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A B S T R A C T

Most of steady state simulation outputs are 

characterized by some degree of dependency between successive 

observations at different lags measured by the autocorrelation 

function. In such cases, classical statistical techniques based on 

independent, identical and normal random variables are not 

recommended in the construction of confidence intervals for steady 

state means. Such confidence intervals would cover the steady 

state mean with probability different from the nominal confidence 

level.

For the last two decades, alternative confidence 

interval methods have been proposed for stationary simulation 

output processes. These methods offer different ways to estimate 

the variance of the sample mean with final objective of achieving 

coverages equal to the nominal confidence level. Each sample mean 

variance estimator depends on a number of different parameters and 

the sample size.

In assessing the performance of the confidence interval 

methods, emphasis is necessarily placed on studying the actual 

properties of the methods in an empirical context rather than 

proving their mathematical properties. The testing process takes 

place in the context of an environment where certain statistical 

criteria, which measure the actual properties, are estimated 

through Monte Carlo methods on output processes from different 

types of simulation models.

Over the past years, however, different testing 

environments have been used. Different methods have been tested on 

different output processes under different sample sizes and
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parameter values for the sample mean variance estimators. The 

diversity of the testing environments has made it difficult to 

select the most appropriate confidence interval method for certain 

types of output processes. Moreover, a catalogue of the properties 

of the confidence interval methods offers limited direct support 

to a simulation practitioner seeking to apply the methods to 

particular processes.

Five confidence interval methods are considered in this 

thesis. Two of them were proposed in the last decade. The other 

three appeared in the literature in 1983 and 1984 and constitute 

the recent research objects for the statistical experts in 

simulation output analysis. First, for the case of small samples, 

theoretical properties are investigated for the bias of the 

corresponding sample mean variance estimators on AR(1) and AR(2) 

time series models and the delay in queue in the M/M/1 queueing 

system. Then an asymptotic comparison for these five methods is 

carried out. The special characteristic of the above three 

processes is that the s^^ lag autocorrelation coefficient is given 

by known difference equations.

Based on the asymptotic results and the properties of 

the sample mean variance estimators in small samples, several 

recommendations are given in making the following decisions:

I) The selection of the most appropriate confidence 

interval method for certain types of simulation outputs.

II) The determination of the best parameter values for 

the sample mean variance estimators so that the corresponding 

confidence interval methods achieve acceptable performances.
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Ill) The orientation of the future research in confidence 

interval estimation for steady state autocorrelated simulation 

outputs.
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C H A P T E R  ONE

CONFIDENCE INTERVAL METHODS FOR STEADY-STATE SIMULATIONS

1.1 INTRODUCTION 

In studying real world systems, computer simulation has 

been accepted as a powerful technique to providing useful 

information to support decision making under conditions of 

uncertainty.

For the last three decades, different definitions have 

been offered by several authors of computer simulation. Some of 

them, which define simulation as the art for modelling discrete 

systems, are given by Balmer and Paul(1985). Others which give 

more emphasis to the stage of experimentation are the following:

" Simulation implies experimentation. However,instead 
of experimenting with the real world object, we 
experiment by means of the model of that object. "

[ Kleijnen(1974) ]

" In a simulation, we use a computer to evaluate a 
model numerically over a time period of interest 
and data are gathered to estimate the desired 
true characteristics of the model. "

[ Law & Kelton(1982h) ]

All the definitions describe computer simulation as an 

attempt to represent the operation of a system in a computer 

program. This can be achieved via a "valid” simulation model which 

depicts the relationships between the system entities. Then, by 

using the simulation program, alternative operating policies can 

be compared in a well organized experimentation. Thus the best 

policy to the management can be selected.
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Chapter 1

For several years, at the London School of Economics, the 

Computer Aided Simulation Modelling(CASM) project has been 

researching the appropriate software support to facilitate the 

processes of both developing simulation models and generating 

computer simulation programs. As examples, we mention the work of 

Doukidis and Paul(1985) on simulation problem formulation using 

expert systems, Chew(1986) on interactive simulation program 

generators and El Sheikh(1987) on simulation modelling using a 

relational data-base system called INGRESS.[For a more detailed 

description about CASH objectives see Balmer and Paul(1986)]. 

Research in the statistical aspects of discrete event simulation 

within the CASH project has been limited.

This thesis describes research into confidence interval 

estimation for steady-state means of simulation output processes. 

This research can be considered as a continuation of the CASM 

project to the general area of the statistical analysis of

simulation outputs.

Due to the problems of autocorrelation and initial

transient state, the classical confidence interval estimator is

not valid. For this reason, several confidence interval methods 

have been developed for estimating the variance of the sample mean 

in stationary autocorrelated processes. Five such methods are 

considered in this thesis. For both small and large sample sizes, 

the performance of the five methods is evaluated on different 

simulation output processes. This performance is measured by 

certain statistical criteria. For large sample sizes these

criteria are computed analytically. For small samples, the 

criteria are estimated empirically using Monte Carlo methods.
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Chapter 1

In this introductory chapter, the theory of confidence 

interval estimation in steady-state simulation outputs is 

presented. In the next section, the problems of autocorrelation 

and initial transience, which do not allow the use of the 

classical estimator for constructing confidence intervals for true 

steady-state means, are discussed. Alternative ways to overcome 

these problems are briefly described in section three. A survey of 

fixed sample size confidence interval methods for steady-state 

means is provided in section four. Sections five and six give a 

more detailed description of the thesis objective and the 

structure of the remaining chapters respectively.

1.2 THE PROBLEMS OF AUTOCORRELATION AND INITIAL TRANSIENCE IN 
SIMULATION OUTPUT ANALYSIS

Let {Xt, t-1,2,3,...} be a covariance stationary output 

process. Covariance stationary means that the mean and variance of 

the random variables are stationary over time with common

finite mean p and common finite variance . Moreover, for a 

covariance stationary process, the covariances Cov(Xt,Xt+g) 

between X^ and X^+g depends only on the lag s and not on the 

actual values at times t and t+s.

Consider a sample X,, X],..., X^ of size n from {X^-}. At 

the stage of reporting the results of simulation experiments, the 

statistical measure often used is the sample mean

n

t=i
X.‘■n n
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Chapter 1

as the best estimator of the steady state mean /i-E(X̂ -) for 

t—1,2,3,... .

Consider the case where r number of replications of the 

process (X^, l<t<n} are generated by choosing the initial 

conditions to be identical to the steady-state conditions. 

Applying the above estimator to these replications, we produce r 

estimates Xj^j(l<j<r). These estimates will vary about the true 

steady-state mean p. Consequently, any particular value may lie 

far away from p, especially for sampling distributions 

characterized by large variances. Therefore, the report of any 

Xĵ j without any measure of its precision would provide misleading 

information at the stage of decision making.

The most familiar representation of precision is provided 

by the confidence interval for the steady-state mean fi. If X, , 

Xg,..., X^ were independent, identical and normal random 

variables, the classical confidence interval estimator for fi would 

be

a/ 2
n / n

where

% Xt - %n t-1
s'--------------------  (1.1)

n - 1

is an unbiased estimator of the variance of the output process

17-



Chapter 1

However, in most of simulation modelling, successive 

observations display forms of autocorrelation. Let 

pf-corr(Xt,Xt+r) be the lag theoretical autocorrelation
coefficient for the process (X^}. Fishman(1973b, 1978b) records

the true variance of the sample mean as

To n-1 T
V ( X n ) ----- 1 + 2 J Prn T-1 n

(1.2)

Consider now the following estimator of the true variance of the 

sample mean

^  s' n-1 T ■
V(Xj^) — --- 1 + 2 1 1 ----- Ptn T-1 n

(1.3)

Define also the ratio

s V n

V(%n)

Providing that X^ , Xj,..., X^ are normal variables with E(X^-)-p 

for l<t<n, the actual confidence level achieved by the classical 

interval estimator is going to be

Pr -1 . ^n - 1 y a/7 < tn-1 ,a/2
S / / n 

18-



Chapter 1

Pr ctn-1 ,0/2 < < ctn- 1 ,0 /2 (1.4)

When c is less(greater) than one, the probability defined 

in (1.4) is less(greater) than the nominal confidence level (l-o).

For instance, consider the first order autoregressive 

process{AR(l)} which has the form

 ̂ , t-1,2,3....

This process is stationary when ipKl. The ĉ -'s are independent 

and normal random variables with mean zero and common variance 

For positive tp, the s^^ lag theoretical autocorrelation 

coefficient is . Given that

n-1

s=l (1-p)
n-1 1-n^^”^+(n-l)

and ^ s<p̂  ---------------------
s=l

the constant c^ will be

2c =
n-1

1 + 2 1
s=l

1 -

n Ps
1+^

\~{p

2f(l-pn)

n(l-p) 2

(1.5)

Taking the square root of (1.5) and substituting it into (1.4), 

the actual confidence levels achieved by the classical confidence

19-



Chapter 1

interval estimator can be computed analytically. From table (1.1) 

for positive p̂, these levels are lower than the nominal confidence 

level 0.95. Moreover, they are decreasing as n is increasing.

T A B L E  1.1
Actual confidence levels of the classical confidence interval 
estimator in the AR(1) when the nominal confidence level is 95%

S A M I ' L E SI[ Z E S

10 20 50 100 00

.10 0.9313 0.9277 0.9254 0.9246 0.9232

.50 0.8058 0.7738 0.7548 0.7485 0.7416

.80 0.6430 0.5606 0.5139 0.4998 0.4844

.90 0.5766 0.4628 0.3889 0.3667 0.3472

.999 0.5079 0.3559 0.2243 0.1594 0.0320

Let us now assume that the initial conditions for the 

process {X^} are not identical to the steady state conditions. In 

such cases, there is a transient period where the random variables 

, Xg X^ are distributed with mean where

6im - 0
n->oo

In the simulation literature, the factor is called

initialization bias. Providing that the random variables X,, 

Xg,..., are normally distributed

-20-
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Pr -tn-1 ,a/2 < < tn-1 ,0/2

- Pr
fhi - P

V(%n)

< tn-1 ,0/2 (1.6)

In (1.6), (Xĵ ,/i)/{V(Xj^)} is distributed as a noncentral 

t-distribution with noncentrality parameter (/t̂ -/i)/{V(Xĵ ) .

From Owen(1965), it can be verified that the probabilities 

defined in (1.6) are lower than the nominal confidence level 

(l-o). Furthermore, the use of the classical estimator (1.1) 

instead of the estimator defined in (1.3) or the nonnormality of 

the random variables , X^,..., X^ makes the problem of 

initialization bias even more serious.

1.3 DIFFERENT WAYS TO OVERCOME THE PROBLEMS OF AUTOCORRELATION 
AND INITIAL TRANSIENT STATE

Fixed sample size confidence interval methods

For stationary simulation output processes, these methods 

produce different estimators for the variance of the sample mean, 

providing that the sample size n is fixed a-priori. We shall call 

these estimators "sample mean variance estimators". The derivation

-21-
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of these estimators is based on transforming the original output 

process into a new process which has desirable and known 

statistical properties. The final objective of these methods is to

produce confidence intervals which will cover the steady state

mean with probability equal to the nominal confidence level. 

However, the question which arises is why we do not use the

estimator of the true variance of the sample mean defined in

(1.3). The reason is that in most simulation output processes the 

theoretical autocorrelation coefficients are not known and as Law 

and Kelton(1982b) point out, the estimation of these coefficients 

is not recommended since

_ for large n, the computing time to estimate pg(l<s<n-l) is 

rather large and 

_ for s close to n, the estimation of pg will be based only 

on few observations.

Moreover, for simulation output processes characterized 

by different autocorrelation structures, the sample size which 

guarantees the adequacy of a normal approximation is not known, 

although there are some indications that this is not a major 

problem[see for example Law(1977) and Kleijnen(1975,page 445)].

The technical details of these methods are described in 

the next section.

Sequential confidence interval methods

The objective of these methods is to determine the run 

length(sample size) of realizations of stationary simulation 

output processes which guarantees both an adequate correspondence 

between actual and nominal confidence levels and a prespecified

-22-
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absolute or relative precision. The last two terms are defined by 

Law(1983) as the half length of confidence intervals and the ratio 

of half length over the sample mean respectively.

Law and Kelton(1982a) distinguish these methods as 

regenerative and non-regenerative. The methods classified in the 

first type determine the run length by using the regenerative 

property, that is, they identify random points where the process 

probabilistically starts over again. Fishman's(1977) and Lavenberg 

and Sauer's(1977) methods belong to this category. The methods 

developed by Mechanic and Mckay(1966), Law and Carson(1978), 

Heidelberger and Welch(1981a) and Adam(1983) have been 

characterized as non-regenerative.

Law and Kelton(1982a) compared the performance of several 

sequential methods. For the output processes the authors used, the 

required run lengths for obtaining acceptable confidence intervals 

were quite large.

Truncation methods

Their objective is the elimination of initialization bias 

effects. These methods provide estimators for the time point 

t*(l<t<n) for which

I E(X^) - /i I > e for t<t*

and

I E(Xt) -  ^  I < e for t)t*

where e is a prespecified very small positive number.

-23-
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Let (xij: l<i<n, l<j<r} be r replications of the 

simulation output process {X^}. For each replication, the initial 

conditions are exactly the same. Some of the truncation methods 

estimate t* by applying the truncation rule to each replication. 

The methods of Fishman(1971,1973b), Schriber(1974) and 

Heidelberger and Welch(1983) can be classified into this category. 

Other methods estimate t* from a pilot study which is carried out 

on a number of exploratory replications. Then the estimated value 

of t* is used as the global truncation point in any other 

replication for which we use the same initial conditions. The 

methods of Conway(1963), Gordon(1969), Gafarian et al(1978) and 

Kelton and Law(1983) belong to this category.

1.4 FIXED SAMPLE SIZE CONFIDENCE INTERVAL METHODS 

Let {Xt} be a steady-state simulation output process. 

Suppose also that

E(X̂ -)«/i < 00 t)l

and

Var(Xt)-=7o < °° t>l

Fixed sample size confidence interval methods propose different

estimators for the variance of the sample mean (sample mean
A2variance estimators) . Let aĵ  be the sample mean variance 

estimator of the i^^ method. Then, the confidence interval 

proposed by the i^^ method will take the form

A

- 24 -



Chapter 1

where is the sample mean and are the degrees of freedom

according to the i^^ method. Presented below are several

confidence interval methods which have been developed for the last

two decades.

Replication Method

Suppose we generate k>l independent replications of the 

simulation output process {X^} by using independent streams of 

random numbers. The run length(sample size) of each replication is 

m. Define the sample mean of the (l<j<k) replication as

m

i l
X j m ----------------. Kj<k (1.7)

m

where {X^j} is the t^^ random variable on the replication.

When m is large enough, the k sample means defined in 

(1.7) can be considered as independent, identical and normal 

random variables. Then, the sample mean variance estimator 

proposed by this method is given by

A, 1 k
------k(k-l) j-1

The degrees of freedom are v^p-k-l.

-25-
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Nonoverlapplnp Batch Means Method

Let {X^} be a covariance stationary output process. The 

nonoverlapping batch means method is based on generating a single 

long replication of {X^}. This replication is partitioned into k>l 

contiguous and nonoverlapping batches. The size of each batch is 

m. The batch mean of each batch is defined as

m
S %(j-i)m+t t—1

Xj jji — , 1 < j <k
m

Provided that m is large enough and J ITg l<°°, Law and
S — -00

Carson(1978) showed that the nonoverlapping batch means can be 

considered approximately uncorrelated. Furthermore, if we choose m 

large, the batch means can be considered approximately normal 

random variables. Then the sample mean variance estimator of this 

method is given by

^2 1 : f
" %n J » 1 <j

k(k-l) j-1

As in the replication method, the degrees of freedom are vjgg=k-l.

Overlapping Batch Means Method

Consider, a • single long replication of a covariance 

stationary output process {X^}. Let n be the run length(sample 

size) of this replication. The j overlapping batch mean of size 

m is defined as
-26-
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m-1 
% Xj+tt-0

Xj(m) - -------------  , l<j<n-m+l
m

For large m and n/m, Welch(1987) proposed the following estimator 

for the variance of the sample mean

AA ® n-m+1
<̂ oB - , v : - -  .2 ( X j W  - ]n(n-m+l) j-1

The degrees of freedom are 1.5((n/m)-l).

Standardized Time Series Methods

Let {%t} be a strictly stationary output process. 

Strictly stationary means that the joint distribution of 

Xt, .Xtj, . . . ,Xt^ is the same as the joint distribution of 

Xt^+s .Xtj+s , . . . ,Xtĵ +s for every t, , 1 2 , . . . , t̂  ̂and s. We also assume 

that this process is phi-mixing. Roughly speaking, any process is 

phi-mixing when Corr(Xc,Xc+g) is negligible for large s[see 

Law(1983)]. In fact, the phi-mixing property is satisfied by a 

wide class of processes including autoregressive, regenerative and 

m-dependent processes [see Schruben(1983)].

The standardized time series methods use a functional 

central limit theorem to transform X,, Xg,..., X^ into a process 

which is asymptotically distributed as a Brownian Bridge process. 

Suppose that we divide the replication into k>l contiguous and 

nonoverlapping batches of size m. For large m, by using Brownian
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Bridge properties, Schruben(1983) derived the following four 

estimators for the variance of the sample mean:-

I) AREA METHOD

where

A2
<TSM

12 k ^2
  I Ajnk(m^-m) j-1

A m
Ai - 2 (C))

C-1

Sj(C) - Xj,m - ^j
and

2 %(j-i)m+tt-1
- , l<j<k

Here the degrees of freedom are vgj^k,

II) MAXIMUM METHOD

A. m
MX

k
  I3kn i-1

Awhere is the location of the maximum of the process

CSj(C) on the j^^ batch. The degrees of freedom are vj^-3k.
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III) COMBINED AREA-NONOVERLAPPING BATCH MEAN METHOD

12

^CM “

3 ^ *,2 ( %j,m - %n ]ni3-m j-1 j-1

n(2k-l)

The degrees of freedom are vcj^2k-l.

IV) COMBINED MAXIMUM-NONOVERLAPPING BATCH MEANS 
METHOD

m

A.

k
2

j-1

I ]
^ ,2 [ %j,m " %n ]

j-1

cx n(4k-l)

For this method, the degrees of freedom are VQX“4k-l.

Spectral method

The spectral method assumes that the process {X^} is 

covariance stationary. At zero frequency, the power spectrum of a 

covariance stationary process is given by

f(0)
1 7sS—-00

2t

where

7s = E ( Xt - p )( Xt+s - p )

(1.8)
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is the lag theoretical autocovariance.

From (1.2),

lim [ nV(Xjj) ] - J 7s “ 2rf(0) (1.9)
nr)O0 S“-oo

For large n, form (1.9) proposes an other way for 

estimating the variance of the sample mean in autocorrelated 

stationary processes; that is, by estimating the power spectrum at 

zero frequency.

In the simulation literature, two methods for estimating 

f(0) have been proposed. The first discussed by 

Fishman(1973b,1978b), Duket and Pritsker(1978) and Law and 

Kelton(1984) uses the Tukey spectral window

^w(s) - 0.5 { 1 + c o s (t s /w ) } 

for estimating f(0) as

Af(0)
2x

w-1 A
7o  ̂S ^w(s)7ss=l

To reduce bias, these authors have proposed the following sample 

mean variance estimator:-

A.
SP n-w

A ^-1 A
7o + 2 J Xw(s)7s

s-1

where
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A
Ts n t—1

Fishman(1973b,1978b) and Law and Kelton(1984) report that 

vgp-l.33n/w.

Heidelberger and Welch(1981a) have proposed a different 

way for estimating f (0). This way is based on the periodogram 

coordinates

n

n

t-1
- 2iri(i-l) j/n

where i=y-l.

Define K points J(aj)

J(aO - log

with

aj - (4j-l)/(2n) , j-1,2 , . . . ,K

d
A polynomial of the form ^ b^a^ is fitted to J(a<)+270

r-0 A
for j==l,2,...K using the least squares method. Let b^ be the

least square estimator of bp Then an approximately unbiased

estimator for f(0) is given by

2ir
exp

-p • Aexp ^0. 2

with =.645s,, and s^, is the upper leftmost element of the 

product (X"X) ■ ’ where
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1 a, 
1 a.

2 3ak &k &k daic

For this method, the degrees of freedom are

Autoregressive Method

This method assumes that {X%} is a covariance stationary 

process and can be represented by the p^^ order autoregressive 

process (AR(p))

S Pp,s(Xt-s ■ M ^ ,0s-=0

The are independent, identical and normal random variables

with mean 0 and common variance cr̂ . We also assume that the
00

autoregressive order is known and ^ I7 g| < oo. For this process
S — -00

the power spectrum at zero frequency is given by

f(0)
P
s=0
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Durbin(1960) has developed a procedure for estimating the 

autoregressive coefficients of an AR(p) from the autoregressive 

coefficients of an AR(p-l) via the following recursive formulae

A A
fo,o - fp,o - 1

A

Pp,P

P - i  A A
S ^p-1 ,s7p-s s—0

P - i  A A
2 *Pp-1 , sTs s—0

A A A A
^ p ,s “ 1 ,s ^ , p ^ - i , p " S  » S“ 1 ,2, . . . ,p-l

Moreover, the error variance <r̂  is estimated by

A
fp - To + iTi + ^,272

A A 

1Pp,p7p

Fishman(1971,1973b,1978b) has proposed the order p of the

AR(p) to be determined through the following test of hypothesis

Hg : the order of the autoregressive scheme is p 
: the order of the autoregressive scheme is q>p

As the sample size n increases, the statistic

n 1 -

CTr

A.

converges to a distribution with q-p degrees of freedom.

Assuming that n is large enough, by setting p=l,2,3,..., the

estimated order is the smallest p for which

-33-
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Providing that the autoregressive coefficients, the error 

variance and the autoregressive order have already been estimated, 

the power spectrum at zero frequency of the AR(p) is estimated by

A
f(0)

2t

Az

Then, the corresponding sample mean variance estimator and the 

degrees of freedom are given by

and

Az

^AR “
n

P A 
^ Z ^ , s  s-0

VAR -
P A2 1 (p-2s)pp,s
s—0

For the derivation of the degrees of freedom see Fishman(1978b)

Regenerative Method

This method was developed simultaneously by Crane and 

Iglehart(1974a,b,c,1975). Its principle is based on the 

identification , of random points where the process 

probabilistically starts over again. These points are called 

regeneration points. For example, for the delay in queue in the 

M/M/1 queueing model, the indices of customers who find the system

- 3 A -



Chapter 1

completely empty could be considered as regeneration points. The

amount of data between two regeneration points is called

regeneration cycle.

Define now the random variables Nj, Zj(j-1,2,..) as

Nj - Bj+1 - Bj , E(Nj)<œ , j-1,2,...

where 1 <B,<B2<... are regeneration points and

Zj
i-Bj

Providing that E(Nj)<<», the steady-state mean is defined

as

p - E(Z)/E(N)

Two methods have been developed to estimate p and produce 

confidence intervals for p; the classical and Jacknife methods. A 

very good description of them is given in Law and Kelton(1982b). 

However, the major disadvantage of these methods is the 

identification of regeneration points, especially for complicated 

simulation models.

-35-



Chaptet 1

1.5 THESIS OBJECTIVE

This thesis presents new findings for the performance of 

the following five confidence interval methods:-

i) Nonoverlapping batch means method

ii) Standardized time series-area method 

iii) Combined area-nonoverlapping batch means method 

iv) Overlapping batch means method 

v) Spectral method.

Given the sample size, each method achieves different 

actual confidence levels for different parameter values. The term 

"parameter value" indicates the number of batches for the first 

three methods, the batch size for the overlapping batch means 

method and the spectral window size for the spectral method.

For the case of small sample sizes, we compare the best 

actual confidence levels achieved by the above five methods. With 

respect to each method, the best actual confidence level is 

defined to be the one which is the closest to the nominal 

confidence level. Moreover, we consider the case where two or more 

methods attain approximately the same best actual confidence 

levels. Under such circumstances, we compare the precision and 

stability of confidence intervals produced by the five methods at 

the parameter values for which these confidence levels are 

attained.

Furthermore, for small sample sizes, we compare the 

performance of the five confidence interval methods at specific 

parameter values. These values are chosen in such a way that the 

minimum bias of the sample mean variance estimator of each method
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is observed. We call these values MB-parameter values. To 

determine the MB-parameter values, a family of functions is 

introduced. We call them "Bias Indicator functions". These 

functions are expressed in terms of the theoretical 

autocorrelation coefficients of the output process under study. 

This means that if the autocorrelation function of the process 

under study is known, exact analytical values for the minimum bias 

of each estimator and the MB-parameter values can be obtained.

On the other hand, for processes where the 

autocorrelation coefficients are not known, we propose two ways 

for estimating the minimum bias and the MB-parameter values. Based 

on the performance of the methods at the estimated MB-parameter 

values, we develop a procedure for applying the five confidence 

interval methods to approximately steady state simulation outputs 

displaying certain characteristics. These characteristics refer to 

the form of the autocorrelation function and the level of 

non-normality of the process.

To compare the performance of the five confidence 

interval methods in the above two contexts, we have created our 

own testing environment. In this environment, we have included 

almost all the output processes which have been used in other 

testing environments having been developed during the past two 

decades. Several statistical criteria have also been selected for 

studying the performance of the methods. For small sample sizes, 

these criteria have been estimated by using Monte Carlo methods.

Comparisons between the performance of the five 

confidence interval methods are also carried out when the sample 

size tends to infinity. The asymptotic forms of the Bias Indicator
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functions enable us to compute analytically the limiting coverages 

achieved by the above five methods, provided that the 

autocorrelation function of the output process under study is 

known. Three such processes are considered in this case; the 

AR(1), the AR(2) and the delay in queue in the M/M/1. For these 

processes, we study the limiting coverages of each method at 

different parameter values.

Provided that the simulation output process satisfies 

certain regularity conditions, as the batch size m tends to 

infinity, the nonoverlapping batch means, area and combined 

NOBM-AREA methods tend to achieve actual confidence levels equal 

to the nominal confidence level. For the spectral and overlapping 

batch means method, when the batch size m and the spectral window 

size w tend to infinity but in such a way that (n/m)->œ and 

(n/w)->oo, these two methods tend to cover the true steady state 

mean with the nominal probability. Assuming such ideal cases, we 

compare the limiting precision and stability of the confidence 

intervals.

For the case of large sample sizes, all the statistical 

criteria considered are computed numerically i.e without using 

Monte Carlo methods.

1.6 STRUCTURE OF THE THESIS

Chapter two describes a survey on testing

environments which have been used for evaluating the performance 

of confidence interval methods.

Chapter three introduces a family of functions which
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enable us to determine analytically both the minimum bias of each 

sample mean variance estimator under consideration and the 

MB-parameter values, provided that the autocorrelation function of 

the process under study is known. Exact values for the minimum 

bias and the MB-parameter values are obtained in the 

autoregressive process of order one.

Chapter four examines the asymptotic properties of 

the five confidence interval methods under consideration. Two 

issues are considered. The first concerns the computation of the 

limiting actual confidence levels the five confidence interval 

methods achieve. The second issue refers to the comparison of the 

limiting precision and stability of the confidence intervals 

produced by these methods

Chapter five describes the preparation stages for the 

simulation experiments which follow.

Chapter six examines the performance of the five 

methods at the MB-parameter values for the AR(1), AR(2) and the 

delay in queue in the M/M/1. Both true and estimated MB-parameter 

values are considered.

Chapter seven compares the best actual confidence 

levels achieved by the five confidence interval methods and 

provides several recommendations for applying these methods to 

approximately steady state simulation output processes.

Chapter eight summarizes the conclusions and suggests 

future areas of research.
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C H A P T E R  TWO

A SURVEY ON TESTING ENVIRONMENTS OF CONFIDENCE INTERVAL 
METHODS

2.1 INTRODUCTION 

In the introductory chapter, we have discussed several 

methods which can be used for constructing confidence intervals 

for steady-state means of simulation output processes. Although 

the evaluation of these methods has included analytic 

investigations[see Schmeiser(1982), Goldsman and Schruben(1984)], 

the main thrust of research has taken the form of empirical 

studies[see Law(1983)], During the last two decades, testing 

environments have been developed for evaluating the performance of 

these confidence interval methods. These testing environments 

consist of the following three general components:-

i) Simulation models generating output processes 

on which the performance of the methods is tested

ii) Statistical criteria measuring the performance 

of the methods

iii) Necessary computer software including simulation 

languages and secondary computer programs for 

manipulating data.

In the present chapter we describe a survey of previous 

testing environments which have been used for evaluating 

empirically the performance of confidence interval methods. Our 

aim is to answer two very crucial questions. Firstly, do some 

testing environments reveal methods which attain acceptable 

performances in certain output processes? If this is the case, can
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the particular testing environments indicate ways for applying 

these methods to any process which displays similar 

characteristics to the output processes of these testing 

environments ?

In the following section, we describe the simulation 

models which have been used in the previous testing environments. 

For each model, the output processes on which the confidence 

interval methods have been tested are specified.

In section 3.3 we discuss the statistical criteria that 

have been developed for measuring the performance of confidence 

interval methods. A theoretical definition is given and a 

methodology which produces estimates for these criteria is 

described.

In section 3.4, the components of each testing 

environment are described in detail. For each environment, we 

also summarize the conclusions drawn concerning the performance of 

particular confidence interval methods.

In the final section, we address the two questions stated 

above by comparing the structure of the testing environments.

2.2 SIMULATION MODELS AND OUTPUT PROCESSES IN THE PREVIOUS 
TESTING ENVIRONMENTS

2.2.1 Series Queues(M/M/N,/M/Nj/. . ./M/N ,̂)

It is the type of simulation models which is met in most 

of the previous testing environments. The operational rules of 

these models are very simple. A customer arriving at the system 

joins the queue of the first service station. After the service 

completion, he joins the queues of the remaining c-1 service
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stations successively where he is beinjg served. Each station 

consists of Nj (j-1,2, . . . ,c) number of seirvers. After the service 

completion at the last service stationi, he departs from the 

system. The interarrival times at the first station and the 

service times in each station are independlent negative exponential 

random variables with means (1/X) and (1/^^) respectively.

The behaviour of this type of moidels depends on three 

factors; the queueing discipline(FIFO,LIFO)) , the number of servers 

and the traffic intensity im each service station.

From this type of models, the following three output processes 

have been selected for testing the performance of confidence 

interval methods : -

i) the total delay of customers in the; queues of the 

service stations,

ii) the time the customer spends into tihe system,

iii) the queue lengths in front of the siervice stations.

2.2.2 Time Shared Computer Model

This model was studied by Adiri and Avi-Itzak(1969) and 

is briefly described in Law and Carson(19)78) . Its entities are a 

Central Processing Unit(C.P.U) and N nuimber of jobs which are 

submitted by N terminal users. A user thiniks for an amount of time 

which is a negative exponential random variable with mean 1/X. 

Then he sends a job requiring a service time, say s. The service 

time is again a negative exponential rancdom variable with mean 

1/p. Any job leaving the terminal joins the FIFO queue at the 

C.P.U. To each job, the C.P.U allocates a maximum service length, 

say q. Denote by s,(s,(s) the remaining service time of a
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job and t a fixed overhead setting-up time. If s,<q then the 

C.P.U spends s , + T  time processing the job which returns to the 

terminal after the service completion. On the other hand, if s>q 

then the C.P.U spends q+T time processing the job which rejoins 

the end of the queue of the C.P.U. after the service completion.

This model was used in Law and Kelton's(1984) testing 

environment with the parameter values being N-35, (l/X)-25,

(l/p)-0.8, q-0.8 and t-0.015. The output process on which the

confidence interval methods were tested was the response time of 

the jobs. The response time is defined as the time from when a job 

departs a terminal until its next return to the terminal.

2.2.3 Interactive Multiprogrammed Computer Model

A brief description of this model is given by 

Heidelberger and Welch(1981a,b). Its entities are:-

— N jobs which are submitted by N terminal users

— one Central Processing Unit(C.P.U)

— M secondary storage devices(S.S .D).

A job, having been formulated at a terminal, joins the 

FIFO queue of the C.P.U. After the end of the processing work, 

the job returns to the terminal with probability p^ or it joins 

the FIFO queue of the i^^ secondary storage device with 

probability pi(i-l,..,M). The time the job spends at each S.S.D is 

a negative exponential random variable with mean l/p^(i-l,...,N). 

After leaving each S.S.D, the job joins again the end of the C.P.U 

queue. The formulation process and the service time at the C.P.U 

are independent exponential random variables with means l/X^ and 

I/X2 respectively.
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This model was used in Heidelberger and Welch's(1981a) 

testing environment. The authors selected two sets of parameter 

values; N-25, m-4, Pg-p^-O.OA, (1/X,)-100, (1/X2>-1,

(l/p,)-(l/p,)-1.39, (l/p3)-(l/p,)-12.5 and N-25, m-4,

Pi"P2"P3-P4-0'3&, (1/Xi)-100, (1/X2>-1, (l//t, )-(l//i2)-5.56,

(l/p^)-(l/Pj)-25. The output processes under study were the 

folowing:-

i) response time of jobs under both sets of parameter

values

ii) waiting time of jobs at the C.P.U under the first 

set of parameter values

iii) waiting time of jobs at the queue of the second 

secondary storage device under the second set of parameter 

values.

2.2.4 Inventory Model

Let X£ be the inventory amount of an item for a company

at the start of period i. If X^<s, an order of size S-X^ takes

place with cost k+c(S-X^) bringing the inventory level immediately 

to S . If Xi>s, no order is placed and the inventory amount 

remains at X^. During the period, a demand occurs. If

(Xi-Qi)>0 or (S-Qi)>0 then the company incurres a holding cost 

h(Xi-Qi) or h(S-Qi) respectively; otherwise, it incurres a 

shortage cost vCQ^-X^).

From this model the output process on which the

performance of confidence interval methods was tested was the cost 

per period.
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2.2.5 Time Series Models

I) Autoregressive Processes of Order p

They have the general form

%t " Po + 1 + ^2^t-2 + ••• + + ft (2.1)

where ■V’2" • • • "V’t-p) » is the level of the process and
6t's are independent and normal random variables with mean zero 

and common variance .

II) MAfg') PROCESSES

Their general form is given by

Xt “ P + ft ^i^t-i ^2^t-2 '*'••• "^^p^t-p (2.2)

where p is the level of the process and ft's are independent and 

normal random variables with mean zero and common variance

Ill) EARfX') PROCESSES

They are linear autoregressive processes with the 

marginal distributions being exponential random variables with the 

same parameter X. A detailed description of these processes is 

given by Lawrance and Lewis(1981,1982). The general form of EAR(X) 

processes is given by

^Xt_ 1 + 0 w.p (f

0<^1 (2.3)
y?Xt_-, + Et W.p l-<p
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where E^'s are independent exponential random variables with the 

same parameter X. At lag k, this model gives autocorrelation 

coefficients and realizations where segments of large values 

alternate with segments of small values.

2.3 STATISTICAL CRITERIA FOR EVALUATING THE PERFORMANCE OF THE 
CONFIDENCE INTERVAL METHODS

The most common criterion is the probability with which 

the confidence intervals produced by different methods cover the 

steady-state mean. In the simulation literature, this probability 

is called coverage and has the general form

CVRi - Pr
A A

^n ■ a/2^i  ̂  ̂^n ^ ,a/2 ^i (2.4)

Awhere for the i^“ confidence interval method, is the

variance of the sample mean and v^ the degrees of freedom 

prescribed by the method.

A more complicated criterion, called coverage function, 

was introduced by Schruben(1981a). Given the sample size n, this 

function is defined by setting different values to the nominal 

confidence level (l-a), in (2.4). If this function is uniformly 

distributed in [0,1], the coverages will be equal to the nominal 

confidence levels.

In addition, the following criteria are being used for 

studying the precision and stability of the confidence intervals
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a) Expected values of confidence interval half lengths

( 2 . 5 )

b) Variance of confidence interval half lengths

VHLi - E
A r A 1 (2.6)

c) Standard deviation of confidence interval half 
lengths

SDHLi (2.7)

The index i stands for the i^^ confidence interval method. The 

statistical criteria (2.5), (2.6) and (2.7) should be used for

comparing methods which attain approximately the same coverages.

Two additional criteria were proposed by Schmeiser(1982) 

and Schriber and Andrews(1981) respectively. These are:-

d) Coefficient of variation of confidence interval half 
lengths

CVHL;
VHL4

EHL4
(2 .8)
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e) Standard deviation of the variance estimators of the 
sample mean

A /  r A A n zSD(fi) -\/e[ (tI - E(a£) J (2.9)

For the above five criteria, analytical values cannot be 

obtained for finite sample sizes from the output processes cited 

in the previous section[see Goldsman et al.(1986)]. However, these 

criteria can be estimated by using Monte Carlo methods. But, 

before we describe the estimation procedure, let us discriminate 

between two types of experiments.

SINGLE TYPE OF EXPERIMENTS: This is the type of experiment

which is used by simulation practitioners for studying the 

performance of real life discrete systems. It consists of a single 

run of the simulation program which produces a single replication 

of the output process under study. From this single replication, 

estimates are obtained for the steady state measures of 

performance.

GENERAL TYPE OF EXPERIMENTS : This type is used by the

simulation researchers for evaluating the performance of 

confidence interval or truncation methods. It consists of several 

replications of the output process under study. These replications 

are produced by using independent streams of random numbers. The 

observations can be presented in the form of the data matrix

Xii X 1 2 Xi 3 . . X, j-
X21 X j  2 X 2  3 . . X j r

Xni X n 2 X n s . . X^ir •
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where X̂ -j is the random variable for the t^^ observation on the 

replication (l<j<r).

The five statistical criteria defined above are estimated 

in the context of the general type of experiments. Let be

the mean from a sample of size n on the replication. Let
A2 ,also be the variance of the sample mean according to the i^^

method on the replication. Based on this notation, we describe

below how the criteria (2.4)-(2.9) are estimated:

a) Coverage

Define the random variable

1 if ±
j-l,2,...,r (2.10)

0 elsewhere

The coverage, the i^^ confidence interval method attains, will be 

estimated by

^  j=l
CVR ; ------------  (2.11)

b) Expected value of confidence interval half lengths

r A
1 ^v ,a/2̂ ij

^  j=l i
EHLi - ------------------- (2.12)
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c) Variance of confidence Interval half lengths

r
%

j-1
A

VHLi
r-1

(2.13)

d) Standard deviation of confidence interval half 
lengths

SDHL^ — \y VHL^ (2.14)

e) Coefficient of variation of confidence interval 
half lengths

VHLj
CV(HLi)

EHLw

(2.15)

f) Standard deviation of variance estimators of sample 
mean

(2.16)
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2.4 A DESCRIPTION OF PREVIOUS TESTING ENVIRONMENTS

This section describes previous testing environments 

which, during the last two decades, have been used for evaluating 

the performance of confidence interval methods. For each 

environment, the simulation models, the output processes and the 

statistical criteria which have been used are reported. We also 

summarise the conclusions which have been drawn at the stage of 

testing the performance of the methods.

FISHMAN'sa973> TESTING ENVIRONMENT

Fishman(1973a) tested the performance of the classical 

regenerative method on two processes; the delay in queue and the 

queue length in the M/M/1 queueing model with queueing discipline 

FIFO and traffic intensity 0.80. For this method the regeneration 

cycles were 1000. Fishman used the following statistical 

criteria:-

i) the proportion of confidence intervals(coverages) 

which contained the true steady-state average delay,

ii) the proportion of confidence intervals which 

contained the true steady-state average queue length and

iii) the differences of the sample mean delay and queue 

length from the corresponding true steady-state values.

All criteria were estimated by Monte Carlo methods. The 

total number of replications and the nominal confidence level were 

100 and 0.90 respectively.

The estimated coverage of the true steady state average 

delay was 0.86, while for the true steady state average queue
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length the coverage was 0.85. Furthermore, the estimates of the 

average delay and average queue length were 1.78 and 8.94

respectively. The corresponding true steady-state valuer are 1.80 

and 9.

LAW’S(1977^ TESTING ENVIRONMENT

Law(1977) studied the performances of both the

nonoverlapping batch means and replication methods on the

following processes

i) Delay in queue in the M/M/1 with queueing discipline 

FIFO and traffic intensity 0.90 and

ii) Total cost of period t in the inventory model with 

parameter values s-17, S=57, k-32, c-3, h-1 and v*5.

For the second process the distribution of the demand in period t 

was Poisson with mean 25.

Law used two statistical criteria for studying the 

performance of the above two methods; the coverage, the confidence 

interval methods achieve, and the expected values of confidence 

interval half lengths. These criteria were estimated by using 

Monte Carlo methods. The nominal confidence level was 0.90. For 

each process, 400 realizations were generated. With respect to the 

first process, the statistical criteria were estimated at sample 

sizes 1600, 3200, 6400 and 12800. Different sample sizes were used 

for estimating the criteria in the second process. These sizes 

were 320, 640, 1280 and 2560. For both processes, the number of 

the replications per realization and nonoverlapping batch means 

was 5, 10, 20 and 40. For the delay in the M/M/1, the initial

conditions were chosen to be empty and idle. For the total cost in
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the inventory model, the run of the simulation program started 

from S-52.

Neither of the two methods performed perfectly under the 

different combinations of sample sizes and number of 

nonoverlapping batch means or replications per realization. In 

fact, for the delay in the M/M/1 the estimated coverages were 

lower than 0.90 while for the total cost in the inventory model 

they were higher than 0.90. Law reported that for the replication 

method the differences between the estimated coverages and the 

nominal confidence level were caused mainly by the initialization 

bias. For the nonoverlapping batch means method the major cause 

for these differences was the autocorrelation between the batch 

means.

Law also made similar remarks for the following 

processes ; -

i) the delay in queue in the M/M/1 with queueing

discipline FIFO and traffic intensities 0.50 and 0.70,

ii) the delay in queue in the M/M/2 with queueing

discipline FIFO and traffic intensity 0.90 and

iii) the total delay in the M/M/l/M/1 with queueing

discipline for both queues FIFO and traffic intensities 

T1=0.90, Tg=0.90.

FISHMAN's(1978^ TESTING ENVIRONMENT

Based on Von-Neumann test, Fishman(1978) developed an 

algorithm for determining the batch size which guarantees 

approximately independent nonoverlapping batch means, The 

performance of this algorithm was evaluated on the total time a
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customer spends in the M/M/1 with queueing discipline FIFO. Three 

traffic intensities were considered; 0.50, 0.80 and 0.90. For each 

traffic intensity, the simulation program started by generating 

the delay of the first customer from the distribution of the 

steady-state delay. The following statistical criteria were 

estimated by Monte Carlo methods :

a) The number of confidence intervals that contained the 

true steady-state average total time a customer spends in 

the M/M/1

b) Proportions of runs that failed to determine a batch

size

c) Average values for the degrees of freedom for each 

combination of sample size and traffic intensity.

The nominal confidence level was 0.90. For each traffic 

intensity, 60 replications were generated. The above statistical 

criteria were estimated for sample sizes 2048, 4096, 8192 and

16384. The conclusions concerning the performance of the algorithm 

are summarized as follows:

a) For high traffic intensities the estimated coverages 

were not close to 0.95

b) For high traffic intensities and small sample sizes 

some runs that failed to determine a batch size[in these 

cases, additional runs were performed so that the number of 

replications to be fixed at 60] were observed

c) Under high traffic intensities the average degrees of 

freedom were smaller than those under low traffic 

intensities
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d) For a given traffic intensity, increasing the sample 

size leaded to higher degrees of freedom on average.

SCHRIBER AND ANDREWS*s(1981> TESTING ENVIRONMENT

Schriber and Andrews (1981) compared the performance of 

the nonoverlapping batch means method with the performance of the 

autoregressive method on the following two processes:

i) a groupwise independent process consisting of trivariate 

observations which were generated from a trivariate normal 

distribution with correlation matrix

1.0 0.1 0.8 ■

0.1 1.0 0.1
0.8 0.1 1.0 .

ii) AR(2) with the autoregressive coefficients being 

Po-18000/99, pY-2/99, ^,-79/99 and p2-356000/99.

For the nonoverlapping batch means method, the batch sizes were 

determined by a procedure described in Schriber and Andrews(1979).

The following statistical criteria were selected for 

evaluating the performance of the two methods:-

a) coverage

b) chi-square values for checking the qoodness of fit of 

the coverage function to a [0,1] uniform distribution

c) expected values of confidence interval half lengths

d) standard deviations of the sample mean variance 

estimators of the two methods.

The above criteria were estimated by Monte Carlo methods. 

The nominal confidence level was 95%. The number of replications 

and the sample sizes were 100 and 48, 96, 144, 192 respectively.
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The performance of the nonoverlapping batch means method 

for the groupwise independent process was satisfactory. For all 

the sample sizes the estimated coverages were very close to 0.95 

and the coverage functions fitted well to the [0,1] uniform 

distribution. Similar remarks were made for the performance of the 

autoregressive method on the AR(2).

The performance of the nonoverlapping batch means method 

was also evaluated on the AR(2). This was found to be rather bad. 

On the other hand, the performance of the autoregressive method on 

the groupwise independent process was found to be satisfactory.

HEIDELBERGER AND WELCH'sfl981) TESTING ENVIRONMENT

Heidelberger and Welch(1981a) developed a new method for 

estimating the variance of the sample mean in covariance 

stationary output processes. This method was based on the 

estimation of the power spectrum at zero frequency via the 

periodogram coordinates The performance of this method was 

evaluated on the four processes of the interactive multiprogrammed 

computer model[see section 2.2]. The following statistical 

criteria were selected;-

a) coverage,

b) expected values of confidence interval half lengths,

c) variance of confidence interval half lengths.

The latter two criteria were expressed in terms of the 

steady-state mean of each output process.

Estimates of the three criteria were obtained by using 

Monte Carlo methods. The number of replications and the nominal 

confidence level were 50 and 0.90 respectively. In order to
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eliminate the initialization bias effects, the authors removed 500 

observations from each replication of each output process. Then, 

each criterion was estimated for different sample sizes being 500, 

750, 1125, 1687, 2530, 3795, 5692, 8538, 12807, and 13500. For 

each combination of sample size and output process, a polynomial 

of degree two was fitted to both 25 and 50 nonoverlapping batch 

means. For these two numbers of batch means the batches, which 

were produced according to a batching procedure described in 

Heidelberger and Welch(1981a), were ranged from 100 to 200 and 

from 200 to 400 respectively.

For the processes of the response time, the estimated 

coverages ranged from 0.76 to 0.96. With respect to the processes 

of the waiting time in queues, the range of the estimated 

coverages was greater i.e. from 0.60 to 0.96. For small sample 

sizes the confidence interval half lengths had smaller expected 

values by using 25 rather than 50 nonoverlapping batch means. On 

the other hand, for large sample sizes and for both 25 and 50 

batch means the estimated expected values of the confidence 

interval half lengths were equal. Furthermore, for all sample 

sizes, higher variances of the confidence interval half lengths 

were observed by using 25 rather than 50 batch means.

SCHRUBEN*sfl983^ TESTING ENVIRONMENT

Schruben(1983) tested the performance of the 

nonoverlapping batch .means and the four standardized time series 

methods on the following processes:

i) delay in queue in the M/M/1 with queueing discipline 

FIFO and traffic intensities 0.20, 0.50, 0.80,
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ii) total cost in the inventory model,

iii) EAR(l) model with the autoregressive parameters being 

0, 0.2 and 0.8.

For the second process, two sets of parameter values were chosen; 

s—0, S—8, k—8, c—0, h—1, v—3 and s—16, S—22, k—16, c—O, h—1, v—27. 

For each set, the distribution of the demand was Poisson with mean 

3 and 16 respectively.

The performance of the methods was evaluated by using 

three statistical criteria:-

a) coverage,

b) expected values of confidence interval half lengths,

c) standard deviation of confidence interval half lengths.

Monte Carlo methods were used for estimating the above 

three criteria. The nominal confidence level was 90%. For each 

process, 100 replications were generated. Estimates of the 

criteria were obtained for different combinations of sample sizes 

and number of batches. These sample sizes and number of batches 

are displayed in table (2.1).

T A B L E  2.1
Sample sizes and number of batches in Schruben's testing 
environment

Simulation
Models

NUMBER OF BATCHES

1 2 5 10 20

M/M/1 t=0.20 20000 10000 4000 2000 1000
M/M/1 t=0.50 40000 20000 8000 4000 2000
M/M/1 T-0.80 60000 30000 12000 6000 3000

Inventory(1) 2560 1280 512 256 128
Inventory(2) 10000 5000 2000 1000 500

EAR ( 1 ) 0 2560 1280 512 256 128
EAR(l) 0.2 2560 2560 512 256 128
EAR(10 ^  0.8 10000 5000 2000 1000 500
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The estimated coverages were ranged from 0.77 to 1.0, For 

large sample sizes and small number of batches, the coverages all 

the methods achieved were very close to the nominal confidence 

level 0.90. Furthermore, for most combinations of output 

processes, sample sizes and number of batches, the confidence 

intervals of the standardized time series methods were narrower 

and more stable than those of the nonoverlapping batch means 

method.

LAW AND KELT0N'sfl984) TESTING ENVIRONMENT

Law and Kelton(1984) studied the performance of the 

nonoverlapping batch means, autoregressive, spectral and 

regenerative methods on the following two processes : -

i) delay in queue in the M/M/1 with queueing discipline 

FIFO and traffic intensity 0.80 and

ii) response time in the time-shared computer model.

For both processes, the initial conditions were empty and idle.

Two statistical criteria were chosen for evaluating the 

performance of the four methods ; the coverage and the expected 

values of confidence interval half lengths. These criteria were 

estimated by Monte Carlo methods. For the first process, 400 

replications were generated, while for the second process the 

number of replications was 200. For both processes, the 

statistical criteria were estimated for the same sample sizes; 

320, 640, 1280 and 2560. With regard to the nonoverlapping batch 

means method, the criteria were estimated for 5, 10, 20 and 40

batch means. For the spectral method, the size of the spectral 

window was determined in such a way that the degrees of freedom
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were the same with those of the nonoverlapping batch means method. 

Two versions of the regenerative method were tested; the classical 

and the jackknife.

In the M/M/1, the performance of the four confidence 

interval methods was not satisfactory. Although by increasing the 

sample size the four methods attained higher coverages, these 

coverages were smaller than the nominal confidence level 0.90. On 

the other hand, in the time-shared computer model and for sample 

sizes 1280 and 2560, the estimated coverages were very close to 

0.90. Moreover, in the second model the confidence interval of the 

autoregressive method had the smallest expected half lengths. With 

regard to nonoverlapping batch means and spectral methods. Law and 

Kelton recommended simulation practitioners to use a small number 

of large batches or large spectral window sizes.

GOLDSMAN■KANG AND SARGENT*s(1986^ TESTING ENVIRONMENT

Goldsman et al.(1986) studied the performance of the 

nonoverlapping/overlapping batch means, area and combined 

area-nonoverlapping batch means methods on the stationary AR(1). 

Its parameter values were pQ=0, ^^=0.9 and o^-l. The authors

selected two statistical criteria to evaluate the performance of 

the methods; the coverage and the expected values of confidence 

interval half lengths. These criteria were estimated by using 

Monte Carlo methods. The nominal confidence level and the number 

of replications were 90% and 1000 respectively.

Estimates of the above two criteria were reported for 2 

and 16 batches. The size of the batches were 2J (j-0,1, 2 , . . . , 10). 

The following conclusions were drawn:
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i) When the number of batches was 2, the coverage of the 

nonoverlapping batch means method was approaching the nominal 

confidence level faster than were the coverages of the other 

methods. However, for large batch sizes, for which all the methods 

achieved similar coverages, the nonoverlapping batch means method 

produced confidence intervals with the largest expected values.

ii) When the number of batches was 16, the behaviour of the 

estimated coverages for the nonoverlapping and overlapping batch 

means methods was about the same. For small batch sizes, the 

confidence intervals of the nonoverlapping batch means method had 

the largest expected values. However, as the batch sizes become 

large, the confidence interval methods were producing intervals 

which on average had the same half lengths.

SARGENT.KANG AND GOLDSMAN's(1989') TESTING ENVIRONMENT

This is an expansion of Goldsman et al.'s(1986) testing 

environment. The performance of the nonoverlapping/ overlapping 

batch means area, and combined area-nonoverlapping batch means 

methods was tested on the following processes:-

i) AR(1) with the parameter values being pQ=0, 0.0,

0. 9 and (T̂ -1

ii) EAR(l) with - 0.9

iii) MA(1) with g-±0.1, ±0.9

iv) delay in queue in the M/M/1 with queueing discipline 

FIFO and traffic intensity 0.9.

Two statistical criteria were used for studying the 

performance of the above confidence interval methods; the coverage 

and the expected values of confidence interval half lengths. Each
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criterion was estimated by using Monte Carlo methods. The whole 

study was divided into two parts.

In the first part, the two criteria were estimated for 

all combinations of processes, batch sizes m-2j(j-0 ,1 ,2 ,...,1 0 ), 

number of batches k-1,2,4,8,16 and nominal confidence levels 

(l-a)-0.80, 0.90, 0.95 and 0.99. For each process 1000

replications were generated. In each replication, the initial 

conditions were chosen from the appropriate steady-state 

distribution. For small m, all the methods attained coverages 

smaller than the nominal confidence levels. When both m and k were 

small, the nonoverlapping batch means method achieved the greatest 

coverages. For small m and large k the nonoverlapping and 

overlapping batch means methods attained about the same coverages; 

these were greater than the coverages the other two methods 

achieved. On the other hand, for large m and small k the estimated 

coverages of all the methods were close to the nominal confidence 

level. Furthermore, for each method, the expected values of 

confidence interval half lengths tended to decrease as the degrees 

of freedom increased. For large m and small k, the combined 

area-nonoverlapping batch means method on average produced the 

narrower confidence intervals.

In the second part of the study, the statistical criteria 

were estimated for each combination of sample sizes 

n=2J(j=4,5,6,...,14) and degrees of freedom df-3,15. For each 

process, the number of replications was 2000. For small n and 

df=3,15, the performance of the methods was not satisfactory in 

terms of the coverages. For small n and df-15, the overlapping 

batch means method seemed to produce the greatest coverages.
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However, as n was increasing, the nonoverlapping/overlapping batch 

means and combined area-nonoverlapping batch means methods 

appeared to attain acceptable coverages at about the same n.

2.5 SUMMARY

From the detailed description of the testing 

environments, one general conclusion can be drawn; There appears 

to be no general agreement about the details of an appropriate 

testing environment. If there existed such an agreement, the

confidence interval methods, which have been developed for the 

last two decades, could have been evaluated on the same simulation 

output processes and under a common range of combinations of

parameter values, sample sizes and nominal confidence levels. In

this way, the identification of the best method for different 

types of output process in terms of specific criteria would be a 

straightforward task.

Despite the lack of agreement in a single testing

environment, let us check whether it is possible to compare 

confidence interval methods which have been tested in the 

different testing environment. Such a comparison will be feasible 

if for different testing environments these methods have been 

evaluated on the same processes and under the same combinations of 

parameter values, sample sizes and nominal confidence levels.

We start, the analysis by identifying the simulation 

models which were common in two or more testing environments. From 

table (2.2) the M/M/1 was the common model in six testing 

environments; Fishman’s(1973), Law's(1977), Fishman's(1978),
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Schruben*s(1983), Law and kelton's(1984) and Sargent et 

al.'s(1989). Figure (2.1) illustrates the confidence interval 

methods which have been tested in the M/M/1.

From figure (2.1), the regenerative - spectral - 

autoregressive methods have never been compared in the same 

testing environment with the overlapping batch means and 

standardized time series methods. The issue which arises is 

whether we can compare these methods indirectly by comparing the 

results we have in Schruben's and Law and Kelton's or Law and 

Kelton's and Sargent et al.'s testing environments. This indirect 

comparison seems to be rather difficult. Different sample sizes 

were used in Schruben's and Law and Kelton's testing environments; 

for traffic intensity 0.80, in the first testing environment these 

sizes were 3000, 6000, 12000, 30000, 60000, while in the second 

environment they were 320, 640, 1280, 2560. Moreover, different

sample sizes were selected in Law and Kelton's and Sargent et 

al.'s testing environments. For the second environment, these 

sizes were 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192.

Let us now consider the simulation models which were 

common in any two testing environments[see table (2.2)]. The 

inventory model was used both in Law's and Schruben's testing 

environments. In these environments different parameter values for 

this model have been selected. Moreover, the AR(1) and EAR(l) were 

the common models in Schruben's and Sargent et al.'s testing 

environments. However., the same confidence interval methods have 

been tested in these environments.
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T A B L E  2.2
Simulation Models and output processes which have been used in the 
testing environments

Sim. Models (F)
1973

(L) (F)
1978

(S&A) (H&W) (Sc) (L&K) (G) (Sa)

M/M/1 X X X X X X

M/M/2 X

M/M/l/M/1 X

Time-shared X

Interactive X

Inventory X X

Groupwise 
Ind. process X

AR(1) X X

AR(2) X

EAR(l) X X

MA(1) X

F I G U R E  2.1 
Confidence Interval methods which have been tested in the M/M/1

Fishman(1973)
I
V

Regenerative

Law(1977)
I
V

a) Independent 
Replications

b) Nonoverlapping 
Batch means

Fishman(1973)
I
V

Nonoverlapping 
Batch means

Schruben(1983) Law & Kelton(1984) Sargent(1989)
V V

1
V

a) Nonoverlapping a) Nonoverlapping a) Nonoverlapp ing
Batch means- Batch means Batch means

b) Standardized b) Spectral b) Overlapping
time series c) Autoregressive Batch means

d) Regenerative c) Area
d) Combined
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All the other simulation models were used in only one 

testing environment. Therefore, for the performance of the 

confidence interval methods in the time-shared computer model, 

interactive multiprogrammed computer model and the AR(2) no 

comparative results can be extracted.

From the above analysis, the nonhomogeneity of the 

testing environments is evident. Different methods have been 

tested on different output processes under different combinations 

of sample sizes, parameter values and nominal confidence levels. 

Therefore, the best method in terms of specific statistical 

criteria and for certain types of output process cannot be 

identified.

Furthermore, recommendations concerning the application 

of confidence interval methods to output processes which have not 

been included in the testing environments are necessarily limited. 

For the nonoverlapping batch means and spectral methods Law and 

Kelton(1984) proposed to simulation researchers the use of a small 

number of large batches or large spectral window sizes. Schriber 

and Andrews(1981) recommended the autocorrelation and partial 

autocorrelation functions as links between real-life simulation 

output processes and processes on which the confidence interval 

methods have been tested. For the latter processes, these authors 

assumed that it is known a-priori for which parameter values the 

confidence interval methods attain acceptable performances.

The last two paragraphs indicate that no satisfactory 

answers exist for the two crucial questions stated in the 

introductory section. For this reason, in the subsequent chapters 

our objective is oriented in two domains. Firstly, the
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identification of some best method(s) in a well defined analytical 

and empirical context. Secondly, the provision of recommendations 

for applying certain confidence interval methods to output 

processes having specific characteristics.
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C H A P T E R  THREE

STATISTICAL CRITERIA FOR EXPLORING THE BIAS OF VARIANCE ESTIMATORS 
OF THE SAMPLE MEAN

3.1 INTRODUCTION

In chapter one, we have discussed different estimators of

the variance of the sample mean. These estimators produce

alternative confidence interval methods for steady state means of

simulation output processes. We have denoted the estimator of the 
, A 2i^“ method by In the subsequent analysis i will be used as an 

index indicating methods l,2,...,g. Based on this notation, we 

present the confidence interval produced by the i^^ method as

where is the mean from a sample of size n, Vĵ  the degrees of 

freedom according to the i^^ method and (l-a) the nominal 

confidence level.

Estimators of the variance of the sample mean with 

acceptable properties are more likely to give valid confidence 

intervals [see Law(1977), Goldsman et al.(1986)]. For instance, 

Law(1977) studied the performance of the nonoverlapping batch 

means method on the delay in queue in the M/M/1 by using Monte 

Carlo methods. The basic statistical criterion for evaluating the 

performance of the method was the coverage[see section 2.3]. For 

different combinations of sample sizes and number of batches the 

estimated coverages were lower than the nominal confidence level.
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Law reported that the major cause for the differences between 

estimated coverages and nominal confidence levels was the bias of 

the corresponding estimator of the variance of the sample mean.

In this chapter, we study the bias of five sample mean 

variance estimators for small sample sizes. More specifically, we 

introduce a family of functions which enables us to compute 

analytically both the minimum bias of each estimator and its 

parameter values for which this minimum bias is attained, 

providing that the theoretical autocorrelation coefficients of the 

output process under study are known. We shall call these 

functions "Bias Indicator functions".

In the next section we report previous analytical results 

on the bias of sample mean variance estimators

In section 3.3, we derive the expected values of the five 

sample mean variance estimators. These expected values are 

expressed in terms of the theoretical autocorrelation coefficients 

of the output process under study.

In section 3.4, we obtain analytical forms of the Bias 

Indicator functions of the sample mean variance estimators. For

small sample sizes, we also illustrate how to determine both the

minimum bias of each estimator and its parameter values for which 

the minimum bias is attained.

In the final section, we compare the minimum bias of the 

five sample mean variance estimators under consideration in the 

AR(1) process under positive and negative autoregressive

coefficients. We also state results obtained by Kevork and

Balmer(1990) for the minimum bias of the above estimators in AR(2) 

processes and the delay in queue in the M/M/1.
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3.2 PREVIOUS WORK ON THE BIAS OF SAMPLE MEAN VARIANCE ESTIMATORS 

The following five confidence interval methods are 

considered in the subsequent chapters:-

i) nonoverlapping batch means denoted by NOBM,

ii) standardized time series-area denoted by AREA,

iii) combined area-nonoverlapping batch means denoted by 

NOBM-AREA,

iv) spectral denoted by SPEC, and

v) overlapping batch means denoted by OVBM

The corresponding sample mean variance estimators are 

defined as follows:

i) NOBM

A 2 vnb
(T =  --------

= k 2
where V  [ %j.m ' %n j O-l)

NB n NB k-1 1-1

1 m
% j , m --------- 2 %(j-i)m+t ' j- 1,2.....k (3.1a)

m t-1

ii) AREA

A
A 2 ^SM a 12 k ^2
a = ----- where Vg^ -   2 ^1 (3.2)SM n k(m3-m) j=l

A m
Ai - 2  (3.2a)

C-1

A
Sj(2) = %j,m - Xj,e ' l,2,...,k (3.2b)
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iii) Combined NOBM-AREA

A 2
(T

^CM A  where V
CM n CM

12 k k
—  S Aj + m - Xn]

j-1 j-1

(2k-l)
(3.3)

iv) SPEC

A 2 Vgp n
where V

SP n SP
A A
To ^ ^ ^w(s)Tss-1

(3.4)

Xw(s) - 0.5( 1 + c o s (t s /w )) (3.4a)

A n-s A* 
7 s ------- 7s (3.4b)

A*
7s n-s t-1

(3.4c)

v) OVBM

A
A 2 ^OB
OB n

A m n-m+1
where V - ----- ^ f Xi (m) - 1

OB n-m+1 j— 1
(3.5)

1 m -1
Xj(m) “ --- E Xj+t

m t-0
(3.5a)

The evaluation of bias of sample mean variance estimators 

constitutes an active field of research in simulation output 

analysis. Goldsman and Meketon(1986) showed that as m and k
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becomes large

A A A  ABias(VNB)-Bias(VoB)-(Bias(VcM))/2-(Bias(VcM))/3

Besides, the authors reported that the bias of these four

estimators is of order (1/m). Hence, the estimators are

asymptotically unbiased as m-y».

For the AR(1), Goldsman et al.(1986) provided exact 
A A

forms for the E(Vj^g) and E(VgM) terms of the autoregressive

autoregressive coefficient. The authors verified that as m-y» 
Athe bias of is three times more than that of Vjjg.

Furthermore, for the AR(1), Sargent et al.(1989) obtained
A A A Aexact results for E(Vj^g), E(Vqb) » E(VgM), E(Vqj^) for k-2 and k-16.

For k“2 , the authors reported that

A A A ABias(VNB><Bias(Vog)<Bias(Vc%)<Bias(Vg^)

while for k-16

A A A ABias (Vjjg)s:Bias (VQ%)<Bias (Vçj^)<Bias (Vg%)

From the above, we see that no exact results exist for 

the bias of the sample mean variance estimator of the spectral 

method.

3.3 EXPECTED VALUES FOR VARIOUS SAMPLE MEAN VARIANCE ESTIMATORS 

Let {X^} be a stationary output process with

E(X^) - ft < 00 t>l 
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and

Var(Xt) - Yo < *

We derive below the expected values of the five sample mean 

variance estimators under consideration.

3.3.1 Nonoverlapping Batch Means 

From Law(1977)

A2
O’NB 7o ,m

k -1
(k-1 ) - 2 I 

j-1

k(k-l)

(3.6)

where P j “ 7j,m/To,m» ^nd

m s--(m-l) 1 -

ls|
m 7jm+s (3.7)

is the covariance of ^ X^+j ^ any time point t,

Simplifying (3.6) we get

7o,m
A2aNB

k -1 
2 2  
j-1

1 - *yj ,m

k(k-l)
(3.8)

Expanding the sum in (3.7) and recalling that 7 i“=7 _i, 

7j jjj is expressed in terms of the variance and the theoretical
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autocorrelation coefficients of the original output process (X^)

as

7o
Tj . m ---------- Aj(m)

m

where

Aj (m)

m-1
Pjm + S 

s-1

m-1
1 + 2 1

S-1

1 - rtlPjm-s Pjm+s , j^O

j-0

(3.9)

From (3.8) and (3.9), knowing 7 q and Pi(i-l,...,n-l), 

exact analytic results for the expected value of the NOBM 

estimator can be obtained under different number of batches k and 

sample sizes n

3.3.2 Standardized Time Series-area

Taking expected values to both sides of (3.2), we get

A 2 12 k A 2E (T % E AjL SM. nk(m^-m) j-1
(3.10)

For the batch, when the batch size m is even

A (m-l)X ' -(m-3)X
(j-l)m+i (j-l)m+2

. . -X
(j -1 )m- m

+X +3X
(j-l)m+'j+i (j - 1 )m+-+2

+ ...+(m-3)X +(m-l)X
jm-1 jm
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while when m is odd

(ni“l)X “(ni“3)X
(j-i)m+i (j-i)m+2

. - 2X m- 1

+2X _ +4X _ +...+(m-3)X +(m-l)X
(j -1 )m+™ y +2 (j - 1 V s jm-1 jm

where X(j_i)ni+s ~ X(j-l)m+s " P
ASquaring Aj, taking expectations for each cross product 

term and recalling that

^ [ X(j-l)m+tX(j-l)m+t+s ] “ 7s

we get

A 2 7 o m m
1 1 ^rsr=0 s— 0

(3.11)

where m" = [m/2 ] - 1

and ôj-s “ {m-(l+2r)){m-(l+2s)){pj-.s - Pm-(r+s+l)}
The notation [m/2] stands for the greatest integer which 

is less than m/2 .

Substituting (3.11) into (3.10), the expected value of 

area estimator is given by

A 2
aSM rs m<n (3.12)

n(mS-m) r-=0 s-0
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3.3.3 Combined Area-nonoverlapplng Batch Means 

From (3.3)

Chapter 3

12 k A 2 k :
------  I E + m E 2 ( ^j,m " %n )

A 2 m3 - m j-1 j-1
CM n(2k-l)

(3.13)

But

k A 2 nk(m^-m) A 2E E a
12 SM

(3.14)

and

k A 2
Z ( %j,m " %n )

lj-1
- k(k-l)E aNB (3.15)

Substituting (3.14) and (3.15) into (3.13)

A2
a
CM

A 2 A 2kE <J + (k-l)E aSM NB

2k-l
(3.16)

From (3.16), the expected value of the combined 

NOBM-AREA estimator is the weighted average of the expected values 

of the NOBM and AREA estimators. Moreover for k-1 the AREA and 

combined NOBM-AREA estimators have the same expected value.
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3.3.4 Spectral 

From (3.4)

Chapter 3

A 2 1 A ■
E a - ----- E ToSP n-w

w -1
+ 2 S k*(s)E

S-1
A ■
Ts (3.17)

A ■ n-s A*"
where E Ts ------E Tsn

From Anderson(1970,page 448)

- To 8s(n) (3.18)

with

1 n -1 r
1 - --- 1 + 2 2 Pr

n r-1 n
s— 0

1 s rs
Ps----- 1 + 2 2 1 -

n r-1 n(n-s)

n -1 (n-r)s
Pr + 2 J ------  pj- +

r-n-s n(n-s)

n-s-1 
+ 2 2 

r-s+1

rs r-s
1 -

n(n-s) n-s Pr l<s<n-s-l)

-Ps n
1+2 I

r-1

rs

n(n-s)

n -1 (n-r)s

r-s+1 n(n-s) Pr

l<s-n-s-l

77



Chapter 3

1 n-s-1 rs s r
“Ps----- 1+2 2 1 -------- Pr + 2 5 --- Pr +

n r-1 n(n-s) . r-n-s n

n -1 (n-r)s
+ 2 5 ;   Pr

r-s+1 n(n-s)
n-s-l<s<n-l

-Pn-1 - n

n -1 r
1 + 2 J --- Pr

r-1 n
s-n-1

3.3.5 Overlapping Batch Means

Substituting (3.5a) into the OVBM sample mean variance

estimator

A2cr
OB

m n-m+1
  2n(n-m+l) j-1

1 m -1

m 2  Xj+Ct-0
- Xn

m n-m+1 m -1 Xj+t
z zt-0 m

1 n-m+1
-----------------------  Imn(n-m+l) j-1

m -1
2 ( Xj+t - %n )t-0

1 n-m+12mn(n-m+l) j-1

m -1 m -1
2  Z (Xj+s-Xn)(Xj+g-Xn)s-0 C-0

(3.19)
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We have found that it is rather difficult to derive the 

exact form of the expected value of the OVBM estimator from 

(3.19). Meketon and Schmeiser approximated (3.19) by

n 2 m-1 n-s
m J (Xi-X) + 2 J (m-s) ^ (Xj-X^) (Xj+s-X^) 

A2 S-1 S-1 j-1
a - ------ -— — --------------------------------
OB mn(n-m+l)

n-m+1

n
2  (Xs-Xn) 
s— 1 m -1
 + 2 2

n s— 1
1 -

m

n-s
2 (Xj-X„)(Xj+3 -Xn)

j-1

n

n-m+1
A m-1 s A
To + 2 2 1 - --- Tss-1 m

(3.20)

We set Ŷ -Xĵ -Xĵ ; From the following configuration we can 

investigate the accuracy of the approximation under different 

sample sizes. The denominators of (3.19) and (3.20) have been 

omitted.
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n—5 , m—3

exact form

Y,Y,+ Y,Y;+
Y 2+2Y 2Y 3+
Y,+3Y,Y,+2Y,Y.+Y,Y,

2Y^+2YjX2 '^^2*3 Y 2Y 4+
g Y , + 2 Y 3  J. 2-r-» X 3 X 3-rt i 3*4^-^ 3* 5

Y,Y2+2Y,Y3+2Y,Y,+Y,Y;
Y 3Y 3+ Y 5Y 4+Y 5Y 5

approximate form

3Y,Y,+2Y,Y2+ Y Y Y 3 +  

2 Y 2 Y 1 + 3 Y 2 Y 2 + 2 Y 2 Y 3 +  Y 2 Y 4 +  

Y 3 Y , + 2 Y 3 Y 2 + 3 Y 3 Y 3 + 2 Y 3 Y ^ +  Y 3 Y 5  

Y,Y,+2Y,Y3+3Y,Y,+2Y,Y5 
Y;Y3+2YsY,+3Y5Ys

II—6 , m-3 

exact form 

Y 1Y 1+ Y,Y2+ Y,Y3+
Y 2Y 1+2Y 2Y 2+2Y 2Y 3+ Y 2Y 4+
Y 3 Y , +2Y 3 Y 2+3 Y 3 Y 3+2 Y 3 Y,+Y 3 Y 5+

Y,Y2+2Y,Y3+3Y,Y,+2Y,Y;+Y,Y;
Y 5Y 3+ 2YsY,+2Y 5Ys+YsYs 

Y 6Y 4+ YgYg+YgYe

approximate form 

3Y,Y,+2Y,Y2+ Y,Y3+
2Y2Y,+3Y2Y2+2Y2Y3+ Y 2Y 4+
Y,Y,+2Y,Y,+3Y,Y,+2Y,Y,+ Y,Y;+

Y,Y,+2Y,Y,+3Y,Y,+2Y,Y;+ Y,Y, 
Y 5Y 3+ 2YsY,+3Y;Y,+2Y;Y;

Y 6Y 4+ 2Y 6Y 5+ Y;Y;

By using the approximate form (3.20), some early and late 

cross-product terms are counted more times than it should be. 

However, the approximation improves for a fixed batch size m as 

the sample size n increases. This is so because in (3.20) there 

are fewer terms with coefficients different from those defined by 

the exact form (3.19).

Taking expectations to both sides of (3.20)

A 2 1 A m -1
E a —  --------------- E 7o + 2 2
. OB n-m+1 s-1 m

A ■E 7s (3.21)

where E(7 g) was defined in (3.18)
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3.4 THE BIAS INDICATOR FUNCTIONS 

Consider the following ratios :-

i) for the nonoverlapping batch means, area and combined 

NOBM-AREA methods

A 2(Tj

Bs(n,k)
V(%n)

(3.22a)
i - NB , SM , CM

ii) for the spectral method

A 2
a
SP

Bs(n,w) SP V(Xn)
(3.22b)

iii) for the overlapping batch means method

A 2
a
OB

Bs(n,m) OB
V(%n)

(3.22c)

where V(Xj )̂ is the true variance of the sample mean.

For the five confidence interval methods, the ratios

(3.22) measure the bias of the corresponding sample mean variance 

estimators. For this reason we shall call each ratio the "Bias 

Indicator function" of the corresponding estimator.

Exact analytic values for each Bias Indicator function 

can be obtained only when the theoretical autocorrelation 

coefficients of the process under study are known. Substituting
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the expected values of the sample mean variance estimators into

(3.22) and recalling that

V(Xn) -
7 o

n

n-1 , s 1
1 + : 2: ( 1 - ]Ps 

S-1

the Bias indicator functions take the following forms

NONOVERLAPPING BATCH MEANS

Bs(n,k)
NB

k-l, 1 ,
1- -i- ] Aj(m)

Ao(m) -----------------------
k-l

1 + 2 2  ( 1 - —  ]pss— 1

(3.23a)

where Aj(m) was defined in (3.9)

STANDARDIZED TIME SERIES METHOD-AREA

Bs(n,k)
SM mS-m

m m
E 2 ^rs r- 0 s-0

1 + 2 2, —  ]psS-1

k>l , (3.23b)

where and m", were defined in (3.11)

COMBINED AREA-NONOVERLAPPING BATCH MEANS

Bs(n,k) CM

kBs(n,k) + (k-l)Bs(n,k)SM NB

2k-1
(3.22c)
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Bs(n,w)sp
n-w

w-1
ngo(n) + 2 2 (n-s)X^(s)gs(n)

s— 1

1 + 2 2  ( 1 '  ~  ]  PsS-1

(3.22d)

where X^(s) and gg(n) were defined in (3.4a) and (3.18) 

respectively.

OVERLAPPING BATCH MEANS

Bs(n,m)oB“
n-m+1

m-1
ngo(n)+2 2 (n-s)[l- -^]gg(n) 

s-1

n-1 , s ,
1 + 2 1 - -E- ]PsS-1

(3.22e)

In the next chapter, we use the asymptotic forms of the 

Bias Indicator functions to compute analytically the limiting 

coverages of the five confidence interval methods under 

consideration. With respect to the nonoverlapping batch means, 

area and combined area-nonoverlapping batch means methods, for 

fixed m these coverages will be computed as k-y» and also n-ym. For 

the spectral and overlapping batch means methods, for fixed m and 

w respectively, the limiting coverages will be obtained as n-»w.

Two criteria additional to the Bias Indicator functions 

are defined below. Given the sample size, these criteria are the 

minimum bias of each sample mean variance estimator and its 

parameter values for which this minimum bias is attained. We shall 

call these values "MB-parameter values".

-83-



Chapter 3

Let kj^ be the MB-parameter values of the nonoverlapping 

batch means, area and conbined area-nonoverlapplng batch means 

estimators. Similarly, let us denote by and mj^ the

MB-parameter values of the spectral and overlapping batch means 

estimators respectively. The above MB-parameter values will 

satisfy the following inequalities : -

i) for the NOBM, AREA and combined NOBM-AREA

I Bs(n,k ) - 1 I <  I Bs(n,k) - 1 | 
MB i i

ii) for the spectral

I Bs(n,w ) - 1 I <  I Bs(n,w) - 1 |MB SP SP

for any w^f^g

iii) for the overlapping batch means

I Bs(n,m ) - 1 I <  I Bs(n,m) - 1 i
MB OB OB

for any

For each of the above five sample mean variance 

estimators and in terms of the true variance of the sample mean, 

the minimum bias will be given by
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- min | Bs(n,k)i - 1 | for i-NB, SM, CM

MB - min | Bs(n,w) - 1 | 
SP SP

MB - min | Bs(n,m) - 1 | OB OB

For the minimum bias and the MB-parameter values, exact 

analytic results can be obtained only when the theoretical 

autocorrelation coefficients of the process under study are known. 

Such a process is considered in the next section. For processes 

whose theoretical autocorrelation functions are not known 

estimation procedures for the above criteria are discussed in 

chapter six.

3.5 THE BIAS OF SAMPLE MEAN VARIANCE ESTIMATORS IN AR(1) 
PROCESSES

Three statistical criteria for studying the bias of each 

sample mean variance estimator were introduced in the previous 

section; the Bias Indicator function, the minimum bias and the 

MB-parameter values. Let us now compute the values of these 

criteria for the stationary AR(1) process which has the form

X|- -= X^. 1 - /t ) -»- 6t (3.23)

where the are independent and normally distributed random
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variables with mean 0 and common variance

For this process, the s^h theoretical autocorrelation 

coefficient is pisl jgee Harvey(1981)]. Therefore, when the 

autoregressive coefficient ip is positive, the autocorrelation 

function decays monotonically to zero. With negative ip the 

autocorrelation function converges to zero oscillating between 

positive and negative values.

For the AR(1), figure (3.1) illustrates the Bias 

Indicator functions of the five sample mean variance estimators 

which have been considered in the previous section. The 

autoregressive coefficients are .4074, -.4074, 0.963, and -.963. 

The choice of these particular values will be explained in the 

next chapter.

First, consider the nonoverlapping batch means(NOBM), 

area and combined area-nonoverlapping batch means sample mean 

variance estimators. For these three estimators, diagrams (a) and 

(b) display the shape and the relative position of the Bias 

Indicator functions for sample size 512. We have found that 

similar shapes hold for any other small sample. For positive ip, we 

observe that the three estimators underestimate the true variance 

of the sample mean, while for negative ip they overestimate it. For 

any number of batches k>2 the NOBM estimator has the smallest 

bias. For the same range of k, the combined NOBM-AREA estimator is 

less biased than the AREA estimator.

In diagrams (c) and (d), we have drawn the Bias Indicator 

functions of the NOBM and AREA estimators for y?-0.963, -0.963 and
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different sample sizes. For any other negative or positive value 

of <p, the shape of these functions is similar. For k)2, the Bias 

Indicator function of the combined NOBM-AREA estimator has shape 

similar to that of the corresponding functions of the NOBM and 

AREA estimators because this function of the combined NOBM-AREA 

estimator is the weighted average of the corresponding functions 

of the NOBM and AREA estimators [see form (3.22c)]. For k-l the 

Bias Indicator functions of the AREA and combined NOBM-AREA 

estimators are identical. From the two diagrams, for any finite 

sample size the minimum bias of the NOBM estimator is attained for 

k-2 while the minimum bias of the other two estimators is achieved 

for k-l.

Let us now examine the properties of the Bias Indicator 

function of the spectral(SPEC) estimator. Diagrams (e) and (f) 

illustrate the form of this function under different values of 

sample size n, autoregressive coefficient <p and spectral window 

size w. When ^ is positive, the Bias Indicator function is an 

increasing function of the spectral window size. For negative y?, 

the SPEC estimator overestimates the true variance of the sample 

mean for any combination of n,^ and w. By keeping fixed the sample 

size, higher autocorrelation levels move the whole function 

upwards,

The above properties of the Bias Indicator function of 

the SPEC estimator hold for the corresponding function of the 

overlapping batch means estimator(OVBM) [see diagrams (g) and 

(h)].
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Figure 3.1
Bias Indicator functions for AR(1) processes
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Figure 3.1 (Cont..)
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For different sample sizes, table (3.1) displays the 

minimum bias of the five sample mean variance estimators in the 

AR(1). The numbers in brackets are the parameter values for which 

the minimum bias is attained. First, consider the case where (p is 

positive. For high autocorrelation levels and small sample sizes 

the AREA estimator achieves smaller minimum bias than that of the 

NOBM estimator. This result contradicts that obtained by Sargent 

et al.(1989)[see section 3.2].

For any sample size, the SPEC estimator attaines smaller 

minimum bias than that of the NOBM and AREA. The same results hold 

for the OVBM estimator at large sample sizes. With regard to the 

SPEC and OVBM estimators the minimum bias is achieved at higher 

values of the spectral window size or the batch size as the sample 

size increases.

Examine now the minimum bias of the five estimators when 

(p is negative. For small sample sizes, the NOBM estimator achieves 

the smallest minimum bias. For high autocorrelation levels and 

small sample sizes, the minimum bias of the SPEC estimator is 

smaller than that of the AREA. For large sample sizes the OVBM 

estimator attaines the largest minimum bias.
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T A B L E  3 . 1  
Minimum bias of sample mean variance estimators in AR(1)

tp —  0 . 4 0 7 4

n NOBM AREA NOBM-AREA SPEC OVBM

4 0.4466 0.4239 0.4239 0.1325 0.5825
(2) (1) (1) (3) (3)

8 0.2631 0.2481 0.2481 0.0530 0.1365
(2) (1) (1) (5) (7)

16 0.1299 0.1265 0.1265 0.0049 0.0074
(2) (1) (1) (7) (10)

32 0.0630 0.0626 0.0626 0.0051 0.0105
(2) (1) (1) (10) (17)

64 0.0310 0.0310 0.0310 0.0025 0.0021
(2) (1) (1) (15) (24)

128 0.0154 0.0154 0.0154 0.0007 0.0004
(2) (1) (1) (21) (38)

256 0.0077 0.0077 0.0077 0.0002 0.0005
(2) (1) (1) (29) (59)

512 0.0038 0.0038 0.0038 0.0001 0.0002
(2) (1) (1) (41) (94)

1024 0.0019 0.0019 0.0019 0.0000 0.0000
(2) (1) (1) (58) (148)

2048 0.0010 0.0010 0.0010 0.0000 0.0000
(2) (1) (1) (81) (234)

ip — ().9630

n NOBM AREA NOBM-AREA SPEC OVBM

4 0.9718 0.9682 0.9682 0.9565 0.9796
(2) (1) (1) (3) (3)

8 0.9488 0.9402 0.9402 0.2923 0.3544
(2) (1) (1) (6) (7)

16 0.9015 0.8850 0.8850 0.0960 0.0444
(2) (1) (1) (11) (13)

32 0.8110 0.7834 0.7834 0.0328 0.0387
(2) (1) (1) (21) (23)

64 0.6534 0.6168 0.6168 0.0030 0.0163
(2) (1) (1) (37) (41)

128 0.4323 0.4018 0.4018 0.0059 0.0002
(2) (1) (1) (64) (71)

256 0.2274 0.2163 0.2163 0.0013 0.0001
(2). (1) (1) (102) (122)

512 0.1092 0.1075 0.1075 0.0004 0.0001
(2) (1) (1) (155) (205)

1024 0.0532 0.0533 0.0533 0.0002 0.0003
(2) (1) (1) (227) (343)

2048 0.0262 0.0273 0.0273 0.0001 0.0001
(2) (1) (1) (327) (569)

-93-



T A B L E  3.1 (Cont. .)

Chapter 3

ip — -0.4074

n NOBM AREA NOBM-AREA SPEC OVBM

4 0.2746 0.4539 0.4539 0.8720 0.2480
(2) (1) (1) (2) (2)

8 0.2058 0.2223 0.2223 0.3926 0.3606
(2) (1) (1) (3) (2)

16 0.1149 0.1156 0.1156 0.1801 0.2645
(2) (1) (1) (5) (5)

32 0.0593 0.0593 0.0593 0.0805 0.1684
(2) (1) (1) (7) (9)

64 0.0301 0.0301 0.0301 0.0371 0.1032
(2) (1) (1) (10) (15)

128 0.0151 0.0152 0.0152 0.0175 0.0624
(2) (1) (1) (16) (25)

256 0.0076 0.0076 0.0076 0.0084 0.0378
(2) (1) (1) (22) (42)

512 0.0038 0.0038 0.0038 0.0040 0.0230
(2) (1) (1) (31) (69)

1024 0.0019 0.0019 0.0019 0.0020 0.0141
(2) (1) (1) (50) (114)

2048 0.0010 0.0010 0.0010 0.0010 0.0087
(2) (1) (1) (77) (189)

¥> - •0.9630

n NOBM AREA NOBM-AREA SPEC OVBM

4 0.0363 20.0735 20.0735 13.6514 8.7676
(2) (1) (1) (2) (2)

8 0.0697 8.9882 8.9882 6.4198 6.2364
(2) (1) (1) (3) (2)

16 0.1284 3.9857 3.9857 2.7594 3.6549
(2) (1) (1) (3) (2)

32 0.2151 1.6786 1.6786 1.3043 2.2390
(2) (1) (1) (3) (2)

64 0.2955 0.7098 0.7098 0.6629 1.5761
(2) (1) (1) (3) (2)

128 0.2849 0.3493 0.3493 0.3612 1.1824
(2) (1) (1) (5) (24)

256 0.1847 0.1878 0.1878 0.1947 0.7478
(2). (1) (1) (7) (70)

512 a. 0985 0.0986 0.0986 0.1016 0.4224
(2) (1) (1) (13) (140)

1024 0.0505 0.0506 0.0506 0.0518 0.2325
(2) (1) (1) (25) (260)

2048 0.0256 0.0258 0.0258 0.0261 0.1289
(2) (1) (1) (47) (431)
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Kevork and Balmer(1990) compared the minimum bias of the

five sample mean variance estimators on two additional processes 

_ the steady state delay in queue in the M/M/1 and 

_ the stationary AR(2) when its autocorrelation function shows a 

damped cyclical behaviour.

For the M/M/1, the spectral sample mean variance estimator

achieved the smallest minimum bias for all the sample sizes that 

were considered. On the other hand, in the AR(2) for certain

autoregressive coefficients and small sample sizes, the smallest

bias was achieved by the combined estimator

3.6 SUMMARY

In this chapter, we introduced a family of functions for 

studying the bias of sample mean variance estimators in small 

samples. We have called these functions "Bias Indicator 

functions". Analytical forms of the Bias Indicator functions have 

been derived for five estimators; nonoverlapping batch means, 

overlapping batch means, area, combined area-nonoverlapping batch 

means and spectral. The above forms have been expressed in terms 

of the theoretical autocorrelation coefficients of the output 

process under study.

Moreover, for each sample mean variance estimator, we 

have defined the following two statistical criteria; the minimum 

bias and its parameter values for which the minimum bias is 

attained. These parameter values have been called "MB-parameter 

values". The latter two criteria are related to the Bias Indicator 

functions. That is, the values of these criteria are determined by
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the Bias Indicator functions. Therefore, for each estimator 

analytical values of the minimum bias and the "MB-parameter 

values" can be obtained only when the autocorrelation function of 

the process under study is known. The usefulness of the 

MB-parameter values will become evident in chapter six. There, we 

investigate the performance of the confidence interval methods at 

these parameter values.

Analytical values for the three statistical criteria 

under consideration have been obtained for the AR(1), AR(2) and 

the delay in queue in the M/M/1. For these processes, the 

theoretical autocorrelation coefficients at any lag are given by 

known difference equations. In the M/M/1 and the AR(1) with 

positive autoregressive coefficient, the spectral estimator 

achieves the smallest minimum bias. The nonoverlapping batch means 

estimator attains the smallest minimum bias in the AR(1) with 

negative autoregressive coefficient. In the AR(2), for certain 

autoregressive coefficients and small sample sizes, the smallest 

minimum bias is achieved by the combined estimator.

In the following chapter we derive the limiting forms of 

the Bias Indicator functions. These limiting forms are used for 

computing analytically the limiting coverages of the corresponding 

five confidence interval methods.
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ASYMPTOTIC COMPARISON OF CONFIDENCE INTERVAL METHODS

4.1 INTRODUCTION 

For the past five years, the derivation of asymptotic 

properties of confidence interval methods has constituted one of 

the main object of research in the output analysis of steady-state 

simulations. Several criteria have been selected and used for 

measuring the asymptotic performance of each method. Such criteria 

are limiting coverages of steady-state means from confidence 

interval methods and limiting expected values and variances of 

confidence interval half lengths. Values of the above criteria are 

computed analytically i.e without using Monte Carlo methods.

In studying the asymptotic performance of confidence 

interval methods, two issues arise. The first refers to the 

numerical computation of the limiting coverages and the second to 

the limiting precision and stability of the confidence intervals, 

providing that these intervals cover the steady-state mean with 

the nominal probability.

In regard to the first issue, Goldsman et al.(1986) and 

Sargent et al.(1989) studied the limiting coverages of the 

nonoverlapping/overlapping batch means, area and combined 

NOBM-AREA methods on the AR(1) with the autoregressive coefficient 

being positive. With respect to the second issue, Schmeiser(1982) 

derived limiting forms for the expected values and variances of 

the confidence interval half lengths produced by the 

nonoverlapping batch means method. Goldsman and Schruben(1984) 

derived the corresponding limiting forms for the four standardized
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time series methods. The authors also compared the limiting 

expected values and variances of the confidence interval half

lengths of the nonoverlapping batch means method with those of the 

four standardized time series methods. Goldsman et al.(1986) and 

Sargent et al.(1989) summarized the results of the previous two 

works.

In this chapter, we display some further results on the 

asymptotic properties of confidence interval methods. For the 

nonoverlapping/overlapping batch means, area, combined NOBM-AREA 

and spectral methods, the limiting coverages are computed 

numerically for different parameter values in the AR(1), AR(2) and 

the delay in queue in the M/M/1. Furthermore, for the spectral and 

overlapping batch means methods, we derive limiting forms of the 

expected values and variances of the confidence interval half

lengths.

More specifically, in the following section we describe 

the way in which the limiting coverages of the above five methods 

can be computed analytically. This approach is general in that it 

can be applied to any process whose the theoretical 

autocorrelation coefficients are known. In section 4.3, we study 

the limiting coverages achieved by the five methods in the AR(1), 

AR(2) and the delay in queue in the M/M/1. In the final two

sections, we discuss asymptotic comparisons of the limiting

expected values and variances of the confidence interval half

lengths produced by the five methods under consideration.
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4.2 THE ANALYTICAL COMPUTATION OF LIMITING COVERAGES

Let {X^,t-1,2,3...} be a stationary output process with

E(Xt) - /* < « , t)l (4.1a)

Var(Xt) - < * , t)l (4.1b)

00

and J 17s I < (4.1c)
s—-w

The last condition implies that the correlation between X̂ - and 

Xt+s negligible when s is very large[see Law and Carson(1978)]. 

This property is satisfied by a wide class of processes including 

autoregressive processes, regenerative processes and m-dependent 

processes [see Law(1983), Schruben(1983)]. The term "m-dependence" 

means that X^ and X^+g are autocorrelated only if s<m [see 

Kleijnen(1975)].

For simulation output processes satisfying conditions

(4.1), we illustrate the way in which the limiting coverages of 

the following confidence interval methods can be computed 

analytically:

1) Nonoverlapping batch means method(NOBM) 

ii) Standardized time series-area method(AREA)

iii) Combined area-nonoverlapping batch means 

method(NOBM-AREA)

iv) Spectral method denoted(SPEC)

v) Overlapping batch means method(OVBM).

For the first three methods, the limiting coverages are 

obtained when the batch size m is fixed and the number of 

contiguous batches k tends to infinity. With regard to the
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overlapping batch means method the llmitimg coverages are computed

when the sample size n tends to infinity and the batch size m is

fixed. For the spectral nethod the coverages under discussion are

obtained when the sample size n tends t<o infinity keeping fixed

the spectral window size.

In the subsequent analysis we use the notation which has

been established by Goldsman and Schruben(1984) and Goldsman et

al. (1986). Define the scalar quantities and

“ Cim[nV(Xj^) ] where V(X^) is the true variance of the sample 
n-*(o

mean. The above confidence interval methods propose the following 

estimators for (T^:-

A m k
% B --------- 1 [ %j,m - %n j

k-1 j-1

where Xj was defined in (3.1a)

A ^  Az
V s M ------------ 1 Aj(mS-m)k j-1

Awhere Aj was defined in (3.2a)

A A
A +  ( k - l ) V Q B
V,CM 2k-l

n
'SP n-w

7o + 2 J X^(s)7s
S“1

where X^(s) and were defined in (3.4a) and (3.4b)
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A “  n -m + 1  TVoB--------- 1 I Xj(m) - 1
n-m+1 j-1

where Xj(m) was defined in (3.5a).

We remind the reader that the initials NB, SM, CM, SP and 

OB stand for the NOBM, AREA, combined NOBM-AREA, SPEC and OVBM 

methods respectively.
AFor the estimators of the NOBM, AREA and combined

NOBM-AREA methods, Goldsman et al.(1986) and Sargent et al.(1989)
Areport that as V£->E(V^) w.p 1. The same is true for

AVi(i-SP,OB) as n->oo. Therefore, the following random variables :-

i) for fixed m and large k

n / t T  ( X ^ - f i )  n / t T  x / r T  ( X n - / i )

A i A i A i
[ ^NB ] ( ^SM ] ( ^CM ]

ii) for fixed w and large n

n/tT  (X^-p) 
T . ------------

iii) for fixed m and large n

(X^-p)
T

( ^OB ]
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tend to be normal with mean zero and variances

(4.2)

E(Vn b )- E(VsM) E(VcM) E(Vgp) E(VoB)
. <r2 .

respectively.

Multiplying and dividing ratios (4.2) by n, we get the 

corresponding limiting Bias Indicator function at the denominator 

of each ratio i.e

AsBs(m) - Cim Bs(n,k) for the NOBM method NB NB

AsBs(m) - Cim Bs(n,k) for the AREA method 
SM k-*oo SM

AsBs(m) — Cim Bs(n,k) for the combined NOBM-AREA method CM CM

AsBs(w) — Cim Bs(n,w) for the SPEC method 
n-xo SPSP

AsBs(m) “ Cim Bs(n,m) for the OVBM method, 
n-y» OBOB

Standardizing « T j , T g , T g , the following new random

variables

A
NB y AsBs(m) NB
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SM AsBs(m) SM

CM \ / AsBs(m) CM

SP \ / AsBs(w) SP

OB \/AsBs(m) OB

can be approximated by the standardized normal distribution Z with 

mean 0 and variance 1.

Therefore, for each confidence interval method the 

limiting coverages will be computed analytically by

AsCVR(m)j^g - 1 - 2 $
■c/2V

(4.3a)

AsCVR(m)_u - 1 - 2 $bM V (4.3b)

AsCVR(m)^^ = 1 - 2 $ (4.3c)
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(4.3d)

AsCVR(m)Qg - 1 - 2 $ 'a/ 2\^yAsBs(m) OB (4.3e)

where Pr(Z>z ) - a/2 a/ 2

and #(z) 1 g ^dx (-a><X<+oo)

We derive below the asymptotic forms of the five Bias 

Indicator functions under consideration:

NONOVERLAPPING BATCH MEANS METHOD

Providing that ^ pg<w, when the batch size m is fixed

then

Cim
k-400

k-l, 4 1
2 1 ( 1 - 4 -  )
J-1

k - 1
(4.4)

and

Cim
k->a> s=l Ps 'Cim

n->oo Ps
00

■ I Ps s-1
(4.5)

Taking limits to both sides of (3.22a) and using (4.4) 

and (4.5), the limiting form of the Bias Indicator function will 

be given by
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(4.6a)

1 + 2 I Ps s—1

STANDARDIZED TIME SERIES-AREA METHOD

Taking limits to both sides of (3.22b) and using (4.5)

m m
 ̂ 1 2 *rsr—0 s—0

AsBs(m) - Cim Bs(n,k) -

(m-mS) 1 + 2 2 Ps I Î-1 J

(4.6b)

where m" and ô^g were defined in (3.11).

COMBINED AREA-NONOVERLAPPING BATCH MEANS METHOD 

From (3.22c)

Bs(n,k) CM

kBs(n,k)g^ + (k-l)Bs(n,k)jjg

2k-1

Taking limits to both sides of this relationship

l2im
k+oo

Bs(n,k)g^+ (l-(l/k))Bs(n,k)^2
AsBs(m)^j^=Cim Bs(n,k)̂ ĵ - 

k-y» Cim [ 2[ 1 - ^  ] ]
k-»oo

AsBs(m) + AsBs(m)
SM NB

(4.6c)
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From (4.6c), the limiting Bias Indicator function of the combined 

NOBM-AREA method is the mean of the corresponding functions of the 

NOBM and AREA methods.

SPECTRAL METHOD

For the function gg(n) defined in (3.18)

Cim gg(n) 
n->œ

1 when s-0 
0 when s;dO

Using (4.5), the limiting form of the Bias Indicator function will 

be given by

w-1
1 + 2 J Xw(s)pg

s-1

AsBs(w) - Cim Bs(n,w) - ------------------- (4.6d)
SP SP 00

1 + 2 2 Ps
s-1

where X^(s) = 0.5(l+cos(irs/w)) .

OVERLAPPING BATCH MEANS METHOD 

From (3.22e)

1 1 - 15- ]fss-1
AsBs(m)Qg= Cim Bs(n,m)Qg= ------------------------  (4.6e)

n->oo 00
1 + 2 2 Ps

S-1

For the NOBM method, since n=mk, when m is fixed and k-»oo 

then n->oo. Therefore, for the NOBM and OVBM methods the limiting
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forms of the Bias Indicator functions are exactly the same [compare 

(4.6a) with (4.6e)]. This means that when the sample size tends to 

infinity these two methods produce the same limiting coverages for 

equal batch sizes.

By substituting (4.6) into (4.3), the limiting coverages, 

that the five confidence Interval methods achieve, can be computed 

exactly, providing . that the theoretical autocorrelation 

coefficients of the output process under study are known.

4.3 STUDYING THE LIMITING COVERAGES IN DIFFERENT STATIONARY 
OUTPUT PROCESSES

Five confidence interval methods have been considered in 

the previous section. For these methods, the limiting coverages 

can be computed analytically only when the theoretical 

autocorrelation coefficients of the output process under study are 

known. Three processes, whose autocorrelation functions are known, 

are considered in this section; the AR(1), AR(2) and the delay in 

queue in the M/M/1 queueing system. The limiting coverages of the 

five methods are studied on these processes.

4.3.1 AR(1) processes

Table (4.1) displays the limiting coverages, the 

nonoverlapping/overlapping batch means, area, combined NOBM-AREA 

and spectral methods achieve in the AR(1). For the AR(1) process 

defined in (3.23), the s^^ lag theoretical autocorrelation 

coefficient is pis I
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T A B L E  4.1
Limiting Coverages of Confidence Interval Methods in the AR(1)

m NOBM , OVBM AREA Combined
NOBM-AREA

2 .7946 .5888 .7142
4 .8942 .7244 .7978
8 .8768 .8165 .8508

.4074 16 .8890 .8638 .8770
32 .8948 .8832 .8890
64 .8974 .8920 .8948
00 .9000 .9000 .9000

2 .5618 .2162 .4392
4 .6868 .3482 .5654
8 .7872 .5342 .6926

16 .8480 .7102 .7922
32 .8766 .8164 .8498

.7778 64 .8890 .8632 .8768
128 .8946 .8830 .8890
256 .8974 .8928 .8946
00 .9000 .9000 .9000

2 .2480 .0346 .1784
4 .3410 .0628 .2486
8 .4572 .1184 .3424

16 .5886 .2196 .4604
32 .7132 .3798 .5940
64 .8058 .5784 .7196

.9630 128 .8574 .7432 .8102
256 .8806 .8320 .8586
512 .8908 .8698 .8808

1024 .8956 .8858 .8908
2048 .8978 .8932 .8966

00 .9000 .9000 .9000

Spectral Method 
w

<P
0.4074 0.7778 0.9630

2 .7946 .5618 .2480
4 .8568 .6918 .3416
8 .8864 .7970 .4592

16 .8964 .8608 .5930
32 .8990 .8882 .7214
64 .8998 .8968 .8178

128 .8992 .8780
256 .8978
512 . . . . . • .8994
00 .9000 .9000 .9000
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Goldsman et al.(1986) and Sargent et al.(1989) report

that the limiting coverages of the NOBM, OVBM methods tend to

achieve the nominal confidence level more quikly than the limiting 

coverages of the AREA and combined NOBM-AREA methods. This can be 

verified from the first part of table (4.1). Among these four 

methods, for equal small batch sizes m, the NOBM and OVBM methods 

achieve limiting coverages which are the nearest to the nominal 

confidence level. We can also observe that as the spectral window 

size w increases the limiting coverages of the spectral method 

tend to attain the nominal confidence level rather fast.

4.3.2 M/M/1 queueing model

The process under study is the delay of the customer

in queue. Two forms exist for computing analytically the

theoretical autocorrelation function of this process. The first 

one has been given by Blomquist(1967) and the second by 

Daley(1968). Let X and t be the arrival rate and the traffic 

intensity respectively. According to Daley, the s^^ lag 

theoretical autocorrelation coefficient is given by the difference 

equation

Ps+1 - Ps
/i(1- t ) - Cg+,

X(f2
(4.7)

where

l-r3

2X

2 t s  s

z
1+T r-1

(s+l-r)-
r(s-i ) 

r(s+i)r(i)
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and

( 1 + T ) 2  X ( 1 - t )  ( X ( 1 - t ) ) 2

From Daley, we can also see that the autocorrelation 

function of the AR(1) decays faster than the autocorrelation 

function of the delay in the M/M/1, providing that the two 

processes have the same first lag theoretical autocorrelation 

coefficient. To compare the performance of the confidence interval 

methods between the above two processes, the values of the 

autoregressive coefficient tp and the traffic intensity t were 

chosen in a way such that these processes have the same first lag 

theoretical autocorrelation coefficient. We have selected the 

following values for t; 0.20, 0.50 and 0.80. The corresponding 

values for ip are 0.4074, 0.7778 and 0.963. For these values of <p 

and T, figure (4.1) illustrates the autocorrelation functions of 

the AR(1) and M/M/1.

Table (4.2) displays the limiting coverages achieved by 

the five confidence interval methods under consideration. The 

infinite sum of the autocorrelation coefficients at the 

denominators of the limiting Bias Indicator functions was computed 

by

œ 1 + T  2t (3-t )
1 + 2 ^ Pg = -------  +   [see Daley(1968)]

s=l 1 - T (2-r)(l-r)2
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Figure 4.1
Autocorrelation functions of the AK(I) and the delay In 
queue in the M/M/1
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T A B L E 4.2
Limiting Coverages of Confidence Interval Methods in the M/M/1

T m NOBM , OVBM AREA Combined
NOBM-AREA

2 .7854 .5794 .7046
4 .8428 .7106 .7886
8 .8736 .8084 .8448

0.2 16 .8876 .8588 .8742
32 .8940 .8810 .8876
64 .8970 .8910 .8950
00 .9000 .9000 .9000

2 .5190 .1970 .4032
4 .6432 .3108 .5224
8 .7512 .4756 .6484

16 .8256 .6506 .7566
32 .8658 .7790 .8286

0.5 64 .8842 .8460 .8666
128 .8924 .8754 .8842
256 .8962 .8884 .8924
00 .9000 .9000 .9000

2 .2004 .0278 .1436
4 .2768 .0492 .2008
8 .3758 .0908 .2780

16 .4944 .1638 .3780
32 .6208 .2814 .4982
64 .7334 .4442 .6262

0.8 128 .8144 .6216 .7390
256 .8600 .7600 .8178
512 .8816 .8368 .8590

1024 .8912 .8714 .8818
2048 .8958 .8862 .8912

00 .9000 .9000 .9000

Spectral method 
w

T
0.2 0.5 0.8

2 .7854 .5190 .2004
4 .8504 .6476 .2774
8 .8832 .7604 .3774

16 .8954 .8378 .4978
32 . .8988 .8778 .6270
64 .8998 .8936 .7432

128 .8984 .8266
256 .8996 .8724
512 . . . • • • .8916
00 .9000 .9000 .9000
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As in the case of AR(1), the limiting coverages of the 

NOBM, OVBM methods tend to attain the nominal confidence level 

faster than the corresponding coverages of the AREA and combined 

NOBM-AREA methods. We can also observe how quikly the limiting 

coverages of the SPEC method tend to achieve the nominal 

confidence level.

Considering each method separately, its limiting 

coverages tend to achieve the nominal confidence level faster in

the AR(1) than in the M/M/1, providing that the two processes have

the same first lag theoretical autocorrelation coefficient. This 

happens because the autocorrelation function of the AR(1) decays 

faster to zero.

4.3.3 AR(2) processes

The form of this process is

Xt - Pl%t-1 + P2%t-2 + t̂

The Et's are independent and normally distributed random variables 

with mean 0 and common variance The s^^ lag theoretical

autocorrelation coefficient is given by the difference equation

Ps “ ^iPs-i P 2PS-2

with initial values p^-l and p,- .

The following two AR(2) processes are considered in this

section

Xt -= 0.75Xt_, - 0.50Xt_2 + ct 

Xt - 0.99Xt_i - 0.90Xt_2 + ft
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Figure 4.2
Autocorrelation functions of AR(2) processes
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T A B L E  4.3
Limiting Coverages of Confidence Interval Methods In the AR(2)

m NOBM , OVBM AREA Combined
NOBM-AREA

2 .9556 .7552 .8999
4 .9526 .9646 .9586
8 .9234 .9574 .9426

.75 16 .9132 .9340 .9250
32 .9068 .9190 .9128
64 .9036 .9100 .9070

00 .9000 .9000 .9000

2 1.0000 .9946 1.0000
4 1.0000 1.0000 1.0000
8 .9936 .9990 .9974

16 .9820 .9918 .9880
32 .9448 .9860 .9724

.99 64 .9282 .9604 .9468
128 .9150 .9384 .9276
256 .9078 .9216 .9150
512 .9040 .9116 .9078
00 .9000 .9000 .9000

Figure (4.2) presents the theoretical autocorrelation 

functions of the two processes. These functions display a damped 

cyclical behaviour. To obtain the limiting values of the Bias 

Indicator functions, the Infinite sum of the autocorrelation 

coefficients In forms (4.6) was replaced by the finite sum of the 

first r autocorrelation coefficients such that ipj-KlO"^.

Table (4.3) contains the limiting coverages, the NOBM, 

OVBM, AREA and combined NOBM-AREA methods achieve. As In the cases 

of AR(1) and M/M/1, the limiting coverages of the first two 

methods tend to achieve the nominal confidence level more quikly 

than the other two. For p,-0.75 and m-2, notice that the limiting 

coverage of the combined method Is very close to 0.90. In other 

words, for this method and for m=2 the limiting Bias Indicator
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function is close to 1. This happens because the infinite sum of 

the autocorrelation coefficients is quite close to 0. More 

specifically, for m-2 the limiting Bias Indicator functions of the 

AREA and NOBM methods are

1 - Pi 1 + Pi
---------  ,   respectively.

00 00

1 + 2 2 Ps 1 + 2 2 Ps
S-1 S-1

From (4.6c), for m-2 the limiting form of the Bias Indicator
00

function of the combined method will be l/(l+2 J Pg). This
s-1

function will be close to one only if the infinite sum of the 

autocorrelation coefficients tends to be close to zero.

Figure (4.3) illustrates the limiting coverages the 

spectral method achieves in the above two processes. For p,—0.99 

we see that the limiting coverages converge fluctuating around the 

nominal confidence level.

Let us now discuss some interesting empirical findings. 

Define a small number e. For the AR(1), AR(2) and M/M/1 and

different e's, table (4.4) provides the parameter

values m° , m° , m° , m° and w° for which the limiting Bias 
NB SM CM OB

Indicator functions of the five methods lie in the interval

[l-e,l+e]. We will call these parameter values optimum parameter

values. For the above three models, when 0.001<e<0.15

™0B “cm “sM
  - 1 ,   =£ 2 ,   = 3

”n B "n b
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Figure 4.3
Limiting coverages achieved by the spectral method in 
AR(2) processes
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T A B L E  4.4
Optimum parameter values for confidence interval methods when n-*»

AR(1)

9 e NOBM AREA Combined
NOBM-AREA SPEC

.10 10 30 20 7
0.4074 .01 98 294 196 24

.001 977 2932 1954 76

.10 266 792 527 167
0.9630 .01 2652 7955 5304 585

.001 26518 79554 53036 1862

AR(2)

e NOBM AREA Combined
NOBM-AREA SPEC

.15 10 27 18 8
0.75 .10 14 41 27 10

.01 134 402 268 28

0.99
.15 84 166 248 13
.10 113 248 372 18

M/M/1

T e NOBM AREA Combined
NOBM-AREA SPEC

.15 8 22 15 6

0.2
.10 11 33 22 8
.01 110 330 220 27
.001 1107 2214 3321 87

.15 37 109 72 27
0.5 .01 56 165 110 36

.01 554 1689 1116 128

0.8
.15 336 659 999 246
.10 506 1002 1509 326
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For above values of e, the limiting coverages of the five

confidence interval methods range from 0.8714 to 0.8998.

When e is very small, the computing time we need to

determine m° , m° , m° , m° and w° is very large. For this 
NB OB SM CM 

reason we have not considered values for e smaller than 0.001. On

the other hand, we have found that it is rather difficult to prove

mathematically that the above ratios converge to some specific

values.

4.4 ASYMPTOTIC COMPARISONS OF EXPECTED HALF LENGTHS OF CONFIDENCE 
INTERVAL METHODS

For fixed number of batches k-n/m and providing that the 

simulation output process satisfies conditions (4.1), Goldsman and 

Schruben(1984) derived the following forms for the limiting 

expected half lengths of the confidence intervals produced by the 

NOBM, AREA and combined NOBM-AREA methods:-

Cim
m->oo

mk atk-1,a/2
m

■ ' m

film
m->w

mk ERLSM atk,cx/ 2

r [ J ^ ]

■ m

Cim
m->oo

mk ERLCM - at 2k-1,a/2
2k-l
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T A B L E  4.5
Ratios of limiting expected half lengths of confidence Intervals 
produced by the NOBM, AREA and combined NOBM-AREA methods

k

(mk) *EHLc„ (mk) *EHLcM (mk) *EHLsm

(mk) 

a— .10
*EH% b

O-.05

(mk)

o-.lO
^EHLs m 
a-.05

(mk) 

a— . 10
^EHLn b 
a-.05

2 .4303 .2891 .8379 .7688 .5135 .3760
3 .7411 .6417 .8846 .8347 .8378 .7688
4 .8435 .7785 .9127 .8748 .9242 .8898
5 .8899 .8434 .9297 .8991 .9572 .9380
6 .9158 .8793 .9422 .9165 .9720 .9594
7 .9320 .9026 .9500 .9284 .9810 .9721
8 .9427 .9183 .9562 .9376 .9859 .9794
9 .9510 .9297 .9616 .9450 .9890 .9838
10 .9571 .9389 .9657 .9507 .9911 .9876

20 .9811 .9730 .9829 .9757 .9982 .9973

30 .9889 .9828 .9898 .9840 .9991 .9988
00 1.0000 1.0000 1.0000 1.0000 1.0000 1 .0000

where cr - 7 q 1 + 2 2 Ps 
s-1

For fixed k, Goldsman and Schruben(1984) showed diagramatlcally 

that

Cim
m->oo \ A EHLnb > Cim EHLsm > film 

m-K«
EHL,CM (4.8)

Inequality (4,8) can be verified by comparing the ratios displayed 

in table (4.5).
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Consider now the case where and are proportional to 

and n*i[ ki«n^i , O<6i,0i<l , i - NB, SM, CM ]

respectively such that n-m^k^. Under these values of m^, k^ and 

n-yx), Goldsman and Schruben(1984), Goldsman et al. (1986) and 

Sargent et al.(1989) have reported that

Cim
n-yo

\y/n EHL^g - C i m EHLg^ - Cim|\y^ EHL^M *^a/z

(4.9)

In the remaining part of this section we shall derive the 

limiting form of the expected half length of the confidence 

intervals produced by the spectral method, assuming that the 

simulation output process satisfies conditions (4.1). The limiting 

form of the expected half length of the overlapping batch means 

method can be derived in a similar way.

Let f(0) and w be the spectral density at zero frequency 

and the spectral window size respectively. Consider the case where 

wocn^(0<a<l). For different a's, the values of w ensure the 

asymptotic situation that if n-y» then w-y» but in such a way that 

(n/w)-^[see Chatfield(1984)]. By using Tukey's spectral window, 

the degrees of freedom v are proportional to n^"^[see Law and 

Kelton(1984)]. Under these asymptotic conditions, for large sample 

size n, the random variable

Avf(0)
T , ----------  (4.10)

f(0)
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is approximately distributed as with v degrees of freedom [see 

Jenkins and Watts(1968), Fuller(1976), Chatfield(1984)].

For large n, the random variable Y-/T, follows the Weibul 

distribution which has density function

V-1 -y/2 i-(v/2) g(y) - y e 2 r(v/2)

and expected value

E(Y) (4.11)

Combining (4.10) with (4.11), for large n

f(0)E
2f(0)

V + 1

(4.12)

Multiplying both sides of (4.12) by t^ (ct/2) \ / v e  get

2t f(0)E “ W , a /2 / 2irf(0)

V + 1

V
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E

V + I l

Recalling that Qim f(0) - -----  and t^
n-Ko 2x

A
2xf(0)

n
is the

half length of the spectral method, for large n

n EHLSP - atv,a/2

But Cim t - Zq,/2
v->oo v,a/2

and

Therefore

l2im
v->oo

see Goldsman and Schruben(1984) ]

Cim'
n->oo \ / ^  EHLsp (4.13)

In regard to the overlapping batch means method, consider 

the case where mi«n^i(O<0i<l, i-OB). This value of niQg ensures
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the asymptotic situation that if then mQg-*» but in such a way 

that (n/mofi)-»». Then, for large n the random variable

T 2 -

A2
VCTOB

V(%n)

is approximately distributed as with degrees of freedom v q b 

proportional to n^ ^^&[see Meketon and Schmeiser(1984)].

For the overlapping batch means method, we can show that

film |\/ n EHLqb
n-KR

fZa/2 (4.14)

From (4.9), (4.13) and (4.14), as the sample size n tends 

to infinity the five confidence interval methods under

consideration produce confidence intervals with equal expected 

half lengths.

4.5 ASYMPTOTIC COMPARISONS OF VARIANCE OF HALF LENGTHS OF 
CONFIDENCE INTERVAL METHODS

For small k, Goldsman and Schruben(1984), Goldsman et 

al.(1986) and Sargent et al.(1989) reported the following forms 

for the limiting variance of the half lengths of the confidence 

intervals produced by the NOBM, AREA and combined NOBM-AREA 

methods :
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m-Ko
1 -

k-1 k-1

m->oo
1 -

k+1

m->oo
1 -

2k-1 2k-1

For small number of batches k, Goldsman and 

Schruben(1984) showed diagramatically that

Cim [ (mk)VHLj^g ] > Cim [ (mk)VHLgM ] > Cim [ (mk)VHLQ^ j
m->oo m-»oo m->oo

This inequality can be verified from table (4.6).

Let us now derive the limiting form for the variance of 

the half lengths of the spectral method. For large v

lim
v-»w /2v-l -> N(0,1) (4.15)
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T A B L E 4.6
Ratios of limiting variances of confidence interval half lengths 
produced by the NOBM, AREA and combined NOBM-AREA methods

k

(mk) VHLc^ (mk) VHLcM (mk) VHLgj^

m-x» (mk) VHLjgg 

e— .10 a— .05

m->œ (mk) VHLgM 

a-.lO OI-.05

m-x» (mk) VHLjjg 

CK-.IO O-.05

2 .0577 .0261 .4572 .3855 .1263 .0677
3 .2088 .1565 .4567 .4065 .4572 .3850
4 .2949 .2512 .4643 .4266 .6352 .5889
5 .3408 .3061 .4740 .4434 .7190 .6904
6 .3748 .3458 .4766 .4513 .7864 .7662
7 .3917 .3680 .4779 .4564 .8196 .8063
8 .4074 .3864 .4802 .4616 .8484 .8371
9 .4181 .4001 .4832 .4667 .8653 .8573

10 .4274 .4115 .4841 .4695 .8829 .8764

20 .4664 .4581 .4912 .4837 .9496 .9471

30 .4859 .4798 .4916 .4882 .9885 .9829
00 .5000 .5000 .5000 .5000 1.0000 1.0000

From (4.15), for large v, Var

In regard to the spectral method, for the degrees of

freedom v are proportional to n^‘ .̂ Hence for large n

vf (0)
Var

f(0)
=>

2irvf(0)
Var
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2xf(0)
Var

2v
(4.17)

For large n, Cim tv,a/2“^a/2 - Also ^ ^ a / 2\/ [2%f(0)]yn is the
V->oo

is the half length of the spectral method. Hence

£im
n-»oo

n (VHLgp) (4.18)
2v

For the nonoverlapping batch means, area, and combined

NOBM-AREA methods, consider the case where and

(i= NB, SM, CM) such that n-m^k^. In respect to the overlapping

batch means method consider moB“n^ ^OB Under the above values,

of mĵ , for the four methods, the degrees of freedom vi(i-NB, SM,
1 * *CM, OB ) are proportional to n ^ . Hence, for large n, we can 

show that

Gim
n-)03

n (VHLi) [ o^a/2 ]
2vi

(4.19)

From (4.18) and (4.19), comparisons of the limiting
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variances of the confidence Interval half lengths can be made by 

setting different values to and the constants of

proportionality. An obvious choice is 01—0-w(i—NB, SM, CM, OB) and 

6^-6-l~0. For such values

VHLi Vj Cj
Cim --------  —   —   (4.20)

VHLj V£ Ci

where the indices i and j stand for the i^^ and j confidence 

interval methods respectively and c^, cj are the constants of 

proportionality. Ratio (4.20) implies that, different 

parameterization for the constants of proportionality c^'s (i-NB, 

SM, CM, OB, SP) can result in different ranking of the confidence 

interval methods in terms of the limiting variances of the half 

lengths.

4.6 SUMMARY

In this chapter, we have reported further results on the 

asymptotic properties of confidence interval methods. Two issues 

have been discussed.

The first issue concerns the numerical computation of the 

limiting coverages achieved by the confidence interval methods for 

different parameter values. Provided that the output process 

satisfies certain regularity conditions and its autocorrelation 

function is known, we have provided the necessary methodology for 

the analytical computation of the limiting coverages of five 

methods; nonoverlapping/overlapping batch means, area, combined
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area-nonoverlapping batch means and spectral methods. These 

coverages have been computed numerically in three output 

processes; the AR(1), the AR(2) and the delay in queue in the 

M/M/1. For the AR(2), the autoregressive coefficients were chosen 

such that its autocorrelation function displayed a damped cyclical 

behaviour.

The following remarks have been made : -

_ In the AR(1) and M/M/1, for equal small batch sizes m, the 

nonoverlapping/overlapping batch means methods achieve limiting 

coverages which are greater than those of the area and combined 

NOBM-AREA methods but lower than the nominal confidence level.

_ In the AR(2), under certain autoregressive coefficients, 

the spectral and combined NOBM-AREA methods can achieve acceptable 

limiting coverages for small batch sizes and spectral window sizes 

respectively.

_ In the AR(1), M/M/1 and AR(2), the limiting coverages of 

the spectral method tend to achieve the nominal confidence level 

rather fast.

Furthermore, we have computed numerically the batch size 

for which the nonoverlapping batch means, area and combined 

NOBM-AREA methods achieve limiting coverages which differ to the 

nominal confidence level by a small positive number e. For the 

three processes under study and different e's, we have found that 

the area method requires this batch size to be approximately three 

times more than that of nonoverlapping batch means method. On the 

other hand, the batch size of the combined method should be 

approximately two times more than the batch size of the 

nonoverlapping batch means method.
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The second issue refers to the limiting precision and

stability of the confidence intervals produced by the five 

methods. In this chapter, we have derived limiting forms for the 

expected values and variances of the confidence interval half 

lengths produced by the spectral and overlapping batch means

methods. Let n, k, m, w be the sample size, the number of

contiguous batches, the batch size and spectral window size

respectively. For the nonoverlapping batch means, area and 

combined NOBM-AREA methods we have considered k^ocn^f m^ocn^^ such 

that n-m^k^ (O<0^,|3̂ <0) . The index i stands for the nonoverlapping 

batch means, area and combined NOBM-AREA methods. In regard to the 

spectral and overlapping batch means methods, we have taken 

taken w^n^and (0<a, )?Qg<l) .

Under the above values of k, m, w and providing that the 

simulation output process satisfies certain regularity conditions, 

as n-$oo, the methods tend to cover the true steady state mean with 

the nominal probability. In this case, for any values of the 

parameters 6^, a and constants of proportionality, we have

shown that all the methods produce confidence intervals with the 

same limiting expected half length. On the other hand, by setting 

different values to these parameters, we can result in different 

ranking of the confidence interval methods in regard to the 

limiting variances of the half lengths.
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C H A P T E R  FIVE

PREPARATION STAGES FOR SIMULATION EXPERIMENTS

5.1 INTRODUCTION 

In the present chapter, we describe the testing 

environment we have created for carrying out Monte Carlo 

experiments. The output processes, we have included in our 

environment, are specified in the next section. In section 5.3, we 

discuss the test we have applied to each replication of the output 

processes for eliminating the initialization bias. An algorithm 

for determining student-t values under both integer and fractional 

degrees of freedom is described in section 5.4. In section 5.5, we 

discuss the computing software we have developed and used as a 

tool for estimating the statistical criteria, which are described 

in the next two chapters. In the final section, we describe how we 

have implemented and tested the random number generator we have 

used to produce replications of the simulation model output 

processes.

5.2 SIMULATION MODELS AND OUTPUT PROCESSES

In our testing environment, we have included most of the

simulation models and output processes that have been used in the

environments described in chapter two. We classify the output

processes into two categories; The pilot and the studied 

processes.
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PILOT PROCESSES: Their general characteristic is that the 

theoretical autocorrelation coefficients are given by known 

difference equations. Therefore, for these processes analytical 

values for the minimum bias and the HB-parameter values can be 

obtained. Furthermore, the limiting coverages achieved by the five 

confidence interval methods, which are considered in this thesis, 

can be computed analytically. In the next two chapters, for small 

sample sizes, we shall make several recommendations for applying 

the five methods to approximately steady state simulation output 

processes displaying certain characteristics. These 

recommendations have been based on a study of the performance of 

the methods on the pilot processes. The AR(1), AR(2) and the delay 

in queue in the M/M/1 belong to this category of processes.

STUDIED PROCESSES: These come from more complicated simulation 

models. For these processes, the theoretical autocorrelation 

functions are not known. In the seventh chapter, we compare the 

behaviour of the performance of the five confidence interval 

methods between the pilot and studied processes. Furthermore, the 

validity of the recommendations, which have been extracted on the 

pilot processes, are tested on the studied processes. The 

processes from the inventory model, time shared computer model and 

interactive multiprogrammed computer model are classified in the 

second category.

Table 5.1 displays the simulation models and the output 

processes which we have used in our testing environment. For each 

process, the true steady state mean is provided. For each model, 

the meaning of the parameter values was given in chapter two.

To generate simulation programs for the simulation models
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T A B L E  5 . 1
Simulation models and output processes in the testing environment 
of the present research

Simulation models Output processes
True steady 
state means

w

AR(1)
^0.4074, (Tf—1 1

0.7778, (t|—1 Xt-p(i-p)+p%t-i+ft 1
p=0.9630, (t|—1 1
^0.99 , <r|—1 1

AR(2)
Pi-0.75, P2--0-50, oj-l 
^2*0.99, (p2^-0.90, (t|—1

Xt"P(l"Pi-Pz)+ 
+Pl%t-1+P2%t-2+ft 1

1

M/M/1
Queueing Discipline: FIFO

t-0.2 Delay in queue 0.05
T—0.5 Delay in queue 0.50
T—0.8 Delay in queue 3.20
T—0.9 Delay in queue 18.05

Inventory model 
s-17, S-57, k-32, c-3, 
h-1, v-5 
Orders-»Poisson(25)

Total cost at 
period t 112.108

Time shared computer model 
N-35, l/X-25, l/p-0.8, 
q—0.8, T—0.015

Response time of 
the jobs 8.246

Interactive computer model 
N—25, M=4, p,—Pg—0.36,
P3=P^=0.04, 1/X,-100, 
I/X2-I, l//Ai-l//i2“1.39

Waiting time at 
the C.P.U 3.770

of table (5.1), we have used the Extended Lancaster Simulation 

Environment system(eLSE). The description of this system is given 

in Balmer and Paul(1985). Appendix A provides the program listings 

of the above models,
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5.3 AN OPTIMAL TEST FOR THE PRESENCE OF INITIALIZATION BIAS

During the initialization process of simulation programs, 

the researcher cannot choose initial conditions identical to the 

"representative conditions" held under steady-state behaviour of 

the simulated systems. Furthermore, when the Initial conditions 

are different from the representative ones, early observations are 

distributed with mean different from the steady-state mean. This 

problem is known in the simulation literature as the 

initialization bias problem. In the introductory chapter, we have 

discussed the effects of the initialization bias on the 

construction of confidence intervals for steady-state means.

The usual approach to overcome the initialization bias 

problem is to initialize the simulation program in some convenient 

fashion and ignore in the subsequent analysis a number of 

observations from the initial part of the simulation run. If this 

number of observations is large enough, then the remaining series 

can be considered as approximately stationary [see Law(1983)].

Schruben et al.(1983) developed a procedure for testing 

whether, after the deletion of the initial part of observations in 

the simulation run, the initialization bias has been eliminated in 

the remaining series. This procedure and its implementation in our 

simulation experiments are described below.

Consider the simulation output process

, %2 » ^3 > • • • I Xn
with /i“lim E(X^) and E(Xt-)-/i(l-a^) for t<oo.

t-KO
The function E(X^) is called initial transient mean function. The 

null hypothesis that no initialization bias presents in the series 

is stated as follows:
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H q : at-0 for all t, against the alternative
: â - is an arbitrary (specified) function of t.

The derivation of the most powerful test of the null

hypothesis was based on the assumption that the output series

satisfies some regularity conditions which essentially require

that two observations far apart in time are approximately

independent. Under this assumption, as n-y* and by using the

Neymann-Pearson lemma, Schruben et al.(1983) derived that the most

powerful test of the null hypothesis against any specified

alternative has the form

n
T - I CjjSj , Cj - - aj+,

and Sj - - Xj

In practice a^'s are unknown, and therefore the optimal 

weights cannot be used. However, it is known that in simulations 

which converge to a steady state the weights Cj-»0 since E(X̂ -)-»/x. 

In addition, if bias of a particular sign is suspected, then the 

signs of the weights can be appropriately chosen. Schruben et 

al.(1983) deduced that any weighting function with decreasing 

magnitude and appropriate sign, which is optimal against some 

initial transient mean function, should perform reasonably well 

against similar transients. In several examples of simulation 

output processes, they used the weighting function Cj-l-(j/n) 
which is optimal against a simple quadratic transient mean 

function with a^-l/{(2n)(t^-t(2n+l))} plus a constant.

Under the previous weighting function, as n tends to be 

large, the test statistic T has an approximate normal distribution
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with mean 0 and variance n^V(Xj^)/45, where V(X^) is the true

variance of the sample mean.

A remaining problem in applying the test in practice is

that the true variance of the sample mean is usually unknown.
A2Different sample mean variance estimators were discussed in

chapter three. Under certain regularity conditions (see section
A24.2), as n-ym, the ratio vcr^/VCX^) is assumed to have an 

asymptotic distribution with v degrees of freedom. Hence,

dividing the test statistic T by the square root of the previous 

ratio over the degrees of freedom, the random variable

A 45 n
1 ----

n j[ %n- %j] (5.1)

can be assumed to have a student-t distribution with v degrees of 

freedom.

In the examples of simulation output processes, Schruben 

et al.(1983) used the sample mean variance estimators of the 

autoregressive and batch means methods. For both estimators, the 

test performed well in all the examples. Particularly, for each 

process, when the initial conditions were chosen according to the 

steady-state distribution, the proportion of replications for 

which the null hypothesis was rejected was close to the level of 

significance. On the other hand, when initialization bias was 

present, the test rejected the null hypothesis for a large 

proportion of the output replications. Besides, the test performed 

well for fairly small values of the sample size even though it was
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based on an asymptotic result(n-»»). No run exceeded 500 

observations.

Most of the processes where the stationarity test was 

evaluated were included in our testing environment. We also 

selected output processes which were not included in Schruben et 

al.'s testing environment. However, pilot experiments showed that 

the latter processes had similar transient mean functions to the 

processes of Schruben et al.'s(1983) testing environment.

Schruben et al.(1983) also pointed out that when better 

estimators are developed for the true variance of the sample mean, 

these estimators should be used for the stationarity test. For 

AR(1), AR(2) and the delay in the M/M/1 queueing system, we have 

found that the sample mean variance estimator of the spectral 

method is the least biased in small samples. Therefore, for these 

processes and not very small sample sizes, the test statistic

A 45 n j1 ----
n

could be treated approximately as a student-t distribution. The 

degrees of freedom are 1.33n/w* and w* is the spectral window 

size for which the sample mean variance estimator attains its 

minimum bias.

For the above three processes, after deleting an early 

part of data in each replication, the test (5.2) was applied to 

sample sizes 512 and 1024. While the null hypothesis was being
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rejected, we were increasing the amount of deleted data by 250 

and applying the test again to the same sample sizes. This 

procedure was being repeated until the acceptance of the null 

hypothesis. To avoid large number of iterations, we chose the 

initial amount of deleted data to be rather large. For example, 

for the AR(1) with Xq-0, it is known theoretically that the 

conditional mean at time t is [see Fishman(1972) ] .

Therefore, the initial transient period, say n*, can be determined 

from <l-e where e is a very small positive number. That is

n*-log,Qe/log,op. We have chosen e-10"®. To avoid large number of 

iterations, the final transient period was selected to be 

approximately lOn*.

Table 5.2 displays the initial amount of data removed 

from each replication of the processes of the simulation models of 

our testing environment. For the inventory model, time shared 

computer model and interactive multiprogrammed computer model, an 

initial number of replications was generated for determining the 

least biased estimator. Estimation procedures for both the minimum 

bias and the parameter values for which the minimum bias is 

attained are discussed in the next chapter. For the latter three 

models, from the initial replications we have found that the 

spectral estimator was the least biased estimator. Thus, the test 

statistic (5.2) was applied to any other replication of these 

models at sample size 512 and 1024 by using the estimated spectral 

window size for which the minimum bias was attained.
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T A B L E  5.2
Initial amount Q of deleted data in each replication of the output 
processes before the application of Schruben et al.'s test

Simulation models Output processes Q

AR(1)
^0.4074, cl—l 240
p-0.7778, oj-1 Xt"P(i-p)+p%t-i+ft 830
p=0.9630, (r|“l 5500
f-0.99 , <r|-l 20620

AR(2)
Pi-0.75, P2--0-50' 
<P2^0,99, <p 2^-0 .90, 1 +PlXt-1+P 2%t-2+ft 501

501

M/M/1
Queueing discipline : FIFO

t - 0.2 Delay in queue 5000
r— 0 .5 Delay in queue 10000

T—0 .8 Delay in queue 15000
T— 0 .9 Delay in queue 25000

Inventory model 
s-17, S-57, k-32, c-3, 
h-1, v-5 
Orders-»Poisson(25)

Total cost at 
period t 1500

Time shared computer model 
N-35, l/X-25, l/p-0.8, 
q—0.8, T— 0.015

Response time of 
the jobs 201

Interactive computer model 
N—25, M—4, p,-Pg—0.36, 
P 3-P4-O.O4 , 1/X,-100, 
I/X2-I, l//i,-l//i2“l-39

Waiting time at 
the C.P.U 3001

5.4 STUDENT-t VALUES UNDER BOTH INTEGER AND FRACTIONAL DEGREES OF 
FREEDOM

In constructing confidence intervals according to the 

spectral and overlapping batch means methods, we face the problem 

of determining student-t values at fractional degrees of freedom.
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For this reason, we have developed a computing program which 

calculates the following quantities :

i) the right-tail area of the student-t distribution at a given 

student-t value under both integer and fractional degrees of 

freedom

ii) the student-t value at a given right-tail area under both 

integer and fractional degrees of freedom.

The computing algorithm for the previous quantities was 

based on a set of forms given by Bracken and Shleifer(1964). Let 

the right tail area of the student-t distribution be

G(t/v) - J f(x/v)dx 0<v<c

f (x/v) iih:i
[ V + x ’] 0<V<oo

«<X<+w

V—00 
-oo<X<-H»

By repeated integration by parts, Bracken and Schleifer 

showed that when v is integer and even

G(t/v) ■” ---
2

1 -

2 i—1

where

u, 1 , U£
(2i-3)v

(2i-2)(v+t2) 
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G(t/v) “ ---
X

 ̂ "1lŷ ltan t

where

U q - 0 , Ui Ui -

t i(v-i) 
% U i  i-0

(2i-2)v

V+t‘ (2i-l)(v+t2)

Under fractional degrees of freedom, when v<t^

v+1

G(t/v)

2J

V  + t
% U i
i-1

(5.3)

1 (2i-3)(v+2i-4)v
U, — --- , U£ —-----------------------

V  (2i-2)(v+2i-2)(v+t2) Ui-1 , i>2

otherwise

G(t/v)

v+ll

2 V 1-r - r —

.2. .2.

2 Ui i-1
(5.4)

u, - 1 , Ui
(2i-3)(v+2i-3)t2

(2i-2)(2i-l)v
Ui- 1 ' i>2

Bracken and Scleifer pointed out that the infinite sums 

in forms (5.3) and (5.4) converge faster than a power series.
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Define now a small positive number e . Given the right 

tail area a of the student-t distribution, on the i^^ iteration 

the final student-t value t^ will satisfy the inequality

I G ( t i / v )  -  a  I <  e  ( 5 . 5 )

If inequality (5.5) does not hold, on the i^^l iteration

^i+1 - ti - kf if G(ti+i/v)<a

or

Ci+1 - ti + kf if G(ti+,/v)>a

with

kr - kr.,mf 

and r stands for the number of times where

G(tk/v)>a changes to G(tk+,/v)<o!

or

G(tk/v)<a changes to G(t]^+,/v)>a.

For the above iterative algorithm, we have used 

e=0.00001, tg-2, kg-1 and m-0.10.

5.5 STATISTICAL ROUTINES FOR THE ANALYSIS OF SIMULATION OUTPUTS 

In this section, we describe a set of statistical 

routines we have developed for carrying out certain types of 

statistical analysis in simulation outputs. These routines 

constituted the basic tool for the generation of the simulation 

results which are displayed in the next two chapters.
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Since the establishment of the CASH research group, the 

research activities have been orientated mainly in the design and 

production of simulation languages[see Chew(1986), El 

Sheich(1987) ] . Little work has been done at this stage on 

developing routines for the statistical analysis of simulation 

outputs. Histograms of queue sizes, entity attributes and time 

series plots only are available in the simulation languages which 

exist at the L.S.E. From histograms, only basic statistical

measures such as mean and variances can be computed.

These statistical measures, however, are not adequate to 

produce confidence intervals according to the methodology which 

was discussed in the introductory chapter. On the other hand,

standard statistical packages cannot offer the appropriate

procedures and functions for applying this methodology on 

simulation outputs without further programming effort. So, we have 

decided to develop the statistical routines, which are described 

below, independently of any statistical package or simulation

language. We coded them into standard Pascal and embodied them in 

a separate module which was linked with the eLSE system, one of 

the available simulation languages[see Balmer and Paul(1985)]. The 

new module was called SIM_STAT_LIB.

Three categories of routines were included in the 

SIM_STAT_LIB. The description of the input and output variables 

for each routine of the SIM_STAT_LIB is given in Appendix C

FIRST STAGE ROUTINES

First stage routines are useful for extracting initial 

information for the characteristics of the simulation output
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process under study. The following procedures and functions are 

included in this category:

Procedure PICK-UP is useful when any statistical analysis on 

simulation output process replications is applied after the 

deletion of an early number of observations.

Function MEAN_EST calculates the sample mean.

Function VAR_EST calculates the sample variance.

Procedure CL_VAR_MEAN estimates the variance of the sample mean 

according to the classical interval estimator.

Function ACV_EST calculates the sample autocovariance for a 

given lag.

Procedure ACV_SET_EST calculates the sample autocovariances for 

a given range of lags.

Function ACR_EST calculates the sample autocorrelations for a 

given lag.

Procedure ACR_SET_EST calculates the sample autocorrelations for 

a given range of lags.

Procedure NOVBATCHED_MEANS calculates the nonoverlapping batch 

means for given batch size and number of batches.

Procedure SERIES__PARTIAL_MEANS calculates the differences 

Sj=X^-Xj where Xj is the j cumulative mean.

Function CHI_SQUARE gives the critical values of the chi-square 

distribution at right tail area 0.01 and 0.05.

Function STUDENT_T gives the critical values of the student-t 

distribution computed by the forms which were displayed in the 

previous section.
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SECOND STAGE ROUTINES

Second stage routines cover three aspects of the 

statistical analysis of steady-state simulation outputs 

_ the fit of p^^ order autoregressive processes to simulation 

output process replications according to Fishman's 

procedure(1973b,1978b) .

_ the determination of the batch size which guarantees 

approximately independent nonoverlapping batch means 

according to the iterative algorithm which is given in 

Fishman(1978a).

_ the test for the elimination of the initiliazation bias 

after the deletion of an early part of the data.

The following procedures were included in the second 

stage routines:

Procedure AR_PARAM_EST estimates the autoregressive coefficients 

and the error variance of AR(p) processes which are fitted to 

simulation output replications, provided that the autoregressive 

order p is already fixed.

Procedure AR_SCHEME__FIT estimates the autoregressive order, the 

autoregressive coefficients and the error variance of AR(p) 

processes which are fitted to simulation output replications as 

well as the variance of the output process according to the 

autoregressive method.

Procedure NMN_TEST_STAT calculates the Von-Neumann ratio as it 

is defined in Fishman(1978a).

Procedure FISHMAN_NUM_BATCH gives the number of approximately 

independent nonoverlapping batch means according to 

Fishman's(1978a) iterative algorithm.
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Procedure TEST1_INIT_BIAS calculates the test statistic which 

was developed by Schruben(1982) for testing the elimination of the 

initialization bias after the deletion of an early number of 

observations.

Procedure TEST2_INIT_BIAS calculates the statistic which was 

developed by Schruben et al.(1983) for testing the elimination of 

the initialization bias after the deletion of an early part of 

data.

FINAL STAGE ROUTINES

Final stage routines produce different estimates for the 

variance of the sample mean in stationary autocorrelated 

simulation output processes. From these estimates, confidence 

intervals for the steady-state mean can be automatically 

generated. The following procedures were included in this stage: 

Procedure NOBM_VAR_MEAN estimates the variance of the sample

mean according to the nonoverlapping batch means method.

Procedure OVBM_VAR_MEAN estimates the variance of the sample

mean according to the overlapping batch means method.

Procedure AREA_VAR_MEAN estimates the variance of the sample

mean according to the method of area which is based on the theory 

of standardized time series.

Procedure COMB_AREA_NOBM_VAR_MEAN estimates the variance of the 

sample mean combining the methods of the area- nonoverlapping 

batch means.

Procedure MAX_VAR_MEAN estimates the variance of the sample mean 

according to the method of the standardized maximum.
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Procedure C0MB_MA3^N0BM_VAR^MEAN estimates the variance of the 

sample mean combining the methods of maximum- nonoverlapping batch 

means.

Procedure SPEC_VAR_MEAN estimates the variance of the sample 

mean according to the spectral method.

Procedure AR_VAR_MEAN estimates the variance of the sample mean 

according to the autoregressive method.

5.6 THE RANDOM NUMBER GENERATOR 

In simulation experiments, random numbers are generated 

by pseudo-random number generators. The validity of the results of 

simulation experiments depends upon the quality of such 

generators. Qood quality generators satisfy certain properties in 

regard to the values generated on the interval (0,1)[for more 

about these properties see Pidd(1984), Law and Kelton(1982b)]. For 

example, two very important properties are the following:-

i) The generator must have a long period, that is, the number 

of values on the interval (0,1) produced before the cycle repeats 

must be as large as possible.

ii) The generator must pass certain statistical tests. These 

tests are for checking for the statistical properties that would 

be expected in a truly random sequence.

In section 5.2, we mentioned that the programs of 

simulation models of our testing environment were developed by 

using the eLSE system[see Balmer and Paul(1985)]. Several 

questions arose when we tested its random number generator. The 

most serious ones were the following:-
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i) There were only 20 streams for generating values on the 

interval (0,1). Furthermore, the period of each stream was rather 

short.

ii) It was rather difficult to check quickly whether the 

streams were non-overlapping.

iii) After applying the appropriate statistical test, there were 

enough evidence that in each stream the generated values were not 

uniformly distributed on the interval (0,1).

The above questions made clear the need for updating the random 

generator of the eLSE system.

From the different types of pseudo-number generators, we 

selected the multiplicative congruential which is given by the 

form

Xt+, - aXt + (mod m)

Appropriate values for the multiplier a and the modulus m can 

guarantee that this generator attains its maximum period m-1. We 

chose a—16807 and m—2^^-1—2147483647. For these values of a and m, 

it has been proved that the above generator attains its maximum 

period 2^^-2 [see Pidd(1984), Law and Kelton(1982b)].

The next issue was the implementation of this generator 

on the VAX 6330. Since a-16307 and X^ any number between 1 and 

231-2, the product aX^ is likely to exceed the maximum word length 

of VAX which is 2^2. However, VAX 6330 offers certain system 

procedures with which we can overcome this problem. These 

procedures are : -

LIB$EMUL for multiplications where the product is greater than 

232 but smaller that 2^^.
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LIB$EDIV for divisions aX^/m where the product aX̂ - is greater 

than 2^2 but smaller than 2^^.

Furthermore, VAX 6330 offers certain functions for checking 

whether both the extended multiplications and divisions are 

carried out correctly. We applied these functions to the whole 

range of the generator.

The whole period of the generator was subdivided into 

segments of 500,000 observations. Each segment constituted a 

separate stream and therefore, any two streams were completely 

independent each other. The first value of each stream was stored 

and constituted the initial seed of the particular stream. By 

storing the initial seed, we had guaranteed the reproduction of 

any stream at any time.

The next stage was to test in each stream whether the

sequence of the numbers U,, Uj  on the interval (0,1) could

be considered as a truly random sequence. Three empirical tests 

were considered. We applied each test to several sample sizes.

R U N - U P  T E S T

By this test, we are testing the independence assumption 

of the numbers U, , U 2 »*-*»^n. More specifically, we examine the 

U^'s sequence for unbroken subsequences of maximum length within 

which the U^'s monotonically increase. Any such subsequence is 

called run up. The test statistic is given by

1 6  6
R, - —  J I ajj(ri-nbi)Crj-nbj)

where
r; -

n i“l j—1

number of runs up of length i for i-1,2,...,5

number of runs up of length greater than six for 
i*=6
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â j is the (i,j)Ch element of the matrix

• 4529.4 9044.9 13568 18091 22615 27892 "
9044.9 18097 27139 36187 45234 55789

13568 27139 40721 54281 67852 83685
18091 36187 54281 72414 90470 111580
22615 45234 67852 90470 113262 139476

. 27892 55789 83685 111580 139476 172860 .

11 19 29

24 120 720 5040 840

For large n, will be approximately distributed as 

chi-squared distribution with 6 degrees of freedom under the null 

hypothesis that the U^'s are independent random variables. 

Knuth(1969) recommends that n>4000.

In each stream of the generator we implemented on VAX, we 

applied this test to eight sample sizes; 6400, 12800, 20480,

61440, 102400, 143360, 184320, 225280.

ONE DIMENSION UNIFORMITY TEST

This test is designed to check whether the sequence U,,

,..., Uĵ  appear to be uniformly distributed on the interval 

(0,1), In particular, the interval [0,1] is subdivided into k 

equal subintervals. Then the test statistic is given by

k k f n
—  2 n j=l

where fj is the number of the U^'s in the j sub interval. For

large n, R^ is approximately distributed as chi-square

distribution with k-1 degrees of freedom. Thus, we accept the null

hypothesis that the sequence U,, Ug is uniformly
2 2

distributed in the interval (0,1) when R 2<Xk-i,o/2 where Xk-^,ot/2
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is the right tail a critical value. For large k

Xk-i,a/2 (k-1) 1 -

9(k-l)
+ za/2 9(k-l)

Law and Kelton(1982b) suggests n/k)5.

In each stream of the generator we implemented on VAX, we 

applied this test to eleven sample sizes n; 800, 1600, 3200, 6400, 

12800, 20480, 61440, 102400, 143360, 184320, 225280. For n<20480 

k=100 otherwise k-4096.

T W O  D I M E N S I O N S  U N I F O R M I T Y  T E S T

Generating n pairs of the sequence Uj[ of values on the 

interval (0,1), i.e

U,-(U,,U,), U,-(U3,U,), U 3-(Ü5,Ug)....

and partitioning the interval [0,1] into k subintervals of equal 

size, the test statistic is given by

R<
k? k k

I sn i-1 j-1

n

k2

where f̂  ̂ is the number of pairs U's having the first number in 

subinterval i and the second in subinterval j . For large n, Rg is 

approximately distributed as chi-square distribution with k^-l 

degrees of freedom. Law and Kelton(1982b) suggests n/k^>5.

For each stream of the generator we implenented on VAX, 

we applied this test to different samples n of pairs U. The sizes
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of these samples were 800, 1600, 3200, 6400, 12800, 20480, 61440, 

102400, 143360, 184320 and 225280. For n<20480, k-10 otherwise

k“64.

Initially, when we subdivided the whole period of the 

generator into segments of 500,000 observations, we had over 4000 

streams. Eventually, 1436 streams passed all three tests at any of 

the sample sizes we considered. For each test, the level og 

significance we used was 5%. Appendix D displays the initial seeds 

of several such streams. The values of the test statistics of the 

three tests are also displayed at different sample sizes.
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C H A P T E R  SIX

RELATING THE MINIMUM BIAS OF SAMPLE MEAN VARIANCE ESTIMATORS TO 
THE PERFORMANCE OF CONFIDENCE INTERVAL METHODS

6.1 INTRODUCTION 

In chapter three, statistical criteria were introduced 

for studying the bias of different sample mean variance estimators 

in small sample sizes. The most basic criterion was the "Bias 

Indicator" function of each estimator. This function was expressed 

in terms of the theoretical autocorrelation coefficients of the 

output process under study.

The other criteria, related to the bias indicator

functions, for each estimator were the minimum bias and the 

parameter values, for which the minimum bias is attained. These 

values were called MB-parameter values. Analytical values for the 

above criteria can be obtained only when the autocorrelation

coefficients can be computed exactly.

However, in the majority of simulation outputs the 

theoretical autocorrelation function is not known. One way for 

estimating the Bias Indicator function of each estimator, the

minimum bias and the MB-parameter values is to estimate the 

autocorrelation coefficients first.

In the next section, two methods are proposed for 

estimating autocorrelation functions of simulation output 

processes. First, we use these methods to • estimate the 

autocorrelation coefficients of three specific processes whose

theoretical autocorrelation functions are known. We called these 

processes pilot processes. Then, we evaluate the two methods by
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examining the discrepancies between true and estimated values of 

the minimum bias and the MB-parameter values for the sample mean 

variance estimators of the following five confidence interval 

methods :

__ Nonoverlapping batch means method 

_ Standardized time series-area method 

_ Combined area-nonoverlapping batch means method 

_ Overlapping batch means method 

_ Spectral method.

For the pilot processes, we study in section (6.3) the 

performance of the above five methods at the MB-parameter values. 

We consider both true and estimated MB-parameter values. In 

addition, several recommendations are provided for applying the 

five methods to approximately steady-state simulation output 

processes when these processes have similar autocorrelation 

functions to those of the pilot processes.

In any replication of the pilot processes, the 

initialization bias was removed using Schruben et al.'s test(1983) 

discussed in section (5.3). The true spectral window sizes for 

which the minimum bias of the corresponding sample mean variance 

estimator is attained were used in the test statistic defined in 

(5.2).

6.1 ESTIMATION OF THE STATISTICAL CRITERIA FOR STUDYING THE BIAS 
OF THE SAMPLE MEAN VARIANCE ESTIMATORS

In chapter three, we derived the "Bias Indicator"

functions of different sample mean variance estimators. These

functions can be expressed in the general form
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Bs(n,b)£ ■“ f ̂ ( P Q • Pi > P 2 »•••» Pn- i ) ( 6 • b)

The sample size and the s^h lag theoretical autocorrelation 

coefficient are denoted by n and pg(0(s(n-l) respectively. The 

qualitative index i indicates the i^b sample mean variance 

estimator.

The parameter b stands for:-

i) the number of batches, k, for the nonoverlapping batch 

means(NOBM), area(AREA) and combined area-nonoverlapping 

batch means(NOBM-AREA) methods 

ii) the spectral window size, w, for the spectral 

method(SPEC)

iii) the batch size, m, for the overlapping batch means 

me thod(OVBM)
A _Let pgj(n) be, on the j r e p l i c a t i o n  (l<j<r), the

estimated s^b Xag autocorrelation coefficient from a sample of

size n. The Bias Indicator function of the i^b sample mean

variance estimator will be estimated on the j^b replication by

Bs(n,b)ij - fi(Po,Pij(n),P2j(n),...,p(n-i)j(n)) (6.2)

AjLet bj^ be the estimator of the MB-parameter value on

the j^b replication. This estimator will satisfy the inequality

I Bs(n,ô^)ij - 1 I < I Bs(n,b)ij - 1 I (6.3)

for any other b in the range where the Bias Indicator function 

of the i^b estimator is defined.
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Generating r replications of the output process under 

study, for the i^^ estimator, the MB-parameter value b^g, will be 

estimated by

A ^ ^ Aj
^MB “    1 ^MB (6.4)

r j-1

Moreover, the following form can be used for estimating the 

minimum bias of the i^^ estimator

M B -------- I I Bs(n,%)ii - 1 I (6.5)
r j-1

Let (X̂ -j , l<t<n, l<j <r) be a given replication of the 

output process under study. Consider the following estimator of 

the theoretical autocorrelation coefficients

n-s
S ( ^tj ■ ) ( X(t+s)j ■ ^nj )=1

P s j  ( n ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ( 6 . 6 )
A

n
2 ( Xtj - Xnjt—1

where X^j is the sample mean on the replication. For s near n
APgj(n)'s will be based on only few observations. Hence, they will 

have poor statistical properties [see Law and Kelton(1984), Box 

and Jenkins(1976)]. To overcome this problem, we shall suggest the 

modified form

n*-s
S ( ^tj " Xn*j)( ^ (t+s)j ■ %n*j)

A  *  t - 1
Psi(^ ) = ----------------------------------- (6.7)

n*
2 ( Xtj - %n*j)
t-1
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where n*-c.n, c is a positive integer greater than one and is

the estimated mean from a sample of size n*. The updated estimator 

for the Bias Indicator function of the i^^ sample mean variance 

estimator on the replication will be

Bs(nV^j-fi(po,Pij , (n*),P2j(n*)......P^n-i)j(n*)) (6.8)

The autocorrelation coefficients can be estimated from (6.8) only 

when the value of the constant c is known a-priori.

We used (6.7) to estimate the first n (n — 64, 128, 256, 

512) autocorrelation coefficients of the AR(l)[see table 5.1] 

under different values of c and the autoregressive coefficient y?. 

For each yj, we generated 400 replications with initial value X^-O. 

In each replication, we removed the initialization bias by using 

Schruben et al.'s(1983) test[see sections 5.3 or 6.1]. Then, the 

minimum bias and the MB-parameter values were estimated from (6.4) 

and (6.5). Since for the AR(1) with positive autoregressive 

coefficient ^ the s^^ lag autocorrelation coefficient is the

true values for both the minimum bias and the MB-parameter values 

can be computed as well.

For the five sample mean variance estimators, table (6.1) 

displays estimated values of both the minimum bias and the 

MB-parameter values for the AR(1). The estimates of the 

MB-parameter values have been rounded to the nearest integer. The 

corresponding true values of the criteria are given in 

parentheses.
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T A B L E  6.1

AR(l):True and estimated values for the minimum bias and the 
MB-parameter values of the sample mean variance estimators

Bs(n,b)ij - fi(po,p,j(n*),P2j(n*),...,p(n_,)j(n*)) 

( ^tj * ) ( %(t+s)j - ^ * J  )

Psj(n*)

n*-s
It-1

n

*n — c

2 ( Xtj - %n*j) t—1
.n , j-1,2,...,400

ip — 0.4074
n,c Stat. Grit. NOBM AREA NOBM-AREA SPEG OVBM

64 MB .0628 .0619 .0596 .0057 .0037
A (.0310) (.0310) (.0310) (.0025) (.0021)

c-80 ^MB 5 2 2 15 21
(2) (1) (1) (15) (24)

128 MB .0618 .0589 .0580 .0079 .0050
A (.0154) (.0154) (.0154) (.0007) (.0004)

c—40 ^MB 11 4 6 24 30
(2) (1) (1) (21) (38)

256 MB .0888 .0658 .0665 .0152 .0123
A (.0077) (.0077) (.0077) (.0002) (.0005)

0=20 ^MB 24 11 17 48 50
(2) (1) (1) (29) (59)

512 MB .1548 .0809 .1017 .0331 .0410
A (.0038) (.0038) (.0038) (.0001) (.0002)

0=10 &MB 51 34 45 106 88
(2) (1) (1) (41) (96)

ip — ().99
n,o Stat. Grit. NOBM AREA NOBM-AREA SPEG OVBM

64 MB .8869 .8678 .8678 .0139 .0117
A (. 8960) (.8784) (.8784) (.0198) (.0079)

0=80 ^MB 2 1 1 41 44
(2) (1) (1) (41) (44)

128 MB .7768 .7452 .7452 .0055 .0056
A (.7999) (.7712) (.7712) (.0089) (.0030)

0=40 ^MB 2 1 1 77 82
(2) (1) (1) (78) (83)

256 MB .5723 .5313 .5313 .0024 .0024
A (.6352) (.5983) (.5983) (.0046) (.0030)

0=20 ^MB 2 1 1 137 149
(2) (1) (1) (142) (153)

512 MB .3035 .2940 .2799 .0011 .0009
A (.4110) (.3821) (.3821) (.0018) (.0018)

0=10 DMB 2 1 1 215 241
(2) (1) (1) (246) (274)
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First, observe the estimates for ^0.4074. The minimum 

bias of the five estimators has been overestimated. The same is 

true for the MB-parameter values of the NOBM, AREA, combined 

NOBM-AREA and SPEC estimators. On the other hand, the MB-parameter

values of the OVBM estimator have been underestimated.

Examine now the estimates of both the minimum bias and 

the MB—parameter values for ^0.99. First, consider the NOBM, AREA 

and combined NOBM-AREA estimators. For c>40, the estimated values 

of the minimum bias are close to the true values. Also, notice for 

all the combinations of n and c that the estimates of the

MB-parameter values are identical to the corresponding true

values. Regarding now the SPEC and OVBM estimators, both the

estimated and true values for the minimum bias are very small for

c<20. However, for c<20, the MB-parameter values of the latter two 

estimators have been underestimated.

Summarizing the remarks made in the previous two

paragraphs, we can conclude the following. First, consider

autocorrelation functions converging exponentially to zero which 

have high positive autocorrelation coefficients at low lags. 

Acceptable estimates for both the minimum bias and the 

MB-parameter values can be obtained only when the value of c is 

large. Setting c>40 might be a successful choice although this 

also depends on how fast the autocorrelation function decays to 

zero.

On the other hand, for autocorrelation functions which 

decay exponentially to zero very fast the value of c must be 

extremely large. At this point, we should also take into account 

the trade off between a very large sample size which is required
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for achieving acceptable estimates for both the minimum bias and 

the MB-parameter values and the time we need to collect such a 

sample. For this reason, the modified form (6.7) should not be 

recommended for estimating the autocorrelation coefficients of an 

output process replication.

Let us now propose a more complicated way to estimate the 

autocorrelation function of a steady state simulation output 

process. It is based on fitting the following autoregressive 

scheme

P
2 Pp,s( %t-s " M ) “ ^t » ^ , 0  “ ^s—0

to an output process replication and estimating the order p and 

the coefficients ypp g(s-0,1,...,p) according to a procedure 

given by Fishman(1973b,1978b). The Ct'® independent, identical 

and normal random variables with mean zero and common variance a^. 

It is also assumed in each replication that the initialization 

bias has already been removed.

In each replication, the first n theoretical 

autocorrelation coefficients of the fitted AR(p) will replace the 

first n sample autocorrelations estimated either from (6.6) or

(6,7). Provided that the autoregressive order is finite and

1 I7s' < *S“-oo

Fishman's procedure can be described by the following iterative 

algorithm:
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STEP 1 : For a sample of size n, set the maximum order of 

the fitted autoregressive scheme equal to q and 

estimate the first q autocovariances by

A , 1 n*-s
?s(n ) “ — T 2 ( %t " ( %t+s ■ ^ * )

n* t-1

0<s<q
n* - c.n

where c is a positive integer greater than one.

STEP 2: For p-0,1,2,...,q, estimate --,q)
and cr̂  from the following forms

V’o.o - 1 , Pp, 1

A s-0
P-1 A A 
S 1 ,s'V'p-ŝ ’̂ )

Pp,P
P-1 A A 
S 1 , sTs^^ )s—0

A A A A
^ , s  " Pp-i,s ^,p^-i,p-s s—1,2 , . . . ,p-l

A2 q A A 
^q “ 2 V’p.sTs^^ ) s-0

STEP 3 : Set the autoregressive order p-1

STEP 4 : Estimate by

A2 P a  a 
^p “ S Pp,s7s(n^ ) s-0
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STEP 5 : Compute the test statistic

. Az AzV - n* ( 1 - ((Tq/dp) )

zIf : i) V>Xq_p Q, then set p-p+1 and go to step 4

zii) V<Xq_p a then go to step 6

A A A AzSTEP 6 : Give p , <pp ̂ q , ^ ^  p and (Tp

The theoretical autocorrelation coefficients of the 

fitted AR(p) are given by the difference equation

A A A
Pk “ V’p.zPk-z + • • • + IPp,pPk-p

Awhere ^ , s  (s=l,...,p) are the estimated autoregressive 

coefficients of the fitted AR(p) to each replication. The first 

p-1 autocorrelation coefficients are determined from the 

following matrix equation

''̂ ith Pp-1 “ [ Pi P 2 * * • Pp- 1 ]

and R = [ ].

The elements of matrix R have the following structure
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and

A A^,s-C ■ V*p,s+C
A

/ A A V" ( Pp,s-6 V̂ ,s+C )

s - C 

s Q , s+C<p 

s ^ Q , s+C>p

z - 0 

z<0 , z>p-1

Consider again the statistical criteria under study, i.e. 

the minimum bias of the five sample mean variance estimators and 

their MB-parameter values. Table (6.2) displays estimates of these 

criteria for the AR(1), AR(2) and the delay in queue in the M/M/1. 

The estimated values were obtained from forms (6.4) and (6.5). For 

each process, 400 replications were generated. The initial 

conditions were the following; X q-0 for the AR(1), X q-0, X_,-0 for 

the AR(2), and empty and idle conditions for the M/M/1. The 

initialization bias was removed by using Schruben et al.'s(1983) 

test. In each replication, we estimated each Bias Indicator 

function, by using the theoretical autocorrelation coefficients of 

the fitted AR(p) instead of the corresponding sample 

autocorrelations in form (6.2). Different values for both n and c 

were used. The estimates of the MB-parameter values have been 

rounded to the nearest integer.

First, observe the estimates of both the minimum bias and 

the MB-parameter values in the AR(1) for p=0.4074, M/M/1 for t-=0,2 

and the two AR(2) for 0.75 , y?,-0.99. For all the combinations 

of n and c, the estimated values of the minimum bias of the five
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estimators are identical or very close to the true values. The 

same is true for the MB-parameter values. The only exception is 

the estimated values of the criteria for the combined NOBM-AREA 

estimator in the AR(2) for ^,-0.75. Here, the minimum bias has 

been overestimated and the MB-parameter values have been badly 

estimated.

Let us now examine the estimates of the above criteria in 

the AR(1) for p=0.99 and M/M/1 for t-0.80. The minimum bias for 

the NOBM, AREA and combined NOBM-AREA estimators has been 

underestimated for all the combinations of n and c. On the other 

hand, the estimates of the MB-parameter values of these three 

estimators are identical to the corresponding true values. 

Regarding the OVBM and SPEC estimators, both the estimated and 

true values of the minimum bias are very small for c<8. However, 

the MB-parameter values of the latter two estimators have been 

underestimated for all cases of n and c.

We draw the following conclusions. First, consider 

autocorrelation functions which decay to zero fast and have low 

positive autocorrelation coefficients or autocorrelation functions 

which display a damped cyclical behaviour. The above analysis 

showed that the use of the second method[based on fitting an AR(p) 

to each replication of the output process] for estimating such 

autocorrelation functions improved the quality of the estimates 

for both the minimum bias and the MB-parameter values. Also, 

notice that the values of the constant c we used in the second 

method were smaller than those in the first method.
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T A B L E  6.2
AR(1) , M/M/1 , AR(2) : True and estimated values for both the 
minimum bias and the MB-parameter values of the sample mean 
variance estimators when In the Bias Indicator functions the first 
n sample autocorrelations of simulation output replications are 
replaced by the first n theoretical autocorrelation coefficients 
of fitted AR(p) processes

AR(1)

^ — 0.4074

n,c Statls. 
Criter. NOBM AREA NOBM-AREA SPEC OVBM

64 MB .0300 .0300 .0300 .0019 .0022
A (.0310) (.0310) (.0310) (.0025) (.0021)

c=16 ^MB 2 1 1 14 24
(2) (1) (1) (15) (24)

128 MB .0149 .0149 .0149 .0008 .0008
(.0154) (.0154) (.0154) (.0007) (.0004)

C“  8 ^MB 2 1 1 20 37
(2) (1) (1) (21) (38)

256 MB .0074 .0074 .0074 .0003 .0003
(.0077) (.0077) (.0077) (.0002) (.0005)

c= 4 ^MB 2 1 1 29 59
(2) (1) (1) (29) (59)

512 MB .0037 .0037 .0037 .0001 .0002

&MB
(.0038) (.0038) (.0038) (.0001) (.0002)

c= 2 2 1 1 41 92
(2) (1) (1) (41) (96)

tp —  ().99

n,c Statls. 
Criter. NOBM AREA NOBM-AREA SPEC OVBM

64 MB .8491 .8262 .8262 .0124 .0120

^MB
(.8960) (.8784) (.8784) (.0198) (.0079)

c=16 2 1 1 41 43
(2) (1) (1) (41) (44)

128 MB .7205 .6883 .6883 .0052 .0055

^MB
(.7999) (.7712) (.7712) (.0089) (.0030)

C”= 8 2 1 1 75 80
(2) (1) (1) (78) (83)

256 MB .5292 .4964 .4964 .0022 .0021
A (.6352) (.5983) (.5983) (.0046) (.0030)

c= 4 ^MB 2 1 1 133 146
(2) (1) (1) (142) (153)

512 MB .3191 .2994 .2994 .0008 .0008

&MB
(.4110) (.3821) (.3821) (.0018) (.0018)

c= 2 2 1 1 223 256
(2) (1) (1) (246) (274)
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T -  0.20
n,c Statls. 

Criter. NOBM AREA NOBM-AREA SPEC OVBM

64 
c—16

MB .0349
(.0349)

2
(2)

.0346
(.0348)

1
(1)

.0346
(.0348)

1
(1)

.0018
(.0020)
15
(15)

.0023
(.0031)
25
(25)

128 
c= 8

MB

^MB

.0172
(.0173)

2
(2)

.0172
(.0173)

1
(1)

.0172
(.0172)

1
(1)

.0006
(.0008)
21
(22)

.0007
(.0010)

38
(39)

256 
C“ 4

MB

^MB

.0086
(.0086)

2
(2)

.0086
(.0086)

1
(1)

.0086
(.0086)

1
(1)

.0002
(.0003)
30
(31)

.0003
(.0001)
59
(61)

512 
c*= 2

MB

&MB

.0043
(.0043)

2
(2)

.0043
(.0043)

1
(1)

.0043
(.0043)

1
(1)

.0000
(.0001)
42
(43)

.0001
(.0001)
94
(96)

T — 0.80

n,c Statls. 
Criter. NOBM AREA NOBM-AREA SPEC OVBM

64
c=16

MB

^MB

.5570
(.7479)

2
(2)

.5259
(.7187)

1
(1)

.5259
(.7187)

1
(1)

.0092
(.0056)
35
(39)

.0089
(.0034)
40
(42)

128 
c= 8

MB

^MB

.3580
(.5902)

2
(2)

.3368
(.5570)

1
(1)

.3368
(.5570)

1
(1)

.0035
(.0081)
59
(70)

.0034
(.0040)
68
(77)

256 
c= 4

MB

^MB

.1980
(.3923)

2
(2)

.1889
(.3664)

1
(1)

.1889
(.3664)

1
(1)

.0012
(.0011)
93

(122)

.0012
(.0011)
115
(137)

512 
c= 2

MB

^MB

.1003
(.2130)

2
(2)

.0978
(.2025)

1
(1)

.0978
(.2025)

1
(1)

.0005
(.0005)
141
(199)

.0005
(.0005)
194
(237)
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0.75

n,c Statis. 
Criter. NOBM AREA NOBM-AREA SPEC OVBM

a/. MB .0416 .0417 .0347 .0153 .063304
A (.0408) (.0408) (.0207) (.0153) (.0633)

c—16 ^MB 2 1 11 17 18
(2) (1) (32) (17) (18)

1 0 Q MB .0211 .0211 .0195 .0059 .0462IZo
A (.0206) (.0206) (.0104) (.0059) (.0458)

c- 8 ^MB 2 1 11 25 29
(2) (1) (64) (25) (29)

n C ̂ MB .0106 .0106 .0103 .0024 .0318ZDO
A (.0104) (.0104) (.0052) (.0024) (.0316)

c= 4 ^MB 2 1 (37) 36 47
(2) (1) (128) (36) (47)

c "1 o MB .0053 .0053 .0053 .0010 .0212DIZ
A (.0052) (.0052) (.0026) (.0010) (.0211)

C- 2 &MB 2 1 9 51 75
(2) (1) (1) (50) (75)

iPy — 0.99

n,c Statis. 
Criter. NOBM AREA NOBM-AREA SPEC OVBM

64 MB .2660 .2997 .2996 .0047 .3514
A (.2646) (.3039) (.3039) (.0077) (.3566)

c=80 ^MB 2 1 1 39 23
(2) (1) (1) (42) (25)

128 MB .1821 .1731 .1731 .0011 .2763
A (.1803) (.1717) (.1717) (.0009) (.2810)

c—40 ^MB 2 1 1 60 43
(2) (1) (1) (64) (49)

256 MB .0904 .0905 .0905 .0004 .1848
A (.0840) (.0849) (.0849) (.0003) (.1815)

c=20 ^MB 2 1 1 91 81
(2) (1) (1) (98) (80)

512 MB ' .0463 .0463 .0463 .0001 .1161

&MB
(.0422) (.0425) (.0425) (.0002) (.1113)

c=10 2 1 1 138 140
(2) (1) (1) (141) (136)
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Now, consider positive autocorrelation functions which 

decay slowly to zero and have high autocorrelation coefficients at 

early lags. By using the second method for estimating such 

autocorrelation functions, we underestimated the minimum bias of 

the NOBM, AREA and combined NOBM-AREA estimators. Furthermore, we 

underestimated the MB-parameter values of the SPEC and OVBM 

estimators.

However, in the next section we shall investigate whether 

the performance of the latter two methods at the estimated 

MB-parameter values differentiates from the performance at the 

true MB-parameter values.

6.3 PERFORMANCE OF CONFIDENCE INTERVAL METHODS FOR THE 
MB-PARAMETER

The confidence intervals produced by the five methods 

under consideration at the MB-parameter values, i.e the values for 

which the minimum bias of the sample mean variance estimators is 

achieved, cover the true steady-state mean with probability

f ] (6 9)

where cTi(n,bj^) is the standard deviation of the sample mean 

according to the i^^ confidence interval method for the parameter 

values n and b^,

b^g is the value for which the minimum bias of the i^^ estimator 

is attained

and v^ are the degrees of freedom for the i^h method for the 

values n and b ^ .
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In the present section, we check in specific output 

processes, how close the probabilities given by (6.9) are to the 

nominal confidence level for each confidence interval method. 

These processes, whose the theoretical autocorrelation functions 

are known, were called pilot processes.

Three pilot processes have been selected. These are the 

delay of the j customer in queue in the M/M/1 queueing system, 

the AR(1) and the AR(2). For each process, the initial conditions 

were the following; X q-0 for the AR(1), X q-0, X_,-0 for the AR(2), 

and empty and idle conditions for the M/M/1. In each replication, 

the initialization bias was removed using Schruben et al.'s(1983) 

test[see section 5.3]. The forms of the theoretical

autocorrelation functions of the first two pilot processes are 

similar. In particular, when the two processes have the same first 

lag theoretical autocorrelation coefficient, the autocorrelation 

function of the AR(1) decays faster to zero than does the 

autocorrelation function of the M/M/1. For the AR(2) processes, 

we have selected the autoregressive coefficients such that the 

autocorrelation functions display damped cyclical behaviour.

For the three pilot processes, table (6.3) displays the 

performance of the five confidence interval methods at the true 

MB-parameter values. The nominal confidence level is 90%. For the 

same processes, the corresponding performance at 95% nominal 

confidence level is displayed in tables D1,D2,D3 of appendix D.

The performance of the methods at the MB-parameter values is

measured by three statistical criteria; the coverage, given by

(6.8), of true steady-state means from the confidence interval 

methods and the expected values and variances of the confidence
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interval half lengths. Estimates of these criteria were obtained 

via Monte Carlo experiments.

Define the random variable

fiij -
1 If %n *

Otherwise

For the replication, <T£j(n,bj^) is the standard deviation

of the sample mean according to the i^^ confidence interval method 

for the parameter values n.bjjg

and V£ are the degrees of freedom for the i^^ method on the j Ch 

replication for the values n,bj^.

Generating r replications of the output process under 

study, the coverage of the true steady-state mean from the iCh 

confidence interval method at the parameter values n,bj^ will be 

estimated from

^  1 r
CVRi “ --- y ^ii

r j-1

For the i^^ method, the estimators of the expected values and 

variances of the confidence interval half lengths at the parameter 

values n/b^B will be

EHL; S ,a/2^ij

VHL4
r-1 j-1
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T A B L E  6.3 
Performance of confidence interval methods for the true 
MB-parameter values

Number of replications : 400 
Nominal confidence level : 0.90

ip — 0.4074
AR(1)

n Statist.
Criteria

NOBM AREA Combined
NOBM-AREA

SPEC OVBM

64 EHLi
VHLi

.9150
(1.0608)
(.6497)

.9200
(1.0498)
(.6115)

.9200
(1.0498)
(.6115)

.9400
(.3940)
(.0125)

.8925
(.3418)
(.0177)

128
^ 1
EHLi
VHLi

.9275
(.7356)
(.3220)

.9150
(.7346)
(.3030)

.9150
(.7346)
(.3030)

.9350
(.2663)
(.0050)

.8950
(.2495)
(.0080)

256
^ R i
EHLi
VHLi

.8975
(.5019)
(.1628)

.8950
(.4756)
(.1223)

.8950
(.4756)
(.1223)

.9125
(.1817)
(.0012)

.8675
(.1715)
(.0030)

512 ^ iEHLi
VHLi

.9100
(.3589)
(.0700)

.9050
(.3349)
(.0637)

.9050
(.3349)
(.0637)

.9225
(.1249)
(.0005)

.8950
(.1208)
(.0010)

V? - 0.99

n Statist.
Criteria

NOBM AREA Combined
NOBM-AREA

SPEC OVBM

CVRi .7750 .8050 .8050 .5975 .2250
64 EHLi (11.595) (12.729) (12.729) (5.9967) (1.8443)

VHLi (72.847) (83.030) (83.030) (13.140) (.8772)

CVR,- .8275 .8300 .8300 .7025 .3800
128 EHLi (14.613) (15.872) (15.872) (7.3906) (2.7240)

VHLi (111.05) (130.59) (130.59) (17.225) (1.7915)

^ R i .8625 .8725 .8725 .8100 .5250
256 EHLi (16.261) (16.741) (16.741) (7.5452) (3.4133)

VHLi (135.36) (153.29) (153.29) (15.848) (2.8193)

^ R i .8600 .8725 .8725 .8500 .6400
512 EHLi (15.266) (15.314) (15.314) (6.7270) (3.8530)

VHLi (140.54) (135.89) (135.89) (10.898) (3.4193)
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n Statist.
Criteria

NOBM AREA Combined
NOBM-AREA

SPEC OVBM

64 EHLi
VHLi

.8525
(.1170)
(.0140)

.8475
(.1045)
(.0152)

.8475
(.1045)
(.0152)

.7875
(.0418)
(.0010)

.7475
(.0368)
(.0009)

128 ^ 1EHLi
VHLi

.8825
(.0975)
(.0082)

.8675
(.0909)
(.0081)

.8675
(.0909)
(.0081)

.8325
(.0328)
(.0004)

.8050
(.0305)
(.0004)

256 EHLi
VHLi

.8725
(.0656)
(.0034)

.8625
(.0647)
(.0033)

.8625
(.0647)
(.0033)

.8325
(.0230)
(.0001)

.8125
(.0223)
(.0002)

512 EHLi
VHLi

.8950
(.0520)
(.0018)

.8850
(.0506)
(.0019)

.8850
(.0506)
(.0019)

.8650
(.0171)
(.0000)

.8500
(.0168)
(.0000)

0.80

n Statist.
Criteria

NOBM AREA Combined
NOBM-AREA

SPEC OVBM

64
CTRi
EHLi
VHLi

.7775
(7.2177)
(50.591)

.7750
(7.5301)
(58.780)

.7750
(7.5301)
(58.780)

.6800
(3.6884)
(9.2454)

.4325
(1.3974)
(1.0328)

128
^ R i
EHLi
VHLi

.7950
(6.9881)
(56.468)

.7950
(7.2163)
(59.893)

.7950
(7.2163)
(59.893)

.7300
(3.3971)
(8.4363)

.5350
(1.6326)
(1.6804)

256 ^ R iEHLi
VHLi

.8175
(6.9300)
(74.401)

.8200
(6.9176)
(71.063)

.8200
(6.9176)
(71.063)

.7400
(2.9565)
(8.1166)

.5575
(1.7040)
(2.4997)

512
^ R i
EHLi
VHLi

.8500
(5.6436)
(35.912)

.8750
(5.6728)
(40.319)

.8750
(5.6728)
(40.319)

.7775
(2.2853)
(3.4267)

.6600
(1.5747)
(1.6663)

-172-



T A B L E  6.3 (Cont...)

PY-0.75 , -0.50

AR(2)

Chapter 6

n Statist.
Criteria

NOBM AREA Combined
NOBM-AREA

SPEC OVBM

64 m L i
VHLi

.8875
(.8346)
(.4334)

.9150
(.8844)
(.4562)

.8950
(.2756)
(.0011)

.9025
(.3330)
(.0119)

.8950
(.2992)
(.0082)

128
g R i
EHLj,
VHLi

.9100
(.5801)
(.2044)

.9100
(.5945)
(.2028)

.9200
(.1939)
(.0003)

.9250
(.2185)
(.0039)

.9175
(.2032)
(.0032)

256 E{JLi
VHLi

.9200
(.3981)
(.0830)

.8975
(.4194)
(.0994)

.9200
(.1368)
(.0001)

.9200
(.1454)
(.0012)

.9125
(.1373)
(.0012)

512 % 1EHLi
VHLi

.9075
(.2678)
(.0420)

.9050
(.2813)
(.0425)

.9050
(.2813)
(.0425)

.9000
(.1002)
(.0004)

.8975
(.0961)
(.0004)

^^—0.99 , -0.90

n Statist.
Criteria

NOBM AREA Combined
NOBM-AREA

SPEC OVBM

64 EHLi
VHLi

.8750
(.8291)
(.4366)

.8900
(.8663)
(.4602)

.8900
(.8663)
(.4602)

.9350
(.4913)
(.0606)

.9200
(.3114)
(.0058)

128 EHLi
VHLi

.9300
(.5563)
(.1592)

.9075
(.5516)
(.1817)

.9075
(.5516)
(.1817)

.9200
(.2488)
(.0127)

.9125
(.1962)
(.0028)

256 ^ iEHLi
VHLi

.9200 
' (.3754) 
(.0765)

.9200
(.4033)
(.0879)

.9200
(.4033)
(.0879)

.9325
(.1544)
(.0034)

.9225
(.1307)
(.0012)

512
CVRi
EHLi
VHLi

.9125
(.2357)
(.0313)

.8725
(.2455)
(.0380)

.8725
(.2455)
(.0380)

.9150
(.0944)
(.0009)

.8950
(.0862)
(.0005)
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Let us examine first the performance of the confidence 

interval methods in the AR(1) for p-0.4074 and the two AR(2) 

processes. The estimated coverages, the methods achieve for the 

MB-parameter values, are close to the nominal confidence levels 

for all the sample sizes [see tables (6.3),(Dl),(D3)]. Regarding 

the precision of the confidence intervals, the overlapping batch 

means and spectral methods produce the narrowest and most stable 

intervals. Comparing the latter two methods, the overlapping batch 

means method seems to produce narrower intervals, especially for 

very small sample sizes.

Compare now the performance that the confidence interval 

methods have in the M/M/1 for t-0.2 with the performance in the 

AR(1) for y3-0.4074. Although the forms of the theoretical 

autocorrelation functions of the two processes are similar, the 

performance of the methods at the MB-parameter values does not 

display similar behaviour. For all the sample sizes we considered 

in the AR(1), the five methods achieved coverages which were very 

close to the corresponding nominal confidence levels. On the other 

hand, in the M/M/1 , the five methods produce coverages which

approach the corresponding nominal confidence levels when the 

sample size is greater than 512. This could be attributed to two 

reasons. First, the theoretical autocorrelation function of the 

AR(1) for p-0.4074 decays faster to zero. Second, the marginal 

distributions of the two output processes under discussion are 

different

Under steady-state conditions, the marginal distribution 

of the random variables in the AR(1) is normal. On the other hand.
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the steady-state marginal distribution for the delay (X^) in queue 

in the M/M/1 is

f(x)
v(1-t) e v (1-t )x

w.p 1-T

w.p T

where v is the service rate and t the traffic intensity [see Law 

and Kelton(1984)]. The r^^ moment around zero for X is

r 1 ,
X —  T

v (1- t ) .
r(r+l) (6.10)

Define the coefficients of skewness and kyrtosis 02 as

E(X-p)

[ E(X-p): ]
1 . 5 (6.11)

E(X-p)

[ E(X-p)' ]
(6.12)

Setting r=l,2,3,4 in (6.10) we have

E(X-p)'= E(x') - (E(X)}'- (t(2-t))/{v(1-t)}' (6.13)

3 3E(X-p) = E(X ) - E(X)[ 3E(X ) - 2{E(X)} ]

= (2t(t2 -3t+ 3))/(v(1 - t )}
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E(X-p)*- E(X^) - E(X)[ 4E(X^) - 6E(X)E(X^) + 3{E(X)}^] -

- (3t (8-t 3+4t 2-8t ))/{v (1-t )}'* (6.15)

Substituting (6.13),(6.14) into (6.11) and (6.13),(6.15) into 

(6.12) and simplifying, we get

2t (t 3-3r+3)
- - {r(2-r)}

8-8t+4t 2-7 3
P 2 - 3 ---------- 3 -{t (2-t )}

The values for and under different traffic intensities are 

given below

T 0.2 0.5 0.8 0.9

4.518 2.964 2.109 2.028
^2 30.333 13.000 9.500 9.121

As T tends to 1, |3, and jSg tend to 2 and 9 respectively.

Consider now the performance of the confidence interval

methods at the MB-parameter values in the AR(1) for p-0.99 and 

M/M/1 for 7=0.8 [see tables 6.3 and D1,D2]. The NOBM, AREA and 

combined NOBM-AREA methods produce greater coverages than do the 

SPEC and OVBM methods. However, the coverages, the five methods 

achieve, are smaller than the corresponding nominal confidence 

levels for small sample sizes.

Under approximately steady-state conditions, we have

observed that the performance of the five confidence interval
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methods is satisfactory for the MB-parameter values in the 

following output processes:

_ AR(1) for p-0.4074

_ delay in queue in M/M/1 with t-0.2 when the sample size is 

greater than 512 

_ AR(2) whose theoretical autocorrelation functions display 

damped cyclical behaviour.

In the majority of simulation outputs, the 

theoretical autocorrelation coefficients cannnot be computed 

exactly. Consequently, we can determine neither the true Bias 

indicator functions nor the true MB-parameter values. Therefore, 

it is worthwhile to investigate the performance of the methods at 

the estimated MB-parameter values. In the previous section we saw 

that the estimation of the MB-parameter values depends upon the 

method we adopt for estimating the autocorrelation function. Two 

such methods were discussed there. For the above processes, 

acceptable estimates for the MB-parameter values are obtained when 

we use the second method. Namely, in the Bias Indicator functions, 

we use the theoretical autocorrelation coefficients of fitted 

AR(p)'s to output process replications instead of the sample 

autocorrelations.

Define the new random variable

1 if /ie[ t

«'ij- ;
0 otherwise

Aj
where bj^ is the estimator of the MB-parameter value for the 

i^^ sample mean variance estimator on the j^^ replication. The
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Bias indicator function of the i^^ sample mean variance estimator 

is obtained on the replication, by replacing the s^^(0<s<n-l)

sample autocorrelation by the lag theoretical autocorrelation 

coefficient of the fitted AR(p) in form (6.2).

Table (6.4) displays the performance of the five 

confidence interval methods for the estimated MB-parameter 

values. The nominal confidence level is 90%. The corresponding 

performance at 95% is given in tables (D4), (D5) and (D6) of 

appendix E. The coverages of the true steady-state means from the 

methods and the expected values and variances of the confidence 

interval half lengths were estimated from

^  1 r
cvRi y n'

r j-1 ij

^  1 r
VHLi _ --- I

r-1 j-1

First, consider the estimated coverages that the methods 

achieve in the AR(1) for p-0.4074, M/M/1 for t-0.2 and the two 

AR(2) processes. We can observe no significant differences in 

these coverages between tables (6.3) and (6.4). Moreover, the OVBM 

and SPEC methods produce the narrowest and most stable confidence 

intervals even for the estimated MB-parameter values.
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T A B L E  6.4 
Performance of confidence interval methods for the estimated 
MB-parameter values

Number of replications : 400 
Nominal confidence level : 0.90

(p — 0.4074

AR(1)

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64
^ R i
EHLi
VHLi

.9175
(1.0582)
(.6481)

.9200
(1.0434)
(.6038)

.9200
(1.0422)
(.6063)

.9400
(.3901)
(.0130)

.8950
(.3416)
(.0176)

128
^ 1
m L i
VHLi

.9275
(.7318)
(.3228)

.9150
(.7847)
(.3028)

.9125
(.7304)
(.3021)

.9375
(.2651)
(.0047)

.8925
(.2495)
(.0079)

256
CTRi
EHLi
VHLi

.8975
(.4990)
(.1613)

.8950
(.4756)
(.1223)

.8950
(.4740)
(.1222)

.9100
(.1813)
(.0014)

.8675
(.1711)
(.0030)

512 ^ 1EHLi
VHLi

.9100
(.3590)
(.0699)

.9050
(.3349)
(.0637)

.9050
(.3349)
(.0637)

.9250
(.1248)
(.0005)

.8950
(.1207)
(.0010)

tp - 0.99

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64 EHLi
VHLi

.7750
(11.595)
(72.847)

.8050
(12.729)
(83.030)

.8050
(12.729)
(83.030)

.5900
(5.9098)
(12.901)

.2350
(1.8800)
(.9183)

128
CVRi
EHLi
VHLi

.8275
(14.613)
(111.05)

.8300
(15.872)
(130.59)

.8300
(15.872)
(130.59)

.6900
(7.0727)
(15.907)

.4000
(2.8049)
(1.9011)

256
^ R i
EHLi
VHLi

.8625
(16.741)
(135.36)

.8725
(16.741)
(153.29)

.8725
(16.741)
(153.29)

.7900
(7.1409)
(14.193)

.5325
(3.5273)
(2.9711)

512 ^ 1EHLi
VHLi

.8600
(15.266)
(140.54)

.8725
(15.314)
(135.89)

.8725
(15.314)
(135.89)

.8250
(6.3189)
(9.9001)

.6375
(3.9385)
(3.5855)
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n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64 EHLi
VHLi

.8525
(.1170)
(.0139)

.8475
(.1044)
(.0152)

.8475
(.1045)
(.0152)

.7925
(.0418)
(.0012)

.7475
(.0369)
(.0009)

128 ^ iEHLi
VHLi

.8825
(.0975)
(.0082)

.8675
(.0909)
(.0081)

.8675
(.0909)
(.0081)

.8350
(.0328)
(.0004)

.8125
(.0305)
(.0004)

256 % iEHLi
VHLi

.8725
(.0656)
(.0034)

.8625
(.0647)
(.0033)

.8625
(.0647)
(.0033)

.8325
(.0230)
(.0001)

.8100
(.0223)
(.0002)

512 ^ iEHLi
VHLi

.8950
(.0520)
(.0018)

.8850
(.0506)
(.0018)

.8850
(.0506)
(.0018)

.8675
(.0171)
(.0000)

.8525
(.0168)
(.0000)

T — 0.80

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64
CVRi
EHLi
VHLi

.7775
(7.2177)
(50.591)

.7750
(7.5301)
(58.780)

.7750
(7.5301)
(58.780)

.6525
(3.3968)
(8.2029)

.4450
(1.4832)
(1.1489)

128 ^ iEHLi
VHLi

.7950
(6.9881)
(56.468)

.7950
(7.2163)
(59.893)

.7950
(7.2163)
(7.2163)

.6950
(3.0796)
(7.5424)

.5475
(1.7264)
(1.8320)

256
CVRi
EHLi
VHLi

.8175
(6.9300)
(74.401)

.8200
(6.9176)
(71.063)

.8200
(6.9176)
(71.063)

.7075
(2.7135)
(8.2802)

.5825
(1.7845)
(2.4937)

512 ^ iEHLi
W L i

.8500
(5.6436)
(35.912)

.8750
(5.6728)
(40.319)

.8750
(5.6728)
(40.319)

.7750
(2.1154)
(3.9897)

.6750
(1.6197)
(1.5882)
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n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64 EHLi
VHLi

.8875
(.8331)
(.4341)

.9150
(.8844)
(.4562)

.9200
(.7013)
(.3974)

.9025
(.3349)
(.0123)

.8950
(.2986)
(.0082)

128 EHLi
VHLi

.9100
(.5797)
(.2046)

.9100
(.5945)
(.2028)

.9100
(.4097)
(.0986)

.9250
(.2185)
(.0038)

.9175
(.2030)
(.0032)

256
g R i
EHLi
VHLi

.9200
(.3975)
(.0832)

.8975
(.4194)
(.0994)

.9075
(.2766)
(.0425)

.9200
(.1456)
(.0012)

.9125
(.1376)
(.0013)

512 ElJLi
VHLi

.9075
(.2674)
(.0421)

.9050
(.2813)
(.0425)

.9050
(.2813)
(.0425)

.9000
(.1002)
(.0004)

.8950
(.0961)
(.0005)

p,—0.99 , {p2^-0.90

n Statist. 
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64 EHLi
VHLi

.8750
(.8296)
(.4364)

.8900
(.8663)
(.4602)

.8900
(.8663)
(.4602)

.9300
(.4678)
(.0567)

.9225
(.3111)
(.0058)

128
^ R i
EHLi
VHLi

.9300
(.5563)
(.1592)

.9075
(.5516)
(.1817)

.9075
(.5516)
(.1817)

.9250
(.2420)
(.0110)

.9150
(.1993)
(.0025)

256 EHLi
VHLi

.9200 
'(.3754) 
(.0765)

.9200
(.4033)
(.0879)

.9200
(.4033)
(.0879)

.9300
(.1502)
(.0031)

.9225
(.1305)
(.0012)

512 ^ iM L i
VHLi

.9125
(.2357)
(.0313)

.8725
(.2455)
(.0380)

.8725
(.2455)
(.0380)

.9150
(.0931)
(.0008)

.8950
(.0860)
(.0005)
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Let us now examine the estimated coverages in the AR(1) 

for 0.99 and M/M/1 for t—0.8. The NOBM, AREA and combined

NOBM-AREA methods achieve coverages which are identical in tables 

(6.3) and (6.4). On the contrary, the OVBM and SPEC methods 

produce coverages which differ in the two tables. Notice, however, 

that the coverages of the latter two methods for both the true and 

estimated MB-parameter values differ significantly from the 

nominal confidence levels.

6.4 SUMMARY

Five confidence interval methods were considered in this 

chapter; the nonoverlapping/overlapping batch means, area, 

combined area-nonoverlapping batch means and spectral methods. We 

have studied their performance at the parameter values for which 

the minimum bias of the corresponding sample mean variance 

estimators is attained. These parameter values were called 

MB-parameter values. The MB-parameter values can be determined 

only when the theoretical autocorrelation function of the output 

process under study is known.

We have found that the performance of the five methods 

at the MB—parameter values was satisfactory in the following types 

of process;

_ Normal processes characterized by autocorrelation functions 

which have low positive coefficients and decay exponentially to 

zero fast.

_ Normal processes characterized by autocorrelation functions 

which display a damped cyclical behaviour.

_ Non-normal processes, characterized by autocorrelation

-182-



Chapter 6

functions which have low positive coefficients and decay to zero 

fast, when the sample size is greater than 512.

For these types of process, the overlapping batch means 

and spectral methods produced confidence intervals whose half 

lengths had the smallest expected values and variances.

In the majority of steady-state simulation outputs, the

theoretical autocorrelation functions are not known. Therefore, 

the MB-parameter values cannot be determined exactly. In this 

chapter, we proposed a method for estimating autocorrelation 

coefficients of approximately steady state simulation output 

processes. In each replication after removing the initialization 

bias by applying an appropriate test, the sample autocorrelations 

are replaced by the theoretical autocorrelation coefficients of 

the fitted AR(p). Having estimated the autocorrelation 

coefficients, we can determine the bias indicator functions and 

the MB-parameter values. For the above three types of process, we 

have found no significant differences in the performances of the 

methods both at the true and estimated MB-parameter values.

The performance of the methods at the MB-parameter values

was also studied on processes characterized by positive 

autocorrelation functions, which have high coefficients in the 

early lags and decay slowly to zero. All the methods produced 

coverages smaller than the nominal confidence levels for small 

sample sizes.

In the next chapter, for such autocorrelation functions, 

we shall investigate if the coverage which each method achieves 

for the MB-parameter values is the nearest to the nominal 

confidence level.
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C H A P T E R  SEVEN

OPTIMUM PERFORMANCE OF CONFIDENCE INTERVAL METHODS

7.1 INTRODUCTION 

In the previous chapter, we studied through Monte Carlo 

experiments the performance of five confidence interval methods 

for specific values of their parameters. These values, called 

MB-parameter values, were chosen in such a way that the minimum 

bias of the corresponding sample mean variance estimators was 

achieved. The testing environment consisted of processes whose the 

theoretical autocorrelation coefficients for any lag can be 

computed exactly. We have called these processes pilot processes.

All the methods for the MB-parameter values achieved 

acceptable coverages in the following pilot processes:

_ AR(1) for p-0.4074

_ delay in queue in the M/M/1 for t-0.2, when the sample size 

was greater than 512 

_ AR(2) whose autocorrelation function displayed damped 

cyclical behaviour.

On the other hand, in the AR(1) for p-0.99 and M/M/1 for r=0.8, 

for small sample sizes all the methods produced coverages smaller 

than the corresponding nominal confidence levels.

In the present chapter, three processes additional to 

the pilot processes are considered. For different sample sizes, we 

determine the parameter values for which each confidence interval 

method achieves the best coverage i.e. the coverage which is the 

nearest to the nominal confidence level. The performance of the
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methods for the parameter values for which the best coverage is 

attained will be called optimum performance. For the above 

processes, the initial conditions were chosen to be different to 

the 'representative' steady state conditions. However, in each 

replication we removed the initialization bias by using the 

Schruben et al.'s test(1983) discussed in section 5.3.

In the next section, for each confidence interval method 

three types of function are introduced. They correspond to each of 

the statistical criteria usually used to study the general 

performance of such methods ; the coverages of the true 

steady-state means from these methods and the expected values and 

variances of the confidence interval half lengths. New statistical 

criteria, related to these functions, are defined. We use the new 

criteria for studying and comparing the optimum performance of the 

methods.

In section 7.3, we discuss the optimum performance 

of the methods in the pilot processes. This will be compared with

the performance the methods had for the parameter values, for

which the minimum bias of the corresponding sample mean variance 

estimators is attained.

In section 7.4, the optimum performance of the five 

methods is studied in three additional processes. These processes 

come from three simulation models; the inventory model, the

interactive computer model and the time-shared computer model.

The last section provides general recommendations for

applying confidence interval methods to approximately steady-state 

simulation output processes.
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7.2 STATISTICAL CRITERIA FOR STUDYING THE OPTIMUM PERFORMANCE OF 
CONFIDENCE INTERVAL METHODS

Three functions are introduced in this section. We shall 

use them to define new statistical criteria. These criteria will 

be used for measuring and comparing the optimum performance of 

confidence interval methods in small sample sizes.

Keeping fixed the sample size n and the nominal 

confidence level (1-a), the first function will provide the 

coverage, each confidence interval method achieves, for different 

parameter values. We shall call the function coverage curve. This 

will have the general form

C V R i ( « ) - P r [ X n - t ^ ^ _ o / j 0 ^ i < ^ )  < f  ( 7  1 )

where o^^(n^) is the standard deviation of the sample mean 

according to the i^^ confidence interval method. The parameter 6 

denotes either the number of contiguous batches or the batch size 

or the size of spectral window. The following coverage curves are 

defined for the five methods under consideration:

_ NB-coverage curve for the nonoverlapping batch mean 

method(NOBM) denoted by CVRjgg(k)

_ SM-coverage curve for the standardized time series-area 

method (AREA) denoted by CVRgj^(k)

_ CM-coverage curve for the combined area-nonoverlapping 

batch means method(NOBM-AREA) denoted by CVRQ^(k)

_ SP-coverage curve for the spectral method(SPEC)

denoted by CVRgp(w) and

_ OB-coverage curve for the overlapping batch means 

method(OVBM) denoted by CVRQg(m).
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Similar functions to the coverage curve can also be

defined for the other two statistical criteria; the expected

values and variances of the confidence interval half lengths.

These functions will have the general form

EHLi(fl) -  E [ 1 (7.2)

and

tvi.a/, (7.3)

where i stands for the i^^ confidence interval method.

As it has been pointed out in the simulation literature, 

analytical values for the coverage of steady-state means from 

confidence interval methods cannot be obtained in small sample 

sizes [see for example Goldsman et al(1986)]. The same is true for 

the expected values and variances of the confidence interval half 

lengths. The alternative solution, therefore, is the estimation of 

these criteria through the Monte Carlo experiments. That is, given 

the sample size, the nominal confidence level and the parameter 

values of each method, we can produce estimates for the criteria 

using the general estimation procedure which was described in 

chapter two [see section 2.3].

Figure (7.1) illustrates estimated coverage curves of the 

five methods for the AR(1) and the delay in queue in the M/M/1 for 

large values of p̂ and t respectively. The nominal confidence level 

is 90%. The parameter values k ^ , m ^  and w ^ ,  for which the 

minimum bias of the sample mean variance estimators is attained, 

are marked as well.
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Figure 7.1
Estimated coverage curves of five confidence interval methods
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Figure 7.1 (Cont..)
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First, we observe that for a certain range of spectral 

window sizes, the curves of the spectral method lie very close to 

the nominal confidence level. Therefore, the coverages this method 

achieves for the parameter values, for which the minimum bias 

occurs, are not the nearest to the nominal confidence level. On 

the other hand, the best coverages the other four methods achieve 

do not seem to be differentiated from the coverages on the minimum 

bias.

The analysis of figure (7.1) shows the usefulness of the 

estimated coverage curves in determining the optimum performance 

of confidence interval methods. In each estimated coverage curve, 

consider those values which are the nearest to the corresponding 

nominal confidence level. We shall call these values "best 

coverages" and they will constitute the basic criterion for 

measuring the optimum performance.

When several confidence interval methods achieve similar 

best coverage, the following two criteria will be used for 

comparing their optimum performance:

i) BEST MEAN HALF LENGTH OF CONFIDENCE INTERVALS (BMHL)

It is defined as the mean of the confidence interval mean half 

lengths for those parameter values for which the best coverage is 

attained

ii) BEST AVERAGE VARIANCE OF CONFIDENCE INTERVAL HALF 
LENGTHS (BVHL)

It is defined as the mean of the estimated values of the variance 

of the confidence interval half lengths for those parameter values 

for which the best coverage is attained.

Define now a small positive number e. Also, denote the 

nominal confidence level by (1-a). When the best coverage of a
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confidence interval method lies within the range (l-a)±c, we shall 

say that this method achieves an c-ideal performance. The e-ideal 

performance constitute a special case of the optimum performance. 

Furthermore, the 6-ideal performance will be attained not only for 

the parameter values for which the best coverage is achieved but 

also for any other parameter value for which the estimated 

coverage lies within the range (l-a)±c. In the next sections, we 

discriminate the e-ideal performance from the optimum performance 

when the last one is characterized by best coverages which do not 

lie within the range (l-a)±e.

The following criteria will be used for comparing 

€-ideal performances of different confidence interval methods : 

i) IDEAL MEAN HALF LENGTH OF CONFIDENCE INTERVALS (IMHL)

It is defined as the mean of the confidence interval mean half 

lengths for those parameter values for which the estimated 

coverages lie within the range (l-a)±e

ii) IDEAL AVERAGE VARIANCE OF CONFIDENCE INTERVAL HALF 
LENGTHS (lAVHL)

It is defined as the mean of the estimated values of the variance 

of the confidence interval half lengths for those parameter values 

for which the estimated coverages lie within the range (l-a)±e.

7.3 OPTIMUM PERFORMANCE OF CONFIDENCE INTERVAL METHODS IN THE 
PILOT PROCESSES

First, we study the optimum performance of the five 

confidence interval methods in the pilot processes. We use the new 

statistical criteria which were introduced in the previous section 

and whose values as presented here have been estimated at 90%
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nominal confidence level. Their corresponding values at 95% are 

displayed in appendix E, tables E1,E3 and E5. In the same 

appendix, tables E2,E4 and E6 contain the parameter values for 

which the optimum performance of the methods is observed for the 

two nominal confidence levels under consideration.

For the pilot processes, the initial conditions were the 

following; X q-0 for the AR(1), X q-0, X.,-0 for the AR(2) and empty 

and idle conditions for the M/M/1. In each replication of the 

pilot processes, we have removed the initialization bias using the 

Schruben et al.'s(1983) test defined in (5.2).

7.3.1 AR(1)

Tables (7.1) and (El) display the optimum performance of 

the five confidence interval methods in the AR(1). First, consider 

the values of the statistical criteria for ^0.4074 and p-0.7778. 

All the methods achieve e-ideal performance for e—0.025 and n)128. 

However, the spectral(SPEC) and overlapping batch means(OVBM) 

methods seem to be superior. For the range of parameter values, 

where the five methods attain the e-ideal performance, the SPEC 

and OVBM methods produce on average narrower and more stable 

confidence intervals.

The superiority of the latter two methods was also 

recognized when we investigated their performance for the 

parameter values, for which the minimum bias of the sample mean 

variance estimators is attained. Therefore, these two methods 

should be preferred for constructing confidence intervals in 

normal output processes for which the autocorrelation functions 

decay exponentially to zero fast. Given the sample size in any
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replication, we recommend the confidence interval to be built for 

the batch size or spectral window size where the minimum bias of 

the corresponding sample mean variance estimator is attained. 

These sizes are determined by the Bias Indicator functions[see 

section 3.4]. These functions are estimated in each replication, 

by using the theoretical autocorrelation coefficients of the 

fitted AR(p) instead of the corresponding sample autocorrelations 

in form (6.2).

Examine now the values of the statistical criteria for 

Y?=0.963 and ^0.99. First, consider the nonoverlapping/ 

overlapping batch means(NOBM,OVBM), area and combined 

area-nonoverlapping batch means methods. From tables (7.1) and 

(El), we see that the lower the nominal confidence level we 

select, the larger the sample size we need so that these four 

methods achieve c-ideal performance for e—0.025. Comparing the 

optimum performance of these four methods, we see that the OVBM 

method produces the smallest best coverages which lie far from the 

two nominal confidence levels under consideration.

For the above values of <p, let us compare the optimum 

performance of the four methods with their performance at the 

MB-parameter values. For small sample sizes, the optimum 

performance of the NOBM and AREA, combined NOBM-AREA methods is 

achieved for k-=2 and k-1 respectively [see table E2 of appendix 

E] . However, for these number of batches, the minimum bias of the 

corresponding sample mean variance estimators is attained. 

Therefore, the optimum performance and the performance at the 

MB-parameter values are exactly the same.
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T A B L E  7.1 
AR(1) : Optimum performance of confidence Interval methods at 90% 
nominal confidence level

Number of Replications : 400 € - 0.025

ip — 0.4074

n Methods €-Ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.6830

.5625

.5410

.3224

.3328

.3264

.1760

.1640

.0320

.0123

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.2683

.3703

.4056

.3191

.2408

.0085

.0717

.1031

.0245

.0053

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.2496

.2566

.2286

.2125

.1677

.0353

.0297

.0225

.0232

.0014

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.1593

.1716

.1554

.1358

.1207

.0120

.0128

.0115

.0108

.0012

ip — 0.7778

n Methods e-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

2.601

1.218

4.242

.320

.9300

.9300

.7850

2.704
2.704

.790

3.577
3.577

.119

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

1.163
1.451
1.391
.674
.616

.781
1.141
1.085
.035
.043

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.762
1.031
.751
.525
.441

.355

.563

.338

.031

.017

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.539

.607

.568

.432

.307

.155

.186

.169

.032

.013
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T A B L E  7.1 (Cont..)

ip — 0.9630

n Methods 6-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

8.853 30.737

.8550

.8150

.8150

.4700

8.695
8.961
8.961

2.039

38.882
44.714
44.714

1.098

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

6.124 14.051

.8500

.8650

.8650

.6175

8.022
8.179
8.179

2.127

39.841
42.825
42.825

1.109

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

4.042 4.850

.8650

.8700

.8700

.7225

7.155
7.576
7.576

2.078

33.471
34.109
34.109

.929

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

4.145
2.782
5.852
2.450

10.320
2.122

19.125
1.042

.8175 1.773 .476

ip - 0.99

n Methods e-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

20.85 188.47

.7750

.8050

.8050

.3300

11.59
12.73
12.73

2.44

72.85
83.03
83.03

1.84

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

17.00 111.31

.8275

.8300

.8300

.4775

14.61
15.87
15.87

3.19

111.05
130.59
130.59

2.60

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

12.39 53.66

.8625

.8725

.8725

.5875

16.26
16.74
16.74

3.97

135.36
153.29
153.29

3.63

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

9.37 27.66

.8600

.8725

.8725

.6725

15.27
15.31
15.31

4.10

140.54
135.89
135.89

3.96
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Furthermore, the OVBM method attains best coverages which 

do not differ significantly from those produced at the 

MB-parameter values.

Now, consider the optimum performance of the spectral 

method in the AR(1) for ^0.9630 and ^0.99. In chapter six we 

have seen that the performance of this method in the two 

processes, for the spectral window sizes for which the minimum 

bias occurs, was not satisfactory. On the other hand, we see in 

tables (7.1) and (El) that the spectral method achieves e-ideal 

performance(€“0.025) for all the combinations of n and <p. How much 

we should have increased the average spectral window size, for 

which the minimum bias occured, so that the spectral method 

achieves e-ideal performance(e—0.025) is given below.

S A M P L E S I Z E S

(1-a) 64 128 256 512

90% 0.9630 1.48-1.54 1.53-1.68 1.34-1.90 0.97-1.53
0.99 1.46-1.51 1.44-1.53 1.39-1.55 1.36-1.84

95% 0.9630 1.32-1.54 1.30-1.69 1.25-1.96 0.76-2.22
0.99 1.44-1.51 1.38-1.52 1.22-1.77 1.21-1.84

Observe that by increasing the average size of the 

spectral window by 1.50, the spectral method achieves c-ideal 

performances(e=0.025) for all the combinations of n and p.

7.3.2 M/M/1'

Denote the traffic intensity by t and the service rate by 

V. The marginal distribution of the steady-state delay in queue in 

the M/M/1 is 0 with probability 1-t and exponential with mean
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(1/(v (1-t )) with probability t [see Law and Kelton(1984) ] . 

Regarding this process, in the previous chapter we have seen that 

the greater the traffic intensity we observe, the less skew the 

marginal distribution we take. Furthermore, in chapter four we 

have shown diagramatically, that the theoretical autocorrelation 

functions of both the AR(1) with positive autoregressive 

coefficient and the delay in queue in the M/M/1 had similar 

shapes. Observe in figure (4.1) that when the two processes have 

the same first lag theoretical autocorrelation coefficient, the 

autocorrelation function of the delay in the M/M/1 decays slower 

to zero.

Tables (7.2) and (E3) display the optimum performance of 

the five confidence interval methods in the M/M/1. First, observe 

the values of the statistical criteria for the NOBM, OVBM, AREA 

and combined NOBM-AREA methods. The greater the traffic intensity 

we observe, the larger the sample size we need so that these four 

methods achieve e-ideal performance for c-0.025. For every sample 

size, the OVBM method has the worst optimum performance as it 

produces the lowest coverages.

Let us compare the optimum performance of the previous 

four methods with their performance at the MB-parameter values. 

From table (E4)[see appendix E] , we see for small sample sizes 

that the NOBM and AREA, combined NOBM-AREA methods achieve their 

optimum performances for k-2 and k-1 respectively. However, for 

these values, the minimum bias of the corresponding sample mean 

variance estimators occurs. Hence, as in the case of the AR(1) for
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large the optimum performance is not differentiated from the 

performance at the MB-parameter values.

Furthermore, the best coverages achieved by the OVBM 

method do not differ significantly from those produced on the 

minimum bias [see tables (6.3) and (D2) of appendix D].

Consider now the optimum performances of the four methods 

in the AR(1) for ^0.4074 and the delay in queue in the M/M/1 for 

t -0.20. The two processes have the same first lag theoretical 

autocorrelation coefficient. We have found for all combinations of 

sample sizes and nominal confidence levels we considered that the 

five methods achieve e-ideal performances for e-0.025 in the 

AR(1). However, the same is not true in the M/M/1. For instance, 

refering to 90% nominal confidence level, the four methods fail to 

achieve the e-ideal performance for n<256. The difference in the 

behaviour of the optimum performance of these methods in the two 

processes can be attributed to two reasons. First, to the 

non-normality of the process in the M/M/1. Second, to the fact 

that the autocorrelation function of the AR(1) for ^0.4074 decays 

faster to zero.

For all combinations of traffic intensities, sample sizes 

and nominal confidence levels, the spectral method achieves 

e-ideal performance for e-0.025. From tables (7.2) and (E3), we 

see in large sample sizes that not only the spectral method but 

also the NOBM, AREA and combined NOBM-AREA methods achieve e-ideal 

performance(e=0.025).. However, for these sample sizes, the 

spectral method produces confidence intervals whose half lengths 

have on average the smallest expected values and variances.
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T A B L E  7.2 
M/M/1 : Optimum performance of confidence interval methods at 90% 
nominal confidence level

Number of Replications : 400 0.025

T - 0.20
n Methods e-ideal perfor. best performance

IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.1016 .0097

.8525

.8475

.8475

.7725

.1170

.1045

.1045

.0356

.0140

.0152

.0152

.0007

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.0975

.0596

.0082

.0022

.8675

.8675

.8175

.0909

.0909

.0294

.0081

.0081

.0004

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.0111 .0008

.8725

.8700

.8625

.8225

.0656

.0342

.0647

.0216

.0034

.0005

.0033

.0001

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.0520

.0506

.0360

.0250

.0018

.0019

.0010

.0002
.8600 .0161 .0000

T - 0.50

n Methods e-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

1.223 1.109

.8250

.8400

.8400

.6825

1.235
1.197
1.197

.362

1.830
1.848
1.848

.092

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

1.025
1.025 
.804

.934

.934

.349

.8625

.7550

1.044

.312

1.032

.055

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.559 .210

.8550

.8450

.8450

.8125

.550

.764

.764

.233

.318

.524

.524

.023

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.306 .093

.8725

.8600

.8700

.8200

.525

.389

.231

.176

.272

.129

.022

.012
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T A B L E  7.2 (Cont...)

T - 0.80

n Methods e-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

11.002 100.36

.7775

.7750

.7750

.5025

7.218
7.530
7.530

1.771

50.591
58.780
58.780

1.606

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

9.952 89.301

.7950

.7950

.7950

.5600

6.988
7.216
7.216

1.857

56.469
59.893
59.893

2.201

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

7.856 75.810

.8175

.8200

.8200

.6075

6.930
6.918
6.918

1.885

74.401
71.063
71.063

3.058

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

5.673
5.673 
4.919

40.319
40.319 
22.261

.8500

.6925

5.644

1.587

35.512

1.494

T — 0.90

n Methods e-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.6575

.6450

.6450

.8725

.2500

10.82
11.59
11.59 
23.42
2.45

90.49
103.30
103.30 
337.11

2.17

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

30.31 756.93

.6725

.6875

.6875

.3525

12.98
13.90
13.90

3.01

165.05
192.45
192.45

4.65

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

. 27.32 559.43

.7625

.7525

.7525

.4425

15.11
15.64
15.64

3.76

205.46
231.43
231.43

7.28

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

24.94 569.21

.8225

.7725

.7725

.5600

16.48
16.16
16.16

4.27

280.63
295.60
295.60

11.09
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We have also studied the optimum performance of the 

spectral method in the M/M/1 for e-0.005 and e-0.015. The sample 

sizes, n, we used were 64,128,256 and 512. For any combination of 

the above n and e, the optimum performance of this method was 

ideal. The spectral window sizes for which the c-ideal performance 

was observed are given below. The sample size is 128.

e 1-a 0.2 0.5 0.8 0.9

0.005 90% 90- 98 100-103 119 125
95% 88- 93 107-109 118 125

0.015 90% 79-100 95-106 117-120 124-125
95% 81- 95 99-113 114-123 124-125

Decreasing e, the range of spectral window sizes, where 

the c-ideal performance is attained, is reduced. We have also 

found that this remark is true for all the other sample sizes we 

have considered.

Moreover, we display below how much we should have 

increased the average size of the spectral window, for which the 

minimum bias occurs, so that the spectral method achieves e-ideal 

performance(e-0.025).

S A M P L E S I Z E S
(1-a) T 64 128 256 512

90% 0.2 3.20-3.87 3.29-5.00 4.73-6.70 2.88-8.83
0.5 2.35-2.48 2.76-3.30 3.62-4.59 3.64-5.91
0.8 1.68-1.74 1.97-2.05 2.34-2.57 2.72-3.22
0.9 - 1.59 1.77-1.79 1.99-2.08 2.40-2.53

95% 0.2 3.40-4.00 3.19-4.76 4.97-7.43 2.50-9.74
0.5 2.22-2.57 2.79-3.58 3.53-5.04 3.96-6.15
0.8 1.66-1.74 1.90-2.14 2.31-2.63 2.59-3.23
0.9 1.56-1.59 1.76-1.80 1.98-2.08 2.37-2.53
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We have found that the coverage curve of the spectral 

method in the M/M/1 is an increasing function of the spectral 

window size [see for example figure (7.1)]. Increasing the average 

spectral window size, for which the minimum bias is attained, by

clogn - logT , c - 0.80 for r<0.5
0.40 for t>0.5.

the spectral method will achieve coverages either within (l-a)±e 

or greater than (l-a)+c.

7.3.3 AR(2)

The theoretical autocorrelation functions of the two 

AR(2) processes display damped cyclical behaviour[see figure 4.2]. 

The optimum performance of the five confidence interval methods is 

given in tables (7.3) and (E5) . This is similar to the optimum 

performance the methods had in the AR(1) for low positive 

autoregressive coefficients. Although all the methods achieve 

e-ideal performance for 6=0.025, the overlapping batch means and 

spectral methods seem to be superior. The latter two methods 

produce on average the narrowest and most stable confidence 

intervals for the parameter values for which the £-ideal 

performance is achieved.
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T A B L E  7.3
AR(2) ; Optimum performance of confidence interval methods at 90% 
nominal confidence level

Number of Replications : 400 , e - 0.025

— 0.75 , ^2 — -0.50

n Methods £-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.5146

.5773

.4693

.3752

.2975

.1558

.1776

.1232

.0085

.0069

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.4182

.4532

.3942

.2156

.2004

.1084

.1155

.1016

.0063

.0038

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.2858

.2682

.2213

.1695

.1380

.0445

.0394

.0269

.0044

.0019

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.1648

.1653

.1420

.1176

.0967

.0151

.0129

.0093

.0021

.0004

— 0.99 , ^2 " -0.90
n Methods £-ideal perfor. best performance

IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.8291

.8663

.8663

.3416

.3007

.4366

.4602

.4602

.0163

.0068

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.2513

.4317

.4021

.2071

.1913

.0110

.1051

.0970

.0057

.0027

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.3754 

.4033 

.4033 
. .1287 
.1243

.0765

.0879

.0879

.0027

.0014

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.1725

.1416

.1128

.0969

.0855

.0166

.0049

.0021

.0012

.0005
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T A B L E  7.4
Estimated coverages that the spectral method achieves when its 
confidence intervals have approximately equal mean half lengths 
with the confidence Intervals of the nonoverlapping batch means 
method for k-2.

Models Nominal Confidence 
90%

Sample Sizes 
64 128 256

Level

512

Nominal Confidence 
95%

Sample Sizes 
64 128 256

Level

512
AR(1) 
. 963 .9050

(56)
.9450
(111)

.9625
(218)

.9750
(442)

.9800
(59)

.9800
(114)

.9900
(230)

.9900
(464)

V^.99 .8325
(56)

.8775
(111)

.9475
(223)

.9525
(443)

.9300
(59)

.9700
(117)

.9675
(233)

.9900
(465)

M/M/1 
T“0 .50 .8950

(56)
.9300
(112)

.9350
(223)

.9525
(443)

.9850
(62)

.9725
(117)

.9725
(234)

.9875
(465)

T-0.80 .8375
(56)

.8475
(111)

.8950
(223)

.9225
(443)

.9475
(59)

.9400
(116)

.9575
(234)

.9775
(465)

T—0.90 .6750
(56)

.7275
(112)

.8150
(222)

.8425
(448)

.8550
(62)

.8850
(117)

.9100
(233)

.9375
(468)

AR(2)
.9525
(55)

.9750
(110)

.9700
(218)

.9775
(438)

.9825
(58)

.9900
(116)

.9875
(230)

.9975
(462)

99 .9700
(55)

.9775
(112)

.9775
(219)

.9650
(438)

.9875
(58)

.9825
(117)

1.000
(246)

.9900
(462)

Table (7.4) for different processes provides the 

coverages, that the spectral method achieves for specific spectral 

window sizes. These sizes, which are given in parentheses, were 

chosen in such a way that the confidence intervals of the spectral 

method have approximately the same mean half length with the 

confidence intervals of the nonoverlapping batch means method for 

k=2, We can see that these coverages are greater than the 

coverages the other four methods produce at their optimum 

performance. Besides, for each sample size the particular spectral 

window sizes have approximately the same value in all the 

processes. In terms of the sample size n, w=0.87n for 90% nominal 

confidence level and w=0.91n for 95%.
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7.4 THE PERFORMANCE OF CONFIDENCE INTERVAL METHODS IN SEMI 
REAL-LIFE SIMULATION MODELS

In this section, three additional processes are 

considered. They come from the following simulation models; 

inventory model, interactive multiprogrammed computer model and 

time-shared computer model. First, we study the optimum 

performance of the five confidence interval methods under

consideration. Then, we compare this performance with the one the 

methods have for the estimated MB-parameter values. In each 

replication, these parameter values are determined from the Bias 

Indicator functions which are estimated by using in form (6.2) the 

theoretical autocorrelation coefficients of the fitted AR(p)'s.

For the above processes, the initial conditions were

different to the steady state conditions. However, in each 

replication of each process, we removed the initialization bias by 

using the Schruben et al.'s test. From the first twenty

replications after deleting a number of early observations[see 

table 5.2], we found that the spectral sample mean variance 

estimator was the least biased estimator. Then the mean spectral 

window size for which the minimum bias occured was used for 

computing both the test statistic (5.2) and the degrees of freedom 

for the student-t distribution[see section 5.3].

7.4.1 Inventory Model

The operational rules of this model were described in 

chapter two. The output process under study is the cost at period

i. The initial condition is S-52.

Table (7.5) displays the optimum performance of the five 

confidence interval methods. The parameter values for which this 

performance is attained are given in table (E7) of appendix E. In
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the inventory model, the optimum performance of the methods is 

similar to that in the following two pilot processes 

_ AR(1) when the autoregressive coefficient has a low positive 

value and

_ AR(2) when its autocorrelation function shows damped cyclical 

behaviour.

Although all the methods achieve e-ideal performance for e-0.025, 

the OVBM and SPEC methods produce on average the narrowest and 

most stable confidence intervals for the parameter values where 

the e-ideal performance is attained. By comparing these two 

methods, we can see that the half lengths of the confidence 

intervals produced by the OVBM method seem to have on average 

smaller expected values and variances.

In figure (7.2), we have drawn the theoretical 

autocorrelation functions of two AR(p)'s fitted to two 

replications of the process under study. In each replication, the 

order and the autoregressive coefficients of the fitted AR(p) were 

estimated from the iterative algorithm discussed in chapter six. 

The sample size n* was 1024. We observe that both autocorrelation 

functions damp down to zero oscillating between positive and 

negative values.

The performance of the methods for the estimated 

MB-parameter values is displayed in table (7.6). In each 

replication, these parameter values were determined by the Bias 

Indicator functions which were estimated by using in form (6.2) 

the theoretical autocorrelation coefficient of the fitted AR(p). 

The numbers in parentheses are the average parameter values where 

the minimum bias occurs.

- 206 -



Chapter 7

Optimum performance 
inventory model

of
T A B L E
confidence

7.5
interval methods in the

Number of Replications : 400 € - 0.025

Nominal Confidence Level :.90%

n Methods 6-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

14.322
14.602
14.602 
4.740 
4.534

111.904
113.432
113.432 

1.953 
2.074

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

9.057
8.744
8.744 
3.094 
2.815

49.507
46.642
46.642 

.857 

.661

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

5.977
5.789
5.789 
2.247 
1.775

18.335
18.551
18.551 

.657 

.339

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

2.739
2.971
2.780
1.535
1.278

4.684
4.984
4.637
.346
.177

Nominal Confidence Level : 95%

n Methods 6-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

28.825
29.388
29.388 
6.034 
6.481

453.306
459.494
459.494 

3.245 
4.765

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

18.228
12.710
17.598
4.017
3.683

200.545
102.860
188.940

1.665
1.216

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

12.031 
8.197 
7.611 
3.646 

. 2.246

74.272
40.634
38.704
2.940
.574

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

4.940
5.415
5.030
2.172
1.701

18.359
18.992
18.138

.936

.283
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Figure 7.2
Inventory model: Theoretical autocorrelation functions of
fitted AR(p)’s to replications of the cost per period
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T A B L E  7.6
Inventory Model : Performance of Confidence Interval Methods for 
the parameter values for which the minimum bias of the sample mean 
variance estimators is attained

Number of Replications : 400 

Nominal Confidence Level : 0.90

n Statist.
Criteria NOBM AREA NOBM&AREA SPEC OVBM

^ i .9250 .9225 .9225 .9325 .9775
64 EHLi 14.322 14.602 14.602 4.367 5.751

VHLi 111.904 113.432 113.432 .973 1.695
6 (2) (1) (1) (7) (17)

^ R i .9025 .9100 .9100 .9225 .9525
128 EHLi 9.057 8.744 8.744 2.808 3.495

VHLi 49.507 46.642 46.642 .310 .520
(2) (1) (1) (11) (39)

^ i .9225 .9250 .9250 .9400 .9625
256 EHLi 5.977 5.789 5.789 1.866 2.178

VHLi 18.335 18.551 18.551 .118 .274
6 (2) (1) (1) (17) (75)

^ R i .9000 .9075 .9075 .9250 .9500
512 ^ L i 3.745 3.849 3.849 1.278 1.391

VHLi 8.814 8.693 8.693 .044 .118
6 (2) (1) (1) (29) (135)

Nominal Confidence Level : ().95

n Statist.
Criteria NOBM AREA NOBM&AREA SPEC OVBM

^ i .9675 .9700 .9700 .9675 .9875
64 m L i 28.825 29.388 29.388 5.333 7.432

VHLi 453.306 459.494 459.494 1.452 2.817

^ i .9650 .9575 .9575 .9500 .9900
128 EHLi 18.228 17.598 17.598 3.409 4.569

VHLi 200.545 188.940 188.940 .458 .887

^ i .9575 .9575 .9575 .9750 .9850
256 EHLi . 12.031 11.652 11.652 2.258 2.834

VHLi 74.272 75.146 75.146 .173 .464

^ i .9500 .9600 .9600 .9700 .9750
512 EHLi 7.537 7.748 7.748 1.278 1.792

VHLi 35.703 35.215 35.215 1.542 .196
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We observe in table (7.6) that the OVBM and SPEC methods 

achieve greater coverages than the other three methods. On the 

other hand, the coverages of the NOBM, AREA and combined NOBM-AREA 

methods lie within the range (l-û’)±c for e—0.025. However, the 

confidence intervals of the first two methods are narrower and

more stable at the estimated MB-parameter values.

The performance of the classical method is given in table 

(ElO) of appendix E. For each combination of sample size and 

nominal confidence level, the estimated coverages are equal to 

unity. Furthermore, the confidence intervals of the classical 

method are on average wider than those the other five methods

produce at the estimated MB-parameter values.

7.4.2 Interactive Multiprogrammed Computer Model

This model was described in chapter two. Different output 

processes can be defined in it. We have selected the waiting time 

at the CPU as the process under study. In each replication, we 

have initialized the simulation program from empty and idle 

conditions.

Table (7.7) displays the optimum performance of the five 

confidence interval methods in the process under study. This 

performance is similar to the one the methods had in the AR(1) and 

the delay in queue in the M/M/1 for high values of ^ and t

respectively. For small sample sizes, the NOBM, OVBM, AREA and 

combined NOBM-AREA methods fail to achieve e-ideal performances 

for 6=0.025. On the other hand, the spectral method attains

e-ideal performance(e—0 .025) for any combination of sample size 

and nominal confidence level. The spectral window sizes, for which
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the c-ideal performance is achieved, are given in table (E8) of 

appendix E.

The performance of the methods, for the parameter values 

for which the minimum bias occurs, is given in table (D7). No 

method achieves satisfactory performance for small sample sizes as 

the produced coverages are smaller than the nominal confidence 

levels.

Now, let us examine the performance of the spectral 

method for specific sizes of the spectral window. These sizes were 

chosen in such a way that the confidence intervals of the NOBM for 

k-2 and spectral methods have approximately the same mean half 

lengths. For different sample sizes, we give below the coverages 

the spectral method achieves for these spectral window sizes. 

These sizes are given in parentheses.

S A M P L E  S I Z E S

1-a 64 128 256 512

90% .6000 .7725 .8675 .9125
(56) (112) (223) (438)

95% .8150 .9125 .9425 .9675
(58) (117) (233) (462)

For n>512, the coverages are greater than the corresponding 

nominal confidence levels. In regard to the spectral window sizes, 

w=0.87n for 90% nominal confidence level and w=0.91n for 95%. We 

remind the reader that in the AR(1) and M/M/1 for the same 

spectral window sizes, the NOBM for k-2 and spectral methods had 

also produced confidence intervals with approximately the same 

half lengths.
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T A B L E  7.7 
Optimum performance of confidence interval 
interactive computer model

methods in the

Number of Replications : 400 £ - 0.025

Nominal Confidence Level : 90%

n Methods e-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM
AREA

NOBM-AREA
SPEC
OVBM

13.799 150.060

.5700

.5875

.5875

.2300

4.312
4.796
4.796

1.053

18.357
21.907
21.907

.670

128

NOBM
AREA

NOBM-AREA
SPEC
OVBM

9.993 64.500

.7200

.7325

.7325

.4175

5.409
5.644
5.644

1.346

23.853
25.204
25.204

.887

256

NOBM
AREA

NOBM-AREA
SPEC
OVBM

7.022 28.876

.7925

.7975

.7975

.5475

5.856
6.021
6.021

1.504

27.263
28.168
28.168

.899

512

NOBM
AREA

NOBM-AREA
SPEC
OVBM

4.524 9.677

.8400

.8050

.8050

.6800

4.746
4.787
4.787

1.429

16.897
18.029
18.029

.627

Nominal Confidence Level : 95%
n Methods e-ideal perfor. best performance

IMHL lAVHL BCVR BMHL BVHL

64

NOBM
AREA

NOBM-AREA
SPEC
OVBM

23.453 433.510

.7425

.7725

.7725

.2925

8.678
9.652
9.652

1.417

74.362
88.741
88.741

1.210

128

NOBM
AREA

NOBM-AREA
SPEC
OVBM

17.211 195.630

.8375

.8400

.8400

.5000

10.887
11.359
11.359

1.777

96.624
102.100
102.100

1.473

256

NOBM
AREA

NOBM-AREA
SPEC
OVBM

11.257 78.319

.8850

.8875

.8875

.6350

11.786
12.118
12.118

1.886

110.440
114.100
114.100

1.246

512

NOBM
AREA

NOBM-AREA
SPEC
OVBM

6.962 23.606

.8950

.8975

.8975

.7350

9.551
9.635
9.635

1.852

68.448
73.032
73.032

1.005
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Figure 7.3
Interactive computer model: Theoretical autocorrelation
functions of fitted AR(p)’s to replications of the waiting 
time at the central processing unit
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Figure (7.3) illustrates the theoretical autocorrelation 

functions of two AR(p)'s fitted to two replications of the output 

process under study. The iterative algorith described in chapter 

six was used for estimating the order and the autoregressive 

coefficients of each AR(p). The sample size n* was 1024, We 

observe that both autocorrelation functions are similar to those 

of the AR(1) or the M/M/1 for high values of <p and t respectively.

7.4.3 Time-shared Computer Model

The process under study was the response time of the i^h 

job. In each replication, the initial conditions were empty and 

idle.

The optimum performance of the methods is displayed in 

table (7.8). This is almost the same with the optimum performance 

the methods had in the M/M/1 for t-0.2. For all the combinations 

of sample size and nominal confidence level, only the spectral 

method achieves e-ideal performance for e—0.025. The spectral 

window sizes, for which the e-ideal performance is attained, are 

given in table (E9).

On the other hand, the performance of the methods for the 

estimated MB-parameter values is not satisfactory. This can be 

verified from table (D8) of appendix D.

Given below are the coverages, the spectral method 

achieves, for the spectral window sizes w=0.87n at 90% nominal 

confidence level and w—0.91n at 95%. For these spectral window 

sizes in the pilot processes, the NOBM for k—2 and spectral 

methods produce confidence intervals with approximately the same 

mean half length.
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T A B L E  7.8 
Optimum performance of confidence interval 
time-shared computer model

Number of Replications : 400 , e — 0.025

methods in the

Nominal Confidence Level : 90%

n Methods e-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM
AREA

NOBM-AREA
SPEC
OVBM

8.459 33.575

.7733

.8300

.8300

.5367

7.563
8.384
8.384

2.047

43.315
42.497
42.497

.949

128

NOBM
AREA

NOBM-AREA
SPEC
OVBM

7.262 24.562

.8400

.8600

.8600

.5900

8.178
8.423
8.423

2.080

42.226
45.781
45.781

1.330

256

NOBM
AREA

NOBM-AREA
SPEC
OVBM

5.160 9.084

.8567

.8633

.8633

.7000

6.943
6.751
6.751

2.100

27.787
27.059
27.059

.995

512

NOBM
AREA

NOBM-AREA
SPEC
OVBM

5.268
5.365
5.365 
4.178

16.796
15.654
15.654 
5.475

.7300 1.734 .529

Nominal Confidence Level : 95%

n Methods €-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM
AREA

NOBM-AREA
SPEC
OVBM

12.418 72.851

.9000

.9100

.9100

.6500

15.223
16.873
16.873

2.789

175.460
172.150
172.150

2.124

128

NOBM
AREA

NOBM-AREA
SPEC
OVBM

11.439 61.588

.9133

.9200

.9200

.6967

16.460
16.953
16.953

2.763

171.050
185.450
185.450

2.330

256

NOBM
AREA

NOBM-AREA
SPEC
OVBM

27.787

6.951

112.560

15.983

.9067

.9067

.7933

13.588
13.588

2.796

109.610
109.610

1.842

512

NOBM
AREA

NOBM-AREA
SPEC
OVBM

10.602
10.798
10.798 
6.298

68.039
63.410
63.410 
13.761

.8033 2.132 .660
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Figure 7.4
Time shared computer model: Theoretical autocorrelation
functions of fitted AR(p)’s to replications of the response 
time of the jobs
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S A M P L E  S I Z E S  

1-a 64 128 256 512

90% .9033 .9167 .9500 .9367

95% .9633 .9800 .9867 .9733

For any combination of n and (1-a), these coverages are greater 

than the best coverages achieved by the NOBM, OVBM, AREA and 

combined NOBM-AREA methods.

Figure (7.4) illustrates the theoretical autocorrelation 

functions of two AR(p)'s fitted to two replications of the output 

process under study.

7.5 APPLYING THE CONFIDENCE INTERVAL METHODS TO STEADY-STATE 
SIMULATION OUTPUTS

In this section, we shall make several recommendations 

for applying confidence interval methods to approximately 

steady-state simulation output processes displaying certain 

characteristics.

Schruben et al.'s test(1983) can be used for the 

elimination of initialization bias after deleting a number of 

early observations. This test is based on the assumption that the 

correlation of two observations which lie far apart in time is 

negligible. To apply this test, first the least biased sample mean 

variance estimator must be determined. This is achieved as 

follows :

1) Generate 5 or 10 replications of the process under study. 

In each replication, collect a total sample size, n*, and delete
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an arbitrary number of early observations. The remaining series 

must contain at least 500 observations.

2) Fit an AR(p) process to the remaining series of each 

replication. The autoregressive coefficients and the order of the 

AR(p) will be estimated using Fishman's iterative algorithm; this 

was discussed in chapter six.

3) In each replication, estimate first the Bias Indicator 

functions by using in form (6.2) the theoretical autocorrelation 

coefficients of the fitted AR(p). Then determine the minimum bias 

of each sample mean variance estimator and the parameter value for 

which the minimum bias is attained.

4) Compute the average absolute minimum bias of each estimator 

using (6.5). Determine the least biased estimator and the average 

parameter value where the minimum bias occurs.

Now, consider a single replication. Remove an arbitrary 

early part of the data such that the number of observations ,n, in 

the remaining series is greater than 500. Then compute the test 

statistic

T - y j( %n - %j ) (7.4)
n a.

where u\ is the least biased sample mean variance estimator at

the average parameter value for which the minimum bias is

achieved. The test statistic value must be compared with the

student-t value The degrees of freedom depend on the size
Aof n and the average parameter value. If T<t^ then we accept

the null hypothesis that the initialization bias has been removed.
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Otherwise, we increase the number of observations we remove from 

the analysis and the total sample size, n*, and apply the same 

test again. This is repeated until we achieve the acceptance of 

the null hypothesis.

In the last two chapters we have seen that the 

performance of the methods, for the parameter values for which the 

minimum bias of the sample mean variance estimators occurs, is 

satisfactory when the autocorrelation function of the process 

under study

__ shows a damped cyclical behaviour

_ damps down oscillating between positive and negative values 

_ has small positive autocorrelation coefficients and decays 

to zero very fast.

The theoretical autocorrelation functions of the fitted AR(p)'s to 

5 or 10 replications can be used as a tool for studying the 

autocorrelation structure of the process under consideration.

Let us assume that the autocorrelation function of the 

process under study displays one of the above three forms. For 

such cases, we have found that the spectral and the overlapping 

batch means methods are superior to the nonoverlapping batch 

means, area and combined area-nonoverlapping batch means methods. 

For each replication, the confidence interval will be built using 

the estimated spectral window sizes or the batch sizes for which 

the minimum bias of the corresponding sample mean variance 

estimator is achieved. These sizes will be determined in each 

replication from form (6.3). The Bias Indicator functions will be 

estimated, by using the theoretical autocorrelation coefficients 

(of the fitted AR(p) instead of the corresponding sample
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autocorrelations in form (6.2).

Now, consider autocorrelation functions which cannot be 

classified into one of the above three forms. In such cases, the 

spectral method must be chosen. The confidence intervals will be 

built for spectral window sizes w-0.87n if we use 90% nominal 

confidence level or w-0.91n if we use 95%. We have seen such 

autocorrelation functions in the output processes of the M/M/1 for 

high r , the interactive computer model and the time 

shared-computer model. In these models, we have seen that the 

spectral method for w-0.87n or w-0.91n achieves greater coverages 

than the best coverages produced by the other four methods.

Steelworks: A case studv

Steelworks is a real-life simulation model which was 

developed in the Computer Aided Simulation Modelling(CASM) 

environment. The operational rules of this model are described in 

Balmer and Paul(1985). The listing of the simulation program is 

given in appendix A. Three processes have been selected; the total 

wastage, the waiting time in queue in front of the crane and the 

response time of the torpedoe. The system consists of the

following entities; two blastfurnaces, ten torpedoes, one crane 

and five steelfurnaces.

Ten replications were generated for each process. The 

first Q. observations were deleted in each replication. Q. was 2000 

for the total wastage and waiting time and 500 for the response 

time. An AR(p) process was fitted to the remaining series of each 

replication. The size of the remaining series was 512 for all the 

replications. The average minimum bias and the average parameter
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value, for which the minimum bias of each estimator occured in 

each process, were the following:

Output Process NOBM AREA NOBM-AREA SPEC OVBM

Wastage 0.0107
(2)

0.0107
(1)

0.0107
(1)

0.0039
(50)

0.0423
(87)

Waiting Time 0.0187
(2)

0.0187
(1)

0.0187
(1)

0.0034
(56)

0.0661
(104)

Response Time 0.0258
(2)

0.0259
(1)

0.0259
(1)

0.00000
(84)

0.0001
(146)

We can see that the estimator of the spectral method is the least 

biased estimator.

Ten additional replications were generated for each 

process. An early part of data in each replication was removed 

from the analysis. We applied Schruben et al.'s test to the 

remaining series of each replication. The size of the remaining 

series was 512 for all the replications. The estimator of the 

spectral method was used in form (7.4). The degrees of freedom, v, 

were (1.33x512)/w where w was the estimated average spectral 

window for which the minimum bias of the spectral estimator 

occured in each process. For each replication, we give below the 

number of the early observations, C, which was removed from the 

analysis, the test statistic values and the critical values at 

0.025 level of significance.
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Q.

Wastage
A
T tv.a/2

Waiting Time 
^ T tv.a/2

Response
A

Q. T
time 
tv.a/2

2000 1.856 2.150 2000 1.334 2.192 500 1.314 2.È1&
2000 0.021 2.150 2000 2.572 2.192 500 0.062 2.314
2000 0.474 2.150 2000 1.936 2.192 500 0.440 2.314
2000 1.470 2.150 2000 0.490 2.192 500 1.972 2.314
2000 1.946 2.150 2000 0.092 2.192 500 1.090 2.314
2000 0.626 2.150 2000 0.330 2.192 500 1.332 2.314
2000 0.348 2.150 2000 0.960 2.192 500 1.126 2.314
2000 0.294 2.150 2000 0.634 2.192 500 1.403 2.314
2000 0.120 2.150 2000 0.303 2.192 500 1.436 2.314
2000 0.537 2.150 2000 0.091 2.192 500 1.232 2.314

The null hypothesis is rejected only in the second replication of 

the waiting time.

Figures (7.5), (7.6) and (7.7) illustrate theoretical 

autocorrelation functions of AR(p)'s fitted to replications of the 

three output processes. The autocorrelation function for the total 

wastage damps down oscillating between positive and negative 

values. On the other hand, negative autocorrelation coefficients 

dominate in the autocorrelation function of the waiting time. 

Table (7.9) contains the lower and upper limits of the five 

confidence intervals for the true steady-state average wastage and 

average waiting time. In each replication, the confidence 

intervals were build for the estimated parameter values for which 

the minimum bias occured. The nominal confidence level is 90%.

Table (7.10) presents the lower and upper limits of 

confidence intervals for the steady-state average response time of 

torpedoes. The spectral and nonoverlapping batch means methods 

were used. The confidence intervals of the spectral method were 

constructed for spectral window sizes w-O.87x512. For the 

nonoverlapping batch means method, we used two batches in each 

replication. The nominal confidence level was 90% for both 

methods,
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Figure 7.5
Steelworks; Theoretical autocorrelation functions of fitted 
AR(p)'s to replications of the total wastage
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Figure 7.6
Steelworks: Theoretical autocorrelation functions of fitted
AR(p)'s to replications of the waiting time in front of the 
crane
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Figure 7.7
Steelworks: Theoretical autocorrelation functions of fitted
AR(p)’s to replications of the response time of torpedoes

I
%

0 .7  -

0.6 -

0 .5  -

0 .4  -

0 .3  -

0.1 -

0 20 40 60

L A G

1
y

0 .7  -

0.6 -

0 .5  -

0 .4  -

0.1 -

600 20 40

A G

-225-



Chapter 7

T A B L E  7 . 9
Steelworks: Confidence intervals for the true steady-state average 
wastage and waiting time in front of the crane

Output Process : Wastage

NOBM AREA SPEC OVBM

[49.87,98.42] [40.86,107.4] [69.46,78.84] [69.22,79.07]
[74.57,75.14] [74.27,75.44] [72.10,77.62] [72.28,77.43]
[70.06,82.90] [66.53,86.43] [70.71,82.24] [71.00,81.96]
[57.03,100.2] [36.61,120.6] [72.49,84.77] [72.32,84.94]
[56.47,103.2] [41.63,118.0] [73.86,85.79] [74.12,85.53]
[65.69,88.11] [65.23,88.58] [73.16,80.65] [72.33,81.13]
[76.76,78.61] [70.55,84.82] [73.72,81.65] [73.57,81.80]
[73.01,73.17] [68.82,77.36] [68.83,77.34] [68.33,77.84]
[67.02,84.78] [73.79,78.01] [71.53,80.27] [72.21,79.59]
[62.09,93.12] [74.20,81.01] [72.69,82.52] [72.87,82.35]

Output Process : Waiting time infront of crane

NOBM AREA SPEC OVBM

[64.25,95.58] [65.64,94.18] [76.92,82.90] [76.34,83.48]
[62.86,138.7] [63.06,138.5] [95.89,105.7] [95.16,106.4]
[79.72,130.1] [79.78,130.1] [101.1,108.8] [101.0,108.9]
[93.89,115.7] [99.21,110.4] [98.70,110.9] [98.60,111.0]
[96.21,116.4] [96.67,115.9] [99.84,112.7] [99.57,113.0]
[105.2,115.9] [99.87,121.2] [105.9,115.2] [106.3,114.8]
[72.12,145.6] [91.47,126.2] [100.5,117.2] [100.4,117.3]
[91.04,123.5] [82.53,132.0] [100.3,114.2] [99.27,115.3]
[88.74,121.0] [95.38,114.4] [99.39,110.4] [98.04,111.8]
[93.65,118.1] [103.6,108.1] [101.5,110.2] [102.0,109.7]
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T A B L E  7.10
Steelworks: Confidence intervals for the true steady-state average 
response time of the torpedoes

NOBM SPEC

[313.9,441.8] [333.1,422.7]

[381.2,381.6] [372.5,390.4]

[316.3,427.7] [325.7,418.3]

[316.6,452.6] [335.3,433.9]

[336.5,396.5] [330.3,402.6]

[379.3,385.8] [359.8,405.4]

[351.6,394.4] [348.1,397.1]

[313.4,441.9] [328.9,426.4]

[290.9,456.9] [316.6,431.2]

[352.7,401.3] [328.5,425.5]
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C H A P T E R  EIGHT

GENERAL CONCLUSIONS - FUTURE RESEARCH

In steady state simulation output processes, 

autocorrelations at different lags is a very common phenomenon. In 

this case, the classical confidence interval estimator for true 

steady state means is not valid. The actual confidence

levels(coverages) this estimator achieves are different to the 

target or nominal confidence levels. Particularly, for the AR(1) 

we have shown that for a given sample size n the greater the

positive value of the autoregressive coefficient \p the lower the

coverage achieved. Furthermore, for a given ip, the coverage 

decreases as n increases.

For the last two decades alternative estimators have been 

developed for the variance of the sample mean. These estimators 

are intended for stationary autocorrelated processes. The sample 

mean variance estimators produce corresponding confidence interval 

estimators for steady state means. A sample mean variance 

estimator together with a confidence interval estimator constitute 

a confidence interval method. The evaluation of these methods 

takes place in the context of appropriate testing environments. In 

chapter two, we have described the structure of such environments.

Two crucial questions arise at the stage of testing the 

performance of the confidence interval methods. Firstly, can some 

testing environments identify best methods in regard to certain 

contexts? Secondly, do the testing environments provide specific 

rules for applying the methods to simulation output processes 

displaying certain characteristics? We have shown in chapter two
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that in the context of the past testing environments for the above 

two questions the answers are limited. The main cause is the 

nonhomogeneity of the testing environments. "Nonhomogeneity" of 

the environments means that different methods have been tested on 

different processes under different combinations of sample sizes, 

parameter values and nominal confidence levels.

Five confidence interval methods have been considered in 

our research; Nonoverlapping batch means(NOBM), overlapping batch 

means(OVBM), area, combined NOBM-AREA and spectral(SPEC). We have 

compared the performance of these methods in regard to the 

following contexts : -

i) the minimum bias of the corresponding sample mean variance 

estimators for small sample sizes

ii) the asymptotic coverages the methods attain for different 

parameter values

iii) the asymptotic expected values and variances of the 

confidence interval half lengths, providing that the methods cover 

the steady state mean with the nominal probability

iv) the performance of the methods for the parameter values 

for which the minimum bias of the corresponding sample mean 

variance estimators occurs

v) the optimum performance of the methods, that is, the 

performance for the parameter values for which each method 

achieves the nearest coverage to the nominal confidence level.

Furthermore, we have provided specific recommendations 

for applying the five methods to steady state simulation output 

processes displaying certain characteristics. These 

characteristics refer to the level of non-normality and the shape
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of the autocorrelation function. In the remaining part of this 

chapter, we summarize these recommendations as well as the 

conclusions we have drawn for the performance of the methods in 

the above five contexts.

In chapter three we have derived analytic forms for 

specific functions called "Bias Indicator" functions. They enable 

us to compute analytically both the minimum bias of each sample 

mean variance estimator and the parameter values, called 

MB-parameter values, for which the minimum bias occurs. These 

functions have been expressed in terms of the theoretical 

autocorrelation coefficients of the output process under study. 

When these coefficients are known, exact analytical results can be 

obtained for the minimum bias and the MB-parameter values.

We have compared the minimum bias of the five sample

mean variance estimators in the stationary AR(1). Both positive 

and negative autoregressive coefficients ip have been considered. 

For ip positive, the autocorrelation function decays exponentially 

to zero. For negative ip, this function damps down oscillating 

between positive and negative values. When ip is positive, we have 

found that the SPEC estimator has the smallest minimum bias in 

small samples. On the other hand, when ip is negative, the smallest

minimum bias is achieved by the NOBM estimator for small sample

sizes.

We think that the minimum bias of the sample mean

variance estimators should be explored on further stationary 

processes whose autocorrelation functions are known. There is a 

wide variety of time series processes for which the theoretical 

autocorrelation coefficients can be computed analytically. These
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processes could be classified into several categories according to 

the shape of their autocorrelation functions. Then the minimum 

bias of the estimators would be studied and compared in the 

different categories. For example, in a recent paper, Kevork and 

Balmer(1990) have studied the minimum bias in two other stationary 

processes additional to the AR(1); the delay in queue in the M/M/1 

and the AR(2). For the AR(2), the autocorrelation function 

displayed a damped cyclical behaviour. For both the M/M/1 and 

AR(2), the authors have found that the SPEC estimator achieves the 

smallest minimum bias in small sample sizes.

The asymptotic forms of the Bias Indicator functions 

enable us to compute analytically the limiting coverages the five 

confidence interval methods achieve for different parameter values 

on processes satisfying certain regularity conditions. The 

limiting coverages are obtained when the sample size n tends to 

infinity. We have shown that for equal batch sizes, the NOBM and 

OVBM methods attain the same limiting coverages. For the AR(1), 

AR(2) and delay in queue in the M/M/1, we have reported that by 

increasing the batch size m, the limiting coverages of the NOBM 

method tend to achieve the nominal confidence level faster than 

those of the AREA method. Additional to this, we state a few other 

interesting asymptotic results.

i) In the AR(1) , AR(2) and M/M/1, we have observed that the 

limiting coverages of the SPEC method tend to attain the nominal 

confidence level rather fast.

ii) For the AR(2) under specific autoregressive coefficients, 

we have seen that the combined NOBM-AREA and SPEC methods attain 

acceptable limiting coverages for small batch sizes and spectral
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window sizes respectively.

iii) For any process considered from the AR(1), AR(2) and M/M/1, 

we have found that the AREA method requires a batch size 

approximately three times more than the NOBM such that the 

limiting coverages of the two methods differ to the nominal 

confidence level by a small positive number e. On the other hand, 

the combined NOBM-AREA requires a batch size approximately two 

times more than the NOBM.

Assuming that the simulation output process satisfies 

certain regularity conditions, as the batch size tends to 

infinity, the NOBM, AREA and combined NOBM-AREA methods tend to 

achieve coverages equal to the nominal confidence level. Moreover, 

for the SPEC and OVBM methods, as the batch size m and the 

spectral window size w tend to infinity but in such a way that 

n/m->œ and n/w->œ, these two methods tend to attain the desired 

coverages. Under these asymptotic situations, for the latter two 

methods we have derived limiting forms for the expected values and 

variances of the confidence interval half lengths. As n, k(number 

of batches), m, w tend to infinity but in such a way that 

(n/k)-»œ, (n/m)->oo, (n/w)-^, we have shown that the five confidence

interval methods produce confidence intervals with the same half 

length. On the other hand, we have seen that such a general 

conclusion cannot be stated for the limiting variance of the 

confidence interval half lengths.

For the case of small sample sizes, firstly we have 

compared the performance of the five confidence interval methods 

at the MB-parameter values i.e the parameter values for which the 

minimum bias of the corresponding sample mean variance estimators
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occurs. Processes from several simulation models have been 

selected. The coverage and the expected values and variances of 

the confidence interval half lengths each method achieves have 

been estimated by using Monte Carlo methods. For the output 

processes for which the autocorrelation functions were unknown, 

the true MB-parameter could not be determined. We estimated these 

values by following a certain estimation procedure. That is, the 

MB-parameter values were determined by the Bias Indicator 

functions. These functions had been expressed in terms of the 

theoretical autocorrelation coefficients of the output process 

under study. In each replication from the processes we selected, 

these coefficients were replaced by the theoretical 

autocorrelation coefficients of the fitted AR(p). The algorithm 

for fitting AR(p) processes to approximately steady state 

simulation outputs was given in chapter six.

At the MB-parameter values, all the methods have achieved 

acceptable coverages in the processes whose autocorrelation 

functions

i) have low positive coefficients and decay to zero fast

ii) damp down oscillating between positive and negative values

iii) display a damped cyclical behaviour.

However, we have found that the SPEC and OVBM are superior to the 

other three methods in terms of the expected values and variances 

of the confidence interval half lengths. This means that the SPEC 

and OVBM methods should be prefered for constructing confidence 

intervals in processes characterized by autocorrelation functions 

displaying the above three characteristics. More specifically, 

given the sample size in any replication, we recommend the
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confidence interval to be built at the estimated batch sizes or 

spectral window sizes for which the minimum bias of the sample 

mean variance estimators is attained. In section 7.5, we have 

provided an example illustrating how the confidence intervals can 

be constructed at the estimated MB-parameter values. Furthermore, 

for eliminating the effects of non-normality, we suggest the 

analysis to be carried out in sample sizes greater than 300 or 

even 500 observations.

On the other hand, none of the methods have performed 

satisfactorily on simulation output processes characterized by 

autocorrelation functions which have high coefficients at the 

early lags and decay to zero slowly. Particularly, for small 

sample sizes, all the methods have achieved coverages 

significantly lower than the desired nominal confidence levels.

The performance of the methods on the minimum bias has 

been compared with their corresponding optimum performance. The 

optimum performance is attained for those parameter values for 

which each method achieves the nearest coverages to the nominal 

confidence level. We called these coverages "Best coverages". 

First, we considered the processes for which all the methods 

achieved satisfactory performance on the minimum bias. For these 

processes, the SPEC and OVBM methods attained better optimum 

performance than the other three methods in terms of the expected 

values and variances of the confidence interval half lengths.

On the other hand, interesting remarks have been made for 

the processes whose autocorrelation functions have high positive 

coefficients at the early lags and decay slowly to zero. For any 

small sample size n considered, there were spectral window sizes
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w for which the SPEC method achieved coverages which lied very 

close to the nominal confidence levels (1-a). At the same sample 

sizes, all the other methods produced coverages which were 

significantly lower than (1-a). Empirically, we have found that by 

choosing w-0.87n for (l-a)-0.90 or w-0.91n for (l-a)-0.95, the 

SPEC method achieves the greatest coverages of all the five 

methods.

For the above specific spectral window sizes, if the 

confidence intervals have larger width than the desired one, we 

can reduce it by increasing the sample size. Based on these values 

of w, we think that a sequential method can be developed for 

generating confidence intervals in processes whose autocorrelation 

functions have high positive coefficients in the early lags and 

decay slowly to zero. On the other hand, for the processes for 

which the performance of the methods on the minimum bias is 

satisfactory, any sequential method could be based on the 

estimated MB-parameter values. For large n, fast Fourier 

transforms can reduce the total computing time of the sample 

autocorrelations. However, the question is how large n must be 

relatively to the required n of other sequential methods such that 

we obtain an acceptable confidence interval.

In the introductory chapter, we have also discussed two 

other methods which have been tested on a very limited number of 

simulation processes; the autoregressive and the spectral based on 

the periodogram coordinates. We believe that the performance of 

these methods should be studied in regard to the five contexts 

described above and compared with the performance of the five 

methods considered in this research.
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Finally, we think that a computer software support system 

should be developed for helping the simulation researcher in 

selecting the right method for steady state simulation output 

processes displaying specific characteristics.
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PROGRAM LISTING FOR THE M/M/1 QUEUEING MODEL

[I N H E R I T (*DISKB:[KEVORK]ENTITIES1.PEN », 'DISKB:[KEVORK] 
Q UE U E S l . P E N * , 'DISKB:[KEVORK]NEW SAMPLING.PEN',
'D I S K B :[KEVORK]STAT_LIBRARY.P E N ')]

PROGRAM M M l (I N P U T ,O U T P U T );
VAR

DUR, COUNT, COUNTl, FIRST SEED, SECOND SEED : INTEGER;
R U N I N P E R I O D ,  S E R V I C E T I M E ,  ARRIVAL TIME : REAL;
I N T A R R I V R A T E , A R V R A T E , INTSERV_TIME, SERV_RATE : REAL; 
RESTART, SERVER, S P A R E S E R V E R ,  CUSTOMER : ENAME;
SPARE_CUSTOMER, DOOR : ENAME;
CWAIT, CQUEUE, SIDLE : QUEUE;
DEL, START TIME : RGENER ARRAY;

PROCEDURE GO THRU C EVENTS ;F O R W A R D ;

PROCEDURE C R E A T E R E C O R D I N G ; 
BEGIN

COUNT:=1;
COUNTl:=1;

END;

PROCEDURE STARTUP;
BEGIN

CREATE_RECORDING;
T H E R E A R E (200,CUSTO M E R ,'C U S T O M E R '); 
T H E R E A R E (1,D O O R ,'D O O R ');
T H E R E A R E (1,S E R V E R , 'S E R V E R ');
MAKEQ(SIDLE,'SIDLE');
M A K E Q (C W A I T ,'C W A I T ');
M A K E Q (C Q U E U E ,'C Q U E U E ');
SPARE_SERVER := SERVER;
FOR J := 1 TO 1 DO 
BEGIN

ADDTO(BACK,SIDLE,S P A R E S E R V E R ) ; 
SPARE_SERVER := SPARE SERVERS.NEXT;

END;
SPARE_CUSTOMER := CUSTOMER;
FOR J := 1 TO 200 DO 
BEGIN

ADDTO (BACK, CWAIT, SPARE CUSTOMER) ; 
SPARE_CUSTOMER := SPARE_CUSTOMER^.NEXT; 

END;
GO_THRU_C_EVENTS;

END;
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PROCEDURE Cl; (* ARRIVAL *)
BEGIN

IF QSIZE(CWAIT)=0 THEN
W R I T E L N (*WARNING===> CWAIT QUEUE IS EMPTY*)?
WHILE (QSIZE(CWAIT) >= 1)

AND (DOOR^.AVAIL)
DO BEGIN

SPARE_CUSTOMER:= H E A D (CWAIT ) ;
SPARE_CUSTOMER^.A T T R := C O U N T ;
I N T A R R I V T I M E :=1/ARV_RATE;
ARRIVAL TIME := N E G E X P (INTARRIV T I M E ,FIRST SEED) ; 
C A U S E ( 1,BEHEAD(CWAIT),A R RIVAL_TIME);
C A U S E ( 2,D O O R ,ARRIVAL_TIME);
C O U N T := C 0 U N T + 1 ;

END; (* of while loop *)
END; (* of procedure cl *)

PROCEDURE C2; (* SERVICE *)
BEGIN

WHILE (QSIZE(CQUEUE) >= 1)
AND (QSIZE(SIDLE) >= 1)

DO BEGIN
SPARE_CUSTOMER:= H E A D (CQUEUE);
S P A R E S  E R V E R := H E A D (SIDLE);
D E L [SPARE CUSTOMERS.A T T R ] : =TIM- 
START TIME [SPARE_CUSTOMER^ . ATTR] ;
INTSERV_TIME:=1/SERV_RATE;
S E R V I C E T I M E  := N E G E X P (I N T S E R V T I M E ,S E C O N D S E E D ) ; 
C A U S E ( 3,B E H E A D (CQUEUE),S E R V I C E T I M E );
C A U S E ( 4,BEHEAD(SIDLE),SERVIC E T I M E ) ;

END; (* of while loop *)
END; (* of procedure c2 *)

PROCEDURE Bl; (* CUSTOMER ENDS ARRIVAL *)
BEGIN

S T A R T _ T I M E [CUR_NO_ENT]:= T I M ;
A D D T O (B A C K ,C Q U E U E ,CURRENT);

END;

PROCEDURE B2; (* DOOR ENDS ARRIVAL *)
BEGIN
END;

PROCEDURE B3; (* CUSTOMER ENDS SERVICE *)
BEGIN

A D D T O (B A C K ,C W A I T ,CURRENT);
C O U N T l := C 0 U N T 1 + 1 ;

END;
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PROCEDURE B4; (* SERVER ENDS SERVICE *)
BEGIN

ADDTO(BACK,SIDLE,CURRENT);
END;

PROCEDURE EndRunin;
BEGIN

C R E A T E R E C O R D I N G ;
END;

PROCEDURE CALL FOR NEXT B EVENT;
BEGIN

CASE NO NEXTB OF
1
2
3
4

127
END;

END;

Bl;
B2;
B3;
B4;
EndRunin;

PROCEDURE G O T H R U C E V E N T S ;
VAR C F L A G ,CNUM : INTEGER;
BEGIN

CNUM := 2;
FOR CFLAG:=1 TO CNUM DO 

CASE CFLAG OF
1 : Cl;
2 : C2 ;

END;
END;

PROCEDURE E X E C U T E (DUR:INTEGER);
BEGIN

S T A R T U P ;
RUNNING := TRUE;
WHILE RUNNING DO 
BEGIN

TIM := NEXT_TIME ;
IF DUR>=C0UNT1 THEN 
BEGIN

WHILE (TIM = N E X T T I M E )  AND (RUNNING) DO 
BEGIN

GET_NEXT_ENTITY;
CALL_FOR_NEXT_B_EVENT;

END;
IF RUNNING THEN

GO_THRU_C_EVENTS 
END ELSE

BEGIN
R U N N I N G := F A L S E ;

END;
END;
INITCALL;

END;
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BEGIN (* main program *)

INITCALL;
W R I T E (*SELECT AN INTEGER FROM 1  UP TO 1 4 3 6  = = = = = > ' ) ;  
R E A D L N ( F I R S T S E E D ) ;
W R I T E L N (*SELECT AN INTEGER FROM 1  U P  TO 1 4 3 6  DIFFERENT'); 
W R I T E ('THE ONE YOU HAVE SELECTED BEFORE =====>'); 
READLN(SECOND S E E D ) ;
WRITE('GIVE THE ARRIVAL RATE =====>');R E A D L N ( A R V R A T E ) ; 
WRITE('GIVE THE SERVICE RATE =====>');READLN(SERV_RATE); 
W R I T E ('GIVE THE NUMBER OF CUSTOMERS COMPLETING 

SERVICE =====>');R E A D L N (DUR);
E X E C U T E (DUR); 

END.
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PROGRAM LISTING FOR THE INVENTORY MODEL

[I N H E R I T ('DISKB:[KEVORK]ENTITIES1.P E N ' , 'DISKB:[KEVORK] 
Q U E U E S l . P E N ' , 'DISKB:[KEVORK]NEW SAMPLING.PEN',
'D I S K B :[K E V O R K ] S T A T L I B R A R Y .P E N ')]

PROGRAM INV E N T O R Y (I N P U T ,OUTPUT);

VAR
FIRST_SEED, S S , SM, K, C, H, PI, II, DUR : INTEGER; 
XX, YY, COST : R E A L A R R A Y ;
DEMAND,ORDER : REAL;

BEGIN
INITCALL;
W R I T E ('SELECT AN INTEGER FROM 1 U P  TO 1436 =====>'); 
R E A D L N ( F I R S T S E E D ) ;
WRITELN('GIVE THE NUMBER OF DAYS FOR WHICH THE'); 
WRITE('TOTAL COST IS BEING COMPUTED =====>');
R E A D L N (DUR);
SS:=57;
SM:=17;
K:=32;
C:=3;
H:=l;
P I :=5 ;
II:=1;
XX[II]:=SS;
REPEAT

IF XX[II]<SM THEN 
BEGIN

ORDER:=SS-XX[II];
COST[II]:=COST[II]+K+C*ORDER;
YY[II]:=XX[II]+ORDER;

END
ELSE

YY[II]:=XX[II];
DEMAND:=P0ISS0N(25,FIRST_SEED);
IF (YY[II]-DEMAND)>=0 THEN

COST[II]:=COST[II]+ H * (Y Y [I I ]-DEMAND)
ELSE

COST[II]:=COST[II]+PI*(DEMAND-YY[II]);
X X [ I I + 1 ] :=YY[II]-DEMAND;
II:=II+1;

U N TIL (II=DUR+1);
END.
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PROGRAM LISTING FOR THE INTERACTIVE COMPUTER MODEL

[I N H E R I T ('DISKB:[KEVORK]ENTITIES1.P E N ','DISKB:[KEVORK]
Q UEUES1.P E N ','D I S K B : [ K E V O R K ] N E W S A M P L I N G .P E N ',
'D I S K B :[KEVORK]STAT_LIBRARY.P E N ')]

PROGRAM INTER(INPUT,OUTPUT);
VAR

K, DUR, COUNTl, COUNT2, COUNT3, C 0 U N T 4 , COUNTS : INTEGER;
COUNTS, COUNT?, COUNTS, COUNT9, COUNTl0, COUNT : INTEGER;
FIRST_SEED, SECOND SEED, THIRD SEED, F O U R T H S E E D :  INTEGER;
FIFTH SEED, S I X T H S E E D ,  SEVENTH SEED : INTEGER;
STORE1_TIME, S T 0 R E 2 T I M E , STORE3_TIME, STORE4_TIME : REAL; 
R U N I N P E R I O D ,  F O R M T I M E , PROCESS T I M E  : REAL;
TEST : ARRAY [1..99999] OF B O O L E A N ; CONT_RUN : B O O L E A N ; 
START_TIME, CHOICE, RESPONSE TIME, WCPU, W1 : REAL _ A R R A Y ; 
W2, W3, W4, W C P U S T A R T ,  W I S T A R T ,  W 2 S T A R T  : R E A L A R R A Y ; 
W 3 S T A R T ,  W 4 S T A R T  : R E A L A R R A Y ;
RESTART, JOB, S P A R E J O B ,  CPU, SDl, S D 2 , SD3, SD4 : ENAME; 
JWAIT, QPROCESS, JSTOREl, J S T 0 R E 2 , J S T 0 R E 3 , JSTORE4 : QUEUE ;

PROCEDURE GO_THRU_C_EVENTS;F O R W A R D ;

PROCEDURE C R E A T E R E C O R D I N G ;
BEGIN

FOR I:=l TO 9999 
DO T EST[I]:=FALSE;
COUNT:=1;
COUNTl:=1; C0UNT2:=1; C0UNT3:=1; C0UNT4:=1;
COUNTS:=l; COUNTS:=1; COUNT?:=1; COUNTS:=1;
C 0 U N T 9 :=1;COU N T I O :=1;

END;

PROCEDURE STARTUP;
BEGIN

C R E A T E R E C O R D I N G ;
T H E R E A R E (25,JOB,'JOB')
T H E R E A R E (1,CPU,
T H E R E A R E U / S D l ,
THEREARE(1,SD2,
THEREARE(1,SD3,
THEREARE(1,SD4,
MAKEQ(JWAIT,'JWAIT');
M A K E Q (QPROCESS,'Q P R O C E S S ')
MAKEQ ( J S T O R E l ,'J S T O R E l ')
M A K E Q (J S T 0 R E 2 ,'J S T 0 R E 2 ')
M A K E Q ( JST0RE3,'J S T 0 R E 3 ')
M A K E Q (J S T 0 R E 4 ,'J S T 0 R E 4 ')
S P A R E J O B  := JOB;
FOR J := 1 TO 25 DO 
BEGIN

A D D T O (B A C K ,J W A I T ,S P A R E J O B ) ;
SPARE JOB := S P A R E J O B ^ .N E X T ;

END;
GO_THRU_C_EVENTS;

END;

CPU' ) 
SDl' ) 
SD2') 
SD3') 
SD4')
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PROCEDURE Cl; (* FORM *)
BEGIN

WHILE (QSIZE(JWAIT) >= 1)
DO BEGIN

S P A R E J O B :=HEAD(JWAIT);
IF COUNT>25 THEN 
SPAR E _ J O B ^ .A T T R := C O U N T ;
FORM_TIME := N E G E X P (100,F I R ST_SEED); 
C A U S E ( 1,BEHEAD(JWAIT),FO R M_TIME);
C O U N T := C 0 U N T + 1 ;

END; (* of while loop *)
END; (* of procedure cl *)

PROCEDURE C2; (* PROCESS *)
BEGIN

WHILE (QSIZE(QPROCESS) >= 1)
AND (CPU^.AVAIL)

DO BEGIN
W C P U [COUNTl0]:=TIM-WCPU_START[COUNTl0]; 
S P A R E J O B :=HEAD(QPROCESS);
PROCESS_TIME := NEGEXP(1,SECOND S E E D ) ; 
C A U S E ( 2,BEHEAD(QPROCESS),P R O C E S S T I M E ) ; 
C A U S E ( 3,C P U ,P R O C E S S T I M E );
C O U N T I O :=COU N T 1 0 + 1 ;

END; (* of while loop *)
END; (* of procedure c2 *)

PROCEDURE C3; (* STORE1 *)
BEGIN

WHILE (QSIZE(JSTOREl) >= 1)
AND (SDl^.AVAIL)

DO BEGIN
W 1 [C 0 U N T 2 ];=TTM-W1_START[C 0 U N T 2 ]; 
S P A R E J O B :=HEAD(JSTOREl);
S T O R E I T I M E  := NEGEXP(1.39,THIRD SEED); 
C A U S E ( 4,BEHEAD(JSTOREl),STORE1_ T I M E ) ; 
C A U S E ( 5,SD1,ST0RE1 TIME);
C 0 U N T 2 := C 0 U N T 2 + 1 ;

END; (* of while loop *)
END; (* of procedure c3 *)

PROCEDURE C4; (* ST0RE2 *)
BEGIN

WHILE (QSIZE(JST0RE2) >= 1)
AND (SD2^.AVAIL)

DO BEGIN
W 2 [C0 U N T 4 ]:=TIM-W2_START[C 0 U N T 4 ]; 
S P A R E J O B := H E A D (JST0RE2);
ST0RE2_TIME. NEGEXP(1.39,FOURTH SEED) ; 
C A U S E ( 6,B E H E A D (JST0RE2),ST0 R E 2 _ T I M E ) ; 
C A U S E ( 7,S D 2 ,S T 0 R E 2 T I M E ) ;
C 0 U N T 4 := C 0 U N T 4 + 1 ;

END; (* of while loop *)
END; (* of procedure c4 *)
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PROCEDURE C5; (* STORE3 *)
BEGIN

WHILE (QSIZE(JST0RE3) >= 1)
AND (SD3^.AVAIL)

DO BEGIN
W 3 [COU N T S ];=TIM-W3_START[C OUNTS]; 
S P A R E J O B := H E A D (J ST0RE3);
S T 0 R E 3 T I M E  := N E G E X P (12.5,F I F T H S E E D ) ; 
C A U S E ( 8,B E H E A D (J ST0RE3),S T 0 R E 3 T I M E ) ; 
C A U S E ( 9,S D 3 ,ST0RE3_TIME);
COUNTS :=C0 U N T S + 1 ;

END; (* of while loop *)
END; (* of procedure c5 *)

PROCEDURE CS; (* STORE4 *)
BEGIN

WHILE (QSIZE(JST0RE4) >= 1)
AND (SD4^.AVAIL)

DO BEGIN
W 4 [C O U N T S ];=TIM-W4_START[C OUNTS]; 
S P A R E J O B := H E A D (J S T 0 R E 4 );
ST0RE4_TIME := NEGEXP(12.5,SIXTH SEED); 
C A U S E (10,BEHEAD(JST0RE4),ST0RE4_TIME); 
C A U S E (11,S D 4 ,S T 0 R E 4 T I M E ) ;
COUNTS := C 0 U N T S + 1 ;

END; (* of while loop *)
END; (* of procedure cS *)

PROCEDURE Bl; (* JOB ENDS FORM *)
BEGIN

W C P U _ S T A R T [C0 U N T 9 ]:= T I M ;
S T A R T _ T I M E [CUR_NO_ENT]:= T I M ;
ADDTO(BACK,QPROCESS,CURRENT);
C 0 U N T 9 := C 0 U N T 9 + 1 ;

END;
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PROCEDURE B2; (* JOB ENDS PROCESS *)
VAR

T E S T l ,T E S T 2 ,T E S T 3 ,T E S T 4 ,T E S T S ,T E S T 6 ,T E S T ? ,TESTS : B O O L E A N ; 
BEGIN

CHOICE[CUR_NO_ENT]:=RND(SEVENTH_SEED);
T E S T l := C H O I C E [CUR_NO_ENT]>0.20;
T E S T 2 := C H O I C E [C U R N O E N T ] <=0.56;
T E S T 3 := C H O I C E [CUR_NO_ENT]>0.56;
T E S T 4 := C H O I C E [CUR_NO_ENT]<=0.92;
TESTS ;=CHOIC E [CUR NO E N T ]>0.92;
T E S T 6 := C H O I C E [CUR_NO_ENT]<=0.96;
T E S T ? :=CHOICE[CUR_NO_ENT]>0.96;
TESTS := C H O I C E [CUR_NO_ENT]<-l.00;
IF C H O I C E [CUR NO E N T ]<=0.20 
THEN BEGIN

R E S P O N SE_TIME[CUR_NO_ENT]:=TIM-
S T A R T _ T I M E [CUR_NO_ENT]

T E S T [C U R N O E N T ]:= T R U E ;
A D D T O (B A C K ,J W A I T ,CURRENT);

END;
IF (TESTl AND TEST2)
THEN BEGIN

W I S T A R T [C OUNTl]:= T I M ;
ADDTO(BACK,JSTOREl,CURRENT);
C O U N T l :=C0 U N T 1 + 1 ;

END;
IF (TEST3 AND TEST4)
THEN BEGIN

W 2 S T A R T [C 0UNT3]:= T I M ;
ADDTO(BACK,JSTORE2,CURRE N T ) ;
C 0 U N T 3 := C 0 UNT3+1;

END;
IF (TESTS AND TEST6)
THEN BEGIN

W3 S T A R T [C OUNTS]:= T I M ;
A D D T O (B A C K ,JSTORE3,CU R R E N T ) ;
COUNTS :=C0 U N T S + 1 ;

END;
IF (TEST? AND TESTS)
THEN BEGIN

W 4 S T A R T [C O U N T ? ]:= T I M ;
A D D T O (BACK,JST0RE4,CURRENT);
C O U N T ? :=C0 U N T ? + 1 ;

END;
END;

PROCEDURE B3; (* CPU ENDS PROCESS *)
BEGIN
END;

-246-



Appendix A

PROCEDURE B4; (* JOB ENDS S T O R E 1 *)
BEGIN

A D D T O (B A C K ,Q P R O C E S S ,CUR R E N T );
W C P U S T A R T [C OUNTS]:= T I M ;
COUNTS ;= C 0 U N T S + 1 ;

END;
PROCEDURE B5; (* SDl ENDS S T O R E 1 *)
BEGIN
END;

PROCEDURE B6; (* JOB ENDS S T ORE2 *)
BEGIN

A D D T O (B A C K ,Q P R O C E S S ,CURR E N T );
W C P U _ S T A R T [CO U N T S ]:= T I M ;
COUNTS := C 0 U N T S + 1 ;

END;

PROCEDURE B7; (* SD2 ENDS ST0RE2 *)
BEGIN
END;

PROCEDURE B8; (* JOB ENDS ST0RE3 *)
BEGIN

A D D T O (B A C K ,Q P R O C E S S ,CUR R E N T );
W C P U _ S T A R T [CO U N T S ]:= T I M ;
COUNTS := C 0 U N T S + 1 ;

END;

PROCEDURE BS; (* SD3 ENDS ST0RE3 *)
BEGIN
END;

PROCEDURE BIO; (* JOB ENDS ST0RE4 *)
BEGIN

ADDTO(BACK,QPROCESS,C U R R E N T ) ;
W C P U S T A R T [CO U N T S ]:= T I M ;
COUNTS := C 0 U N T S + 1 ;

END;

PROCEDURE Bll; (* SD4 ENDS ST0RE4 *)
BEGIN
END;
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PROCEDURE EndRunin; 
BEGIN

C R E A T E R E C O R D I N G ; 
END;

PROCEDURE CALL FOR NEXT B EVENT; 
BEGIN

CASE NO NEXTB OF
1
2
3
4
5
6
7
8
9
10 
11

127

Bl 
B2 
B3 
B4 
B5 
B6 
B7 
B8 
B9
BIO;
Bll; 

E n d R u n i n ;
END;

END;

PROCEDURE GO THRU C EVENTS ; 
VAR CFLAG,CNUM : INTEGER; 
BEGIN

CNUM := 6;
FOR CFLAG:=1 TO CNUM DO 

CASE CFLAG OF
1 Cl;
2 C2;
3 03;
4 C4;
5 05;
6

END;
06;

END;
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PROCEDURE E X E C U T E (DUR:INTEGER);
BEGIN

S T A R T U P ;
RUNNING := TRUE;
WHILE RUNNING DO 
BEGIN

TIM := NEXT_TIME ;
IF DUR>=COUNT10 THEN 
BEGIN

WHILE (TIM = NEXT TIME) AND (RUNNING) DO 
BEGIN

GET N E X T E N T T T Y ;
CALL_FOR_NEXT_B_EVENT;

END;
IF RUNNING THEN

GO_THRU_C_EVENTS 
END ELSE

BEGIN
R U N N I N G := F A L S E ;

END;
END;
INITCALL;

END;

BEGIN (* main program *)
INITCALL;
W R I T E ('SELECT AN INTEGER FROM 1  U P  TO 1 4 3 6  =====>'); 
READLN(FIRST_SEED);
W R I T E L N ('SELECT AN INTEGER FROM 1  UP TO 1 4 3 6  DIFFERENT'); 
W R I T E (* FROM THE ONE YOU HAVE SELECTED BEFORE =====>') ; 
READLN(SECOND_SEED);
W R I T E L N ('SELECT AN INTEGER FROM 1  UP TO 1 4 3 6  DIFFERENT*); 
W R I T E ('FROM THE ONES YOU HAVE ALREADY SELECTED =====>'); 
READLN(THIRD_SEED);
W R I T E L N ('SELECT AN INTEGER FROM 1  UP  TO 1 4 3 6  DIFFERENT'); 
W R I T E ('FROM THE ONES YOU HAVE ALREADY SELECTED =====>'); 
READLN(FOURTH_SEED);
W R I T E L N ('SELECT AN INTEGER FROM 1  UP TO 1 4 3 6  DIFFERENT'); 
W R I T E ('FROM THE ONES YOU HAVE ALREADY SELECTED =====>'); 
R E A D L N ( F I F T H S E E D ) ;
W R I T E L N ('SELECT AN INTEGER FROM 1  UP TO 1 4 3 6  DIFFERENT'); 
W R I T E ('FROM THE ONES YOU HAVE ALREADY SELECTED =====>'); 
READLN(SIXTH_SEED);
W R I T E L N ('SELECT AN INTEGER FROM 1  UP TO 1 4 3 6  DIFFERENT'); 
W R I T E ('FROM THE ONES YOU HAVE ALREADY SELECTED =====>'); 
READLN (SEVENTH_SEED).;
W R I T E L N ('GIVE THE NUMBER OF JOBS COMPLETING SERVICE AT'); 
WRITE('THE CENTRAL PROCESSING UNIT =====>');
R E A D L N (DUR);
E X E C U T E (DUR);

END.
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PROGRAM LISTING FOR THE TIME SHARED COMPUTER MODEL

[I N H E R I T (*DISKB:[KEVORK]ENTITIES1.P E N * , 'DISKS:[KEVORK] 
QUEUES 1. PEN * , * DISKS : [ KEVORK] NEW S A M P L I N G . PEN ' ,
'DISKS:[KEVORK]STAT_LISRARY.PEN')]

PROGRAM S H A R E (I N P U T ,O U T P U T ) ;

VAR
K, COUNTl, FIRST_SEED, SECOND_SEED, DUR : INTEGER; 
RUN_IN_PERIOD, P R O C E S S T I M E , F O R M T I M E  : REAL; 
RESPONSE_TIME, R E M A I N T I M E  : R E A L A R R A Y  
S T A R T T I M E , E N D T I M E , SERVICE : R E A L A R R A Y ;
TEST : ARRAY [1..9999] OF BOOL E A N ;
CONT_RUN : BOOLEAN;
RESTART,JOS, S P A R E J O S ,  CPU, S P A R E C P U  : ENAME; 
J W A I T ,P W A I T ,QCPU : QUEUE;

PROCEDURE GO THRU C EVENTS ;FOR W A R D ;

PROCEDURE CREATE_RECORDING; 
BEGIN

COUNTl:=1;
FOR I:=l TO 9999 
DO T E ST[I]:=FALSE;

END;

PROCEDURE STARTUP;
BEGIN

CREATE_RECORDING;
THEREARE(35,JOB,'JOB');
T H E R E A R E (1,C P U ,'C P U ');
M A K E Q (P W A I T ,'P W A I T ');
MAKEQ(JWAIT,'JWAIT');
MAKEQ(QCPU,'QCPU');
SPARE JOB := JOB;
FOR J := 1 TO 35 d 6 
BEGIN

A D D T O (B A C K ,J W A I T ,S P A R E J O S ) ; 
SPARE JOB := SPARE_JOB^.NEXT; 

END;
ADDTO(BACK,QCPU,CPU); 
GO_THRU_C_EVENTS;

END;
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PROCEDURE Cl; (* FORM *)
BEGIN

WHILE (QSIZE(JWAIT) >= 1)
DO BEGIN

S P A R E J O B :=HEAD(JWAIT);
IF (C0UNT1>35) THEN 
S P A R E J O B ^ .A T T R:=C0UNT1;
F O R M T I M E  := NEGEXP(25,FIRST SEED); 
C A U S E ( 1,BEHEAD(JWAIT),F O R M T I M E ) ; 
C O U N T l :=C0 U N T 1 + 1 ;

END; (* of while loop *)
END; (* of procedure cl *)

PROCEDURE C2; (* PROCESS *)
BEGIN

WHILE (QSIZE(PWAIT) >= 1)
AND (QSIZE(QCPU) >= 1)
DO BEGIN

S P A R E J O B := H E A D (PWAIT);
R E M A I N T I M E [S P A R E J O B ^ .A T T R ] :^ S E R V I C E [ S P A R E J O B ^ .ATTR] 
0.1;
IF RE M A I N _ T I M E [S P A R E J O B ^ .ATTR] <= 0

THEN PROCESS TIME:=SERVICE[SPARE JOB^.ATTR]+0.015 
ELSE

P R O C E S S T I M E  :=0.1+0.015;
C A U S E (2,B E H E A D (PW A I T ) ,PROCESS_TIME);
C A U S E (3,BEHEAD(QCPU),P R O C E S S T I M E ) ;

END; (* of while loop *)
END; (* of procedure c2 *)

PROCEDURE Bl; (* JOB ENDS FORM *)
BEGIN

S E R V I C E [CUR_NO_ENT] := N E G E X P (0.8,S E C O N D S E E D ) ; 
S T A R T _ T I M E [CUR_NO_ENT]:= T I M ;
A D D T O (B A C K ,P W A I T ,C U R R E N T ) ;

END;

PROCEDURE B2; (* JOB ENDS PROCESS *)
BEGIN

S E R V I C E [C U R N O E N T ] := S E R V I C E [C U R N O E N T ]-0.1;
IF SERVICE[CUR_NO_ENT] > 0

THEN A D D T O (B A C K ,P W A I T ,C URRENT)
ELSE

BEGIN
A D D T O (B A C K ,J W A I T ,C URRENT);
T E S T [C U R N O E N T ]:= T R U E ;
E N D _ T I M E [CUR_NO_ENT]: = T I M ;
RES PONSE_TIME[CUR_NO_ENT]:= E N D _ T I M E [CUR_NO_ENT]- 
S T A R T _ T I M E [CUR_NO_ENT];

END;
END;
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PROCEDURE B3;
BEGIN

A D D T O (B A C K ,Q C P U ,CURRENT); 
END;
PROCEDURE EndRunin;
BEGIN

C REATE_RECORDING;
END;

(* CPU ENDS PROCESS*)

PROCEDURE CALL FOR NEXT B EVENT; 
BEGIN

CASE NO NEXTB OF
1
2
3

127

Bl;
B2;
B3;
EndRunin;

END;
END;

PROCEDURE G O T H R U C E V E N T S ; 
VAR C F L A G ,CNUM : INTEGER; 
BEGIN

CNUM := 2;
FOR CFLAG:=1 TO CNUM DO 

CASE CFLAG OF
1 : Cl;
2 : C2;

END;
END;
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PROCEDURE E X E C U T E (DUR:INTEGER);
BEGIN

STARTUP;
RUNNING := TRUE;
WHILE RUNNING DO 
BEGIN

TIM := NEXT_TIME ;
C O N T _ R U N := F A L S E ;
K:=l;
REPEAT

IF TEST[K]=FALSE THEN 
C O N T _ R U N := T R U E ;
K:=K+l;

U N T I L  (K=DUR) OR (CONT_RUN=TRUE);
IF (CONT_RUN=TRUE) THEN 
BEGIN

WHILE (TIM = NEXT_TIME) AND (RUNNING) DO 
BEGIN

GET_NEXT_ENTITY;
CALL_FOR_NEXT_B_EVENT;

END;
IF RUNNING THEN

GO_THRU_C_EVENTS 
END ELSE

BEGIN
R U N N I N G := F A L S E ;

END;
END;
INITCALL;

END;

BEGIN (* main program *)
INITCALL;
W R I T E ('SELECT AN INTEGER FROM 1  U P  TO 1 4 3 6  =====>'); 
READLN(FIRST S E E D ) ;
W R I T E L N (»SELECT AN INTEGER FROM 1  UP TO 1 4 3 6  DIFFERENT'); 
W R I T E (* FROM THE ONE YOU HAVE SELECTED BEFORE =====>') ; 
READLN(SECOND_SEED);
WRITE('GIVE THE NUMBER OF JOBS COMPLETING SERVICE =====>); 
R E A D L N (DUR);
E X E C U T E (DUR);

END.
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PROGRAM LISTING FOR THE STEELWORKS

[I N H E R I T (*DISKB:[KEVORK]ENTITIES1.P E N * , *DISKB:[KEVORK] 
QUEUES 1. PEN* , *DISKB: [ KEVORK ] NEW_S A M P L I N G . PEN * ,
* DISKB:[KEVORK]STAT_LIBRARY *)]

PROGRAM SWS (INPUT,OUTPUT);

VAR
K, DUR, FIRST_SEED, S E C O N D S E E D ,  T H I R D S E E D  : INTEGER;
F O U R T H S E E D ,  N U M O F T O R ,  COUNTl, COUNT2, COUNTS : INTEGER; 
FT_TRTIME, W O R K T I M E , MELT_TIME, BUNL_TIME, LTIME : REAL; 
TTR A V E L _ T I M E , TUNLC_TIME, S D T R T I M E ,  TRETURN_TIME : REAL; 
C T R A V E L T I M E , C U N L S T I M E , CRETURN_TIME : REAL; 
RUN_IN_PERIOD : REAL;
WEIGHT, CARGO, LADLE, WASTE, W A I T T I M E  : REAL_ARRAY; 
START_TIME, RESPONSE_TIME, ENTER_TIME : REAL_ARRAY; 
RESTART, STEELFURN, SPARE_STEELFURN, BLASTFURN : ENAME; 
SPARE_BLASTFURN, TORPEDEO, SPARE_TORPEDEO, CRANE : ENAME ; 
S P A R E C R A N E ,PIT : ENAME;
BIDLE, BWAIT, TIDLE, CFULL, TWAIT, D T 2 , CIDLE : QUEUE 
CWAIT, SIDLE : QUEUE;
C O N T _ R U N : B O O L E A N ;
TEST : ARRAY [1..3000] OF BOOLEAN;

PROCEDURE GO THRU C EVENTS ;F O R W A R D ;

PROCEDURE CREATE_RECORblNG; 
BEGIN

COUNTl:=1;
C 0 U N T 2 :=1;
COUNTS :=1;
FOR II;=1 TO 5000 
DO T EST[II]:=FALSE;

END;

—254 —



Appendix A

PROCEDURE STARTUP;
BEGIN

C R E A T E R E C O R D I N G ;
T H E R E A R E (2,BLASTFURN,* BLASTFURN *);
THEREARE(NUM_OF_TOR,TORPEDEO,'TORPEDEO'); 
T H E R E A R E (1,C R A N E , 'CRANE');
T H E R E A R E (1,PIT,'PIT');
T H E R E A R E (5,STEELFURN,'STE E L F U R N ');
M A K E Q (B I D L E ,'B I D L E ')
M A K E Q ( C F U L L , 'CFULL')
M A K E Q (B W A I T ,'B W A I T ')
MAKEQ(TIDLE,'TIDLE')
M A K E Q (T W A I T ,'T W A I T ')
M A K E Q ( D T 2 , 'D T 2 ');
MAKEQ(CIDLE,'CIDLE');
M A K E Q (C W A I T ,'C W A I T ');
MAKEQ(SIDLE,'SIDLE');
SPARE_BLASTFURN := BLASTFURN;
FOR JJ:=1 TO 2 DO 
BEGIN

A D D T O (B A C K ,B I D L E ,SPARE_BLASTFURN); 
SPARE_BLASTFURN:=SPARE_BLASTFURN^.N E X T ; 

END;
S P A R E S T E E L F U R N  := STEELFURN;
FOR JJ := 1 TO 5 DO 
BEGIN

A D D T O ( B A C K , S I D L E , S P A R E S T E E L F U R N ) ; 
SPARE_STEELFURN := SPARE_STEELFURN^.NEXT; 

END;
SPARE TORPEDEO := TORPEDEO;
FOR JJ := 1 TO NUM_OF_TOR DO 
BEGIN

A D D T O (BACK,TIDLE,SPARE_TORPEDEO); 
SPARE_TORPEDEO := SPARE TORPEDEO^.NEXT; 

END;
S P A R E C R A N E  := CRANE;
FOR JJ ;= 1 TO 1 DO 
BEGIN

ADDTO(BACK,CIDLE,SPARE_CRANE);
S P A R E C R A N E  := SPARE_CRANE^.NEXT;

END;
GO_THRU_C_EVENTS;

END;

PROCEDURE Cl; (* MELT *)
BEGIN

WHILE (QSIZE(BIDLE) >= 1)
DO BEGIN

SPARE_BLASTFURN := H E A D(BIDLE); 
MELT_TIME := N O R M A L (110,15,F I R S T S E E D ) ; 
C A U S E ( 1,BEHEAD(BIDLE),MELT_TIME);

END;
END; (* of procedure cl *)
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PROCEDURE C2; (* BUNL *)
BEGIN

WHILE (QSIZE(BWAIT) >= 1)
DO BEGIN

S P A R E B L A S T F U R N  := H E A D (BWAIT);
IF QSIZE(TIDLE) =0 THEN 
BEGIN
WASTE[COUNTl] := W E I G H T [S P A R E B L A S T F U R N ^ .A T T R ] ;
C A U S E (3,BEHEAD(BWAIT),B U N L T I M E ) ;
C O U N T l := C 0 U N T 1 + 1 ;

END;
IF QSIZE(TIDLE) =1 THEN 
BEGIN

B U N L T I M E :=10 ;
TTRAVEL_TIME := POISSON(10,SECOND SEED);
SPARE TORPEDEO := H E A D ( T I D L E ) ;
IF COUNTS>NUM_OF_TOR THEN 
SPARE_TORPEDEO^.A T T R : = C 0 U N T 3 ;
ENTE R _ T I M E [S P A R E T O R P E D E O ^ .A T T R ] := T I M + 1 0 ;
C A R G O [SPARE TOR P E D E O ^ .A T T R ] :=3 00 ;
W A S T E [CO U N T l ] : = W E I G H T [SPARE BLASTFURN'^ .ATTR]-300; 
C A U S E ( 2,BEHEAD(TIDLE),B U N L T I M E  + T T R A V E L T I M E ) ; 
C A U S E ( 3,B E H E A D (B W A I T ),BUNL_TIME);
C O U N T l :=C0 U N T 1 + 1 ;
COUNTS := C 0 U N T 3 + 1 ;

END;
IF QSIZE(TIDLE) >=2 THEN 
BEGIN

B U N L _TIME:=10 ;
F T T R T I M E := P O I S S O N (10,SECOND S E E D ) ;
TTRAVEL_TIME := FT_TRTIME;
W A S T E [CO U N T l ]:=0 ;
SPARE TORPEDEO := H E A D ( T I D L E ) ;
IF COUNTS>NUM_OF_TOR THEN 
SPARE TOR P E D E O ^ .A T T R : = C 0 U N T 3 ;
ENTER _ T I M E [SPARE_TORPEDEO^.A T T R ] := T I M + 1 0 ;
COUNTS := C 0 U N T 3 + 1 ;
C A R G O [SPARE_TORPEDEO^.A T T R ] :=300 ;
C A U S E (2,BEHEAD(TIDLE),BUNL_TIME+TTRAVEL_TIME); 
SPARE_TORPEDEO := H E A D ( T I D L E ) ;
IF COUNTS>NUM_OF_TOR THEN 
SPARE_TORPEDEO^.A T T R : = C 0 U N T 3 ;
E N T E R _ T I M E [SPARE_TORPEDEO^.A T T R ] := T I M + 1 0 ;
COUNTS := C 0 U N T 3 + 1 ;
S D T R T I M E  := POISSON(10,SECOND SEED);
IF SD_TRTIME>FT_TRTIME 
THEN T T RAVEL_TIME:=FT_TRTIME 
ELSE T T R A V E L T I M E := S D _ T R T I M E ;
C A R G O [SPARE_TORPEDEO^.A T T R ] :=

WEIGHT[SPARE BLASTFURN^.ATTR]-300 ; 
C A U S E (2,B E H E A D (T I D L E ) ,BUNL_TIME + TTRAVEL_TIME); 
C A U S E (3,BEHEAD(BWAIT),B U N L T I M E ) ;
C O U N T l := C 0 U N T 1 + 1 ;

END;
END;

END; (* of procedure c2 *)
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PROCEDURE C3; (* TUNLC *)
BEGIN

WHILE (PIT^.AVAIL)
AND (QSIZE(TWAIT) >= 1)
AND (QSIZE(CIDLE) >= 1)

DO BEGIN
TUNLC_TIME := 5;
S P A R E C R A N E  := H E A D(CIDLE);
SPARE TORPEDEO := HEAD(TWAIT);
W A I T _ T I M E [C 0UNT2]:=TIM-

STAR T _ T I M E [SPARE_TORPEDEO^.A T T R ] ; 
L O A D A M := M I N O F (C A R G O [SPARE_TORPEDEO^.A T T R ],

100- L A D L E [S P A R E C R A N E ^ .A T T R ]); 
L A D L E [SPARE_CRANE^.A T T R ] :=

L A D L E [SPAR E _ C R A N E ^ .ATTR]+L O A D A M ; 
C A R G O [S P A R E T O R P E D E O ^ .A T T R ] :=

C A R G O [S P A R E T O R P E D E O ^ .ATTR]-L O A D A M ; 
C A U S E ( 4,PIT,TUNLC_TIME);
C A U S E ( 5,B E H E A D (T W A I T ),TUNLC_TIME);
C A U S E ( 6,BEHEAD(CIDLE),TUNLC_TIME );
C 0 U N T 2 := C 0 U N T 2 + 1 ;

END;
END; (* of procedure c3 *)

PROCEDURE C4; (* TRETURN*)
BEGIN

WHILE (QSIZE(DT2) >=1)
DO BEGIN

T R E T U R N T I M E  := 4;
C A U S E ( 7,B E H E A D (D T 2 ),TRETURN_TIME);

END;
END; (* OF PROCEDURE C4*)

PROCEDURE C5; (* CTRAVEL *)
BEGIN

WHILE (QSIZE(CFULL) >= 1 )
DO BEGIN

CTRAVEL_TIME := BE
CAUSE (8, BEHEAD (CFULL) ,CTRAVEL_TIME);

END;
END; (* OF PROCEDURE C5 *)

PROCEDURE C6; (* CUNLS *)
BEGIN

WHILE (QSIZE(SIDLE) >= 1)
AND (QSIZE(CWAIT) >= 1)

DO BEGIN
CUNLS TIME := 5;
W O R K T I M E  := 50+NEGEXP(10,THIRD SEED);
C A U S E ( 9,BEHEAD(SIDLE),CUNLS_TIME + W O R K _ T I M E ) ; 
CRETURN_TIME := 2;
C A U S E ( 10,BEHEAD(CWAIT),CUNLS_TIME + CRETURN_TIME);

END;
END; (* of procedure c6 *)

-257-



Appendix A
PROCEDURE Bl; (* BLASTFURN ENDS MELT *)
BEGIN

REPEAT
W E I G H T [CUR_NO_ENT] := N O R M A L (380,50,F O URTH_SEED); 
U N T I L ( W E I G H T [CUR_NO_ENT]>=32 0) AND 
(WEIGHT[CUR_NO_ENT]<=480);
A D D T O (B A C K ,B W A I T ,CURRENT);

END;

PROCEDURE B2; (* TORPEDEO ENDS TTRAVEL *)
BEGIN

A D D T O (B A C K ,T W A I T ,CURRENT);
S T A R T _ T I M E [CUR_NO_ENT]:= T I M ;
C 0 U N T 2 ;= C 0 U N T 2 + 1 ;

END;

PROCEDURE B3; (* BLASTFURN ENDS BUNLT *)
BEGIN

ADDTO(BACK,BIDLE,CURRENT);
END;

PROCEDURE B4; (* PIT ENDS TUNLC *)
BEGIN
END;

PROCEDURE B5; (* TORPEDEO ENDS TUNLC *)
BEGIN

IF CARGO[CUR_NO_ENT] > 0 THEN
BEGIN

A D D T O (F R O N T ,T W A I T ,C U R R E N T ) ;
S T A R T _ T I M E [C U R N O E N T ]:= T I M ;

END
ELSE

BEGIN
A D D T O (B A C K ,D T 2 ,CURRENT);

END;
END;

PROCEDURE B6; (* CRANE ENDS TUNLC *)
BEGIN

IF L A D L E [CUR_NO_ENT] <100 THEN 
A D D T O (F R O N T ,C I D L E ,CURRENT)
ELSE BEGIN
A D D T O (B A C K ,C F U L L ,CURRENT);
END;

END;

PROCEDURE B7; (* TORPEDEO ENDS TRETURN *)
BEGIN

ADDTO(BACK,TIDLE,CURRENT);
T E S T [C U R _NO_ENT]:= T R U E ;
RE S P O N S E _ T I M E [CUR_NO_ENT]:=TIM-ENTER_TIME[C U R _ NO_ENT] 

END;
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PROCEDURE B8;
BEGIN

A D D T O (B A C K ,C W A I T ,CURRE N T ) ; 
END;

(* CRANE ENDS CTRAVEL*)

PROCEDURE B9;
BEGIN

A D D T O (B A C K ,S I D L E ,CURRENT); 
END;

(* STEELFURN ENDS WORK *)

PROCEDURE BIO;
BEGIN

L A D L E [C U R N O E N T ] := 0; 
A D D T O (B A C K ,C I D L E ,CURRENT); 

END;

(* CRANE ENDS CRETURN *)

PROCEDURE EndRunin; 
BEGIN

C R E A T E R E C O R D I N G ; 
END;

PROCEDURE CALL FOR NEXT B EVENT; 
BEGIN

CASE NO NEXTB OF
1
2
3
4
5
6
7
8 
9

10
127

END;
END;

Bl 
B2 
B3 
B4 
B5 
B6 
B7 
B8 
B9 
BIO;
EndRunin;

PROCEDURE GO_THRU_C_EVENTS; 
BEGIN

CNUM := 6 ;
CFLAG :=1 TO CNUM
CASE CFLAG OF

1: Cl;
2: C2;
3: C3;
4 : C4;
5; C5;
6: C6;

END;
END;
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PROCEDURE E X E C U T E (DUR:INTEGER);
BEGIN

STARTUP;
R U N N I N G := T R U E ;
WHILE RUNNING DO 
BEGIN

T I M := N E X T _ T I M E ;
C O N T _ R U N := F A L S E ;
K:=l;
REPEAT

IF TEST[K]=FALSE THEN 
C O N T _ R U N := T R U E ;
K:=K+l;

U N TIL (K=DUR) OR (CONT_RUN=TRUE);
IF (CONT_RUN=TRUE) THEN 
BEGIN

WHILE (TIM=NEXT_TIME) AND (RUNNING) DO 
BEGIN

GET_NEXT_ENTITY;
CALL FOR NEXT B EVENT;

END;
IF RUNNING THEN

GO_THRU_C_EVENTS 
END ELSE

BEGIN
R U N N I N G := F A L S E ;

END;
END;
INITCALL;

END;

BEGIN (* main program *)
INITCALL;
WRITE ('SELECT AN INTEGER FROM 1 UP TO 1436 = = = = > ' ) ;  
READLN(FIRST_SEED);
W R I T E L N ('SELECT AN INTEGER FROM 1 UP TO 143 6 DIFFERENT'); 
W R I T E ('FROM THE ONE YOU HAVE ALREADY SELECTED =====>'); 
READLN(SECOND_SEED);
W R I T E L N ('SELECT AN INTEGER FROM 1 UP TO 1436 DIFFERENT'); 
W R I T E ('FROM THE ONES YOU HAVE ALREADY SELECTED =====>'); 
READLN(THIRD_SEED);
W R I T E L N ('SELECT AN INTEGER FROM 1 UP TO 1436 DIFFERENT'); 
W R I T E ('FROM THE ONES YOU HAVE ALREADY SELECTED =====>'); 
READLN(FOURTH_SEED);
W R I T E ('GIVE THE NUMBER OF TORPEDOES =====>');
READLN(NUM_OF_TOR); •
W R I T E L N ('GIVE THÉ NUMBER OF TORPEDOES COMPLETING T H E '); 
WRITE('CYCLE INTO THE SYSTEM = = = = = > ' ) ;READLN(DUR);
E X E C U T E (DUR);

END.
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DICTIONERY OF SIM_STAT__LIB 
THE SIMULATION STATISTICAL LIBRARY

ACR_EST

function ACR_EST (n, s : INTEGER ; X : REAL__ARRAY) : REAL ; 
calculates the sample autocorrelation at lag s of the output 
sequence X,, Xj,..., X^.

ACR_SET_EST

procedure ACR_SET_EST(n,Is,us: INTEGER;
X ,set_acr:REAL_ARRAY); 

calculates the sample autocorrelations from lag Is up to lag us of 
the output sequence X,, Xj,..., X^.

ACV_EST

function ACV__EST (n, s : INTEGER ; X : REAL_ARRAY) : REAL ; 
calculates the sample autocovariance at lag s of the output 
sequence X^, Xg ..., X^.

ACV_SET_EST

procedure ACV_SET_EST(n,Is,us : INTEGER;
X ,set_acv:REAL_ARRAY); 

calculates the sample autocovariances from laf Is to lag us of the 
output sequence X,, Xj,..., X^.

AR_PARAM_EST

procedure AR_PARAM_EST(n,p:INTEGER;
X ,atreg_coeff:REAL_ARRAY; 
error_var:REAL); >

provides estimates for the autoregressive coefficients and the 
error variance of the AR(p) fitted to the output sequence
^ 1 ’ ^ 2 ’* * *' ^n *

AR_VAR_MEAN

procedure AR_VAR_MEAN(n:INTEGER; X :REAL_ARRAY;
atreg_mean_var,df_atreg; REAL); 

estimates the variance of the sample mean of the output sequence 
X, , Xj,..., X^ and provides the degrees of freedom of student-1 
distribution for constructing confidence intervals according to 
the autoregressive method.
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AR_SCHEME_FIT

procedure AR_SCHEME_FIT(n,lev_sig:INTEGER;
X ,atreg_coeff:REAL_ARRAY; 
p :INTEGER; error_var: REAL); 

estimates the autoregressive order p, the autoregressive 
coefficients and the error variance of AR(p) fitted to the output 
sequence X,, Xg X^.

AREA_VAR_MEAN

procedure AREA_VAR_MEAN(n,k : INTEGER; X :REAL_ARRAY ;
area_mean_var:REAL; 
df_area: INTEGER); 

estimates the variance of the sample mean of the output sequence 
X^ , Xj.-.-.Xi^ and provides the degrees of freedom of student-1 
distribution for constructing confidence intervals according to 
the standardized time series-area method for k batches.

CHI_SQUARE

function CHI_SQUARE(df,lev_sig:INTEGER):REAL; 
provides the values of the distribution with df degrees of
freedom at 1(1%) and 5(5%) right tail areas.

CL_VAR_MEAN

procedure CL_VAR_MEAN(n:INTEGER;X :REAL_ARRAY;
cl_mean_var:REAL); 

estimates the variance of the sample mean of the output sequence 
X,, Xg,..., X^ according to the classical method.

COMB__AREA_NOBM_VAR_MEAN

procedure COMB_AREA_NOBM_VAR_MEAN(n,k : INTEGER;
X :REAL_ARRAY;cm_mean_var:REAL;

df_cm:INTEGER);
estimates the variance of the sample mean of the output sequence 
X, , Xg,..., Xĵ  and provides the degrees of freedom of student-1 
distribution for constructing confidence intervals according to 
the combined NOBM-AREA method for k number of batches.

COMB_MAX_NOBM_VAR_MEAN

procedure COMB_MAX__NOBM_VAR_MEAN(n,k :INTEGER;
X : REAL_ARRAY ; cx__mean_var : REAL ;

df_cx:INTEGER);
estimates the variance of the sample mean of the output sequence
X^ , Xg  Xĵ  and provides the degrees of freedom of student-1
distribution for constructing confidence intervals according to 
the combined NOBM—MAXIMUM method for k number of batches.
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FISHMAN^NUM^BATCH

procedure FISHMAN_NUM_BATCH(n:INTEGER;lev_sig:REAL;
X:REAL_ARRAY; 
est_num__batch: INTEGER) ; 

provides the number of approximately independent batched-means in 
the output sequence , Xj,..., X^ according to a procedure
developed by Fishman(1978a).

INDEX_MA3L.VALUE

procedure 1NDEX_MAX_VALUE(n : INTEGER;X :REAL_ARRAY;
max_value:REAL; 
max_index:1NT_ARRAY); 

provides the locations of the maximum value of the output sequence

1NT_ARRAY
type 1NT_ARRAY : ARRAY[1..maxsize] of INTEGER;

MAX_VAR_MEAN

procedure MAX_VAR_MEAN(n,k :INTEGER;X :REAL_ARRAY;
max_me an_var: REAL; 
df_max:INTEGER);

estimates the variance of the sample mean of the output sequence 
X, , Xg,..., X^ and provides the degrees of freedom of student-1 
distribution for constructing confidence intervals according to 
the standardized time series-maximum method for k number of 
batches.

MAXIMUM

function MAXIMUM(n:INTEGER ;X ;REAL_ARRAY): REAL; 
provides the maximum value of the output sequence
X^, X 2 , « » « , ^̂ n ■

MEAN_EST

function MEAN_EST (n : INTEGER ; X ; REAL_ARRAY) : REAL ; 
calculates the sample mean of the output sequence
^ 1  > ^ 2 ’ • • • » ^ ^ n *

NMN_TEST_STAT

function NMN_TEST_STAT(n,k :INTEGER;X :REAL_ARRAY): REAL; 
calculates the Neumman test statistic used by Fishman's(1978a) 
procedure for determining the number of approximately independent 
batched-means in the output sequence 
^ 1 »  ^ 2 > ‘ **> ^ n *
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NOBM_VAR_MEAN

procedure NOBM_VAR_MEAN(n,k :INTEGER;X :REAL_ARRAY;
nobm_mean__var : REAL ; 
df_nb:INTEGER);

estimates the variance of the sample mean of the output sequence 
, Xg,..., X^ and provides the degrees of freedom of student-t 

distribution for constructing confidence intervals according to 
the nonoverlapping batched-means method.

NOVBATCHED_MEAN

procedure NOVBATCHED_MEAN(n,k : INTEGER;X :REAL_ARRAY;
batch_means:REAL_ARRAY); 

provides the k nonoverlapping batched-means for the output 
sequence X,, Xg,..., X^

PICK_UP
procedure PICK_UP(6m,um:INTEGER;var X :REAL_ARRAY); 

transforms the indices of the output sequence Xgg)+^, . . . ,X̂ jjj into
X ,  f % 2  > • • • » ^ ^ o m - C m + i  •

OVBM_VAR_MEAN

procedure OVBM_VAR_MEAN(n,m : INTEGER;X :REAL_ARRAY;
ovbm_mean_var, df_ob: REAL); 

estimates the variance of the sample mean of the output sequence 
X, , Xg,..., X^ and provides the degrees of freedom of student-1 
distribution for constructing confidence intervals according to 
the overlapping batched-means method for batch size m.

SERIES_PARTIAL_MEANS

procedure SERIES_PARTIAL_MEANS(n:INTEGER;X :REAL_ARRAY;
partial_means:REAL_ARRAY); 

calculates the differences X^-Xj(j-1,2,...,n) for the output 
sequence X^ , Xg, . . . , Xĵ  where Xj is the mean of the first j 
observations.

REAL_ARRAY
type REAL_ARRAY : ARRAY[1. .maxsize] of REAL;

SPEC__VAR_MEAN

procedure SPEC_VAR_MEAN(n,w ; INTEGER;X :REAL_ARRAY;
spec_mean_var,df_sp:REAL); 

estimates the variance of the sample mean of the output sequence 
X^ , Xg,..., X^ and provides the degrees of freedom of student-1 
distribution for constructing confidence intervals, according to 
the spectral method for spectral window size w.
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STUDENT_T

function student_t(df,rta:REAL):REAL; 
provides the student-t values for df degrees of freedom and rta 
rigth tail area.

TEST1_INIT_BIAS

procedure TESTl_INIT_BIAS(n:INTEGER;X:REAL_ARRAY;
schl_stat :REAL);

calculates the test statistic developed by Schruben(1982) for 
testing if the output sequence X,, Xg,..., X^ is stationary.

TEST2_INIT_BIAS

procedure TEST2_INIT_BIAS(n: INTEGER;X :REAL_ARRAY;
sch2_stat :REAL);

calculates the test statistic developed by Schruben et al.(1983) 
for testing if the output sequence X,, X^,..., X^ is stationary.

VAR_EST

function VAR_EST(n:INTEGER;X :REAL_ARRAY):REAL; 
estimates the variance of the output sequence X,, X^,...,X^.
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CRITICAL VALUES

Appendix C

I)
II)

RUNUP TEST
UNIFORMITY TEST IN 

ONE AND TWO DIMENSIONS > n<12800
> n>20480

> 12.59

123.23
4245.00

Initial S A M P L E S ][ Z E S
Seeds 800 1600 3200 6400 12800 20480

1943572824 Ri
Rz
R3

110.75
75.75

97.88
86.88

104.38
95.19

10.50
87.72
97.94

11.13
73.05

101.00

8.60
4019.20
4044.80

2143428239 R,
Rz
R3

79.25
78.50

90.25
76.88

90.63
68.56

5.59
90.75
65.59

2.56
95.17
85.40

4.40
4162.40
4131.20

620995539 Ri
R2
R3

72.25
84.25

95.50
83.63

84.13
108.44

1.10
90.91

121.53

4.05
96.89

107.19

2.70
4004.00
4155.60

189203242 Ri
R2
R3

86.75
80.75

80.13
91.50

75.00
93.88

10.45
106.97
92.97

7.94
115.58
104.52

4.25
4036.40
4082.40

1828038570 Ri
R2
R3

95.50
97.75

108.13
94.00

86.63
112.00

6.21
74.71

108.59

4.65
104.88
101.83

5.65
3973.00
4088.00

Initial S A M P I. E SJ I Z E S
Seeds 61440 102400 143360 184320 225280

1943572824 Ri
R 2
R 3

3.31
3948.27
4099.73

6.82
3998.48
4194.48

5.43
4120.80
4096.06

9.48
4157.78
4093.64

9.85
4179.64
4194.91

2143428239 Ri
R 2
R 3

4.83
4092.13
4052.27

8.18
4078.24
4104.96

6.70
4169.71
4076.17

3.34
4123.78
4114.18

5.08
4113.31
4180.36

620995539 Ri
R 2
R 3

7.29
4215.60
3996.13

6.44
4021.20
4162.80

7.37
4085.31
4054.00

6.82
4127.82
4077.00

4.92
4172.65
4052.18

189203242 Ri
R 2
R 3

2.31
3977.33
4029.87

5.51
3993.36
4186.00

4.29
4061.66
4113.43

5.14
4018.84
4176.40

4.52
4011.16
4080.22

1828038570 Ri
R 2
R 3

6.21
3977.87
4002.40

7.03
3970.08
3997.92

6.77
3976.34
4022.80

8.79
3980.18
4085.91

6.60
3968.58
4190.91
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Appendix C

I) RUNUP TEST -------
II) UNIFORMITY TEST IN 
ONE AND TWO DIMENSIONS n<12800

n>20480

> 12.59

: 123.23
: 4245.00

Initial S A M P L E S ][ Z E S
Seeds 800 1600 3200 6400 12800 20480

1739631983 R,
R2
Ra

85.75
93.75

80.00
95.38

75.75
96.19

7.45
78.34
90.56

2.69
87.73

101.81

3.84
3950.40
4040.40

794716743 Ri
Rz
Ra

77.75
100.00

97.63
91.25

92.13
78.06

7.95
85.66
85.84

8.62
88.38
71.95

7.39
3962.00
4132.80

157895578 Ri
Rz
Ra

105.50
91.75

95.00
116.88

98.63
94.19

5.30
79.53
73.53

3.63
96.44
85.55

0.39
3988.80
4078.80

1450029478 Ri
Ra
Ra

78.75
95.75

89.38
101.63

94.88
100.56

8.56
92.47
93.09

6.01
76.75
96.64

6.40 
4088.00 
4049.20

1910805443 Ri
Ra
Ra

68.00
96.50

85.75
92.50

75.50
86.25

3.37
91.50
96.94

5.23
92.61
82.13

4.28
4154.00
4036.40

Initial S A M P I. E S; I Z E S
Seeds 61440 102400 143360 184320 225280

1739631983 Ri
Ra
Ra

9.62
4030.27
4179.07

11.88
3954.56
4053.20

7.62
4066.80
4040.69

5.96
4082.36
4084.93

4.14
4057.93
4168.22

794716743 Ri
Ra
Ra

2.43
3926.40
4102.00

2.59
4131.44
3997.52

4.68
4179.60
4022.00

3.58
4123.69
4143.96

5.88
4186.91
4058.98

1578951578 Ri
Ra
Ra

4.74
4114.67
4102.00

7.22
4028.48
4190.88

8.98
4007.43
4126.63

5.79
4047.69
4163.16

7.35
4082.98
4120.29

1450029478 Ri
Ra
Ra

2.79
4038.67
4127.47

6 .21
4058.88
4094.72

5.15
4055.94
4106.40

7.91
3999.16
4124.53

2.00
3978.15
4141.64

1910805443 Ri
Ra
Ra

1.90
3901.07
4144.13

3.12
4006.96
4215.20

5.03
3971.77
4105.37

4.25
3986.22
4049.56

6.33
3903.78
4024.29
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Appendix C

I) RUNUP TEST -------
II) UNIFORMITY TEST IN 
ONE AND TWO DIMENSIONS n < 1 2 8 0 0

n > 2 0 4 8 0

> 12.59

1 2 3 . 2 3
4 2 4 5 . 0 0

Initial S A M P L E S ]: Z E S
Seeds 800 1600 3200 6400 12800 20480

236023503 Ri
R2R 3

88.50
80.25

96.38
103.88

107.38
96.50

10.03
90.72
89.38

7.10
75.94

101.17

6.82
3974.80
4004.80

2091686145 Ri
R 2
R 3

90.00
114.25

102.00
98.25

76.44
81.38

4.12
98.56
76.13

4.70
89.67
99.64

8.27
3973.60
4048.40

1459566082 Ri
R 2
R 3

74.50
79.75

86.63
81.88

81.75
89.06

5.60
91.03
85.25

2.10
83.78
82.39

5.44
4116.40
4121.60

1175435042 Ri
R 2
R 3

77.75
111.00

90.75
107.63

103.13
99.38

5.60
91.03
85.25

5.66
107.25
109.48

3.74
4011.60
4078.40

2026915971 Ri
R 2
R 3

74.00
101.75

81.63
118.13

104.69
112.25

4.70
92.50

120.91

1.27
90.67

107.36

1.84
4181.20
4065.20

Initial S A M P ] . E £> I Z E S
Seeds 61440 102400 143360 184320 225280

236023503 Ri
R 2
R 3

5.87
3994.67
4198.80

4.91
4121.28
4179.84

4.18
4086.23
4187.71

3.40
4201.91
4193.82

4.54
4115.38
4182.84

2091686145 Ri
R 2
R 3

2.29
3962.93
4026.00

5.95
4001.60
3985.20

2.76
3989.71
3984.69

4.84
4038.80
3997.51

4.04
4095.96
4037.42

1459566082 Ri
R 2
R 3

9.22
4060.53
4114.67

4.34
4113.12
4100.48

6.32
4130.29
4243.89

2.86 
4184.44 
4180.71

2.55
4130.55
4147.35

1175435042 Ri
R 2
R 3

2.50
3996.40
4196.27

3.98
3932.00
4116.72

5.20
3967.37
4045.03

5.87
3988.98
4087.42

4.59
3932.11
4110.73

2026915971 Ri
R 2
R 3

4.57
4095.47
4003.87

4.55
3928.00
4014.24

5.47
3985.66
3984.29

6.01
3994.18
4032.71

7.67
4040.22
4000.65
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Appendix C

I) RUNUP TEST -------
II) UNIFORMITY TEST IN 
ONE AND TWO DIMENSIONS >  n < 1 2 8 0 0

>  n > 2 0 4 8 0

> 12.59

: 1 2 3 . 2 3
: 4 2 4 5 . 0 0

Initial S A M P L E S 1. Z E S
Seeds 800 1600 3200 6400 12800 20480

1674167085 Ri
R2
Ra

97.25
105.75

102.00
116.50

85.06
98.63

6.18
82.63
87.59

5.42
85.47
85.67

1.92
4039.60
3987.20

547023411 Ri
Ra
Ra

86.00
94.25

85.38
113.00

90.94
104.25

5.43
94.97

111.72

3.63
87.72

110.31

2.72
4043.60
4008.00

985719448 Ri
Ra
Ra

78.25
83.25

91.63
92.13

100.63
103.19

7.51
78.50
86.59

5.39
82.67

104.16

5.82
3977.60
4210.40

143381419 Ri
Ra
Ra

96.00
101.00

93.00
114.25

73.38
99.06

5.02
90.50
85.03

9.36
97.20
86.75

7.55
4094.40
4122.80

30951768 Ri
Ra
Ra

86.25
75.75

57.63
82.63

75.00
98.00

6.65
92.06
72.13

6.02
106.25
107.06

5.69
4197.60
4116.00

Initial S A M P ] . E ÎS I Z E S
Seeds 61440 102400 143360 184320 225280

1674167085 Ri
Ra
Ra

6.31
3956.53
4069.87

6.01
3981.04
3988.08

2.08
4000.17
4072.97

1.86 
4043.56 
4067.64

2.03
4043.96
4012.36

547023411 Ri
Ra
Ra

5.78
4168.13
4080.80

4.19
4059.12
3939.76

3.37
4054.11
3928.34

5.55 
4053.73 
4044.80

6.01
4029.49
4045.82

985719448 Ri
Ra
Ra

7.61
3966.33
4157.73

3.52
3984.00
4166.00

4.55
3869.09
3935.14

4.12
3924.18
4017.51

2.46
3996.87
4033.67

143381419 Ri
Ra
Ra

3.94
4183.60
4121.73

2.10
3992.16
4160.80

4.06
3964.86
4148.91

3.56
3889.82
4129.24

4.42
3970.15
4097.13

30951768 Ri
Ra
Ra

6.73
4028.67
4046.67

6.18
4100.56
4027.76

5.81 
4056.63 
4042.34

5.19
3984.49
4028.62

3.93
4130.54
4056.76
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Appendix C

I) RUNUP TEST -------
II) UNIFORMITY TEST IN 
ONE AND TWO DIMENSIONS t i < 1 2 8 0 0

n > 2 0 4 8 0

> 12.59

: 1 2 3 . 2 3
: 4 2 4 5 . 0 0

Initial S A M P L E S ][ Z E S
Seeds 800 1600 3200 6400 12800 20480

1289898067 Ri
Rz
Rs

84.25
73.75

85.50
82.75

87.63
90.25

7.38
99.00

100.00

8.27
123.17
102.08

2.31
4206.80
3994.80

959997498 Ri
Rz
Rs

120.75
94.50

85.88
87.88

87.56
104.50

3.40
91.88
97.94

5.59
115.08
108.34

8.29
4039.60
4121.20

370543480 Ri
R:
Rs

90.00
95.75

98.13
84.75

86.88
94.81

6.31
93.59
87.59

10.03
95.98
83.51

6.94
4238.00
4051.20

1263795324 Ri
Rs
Rs

117.75
96.50

105.88
79.25

95.38
77.88

2.94
91.00
91.97

7.65
81.27
83.30

12.37
3980.80
3978.00

954561845 Ri
Rs
Rs

81.00
76.25

84.38
97.38

96.88
100.56

3.91
111.84
106.94

4.91
99.58
95.47

6.56
3968.40
3967.60

Initial S A M  PI. E ÎS I Z E S
Seeds 61440 102400 143360 184320 225280

1289898067 Ri
Rs
Rs

6.87
4093.47
4125.20

6.86
4020.72
4185.92

4.70
4147.94
4152.06

5.06
4184.13
4123.69

4.39
4189.60
4038.51

959997498 Ri
Rs
Rs

5.07
4131.20
4147.20

2.03
4045.20
4062.32

3.53
4080.91
4066.51

3.55
4141.16
4090.89

2.61
4207.82
4128.22

370543480 Ri
Rs
Rs

5.16
4094.67
4008.00

3.48
4041.04
3985.20

5.14
4008.97
3968.40

3.11
3948.67
3960.40

3.46
3987.24
3987.56

1263795324 Ri
Rs
Rs

7.68
3902.40
4040.80

9.42
3893.76
3983.84

10.25
3886.11
3992.29

7.87
3920.71
3987.51

8.27
3908.91
4005.82

954561845 Ri
Rs
Rs

5.65
4030.13
3930.80

2.59
4024.96
4008.88

5.74
4072.69
4035.89

4.14
4086.93
3989.96

4.27
4040.36
3972.69
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Appendix C

I) RUNUP TEST -------
II) UNIFORMITY TEST IN 
ONE AND TWO DIMENSIONS n < 1 2 8 0 0

n ) 2 0 4 8 0

> 12.59

1 2 3 . 2 3
4 2 4 5 . 0 0

Initial S A M P L E S ][ Z E S
Seeds 800 1600 3200 6400 12800 20480

1702824678 Ri
Rz
Rs

93.50
86.25

94.50
79.25

83.56
81.81

3.44
88.56
93.81

2.15
115.56
85.63

4.39
3998.00
3971.00

1277220766 Ri
Rz
Rs

96.25
84.50

99.00
92.75

84.88
82.13

6.73
82.72
90.06

6.59
90.63
85.58

9.04
4046.00
4050.00

1489356369 Ri
R:
Rs

96.25
92.00

91.50
95.00

94.56
87.25

7.63
91.59
89.88

3.60
84.56
84.11

2.31
4158.80
4099.20

1868098207 Ri
R2
Rs

85.00
79.75

76.50
77.50

92.25
99.56

2.56
100.84
98.25

2.72
73.92
90.52

8.20
4157.60
4094.80

59329321 Ri
R2
Rs

72.75
88.25

94.50
90.50

88.44
88.94

3.67
85.69
77.81

6.04
91.13

113.05

7.60
4095.20
4026.40

Initial S A M P ] . E £> I Z E S
Seeds 61440 102400 143360 184320 225280

1702824678 Ri
Rz
Rs

4.52
4019.33
4106.67

5.65
4090.24
4159.52

8.75
4094.00
4129.49

5.93
4062.98
4062.80

6.29
4058.95
4041.67

1277220766 Ri
R:
Rs

5.20
4106.40
4111.67

5.79
3948.24
4046.24

6.44
3938.29
4180.17

3.91
3905.42
4073.60

1.68
3965.67
4175.82

1489356369 Ri
R2
Rs

1.72
4101.47
4042.67

4.86
4232.88
4051.92

6.04
4187.09
4040.63

7.97
4182.84
3920.31

4.81
4200.51
4003.35

1868098207 Ri
Rs
Rs

12.05
4041.07
4008.00

8.29
4096.16
4044.40

8.09
4083.17
3981.49

9.14
4128.53
3868.84

7.84
4127.35
3931.78

59329321 Ri
R2
Rs

3.79
4051.47
4093.07

1.90
3885.84
3995.52

2.30
3950.23
3908.00

3.41
4028.93
3979.02

3.24
4013.53
3961.74
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CRITICAL VALUES

I)
II)

RUNUP TEST
UNIFORMITY TEST IN 

ONE AND TWO DIMENSIONS > n<12800
> n>20480

> 12.59

123.23
4245.00

Initial S A M P L E S ][ Z E S
Seeds 800 1600 3200 6400 12800 20480

1 4 4 6 8 7 8 0 1 1
Ri
R2
Rs

83.05
85.75

90.00
94.00

96.50
86.75

12.39
82.91

100.28

6.83
112.28
80.33

8.45
4 0 7 4 . 8 0
4 0 7 2 . 8 0

38407 5 2 7 3
Ri
R2
R 3

82.25
88.25

90.75
84.88

78.19
98.88

3.50
72.97

104.53

4.32
78.63

102.67

5.03
4 2 1 8 . 8 0
3 9 82.40

1 8 8 2 2 0 1 8 1
Ri
R 2
R 3

87.00
109.25

90.38
82.25

77.38
112.69

3.69
96.94
91.50

3.12
86.59
90.47

4.37
3987.20
4 1 0 4 . 0 0

1 9 7 4 1 3 0 5 0 8
Ri
R 2
R 3

109.75
84.00

99.25
99.50

97.25
90.63

5.22
98.28
85.38

10.55
79.83
98.97

9.28
3958.40
4 0 4 6 . 4 0

1 3 6 0 3 2 8 9 1 1
Ri
R 2
R 3

78.75
79.00

78.63
97.50

90.94
76.50

5.48
102.22
96.50

8.00
91.31

105.16

1.31
4 0 8 0 . 8 0
4 1 4 0 . 8 0

Initial S A M P I. E SÎ I Z E S
Seeds 61440 102400 143360 1 84320 225280

1 4 4 6 8 7 8 0 1 1
Ri
R 2
R 3

2.19
40 2 8 . 9 3
4 1 1 5 . 2 0

5.38
3984.80
4 1 02.00

4.97
406 0 . 1 7
419 8 . 6 3

7.70
4 1 2 9 . 7 8
4 1 4 5 . 1 1

7.31
4 1 2 0 . 0 4
4 0 9 6 . 1 1

3 8 4 0 7 5 2 7 3
Ri
R 2
R 3

6.49
4 2 0 1 . 6 0
4 1 5 8 . 5 3

4.92
410 5 . 8 4
4 120.08

4.02
402 5 . 3 7
4 0 3 6 . 6 3

4 .42
40 4 7 . 4 7
40 7 1 . 4 7

5.82
3950.00
4 0 8 6 . 8 7

1 8 8 2 2 0 1 8 1
Ri
R 2
R 3

4.57
400 8 . 9 3
4 0 6 9 . 4 7

3.60
4063.68
4038.88

4 .48
4 1 2 0 . 9 7
4 0 4 3 . 0 9

2.68
407 1 . 7 3
4 0 1 9 . 6 4

5.74
3992.62
4 06 7 . 5 6

1 9 7 4 1 3 0 5 0 8
Ri
R 2
R 3

11.03
3944.40
4 0 7 4 . 5 3

12.32
3997.12
4 0 49.44

6.28
3965.71
4 0 9 5 . 9 4

5.13
3974.49
4 1 0 4 . 3 1

5.23
3916.04
41 2 5 . 9 3

1 3 6 0 3 2 8 9 1 1
Ri
R 2
R 3

1.49
3992.13
3 9 97.20

1.77
3985.92
4047.68

0.90
3947.77
4 1 1 6 . 4 6

2.45
3 941.42
4 1 1 2 . 1 8

2.79
3895.60
4 09 1 . 2 7
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CRITICAL VALUES

Appendix C

I)
II)

RUNUP TEST
UNIFORMITY TEST IN 

ONE AND TWO DIMENSIONS n<12800
n>20480

> 12.59

: 123.23
: 4245.00

Initial S A M P L E S ][ Z E S
Seeds 800 1600 3200 6400 12800 20480

1600322510 Ri
Rz
Ra

93.25
90.00

94.00
103.38

77.00
102.88

3.26
82.78
96.31

5.09
122.11
94.64

5.31
3938.40
4048.00

799507543 Ri
R2
Rs

98.75
104.25

87.00
85.75

74.94
90.38

4.72
82.56
72.00

4.77
73.75
92.09

4.45
4046.40
4096.00

2039198411 Ri
R:
Ra

98.75
72.75

93.50
90.75

84.81
106.13

5.74
72.84
89.31

3.26
89.15
95.28

8.27
4010.40
4068.00

1758564474 Ri
R2
Ra

77.50
82.25

86.38
84.88

83.44
86.75

12.43
82.50

110.63

7.19
71.45
96.58

8.66
4058.40
4047.20

853287183 Ri
R2
Ra

111.75
86.75

99.63
95.00

91.56
93.25

2.14
91.28
85.75

2.65
99.73

104.73

1.95
3868.80
4162.00

Initial S A M P I. E £; I Z E S
Seeds 61440 102400 143360 184320 225280

1600322510 Ri
R2
Ra

2.95
4008.53
4092.40

3.01
4018.32
4169.28

3.32
4033.37
3971.89

5.96
4046.00
3970.89

7.03
4118.95
3919.13

799507543 Ri
R2
Ra

7.43
3996.13
4067.87

6.98
4099.28
4092.72

8.44
4018.17
4095.31

4.20
4040.13
4065.42

5.24
4057.85
4012.84

2039198411 Ri
R2
Ra

12.16
3968.00
4109.20

9.70
4020.80
4043.04

10.26
3952.69
4069.09

9.57
3967.56
4061.64

5.73
3914.11
4145.75

1758564474 Ri
R2
Ra

3.75
4159.60
4056.27

3.14
4090.00
4051.92

3.41
4078.17
4074.97

2.42
4145.91
4123.20

1.25
4124.44
4107.64

853287183 Ri
R2
Ra

3.33
3989.73
4121.07

6.10
3974.24
4022.40

3.13
3940.97
4090.51

3.99
3960.84
4064.89

2.18
3981.09
4091.89
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Appendix C

CRITICAL VALUES

I)
II)

RUNUP TEST
UNIFORMITY TEST IN 

ONE AND TWO DIMENSIONS n < 1 2 8 0 0
n > 2 0 4 8 0

> 12.59

1 2 3 . 2 3
4 2 4 5 . 0 0

Initial S A M P L E S ][ Z E S
Seeds 800 1600 3200 6400 12800 20480

967370914 Ri
Rz
R 3

81.00
89.25

89.13
99.75

94.75
93.00

2.26
97.63

100.88

4.35
114.48
106.88

4.04
3948.00
4129.20

1305541621
Ri
R 2
R 3

99.25
72.00

91.88
79.75

84.00
101.56

7.03
75.09
99.63

6.96
79.63

118.09

3.95
4187.60
4129.60

23448094 Ri
R 2
R 3

96.25
108.25

71.38
112.25

77.88
101.00

2.04
85.59

101.50

8.07
91.20
95.91

6.25
4201.20
3846.40

2003527858 Ri
R 2
R 3

70.25
95.50

82.13
97.88

94.06
74.63

5.64
92.31
86.00

2.51
84.67

101.64

1.42
4120.40
4204.80

202835952 Ri
R 2
R 3

90.50
119.00

73.13
120.75

89.19
116.69

2.22
95.53

109.13

2.73
93.41
80.84

3.23
4063.60
4067.20

Initial S A M P I. E E; I Z E S
Seeds 61440 102400 143360 184320 225280

967370914 Ri
R 2
R 3

7.37
4000.40
4146.27

7.41
4053.12
3922.24

4.87 
4044.63 
3958.57

5.83
4038.58
4048.98

9.38
4125.16
4098.34

1305541621 Ri
R 2
R 3

5.43
4058.67
4085.60

5.42
4182.48
4231.76

2.55
4150.00
4132.97

5.51
4123.02
4094.67

6.39
4171.02
4130.07

23448094 Ri
R 2
R 3

1.55
4022.93
3972.40

1.11
3964.88
4165.84

1.63
3914.80
4001.49

1.93
4036.53
4058.04

2.62
4014.95
4018.65

2003527858 Ri
R 2
R 3

4.04
3963.73
3960.67

5.97
4027.84
3914.08

5.25
4045.83
3931.37

4.81
4000.44
4072.22

6.11
4005.78
4016.95

202835952 Ri
R 2
R 3

4.30
4124.13
4138.00

4.51
4156.48
4101.76

5.21
4052.11
4102.97

7.05
3998.62
4130.44

4.33
3978.54
4056.65
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CRITICAL VALUES

Appendix C

I) RUNUP TEST -------
II) UNIFORMITY TEST IN 
ONE AND TWO DIMENSIONS >  n < 1 2 8 0 0

>  n > 2 0 4 8 0

> 12.59

1 2 3 . 2 3
4 2 4 5 . 0 0

Initial S A M P L E S 1. Z E S
Seeds 800 1600 3200 6400 12800 20480

1578282090 Ri
R:
Rs

73.25
107.50

81.38
101.38

79.81
108.00

1.11
82.53
97.41

2.38
93.97

103.28

2.04
4101.20
4116.40

2067032889 Ri
R:
Ra

71.75
78.00

70.25
76.38

89.31
96.63

2.23
99.06

111.72

7.34
104.12
90.92

5.54
4149.20
4216.00

1251948670 Ri
Rz
Ra

70.75
86.75

83.63
97.50

84.31
114.81

3.32
75.56
98.78

4.65
96.73
93.58

8.14
4141,20
4035.60

1756937875 Ri
Ra
Ra

93.50
117.75

81.75
102.50

97.64
79.06

7.43
81.47
83.97

10.60
79.95
98.20

5.52
3958.00
4091.00

1627347439 Ri
Ra
Ra

122.00
90.50

98.38
110.13

75.13
98.06

1.99
91.97
99.75

3.19
99.61
81.66

3.97
4171.60
4045.20

Initial S A M P I. E ÎS I Z E S
Seeds 61440 102400 143360 184320 225280

1578282090 Ri
Ra
Ra

4.96
4048.40
3995.60

4.01
4070.16
3922.04

5.00
4034.11
3915.77

5.21
4106.84
3973.64

6.37
4010.18
4083.96

2067032889 Ri
Ra
Ra

4.19
4003.87
4086.27

7.01
4012.56
4157.84

6.18
4068.63
4200.23

4.88
4094.71
4143.29

6.35
4036.54
4097.82

1251948670 Ri
Ra
Ra

10.15
4024.27
4126.27

9.38
4104.80
4084.24

6.58
4017.49
4102.69

3.81
3958.40
3923.91

3.37
3991.56
3933.75

1756937875 Ri
Ra
Ra

3.89
4002.53
4087.87

2.69
3998.00
4166.24

3.58
4000.23
4193.09

4.46
3932.84
4210.27

6.09
3983.13
4115.13

1627347439 Ri
Ra
Ra

6.80
3954.53
3921.47

5.86
3886.40
4031.92

4.11
3963.66
4001.60

4.22
3936.71
3999.91

6.77
3843.56
4053.85
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CRITICAL VALUES

Appendix C

I) RUNUP TEST -------
II) UNIFORMITY TEST IN 
ONE AND TWO DIMENSIONS n < 1 2 8 0 0

n > 2 0 4 8 0

> 12.59

1 2 3 . 2 3
4 2 4 5 . 0 0

Initial
Seeds

S A M P L E  S I Z E S

800 1600 3200 6400 12800 20480

1650412949 Ri
R2
Ra

86.75
104.50

88.88
112.75

72.31
106.75

4.69
85.75
92.81

7.63
93.03

106.17

3.01
4038.00
4021.60

215061405 Ri
Ra
Ra

76.00
77.25

92.50
52.25

92.38
63.75

6.84
108.16
77.72

10.27
83.27 
89.83

9.98
4114.80
4043.60

1530738151 Ri
Ra
Ra

107.50
106.00

78.25
98.38

94.75
94.25

2.30
93.56
101.56

6.03
82.97
87.28

6.07
4079.60
3980.40

2053545054 Ri
Ra
Ra

106.50
79.00

100.13
80.13

97.69
99.00

5.95
103.69
79.81

2.28
98.23

102.27

2.99
3950.80
4194.00

989891314 Ri
Ra
Ra

92.00
75.50

110.88
101.00

102.19
113.69

9.27
87.88

119.22

5.82
102.30
85.02

3.85
3903.20
4026.80

Initial
Seeds

S A M P L E  S I Z E S

61440 102400 143360 184320 225280

1650412949 Ri
Ra
Ra

2.10
4092.53
3893.87

4.27
4057.36
3991.04

6.44
4025.94
3923.83

6.58
4049.82
3903.33

4.35
4068.95
4001.42

215061405 Ri
Ra
Ra

6.91
3941.73
4080.13

6.13
3959.68
4116.56

6.42
4097.31
4119.49

8.57
4050.89
4131.07

10.89
4079.91
4172.07

1530738151 Ri
Ra
Ra

5.69
4039.07
4108.67

8.07
3978.88
3978.88

4.62
3961.09
3942.74

5.88
4037.24
3971.38

3.42
3943.53
3970.76

2053545054 Ri
Ra
Ra

5.05
3925.87
4087.60

3.29
3931.36
4017.52

3.35
3907.43
4011.60

5.01
3907.33
3966.00

3.90
3933.35
4024.98

989891314 Ri
Ra
Ra

3.31
4073.07
3998.00

8.01
4034.40
4023.28

5.31
3999.20
4023.60

2.81
4014.84
4046.80

1.54
4096.65
3997.64
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CRITICAL VALUES

Appendix C

I) RUNUP TEST --------
II) UNIFORMITY TEST IN 
ONE AND TWO DIMENSIONS >  n < 1 2 8 0 0

>  n > 2 G 4 8 0

> 12.59

1 2 3 . 2 3
4 2 4 5 . 0 0

Initial S A M P L E S ]: Z E S
Seeds 800 1600 3200 6400 12800 20480

991176826 Ri
R2
Rs

93.75
96.75

97.13
85.13

90.81
100.63

4.58
104.22
100.31

6.71
101.59
105.11

7.24
4046.00
4100.40

1037740495 Ri
R:
Ra

88.00
94.25

97.00
89.63

94.56
102.31

7.85
91.22

111.72

2.61
98.63

106.97

2.15
4174.40
4150.00

1927746234 Ri
Ra
Ra

98.25
90.75

78.88
89.25

73.13
98.94

1.14
98.13
98.28

7.69
111.95
116.69

8.08
4128.00
4200.00

368472391 Ri
Ra
Ra

78.25
103.75

80.88
113.63

90.44
119.06

1.51
105.69
100.97

6.75
95.31

113.38

8.27
4132.00
4131.60

1227740495 Ri
Ra
Ra

75.50
97.50

96.25
84.38

66.00
77.19

4.45
86.63
70.53

6.02
90.20
81.84

3.67
4026.00
4010.80

Initial S A M P I. E 5> I Z E S
Seeds 61440 102400 143360 184320 225280

991176826 Ri
Ra
Ra

4.14
4186.67
4150.93

4.28
4070.88
4208.08

5.45
4035.66
4169.54

4.25
4090.84
4196.80

7.22
4056.80
4129.93

1037740495 Ri
Ra
Ra

3.76
4198.27
4162.00

5.78
4018.80
3970.24

5.11
4128.51
4053.94

6.70
4165.56
4047.33

9.30
4134.87
4020.84

1927746234 Ri
Ra
Ra

11.69
4051.47
4204.93

7.47
4089.20
4241.12

9.39
3941.71
4243.77

7.63
4006.27
4176.80

4.77
4004.55
4211.75

368472391 Ri
Ra
Ra

10.84
3974.80
4057.73

7.20
4165.20
4057.76

6.45
4149.37
3992.06

9.66
4031.96
4015.56

4.90
4032.87
4045.13

1227740495 Ri
Ra
Ra

1.68
4044.00
4147.60

4.58
4161.52
3974.16

5.55
4242.29
3936.51

4.01
4142.98
3942.00

3.91
4147.93
4017.16
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CRITICAL VALUES

Appendix C

I) RUNUP TEST -------
II) UNIFORMITY TEST IN 
ONE AND TWO DIMENSIONS >  * < 1 2 6 0 0  

>  * > 2 0 4 8 0

> 12.59

1 2 3 . 2 3
4 2 4 5 . 0 0

Initial S A M P L E S ][ Z E S
Seeds 800 1600 3200 6400 12800 20480

1529370012 Ri
R2
Ra

77.50
88.75

82.50
89.38

91.25
97.31

5.57
90.81
98.25

6.28
97.17

103.41

8.58
4119.60
4138.40

283210790 Ri
Rz
Ra

71.50
72.00

82.13
84.50

91.25
99.31

8.52
78.63
97.41

9.54
82.80
94.86

10.36
4050.80
4006.40

1670071181 Ri
Ra
Ra

118.00
109.25

95.75
96.13

90.63
105.81

1.73
92.66

114.19

2.12
80.08

106.45

5.64
3912.80
4105.60

157805309 Ri
R2
Ra

100.00
86.25

87.00
91.50

80.88
104.38

7.30
78.69

106.03

7.94
67.47

116.77

8.00
4179.20
4152.00

981222908 Ri
Ra
Ra

85.00
100.25

86.38
115.88

85.69
98.94

11.23
74.69
99.50

6.37
86.41
73.58

5.79
4022.40
4106.80

Initial S A M P I. E £; I Z E S
Seeds 61440 102400 143360 184320 225280

1529370012 Ri
Ra
Ra

7.93
4178.93
4197.47

5.67
4111.36
4202.32

5.20
4060.91
4132.57

4.86 
4053.07 
4042.31

5.02
3994.98
4003.02

283210790 Ri
Ra
Ra

9.11
4076.13
4159.07

2.75
3994.08
4128.88

1.81
3991.60
4080.74

1.15
4051.73
4094.84

1.17
3971.71
4069.78

1670071181 Ri
Ra
Ra

2.34
3904.40
4071.60

4.42
3827.36
4075.68

3.45
3855.26
4043.89

2.33
3911.78
3992.93

2.74
3989.20
3980.62

157805309 Ri
Ra
Ra

5.91
4098.93
4120.40

7.81
4193.84
4222.48

9.38
4132.06
4215.89

12.59
3949.02
4148.31

9.46
3932.22
4156.73

981222908 Ri
Ra
Ra

2.40
4123.60
4102.67

2.87
4153.20
4010.64

3.93
4151.31
4105.20

4.84
4173.38
4159.07

4.49
4143.20
4105.05
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CRITICAL VALUES

Appendix C

I)
II)

RUNUP TEST
UNIFORMITY TEST IN 

ONE AND TWO DIMENSIONS n < 1 2 8 0 0
n > 2 0 4 8 0

> 12.59

: 1 2 3 . 2 3
: 4 2 4 5 . 0 0

Initial S A 1 P L E S ]t Z E S
Seeds 800 1600 3200 6400 12800 20480

1914200114 Ri
R2
Rs

88.25
102.75

90.00
80.88

76.25
62.81

3.27
102.69
77.41

2.83
94.88

104.42

6.11
4174.80
4071.60

2029045855 Ri
R2
Ra

86.50
74.25

90.13
88.00

71.13
96.44

6.87
103.72
119.66

10.91
113.06
115.48

4.82
4118.40
4145.20

132406470 Ri
R2
Ra

85.00
92.25

76.00
98.75

98.75
106.00

1.32
118.88
99.75

4.10
122.42
106.32

3.71
4026.40
4046.80

593840624 Ri
R2
Ra

99.50
105.75

93.25
101.75

102.00
96.50

6.12
109.69
99.69

5.09
89.25
85.28

5.05
3977.60
3984.40

827995463 Ri
R2
Ra

71.25
92.50

75.13
98.75

80.94
111.38

2.65
83.91

105.47

6.48
83.52
92.03

3.25
4050.80
4041.20

Initial S A M P I. E £> I Z E S
Seeds 61440 102400 143360 184320 225280

1914200114 Ri
Ra
Ra

0.75
4079.87
4094.00

1.38
4109.68
3941.68

2.78
4075.31
4000.91

2.29
4135.16
4001.11

5.06
4039.78
4062.69

2029045855 Ri
Ra
Ra

4.28
4125.20
4225.20

1.18
4181.36
4211.28

2.09
4057.54
4189.94

2.11
3990.00
4212.31

1.61
4075.60
4223.53

132406470 Ri
Ra
Ra

1.41
4030.67
4148.93

1.01
4047.04
4053.76

1.31
4055.49
4069.14

2.16
3994.44
4093.20

1.13
4039.53
4064.25

5933840624 Ri
Ra
Ra

4.21
3980.00
4084.40

3.20 
4069.44 
4056.64

1.05
4116.29
3955.31

1.09
3988.67
4001.20

0.59
3934.76
3942.22

827995463 Ri
Ra
Ra

1.19
4038.53
3927.33

6.10
4061.04
3949.44

4.66
4077.66
3978.51

3.11
4156.13
4034.62

2.33
4100.22
4013.56
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CRITICAL VALUES

Appendix C

I) RUNUP TEST -------
II) UNIFORMITY TEST IN 
ONE AND TWO DIMENSIONS >  n < 1 2 8 0 0

>  1 1 ) 2 0 4 8 0

> 12.59

1 2 3 . 2 3
4 2 4 5 . 0 0

Initial S A M P L E S ][ Z E S
Seeds 800 1600 3200 6400 12800 20480

1109160874 Ri
R2
R 3

105.50
84.50

84.25
75.50

77.88
87.38

9.55
79.34

100.28

4.29
108.39
86.30

6.24
3993.20
4064.80

1715455718 Ri
R 2
R 3

80.75
103.25

86.63
85.25

88.25
100.69

4.04
82.66

102.31

1.11
87.50

113.64

3.61
4188.00
4080.40

1132396986 Ri
R 2
R 3

78.00
107.75

89.25
101.75

108.50
92.63

8.26
85.41

112.66

4.20
121.98
109.50

1.05
3995.00
4068.00

1713250490 Ri
R 2
R 3

82.50
88.25

79.75
91.50

89.69
102.56

0.67
90.09

103.19

1.79
87.47
84.64

6.24
4003.20
4018.00

654138949 Ri
R 2
R 3

86.00
118.00

101.00
120.75

111.63
101.06

2.65
107.22
103.50

2.94
98.81
97.00

3.14
4091.20
4175.20

Initial S A M P I. E S; I Z E S
Seeds 61440 102400 143360 184320 225280

1109160874 Ri
Rz
R 3

3.74
4064.80
4031.07

3.39
3991.52
4072.40

4.43
4030.86
4008.17

5.19
4076.44
4007.38

3.37
4143.60
4067.35

1715455718 Ri
R 2
R 3

2.01
4048.13
4036.13

4.51
3957.52
4240.72

3.23
4079.54
4202.69

2.28
4114.67
3984.58

5.00
4163.24
4037.20

1132396986 Ri
R 2
R 3

1.96
4090.13
4146.40

4.88
4025.04
4123.76

5.30
3985.94
4052.17

8.64
3993.56
3997.38

7.95
4043.89
3988.04

1713250490 Ri
R 2
R 3

3.11
4117.73
3963.47

4.02
4128.72
3938.80

3.02
4084.69
4047.89

2.25
3984.58
4130.93

2.11
4037.20
4033.64

654138949 Ri
R 2
R 3

3.22
3988.13
3918.40

4.14
3975.12
4053.52

9.38
4020.51
4158.74

9.66
4092.67
4097.38

11.71
4093.24
4129.64

-282-



CRITICAL VALUES

Appendix C

I) RUNUP TEST -------
II) UNIFORMITY TEST IN 
ONE AND TWO DIMENSIONS >  n < 1 2 8 0 0

>  n > 2 0 4 8 0

> 12.59

: 1 2 3 . 2 3
: 4 2 4 5 . 0 0

Initial
Seeds

S A M P L E  S I Z E S

800 1600 3200 6400 12800 20480

1711135126 Ri
Rz
Ra

106.00
89.50

92.75
88.50

94.00
81.00

2.00
104.13
88.84

2.84
122.09
102.63

3.58
4068.00
4068.40

374236500 Ri
Ra
Ra

74.75
102.25

88.75
77.25

76.81
102.81

8.65
109.75
84.25

11.20
87.95
89.61

8.62
3956.80
4151.20

145026474 Ri
Ra
Ra

105.75
110.75

88.75
117.50

106.31
96.56

4.38
98.41

105.25

3.39
77.98
94.45

2.40 
3980.00 
4145.20

986267275 Ri
Ra
Ra

76.50
92.50

81.63
94.50

109.69
95.50

1.87
111.75
99.50

4.34
110.94
110.95

11.55
4021.60
4016.00

1595040427 Ri
Ra
Ra

95.00
100.00

79.50
102.88

95.06
85.69

4.96
99.47

115.06

4.34
113.70
103.78

2.16
4160.80
4225.60

Initial S A M P ] . E ÎS I Z E S
Seeds 61440 102400 143360 184320 225280

1711135126 Ri
Ra
Ra

5.38
4106.87
3945.60

3.41
3992.08
3901.20

5.05
4031.77
3963.37

5.16
4091.33
4006.09

4.70
3981.89
4065.02

374236500 Ri
Ra
Ra

0.80
4028.53
4105.20

6.60
4136.16
4085.52

9.32
4146.06
4061.26

7.28
4120.58
4006.40

5.44
4129.24
3970.36

145026474 Ri
Ra
Ra

6.13
4002.00
4043.73

4.21
4179.20
3943.04

5.00
4114.29
3872.11

4.14
4163.96
4003.47

7.76
4208.25
4009.65

986267275 Ri
Ra
Ra

11.38
3980.53
3997.47

8.11
3862.16
4066.40

6.45
4014.23
4034.51

3.87
3955.56
4054.49

2.86
4025.02
4095.42

1595040427 Ri
Ra
Ra

7.99
3992.00
4180.67

4.93
3875.44
4088.88

7.44
3811.77
4121.31

4.49
3906.62
4096.13

4.45
3952.87
4121.93
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CRITICAL VALUES

Appendix C

I) RUNUP TEST -------
II) UNIFORMITY TEST IN 
ONE AND TWO DIMENSIONS n(12800

n>20480

> 12.59

123.23
4245.00

Initial S A M P L E S 1. Z E S
Seeds 800 1600 3200 6400 12800 20480

378061762 Ri
Rz
R 3

88.50
111.75

93.13
94.75

108.31
99.56

9.69
84.25

108.63

11.27
77.34
86.56

7.89
4072.80
4100.40

2033344783 Ri
R 2
R 3

75.75
112.75

89.00
100.38

97.00
104.69

1.73
88.78

114.06

0.41
90.41

117.84

1.93
4146.80
4094.80

523936387 Ri
R 2
R 3

95.25
85.50

94.13
101.00

97.56
78.00

4.10
87.13
76.75

5.67
82.66
86.80

8.73
4196.40
4063.60

278609684 Ri
R 2
R 3

79.75
81.25

76.75
75.38

90.50
106.63

3.02
98.03

101.78

2.80
95.22
86.30

6.06
4208.80
4181.60

832602364 Ri
R 2
R 3

74.50
81.00

88.38
88.50

96.44
74.06

2.99
66.78
81.38

5.87
80.88
91.86

3.00
4100.80
4177.20

Initial S A M P ] . E £S I Z E S
Seeds 61440 102400 143360 184320 225280

378061762 Ri
R 2
R 3

7.64
4241.07
4148.93

3.22
4095.60
4203.12

3.88
4179.89
4080.69

3.12
4190.80
4064.40

3.37
4121.71
4120.98

2033344783 Ri
R 2
R 3

9.49
4103.20
4104.67

4.34
4105.36
4107.04

6.45
4119.37
4048.29

5.94
4102.00
4087.51

4.53
4170.62
4068.87

523936387
Ri
R 2
R 3

11.50
4013.33
4167.47

11.35
4021.52
4127.28

11.21
4018.69
4094.00

10.40
4150.62
4069.02

9.34
4108.47
4050.87

278609684 Ri
R 2
R 3

4.22
4133.73
4051.33

6.10
4103.20
3994.80

5.11
3988.06
4009.43

4.03
3984.93
4076.76

3.91
3959.49
4072.40

832602364 Ri
R 2
R 3

4.87
4059.73
4104.27

3.81
4120.16
4090.64

5.99
4107.49
4116.06

3.80
4123.16
4158.98

4.96
4110.84
4148.15
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CRITICAL VALUES

Appendix C

I) RUNUP TEST -------
II) UNIFORMITY TEST IN 
ONE AND TWO DIMENSIONS > n<12800

> n>20480

> 12.59

: 123.23
: 4245.00

Initial S A M P L E S ]: Z E S
Seeds 800 1600 3200 6400 12800 20480

382388249 Ri
R2
Ra

71.75
89.00

73.63
89.25

95.38
102.69

1.34
112.47
80.75

5.44
83.29
71.27

2.07
4169.60
4076.80

1042192142 Ri
Ra
Ra

78.75
87.25

89.38
97.25

76.25
104.56

2.77
105.84
98.94

3.39
104.95
93.97

4.58
4230.00
4128.00

1988091511 Ri
Ra
Ra

69.75
93.00

98.75
100.38

105.13
92.56

4.58
108.00
91.38

5.43
110.06
63.34

7.33
4011.20
4139.60

1835767197 Ri
Ra
Ra

87.75
89.00

88.88
92.75

83.57
108.88

9.11
85.38
84.63

5.65
94.81
93.59

5.90
4033.60
4144.80

522512559 Ri
Ra
Ra

73.25
96.00

91.13
94.38

91.69
81.31

4.97
94.44
81.19

2.48
89.25
89.97

1.85
3997.60
3975.60

Initial
Seeds

S A M P L E  S I Z E S

61440 102400 143360 184320 225280

382388249 Ri
Ra
Ra

3.66
3934.27
4061.20

2.35
3928.16
4100.88

5.66
4043.09
4117.14

4.48
4047.38
4092.22

5.65
4022.00
4129.96

1042192142 Ri
Ra
Ra

7.27
4103.73
4092.27

7.32
4135.28
4155.36

5.31
4059.83
4042.63

5.89
4003.64
4013.38

6.06
4114.95
3995.75

1988091511 Ri
Ra
Ra

11.54
4071.20
4115.07

11.13
4114.48
4147.68

6.96
4114.23
4186.69

6.69
4037.16
4162.31

9.33
3991.78
4111.67

1835767197 Ri
Ra
Ra

1.69
4071.73
4221.20

2.31
4057.12
4168.40

3.80
4062.34
4133.54

6.21
3956.71
4119.20

10.92
3941.75
4144.58

522512559 Ri
Ra
Ra

10.59
4007.07
4215.87

4.83
4008.72
4133.20

3.53
3936.06
4210.80

3.04
4009.33
4120.40

3.49
4079.75
4166.25
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Appendix C

CRITICAL VALUES

I)
II)

RUNUP TEST
UNIFORMITY TEST IN 

ONE AND TWO DIMENSIONS n<12800
n>20480

> 12.59

123.23
4245.00

Initial S A M P L E S ]: Z E S
Seeds 800 1600 3200 6400 12800 20480

870576586 Ri
R2
Rs

79.25
109.75

86.63
103.75

90.06
109.25

5.90
99.31

105.84

9.67
93.70

106.67

5.38
4087.20
4038.00

1564597822 Ri
R:
Ra

76.50
101.00

93.88
87.00

108.00
82.56

8.36
95.63
93.03

8.18
88.81
97.03

6.55
4032.00
4134.00

1546676231 Ri
Ra
Ra

81.25
83.25

106.25
97.25

97.25
78.00

3.26
91.25
96.63

2.00
118.53
80.05

4.78
4196.00
4016.00

555492368 Ri
Ra
Ra

70.75
91.25

82.50
85.75

98.88
97.81

4.28
95.13

121.69

5.32
99.75

112.41

2.49
4199.20
4083.60

1737119562 Ri
Ra
Ra

71.50
110.00

88.25
99.75

72.00
95.25

1.57
92.66
99.78

1.40
95.92
84.73

3.21
4010.80
3985.20

Initial S A M P ] . E £> I Z E S
Seeds 61440 102400 143360 184320 225280

870576586 Ri
Ra
Ra

9.32
3955.73
4157.20

7.36
4026.80
4138.40

7.96
3956.91
4042.40

6.48
4003.33
4016.04

7.27
3994.76
4107.42

1564597822 Ri
Ra
Ra

1.75
4009.33
4197.07

0.75
4178.00
4075.36

3.73
4063.37
4010.11

5.54
4089.51
4030.98

5.14
4100.11
4056.51

1546676231 Ri
Ra
Ra

5.10
4065.33
3964.67

1.20
4046.16
3990.40

5.50
4001.54
4084.46

6.31
3988.40
4193.33

6.30
4151.13
4205.56

555492368 Ri
Ra
Ra

1.61
4058.27
4159.47

3.52
3951.68
4037.76

6.36
3955.49
4032.97

5.66
4029.11
4067.87

8.61
3934.80
4068.91

1737119562 Ri
Ra
Ra

2.33
4060.40
3900.00

7.90
4043.04
4073.92

11.21
3905.26
4033.09

10.96
3920.13
3976.04

7.16
3914.58
3961.89
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Appendix C

CRITICAL VALUES

I)
II)

RUNUP TEST
UNIFORMITY TEST IN 

ONE AND TWO DIMENSIONS > n<12800
> *>20480

> 12.59

123.23
4245.00

Initial S A M P L E S ][ Z E S
Seeds 800 1600 3200 6400 12800 20480

1357014479 Ri
R2
R 3

90.75
86.25

99.00
101.75

92.19
97.00

7.97
78.31
87.94

6.94
94.50

107.82

7.97
3954.40
3997.20

1457702813 Ri
R 2
R 3

83.00
69.50

83.63
86.13

88.31
92.56

7.53
98.97
84.78

4.14
98.09
83.25

5.18
3967.20
4064.00

1435644507 Ri
R 2
R 3

88.75
84.50

80.63
86.38

90.63
92.19

4.29
74.47
83.94

3.44
99.50
89.63

2.95
4004.40
4104.80

1818969274 Ri
R 2
R 3

115.00
92.00

113.13
113.00

101.56
109.50

7.68
74.88
87.47

5.91
80.33
94.30

6.03
3986.00
4158.80

814509814 Ri
R 2
R 3

86.25
114.50

78.50
118.25

91.81
101.38

11.67
98.09
107.19

2.69
90.06

116.14

3.31
4059.60
4015.20

Initial S A M P I. E £ I Z E S
Seeds 61440 102400 143360 184320 225280

1357014479 Ri
R 2
R 3

5.16
4054.40
4083.33

10.61
4106.80
4148.56

8.46
4013.77
4070.57

7.24
4126.22
3952.13

7.46
4213.24
3979.16

1457702813 Ri
R 2
R 3

2.14
3824.67
4137.73

1.20
3972.96
4122.72

1.80
4202.57
4138.57

1.58
4136.36
4106.27

1.57
4123.45
4132.80

1435644507 Ri
R 2
R 3

9.20
4105.07
4201.07

10.54
4147.92
4196.32

10.51
4168.11
4218.17

11.27
4224.80
4215.11

6.59
4221.09
4228.40

1818969274 Ri
R 2
R 3

4.20
4071.60
4232.67

3.12
4035.04
4112.00

3.77
4013.54
4138.57

1.90
4017.02
4018.13

3.24
4109.63
4002.25

814509814 Ri
R 2R 3

1.99
3993.73
4092.67

1.31
4003.60
4102.32

3.35
3981.26
4024.80

3.08
4056.53
4182.40

2.56
4158.00
4172.98
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Appendix D

T A B L E  D1
AR(1) : Performance of confidence interval methods
MB-parameter values

at the true

0.4074

Number of replications : 400

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64 EHLi
VHLi

.9450
(2.1350)
(2.6318)

.9500
(2.1129)
(2.4770)

.9500
(2.1129)
(2.4770)

.9725
(.4936)
(.0200)

.9400
(.4548)
(.0314)

128 M L i
VHL^

.9675
(1.4805)
(1.3043)

.9525
(1.4785)
(1.2273)

.9525
(1.4785)
(1.2273)

.9675
(.3328)
(.0077)

.9550
(.3253)
(.0136)

256 EHLi
VHLi

.9400
(1.0101)
(.6595)

.9475
(.9572)
(.4953)

.9475
(.9572)
(.4953)

.9650
(.2218)
(.0018)

.9325
(.2183)
(.0049)

512 EHLi
VHLi

.9525
(.7223)
(.2835)

.9225
(.6741)
(.2582)

.9225
(.6741)
(.2582)

.9475
(.1503)
(.0007)

.9550
(.1511)
(.0016)

p-0.99

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64 EHLi
VHLi

.8800
(23.336)
(295.09)

.8950
(25.618)
(336.34)

.8950
(25.618)
(336.34)

.7200
(8.7486)
(27.968)

.3125
(2.5406)
(1.6646)

128 EHLi
VHLi

.9075
(29.411)
(449.84)

.9050
(31.945)
(528.99)

.9050
(31.945)
(528.99)

.8300
(10.647)
(35.746)

.5150
(3.7358)
(3.3696)

256 ^ iEHLi
VHLi

.9425
(32.727)
(548.32)

.9400
(33.693)
(620.93)

.9400
(33.693)
(620.93)

.8825
(10.635)
(31.488)

.6475
(4.6579)
(5.2501)

512 ^ iEHLi
VHLi

.9375
(30.726)
(569.32)

.9450
(30.822)
(550.47)

.9450
(30.822)
(550.47)

.9150
(9.2207)
(20.457)

.7525
(5.2266)
(6.2919)
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Appendix D

T A B L E  D2
M/M/1 : Performance of confidence Interval methods
MB-parameter values

at the true

t -0.20

Number of replications : 400

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64
C W i
^ L i
VHLi

.9275
(.2354)
(.0565)

.9125
(.2102)
(.0617)

.9125
(.2102)
(.0617)

.8325
(.0528)
(.0017)

.7700
(.0416)
(.0012)

128 lîJLi
VHLi

.9500
(.1963)
(.0331)

.9400
(.1829)
(.0329)

.9400
(.1829)
(.0329)

.8775
(.0408)
(.0007)

.8625
(.0399)
(.0008)

256 EHLi
VHLi

.9350
(.1320)
(.0138)

.9250
(.1301)
(.0133)

.9250
(.1301)
(.0133)

.8850
(.0283)
(.0002)

.8725
(.0285)
(.0002)

512
^ R i
EHLi
VHLi

.9375
(.1046)
(.0074)

.9350
(.1019)
(.0075)

.9350
(.1019)
(.0075)

.9100
(.0208)
(.0001)

.8850
(.0211)
(.0001)

t -0.80

n Statist. 
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64 EHLi
VHLi

.8950
(14.527)
(204.93)

.8950
(15.158)
(238.11)

.8950
(15.158)
(238.11)

.7725
(5.3134)
(19.187)

.5225
(1.9183)
(1.9463)

128
^ R i
EHLi
VHLi

.8875
(14.065)
(228.74)

.8775
(14.524)
(242.62)

.8775
(14.524)
(242.62)

.7975
(4.7743)
(16.663)

.6275
(2.2287)
(3.1316)

256
^ i
M L i
VHLi

.8975
(13.948)
(301.39)

.9000
(13.923)
(287.86)

.9000
(13.923)
(287.86)

.8200
(4.0468)
(15.207)

.6600
(2.3115)
(4.5997)

512
^ R i
raLi
VHLi

.9200
(11.359)
(145.47)

.9350
(11.417)
(163.33)

.9350
(11.417)
(163.33)

.8375
(3.0321)
(6.0322)

.7425
(2.1213)
(3.0236)
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Appendix D

T A B L E  D3
AR(2) : Performance of confidence interval methods
MB-parameter values

at the true

Number of replications : 400

^^—0.75 , ^ 2— -0.50

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64
CTRi
EHLi
VHLi

.9350
(1.6798)
(1.7556)

.9650
(1.7801)
(1.8481)

.9425
(.3299)
(.0016)

.9475
(.4248)
(.0193)

.9325
(.3880)
(.0137)

128 EHLi
VHLi

.9500
(1.1675)
(.8281)

.9575
(1.1966)
(.8215)

.9600
(.2316)
(.0004)

.9725
(.2732)
(.0060)

.9650
(.2584)
(.0052)

256 EHLi
VHLi

.9600
(.8012)
(.3363)

.9500
(.8442)
(.4025)

.9625
(.1632)
(.0001)

.9600
(.1795)
(.0018)

.9550
(.1721)
(.0020)

512 EHLi
VHLi

.9675
(.5391)
(.1703)

.9650
(.5662)
(.1723)

.9650
(.5662)
(.1723)

.9600
(.1221)
(.0005)

.9400
(.1188)
(.0007)

0.99 , pu—-0.90

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64
CVRi
EHLi
VHLi

.9400
(1.6687)
(1.7685)

.9175
(1.7436)
(1.8640)

.9175
(1.7436)
(1.8640)

.9725
(.7213)
(.1307)

.9825
(.4154)
(.0103)

128 ^ iEHLi
VHLi

.9650
(1.1197)
(.6449)

.9500
(1.1102)
(.7359)

.9500
(1.1102)
(.7359)

.9650
(.3435)
(.0242)

.9750
(.2614)
(.0050)

256 ^ iEHLi
VHLi

.9625
(.7555)
(.3101)

.9675
(.8116)
(.3562)

.9675
(.8116)
(.3562)

.9700
(.2044)
(.0060)

.9725
(.1712)
(.0020)

512
CVRi
EHLi
VHLi

.9600
(.4745)
(.1267)

.9475
(.4941)
(.1540)

.9475
(.4941)
(.1540)

.9550
(.1208)
(.0015)

.9600
(.1110)
(.0009)
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T A B L E  D4
AR(1) ; Performance of confidence
estimated MB-parameter values

Interval methods at the

^0.4074

Number of replications : 400

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64 EHLi
VHLi

.9475
(2.1282)
(2.6297)

.9500
(2.0993)
(2.4481)

.9500
(2.0962)
(2.4602)

.9675
(.4916)
(.0209)

.9400
(.4543)
(.0313)

128 ^ 1EHLi
VHLi

.9675
(1.4719)
(1.3097)

.9525
(1.4784)
(1.2276)

.9525
(1.4692)
(1.2256)

.9650
(.3282)
(.0073)

.9550
(.3247)
(.0135)

256 ^ iEHLi
VHLi

.9400
(1.0039)
(.6539)

.9475
(.9572)
(.4953)

.9475
(.9536)
(.4954)

.9675
(.2218)
(.0020)

.9325
(.2178)
(.0049)

512 EHLi
VHLi

.9525
(.7223)
(.2835)

.9225
(.6741)
(.2582)

.9225
(.6741)
(.2582)

.9625
(.1514)
(.0007)

.9525
(.1509)
(.0016)

.99

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64
^ R i
M L i
VHLi

.8800
(23.336)
(295.09)

.8950
(25.618)
(336.34)

.8950
(25.618)
(336.34)

.7100
(8.5993)
(27.408)

.3175
(2.5867)
(1.7382)

128 ^ iEHLi
VHLi

.9075
(29.411)
(449.84)

.9050
(31.945)
(528.99)

.9050
(31.945)
(528.99)

.8175
(10.103)
(32.710)

.5200
(3.8392)
(3.5615)

256
^ R i
EHLi
VHLi

.9425
(32.727)
(548.32)

.9400
(33.693)
(620.93)

.9400
(33.693)
(620.93)

.8750
(9.9538)
(28.011)

.6700
(4.8010)
(5.5013)

512
CVRi
EHLi
VHLi

.9375
(30.726)
(569.32)

.9450
(30.822)
(550.47)

.9450
(30.822)
(550.47)

.8900
(8.5467)
(18.633)

.7400
(5.3260)
(6.5624)
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T A B L E  D5
M/M/1 : Performance of confidence interval
estimated MB-parameter values

methods at the

t - 0 . 2 0

Number of replications : 400

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64
^ 1
EHLi
VHLi

.9275
(.2354)
(.0565)

.9125
(.2102)
(.0617)

.9125
(.2102)
(.0617)

.8375
(.0528)
(.0019)

.8100
(.0491)
(.0016)

128 ^ 1HJLi
VHLi

.9500
(.1963)
(.0331)

.9400
(.1829)
(.0329)

.9400
(.1829)
(.0329)

.8800
(.0407)
(.0007)

.8625
(.0397)
(.0008)

256 EHLi
VHLi

.9350
(.1320)
(.0137)

.9250
(.1301)
(.0133)

.9250
(.1301)
(.0133)

.8825
(.0282)
(.0002)

.8775
(.0285)
(.0003)

512 % 1EHLi
VHLi

.9375
(.1046)
(.0074)

.9350
(.1019)
(.0075)

.9350
(.1019)
(.0075)

.9025
(.0208)
(.0001)

.8850
(.0211)
(.0001)

T-0.80

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64 EHLi
VHLi

.8950
(14.527)
(204.93)

.8950
(15.158)
(238.11)

.8950
(15.158)
(238.11)

.7450
(4.8010)
(16.767)

.5375
(2.0271)
(2.1502)

128 CTLi
VHLi

.8875
(14.065)
(228.74)

.8775
(14.524)
(242.62)

.8775
(14.524)
(242.62)

.7750
(4.2268)
(14.728)

.6375
(2.3432)
(3.3924)

256 EHLi
VHLi

.8975
(13.948)
(301.39)

.9000
(13.923)
(287.86)

.9000
(13.923)
(287.86)

.7825
(3.6261)
(15.774)

.6775
(2.4054)
(4.5855)

512 ^ iEHLi
VHLi

.9200
(11.359)
(145.47)

.9350
(11.417)
(163.33)

.9350
(11.417)
(163.33)

.8150
(2.7441)
(7.3729)

.7575
(2.1615)
(2.8973)
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T A B L E  D6
AR(2) : Performance of confidence Interval
estimated MB-parameter values

methods at the

Number of replications : 400

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64 % iEHLi
VHLi

.9350
(1.6763)
(1.7600)

.9650
(1.7801)
(1.8481)

.9625
(1.3363)
(1.7483)

.9475
(.4281)
(.0201)

.9325
(.3871)
(.0138)

128 ^ iEHLi
VHLi

.9500
(1.1663)
(.8297)

.9575
(1.1966)
(.8215)

.9650
(1.0509)
(.7968)

.9725
(.2733)
(.0060)

.9675
(.2580)
(.0051)

256 ^ iEHLi
VHLi

.9600
(.7997)
(.3372)

.9500
(.8442)
(.4025)

.9550
(.8174)
(.4080)

.9600
(.1793)
(.0018)

.9550
(.1721)
(.0020)

512 % iEHLi
VHLi

.9675
(.5381)
(.1707)

.9650
(.5662)
(.1723)

.9650
(.5544)
(.1739)

.9575
(.1222)
(.0006)

.9375
(.1188)
(.0007)

^Y-0.99 , {p2"’~0.90

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64 EHLi
VHLi

.9400
(1.6683)
(1.7691)

.9175
(1.7436)
(1.8640)

.9175
(1.7395)
(1.8645)

.9525
(.6790)
(.1259)

.9775
(.4117)
(.0102)

128
CTRi
EHLi
VHLi

.9650
(1.1197)
(.6449)

.9500
(1.1103)
(.7359)

.9500
(1.1103)
(.7359)

.9625
(.3316)
(.0213)

.9750
(.2629)
(.0025)

256
CVRi
EHLi
VHLi

.-9625
(.7555)
(.3101)

.9675
(.8116)
(.3562)

.9675
(.8116)
(.3562)

.9650
(.1973)
(.0054)

.9725
(.1712)
(.0021)

512
^ R i
EHLi
VHLi

.9600
(.4775)
(.1267)

.9475
(.4941)
(.1540)

.9475
(.4941)
(.1540)

.9425
(.1187)
(.0014)

.9575
(.1111)
(.0009)
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T A B L E  D7
Interactive Computer Model : Performance of confidence interval
methods at the estimated MB-parameter values

Number of replications : 400

Nominal Confidence Level : 90%

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64
^ 1
EHLi
VHLi

.5700
(4.3116)
(18.357)

.5875
(4.7957)
(21.907)

.5875
(4.7957)
(21.907)

.3850
(1.8702)
(2.1998)

.2125
(.9560)
(.5297)

128 ItJLi
VHLi

.7200
(5.4093)
(23.853)

.7325
(5.6435)
(25.204)

.7325
(5.6435)
(25.204)

.5275
(1.9360)
(1.7323)

.3825
(1.2921)
(.8138)

256 ^ 1EHLi
VHLi

.7925
(5.8557)
(27.263)

.7975
(6.0207)
(28.168)

.7975
(6.0207)
(28.168)

.6300
(1.8500)
(1.1678)

.5425
(1.4949)
(.9163)

512 ^ iEHLi
VHLi

.8400
(4.7457)
(16.897)

.8050
(4.7872)
(18.029)

.8050
(4.7872)
(18.029)

.7000
(1.5491)
(.5532)

.6800
(1.4265)
(.6294)

Nominal Confidence Level : 95%

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64 EHLi
VHLi

.7425
(8.6779)
(74.362)

.7725
(9.6520)
(88.741)

.7725
(9.6520)
(88.741)

.4700
(2.5820)
(4.2291)

.2725
(1.3011)
(.9809)

128 EHLi
VHLi

.8375
(10.887)
(96.625)

.8400
(11.359)
(102.10)

.8400
(11.359)
(102.10)

.6000
(2.5751)
(3.1063)

.4750
(1.7438)
(1.4824)

256 % iEHLi
VHLi

.-8850
(11.786)
(110.44)

.8875
(12.118)
(114.04)

.8875
(12.118)
(114.04)

.7150
(2.3842)
(1.9607)

.6250
(1.9968)
(1.6378)

512 EHLi
VHLi

.8950
(9.5514)
(68.448)

.8975
(9.6351)
(73.032)

.8975
(9.6351)
(73.032)

.7675
(1.9491)
(.8837)

.7325
(1.8789)
(1.0957)
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T A B L E  D8
Time-shared Computer Model : Performance of confidence
methods at the estimated MB-parameter values

interval

Number of replications : 300

Nominal Confidence Level : 90%

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64 ^ 1mLi
VHLi

.7733
(7.5635)
(43.315)

.8300
(8.3835)
(42.497)

.8300
(8.3835)
(42.497)

.6100
(2.6602)
(2.4630)

.5100
(1.0307)
(1.0884)

128
g R l
EHLi
VHLi

.8400
(8.1783)
(42.226)

.8600
(8.4234)
(45.781)

.8600
(8.4234)
(45.781)

.6033
(2.2315)
(1.7993)

.5867
(2.0179)
(1.3023)

256 ^ iEHLi
VHLi

.8567
(6.9432)
(27.787)

.8633
(6.7511)
(27.059)

.8633
(6.7511)
(27.059)

.6200
(1.9025)
(.8015)

.6467
(1.9643)
(.9071)

512 ^ iEHLi
VHLi

.8767
(5.2678)
(16.796)

.8867
(5.3650)
(15.653)

.8867
(5.3650)
(15.653)

.6500
(1.5394)
(.3886)

.7000
(1.6417)
(.4805)

Nominal Confidence Level : 95%

n Statist.
Criteria

NOBM AREA Combined 
NOBM-AREA

SPEC OVBM

64 EHLi
VHLi

.9000
(15.223)
(175.46)

.9100
(16.873)
(172.15)

.9100
(16.873)
(172.15)

.6933
(3.4727)
(4.5516)

.6433
(2.7006)
(1.9701)

128
^ R i
EHLi
VHLi

.9133
(16.460)
(171.05)

.9200
(16.954)
(185.45)

.9200
(16.954)
(185.45)

.6767
(2.8384)
(3.1052)

.6900
(2.6469)
(2.3369)

256 ^ R iEHLi
VHLi

.'9300
(13.974)
(112.56)

.9067
(13.588)
(109.61)

.9067
(13.588)
(109.61)

.7067
(2.3712)
(1.3170)

.7533
(2.5359)
(1.5962)

512 EHLi
VHLi

.9133
(10.602)
(68.039)

.9433
(10.798)
(63.410)

.9433
(10.798)
(63.410)

.7233
(1.8912)
(.6155)

.7600
(2.0842)
(.8272)
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T A B L E  El
Optimum performance of confidence interval methodsAR(1)

Number of Replications : 400 

ip — 0.4074

0.025

n Methods 6-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.8923

.9364

.8848

.5835

.4253

.6778

.6662

.6387

.0788

.0209

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.5603

.6658

.5595

.4139

.3055

.2703

.3334

.2545

.0366

.0114

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.3555

.4056

.3463

.3166

.2094

.1138

.1095

.0862

.0232

.0031

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.2367

.2633

.2298

.2143

.1534

.0422

.0474

.0384

.0108

.0012

ip — 0.7778

n Methods e- ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

5.442
3.415
1.514

14.488
7.418
.450

.9200

.8850

3.302

1.042

8.757

.222

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.938
2.667
1.943
.972
.790

.120
4.422
2.870
.119
.077

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

1.180
1.232
1.160
.776
.572

1.092
1.094
1.038
.107
.040

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.826
1.011
.962
.597
.387

.476

.688

.656

.071

.009
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T A B L E El (Cont..)

0.9630

n Methods e-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

17.50
18.04
18.04 
11.95

157.50
181.13
181.13 
55.96

.6325 2.72 1.99

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

16.15
16.46
16.46 
8.35

161.39
173.48
173.48 
25.71

.7300 2.83 1.98

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

14.40
15.25
15.25 
6.22

135.59
138.17
138.17 
12.08

.8150 2.79 1.85

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

7.56
7.94
7.51
3.68

40.66
41.04
39.69
2.98

.9025 2.42 1.14

(p — 0.99

n Methods e-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

32.57 465.46

.8800

.8950

.8950

.3850

23.34
25.62
25.62

3.27

295.09
336.34
336.34

3.33

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

24.71 234.80

.9075

.9050

.9050

.5675

29.41
31.95
31.95

4.43

449.84
528.99
528.99

5.09

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

32.73
33.69
33.69 
22.35

548.32
620.93
620.93 
203.37

.7075 5.26 6.63

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

30.73
30.82
30.82 
12.99

569.32
550.47
550.47 
52.80

.7875 5.57 7.10
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T A B L E  E2
AR(1) : Parameter values for optimum performance of the confidence
Interval methods

Number of Replications ; 400 , €-0.025

ip — 0.4074 , Nominal Confidence Level : 90%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2,16 1,2,4,8 1,2,4,8 3-7 4-31

128 4,8,32 1,2,4,8, 
16

1,4,16 3,4,53,56,58,
59-61,66,67

4-48

256 2,4,8,16,
32

1,2,4,8, 
16

1,2,4,8, 
16,32

5-163 6-50,
63-65

512 2,8,16,
32,64,128

1,2,4,8, 
16,32

1,2,4,8, 
16,32,64

4-23,32-45,63-94,
113-126,132-155,
166-170,211,
216-232

4-216

ip - 0.7778 , Nominal Confidence Level : 90%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2 1 1 21-39,41 22

128 2,4,8 1,2 1,2 15-32 22-30,33,36-39

256 2,8,16 1,2 1,4,8 13-24,50-54,
62-95

20-59,71-74,
79,80

512 2,8,16 1,2,4 1,2,4 21-352 32,33,37-45,52

ip - 0.9630 , Nominal Confidence Level : 90%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2 1 1 55-57 24,25

128 2 1 1 95-104 55

256 2 1 1 133-188 78-84,88

512 2,4 2 1 146-231 118-125

p - 0.99 , Nominal Confidence Level : 90%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2 1 1 60-62 24,25

128 2 1 1 111-118 59,67,68

256 2 1 1 191-212 99

512 2 1 1 294-396 234-239
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Appendix E

ip — 0.4074 , Nominal Confidence Level : 95%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2,4,8,16 1,2,4,8 1,2,4,8 3-24,26-40 3-30,32-34

128 2.4,8,
16,32

1,2,4,16 1,2,4,8, 
16

3-82 3-71,74

256 2,4,8,16,
32,64

1,2,4,8, 
16

1,2,4,8, 
16,32

3-198 4-67,70,73,
74,76-80

512 2,4,8,16
32,64,128

1 ,2,4,8, 
16,32

1,2,4,8, 
16,32,64

4-343,360
363-384

5-243,
250-258

— 0.7778 , Nominal Confidence Level : 95%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2,4 1 1,2 17-35,38 25

128 4,8 1.2 1,2,4 11-60 18-45

256 2,4,8,16 1 ,2,4,8 1,2,4,8 11-24,26-160 13-121,143

512 2,4,8,16 1,2,8 1,2,4 20-369 28-46,71-95,
97,98,173

{p — 0.9630 , Nominal Confidence Level : 95%
n N O B M AREA N O B M -AREA SPEC O V B M

64 2 1 1 49-57 27,28

128 2 1 1 81-105 55-60

256 2 1 1 124-194 97

512 2,4 1.2 1,2 115-335 161-165,170-173

p - 0.99 , Nominal Confidence Level : 95%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2 1 1 59-62 27,28

128 2 1 1 106-117 55-58

256 2 1 1 168-242 107,114-119

512 2 1 1 260-395 184-190
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T A B L E  E3
Optimum performance of confidence interval methodsM/M/1

Number of Replications : 400 

T - 0.20

€ - 0.025

n Methods c-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.2354

.1917

.0565

.0085

.9125

.9125

.8150

.2102

.2102

.0472

.0617

.0617

.0014

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.1963

.1829

.1829

.0829

.0331

.0329

.0329

.0043
.8675 .0394 .0007

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.1320

.1301

.1301

.0738

.0138

.0133

.0133

.0027
.8825 .0293 .0003

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.0522

.0693

.0654

.0370

.0227

.0026

.0041

.0038

.0006

.0001

T - 0.50

n Methods e-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

1.966 2.643

.9200

.9200

.9200

.7525

2.485
2.409
2.409

.468

7.415
7.488
7.487

.149

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

2.101
2.063
2.063 
1.481

4.179
3.781
3.782 
.890

.8225 .416 .103

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

1.571
1.537
1.537 
1.005

2.346
2.122
2.122
.504

.8625 .299 .040

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

1.056
.707

1.004
.481

1.101
.487
.890
.164

.8900 .235 .024
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T A B L E  E3 (Cont...)

T — 0.80

n Methods c-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

17.29 249.76

.8950

.8950

.8950

.5850

14.53
15.16
15.16

2.36

204.93
238.11
238.11

2.93

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

19.16 374.89

.8875

.8775

.8775

.6525

14.07
14.52
14.52

2.46

228.74
242.62
242.52

3.80

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

13.70 239.54

.8975

.9000

.9000

.6975

13.95
13.92
13.92

2.47

301.39
287.86
287.86

4.99

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

11.42
11.42 
7.39

163.33
163.33 
150.70

.9200

.7700

11.36

2.15

145.47

2.94

T - 0.90

n Methods e-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

35.64 788.1

.7975

.8050

.8050

.3425

21.79
23.33
23.33

3.35

366.6
418.5
418.5

4.3

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

39.27 2393.6

.8100

.8325

.8325

.4400

26.14
27.98
27.98

4.05

668.6
779.6
779.6

8.3

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

46.43 1637.4

.8775

.8475

.8475

.5275

30.41
31.47
31.47

4.99

832.3
937.5
937.5

12.5

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

33.16

39.75

1136.8

1455.5

.8850

.8850

.5600

32.52
32.52

4.27

1197.4
1197.4

20.21
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T A B L E  E4
M/M/1 : Parameter values for optimum performance of the confidence
interval methods

Number of Replications : 400 , c — 0.025

T - 0.20 , Nominal Confidence Level ; 90%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2 1 1 48-58 10

128 2 1 1 69-105 18,19

256 2 2 1 142-201 13,47,48,50

512 2 1 1,2 121-371 27

0.50 Nominal Confidence Level : 90%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2 1 1 54-57 20

128 2 1 1 91-109 35-37

256 2.4 1 1 170-216 32,33,46-48

512 2 1.2 2 244-396 71-75,149-154

T - 0.80 Nominal Confidence Level ; 90%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2 1 1 59-61 22

128 2 1 1 116-121 36,37,42,51-54

256 2 1 1 218-239 90,91,94-100

512 2 1 1 384-454 127,128

0.90 Nominal Confidence Level : 90%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2 1 1 62 18-20,23,24

128 2 -1 1 124,125 56
256 2 1 1 239-249 100,108-112
512 2 1 1 469-493 176-189
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T A B L E  E4 (Cont...)

0.20 . Nominal Confidence Level : 95%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2 1 1 51-60 15,16

128 2 1 1 67-100 34,35

256 2 1 1 149,153-223 70-72

512 2,4,8 1,2 1.2 105-409 156-165,167-171,
173,174

T — 0.50 Nominal Confidence Level : 95%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2 1 1 51-59 18-19

128 2 1 1 92-118 45,46

256 2 1 1 166-237 38-40,47,77,78

512 2 1,2 1 265-412 162,163

T "" 0.80 Nominal Confidence Level : 95%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2 1 1 58-61 23,24

128 2 1 1 112-126 42,43

256 2 1 1 215-245 74,77,78,82-90

512 2 1 1 365-455 162,165

T - 0.90 Nominal Confidence Level : 95%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2 1 1 61,62 23,25-27

128 2 1 1 123-126 48-51
256 2 1 1 238-250 83,87-90,94-96,

112-115

512 2 1 1 463-493 185,186,201,202,
214-218
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T A B L E  E5
AR(2) : Optimum performance of confidence interval methods

Number of replications : 400 , e - 0.025

iPy - 0.75

n Methods 6-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.8683

.9885

.6907

.5801

.3824

.6053

.6686

.3836

.0731

.0112

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.7570 

. 6644 

.5150 

.3578 

.2558

.4253

.2987

.2129

.0309

.0074

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.3513

.4610

.3238

.2622

.1760

.0877

.1470

.0836

.0166

.0030

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.2166

.2400

.2049

.1598

.1211

.0354

.0382

.0299

.0045

.0009

V?, - 0.99

n Methods 6-ideal perfor. best performance
IMHL lAVHL BCVR BMHL BVHL

64

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

1.1390
.7903
.5704
.5460
.3894

.9183

.1618

.0564

.0672

.0129

128

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.7297

.7849

.7259

.3061

.2445

.3325

.3988

.3792

.0181

.0046

256

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.4884

.4433

.4074

.1742

.1621

.1597

.1298

.1227

.0031

.0021

512

NOBM 
AREA 

NOBM-AREA 
SPEC 
OVBM

.2475

.3514

.2550

.1475

.1075

.0438

.0824

.0528

.0049

.0009
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T A B L E  E6
AR(2) : Parameter values for optimum performance of the confidence
interval methods

Number of replications : 400 , e-0.025

- 0.75 , Nominal Confidence Level : 90%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2.4,8 1.2,4 1.2,4,32 7-40 5-27

128 2.4 1.2 1,64 20-24 12-61

256 2.4 1.2.4 1,2,4,128 33-36,40,51-80,
85,87-99,
118-133,139

36-109

512 2.4,8 1,2.4,
8

1 .2.4,8, 
256

15-316 16-102,108,
109-125,134,
135-137

p, - 0.75 , Nominal Confidence Level : 95%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2.4,8 1.2,4 1.2,4,8, 

32
2,7-50 2,4-28

128 2.4 1.2,4 1.2,4,64 13,18-26,28-30,
47-50,87-92

16,17,20-76

256 2,4,8,16 1,2,4 1,2,4,8, 
128

9-196 11-131,
139-141,143

512 2,4,8,16
32

1.2,4,
8,16

1 .2,4,8, 
16,256

8-340 6-174

p, — 0.99 , Nominal Confidence Level : 90%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2 1 1 10,12,16-33 6,24,25,29-32,

34-41

128 4 1.2 1.2 9,13-64 24,30,36,37,
42-45,47-72,75

256 2 1 ' 1 9,13-15,19-21,
26,29,31,32,
45-47,54-65,
68-73

74,79,80,84,86,
87,90-139,
141-145

512 2.4 2 2 9,13-15,19-75,
78-273,275-277

55,71-74,
76-200,202,203
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T A B L E  E6 (Cont...)

p, — 0.99 , Nominal Confidence Level : 95%
n NOBM AREA NOBM-AREA SPEC OVBM
64 2,4 2 2 10-12,15-35,

38-40,42-48
6,12,13,19,

30-33,35-47,51

128 2.4 1,2 1,2 9-86 6,12,18,19,24,
25,30-32,37,52,
53-88,92,93

256 2,4 1,2,4 1,2,4 9,13-112 25,31,32,36,
37-173,177,178,
183,184,186,
187,189,191-192

512 2,4,8 1,2 1.2,8 9,12-328,358,
359,367-374,
399-417

49,55-57,
60-278,284,285,
290-298,300,
301,304-319,
321,322,328,329
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T A B L E  E7
Inventory Model : Parameter values for optimum performance of the
confidence interval methods

Number of replications : 400 

Nominal Confidence Level ; 90%

c - 0.025

n NOBM AREA NOBM-AREA SPEC OVBM

64 2 1 1 9,11-20 46,48,50,52,55,
59,63

128 2 1 1 8-50 78-95,97,99,101

256 2 1 1 81-88 147,149,150,152,
153-169,171,173,
175,179

512 2,4 1.2 1,2 95-245 196,198,200,202,
203-286,288,290,
292

Nominal Confidence Level : 95%

n NOBM AREA NOBM-AREA SPEC OVBM

64 2 1 1 5-24 40,42,44,46-54

128 2 1,2 1 5-52,54,
59-61

77,79-113,119,121,
123,125,127

256 2 1,2 1,2 5,8-10,13,
14-16,73,
74-90,95,
96-177

141,149,154,155, 
157,159-211,213, 
215,217,219,,221, 
223

512 2,4 1,2 1,2 7,9,17-346 80,82,84,86,88,90,
92,94,96-109,111,
112-140,150,152,
154,156,158,160,
162-164,166,168,
170-358,360
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T A B L E  E8
Interactive Computer Model: Parameter values
performance of the confidence interval methods

for optimum

Number of replications : 400 

Nominal Confidence Level : 90%

6-0.025

n NOBM AREA NOBM-AREA SPEC OVBM

64 2 1 1 63 24,26-29

128 2 1 1 121-124 50-52

256 2 1 1 226-237 93,94

512 2 1 1 397-459 163-170,175-178

Nominal Confidence Level : 95%

n NOBM AREA NOBM-AREA SPEC OVBM

64 2 1 1 63 26

128 2 1 1 120-125 42-44

256 2 1 1 211-245 64,65,68-74,
78-80

512 2 1 1 370-469 153-156
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T A B L E  E9
Time-shared Computer Model:Parameter values
performance of the confidence interval methods

Appendix E 

for optimum

Number of replications : 400 

Nominal Confidence Level : 90%

6—0.025

n NOBM AREA NOBM-AREA SPEC OVBM

64 2 1 1 55-58 15

128 2 1 1 100-113 42,43,55

256 2 1 1 176-212 84

512 2 1 1 350-430 140-146

Nominal Confidence Level : 95%

n NOBM AREA NOBM-AREA SPEC OVBM

64 2 1 1 52-58 21

128 2 1 1 98-114 44,45

256 2 1 1 154-206 86-98

512 2 1 1 268-470 113
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T A B L E  ElO
The performance of Classical Confidence Interval estimator In the 
Inventory Model, the Interactive Computer Model and the 
Time—shared Computer Model

Nominal Confidence Level : 90%

n Criteria Inventory
Model

Interactive 
Computer Model

Time-shared 
Computer Model

64
^ C L 1.0000 

(21.7504) 
( 0.0919)

0.2500
(1.0314)
(1.3458)

0.4667
(1.6870)
(0.3125)

128
^ C L 1.0000 

(15.3235) 
( 0.0238)

0.0475
(0.2634)
(0.0357)

0.3500
(1.2256)
(0.1124)

256
^ C L 1.0000 

(10.8128) 
( 0.0063)

0.0400
(0.2225)
(0.0228)

0.2367
(0.8977)
(0.0344)

512
^ C L 0.9967

(7.6407)
(0.0014)

0.0250
(0.1724)
(0.0122)

0.1533
(0.6421)
(0.0116)

Nominal Confidence Level : 95%

n Criteria Inventory
Model

Interactive 
Computer Model

Time-shared 
Computer Model

64
™ C L 1.0000 

(25.9944) 
( 0.1306)

0.2950
(1.2359)
(1.9223)

0.5333
(2.0162)
(0.4464)

128
™ C L 1.0000 

(18.3134) 
( 0.0341)

0.0550
(0.3148)
(0.0511)

0.4133
(1.4647)
(0.1606)

256
™ C L 1.0000 

(12.9226) 
( 0.0087)

0.0450
(0.2659)
(0.0326)

0.2933
(1.0729)
(0.0491)

512
™ C L

™ ^ C L

1.0000
(9.1316)
(0.0020)

0.0350
(0.2061)
(0.0174)

0.1900
(0.7674)
(0.0166)
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