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ABSTRACT

Most of steady state simulation outputs are
characterized by some degree of dependency between successive
observations at different lags measured by the autocorrelation
function. In such cases, classical statistical techniques based on
independent, identical and normal random variables are not
recommended in the construction of confidence intervals for steady
state means. Such confidence intervals would cover the steady
state mean with probability different from the nominal confidence
level.

For the 1last two decades, alternative confidence
interval methods have been proposed for stationary simulation
output processes. These methods offer different ways to estimate
the variance of the sample mean with final objective of achieving
coverages equal to the nominal confidence level. Each sample mean
variance estimator depends on a number of different parameters and
the sample size.

In assessing the performance of the confidence interval
methods, emphasis is necessarily placed on studying the actual
properties of the methods in an empirical context rather than
proving their mathematical properties. The testing process takes
place in the context of an environment where certain statistical
criteria, which measure the actual properties, are estimated
through Monte Carlo methods on output processes from different
types of simulation models.

Over the past years, however, different testing
environments have been used. Different methods have been tested on
different output processes under different sample sizes and
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parameter values for the sample mean variance estimators. The
diversity of the testing environments has made it difficult to
select the most appropriate confidence interval method for certain
types of output processes. Moreover, a catalogue of the properties
of the confidence interval methods offers limited direct support
to a simulation practitioner seeking to apply the methods to
particular processes.

Five confidence interval methods are considered in this
thesis. Two of them were proposed in the last decade. The other
three appeared in the literature in 1983 and 1984 and constitute
the recent research objects for the statistical experts in
simulation output analysis. First, for the case of small samples,
theoretical properties are investigated for the bias of the
corresponding sample mean variance estimators on AR(1l) and AR(2)
time series models and the delay in queue in the M/M/1 queueing
system. Then an asymptotic comparison for these five methods is
carried out. The special characteristic of the above three
processes is that the sth lag autocorrelation coefficient is given
by known difference equations.

Based on the asymptotic results and the properties of
the sample mean variance estimators in small samples, several
recommendations are given in making the following decisions:

I) The selection of the most appropriate confidence
interval method for certain types of simulation outputs.

II) The determipapion of the best parameter values for

the sample meanIQariance estimators so that the corresponding

confidence interval methods achieve acceptable performances.



III) The orientation of the future research in confidence
interval estimation for steady state autocorrelated simulation

outputs.
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CONFIDENCE INTERVAL METHODS FOR STEADY-STATE SIMULATIONS

1.1 INTRODUCTION

In studying real world systems, computer simulation has
been accepted as a powerful technique to providing useful
information to support decision making under conditions of
uncertainty.

For the last three decades, different definitions have
been offered by several authors of computer simulation. Some of
them, which define simulation as the art for modelling discrete
systems, are given by Balmer and Paul(1985). Others which give

more emphasis to the stage of experimentation are the following:

" Simulation implies experimentation. However,b instead
of experimenting with the real world object, we
experiment by means of the model of that object. "

[ Kleijnen(1974) ]

In a simulation, we use a computer to evaluate a
model numerically over a time period of interest
and data are gathered to estimate the desired
true characteristics of the model. "

[ Law & Kelton(1982b) ]

All the definitions describe computer simulation as an
attempt to represent the operation of a system in a computer
program. This can be achieved via a "valid" simulation model which
depicts the relatioﬁéhips between the system entities. Then, by
using the simulation program, alternative operating policies can
be compared in a well organized experimentation. Thus the best

policy to the management can be selected.
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Chapter 1

For several years, at the London School of Economics, the
Computer Aided Simulation Modelling(CASM) project has been
researching the appropriate software support to facilitate the
processes of both developing simulation models and generating
computer simulation programs. As examples, we mention the work of
Doukidis and Paul(1985) on simulation problem formulation using
expert systems, Chew(1986) on interactive simulation program
generators and El1 Sheikh(1987) on simulation modelling using a
relational data-base system called INGRESS.[For a more detailed
description about CASM objectives see Balmer and Paul(1986)].
Research in the statistical aspects of discrete event simulation
within the CASM project has been limited.

This thesis describes research into confidence interval
estimation for steady-state means of simulation output processes.
This research can be considered as a continuation of the CASM
project to the general area of the statistical analysis of
simulation outputs.

Due to the problems of autocorrelation and initial
transient state, the classical confidence interval estimator is
not valid. For this reason, several confidence interval methods
have been developed for estimating the variance of the sample mean
in stationary autocorrelated processes. Five such methods are
considered in this thesis. For both small and large sample sizes,
the performance of the five methods is evaluated on different
simulation output processes. This performance is measured by
certain statistical criteria. For large sample sizes these
criteria are computed analytically. For small samples, the
criteria are estimated empirically using Monte Carlo methods.

-15-



Chapter 1

In this introductory chapter, the theory of confidence

interval estimation 1in steady-state simulation outputs is
presented. In the next section, the problems of autocorrelation
and initial transience, which do. not allow the use of the
classical estimator for constructing confidence intervals for true
steady-state means, are discussed. Alternative ways to overcome
these problems are briefly described in section three. A survey of
fixed sample size confidence interval methods for steady-state
means is provided in section four. Sections five and six give a
more detailed description of the thesis objective and the

structure of the remaining chapters respectively.

1.2 THE PROBLEMS OF AUTOCORRELATION AND INITIAL TRANSIENCE IN
SIMULATION OUTPUT ANALYSIS

Let (X, t=1,2,3,...) be a covariance stationary output
process. Covariance stationary means that the mean and variance of
the random variables X are stationary over time with common
finite mean p and common finite variance ¢,. Moreover, for a
covariance stationary process, the covariances Cov(X¢,X¢4g)
between X and Xi4g depends only on the lag s and not on the
actual values at times t and t+s.

Consider a sample X,, X,,..., X, of size n from (Xt}. At
the stage of reporting the results of simulation experiments, the

statistical measure often used is the sample mean

n

> X¢
t=1



Chapter 1
as the best estimator of the steady state mean u-E(Xt)' for
t=1,2,3,...

Consider the case where r number of replications of the
process {X;, 1lKt(n} are generated by choosing the initial
conditions to be identical to the steady-state conditions.
Applying the above estimator to these replications, we produce r
estimates ihj(l<j(r). These estimates will vary about the true
steady-state mean pu. Consequently, any particular value may lie
far away from pu, especially for sampling distributions
characterized by large variances. Therefore, the report of any
inj without any measure of its precision would provide misleading
information at the stage of decision making.

The most familiar representation of precision is provided
by the confidence interval for the steady-state mean p. If X,,
X,,..., X, were independent, identical and normal random
variables, the classical confidence interval estimator for pu would

be

where

s? - (1.1)

is an unbiased estimator of the variance of the output process.

-17-



Chapter 1

However, in most of simulation modelling, successive
observations display forms of autocorrelation. Let
pr=corr(X¢,X¢4,) be the rth lag theoretical autocorrelation

coefficient for the process {Xt}. Fishman(1973b, 1978b) records

the true variance of the sample mean as

T
V(X,) = — l 1+ 2 2 1 - — ] Pr (1.2)
=1 n

Consider now the following estimator of the true variance of the

sample mean

2

P S n-1 T
V(X)) = — 1+22 1——]p7. (1.3)
n 7=1 n

Define also the ratio

2
2 S /n

C =

V(Xp)

Providing that X,, X,,..., X, are normal variables with E(X{)=
for 1<t¢n, the actual confidence level achieved by the classical

interval estimator is going to be

Pr| -t ( ——— ( t
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Xh - #
{( —— ( ct

n-1,0/2 n-1,0/2
\/ V(%) _

When ¢ is less(greater) than one, the probability defined

= Prj|-ct (1.4)

in (1.4) is less(greater) than the nominal confidence level (1l-o).
For instance, consider the first order autoregressive

process{AR(1)} which has the form
Xt - ¢Xt_‘ + Gt , t-1,2,3....

This process is stationary when {pI<l. The ¢€i's are independent
and normal random variables with mean zero and common variance 05.
For positive ¢, the s, 1lag theoretical autocorrelation

coefficient is ¢S. Given that

n-1 e(l-p01" 1) n-1 e{1-np" 1+ (n-1)p"}
Sef - —— " " ana S eps-
s=1 (1-9) s=1 (1-p)?2

the constant c2? will be

1 1
¢ 2= - (1.5)
n-1 s 1+p 20(1-p1)
1+2Y |1- ———-]ps -
s=1 n l-¢ n(l-p)?

Taking the square root of (1.5) and substituting it into (1.4),

the actual confidence levels achieved by the classical confidence

-19-



Chapter 1
interval estimator can be computed analytically. From table (1.1)
for positive ¢, these levels are lower than the nominal confidence

level 0.95. Moreover, they are decreasing as n is increasing.

TABLE 1.1
Actual confidence levels of the classical confidence interval
estimator in the AR(1) when the nominal confidence level is 95%

SAMPLE SIZES
¥
10 20 50 100 o

.10 0.9313 | 0.9277 | 0.9254 | 0.9246 | 0.9232
.50 0.8058 | 0.7738 | 0.7548 | 0.7485 | 0.7416
.80 0.6430 | 0.5606 | 0.5139 | 0.4998 | 0.4844
.90 0.5766 | 0.4628 | 0.3889 | 0.3667 | 0.3472
.999 | 0.5079 | 0.3559 | 0.2243 | 0.1594 | 0.0320

Let us now assume that the initial conditions for the
process (Xt} are not identical to the steady state conditions. In
such cases, there is a transient period where the random variables
X

X,,..., X are distributed with mean pu,=p+B, where

1

€im B, = O
-

In the simulation literature, the factor B, is called
initialization bias. Providing that the random variables X

1

X,,..., X, are normally distributed

-20-
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Xn -
Pr 'tn-l,a/z C ) ¢ tn-1,oz/z
V(%)
Xp - v Fn - K
= Pr -tn-1,oz/2( - ¢ t:n_"m/2 (1.6)
N R NATS |

In (1.6), (Xn_p)/{Vzin)}% is distributed as a noncentral
t-distribution with noncentrality parameter (pn-u)/(gzxn)}i.
From Owen(1965), it can Dbe verified that the probabilities
defined in (1.6) are lower than the nominal confidence level
(l-a). Furthermore, the use of the classical estimator (1.1)
instead of the estimator defined in (1.3) or the nonnormality of
the random <wvariables X

+» X,,..., X, makes the problem of

initialization bias even more serious.

1.3 DIFFERENT WAYS TO OVERCOME THE PROBLEMS OF AUTOCORRELATION
AND INITIAL TRANSIENT STATE

Fixed sample size confidence interv ethods
For statioﬁafy simulation output processes, these methods
produce different estimators for the variance of the sample mean,
providing that the sample size n is fixed a-priori. We shall call
these estimators "sample mean variance estimators". The derivation

-21-



Chapter 1
of these estimators is based on transforming the original output
process into a new process which has desirable and known
statistical properties. The final objective of these methods is to
produce confidence intervals which. will cover the steady state
mean with probability equal to the mnominal confidence 1level.
However, the question which arises is why we do not use the
estimator of the true variance of the sample mean defined in
(1.3). The reason is that in most simulation output processes the
theoretical autocorrelation coefficients are not known and as Law
and Kelton(1982b) point out, the estimation of these coefficients
is not recommended since
_ for large n, the computing time to estimate pg(l{s¢{n-1) is

rather large and
_ for s close to n, the estimation of pg will be based only
on few observations.

Moreover, for simulation output processes characterized
by different autocorrelation structures, the sample size which
guarantees the adequacy of a normal approximation is not known,
although there are some indications that this is not a major
problem[see for example Law(1977) and Kleijnen(1975,page 445)].

The technical details of these methods are described in

the next section.

Sequential confidence interval methods

The objectivg of these methods is to determine the run
length(sample size) of realizations of stationary simulation
output processes which guarantees both an adequate correspondence
between actual and nominal confidence levels and a prespecified

-929.-



Chapter 1
absolute or relative precision. The last two terms are defined by
Law(1983) as the half length of confidence intervals and the ratio
of half length over the sample mean respectively.

Law and Kelton(1982a) distinguish these methods as
regenerative and non-regenerative. The methods classified in the
first type determine the run length by using the regenerative
property, that is, they identify random points where the process
probabilistically starts over again. Fishman's(1977) and Lavenberg
and Sauer's(1977) methods belong to this category. The methods
developed by Mechanic and Mckay(1966), Law and Carson(1978),
Heidelberger and Welch(1981a) and Adam(1983) have been
characterized as non-regenerative.

Law and Kelton(1982a) compared the performance of several
sequential methods. For the output processes the authors used, the
required run lengths for obtaining acceptable confidence intervals

were quite large.

Truncation methods
Their objective 1is the elimination of initialization bias
effects. These methods provide estimators for the time point

t¥(1<t¢n) for which

I EXe) - p 1 > e for t<t*®
and
*

P EXg) - o1 ¢ e for tt

where e is a prespecified very small positive number.

-23-
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Let {xij: 1¢i¢n, 1{j<r} be r replications of the
simulation output process {X;}. For each replication, the initial
conditions are exactly the same. Some of the truncation methods
estimate t* by applying the truncation rule to each replication.
The methods of Fishman(1971,1973b), Schriber(1974) and
Heidelberger and Welch(1983) can be classified into this category.
Other methods estimate t* from a pilot study which is carried out
on a number of exploratory replications. Then the estimated value
of t* is used as the global truncation point in any other
replication for which we use the same initial conditions. The
methods of Conway(1963), Gordon(1969), Gafarian et al(1978) and

Kelton and Law(1983) belong to this category.

1.4 FIXED SAMPLE SIZE CONFIDENCE INTERVAL METHODS
Let (Xt} be a steady-state simulation output process.

Suppose also that

E(Xg)=p < = t;l
and

Var (X¢)=y, < @ t;l

Fixed sample size confidence interval methods propose different

estimators for the wvariance of the sample mean (sample mean
Az

variance estimators). Let o; be the sample mean variance

estimator of the 'ith method. Then, the confidence interval

proposed by the ith method will take the form

A A

X, - tvi,a/zai < p <Xy + tvi,a/zai

-2 -



Chapter 1
where X, is the sample mean and vj are the degrees of freedom
according to the ith  method. Presented below are several

confidence interval methods which have been developed for the last

two decades.

Replication Method
Suppose we generate k>1 independent replications of the
simulation output process {X{} by using independent streams of
random numbers. The run length(sample size) of each replication is

m. Define the sample mean of the jth (1¢j<k) replication as

m

Y Xgj
t=1 J

Xy = ———— . 1<k (1.7)

where (Xj)} is the tth random variable on the jth replication.
When m is large enough, the k sample means defined in

(1.7) can be considered as independent, identical and normal

random +variables. Then, the 'sample mean variance estimator

proposed by this method is given by

A, 1 k 2

0l = ——— S [ Rin-X ] . 1qick
e 3% ]

The degrees of freedom are vig=k-1.

-25-



Chapter 1

Nonoverlapping Batch Means Method

Let (X} be a covariance stationary output process. The
nonoverlapping batch means method is based on generating a single
long replication of {X.}. This replication is partitioned into k>1
contiguous and nonoverlapping batches. The size of each batch is

m. The batch mean of each batch is defined as

m
2 X(j-1)m+t
t=1

Xj’m - , 1k
m

©

Provided that m is large enough and Y IygI<o, Law and
Carson(1978) showed that the nonoverlappingg;:1ch means can be
considered approximately uncorrelated. Furthermore, if we choose m
large, the batch means can be considered approximately normal

random variables. Then the sample mean variance estimator of this

method is given by

A, 1 k [

2
OB Xj,m - X, ] , 1§k

k(k-1) j=1
As in the replication method, the degrees of freedom are vnp=k-1.

Overlapping Batch Means Method
Consider. a -single 1long replication of a covariance
stationary output process {(X;}. Let n be the run length(sample
size) of this replication. The jth overlapping batch mean of size

m is defined as

-26-
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m-1
2 Xj+t
t=0
Xj(m) - , 1¢j¢n-m+l

For large m and n/m, Welch(1987) proposed the following estimator

for the variance of the sample mean

A, m n-m+l 2
%o ~ 21 RIACKER Y

n(n-m+l) j

The degrees of freedom are 1.5((n/m)-1).

Standardized Time Series Methods

Let {X} be a strictly stationary output process.
Strictly stationary means that the joint distribution of
Xt,,Xt,,...,Xt, 1is the same as the joint distribution of
Xt,+s,Xt,+s,...,Xty+s for every t,,t,,...,t, and s. We also assume
that this process is phi-mixing. Roughly s?eaking, any process is
phi-mixing when Corr(X¢,Xt4g) 1is negligible for large s[see
Law(1983)]. In fact, the phi-mixing property is satisfied by a
wide class of processes including autoregressive, regenerative and
m-dependent processes [see Schruben(1983)].

The standardized time series methods use a functional
central limit theorem to transform X,, X,,..., X, into a process
which is asymptotically distributed as a Brownian Bridge process.
Suppose that we divide the replication into k>1 contiguous and

nonoverlapping batches of size m. For large m, by using Brownian
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Bridge properties, Schruben(1983) derived the following four

estimators for the variance of the sample mean:-

I) AREA METHOD

Az 12 LN
o - —— Aj
SM nk(m®-m) j=1
where
A m
Ay = Y 25;(Q))
] 02 3
Sj(Q) - Xj’m - Xj,Q
and
Q
) x(j-1)m+t
t=1
Xj,0 - , 1¢ick

Here the degrees of freedom are vgy=k.

II) MAXIMUM METHOD

A A
N R N RGN
o, = S
MX 3kn  i-1 A
Qj(m-QJ)

A
where Qj is the 1location of the maximum of the process

255(2) on the jth batch. The degrees of freedom are vmx=3k.
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ITII) COMBINED AREA-NONOVERIAPPING BATCH MEAN METHOD

12 k A k 2
ZA;+mZ[Xj,m'X11]
A, m3-m j=1 j=1
0' -
oM n(2k-1)

The degrees of freedom are vgy=2k-1.

IV) COMBINED IMUM—NONOVERIAPPING BATCH MEANS

METHOD
( .51 (£5) ]2
k J 3] k 2
m |3 + zl[xj,m-xn]

j=1 ﬁﬁ(m-Qj) 3=

AZ

0' =

cX n(4k-1)

For this method, the degrees of freedom are vgy=4k-1.

ectral method
The spectral method assumes that the process (X.} is
covariance stationary. At zero frequency, the power spectrum of a

covariance stationary process is given by

£(0) =~ ———— (1.8)

where

Ys = E (Xt - #)( Xeqs - 1)

-29.-



is the sth lag theoretical autocovariance.

From (1.2),

lin [ V(X)) | = 3 v = 27£0)
hale o

S=-00

Chapter 1

(1.9)

For large n, form (1.9) proposes an other way for

estimating the wvariance of the sample mean in autocorrelated

stationary processes; that is, by estimating the power spectrum at

zero frequency.

In the simulation literature, two methods for estimating

£(0) have been proposed. The first
Fishman(1973b,1978b), Duket and Pritsker(1978)

Kelton(1984) uses the Tukey spectral window

A(s) = 0.5 { 1 + cos(xs/w) )}

for estimating £(0) as

1 A w-1 A

Yo + 2 Y M(S)vg
2% s=]1

A
£(0) =

discussed by

and Law and

To reduce bias, these authors have proposed the following sample

mean variance estimator:-

‘ A w-1 A
Ogp = Yo + 2 3 Mg(8)yg
n-w s=1

where
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1l n-s

> [ Xe - Xy ][ Xevs - Xn ]

t=1

Fishman(1973b,1978b) and Law and Kelton(1984) report that
VSP-]. . 33n/w.
Heidelberger and Welch(198la) have proposed a different

way for estimating £(0). This way is based on the periodogram

coordinates
1 n . .
1(j/n) = 2 Xte-zwl(i-l)J/n
n t=1

where i=/-1.

Define K points J(aj)

I(ag) = IOg[i[I((2J-1)/n) * I(2j/n>]]

with
aj = (43j-1)/(2n) , j=1,2 ,...,K
d
A polynomial of the form ) bja, 1is fitted to J(aj)+270
r=0
A
for j=1,2,...K wusing the least squares method. Let b, be the

least square estimator of b, Then an approximately unbiased

estimator for £(0) is given by

2

1 -6

A
exp{ ]exp b, ]
2

with [(? =.645s,, and s,, is the upper leftmost element of the

A
wa(O) -

2

product (XX) -' where
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2 3 d
1l a, a, a, a,
1l a, ai a: ag
x -
2 3 d
1 ayp ay ap ap

For this method, the degrees of freedom are

utoregressive Method
This method assumes that {X.} is a covariance stationary
process and can be represented by the pth order autoregressive

process (AR(p))

P
zo¢p,s(xt-s - k) = €, fp,o = 1
S=

The e€t's are independent, identical and normal random variables

with mean O and common variance oﬁ. We also assume that the
[}

autoregressive order is known and Y Iygl < ». For this process
§=-0

the power spectrum at zero frequency is given by
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Durbin(1960) has developed a procedure for estimating the
autoregressive coefficients of an AR(p) from the autoregressive

coefficients of an AR(p-1) via the following recursive formulae

A A
Yo,0 = fp,0 1

P-1 A A
2 ¥Yp-1,8Tp-s
A s=0
Yp,p ~
P-1 A A
> fp-1,s7Ts
s=0
A A A

A
p,s = Pp-1,s * Pp,pPp-1,p-s » S=1,2,...,p-1

Moreover, the error variance 65 is estimated by

/\2 A A A A A A A
Up_'Yo + wp,"h +¢P,272 AR +¢P,P‘YP

Fishman(1971,1973b,1978b) has proposed the order p of the
AR(p) to be determined through the following test of hypothesis

H, : the order of the autoregressive scheme is p
H, : the order of the autoregressive scheme is q>p

As the sample size n increases, the statistic

converges to a x? distribution with q-p degrees of freedom.
Assuming that n is large enough, by setting p=1,2,3,..., the
estimated order is the smallest p for which H, is accepted.
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Providing that the  autoregressive coefficients, the error
variance and the autoregressive order have already been estimated,

the power spectrum at zero frequency of the AR(p) is estimated by

A2

A a.
£(0) = P

" [ sgo‘ﬁp's ]

Then, the corresponding sample mean variance estimator and the

degrees of freedom are given by

A2
A, p
TAR
3 Po.s |
n .8
s-pr
and
E/\
n ,s
s-pr
VAR-

P A
23 (p-25)¢p,s
s=0

For the derivation of the degrees of freedom see Fishman(1978b).

Regenerative Method

This method was developed simultaneously by Crane and
Iglehart(1974a,b,c,1975). Its principle is based on the
identification _of . random points where the process
probabilistically starts over again. These points are called
regeneration points. For example, for the delay in queue in the
M/M/1 queueing model, the indices of customers who find the system
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completely empty could be considered as regeneration points.  The
amount of data between two regeneration points 1s called
regeneration cycle.

Define now the random variables Nj, Zj(j-1,2,..) as

Nj - Bj+1 - Bj , E(Nj)(oo , J=1,2,...

where 1(B,<B,<... are regeneration points and

Providing that E(Nj)<w, the steady-state mean is defined

as

u = E(Z)/E(N)

Two methods have been developed to estimate p and produce
confidence intervals for pu; the classical and Jacknife methods. A
very good description of them is given in Law and Kelton(1982b).
However, the major disadvantage of these methods 1is the
identification of regeneration points, especially for complicated

simulation models.
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1.5 THESIS OBJECTIVE
This thesis presents new findings for the performance of
the following five confidence interval methods:-
i) Nonoverlapping batch means method
ii) Standardized time series-area method
iii) Combined area-nonoverlapping batch means method
iv) Overlapping batch means method
- v) Spectral method.

Given the sample size, each method achieves different
actual confidence levels for different parameter values. The term
"parameter value" indicates the number of batches for the first
three methods, the batch size for the overlapping batch means
method and the spectral window size for the spectral method.

For the case of small sample sizes, we compare the best
actual confidence levels achieved by the above five methods. With
respect to each method, the best actual confidence 1level 1is
defined to be the one which is the closest to the nominal
confidence level. Moreover, we consider the case where two or more
methods attain approximately the same best actual confidence
levels. Under such circumstances, we compare the precision and
stability of confidence intervals produced by the five methods at
the parameter values for which these confidence 1levels are
attained.

Furthermore, for small sample sizes, we compare the
performance of tﬁevfive confidence interval methods at specific
parameter values. These values are chosen in such a way that the
minimum bias of the sample mean variance estimator of each method
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is observed. We <call these values MB-parameter values. To
determine the MB-parameter values, a family of functions is
introduced. We «call them "Bias Indicator functions". These
functions are  expressed in  terms of the theoretical
autocorrelation coefficients of the output process under study.
This means that if the autocorrelation function of the process
under study is known, exact analytical values for the minimum bias
of each estimator and the MB-parameter values can be obtained.

On the other hand, for processes where the
autocorrelation coefficients are not known, we propose two ways
for estimating the minimum bias and the MB-parameter values. Based
on the performance of the methods at the estimated MB-parameter
values, we develop a procedure for applying the five confidence
interval methods to approximately steady state simulation outputs
displaying certain characteristics. These characteristics refer to
the form of the autocorrelation function and the 1level of
non-normality of the process.

To compare the performance of the five confidence
interval methods in the above two contexts, we have created our
own testing environment. In this environment, we have included
almost all the output processes which have been used in other
testing environments having been developed during the past two
decades. Several statistical criteria have also been selected for
studying the performance of the methods. For small sample sizes,
these criteria have been estimated by using Monte Carlo methods.

Compari§on§ . between the performance of the five
confidence interval methods are also carried out when the sample
size tends to infinity. The asymptotic forms of the Bias Indicator
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functions enable us to compute analytically the limiting coverages
achieved by the above five methods, provided that the
autocorrelation function of the output process under study is
known. Three such processes are considered in this case; the
AR(1l), the AR(2) and the delay in queue in the M/M/1. For these
processes, we study the limiting coverages of each method at
different parameter values.

Provided that the simulation output process satisfies
certain regularity conditions, as the batch size m tends to
infinity, the nonoverlapping batch means, area and combined
NOBM-AREA methods tend to achieve actuallconfidence levels equal
to the nominal confidence level. For the spectral and overlapping
batch means method, when the batch size m and the spectral window
size w tend to infinity but in such a way that (n/m)a~ and
(n/w)=>~, these two methods tend to cover the true steady state
mean with the nominal probability. Assuming such ideal cases, we
compare the limiting precision and stability of the confidence
intervals.

For the case of large sample sizes, all the statistical
criteria considered are computed numerically i.e without wusing

Monte Carlo methods.

1.6 STRUCTURE OF THE THESIS
Chapter two describes a survey on testing
environments whi;h have been used for evaluating the performance
of confidence interval methods.
Chapter three introduces a family of functions which
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enable us to determine analytically both the minimum bias of each
sample mean variance estimator under consideration and the
MB-parameter values, provided that the autocorrelation function of
the process under study is known. Exact values for the minimum
bias and the MB-parameter values are obtained 1in the
autoregressive process of order one.

Chapter four examines the asymptotic properties of
the five confidence interval methods under consideration. Two
issues are considered. The first concerns the computation of the
limiting actual confidence levels the five confidence interval
methods achieve. The second issue refers to the comparison of the
limiting precision and stability of the confidence intervals
produced by these methods

Chapter five describes the preparation stages for the
simulation experiments which follow.

Chapter six examines the performance of the five
methods at the MB-parameter values for the AR(1l), AR(2) and the
delay in queue in the M/M/1. Both true and estimated MB-parameter
values are considered.

Chapter seven compares the best actual confidence
levels achieved by the five confidence interval methods and
provides several recommendations for applying these methods to
approximately steady state simulation output processes.

Chapter eight summarizes the conclusions and suggests

future areas of research.

-39.



HAP

A SURVEY ON TESTING ENVIRONMENTS OF CONFIDENCE INTERVAL
METHODS
2.1 INTRODUCTION

In the introductory chapter, we have discussed several
methods which can be used for constructing confidence intervals
for steady-state means of simulation output processes. Although
the evaluation of these methods has included analytic
investigations[see Schmeiser(1982), Goldsman and Schruben(1984)],
the main thrust of research has taken the form of empirical
studies[see Law(1983)]. During the 1last two decades, testing
environments have been developed for evaluating the performance of
these confidence interval methods. These testing environments
consist of the following three general components:-

i) Simulation models generating output processes
on which the performance of the methods is tested
ii) Statistical criteria measuring the performance
of the methods
iii) Necessary computer software including simulation
languages and secondary computer  programs for
manipulating data.

In the present chapter we describe a survey of previous
testing environments which have been wused for evaluating
empirically the performance of confidence interval methods. Our
aim is to answe; two very crucial questions. Firstly, do some
testing environments reveal methods which attain acceptable
performances in certain output processes? If this is the case, can
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the particular testing environments indicate ways for applying
these methods to any  process which displays similar
characteristics to the output processes of these testing
environments?

In the following section, we describe the simulation
models which have been used in the previous testing environments.
For each model, the output processes on which the confidence
interval methods have been tested are specified.

In section 3.3 we discuss the statistical criteria that
have been developed for measuring the performance of confidence
interval methods. A theoretical definition is given and a
methodology which produces estimates for these criteria 1is
described.

In section 3.4, the components of each testing
environment are described in detail. For each environment, we
also summarize the conclusions drawn concerning the performance of
particular confidence interval methods.

In the final section, we address the two questions stated

above by comparing the structure of the testing environments.

2.2 SIMULATION MODELS AND OUTPUT PROCESSES IN THE PREVIOUS
TESTING ENVIRONMENTS

2.2.1 Series Queues(M/M/N,/M/N,/.../M/N.)

It is the type of simulation models which is met in most
of the previous testing environments. The operational rules of
these models are very simple. A customer arriving at the system
joins the queue of the first service station. After the service
completion, he joins the queues of the remaining c-1 service
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stations successively where he is beinjg served. Each station
consists of Nj(j-l,Z,...,c) number of seirvers. After the service
completion at the last service stationi, he departs from the
system. The interarrival times at the first station and the
service times in each station are independlent negative exponential
random variables with means (1/\) and (1/mj) respectively.

The behaviour of this type of moidels depends on three
factors; the queueing discipline(FIFO,LIF0)), the number of servers
and the traffic intensity 7j=M/(Njpij) im each service station.
From this type of models, the following three output processes
have been selected for testing the performance of confidence
interval methods:-

i) the total delay of customers in the: queues of the
service stations,
ii) the time the customer spends into tlhe system,

iii) the queue lengths in front of the siervice stations.

2.2.2 Time Shared Computer Model

This model was studied by Adiri .and Avi-Itzak(1969) and
is briefly described in Law and Carson(l978). Its entities are a
Central Processing Unit(C.P.U) and N number of jobs which are
submitted by N terminal users. A user thimks for an amount of time
which is a negative exponential random viariable with mean 1/X\.
Then he sends a job requiring a service ttime, say s. The service
time is again a negative exponential random variable with mean
1/u. Any job 1e;ving the terminal joins the FIFO queue at the
C.P.U. To each job, the C.P.U allocates a maximum service length,
say q. Denote by s,(s,<s) the remainimg service time of a
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job and 7 a fixed overhead setting-up time. If s,<{q then the
C.P.U spends s,+r time processing the job which returns to the
terminal after the service completion. On the other hand, if s>q
then the C.P.U spends gq+7 time processing the job which rejoins
the end of the queue of the C.P.U. after the service completion.

This model was used in Law and Kelton's(1984) testing
environment with the parameter values being N=35, (1/)\)=25,
(1/p)=0.8, q=0.8 and 7=0.015. The output process on which the
confidence interval methods were tested was the response time of
the jobs. The response time is defined as the time from when a job

departs a terminal until its next return to the terminal.

2.2.3 Interactive Multiprogrammed Computer Model

A brief description of this model is given by
Heidelberger and Welch(198la,b). Its entities are:-
— N jobs which are submitted by N terminal users
— one Central Processing Unit(C.P.U)
— M secondary storage devices(S.S.D).

A job, having been formulated at a terminal, joins the
FIFO queue of the C.P.U. After the end of the processing work,
the job returns to the terminal with probability p. or it joins
the FIFO queue of the ith secondary storage device with
probability pj(i=1,..,M). The time the job spends at each S.S.D is
a negative exponential random variable with mean 1/pj(i=1,...,M).
After leaving each §.5.D, the job joins again the end of the C.P.U
queue. The formuiatién process and the service time at the C.P.U
are independent exponential random variables with means 1/\] and
1/N\o respectively.
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This model was used in Heidelberger and Welch's(1981la)
testing environment. The authors selected two sets of parameter
values; N=25, m=4, p,=p,=0.36, p,=p,~0.04, (1/X7,)=100, (1/x,)=1,
1/p)=(1/p,)=1.39, (1/p3)=(1/p)=12.5 and N=25, m=4,
P1=P,=P;=P,=0.36, (1/%,)=100, (1/3,)=1, (1/puy)=(1/p,)=5.56,
(1/p3)=(1/p,4)=25. The output processes under study were the
folowing: -
i) response time of jobs under both sets of parameter
values
ii) waiting time of jobs at the C.P.U under the first
set of parameter values
iii) waiting time of jobs at the queue of the second
secondary storage device under the second set of parameter

values.

2.2.4 Inventory Model

Let X; be the inventory amount of an item for a company
at the start of period i. If Xj<s, an order of size S-X;j takes
place with cost k+c(S-Xj) bringing the inventory level immediately
to S. If Xi3s, no order is placed and the inventory amount
remains at Xj. During the period, a demand Qi occurs. If
(X3-Q4)30 or (S-Qij)30 then the company incurres a holding cost
h(Xj-Qj) or h(S-Qij) respectively; otherwise, it incurres a
shortage cost v(Qj-Xj).

From this model the output process on which the
performance of c&ﬁfid;nce interval methods was tested was the cost

per period.
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2.2.5 Time Series Models

I) Autorepressive Processes of Order p

They have the general form

Xt - ¢O + ga,Xt_, + ¢2Xt‘2 + ... + ¢pxt_p + ft (2.1)

where ¢, = u(1-¢,-¢2-...—¢t,p), p is the level of the process and
€+'s are independent and normal random variables with mean zero

and common variance oﬁ.

IT) MA(q) PROCESSES

Their general form is given by

XKe = p+ e + O ec., + Oy€c, +...+0p€ecp (2.2)

where p is the level of the process and ¢ 's are independent and

normal random variables with mean zero and common variance aﬁ.

III) EAR()) PROCESSES
They are 1linear autoregressive processes with the
marginal distributions being exponential random wvariables with the
same parameter M. A detailed description of these processes is
given by Lawrance and Lewis(1981,1982). The general form of EAR()\)

processes is given by

Xe = O<p<1 (2.3)
¢Xe-, + E¢ w.p l-p
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where ét's are independent exponential random variables with the
same parameter \. At lag k, this model gives autocorrelation
coefficients ¢k and realizations where segments of large values

alternate with segments of small values.

2.3 STATISTICAL CRITERIA FOR EVALUATING THE PERFORMANCE OF THE
CONFIDENCE INTERVAL METHODS

The most common criterion is the probability with which
the confidence intervals produced by different methods cover the
steady-state mean. In the simulation literature, this probability

is called coverage and has the general form

A A
CVRj = Pr{ Xp - ty; 07271 € # < Xn + ty; 0/, 0f ] (2.4)

where for the ith confidence interval method, Q{ is the
variance of the sample mean and v; the degrees of freedom
prescribed by the method.

A more complicated criterion, called coverage function,
was introduced by Schruben(198la). Given the sample size n, this
function is defined by setting different values to the nominal
confidence level (l-o), in (2.4). If this function is uniformly
distributed in [0,1], the coverages will be equal to the nominal
confidence levels.

In addition, the following criteria are being wused for

studying the precision and stability of the confidence intervals:-
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a) Expected values of confidence interval half lengths

A

vioa/2 ] (2.5)

EHL; - E [ ¢
b) Variance of confidence interval half lengths

2
A A
VHL; = E [tvi’a/zoi . E[tvi,a/zoi] ] (2.6)

¢) Standard deviation of confidence interval half
lengths

2
A A
SDHL; = E [tvi,a/zai - E[tvi,a/zdi] ] (2.7)

The index i stands for the ith confidence interval method. The

statistical criteria (2.5), (2.6) and (2.7) should be used for

comparing methods which attain approximately fhe same coverages.
Two additional criteria were proposed by Schmeiser(1982)

and Schriber and Andrews(1981) respectively. These are:-

i

d) Coefficient of variation of confidence interval half
lengths

o VHL4
CVHL; = — (2.8)
EHL;
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e) Standard deviation of the variance estimators of the
sample mean

A A A 2
SD(0y) —\/z[ of - E(op) | (2.9)

For the above five criteria, analytical values cannot be

obtained for finite sample sizes from the output processes cited
in the previous section[see Goldsman et al.(1986)]. However, these
criteria can be estimated by using Monte Carlo methods. But,
before we describe the estimation procedure, let us discriminate
between two types of experiments.

SINGLE TYPE OF EXPERIMENTS: This is the type of experiment
which is wused by simulation practitioners for .studying the
performance of real life discrete systems. It consists of a single
run of the simulation program which produces a single replication
of the output process under study. From this single replication,
estimates are obtained for the steady state measures of
performance.

GENERAL TYPE OF EXPERIMENTS: This type 1is wused by the
simulation researchers for evaluating the performance of
confidence interval or truncation methods. It consists of several
replications of the output process under study. These replications
are produced by using independent streams of random numbers. The

observations can be presented in the form of the data matrix

X1 1 XI 2 Xl 3 x‘l r

x21 x22 x23 xzr
A -

x’l’ﬂ an Xna xnr
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where th is the random variable for the tth observation on the
jth replication (1¢j<r).

The five statistical criteria defined above are estimated
in the context of the general type of experiments. Let an be
the mean from a sample of size n on the jth replication. Let
also 9; be the variance of the sample mean according to the ith
method on the jth replication. Based on this notation, we describe

below how the criteria (2.4)-(2.9) are estimated:

a) Coverage

Define the random variable

A
1 if p.f[xnj % tVi,a/26’1]

Q, - j=1,2,...,r (2.10)

0 elsewhere

The coverage, the ith confidence interval method attains, will be

estimated by

r
_Zlﬂq
P J-=
CVR{ = — (2.11)
r

r
-Z tv ,o/20y
EHL; = (2.12)
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c) Variance of confidence interval half lengths

r

A r A

: /|

VHL; = (2.13)
r-1

d) Standard deviation of confidence interval half

lengths
P P
SDHL; = VHL4 (2.14)

e) Coefficient of variation of confidence interval
half lengths

N
CV(HL{) = —— (2.15)

N

EHL;

f) Standard deviation of variance estimators of sample

mean

(2.16)
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2.4 A DESCRIPTION OF PREVIOUS TESTING ENVIRONMENTS

This section describes previous testing environments

which, during the last two decades, have been used for evaluating
the performance of confidence interval methods. For each
environment, the simulation models, the output processes and the
statistical criteria which have been used are reported. We also
summarise the conclusions which have been drawn at the stage of

testing the performance of the methods.

FISHMAN's(1973) TESTING ENVIRONMENT

Fishman(1973a) tested the performance of the classical
regenerative method on two processes; the delay in queue and the
queue length in the M/M/1 queueing model with queueing discipline
FIFO and traffic intensity 0.80. For this method the regeneration
cycles were 1000. Fishman wused the following statistical
criteria:-

i) the proportion of confidence intervals(coverages)
which contained the true steady-state average delay,
ii) the proportion of confidence intervals which
contained the true steady-state average queue length and
iii) the differences of the sample mean delay and queue
length ffom the corresponding true steady-state values.

All criteria were estimated by Monte Carlo methods. The
total number of replipétions and the nominal confidence level were
100 and 0.90 respectively.

The estimated coverage of the true steady state average
delay was 0.86, while for the true steady state average queue
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length the coverage was 0.85. Furthermore, the estimates of the
average delay and average queue length were 1.78 and 8.94
respectively. The corresponding true steady-state values are 1.80

and 9.

IAW's(1977) TESTING ENVIRONMENT

Law(1977) studied the performances of both the
nonoverlapping batch means and replication methods on the
following processes:-

i) Delay in queue in the M/M/1 with queueing discipline
FIFO and traffic intensity 0.90 and

ii) Total cost of period t in the inventory model with
parameter values s=17, S=57, k=32, c=3, h=1 and v=5.
For the second process the distribution of the demand in period t
was Poisson with mean 25.

Law used two statistical criteria for studying the
performance of the above two methods; the coverage, the confidence
interval methods achieve, and the expected values of confidence
interval half 1lengths. These criteria were estimated by using
Monte Carlo methods. The nominal confidence level was 0.90. For
each process, 400 realizations were generated. With respect to the
first process, the statistical criteria were estimated at sample
sizes 1600, 3200, 6400 and 12800. Different sample sizes were used
for estimating the criteria in the second process. These sizes
were 320, 640, 1280 and 2560. For both processes, the number of
the replications per realization and nonoverlapping batch means
was 5, 10, 20 and 40. For the delay in the M/M/1, the initial
conditions were chosen to be empty and idle. For the total cost in
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the inventory model, the run of the simulation program started
from S=52.

Neither of the two methods performed perfectly under the
different combinations of sample sizes and number of
nonoverlapping batch means or replications per realization. In
fact, for the delay in the M/M/1 the estimated coverages were
lower than 0.90 while for the total cost in the inventory model
they were higher than 0.90. Law reported that for the replication
method the differences between the estimated coverages and the
nominal confidence level were caused mainly by the initialization
bias. For the nonoverlapping batch means method the major cause
for these differences was the autocorrelation between the batch
means.

Law also made similar remarks for the following
processes: -

i) the delay in queue in the M/M/1 with queueing
discipline FIFO and traffic intensities 0.50 and 0.70,
ii) the delay in' queue in the M/M/2 with queueing
discipline FIFO and traffic intensity 0.90 and
iii) the total delay in the M/M/1/M/1 with queueing
discipline for both queues FIFO and traffic intensities

7,=0.90, 7,=0.90.

FISHMAN's(1978) TESTING ENVIRONMENT
Based on Von-Neumann test, Fishman(1978) developed an
algorithm for determining the batch size which guarantees
approximately independent nonoverlapping batch nmeans. The
performance of this algorithm was evaluated on the total time a
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customer spends in the M/M/1 with queueing discipline FIFO. Three
traffic intensities were considered; 0.50, 0.80 and 0.90. For each
traffic intensity, the simulation program started by generating
the delay of the first customer from the distribution of the
steady-state delay. The following statistical criteria were
estimated by Monte Carlo methods:

a) The number of confidence intervals that contained the
true steady-state average total time a customer spends in
the M/M/1

b) Proportions of runs that failed to determine a batch
size

c) Average values for the degrees of freedom for each
combination of sample size and traffic intensity.

The nominal confidence level was 0.90. For each traffic
intensity, 60 replications were generated. The above statistical
criteria were estimated for sample sizes 2048, 4096, 8192 and
16384. The conclusions concerning the performance of the algorithm
are summarized as follows:

a) For high traffic intensities the estimated coverages
were not close to 0.95

b) For high traffic intensities and small sample sizes
some runs that failed to determine a batch size[in these
cases, additional runs were performed so that the number of
replications to be fixed at 60] were observed

¢) Under high traffic intensities the average degrees of
freedom were smaller than  those under low traffic

intensities
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d) For a given traffic intensity, increasing the sample

size leaded to higher degrees of freedom on average.

SCHRIBER AND ANDREWS's(1981) TESTING ENVIRONMENT
Schriber and Andrews(1981) compared the performance of
the nonoverlapping batch means method with the performance of the
autoregressive method on the following two processes:
i) a groupwise independent process consisting of trivariate
observations which were generated from a trivariate normal

distribution with correlation matrix

OO
o= O
[N e
- O+
= OO
O =

ii) AR(2) with the autoregressive coefficients being
»,=18000/99, ¢,=2/99, ¢,=79/99 and 05-356000/99.
For the nonoverlapping batch means method, the batch sizes were
determined by a procedure described in Schriber and Andrews(1979).
The following statistical criteria were selected for
evaluating the performance of the two methods:-
a) coverage
b) chi-square values for checking the qoodness of fit of
the coverage function to a [0,1] uniform distribution
c) expected values of confidence interval half lengths
d) standard deviations of the sample mean variance
estimators of the two methods.
The above criteria were estimated by Monte Carlo methods.
The nominal confidence level was 95%. The number of replications
and the sample sizes were 100 and 48, 96, 144, 192 respectively.
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The performance of the nonoverlapping batch means méthod

for the groupwise independent process was satisfactory. For all

the sample sizes the estimated coverages were very close to 0.95

and the coverage functions fitted well to the [0,1] uniform

distribution. Similar remarks were made for the performance of the
autoregressive method on the AR(2).

The performance of the nonoverlapping batch means method

was also evaluated on the AR(2). This was found to be rather bad.

On the other hand, the performance of the autoregressive method on

the groupwise independent process was found to be satisfactory.

HEIDELBERGER AND WELCH's(1981) TESTING ENVIRONMENT

Heidelberger and Welch(198la) developed a new method for
estimating the variance of the sample mean in covariance
stationary output processes. This method was based on the
estimation of the power spectrum at =zero frequency via the
periodogram coordinates The performance of this method was
evaluated on the four processes of the interactive multiprogrammed
computer model[see section 2.2]. The following statistical
criteria were selected:-

a) coverage,

b) expected values of confidence interval half lengths,

c) variance of confidence interval half lengths.
The latter two criteria were expressed in terms of the
steady-state mean of each output process.

Estimates of the three criteria were obtained by using
Monte Carlo methods. The number of replications and the nominal
confidence level were 50 and 0.90 respectively. In order to
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eliminate the initialization bias effects, the authors removed 500
observations from each replication of each output process. Then,
each criterion was estimated for different sample sizes being 500,
750, 1125, 1687, 2530, 3795, 5692, 8538, 12807, and 13500. For
each combination of sample size and output process, a polynomial
of degree two was fitted to both 25 and 50 nonoverlapping batch
means. For these two numbers of batch means the batches, which
were produced according to a batching procedure described in
Heidelberger and Welch(198la), were ranged from 100 to 200 and
from 200 to 400 respectively.

For the processes of the response time, the estimated
coverages ranged from 0.76 to 0.96. With respect to the processes
of the waiting time in queues, the range of the estimated
coverages was greater i.e. from 0.60 to 0.96. For small sample
sizes the confidence interval half lengths had smaller expected
values by using 25 rather than 50 nonoverlapping batch means. On
the other hand, for large sample sizes and for both 25 and 50
batch means the estimated expected values of the confidence
interval half 1lengths were equal. Furthermore, for all sample
sizes, higher variances of the confidence interval half lengths

were observed by using 25 rather than 50 batch means.

SCHRUBEN's(1983) TESTING ENVIRONMENT

Schruben(1983) tested the performance of the
nonoverlapping bgtch.ﬁeans and the four standardized time series
methods on the following processes:

i) delay in queue in the M/M/1 with queueing discipline
FIFO and traffic intensities 0.20, 0.50, 0.80,
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ii) total cost in the inventory model,
iii) EAR(1l) model with the autoregressive parameters being
0, 0.2 and 0.8,
For the second process, two sets of parameter values were chosen;
s=0, S=8, k=8, c=0, h=1l, v=3 and s=16, S=22, k=16, c=0, h=1, v=27.
For each set, the distribution of the demand was Poisson with mean
3 and 16 respectively.
The performance of the methods was evaluated by wusing
three statistical criteria:-
a) coverage,
b) expected values of confidence interval half lengths,
c) standard deviation of confidence interval half lengths.
Monte Carlo methods were used for estimating the above
three criteria. The nominal confidence level was 90%. For each
process, 100 replications were generated. Estimates of the
criteria were obtained for different combinations of sample sizes
and number of batches. These sample sizes and number of batches
are displayed in table (2.1).
TABLE 2.1

Sample sizes and number of batches in Schruben's testing
environment

. . NUMBER OF BATCHES

Simulation

Models 1 2 5 10 20

MM/l 7=0.20| 20000 10000 4000 2000 1000
M/M/1 7=0.50| 40000 20000 8000 4000 2000
M/M/1 7=0.80| 60000 30000 12000 6000 3000

Inventory(l)| 2560 1280 512 256 128

Inventory(2)| 10000 5000 2000 1000 500
EAR(1) o= O 2560 1280 512 256 128
EAR(1) o= 0.2| 2560 2560 512 256 128
EAR(10 o= 0.8| 10000 5000 2000 1000 500
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The estimated coverages were ranged from 0.77 to 1.0. For

large sample sizes and small number of batches, the coverages all
the methods achieved were very close to the nominal confidence
level 0.90. Furthermore, for most combinations of output
processes, sample sizes and number of batches, the confidence
intervals of the standardized time series methods were narrower
and more stable than those of the nonoverlapping batch means

method.

1AW AND KELTON's(1984) TESTING ENVIRONMENT

Law and Kelton(1984) studied the performance of the
nonoverlapping batch means, autoregressive, spectral and
regenerative methods on the following two processes:-

i) delay in queue in the M/M/l with queueing discipline
FIFO and traffic intensity 0.80 and

ii) response time in the time-shared computer model.
For both processes, the initial conditions were empty and idle.

Two statistical criteria were chosen for evaluating the
performance of the four methods; the covérage and the expected
values of confidence interval half lengths. These criteria were
estimated by Monte Carlo methods. For the first process, 400
replications were generated, while for the second process the
number of replications was 200. For Dboth processes, the
statistical criteria were estimated for the same sample sizes;
320, 640, 1280 and 2560. With regard to the nonoverlapping batch
means method, the criteria were estimated for 5, 10, 20 and 40
batch means. For the spectral method, the size of the spectral
window was determined in such a way that the degrees of freedom
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were the same with those of the nonoverlapping batch means method.
Two versions of the regenerative method were tested; the classical
and the jackknife.

In the M/M/1, the performance of the four confidence
interval methods was not satisfactory. Although by increasing the
sample size the four methods attained higher coverages, these
coverages were smaller than the nominal confidence level 0.90. On
the other hand, in the time-shared computer model and for sample
sizes 1280 and 2560, the estimated coverages were very close to
0.90. Moreover, in the second model the confidence interval of the
autoregressive method had the smallest expected half lengths. With
regard to nonoverlapping batch means and spectral methods, Law and
Kelton recommended simulation practitioners to use a small number

of large batches or large spectral window sizes.

GOLDSMAN , KANG D SARGENT's(1986 STING ENVIRONMEN

Goldsman et al.(1986) studied the performance of the
nonoverlapping/overlapping batch means, area and combined
area-nonoverlapping batch means methods on the stationary AR(1l).
Its parameter values were ¢,=0, ¢,=0.9 and Uﬁ-l. The authors
selected two statistical criteria to evaluate the performance of
the methods; the coverage and the expected values of confidence
interval half 1lengths. These criteria were estimated by wusing
Monte Carlo methods. The nominal confidence level and the number
of replications were 90% and 1000 respectively.

Estimate; of the above two criteria were reported for 2
and 16 batches. The size of the batches were 2j(j-0,1,2,...,10).
The following conclusions were drawn:
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i) When the number of batches was 2, the coverage of the
nonoverlapping batch means method was approaching the nominal
confidence level faster than were the coverages of the other
methods. However, for large batch sizes, for which all tﬁe me thods
achieved similar coverages, the nonoverlapping batch means method
produced confidence intervals with the largest expected values.
ii) When the number of batches was 16, the behaviour of the
estimated coverages for the nonoverlapping and overlapping batch
means methods was about the same. For small batch sizes, the
confidence intervals of the nonoverlapping batch means method had
the largest expected values. However, as the batch sizes become
large, the confidence interval methods were producing intervals

which on average had the same half lengths.

SARGENT,KANG AND GOLDSMAN's(1989) TESTING ENVIRONMENT

This is an expansion of Goldsman et al.'s(1986) testing
environment. The performance of the nonoverlapping/ overlapping
batch means area, and combined area-nonoverlapping batch means
method; was tested on the following processes:-

i) AR(1) with the parameter values being ¢ =0, ¢,= 0.0,
0.9 and 05-1
ii) EAR(1l) with ¢ = 0.9
iii) MA(1) with 6=20.1, $0.9
iv) delay in queue in the M/M/1 with queueing discipline
FIFO and traffic intensity 0.9.

Two statistical criteria were used for studying the
performance of the above confidence interval methods; the coverage
and the expected values of confidence interval half lengths. Each
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criterion was estimated by using Monte Carlo methods. The whole
study was divided into two parts.

In the first part, the two criteria were estimated for
all combinations of processes, batch sizes m-2.1(j-0,1,2....,10),
number of batches k=1,2,4,8,16 and nominal confidence 1levels
(l1-a)=0.80, 0.90, 0.95 and 0.99. For each process 1000
replications were generated. In each replication, the 1initial
conditions were chosen from the appropriate steady-state
distribution. For small m, all the methods attained coverages
smaller than the nominal confidence levels. When both m and k were
small, the nonoverlapping batch means method achieved the greatest
coverages. For small m and 1large k the mnonoverlapping and
overlapping batch means methods attained about the same coverages;
these were greater than the coverages the other two methods
achieved. On the other hand, for large m and small k the estimated
coverages of all the methods were close to the nominal confidence
level. Furthermore, for each method, the expected values of
confidence interval half lengths tended to decrease as the degrees
of freedom increased. For 1large m and small k, the combined
area-nonoverlapping batch means method on average produced the
narrower confidence intervals.

In the second part of the study, the statistical criteria
were estimated for each combination of sample sizes
n=2j(j=4,5,6,...,llo) and degrees of freedom df-3,15_. For each
process, the number of replications was 2000. For small n and
df=3,15, the performance of the methods was not satisfactory in
terms of the coverages. For small n and df=15, the overlapping
batch means method seemed to produce the greatest coverages.
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However, as n was increasing, the nonoverlapping/overlapping batch
means and combined area-nonoverlapping batch means methods

appeared to attain acceptable coverages at about the same n.

2.5 SUMMARY

From the detailed description of the testing
environments, one general conclusion can be drawn; There appears
to be no general agreement about the details of an appropriate
testing environment. If there existed such an agreement, the
confidence interval methods, which have been developed for the
last two decades, could have been evaluated on the same simulation
output processes and under a common range of combinations of
parameter values, sample sizes and nominal confidence levels. In
this way, the identification of the best method for different
types of output process in terms of specific criteria would be a
straightforward task.

Despite the 1lack of agreement in a single testing
environment, let us check whether it is possible to compare
confidence interval methods which have been tested in the
different testing environment. Such a comparison will be feasible
if for different testing environments these methods have been
evaluated on the same processes and under the same combinations of
parameter values, sample sizes and nominal confidence levels.

We start. the analysis by identifying the simulation
models which were common in two or more testing environments. From
table (2.2) the M/M/1 was the common model in six testing
environments; Fishman's(1973), Law's(1977), Fishman's(1978),
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Schruben's(1983), Law and kelton's(1984) and Sargent et
al.'s(1989). Figure (2.1) illustrates the confidence interval
methods which have been tested in the M/M/1.

From figure (2.1), the regenerative - spectral -
autoregressive methods have never been compared in the same
testing environment with the overlapping batch means and
standardized time series methods. The issue which arises is
whether we can compare these methods indirectly by comparing the
results we have in Schruben's and Law and Kelton's or Law and
Kelton's and Sargent et al.'s testing environments. This indirect
comparison seems to be rather difficult. Different sample sizes
were used in Schruben's and Law and Kelton's testing environments;
for traffic intensity 0.80, in the first testing environment these
sizes were 3000, 6000, 12000, 30000, 60000, while in the second
environment they were 320, 640, 1280, 2560. Moreover, different
sample sizes were selected in Law and Kelton's and Sargent et
al.'s testing environments. For the second environment, these
sizes were 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192.

Let us now consider the simulation models which were
common in any two testing environments[see table (2.2)]. The
inventory model was used both in Law's and Schruben's testing
environments. In these environments different parameter values for
this model have been selected. Moreover, the AR(1l) and EAR(1l) were
the common models in Schruben's and Sargent et al.'s testing
environments. However, the same confidence interval methods have

been tested in these environments.
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TABLE 2.2
Simulation Models and output processes which have been used in the
testing environments

Sim. Models (F)| ()] (F)|(s&A) | (H&W) | (Sc) | (L&K) | (G) | (Sa)
1973 1978

M/M/1 X X p 4 X X X

M/M/2 x
M/M/1/M/1 X

Time-shared X

Interactive b4

Inventory X X

Groupwise
Ind. process

AR(1) X X

AR(2) X

EAR(1) b4 X

MA(1) X

FIGURE 2.1
Confidence Interval methods which have been tested in the M/M/1

Fishman(1973) Law(1977) Fishman(1973)
1 l 1
\ Vv \
Regenerative a) Independent Nonoverlapping
Replications Batch means
b) Nonoverlapping
Batch means
Schruben(1983) Law & Kelton(1984) Sargent(1989)
I | 1
\Y% \Y% \Y%

a) Nonoverlapping

Batch means-
b) Standardized
time series

a) Nonoverlapping
Batch means

b) Spectral

c) Autoregressive

d) Regenerative
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All the other simulation models were used in only one
testing environment. Therefore, for the performance of the
confidence interval methods in the time-shared computer model,
interactive multiprogrammed computer model and the AR(2) no
comparative results can be extracted.

From the above analysis, the nonhomogeneity of the
testing environments 1is evident. Different methods have been
tested on different output processes under different combinations
of sample sizes, parameter values and nominal confidence levels.
Therefore, the best method in terms of specific statistical
criteria and for certain types of output process cannot be
identified.

Furthermore, recommendations concerning the application
of confidence interval methods to output processes which have not
been included in the testing environments are necessarily limited.
For the nonoverlapping batch means and spectral methods Law and
Kelton(1984) proposed to simulation researchers the use of a small
number of large batches or large spectral window sizes. Schriber
and Andrews(1981) recommended the autocorrelation and partial
autocorrelation functions as links between real-life simulation
output processes and processes on which the confidence interval
methods have been tested. For the latter processes, these authors
assumed that it' is known a-priori for which parameter values the
confidence interval methods attain acceptable performances.

The last two.paragraphs indicate that no satisfactory
answers exist for the two crucial questions stated in the
introductory section. For this reason, in the subsequent chapters
our objective is oriented in two domains. Firstly, the
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identification of some best method(s) in a well defined analytical
and empirical context. Secondly, the provision of recommendations
for applying certain confidence interval methods to output

processes having specific characteristics.
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CHAPTER THREE

STATISTICAL CRITERIA FOR EXPLORING THE BIAS OF VARIANCE ESTIMATORS
OF THE SAMPLE MEAN

3.1 INTRODUCTION
In chapter one, we have discussed different estimators of
the wvariance of the sample mean. These estimators produce
alternative confidence interval methods for steady state means of
simulation output processes. We have denoted the estimator of the
ith method by 9;. In the subsequent analysis i will be used as an
index indicating methods 1,2,...,g. Based on this notation, we

present the confidence interval produced by the ith pethod as

A A
Xn - tvi,oz/zai C# <X+ tvi,az/z(ri

where X, is the mean from a sample of size n, vj the degrees of
freedom according to the 1th method and (1-a) the nominal
confidence level.

Estimators of the <variance of the sample mean with
acceptable properties are more likely to give wvalid confidence
intervals [see Law(1977), Goldsman et al.(1986)]. For instance,
Law(1977) studied the performance of the nonoverlapping batch
means method on the delay in queue in the M/M/1 by using Monte
Carlo methods. The basic statistical criterion for evaluating the
performance of the method was the coverage[see section 2.3]. For
different combinations of sample sizes and number of batches the
estimated coverages were lower than the nominal confidence 1level.
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Law reported that the major cause for the differences between
estimated coverages and nominal confidence levels was the bias of
the corresponding estimator of the variance of the sample mean.

In this chapter, we study the bias of five sample mean
variance estimators for small Qample sizes. More specifically, we
introduce a family of functions which enables us to compute
analytically both the minimum bias of each estimator and its
parameter values for which this minimum bias 1is attained,
providing that the theoretical autocorrelation coefficients of the
output process under study are known. We shall call these
functions "Bias Indicator functions".

In the next section we report previous analytical results
on the bias of sample mean variance estimators

In section 3.3, we derive the expected values of the five
sample mean variance estimators. These expected values are
expressed in terms of the theoretical autocorrelation coefficients
of the output process under study.

In section 3.4, we obtain analytical forms of the Bias
Indicator functions of the sample mean variance estimators. For
small sample sizes, we also illustrate how to determine both the
minimum bias of each estimator and its parameter values for which
the minimum bias is attained.

In the final section, we compare the minimum bias of the
five sample mean variance estimators under consideration in the
AR(1) process -under. positive and negative autoregressive
coefficients. We also state results obtained by Kevork and
Balmer(1990) for the minimum bias of the above estimators in AR(2)
processes and the delay in queue in the M/M/1.
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3.2 PREVIOUS WORK ON THE BIAS OF SAMPLE MEAN VARIANCE ESTIMATORS
The following five confidence interval methods are
considered in the subsequent chapters:-
i) nonoverlapping batch means denoted by NOBM,
ii) standardized time series-area denoted by AREA,
iii) combined area-nonoverlapping batch means denoted by
NOBM-AREA,
iv) spectral denoted by SPEC, and
v) overlapping batch means denoted by OVBM
The corresponding sample mean variance estimators are

defined as follows:

i) NOBM
A
A2 VNB m k 2
0 =—— where V = X - 3.1
NB n NB k-1 j§1[ jom ~ “n ] (3.1)
1 m
Xjm=—— I XG-nme » I=1,2,....k (3.1a)
m t=1
ii) AREA
A
g = where Vgy = ——8 —— % Ay (3.2)
M n k(m3-m) j=1
- A C m
Aj = 3 255(0) (3.2a)
0=1
A Y
$5(2) = Xy.m - xj,0 » 3= 1,2,...,k (3.2b)
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iii) Combined NOBM-AREA

12 kA, k 2
A — SAj +m3[Xy 0 - X
Az VoM A n®-m j=1 3=
o = where V (3.3)
M g cM (2k-1)
iv) SPEC
A
Az Vsp A n A w-1 A
g = where V = Yo + 2 3 MN(S)7g (3.4)
SP n Sp n-w s=1
Ay(s) = 0.5( 1 + cos(xs/w)) (3.4a)
A n-s A%
Ys = s (3.4b)
n
A* 1 n-s
Ys = — 21[ Xe - &n ][ Xt+s - Xn ] (3.4c)
- te=
v) OVBM
A
A2 VOB " ‘/} m ném-i[—lx ( ) xn ]2 (3 5)
o = where - s (m) - .
OB n OB n-m+l j=1 J
1 m-1
Xj (m) = — 2 Xj+t (3.5&)
m t=0 ‘

The evaluation of bias of sample mean variance estimators
constitutes an active field of research in simulation output
analysis. Goldsman and Meketon(1986) showed that as m and k
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becomes large

A A A A
Bias(VNB)zBias(VOB)z(Bias(VCM))/2=(Bias(VCM))/3

Besides, the authors reported that the bias of these four
estimators 1is of order (1/m). Hence, the estimators are
asymptotically unbiased as mw,

For the AR(l), Goldsman et al.(1986) provided exact
forms for the E(Gﬁg) and E(QSM) in terms of the autoregressive
autoregressive coefficient. The authors verified that as m»
the bias of GSM is three times more than that of Vyp.

Furthermore, for the AR(l), Sargent et al.(1989) obtained

A A A A
exact results for E(Vyp), E(Vop), E(VgM), E(Vgy) for k=2 and k=16.

For k=2, the authors reported that
A A A A
Bias(VNB)<Bias(VOB)<Bias(VCM)<Bias(VSM)
while for k=16
A A A A
Bias(VNB)zBias(VOB)<Bias(VCM)<Bias(VSM)
From the above, we see that no exact results exist for

the bias of the sample mean variance estimator of the spectral

method.

3.3 EXPECTED VALUES FOR VARIOUS SAMPLE MEAN VARIANCE ESTIMATORS

Let (X} be a stationary output process with

EXg) = p< o t;l
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and

Var(Xg) = y9 < @ t:l

We derive below the expected values of the five sample mean

variance estimators under consideration.

3.3.1 Nonoverlapping Batch Means

From Law(1977)

k-1 j
(k-1) - 23 1-——]pj’m
K

A2 j-1
E[GNB ] = Yo,m (3.6)

k(k-1)

where Pi,m = 7j,m/70,mv and

1 m-1 [ Isl

. 1 - — i
Yj,m m s=-(&-1) - ]7jm+s (3.7)

is the covariance of X¢ p and Xt+j,m at any time point t.

Simplifying (3.6) we get

k-1 j
Yo,m 2'2 1-— ] Yj,m
A2 j=1 k
Elo = - (3.8)
NB k k(k-1)

Expanding the sum in (3.7) and recalling that +y=y_ i,
Yj,m 1is expressed in terms of the variance and the theoretical
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autocorrelation coefficients of the original output process (X}

as
Yo
Yj,m = Aj(m) (3.9)
m
where
m-1 s [
Pim+ 2 | 1-— ||Pjm-s * ij+s] » =0
s=1 n L
A (m) -
J m-1 s
1 +25}|1-—|pg, j=0
{ S"‘l m 4
From (3.8) and (3.9), knowing v, and pj(i=-1l,...,n-1),

exact analytic results for the expected value of the NOBM
estimator can be obtained under different number of batches k and

sample sizes n

3.3.2 Standardized Time Series-area

Taking expected values to both sides of (3.2), we get

i) - =2 S .10
o - . )
SM nk(m3-m) j=1 J

For the ji, batch, when the batch size m is even

A1 _ - - -
Aj=___ -(m-1)X -(m-3)X - ...-X +
2 (j-1)m+1 (j-1)m+2 (j-1)m+%

+X +3X + ...+ (m-3)X +(m-1)X

(j-1)m+%+1 (j-a)m+?+2 jm- 1 jm
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while when m is odd

1
ﬁj-- -(m-1)X -(m-3)X - - X ot
2 (j-1)m+ (j-1)mt+2 (J-i)m+—;—
+2X . +4X p.y Feoet@-3NX +@-DX
(j-1)m+E;l+2 (j-t)m+—;~+3 Jm-1 jm
where i(j-l)m+s = XG-Dm+s - #

A
Squaring Aj, taking expectations for each cross product

term and recalling that

E[ i(j-l)m+ti(j-l)m+t+s ] = s

we get
Az Yo T D
E| Aj | = S S bps (3.11)
2 r=0 s=0
where m = [m/2] - 1

and  brg = {m-(142r) }{m- (1+2s) Hpr.s - Pm-(r+s+l)}

The notation [m/2] stands for the greatest integer which
is less than m/2.

Substituting (3.11) into (3.10), the expected value of

area estimator is given by

A2 6y, mom
- brs m¢n (3.12)

n(m3-m) 1r=0 s=0
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3.3.3 Combined Area-nonoverlapping Batch Means

From (3.3)
12 k [A2 k 2
ZEAJ]"I- mE[ Z(XJ.m-Xn)
Az m® - m 3=l 3=1
0' -
cM n(2k-1)
But
k A, nk(m3-m) A2
54 ] -2 ol |
j=1 12 SM
and

E 5 X )2] k(k-1 E[A2 ]
[jzl( jom T P

Substituting (3.14) and (3.15) into (3.13)

[Az ] [Az ]
kE|o + (k-1)E|lo
SM NB

A ]
E|lo -
CM 2k-1

From (3.16), the expected value of the

Chapter 3

(3.13)

(3.14)

(3.15)

(3.16)

combined

NOBM-AREA estimator is the weighted average of the expected values

of the NOBM and AREA estimators. Moreover for k=1 the AREA and

combined NOBM-AREA estimators have the same expected value.
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3.3.4 Spectral

From (3.4)
A2 1 A w-1 A
Elo - Elvol + 2 3 MN(S)E|yg (3.17)
SP n-w s=1
A n-s A¥*
where Elyg| = Elyg
n
From Anderson(1970,page 448)
*
E['ys] - 7, Ba(n) (3.18)
with
1 n-1 r
gs(m)=1 - — 11 +25 |1 - — |pr s=0
n r=1 n
rs n-1 (n-x)s
- — {14+ 2 Z ]Pr +25 pr +
r-1 n(n-s) r=n-s n(n-s)
n-s-1 rs r-s
+2 3 1 - - ]Pr 1¢{s<n-s-1)
r=s+1 n(n-s) n-s
1 s rs n-1 (n-r)s
~pg- — (142 3 ]Pr +23 Pr
n r=1 n(n-s) r=s+1 n(n-s)

1{s=n-s-1
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1 n-s-1 rs s r
=-pg- —11+2 Y 1- ]pr +2 § — pp +
n r=1 n(n-s) r-n-s n

n-1 (n-x)s
+2 5 —— py n-s-1<s<n-1
r=s+l1 n(n-s)

1 n-1 r
-on.1 - —4f 1+2Y — py s=n-1
n r=1 n

3.3.5 Overlapping Batch Means

Substituting (3.5a) into the OVBM sample mean variance

estimator
2
A2 m n-m+l| 1 [m-1
o m——— 3 — |3 X - T
0B n(n-m+l)  j=1 m lt=0

2

m n-m+l{ m-1 [ Xj+t - Xn ]
n(n-m+l) j=1 | t=0 m
2
1 n-n+l| m-1
-— 3 2 (Xj4e - X))
mn(n-m+1) j=1 t=0
1 n-m+l|m-1 m-1
=—— 3 {2 I Rj4s-Xn) (Xj40-Xp) (3.19)

mn(n-m+l) j=1 |s=0 €=0
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We have found that it is rather difficult to derive the
exact form of the expected value of the OVBM estimator from

(3.19). Meketon and Schmeiser ‘approximated (3.19) by

n 2 m-1 n-s
myY (X3-X) + 2§ (w-s) § (X3-Xp) (Xj45-%p)
A2 s=1 s=1 j=1
OB— mn(n-m+1)
n 2 (-8 1
S (Xg-Xp) 2(X3-Xp) (Xy4¢-Xp)
1 s=1 m-1 s 1(3=1
- +2Y 1 ]
n-m+l n s=1 m n
| L ‘
1 A m-1 s A
LN T
n-m+1 s=1 m

We set Y;=X;-X,; From the following configuration we can
investigate the accuracy of the approximation under different
sample sizes. The denominators of (3.19) and (3.20) have been

omitted.
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n=5 , m3
exact form approximate form
Y, Y, + Y, Y+ Y, Y + 3Y, Y, +2Y, Y+ Y, Y.+
Y, Y, +2Y Y +2Y, Y + Y, Y, + 2Y, Y, +3Y Y +2Y, Y + Y, Y, +
Y Y, +2Y, Y, +3Y Y +2Y Y +Y Y+ | Y Y, +2Y, Y, +3Y Y, +2Y Y + Y, ¥,
Y Y +2Y Y 4+2Y Y ,+Y Y+ Y, Y, 42Y Y +3Y Y ,+2Y Y
Y Y+ Y Y, +Y Y, Y Y +2Y Y, +3Y .Y,
n=6 , m=3

exact form

Y, Y, + Y, Y+ Y,V .+
Y, Y, 42Y, Y +2Y,Y + Y, Y, +
Y, Y, 42Y Y +3Y Y +2Y Y +Y Y +
Y Y, +2Y Y +3Y Y +2Y Y +Y Y,
Y Y +2Y Y +2Y Y 4+Y Y

Y Y+ Y Y Y Y,

approximate form

3Y,Y,+2Y, Y+ Y, Y +
2Y, Y, +3Y, Y, +2Y, Y + Y, Y +
Y, Y, +2Y Y +3Y Y +2Y Y + Y Y+
Y, Y, +2Y Y, +3Y Y +2Y Y +
Y Y+ 2Y Y +3Y Y +
Y Y, +2Y Y +

Y, Y,
2Y.Y,
Y Y

676

By using the approximate form (3.20), some early and late
cross-product terms are counted more times than it should be.
However, the approximation improves for a fixed batch size m as
the sample size n increases. This is so because in (3.20) there
are fewer terms with coefficients different from those defined by
the exact form (3.19).

Taking expectations to both sides of (3.20)

A2 1 1 A m-1 s A
E|lo = E[y,] +2 3| 1-— |Ejys (3.21)
OB n-m+1 s=1 m

where E(yg) was defined in (3.18).
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3.4 THE BIAS INDICATOR FUNCTIONS

Consider the following ratios:-

i) for the nonoverlapping Dbatch means, area and combined

NOBM-AREA methods

i
Bs(n,k);, = ——— (3.22a)
V(Zn) i =NB, SM, CM

A2
E[ o

ii) for the spectral method

A2
o

N

- (3.22b)
SP V(%)

E

Bs(n,w)
iii) for the overlapping batch means method

A2
0- ]
0):)

V(Xp)

E

Bs(n,m)OB - (3.22¢)
where V(X,) is the true variance of the sample mean.

For the five confidence interval methods, the ratios
(3.22) measure the bias of the corresponding sample mean variance
estimators. For this reason we shall call each ratio the "Bias
Indicator function“‘of the corresponding estimator.

Exact aﬂélytic values for each Biasb Indicator function
can be obtained only when the theoretical autocorrelation

coefficients of the process under study are known. Substituting
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the expected values of the sample mean variance estimators into

(3.22) and recalling that

n-1
V(Xn)-l{l+22[1-%—]ps}
n s=1

the Bias indicator functions take the following forms:

NONOVERLAPPING BATCH MEANS

k-1 .
235 [t 5 ] aym
j=1

Ao(m) -
k-1
Bs(n,k) - (3.23a)
NB n-1 s
1+23 [1- 2 Jes
s=1

where Aj(m) was defined in (3.9)

STANDARDIZED TIME SERIES METHOD-AREA

- -

[ m m 1
> Y s
6 r=0 s=0
Bs(n,k) = kel , (3.23b)
SM m3-m n-1
L2 - 2 e
s=1

where 6,5 and m , were defined in (3.11).

COMBINED AREA-NONOVERIAPPING BATCH MEANS

kBs(n, k) + (k-1)Bs(n,k)
SM NB

Bs(n,k) = (3.22¢)
CM 2k-1
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SPECTRAL METHOD

w-1
ng,(n) + 2 ¥ (n-s)ry(s)gg(n)
1 s=1
Bs(n,w)gp = - (3.224)
n-w n-1
1e23[1- )0
s=1

where \(s) and gg(n) were defined in (3.4a) and (3.18)

respectively.

OVERIAPPING BATCH MEANS

m-1 ]
ngo(m+2 3 (n-s) [1- —=—]gs(n)
1 s=1
Bs(n,m)gp= (3.22¢)
n-m+l n-1 s
1+25 [1- 2 Jos
s=1

In the next chapter, we use the asymptotic forms of the
Bias Indicator functions to compute analytically the 1limiting
coverages of the five confidence interval methods wunder
consideration. With respect to the nonoverlapping batch means,
area and combined area-nonoverlapping batch means methods, for
fixed m these coverages will be computed as ko and also n+». For
the spectral and overlapping batch means methods, for fixed m and
w respectively, the limiting coverages will be obtained as n9x.

Two criteria additional to the Bias Indicator functions
are defined below. Given the sample size, these criteria are the
minimum bias of each sample mean variance estimator and its
parameter values for which this minimum bias is attained. We shall
call these values "MB-parameter values".
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Let kyp be the MB-parameter values of the nonoverlapping
batch means, area and conbined area-nonoverlapping batch means
estimators. Similarly, 1let wus denote by wyg and myp the
MB-parameter values of the spectral and overlapping batch means
estimators respectively. The above MB-parameter values will
satisfy the following inequalities:-
i) for the NOBM, AREA and combined NOBM-AREA
i Bs(n,k ) - 11 <1 Bs(n,k) -1
MB 1 i
for any k#kyp
ii) for the spectral
| Bs(n,w ) -1 1 ¢ 1 Bs(n,w) -1
MB SP SP
for any w#wyp
iii) for the overlapping batch means
| Bs(n,m ) -1)¢1 Bs(n,m) -1
MB OB OB

for any m#myp

For each of the above five sample mean variance
estimators and in terms of the true variance of the sample mean,

the minimum bias will be given by
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MB; = min i Bs(n,k); - 1 | for i=NB, SM, CM

MB = min | Bs(n,w) - 11
SP SP

MB = min | Bs(n,m) -1 1
OB OB

For the minimum bias and the MB-parameter values, exact
analytic results can be obtained only when the theoretical
autocorrelation coefficients of the process under study are known.
Such a process is considered in the next section. For processes
whose theoretical autocorrelation functions are not known
estimation procedures for the above criteria are discussed in

chapter six.

3.5 THE BIAS OF SAMPLE MEAN VARIANCE ESTIMATORS IN AR(1)
PROCESSES

Three statistical criteria for studying the bias of each
sample mean variance estimator were introduced in the previous
section; the Bias Indicator function, the minimum bias and the
MB-parameter values. Let us now compute the values of these

criteria for the stationary AR(1l) process which has the form
Xe = p+ p( Xy = 1) + € (3.23)
where the €¢.'s are independent and normally distributed random
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variables with mean 0 and common variance o2.

For this process, the s¢} lag theoretical autocorrelation
coefficient is ¢!S| [see Harvey(1981)]. Therefore, when the
autoregressive coefficient ¢ 1is positive, the autocorrelation
function decays monotonically to zero. With negative ¢ the
autocorrelation function converges to zero oscillating between
positive and negative values. ‘

For the AR(1l), figure (3.1) 1illustrates the Bias
Indicator functions of the five sample mean wvariance estimators
which have been considered in the previous section. The
autoregressive coefficients are .4074, -.4074, 0.963, and -.963.
The choice of these particular values will be explained in the
next chapter.

First, consider the nonoverlapping batch means(NOBM),
area and combined area-nonoverlapping batch means sample mean
variance estimators. For these three estimators, diagrams (a) and
(b) display the shape and the relative position of the Bias
Indicator functions for sample size 512, We have found that
similar shapes hold for any other small sample. For positive p, we
observe that the three estimators underestimate the true variance
of the sample mean, while for negative ¢ they overestimate it. For
any number of batches k32 the NOBM estimator has the smallest
bias. For the same range of k, the combined NOBM-AREA estimator is
less biased than the AREA estimator.

In diagr;ms (c) and (d), we have drawn the Bias Indicator

functions of the NOBM and AREA estimators for ¢=0.963, -0.963 and
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different sample sizes. For any other negative or positive value
of ¢, the shape of these functions is similar. For k)2, the Bias
Indicator function of the combined NOBM-AREA estimator has shape
similar to that of the corresponding functions of the NOBM and
AREA estimators because this function of the combined NOBM-AREA
estimator is the weighted average of the corresponding functions
of the NOBM and AREA estimators{see form (3.22c¢c)]. For k=1 the
Bias Indicator functions of the AREA and combined NOBM-AREA
estimators are identical. From the two diagrams, for any finite
sample size the minimum bias of the NOBM estimator is attained for
k=2 while the minimum bias of the other two estimators is achieved
for k=1.

Let us now examine the properties of the Bias Indicator
function of the spectral(SPEC) estimator. Diagrams (e) and (f)
illustrate the form of this function under different values of
sample size n, autoregressive coefficient ¢ and spectral window
size w. When ¢ is positive, the Bias Indicator function is an
increasing function of the spectral window size. For negative o,
the SPEC estimator overestimates the true.variance of the sample
mean for any combination of n,p and w. By keeping fixed the sample
size, higher autocorrelation levels move the whole function
upwards.

The above properties of the Bias Indicator function of
the SPEC estimator hold for the corresponding function of the
overlapping batc£ means estimator(OVBM) [see diagrams (g) and

(h)].
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For different sample sizes, table (3.1) displays the
minimum bias of the five sample mean variance estimators in the
AR(1). The numbers in brackets are the parameter values for which
the minimum bias is attained. First, consider the case where ¢ is
positive. For high autocorrelation levels and small sample sizes
the AREA estimator achieves smaller minimum bias than that of the
NOBM estimator. This result contradicts that obtained by Sargent
et al.(1989)[see section 3.2].

For any sample size, the SPEC estimator attaines smaller
minimum bias than that of the NOBM and AREA. The same results hold
for the OVBM estimator at large sample sizes. With regard to the
SPEC and OVBM estimators the minimum bias is achieved at higher
values of the spectral window size or the batch size as the sample
size increases.

Examine now the minimum bias of the five estimators when
¢ is negative. For small sample sizes, the NOBM estimator achieves
the smallest minimum bias. For high autocorrelation levels and
small sample sizes, the minimum bias of the SPEC estimator is
smaller than that of the AREA. For large sample sizes the OVBM

estimator attaines the largest minimum bias.
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TABLE 3.1
Minimum bias of sample mean variance estimators in AR(1l)
¢ = 0.4074

n NOBM AREA |NOBM-AREA| SPEC OVBM

4 0.4466 | 0.4239 0.4239 0.1325 0.5825
(2) (1L (L (3 (3)

8 0.2631 | 0.2481 0.2481 0.0530 0.1365
(2) ¢9) 1) (5) (7)

16 0.1299 0.1265 0.1265 0.0049 0.0074
(2) (1) 1 ) (10)

32 0.0630 | 0.0626 0.0626 0.0051 0.0105
(2) (L &9 (10) 17)

64 0.0310 | 0.0310 0.0310 0.0025 0.0021
(2) (1) (L (15) (24)

128 0.0154 | 0.0154 0.0154 0.0007 0.0004
(2) (1) 1) (21) (38)

256 0.0077 0.0077 0.0077 0.0002 0.0005
(2) (1 (L (29) (59)

512 0.0038 0.0038 0.0038 0.0001 0.0002
(2) (1) L (41) (94)

1024 0.0019 0.0019 0.0019 0.0000 0.0000
(2) (1) (1) (58) (148)

2048 0.0010 0.0010 0.0010 0.0000 0.0000
(2) (1) (L (81) (234)

¢ = 0.9630

n NOBM AREA |NOBM-AREA| SPEC OVBM

4 0.9718 0.9682 0.9682 0.9565 0.9796
(2) (1) (1L (3) (3)

8 0.9488 0.9402 0.9402 0.2923 0.3544
(2) (1) (1) (6) @)

16 0.9015 0.8850 0.8850 0.0960 0.0444
(2) (1) (1) (11) (13)

32 0.8110 0.7834 0.7834 0.0328 0.0387
(2) (1) (1) (21) (23)

64 0.6534 0.6168 0.6168 0.0030 0.0163
(2) L (1) (37) (41)

128 0.4323 0.4018 0.4018 0.0059 0.0002
(2) (1) (1) (64) (71)

256 0.2274 0.2163 0.2163 0.0013 0.0001
(2) (1) 1) (102) (122)

512 0.1092 0.1075 0.1075 0.0004 0.0001
(2) (1) (1) (155) (205)

1024 0.0532 0.0533 0.0533 0.0002 0.0003
(2) (1) L (227) (343)

2048 0.0262 0.0273 0.0273 0.0001 0.0001
(2) (1) (1) (327) (569)
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TABLE 3.1 (Cont..)

¢ = -0.4074

n NOBM AREA  |NOBM-AREA SPEC OVBM

4 0.2746 | 0.4539 0.4539 | 0.8720 | 0.2480
(2) (1) (1) (2) (2)

8 0.2058 | 0.2223 0.2223 | 0.3926 | 0.3606
(2) (1) (1) (3) (2)

16 0.1149 | 0.1156 0.1156 | 0.1801 | 0.2645
(2) (1) (1) (5) (5)

32 0.0593 | 0.0593 0.0593 | 0.0805 | 0.1684
(2) (1) (1) (7) (9)

64 0.0301 | 0.0301 0.0301 | 0.0371 | 0.1032
(2) (1) (1) (10) (15)

128 0.0151 | 0.0152 0.0152 | 0.0175 | 0.0624
(2) (1) (1) (16) (25)

256 0.0076 | 0.0076 0.0076 | 0.0084 | 0.0378
(2) (1) (1) (22) (42)

512 0.0038 | 0.0038 0.0038 | 0.0040 | 0.0230
(2) (1) (L) (31) (69)

1024 0.0019 | 0.0019 0.0019 | 0.0020 | 0.0141
(2) (1) (1) (50) (114)

2048 0.0010 | 0.0010 0.0010 | 0.0010 | 0.0087
(2) (1) (1L (77) (189)

¢ = -0.9630

n NOBM AREA |NOBM-AREA SPEC OVBM

4 0.0363 [20.0735 | 20.0735 |13.6514 | 8.7676
(2) (1) (1) (2) (2)

8 0.0697 | 8.9882 8.9882 | 6.4198 | 6.2364
(2) (1) (1) (3) (2)

16 0.1284 | 3.9857 3.9857 | 2.7594 | 3.6549
(2) (1) (1) (3) (2)

32 0.2151 | 1.6786 1.6786 | 1.3043 | 2.2390
(2) (1) (L) (3) (2)

64 0.2955 | 0.7098 0.7098 | 0.6629 | 1.5761
(2) (1) (L (3) (2)

128 0.2849 | 0.3493 0.3493 | 0.3612 | 1.1824
(2) (1) (1) (5) (24)

256 0.1847 | 0.1878 0.1878 | 0.1947 | 0.7478
(2), (1) (1) (7) (70)

512 0.0985 | 0.0986 0.0986 | 0.1016 | 0.4224
(2) (1) (1) (13) (140)

1024 0.0505 | 0.0506 0.0506 | 0.0518 | 0.2325
(2) (1) (1) (25) (260)

2048 0.0256 | 0.0258 0.0258 | 0.0261 | 0.1289
(2) (L) (L (47) (431)
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Kevork and Balmer(1990) compared the minimum bias of the
five sample mean variance estimators on two additional processes:-
_ the steady state delay in queue in the M/M/1 and
_ the stationary AR(2) when its autocorrelation function shows a
damped cyclical behaviour.
For the M/M/1, the spectral sample mean variance estimator
achieved the smallest minimum bias for all the sample sizes that
were considered. On the other hand, in the AR(2) for certain
autoregressive coefficients and small sample sizes, the smallest

bias was achieved by the combined estimator

3.6 SUMMARY

In this chapter, we introduced a family of functions for
studying the bias of sample mean variance estimators in small
samples. We have called these functions "Bias 1Indicator
functions". Analytical forms of the Bias Indicator functions have
been derived for five estimators; mnonoverlapping batch means,
overlapping batch means, area, combined area-nonoverlapping batch
means and spectral. The above forms have been expressed in terms
of the theoretical autocorrelation coefficients of the output
process under study.

Moreover, for each sample mean <variance estimator, we
have defined the following two statistical criteria; the minimum
bias and its parameter values for which the minimum bias 1is
attained. These farameter values have been called "MB-parameter
values". The latter two criteria are related to the Bias Indicator
functions. That is, the values of these criteria are determined by
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the Bias Indicator functions. Therefore, for each estimator
analytical values of the minimum bias and the "MB-parameter
values" can be obtained only when the autocorrelation function of
the process wunder study is known. The usefulness of the
MB-parameter values will become evident in chapter six. There, we
investigate the performance of the confidence interval methods at
these parameter values.

Analytical values for the three statistical criteria
under consideration have been obtained for the AR(1l), AR(2) and
the delay in queue in the M/M/1. For these processes, the
theoretical autocorrelation coefficients at any lag are given by
known difference equations. In the M/M/1 and the AR(l) with
positive autoregressive coefficient, the spectral estimator
achieves the smallest minimum bias. The nonoverlapping batch means
estimator attains the smallest minimum bias in the AR(1l) with
negative autoregressive coefficient. In the AR(2), for certain
autoregressive coefficients and small sample sizes, the smallest
minimum bias is achieved by the combined estimator.

In the following chapter we derive the limiting forms of
the Bias Indicator functions. These limiting forms are used for
computing analytically the limiting coverages of the corresponding

five confidence interval methods.
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ASYMPTOTIC COMPARISON OF CONFIDENCE INTERVAL METHODS

4.1 INTRODUCTION

For the past five years, the derivation of asymptotic
properties of confidence interval methods has constituted one of
the main object of research in the output analysis of steady-state
simulations. Several criteria have been selected and used for
measuring the asymptotic performance of each method. Such criteria
are limiting coverages of steady-state means from confidence
interval methods and limiting expected values and variances of
confidence interval half lengths. Values of the above criteria are
computed analytically i.e without using Monte Carlo methods.

In studying the asymptotic performance of confidence
interval methods, two 1issues arise. The first refers to the
numerical computation of the limiting coverages and the second to
the limiting precision and stability of the confidence intervals,
providing that these intervals cover the steady-state mean with
the nominal probability.

In regard to the first issue, Goldsman et al.(1986) and
Sargent et al.(1989) studied the 1limiting coverages of the
nonoverlapping/overlapping batch means, area and combined
NOBM-AREA methods on the AR(1l) with the autoregressive coefficient
being positive. With respect to the second issue, Schmeiser(1982)
derived limiting'fofﬁs for the expected values and variances of
the confidence interval half 1lengths produced by the
nonoverlapping batch means method. Goldsman and Schruben(1984)
derived the corresponding limiting forms for the four standardized
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time series methods. The authors also compared the 1limiting
expected values and variances of the confidence interval half
lengths of the nonoverlapping batch means method with those of the
four standardized time series methods. Goldsman et al.(1986) and
Sargent et al.(1989) summarized the results of the previous two
works.

In this chapter, we display some further results on the
asymptotic properties of confidence interval methods. For thg
nonoverlapping/overlapping batch means, area, combined NOBM-AREA
and spectral methods, the 1limiting coverages are computed
numerically for different parameter values in the AR(1l), AR(2) and
the delay in queue in the M/M/1. Furthermore, for the spectral and
overlapping batch means methods, we derive limiting forms of the
expected values and variances of the confidence interval half
lengths.

More specifically, in the following section we describe
the way in which the limiting coverages of the above five methods
can be computed analytically. This approach is general in that it
can be applied to any ©process whose the theoretical
autocorrelation coefficients are known. In section 4.3, we study
the limiting coverages achieved by the five methods in the AR(1l),
AR(2) and the delay in queue in the M/M/1. In the final two
sections, we discuss asymptotic comparisons of the limiting
expected values and variances of the confidence interval half

lengths produced by the five methods under consideration.

-98-



Chapter 4

4.2 THE ANALYTICAL COMPUTATION OF LIMITING COVERAGES

Let (X¢,t=1,2,3...} be a stationary output process with

EXg) = p <o , t3l (4.1a)

Var(X¢) = 9 < ® , 6l (4.1b)
(-]

and Syst < w (4.1c)
S=-

The last condition implies that the correlation between X and
Xt4+s 1s negligible when s is very large[see Law and Carson(1978)].
This property is satisfied by a wide class of processes including
autoregressive processes, regenerative processes and m-dependent
processes [see Law(1983), Schruben(1983)]. The term "m-dependence"
means that Xy and Xi,g are autocorrelated only if s<m [see
Kleijnen(1975)].

For simulation output processes satisfying conditions
(4.1), we illustrate the way in which the limiting coverages of
the following confidence interval methods can be computed
analytically:

i) Nonoverlapping batch means method(NOBM)
ii) Standardized time series-area method(AREA)
iii) Combined area-nonoverlapping batch means
method (NOBM-AREA)

iv) Spectral method denoted(SPEC)
v) Overlapping batch means method(OVEM).

For the first three methods, the limiting coverages are
obtained when the batch .size m is fixed and the number of
contiguous batches k tends to infinity. With regard to the
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overlapping batch means method the limitimg coverages are computed
when the sample size n tends to infinity and the batch size m is
fixed. For the spectral method the coverages under discussion are
obtained when the sample size n tends to infinity keeping fixed
the spectral window size.

In the subsequent analysis we use the notation which has
been established by Goldsman ahd Schruben(1984) and Goldsman et
al.(1986). Define the scalar quantities 03 = nV(X,) and
02 = Qim[nV(X,)] where V(X,) 1is the true variance of the sample

N

mean. The above confidence interval methods propose the following

estimators for o3:-

A
VN =

k . 2
k-1 321[ jom - ¥o ]

where Xj,m was defined in (3.1la)

A 12
VgM =

A2
Aj

LAz R

(m3-m)k j=1

A
where Aj was defined in (3.2a)

A A
A kVgy + (k-1)Vyp
Vem =
2k-1
n w-1
. A A
0SP = Yo *+ 2 Z Me(8)Ys
n-w s=1

where \;(s) and yg were defined in (3.4a) and (3.4b)
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A m
Vop =

n-mt+ 2
—— T xe - )
n-m+l =1
where Xﬁ(m) was defined in (3.5a).

We remind the reader that the initials NB, SM, CM, SP and
OB stand for the NOBM, AREA, combined NOBM-AREA, SPEC and OVBM
methods respectively.

For the estimators Gi of the NOBM, AREA and combined
NOBM-AREA methods, Goldsman et al.(1986) and Sargent et al.(1989)

A
report that as k-»w, V42E(Vy) w.p 1. The same 1is true for

A
Vi(i=SP,0B) as mn». Therefore, the following random variables:-

i) for fixed m and large k

Vo (Xp-p) vn (Xp-p)
T, = —mm— |, T, = ——— | T,

A 3 A 3 A 3
[VNB] [ VSM] [ VCM]

vVn (Xp-p)

ii) for fixed w and large n

vn (Xn-p)

[V ]’

T, =

iii) for fixed m and large n

\/n_(xn' P’)

(95 ]’
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tend to be normal with mean zero and variances

1 1 1 1 1
’ ) ’ , (4.2)

A A A A A
E(VNB)] [ E(VSM)] [ E(VCM)] [ E(VSP)] [ E(VOB)]

o2 o2 o? o? 02

respectively.
Multiplying and dividing ratios (4.2) by n, we get the
corresponding limiting Bias Indicator function at the denominator

of each ratio i.e

AsBs(m) = 0im Bs(n,k) for the NOBM method
NB koo NB

2im Bs(n,k) for the AREA method

AsBs (m)
SM koo SM

AsBs(m) = Qim Bs(n,k) for the combined NOBM-AREA method
CM koo CM

AsBs (w) = Qim Bs(n,w) for the SPEC method
SP n->w SP

AsBs(m) = 0im Bs(n,m) for the OVBM method.
0B N> 0):)

Standardizing T,,T,,T,,T,,Tg;, the following new random

variables
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Xn - & 1
Z, - A \/___
USM AsBs(m)SM
Xp - ¢ 1
UCM AsBs(m)CM
Xp - 1
B \/ asBs ()
USP AsBs(w)SP
Zp - 1
Z, =

A
UOB \ / AsBs (m)OB

can be approximated by the standardized normal distribution Z with
mean 0 and variance 1.
Therefore, for each confidence interval method the

limiting coverages will be computed analytically by

AsCVR(m)NB =1-240 zoz/z\ / ASBS(m)NB (4.3a)
AsCVR(m)SM - 1-229 za/z\ / AsBs(m)SM (4.3b)

AsCVR(m)CM =1 -2 d’[ zoz/z\ / AsBs(m)CM ] (4.3¢)
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AsCVR(w)SP -1 -2 ¢[ zu/z\/ AsBs(w)SP ] (4.34)
AsCVR(m)OB -1 -2 ¢[ za/z\/ A'sBs(m)OB ] (4.3e)

where Pr(Z>z ) = o/2
a2

and  &(z) = J 1 e D (cocxct).
V 2%

We derive below the asymptotic forms of the five Bias
Indicator functions under consideration:

NONOVERIAPPING BATCH MEANS METHOD

©0

Providing that 5 pg<w, when the batch size m is fixed

S= -0
then
" J
25| 1-—=—1A5(m)
FAERER
Cim =0 (4.4)
ko k-1
and
le[ S [1 - ——]ps -Qim[ }j [1 - = Jos| = 3 es (4.5)
s=1 s=1 s=1

Taking limits to both sides of (3.22a) and wusing (4.4)
and (4.5), the limiting form of the Bias Indicator function will
be given by
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1+2m§:1[1-i]p

m s

, s=1

AsBs(m)NB- Qim Bs(n,k)NB- (4.6a)
koo

[- <}
1+25 pg
s=1

STANDARDIZED TIME SERIES-ARFA METHOD

Taking limits to both sides of (3.22b) and using (4.5)

- -

m m
6 Zo Zoﬁrs
r=0 s=
AsBs(m)_.. = 2im Bs(n,k) ., = (4.6b)
SM Koo SM ©
(m-m3)[ 1+25 pg ]
s=1

where m” and §,.g were defined in (3.11).

COMBINED AREA-NONOVERIAPPING BATCH MEANS METHOD

From (3.22c)

kBs(n,k)SM + (k-l)Bs(n,k)NB

Bs(n,k) -
CcM 2k-1

Taking limits to both sides of this relationship

im|Bs(n,k) .+ (1-(1/k))Bs(n, k) ]
kaw[ SM NB

ASBS(m)CMEQiszS(n’k)CM ;
Qi - —_—
k_ls[zll k]]

AsBs (m) + AsBs(m)
SM NB
= (4.6¢c)
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From (4.6c), the limiting Bias Indicator function of the combined
NOBM-AREA method is the mean of the corresponding functions of the

NOBM and AREA methods.

SPECTRAL METHOD

For the function gg(n) defined in (3.18)

1 when s=0
im gg(n) =
n->e

0 when s#0

Using (4.5), the limiting form of the Bias Indicator function will

be given by
w-1
1+ 25 \(s)pg
s=1
AsBs(w) = Qim Bs(n,w) = (4.64)
SP SP ©
N> 1+25 pg
s=1

where A (s) = 0.5(l+cos(xs/w)).

OVERLAPPING BATCH MEANS METHOD

From (3.22e)

1+2m§j1[1-i]p

o s

s=1

AsBs(m)OB= Cim Bs(n,m)OB= (4.6e)
n-%o -

[« ¢}
1+29 pg
s=1

For the NOBM method, since n=mk, when m is fixed and ko
then n»>». Therefore, for the NOBM and OVBM methods the limiting
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forms of the Bias Indicator functions are exactly the same[compare
(4.6a) with (4.6e)). This means that when the sample size tends to
infinity these two methods produce the same limiting coverages for
equal batch sizes.

By substituting (4.6) into (4.3), the limiting coverages,
that the five confidence interval methods achieve, can be computed
exactly, providing . that  the theoretical autocorrelation

coefficients of the output process under study are known.

4.3 STUDYING THE LIMITING COVERAGES IN DIFFERENT STATIONARY
OUTPUT PROCESSES

Five confidence interval methods have been considered in
the previous section. For these methods, the limiting coverages
can be computed analytically only when the theoretical
autocorrelation coefficients of the output process under study are
known. Three processes, whose autocorrelation functions are known,
are considered in this section; the AR(l), AR(2) and the delay in
queue in the M/M/1 queueing system. The limiting coverages of the

five methods are studied on these processes.

4.3.1 AR(l) processes
Table (4.1) displays the 1limiting coverages, the
nonoverlapping/overlapping batch means, area, combined NOBM-AREA
and spectral methods achieve in the AR(1). For the AR(1l) process
defined in (3.23), the sth 1lag theoretical autocorrelation

coefficient is ¢!S!,
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Limiting Coverages of Confidence Interval Methods in the AR(1l)

o m | NoBM , oveM | amEa | gombined
2 7946 .5888 |  .7142
4 .8942 7244 | .7978
8 .8768 .8165 |  .8508
4074 | 16 .8890 .8638 |  .8770
32 .8948 .8832 |  .8890
64 .8974 .8920 |  .8948
w .9000 .9000 |  .9000
2 .5618 2162 | .4392
4 6868 3682 | .5654
8 7872 5342 | .6926
16 .8480 7102 | .7922
32 8766 8164 |  .8498
7778 | 64 .8890 .8632 |  .8768
128 8946 .8830 |  .8890
256 8974 8928 | .8946
o .9000 .9000 |  .9000
2 .2480 0346 | .1784
4 .3410 0628 |  .2486
8 L4572 1184 | L3424
16 .5886 2196 | .4604
32 L7132 3798 | .5940
64 .8058 5784 | .7196
.9630 | 128 8574 7432 8102
256 .8806 .8320 |  .8586
512 .8908 .8698 |  .8808
1024 8956 .8858 | .8908
2048 .8978 .8932 | .8966
@ .9000 .9000 | .9000
Spectral Method ("2
W 0.4074 | _0.7778 ] 0.9630
2 7946 .5618 2480
4 8568 6918 3416
8 8864 .7970 4592
16 8964 .8608 .5930
32 .8990 8882 L7214
64 .8998 .8968 .8178
128 .8992 .8780
256 .8978
512 8994
@ .9000 .9000 .9000
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Goldsman et al.(1986) and Sargent et al.(1989) report

that the 1limiting coverages of the NOBM, OVBM methods tend to
achieve the nominal confidence level more quikly than the limiting
coverages of the AREA and combined NOBM-AREA methods. This can be
verified from the first part of table (4.1). Among these four
methods, for equal small batch sizes m, the NOBM and OVBM methods
achieve 1limiting coverages which are the nearest to the nominal
confidence level. We can also observe that as the spectral window
size w increases the limiting coverages of the spectral method

tend to attain the nominal confidence level rather fast.

4.3.2 M/M/1 queueing model
The process under study is the delay of the jth customer
in queue. Two forms exist for computing analytically the
theoretical autocorrelation function of this process. The first
one has been given by Blomquist(1967) and the second by
Daley(1968). Let N and 7 be the arrival rate and the traffic
intensity respectively. According to Daley, the sth lag

theoretical autocorrelation coefficient is given by the difference

equation
#(l-7) - Cgy,
Ps+1 = Pg = (4.7)
Aa?
where
1-73 2rs s I'(s-% )
Cg = - Z (s+l-r)— 0 ——v—ou— 2T
2\ 1+7 r=1 F(s+1)I'(})
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and
47 72 73(2-7)
z = y B — y O = —
(1+7)2 AN1l-7) (MN1-7))2

From Daley, we can also see that the autocorrelation
function of the AR(1l) decays faster than the autocorrelation
function of the delay in the M/M/1, providing that the two
processes have the same first lag theoretical autocorrelation
coefficient. To compare the performance of the confidence interval
methods between the above two processes, the values of the
autoregressive coefficient ¢ and the traffic intensity 7 were
chosen in a way such that these processes have the same first lag
theoretical autocorrelation coefficient. We have selected the
following wvalues for 7; 0.20, 0.50 and 0.80. The corresponding
values for ¢ are 0.4074, 0.7778 and 0.963. For these values of ¢
and 7, figure (4.1) illustrates the autocorrelation functions of
the AR(1) and M/M/1.

Table (4.2) displays the limiting coverages achieved by
the five confidence interval methods under consideration. The
infinite sum of the autocorrelation coefficients at the

denominators of the limiting Bias Indicator functions was computed

by

© 1 +7 27(3-7)
1+2Y pg = + [see Daley(1968)]
s=1 1 -7 (2-7)(1-7)2
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Figure 4.1
Autocorrelation functions of the AK(I)
queue in the M/M/1
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Limiting Coverages of Confidence Interval Methods in the M/M/1

Combined
T m NOBM , OVBM AREA NOBM- AREA
2 .7854 .5794 . 7046
4 .8428 .7106 .7886
8 .8736 .8084 .8448
0.2 16 .8876 .8588 .8742
32 .8940 .8810 .8876
64 .8970 .8910 .8950
® .9000 .9000 .9000
2 .5190 .1970 .4032
4 .6432 .3108 .5224
8 .7512 .4756 .6484
16 .8256 .6506 .7566
32 .8658 .7790 .8286
0.5 64 .8842 .8460 .8666
128 .8924 .8754 .8842
256 .8962 .8884 .8924
© .9000 .9000 .9000
2 .2004 .0278 .1436
4 .2768 .0492 .2008
8 .3758 .0908 .2780
16 L4944 .1638 .3780
32 .6208 .2814 .4982
64 .7334 L4442 .6262
0.8 128 .8144 .6216 .7390
256 .8600 .7600 .8178
512 .8816 .8368 .8590
1024 .8912 .8714 .8818
2048 .8958 .8862 .8912
) .9000 .9000 .9000
Spectral method T
w 0.2 0.5 0.8
2 .7854 .5190 .2004
4 .8504 .6476 .2774
8 .8832 .7604 L3774
16 .8954 .8378 L4978
32 . .8988 .8778 .6270
64 .8998 .8936 .7432
128 .8984 .8266
256 .8996 .8724
512 .8916
® .9000 .9000 .9000
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As in the case of AR(1l), the limiting coverages of the
NOEM, OVBM methods tend to attain the nominal confidence 1level
faster than the corresponding coverages of the AREA and combined
NOBM-AREA methods. We can also observe how quikly the limiting
coverages of the SPEC method tend to achieve the nominal
confidence level.

Considering each method separately, its 1limiting
coverages tend to achieve the nominal confidence level faster in
the AR(1l) than in the M/M/1, providing that the two processes have
the same first lag theoretical autocorrelation coefficient. This
happens because the autocorrelation function of the AR(1l) decays

faster to zero.

4.3.3 AR(2) processes

The form of this process is

Xt o ¢\Xt“1 + wzxt_z + ft

The €e.'s are independent and normally distributed random variables
with mean 0 and common variance o¢2. The sth 1lag theoretical

autocorrelation coefficient is given by the difference equation

Ps = #1Ps-1 + PaPs->

with initial values py =1 and p,= ¢,/(1-p,).
The following two AR(2) processes are considered in this

section
Xt - 0.75Xt-1 - 0.50Xt_2 + Gt

Xt - 0’99Xt'1 - 0.90Xt_2 + ft
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Figure 4.2
Autocorrelation functions of AR(2) processes

Autocorrelation Coefficients
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TABLE 4.3
Limiting Coverages of Confidence Interval Methods in the AR(2)

e, m | NOBM , OVBM | AREA | SombIReC
2 .9556 7552 | .8999
4 9526 9646 | .9586
8 .9234 L9574 | .9426
.75 16 .9132 .9340 | .9250
32 .9068 9190 | .9128
64 .9036 .9100 |  .9070
w .9000 .9000 | .9000
2 1.0000 .9946 | 1.0000
4 1.0000 1.0000 | 1.0000
8 .9936 9990 |  .9974
16 .9820 .9918 |  .9880
32 9448 9860 | .9724
.99 64 9282 .9604 | .9468
128 .9150 9384 | .9276
256 .9078 .9216 |  .9150
512 9040 9116 |  .9078
w .9000 .9000 | .9000

Figure (4.2) presents the theoretical autocorrelation
functions of the two processes. These functions display a damped
cyclical behaviour. To obtain the limiting wvalues of the Bias
Indicator functions, the infinite sum of the autocorrelation
coefficients in forms (4.6) was replaced by the finite sum of the
first r autocorrelation coefficients such that 1p,1<10-%.

Table (4.3) contains the 1limiting coverages, the NOBM,
OVBM, AREA and combined NOBM-AREA methods achieve. As in the cases
of AR(1l) and M/M/1, the 1limiting coverages of the first two
methods tend to achieve the nominal confidence level more quikly
than the other two. For ¢,=0.75 and m=2, notice that the limiting
coverage of the combined method is very close to 0.90. In other
words, for this method and for m=2 the 1limiting Bias Indicator
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function is close to 1. This happens because the infinite sum of
the autocorrelation coefficients is quite close to 0. More
specifically, for m=2 the limiting Bias Indicator functions of the

AREA and NOBM methods are

1 - p, 1l +p,
, respectively.
@ @
1+25 pg 1+25 pg
s=1 s=1

From (4.6c), for m=2 the 1limiting form of the Bias Indicator
function of the combined method will be 1/(1+42 E pg). This
function will be close to one only if the infinit:-ium of the
autocorrelation coefficients tends to be close to zero.

Figure (4.3) illustrates the 1limiting coverages the
spectral method achieves in the above two processes. For ¢,=0.99
we see that the limiting coverages converge fluctuating around the
nominal confidence level.

Let us now discuss some interesting empirical findings.
Define a small number e. For the AR(1l), AR(2) and M/M/1 and
different e's, table (4.4) provides the parameter
values m® , m® , m® , m® and w® for which the 1limiting Bias

NB SM CM OB
Indicator functions of the five methods 1lie in the interval

[l-e,1+e]. We will call these parameter values optimum parameter

values. For the above three models, when 0.001¢e0.15

0 - ] 0
OB e Y

"B "NB "NB

1
-
R
N
R
W
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Limiting coverages achieved by the spectral method in
AR(2) processes
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TABLE 4.4

Chapter 4

Optimum parameter values for confidence interval methods when ne=

AR(1)

o e NOBM AREA Ngg;?ig;: SPEC
.10 10 30 20 7

0.4074 | .01 98 294 196 24
.001 977 2932 1954 76
.10 266 792 527 167
0.9630 | .01 2652 7955 5304 585

.001 26518 79554 53036 1862

AR(2)

3 e NOBM AREA Ngg;?i;;: SPEC
.15 10 27 18 8

0.75 .10 14 41 27 10
.01 134 402 268 28
.15 84 166 248 13

0.99
.10 113 248 372 18

M/M/1

Combined

7 e NOBM AREA | onv apei|  SPEC
.15 8 22 15 6
.10 11 33 22 8

0.2 .01 110 330 220 27
.001 1107 2214 3321 87
.15 37 109 72 27

0.5 .01 56 165 110 36
.01 554 1689 1116 128
.15 336 659 999 246

0.8 .10 506 1002 1509 326
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For above values of e, the limiting coverages of the five
confidence interval methods range from 0.8714 to 0.8998.

When e 1is very small, the computing time we need to

determine m® , m? , m® , m® and w° “is very 1large. For this

NB 0B SM CM
reason we have not considered values for e smaller than 0.001. On
the other hand, we have found that it is rather difficult to prove

mathematically that the above ratios converge to some specific

values.

4.4 ASYMPTOTIC COMPARISONS OF EXPECTED HALF LENGTHS OF CONFIDENCE
INTERVAL METHODS

For fixed number of batches k-n/m and providing that the
simulation output process satisfies conditions (4.1), Goldsman and
Schruben(1984) derived the following forms for the 1limiting
expected half lengths of the confidence intervals produced by the

NOBM, AREA and combined NOBM-AREA methods: -

2 ]

Cim [ / mk EHLNB] - atk_1,a/2

- o e

[ I
Qim \/;1: EHL_ | = ot
oo SM k,o/ 2 . r[ g ]

2 r[ k ]
01 \/_ ] -
;2m[ mk EHLCM atzk-1,a/2 o1 r[ 2kél ]
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TABLE 4.5
Ratios of limiting expected half lengths of confidence intervals
produced by the NOBM, AREA and combined NOBM-AREA methods

(mk) {EHLGy (k) {EHLGy (mk) {EHLgy

oim ——v | 0im —4 | o —

k[ ™ (i fErLgg | ™° @k teHLgy | ™ (uk) EHLyy
o=.,10 oa=.05 o=,10 o=.05 o=.10 o~=.05
2 | 4303 2891 8379  .7688 5135  .3760
3| L7411 6417 8846  .8347 8378  .7688
4| .8435 .7785 9127  .8748 9242  .8898
s | .8899 .8434 9297  .8991 9572 .9380
6 | .9158 .8793 9422  .9165 9720  .9594
7| .9320 9026 9500  .9284 9810 .9721
8 | .9427 .9183 9562 .9376 9859  .9794
9 | .9510 .9297 9616  .9450 9890  .9838
10| .9571 .9389 9657  .9507 9911  .9876
20 | .9811 .9730 9829  .9757 9982 .9973
30 | .9889 .9828 .9898  .9840 9991  .9988
w | 1.0000 1.0000 | 1.0000 1.0000 | 1.0000 1.0000

o]
where o¢’= Yo [ 1+25 pg ]
s=1

For fixed k, Goldsman and Schruben(1984) showed diagramatically

that

gim [\ﬁ EHLNB] > Qim [\/41_1; EHLSM] > Qim [ﬁ EHLCM] (4.8)

- m-x M-

Inequality (4.8) can be verified by comparing the ratios displayed

in table (4.5).
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Consider now the case where mj and ki are proportional to

oPi and  n®t[ mjenPi, kyen®t | 0<sy,05<1, 1= NB, SM, M ]
respectively such that n=mjk;j. Under these values of mj, kj and

n>®, Goldsman and Schruben(1984), Goldsman et al.(1986) and

Sargent et al.(1989) have reported that

Qim[\/; EHLNB] - Qim[\/; EHLSM] - Qim[\/; EHLCM] - (J'Za/'2

T>® 15

(4.9)

In the remaining part of this section we shall derive the
limiting form of the expected half length of the confidence
intervals produced by the spectral method, assuming that the
simulation output process satisfies conditions (4.1). The limiting
form of the expected half length of the overlapping batch means
method can be derived in a similar way.

Let £(0) and w be the spectral density at zero frequency
and the spectral window size respectively. Consider the case where
wen®(0<a<l). For different a's, the values of w ensure the
asymptotic situation that if no» then w-® but in such a way that
(n/w)>o[see Chatfield(1984)]. By using Tukey's spectral window,
the degrees of freedom v are proportional to n'-"&[see Law and
Kelton(1984)]. Under these asymptotic conditions, for large sample

size n, the random variable

A
vE(0)
T, = —— (4.10)
£(0)
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is approximately distributed as x2? with v degrees of freedom [see
Jenkins and Watts(1968), Fuller(1976), Chatfield(1984)].

For large n, the random variable Y=/T, follows the Weibul

distribution which has density function

2
v-tr -y/2 1-(v/2)
e 2

g(y) =y r(v/2)

and expected value

vz ]
E(Y) = (4.11)
rl——]

Combining (4.10) with (4.11), for large n

[ 7 [ v+1
]
A 2£(0) 2
E £(0) | = (4.12)

R

Multiplying both sides of (4.12) by tv,(a/z)\/ 2x we get

A 2
Elty,a/2 / 27 £(0) =ty o/, 2wf(0){ ] -

v
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2x£(0) 2
‘\/(E tv,a/2/ —|~tv,0/2 2*f(°>{ ]

o2 2x£(0)
Recalling that fim £(0) = and tv,a/z —_— is the
n->o 2x n

half length of the spectral method, for large n

2 r[-5]
[\//; EHL ] = ot
SP v,ot/2 Y r[ ; ]
But siz tv,a/z - Zy/, and
r (-] v
0im -
T ES 2

[ see Goldsman and Schruben(1984) ]

Therefore

Qim [\/r-x EHLSP] - 024/, (4.13)

>

In regard to the overlapping batch means method, consider
the case where mi«nai(0<6i<1, i=OB). This value of mpp ensures
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the asymptotic situation that if n»» then mgps> but in such a way

that (n/mgp)-«. Then, for lafge n the random variable

A2
VO’OB

V(Xn)

is approximately distributed as x? with degrees of freedom vgp
proportional to n‘-BOB[see Meketon and Schmeiser(1984)].

For the overlapping batch means method, we can show that

Qim n EHIOB] - 0z (4.14)
i [/ ] -

From (4.9), (4.13) and (4.14), as the sample size n tends
to infinity the five confidence interval methods wunder

consideration produce confidence intervals with equal expected

half lengths.

4.5 ASYMPTOTIC COMPARISONS OF VARIANCE OF HALF LENGTHS OF
CONFIDENCE INTERVAL METHODS

For small k, Goldsman and Schruben(1984), Goldsman et
al.(1986) and Sargent et al.(1989) reported the following forms
for the limiting variance of the half lengths of the confidence

intervals produced by the NOBM, AREA and combined NOBM-AREA

methods:
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[ 1?]
r k
r
) 2 [ 2
f]iz[(mk)VHLNB]-[atk-"a/z] 1 - 1 . k-1
L2
2
k+1 11
2 2 ) 2
Qim[(mk)VHLSM]'[Gtk a/z] -
m-%0 ' k r._ji.
. 2
-2-
[t
ii:[(mk)VHLcM]-[Otzk-l,a/z] 1- ko1 r' 2k-1 ]
] 2

For small number of batches k, Goldsman and

Schruben(1984) showed diagramatically that

oim [ (mk)VHLyp | > eim [ (mx)yvHLgy | > 2im [ (mk)vHLGy ]
m—>o0 M- m-x

This inequality can be verified from table (4.6).
Let us now derive the limiting form for the variance of

the half lengths of tﬁe spectral method. For large v

lim [ fsz - /2v-1] D N1 (4.15)
Voo v
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TABLE 4.6
Ratios of limiting variances of confidence interval half lengths
produced by the NOBM, AREA and combined NOBM-AREA methods

(mk) VHLcy (mk) VHLqy (mk) VHLgy

oim | @i —— " | g — "

k | m (mk) VHLyg | m»= (mk) VHLgy | m»» (mk) VHLyp
o=.10 a=.05 o=,10 o=.05 oa=.10 o=,05
2 | .0577 .o0261 4572 .3855 1263 .0677
3| .2088 .1565 4567 .4065 4572 .3850
4| .2949  .2512 4643 .4266 6352 .5889
s | .3408 3061 4740 L4434 7190  .6904
6 | .3748 .3458 4766 .4513 7864 .7662
7| 3017 3680 4779 4564 8196  .8063
8 | .4074 .3864 4802 .4616 8484 .8371
o | .4181 .4001 4832 4667 | .8653  .8573
10 | L4274 L4115 4841 4695 8829  .8764
20 | .4664  .4581 4912 4837 9496 .9471
30 | .4859  .4798 4916<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>