,'s in the original test is due to 

Q 7 , and Q ,2 ,.

Only for Wales, the comparison between the values of ,'s and 

the results of the LR test shows some contradictions. The same 

discussion about accepting or rejecting Hq, when comparing the pattern 

of bi ,'s from the subset of items 1 to 10 with 1 to 6, 8 to 10, and 1 

to 7 with 3 to 7, holds here, though Og , and a 7 , assume very large 

values.

Conclusion

The comparison between the Rasch and the general logit/probit 

model was done testing the hypothesis H qI all ,'s are equal, using 

the LR statistic, for different sample sizes, pattern of ,'s and 

number of items. The results from this study give evidence that for a 

large sample size, like England(342), the LR statistic tends to reject 

H q, while for small sample sizes (Wales(84) and Ireland(73)), it tends 

not to reject H q. It is not clear whether this effect is due to the 

larger power of a larger sample size, or whether the asymptotic

chi-squared distribution is not applicable.
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Chapter 5

STABILITY of the DISCRIMINATION PARAMETER ESTIMATES ,

1- Effect on the Size of  ̂of Decreasing the Number of Items

for a Fixed Sample Size

We shall investigate the effect on , when fitting a

logit/probit model to Test llA and Test 12 of the NFER data, of 

varying the number of items by deleting some of the original ones. The 

sample sizes (501 and 502, respectively) are kept fixed.

The subsets are formed so that we can measure the effect on the 

pattern of  ̂' s when the 2 items with the largest / s in the 

original test are included or are not included in the subset, as the 

number of items decreases.

The questionnaries will be also analysed in order to find out 

whether the occurrence of a large  ̂ is associated with the kind of 

question.

We start by analysing each test, following with a comparison of 

the main results.
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1.1- Test llA

Tables 5.1 and 5.2 display the parameter estimates , and their 

asymptotic standard deviations from fitting a logit/probit model to 

different sets of items drawn from Test llA.

Table 5.1- Parameter estimates , and asymptotic standard deviations 
(in brackets) from fitting a logit/probit model to Test llA.

i 1 to 20 1 to 15 1 to 10 5 to 9

1 0.92 0.14) 0.90 (0.14) 0.75 (0.13)
2 1.37 0.18) 1.35 (0.19) 1.29 (0.20)
3 1.50 0.20) 1.40 (0.19) 1.21 (0.18)
4 1.68 0 .20) 1.78 (0.22) 1.76 (0.23)
5 1.18 0.15) 1.23 (0.16) 1.06 (0.15) 0.80 ( 0.13)
6 2.33 0.28) 2.72 (0.35) 4.28 (0.73) 9.74 ( 28.49)
7 2.53 0.30) 2.91 (0.38) 4.34 (0.77) 16.12 (513.86)
8 1.35 0.16) 1.49 (0.18) 1.77 (0.22) 2.13 ( 0.29)
9 1.14 0.15) 1.18 (0.16) 1.27 (0.18) 1.42 ( 0.19)
10 2.04 0.24) 2.10 (0.25) 1.84 (0.22)
11 1.50 0.18) 1.41 (0.18)
12 2.13 0.25) 2.12 (0.26)
13 2.08 0.27) 1.99 (0.26)
14 1.32 0.17) 1.27 (0.17)
15 2.62 0.36) 2.40 (0.33)
16 0.83 0.13)
17 1.18 0.15)
18 1.70 0 .20)
19 0.97 0.14)
20 1.54 0.18)
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Table 5.2- Parameter estimates cr̂  , and asymptotic standard deviations 
(in brackets) from fitting a logit/probit model to Test llA.

1 to 20 1,2,8 to 20 11 to 20 13 to 17

1 0 .92 (0.14)
2 1 37 (0 18)
3 1 50 (0 20)
4 1 68 (0 20)
5 1 18 (0 15)
6 2 33 (0 28)
7 2 53 (0 30)
8 1 35 (0 16)
9 1 14 (0 15)

10 2 04 (0 24)
11 1 50 (0 18)
12 2 13 (0 25)
13 2 08 (0 27)
14 1 32 (0 17)
15 2 62 (0 36)
16 0 83 (0 13)
17 1 18 (0 15)
18 1 70 (0 20)
19 0 97 (0 14)
20 1.54 (0 18)

0.87 (0.14)
1.33 (0.19)

1.06
1.03
1.85
1.68
2.32
2.32 
1.41 
3.21 
0.89 
1.20 
1.82 
1.02 
1.78

(0.15)
(0.15)
( 0 . 22) 

(0.21)
(0.30)
(0.31)
(0.18)
(0.50)
(0.14)
(0.16)
(0 .22)
(0.15)
(0.22)

1.76 (0.23)
2.22 (0.30)
2.41 (0.35) 
1.46 (0.20)
3.41 (0.59) 
0.92 (0.15)
1.23 (0.17) 
1.81 (0.24) 
1.02 (0.15) 
1.85 (0.24)

2.60 (0.51)
1.45 (0.24) 
4.54 (1.61) 
1.01 (0.19)
1.17 (0.21)

From Table 5.1 we can see that when fitting a logit/probit model 

to the whole set of items of Test llA, the parameter estimates , 

assume values from 0.83 to 2.62. The three largest estimates are equal 

to 2.62, 2.53 and 2.33 for items 15, 7 and 6, respectively. All ,'s 

are not correlated or weakly correlated, since the maximum correlation 

estimate is equal to 0.22, between items 6 and 7.
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The comparison between the parameter estimates , from fitting a 

logit/probit model to all 20 items and those obtained by decreasing 

the number of items to 15 leads to

i)approximately the same values of when deleting items 16 to 20,

ii) bigger or, 5 , (3.21 compared to 2.62) when deleting items 3 to 7, 

while the estimates , practically do not change for the remaining 

items.

Decreasing the number of items to 10 and 5, we observe the 

following changes, when fitting a logit/probit model to

i)items 1 to 10

Qg , and Ô y , increase to from 2.33 to 4.28 and from 2.53 to 4.34 

with standard deviation equal to 0.73 and 0.77, respectively.

When considering only five items, i«5 to 9, then or̂  , for items 6 

and 7, increase even more to assume very large values, 9.74 and 16.12 

with large standard deviations, 28.49 and 513.86, respectively.

ii)items 11 to 20

a,g , increases from 2.62 to 3.41 with an increase in their 

standard deviation.

Also, when restricting to items 13 to 17, a ,5 , becomes even 

bigger, 4.54 with standard deviation equal to 1.61.

Results from Test llA show that as the number of items decreases 

from 20 to 15,10 and 5 items, the biggest parameter estimates ,, 

i-6,7,15, also increase , assuming large values especially when the 

number of items is small (5). There is an approximate linear relation
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between , and corresponding standard deviation with larger

estimates having larger standard deviations.

At the same time, the remaining items show great stability, since

they assume approximately the same values under different subtests and

number of items.

We tried stratifying these samples into two groups according to 

the location of the school in a metropolitan (125) or 

nonmetropolitan (376) area. We observe the same pattern of , as we

decrease the number of items as described above for the whole test,

although the smaller sample (metropolitan) presented larger 

coefficients of variation due to larger standard deviations.

Analysis of the items in Test llA

Test llA corresponds to a story entitled 'King Lion' . This story 

is written as a fable, in which a small animal (a squirrel) outwits a 

more powerful one (King Lion).

The lion announces that in order to save the animals work in

fetching his food, he will eat one of them every day, in an order they 

choose. They are left to decide how to put his suggestions into

practice. The squirrel saves everybody's life by leading the lion to a 

deep pool where, he alleges, a strange creature is waiting for him. On 

seeing his reflexion on the water, the lion jumps into the pool and is 

drowned.
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In order to find out whether the larger size of , for items 6, 

7, 12 and 15 is associated with the type of question asked. We have

analysed all questions in terms of whether the questions were clearly 

formulated or not and if the answers were explicitly given or they 

should be infered. The results from this analysis were related to the 

, values . In the following, we present the main results.

While the animals were deciding which one will be the lion's first 

food, there emerged 2 plans, which would not work since there was 

something wrong with each one.

Item 6 asks for a description of the first plan, which was clearly 

given in the story. Item 7 asks what was wrong with this plan, for 

which the subjects had to infer.

Items 8 and 9 correspond to questions 6 and 7 for the second plan. 

The only difference between them is that the answer for item 9 was 

given in the text. However this difference should not be responsible 

for the occurrence of a large a y ^, since there were other items 

similar to 7.

When the squirrel offers himself to be the first food for the

lion, he asked; 'Do you have any objections?' and the other animals

answered hurriedly: 'Not at all'. Question 12 asks why the animals

answered hurriedly. The answer was not explicit in the text, but was

very clear from the story.

Question 15 is about what reason the squirrel gave to the lion for 

being late. The answer was explicitly given.

Therefore from the previous analysis, there is no evidence that 

the larger  ̂ for items 6,7,12 and 15 are associated with the nature 

of the questions.
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1.2- Test 12

As a second example, we shall investigate the effect on the size 

of the discrimination parameter estimates , as the number of items 

decrease for a fixed sample size obtained from fitting a logit/probit 

model to test 12-NFER data.

Table 5.3- Parameter estimates , and asymptotic standard deviations 
(in brackets) from fitting a logit/probit model to Test 12,

1 to 18 delet.15 delet.16 delet.15,16

1 1.17 (0.18)
2 1.62 (0 .19)
3 1.26 (0 .15)
4 1.61 (0 .IB)
5 2.,08 (0.23)
6 1..34 (0.17)
7 1.,49 (0.17)
8 2,,20 (0.26)
9 1,,49 (0 .17)
10 0 .87 (0,.13)
11 0 .62 (0 .12)
12 2.02 (0,.22)
13 1.24 (0,.18)
14 1.65 (0 .23)
15 4 .50 (0 .83)
16 4 .39 (0 .70)
17 1.75 (0 .20)
18 1.58 (0,.18)

1.18 (0.18)
1.69 (0.20) 
1.30 (0.16)
1.64 (0.19)
2.22 (0.26)
1.40 (0.18)
1.51 (0.18)
2.29 (0.23)
1.49 (0.18) 
0.87 (0.13) 
0.64 (0.12)
2.16 (0.25)
1.30 (0.19)
1.64 (0.23)

2.84 (0.35) 
1.78 (0.21)
1.60 (0.18)

1.16 (0.18)
1.70 (0.20)
1.29 (0.16) 
1.63 (0.19)
2.19 (0.26)
1.41 (0.18)
1.51 (0.18)
2.34 (0.29) 
1.48 (0.18) 
0.88 (0.13) 
0.65 (0.12)
2.16 (0.25)
1.30 (0.19) 
1.62 (0.23)
2.72 (0.35)

1.76 (0.21)
1.60 (0.19)

1.15 (0.18)
1.73 (0.21)
1.30 (0.16)
1.61 (0.19) 
2.25 (0.27)
1.44 (0.19)
1.50 (0.18)
2.35 (0.30)
1.45 (0.18) 
0.88 (0.13) 
0.66 (0 .12) 
2.21 (0.26)
1.34 (0.20) 
1.59 (0.23)

1.75 (0.21) 
1.58 (0.19)

The fitting to the whole set of items shows two items, 15 and 16, 

having large estimates ,, 4.50 and 4.39, and standard deviations 

equal to 0.83 and 0.70, respectively. The correlation between these
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parameter estimates is equal to 0.45, while the remaining elements of 

the correlation matrix are approximately equal to zero.

In order to find out the effect of the presence of items 15 and 16

on the size of the discrimination parameter estimates for the other

items, we have considered 3 situations: deleting just item 15,

deleting just item 16 and deleting both from the original test.

Table 5.3 shows that the parameter estimates , for i*b5,16, are 

very stable, since these estimates and their standard deviations are 

nearly equal to the original ones, independently of whether items 15 

or 16 are present or not in the set of items under consideration.

Deleting only one of these items, for example 15, yields the same

effect on â, g , (decreases from 4,39 to 2.84 with standard deviation 

equal to 0.35) as deleting item 16, on the estimate , (decreases

from 4.50 to 2.72 with standard deviation equal to 0.35). Although, in 

these situations ^, i-15 or 16, is smaller , the sequence of the

score patterns in increasing order of the component scores is 

approximately the same, that is, we can still see two fairly distinct 

groups according to whether they have answered item 15 or 16 wrong 

followed by those that have answered it right.
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Table 5.4- Parameter estimates , and asymptotic standard deviations 
(in brackets) from fitting a logit/probit model to Test 12.

i c» to 16 4► to 15 4 to 14, 16 3I to 14

1
2
3 1.16 (0.15)
4 1.56 (0.19) 1.59 (0.19) 1.51 (0.19)
5 1.97 (0.22) 2.32 (0.29) 2.36 (0.29) 2.37 (0.30)
6 1.20 (0.16) 1.34 (0.18) 1.33 (0.18) 1.38 (0.19)
7 1.44 (0.17) 1.48 (0.18) 1.48 (0.18) 1.51 (0.19)
8 2 .20 (0 .27) 2.65 (0.36) 2.55 (0.35) 2.61 (0.37)
9 1.52 (0.18) 1.48 (0.18) 1.49 (0.18) 1.41 (0.18)
10 0 .79 (0.13) 0 .80 (0.13) 0.80 (0.13) 0.81 (0.13)
11 0 .63 (0.12) 0.63 (0.12) 0.62 (0.12) 0 .64 (0.12)
12 1 .87 (0.23) 2.21 (0.27) 2.22 (0.27) 2.28 (0.29)
13 1.39 (0 .20) 1.52 (0.22) 1.50 (0.22) 1.54 (0.23)
14 1 ,.70 (0.25) 1.60 (0.24) 1,61 (0.24) 1.58 (0.23)
15 9..22 (2.71) 2.73 (0.38)
16 6 ..78 (0.60) 2..74 (0.36)
17
18

i (3 tc. 14 10 to 15 10 to 14,16 11 to 16

9 1 .27 (0.20)
10 0 .72 (0 .14) 0 ,81 (0.14) 0 .81 (0,.14)
11 0 .77 (0.15) 0 .67 (0,13) 0 .67 (0,.13) 0 .55 ( 0 .11)
12 2.09 (0 ,.39) 1.91 (0,.31) 1.91 (0..31) 1.39 ( 0.17)
13 1.68 (0 ,,30) 1.43 (0 ,.24) 1 .43 (0 .24) 1.08 ( 0.17)
14 1.65 (0 ,,30) 1.97 (0 .37) 1.97 (0 .37) 1.97 ( 0.35)
15 3.19 (0 .88) 16 .01 (106.81)
16 3.19 (0 .88) 14 .40(179.71)
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The effect on the pattern of , of decreasing the number of 

items to 12, was analysed using 5 different sets of items, some

excluding item 15 or 16 and others including both. As we can see from

Table 5.4 the size and pattern of the discrimination parameter 

estimates behave in the same way as observed in the previous analysis.

Finally we have considered 4 sets of 6 items. When excluding both 

items 15 and 16, the remaining , show great stability as in the 

preceding investigations, including item 15 (16) and excluding item

16 (15), the parameter estimate  ̂ (a,g decreases to 3.19 having

standard deviation equal to 0.88. However when both, items 15 and 16 

are among the 6 items, 0,5 , and o;, g  ̂become very large (16.01 and 

14.46) and have large standard deviations (106.81 and 179.71, 

respectively); while the remaining , do not change significantly.

This example shows two items for which  ̂ are correlated (0.45) 

and they are larger when included in the same subtest. That is,

correlated parameters might lead to larger values of  ̂ when the 

number of items is decreased, which does not, however, imply a small

 ̂when just one of these items is present. On the other hand,  ̂

for the remaining items shows great stability, even when the number 

of items was small (6).

We have also analysed Test 12 under all these different 

combinations of items, when the sample size was stratified in 2 

groups, according to the location of the school in a 

metropolitan (n-127) or nonmetropolitan (n-375) area. Overall the 

different situations, the fitting of logit/probit model to both areas 

have lead to the same pattern of  ̂ that we found when considering
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the whole sample size. In this case, even the smaller sample

size (127) has not produced larger , and larger standard deviations 

than those from the whole sample.

Analysis of the items in Test 12

Test 12 corresponds to the story 'That Sinking Feeling’ by Betsy 

Byars, which is described in the form of a first-person narrative. The 

story depicts how a little girl gets revenge on her older brothers and 

their friends who refuse to let her play with them, by pulling the 

plugs out of a makeshift raft of oil drums.

In order to find out whether the large size of , for items 15 

and 16, that is, 4.50 and 4.39, were associated with the kind of item, 

we analysed all the questions. This analysis was carried out in terms 

of whether the questions were clearly formulated or not and if the 

answers were given explicitly or should be infered from the story. The 

results from these analysis were related to the values assumed by

“i,i-
In the following the main results from the analysis of the

questions.

Item 15 asks what was the sex of the narrator, which answer was

not explicitly given in the story, but established by linguistic and

circumstantial evidence. For example, her brother says: 'I'll kill

her' and her mother advises: 'I shouldn't push your luck, madam'.
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On the other hand, item 10 asks how many of the storyteller's 

brothers were on the raft, which was also not explicitly given in the 

story, but for which , is small (0.87).

Item 16 asks the approximate age of the storyteller, which was 

not explicitly given. The children have to realise that she was 

younger than most of the boys, and guess an age supported, for

example, by a picture given in the text. Evidence to answer this item

were also given in question 3, which asks: 'How do you know that the

storyteller is younger than most of the boys at the quarry?'. 

Therefore questions 16 and 3 are correlated and their answers come

from the same source, but  ̂ is much smaller than a , g  ̂ (1.26

compared with 4.39).

This previous analysis about the nature of items 15 and 16 in

relation to the remaining items in the test, leads us to conclude that 

the large values for  ̂ and â , g, i not associated with the kind

of question.
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Conclusion

We have analysed the effect on the size of , using two

examples, with the same order of test length (18 and 20) and sample

size (502 and 501). Although the two biggest estimates of 4.39

and 4.50, in test 12 were larger than the three biggest ,, 2.33, 

2.53 and 2.62 in test llA , and in the former they were correlated, 

the main results are the same:

(1) as the number of items decreases , the largest Of£ , increases and

becomes very large when the test length is small (5 or 6 items).

(2) parameter estimates , and standard deviations are approximately 

linear related so that larger estimates have larger standard 

deviations.

(3) the remaining items show great stability of , estimates, even 

when the sample size is small or when deleting an item with large

“1 ,1-

(4) the large parameter estimate , for some items does not seem to 

be associated with the type of question asked.
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2- Effect on the Size of

as the Number of Items and the Sample Size Decrease

In order to investigate the effect on , as the number of items

and sample size decrease, we consider Test llA again, when the 

population is stratified according to the country where the school is 

located: England, Wales and Ireland.

Since the sample size of children in English schools is not

small (342) while the samples from Wales and Ireland are small (86 and

73), we will be able to compare the effect on the pattern of ,'s

under different sample size and different test length.

Furthermore, as the component score is a linear function of

X,,X2,...,Xp with coefficients equal to a, ,, i,...Op ,, that is,

X - ^ Oi, , Xi then a change on the pattern of , when deleting 

items, might affect the component scores too.

As the component score is a function of the number of items,

larger tests will tend to produce larger component scores. Since we 

are comparing different test lengths, what matters is the order of the 

new component scores and not their estimated values. This effect on

the component scores of deleting items will be measured by the

Spearman correlation.

The investigation of the effect on  ̂ of deleting items will be 

complemented with an analysis of the questions, in order to find out 

whether a large discrimination parameter estimate is associated with 

the kind of question.

In the following we shall analyse the results from each country 

individually, starting with Ireland, and finally comparing them.
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2.1- Ireland

Tables 5.5 and 5.6 display the parameter estimates , and 

standard deviations from fitting a logit/probit model to the Ireland 

data for different sets of items.

Table 5.5- Parameter estimates , and asymptotic standard 
deviations(in brackets) from fitting a logit/probit model to 
Test llA- Ireland.

i 1 to 20 delet 7 12 ]. to 10 lto6,8tolO

1 1 19 (0.39) 1 30 0 44) 1 01 (0.36) 1 01 (0.43)
2 1 49 (0.51) 1 40 0 47) 1 20 (0.42) 1 34 (0.52)
3 1 90 (0.57) 2 22 0 78) 1 36 (0.44) 1 45 (0.56)
4 1 78 (0.54) 1 55 0 52) 1 80 (0.63) 1 80 (0.77)
5 1 36 (0.41) 1 29 0 42) 1 21 (0.40) 1 30 (0.50)
6 2 79 (0.77) 1 99 0 65) 16 72(606.19) 16 38(701.67)
7 5 32 (3. 15) 12 65( 34.45)
8 1 71 (0 48) 1 33 0 45) 2 61 ( 0.70) 2 25 (0.83)
9 1 15 (0 38) 1 25 0 45) 1 00 ( 0.38) 1 10 (0.42)

10 1 40 (0 43) 1 11 0 40) 1 79 ( 0.52) 2 05 (0.81)
11 1 19 (0 37) 1 28 0 42)
12 16 24 (519 01)
13 1 13 (0 44) 1 43 0 51)
14 1 42 (0 46) 1 30 0 44)
15 1 59 (0 54) 1 89 0 66)
16 0 29 (0 26) 0 29 0 27)
17 1.32 (0 46) 1 40 0 51)
18 2.12 (0 63) 2 43 0 82)
19 0.99 (0 36) 1.08 0 41)
20 1.93 (0 57) 2.04 0 64)
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In the whole set of items, ^1,1 assumes values from 0.29 to 16.24, 

with standard deviation being larger for larger estimates. The three 

biggest estimates are 2.79, 5.32 and 16.24 for items 6,7 and 12, 

respectively. The maximum correlation between , and oj ,, i^j , is 

equal to 0.25, for items 7 and 8.

Deleting items 7 and 12, some estimates remain the same, while 

others increase or decrease slightly. The strongest change is related 

to item 6, for which &g , decreases to 1.99 (29% smaller).

Decreasing to a half the initial number of items, deleting items 

11 to 20, affects mainly items 6 and 7. The estimates ,, i-6,7,

assume even larger values 16.72 and 12.65 compared to 2.79 and 5.32, 

respectively, with a larger standard deviations. Very small variations 

can be observed in the values of  ̂ for the other items. Actually, 

it does not make any difference to the pattern of ,'s whether a, , 

is equal to 5.32 or 12.65, but the same is not true for item 6.

Now, consider the subset of items, 1 to 10, for which ot̂  y and 

cty y are very large, then

(i) deleting item 7 alone, there is no significant difference between 

the corresponding estimates , since the largest change is the decrease 

of ocg y from 2.61 to 2.25.

(ii) deleting items 8 to 10 (Table 5.6), the parameter estimates Qg , 

and , are still larger, but the remaining ones are closer to those 

from the original test than those from the subset of items 1 to 10.
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(iii) deleting items 7 to 10 (Table 5.6), all ,'s increase, except 

a g ,, which decreases to 1.81 so that its relative importance in the 

test also decreases.

Table 5.6- Parameter estimates , and asymptotic standard deviations 
(in brackets) from fitting a logit/probit model to Test llA- Ireland.

i 1 to 7 1 to 6 1 to 5 2 to 6 3 to 7

1 1.39 (0.46) 2.08 (0.78) 1.96 (0.77)
2 1.34 (0.49) 1.20 (0.50) 0.99 (0.45) 1.25 (0.55)
3 1.81 (0.59) 2.73 (1.21) 2.24 (0.91) 2.40 (1.19) 1.31(0.45)
4 1.98 (0.78) 2.24 (1.00) 3.23 (2.19) 1.57 (1.50) 1.64(0.60)
5 1.43 (0.49) 1.51 (0.56) 1.65 (0.61) 1.46 (0.60) 1.16(0.41)
6 16.29(696.26) 1.81 (0.70) 1.82 (0.82)16.58(755.8)
7 4.35 (1.75) 10.16(11.62)

i 11 to 20 ll,13to20 11 to 15 ll,13tol5

11 1.43 (0.44) 1.28 (0.46) 2.15 (0.78) 1.75 (0.76)
12 16.36(617.56) 16.13(579.26)
13 1.60 (0.57) 1.70 (0.62) 1.83 (0.69) 2.34 (1.13)
14 1.49 (0.47) 1.39 (0.50) 1.82 (0.61) 1.84 (0.81)
15 2.49 (0.92) 2.43 (0.95) 3.06 (1.23) 3.26 (2.07)
16 0.42 (0.28) 0.37 (0.29)
17 2.18 (0.75) 2.67 (1.14)
18 2.19 (0.69) 2.59 (1.04)
19 1.06 (0.40) 1.16 (0.45)
20 2.33 (0.84) 2.41 (0.90)
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Decreasing the number of items to 5 and considering the subsets of

(i) items 1 to 5, then most of the estimates , and the 

corresponding standard deviations increase. Item 4 has the largest 

change in terms of , (from 1.78 to 3.23) and coefficient of 

variation (from 0.30 to 0,68).

(ii) items 2 to 6, the largest differences are related to Og 

increasing and assuming the biggest value, 2.40, followed by Og , 

decreasing to 1.82.

(iii) items 3 to 7, the estimates , and coefficient of variations 

are nearly equal to those from the sub test 1 to 10, and the 

coefficients of variation for the remaining items are just slightly 

bigger than the original ones.

Decreasing to a half the original test length, deleting items 1 to 

10, some estimates of , increase up to 65% (a,y , from 1.32 to 

2.18, followed by 0,5 , from 1.59 to 2.49). The coefficients of 

variation do not change.

Consider the subset of items 11 to 20, in which there is one very 

large , (16.36 for item 12), then

(i) deleting item 12, the estimates of , practically do not change.

(ii) deleting items 16 to 20, all , increase, except a,; , , which 

was already very large.
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Furthermore, deleting item 12 from this set of items (11 to 15) 

then  ̂and the standard deviation of a,g , increase, while a,, ,

decreases.

As we have already pointed out in Chapter 2, when one of the 

/s is very large, if we scale the individuals using the component 

scores then we can see 2 distinct groups : first, individuals who 

answered item i negatively, followed by those who answered positively. 

How large , must be in order to produce two groups depends on the 

size of the remaining estimates

For example, for the subset of items 1 to 5, the largest , is 

3.25, but without distributing the individuals into 2 groups. At the 

same time, a maximum  ̂ equal to 3.40 for the Lombard and Doering 

data produced 2 groups (Chapter 3),

However, for a pattern of  ̂ as given by Test llA, in which 

there is 2 large estimates (5.32 and 16.24), while the remaining are 

smaller than 2.80, we could expect a partition of the individuals into 

at least 2 groups. Actually, in this case, there are clearly 3 groups: 

first of those who answered wrong both items, followed by those who 

answered one item right and the other wrong, and a third of those who 

answered both right.

In the following we discuss the main results from the correlation 

matrix for the component scores (Table 5.7), This will be integrated 

with the previous analysis of the effect on , when deleting one or 

more items, in especial when these items have a large estimates.
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Table 5.7 - Correlations between the component scores from fitting a
logit/probit model to different subsets of Items from Tes
llA-Ireland,

Items 1 to 20 del 7,12 1 to 10 lto6,StolO 1 to 7

del 7,12 0.98
1 to 10 0.90 0.85
lto6,StolO 0.89 0.85 0.97
1 to 7 0.89 0.87 0.94 0.92
1 to 6 0.84 0.85 0.81 0.83 0.91
1 to 5 0.78 0.81 0.73 0.76 0.84
2 to 6 0.85 0.85 0.86 0.89 0.93
3 to 7 0.89 0.86 0.94 0.91 0.99

Items 1 to 20 del 7,12 11 to 20 ll,13to20 lltol5

11 to 20 0.85 0.88
ll,13to20 0.80 0.85 0.98
11 to 15 0.70 0.72 0.78 0.71
ll,13tol5 0.60 0.62 0.69 0.66 0.93

Deleting items 7 and 12 from Test llA, in which they assume large 

practically does not affect the pattern of ,'s. The Spearman 

correlation between the component scores is very high (0.98). This 

means that the order of the component scores is nearly the same, 

whether items 7 and 12 are present or not, although we cannot see any 

groups as before.

The same result is also observed when deleting item 7 from the 

subset of items 1 to 10, and when deleting item 12 from the subset of 

items 11 to 20, in terms of high Spearman correlation between 

component scores and unchanged estimates q;̂ ^.
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When deleting item 7 from the subset of items 1 to 7, the pattern 

of ôi ,'s changes slightly and this might be responsible for the 

lower (0.91) correlation between the component scores. The same kind 

of result is observed when deleting item 12 from the subset of items 

11 to 15, for a Spearman correlation equal to 0.93.

Table 5.7 shows that the Spearman correlation between the 

component scores from the whole set of items and subsets of 10 or 5 

items can be equal or smaller depending on which items are included in 

the subtest. For example, it is equal to 0.90 for a test length of ten 

items (i-1 to 10) and 0.89 for five items (i-3 to 7), while it 

decreases to 0.78 for the subset of items 1 to 5.

Both the pattern of ,*s and the order of the component scores 

in the subset of items 3 to 7 are closer to those from the original 

test than for items 1 to 5.

When considering a test length of 5 items, in the first part of 

Table 5.7, we can see that the correlation is higher when item 7 is 

included in the subset.

Therefore if we delete only item 7 or 12 from the original test or 

from the subset of items 1 to 10 or 11 to 20, for which ,, i-7 or 

12, is large, the Spearman correlation of the component scores is 

high (0.97).

At the same time the Spearman correlation between the component 

scores from the original test and smaller set of items with equal 

length (5 items) is bigger when items 7 or 12 are included in the 

subset.
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These two results are highly correlated with the pattern of ,'s 

(Tables 5.5 and 5.6), since for a small test length (5 items) if items 

7 or 12 are present then the pattern of , is closer to the original 

ones; and when deleting just items 7 or 12 from sets of 20 or 10 

items, the new estimates are also very similar to the original ones.

Therefore at the same time that there is evidence that an item 

with large  ̂ does not give any extra information about the latent 

variable, when the number of items is small(5), it contains more 

information than some other items, in terms of producing higher 

correlation between the component scores.
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2.2- Wales

Table 5.8- Parameter estimates , and asymptotic standard 
deviations(in brackets) from fitting a logit/probit model to 
Test llA- Wales.

i 1 to 20 delet .7,12 1 to 10 lto6,8tolO

1 1.04 0.34) 1.10 0.36) 0.86 (0.33) 0.96 (0.36)
2 1.20 0.48) 1.39 0.55) 1.10 (0.50) 1.10 (0.52)
3 1.24 0.41) 1.26 0.43) 1.20 (0.42) 1.24 (0.47)
4 0.97 0.33) 1.08 0.36) 0.85 (0.33) 0.98 (0.38)
5 1.20 0.36) 1.11 0.36) 0.93 (0.34) 0.87 (0.34)
6 2.17 0.62) 2.10 0.63) 3.72 (1.43) 4.41 (2.75)
7 2.73 0.80) 4.59 (2.42)
8 1.50 0.43) 1.35 0.41) 1.91 (0.58) 1.90 (0.64)
9 1.61 0.47) 1.40 0.44) 1.56 (0.50) 1.43 (0.48)
10 1.50 0.43) 1.48 0.44) 1.49 (0.46) 1.34 (0.45)
11 0.99 0.33) 0.98 0.33)
12 1.90 0.52)
13 1.87 0.62) 1.69 0.58)
14 1.20 0.38) 1.16 0.39)
15 1.90 0.69) 2.12 0.82)
16 0.25 0.25) 0.20 0.25)
17 1.31 0.40) 1.38 0.42)
18 1.71 0.47) 1.89 0.54)
19 0.93 0.33) 0.93 0.33)
20 1.80 0.50) 1.85 0.54)

When fitting a logit/probit model to Test llA for Wales' data, 

assumes values from 0.25 to 2.73 with larger estimates having a larger 

standard deviations, except for  ̂ (the smallest estimate with the

largest coefficient of variation). Items 6 and 7 have the largest 

estimates , (2.17 and 2.73). The maximum correlation between o ,
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and Oj ,, , is 0.18 for items 6 and 7.

Deleting items 7 and 12, both, the estimates of 8  ̂ , and their 

coefficients of variation are very stable, that is, nearly equal to 

the original ones.

Decreasing to a half the number of items, and considering items 1 

to 10, seven estimates decrease slightly (up to 20%), while 8g , and 

8 y 1 increase to 3.72 and 4.59, respectively.

If from the subset of items 1 to 10, we delete

(i) item 7, the strongest change is for item 6, for which &g , 

increases to 4.41 with higher coefficient of variation, although in 

practice this difference is not significant.

(ii) items 8 to 10, the estimates of , and a, , decrease to 3.21 

and 3.34, while the remaining ones do not change significantly, as in 

the previous subsets of items.

(iii) items 7 to 10, the parameter estimates ôi ,, i-1 to 4, increase

while &g  ̂ decreases to 1.13, so that its relative importance in this

subtest also decreases.

The effect on the pattern of 8  ̂ ,'s of deleting item 7 from the 

subset of items 1 to 10 and from 1 to 7 is very different. While in 

the former it does not affect the pattern of 8 ĵ , estimates, in the

later it does strongly, even changing the relative importance of some

items.
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Table 5.9- Parameter estimates , and asymptotic standard deviations 
(in brackets) from fitting a logit/probit model to Test llA- Wales.

i 1 to 7 1 to 6 1 to 5 2 to 6 3 to 7

1 1 .10 (0 .40) 1.70 90, 65) 1.52 (0.64)
2 1 .35 (0.62) 2.07 (1.12) 2.23 (1.44) 1.73 (1.08)
3 1,.31 (0.48) 2.58 (1.,39) 4 .38 (5.50) 1.97 (1.22) 0..96 (0 .,40)
4 0 .88 (0.36) 1.05 (0.43) 0 .95 (0.41) 1.17 (0.52) 0,,82 (0.36)
5 0 .94 (0.38) 0 .88 (0,37) 0 .74 (0.35) 1.00 (0.46) 1,.05 (0 ,,38)
6 3.21 (1.43) 1.13 (0,.47) 1.29 (0.63) 3,.39 (1.70)
7 3.34 (1.56) 4 .76 (3 .97)

i 11 1to 20 11,12 to 20 11 to 15 11,13 to 15

11 1.18 (0 .40) 1.07 (0.39) 0.99 ( 0.38) 0.64 (0.55)
12 2.61 (0 .95) 16 .03 (82.91)
13 1 .61 (0 .62) 1.,34 (0.56) 1.73 ( 0 .68) 1.62 (1.46)
14 1.13 (0 .42) 1.,01 (0.41) 1.08 ( 0.42) 0.90 (0.67)
15 2.37 (1 .06) 2,,95 (1.63) 1.47 ( 0.62) 1.87 (1.76)
16 0 . 46 (0 .28) 0 ,,47 (0.29)
17 1.40 (0.47) 1 .47 (0.53)
18 1.56 (0.50) 1.79 (0 .64)
19 1.17 (0.40) 1.07 (0.40)
20 2.15 (0 .72) 2.24 (0.84)

Decreasing the test !Length to 5 items, and considering the subsets

of

(i) items 1 to 5

The parameter estimate a, , remains the same, , decreases while 

the remaining ones increase, especially ct̂ , from 1.24 to 4.38 with a 

larger coefficient of variation.
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(ii) items 2 to 6

The new estimates of , are slightly larger that the original 

ones and those from the subtest 1 to 10, except for , which

decreases to 1.29 also altering its relative importance in this test.

(iii) items 3 to 7

The estimates , are very close to those from the subset of 

items 1 to 10 , what means a significant increase on for i-6 and

7, values when compared to the original ones. Therefore, in this case, 

the effect on , of decreasing the test length to 10 or 5 items is 

the same for the subset of items 1 to 10 and 3 to 7.

Decreasing the number of items to 10, considering items 11 to 20, 

most of the , slightly change in both directions. The strongest 

change is an increase for 0 ,2,1  ̂ , both from 1.90 to 2.61 and

2.37.

Consider the subset of items 11 to 20, then deleting

(i) item 12

The parameter estimate 0,% , increases to 2.95 with a larger 

coefficient of variation, while for some items, the estimates increase 

or decrease slightly.

(ii) item 16 to 20

The strongest change is for items 12 and 15, since a,^ , assumes a 

very large value (16.03) and 0,5 , decreases to 1.47, being even
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smaller than the original one (1.90). The remaining estimates of the 

discrimination parameter are stable.

Furthermore, if item 12 is deleted from this subset (11 to 15) 

then the estimate 0,5 , is equal to the original one, while the 

remaining ones are slightly smaller, although all coefficients of 

variation are bigger.

In the following. Table 5.10 displays the Spearman correlations 

between the component scores from fitting a logit/probit model to 

subsets of items from Test llA.

Table 5.10- Correlations between the component scores from fitting a 
logit/probit model to different subsets of items from Test llA- Wales

Items 1 to 20 del 7,12 1 to 10 lto6,StolO 1 to 7

del 7,12 0.98
1 to 10 0.91 0.85
lto6,StolO 0.90 0.88 0.96
1 to 7 0.87 0.81 0.95 0.90
1 to 6 0.76 0.78 0.76 0.81 0.86
1 to 5 0.68 0.72 0.66 0.71 0.76
2 to 6 0.78 0.79 0.80 0.84 0.86
3 to 7 0.85 0.77 0.93 0.87 0.95

Items 1 to 20 del 7,12 11 to 20 ll,13to20 11 to 15

11 to 20 0.87 0.90
ll,13to20 0.86 0.89 0.96
11 to 15 0.76 0.77 0.87 0.75
ll,13tol5 0.72 0.72 0.78 0.75 0.89
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Although the sample size of Wales is of the same order as for 

Ireland (86 compared to 73), none of its parameter estimates , in 

the original test assumes large values.

On the other hand, items 6 and 7 have the biggest , (2.17 and 

2.73), and the effect on the pattern of , of deleting items is very 

similar to those observed for Ireland. The Spearman correlation matrix 

for the component scores for Wales is very close to that for Ireland. 

As the same results obtained there are also valid here, and we will 

not repeat them.

The similarity between the correlations matrix of the component 

scores for Ireland and Wales is likely to be due to the fact that the 

order of the component scores is highly correlated with the effect on 

Qj_ , of deleting items, since both countries present approximately the 

same kind of change in the pattern of .
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2.3- England

In the following, we consider the same subset of items from Test 

llA for England as for Wales and Ireland, although in this case the 

three largest , values are not associated to the same items as 

before.

Table 5.11- Parameter estimates , and asymptotic standard
deviations(in brackets) from fitting a logit/probit model to 
Test llA- England.

1 to 20 delet.7,12 1 to 10 lto6,StolO

1 0 84 (0 .16)
2 1 41 (0 .23)
3 1 48 (0 .24)
4 1 95 (0 .28)
5 1 17 (0 .18)
6 2 32 (0 33)
7 2 34 (0 34)
8 1 26 (0 19)
9 1 04 (0 18)

10 2 57 (0 37)
11 1.72 (0 24)
12 2.03 (0 29)
13 2 46 (0 39)
14 1.35 (0 20)
15 3.15 (0 54)
16 1.31 (0 .21)
17 1.13 (0 18)
18 1.60 (0 23)
19 0.98 (0 17)
20 1.47 (0 21)

0.84 (0.16)
1.45 (0.24) 
1.47 (0.24)
1.95 (0.29)
1.17 (0.18)
2.02 (0.19)

1.14 (0.18) 
0.97 (0.17)
2.43 (0.36)
1.68 (0.24)

2.46 (0.40)
1.37 (0.21)
3.44 (0.64)
1.32 (0.22)
1.18 (0.19) 
1.67 (0.24)
1.08 (0.18) 
1.56 (0.23)

0.70 (0.15)
1.37 (0.25)
1.18 (0.22) 
2.28 (0.36)
1.09 (0.18)
3.95 (0.78) 
3.83 (0.76) 
1.53 (0.24)
1.30 (0.22)
1.95 (0.29)

0.71 (0.16)
1.50 (0.27)
1.32 (0.25)
2.69 (0.48) 
1.27 (0.21)
3.09 (0.60)

1.31 (0.22)
1.16 (0.21) 
1.99 (0.32)
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In the whole set of items, the parameter estimate , assumes 

values from 0.84 to 3.15 with about the same coefficient of variation. 

Items 6, 7 and 12 are among the six for which , is bigger than 2.0,

although the largest estimate is The maximum correlation

between , and Oj ,, i^j, is equal to 0.25 for items 6 and 7.

Deleting items 7 and 12, the pattern of ,'s remains practically

the same, since the increase is up to 9% for , (3.15) and the

decrease is 13% for , (2.02).

Decreasing to a half the initial number of items, deleting items

11 to 20, affects mainly items 6, 7 and 10. The estimates of ,,

i-6,7, increase to 3.95 and 3.83, while , decreases to 1.95 (24%

smaller). It is, interesting to observe that , is the second

largest estimate in the original test.

Table 5.12- Parameter estimates “i, i and asymptotic standard
deviations (in brackets) from fitting a logit/probit model to
Test llA— England.

i 1 to 7 1 to 6 1 to 5 2 to 6 3 to 7

1 0.78 (0.17) 0.79 (0.13) 0.83 (0.19)
2 1.56 (0.29) 1.79 (0.34) 1.82 (0.38) 1.84 (0.35)
3 1.36 (0.26) 1.52 (0.32) 1.34 (0.30) 1.46 (0.31) 1.30 (0.25)
4 2.48 (0.44) 3.22 (0.77) 2.67 (0.68) 3.64 (1.03) 2.33 (0.41)
5 1.18 (0.21) 1.47 (0.27) 1.82 (0.40) 1.37 (0.25) 1.06 (0.19)
6 4.76 (1.41) 2.37 (0.46) 2.38 (0.47) 6.14 (2.68)
7 2.90 (0.54) 3.10 (0.59)

continue...
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i 11 to 20 11,13 to 20 11 to 15 11,13 to 15

11 1.95 (0.31) 1.68 (0.28) 2.04 (0.36) 1.77 (0.36)
12 1.91 (0.31) 2.70 (0.57)
13 2.92 (0.53) 2.97 (0.56) 2.87 (0.58) 2.81 (0.61)
14 1.54 (0.24) 1.46 (0.24) 1.63 (0.28) 1.60 (0.30)
15 3.98 (0.88) 4.36 (1.09) 3.97 (1.06) 7.12 (4.40)
16 1.28 (0.23) 1.35 (0.25)
17 1.12 (0.19) 1.16 (0.20)
18 1.80 (0.28) 1.88 (0.30)
19 1.04 (0.18) 1.08 (0.19)
20 1.78 (0.28) 1.88 (0.30)

If from the subset of items 1 to 10, we delete

(i) item 7, then occurs same slightly changes in both directions. The 

main changes are a larger a,  ̂ (2.69) and smaller & g ̂  (3.09), which 

is still bigger than the original one.

(ii) items 8 to 10, then the parameter estimates  ̂ and âg , assume 

larger values, 2.48 and 4.76, while oty , decreases to 2.90, which is 

still bigger than the original one.

(iii) items 7 to 10, the estimate , increases and assumes the 

largest value in this set of items (3.22), while &g , decreases to

2.37 and becomes nearly equal to the original one. These changes make 

the relative importance of these items in this set also change.
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Decreasing the test length to 5 items, and considering the subset

of

(i) items 1 to 5

Except for â, the remaining estimates increase up to 36%, for 

which , is the one that has the highest increase (from 1.95 to 

2.67) .

(ii) items 2 to 6

As in the former set of items, the maximum increase is for ,, 

which assumes a larger value (3,64). The estimate Og , (2.38) is very 

close to the original one.

(iii) items 3 to 7

The parameter estimates ,, i-3,5, are slightly smaller while

the remaining estimates are bigger than the original ones. The 

strongest increase is for âg ,, which assumes very large value (6.14) 

with a larger coefficient of variation.

Decreasing the number of items to 10, considering items 11 to 20, 

then most of the â^ / s change in both directions. The strongest 

change is for â,g ,, which increases from 3.15 to 3.98 keeping about 

the same coefficient of variation.
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Considering the subset of items 11 to 20, then deleting

(i) item 12

All estimates practically do not change. The parameter estimate 

0,5 1 was already large, 3.98, so that an increase to 4.36 is not

significant.

(ii) items 11 to 15

All estimates of , increase up to 33% in relation to the

original ones and the set of items 11 to 20, for about the same

coefficient of variation. The strongest increase is for  ̂ (from

2.03 to 2.70) followed by , (from 3.15 to 3.97).

Going further, deleting item 12 from this set, then a ,5 , becomes

very large (7.12) with a larger coefficient of variation. The

remaining estimates of  ̂ are very close to those from the subset of

items 11 to 20.

In the following, we analyse the Spearman correlation between 

component scores from fitting a logit/probit model to some subset of 

items from Test llA-England.
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Table 5.13 - Correlations between the component scores of fitting a
logit/probit 
England.

model to different subsets of items from Test llA

Items 1 to 20 del 7,12 1 to 10 Ito6,8tol0 1 to 7

del 7,12 0.98
1 to 10 0.88 0.84
lto6,8tolO 0.89 0.88 0.96
1 to 7 0.83 0.79 0.92 0.91
1 to 6 0.77 0.78 0.83 0.90 0.94
1 to 5 0.71 0.73 0.74 0.83 0.84
2 to 6 0.75 0.75 0.80 0.88 0.91
3 to 7 0.81 0.77 0.90 0.89 0.98

Items 1 to 20 del 7,12 11 to 20 ll,13to20 11 to 15

11 to 20 0.89 0.89
ll,13to20 0.85 0.89 0.97
11 to 15 0.78 0.73 0.86 0.75
ll,13tol5 0.72 0.73 0.82 0.80 0.89

Deleting items 7 and 12 from Test llA, for which  ̂ is equal to 

2.34 and 2.03, practically does not affect the pattern of /s. The 

Spearman correlation between the component scores is high (0.98), 

which means that the order of the component scores is nearly equal in 

both tests.

Two other high correlations for the component scores, 0.96 and 

0.97, are observed between the set of items 1 to 10 and 1 to 6, 8 to 

10; and when deleting item 12 from the subset of items 11 to 20.
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Nevertheless, in this case, the estimate a, , is equal to 3.83, but 

0,2 1 is not so large (1.93).

The three previous high Spearman correlations for the component 

scores agree with the similarity of the pattern of ,'s between the 

corresponding subset of items.

When deleting item 7 from the subset of items 1 to 7, some changes 

occur in the values of ^, for items 4 and 6, which alter their 

relative importance in the calculation of the component scores. These 

changes might have affected the order of the new component scores, 

producing a smaller Spearman correlation (0.94).

The same previous changes in the relative importance of items 4 

and 6, is also observed for item 11, when deleting item 12 from the 

subset of items 11 to 15, although now the correlation between the 

component scores is smaller (0.89).

The Spearman correlations between the component scores from Test 

llA and those from the subset of items 1 to 5 and the subset of items 

3 to 7 are equal to 0.71 and 0.74, respectively. However when Test llA 

is replaced by the subset of items 1 to 10, the correlation 

coefficients increase to 0.81 and 0.90.

In relation to the whole test, the correlations for the component

scores are approximately the same, whether items 1 and 2 or items 6

and 7 are included. However, in relation to the subset of items 1 to 

10, the correlation is bigger when items 6 and 7 are included in the 

test instead of items 1 and 2.

In the subset of items 1 to 10, the estimates , for items 6 and

7 assume the largest values (3.95 and 3.83), while a, , and ct ̂ , are

equal to 0.70 and 1.37. Therefore the later higher correlation (0.90)
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might be partially explained by the fact that items 6 and 7 have more 

weight than items 1 and 2 on the determination of the component scores 

for the subset of items 1 to 10.

2.4- Conclusions

The results of this extensive investigation of the effect on , 

of deleting items for a variety of sample sizes lead to the following 

conclusions ;

(1) The effect on , of deleting items from tests with 10 or fewer 

items, is approximately the same for these 3 sets of data, although 

the sample sizes are different (73 and 86 compared with 342). The 

sample sizes are not so small as to make estimation of a model with 10 

items unreliable.

If, on the other hand, the number of items is large, say 20 items, 

then increasing the sample size from 73 to 342 tends to increase the 

number of different score patterns with frequencies bigger than zero, 

with more effect on the pattern of 's.

Therefore the magnitude of the sample size must be judged in 

relation to the number of items, when considering the effect of 

deleting items.

(2) If ones deletes only items with large ,'s from tests with 20,18 

or even 10 items, the ôj , of the remaining items show great 

stability. This is also apparent in the high Spearman 

correlations (^0.96) between the corresponding component scores before 

and after deletion.
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(3) For a small sub-test of 5 items the pattern of ,'s is closer to 

those of the test with all items, if the items with large , are 

present in the test. This is also shown by the larger Spearman 

correlations between the corresponding component scores. This pattern 

is observed for England when considering 10 items instead of the whole 

test.

(4) From (2) and (3) we can conclude that an item with a large , 

may not give any additional information about the latent variable in a 

large test length(20) , but when the number of items is small(5), it 

may contain more information than other items.

(5) The occurrence of a large , seems to depend more on which items 

are included in the test then on the sample size and test length. 

This result is extensively investigated in the next chapter,

(6) As the number of items decreases, the largest , tends to 

increase and become very large when the test length is small.

(7) Parameter estimates ,(^0.50) and standard deviations are

approximately linear related so that larger estimates have larger 

standard deviations.

(8) Except for Test 12 (whole set of items), the occurrence of a large 

, was not due to correlated estimates , and aj ,, ifj, since the

correlations were always zero or nearly equal to zero.

(9) A large parameter estimate âi , for some items does not seem to be 

associated with the type of question asked.
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3- Tests with Large Number of Items

It has been pointed out in the literature that the occurrence of 

Heywood cases in Factor Analysis might be due to the small number of 

variables (items) or small sample size (Chapter 1, section 5). It is 

also expected that for the same sample size, if the number of items 

increases then the probability of the occurrence of an Heywood case 

decreases.

In order to investigate the relation between the number of items 

and the occurrence of a large we fitted a logit/probit model to

11 tests, used to measured the reading ability of children aged 11 in 

1983, by the National Foundation for Educational Research (NFER).

Firstly, we shall discuss the main results from fitting a

logit/probit model to Test 8, which has a large number of items (43),

considering the whole sample size (527) and when the sample is

stratified according to the country where the school is located.

Finally we present a summary of the maximum and minimum values 

assumed by the discrimination parameter estimates, the asymptotic

standard deviations for all tests, relating them to the sample size 

and test length.
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Test 8

The fitting of a logit/probit model to Test 8 yields parameter 

estimates  ̂ from 0,08 to 2.65, among which 39 estimates are smaller 

than 2.0. Question 42 has the biggest , (2.65) with standard 

deviation equal to 0.43. A larger 0!£  ̂ has a larger standard 

deviation, except for estimates smaller than 0.30.

We also fitted a logit/probit model when the sample was stratified 

according to the location of the school, that is, England (365), 

Wales (86) and Ireland (76), for which the main results are displayed 

in Table 14. As for Test llA, the England sample size is larger than 

for Wales and Ireland, and we are interested in finding out whether 

with a large number of items, a large , will still occur.

Table 5.14- Frequency distribution of the parameter estimates 
, from fitting a logit/probit model to Test 8, according 

to the location of the school.

Ireland Wales England

0.03 - "i. 1 ^ 2.0 34 38 39
2.00 ^ “i. 3.0 5 2 1

“i, 1 ^ 3.0 4 3 3

In the following we present the items for which the discrimination 

parameter estimates are bigger than 3.0 with the corresponding 

standard deviations in brackets.
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Items
4
7
8 

9
40
41
42

Ireland

3.44 ( 2.13)

13.42 ( 857.39) 
16.90 (1330.41)

3.14 ( 2.09)

Vales
3.43 (0.83)
3.09 (0.79) 
3.80 (1.01)

England

3.17 (0.69) 
3.51 (0.81) 
4.06 (1.20)

Therefore, although Wales and Ireland have nearly equal sample 

size, when fitting a logit/probit model the later yielded 2 very large 

/s. Moreover the parameter estimates bigger than 2.0 from 

Ireland’s data have larger coefficient of variation than those from 

Wales' data. On the other hand the pattern of /s and their 

coefficients of variation for Wales are very similar to those for 

England.

We have already given two examples with different test lengths. 

Test llA and Test 8, in which Ireland and Wales have about the same 

sample size, but the former produced two very large ,’s. It seems 

that there is something different about the distribution and 

nature (configuration) of the Ireland score pattern that produces very 

large estimates , even when the test length is 43 items.

It is convenient to point out that so far we have not obtained 

more than 2 large estimates or̂  ,'s for the same test.
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Analysis of the Items In Test 8

In order to find out whether there was something special about the 

items with large ,, we have studied carefully all the questions. In 

the following we discuss those questions for which , is large.

Test 8 corresponds to the booklet on the topic of 'Space', which 

was organised into 5 sections and one index, one for each page.

For all 43 questions there was a choice of a single answer among 

2, 5 or 6 options. Most of the questions were asked on specific pages 

(or sections), but there were also some questions that involved 

children refering from one passage to another, to locate,interpret and 

relate information given.

In the second section of Test 8, a story entitle 'Target Mars' 

about a space landing on a planet was described in a sequence of 6 

boxes. Items 4 to 8 correspond to sentences about what was happening 

in each box. For each one of these items, the children were asked to 

choose a number between 1 and 6, which corresponds to the box in which 

the sentence occurred.

Items 4,7,8 for Wales and item 7 for Ireland have , bigger than

3.0. However we have not found anything special about these items that 

would make them different from items 5 and 6.

The following three items (9 to 11) were about the same passage, 

but refering to the whole context of the story. For Ireland's data,

item 9 has a very large , (13.42), and was asking on which planet

the spaceship was landing. Since for item 9 as well as for 10 and 11

the questions were very clear and the answers were written in the
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booklet, the large estimate does not seem to be related with the kind 

of question.

Finally, to answer the last four questions (40 to 43), the 

children had to use an index in order to indicate which page contained 

information about Pluto, Marty, Mercury and the solar system, 

respectively. The index diplayed the names exactly as in the 

questions, followed by the page number.

Items 40, 41 and 42 have , bigger than3.0 for England, while 

for Ireland items 40 and 42 have , equal to 16.90 and 3.14, 

respectively. As in the preceding analysis it seems that there is 

nothing special about these questions that make them different from 

answering about Mercury (item 43),

Eleven tests with different tests length and sample sizes

In Table 5.15, we present some results from fitting a logit/probit 

model to the eleven tests, used by the NFER in 1983, to measure the 

reading ability of children aged 11.

-255



Table 5.15- Parameter estimates and asymptotic standard deviations 
(in brackets) from fitting a logit/probit model to Reading Ability 
Tests (NFER data).

test n.i. s. s min(&i^,) max ( Of min(T j) max(* ̂

13A 24* 440 0.29 (0 .11) 2.01 (0.28) 0.42 0.97
4 25 236 0.20 (0.15) 2.39 (0.44) 0.14 0.95
11 29* 270 0.33 (0.19) 2.50 (0.57) 0.25 0.99
llA 20 501 0.83 (0.13) 2.62 (0.36) 0.27 0.97

8 43 497 0.08 (0.09) 2.65 (0.43) 0.39 0.99
3 42 304 0.25 (0.14) 2.93 (0.56) 0.23 0.99
5 39 498 0.94 (0.14) 3.23 (0.52) 0.41 0.99
6 55 507 0.61 (0.10) 4.02 (0.56) 0.09 0.97

12 18 502 0.62 (0.12) 4.50 (0.83) 0.15 0.98
13 40* 498 0.31 (0.10) 4.70 (0.71) 0.12 0.97
1 37 495 0.26 (0.09) 5.25 (0.97) 0.17 0.99

n.i. : number of items s .s.:sample size
* :test length after deleting one item, for which all children 

answered it right or wrong.

Complementing the information given by Table 5.15, we observed 

that the largest coefficients of variation of , were always

associated with estimates smaller than 0.50, while for the remaining 

Gi ,, they were approximately the same, especially for samples bigger 

than 400.

Generally, items with the largest , have also the largest t 

although bigger than 0.90 were also associated with , à 0.73.

Table 5.15 shows that among the six tests for which the maximum 

1 is smaller than 3.0, four correspond to tests with the smallest 

sample sizes and different lengths.
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In tests four and eleven the maximum , are equal to 2.39 and

2.50 for about the same number of items (25 and 29) and sample 

size (236 and 270). Test three, length 42 items and sample size 304, 

have maximum , equal to 2.93. Test llA has the smallest

maximum (2.01) for a length of 24 items and 440 observations.

From Table 5.15 we can see that seven tests have sample sizes of 

order 500, while the remaining ones are smaller with a minimum of 236 

observations. The five tests, for which at least one parameter 

estimate , is bigger than 3.0, have the largest sample size.

Tests thirteen, five and one have 40, 39 and 37 items, from which

6,1 and 5 items, respectively, have ^ 3.0. Tests six and twelve

have 55 and 18 items with 3 and 2 items for which , is bigger than

3.0, respectively.

Fitting a logit/probit model to tests of length 20 or fewer 

items (tests llA, 12 and subtests analysed in the previous sections), 

there was a maximum of 2 items for which , was bigger than 3.0, 

However, for the same sample size, but double test length. Table 5.15 

shows tests with 0 to 6 estimates , bigger than 3.0. Tests like 

test thirteen, in which 6 out of 40 items have ^ 3.0, are

probably not desirable.
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Consider again tests with sample size of order 500. The comparison 

between the test length and the maximum value assumed by , shows 

that

(1) For two tests, llA and 12, with twenty and eighteen items, the 

maximum values assumed by , are 2.62 and 4.50 for approximately the 

same coefficient of variation (0.14 and 0.18).

(2) For the four tests with length of about 40 items (tests 8, 5, 13

and 1), the maximum ,'s are equal to 2.65, 3.23, 4.70 and 5.25,

respectively, for about the same coefficient of variation (about 

0.16).

(3) For Test 6 with length of 55 items, the maximum , is equal to

4.02 with coefficient of variation 0.14.

Therefore there was not any improvement in terms of decreasing the 

occurrences of large , (>3.0), increasing the test length from 20

to 40 or more items, for sample size of order 500.

These results seems to give evidence that a test with 20 items is 

not more likely to have at least one , bigger than 3.0 than a test 

with double length, for sample size of order 500.
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Chapter 6

AN INVESTIGATION of the CONDITIONS giving rise to LARGE 0^̂ ,

In order to understand the circumstances when large discrimination 

parameter estimates ,'s arise, we shall first study the

configuration of the score patterns and its relation to the size of 

Oi We start from a simple data set with two items, sample size two 

and score patterns '10' and '01' each with frequency 1.

1- Introductory Examples

1.2- Two Variables: a Theoretical Result

Suppose that a test with two items is answered by two individuals 

for whom the score patterns are '10' and '01'.

Then the likelihood function for the probit model may be written

L = 7T^(z) [l-TjCz)] dtf(z) TjCz) [l-7r,(z)j dt(z)

More generally, with expected values taken over some unspecified 

latent variable distribution

L = E [TiCl-T;)] E [%2(l-?i)].

Nov,

/1 1 - 2 ) “  +  ^ 1 ^ 2  ■ ----
2 2 .2 5 9 . 2 2



Now,

, 1 ^ 1 ,  V
^ -y- + “2~

Similarly,

Thus ,

E [T^Cl-T;)] E [(I-*,)*;] ^

 ̂ "y [ 1"E(»2"̂ 1 ) ] [l+E(T2"*l)]

- - y  { 1*(E(t 2-t ,))2 J ^ - y

But the upper bound is achieved iff

E (T,*;) - E [(1-t ,)(1-t 2)] - 0 and E (x j-t ,) - 0, 

that is, the upper bound is achieved iff

E(x,) - E(x;) - and E (x,X;) - 0,

that is, when the first and second order margins match the observed 

data.

E(t,Tj)-0 4— 4 ( x,^0 ^  Xg-O ) and ( Xg^O x,-0 ) .

260-



Therefore there are many possible ways of choüsing a response 

function to maximise the likelihood, but within logit, probit and

logit/probit models, they must be threshold models, eg,

T,(z)-0, z ^ 0 T;(Z)-1, 2 ^ 0
and

T,(z)-1, z ^ 0 T 2 (z)-0 , z ^ 0

This is a response function with a threshold at z-0, and it can be

obtained as a limiting case of the general model(1.5), Chapter 1, as

Û, tends to infinity with fixed at zero.

Although this example involves only two variables, it shows 

rigorously that a threshold model may be the MLE.

1.2- Three Variables: Simulated Data

Due to the complexity of the algebra for even 3 variables, we 

shall study the relation between the size of , and the

configuration of the score patterns through some examples. We start 

from a simple and artificial data set with 3 items, which have the 

same first and second order margins, and sample size 240. Then, when 

fitting a logit/probit model to this data, the possible differences 

between the size of ,'s will be due to the effect of the third 

order iterations.

Table 6.1 displays the frequencies of the score patterns and 

ratios of the conditional frequencies, which were obtained as 

described below.

As the frequencies of the score patterns for 231 and 312 are the same, 

only one of them is displayed.

-261-



Table 6.1- Distribution of the score patterns
and ratios of the conditional frequencies.

123 n ratio 231 n ratio

000 70 000 70
100 10 (7.0) 100 20 (3.5)
001 20 001 10
101 20 (1.0) 101 20 (0.5)
010 20 010 20
110 20 (1.0) 110 10 (2.0)
Oil 10 Oil 20
111 70 (0.1) 111 70 (0.3)

logit/probit

a,,.,- 9.41
SD(ô,_,)- 12.50

1.69, i-2,3 
SD(ôi 0.36

Consider the score patterns for items 2 and 3, first when item one 

is answered negatively (0), and second when it is answered

positively (1) . We can calculate the ratios of the frequencies of the

corresponding score patterns in these two cases. We call these ratios 

as 'ratios for item 1'.

For instance, when x,-0 the frequency of Xj—0 and Xg-O is 70 and 

when x,-l the corresponding frequency is 10, giving a ratio equal to

7.0.

We repeat this procedure for items 2 and 3.

Then the distribution of ratios for every item is split into two 

parts: ratios smaller than 1 and ratios equal to or bigger than 1. The 

analysis of the distribution is done comparing the values assumed by 

the ratios on the left with those on the right side. The closer to 

zero the smallest ratio and the bigger the largest one for an item, 

the more extreme is the distribution of the ratios for this item.

Finally we compare the patterns of ratios for all items with the

size of ,'s.

Now we return to Table 6.1 in order to analyse the main results.
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If we compare the ratios for item 1 with those for items 2 or 3, 

we can see that in the former they are more extreme (7.0 and 0.1) than 

in the latter (3.5 and 0.3). At the same time, a, , is very 

large (9.41) while ô; ,i ^ 3,i equal to 1.69.

Furthermore the ratios for item 1 indicate that if an individual 

answers negatively (positively) to items 2 and 3 then it is more 

probable that he will also answer negatively (positively) to item 1.

From the original set of data (Table 6.1), we derive 7 new sets by 

altering the frequencies of some score patterns. As a consequence the 

sample size of the new set of data might change, assuming a value 

between 190 and 240. For four of these seven new sets, all items have 

the same first and second order margins. The same analysis carried out 

for the original data is extended to all sets. The results are used to 

measure the effect on the size of , of changing the pattern of the 

ratios .

Thus, for example, if the score pattern '100' for items 123 has 

frequency 5 instead of 10, then the new ratio is equal to 14.0. This 

change makes the pattern of ratios for item 1 more extreme, while 

those for items 2 and 3 almost do not change (0.25 instead of 0.50). 

Moreover this change also yields a larger estimate a, , (32.65 with 

standard deviation 1340.49) for nearly the same Qj , and & ̂ , (1.78 

with standard deviation 0.32).

The next set of data to be analysed corresponds mainly to an 

interchange between items 1 and (2 and 3) from the original test(Table 

6.1) of the frequencies for the first and last ratios. Therefore, as 

in that case, all items have the same first and second order margins.
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Table 6.2- Distribution of the score patterns
and ratios of the conditional frequencies.

123 n ratio 231 n ratio

000 70 000 70
100 20 (3.5) 100 10 (7.0)
001 10 001 20
101 10 (1.0) 101 10 (2.0)
010 10 010 10
110 10 (1.0) 110 20 (0.5)
Oil 20 Oil 10
111 70 (0.3) 111 70 (0.1)

1.72
S D ( ô , 0.34

3.98, i-2,3 
SD(&i ,)- 1.42

Table 6.2 shows that the interchanging of frequencies between 

items 1 and 2,3 yields a, , nearly equal to ,, i-2,3, from the

original test. At the same time items 2 and 3 have also a large 

Gi 1 (3.98), as item 1 had a large a, , in the original test.

Consider now the substitution of all frequencies 10 in Table 6.2 

by frequencies 5. Then the ratios for item 1 remain the same, while 

they become more extreme for items 2 and 3 (14.00; 4.00; 0.25; 0.07). 

The results is that O; , and o; 3 , assume larger values, 6.8 with 

standard deviation 3.09, while , changes very little (1.77 with 

standard deviation 0.34).

Again in relation to Table 6.2, consider the substitution of the 

frequency 20 by 30 for the score patterns '100' and 'Oil' for items 

123. Then the ratios for item 1 are closer to each other than before 

and a, , decreases to 1.05 with standard deviation 0.22. The new 

ratios for items 2 and 3 are 3.0 and 0.3, instead of 2.0 and 0.5, for 

nearly the same parameter estimates , (4.38 with standard deviation
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The following set of data (Table 6.3) was generated in such way 

that all items have the same corresponding ratios, which are equal to 

the ratios for item 1 in the original test. The sample size is 200 

instead of 240, since the frequencies 20 were replaced by 10.

Table 6.3- Distribution of the score patterns 
and ratios of the conditional frequencies.

123 n ratio 231 n ratio

000 70 000 70
100 10 (7.0) 100 10 (7.0)
001 10 001 10
101 10 (1.0) 101 10 (1.0)
010 10 010 10
110 10 (1.0) 110 10 (1.0)
Oil 10 Oil 10
111 70 (0.1) 111 70 (0.1)

«1,1- 3.56 
S D ( & , 0.91

3.56, i-2,3 
SD(&i ,)- 0.91

As expected all items have the same cr̂  ,, which is large (3.56), 

but smaller than a, , in the original test, where just item 1 has a 

extreme distribution of ratios.

Furthermore, Table 6.3 shows that if an individual answers 

negatively (positively) to any two items then it is more probable that 

he will also answer negatively (positively) to the remaining one.

We now present an example in which the distribution of ratios for 

all items is extreme, but not equal as in the preceding example. In 

this case the distribution of ratios for item 1 is less extreme than 

for items 2 and 3.

-265-



Table 6.4- Distribution of the score patterns
and ratios of the conditional frequencies.

123 n ratio 231 n ratio

000 70 000 70 * 1,1- 3.45
100 10 (7.0) 100 5 (14.0) SD(a,,,)- 0.76
001 5 001 10
101 10 (0.5) 101 10 (1.0)
010 5 010 5 4.69, i-2,3
110 10 (0.5) 110 10 (0.5) SD(&i ,)- 1.36
Oil 10 Oil 10
111 70 (0.1) 111 70 (0.1)

From the distribution of ratios in Table 6.4 we can say that if an 

individual answers positively to any of two items than is more 

probable that he will answer positively to the third one too. The same 

is also true for answering negatively, but in this case, the 

probability is higher when the known answers for the first two items 

include item 1. Besides the parameter estimate a, , is slightly 

smaller than D; , and

Consider Table 6.4 when the score patterns '100' and 'Oil' for the 

sequence of items 123 have their frequencies 10 replaced by 20. Then 

the ratios for item 1 are less extreme, (3.5; 0.5; 0.5; 0.3), while 

they became slightly more extreme for items 2 and 3, (14.0, 2.0, 0.2, 

0.1). Fitting a logit/probit model to these data, a, , decreases to 

1.74 with standard deviation 0.34 while , and or3 , are larger and 

equal to 5.14 with standard deviation 2.18.
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Conclusions

Under the conditions of this investigation, that is, tests with 3 

items in which the smallest and biggest ratio for all items were 

always associated with the same score patterns 00 and 11, we can 

conclude that

(1) When fitting a logit/probit model the occurrence of a large , 

is strongly associated with an extreme distribution of the ratios for 

item i, which depends on the whole score pattern. How extreme this 

distribution must be depends on the pattern of the ratios for the 

remaining items. The most extreme distribution of ratios produces the 

largest

(2) As the distribution of the ratios for item i becomes more extreme, 

the frequencies of the score patterns give more information about the 

prediction of item i from the remaining items.
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1.3- Four Variables: Real and Simulated Data

In all eight tests with 3 items that we have analysed, the 

relation between the size of , and the pattern of the ratios for 

each item was very clear and consistent. The analysis was simplified 

due to the small number of items and the allocation of the extreme 

ratios to the same score patterns (00 and 11).

Increasing the number of items to 4, the possible number of 

different score patterns increases to 16 and the extreme ratios for 

each item will not probably be associated with the same score 

patterns. Hence the analysis of the pattern of the ratios and its 

relation with the size of , become more complex.

These considerations lead us to search for a more precise measure 

of the distribution of ratios for every item, that is, for a more 

precise measure of the predictability of an item from the others.

Comparing empirically the distribution of ratios for numerous data 

sets with 4 items, we found out that the size of , also depends on 

for which score pattern the most extreme ratios occur. For example, if 

the same extreme ratios for item 1 are from the score patterns ’000' 

and '111' for items 234 then , will be larger than if they are from 

the score patterns '010' and '100' or '110' and 'Oil'.

The most satisfactory simple measure of the predictability of item 

i from the other items was found to be the slope of the line obtained 

from regressing the ln(ratios for item i) on the number of positive 

responses. Thus, for instance, when regressing the In(ratio) for item 

1, the score patterns '001', '010' and '100' for items 234 have the
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same value 1 for the Independent variable, since they have the same 

number of positive responses.

We expect that the item, which has the biggest slope (absolute 

value) , is that item the most predictable from all the others and that 

consequently may have the largest cr̂  At the same time, if the 

biggest slope is much larger than the others then the corresponding 

item will probably have a large ,, while for the remaining ones the 

,'s will be much smaller.

In the following we shall illustrate the application of this 

procedure to 3 examples, which represent the three kinds of results we 

found so far. These results are supported by an analysis of a 

significant number of data sets, in which all the score patterns 

occur, which are not reported here. We shall discuss later the case 

when some score patterns have frequencies of zero.
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Bootstrap Sample 5 from the ART on Black Women

Table 6.5 displays the distribution of the score patterns and 

ratios for the conditional frequencies for the normal bootstrap sample 

5 from the ART on black women data (Chapter 4, section 5).

Table 6.5- Distribution of the score patterns and ratios of the 
conditional frequencies for the normal bootstrap sample 5 from the 
ART on black women data.

1234 2341 3412 4123

0000 23 23 23 23
1000 31 (0.7) 11 (2.1) 6 (3.8) 12 (1.9)

0001 12 31 11 6
1001 4 (3.0) 13 (2.4) 7 (1.6) 2 (3.0)

0010 6 12 31 11
1010 5 (1.2) 3 (4.0) 5 (6.2) 4 (2.8)

0100 11 6 12 31
1100 13 (0.8) 7 (0.8) 2 (6.0) 4 (7.8)

0011 2 4 13 7
1011 7 (0.3) 5 (0.8) 8 (1.6) 3 (2.3)

0101 4 5 4 5
1101 5 (0.8) 8 (0.6) 3 (1.3) 7 (0.7)

0110 7 2 4 13
1110 6 (0.9) 3 (0.7) 7 (0.6) 5 (2.6)

0111 3 7 5 8
1111 4 (0.8) 4 (1.8) 4 (1.2) 4 (2.0)

Slope -0 .18 -0.,30 -0,,61 -0 ,22
R:(%) 7,.00 15,,70 45 ,70 9,,10
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The absolute values of the slopes show that item 3 is the most 

predictable from the others, since its slope is double the size of the 

largest one among the remaining ones. This gives evidence that when 

fitting a logit/probit model to this data, , will probably be much 

larger than the others.

Fitting a logit/probit model to the data in Table 6.5, the 

discrimination parameter estimates and standard deviations (in 

brackets) are

^ 1 , 1  ^ 2 , 1  ^ 3 , 1  G  4 1
0.11 (0.22) 0.52 (0.25) 13.06 (59.99) 0.39 (0.25)

for a statistic chi-square equal to 7.24 and 5 degrees of 

freedom, (p-̂ 0.05).

The comparison between the parameter estimates , and the

pattern of the ratios for every item shows that the slopes (absolute 

value) give the order of the / s, and that item 3 has the large 

estimate , as predicted.

The investigation (not reported here) of several tests with 4 

items, in which all score patterns occur, shows that an item with 

large , always corresponds to the largest slope, but sometimes the 

ratio between its slope value and the next biggest one was smaller 

than two. This means that sometimes there is not enough information 

from the pattern of the slopes to predict the occurrence of a large 

On the other hand, the slopes very often give the order of the

,'s, especially when the ,'s are not very similar.
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It is also usually true that an item with a large , has an R? 

much bigger than the other items.

Very often, a joint analysis of the slopes and the R^'s gives some 

information as to whether the Rasch model fits the data or whether the 

more general logit/probit model is required. One cannot expect too 

much from the analysis of the slopes and R^ values because they do not 

change with the sample size in the same way as a likelihood ratio 

test. For instance, doubling the observed frequencies leaves slopes 

and R2 unchanged.

The value of R^ is strongly dependent on the range of different 

values assumed by the In(ratio) for all those score patterns with the 

same number of positive responses. In general when a logit/probit 

model fits the data but Rasch does not fit and, for instance, a, , is 

very large, then the logarithm of the ratios for item 1 corresponding 

to score patterns '100', '010' and '001' for items 234 are much closer 

to each other than the logarithm of the ratios for the remaining 

items. As a consequence R^ for item 1 tends to be much bigger than 

for the remaining ones.

When both models fit the data, and one of the  ̂' s is very large

compared with the others, and all ,'s have large asymptotic

standard deviations, then R^ for the largest Of̂  , tends to be bigger 

than the others, but not so much greater than when only the 

logit/probit model fits the data. This effect can be seen in Table 6.5

where the low R^'s seem to indicate that the items are giving

contradictory information.
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Macreadv and Dayton's Data

Macready and Dayton's data (Bartholomew, 1987, page 127) 

corresponds to the results of a test on 4 items selected at random 

from a domain of items. Each item consisted of a multiplication of a 
two-digit number by a three-or-four digit number involving 'carry' 

operations.

Table 6.6- Distribution of the score patterns and ratios of ratios 
of the conditional frequencies for the Macready and Dayton's data.

1234 2341 3412 4123

0000 41 41 41 41
1000 13 (0.3) 6 (0.2) 1 (0.02) 4 (0.1)

0100 6 1 4 13
1100 7 (1.2) 2 (2.0) 4 (1.0) 6 (0.5)

0001 4 13 6 1
1001 6 (1.5) 7 (0.5) 2 (0.3) 4 (4.0)

0010 1 4 13 6
1010 3 (3.0) 5 (1.2) 3 (0.2) 5 (0.8)

0101 5 3 5 3
1101 23 (4.6) 7 (2.3) 4 (0.8) 1 (0.3)

0110 2 4 6 7
1110 7 (3.5) 4 (1.0) 1 (0.2) 23 (3.3)

0011 4 6 7 2
1011 1 (0.25) 23 (3.8) 7 (1.0) 4 (2.0)

0111 4 1 23 7
1111 15 (3.8) 15 (15.0) 15 (0.6) 15 (2.1)

Slope 0. 60 1,,31 0,,92 0,,80
R:(%) 23.,90 79,,00 41,.80 32,,80
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In Table 6 . 6  the pattern of the slopes shows that item 2 Is the 

most predictable item from the others, since it has the largest slope 

and the largest R^, The small difference between the two largest 

slopes, 1.31 and 0.92, does not allow one to say whether , will be 

much larger than the others.

Fitting a logit/probit model to Macready and Dayton's data, the 

discrimination parameter estimates and standard deviations (in 

brackets) are

^ 1,1 ^ 2,1 ^ 3,1 (^4,1

1.59 (0.42) 4.04 (2.17) 1.16 (0.36) 1.92 (0.55)

for a statistic chi-square equal to 6.91 with 2 degrees of freedom 

(0.05/pZ0.08).

As expected from the analysis of the distribution of ratios, item 

2 has the largest , (4.04), which is not considered an occurrence 

of only one very large ,, since it is followed by q j , equal to 

1.92.

The Rasch model also fits this data, for which the loglikelihood

is very similar to that for the logit/probit model (-336.64 compared

with -334.30) and the statistic chi-sqared is equal to 11.98 for 6 

degrees of freedom. This gives evidence that the ,'s are equal or

nearly equal and it might explain that the slopes do not give the

order of the / s .
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Arithmetic Reasoning Test (ART) on White Women

The ART on white women is described in Chapter 2, Table 2.1, where 

fitting by a loglt/problt model is also discussed.

Table 6.7- Distribution of the score patterns and ratios of the 
conditional frequencies for the ART on white women data.

1234 2341 3412 4123

0000 20 20 20 20
1000 23 (1.2) 20 (1.0) 14 (0.7) 8 (0.4)

0100 20 14 8 23
1100 18 (0.9) 11 (0.8) 2 (0.2) 8 (0.4)

0001 8 23 20 14
1001 8 (1.0) 18 (0.8) 11 (0.6) 2 (0.1)

0010 14 8 23 20
1010 9 (0.6) 5 (0.6) 9 (0.4) 5 (0.2)

0101 5 9 5 9
1101 15 (3.0) 20 (2.2) 7 (1.4) 6 (0.7)

0110 11 2 8 18
1110 20 (1.8) 7 (3.5) 6 (0.8) 15 (0.8)

0011 2 8 18 11
1011 6 (3.0) 15 (1.9) 20 (1.1) 7 (0.6)

0111 7 6 15 20
1111 42 (6.0) 42 (7.0) 42 (2.8) 42 (2.1)

Slope 0.69 0.,79 0..60 0,.70
R:(%) 71. 20 73,,90 54,.40 61,.20

The similarity of the slopes ranging from 0.60 to 0.79 indicates 

that none of the items is more predictable than the others, which Is 

also confirmed by similar R^. Therefore we can expect that the ,'s
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will be very similar, and do not expect that the slopes will give the 

order.

A logit/probit model fits well with the discrimination parameter 

estimates and standard deviations (in brackets) equal to

^1,1 ^2 1 ^3,1 (*41

1.04 (0.32) 1.24 (0.39) 1.00 (0.30) 1.44 (0.45)

The ranges of values assumed by i agrees with the expected 

pattern of i based on the comparison between the predictability of 

an item from all the others.

Conclusions

The results from the investigation of the relation between the 

pattern of the ,'s and the predictability of one Item from the 

others give evidence that

(1) If none of the items is more predictable than the other items, 

which is shown by very similar slopes, then probably all the / s 

will be very similar. (ART on white women data)

(2) If one of the Items is the most predictable, but its slope is not 

much larger than the others then this item will have the largest ,, 

which might or not might be very large In relation to the remaining 

ones. Furthermore, the item with large , may have an R* much 

greater than the others and this happens more often when a

276-



(3) If one of the items is much more predictable than the other ones, 

which is shown by a much larger slope, then probably this item will 

have a very large 0 ;̂ , while for the others , will be small.

(Sample 5 from the ART on black women data).

(4) The slopes can not be used with certainty to predict the order of 

the / s , though they very often give the right order.

2- Generating a (p-hl)th Item with any F i x e d ^  ̂ and G pf i ̂ o

The empirical findings of the previous section were the 

inspiration for the next step in searching for reasons of the 

occurrence of large discrimination parameter estimates when fitting a 

logit/probit model.

If we are able to generate a set of data in which one of the items 

has large , then we will be better able to understand the

occurrence of a large discrimination parameter when fitting a 

logit/probit model.

We now present a procedure under which we can add a (p+l)th 

variable with any fixed  ̂ and Op+i ,, to each score pattern x g

without altering the previous ML estimates of  ̂ and , .

i=l,...,p .
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2.1- Maximum Likelihood Estimation

Suppose that L(p) is the loglikelihood function for p items, 

fp(xiXg) is the conditional probability of score x for the (p+l)th 

item if Xg is the score pattern for the first p items and is the

observed frequency of (Xg,x), x-0,1. Then

L(p+1) - l[^so ln(fp(0|Xg)f(Xg)) + ggi ln(fp(liXg)f(Xg)) ] 
s

- % [*so ln(fp(OlXg)) + ggi In(fpdlXg))] + L(p),

where L(p)- J [Og^ ln(f(Xg)) + 0g, ln(f(Xg))] 
s

So, taking the supremum over all possible choices for the 

parameters , and  ̂ for i-l,...,p+l,

sup L(p+1) é sup L(p) + sup { 2 [*so ln(fp(0|Xg)) + 0g, ln(fp(lIXg))]}

Ŝ 0 Ŝ 1
^ sup L(p) + 4go In ------ + 6g, In

ŝ

Consequently, the ML estimation for (p+1) items is achieved if 

V “ “i,v » i-1,...,p and v-0,1 and

ŝ 1
fp(llXg) -   for all Xg (6.1)

e.'s

where

fp(llXg) -
f(Xg.l)

f(Xs)

J_“ f(Xgiz) f(llz) h(z) dz 

l-I f(Xgiz) h(z) dz
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For a suitable 6^^ and 6 5 1 this will allow any â p + ,  ̂and âp+, , 
to be the MLE for the (p+l)th item, while leaving Q and ,, 
i=l,...,p, as

for MLE for the first p items.

If (6 .1 ) holds, then, we prove below that the elements of the 

asymptotic covariance matrix of i-l,...,p and v - 0  or 1 ,

do not increase when the (p+l)th variable is added.

a
Let =  , for u=l,,..,p+l and r-0 orl. Then

8q u , r

DufDvtLCp+l) - Du^Dv^L(p) +

That is,

I [^Uj-^v+-^p(® I ) ] ■ [^u fp(OlXg)l [d^ fp(0|Xg)l
- L f p ( O l X g )  ^ f 2(0 IXg)  ̂ ^ J L t F Js

[^Uj-^v^^p ( ̂ I  ̂  ̂ [Du^fp(llXg)j ^D^^fp ( 1 1 Xg ) j I+
fp(llXg) f 2(1IXg)

Ŝ 0
Suppose now that fp(OiXg) =   for all X g . Then

e.s

Du,.DvtL(P+l)- Du^Dv^L(p) + M  "s [ fpCOlXg) + fpfllXg)]

"s [ Du fp(0|Xg)j  ̂ Dy fp(0|Xg)l + fp(OlXg) J L t F J
^ 1 -279-



[ [ Dv̂ fp(llXg)j
fpdlXg)

ie, -Du^Dv^L(p+l) - -̂ Uj-Dv̂ -̂ P̂) +

[Durfp(OlXg)j [^Uj-^pd IXg) j [l^v^^pd IXg) jI fp(OlXg) fpdlXg)

So the observed information matrix for the (p+1) items in this 

case is no less than (in the sense of positive definiteness of the 

difference) the observed information matrix for the first p items.

Considering the information matrices for p+1 and p items, we have

ZpX2p 2pX2 2pX2p
A C B 0

2X2P 2X2
C D 0 0

(information matrix 

for p+1 items)

Consider also that

A

C’

-1

E: information matrix for p items

A

C’

Then for c ^ 0

A C B 0 0 0
+ cl ^ + c

C  D 0 0 0 I

i.e.,
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A + cl C B 0
C D 4- cl 0 cl

Therefore

A + cl C -1 B-1 0
C D + cl

é
0 c-'I

I.e.,

A(c) C(c) B-1 0

C'(6) D(c) 0 c-'I

So for all e^O, A(e) ^ B"’.

Since A(e) has elements continuous in e, and lim^ A(e) - A, it

follows that A ^ B"i. Therefore the asymptotic covariances as

estimated for q ^i,i» ....P , does not increase when the

(p+l)th is added.

It also follows from (6.1) that we can bring into fp(llXg) any 

f(llz) distribution over Z. For instance, for the threshold model

f(liz).
0  if z ^ Zf'

1 if z ^ z^'

for every score pattern X g , and thus

■ 00 f(Xgiz) h(z)
Ŝ1 "

f(Xc)
dz

h(ziXg) dz
Z f
-281-
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for every score pattern Xg.

This means that we chop the posterior distribution of Z given Xg 

at the same point for every Xg.

2.2- An E-M Algorithm

Recall that, in this thesis, the parameters of a one latent 

variable logit/probit or probit model are estimated using an E-M 

algorithm for the MML procedure, as described in Chapter 1, section 

3.2.2. That is, the parameters ^ i-l,...,p and v-0,1, are

estimated maximising the loglikelihood

n
In L - ^ In f(Xg)

s»l

and setting the following partial derivatives equal to zero.

9 log L • 00 9 T^(z) r Ri - N Ti(z) 1
-----------   dz (6.3)

-00 9 Oi V L *i(z) (l-%i(z)) Ja Qi V
where 6̂  is the observed frequency of Xg,

Ri - ^ Xig 0g h(zlXg) and (6.4)
s

N - ^ #g h(ziXg) for i-l,..,p and v-0,1. (6.5)
s

Therefore when adding a (p+l)th variable with any fixed Qp+, q and 

^p+i,1 each response vector Xg, if (6.1) holds, i.e,

Ŝ 1
fp(llXg) -   for all Xg

*s
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the equations (6.3) remain the same, for i-l,...,p, which is 

equivalent to obtaining the same and N. That is, if (6,1) holds, 

then (6.4) and (6.5) are equal to (6.6) and (6.7), i.e,

&i - I Xis [ Ogo h(ziXgo) + 0g, h(ziXg,) ] and (6.6)
s

N - 2 [ *so h(ziXgo) + h(z|Xg,) ] (6.7)
s

for i-l,...,p, where Xgo-(Xg,0) and Xg,-(Xg,l).

2.3- Relation between Rp+, and N

Similarly to (6.6), for the (p+l)th variable Rp+, may be given by

n
^ 4 -1 “ S [ *p+i,so ^so h(zlXgo) + %p+i,si ŝi h(z|Xg,) ] 

s-=l

where g^-O and Xp+l,gi-l, and thus

n
Rp-i-1 “  ̂ 1 h(ziXĝ ) (6.8)

s=l

From (6.1)

f(XgQiz) h(z)
h(ziXgo) - -

f(%S0)

ŝ f(Xso'z) h(z)

^S 0 f(Xg)
(6.9)

and similarly
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h(zlXsi) -
0g f(Xg,iz) h(z)

S 1 f(Xs)
(6.10)

Substituting (6.10) in (6.8)

n f(Xgiiz) h(z)
Rp+1 - % -------------

s*=l f(Xc)

and substituting (6.9) and (6.10) in (6.7)

n
N - %

s-1

f(Xgolz) h(z) f(Xg,iz) h(z)

f(x=) f(XS)

n
s
s-1

h(z)

f(Xg)
[ f(Xgolz) + f(Xgiiz) ]

Since f(Xg,lz) - f(Xg|z) and f(XgQlz) + f(Xg,lz) - f(Xg),

Rp+1

n h(z)
1  0g -------  *p+i(z) f(Xgiz)
s-1 f(Xg)

n h(z)
1   f(Xglz)
s-1 f(Xg)

and therefore

^p+1
—  p̂4-1 ( z ) . ( 6 . 11)

We can take the threshold model as a limiting case.
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3- Applications

3.1- Algorithm for Generating a (p+l)th Item

As our main goal is to add a (p+l)th item to a set of data, for 

which ôp+1 1 is very large, when fitting a logit/probit model, we 

shall only describe in detail this situation.

Recall that, when fitting a logit/probit model to data sets in 

this thesis, the parameters are estimated using the MML procedure, in 

which the marginal probability function

f(Xc) sf(Xglz) h(z) dz s-1.... n

is approximated by Gauss-Hermite quadrature, i.e..

k
f(Xg) - J f(XglZt) h(zt) s-l,...,n

t-1

where z^ is one of the tabulated quadrature points, which are chosen 

to best approximate f(Xg),

g(Xgizt-) - n 
i-1

where

T^(z^) is the response function of variable i at z^ 

h(zt) is the weight of the quadrature point z^, which are 

approximately the normalized values of the probability density of a 

N(0,1) random variable at the points z^
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The MML estimation procedure is carried out through an E-M 

algorithm as described in Chapter 1, section 3.2,2. As in the 

continuous case, equations (6.4) and (6.5), it involves the 

calculation of two main quantities

n
Rit - ^ Og h(ZtlXg), i-1 p and t-1 k

s-1

n
Nt - % h(ztlXg)

s-1

where 6̂  is the observed frequency of Xg and h(z^lXg) is the

posterior probability of z^ given Xg

Therefore N̂ - is the expected number of individuals at z^ and

is the expected number of positive responses to item i among those 

individuals at z^.

In the following we concentrate discussion on the posterior

distribution of z^ given the score pattern Xg.

As the quantity h(z^-lXg) is the probability that an individual

with response vector Xg is located at z^ then

N^s - (observed frequency of Xg) h(z^lXg) 

is the expected number of individuals with score pattern Xg at z^.

This means that the observed frequency of the score pattern Xg is 

distributed over the k points z^, t-l,...,k. Therefore, there is a set 

of values N^g, t-l,...,k, for each score pattern Xg
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We shall use the distribution of N^g, t-l,...,k, of each score 

pattern Xg to add a new variable to Xg, for all s, for which , is

very large.

Suppose that x - (x, , . , . ,Xp) and the new zero-one variable is

%p+i •
We use the following steps for the generation of an additional 

variable Xp+,, which will have a large discrimination parameter 

estimate when the new set of data is fitted by a logit/probit model:

(1) Obtain the distribution of N^g, t-l,...,k, for every score 

pattern Xg.

(2) Chop the distribution of N̂ -g, t-l,...,k, of each score pattern at 

the same point z^», for l^t'^.

(3) For each score pattern Xg, add all N̂ -g for which t^t', that is,

k k
2 Nts - »s % h(ztlXs) (6.12)
t-t' t-t'

where 6̂  is the observed frequency of Xg,

(4) Obtain the nearest integer to (6.12) and take it as the observed 

frequency 5g, of the new score pattern Xgg - (Xg,l), for each s.

It is only for practical reasons that we take the nearest integer 

to (6.12) as the observed frequency of the score pattern Xg,.
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(5) Set the difference between the observed frequency of Xg and Xg, , 

that is, the difference between 0^ and 6g, equal to the observed 

frequency of Xgg - (Xg,0).

Therefore for every score pattern Xg, we generate two new score 

patterns Xgg and Xg,, which differ just in the values 'O’ and '1' 

assumed by the variable Xp+,.

In the following we present some examples of the application of 

this procedure to generate a new variable, for which the 

discrimination parameter estimate is large.

3.2- Simulated Data

We start from an example of adding a third variable to a set of 

data with sample size 145, for which the fitting by a logit/probit 

model will yield a large ,

The distribution of the score pattern (frequencies in brackets) of 

the initial set of data is

00 (28) 01 (38) 10 (33) 11 (46) for s equal 1,2,3,4

respectively.

Table 6.8 displays the distribution of N^g, the expected number of 

individuals with score patterns Xg at z^, for all the 4 score patterns 

and 16 quadrature points.
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Table 6.8- Frequency distribution of N^g, the expected 
number of individuals with score pattern Xg (s-1,..,4) 
at (t=l,..,16).

t Zt Nti Nt2 Nt3 Nt.

lto3  ̂ -4.49 0.00 0.00 0.00 0.00
4 -3.60 0.03 0.02 0.01 0.01
5 -2.76 0.32 0.32 0.23 0.21
6 -1.95 1.85 2.00 1.45 1.56
7 -1.16 5.43 6.46 5.06 6.01
8 -0.39 8.54 11.22 9.42 12.37
9 0.39 7.36 10.67 9.61 13.91
10 1.16 3.47 5.50 5.36 8.58
11 1.95 0.87 1.56 1.60 2.83
12 2.76 0.11 0.23 0.24 0.48
13 3.60 0.01 0.02 0.02 0.04

14tol6  ̂4.49 0.00 0.00 0.00 0.00

Total - 28 38 33 46

From Table 6.8 the sum of Nts- tàt’, for every score pattern Xg is

score pattern

t ' 1 2 3 4

9 11.82 17.98 16.83 25.84

10 4.46 7.31 7.22 11.93

11 0.99 1.81 1.86 3.35

After obtaining the distribution of Nts for every score pattern

Xg, as given in Table 6.8, a common point ẑ t is chosen at which to
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chop the posterior distribution into two pieces. For every different 

t', a new set of data can be generated from adding all the frequencies 

N̂ -s, t à t', for each score pattern Xg.

Table 6.9 shows the frequency distribution of the new data set 

when choosing t' equal to 10 and taking the nearest integer of (6.12) 

as the observed frequency of Xg equal to '1' for each score pattern.

Table 6.9- Frequency distribution of the data generated 
by chopping the distribution of N^g at t'equal to 10 
for every score pattern Xg.

s Xg n n ^S 0 n

1 00 28 001 4 000 24
2 01 38 Oil 7 010 31
3 10 33 101 7 100 26
4 11 46 111 12 110 34

The discrimination parameter estimates and standard deviations (in 

brackets) from fitting a logit/probit model to this new set of data 

are

Gi,, ô;,! Ô 3.,
0.29 (0.55) 0.18 (0.38) 3.80 (31.33)

Therefore following the steps described in the previous section, 

we have generated a new set of data by adding a variable i to one 

already known, for which , is large. For this new set of data, the 

distribution of ratios is
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ratios
item 00 01 10 11 slope R:(%)

1 1.1 1.8 1.0 1.7 0.22 35.4
2 1.3 1.3 1.7 1.7 0.13 50.0
3 6.0 4.4 3.7 2.8 -0.38 95.0

In this example, the slopes indicate that item 3, which has the

largest is the most predictable. They also gives the order of

the other two estimates.

An equal to 95% for item 3 indicates almost perfect correlation 

between the number of positive responses to items 1 and 2 and the

ln(ratios for item 3) . This could be expected since item . 3 was 

artificially generated. In this case we cannot relate the pattern of 

R2 with the fitting of both, Rasch and logit/probit, models as in the 

preceding section. If we take a large sample size, item 3 will still 

be generated in the same way and the R^ will still be larger than the 

others, but the Rasch model will not be accepted anymore.

If instead of t'-lO we chop the distribution of N^g at t'=ll, and

precede as before, we have another new set of data. Fitting a

logit/probit model to these data (t'-ll), the discrimination parameter 

estimates and standard deviations (in brackets) are

^ 1 , 1  ^ 2 , 1  G  3 , 1

0.28 (0.53) 0.20 (0.43) 4.38 (35.98)

The analysis in terms of predictability of an item from the others 

gives the following results
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ratios

item 00 01 10 11 slope R:(%)

1 0.9 0.5 0.8 0.7 -0.13 16.3
2 0.8 0.7 0.5 0.7 -0.03 2.4
3 27.0 18.0 15.5 14.3 -0.32 84.3

As expected, these results agree with the preceding ones for t'-lO

in terms of the relation between the size of , and the

predictability of an item from the others.

Consider the set of data generated from t'-lO as the initial data 

set. Then we can generate a fourth variable, repeating the same

procedure as before.

Fitting a logit/probit model to this new set of data, when 

chopping the posterior distribution of given Xg at t'-9, then items 

3 and 4 have a very large ,, 16.24 and 15,64, while a ̂ and a ̂ , i 

are equal to 0.30 and 0.33. The difference between the estimates for 

items 1 and 2 in the initial set of data and these ones is due to the 

approximation used to obtain the observed frequencies. In this

example, four score patterns have frequencies zero, and items 3 and 4 

have very extreme distribution of ratios.
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3.3- Cancer Knowledge

The original data for the second example was obtained by deleting 

the second variable, for which êg i vas equal to 3.40, from the 

Lombard and Doering data (Chapter 2, Table 2.5). As we can see below 

none of the , is large, when fitting a logit/probit model to this 

reduced data set.

Table 6.10- Frequency distribution of the 
score patterns of the Lombard and Doering’s data 
(Table 2.5) after deleting item 2.

s 134 n s 134 n

1 000 708 5 101 19
2 100 157 6 110 201
3 001 25 7 Oil 56
4 010 528 8 111 35

i *1,1 SD(&i
1 0.78 0.16
3 0.84 0.19
4 1.45 0.38

_ 3.02 with 1 d

In the following, Tables 6.11 and 6.12 give the results of 

applying to the data in Table 6.9 the steps (1) to (4) described in 

section 3.1 of this chapter, in order to generate item 2.
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Table 6.11- Distribution of N^g, the expected number of individuals
with score pattern Xg, s-1, .. , 8 at Z f  t-1, ..,16.

t Nt, Nt2 Nt3 Nt4 Nts Nts Nt? Nte

1.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.86 0.01 0.00 0.04 0.00 0.00 0.00 0.00
5 11.25 0.34 0.01 0.97 0.00 0.03 0.00 0.00
6 66.03 3.78 0.14 11.26 0.01 0.69 0.03 0.00
7 184.61 19.52 1.15 60.94 0.19 6.90 0.48 0.04
8 247.30 47.88 4.75 156.48 1.43 32.46 3.84 0.62
9 153.28 54.19 9.05 185.37 4.95 70.22 13.99 4.14
10 40.56 26.26 7.41 94.04 7.40 65.22 21.94 11.86
11 3.97 4.75 2.27 17.81 4.20 22.82 13.04 13.03
12 0.12 0.27 0.22 1.07 0.78 2.57 2.53 4.75
13 0.00 0.00 0.00 0.02 0.04 0.09 0.15 0.54
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
15,16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Total 708 157 25 528 19 201 56 35

As in the preceding example, the‘ next step is to choose = t•, which

chops the distribution Nts ’ and add the values for t ^ t'. Table 6.11

displays the results for 3 possible chopping points, from which 3 new

set of data with 4 variables can be generated.

Table 6.12- Sum of N^g . t i t', for every score pattern Xg, s-1, . . . , 8 .

t' 1 2 3 4 5 6 7 8

8 444.58 134.35 23.70 454.79 18. 80 193. 38 55 .50 34.61
9 197.28 85.47 18.94 298.31 17. 37 160. 92 51,.66 34.51
10 44.65 31.28 9.89 112.94 12.42 90. 70 37,.65 30.19
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Taking the nearest integer to the frequencies in Table 6.12 and 

setting them equal to the observed frequencies of equal to '1', 

three new set of data are generated, which are displayed in Table 

6.13.

Table 6.13- Frequencies of the data set generated by chopping 
the posterior distribution of given Xg at t' for every 
score pattern Xg.

s 134 2134 t'-lO t'-9 t'-8

0000 664 511 2631 uuu 1000 44 197 445
1 r\r\ 0100 126 72 232 1 vu 1100 31 85 134

o n m 0001 15 6 1J UUi 1001 10 19 24
m  A 0010 415 230 734 UlU 1010 113 298 455
1 0101 7 2 05 I V 1 1101 12 17 19

c 1 1 A 0110 110 40 8D liU 1110 91 161 193
A1 1 0011 18 4 17 V I 1 1011 38 52 55

0 111 0111 5 1 0o H i 1111 30 34 35

These three new sets of data are reasonably fitte

logit/probit model as we can see from Table 6.14, which also displays 

the parameter estimates.
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Table 6.14- Parameter estimates and asymptotic standard deviations (in 
brackets) from fitting a logit/probit model to the data sets presented 
in Table 6.12.

t'-10 t'-'9 t'-8
i *i *1,1 » i *i,i ^ i

1 0.78 (0.09) 0.21 0.78 (0.09) 0.21 0.81 (0.11) 0.21
2 13.85(38.50) 0.00 11.23(21.20) 0.45 13.48(40.27) 1.00
3 0.85 (0.09) 0.47 0.85 (0.09) 0.47 0.86 (0.09) 0.47
4 1.45 (0.16) 0.04 1.45 (0.19) 0.04 1.46 (0.25) 0.04

%2=3.08 with 3 d.f. %2-2.96 with 6 d.f. 4.08 with 4 d.f.

As expected. item 2 (generated) has a very large O; while ,

and T f o r  the remaining items and t'-8, 9 and 10 are the same as for

the original data set.

3.4- Relation between the Generation of an Item with Large , 

and its Predictability from the Other Items

We shall discuss the connection between the generation of an item 

with large , and its predictability from the other items, as 

discussed in the previous section, with the following diagram
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Diagram 6.1- Proportion of the observed frequencies of the score 

patterns Xg-(x,,Xg,x^).which is designed to generate x^ equal to 'O' 

and '1'.

Xg-O t'-lO X 2-I 134

000
100
001
010
101
110
Oil
111

Xj-O t'-9 Xj-l 134

000
100
001
010
101
110
Oil
111

Xg-O t'-8 X2-1 134

000
100
001
010
101
110
Oil
111
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From Diagram 6.1 we can see that since the right side of the

posterior distribution of given Xg-Cx, ,Xg ,x̂ ) was set to give the

observed frequencies of x ̂ equal to '1', for t'—10 most of the

frequency of Xg-(0,0,0) is allocated to Xg-O, on the left side.

As the number of positive responses of Xg increases, the posterior 

distribution gradually shifts to the right, increasing the proportion 

of positive responses to item 2, so that when Xg-(1,1,1) most of the 

frequency is allocated to x^ equal to 1. This implies that if we take 

the ratios p/(l-p), where p is the proportion of positive response to 

item 2 given Xg, some of them will be very extreme. In other words 

item 2, for which & 2,i large, is highly predictable from the

remaining items.

Therefore the generation of an item, which has a very large ,, 

as described in this section is based on the same idea of

predictability investigated in the preceding one.

As the chopping point moves to the left, the part of the posterior 

distribution designed to give the proportion of positive responses to 

item 2, moves to the right, so that for t'-8 most of the frequencies

are allocated to x^ equal to 1, which produces some score patterns

with frequencies zero.

In order to complement the connection between this section and the 

preceding one, Table 6.15 displays the slopes and used to measure 

the predictability of an item from the others. As we have already

pointed out in section 1.3 of this chapter, the interpretation of 

is not equivalent, since item 2 was generated artificially.
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Table 6.15- Comparison 
predictability of an item

between 
from the

the 
others.

pattern of , 1 and the

t'-lO t'-9 t'-8
i *i.i slope R:(%) slope R:(%) *i,i slope R ^%)

1 0.78 0.43 41.6 0.78 0.56 53.3 0.81 0.67 41.3
2 13.85 1.38 89.4 11.23 1.29 75.4 13.48 1.26 82.1
3 0.85 0.44 32.5 0.85 0.52 43.2 0.86 0.67 64.2
4 1.45 0.87 48.5 1.45 1.00 50.5 1.46 1.35 83.4

Table 6.15 shows that for t ' equal to 9 and 10, item 2, which has

a very large Q j  ̂ and the largest slope, is the most predictable.

For the data generated from taking t'-8. Table 6.15 shows two 

large slopes indicating that item 2 is as predictable as item 3, even 

though & 2 ,i is very large. This result does not contradict the 

previous findings, since they were restricted to data sets in which 

all score patterns occur.

When t'=8, two score patterns have frequencies zero, and in order 

to obtain the ratio we have to replace 'zero' by another number, 

which could lead to very different ratios, and therefore, could lead

to different slopes. In Table 6.15 for t'-8, the two ratios were

obtained replacing 1/2 for the frequency zero and subtracting 1/2 from 

the other frequency.

Although the ratios cannot be measured precisely. Diagram 6.1 

suggests that for t'=8, the distribution of ratios for item 2 is less 

extreme, since most of the frequencies are allocated to x ̂ equal to 

one .
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When extending this study to other data sets, in which at least 

one of the score patterns had frequency zero, we found the same kind 

of results as when all score patterns occur.

3.5- Conclusions

In this section we have presented a procedure, based on equation 

(6.1), under which we can add a (p+l)th variable with any fixed g

and ôp+1^, to each response vector Xg without altering the previous

estimates of q and ,, i-1.... p. Using this procedure the

covariance matrix of for i-l,...,p and v-0 or 1, does not

increase when the (p+l)th variable is added.

As a particular case of (6.1), we can generate an item with large 

^p+1,1, t»y chopping the posterior distribution of Z given Xg at the 

same point for all Xg and applying (6.2). This implies that if we

take the ratios, p/(l-p), where p is the proportion of positive 

response to item p+1 given Xg, some of them will be very extreme. In 

other words, item p+1, is highly predictable from the remaining items.
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Chapter 7

MEASUREMENT of the LATENT VARIABLE

1- Introduction

In the general latent trait model (Chapter I, equation 1.5) it is 

assumed that the probability of a positive response to an item in a 

test is a monotonie function of a latent variable Y, representing the 

trait in question. In fixed effects versions of the model each 

individual's position on the latent scale is represented by a

parameter; in the random effects versions, individuals are supposed to

be sampled at random from some population so that their latent

position is the value of a random variable.

Considering Y either as a parameter or a variable has given rise 

to different procedures when looking for more information about Y , 

after the model has been fitted.

In Educational Testing, where Y is usually treated as a parameter, 

some work has been done in estimating Y for a given individual and 

estimating the parameters of the latent distribution; see for example. 

Andersen and Madsen (1977), Samanthanan and Blumenthal (1978'),

Lord (1983) and Mislevy (1984).

On the other hand, Bartholomew (1980), treating Y as a random 

variable uniformly distributed on (0,1) has dealt with the situation 

by scaling the latent variable, i.e., locating the individuals in a 

Y-space on the basis of their observed response patterns x
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In this chapter, using the latter approach, we concentrate the 

discussion on the measure of the latent variable, when fitting 

logit/probit or logit/logit models.

We start by presenting the main results about scaling the latent 

variable Y in a logit/logit model given by Bartholomew (1980, 1981,

1984). After this, considering the response function for the 

logit/logit or logit/probit model given by

logit •= + Oi ,z,

where z=H‘''(>*) is logistic or normally distributed, we present some 

new theoretical results about the relation between the posterior 

density h(z!x), its mean E(Zlx) and the component score 

c,(x) = ^ Some findings complement and others contradict

Bartholomew's results, depending on the pattern of the /s.

Finally we investigate the shape of the posterior density h(zix) 

when at least one of the , is very large, and we suggest a cluster 

analysis in the latent-space based on h(zlx).

2- Theoretical F.esults for the Relation between 

E(Z\x) (or E(y\x)) and J

According to Bartholomew (1980, 1981) the scaling of the latent 

variable Y should be done via the posterior density of y given the 

score pattern x. Thus, for example, he suggests the mean E(Y|x^ (or 

E(Zlx)), which may not be particularly appropriate when the posterior 

density h(z|x) is highly skewed. He argues that since Y is assumed to 

be uniform, a priori, an individual's y value may be interpreted as his
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quantile in the population and the posterior expectation E(Ylx) then 

seems a natural way of comparing individuals.

Bartholomew (1980) pointed out that for the logit/logit model 

E(Ylx) is an approximately linear function of the component score 

c,(x) - J ,Xi, which can be justified by a Taylor expansion if all

,'s are small. At the same time, when all ,'s are equal to 1 and

%i's are equal to 0.5 then the exact value of E(Ylx) is

( 1 + c,(x) ) I ( 2 + A ), where A - ^o^i, i • He also found out from

empirical work that the relationship between E(Y|x) and c,(x) is 

approximately linear well outside the range of the validity of this 

later result. We show that this is often false when at least one of 

the , is large (say  ̂S/c, where a is the standard deviation of the 

latent distribution).

For the logit/logit model, Bartholomew (1984) shows that when 

and Oi 1 are fixed, the posterior density h(ylx) depends on x only 

through the component score c,(x). And therefore, under this 

conditions c,(x) is a Bayesian sufficient statistic of y . This 

property is not shared, for example, by the probit model used by Bock 

and Liberman (1970). We shall show that h(yix) is a function of x only 

through J #1 ,Xi if no , is infinity.

Bartholomew (1984) also shows that E($(y)|c,(x)) is a 

nondecreasing function of c,(x) for every nondecreasing function of 

&(y). In particular, E(Y|c,(x)) or E(Z|c,(x)) is an increasing 

function of c,(x). This means that the component score induces a 

stochastic ordering of the posterior distributions. Thus, for example, 

the rank of individuals given by c,(x) is the same as given by E(Y|x) 

and E(Zix). Therefore, if we are only interested in the ranking of the 

individuals on the latent scale, we can use any one of these three
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measures, from which the component score is the easiest to be 

obtained.

Now we give three results, which summarise our findings and are 

valid for both logit/logit and logit/probit models, that is when Z is 

logistic or normally distributed.

Result 1

If no  ̂ is infinity and two score patterns have the same 

posterior mean E(Zlx) then they have the same component score 

^ ^ X a n d  the same posterior density h(zix).

Let h (zIX)
g(xiz) h(z)

f(x)

Then from (1.3 )

g(xiz) ■= n [ ?i(z) ] 1 [ l-T^(z) ]
i = l

1-Xi

P
n
i = l

*i(z)

I-TT^CZ)
[ 1 - *i(z) ]

p [ Xi(z)
n 1 exp In
i = l I l-?i(z)

[ 1 - *i(z) ]

p
n [ exp ( Oi 0 + z ) Xi ] [ 1 - t^Cz) ] (7.1)
i=l

exp(c,(x)z) exp(Co(x)) f(o,z) 

f(x)
(7.2)
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p p
where c^fx) - J *1 g x^ and c,(x) - J , xi»

i—1 i—1

And thus

f(x) - f(0) exp(Co(x)) M^|^(c,(x)) (7.3)

where M^^^(c,(x)) is the moment generating function of the latent 

variable Z given a zero response on all items c,(x).

Substituting (7,3) in (7.2), we obtain that the posterior density 

of z given the score pattern x is

exp(c,(x)z) h(zIo) 
h(zix) =   for every score pattern x. (7.4)

From (7.4) and for every score pattern x, the moment generating 

function of the posterior distribution of Z given x is

M (t) -   (7.5)
(c,(x))

Therefore from (7.5), the posterior density h(zix) is a function 

of X only through the component score c,(x), if no , is infinity. 

This result was first given by Bartholomew (1984) , when assuming 

and Oi  ̂ are fixed for the logit/logit model.

Furthermore from (7.5)
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E(Zlx) - a t 1°6 ” z|0<'=i<*))

And therefore

E(Zix) -   K (t)a t t-c,(x)
(7.6)

and

82
Var(Zix)

8 t2 t-0
(7.7)

where |o the cumulant generating function of Z 10 and

c,(x) -= V Qi^, Xi 
i-1

But

82

8 t 2

E(e%t) e (z 2 eZt) _ E(z e^^) E(z 

E(eZt):
> 0 (7.8)

Since E(e^^)2 > 0 and from the Cauchy inequality

( ze^ “  ei < E [ z' e“  ] E ( e“  ],

since Z is a random variable.

It follows from (7,6) that E(Zix) is increasing in ^ <̂i i %i
i-1

Therefore if for two score patterns x, and x
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(7.7)
E(Zix,) - E(Zix,) ---- ► K;,o(Ci(x,)) - K'2 ,,(c,(x,))

(7.6)
■"» c,(x,) - c,(x2) since E(Z|x) is increasing in c,(x)

Finally, result 1 follows from (7.5) and (7.6).

Result 2

If the posterior density h(z|Xg) is normal, then its mean E(Z|Xg) 

is linear in the component score c,(Xg).

If the mean E(ZlXg) is linear in the component score c,(Xg), then

the posterior density h(ziXg) will be close to the normal

distribution.

Proof:

If h(ziXg) is normal then the mean E(Z|Xg) is linear in the

component score c,(Xg) from (7.6).

If, on the other hand, the posterior mean is linear in the

component score, then for some fixed a^ and a,,

E(ZiXg) - ap+a^c,(Xg), so from (7.6) for all score patterns Xg

ao+a,c,(Xg) -   K _,.(t)
8 t t - C , ( X g )

For typical choices of the parameters , this will mean that 

there are distinct values tg, s-1 2P for which

o t t-ts
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This does not quite amount to the property of linearity in t 

which would imply a normal distribution for the posterior h(zlXg), but 
it comes as close as is possible to that with K 2 |o(t) determined only 

at a finite number of values. Fixing K gigCtg) leads to K^ioCtg) 

having the value appropriate for a normal distribution, for all s. If 

p is large, the posterior distribution is therefore constrained to be 

close to the normal distribution.

Bartholomew(1984) shows that if Z has a standard logistic 

distribution, then in some circumstances the relation between the 

posterior mean and the component score is linear. He conjectures that 

an approximate linear relation is often valid for such prior 

distribution of Z. The results here show that one may think of 

normality of posterior distributions instead of linearity.

An application of this result can be seen when fitting a 

logit/probit model to the Law School Admission Test, section 6, (LSAT 

VI), as shown below.

Law School Admission Test. Section 6

LSAT VI consists of 5 items taken by 1000 individuals designed to 

measure a single latent variable. This data set is fitted well (o—5%) 

by a logit/probit model with parameter estimates ,, i-1,.. . ,5 ,

equal to 0.83, 0.72, 0.89, 0.69 and 0.66, respectively.

As we have already analysed in Chapter 4, section 8, it is also 

fitted by the Rasch model.
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Figure 7.1 shows clearly that the posterior mean E(Zix) is a 

linear function of the component score c,(x) - ^ i%i.

1.0 -  

O b  -

0.0 -  

-O  b -  

—  1 0  —  

- l . b  -

- 2.0

□

rP

□
□

0 0 Ob 1.0
I I I I I

2.0 2.b 3.0 3.b 4.0

Figure 7.1- Relation between E(Zix) and J c^i.i^i when fitting a 
logit/probit model to the LSAT VI.

Table 7.1- Estimates of E(Ylx), E(Zlx) and the component score 
I »i ,x^ when fitting a logit/probit model to the LSAT VI,

group E(Ylx) E(Zix) Z Oi,1%i Z Xi

1 0.007 -1.90 0.00 0
2 0.12 to 0.15 -1.47 to -1.32 0.66 to 0.89 1
3 0.21 to 0.27 -1.03 to -0.79 1.34 to 1.72 2
4 0.33 to 0.41 -0.55 to -0.30 2.07 to 2.44 3
5 0.50 to 0.55 0.01 to 0.17 2.89 to 3.13 4
6 0.69 0.64 3.79 5
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From Figure 7.1 we can see that the score patterns are distributed 

into 6 groups along the line -1.92 + 0.67 c,(x). Table 7.1 shows that 

they correspond to the 6 different values assumed by ^ x^. As the 

number of positive responses increases by one unit, both posterior 

means, E(Z|x) and E(Ylx), and the component score c,(x) jump to higher 

values.

Figure 7.2- Posterior densities h(zlx) when fitting a logit/probit 
model to the LSAT VI, for the score patterns '00000', '01000',
'00101', '01101', '10111' and '11111'.

As E(Z|x) is a linear function of c,(x) then from result 2 and for

every score pattern X g , s-1.... 32, the posterior density h(ziXg) is

approximately normal. Besides as the discrimination parameter 

estimates , are nearly the same for all items, the posterior

distributions have approximately the same variance (Figure 7.2).
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Result 3

For the logit/probit (or logit/logit) model the posterior density
P

h(zix) is not a function of x through V ,Xĵ  if at least one
i-1

of the ,'s is equal to infinity.

Proof :

Assume that , is equal to infinity so that

*i(z)
0 if z < z

1 if z > z

Then

g(xiz) = n [ *i(z) ] 1 [ 1 - %i(z) ]
i-1

1-Xi

n [ ?i(z) [ 1 - ?i(z) *
i = l

0 if

1 if

z % Zg and x,=l

z > Z q and x,=0

z  ̂ Zp and x,=0

I z > Zp and x,-l

From (7.1), g(xiz) can also be written as

exp : :̂ i,oXi
i = 2

P
: (
i-2

n [l-Ti(z)
i-2

0 if
z ( Zp and x,=l

z > Zp and x,-0

r z < Zp and x,=0
1 if

I z > Zp and x,=l

(7.10)
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g(xiz) h(z)
Substituting g(xiz) given by (7.10) in h(zix) - -

f (x)

P
it follows that h(z|x) is not a function of x through ^ ô i i ^i

i-1
if at least one of the ,*s is equal to infinity.

3- Applications showing the Relation between E(Zlx) and ^ ,xi, 

when at least one of the /s is large

One of the consequences of result 3 is that the relation between 

the posterior mean E(Zlx) and the component score c,(x) may not be 

linear, if at least one of the ,'s is large (say >3\a, where a is 

the standard deviation of the latent distribution). This situation is 

illustrated using four tests with 6 to 40 items, and different number 

of large .

3.1- Test llA (Ireland, items 1 to 6, 8 to 10)

The data for this example was obtained from Test llA (Chapter 5, 

section 2.1), when considering only items 1 to 6, 8 to 10 and children 

studying in Irish schools. The sample size is 73 and the number of 

different score patterns is 45,

The parameter estimates , when fitting a logit/probit model are 

given in Table 5.5. Recall that all ,'s are smaller than 2.26, 

except ,, which is equal to 16.38.

The relation between the component score c,(x) and E(Z|x), for all 

different score patterns, is given in Figure 7.3 below.
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Figure 7.3- Relation between E(Zix) and J Ori.i^i when fitting a 
logit/probit model to Test llA (Ireland items 1 to 6, 8 to 10).

The ranking of the individuals according to to the component score 

or E(Zix) (not presented here) shows 2 distinct groups: the first one 

formed by those individuals, who have answered 'O' to item 6, followed 

by the remaining ones, who have answered ' 1 ' to this item. This 

separation is shown in Figure 7.1, where the component score jumps 

from 8.51 to 19.74, while E(Zix) practically does not change (-0.50 

and -0.47). The same is true for E(Ylx), which assumes values from 

0.31 to 0.32. This means that according to the expected values item 6 

does not contain any additional information about the latent variable, 

which is not already in the remaining items. On the other hand, the 

component scores, which are strongly dependent on , instead of

h(zix), give the opposite information.
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Therefore, for this test in which one of the items has large 

the component score does not provide reliable information about the 

clustering of the individuals in the latent scale, except for the 

right ranking.

3.2- Test llA (Ireland, items 1 to 10)

This data set corresponds to the previous one, when including item 

7. As before, the parameter estimates Q£ ,, when fitting a 

logit/probit model are given in Chapter 5, Table 5.5. In this case, 

items 6 and 7 are the only ones with large  ̂ (16.72 and 12.65).

1.2 -

0 6 —

0 0 -

—  0 6 —

-1.2 H

□

§

□ □ □DDO

□□
- 1.8 - 8 -

6 12 24 30 36 42 48

Figure 7.4- Relation between E(Zix) and T ,x̂  when fitting a 
logit/probit model to Test llA (Ireland, items 1 to 10).
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The ranking of the individuals according to the component score or 

E(Zix) shows 3 groups, depending on the answers to items 6 and 7. The 

first group is formed by the 17 individuals who have answered '00'; it 

is followed by the 12 individuals who have answered '10', and finally 

the third group of the remaining 44 individuals who have answered '11' 

to items 6 and 7.

The separation between groups is shown through the two sudden 

great increases on the values of the component scores (from 8.41 to 

19.73 and from 26.34 to 35.19). On the other hand, E(Zlx) presents two 

different results: practically does not change (-0.49 to -0.48)

between the first and second groups, but jumps from -0.02 to 0.49 

between the second and the third groups.

These results suggest that item 7 contains information about the 

latent variable, which is not in the remaining items. This is shown by 

a much higher position on the latent scale according to the posterior 

mean E(Zlx) for the individuals who have answered ' 1 ' instead of 'O' 

to item 7. At the same time, the fact that E(Zlx) practically does 

not change when Xg-0 changes to Xg-1 (separation between the first and 

second groups), this suggests that item 6 does not contain any 

additional information about the latent variable. These results give 

evidence that although both items 6 and 7 have large ,'s, they 

contain different amount of information about the latent variable.

Nevertheless, there are some contradictions:

(1) The probability of a positive response to item 7 for a median 

individual, *^(z-0), is equal to 0.04 while the observed proportion of 

positive responses is 0.58. Usually, we neither expect nor observe 

such a big difference between these two quantities. For item 6,
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Tg(z“0) is equal to 0.99, while the observed proportion of positive 

responses is equal to 0.74, which is within the expected difference.

(2) As shown in Chapter 5, section 2.1, deleting item 7 from this set 

of data the pattern of , almost does not change. This suggests that 

item 7 does not contain any additional information about the latent

variable.

We suspect that these contradictory results are due to sampling

error, since the sample size is small (73) for a test with 9 or 10

items.

Figure 7.4 also shows that the relation between E(Zlx) is not even 

linear within the groups. The flat parts of the curve corresponds to 

clusters of individuals with nearly the same expected value E(Z|x), 

but different component scores. As the responses to items 6 and 7

within each group are fixed, the differences between the expected 

values E(Zlx) or the component scores are due to the remaining items.
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3.3- Test 12

The description of Test 12 and the parameter estimates , when 

fitted by logit/probit model are given in Chapter 5, Table 5.3. Recall 

that Test 12 is formed by 18 items, for which all 2.10, except

0,5 , and (4.50 and 4.39) and the sample size is 502.

-0 6

- 2 .4
0 6 12 18 24 30 36

Figure 7.5- Relation between E(Zix) and V x̂̂  when fitting a 
logit/probit model to Test 12.

The relationship between posterior mean E(Z|x) and the component 

score c,(x) is shown in Figure 7.4, which is complemented by Table 

7.2. The dark parts of the curve represent great concentration of 

individuals with different score patterns in a small range of E(Zix) 

and c ̂ (x) values.
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Table 7.2- Estimates of E(Ylx), E(Z|x) and the component score 
V when fitting a logit/probit model to Test 12.

E(Ylx) E(Zlx) 1 «i.i^i n (%)

[0.02;0,10) [-2.26 -1.35) [ 0.00; 4.65) 0 to 4 51 (10)
[0.10;0,20) [-1.35 -0.90) [ 4.65;10.91) 3 to 7 55 (11)
[0,20;0.30) [-0.90 -0.55) [10.91;13.36) 5 to 10 25 ( 5)
[0,30;0,40) [-0.55 -0.26) [13.36;19.13) 6 to 12 71 (14)
[0,40;0.50) [-0.26 0.00) [19.13;21.16) 9 to 12 45 ( 9)
[0,50;0,60) [0.00 0.27) [21.16;22.97) 10 to 14 34 ( 7)
[0,60;0.70) [ 0.27 0.57) [22.97;25.30) 12 to 15 77 (15)
[0.70;0,80) [ 0.57 0.94) [25.30;27.22) 14 to 16 65 (13)
[0.80;0.90) [ 0.94 1.48) [27.22;30.91) 15 to 17 67 (13)
[0.90;0.95] [1,48 1.91] [30.91;32,88] 17 to 18 12 ( 2)

Figure 7,5 shows that the relation between E(Z|x) and c,(x) is 

linear only for a partition of E(Zlx) in 5 specific sections. Each one 

of the first 4 sections corresponds approximately to the first 4 

intervals for E(Z|x) given in Table 7.2.

In the first interval (-2.26 < E(Z|x) < -1.35) we observe that 98% 

of the individuals have answered *0' to both items 15 and 16.

In the second and fourth intervals, there is a greater change in 

c,(x) than in E(Z|x), which is shown by two slightly flat sections. 

The highest proportion of answers to items 15 and 16, in the second 

interval 52,71% to '00', while in the fourth interval is 70,4% to 

' 11 ' ,

In the third interval, all individuals answered ' 1 ' to at least 

one of the items 15 and 16, and the higher proportion of patterns is 

44% to '11',
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Considering all the intervals together, for which E(Z|x)>-0.26 or 

X>19.13 the relation between these two measures is linear and 98.3% of 

the individuals have answered '11' to items 15 and 16.

From these results we can conclude that the non-linearity between 

the posterior mean E(Zlx) and the component score c,(x) over all

values assumed by them is due to the whole score patterns, instead of 

only due to the items with large , (i-15,16).

Consider that the actual values of  ̂ , and a,g , are infinity,

and therefore, g(xiz) can be written as (7.10). Now Figure 7.6,

instead of Figure 7.5, shows the relation between E(Zlx) and the

component score, which is also not linear.

4
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Figure 7.6- Relation between E(Zix) and ^ ,x̂ , assuming 0,5 , and
Qig 1 equal to infinity, when fitting a logit/probit model to Test 12.
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Figure 7.6 shows roughly three curves, which one corresponding to 

an specific pattern for 'x,gX,g', the answers to the items with , 

equal to infinity. From the top to the bottom, the first curve is 

given by the 359 score patterns with 'x^gX,g' - '11', the second one 

by the 39 and 2 score patterns with '10' and '01', and finally, the 

last one for the 106 patterns with '00'.

Comparing Figures 7.5 and 7.6 we can conclude that for a specific 

answer to the items with , equal to infinity, the relation between 

E(Zlx) and the component score c,(x) is closer to linearity than when 

taking c,(x) over all items and ,'s not equal to infinity.

3.4- Test 13

Test 13 was also applied by the National Foundation of Education 

Research in order to measure the reading ability of pupils of aged 11 

in 1983. The sample size was 498 and the test length 40 items. The 

distribution of the discrimination parameter estimates 

i=l,...,40, when fitting a logit/probit model may be given by

T̂ count

[0.31; 1.00) 10

[1 .00 ; 2 .00) 20

[2.00; 3.00) 4

> 3.00 6

Therefore the fitting of a logit/probit model to Test 13 (length 

40) provides six parameter estimates , bigger than 3.0.
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Figure 7.7- Relation between E(Zlx) and ^ when fitting
logit/probit model to Test 13.

Figure 7.7 shows that the relation between E(Z|x) and the 

component score c,(x) is not linear. As in Figure 7.5 , the dark parts 

of the curve represent great concentration of individuals with

different score patterns in a small range of E(Z|x) and c,(x) values.

Table 7.3 below was constructed in such way that it reflects the 

different aspects of the relationship between E(Zlx) and c ,(x) 

displayed in Figure 7.7. Thus, for example, the second and fourth

intervals represent the two flat parts of the curve, in which E(Zlx) 

remains approximately constant, while c,(x) increases significantly. 

In the second interval, for 21 individuals with different score

patterns, E(Z|x) ranges only from -1.18 to -1.09, while c,(x)

increases significantly from 15.72 to 26.42. In the fourth interval.
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for a large number of individuals (75) with different score patterns, 

E(Zlx) remains almost constant (-0,40 to -0.38), while c,(x) increases 

from 34.61 to 46.86.

Table 7.3- Estimates of E(Ylx), E(Zlx) and the component score 
V OTi ,X£ when fitting a logit/probit model to Test 13.

E(Y x) E(Z|X) % “i. i^i Z Xi n (%)

[0 005 0.120) [-2 87 -1 18) [ 1 02 15. 72) 1 to 13 30 ( 6)
[0 120 0.143) [-1 18 -1 09) [15 72 26.42) 9 to 18 21 ( 4)
[0 143 0. 346) [-1 09 -0 40) [26 42 34. 61) 13 to 21 21 ( 4)
[0 346 0. 353) [-0 40 -0 38) [34 61 46. 86) 17 to 30 75 (15)
[0 353 0.400) [-0 .38 -0 26) [46 .86 50.49) 21 to 30 15 ( 3)
[0 400 0.510) [-0 26 0 02) [50 .49 52. 71) 22 to 27 20 ( 4)
[0 510 0.601) [ 0 02 0 26) [52 71 54. 62) 24 to 27 10 ( 2)
[0 601 0.701) [ 0 26 0 56) [54 62 60. 26) 25 to 32 118 (24)
[0 701 0.801) [ 0 56 0 92) [60 26 62. 56) 30 to 36 85 (17)
[0 801 0.900) [ 0 92 1 42) [62 56 65. 10) 31 to 37 63 (13)
[0 900 0.982] [ 1 42 2 43] [65 10 68. 53] 34 to 39 40 ( 8)

The curve also changes its slope significantly, but is less flat 

than in the second and fourth intervals, when E(Zlx) ranges from 0.26 

to 0.56 and c,(x) from 54.62 to 60.26. In this interval, there is a 

great concentration of individuals (24% against the expected 10%), all 

of them with different score patterns.

The investigation of reasons why flat parts occur led us to look 

at the relation between the distribution of the number of positive 

responses given to the 6 items with large , (>3.0) and the slope of 

the curve. A selection of the results is displayed in Table 7.4.
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Table 7.4- Frequency distribution of the number of positive responses 
given to the six items with ,>3.0 for some intervals of E(Zix).

E(Zlx) 0 1 2 3 4 5 6 total

[-2.87;-1.18) 25 5 30
[-1.18;-1.09) 9 8 3 1 21
[-1.09;-0.40) 5 4 2 9 0 1 21
[-0.40;-0.38) 0 3 4 49 4 9 6 75
[ 0.26; 0.56) 0 0 0 2 21 44 51 118

Table 7.4 shows that there is a great combination of possible 

results for the 6 items with large ,, even in the flat parts of the 

curve. Thus for example, where 75 score patterns have approximately 

the same E(Z|x), -0.40 to -0.38, the only possible result that does

not happen is all 6 items answered "O'. This means that the score 

patterns are not concentrated on a specific configuration for the 

items with large .

Moreover, in the flat parts of the curve we found score patterns 

with the same response to the 6 items with large ^, have component

score values significantly different. For example, two score patterns, 

in which all these 6 items were answered 'O', were associated to 

either a component score equal to 15.71 or 24.77 for nearly the same 

expected value (-1,18 and -1.14).

This implies, that at least for these score patterns, the greater 

relative difference between the component scores than between the 

posterior means E(Zlx) is not due to the items with large ,.
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For an expected number of individuals equal to 10% and E(Zix) 

between 0.26 and 0.56, it was observed 23.7% of the sample, of whom 

90.5% have answered '1' to five or to the six items with large 

From this point E(Zlx) and J ,xi increases faster and most of the 

individuals have answered '1' to the 6 items with large ,.

These results combined with those from Table 7.4 indicate that 

when at least one of the ,'s is very large, for some score patterns 

it may occur that the posterior mean practically does not change while 

the component score increases significantly, even when the response to 

the items with large  ̂ is fixed.

4- Distribution of the individuals on the latent scale according to 

h (z ix;

Very often, in practice, we are not only interested in the ranking 

of the individuals, which is obtained either from the component scores 

or from the posterior means E(Zlx) or E(Ylx). Thus, for example, in 

Educational Testing, we may be interested in comparing the lower with 

the higher abitity group of individuals. The criterion for the 

distribution (allocation) of the respondents in groups is usually 

based on an arbitrary percentage, for example 20%.

If we know the distribution of the individuals along the latent 

scale, then we can use this information to partition the sample in 

groups. One way to do this is to use the information given by the 

posterior density h(z|x) or even the mean E(Z|x) (or E(Ylx)).

If we intend to use the mean E(Zlx) (or E(Ylx)) as the measure of 

comparison between the position of the individuals on the latent scale
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then we must have information about the shape of h(zix), at least in 

terms of skweness and spread.

Let us consider two individuals with different score patterns x, 

and Xj and the posterior densities h(zix^) and hfziX;), which are not 

skew and have nearly the same dispersion. If h(zix,) and hCzix^) have 

roughly the same mean then x^ and x^ lead to the same beliefs about 

the value of Z.

In these situations the mean E(Zlx) (or E(Y|x) is a reliable 

measure to compare individuals according to their position on the 

latent scale.

The main goal of this section is to present the results from the 

investigation of the shape of the h(zix) we have found so far in 

practice. This will be done using two real data sets for tests with 18 

and 40 items, for which the fittings of a logit/probit model yield two 

and six /s bigger than 3.0.

4.1- Test 12

As mentioned in the previous section, Test 12 has 18 items and was 

answered by 502, which have provided 417 different score patterns. 

Therefore for each one of these 417 score patterns there is one 

posterior density h(zix).

In order to investigate the shape of the posterior densities 

h(zix) and how they are distributed along Z, we have we have selected 

a representative sample of observed h(z|x)'s, from which we have 

chosen to display here the following three sets (Figures 7.8 to 7.10).
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Figure 7.8- Posterior densities h(zix) for the first ten different 
score patterns of test 12, for which -2.26 < E(zix) < -1.67.

Figure 7.8 displays the posterior distributions h(zix) for the 

first 10 different score patterns with the smallest E(Y|x) (or 

E(Zlx)). For these sets of h(zix), the mean E(Zlx) assumes values from 

-2.26 to -1.67 while E(Y|x) ranges from 0.02 to 0.06. For these score 

patterns most of the items were answered 'O', including items 15 and 

16 for which  ̂ are large.

The continuous line represents h(zix) when an individual has 

answered 'O' to all items and corresponds to the lowest observed 

ability. It also presents the biggest dispersion and is skewed to the 

left. As E(Y|x) (or E(Z|x)) increases, h(zix) becomes less skew, less 

spread and similar posterior means represent individuals with nearly 

the same h(zix).
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Figure 7.9- Posterior densities h(zix) for some score patterns of Test 
12, for which -0.81 < E(Zix) < -0.66.

Figure 7.9 displays the h(zix) for ten different score patterns, 

for which E(Z|x) assumes values from -0.81 to -0.66 (or E(Yix) ranges 

from 0.22 to 0.27). The normal probability plots have shown that 

h(zix)'s are approximately normal distributions with the same 

dispersion. This implies that the difference between h(z|x) is only in 

terms of location and these individuals lead to approximately the same 

beliefs about the value of Z. This was also found to be true for score 

patterns with similar posterior means, but which are not located in 

the ten higher observed positions on the latent scale.
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Figure 7.10- Posterior densities h(zix) for the last different ten 
score patterns of Test 12, for which 1,39 < E(Zlx) < 1.90.

Figure 7.10 displays the ten observed score patterns, which 

provide the ten different largest posterior means (1.39<E(Zix)<1.90 

and 0.89<E(Y|x)<0.95). For these score patterns most of the items were 

answered '1', including as expected the items with large Now the

posterior densities h(zix) are slightly skew to the right and the 

dispersion is increasing as E(Y|x) (or E(Z|x)) increases.

From Figures 7.8 to 7.10 and many others not represented here, we 

can conclude that the means E(Zlx) (or E(Ylx)) represent very well the 

position of the individuals on the latent scale, since the posterior 

distribution is approximately normal. There are some restrictions on
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the extremes, where h(zix) is slightly skew to the left or to the 

right depending on the responses to the items with large

These results lead us to conclude that we do not need to determine 

all the h(zix)'s to have a clear idea about the distribution of h(zix) 

along Z. Instead, we can select a representative sample of h(zix), 

selecting x so that the whole set of values assumed by the E(Y|x) (or 

E(Z|x)) is covered. Using this criterion we shall determine the h(zix) 

for the two score patterns, which provide the observed lowest and 

highest position on the latent scale and for those which corresponds 

E(Ylx) equal to 0,10, 0,20,.... 0,90,

Figure 7,11 (next page) displays a representative collection of 

the 417 observed posterior densities h(zix). Based on this figure we 

detect groups of score patterns (or individuals) who have nearly the 

same posterior densities h(zix), differing only on the location 

parameter,

Thus, for example, the position on the latent scale of individual 

with E(Zlx) from -1.35 to 0,00 can be measured more precisely than 

those with E(Zix) ranging from -2,26 to -1.35 or from 0,57 to 1,91,

Therefore if we desire to make groups of individuals according to 

their distribution on the latent scale, we can combine the information 

obtained from Figure 7.11, which gives the shape of h(zix) and its 

location along Z, with the results from Table 7.3, which provides the 

observed frequency distribution of those h(zix).
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Figure 7.11- Representative collection of posterior densities h(z|x) 
for the observed score patterns of Test 12.
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4.2- Test 13

As described in the previous section, Test 13 has 40 items and the 

fitting by a logit/probit model yielded 6 items with ,>3.0. The 498 

individuals who answered the test provided 488 different score 

patterns to which one corresponds one posterior density h(zix).

As for Test 12, we have determined the posterior densities h(z|x) 

for a significant number of observed score patterns, so that the 

E(Zix)'s are distributed along the whole latent scale Z. More 

precisely, for each interval of E(Z|x) in Table 7.3 we have selected 

at least 10 different score patterns and we have determined their 

h(zix)'s.

The results agree with those from Test 12 in terms of

(1) the equivalence between similar E(Zlx)'s (or E(Y|x)) and nearly 

equal h(zix)'s. Similar E(Z|x)'s (or E(Ylx)'s) come from nearly equal 

h(zix)'s, specially for those individuals who are not located in the 

extrems left and right of the latent scale;

(2) representativity of the whole set of h(zix) through few h(zix), 

taking into account the two score patterns which are in the lowest and 

highest position of the latent scale and at least 9 score patterns, 

for which their E(Ylx) are distributed along (0,1).
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Figure 7.12- Representative collection of posterior densities h(zix) 
for the observed score patterns of Test 13.
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Figure 7.12 displays a representative collection of observed

posterior densities h(zix) for Test 13, for which E(Y|x) are equal to

0.05, 0.10, 0.20, 0.35, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90 and 0.98 or 

E(Zix) are equal to -2.97, -1.35, -0.90, -0.38, -0.25, 0.00, 0.25, 

0.56, 0.92, 1.42 and 2.43.

Looking at Figure 7.12 we can see how h(zlx) changes in terms of

shape and dispersion along Z. It also provides a measure of precision

for comparing individuals located in different points of along the 

latent scale Z.

In Figure 7.12, although most of the consecutive means E(Y|x) are 

equidistant, the posterior densities h(z|x) corresponding to E(Ylx) 

equal to 0.60 is closer(more similar) to that with mean 0.50 than 

0.70.

Furthermore, combining the information given in Table 7.3 and 

Figure 7.12 we will be able to make groups using the information given 

by the h(z|x)'s. Thus, for example, the 21 (or 75) individuals who 

have E(Y|x) between -1.18 and -1.09 (or -0.40 and -0.38) should belong 

to the same group, since they have nearly the same h(zix) and 

therefore they lead to the same beliefs about the latent variable.

We have also look at diagrams like Figures 7.11 and 7.12 for many 

tests with smaller number of items (10 or less), which yielded one or 

two large , (>3.0) when fitted by a logit/probit model. The

posterior densities tend to be skew to the left or to the right 

depending on the responses to the items with large , and the

variances of the distributions differ. When the , are close to each 

other the posterior distributions are approximately normal

distributed, which confirm result 2.

-333-



5- Conclusions

The investigations carried out in this chapter for the logit/logit 

and logit/probit models lead to the following conclusions;

(1) If no , is infinity and two score patterns have the same mean 

E(Zlx) then they have the same component score ^ and the same

posterior density h(zix).

(2) If the posterior density h(zlx) is normal, then its mean E(Zix) is

linear in the component score c,(x). If the mean E(Z|x) is linear in

c,(x), then the posterior density h(zlx) will be close to the normal 

distribution,

(3) The posterior density h(zix) is not a function of x through the

component score c^(x) if at least one of the ,'s is equal to

infinity.

(A) The relation between the posterior mean, E(Ylx) or E(Zlx), and the 

component score is unlikely to be linear when at least one of the , 

is large (say 3̂lcr, where a is the standard deviation of the latent 

distribution) . This may be due to the fact that the component scores 

are strongly dependent on the values of Oi , while E(Yix) (or E(Zix)) 

depends on which is nearly the same for all cxi ,̂ 3|(T,

independently of Q.
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(5) The greater the test length, the greater the possible number of 

different score patterns and configuration of ,'s can occur and the 

less likely the linearity between the posterior mean and the component 

score seems to be.

(6) Significant differences between component scores do not always 

reflect different positions on the latent scale, according to the 

E(Y|x) or E(Z|x). They are shown through flat sections or jumps in the 

curve obtained when plotting the component scores against the means 

E(Ylx) (or E(Zix)).

(7) The occurrence of flat sections seems to depend on the number of 

items with large , and test length. At the same time, we expect 

that the effect of 2 large , in a test with 40 items is smaller 

than in a test with 20 items. Usually, they do not present a specific 

pattern for the items with large ^,

(8) Consider a test for which the sample size not small compared with 

the number of items, for example Test 12 and 13, It seems that even 

though when fitting a logit/probit model some items have large 

similar E(Z|x)'s (or E(Y|x)'s) come from nearly equal h(zix)'s, which 

are approximately normal distributions, specially for those

individuals who are not located at the extreme left and right of the

latent scale. For a smaller number of items, h(z|x) tends to be skew

to the left or to the right depending on the responses to the items 

with large ,, and the variances are different.

-335-



Therefore the general pattern that emerges is that as the number 

of items increases, the posterior distributions look more normal and 

less skew, though with different variances. This is even true if there

are several ® estimated as large, and the relation between the

posterior means and the component scores is far from linear.

(9) We do not need to determine all the h(z|x)'s to have a clear idea 

about the distribution of h(z|x) along the latent scale Z. Instead, we 

can select a representative sample of h(z|x), selecting the score 

pattern x so that the whole set of values assumed by E(Y|x) (or 

E(Zix)) is covered.

(10) If we desire to make groups of individuals according to their 

distribution on the latent scale, we can combine the information

obtained from the shape of h(z|x)'s for all x (Figure 7.12, for 

example) with the observed frequency distribution of these

h(z|x) (Table 7.3, for example).
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CONCLUSIONS

Most of the results in this thesis were obtained for the 

logit/probit model for binary response data given by 

Bartholomew (1980), even though they also hold for other common binary 

response models. Large discrimination parameter estimates correspond 

to 1  ̂3/(7, where cr is the standard deviation of the prior latent 

distribution. In summary the main results are

Chapter 2 - BEHAVIOUR of the LIKELIHOOD

The investigation of the behaviour of the likelihood function 

using an approximate method provides results equivalent to the profile 

method. Both suggest that large , probably indicates bad behaviour 

of the likelihood, which will be shown by the presence of a long 

ridge. In this case the second derivative matrix or the information 

matrix are not good guides to the variability of these estimates.

If  ̂1 is not large, the first order asymptotic theory is 

appropriate.

Among the several reparametrizations we tried only the one given

- 2 . Ï
^i,o~ ^i,o / (  ̂ ^ i , 1 )

provided a better behaviour of the likelihood, independent of the size 

of the parameter estimates.
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This reparametrization corresponds to the probit of the expected 

value of the response function of a probit model, that is,

«i,o = * 1,0 + *i,i z )) - E( P(Xi-llz) ) - 6' (P(Xi-D)

Chapter 3 - ADEQUACY of the ASYMPTOTIC VARIANCE-COVARIANCE MATRIX

using BOOTSTRAP and JACKKNIFE

The more closely the bootstrap distribution of the parameter 

estimates is fitted by a normal distribution, the better is the 

agreement between the bootstrap and the asymptotic standard deviation.

If *1 , is not large, the asymptotic variance matrix can probably 

be trusted, since the bootstrap estimates and standard deviations are 

very close to the ML estimates and to the asymptotic standard 

deviations. Furthermore, this similarity increases as the sample size 

becomes larger.

Large values for , are associated with skewed distributions or 

a mixture of two distributions, one normal and another with , equal 

to infinity. Probably the asymptotic standard deviations of the 

parameter estimates are smaller than the true ones.

If the sample size is small and one of the items has very large 

*1,1 while the remaining ones are small, all with relative large 

standard deviations then it is likely that most of the estimates can 

not be trusted.
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In summary, although the bootstrap distribution must underestimate 

the variation in the true sampling distribution, there is strong 

evidence that it gives a better guide than the usual first order 

normal approximation. Bootstrapping methods seem to be very useful for 

investigating the adequacy of the normal approximation in doubtful 

cases. When the discrimination parameters are small the asymptotic 

theory works well, but when they get large it is inadequate.

Jackknife parameter estimates and their standard deviations tend 

to be very similar to the original ML ones, independent of the pattern 

of the ,'s and the sample size. Therefore, jackknife is not as good 

as bootstrap in warning about possible inadequacy of the asymptotic 

standard deviations. This undesirable result for the jackknife method 

may be due to the small number of different jackknife pseudovalues (16 

in the case examined), and a larger number of items would provide more 

satisfactory results.

Chapter 4 - RASCH MODEL

It is likely that the Rasch model fits well a set of data fitted 

by a logit/probit model when all /s are very similar to each other 

or one of the ,'s is very large compared with the remaining ones, 

and all estimates have relative large standard deviations. In this 

case the likelihood function for the Rasch model behaves better than 

the one for the logit/probit, and thus Rasch fits the data better.
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The standardized marginal ML difficulty parameter estimates are 

likely to be very similar to the corresponding conditional ML 

estimates when the Rasch model fits the data well. However they can be 

quite different when the discrimination parameter are not the same for 

all items, since in this case there is a source of variation in the 

data which tends to increase the difference between conditional and 

marginal ML estimates.

The rejection of the Rasch model in favour of the general 

logit/probit model using the likelihood ratio statistic may be due to 

the good power properties or to the lack of applicability of the 

asymptotic chi-squared distribution. We think the latter is the most 

likely.

Chapter 5-STABILITY of the DISCRIMINATION PARAMETER ESTIMATES ,

When considering the effect of deleting items, the magnitude of 

the sample size must be judged in relation to the number of items.

An item with a large  ̂ may not give any additional information 

about the latent variable in a test with 10 or more items, but for 

smaller length, for example 5, it may contain more information than 

the remaining items.

The occurence of a large ^, seems to depend more on which items 

are included in the test then on the sample size and test length. For 

the data we have analysed, large  ̂ values were not associated to 

the type of question asked.
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As the number of items decreases, the largest , tends to

increase and become very large, when the test length is small.

Parameter estimates , (>0.50) and standard deviations are

approximately linearly related so that larger estimates have larger 

standard deviations.

The probability of the occurence of a large  ̂ does not increase 

as the number of items decreases for sample size of order 500, as it 

is often said to happen for Heywood cases in factor analysis.

Chapter 6 - AN INVESTIGATION of the CONDITIONS giving rise to 

LARGE ^,

The more predictable is one item from all the remaining ones, the 

larger is its discrimination parameter estimate cxĵ  ̂.

We have presented a procedure, based on equation (6.1), under 

which we can add a (p+l)th variable with any fixed &p+,,o and ,

to each response vector without altering the previous estimates of 

«i, Q and ,, i=l,...,p. The resulting covariance matrix of s

for i=l,..,,p and v=0,1 does not increase when the (p+l)th variable is 

added. In particular we can generate an item with large , with 

patterns similar to those in real data sets. For this configuration of 

data, a threshold response may be the ML estimated response function, 

and it is seems more reasonable to accept them as legitimate, and not 

to seek to remove them by adding or dropping items, as has often been 

suggested.
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Chapter 7 - MEASUREMENT of the LATENT VARIABLE

If no , is infinity and two score patterns have the same mean 

E(Z|x) then they have the same component score ^ and the same

posterior density h(z|x).

If the posterior density h(zix) is normal, then its mean E(Zlx) is 

linear in the component score c,(x). If the mean E(Z|x) is linear in 

c,(x), then the posterior density h(z|x) will be close to the normal 

distribution.

The posterior density h(zix) is not a function of x through the 

component score c, (x) if at least one of the ,'s is equal to

infinity.

The relation between the posterior mean, E(Y|x) or E(Z|x), and the 

component score is unlikely to be linear when at least one of the , 

is large. This may be due to the fact that the component scores are 

strongly dependent on the values of  ̂ while E(Ylx) (or E(Zix)) 

depends on which is nearly the same for all

independently of g.

The greater the test length, the greater the possible number of 

different score patterns and configuration of /s can occur and the 

less likely the linearity between the posterior mean and the component 

score seems to be.
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Significant differences between component scores do not always 

reflect different positions on the latent scale, according to the 

E(Y|x) or E(Zlx). They are shown through flat sections or jumps in the 

curve obtained when plotting the component scores against the means 

E(Ylx) (or E(Zlx)).

The occurrence of flat sections seems to depend on the number of 

items with large , and test length. At the same time, we expect 

that the effect of 2 large «i , in a test with 40 items is smaller

than in a test with 20 items. Usually, they do not present a specific

pattern for the items with large

As the number of items increases, the posterior distributions look 

more normal and less skew, though with different variances. This is 

even true if there are several  ̂' s estimated as large, and the

relation between the posterior means and the component scores is far 

from linear.

We do not need to determine all the h(z|x)'s to have a clear idea 

about the distribution of h(z|x) along the latent scale Z. Instead, we 

can select a representative sample of h(zix), selecting the score 

pattern x so that the whole set of values assumed by E(Y|x) (or

E(Z|x)) is covered.

If we desire to make groups of individuals according to their 

distribution on the latent scale, we can combine the information 

obtained from the shape of h(z|x)'s for all x (Figure 7.12, for 

example) with the observed frequency distribution of these 

h(zix) (Table 7.3, for example).
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