LATENT VARIABLE MODELS

FOR BINARY RESPONSE DATA

Maria Teresinha Albanese

A Thesis submitted for a degree of

Doctor of Philosophy

The London School of Economics and

Political Science

September 1990



UMI Number: U050448

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U050448
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346






ACKNOWLEDGEMENTS

I wish to express my deep gratitude to my supervisor,
Dr. Martin Knott. His constant guidance and encouragement has been

invaluable.

I am also very grateful to my supervisor, Prof. David
Bartholomew, for many helpful discussions and extremely valuable

comments.

My deep thanks are due to my family and many friends for

their love and understanding.

I gratefully acknowledge financial support from the Brazilian
Government through the Universidade Federal do Rio Grande do Sul and

the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico.



ABSTRACT

Most of the results in this thesis are obtained for the
logit/probit model for binary response data given by
Bartholomew (1980), which 1is sometimes called the two-parameter
logistic model. In most the cases the results also hold for other

common binary response models.

By profiling and an approximation, we investigate the behaviour of
the likelihood function, to see if it is suitable for ML estimation.
Particular attention is given to the shape of the likelihood around
the maximum point in order to see whether the information matrix will
give a good guide to the variability of the estimates.

The adequacy of the asymptotic variance-covariance matrix is

investigated through jackknife and bootstrap techniques.

We obtain the marginal ML estimators for the Rasch model and
compare them with those obtained from conditional ML estimation. We
also test the fit of the Rasch model against a logit/probit model with
a likelihood ratio test, and investigate the behaviour of the
likelihood function for the Rasch model and its bootstrap estimates

together with approximate methods.

For both fixed and decreasing sample size, we investigate the
stability of the discrimination parameter estimates &; , when the
’

number of items is reduced.



We study the conditions which give rise to large discrimination
parameter estimates. This leads to a method for the generation of a

(p+1)th item with any fixed &p+,,‘ and &p+1,0‘

In practice it is importante to measure the latent variable and
this is usually done by using the posterior mean or the component
scores. We give some theoretical and applied results for the relation
between the 1linearity of the plot of the posterior mean latent
variable values, the component scores and the normality of those

posterior distributions.
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Figure 3.26- Normal probability plotting of the bootstrap parameter
estimate ¥, to the ART on black women (original ML and bootstrap 7,

equal to 0.23 and R? = 77.0%).
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Figure 3.27- Normal probability plotting of the bootstrap parameter
estimate &*4,0 to the ART on black women (original ML 5*4’0- -1.06,
bootstrap &*, , = -1.04 and R2 = 99.0%).

Figure 4.1- Loglikelihood values as a function of the parameter
estimates &, and &,.0 from fitting the Rasch model to the ART on

black women.

Figure 4.2- Maximum likelihood values over &, , for a fixed &, from

fitting the Rasch model to the ART on black women.

Figure 4.3- Comparison between *,'s from fitting a logit/probit and
the Rasch model to 30 normal bootstrap samples from the ART on

black women.

Figure 4.4- Comparison between 7,'s from fitting a logit/probit and
the Rasch model to 30 normal bootstrap samples from the ART on

black women.

Figure 4.5- Comparison between 7,'s from fitting a logit/probit and
the Rasch model to 30 normal bootstrap samples from the ART on

black women.

Figure 4.6- Comparison between 7,'s from fitting a logit/probit and
the Rasch model to 30 normal bootstrap samples from the ART on

black women.

Figure 7.1- Relation between E(ZiX) and J o ,x; when fitting a

logit/probit model to the Law School Admission Test, section 6.

Figure 7.2- Posterior densities h(zIx) when fitting a logit/probit
model to the LSAT VI, for the score patterns '00000', '01000'
'00101', '01101', '10111' and '11111'.

’

Figure 7.3- Relation between E(ZIx) and J a; ,xj when fitting a

logit/probit model to Test 1lA (Ireland, items 1 to 6, 8 to 10).

Figure 7.4- Relation between E(ZIx) and Z of X4 when fitting a

logit/probit model to Test 11A (Ireland, items 1 to 10).

Figure 7.5- Relation between E(ZIX) and Y @j ,Xj when fitting a

logit/probit model to Test 12.

Figure 7.6- Relation between E(Z1x) and z of 4Xj, assuming Qg and

@, , equal to infinity, when fitting a logit/probit model to Test 12.
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Figure 7.7- Relation between E(ZIX) and J aj ,x; when fitting a
logit/probit model to Test 13.

Figure 7.8- Posterior densities h(zix) for the first ten different
score patterns of Test 12, for which -2.26 ¢ E(Zix) ¢ -1.67).

Figure 7.9- Posterior densities h(zix) for some score patterns of Test

12, for which -0.81 ¢ E(Zix) ¢ -0.66).

Figure 7.10- Posterior densities h(zix) for the last ten different

score patterns of Test 12, for which 1.39 ¢ E(Zix) ¢ 1.90).

Figure 7.11- Representative collection of posterior densities h(zix)

for the observed score patterns of Test 12.

Figure 7.12- Representative collection of posterior densities h(zix)

for the observed score patterns of Test 13.
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Chapter 1

LATENT TRAIT MODELS FOR BINARY RESPONSES

1- Introduction

In this thesis variables will be either categorical or metrical.
Categorical variables are measured in a nominal or ordinal scale while
metrical variables assume values in an interval or ratio scale
(discrete or continuous).

Whether categorical or metrical a variable will be either
manifest (directly observable) or latent (not directly observable, and

generally called a factor in factor analysis).

Bartholomew (1987) has classified latent variable models according
to the type of latent and manifest variables: factor analysis (both
variables are metrical), latent trait analysis and factor analysis of
categorical data (latent variables are metrical and manifest variables
are categorical), latent structure analysis (latent variables are
categorical) divided into latent profile analysis (metrical manifest
variables) and latent class analysis (categorical manifest variables).
Bartholomew discusses these models from a new point of view, starting
from a general model(l.5) that allows these techniques and some ones

to emerge as special cases.
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When discussing factor analysis for categorical data and latent
trait analysis, two approaches are considered for the construction of
the models: the Underlying Variable (UV) approach used in the factor
analysis tradition, where the categorical manifest wvariables are
supposedly produced by wunderlying continuous Qariables, and the
Response Function (RF) approach with its origin in the theory of
educational testing and developed further in Bartholomew (1980,1981).
It starts with a response function giving the probability of a
positive response for an individual with variable value y.

He shows that the two models can be equivalent for binary
variables, but not for polytomous variables. He also points out that

when they are equivalent the choice between them depends on taste.

In this thesis we shall use the Response Function approach to

latent trait analysis, for which follows a review of the literature.

2- Definition of the Model
2.1- Notation and Assumptions

We shall consider the case when the manifest variables are binary
and the latent variables are metrical. This situation happens, for
example, in a survey where individuals are asked to answer questions
by yes or no, agree or disagree, or in educational testing where the
students may answer an item in a test right or wrong. Usually the two
possible outcomes are coded as 1 (positive), otherwise O(negative).

Thus if the test has p items and is answered by n individuals then
the data matrix will be an (n x p) array of zeros and ones. We shall
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refer to any row of the data matrix as a response or score pattern,
which is the set of responses of a given individual. Therefore there
are 2P different possible responsé patterns, which number increases
quickly with p so that some patterns will probably not appear in the
sample. For practical purposes in the samples we shall list only those

response patterns which occur at least once.

Notation
Let X=(X,,X,,...,Xy) be a vector of p manifest variables, where
X; is equal to 1 or O for all i, and YH(Y1,Y2,...,YP)' a vector of

latent variables. Then the joint distribution of the X's is given by

£(x) = J h(y) g(x1y) dy (1.1)
Ry

where
Ry the range space of vy,
h(.) is the prior demnsity of y,

g(.1y) is the conditional density of x given y.

Our main interest is what we can know about Y after X has been

observed. This comes from the conditional density

h(yix) = h(y) g(xiy) / £(x),
which depends on our knowledge about h, g and f.

Obviously f(x) is the only density function about which inferences

can be directly made, and therefore all the information we can get
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about g and h comes from knowledge of f£. It follows that they are not
uniquely determined (Bartholomew,1980). As we cannot obtain a complete
specification of h(yIx), we need to make some restrictions on the

class of functions to be considered.

The assumption of conditional independence

g(xly) = E gi(xi1y) (1.2)
i=1

is usually considered necessary for effective theoretical work with
response functions. It 1is almost the definition of the concept of
underlying factor in factor analysis. For it means that the
association between X's is wholly explained by their dependence on
the Y's. Consequently, if Y is held fixed there will be no correlation
between X's. This assumption cannot be tested empirically, since it is
part at the definition of Y. We will come back to this point later on.
Conditional independence for g means that the set of 1latent

variable is complete, i.e, Y is sufficient to explain the dependence

between the X's.

As the X's are binary,

l-Xi

gi(xi1y) = [71() ] "L [1-75(y) ] i=1,...,p (1.3)

where 71 (y)=P[Xi=11y] is called response function by
Bartholomew (1980). In educational testing, where most of the models

have been developed for a one-dimensional latent variable representing
an ability of some kind, =j(y) is called item characteristic curve

(ICC) or item response function (IRF).
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Consequently from (1.2) and (1.3), the joint density function of

the x's (1.1) can be written as

P . -Xs:
£(x) -J hy) 1 [ [mi T [1-r 177 ) gy (1.4)
Ry i=1

2.2- Response Function

Many suggestions about the shape of response functions and prior
distribution of the latent wvariables have been made over the years.

These have given rise to different models.

We shall present some of these models, starting from a general

model (1.5) and deriving them as special cases.

The choice of a suitable response function was discussed by
Bartholomew (1980), where he gave a set of properties that a family of
responserfunctions is desirable to possess. For instance, he says
that the response function should be monotonic nondecreasing in the
latent space, a property also implied by the normal ogive and logistic
models, as we will see later. This implies, for example, that the
probability of a correct response increases with ability (educational
testing). Bartholomew also proposed a class of linear models with

response functions satisfying:

G (mi(¥y)) = aj o +

. ai,j H"(yj), i=1,...,p (1.5)
J

1

I .0

where
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7;(y) is the response function,
Yj (j=1,2,...,q) are independently and uniformly distributed
on (0,1) and functions G and H are distribution functions of

random variables symmetrically distributed about zero.

In practice he limits the choice of G°' and H"' to the commonly
used functions, the logit (logit(v)=log[v/(l-v)]} and the probit
[probit(v)-@"(v), where & is the standard normal distribution].

Considering these functions, the following models can be derived:

Logit when both G™' and H"' are logit functions
Probit when both G-' and H™' are probit functions and

Logit/Probit when G~' is a logit and H"' is a probit function.

The logistic and normal distributions are very similar in shape,
and the choice between them is without practical importance so that
from one model we can obtain the approximately corresponding estimates

of the parameters for the other since

logit(v) & n//3 d- (V)

Hence the logit/probit model

q

logit[ri(¥)) = aj o + 3 o 5 ¢"(Yj)
j=1

is approximately the same as the logit model, i.e

H

q
logit[ni(¥)] = o o + 3 (va/7) aj 5 &' (yy).
j=1
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Thus if we fit the logit/logit model we would expect the slope

parameter oj j to be /3/x times what we would have obtained from the

logit/probit model.

Similarly, the probit model

q
O ri(M] =g o+ F oef,5 ¢ (y5)
j=1

is approximately the same as the logit/probit model

q
logit[xi(y)] = x//3 [ o ot 2 &i,j ¢-1(yj)]
j=1

In this case both parameters {aj o) and {“i,j) have to be

multiplied by x//3.

By transformation of H-'(y) = z, Bartholomew (1987, Chapter 5) has

proved that logit/probit model can be written in terms of normally

distributed variables, as

q
logit[wi(z)] = ai,o + Z ai,j Zj i-l,...,p (1.6)
j=1

Several response functions presented in the literature are special

cases of the general model (1.5).

We shall give the logistic and normal ogive models as they are
usually presented in the literature, following by showing how they can

be written as special cases of model (1.5).

-29.



2.2.1- Normal Ogive or Probit model

Lawley (1943) introduced a response function called the normal

ogive model (Lord and Novick, 1968, p365) specified by

i(y) = $¥(a; (y - by)) i=1,...,p

where

¢ is the cumulative distribution function of the standard normal
distribution,

y, for g=1, is the latent ability parameter normally distributed
with mean p and variance ¢?, which characterizes the individuals and

aj and bj are parameters characterizing the item, called
discriminating power and difficulty of item 1i.

Furthermore, it is assumed that a;»0, which means that x;(y) is a

nondecreasing function of y.

The normal ogive model is equivalent to the probit model

Ti(y) = ¢(ai'0 +ooy z),
where

bj = 0§ g / Qi and aj - o§ -

As the location and scale of the parameter estimates depend on the
mean and variance of the distribution of the latent wvariable (or
ability parameter), the equivalence between the parameter estimates is

done by scaling. Bock and Aitkin (1981), for example, suggest that

P P "0 o
2 by = 3 — =0
i-1 i=1 o

and
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This model is the basis for numerous developments in psychometric
theory, see for example, Lord (1952), Lord and Novick (1968), Bock and
Lieberman (1970), Samejima (1974). Bock and Aitkin (1981) give also an

extension for more than one latent variable for binary response.

2.2.2- logistic or logit/Probit Model

Two-parameter logistic model
Birnbaum (Lord and Novick (1968, Chapter 17) gave the

two-parameter logistic model determined by assuming that the response

function has the form of a logistic cumulative distribution function

exp[ -daj(y - bj)]

Ti(y) =
1 + exp[-daj(y - bj)]

where

y, is a latent ability parameter normally distributed with mean g
and variance 02,

aj and bj have the same meaning as in the normal ogive model and

d is a number that serves, at our convenience, as a unit scaling
factor, with a wvalue 1.7 corresponding to the maximum agreement

between normal and logistic distributions.
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The equivalence between the two-parameter Jlogistic and the

logit/probit model, 1i.e,

exp(ozi,D + o z)

i (y) =
1 + exp(oj o + 04 4 2)

may be seen by taking

d= -1, bi - "0 o/0f 4 and aj = o4 .

As for the normal ogive model, aj = aj , and the possible
different mean and variance for the normal distribution of Y is
corrected by scaling.

Lord and Novick (1968b, Chapter 17) estimate the parameters aj and

b; assuming that Y is N(O,1).

Rasch model

A random effect form of the model due to Rasch (1960), is a

simplified form of the two-parameter logistic model with

exp(y - bi)

*i(y) =
1 + exp(y - bj)

Here all the item discriminating powers are equal to 1, i.e, aj=1,
i=l,...,p. Thus 7;(y) depends only on the distance between the latent
value y and the item difficulty b; and as the value of bj increases
fewer individuals will be likely to answer correctly or positively

item 1i.
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Therefore the Rasch model is equivalent to the logit/probit model
when aj =1 and bj=-oj , for all manifest variables or items i. The
equivalence between the parameter estimates is obtained by scaling if

a standard normal distribution is not assumed for Y.

The main advantage of this simplification is the existence of a
sufficient statistic for Y, the total number of positive responses of

an individual (or the total raw score of the data matrix).

There are many papers on the Rasch model and its extensions, among
them Andersen (1970,1972,1973b), Gustafsson (1980a,1980b),
Fischer (1981), Molenaar (1983), Thissen (1982) and many others to

which we will give references later on.

Three-parameter logistic model

If in addition it is assumed that if an individual does not know
the answer he will guess, and with probability c¢j will guess
positively then according to Lord and Novick (1968b, Chapter 17), the

response function for the three-parameter logistic model is given by

(l-cj) exp{daj(y-bj)]
Ti(y) =cy +

1 + exp[daj(y-bj)]

Then the two-parameter logistic model is a particular case of this

model, when cy=0 for all i.

The three-parameter logistic model cannot be written in the

general form (1.5), since that does not have guessing parameters.
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This model has been applied by, for example, Lord (1968a,1983a),
Hullin, Lissak and Drasgow (1982), Lord and Wingersky (1985), Thissen

and Wainer (1982).

Since the normal ogive is equivalent to the probit model and the
two-parameter logistic is equivalent to the 1logit/probit model, we
shall use both names to refer to the same model, although we shall
generally use the mnotation following the general model(l.5) and

consider Y as a latent variable.

2.2.3- Properties of the Response Function

Let us consider a logit/probit model, though the same approach is
valid also for the logit and probit models.
The two most important properties which response functions produce

are:

(1) The choice of which the two possible outcomes is to be regarded as
positive is totally arbitrary. If the positive answer has probability

7i(z) then the negative has probability l-x;(z) which are given by

q
exp (ai’o + z ai,j Zj )
j=1
*i(z) =
q
1 + exp (ozi,0 + 3 o5, Zj )
j=1
q -1
- { 1+ exp (-0f , - S 0, § Zj )}
j=1

and
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q -1
l-7n5(z) = { 1 + exp [ozi,o + > @i § Zj ] }
j=1
This means that increasing any z, increases the probability of a
positive response and decreases, as expected, the probability of a
negative response by the same amount. Thus, when gq=1, it is possible

to obtain all «; ,'s positive or zero by suitable choice of which

outcome is to be considered as positive.

(2) The direction in which most latent wvariables are measured is
arbitrary. Changing the direction of measurement involves replacing zj
by "2 in (1.6). This is equivalent to changing the sign of the

corresponding «; : without changing the model.
P g of j ging

2.3- Interpretation of the Parameters

The parameters of the logit/probit model may be interpreted in
several ways.

The coefficient @j o is the value of logit =j(z) at z=0 and thus
7; is the probability of a positive response from a median individual.
In the context of educational testing, aj , or x; would be called the

item difficulty.

The coefficients oj § may be interpreted in three related ways.

First, as a measure of the extent to which Zj discriminates
between individuals. For two individuals a given distance apart on the

Zj-scale, the bigger the absolute value of o j the greater the

difference in their probabilities of given a positive response to
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item i and thus easier to discriminate between them in relation to
item i. Therefore o5 is a parameter that indicates the value of an
item in the sense of the amount of information that the item provides
about Zj. In educational testing, this is the interpretation usually
adopted, and o, j is called item discriminating power.

A second interpretation of the Q5 5 is by analogy with linear
factor analysis or principal components, where the ai,j's are
equivalent to the loadings. They are the weights of the xj's in the

P
determination of the component scores Xj's, i.e, Xj - z o § Xi

i=1

Finally the aj § are related to correspondence analysis, where
they are equivalent to the category scores. This 1is done by
attributing the wvalue of aj § to a positive response on manifest
variable j and zero to a negative response. Then for each 1latent
variable Zj the data matrix constituted by 1 and 0 is replaced by o j
and 0. The individual score is thus the sum of the category scores for

that latent variable Zj.

For the general model (1.5), considering Y either as a parameter
or a variable has given rise to different procedures when looking for
more information about Y, after the model has been fitted.

In educational testing, where Y is usually treated as a parameter,
some work has been done in estimating the parameters of the latent
distribution function; see for example, Lord (1983b), Andersen and
Madsen (1977), Samanthanan and Blumenthal (1978) and Mislevy (1984).

Bartholomew (1984), treating Y as a latent variable has deal with
the situation by scaling the latent variable, i.e, locating the
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individuals in the Y-space on the basis of their observed values of X.
Since in this thesis we are treating Y as a latent variable, we
look at the scaling, instead of the estimation of the parameters of

the latent distribution.

2.4- Scaling a Latent Variable

According to Bartholomew (1984) scaling a latent variable should
be done via the posterior distribution of y given x, and he suggested
the mean E(YIx). Since the prior distribution of Y is uniform on
(0,1), this measure may be interpreted as the expected proportion of
the population lying below an individual with that wvalue of x. The
practical advantage is that when q=1, E(Yix) is approximately a

P
linear function of the quantity X = § of 4Xj if all o ,'s are

i=1
small for G~'=logit, regardless of the form of H. However, if the G~
is the probit function this relation does mnot work though the

similarity of the logit and probit models should ensure that the

linear form is still a good approximation.
Bartholomew (1984) shows that an approximation can be obtained
doing

E(Yi1x) € (1 + X)/(2 + A)

where

P P
X= 5 of , x4 and A= 3 o ,.
i=1 i=1

This result is exact if xy=0.5 and ai,,-l for all i.
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He also points out that even when the approximation is not good,
then E(YIX) still provides the correct ranking of individuals.
Obviously, X and E(YIx) are almost equivalent for purposes of scaling,
since both give the same ranking on the latent scale. This result does

depend on the choice of a uniform prior density for Y.

If the aj ,'s are very similar then the ranking determined by

P P
X= Yo ,xj and 3 xj are likely to be the same whichever latent
i-1 i=1

models (logit/probit, 1logit or probit) we are wusing.When this
situation happens the convergence of the algorithm for estimation of
the parameters (section 3.2) is obtained quicker than when at least

one of the estimates differs from the other.

The definition of X implies that, we may interpret the o