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Abstract 

This thesis provides a new geometric-combinatorial construction to characterise the 

Nash equilibria of a non-degenerate bimatrix game and their indices. Considering a 

non-degenerate m x n bimatrix game, the construction yields an (m — 1)-simplex X^ 

that is simplicially divided into (m — l)-simplices, reflecting the best reply structure of 

player II. Each (m — 1)-simplex in the triangulation is divided into best reply regions 

of player I. This yields a division of XA into regions with labels 1,..., m. 

In this representation, the Nash equilibria are represented by completely labelled 

points, and the index is the local orientation of the m regions around completely la-

belled points. For a missing label of player I, the Lemke-Howson algorithm follows 

paths in XA that are defined by m — 1 labels of player I. 

This representation of bimatrix games is shown to be related to Sperner's Lemma 

in dimension m — 1. In particular, the existence of Nash equilibria in non-degenerate 

bimatrix games is equivalent to Brouwer's fixed point theorem. 

The construction yields a new strategic characterisation of the index, conjectured 

by Hofbauer (2000). It is shown that a Nash equilibrium in a non-degenerate bimatrix 

game has index +1 if and only if one can add strategies to the game such that the 

equilibrium is the unique equilibrium of the extended game. 

The construction can be extended to outside option equilibrium components in 

bimatrix games. The characterisation for such components is shown to be similar to the 

well-known Index Lemma. As a consequence, index zero boundary labellings allow 

triangulations that do not contain a completely labelled simplex. The game theoretic 

counterpart applies to outside option equilibrium components. It is shown that an 

outside option equilibrium component is hyperessential if and only if it has non-zero 

index. This question had been open for some time. 

It is also shown how equilibrium components of arbitrary index can be constructed 

by means of outside options in bimatrix games. 
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Introduction 

Since Shapley (1974) introduced the index for equilibria, its importance in the context 

of game theory has been increasingly appreciated. For example, index theoiy can be 

a usefiil tool with regards to strategie characterisations of equilibria and equilibrium 

components. Demichelis and Ritzberger (2003) show that an equilibrium component 

can only be evolutionary stable if its index equals its Euler characteristic. At the same 

time, most of the existing literature on the index is technicaily demanding, and the 

amount of algebraic topology required is substantial. As a conséquence, this literature 

is difficult to access for most economists and other applied game theorists. 

The contribution of this thesis can be divided into two parts. The first part concerns 

methods and techniques. By introducing a new geometric-combinatorial construction 

for bimatrix games, this thesis gives a new, intuitive re-interpretation of the index. This 

re-interpretation is to a large extent self-contained and does not require a background 

in algebraic topology. The second part of this thesis concerns the relationship between 

the index and strategie properties. In this context, the thesis provides two new results, 

both of which are obtained by means of the new construction and are explained in 

further detail below. The first resuit shows that, in non-degenerate bimatrix games, the 

index can fully be described by a simple strategie property. It is shown that the index 

of an equilibrium is +1 if and only if one can add stratégies with new payoffs to the 

game such that the equilibrium remains the unique equilibrium of the extended game. 

The second resuit shows that the index can be used to describe a stability property 

of equilibrium components. For outside option components in bimatrix games, it is 

shown that such a component is hyperessential if and only if it has non-zero index. 

The new geometric-combinatorial construction, which is referred to as the dual 

construction, can be described as follows. For an mxn bimatrix game, the construction 

translates the combinatorial structure of the best reply régions for both players into an 

(m — 1)-simplex that is divided into simplices and labelled régions (see, for example, 

Figure 2.6 below). The simplices in the division account for the best reply structure 

of player II. The simplices themselves are divided into best reply régions for player I, 

accounting for the best reply structure of player I. 
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In this representation of bimatrix games, the Nash equilibria are represented by 

points that are completely labelled with all pure strategies of player I. Earlier con-

structions required the use of all pure strategies of both players as labels. The index 

is simply the local orientation of the labels around a completely labelled point (Fig-

ure 2.11). The Lemke-Howson algorithm, which builds the foundation for Shapley's 

original index definition, can be re-interpreted as a path-following algorithm in the new 

construction (Figure 2.8). Since the new construction is of dimension m — 1, both the 

index and the Lemke-Howson algorithm can be visualised in dimension at most 3 for 

every m x n bimatrix game with m < 4. 

But the construction does not merely yield an intuitive re-interpretation of the index 

and the Lemke-Howson algorithm. More significantly, it can disclose relationships 

between the index and strategic properties. In this context, this thesis provides, as 

mentioned, two new results. 

As for the first result, it is shown that the index of an equilibrium is +1 if and only 

if it is the unique equilibrium of an extended game. The result proves a conjecture by 

Hofbauer (2000) in the context of equilibrium refinement. The proof is based on the 

idea that one can divide an (m— 1)-simplex such that there exists only one completely 

labelled point which represents the index -hi equilibrium (Figure 4.7). Then such a 

division can be achieved as the dual construction of an extended game where strategies 

for player II are added (Figure 4.8). 

The second result solves, for a special case, a problem that was open for some 

time. This problem addresses the question whether and how topological essential-

ity and game theoretic essentiality (Wu and Jiang (1962); Jiang (1963)) are related. 

Govindan and Wilson (1997b) argue that the resolution of this problem is highly rele-

vant with respect to axiomatic studies: Imposing topological essentiality as an axiom 

in a decision-theoretic agenda is questionable if there is a gap between topological and 

strategic essentiality. Hauk and Hurkens (2002) construct a game with an outside op-

tion equilibrium component that has index zero but is essential. This demonstrates that 

topological essentiality is not equivalent to strategic essentiality. However, their exam-

ple fails the requirement of hyperessentiality, i.e. the component is not essential in all 

equivalent games (Kohlberg and Mertens (1986)). The follow-up question is whether 

hyperessentiality is the game theoretic counterpart of topological essentiality. In this 
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thesis, it is shown that this is the case for outside option equilibrium components in 

bimatrix games. That is, an outside option equilibrium component in a bimatrix game 

is hyperessential if and only if it has non-zero index. The proof is based on creat-

ing équivalent games by duplicating the outside option. An example presented in this 

thesis shows that one can create an outside option equilibrium component that has in-

dex zero and is essential in ail équivalent games that do not contain duplicates of the 

outside option. However, it can be shown that the component fails the requirement of 

hyperessentiality if allowing duplicates of the outside option. 

The proof of this resuit employs the combinatorial nature of the index for compo-

nents of equilibria. In the framework of the dual construction, the index for compo-

nents of equilibria is defined by a combinatorial division of a boundary into labelled 

best reply régions. This re-interpretation of the index for components is very similar to 

the index in the framework of the Index Lemma, a généralisation of Sperner's Lemma. 

For labellings as in the Index Lemma it is shown that, if the index of a boundary 

triangulation is zero, then there exists a labelled triangulation such that the triangula-

tion does not contain a completely labelled simplex. The proof extends an index-zero 

boundary division of a polytope into labelled régions such that no point in the interior 

of the polytope is completely labelled. This extension is then translated into a triangu-

lation (Figure 6.2). The proof for outside option components works similarly. Given an 

index-zero component, the dual of the component can be divided into labelled régions 

such that no point is completely labelled. It is then shown that such a division can be 

achieved as the dual construction of an équivalent game in which the outside option is 

duplicated and perturbed (Figure 6.10). 

The concept of essentiality is strongly influenced by the theory of fixed points and 

essential fixed point components (Fort, 1950). In a parallel and independent work, 

Govindan and Wilson (2004) show that, for general iV-player games and general equi-

librium components, a component has non-zero index if and only if it is hyperessential. 

Their proof is based on a well-known resuit from fixed point theory that shows that a 

fixed point component is essential if and only if it has non-zero index (O'Neill, 1953). 

Their proof is technically very demanding. In contrast, the proof presented here for the 

special case provides a geometrie intuition and does not require a knowledge of fixed 

point theory. 
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There is, however, a link between the combinatorial approach of this thesis and 

fixed point theory. This link is established via Sperner's Lemma (Sperner, 1928). The 

representation of bimatrix games in form of the dual construction reveals strong analo-

gies with Sperner's Lemma. Sperner's Lemma is a classical result from combinatorial 

topology and is equivalent to Brouwer's fixed point theorem. Using the parallels of 

the dual construction with Sperner's Lemma it is shown that the existence of Nash 

equilibria in a non-degenerate bimatrix game is equivalent to Brouwer's fixed point 

theorem. On a similar topic, McLennan and Tourky (2004) derive Kakutani's fixed 

point theorem using the Lemke-Howson algorithm. 

An additional result of this thesis, which does not involve the dual construction, 

is the construction of equilibrium components with arbitrary index. It is shown that 

for every integer q there exists a bimatrix game with an outside option equilibrium 

component that has index q. The construction is purely based on the properties of the 

index, and does not require knowledge of algebraic topology. This result originates 

from Govindan, von Schemde and von Stengel (2003). 

The structure of this thesis is as follows. Chapter 1 introduces notations and con-

ventions used throughout this work (Section 1.1). Sections 1.2 and 1.3 contain reviews 

of the Lemke-Howson algorithm and index theory. Section 1.4 shows how equilib-

rium components of arbitrary index can be constructed. Chapter 2 introduces the dual 

construction (Sections 2.1 and 2.2) and gives a re-interpretation of the index and the 

Lemke-Howson algorithm (Sections 2.3 and 2.4). Chapter 3 describes the parallels 

between the dual construction, Spemer's Lemma, and Brouwer's fixed point theorem. 

In Chapter 4, it is shown that the index for non-degenerate bimatrix games can be fully 

described by a strategic property. In Chapter 5, the dual construction is extended to 

outside option equilibrium components (Section 5.2). It also contains a review of the 

Index Lemma (Section 5.1). Finally, Chapter 6 investigates the relationship between 

the index and hyperessentiality. Section 6.1 considers index-zero labellings in the con-

text of the Index Lemma. In Section 6.2, it is shown that an outside option equilibrium 

component is hyperessential if and only if it has non-zero index. A list of symbols is 

given at the end. Proofs and constructions are illustrated by figures throughout this 

work. 
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Chapter 1 

Equilibrium Components with 

Arbitrary Index 

This chapter describes a method of constructing equilibrium components of arbitrary 

index by using outside options in bimatrix games. It is shown that for every inte-

ger q there exists a bimatrix game with an outside option equilibrium component that 

has index q. The construction is similar to the one used in Govindan, von Schemde 

and von Stengel (2003). That paper also shows that ¿/-stable sets violate a symmetry 

property which the authors refer to as the weak symmetry axiom. The construction of 

equilibrium components of arbitrary index is the main result of this chapter. 

The structure of this chapter is as follows. Section 1.1 introduces notational con-

ventions and definitions that are used throughout this work. Section 1.2 gives a brief 

review of the classical Lemke-Howson algorithm that finds at least one equilibrium in a 

non-degenerate bimatrix game. Although the Lemke-Howson algorithm does not play 

a role in the construction of equilibrium components of arbitrary index, it can be used in 

the index theory for non-degenerate bimatrix games. Shapley (1974) shows that equi-

libria at the ends of a Lemke-Howson path have opposite indices. The Lemke-Howson 

algorithm also plays an important role in subsequent chapters when it is interpreted in 

a new geometric-combinatorial construction (see Chapters 2 and 3). Section 1.3 re-

views the concept of index for Nash equilibria in both non-degenerate bimatrix games 

and general N-player games. Using basic properties of the index for components of 

Nash equilibria, Section 1.4 shows how equilibrium components of arbitrary index can 
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be constructed as outside options in bimatrix games. It is shown that for every inte-

ger q there exists a bimatrix game with an equilibrium component that has index q 

(Proposition 1.6). 

1.1 Preliminaries 

The following notations and conventions are used throughout this work. The 

^-dimensionai real space is denoted as R*, with vectors as column vectors. An m x n 

bimatrix game is represented by two m x n payoff matrices A and B, where the entries 

Aij and Bij denote the payoffs for player I and player II in the z-th row and y-th column 

of A and B. The set of pure stratégies of player I is denoted by / = {1,..., m}, and the 

set of pure stratégies of player II is represented by N = {1,..., n). The rows of A and 

B are denoted af and bi for i G /, and the columns of A and B are denoted Aj and Bj for 

j G N. The sets of mixed stratégies for player I and player II are given by 

where € Rk denotes the vector with entry 1 in every row. For easier distinction of 

the pure stratégies, let J = {m + 1 , . . . ,m + n}, following Shapley (1974). Any j G N 

can be identified with m + j€J and vice versa. A label is any element in / LU. For 

notational convenience, the label j is sometimes used to refer to the pure strategy j —m 

of player II if there is no risk of confusion. 

X is a standard (m — 1)-simplex that is given by the convex hull of the unit vectors 

et e Rm, i e I, and Y is a standard (n — 1)-simplex given by the convex hull of the unit 

vectors ej-m G M", j G J. The terms "(m — 1)" and "(« - 1)" refer to the dimension of 

the simplex. In general, an (m — 1)-simplex is the convex hull of m affinely independent 

points in some Euclidian space. These points are the vertices of the simplex, and the 

simplex is said to be spanned by its vertices. 

An affine combination of points z\,... in an Euclidian space can be written as 

Y!iL\ Y!iL\ — 1 and À,,- G R, i — 1,..., m. A convex combination is an affine 

combination with the restriction À., > 0, i = 1,... ,/n. A set of m points z\,... ,zm is 

affinely independent if none of these points is an affine combination of the others. This 

is équivalent to saying that HZI = 0 and \ = 0 imply that X\ = ... = XM = 0. 
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A convex set has dimension d if it has d+\, but no more, affinely independent points. 

A k-face of an (m — 1 )-simplex is the ̂ -simplex spanned by any subset of k+1 vertices. 

The standard (m - 1)-simplex spanned by the unit vectors in is denoted by Am~l. 

SoX = Aw~1 and y = 1. 

For a mixed strategy x EX, the support o fx are the labels of those pure stratégies 

that are played with positive probability inx. The support for y G Y is defined similarly. 

So 

supp(x) = {i G 11 XI > 0}, suppO) = {j G JI yJ—M > 0}. 

The strategy sets X and Y can be divided into best reply régions X(j) and 7(z). These 

are the régions in X where j G J is a best reply and the régions in Y where / G / is a 

best reply, so 

X(j) = {xeX\BT
jx>BJ

kx'ikejY Y(i) = {y£Y\aiy>aky'ikeI}. 

The régions X(j) and Y(i) are (possibly empty) closed and convex régions that cover 

X and Y. For a point x in X the set J(x) consists of the labels of those stratégies of 

player II that are a best reply with respect to x. The set I(y) is defined accordingly, so 

J{x) = {jeJ\x£X(j)}, I(y) = {ieI\y€Y(i)}. (1.1) 

For i G /, the set X(i) denotes the (m — 2)-face of X where the i-th coordinate equals 

zero. For j G J, the set Y(j) is defined as the (n — 2)-face of Y where the ( j — m)-th 

coordinate equals zero. 

x(i) - { ( X I , . . . ,xm)T G * | = 0 } , Y(J) = { ( Y I , • • • ,yn)T E Y \ = 0 } . 

Similar to (1.1), the sets /(JC) and J{y) are defined as 

/(x) = {i€l\xe X(i)}, J(y) = {J G J \y G Y(j)}. (1.2) 

The labels L(x) of a point x€X and the labels L(y) of a point G Y are defined as 

L(x) = {keI[JJ\k£X{k)}, L(y) = {k£lUJ\k£Y(k)}. (1.3) 

From (1.1) and (1.2) it follows that L(x) = I(x) U J(x) and L(y) = I(y) U J(y). So the 

labels of a point x G X are those pure stratégies of player I that are played with zero 

probability in x and those stratégies of player II that are best replies to x. Similarly, the 

labels o f G Y are those pure stratégies of player II that are played with zero probability 

in y and those stratégies of player I that are best replies to y. 
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Définition 1.1 An mxn bimatrix game is called non-degenerate if for ail xeX and 

y e Y the number of best reply stratégies against x is at most the size of the support of 

x, and the number ofbest reply stratégies against y is at most the size of the support of 

y, Le. | J(x) | < |supp(*)| and |/(y)| < \supç(y)\for ail x e X and y e Y. 

It follows directly that in a non-degenerate game a point xeX can have at most m labels 

L(x) and that a point j> in Y can have at most n labels L{y). Non-degeneracy implies that 

X(j) and r(i) are either full-dimensional or empty (in which case a strategy is strictly 

dominated). For non-degenerate games the set of vertices K c X i s defined as those 

points in X that lie on some (k — 1 )-face of X and that have k pure best reply stratégies 

in player II's strategy space. The set of vertices W in Y is defined accordingly, i.e. 

V = {v eX | supp(v) = Ar, |y(v)| =k}, W={weY | supp(w) = k, |/(w)| = k}. 

Non-degeneracy implies that V is the set of those points in X that have exactly m labels, 

and W is the set of those points in Y that have exactly n labels. Notice that the unit 

vectors in M"1 and W, i.e. those representing the pure stratégies in X and Y, are in V 

and W. An edge in X is defined by m — 1 labels, and an edge in Y is defined by n — 1 

labels. For subsets K,K' C IUJ let 

X{K) = {x ex IK C L{x)}, Y(K') = {y€Y\K*C L(y)}. (1.4) 

That is, in case \K\ = m — 1 and \K'\ = n — 1, an edge in X is defined by X(K), and 

an edge in Y is defined by Y{Kf). If the game is non-degenerate, every edge in X and 

every edge in 7 is a line segment. 

The notion of vertices and edges comes from the study of polyhedra and polytopes 

(see e.g. Ziegler (1995)). In général, apolyhedron H is a subset of that is defined by 

a finite number of linear inequalities. If the dimension of H is d, then it is called full-

dimensional. A polyhedron that is bounded is called a polytope. A face of a polytope 

P is the intersection of P with a hyperplane for which the polytope is contained in one 

of the two halfspaces determined by the hyperplane. If these faces are single points, 

they are called vertices, if they are 1-dimensional line segments, they are called edges. 

If the dimension of a face is one less than the dimension of the polytope, it is called 

facet. 
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For a bimatrix game with payoff matrix B for player II, one can define a polyhedron 

over player Fs mixed strategy space X as follows. 

H = {(*, v) G X x R I 1 Jx = 1, BTX < l„v, XI > 0 V i € /} (1.5) 

The polyhedron H is referred to as the best reply polyhedron. In a similar fashion, 

one can define the best reply polyhedron over Y using the payoff matrix A. Note 

that one can assume that all entries of A and B are strictly greater than zero, since 

adding a positive constant to the payoffs does not affect the Nash equilibria of a game. 

The polyhedron H is described by the upper envelope, that is, the maximum, of the 

expected payoffs for pure strategies of player II as functions of the mixed strategy 

played by player I. 

Figure 1.1 depicts the polyhedron H for the payoff matrix 

B = 
6 4 1 

1 3 5 

For example, the line that describes the facet with label 3 is given by the line between 

v = 6 for pure strategy 1, and payoff v = 1 for pure strategy 2. The labels of a point 

on the boundary of H are the "labels" of the linear inequalities that are binding in 

that point. A vertex of H is described by m binding linear inequalities, edges of H are 

described by m — 1 binding linear inequalities. Each (m — 1 )-facet of the polyhedron H 

is defined by a single binding inequality and corresponds either to a best reply strategy 

of player II or to an unplayed strategy of player I. If H is projected onto X, it yields the 

division of X into best reply regions X(j). 

The above definitions can be illustrated using the 3 x 3 bimatrix game that is given 

by the following payoff matrices, taken from von Stengel (1999a). 

(1.6) 

The mixed strategy space X of player I is a 2-simplex, and so is the mixed strategy 

space Y of player II. Figure 1.2 shows the divisions of X and Y into best reply regions. 

For notational convenience, the subsets X(k) and Y{k), for k G /U7, are just denoted 

by their label in Figure 1.2. The vertices v e V are emphasised by dots and are exactly 

0 3 0 0 1 - 2 

A = 1 0 1 B = 2 0 3 

- 3 4 5 2 1 0 
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Figure 1.1: The best reply polyhedron 

1 XÌ5Ì ' Xf4) ' XG1 ' X 

those points in X that have three labels. A boundary 1-face of X carries the label of 

the pure strategy that is played with zero probability on that face. So, for example, the 

pure strategy (0,0,1)T € X has labels {1,2,4}, since strategies 1,2 are played with 

zero probability, and strategy 4 of player II is the pure best reply strategy. 

Figure 1.2: The division of X and Y for the game in (1.6) 

A perturbation of a bimatrix game is defined by two mxn matrices, £j and 85. 

The perturbed game is given by the game with payoff matrices A + EA and B + £5. A 

perturbation is said to be small if ||£^||,||£^|| < £ for some small £ > 0, where || • || 

denotes the Euclidian (or the maximum) norm on Em/I. A perturbation is generic if the 

resulting perturbed game is non-degenerate. 

The subsequent chapters use the concept of orientation as a definition of the index 

for Nash equilibria. For an /w-tuple of vectors V = (vi,..., vm) in Em, an orientation 
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can be defined using the following term: 

sign det V = sign det V] ... vm . (1.7) 

This term is +1 or —1 if and only if the vectors in V span an (m - l)-simplex that is 

contained in a hyperplane not containing 0 G Kw. The two signs yield two équivalence 

classes of ordered vectors in général position. Choosing a standard orientation (which 

is usually that induced by the unit vectors e\,..., em), the orientation of V is +1 if it 

belongs to the same orientation class as the chosen standard orientation, and it is — 1 

otherwise. 

The orientation can also be described as the sign of a permutation matrix. Suppose 

one has a set of m vectors that are in général position, and each vector has a distinct 

label /G {l,...,/w}. Then the vectors can be ordered according to their labelling, and 

(1.7) can be applied to determine the orientation of the labelled set of vectors. Let the 

so-ordered set of vectors be denoted as V. At the same time, one can re-order the 

vectors in such a way that (1.7) yields the same sign as that of the chosen standard 

orientation. Let this re-ordered basis be denoted as V'. Both V and V' are a basis of 

Rm, where one basis is a permutation of the other basis. The basis transformation is 

described by a permutation matrix D such that V* = D • so det V' = det D • det V. 

Hence det D = +1 if det V' = det V, and det D = - 1 if det V1 = -det V. So the 

déterminant of the permutation matrix D, which is either +1 or —1, can also be used 

to describe the orientation. An illustration of the orientation concept is depicted in 

Figure 1.3. For the vectors vi,v2,v3 as in Figure 1.3 the déterminant has sign -1 . 

The associated permutation of the labels, written as a product of cycles, is given by 

(1)(23), and has also sign —1. This corresponds to an anti-clockwise orientation on 

A2 if looked at from the origin 0 G R3, whereas the standard orientation induced by 

the unit vectors yields a clockwise orientation. 

One can also define an orientation relative to a point vp G K.m. Let (vj,... ,vm) be 

an ordered m-tuple of vectors in Rm. Then the orientation is defined by the term 

Expression (1.7) is the same as (1.8) for vp = 0 G Rw. The term (1.8) is +1 or - 1 

if and only if the vectors in vi,..., vm, vp span an /n-simplex. That is, vi,..., vm span 

sign det V — sign det v\-vp ... vm (1.8) 
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Figure 1.3: The orientation of a basis 

an {m — 1)-simplex such that vp is not an affine combination of the vectors vi,..., vm. 

The hyperplane defined by the affine combinations of the vectors v\,..., vm divides Mm 

into two halfspaces. If two points vp and Vp lie in the same halfspace, the orientation 

relative to vp and Vp is the same. If the two points lie in different halfspaces, (1.8) 

yields opposite signs. 

Let / be a function between two topological spaces S and T. If / is continuous 

then / is called a mapping. For two mappings f,g from a topological space S to a 

topological space T, i.e. f,g: S-+T, a homotopy h between f and g is a continuous 

deformation of / into g. A homotopy h can be described as a mapping h : S x [0,1] ->• T 

such that h(x, 0) = f(x) and h(x, 1) = g(x) for all x G S. This is denoted as / g. 

1.2 The Lemke-Howson Algorithm 

In their seminal work, Lemke and Howson (1964) describe an algorithm for finding at 

least one equilibrium in a non-degenerate bimatrix game. This algorithm is referred 

to as the Lemke-Howson (L-H) algorithm, and it is the classical algorithm for finding 

Nash equilibria in non-degenerate bimatrix games. This section gives a brief review 

of the L-H algorithm, since it can be used in the theory of index for non-degenerate 

bimatrix games. Detailed reviews of the L-H algorithm can be found in Shapley (1974) 

and von Stengel (2002). Shapley (1974), motivated by the L-H algorithm, introduces 

the notion of index for non-degenerate bimatrix games. He shows that the equilibria at 

the two ends of an L-H path have opposite indices. The L-H algorithm also plays an 
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important role in the subséquent chapters where it is translatée! into a new geometric-

combinatorial construction (see Chapters 2 and 3). 

Proposition 1.2 Let G be an mxn bimatrix game (not necessarily non-degenerate). 

Then (x,y) eXxY isa Nash equilibrium of G if and only ifL(x) Ul(y) = /U J. 

Proof. This follows from the fact that in an equilibrium a pure strategy is a best reply 

strategy or is played with zero probability. If the game is degenerate, both might be 

the case. In any case, the condition L(x) U L{y) = IUJ ensures that only the best reply 

strategies are played with non-zero probability. • 

If a game is non-degenerate, an equilibrium strategy x plays a pure strategy with 

positive probability if and only if it is a best reply strategy against y, and vice versa. 

So in equilibrium L(x)UL(y) = IU J and L(x)C\L(y) = 0. A pair (x,j>) such that 

L(x) UL{y) = IUJ is called completely labelled. 

The fact that an equilibrium strategy x plays a pure strategy with positive probabil-

ity if and only if it is a best reply strategy against y (and vice versa) builds the basis 

for the L-H algorithm. The L-H algorithm describes a path in the product space X x Y 

along which the points are almost completely labelled with a fixed missing label. A 

pair (x,y) is said to be almost completely labelled if L(x) U L(y) = IUJ ~ {£} for some 

k G IUJ. The endpoints of a path are fully labelled and henee equilibria of the game. 

In order to obtain a starting point for the L-H algorithm one extends X and Y with the 

points 0 G Rm and OgE". These zero vectors can be seen as artificial strategies where 

the probability on each pure strategy is zero, i.e. no strategy is played. The pair (0,0) 

is then completely labelled. 

The following description of the L-H algorithm follows that given by Shapley 

(1974). LetXo denote the boundary of the m-simplex spanned by 0 G and e¡ G Rm, 

i E /. So Xo consists of a union of (m — 1)-faces, where one (m — l)-face of Xo is 

given by X The other (m — 1)-faces ofXo are spanned by vertices 0 e W and e¿ G 

i G /— {£}. Accordingly, the set YQ is defìned as the boundary of the «-simplex spanned 

by 0 € W and ej-m G M", j G J. The (n - l)-face of Y0 that is spanned by ej-m G M", 
j G J, represents Y. The other (n — 1)-faces of YQ are spanned by vertices 0 G M" and 

ej-m G K M , j G J-{/}. For X G X0, the labels L{x) are defìned as I(x) UJ(x) for x EX 
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and as { / € / | x/ = 0} otherwise. For y e YQ, the labels L(y) are defined as I{y) U J(y) for 

y eY and as {j € J | yj~m = 0} otherwise. The vertices in Xo are the points with m la-

bels, and the vertices in Yo are the points with n labels. So 0 6 Rm is a vertex inXo with 

labels / and 0 G RN is a vertex in YQ with labels J. The vertex pair (0,0) € RM x W 

is completely labelled, and it is referred to as the artificial equilibrium. For subsets 

K,K' CIUJ, let 

X0 {K) = {x € | K C L {x)} , 70 (Kf) = {y G Y0 \ K! C L (y)}. 

XQ is a graph whose vertices are points with m labels, and whose edges are described 

by m - 1 labels. Similarly, the set 7o is a graph whose vertices are points with n labels, 

and whose edges are described by n — 1 labels. Depictions of XQ and lo for the game 

in (1.6) are given in Figure 1.4. 

Figure 1.4: The L-H algorithm for the game in (1.6) 

Now fix a label k € IUJ and consider the subset of labels IUJ— {&}. The idea 

of the L-H algorithm is to follow a unique path of almost completely labelled points 

with labels IUJ — {K} in the produci graph XQ X YO. As a starting point, one chooses 

a completely labelled pair of vertices (x,y) in XQ X YQ, so one can either start at an 

equilibrium or the artificial equilibrium. Each path with labels 11} J — {&} lies in the 

set 

M(k) = {(x,y)eXoxYo | /UJ -{*}cI (x )UlOO}. (1.9) 

At the end of each path one fìnds another completely labelled pair of vertices, i.e. an 

equilibrium. The paths of almost completely labelled points are referred to as L-H 

paths. The following theorem and proof can also be found in von Stengel (2002). 

23 



Theorem 1.3 (Lemke and Howson, 1964; Shapley, 1974) LetGbe a non-degenerate 

bimatrix game and k bea label in IUJ. Then M(k) as in (1.9) consists of disjoint paths 

and cycles in the product graph XQ X YQ. The endpoints of the paths are the equilibria 

ofthe game and the artificial equilibrium (0,0). The number of equilibria is odd. 

Proofi Let (x,y) € M(k). Then x and y have together either m + norm + n—l labels. 

In the former case, the tupie (x,j>) is either an equilibrium or the artificial equilibrium. 

In the latter case, one has L(x) U L(y) = IUJ— {£}, and there are the following three 

possibilities: 

a) |Z(x) | = m and y has n — 1 labels. Then x is a vertex in XQ, and y lies on some 

edge e(Y) in YQ. So {x} x e (Y) is an edge in XQ X YQ. 

b) x has m - 1 labels and is part of an edge e(x) in XQ, while y has n labels and is a 

vertex in YQ. Then e(x) x is an edge in XQXYQ. 

c) x has m labels and y has n labels. So (x,j>) is a vertex in the product graph XQ X 7Q. 

Therefore, the set M(K) defines a subgraph of XQ X YQ. If (x,Y) is completely labelled, 

then the vertex (x,j>) is incident to a unique edge in the subgraph M(k), namely {x} x 

Y0(L(Y) - {£}) if & € L(Y) or X0(I(x) - {*}) x {y} if k e L(x). In case c), one has 

L(x) U L{y) = /U J— {k}, so there must be a duplicate label in L(x) HZ. (y). But this 

means that (x,_y) is incident to both edges {x} x YQ(L(y) — {&}) andXo(X(x) — {/:}) x 

{y}. Therefore, the set M(k) is a subgraph where ail vertices are incident to one or two 

edges. Henee, the subgraph M(k) consists of paths and cycles. The endpoints of the 

paths are the equilibria and the artificial equilibrium. Since the number of the endpoints 

is even, the number of equilibria is odd (not counting the artificial equilibrium). • 

The L-H algorithm can be illustrated by the game in (1.6). This is depicted in 

Figure 1.4. One starts in the completely labelled artificial equilibrium (0,0). Now 

choose a label to drop, say label 1 of player I. This determines an edge in XQ along 

which the points have labels 2,3. At the other end of this edge one finds a vertex 

v G XQ with labels 2,3,5. The vertex pair (v, 0) has labels 2,3,5 and 4,5,6, so 5 is a 

duplicate label. This determines an edge in 7o with labels 4,6 leading to the vertex w 

with labels 3,4,6. So the vertex pair (v, w) has the duplicate label 3, and one follows 
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the edge in Xo that is given by labels 2,5, leading to v7 with labels 2,4,5. Now (i/, w) 

has duplicate label 4. This yields an edge in io defined by labels 6,3, leading to W 

with labels 6,1,3. The pair (v/, W) is completely labelled and hence an equilibrium of 

the game in (1.6). 

1.3 Index Theory 

For non-degenerate bimatrix games, the index for equilibria was first introduced by 

Shapley (1974). Shapley's index theory is motivated by the L-H algorithm, and Shap-

ley shows that equilibria which are connected via an L-H path have opposite indices. 

Formally, let (x,_y) be an equilibrium of a non-degenerate bimatrix game with pay-

off matrices A and B. Let A' and B' denote the square sub-matrices obtained from A 

and B by deleting those rows and columns that correspond to pure strategies played 

with zero probability in x and y. So 

A ~ \Aij\/ esvipp(x) A y e supp(y) ? B — [̂ «y]/Gsupp(x)A yesupp(y) (1.10) 

are the payoff matrices restricted to the support of x and y. Without loss of generality 

it can be assumed that ali entries of A and B are (strictly) greater than zero. This is 

possible since adding a positive constant to the entries of A or B does not affect the 

equilibria of the game. 

Definition 1.4 (Shapley, 1974) The index of an equilibrium (x,y) of a non-degenerate 

bimatrix game with payoff matrices A and B is given as the negative of the sign of the 

déterminant of the following index matrix obtainedfrom A and B: 

0 B' 

(A')T o 
I{x,y) — —sign det 

Using basic laws for the calculation of the déterminant, this expression simplifies to 

I(x,y) = sign(-1)*+1 det(v4')Tdet B', where k is the size of the support of x and y. 

Remark 1.5 Shapley (1974) defines the index as 

0 B' 
sign det 

{A')J 0 
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i.e. Definition 1.4 is the negative of the original définition, for the following reasons. 

Definition 1.4 is consistent with the généralisation of the indexfor components of equi-

libria. Furthermore, according to Definition 1.4, pure strategy equilibria and equilib-

ria that are the unique equilibrium of a game have index +1. 

Shapley shows that equilibria that are connected via an L-H path have opposite 

indices and that the sum of indices of equilibria of a game equals +1 (using the index 

as in Definition 1.4). In Shapley's original work, the proof of this claim is not very 

intuitive. A more intuitive approach can be found in Savani and von Stengel (2004). 

Basically, it employs the fact that along a path with m+n-l labels that connects two 

completely labelled vertices the "relative position" of the labels stays constant. This is 

illustrated in Figure 1.5. The two fully labelled points are connected via a path with 

labels 2,3, where 2 is always on the left of the path and 3 on the right (and the non-

missing labels have a similar fixed orientation in higher dimension). The fully labelled 

vertex on the left reads 1,2,3 in clockwise orientation, and the fully labelled Vertex 

on the right reads 1,2,3 in anti-clockwise orientation. In this sense the index is an 

orientation of the labels around a fully labelled vertex. 

Figure 1.5: Equilibria at the ends of L-H paths have opposite indices 

To apply this concept of orientation to bimatrix games, Savani and von Stengel 

first consider Symmetrie games. In Symmetrie games, the L-H paths can be followed 

in the strategy space of just one player, say player I, by replacing the labels of player II 

in X by the corresponding best reply labels of player I in the division of Y. Then 

the Nash equilibria of a Symmetrie game correspond to vertices in X that have labels 

1, • • •, m. For the 3 x 3 coordination game, this is depicted in Figure 1.6. But every non-

symmetric game with payoff matrices A and B can be symmetrised by constructing the 
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game with payoff matrices 

C = 
0 A 

BT 0 
CT = 

0 B 

Ar 0 

again assuming that ail payofFs of A and B are strictly greater than 0. Then the equi-

libria of the game with matrices C and CT correspond to the equilibria of the orig-

inal game by restricting the solutions of the symmetrised game to X and Y, and re-

normalising the probabilities. 

Figure 1.6: The index in the coordination game 

In non-degenerate games, the Nash equilibria are singletons in the product space 

X x Y. For degenerate games one has to consider sets of equilibria in X x Y. Kohlberg 

and Mertens (1986, Proposition 1) show that the set of Nash equilibria of any finite 

game has finitely many connected components. A maximally connected set of Nash 

equilibria is referred to as a component of equilibria. The index of a component of 

equilibria of a game is an integer that is computed as the local degree of a map for 

which the Nash equilibria of the game are the zeros. Loosely speaking, the local de-

gree of a map counts the number of cycles (in higher dimension spheres) around zero 

obtained by the image of a cycle (in higher dimension sphere) around the component 

(see e.g. Dold (1972, IV, 4)). The Nash equilibria of a game can be described as the 

fixed points of a mapping / : 1 x 7 - ^ 1 x 7 (see e.g. Nash (1951) or Gül, Pearce 

and Stacchetti (1993) for such mappings). Such maps are called Nash maps. Defining 

F = f — Id yields a Nash field whose zeros are the Nash equilibria of a game. The 

index is independent of the particular map used (see Govindan and Wilson (1997b), 

for bimatrix games, and, for games with any number of players, Demichelis and Ger-

mano (2000)). For generic bimatrix games it is the same as the index in Definition 1.4 
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(Govindan and Wilson (1997b)). An introduction to the concept of index for compo-

nents of equilibria can be found in Ritzberger (2002, 6.5). 

Using the Kohlberg-Mertens (K-M) structure theorem (Kohlberg and Mertens (1986, 

Theorem 1)), the index can also be expressed as the local degree of the projection map 

from the equilibrium correspondence to the space of games (see Govindan and Wilson 

(1997a), for bimatrix games, and, for games with any number of players, Demichelis 

and Germano (2000)). This can be illustrated using the following parameterised game. 

\ - t , \ - t 0,0 

0,0 t,t 

In this example, the games G{t) are parameterised by t E R. Figure 1.7 shows that the 

equilibrium correspondence E(G(-)) C G(-) x ( I x 7) over G(-) is homeomorphic to 

G(-) itself. In Figure 1.7, p denotes the probability for the first strategy of player I in 

equilibrium. If player I plays (/?, 1 — p) G X in an equilibrium, then player II's strategy 

in that equilibrium is also (p, 1 -p) G 7, where p = t gives the mixed equilibrium of 

the game when 0 < t < 1. ¿ 

G(t) = (1.11) 

Figure 1.7: The K-M structure theorem 

E(G(0) p=i 

p=0 

G(.) t=0 t=0.5 t=l 

In general, let T denote the space of games for a fixed number of players with a 

fixed number of stratégies. Then T can be parameterised by R*, where k equals the 

number of players multiplied by the product of the numbers of pure strategies per 

player. Let X denote the product space of mixed strategy spaces. Then the equilibrium 

correspondence over T is defined as 

£(r) = {(G,a) G r X E I a is an equilibrium of G}. 

The K-M structure theorem states that the space of games T is homeomorphic to E(T) 

(after a one-point compactification). In general, the K-M structure theorem does not 
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apply to restrictions of the space of games T as in (1.11). If, for example, one re-

stricts T to a single point that represents a game with more than one component of 

equilibria, the space of games, i.e. the single point, is not homeomorphic to the graph 

of the equilibrium correspondence, which consists of several disjoint sets of equilibria. 

Nevertheless, (1.11) gives a good illustration of the K-M structure theorem. 

For the illustration in Figure 1.7, the local degree of the projection map from E (Y) 

on T measures, loosely speaking, the local orientation of the equilibrium correspon-

dence relative to the orientation of T. In the example, ail completely mixed equilibria 

have index -1. The pure equilibria in the non-degenerate games (i.e. t £ {0,1}) have 

index +1. The corners of the Z-shaped correspondence are thosè pure strategy equi-

libria in the degenerate games (t G {0,1}) which disappear or split into two equilibria 

with opposite indices for small perturbations. These have index 0. 

The index for components and for singletons in the non-degenerate case has useful 

properties that are employed in the next section to construct components of arbitrary 

index. 

1) For the non-degenerate case, the index defined as the locai degree is the same as 

the index defined in Définition 1.4 (Govindan and Wilson (1997b)). 

2) The sum of indices of components of equilibria for a fixed game equals +1 (see 

e.g. Govindan and Wilson (1997a)). 

3) For sufficiently small generic perturbations of a degenerate game, the index of a 

component equals the sum of indices of equilibria in the perturbed game close 

to the component (see e.g. Govindan and Wilson (1997a;b) for a discussion). 

This fact is illustrated in Figure 1.7. Take the pure strategy equilibrium in the 

degenerate case t = 1 that has index 0. If the game is perturbed "to the right" 

(t + e) the equilibrium vanishes, if it is perturbed "to the left" (t — e) it splits into 

two equilibria close to it, one with index — 1 and one with index 4-1. 

4) The index of a component is the same in ali équivalent games (Govindan and 

Wilson (1997a, Theorem 2; 2004, Theorem A.3)), i.e. it is invariant under adding 

convex combinations of existing strategies with the respective payoffs as new 

pure strategies. 
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An equilibrium component is said to be essential if every small perturbation of the 

game yields a perturbed game that has equilibria close to the component. It follows that 

an equilibrium component with non-zero index is essential. An equilibrium component 

is said to be hyperessential if it is essential in ail équivalent games. Therefore an 

equilibrium component with non-zero index is also hyperessential. Chapter 6 reviews 

the concept of (hyper)essentiality in more detail. It addresses the question whether and 

under what circumstances the converse is also true, i.e. whether (hyper)essentiality 

implies non-zero index. 

1.4 Construction of Equilibrium Components with Ar-

bitrary Index 

In this section it is shown how games with equilibrium components of arbitrary index 

can be constructed. This new resuit is based on a construction that uses outside op-

tions in bimatrix games. The construction is similar to the one used in Govindan, von 

Schemde and von Stengel (2003), where the authors construct Symmetrie components 

of arbitrary index in order to show that g-stability violâtes a notion of symmetry. A 

great part of the following description is borrowed from this paper. 

First, consider a 2 x 2 coordination game, say 

, Tl0,10 0,0 7 7 

0,0 10,10 

(in agreement with the notation in (1.16) below). This game has two pure strategy 

equilibria, and one mixed equilibrium, where both players play the mixed strategy 

j) . The index of any of these equilibria is easily determined by the following two 

properties, which hold for any game: A pure strategy equilibrium which is strict (that 

is, ail unplayed pure stratégies have a payoff that is strictly lower than the equilibrium 

payofi) has index +1 ; The sum over all equilibria of their indices is -I-1. Therefore, the 

mixed equilibrium in H2 has index —1. This can also be verified using Definition 1.4. 
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G" = (1.12) 

Next, an outside option called Oui is added to the set of pure stratégies of player II, 

say, giving the game 
ri0,10 0,0 0,9 

0,0 10,10 0,9 

An outside option can be thought of as an initial move that a player can make which 

terminâtes further play, and gives a constant payoff to both players. If the player has 

not chosen his outside option, the original game is played. The outside option payoff 

above is 9 for player II. This has the effect that an equilibrium of the original game with 

payoff less than 9 for player II disappears, in this case the mixed strategy equilibrium. 

Geometrically, one can consider the upper envelope, i.e. the maximum of the expected 

payoffs for the pure stratégies of player II, as functions of the mixed strategy played 

by player I as described in Section 1.1. Any equilibrium strategy of player I, together 

with its payoff to player II, is on that upper envelope. The outside option gives an 

additional constant function that "cuts off" any former equilibrium payoffs below it. 

This is depicted in Figure 1.8. It shows the upper envelope of the expected payoffs 

for pure stratégies of player II and the resulting division of player Ts strategy space X 

before and after adding Out to player II's strategy space. 

Figure 1.8: Division of X before and after adding an outside option 

2 1 

m Put Y 

!, 4 i 3 12 li 4 i . 3 12 

In game G", the original pure strategy equilibria of H2 are unaffected, and continue 

to have index +1. Any such equilibrium, as long as it remains (quasi-)strict after in-

troducing the outside option, keeps its index, as the index of a strict equilibrium can be 

defined in terms of the payoff sub-matrices corresponding to the pure best replies (see 

Definition 1.4). The mixed strategy equilibrium of H2 is absorbed into an equilibrium 

component where player II plays his last strategy Out. The original mixed equilibrium 

strategy (5,5) of player I is part of the outside option component, which is given by 
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the set of mixed strategies of player I so that Out is a best response. In G~ above, it is 

easy to see that these are ali mixed strategies of player I where each pure strategy has 

probability at most 9/10. In general, the outside option component is defined by a set 

of linear inequalities, one for each pure strategy of the player who plays Out. 

Let G be some game with an outside option. Then the outside option equilibrium 

component of the game G by is denoted by C(G). In (1.12), the index of C(G~) is 

-1 , which is simply the sum of the indices of ali equilibria of the originai game H1 

that have been absorbed into the outside option component, because the sum of ali 

indices is +1. As descrìbed in Section 1.3, the index of an equilibrium component also 

equals the sum of indices of equilibria near the component when payoffs are perturbed 

generically; this sum does not depend on the perturbation. 

It is well-known that the best response structure of a bimatrix game remains un-

changed when adding a Constant to any column of the payoffs to the row player, or 

a Constant to a row of the column player's payoffs. This will allow to cut off pure 

strategy equilibria rather than mixed equilibria by using an outside option. Start with 

a 2 x 2 coordination game with payoffs 1,1 on and 0,0 off the main diagonal, and add 

the Constant 12 to the first column of player I and row of player II, and 7 to the second 

column respectively row. The resulting game H and a corresponding outside option 

game G are given by 

13,13 7,12 13,13 7,12 0,9 
H = 

13,13 7,12 
G = 

7,12 0,9 

12,7 8,8 12,7 8,8 0,9 

The game H has two pure equilibria with payoffs 13,13 and 8,8, respectively, and one 

mixed equilibrium where both play ( j , 5) with payoffs 10,10. The outside option with 

payoff 9 for player II cuts off the pure strategy equilibrium with payoffs 8,8 but leaves 

the other equilibria intact. Consequently, the component C(G) has index -hi. 

Next, one can "destroy" the pure strategy equilibrium in G by adding another row 

to the game. Consider the games 

13,13 7,12 13,13 7,12 0,9 
H' = 12,7 8,8 <f = 12,7 8,8 0,9 

14,1 1,2 14,1 1,2 0,9 
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13,13 7,12 1,14 
H~ = 12,7 8,8 2,1 

14,1 1,2 1,1 

Compared to H, the pure strategy equilibrium with payoffs 13,13 is no longer present 

in H'. It is replaced by another, mixed equilibrium where player II plays (f, and 

player I plays (5,0,5), with payoffs 7 to player II and 85/7 to player I. This new 

mixed equilibrium has index +1. Since the payoff to player II in that equilibrium is 

less than the outside option payoff 9, that equilibrium disappears in G'. Consequently, 

the component C(G') has index +2, because the only equilibrium that is not eut off has 

index — 1. 

Finally, consider the following game H~, which is a symmetrised version of H': 

(1.13) 

In this game, the mixed strategy equilibrium where both players play ( j , ¿,0) is the 

equilibrium with the highest payoff, yielding 10 for both players. This equilibrium has 

index — 1. The other equilibria are as follows: The mixed strategy ( j , 0, j) of player I, 

which together with (7,7) of player I forms an equilibrium of H', is no longer part 

of an equilibrium as the third strategy of player II in H~ gives a higher payoff. By 

playing that strategy as well, one obtains a completely mixed equilibrium where both 

players play (5, -¿M with resulting payoff 15/2 to both players. This equilibrium 

has index -fl, as has the pure strategy equilibrium with payoffs 8,8. There are no other 

equilibria of H~. 

H~ is used for constructing components with arbitrarily high positive index. For 

1, \etH~k bethe game consisting of k copies of the game H on the diagonal and 

zéros everywhere else, that is, 

H~k = 

H~ 0,0 

0,0 H~ 

0,0 0,0 

0,0 

0,0 

H~ 

(1.14) 

k copies 

Each player has 3k stratégies in H~k. For any nonempty set of the k copies of H~, 

and any equilibrium in such a copy, one obtains an additional equilibrium of H~k by 

suitable probability weights assigned to the copies. Ail such mixtures involving more 
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than one copy, however, give payoffs less than 8. There are no other equilibria of H k 

as the payoffs in a copy of H" are ail positive, and the other payoffs are zéro. 

The superscript in H~k indicates the sum of indices of those equilibria that are not 

eut offby adding a suitable outside option. The outside option is, as before, added to 

player II's strategy space, and is also referred to as Out as an additional pure strategy. 

This gives the game 
0,9 

Gk+l = H~k \ . (1.15) 

0,9 

The game Qk+l 
has k+ 1 equilibrium components: the k mixed strategy equilibria 

where both players play stratégies 1 and 2 in one copy of H~ with probability j (yield-

ing a payoff of 10 for both), and the equilibrium component in which player II chooses 

the last strategy, the outside option Out. That component C(Gk+l) is given by those 

strategy pairs where player II plays Out, and player I playing such that Out is a best 

response. Ail isolated equilibria have index —1. Since the indices of ail equilibrium 

components have to add up to one, the outside option equilibrium component C(Gk+l) 

has index k+ 1, which is chosen as a superscript for G in (1.15). Therefore, for each 

positive integer q, the game G9 in (1.15) has a component with index q; this includes 

the trivial case q = 1 and A: = 0, which is a 1 x 1 game. 

The division of player I's mixed strategy space X for the game G2 is depicted in 

Figure 1.9. It shows that, except for the equilibrium vertex (5,5,0) G X, ail other 

vertices that are part of an equilibrium in H~ are eut offby the outside option. 
Figure 1.9: The division of X for the game G2 with outside option 
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A similar, simpler construction gives equilibrium components with arbitrary nega-

tive index. For k ^ 2, let Hk be the following k x k game: 

Hk
 = 

10,10 0,0 

0,0 10,10 

0,0 0,0 

0,0 

0,0 

10,10 

(1.16) 

k columns 
Just as (1.15) is obtained from (1.14), one can add an outside option for player II, and 

obtain 
0,9 

G-{k-1)= Hk : (k>2). (1.17) 

0,9 

The equilibria of game G - ^ - 1 ) are the k pure strategy equilibria of the coordination 

game, yielding a payoff of 10 for both players, and the outside option equilibrium com-

ponent C(G~{*-1)) (see Figure 1.8 for the case k = 2). Since pure strategy equilibria 

have index +1, it follows that C(G-(*-1)) has i n d e x - ( k - 1). 

Henee, for each negative integer q, there exists a game that has an equilibrium 

component with index q. The case k= 1 gives an empty equilibrium component (which 

can be thought of as having index 0), since in this case the first strategy by player II 

strictly dominâtes Oui. Therefore it is required that k ^ 2 in (1.17). 

From the above, one can now easily construct a game with a non-trivial equilibrium 

component that has index 0. This is done by combining the games Hk and in a 

new game by placing them on the diagonal, and adding an outside option for player II 

as before. The case k— 2 is suffìcient, so let G0 be the following 5 x 6 game: 

H2 0 0,9 

0 H~ 0,9 

As argued after (1.14), the only equilibria in G0 that are not cut off are those with pay-

offs 10,10 in H2 or H . Thus, by a counting argument, the outside option equilibrium 

component C(G°) has index 0. The constructions prove the following proposition. 

G° = (1.18) 

Proposition 1.6 For each integer q, there exists a (bimatrix) game that has a compo-

nent of equilibria with index q. 
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In general, index 0 components are easy to construct (see also k = 1 in (1.17) for 

the trivial case). Consider for example the game 

1,1 0,0 

0,0 0,0 

This game is the same as G(0) in (1.11) and has two pure strategy equilibria, one with 

payoff 1 and the other one with payoff 0. It is easy to verify that the equilibrium with 

payoff 1 has index +1. It "survives" every small payoff perturbation. The pure strategy 

equilibrium with payoff 0 has index zero. The payoffs can be perturbed such that this 

equilibrium either vanishes or splits into two equilibria with opposite indices (see also 

Figure 1.7). The reason for providing G0 as in (1.18) is that a similar construction is 

used in Govindan et al. (2003) in order to show that 0-stable sets violate a notion of 

symmetry. Furthermore, in Chapter 6 it is shown that the outside option equilibrium 

component of the game G° is essential in ali équivalent games that do not contain a 

duplicate of Out. However, it is not hyperessential when allowing copies of Out. 
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Chapter 2 

A Reformulation of the Index for 

Equilibria in Bimatrix Games 

This chapter introduces a new geometric-combinatorial construction for non-degenerate 

bimatrix games that allows one to give a new characterisation of Nash equilibria and 

index in bimatrix games. Given an m x n non-degenerate bimatrix game (assuming 

m < n without loss of generality), the construction yields a division of an (m - 1)-

simplex in which the Nash equilibria and the index can be characterised by the labels 

of player I only. So, for example, any 3 x n bimatrix game can be represented by a 

division of a 2-dimensional simplex using only labels 1,2,3. 

The new construction, which is referred to as the dual construction, allows an 

intuitive definition of an orientation (or index) for equilibria in bimatrix games. It 

is shown that the notion of orientation introduced here is the same as the notion of 

index introduced by Shapley (1974) (modulo the sign in the definition as explained in 

Remark 1.5). It is also shown that the L-H algorithm by Lemke and Howson (1964) 

that finds an equilibrium in a non-degenerate bimatrix game can be interpreted as a 

path-following algorithm in the dual construction. This allows one to visualise, in 

dimension 3 or lower, both the index and the L-H paths for all m x n non-degenerate 

bimatrix games with min{m,n} < 4, whereas the interpretation of L-H paths and the 

definition of index by Shapley, or the interpretation by Savani and von Stengel (2004) 

by symmetrising games (see Section 1.3), uses geometric objects in dimension m + 

37 



n — 2. Furthermore, it illustrates how non-degenerate bimatrix games fit into the study 

of solutions of piecewise linear equations as in Eaves and Scarf (1976). 

This chapter is basic for the results in the subsequent chapters. Later, Chapter 3 

shows how the results of this chapter are related to Sperner's Lemma in dimension 

(m — 1). In Chapter 4, the construction is used to give a strategic characterisation of 

the index in non-degenerate bimatrix games. Chapter 5 shows how the dual construc-

tion can be extended to outside option equilibrium components, which is applied in 

Chapter 6 to show that an outside option equilibrium component is hyperessential if 

and only if it has non-zero index. 

The structure of this chapter is as follows. In Section 2.1 the dual construction is 

introduced and described in detail. Section 2.2 gives a characterisation of the Nash 

equilibria in the dual construction. Using only labels of player I, it is shown that the 

Nash equilibria are given by the fully labelled points in the dual construction (Proposi-

tion 2.6). Section 2.3 re-interprets the Lemke-Howson (L-H) algorithm and shows that 

it yields a connected path in the dual construction (Proposition 2.7 and Lemma 2.8). 

Finally, in Section 2.4, a notion of orientation for Nash equilibria is given. It is shown 

that it is equivalent to the notion of index defined by Shapley (Proposition 2.10). 

2.1 The Dual Construction 

This section describes a new geometric-combinatorial construction for non-degenerate 

bimatrix games. Put briefly, the subdivided strategy simplex X is dualised to obtain a 

dual space Vertices inX become simplices in and best reply regions inX 

become vertices in |XA|. There are two equivalent ways of constructing One 

uses polar polytopes, the other one is a combinatorial dualisation method. Into \X^\ 

one then inscribes those faces of Y that are of strategic relevance for the game, yielding 

a division X^ of the dual space into labelled best reply regions for player I. The final 

construction has the same dimension as X and uses only labels of player I. The division 

into simplices reflects the best reply structure for player II, the division of the simplices 

into labelled best reply regions reflects the best reply structure for player I. Combining 
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these two, the Nash equilibria are represented by completely labelled points in the dual 

construction. 

The dual construction |XA| can be obtained by using a polarisation method for 

polytopes (see e.g. Ziegler (1995, Section 2.3)). A combinatorial dualisation method 

is described further below. In brief, when polarising a polytope, vertices become sim-

plices and facets become vertices. The polytope itself is obtained from the best reply 

polyhedron H in (1.5) that is given by the upper envelope of player II's expected pay-

offs over X. The polyhedron H is neither bounded nor full-dimensional. Since full-

dimensional polytopes, i.e. bounded and full-dimensional polyhedra, are more conve-

nient to study, the polyhedron H can be projected in order to obtain a polytope P that 

contains the same information as H and that is full-dimensional and bounded. This de-

scription is similar to von Stengel (2002), which also gives référencés to related earlier 

works. 

The polyhedron H as in (1.5) is defined as 

H= {(*, v) G Rm x M | LLX = 1, BtX < l„v, XI > 0 V i G /}. 

Without loss of generality it can be assumed that v > 0 for ail (JC, v) € H, since adding 

a positive constant to the entries of B does not affect the equilibria or the best reply 

structure of a game. Now consider the set 

/y = {x€Rm \BTx<lnXi>0Vi€Ï}. (2.1) 

The mapping H —>• P' — {0} is given by (x, v) ^ • JC, and the inverse P' — {0} —• H is 

given byxM- where \x\ = l^x. The vertex 0 of F corresponds with "infinity" 

over H. The set P* is described by a finite number of inequalities and is both bounded 

and full-dimensional. Hence, the set Pf is an /ra-dimensional polytope. Geometrically, 

the polytope P is the projection of the polyhedron H on the hyperplane described by 

v = 1. This is depicted in Figure 2.1. 

In order to obtain the polar (or dual) of a polytope of dimension m, it is convenient 

if 0 G Rw lies in the interior of the polytope. This is not the case for the polytope /y , but 

can easily be obtained by translating the polytope P' to obtain the desired polytope P. 

Consider the point . . . , v) E H with v = maxijbij + c, where c is some arbitrarily 

large positive constant. The projection of this point is given by x = G P* 
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Figure 2.1: The projection of the polyhedron H and the polytope P 

and lies in the interior of P1. So one can translate P' by -x to obtain 

P= {x € RM | Bt{X + JC) < LN, XI + XI > 0 V / G / } . 

Note that every other point in the interior of P' could be used for the translation. Then 

0 G W1 lies in the interior of P. The polytope P is referred to as the best reply polytope. 

A depiction of P is given by the dotted lines on the right in Figure 2.1. The inequalities 

that describe P can be rewritten to obtain 

P = | X G R ' " \ -J^B]x<\Vj€N; -mvx, < 1 V i G / j , (2.2) 

_ jT^ 

where Bj = is the average payoff for player II in column j. 

In general, let P be a polytope given by 
P = | Z G R / W | cjz< 1, l < Ä : < N } . 

Geometrically, the polytope P is defined by halfspaces, which are given by hyper-

planes. The vectors cj G Rm are the normal vectors of these hyperplanes. The polar 

polytope PA of the polytope P is defined as the convex hull of the normal vectors Q of 

the hyperplanes that describe P, i.e. 

PA = conv{ci,...,c„}. (2.3) 

One can show that the polar of the polar polytope is the original polytope, i.e. PA A = P 

(see e.g. Ziegler (1995, Theorem 2.11)). Note that 0 6 Km lies in the interior ofP, and 
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hence in the interior of P A . A depiction of the polar polytope for a given polytope is 

given in Figure 2.2. 

Figure 2.2: The dual of a polytope 

For a non-degenerate bimatrix game, the polytope P as in (2.2) is simple, i.e. each 

Vertex of the m-dimensional polytope P is described by exactly m binding linear in-

equalities, so each Vertex is contained in exactly m facets of P. Consequently, the polar 

PA is simplicial (see e.g. Ziegler; Proposition 2.16). Each Vertex ofPA corresponds to 

a facet of P, and each facet of PA, representing a Vertex in P, is an {m — 1)-simplex. 

The study of polytopes is a very useful tool in the analysis of games. Von Stengel 

(1999b), for example, uses cyclic polytopes to construct games in order to obtain a 

new lower bound on the maximal number of Nash equilibria in a d x d non-degenerate 

bimatrix game. Savani and von Stengel (2004) employ a related method to construct 

games in which L-H paths are exponentially long. 

The simplicial surface of the polar polytope PA can be projected on the facet of 

PA that is given by the (m — 1)-simplex spanned by the vertices -mvei, i GI , where 

d denotes the unit vector in Rm with entry 1 in row i. The projection is defined by 

the intersection of the line between a point x and (—mv) lm with the facet spanned by 

—mvei, i € / (see Figure 2.3). This yields a triangulation of the facet spanned by the 

vertices —mvei, i € /. A triangulation (or simplicial subdivision) of a simplex is a finite 

collection of smaller simplices whose union is the simplex, and that is such that any 

two of the simplices intersect in a face common to both, or the intersection is empty. 

The vertices of a triangulation are the vertices of the simplices in the triangulation. 
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Figure 2.3: The simplicial division of XA 

Définition 2.1 The simplex spanned by —mveu i G J, is denoted asXA. The triangula-

tion induced by the projection PA — XA —>• XA is denoted as \XA\, and referred to as 

the dual construction. The facets ofPA other than XA, which are (m — \)-simplices, 

are denoted as A For notational parsimony, their projections on XA, which are also 

(m — 1 )-simplices, are also denoted as vA. 

An illustration of \XA\ is depicted in Figure 2.3. The vertices —mvet correspond to the 

facets of P that represent unplayed stratégies. Ail other vertices of PA correspond to 

facets of P that represent best reply facets of H. Each vertex v / - i of P represents 

a vertex of H, and hence a vertex in the division of X into best reply régions. So 

each vertex v in X or H corresponds to a unique {m — 1)-simplex v^ in |XA| or on 

the surface of P^. The simplex XA represents the vertex —Je € P, and is spanned by 

—mvei, i € I. 

The induced triangulation \X^\ is regular. A triangulation is called regular if it 

arises as the projection of a polytope Q whose facets are simplices (see e.g. Ziegler 

(1995, Définition 5.3)). The simplices in \XA\ are the projections of the facets of PA . 

Essentially, the projection |JfA | is a so-called Schlegel-diagram of PA that is combi-

natorially équivalent to the complex 9PA — XA (see e.g. Ziegler (1995, Proposition 

5.6.)), where dPA dénotés the boundary of PA. 

Now suppose one has a regular triangulation \XA\ of XA. Assume that the only 

vertices of the triangulation that lie on the boundary ofXA are those that span XA, i.e. 

—mvei, i 6 /. Then one can obtain a payoff matrix B that induces this subdivision. For 
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this, consider the polytope Q that induces this triangulation. Without loss of generality 

it can be assumed that 0 G g. Otherwise the vectors other than -mvei, i G /, can be 

moved in the same manner along the projection line. Then Q is the polar polytope 

PA of a polytope P. The polytope PA is given by conv{ci,..., cn} (see (2.3)), where 

the first m vectors are given by -mvei, i G / (these are the vertices of XA). Given a 

polytope PA , the following lemma shows how one can construct the corresponding 

payoff matrix B that yields PA as the polar of the polytope P given in (2.2). 

Lemma 2.2 Consider PA as in (2.3) with 0 G PA, and lei the first m vectors be given 

by ci = -mvei, i G I. For ail other cj, j > m, let (Cj)i > —mv V / G I, where (cj)i 

denotes the i-th row of cj, and let Cj > — v, where Cj = Then PA is the polar of 

the polytope in (2.2) with 

(2.4) 

Proof. By définition, one has ^zfBj = cj for all j > m. This implies that jZgBj = cj, 

so Bj = Substituting this into Bj = ( "T 1 ) cj yields Bj — ^=rCj. Note that the 

first m vectors are C/ = —mvei, i G /, and give the inequalities —mvxi < 1 in (2 .2) . 

Translating P as in (2.2) by gives the polytope Pf as in (2.1) with 

(mv' • • • ' mv) lying in the interior of P'. From P1 — {0} one obtains H via x . 

So the upper envelope H satisfies v > 0 for ail (x, v) G H, and . • •, v) lies in the 

relative interior of H with v > V j G N. • 

The above construction shows that each strategy simplex X can be dualised in a 

way such that one obtains a regulär triangulation \XA\ of an (m - 1)-simplex. This 

construction is such that the vertices of X correspond to the simplices in |XA|, and 

the best reply régions and unplayed stratégies in X correspond to vertices in |XA|. 

Furthermore, an edge in X that connects vertices vi and V2 in X corresponds to the 

common (m — 2)-face of the two adjacent (m — l)-simplices vA and vA in \XA\. 

The important aspects of \XA \ are the combinatorial properties of the simplices and 

vertices in \XA\. A combinatorial équivalent of \XA\, which, for notational parsimony, 

is also referred to as \XA\, can be obtained without using the polarisation method from 

above. Instead, it can be derived directly from the division of A" into best reply régions. 

To illustrate the procedure, it is applied to the following example. 
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Example 2.3 
0,0 10,10 0,0 10,-10 

10,0 0,0 0,10 0,8 (2.5) 

8,10 0,0 10,0 8,8 

Take player I's standard (m — l)-simplex representing the mixed strategy space X. 

Then X can be divided into best reply régions X(j). Non-degeneracy implies that the 

number of best replies in a vertex v G X equals the number of stratégies played with 

positive probability in v. Figure 2.4 gives the division of X into best reply régions for 

player II for the game in Example 2.3. It shows that every vertex v G X has exactly m 

labels, where the labels of a vertex v G X are the pure best reply stratégies of player II 

with respect to v and the pure stratégies of player I not played in v. The labels of a 

point x G X are given by L(x) as defined in (1.3). 

Figure 2.4: The best-reply division of X for the game in Example 2.3 

A combinatorial dualisation of X is now obtained as follows. For each best reply 

région and each unplayed strategy, one chooses a représentative point in Mm_1 that 

serves as a vertex in |XA|. For best reply régions, these représentatives are denoted as 

X{j)A. For an unplayed strategy i GI the représentatives are denoted as X(i). 

The points X(k)A, for k G lUJ, that are corresponding to best reply régions or 

unplayed stratégies, now become the vertices in the dual of X, so each such vertex has 

label k. For every vertex v G X with labels L(v), the combinatorial dual simplex vA 

is the simplex spanned by the dual vertices X(&)A, with k G L(v). For two vertices v\ 

and V2 that are joined by an edge with labels L(v\ ) fll(v2) inX, the two combinatorial 

44 



simplices vf and vf are adjacent and share the (m — 2)-face that is spanned by the 

dual vertices representing the labels L(v\ ) C\L(v2) in 

For the game in Example 2.3, the triangulation |XA| is illustrated in Figure 2.5. 

The dotted lines in Figure 2.5 show the division of X into best reply régions. The 

solid lines illustrate \XA\. The best reply régions in X and those labels that represent 

unplayed stratégies become dual vertices in |XA|. Each vertex inX is represented by a 

unique (m — l)-simplex in |XA|. The edges inXbecome (m — 2)-faces of two adjacent 

simplices in \XA\. 

Figure 2.5: The triangulation of XA for Example 2.3 

If a vertex of a simplex v^ is of the formX(i')A, for some i G /, it is called an outer 

vertex of v^. Outer vertices of vA represent those strategies of player I that are played 

with zero probability in v. The (m - 1)-simplex XA is spanned by all outer vertices 

X(/)A, i GI. Accordingly, the inner vertices of a simplex vA are of the form X(y')A, 

for some j G J. The inner vertices of a simplex vA represent best reply strategies of 

player II. All simplices v^ have at least one inner vertex, simplices representing a pure 

strategy of player I have exactly one inner vertex. 
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2.2 Labelling and Characterisation of Nash Equilibria 

The aim is now to divide the simplex XA into regions with labels / G / such that the 

Nash equilibria are represented by fully labelled points. As above, it can be assumed 

that all entries of the payoff matrix A are strictly greater than zero. Now consider 

a simplex vA G |XA|. An inner vertex that represents the pure strategy of j G N of 

player II has the corresponding payoff column A j. The outer vertices do not represent 

payoff columns of A and are dealt with by introducing slack variables. Each outer 

vertex that represents a pure strategy i € I of player I played with zero probability is 

assigned an artificial payoff vector e„ i.e. the unit vector in W" with entry 1 in row /. 

So suppose /(v) = {i'i,..., so vA is spanned by outer vertices X(/'i)A,... ,X(ik)A 

and some inner vertices ... ,X(jm)A. The payoffs for player I with respect 

to pure strategies jk+\,> -,jm are given by the columns Ajk+l,AJm of the payoff 

matrix A. The artificial payoffs for player I with respect to the unplayed strategies 

/],. . . , ik are defined as e,-,,..., Let^(v) be the following artificial payoff matrix, 

A(v) = [ei{ AJk+l AJm (2.6) 

This artificial payoff matrix now allows one to divide each simplex vA into labelled 

"best reply" regions with labels i £ /. 

Definition 2.4 A point in vA is denoted as ws, described by its convex coordinates 

with respect to the vertices of v^ (the subscript "s " indicates that ws contains slack 

variables). 

Then every simplex vA can be divided into labelled regions according to 

vA(;) = {ws G vA I (A(v)ws)i > (A(v)ws)k V k € /}. (2.7) 

This is the same division as the division of player II's mixed strategy space in the case 

A{v) is the payoff matrix of player I in some bimatrix game. 

Dividing each simplex v^ in |XA|,this gives, by non-degeneracy, a division of XA 

into full-dimensional regions XA(i) with labels 1,..., m, where 

v6V 
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Figure 2.6: The labelled dual construction X*A for Example 2.3 

This division is well-defined, since, if two simplices vA and vA share some common 

face, the induced division on that face is the same in both simplices vA and v f . For 

the game in Example 2.3 the resulting division of XA is depicted in Figure 2.6. 

Definition 2.5 The division of XA into labelled régions XA (i) is referred to as the 

labelled dual construction, and is denoted as X^. A point G XA is assigned the 

labels I(ws) of those régions that contain ws, i.e. 

i(ws) = {iei\wsexA(ï)}. (2.8) 

For each simplex v^, the inner k+ 1 (for some k > 0) vertices of v^ span some k-

face of v^. This k-fa.cc is referred to as the best reply face of vA and is denoted as vbrA. 

So the best reply face 
vbrA i s 

spanned by exactly those vertices of that represent 

a best reply strategy of player II with respect to strategy v. The best reply face vbrA 

corresponds to the face of Y that is spanned by those pure stratégies of player II that 

are represented as vertices of vbrA. So each w € vbrA can be identified with a unique 

strategy y G Y of player II. The division of vA into labelled régions also yields a division 

of vbrA into labelled régions. These labelled régions are affine linear transformations 

of the division of the face of Y into best reply régions that corresponds to vbrA. It 

should be noted that if a point w lies on the best reply face of a simplex v^, then the 

set of labels I(w) as in (2.8) is the same as I(w) in (1.1). 
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The space X^ together with the labelling function in (2.8) now allows a complete 

characterisation of the Nash equilibria of a non-degenerate bimatrix game. Before 

proving the main resuit of this section, it should be noted that ali points ws that lie in 

the interior of XA and in some can be projected on some w G vbrA by dropping 

those coordinates that are the slack variables associated with artificial payoff vectors 

and normalising the resulting vector such that its entries sum to 1. So let ws G vA. Let 

the set of outer vertices of vA beX(i'i)A,... ,X(/^)A, and let the set of inner vertices of 

vA be X(jk+ i)A, •. • ,X(jm)A. Note that for all simplices vA, the set of inner vertices 

is non-empty. So let ws = (w i l5..., where the first k entries are the coordinates 

with respect to the outer vertices, and the last m — k entries are the coordinates with 

respect to the inner vertices. Then define the projection p(ws) as 

w,- = 0 ; 1 < i < k 
™ = w ~ ~ (2-9) 

Wi = ym ; k+l<i<m 

The projection point w = /?(w.y) G can be identified with a unique strategy vector 

in 7. For ws on the bound 

following characterisation. 

in 7. For ws on the boundary of X^, one defines p{ws) = 0 G Rm. This allows the 

Proposition 2.6 A point w5 G X* with ws G is completely labelled if and only if 

(v,/?(w>.s)) is a Nash equilibrium of the game. 

Proof Let ws be completely labelled with ws G 
A Then consider the artificial payoff 

matrix A(v). A point is, by définition, completely labelled if^(v)w5 = clm, where c is 

some positive constant. It is easy to verify that the payoffs of^i(v) are non-degenerate, 

since the payoffs of A are non-degenerate. Hence ws lies in the interior of vA. By 

construction one has w — p(ws) G vbrA. It implies that I(w) = / —/(v), where /(v) is 

as defined in (1.2). Since w lies on the best reply face of vA, it means that player II 

mixes only those stratégies with positive probability in w that are a best reply to v. So, 

using (1.1) and (1.2), one has 
w e vbrA <=• y(v) U J{w) =J. (2.10) 

This is to say that player II is always in equilibrium when considering points in the 

labelled dual construction. But then I(w) = / — /(v), so /(v) UI(w) = /. This means 

that (v, w) is completely labelled, and hence an equilibrium. 
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Now let (v, w) be a Nash equilibrium. Then J(v) U J{w) = / , s o w e vbrA. Since it 

is a Nash equilibrium, one has /(v) = I - I{w). So A{v)w is a vector with maximum 

entries in those rows that are strategies played with positive probability in v. Let c 

be this maximum entry. Now assign weights to the columns representing unplayed 

strategies to obtain a strictly positive vectors ws such that A(v)^ = c\m. Normalising 

the vector ws such that the entries add up to one yields the desired vector ws with 

I{ws)=I. • 

For the game in Example 2.3, the labelled dual construction is depicted in Fig-

ure 2.6. For the following description, the coordinates of ws carry a subscript, marking 

the payoff vector they apply to. So, for example, the subscripts 1,2,3 refer to artificial 

payoff vectors, and the subscripts 4,5,6,7 refer to payoff columns of A. The construc-

tion contains three completely labelled points, namely ws = (( |) i, ( <̂ 5)7) lying 

in the simplex v^ representing v = (0,5, f ) , the point ws' = ( ( ^ 4 , (n)s> ( n W lying 

in the simplex representing 1/ — 3 , 3 ) , and ws" = ( ( 3 7 ) 2 , (57)3, ( j t ) s ) lying in the 

simplex representing v" = (1,0,0). Projecting these vectors gives w = (|,0,0, j), the 

point W = ("H"' Ä' TT>0) and W = (0,1,0,0). So (v,w), (i/,h/) and ( / , / ) are the 

Nash equilibria of the game. 

Instead of labelling the dual construction |XA|, which consists of the projected 

simplicial facets of the polar polytope PA , one can also label the simplicial facets of 

PA directly via the artificial payoff matrix. The division of each simplicial facet of PA 

is obtained in the same way as the division of the projected simplices. The result of 

this construction is depicted in Figure 2.7 for the game given by the payoff matrices 

1 0 0 6 4 1 
A = 

0 1 1 1 3 5 

The resulting labelled surface of the polar polytope is denoted as Its simplicial 

surface is denoted as \PA\. In this construction, the equilibria are, as before, repre-

sented by exactly those points on the surface of the polar polytope that are completely 

labelled. The artificial equilibrium (0,0) can be identified with the completely labelled 

point on the facet XA 

of i f . Note that XA corresponds to the vertex of P* that has 

all labels of player I, i.e. no strategy of player I is played with positive probability. So 

the artificial payoff matrix that corresponds to this facet is the identity matrix that only 
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consists of artificial payoff vectors. Its centre is a completely labelled point. So, in-

stead of considering the projection of the labelled facets, one might as well characterise 

the equilibria using the "labelled sphere" i f . 

Figure 2.7: The labelled polar polytope P A 

The labelled dual construction allows one to completely characterise the Nash equi-

libria of a non-degenerate bimatrix game in a geometric object of dimension m — 1 by 

using only the set I of labels of player I. Assuming without loss of generality m <n, 

it is possible to visualise XA for all m < 4. It also demonstrates how non-degenerate 

bimatrix games fit into the study of solutions of piecewise linear equations as in Eaves 

and Scarf (1976), and allows one to illustrate how one can find a Nash equilibrium of 

a non-degenerate bimatrix game. 

2.3 The Lemke-Howson Algorithm in the Labelled Dual 

Construction 

The L-H algorithm described in Section 1.2 is the standard algorithm for finding a Nash 

equilibrium in a non-degenerate bimatrix game. The L-H algorithm describes a path 

in the product space Xx Y ( orXo x YQ when including the artificial equilibrium points) 

that is given by a set of points (x,y) eXx Y that is described by labels L(x) UL{y) = 

I [J J— {&} for some kelUJ. This path consists of pairs of edges and vertices in the 

product graph. 

The fact that the L-H algorithm applies to a product graph makes it difficult to 

visualise it for games of higher dimension. In this section, it is shown that every L-H 

path in X x Y that is defined by a missing label k € / of player I can be interpreted as a 
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path in the labelled dual that consists of paths that are almost completely labelled 

with missing label k. This allows one to give a new geometrie interprétation not only 

of the L-H algorithm but also of the fact that equilibria at the ends of an L-H path have 

opposite indices (see Section 2.4 below). 

Similar to the définition of M(k) in (1.9), one can define the set of almost com-

pletely labelled points on the labelled surface P^ for a missing label k of player I. So 

let M(k)t, for k Gì, denote ali those points ws in P^ that have at least labels I- {&}, 

i.e. 

M(k)t = {ws e / > A I / - { * } C / ( w , ) } . (2.11) 

One obtains the following proposition (compare Theorem 1.3). 

Proposition 2.7 Let G be a non-degenerate m x n bimatrix game. Fix a label k G 

I. Then M(k)* consists of disjoint paths and cycles in The endpoints are the 

equilibria of the game, including the artificial equilibrium. 

-Proof. As before, let \PA\ denote the simplicial surface of PA . Since the payoff ma-

trix A(v) is non-degenerate for ali simplices v^ in |PA|, the set of almost completely 

labelled points in vA with a missing label k is, if not empty, an edge (or line segment) 

m 

a Now take an endpoint ws e of an edge in v^ with labels /— {£}. Then 

there are two cases. The first is where ws lies in the interior of vA. In this case, ws 

represents an equilibrium and is fully labelled. So ws is endpoint of a unique edge in A 
The second case is where ws lies on the boundary of iA In this case, due to the 

non-degeneracy assumption, the point ws lies in the interior of some (m - 2)-face of 

v . This (m — 2)-face is the face of another simplex V in |PA| that 
is adjacent to vA. 

In Ì /A , the point ws must be the endpoint of another edge with labels /— {&}. So the 

endpoints of edges of M(k)* in are incident to one or two edges of M(k)* in • Note that X^ is just a projection of the labelled facets of i t - X A on 

XA. So the 

paths and cycles in XA with labels I — {k} are projections of the paths and cycles in 

P^ —XA with labels I— {£}. For notational convenience, the projection of these paths 

and cycles in XA is also denoted as M(k)A. Equivalently, one can define M(k)A = 

{wy G xt | / - {k} C /(wy)}. The endpoints of the paths inX^ are the equilibria of 
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the game, not including the artifìcial equilibrium, since the artificial equilibrium lies 

on the face XA on which is projected. I.e. the artifìcial equilibrium is not 

seen under the projection and can be thought of lying under XA. In the same way as 

above one can confimi that A/(£)A inXA consists of paths and cycles. 

The following lemma shows how the définitions of M(k) and M{k)^ are related. 

This yields a straightforward interprétation of the L-H algorithm on the labelled surface 

and in the labelled dual construction 

Lemma 2.8 Equilibrio, that are connected by a L-Hpath in M(k) are connected by a 

path in M(k)t- An edge ex x {w} £ M(k) is represented in M(k)A by two adjacent 

simplices. An edge {v} xey € M(k) is represented in M{k)? by an edge in \A with 

labels I~{k}. 

Proof. First consider an edge ex x {w} G M(k). Then ex is an edge \xlXQ. Let this be 

an edge in X between vi and v .̂ Edges in XQ are represented in |XA| and \PA\ by an 

(m — 2)-face that is common to vA and vA. As for the edge that connects the artifìcial 

equilibrium with a pure strategy, i.e. the edge between 0 and a pure strategy v, note that 

every pure strategy v is represented in \PA | by a simplex v^ that is adjacent toXA, the 

latter representing the artificial strategy OeRm . InXA this is reflected by the fact that 

Z1 has an (m - 2)-face on the boundary of XA. So, if (vi,w) and (v2,w) lie along a 

L-H path, then vA and vA are adjacent and share the (m — 2)-face that corresponds to 

the labels L(v\)C\L{v2). So the L-H path in Xo yields a union of adjacent simplices in 

|XA| and 

Now suppose one has (v, w) € M(k). Let (v, w) eXxY. Then, by the équivalence in 

(2.10), one has w G vbrA. This point corresponds to an almost completely labelled point 

ws = l(w) e v^ in the labelled dual construction. To see this, let (wy)̂ , k € /(v) U/(v), 

denote the row of ws that corresponds to the column of A(v) that represents strategy 

k. Also, let Wk, k € J(v), denote the probability with which strategy k is played in w. 

Then define 
wjt keJiv) 

l{w)k= , 
c-(Aw)k kel(v) 

< 

where c is the maximum payoff for player I when player II plays w, and (Aw)k is the 

payoff for player I in strategy k. In v, a strategy k 6 /(v) has probability zero. So, for 
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k G /(v), the expected payoff for the unplayed strategy k is {Aw)k. Normalising l(w) 

yields the vector ws = l(w) such that I(ws) = /(v) U/(w), so G M(k)t- Therefore, 

the mapping /(w) is a lifting ofwG vbrA to a point ws G vA such that I(ws) = /(v) U/(w) 

(compare the projection p in (2.9)). 

Now consider an edge {v} x ey G M(k) that connects (v, w\ ) and (v, w£) with vvi ^ 0 

and W2 / 0. By the équivalence in (2.10) one sees that then ey C vbrA, so the edge lies 

on the best reply face of v^. But that means that l(ey) is an edge in v^ connecting 

/(w>i) and l{w2). 

It remains to show that these lifted edges yield a connected path in the union of 

simplices that correspond to the L-H path in Xq. SO let w be an endpoint of the edge 

ey. Then one can distinguish two cases. 

The first is where /(v) n/(w) = {/}. In this case the pair (v, w) has a duplicate label 

i of player I. This means that strategy i of player I is a best reply, but is not played with 

positive probability in v. Therefore, one has {Aw)i = c, so /(w),- = 0, i.e. the lifted point 

l(w) lies on the (m — 2)-face where the weight on the artificial payoff vector e,- is zero. 

So it lies on the (m — 2)-face that corresponds to labels L(v) — {/}. This represents 

the edge inXo that is described by labels L(v) — {/} and connects v and another vertex 

ì/, with (v, w) and (v', w) both lying along a L-H path in M(k). So the lifted point is 

adjacent to two edges, one in and one in 1/ . 

The second case is where /(v) n/(w) = 0. In this case (v, w) has a duplicate label 

j of player II. This implies that strategy j of player II is a best reply, but is not played 

with positive probability. Therefore, Wj = 0 and hence /(w)j = 0, i.e. the lifted point 

l(w) lies on the (m — 2)-face of vA where the weight on the payoff vector Aj is zero. 

So it lies on the (m — 2)-face that corresponds to labels L(v) — {y}- This represents the 

edge inXo that is described by labels L(v) — {y} and connects v and another vertex vf, 

with (v, w) and (v1, w) both lying along a L-H path in M(k). So the lifted point is also 

adjacent to two edges, one in v^ and one in v/A. 

Finally, one has to account for the simplices adjacent to XA and the artificial equi-

librium. The L-H path with missing label k that starts in the artificial equilibrium is 

such that, after two steps, it yields the pair (v, w), where v represents pure strategy k, 

and w is the pure best reply to v. Then either (v, w) is an equilibrium, in which case the 
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completely labelled point in vA is connected with the completely labelled point inXA 

via an edge in and an edge inXA. If (v,w) is not an equilibrium, pure strategy v 

is not a best reply to pure strategy w. The lifted point /(w) lies on the (m - 2)-face of 

vA that corresponds to labels L(v) ~I(w), and is also connected with the completely 

labelled point in XA via an edge in \A and an edge in XA. For pure stratégies v and 

w such that (v, w) is an equilibrium, the completely labelled point ws in vA connects 

with a point on the (m - 2)-face corresponding to labels L(v) - {&}. This is also the 

(m - 2)-face of v/A such that (v, w) and (v', w) both lie along a L-H path in M{k). • 

Figure 2.8: The L-H paths for k = 2 inXA 

The above lemma can be illustrated by considering the paths M(2)* for the game 

in Example 2.3. This is depicted in Figure 2.8. According to the L-H algorithm, one 

starts at the artificial equilibrium vo = 0,wo •= 0 and looks at the path that has labels 

1,3. Dropping label 2 means that one flips from the artificial equilibrium simplex 

XA into the simplex vf that represents pure strategy 2 of player I. Then vi has labels 

1,3,6, since 6 is a best reply to pure strategy 2, and wo has labels 4,5,6,7. Hence 6 

is a duplicate label. This détermines w\. Strategy w\ represents the pure best reply to 

pure strategy 2, which is 6. So w\ = (0,0,1,0) with labels 4,5,7,3, since pure strategy 

3 is a best reply to w\. In XA, this is represented by ws\. Now 3 is a duplicate label. 

This détermines the simplex vA by flipping over the face that corresponds to vertices 
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representing strategies 1 and 6. Then v2 has labels 1,7,6. Now 7 is a duplicate label, 

determining wi. The strategy wi is the mixed strategy that mixes strategies 6 and 7, 

with best replies 1 and 3. In this gives ws2. Now wi has labels 5,4,1,3, so 1 

is a duplicate label, which determines v f . The simplex vf is the simplex adjacent to 

vf with common face spanned by vertices representing 6 and 7. This is the simplex 

spanned by vertices representing 4,6,7. Now 4 is duplicate, which determines W3 

in which pure strategy 4 is played with positive probability. In XA, this gives ws3. 

Strategy W3 has labels 4,6,1,3, so now 6 is a duplicate label. Flipping over the face 

of vf that is spanned by vertices 4 and 7 gives vf spanned by vertices representing by 

4,7 and 1. Finally, label 1 is duplicate, determining W4 with labels 5,6,2,3, which, in 

XA, is represented ws4. The tuple (v4, W4) is an equilibrium of the game. 

This reinterpretation of the L-H paths inX*A also allows one to illustrate why Nash 

equilibria might be inaccessible in the sense that they are not connected via a union 

of paths with the artificial equilibrium as noted by Shapley (1974). An example for 

this situation is depicted on the left in Figure 2.9. The union of paths MA(k), for 

k G /, is depicted in bold lines. The game represented on the left in Figure 2.9 has 

three equilibria, one pure strategy equilibrium and two in which player I plays all three 

strategies with positive probability. Starting at one mixed strategy equilibrium, every 

path in M^(k) always leads to the other mixed strategy equilibrium and vice versa. So 

for k G /, the L-H algorithm only finds the pure strategy equilibrium in which player I 

plays only pure strategy 1 (the equilibria might not be isolated when considering paths 

M(j) for j G J). XA can also be used to show that Aif (k) might contain cycles. This is 

depicted on the right in Figure 2.9, which illustrates a cycle with labels 1,3 in Mr (2). 

2.4 An Orientation for Nash Equilibria 

This section gives a re-interpretation of the index by means of the labelled dual con-

struction. This allows a simple visualisation of the index for any m x n bimatrix game 

with m < 4, since XA is of dimension m — 1 for an m x n bimatrix game. Further-

more, this re-interpretation of the index extends to certain components of equilibria, 

namely outside option equilibrium components in bimatrix games (Chapter 5). This 

re-interpretation of the index is then employed in Chapter 4 to obtain a strategic char-
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Figure 2.9: Inaccessible equilibria and cycles inX^ 

acterisation of the index in non-degenerate bimatrix games and in Chapter 6 to obtain 

a characterisation of hyperessentiality in terms of the index. 

The définition of the index inXA is similar to the index as depicted in Figure 1.5, 

i.e. it is defined by the relative ordering of the labels "around" an equilibrium. Consider 

a completely labelled point ws G XA that represents an equilibrium. Note that in this 

case Wy lies in the interior of some unique vA. One now constructs a simplex wA such 

that it contains ws and such that each vertex of w^ lies in a différent best reply région 

of vA. Comparing the orientation of this simplex with the orientation induced by XA 

then yields the index of the equilibrium represented by ws. 

The simplex wA can be obtained as follows. Let ws G v^ be completely labelled. 

For i G /, let w,- denote the vector, described as a convex combination of the vertices 

of v^, such that the payoff for player I from the artificial payoff matrix is such that 

A(V)WÌ has the maximum entry cl
max in row i, and is the same constant CL < cl

max in ali 

other rows. Such vectors exist: If ws is completely labelled, extend the edge with labels 

I— {/} into the best reply région with label i. Then any point that lies on the extension 

of the edge in the best reply région with label i has this property. If a label i G I 
represents an unplayed strategy, choose the vertex of XA that represents the unplayed 

strategy i. In this case, w,- is itself a unit vector such that^(v)w/ = The construction 

of wf is depicted in Figure 2.10, in which label 1 represents an unplayed strategy. 

Then w^ is the (m — l)-simplex spanned by w,-, i e /. 

Now label each vertex w; with label i. This means that wA is an (m - 1)-simplex 

whose vertices are completely labelled, i.e. have ali labels i GI. This induces an order-
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Figure 2.10: The construction of vvA 

ing of the vertices of wA. The simplexXA is also an (m — 1 )-simplex that is completely 

labelled, spanned by the vertices -mvei with label i, i e /. To defìne the orientation in 

XA , choose the orientation ofXA as the standard orientation. The expression (1.7) for 

the vertices ofXA is given by (—\)m. Let the coordinates of w/ with respect to the unit 

vectors be given by >tf. So, if vi,..., vm are the vertices of v^, described as column 

vectors with respect to the unit vectors, then W- = [vi,..., vm]w,-. Then the index of an 

equilibrium is defìned as follows. 

Définition 2.9 The index of an equilibrium represented by ws € XA is +1 //wA lies in 

the same orientation class as XA, and it is — 1 otherwise. That is, the index is defined 

as 

sign ( - i r detK, . . . , < ] = sign ( - ì ) m det[Vl,..., vj[wx , . . . , w j . (2.12) 

Proposition 2.10 below shows that the index in Définition 2.9 is the same as that 

in Définition 1.4. It follows that the index as defined here does not depend on the 

particular vertices of wA chosen. Furthermore, the index is well-defined and does not 

depend on whether one usesXA or 7A . It also follows that the définition is independent 

of the labelling of the stratégies. This can also be seen as follows. Re-labelling the 

stratégies of player I would induce a re-labelling of régions in without affecting 

them as such. Therefore, a re-labelling of the stratégies induces the same re-labelling 

of the vertices of XA as of the vertices of wA. 
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An illustration of Définition 2.9 is given in Figure 2.11. The pure strategy equi-

librium where player I plays pure strategy 1, represented by W s , has index +1. The 

labels around w"s read 1,2,3 in anti-clockwise direction, and so do the labels of the 

vertices ofXA, which are the corners ofXA . The labels around Ws read 1,3,2 in anti-

clockwise direction or 1,2, 3 in clockwise direction. Hence the index is defined as -1 . 

The labels around ws are oriented as the labels of the corners of XA , hence the index 

is+1. 

Thus, as described in Section 1.1, the index can be identified with a permutation 

of the labels I. In particular, if, for example, stratégies /1,..., ik, are played with zero 

probability in an equilibrium ws, then the (k—\)-face of wA that is spanned by the ver-

tices of wA representing labels i\,..., ik is the same as the (k— 1 )-face of spanned 

by the outer vertices representing labels i\,... Choosing the orientation of as 

the standard, this implies that the associated permutation of the labels I is the identity 

on the subset {i\,... ,4}. It follows that pure strategy equilibria have index +1. If 

(v, w) is a pure strategy equilibrium in which strategy i of player I is played with prob-

ability 1, the permutation of the labels I is the identity on the labels I — {/}. But then 

it must be the identity on {/}. So the permutation is the identity and has sign +1. This 

can also be verified using the expression (2.12), noting that the entries of w? are less 

than zero. 

Figure 2.11 : The index inXA for Example 2.3 

58 



The above définition of index uses the orientation in which is the projection 

of the labelled surface P^. One can also defìne the orientation by using the labelled 

surface directly. In the same way as the simplex wA is constructed inXA, one can 

construct ws m such that it lies on the facet vA of PA that contains ws. These 

simplices are also denoted as wA. 

To defìne the index in 
, one has to account for the fact that the projection has an 

effect on the orientation of simplices. Let wA be a simplex around an equilibrium ws 

contained in v^, where v^ is a facet of PA —XA. Then the sign in (1.7) for the vertices 

of vwA, ordered by their labels, is the opposite as the sign in (1.7) for the vertices of the 

projected simplex. 

To see this, note that the expression (1.7) for vertices of a simplex on 

is the same as (1.8) for vertices of the simplex relative to the projection point vp = 

(—/wv,...,-mv). This is due to the fact that both points 0 G T and 

vp = (—mv,..., —mv) lie in the same of the two halfspaces which are defìned by the 

hyperplane containing the simplex. Furthermore, the expression (1.8) for a simplex 

wA relative to vp is not affected by the projection of wA onXA. For the simplex XA, 

the expression (1.7) for the ordered vertices of XA is the negative as that in (1.8) rel-

ative to vp . Both 0 G l m and vp lie in différent halfspaces defìned by the hyperplane 

containing So if a simplex wA in XA has the same orientation as XA, it means 

that the corresponding simplex in F? has the opposite orientation as X . 
This is depicted in Figure 2.12. One the left, one looks at the surface of PA from 

the projection point vp through XA, where vp lies on the outside of PA . On the right, 

one looks at the surface of PA from 0 € JRm, which lies the inside of PA . Moving 

from Vp to 0 G Rm changes the orientation of XA , but not the orientation of the other 

simplices. 
Hence, in RÈ-

the index of an equilibrium ws is +1 if ws has the opposite orienta-

tion as XA, and it has index - 1 otherwise. This means that the artificial equilibrium 

itself has, by définition, index — 1. So let, as before, wi,..., wm be the set of vertices 

of wA described by their coordinates with respect to the vertices of vA, where vA 

is a facet of PA. Let the vertices of v^ be given as v i , . . d e s c r i b e d as column 

vectors with respect to the unit vectors as basis. Let w^,..., w^ denote the set of ver-
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Figure 2.12: The index in P*A 

tices of wA described by their coordinates with respect to the unit vectors as basis. So 

W- = [v\,..., vjw,-. Then the index is given by 

sign(— l)m + 1detK, . . . , < ] = sign(—l)m+1det[vi,..., vj[w!, . . . , wm]. (2.13) 

So the index as in (2.13) for the construction P^ is the negative of the expression 

(2.12) for the construction XA. This accounts for the effect of the projection on the 

orientation. 

Proposition 2.10 The index as in Définition 2.9 is the same as the index in Défini-

tion 1.4. 

Proof. Without loss of generality, it can be assumed that the entries of the payoff 

matrices A and B are strictly greater than zero. Consider the labelled surface PA. Let 

(v, w) be an equilibrium, and let wA be the corresponding completely labelled simplex 

contained in the facet vA of PA. The simplex v^ is spanned by some vectors v\,...,vm> 

which are described as column vectors with respect to the unit vectors as a basis. These 

vectors are some m vertices of the polar polytope P A as in (2.3). 

If v/ represents a strategy j of player II, then v/ = XjBj, where Xj = is a 

positive scalar (compare (2.2)). If v/ represents an unplayed strategy i of player I, then 

v/ = —mvei. So v/ = — X,-«/, where À,,- = mv is a positive scalar. 

Let w\,...,wm denote the ordered set of vertices of wf\ given by their coordinates 

with respect to the vertices of vA. These vectors are, by construction, such that^(v)w/ 

has the maximum entry c1^ in row i, and is the same constant cl < cl
max in ali other 

rows. Let C denote the matrix^(v) [w\... wm\. Then det C has positive sign, since any 
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convex combination of C with the identity matrix has full rank. Note that all entries of 

C are strictly greater than zero, since all entries of A are strictly greater than zero. 

One obtains [wi,..., wm] = A(v)~xC. With respect to the unit vectors, the vertices 

of wA are given by the vectors [w^...,w^] = 2 ? [ w i w h e r e B = [vi,...,vm]. 

The rows of B can be ordered such that if row j of È represents an unplayed strategy, 

then Bj = If the rows of B are ordered in this way, then the y'-th column of^(v) 

is given by A(v)j = e j. 

Let k denote the size of the support in (v,w), and let A' and B' be defined as in 

(1.10). For the expression in (2.13), this gives 

sign ( - l ) w + 1 det [ < . . . < ] = sign ( - l ) w + 1 det [BA(y)~xC} 

= sign(-l)*+ 1 detß'deM'. (2.14) 

Note that sign det A(v)~l = sign det A(v) = sign det A', since A(v)j = ej if col-

umn j represents an unplayed strategy. One also has sign det C = +1. Furthermore, 

sign det B = (-l)m-Ä:sign det B'. This is due to the fact that the rows of B are ordered 

such that if row j of B represents an unplayed strategy, then Bj = —Xjej with Xj > 0. 

All other rows of B are positive multiples of columns of B. Thus the expression in 

(2.13) is the same as the expression in Definition ( 1.4). • 

The expression in (2.14) can be interpreted as follows. The term (—1)*+1 accounts 

for the alternating sign of the matrix corresponding to Xa, sign det B' gives the orien-

tation of Va, and sign det A' gives the orientation of within Va . 

In the artificial equilibrium is not represented as such. Instead, it can be 

thought of lying under XA , since it is covered by the projection of P^ —Xa. Al-

ternatively, the artificial equilibrium can be represented in XA by attaching a mirrored 

version o f X a along some (m - 2)-face t o X a as depicted in Figure 2.13. The represen-

tation of the index in XA allows to intuitively show that indices which are connected 

via a L-H path have opposite indices. This result was first proven by Shapley (1974). 

Proposition 2.11 Equilibria connected by an L-H path have opposite indices. The 

sum of indices of equilibria in a non-degenerate bimatrix game is +1. 

Proof The proof is illustrated in Figure 2.13. Note that the dual construction can also 

be applied to player IPs strategy space Y to obtain YA to follow L-H paths defined by a 



missing label j £ J. The proof here applies to X^ and L-H paths defined by a missing 

label k e I of player I. The proof for L-H paths in 7*A is équivalent. 

Take two equilibria (vi,wi) and (v2,w>2) that are connected in X x Y via an L-

H path in M(k) for some kel. In XA, this corresponds to two completely labelled 

points wS[ and wsi that are completely labelled and are connected inX*A by some path 

in MA(k). Along the path, the relative position of the régions with labels I — {k} is 

constant. Fixing the face with labels I-{£}, the Vertex with label k lies on one side in 

wA, and on the other side in so w^ and wf2 must have opposite indices (see e.g. 

Eaves and Scarf (1976) or Garcia and Zangwill (1981, Theorem 3.4.1)). 

Figure 2.13: Orientation along L-H paths 

As argued above, the artificial equilibrium has orientation — 1. Since for a given 

missing label the L-H paths always yield equilibrium pairs (including the artificial 

equilibrium), the sum of indices of equilibria equals 0 if one also counts the artificial 

equilibrium, and it equals +1 if one does not. • 

Proposition 2.10 shows that the index is independent of unplayed stratégies. This 

is also illustrated by the dual construction, since the permutation of the labels repre-

senting unplayed stratégies is trivial. The following observation shows that this invari-

ance property, together with the fact that the sum of indices of equilibria of a game 

equals +1, actually defines the index. 

Proposition 2.12 Let Ind(v,w) be some index function that assigns an index +1 or 

— 1 to equilibria (v, w) of a non-degenerate bimatrix game. Iflnd(v, w) is such that the 
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indices of equilibria of a game add up to +1 and such that the index does not depend 

on unplayed stratégies, then Ind(v,w) must be the same as in Définition 1.4. 

The proof is by induction on the number k of stratégies played in equilibrium. The case 

k = 1 reflects pure strategy equilibria, for which both concepts yield index +1. Now 

fix a non-degenerate bimatrix game G, and consider an equilibrium of G in which each 

player plays k stratégies. Consider the game k x k bimatrix game G' that is obtained 

from the original game G by deleting ail unplayed stratégies, i.e. consider the game 

with payoff matrices A' and B'. Then the equilibrium is the only completely mixed 

equilibrium in Gf. The sum of indices of the equilibria of G' equals +1 with respect 

to both Ind(-) and Définition 1.4. But for ali equilibria of G' that use 1 or less 

stratégies, both indices are the same, noting that both concepts only depend on the 

strategies played in equilibrium. The sum of indices of the equilibria of G' equals +1, 

thus the indices of the completely mixed equilibrium of G' must coincide. These, in 

turn, are the same as the indices of the equilibrium as an equilibrium of G. • 

In the same way as in the proof of Proposition 2.12, one can show that the invari-

ance property, i.e. the index does not depend on unplayed strategies, and the property 

that equilibria at the ends of L-H paths have opposite indices completely characterise 

the index. 
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Chapter 3 

Sperner's Lemma and Labelling 

Theorems 

This chapter shows how the labelled dual construction^ relates to labelled triangula-

tions as in Spemer's Lemma. Sperner's Lemma is a result from combinatorial topology 

that applies to triangulations of the unit simplex together with a labelling of the vertices 

in the triangulation. Sperner's Lemma states the existence of a fully labelled simplex if 

a certain boundary condition is satisfied. This condition is a restriction on the labelling 

function for vertices on the boundary. 

Sperner's Lemma is equivalent to Brouwer's fixed point theorem (see e.g. Garcia 

and Zangwill (1981)). Since the Nash equilibria of a game can be described as the fixed 

points of a suitable mapping / : a "connection" between Sperner's 

Lemma and bimatrix games is nothing new. What is new, however, is the fact that the 

dual construction for m x n bimatrix games relates to Sperner's Lemma in dimension 

m — 1. This also allows one to show that the existence of a Nash equilibrium in an non-

degenerate mxn bimatrix game implies Brouwer's fixed point theorem in dimension 

m—\. Since Nash equilibria can, conversely, be described as fixed points, Brouwer's 

fixed point theorem is equivalent to the existence of Nash equilibria in non-degenerate 

bimatrix games. 

The structure of this chapter is as follows. Section 3.1 reviews Sperner's Lemma in 

its classical form. It shown that Sperner's Lemma is equivalent to the KKM Lemma, 

a classical result by Knaster, Kuratowski and Mazurkiewicz (1929), and to Brouwer's 
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fixed point theorem. In Section 3.2 it is shown how these results apply to bimatrix 

games. In particular, it is shown that for every labelled regular triangulation | Am _ l | 

with no vertices on the boundary other than the unit vectors e,- with label z", there exists 

an m x « non-degenerate bimatrix game such that the labelled dual construction for the 

game is equivalent to the labelled triangulation (Proposition 3.9). The L-H algorithm 

in that bimatrix game is equivalent to a well-known algorithm that finds completely 

labelled simplices. It is also shown that for every labelled dual construction XA there 

exists a refinement of |XA | and a labelling of the vertices that is consistent with the best 

reply regions such that the Nash equilibria are represented by the completely labelled 

simplices (Proposition 3.14). The relation of the dual construction to Sperner's Lemma 

is then used to show that the existence of Nash equilibria in non-degenerate bimatrix 

games is equivalent to Brouwer's fixed point theorem (Corollary 3.13). Section 3.3 

translates the division of X^ into a mapping that characterises the Nash equilibria. 

This section is important, as it lies the technical foundation of the subsequent chapters. 

3.1 Sperner's Lemma 

Sperner's Lemma (Sperner (1928)) applies to triangulations of a simplex with labelled 

vertices. Sperner's lemma states that there exists an odd number of completely labelled 

simplices in a labelled triangulation of the standard (m - 1)-simplex if a bound-

ary condition is fulfilled. This boundary condition states that the label of a vertex v 

on the boundary is one of the labels of the vertices that span the face that contains v. 

Sperner's Lemma is a classical result from combinatorial topology and is equivalent 

to Brouwer's fixed point theorem and the KKM Lemma (see e.g. Garcia and Zangwill 

(1981)). 

A triangulation (or simplicial subdivision) of A"1-1, denoted as | Am_11, is a finite 

collection of smaller (m — 1)-simplices whose union is the simplex, and that is such 

that any two of the simplices intersect in a face common to both, or the intersection is 

empty. Let V denote the set of vertices of the smaller simplices in | Aw_11. A labelling 

function is a function that assigns a label / G / = {1,..., m} to each vertex v G V, i.e. 

L : V /. An example of a triangulation of | Aw _ 1 | with a labelling L is depicted 
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in Figure 3.1. A triangulation together with a labelling of the vertices is referred to as 

îabelled triangulation. 

Figure 3.1 : A Iabelled triangulation 

The simplex Am~1 is spanned by the unit vectors et G Rm, / G / , where / ={1 ,..., w}. 

The Sperner boundary condition, which is referred to as the Sperner condition, states 

that if a vertex v G V lies on the (k — l)-face of Am_1 that is spanned by ej, j G 4, 

with 4 = {h » • • • » 4} C /, then I(v) G 4- Note that the Sperner condition only restricts 

the labelling of vertices that lie on the boundary (4 C I and 4 # I)- For vertices in 

the interior of Am _ 1 there is no restriction (4 = /)- So it is appropriate to refer to the 

Sperner condition as a boundary condition. The Sperner condition implies that the unit 

vectors ei have label i. So every vertex v can only be assigned one of the labels of those 

vertices that span the (minimal) face that contains v. For the example in Figure 3.1, the 

Sperner condition is fulfilled. For example, the vertices that lie on the boundary face 

spanned by vertices with labels 1 and 2 only have labels 1 or 2. 

Definition 3.1 (Sperner condition) Let v G V be contained in a (k— \)-face of A"1-1 

spanned by ej, j G h, with 4 — Ol ? • • • » 4 } C I, and let k be minimal in this respect. 

Then a labelling L : V —ï I fulfils the Sperner condition ifL(v) G 4-

Sperner's Lemma states that there exists an odd number of completely Iabelled sim-

plices if the Sperner condition is satisfied. A simplex is called completely Iabelled if 

the vertices of the simplex have distinct labels, i.e. if the vertices have labels 

It follows that there exists at least one completely Iabelled simplex. Sperner's Lemma 

also states that there exists one more completely Iabelled simplex with positive orienta-

tion than with negative orientation. An orientation is an équivalence class as described 

through (1.7). According to (1.7), the sign of the déterminant associated with the unit 
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simplex Aw _ 1 with vertices labelled L(eì) = i is +1. If a simplex is completely la-

belled, one can order the vertices according to their labelling. Applying (1.7) and 

choosing the orientation of the unit simplex as the standard orientation, one can define 

the orientation of a completely labelled simplex. 

Définition 3.2 (Orientation) A completely labelled simplex has orientation +1, if it 

falls in the some équivalence class as the unit simplex A7""1 with vertices labelled 

L(eì) = i, and —1 otherwise. 

The labels of a completely labelled simplex can be seen as an ordering of its vertices, 

and the orientation of a fully labelled simplex corresponds to a permutation of the 

labels of the vertices as described before. The orientation is -I-1 if the permutation has 

sign +1, and it is — 1 otherwise. For the example in Figure 3.1, the completely labelled 

simplex in the bottom right corner has orientation +1; the labelling reads (1,2,3) in 

anti-clockwise direction. The completely labelled simplex in the centre of Figure 3.1 

has orientation — 1; its labelling reads (1,2,3) in clockwise direction. 

Theorem 3.3 (Sperner's Lemma) Consider a labelled triangulation | Am _ 1 | such 

that the labelling satisfies the Sperner condition. Then there exists an odd number of 

completely labelled simplices, one more with orientation +1 than with orientation — 1. 

Proof. This proof employs methods from combinatorial topology and is by induction 

(see e.g. Henle (1994, p. 38) for the case m = 3). The case for m = 1 is trivial, and 

m —l is also easy to verify. So suppose the claim is true for triangulations of A7"-2. 

Fix a label k 6 /, and consider a simplex A € | Am_11 that is spanned by vertices 

vi , . . . , vm. Consider an (m — 2)-face of A that is spanned by, say, vertices vi,..., vm_ i. 

Relative to A, each (m — 2)-face has an orientation induced by the orientation of Am_1 

and the labels I — {&}: If the m — 1 vertices of the face do not have labels I— {k}, the 

orientation is 0. If the vertices of the face have m — 1 distinct labels I— {k}, then the 

orientation of the (m - 2)-face is the orientation of the completely labelled simplex 

that would be obtained by giving vm the missing label k. This is depicted in Figure 3.2 

for k = 1. There are three cases. 
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1) A simplex A does not have labels I — {£}. In this case the orientations of its 

(m — 2)-faces are zero since no (m — 2)-face can have labels I— {k}. Hence the 

sum of the orientations over the {m — 2)-faces of A is zero. 

2) A simplex A has exactly the m - 1 distinct labels 1— {k}. Then exactly two 

(m — 2)-faces of A are such that they have the same m - 1 distinct labels / - {&}, 

while ail other (m — 2)-faces have labels other thanI— {k}. The latter ones have 

by définition orientation zero, while the two former ones are such that they have 

opposite orientations. Hence the sum of orientations over the (m - 2)-faces of 

A is also zero. 

3) A simplex A is completely labelled. Then, by définition, their exists exactly one 

(m — 2)-face of A with labels / - {£}. This face has orientation +1 if A has 

positive orientation, and orientation — 1 if A has negative orientation. 

Now consider an (m—2)-face that lies in the interior of A"1-1. By définition, it belongs 

to exactly two simplices that are adjacent. With respect to one simplex its orientation 

is the negative of its orientation with respect to the other simplex (including the case 

where the orientation is zero). So, adding up the orientations of ail (m — 2)-faces of 

ail simplices in | A7"-11, this sum must equal the sum of orientations of the boundary 

(m — 2)-faces of | A"1-11, since the orientations of (m — 2)-faces in the interior cancel 

out. 

Boundary (m — 2)-faces of | Am~l | with labels I-{k} can only lie on the (m — 2)-

face spanned by eu i {&}. But the sum of orientations of these (m — 2)-simplices 

equals +1 by induction assumption. Hence, there exists exactly one more completely 

labelled simplex with positive orientation than with negative orientation. Note that the 

proof is independent of the label k c'hosen for the proof. • 

An illustration of the proof in the case m ~ 3 is depicted in Figure 3.2 for the 

example in Figure 3.1. Consider a triangle A € | A2 |, and fix the label k = 1. The 

assigned orientation is +1 if the edge has labels 2,3 oriented in the same way as the 

edge 2,3 in the original simplex, and - 1 if it has labels 2,3 oriented in the opposite 

way. Ail other edges have orientation 0. Now consider two triangles A and A' that 

share an edge. Then the edge in one triangle has the opposite orientation as the same 
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Figure 3.2: The proof of Sperner's Lemma for A2 

3 

1 

2 

2 1 2 

edge in the adjacent simplex. The sum of orientations of the edges of a triangle is 

either +1, - 1 (if completely labelled) or 0 (if not completely labelled). But adding 

up the sums of orientations of edges over ali triangles in | A2 | is the same as the sum 

of orientations of edges on the boundary of | A2 |, since the orientations of edges in 

the interior of I A21 cancel out. The Sperner condition ensures that this outer sum is 

+1. Boundary edges with labels 2,3 can only lie on the (m — 2)-face of A2 spanned 

by ei and e .̂ On this 1-face, the orientations add up to +1. Hence, there exists an odd 

number of completely labelled simplices, one more with positive orientation than with 

negative orientation. In Figure 3.2 these are depicted by bold edges. 

So the Sperner condition, which is a restriction of the labelling on the boundary, 

determines the existence of a completely labelled simplex. An alternative proof of 

Theorem 3.3 can be given by using degree theory from algebraic topology, described 

next. This proves useful when comparing the Sperner situation with the labelled dual 

construction and when formalising a generalised version of Sperner's Lemma that 

applies to components of equilibria in Chapter 5. For this, one translates the labelled 

triangulation into a mapping between two standard (m — 1)-simplices. The mapping 

also yields a division of Am _ 1 into labelled régions such that one can apply the KKM 

Lemma (see below). 

Définition 3.4 Consider the standard (m — \ )-simplex Am~\ Then Am~l is the (non-

disjoint) union of m convex régions A m~l(i) with labels iel as follows: A m"l(i) = 

{x G A"1-1 | Xi = maxfei xjç}. This division of Am _ 1 into convex régions is referred to 
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as the canonical division and is denoted as AJ1-1. Each point in p G A™-1 is assigned 

the labels of the régions that contain p, Le. L(p) = {/' G /1 G A7"-1 (/)}. The vertices 

of AJ1-1 are /Ae vertices of the sets AOT_1(z), / G /. completely labelled point in 

the centre of A f - 1 is denoted as v*. 

Essentially, the division of AJ1-1 into labelled régions is same as the division ofX = 

A"1-1 into best reply régions in the m x m coordination game with identity matrices 

as payoffs, and the vertices of AJ1-1 are the vertices in X = Am _ 1 . A depiction of the 

canonical division is given in Figure 3.3. 

Figure 3.3: The canonical division A f - 1 

The labelling now defìnes a mapping Z8 from | Am~11 to A™~1. Consider a simplex 

A G | Am~11 that is spanned by vertices v\,..., vm. Each vertex has a label L(vi), and is 

mapped to the vertex e i ^ in A* _ 1 . This mapping preserves the labels of the vertices, 

i.e. L(v) = L(f(v)). Having defined the mapping on the vertices of A, it can be 

linearly extended to a mapping from A by mapping a convex combination of vertices 

on the convex combination of their images, i.e. J^ÇZfLi X{v¿) = hf^ivi). 

It is easy to verify that Z8 maps every k-fa.ce of a simplex in | Am~11 on some k-fa.cc 

of A J - 1 . In particular, if the k+ 1 vertices of a £-face have distinct labels i\,..., ik+i, 

it is mapped affinely on the ̂ -face of 1 that is spanned by unit vectors e^,..., eik+l. 

If the k+ 1 vertices of that face have labels h,...,// (with / < k + 1, so some labels 

might be duplicate), it is mapped on the (/ - l)-face of AJ1-1 that is spanned by unit 

vectors e\x,.. Me,-r Since this also holds for the (m — 2)-faces that lie on the boundary 

of | Am~l |, the mapping f8 maps boundary on boundary, i.e. 

(| A™-' |,d| A""11) —>• ( A r ' . a A r 1 ) - (3.1) 

The mapping in (3.1) is referred to as the Sperner mapping, and induces a division 

of | Aw~ l | into labelled régions | Am~l |(/). This is depicted in Figure 3.4. These 
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régions are the pre-images of the régions Am~1 (/) in the canonical division Af _ 1 . 

This division of Am _ 1 into labelled régions is denoted as | The subscript 

"*" symbolizes a division into labelled régions (as in the case X*A). The labels of a 

point p e | A"1-11* are defined as L(p) = L(f(p)). The bold numbers and lines in 

Figure 3.4 mark the régions | Am_1 |(j). In this représentation, the completely labelled 

points correspond to completely labelled simplices, since only the centre of completely 

labelled simplices is mapped to v*. 

Figure 3.4: A division of Am_1 into labelled régions 

Alternatively, let vi,...,vm be the vertices of some simplex A in | A"1-11 with 

labels ¿(v,), for i G I. A point in A is given by its coordinates p with respect to 

vi , . . . , vm. Then, on each A, the mapping f 5 can be described by the matrix A) = 

ieL(vi) • • • eL(vm)] • This matrix is referred to as the Sperner matrix. So a point in A 

with coordinates p is mapped to As(A)p. The labels of a point with coordinates p are 

given by L(p) = {kGl \ (As(A)p)k = maxi€i(As(A)p)i}. So the division into labelled 

régions is obtained in a similar way as the labelled dual construction is obtained via 

A(v). The différence is that in the Sperner case the columns of the matrix v4s(A) are 

unit vectors, whereas in case of^4(v) the matrix consists of a mixture of payoff vectors 

and unit vectors. 

The Sperner condition détermines the degree of the Sperner mapping Z5. The 

concept of degree is a useful tool that incorporâtes what was done "manually" in the 

proof of Theorem 3.3. For the mapping Z8, the degree counts the number of pre-

images of the completely labelled point v* e AJ1-1, where each pre-image is counted 

with its local degree. The local degree at a pre-image of v* equals the orientation of the 

completely labelled simplex that contains the pre-image. For a mapping that permutes 
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the vertices of a simplex, the degree equals the sign of the permutation. In Figure 3.4, 

this is depicted by the oriented arc around completely labelled points. 

Furthermore, the degree of a mapping is the same as the degree of the mapping re-

stricted to the boundary. The degree of f8 restricted to the boundary of Am~l counts, 

for an arbitrary but fixed label k € l , the number of almost completely labelled points 

on the boundary | A"1-1 |* with labels I— {£}, again counting each with its locai de-

gree. The locai degree of f 5 restricted to the boundary equals the orientation that was 

assigned to (m - 2)-faces in the proof of Theorem 3.3. In particular, it is independent 

of the label k chosen. 

The two paragraphs above contain ali that is needed in terms of degree theory for 

the remainder of this work: A detailed account of the degree can e.g. be found in Dold 

(1972, IV, 4 and 5). 

Lemma 3.5 If the Sperner condition is satisfied then the degree of the Sperner map-

ping Z8 is+1. 

Proof The proof is by induction. For m = 1 the case is trivial (and for m = 2 it is 

also easy to check). So suppose the statement is true for triangulations of the standard 

(m — 2)-simplex. Fix a label k G /. In the division of AJ1"1 into labelled régions 

consider the vertex v with labels / - {&} that lies on the {m — 2)-face spanned by 

unit vectors e,-, / G / - {&}. Now restrict y5 to the boundary. For f 8 restricted to 

the boundary, the pre-images of v can only lie on the (m - 2)-face of | Am _ 1 | that 

is spanned by e,-, i G /— {k} (see also Figure 3.4). This is ensured by the Spemer 

condition. But then the degree of Z8 restricted to the boundary is +1 by induction 

assumption, which equals the degree o f / 3 . • 

After translating the labelling into a mapping, Sperner's Lemma is simply a consé-

quence of Lemma 3.5. The degree of f^ equals +1. This degree is, as explained above, 

the sum of local degrees at pre-images of v*. But the locai degree at a pre-image of 

v* is the same as the orientation of the completely labelled simplex that contains the 

pre-image. 

The induced division | A"1-1 |* is a division to which one can apply the KKM 

Lemma, a classical result by Knaster, Kuratowski and Mazurkiewicz (1929). 
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Theorem 3.6 (KKM Lemma) Let Cu with iel={l,...1m}> bea collection ofclosed 

subsets of Am~1 such that for ail subsets 4 C / the face of Am~1 that is spanned by eit 

for i G h, is contained in Uie/*C/. Then fl/E/Q ^ 

Proof The KKM Lemma is implied by Spemer's Lemma. To see this assume that 

flie/Ci = Now each subset C{ is closed by assumption, and since it is bounded, 

it is compact. So the set II,e/C/ is compact, and the mapping n/G/C,- —M defined 

by (xi,... ,x/) i v max/j \\xj - xj\\ takes a minimum e > 0. Therefore there exists an 

e > 0 such that for ail x G Am_1 the e-neighbourhood Ue(x) around x is such that 

Ue(x) fi Ci = 0 for at least one set C(. Now choose a triangulation of Am_1 such that 

each simplex in the triangulation has a diameter smaller than e. Label the vertices v 

such that L(v) G {z | v G C,}. Then one has a triangulation of Am~l that fulfils the 

Sperner condition but does not contain a completely labelled simplex. This violâtes 

Spemer's Lemma. • 

Conversely, it is easy to see that the KKM Lemma implies Spemer's Lemma. As-

suming a triangulation of AOT_1 that fulfils the Sperner condition but does not contain a 

completely labelled simplex, one obtains a division of Am_1 via the Sperner mapping 

y5 that satisfies the assumptions of the KKM Lemma but does not contain a completely 

labelled point. Thus Spemer's Lemma is équivalent to the KKM Lemma (see also e.g. 

Garcia and Zangwill (1981)). 

There exists a well-known algorithm that finds a completely labelled simplex in 

| Am~l | (or a completely labelled point in | Am~l |*). This algorithm is described be-

low, and is referred to as the Sperner algorithm. First, "extend" | Am_11 by inscribing 

it into a larger {m — l)-simplex | A'""1 \e as shown in Figure 3.5 (see e.g. Scarf (1983)). 

This gives a triangulation of the extended simplex that coincides with the triangulation 

| Am~l | in the interior. Now label the vertices that span | Am~l \e such that there are 

no completely labelled simplices except from those in | Am_11. This is possible due to 

the Spemer condition: Take the outer vertex of the extended structure that lies on the 

outside of the face of | Am_11 on which the vertices can only have labels i G / — {&}. 
Labelling the outer vertex with k+ 1 (mod m) ensures that no new completely labelled 

simplices are created. Furthermore, it ensures that, for every set of labels I— {£}, there 

exists exactly one (m - 2)-face on the boundary of | Am _ 1 \e that has labels / - {£}. 
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Figure 3.5: An algorithm for finding completely labelled triangles 

The algorithm can now be described as follows (see Figure 3.5). Start from the 

outside of the extended construction (or at a completely labelled simplex once one has 

been found). Choose a label kel and flip over the (m — 2)-face that has labels I - {&}. 

If the new simplex is not completely labelled, it must have exactly one other (m- 2)-

face (other than the face one flipped over) with the same labels /— {&}. Then flip over 

this (m — 2)-face into an adjacent simplex, and so on. Eventually, this algorithm yields 

a completely labelled simplex in | A"1"1 | (see e.g. Scarf (1983)). Simplices that are 

connected through the algorithm have opposite orientation. 

The Sperner algorithm translates easily into the topological setting. Let 7 s denote 

the Sperner mapping from the enlarged simplex | Am~l \e to A™-1. This yields a 

division of the extended simplex into labelled regions in which the completely labelled 

simplices correspond to points that are mapped to v* under/8. For every label k, there 

exists exactly one point on the boundary with labels / —{&}. The path with labels 

/— {k} that starts on the boundary leads to a completely labelled point. 

To emphasise the relevance of Sperner's Lemma in fixed point theory, this section 

concludes by proving the familiar theorems that show that Sperner's Lemma implies 

Brouwer's fixed point theorem and vice versa. This also allows one to show in the 

next section that the existence of Nash equilibria in non-degenerate bimatrix games is 

equivalent to Brouwer's fixed point theorem. 
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Figure 3.6: The Sperner algorithm as a path-following algorithm 

Theorem 3.7 (Brouwer's fìxed point theorem) Every mapping f : Am 1 —¥ Am 1 

has a ftxedpoint, Le. 3 x* G Am _ 1 : f(x*) — x*. 

Proof. Assume the contrary, i.e. for ali x G Am _ 1 one has f(x) ^ x. This defìnes a 

mapping r : Am~l dAm~l that retracts Am~l on its boundary. Define r(x) as the 

point on the boundary that is given by the intersection point between the line defined by 

x and f(x) in direction of x and the boundary (see the left picture in Figure 3.7). Since 

r is continuous and defined on a compact set, the mapping r is uniformly continuous. 

Now take a triangulation of Am _ 1 into sufficiently small simplices, say with diame-

ter smaller than some 8. Then label the vertices according to L(v) = L(r(v)), where 

L(r(v)) is the label of the point r(v) in the canonical division. Then one has a labelling 

that satisfies the Sperner condition (since r is the identity on the boundary) and is such 

that no simplex is fully labelled if 5 is sufficiently small: Every 6-neighbourhood of x 

is mapped on some small 8-neighbourhood of r(jc), which does not contain more than 

m — 1 distinct labels for small e. This contradicts Sperner's Lemma. • 

Brouwer's fixed point theorem depends on the fact that Am~l cannot be retracted 

to its boundary. If there exists a subdivision | Am~l | with a labelling that satisfies the 

Sperner condition and does not contain a completely labelled simplex then the Sperner 

mapping f ^ is a mapping that retracts A w _ 1 to its boundary. Assuming without loss of 

generality there are no vertices except those of A w - 1 on the boundary (by inscribing 

| Am~x | into an extended structure as above), the mapping y5 is the identity on the 
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boundary. Thus the "no-retraction" property implies Sperner's Lemma. But Sperner's 

Lemma can also be deduced directly from Brouwer's fixed point theorem. 

Figure 3.7: Sperner's Lemma implies Brouwer and vice versa 

Proposition 3.8 Brouwer s fixed point theorem implies Sperner 's Lemma and Sperner s 

Lemma implies Brouwer's fixed point theorem. 

Proof. The latter implication was shown in the proof of Theorem 3.7. So it remains to 

show that Brouwer's fixed point theorem implies Sperner's Lemma. Suppose one has 

a labelling that satisfies the Sperner condition and that does not contain a fully labelled 

simplex. Then the Sperner mapping y5 is such that J^(x) ^ v* for ail x G Aw _ 1 . Then 

define g(x) as the point on the boundary that is defined as the intersection of the line 

between /^(x) and v* in direction of v* with the boundary (see the right picture in 

Figure 3.7). Then g(x) is a mapping for which g(x) ^ x for x in the interior of A"1-1. 

Now suppose x lies on some £-face of A"1-1. By construction of the Sperner mapping, 

the point lies on that £-face, and the line connecting Z8 (x) and v* does not go 

elsewhere through this face. So g(x) ^ x for ail points on the boundary, and hence g 

has no fixed points. This contradicts Brouwer's fixed point theorem. • 

3.2 The Application to Bimatrix Games 

The division | Am _ 1 |* into labelled régions induced by the labelled triangulation al-

ready shows strong similarities with the labelled dual construction X^. The division 

of | A"1-11* is induced by the Sperner matrix^4s( A) as described on page 71, whereas 
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the division ofX*A is induced by the artificial payoff matrix^(v). The différence, how-

ever, is that ^S(A) only consists of unit vectors, whereas A{y) consists of a mixture 

of unit vectors representing unplayed stratégies and columns of A representing pure 

stratégies of player IL So the division of a simplex in \XA | into best reply régions is 

in général more complex than the division of simplices in | Aw_11. Furthermore, the 

triangulation |XA| is regular as it arises from the projection of a simplicial polytope. 

The triangulation in the Sperner case can be any triangulation. 

Despite the différences, there are still striking similarities between | Aw - 1 |* and 

\XA\*, and this section shows how and under what circumstances one can translate 

one situation into the other and vice versa. The équivalence of Brouwer's fixed point 

theorem and the existence of Nash equilibria in non-degenerate bimatrix games (Corol-

lary 3.13 below) also shows that these différences are not very deep. 

Proposition 3.9 Let | Am~x | be a labelled triangulation of the unit simplex with no 

vertices on the boundary other than ei,for i GI. Let the Sperner condition be satisfied, 

so L(ei) — i. If the triangulation of Am-1 is regular, then there exists a non-degenerate 

mxn bimatrix game such that \ Am~x | = \XA\ and | AOT_11* — XA (after identifying 

XA with Am~l). 

Proof Let | Am~11 be a regular triangulation. Consider the simplexXA that is spanned 

by the vertices —mvef-, for i G I and some positive constant v. Then Am~l can be 

identified with XA via a linear mapping defined by e,- —mvet. This mapping induces 

a regular triangulation \XA\ of XA. The label of a vertex v G \XA\ is defined by the 

label of its pre-images. 

This yields a labelled and regular triangulation of XA. Since the triangulation is 

regular, the triangulation is the projection of some simplicial polytope PA as in 2.3, 

with the first m vertices of PA given by —mvei, i G /. The vertices of PA satisfy the 

conditions in Lemma 2.2 since the triangulation is regular. Also, it can be assumed that 

0 G Rm lies in the interior of PA. If not, one could just move the vertices except for 

~mvei, i G /, along the projection lines to obtain a combinatorially équivalent polytope 

that contains 0 G W. As described in Lemma 2.2, this yields the columns of a payoff 

matrix B such that the best reply polytope P that arises from B is the polar of PA. This 
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détermines the payoffs for player II. Note that if there are n vertices in the interior of 

| Am~l |, then the resulting game is of dimension mxn. 

Finally, one has to determine the payoff matrix A for player I. These payoffs are 

determined by the labelling of the vertices. Each vertex v G \XA\ represents a pure 

strategy of player II. If the label of a vertex is i for some i G /, then defìne the payoff 

for player I with respect to the pure strategy that is represented by vertex v as the 

unit vector with entry in row i. Then the induced polyhedral division into best reply 

régions of the simplices in \XA\ is the same as the division induced by the labelling 

of the vertices in | Am_11. The payoff matrix B that induces |XA| is generic. So is 

the payoff matrix A that only consists of unit vectors and induces the division into best 

reply régions. • 

Corollary 3.10 For a missing label kGl ofplayer I, the L-H algorithm for the game 

constructed in Proposition 3.9 follows the same path of simplices as the Sperner algo-

rithm. 

Proof. This is an immediate conséquence from the construction. The L-H algorithm 

follows the path of almost completely labelled points in the labelled dual construction. 

This corresponds to fìipping over (m — 2)-faces in the triangulation which have m — 1 

distinct labels. The labelled dual construction is identical with the division of Am _ 1 

that is induced by the Sperner mapping Z8. But the Sperner algorithm also fìips over 

those (m — 2)-faces in the triangulation that have m — 1 distinct labels. Hence the paths 

of both algorithms are identical. • 

Proposition 3.9 is used to conclude Brouwer's fìxed point theorem from the exis-

tence of Nash equilibria in bimatrix games. The idea of the proof is based on translat-

ing a division | A7"-11* that arises from a Sperner labelling into a d iv i s ion i with a 

triangulation |XA | that is regular and arises from a payoff matrix B. 

For this, consider some triangulation of Am~ l . Then add a vertex v. Suppose this 

vertex is contained in some simplex A that is spanned by vertices vi,... vm. Note that 

it is allowed for v to lie on some A>face of A. Then consider the refinement of A that 

is given by the simplices spanned by 

{v,v2,...,vm}; {vi,v,v3,...,vm}; ...; {vi,...,vm_j,v}. (3.2) 
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If v lies on the ft-face of two or more simplices, the refinement in (3.2) applies to each 

simplex that contains v. An illustration for this is given on the left in Figure 3.8. First 

the vertex v is added, then the vertex v', and finally the vertex v". Note that some of 

the simplices in (3.2) are not full-dimensional in case v lies on some £-face of A with 

k < (m — 2). In this case, they become faces of simplices in the triangulation. 

A refinement of a given triangulation that is achieved by iteratively adding vertices 

at a time to the triangulation is referred to as an iterateci refinement. The following 

lemma shows an iterated refinement can divide a simplex into arbitrarily small sim-

plices. The mesh of a triangulation is defined as the maximum diameter of a simplex 

in the triangulation. 

Lemma 3.11 For every e > 0 there exists an iterated refinement of A"1-1 such that the 

mesh size of the triangulation is smaller than e. 

Proofi It is shown that the barycentric subdivision is an iterated refinement. The 

barycentric subdivision is known to produce simplices of arbitrarily small maximal 

diameter (see e.g. Dold (1972, III, 6)). 

A depiction of the barycentric subdivision is given on the right in Figure 3.8. Take 

a simplex in the triangulation. Then add the barycentre of the (m — 1)-simplex as a 

vertex. Next, add the barycentres of its (m - 2)-faces as vertices, and continue with 

the lower dimensionai faces and their barycentres. Note that if one adds a vertex to a 

&-face that is common to more than one simplex in the triangulation, then the vertex 

is the barycentre of that £-face, i.e. the added vertex is the same for ail simplices that 

contain the £-face. This procedure yields the barycentric subdivision. • 

Figure 3.8: An iterated refinement of a simplex and the barycentric subdivision 

Lemma 3.12 Let \XA \ be a regular triangulation ofXA with no vertices on the bound-

ary other than those that span XA. Then every iterated refinement of \XA\ that does 

79 



not add vertices to the boundary of is a regular triangulation. In particular, if 

\XA | arises from a payoff matrix B, then the refinement arises from an extendedpayoff 

matrix that consists of the original columns ofB and additional columns. 

Proof. It is required that the added vertices do not lie on the boundary of XA so that the 

resulting triangulation can still be achieved as the dual construction for some bimatrix 

game. 

So let |XA| be a regular triangulation. Then consider the polytope PA that yields 

|XA | via projection. Now take a point v in the interior of |XA |. This point is represented 

by some point on the boundary of the polytope PA. Now take a point on the line 

defined by v and v1* that lies outside of PA but is still close P A . This is depicted in 

Figure 3.9. Let this point be denoted by c. 

Figure 3.9: An iterated refinement of \XA \ 

Let PA be defined as the convex hull of points as described in (2.3). Now consider 

the polytope P^ that is given by 

P* = conv{c,ci,...,cw}. 

Then c becomes a new vertex of the polytope. Then the vertex c refines the simplicial 

structure of PA in a way such that the projection yields the iterated refinement 

that is obtained by adding the point v as a vertex. The vertex v is the projection of the 

vertex c. 

For each added point, the polytope P^ satisfies the requirements of Lemma 2.2. 

Hence, by Lemma 2.2, one can obtain a payoff matrix that induces the refinement. If 

the original triangulation arises from a payoff matrix the refinement corresponds to 
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a payoff matrix which contains the original columns of B and that has an extra column 

for each added vertex. • 

In Section 3.1 it was shown that Sperner's Lemma is equivalent to Brouwer's fixed 

point theorem. This section shows how to construct non-degenerate bimatrix games 

from regular labelled triangulations such that the dual construction has the same prop-

erties as the labelled triangulation. Combining these results, one obtains the following 

result. 

Corollary 3.13 The existence of a Nash equilibrium in a non-degenerate mx n bi-

matrix game implies Brouwer's fixed point theorem in dimension m — 1. Since Nash 

equilibria can, conversely, be described as fixed points, Brouwer's fixed point theorem 

is equivalent to the existence of Nash equilibria in non-degenerate bimatrix games. 

Proof Consider a mapping / : Am~1 -» Am~1. Assume f{x) ^ x for all x e Am~1. As 

in the proof of Theorem 3.7, this yields a retraction r that is defined by the intersection 

of the line between x and f(x) in direction of x with the boundary of Am~l. The 

mapping r then divides Am~l into labelled regions by considering the pre-images of 

the labelled regions on 3A™-1. In the proof of Theorem 3.7, this division is used to 

create a labelled triangulation of Am~x such that no simplex is completely labelled. 

Here, it is shown that one can create a regular labelled triangulation of AOT_1 with no 

vertices added to the boundary of Am~l such that no simplex is completely labelled. 

Using Proposition 3.9 one can then create an mxn non-degenerate bimatrix game that 

does not possess an equilibrium, leading to a contradiction. 

Take the division of Am _ 1 into labelled regions induced by the retraction r. Con-

struct iteratively a triangulation of Am_1 such that its mesh is so small that no simplex 

is completely labelled. As before, the label of a vertex is a label of a region that con-

tains the vertex. Note that the mesh of the triangulation can be constructed arbitrarily 

small (see Lemma 3.11) 

Let vi,..., VN be the set of vertices added to the triangulation, where the subscript 

reflects the order in which the vertices are added. Let A C {1,... ,N} denote the or-

dered subset for those vertices that were added to the boundary of Am~l. Now take 

the vertex v ,̂ for l e A , that is added last to the triangulation, and consider the iterated 
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refinement that is obtained by adding the set of vertices {vi,..., - {v^} in canon-

ical order. Continuing with the second-to-last vertex that was added to the boundary 

of Am~~l and so forth finally gives an iterated refinement with no vertices added to the 

boundary of Am_1 that, by Lemma 3.12, is regular (see also Lemma 4.2 in the next 

chapter). 

It remains to show that the deletion of vertices on the boundary does not create 

completely labelled simplices. Let v be a vertex that was added to the boundary. Then 

v = X/=i MiVI with FT > 0 and 1 JM= 1, for some vi,..., v/. Note that the retraction r 

is the identity on the boundary of Am~l. In particular, the labelling satisfies L(v) = 

¿fa) for some i G {1,...,/}. So the face spanned by {vi,...,v,_i, v,vI+1,...,vjJ has 

the same labels as the face spanned by {vi,..., v,_i, v/, v,+i,..., v*}. So a simplex 

spanned by {vi,...,vz-_i,v, v,-+i,...,v^} and some {v£+i,...,vm} is fully labelled if 

and only if the simplex spanned by {vi,..., i, v,-, v,-+1,..., v*} and { 1 , . . . , vm } is 

fully labelled. Hence v can be removed without creating a completely labelled simplex 

(see also Lemma 4.4 in the next chapter). • 

McLennan and Tourky (2004) have recently shown how Kakutani's fixed point 

theorem can be proven by game theoretic concepts. They create games whose Nash 

equilibria yield approximate fixed points, where the existence of the Nash equilibria is 

ensured by the Lemke-Howson algorithm. The authors argue that "the Lemke-Howson 

algorithm embodies, in algebraic form, the fixed point principle itself, and not merely 

the existence theorem for finite two person games" (p. 3-4). The analysis above sup-

ports this view. 

This section concludes with an observation that shows how to translate the labelled 

dual construction into a labelled triangulation that satisfies the Sperner condition 

such that it reflects the combinatorial properties of 

Proposition 3.14 Let X^ be the labelled dual construction for some (m x n)-bimatrix 

game, and let \XA\ denote the regular triangulation ofXA. Then there exists a labelled 

refinement of \XA | such that a vertex in the refinement has label i if and only if it is 

contained in the region with label i and such that a simplex is completely labelled if 

and only if it contains a completely labelled point Wy € X* . 
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Proof. Take some simplex vA. The polyhedral division is generally not such that one 

can just label the vertices of vA with the respective best reply labels without refining 

A Consider for example the polyhedral subdivisions depicted in Figure 3.10. In the 

first case, just labelling the vertices would yield a labelling such that the simplex is not 

completely labelled, although it contains a fully labelled point. In the second case, one 

would obtain a completely labelled simplex, although it does not contain a completely 

labelled point. Therefore, refinement is necessary. 

Figure 3.10: A refinement of vA 

Now one can refine the mesh of \XA\. This can, for example, be achieved by an 

iterated refinement. If the refinement is sufficiently small, a simplex contains a fully 

labelled point if and only if ali its vertices lie in distinct best reply régions. Labelling 

the vertices according to the best reply région yields the desired labelled refinement. 

• 

A possible refinement for the game in Example 2.3 is depicted in Figure 3.11. In 

this case, it is sufficient to add a vertex to the edge between vertices representing straté-

gies 4 and 7. The resulting refinement fulfils the requirements of Proposition 3.14. 

Figure 3.11 : A labelled triangulation for the game in Example 2.3 
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3.3 A Topological Interpretation of the Dual Construc-

tion 

In the Sperner case above, a mapping 7 s characterises the completely labelled sim-

plices in the sense that a simplex is completely labelled if and only if it contains a 

point that is mapped to the completely labelled point v* € AJ1"1. This mapping can 

be described by the Sperner matrix ^S(A) for each simplex A in the triangulation. 

The aim of this section is to construct a similar mapping / A for X*A via the artificial 

payoff matrix A{v). This mapping is used in extending the dual construction to outside 

option equilibrium components and when giving a new characterisation of index +1 

equilibria. 

Take the payoff matrix A for player I. First the columns Aj of A, for j e J, are 

normalised as follows. Without loss of generality it can be assumed that all entries 

of Aj are greater than zero. Otherwise one can add a positive constant to all payoffs 

without affecting the best reply regions and hence the equilibria of the game. Let 

\Aj\ = I!i-\Aij, i.e. \Aj\ denotes the sum of entries in column Aj. By assumption 

\Aj\ t^ 0. Let Amax = maxj(zj\Aj\. Add the positive constant Amax~W to column j. 

Adding a positive constant to a column of player Fs payoff matrix also leaves the 

equilibria and best reply regions invariant. In the modified payoff matrix, the entries in 

each column add up to Amax. Now divide all payoffs by Amax. This, again, leaves the 

Nash equilibria invariant. Hence one obtains an equivalent payoff matrix, also denoted 

as A, in which all entries are positive and in which the column entries add up to +1. 

Now consider a simplex v^ in |XA|. Let ws be a point in vA. The point ws can be 

described by convex coordinates with respect to the vertices of vA. So for a point ws 

in vA that is given by its coordinates with respect to the vertices vA one can simply 

define fv(ws) =A(v)ws. Then fv(w) £ A"1-1 since 

= = XS^W/y-wy = Z Z ^ M / y w ; = 5 > y X ^ M y = = 1-
i i j j i j i j 

A depiction of fv is given in Figure 3.12. It shows a simplex vA spanned by vertices 

vi, V2 and V3 and its image in AJ1-1. The columns of^4(v) are given by A\ and A3. 

By construction, the columns Ai (i =1,2,3) are elements of Am _ 1 . So the image of fv 

is the subset of AJ1^1 that is spanned by the payoff vectors A\,A2 and A3 in AJ1-1. In 
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particular, the image is some simplex that lies in (this simplex is not necessarily 

full dimensionai, even for non-degenerate payoff vectors). The division of v^ into 

best reply régions is an affine transformation of the division of the simplex spanned by 

A \,Â2 and Ai, whose division is that induced by the division of AJ1-1. 

Figure 3.12: The mapping fv 

If vi and V2 share a common face, the mappings /Vl and fV2 are identical on that 

face. Hence, by defining f piecewise on each simplex v^ as /v , one obtains a mapping 

/ : —• ( A r ' . a A r 1 ) . (3.3) 

Note that the mapping on the boundary of is given by the unit vectors as com-

ponents of^(v), so / maps boimdary on boundary. Furthermore, by construction, the 

labels of a point ws are the same as the labels of its image. The mapping / in (3.3) is 

referred to as the payoff mapping, since the value of / is the expected payoff of player I 

under a strategy profile w5 of player II (including the slack variables). A depiction of 

the underlying geometry is given in Figure 3.13. It shows that the simplex marked in 

dashed lines is mapped affinely on a simplex in A™-1, also described by dashed lines. 

The vertices of the simplex in A™-1 are the images of the vertices in |XA|. 

This is a crucial différence to the Sperner case. There, the images of simplices are 

either the simplex AJ1-1 itself (if the simplex is completely labelled), or the images 

are faces of A™-1 (if the simplex is not completely labelled). In the dual construction, 

the images of simplices v^ are simplices which are contained in AJ1-1. Nevertheless, 

the simplex contains a completely labelled point if and only if its image under / 

contains the completely labelled point v*. 

Note that X = A"1-1. So, so far, / is a mapping / : XA ^ X. To define the 

index via a mapping, it is more convenient to have a mapping XA ->• XA , where XA is 
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Figure 3.13: The payoff mapping / 

divided into best reply régions as in , i.e. via the unit matrix that assigns each vertex 

—mvet of XA the artificial payoff e, . The simplices A™~ ̂  andXA are homeomorphic 

via the mapping IdA that is described by the matrix —mv • Id, where Id is the m x m 

identity matrix. In particular, the labels of a point w e A™-1 are the same as the labels 

of its image IdA(w). This is due to the faet that the vertex in Am~ì with label i is 

mapped to the vertex ofXA with label i. 

Using IdA, one defìnes the dual payoff mapping / A as the composition of IdA and 

/ , i.e. / = IdA o / . This yields 

(X?,dX?)-+(XA,dXA) (3.4) 

A depiction of / A is given in 3.14. The only différence to the payoff mapping / is that 

it maps XA onXA instead of A? - 1 . 

The différence between XA and AOT_ 1 is that they have the same orientation rela-

tive to projection point vp = (—mv,..., —mv) for odd m, and opposite orientation for 

even m. This is depicted in Figure 3.15, and can be verified using an inductive argu-

ment. 

For notational convenience, let v* denote the completely labelled point in XA (as 

it does in AJ1-1). Note that both completely labelled points in XA and AJ1-1 have 

coordinates with respect to the vertices ofXA and AJ1-1. So the equilibria 

of a game are represented by exactly those points ws that are mapped to v* under the 

mapping / A . Also, the index can be described by the locai degree of fA. 

86 



Figure 3.14: The dual payoff mapping / A 

Lemma 3.15 Let ws e ( / A ) L(v*). Then the index of ws as in Definition 2.9 is the 

same as the locai degree of / A at ws. 

Proofi The index in Definition 2.9 is defined by a permutation of the labels / of a sim-

plex wA, which corresponds to a permutation of vertices. For a mapping that permutes 

the vertices of a simplex, the degree equals the sign of the permutation (see e.g. Dold 

(1972, IV, 4, Example 4.3)). • 

Using the mapping / A and degree theory, it follows that the sum of indices over 

the equilibria of a game equals +1, so the number of equilibria is odd. This can be seen 

as follows. The degree of the mapping / A has similar properties to the degree of the 

Sperner mapping Z8 described on page 72. Similar to the Spemer mapping, the degree 

of the mapping / A counts the number of completely labelled points inXA , where each 
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point is counted with its local degree. This local degree is, by Lemma 3.15, the same 

as the index. 

Furthermore, the degree of the mapping / A is the same as the degree of / A re-

stricted to the boundary of XA . Similar to the Sperner mapping, the degree of / A 

restricted to the boundary of counts, for a fixed label k € /, the number of almost 

completely labelled points on the boundary of XA with labels I— {k}, counted by their 

local orientation. The orientation on the boundary is induced by the orientation of the 

boundary of XA. This number is independent of k. For each k El, there is exactly one 

point on the boundary of XA with labels I— {£}. The local orientation of this point 

is +1 as it is contained in the face ofXA spanned by -mvei, iel-{k}. Alternatively, 

one sees that / A restricted to the boundary is the identity, and hence its degree is +1 

(for a detailed account of degree theory see e.g. Dold (1972) as cited on p. 72). 
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Chapter 4 

A Strategie Characterisation of the 

Index 

This chapter provides a new characterisation of the index for equilibria in 

non-degenerate bimatrix games in terms of a strategie property. It is shown that an 

equilibrami has index +1 if and only if one can add stratégies with new payoffs to the 

game such that the equilibrium is the unique equilibrium of the extended game. 

Suppose one can add stratégies to a game such that an equilibrium remains the 

unique equilibrium of the extended game. Since the indices of equilibria of a game 

have to add up to +1, it follows that the equilibrium must have index +1 in the 

extended game. But the index only depends on the stratégies played with positive 

probability, so it follows that the index of the equilibrium in the original game also 

equals +1. Hence, if one can extend the game such that the equilibrium becomes the 

unique equilibrium of the extended game, the index of that equilibrium must equal +1. 

Here it is shown that the converse is also true, i.e. if an equilibrium has index +1 then 

one can add stratégies such that the equilibrium becomes the unique equilibrium of the 

extended game. This yields a new characterisation of the index purely in terms of a 

stratégie property. 

The structure of this chapter is as follows. Section 4.1 shows the result for the 

special case of pure strategy equilibria (Lemma 4.1) and motivâtes the general resuit 

by examining particular examples. Section 4.2 provides some technicalities that are 

also needed in Chapter 6. Section 4.3 shows that an equilibrium in a non-degenerate 
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bimatrix game has index +1 if and only if one can add stratégies to the game such that 

the equilibrium is the unique equilibrium of the extended game (Theorem 4.6). It turns 

out to be sufficient to just add stratégies for one player. 

4.1 A Geometrie Interprétation 

The properties of the index imply that the index of an equilibrium is +1 if one can add 

stratégies such that the equilibrium becomes the unique equilibrium in the extended 

game. The indices of equilibria of a game have to add up to +1. So the index of a 

unique equilibrium in an extended game equals +1. But the index does only depend 

on stratégies played with positive probability, and hence the index of the equilibrium 

in the original game equals +1. 

Pure strategy equilibria in non-degenerate bimatrix games have index +1. For 

these it is easy to see that they can be made the unique equilibrium in some extended 

game. 

Lemma 4.1 Let G be an mxn non-degenerate bimatrix game. Then every pure strat-

egy equilibrium of the game is the unique equilibrium in some extended game. 

Proof Let G be represented by mxn payoff matrices A and B. Without loss of general-

ity (otherwise one can reorder the stratégies) assume that the pure strategy equilibrium 

is given by player I playing strategy 1 and player II playing strategy m + 1 (i.e. both 

play their first strategy). Then add strategy with label m + n + 1 for player II with 

payoff column, for small e > 0, 

f l , * n - e ^ 

0 , m a x ; = i , . . . ( / I Ò2, + e 

^ m a X y - i ^ ^ y + Ey 

Then strategy m + n + \ strictly dominâtes ail other stratégies except for strategy m+1 

of player II. Note that b\\ >b\j for ali j e J, for j ^ 1. So stratégies y' = m+2,...,m + 

n can be deleted. Thereafter, strategy 1 strictly dominâtes ail other stratégies 2,..., m 

of player I. By iterated élimination of strictly dominated stratégies, only the strategy 

pair ( 1, m + 1 ) remains. • 
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Adding stratégies as in Lemma 4.1 alters the dual construction for the game. Take, 

for example, game H~ as in (1.13). The game is given by 

13,13 7,12 1,14 

H~ = 12,7 8,8 2,1 

14,1 1,2 1,1 

This game has three equilibria. The mixed equilibrium with index — 1 in which both 

players play 0), the pure strategy equilibrium with index +1 in which both play-

ers play (0,1,0), and the completely mixed equilibrium with index +1 in which both 

players play The labelled dual construction for the game is depicted on the 

left in Figure 4.1. 

Figure 4.1 : An index +1 equilibrium in H " 

Now suppose the game is extended in the following way, so that only the pure 

strategy equilibrium remains. 

P13,13 7,12 1,14 0,20 

H~= 12,7 8,8 2,1 10, l\ 
14,1 1,2 1,1 0,20 

The added strategy dominâtes stratégies 4 and 6 of player II. So stratégies 4 and 6 can 

be deleted. Then strategy 2 of player I is the best reply to both stratégies 5 and 7, and 

the best reply to strategy 2 is 5. Thus the pure strategy equilibrium in which player I 

plays strategy 2 and player II plays strategy 5 (with payoff 8 for both players) is the 

unique equilibrium of the extended game. 

Adding stratégies changes the dual construction for the game. Consider the labelled 

dual construction for the extension of the game (1.13), which is depicted on the right 
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in Figure 4.1. The paths that start from the completely labelled point that represents 

the pure strategy equilibrium lead directly to the boundary. In the originai game some 

paths in the dual construction lead to other equilibria of the game as shown on the left 

in Figure 4.1. So, in order to make an index +1 equilibrium the unique equilibrium 

of an extended game, the paths that start in the fully labelled point representing the 

equilibrium have to be "re-routed" such that they connect directly with the boundary 

of the dual construction, also not creating other equilibria (e.g. pairs of inaccessible 

equilibria). 

The idea of "re-routing" the paths is the main idea in the proof of Theorem 4.6 

below. To give the reader an idea of the process, the procedure is first applied to ex-

amples before it is technically specified in the proof of Theorem 4.6. Take for example 

the following game. 
r i ,3 0,2 1,0 

0,0 1,2 0,3 

Game (4.2) has 3 equilibria. The pure strategy equilibrium (1,0), (1,0,0) with in-

dex +1, the mixed equilibrium (§? 5), jjO) with index -1 , and the mixed equilib-

rium (5, f ), (0, 5) with index +1. The dual construction for this game is given on 

the left in Figure 4.2 (the dots represent the vertices of the simplices v^). 

Figure 4.2: An index +1 equilibrium for m = 2 

(4.2) 

Now suppose one wants to make the equilibrium (3,3), (0,5,3) the unique equi-

librium of an extended game. The dual construction shows how to achieve this. Add a 

strategy 6 for player II, covering the best reply région of strategy 3 and a small part of 

the best reply région of strategy 4. This can, for example, be achieved by choosing the 

payoff vector (q) for player II. The new division of X and its dual are depicted on the 
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right in Figure 4.2. Then choose strategy 2 to be the best reply to the new strategy 6 

by, for example, choosing the payoff vector for player I. Then §), (0, £,0) is 

the unique equilibrium of the extended game 

The orientation around an index +1 equilibrium in the labelled dual construction 

agréés with the orientation of XA. This allows one to "re-label" the régions in the 

dual construction by adding stratégies such that the index +1 equilibrium remains the 

unique equilibrium in the extended game. For any 2 x n game the procedure is very 

straightforward and easy. It can easily be verified that one only has to add at most two 

stratégies for player II to make any index +1 equilibrium the unique equilibrium in an 

extended game. 

In higher dimensions, the process of eliminating the other equilibria without cre-

ating new equilibria is more advanced. Consider, for example, the following 3 x 3 

coordination game. 

Game (4.4) is the same as the game H5 given by (1.16). Ail three pure strategy equi-

libria have index +1, the three mixed equilibria with two stratégies as support have 

index —1, and the completely mixed equilibrium has index -1-1 again. Making a pure 

strategy equilibrium of (4.4) the unique equilibrium in an extended game is straight-

forward (see Lemma 4.1). So suppose one wants to make the completely mixed equi-

librium the unique equilibrium of some extended game. In order to do so, one first 

has to cover the old equilibria with new stratégies. This can be done, for example, by 

adding stratégies with labels 7,8 and 9 for player II as shown in Figure 4.3. In a neigh-

bourhood of the vertex v = ( j , j) e X, the structure of the best reply régions remains 

unchanged. This implies that the simplex vA containing the completely labelled point 

remains unaffected by the added stratégies. This first step détermines the payoffs of 

player II for the added stratégies and gives a triangulation |XA | in which the original 

simplex v^ and its division are as in the original game. 

1,3 0,2 1,0 0,4 

0,0 1,2 0,3 1,0 
(4.3) 

10,10 0,0 0,0 

0,0 10,10 0,0 

0,0 0,0 10,10 

(4.4) 
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Figure 4.3: A unique index +1 equilibrium in an extension of the coordination game 

Second, one has to choose the appropriate payoffs for player I. The right of Fig-

ure 4.3 shows how the paths starting in the corresponding dual of the equilibrium can 

be "re-routed". So the payoffs for player I are chosen in such a way that the almost 

completely labelled points on the boundary of v^ are connected with the respective 

almost completely labelled points on the boundary of the dual. The game that corre-

sponds with the labelled dual on the right in Figure 4.3 is given by 

10,10 0,0 0,0 0,11 10,5 0,-10 

0,0 10,10 0,0 0,-10 0,11 10,5 

0,0 0,0 10,10 10,5 0,-10 0,11 

So, in order to prove that an index +1 is the unique equilibrium in some extended 

game, one essentially has to show two things. First, that the paths can in fact be re-

routed. This is ensured by the index +1 condition. Second, one has to show that these 

paths can actually be created by extending the game. This is to say that in the labelled 

dual construction of the extended game the paths starting in the equilibrium connect 

directly with the boundary. Adding columns to the payoff matrix B refines the mesh of 

|XA|, and the payoffs for player I determine the paths. 

4.2 Some Technical Requisites 

The proof of Theorem 4.6 below is based on the approximation of a homotopy that 

"re-routes" the paths. In order to show that the approximation of the homotopy can 

be achieved by adding stratégies, this section provides some technical results that are 
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required in the proof of Theorem 4.6. These technical results are also used in the 

characterisation of index zéro outside option equilibrium components in Chapter 6. 

Let A be an {m - l)-simplex in a regular triangulation | A"1-11 of Am~l with no 

vertices on the boundary of A7""1 other than e-u i EJ. Now consider an iterated refine-

ment of | Am~l | — A that is achievedby subsequently adding vertices to | Am_11 - A, 

allowing to add vertices on the boundary of | Aw_11 or A. Let the added vertices be 

denoted as v\,..., v^, where the subscript dénotés the order in which the vertices were 

added. Now add the simplex A. The resulting object is a division of | A m _ l | into 

simplices that is not a triangulation of | Am~l |. Such a division of | Am~l | is referred 

to as an iterated pseudo refinement. An illustration of an iterated pseudo refinement is 

given in Figure 4.4. 

Figure 4.4: An iterated pseudo refinement 

Lemma 4.2 Given an iterated pseudo refinement of Am~x, one can subsequently delete 

those vertices that were added to the boundary of A and Am~l in order to obtain a 

regular refinement of \ Am~{ |. 

Proof Let vi,..., be the set of vertices added to the triangulation, where the sub-

script reflects the order in which the vertices are added. Let A C {1,... ,N} dénoté the 

ordered subset for those vertices that were added to the boundary of A or Am~l. Now 

take the vertex v ,̂ for X € A, that is added last to the triangulation, and consider the iter-

ated pseudo refinement that is obtained by adding the set of vertices {vi,..., — {vjJ 

in canonical order. Continuing with the second last vertex that was added to the bound-

ary of A or Am~1 and so forth, finally gives an iterated pseudo refinement with no 

vertices added to the boundary of A or Am~l. Hence, the refinement achieved by 

adding the set of vertices {vi,..., — {v^ | X € A} (in canonical order) is regular by 

Lemma 3.12. • 
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Figure 4.5: The regular refinement obtained from the iterated pseudo refinement 

The refinement that is obtained by the iterated pseudo refinement in Figure 4.4 is 

depicted in Figure 4.5. The resuit of Lemma 4.2 extends in a straightforward way 

to collections of simplices U/ A,- in a triangulation | Am~l1 and iterated pseudo re-

finements that are obtained by refining | Am_11 — (J¿A/. So every iterated pseudo 

refinement yields a regular refinement by omitting those vertices that were added to 

the boundary of [J; A; or Am _ 1 . 

Now consider an iterated pseudo refinement of \XA | — . Vertices that were added 

to the boundary ofXA or vA are referred to as pseudo vertices. Assign a payoff vector 

AVj to each added vertex v,-. If the added vertex is a pseudo vertex, then the payoff 

vector is referred to as a pseudo payoff vector. Each pseudo vertex v can be described 

as a convex combination of m — 1 vertices vi,..., vm_i on the boundary of or the 

boundary of v ^ i.e. v == X^lV«^ with = 1 and & > 0. 

Définition 4.3 The pseudo payoffs are called consistent if A $ = Y!^1 ju;A Vr 

For each simplex in the pseudo refinement of |XA| — vA, the payoff vectors and 

pseudo payoff vectors induce a division into labelled régions as described by (2.7), 

where the columns of the payoff matrix consist of the payoff vectors and pseudo payoff 

vectors that are assigned to the vertices of the simplex. This division is referred to as a 

pseudo division. 

Now consider the regular refinement induced by an iterated pseudo refinement. The 

following lemma is similar to what was used in the proof of Corollary 3.13. That is, if 

the pseudo vectors have consistent payoffs, then the induced division of \XA | - v^ into 

labelled régions is unaffected by deleting the pseudo vectors from the iterated pseudo 

refinement. 
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Lemma 4.4 Ifthepseudopayoffs are consistent, then thepseudo division of\XA | -

into labelled régions is identical with the division of\XA\ -1/1 into labelled régions 

that is obtained by deleting the pseudo vertices from the iteratedpseudo refinement. 

Proof. The proof is illustrated in Figure 4.6. The consistency of the payoff ensures 

that the division of a larger simplex is given by the division of the smaller simplices. 

In the figure, the payoff for v is consistent with the payoffs for vi and V2. Then the 

union of the simplices spanned by {vi, V2, v} and {v2, V3, v} yields the same division as 

the simplex spanned by {v\, vi, V3}. 

Figure 4.6: Pseudo vertices with consistent payoffs 

Let v denote the simplex that was last added to the face of vA or XA. Then v = 

£?=t jUiVi, with 1 Ijjl = 1 and //, > 0, where the vertices v, span the (k— 1)-simplex on 

the (m - 2)-face that contains v. These vertices might be original vertices or pseudo 

vertices. In any case, one has Av — Now delete v from the iterated pseudo 

refinement. Consider a simplex A spanned by vi,..., v̂  and some v^+i,... vm. The 

division of A is induced by the payoff vectors Avv... ,AVm. 

The simplex A is the union of smaller simplices for which the vertex v replaces one 

of the vertices v,-, 1 < i < k, of A. Since the payoffs are consistent, the induced division 

of A into labelled regions is also the same as the union of the smaller simplices divided 

into labelled regions. • 

Finally, one needs a topological lemma, which says that the payoff mapping / (as 

in (3.3)) restricted to the boundary of vA can be deformed into a mapping that maps 

the boundary of vA on the boundary of A J1-1. 

Lemma 4.5 Let vA be a simplex in |XA|. Then there exists a homotopy h that deforms 

f (or fA) restricted to the boundary of vA into a mapping that maps the boundary 
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ofyA on the boundary of AJ* 1 (or the boundary of XA). The homotopy is such that 

h(x,t)ïv*V(x,t)edv*x[Q, 1]. 

Proof. Take a simplex in \XA\, and let dv^ denote its boundary. If the image of\A 

contains v*, then v* must lie in the interior of /(vA) . If the image does not contain v*, 

then v* must have a positive distance from /(vA) . This is due to the non-degeneracy 

assumption. 

Then one can retract the image of the boundary /(3vA) as follows: Let x be a 

point on /(diA). Then take the line between x and v* in direction of x, and define 

the retraction r(x) as the point on the boundary of A™-1 in which the line intersects 

with the boundary of AJ1-1. Algebraically, the point r(x) is the normalised form of 

the vector x — (minieiXi) • lm. The retraction r(x) can be described as a homotopy 

h: dv^ x [0,1] ->• A? - 1 given by h(x,t) = t • r(x) + (1 - 1 ) x. Note that h(x,t) ± 

v* V (x,t) G dv^ x [0,1], since x and r(x) have the same labels. 

A déformation of / restricted to 3vA yields a déformation of / A restricted to dv^, 

s i n c e / A = I d A o / . • 

Lemma 4.2 and 4.4 are needed in the proof of Theorem 4.6 below. In the proof, 

a certain mapping is approximated. For this one needs to construct a triangulation 

with a sufficiently small mesh. This can only be achieved by adding vertices to certain 

boundary faces. However, if the payoffs are consistent, then these vertices can be 

omitted, as it does not change the combinatorial division into best reply régions. In 

particular, one obtains a regular triangulation and a division into labelled régions that 

can be obtained as the dual construction for some bimatrix game. Lemma 4.5 is needed 

to construct the mapping that is approximated. 

4.3 A Game Theoretic Characterisation of the Index 

This section proves the main resuit of this chapter, i.e. an equilibrium in a game has 

index +1 if and only if one can add stratégies to the game such that the equilibrium 

becomes the unique equilibrium in the extended game. The idea of the proof is to "re-

route" the paths as described earlier. Say (v, w) is an equilibrium. In the labelled dual 
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construction, this equilibrium is represented by some ws € In particular, if the in-

dex of the equilibrium is +1, the dual payoff mapping / A restricted to the boundary of 

vA has also degree +1. By a well-known resuit from algebraic topology, / A restricted 

to the boundary of ^ and / A restricted to the boundary of the are homotopic 

via some homotopy h. This allows one to "re-route" the paths starting in ws so as to 

connect them directly with the boundary without creating new equilibria. 

Theorem 4.6 Let G be some non-degenerate bimatrix game. Lei (v, w) 6 X x Y be an 

equilibrium of the game. Then (v,w) has index +1 if and only if one can add finitely 

many stratégies such that (v, w) is the unique equilibrium of the extended game. It 

suffices to add stratégies for only one player. 

Proof Let (v, w) € X x Y be an equilibrium of the game. First, ail unplayed stratégies 

of player II can be eliminated by new stratégies that dominate them. If pure strategy 

j E J is not played in equilibrium, one can add a pure strategy / with payoff Bj + e, 

where 8 € W is a vector with small positive entries. This replaces the original vertex 

in \XA [ representing strategy j with a vertex representing the new strategy / . In the 

dual polytope PA , this corresponds to adding a vertex to the boundary of />A that lies 

slightly above the original vertex. This yields the same regular triangulation \XA \ as 

before. 

Now consider the boundary of vA. Without loss of generality assume that ail pay-

offs for player I are positive and that the payoffs in the columns of A add up to 1, i.e. 

\Aj\ = 1 for j e J as assumed in the construction of / A . Let (v, w) be an equilibrium 

and consider the restriction of / A to vA. Denote this restriction a s / j ^ . 

The degree of the equilibrium is given by the local degree of f ^ around the com-

pletely labelled point Wy, where ws denotes the lifted point of w. The local degree is 

the same as the degree of f ^ restricted to the boundary of vA, denoted as f ^ v a n d 

has degree +1. The degree of / A restricted to the boundary ofXA , denoted as 

is also +1. Considering the payoff mapping / instead of the dual payoff mapping, this 

implies that yjôvA and/j^A are homotopic (see e.g. Spanier(1966,7.5.7)). First retract 

f\dva to the boundary of AJ1-1 as shown in Lemma 4.5, then deform it into f^xA along 

dA™~1. The construction is such that no point along the homotopy is mapped on v*. 

99 



Dénoté this homotopy as h. The homotopy h is given as h : d Am~1 x[0,1] -»• 1 

such that A(-,0) =/j9vA and h{-, 1) = f\BXA. If v* shares a common ¿-face with JfA 

(i.e. not ail stratégies of player I are played with positive probability in v), then the 

mappings /jâvA and a agree on that face by construction, and it can be assumed 

that h(x, •) = yjôvA (*) for points x on that face. 

But this gives a mapping, also denoted as h, on the space XA - v^ that agréés with 

/ on the boundaries of XA and vA and whose image does not contain v*. So 

h : XA — vA —y A™-1. (4.6) 

This yields a division of XA — into labelled régions such that no point is com-

pletely labelled. The régions are defined as the pre-images of the régions in A? - 1 . The 

division of vA is as before. This is depicted in Figure 4.7 for the equilibrium (vi, wi) 

in the game of Example 2.3. 

Figure 4.7: A homotopy 

Now consider the triangulation \XA\, and consider an iteratedpseudo refinement of 

\XA\ - vA. This iterated pseudo refinement can be assumed to be such that no simplex 

has a diameter more than some 8 > 0 (see Lemma 3.11). Now assign payoffs for 

player I to the added vertices according to Av = h(v). If the simplices are small, their 

images in AJ2-1 are also small simplices {h is uniformly continuous), and no simplex 

contains v*. This is depicted in Figure 4.8. 

The pseudo payoffs for vertices that were added to the boundaries of XA and 

are consistent with the payoffs for the vertices of XA and A Therefore, these vertices 

can safely be omitted without creating fully labelled points according to Lemma 4.4, 

and the resulting refinement is regular by Lemma 4.2. This refinement is a regular 
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triangulation and can be achieved by a payoff matrix where strategies for player II are 

added (Lemma 3.12). The refinement determines the payoffs for player II. The payoffs 

In the proof of Theorem 4.6, the simplices in the refinement are chosen to be suffi-

ciently small since the homotopy h is not further specified. It is likely that, in the case 

of the payoff mapping / , one can easily describe the deformation of / restricted to the 

boundary, especially if considering the combinatorial aspects of the problem (instead 

of describing it as a topological problem). Furthermore, one is not necessarily bound 

to refining \XA\, but can actually create a new regular triangulation that leaves the sim-

plex vA unaffected. So, instead of adding sufficiently many strategies, it is likely that 

"a few" added strategies are enough. 

As for the equilibrium (vi,wi) of the game in Example 2.3, it is sufficient to just 

add one strategy instead of many as suggested by Figure 4.8. The game described 

below only has the equilibrium (vi, w\) as a unique equilibrium. 

Figure 4.9 depicts the corresponding labelled dual for the extended game. 

So the natural question arises about the minimal number of strategies one needs to 

add in order to make an equilibrium the unique equilibrium of an extended game. In 

the 2 x « player case, it is sufficient to just add two strategies for player II to make any 

for player I are given by the homotopy h. • 

Figure 4.8: An approximation of the homotopy 

0,0 10,10 0,0 10,-10 0,11 

10,0 0,0 0,10 0,8 1,1 

8,10 0,0 10,0 8,8 0,1 
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Figure 4.9: The labelled dual for an extension of the game in Example 2.3 

index +1 equilibrium the unique equilibrium of an extended game. Whether adding m 

or 2m stratégies sufïices in higher dimensions is unclear. 

Remark 4.7 Instead of considering the homotopy h on one can actually 

define it on the "cylinder" that is obtained by deletingXA and from the surface of 

the polar polytope that corresponds to the game. 

Hofbauer (2000) defines two pairs (G, (v, w)), (G', (v/,**/)), where (v, w) is an equi-

librium of G, and (v7,^) is an equilibrium of G', équivalent if the game G restricted 

to the support of (v, w) is the same as the game G' restricted to the support of (V,W). 

He calls an equilibrium (v, w) of a game G sustainable if there exists an équivalent pair 

(G', (v', W)) such that (v^u/) is the unique equilibrium of G'. He conjectures that an 

equilibrium has index +1 if and only if it is sustainable. The results from above prove 

this conjecture in the case of non-degenerate bimatrix game. 
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Chapter 5 

Outside Option Equilibrium 

Components 

The aim of this chapter is to extend the dual construction to outside option equilibrium 

components. This yields a new interprétation of the index for outside option equilib-

rium components that is very similar to a généralisation of Sperner's Lemma which 

is in the literature referred to as the Index Lemma (see e.g. Henle (1994), p. 47). The 

Index Lemma applies to more general boundary conditions, and states that the sum of 

orientations of completely labelled simplices can be deduced from the boundary con-

dition. This new approach allows a new characterisation of index zero outside option 

equilibrium components in bimatrix games, which is the subject of Chapter 6. 

An outside option can be thought of as an initial move that a player can make 

which terminâtes further play, and gives a constant payoff to both players. If the player 

has not chosen his outside option, the original game is played. Take for example the 

game described in (1.15) in Chapter 1. A représentation of the game G2 is given in 

Figure 5.1, where the bottom left entries in a celi are the payoff for player I and the 

top right entries in a celi are the payoffs for player II. This game has two equilibrium 

components: The single equilibrium of H~ with payoff 10 to both players, and the 

outside option equilibrium component with payoff 9 for player II and payoff 0 for 

player I. 

In ternis of forward induction the only reasonable equilibrium is that with pay-

off 10. Not playing Out in the first place is only reasonable if player II plays the equi-
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Figure 5.1: A représentation of an outside option game 
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librium strategy that yields payoff 10 in H~. Player I knows this and plays accordingly 

once the game H~ is entered. The notion of forward induction is a concept that applies 

to extensive form games (van Damme (1989)). Other authors, in particular Kohlberg 

and Mertens (1986), argue that games should be analysed in their normal form and that 

solution concepts should be independent of the représentation of the game. The index 

of an equilibrium component is an invariant, i.e. the same in ali équivalent games and 

hence independent of the représentation of the game. Therefore, understanding the na-

ture of the index for outside option equilibrium components can help in understanding 

which solution concepts might capture the notion of forward induction (see e.g. Hauk 

and Hurkens (2002)). In Chapter 6, it is shown that an outside option equilibrium com-

ponent is hyperessential if and only if it has non-zero index. It follows that an outside 

option outcome cannot be hyperessential if the forward induction equilibrium is a pure 

strategy equilibrium that is strict (that is, ali unplayed pure stratégies have a payoff that 

is strictly lower than the equilibrium payoff). 

The structure of this chapter is as follows. Section 5.1 reviews a généralisation 

of Sperner's Lemma which is sometimes referred to as the Index Lemma (Proposi-

tion 5.2). In Section 5.2 it is shown how this relates to outside option equilibrium 

components (Corollary 5.4). Section 5.3 discusses potential généralisations and the 

apparent limitations of the dualisation method regarding general components of equi-

libria. 

104 



5.1 A Generalised Version of Sperner's Lemma 

In Sperner's Lemma, the existence of a completely labelled simplex is ensured by the 

Sperner condition. Moreover, accounting for the orientation, the boundary condition 

détermines that there exists one more completely labelled simplex with orientation +1 

than with orientation —1. In this section, it is shown how Sperner's Lemma can be 

extended to cope with more general boundary conditions. This yields a généralisation 

of Sperner's Lemma that is in the literature referred to as the Index Lemma (see e.g. 

Henle (1994, p. 47)). 

Let P be an {m — 1)-dimensionai polytope. Furthermore, let |P| be a triangulation 

of P into simplices of dimension m - 1. A triangulation of P is a finite collection of 

simplices whose union is P, and that is such that any two of the simplices intersect in 

a face common to both, or the intersection is empty. A triangulation of P induces a 

triangulation |9P| of the boundary dP into simplices of dimension m — 2. Let L be a 

labelling of the vertices of |P| with labels in / = {1,..., m). As before, one can define 

a Sperner mapping 

/ : a m a r i ) — • ( A r ' ^ A : - 1 ) , 

where A™-1 denotes the canonical division described in Chapter 3 (see Definition 3.4): 

Every vertex of is mapped to the vertex in AJ _ 1 with the corresponding label, i.e. 

L(y) = L(fs(v)). Then f s is obtained by linearly extending it to the simplices in |P|. 

Note that if a (k— 1)-simplex has j < k distinct labels Ij C /, then it is mapped on the 

( j — l)-face of A* - 1 that is spanned by the vertices with labels Ij. The restriction of 

/S to the boundary of P is denoted as / j | p . 

Definition 5.1 The index of the labelling L of\P\ is defined as 

I(L) = deg/jlp, (5.1) 

where deg denotes the degree of the mapping /¡|p. 

As for the Sperner case, the degree deg f ^ p measures, for an arbitrary but fixed label 

fc e /, the number of almost completely labelled points with labels / — {k} on the 

boundary, where each such point is counted with its orientation. The orientation on 

the boundary is induced by AJ1-1. This is depicted in Figure 5.2. The dotted line 

105 



represents the image of the boundary dP "around" 5A™"1. The mapping in Figure 5.2 

has degree +1. The image of the boundary is homotopic to a single winding around 

AJ1-1. So the index of the labelling in Figure 5.2 is +1. 

Figure 5.2: A general version of Sperner's Lemma 

The degree deg f ^ p on the boundary is the same as the degree deg y8 of the map-

ping Z8. The proof of this claim is équivalent to the construction in the proof of The-

orem 3.3. There, the orientations of (m - 2)-faces in the interior cancel out. The 

degree y8 measures the number of completely labelled points, i.e. the pre-images of 

v*, where each pre-image is counted with its orientation, which is the local degree (see 

Figure 5.2). This fact that deg f ^ p is the same as deg y8 yields the following, well-

known resuit, which says that the labelling of the vertices on the boundary détermines 

the number of completely labelled simplices in the triangulation (for a detailed account 

of degree theory see e.g. Dold (1972) as cited on p. 72). 

Proposition 5.2 (Index Lemma) Let li5] be as above with labelling L. Then the sum 

of orientations of the completely labelled simplices in |P| equals I(L). 

Proof The pre-images of v* correspond to the completely labelled simplices, and the 

local degree at a pre-image is the same as the orientation of the simplex that contains 

it. The degree equals the sum of local degrees, and is determined by the boundary 

condition. 

Alternatively, one can use the same approach as in the proof of Theorem 3.3 to 

obtain the resuit without using degree theory. In this case, one would essentially show 

that deg jfd p on the boundary is the same as the degree deg/8 . • 
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The Index Lemma is sometimes summarised with the phrase "The index equals the 

content" (see e.g. Henle (1994, p. 47)), meaning that the boundary condition (i.e. the 

index) determines the number of completely labelled simplices in the triangulation (i.e. 

the content), accounting for orientation. In the next section, it is shown that a similar 

description applies to outside option equilibrium components. 

5.2 The Index for Outside Option Equilibrium Compo-

nents 

In Chapter 3 above it is shown how the classical Sperner condition applies to equilibria 

in non-degenerate bimatrix games. This section demonstrates how the Index Lemma 

relates to components of equilibria. The dual construction shows that the index of a 

component is defined by a boundary property similar to the Index Lemma. This bound-

ary property determines the sum of indices of equilibria close to the component if the 

game is generically perturbed by small generic perturbations. In particular, it is shown 

that the sum of indices of equilibria close to the component is independent of the per-

turbation. This "invariance" property of the index for components of equilibria is not a 

new result (see the properties for components of equilibria listed in Section 1.3). What 

is new, however, is the geometric-combinatorial view on the index for components of 

equilibria. 

The analysis is restricted to generic outside option equilibrium components in bi-

matrix games represented in strategic form by payoff matrices A and B. Without loss 

of generality it is assumed that the player with the outside option is player II. When 

player II plays the outside option, the payoffs for player I and player II are independent 

of player I's strategy choice. So the column of A that represents the payoffs for player I 

in the outside option has identical entries, and so has the column of B that represents 

the payoffs for player II in the outside option. An outside option equilibrium compo-

nent is referred to as generic if the payoffs for player II are generic and if all payoffs for 

player I other than the outside option payoffs are generic. Thus the only degeneracy of 

the game arises through the payoffs to player I in the outside option. This implies that 
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the payoffs for the equilibria that are cut off by the outside option are strictly smaller 
than the payoff in the outside option. 

When constructing components of equilibria via outside options (see Section 1.4), 

it is possible to compute the index of such components purely on grounds of basic 

properties of the index. In particular, one does not have to go into details regarding the 

geometric-combinatorial aspects. These aspects, nevertheless, play an important role 

in the characterisation of index and (hyper)essentiality in Chapter 6. The examples 

given below are meant to illustrate the geometry behind the index for outside option 

equilibrium components by means of the labelled dual construction X^. A formal 

definition is given later in this section. 

The problem with degenerate games is that, instead of having singleton solutions, 

one has to consider components of equilibria. This is due to the fact that the number 

of best reply strategies is not bounded by the size of the support (see Definition 1.1). 

In the case of an outside option in an m x n bimatrix game with an outside option for 

player II, the pure strategy representing the outside option for player II has m pure best 

reply strategies since all the payoffs for player I are the same in the outside option. In 

this case, the outside option equilibrium component C is given by 

C = {(x, Out) e X x Y I Out is best reply to x}, 

where Out denotes the pure strategy that represents the outside option. 

In general, the dual construction cannot be applied to degenerate games. This is 

due to the fact that \XA\ is not well-defined if the payoff matrix B is degenerate. In 

the case of generic outside options in bimatrix games, however, the payoff matrix B 

is generic, since it does not matter if a column of B has identical entries. This allows 

one to apply the dual construction to such games. Consider, for example, the following 

3 x 4 coordination game with an outside option for player II: 

10,10 0,0 0,0 0,9 

0,0 10,10 0,0 0,9 

0,0 0,0 10,10 0,9 

This is the same game G~2 in (1.17) in Chapter 1. The outside option equilibrium 

component has index -2 . The three pure strategy equilibria of the game with payoff 
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10 (which are not cut off by the outside option) each have index +1. Since the sum of 

indices over ali equilibrium components must equal +1, the outside option equilibrium 

component has index —2. This can be interpreted geometrically in the following way. 

Label the strategies of player I with 1,2 and 3, and those of player II with 4,5,6 and 

Out. Then apply the dual construction to X to obtain.Y*A. Figure 5.3 shows the division 

of X into best reply régions on the left. Next to it is the corresponding labelled dual 

construction XA. Strategy Out yields a constant payoff to player I. Therefore, the best 

reply régions in simplices vA for which a vertex of v^ represents Out ali join in the 

vertex that represents Out. 

Figure 5.3: An outside option component with index —2 

3 

The dual payoff mapping / A as in (3.4) is, however, well-defìned onXA, including 

those simplices that are the duals of the vertices of the best reply région for Out. In 

particular, the dual payoff mapping / A is well-defìned on the boundaiy of the dual of 

the outside option component. 

The dual ofthe outside option component is the union of ali those simplices that are 

the duals ofthe vertices of the best reply région for Out. These are the simplices that 

have Out as a vertex. The vertex that represents Out has ali labels, since every strategy 

of player I is a best reply against Out. In particular, the completely labelled point 

does not lie in the interior of a simplex, which would be the case for non-degenerate 

bimatrix games. This is depicted on the right in Figure 5.3. 

The dual ofthe component can now be used to defìne the index of an equilibrium 

component. For this, consider the dual payoff mapping restricted to the boundary of 

the dual ofthe component. For the example in Figure 5.3, the image of / A restricted 

to the boundary cycles twice around the completely labelled vertex v*, but in opposite 

direction: Following the boundary of the component in anti-clockwise direction in 
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XÌ\ the resulting paths runs in clockwise direction around v*. Hence, the index of 

the component is —2. As in the case of the Index Lemma, the index counts, for a 

fixed kel, the number of almost completely labelled points with labels I- {k} on the 

boundary of the dual of the component, where each such point is counted by is local 

orientation. For the example in Figure 5.3, there are two points on the boundary of the 

dual of the component with labels 1,3, both of which are oriented in the opposite way 

as the point with labels 1,3 on the boundary ofXA. The same holds when considering 

points with labels 1,2 or 2,3. 

As another example, consider the 3 x 4 game with an outside option for player II 

as shown below. 
ri3,13 7,12 1,14 0,9 

12,7 8,8 2,1 0,9 • (5.3) 

14,1 1,2 1,1 0,9 

This is the game G+1 (1.15) as in Chapter 1. The outside option has, by the same rea-

soning as before, index +2. Figure 5.4 depicts the division of X into best reply régions 

Figure 5.4: An outside option component with index +2 

and the dual construction x t for this game. For the above example, the mapping fA 

restricted to the boundary of the dual of the component yields a path running twice 

around v*. This time, the orientations of the boundary and its image agrée. For every 

fc 6 / = {1,2,3}, there are exactly two points on the boundary of the dual of the com-

ponent with labels / - {k} and whose orientation is the same as that of the point on the 

boundary ofXA with labels / - {k}. Therefore, the index of this component is +2. 

These observations can be formalised as follows. Consider an mxn bimatrix game 

with an outside option for player II. Note that it is not necessary to assume that m<n. 

Let C denote the outside option equilibrium component. Let V be the set of those 
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vertices in player I's strategy space X that have Out as a best reply, so V = {v G V \ 

Out G L(v)}. Now take the union of those vA for which v G V, so CA = \JveVA This 

union is referred to as the dual of the component C or the dual of the outside option 

equilibrium component. For generic outside options, the region X(Out), i.e. the region 

in X where Out is a best reply, is a full-dimensional and convex region with vertices 

that have m labels (or it is empty). Hence, the set CA is a union of (m - l)-simplices. 

These simplices yield a triangulation of CA. If vout denotes the vertex in CA that 

represents the best reply region with label Out, then CA is star-shaped with respect to 

vout- This follows from the fact that CA is a union of simplices who all have vout as a 

vertex. 

The boundary of CA is denoted as 3CA. The simplex v^ is an (m — l)-simplex for 

all v G V, and the boundary 3CA is the union of the (m — 2)-faces in CA that do not 

include the vertex that represents Out. From the dual construction it follows that the 

pair (CA,3Ca) is homeomorphic to (Am~l ,dAm~l). The dual payoff mapping/A as 

in (3.4) is well-defined on the boundary 3CA. The restriction of / A to the boundary of 

CA is denoted as f ^ A . The image of /¡^A consists of the union of (m — 2)-simplices 

in XA that are spanned by the images of vertices of the (m - 2)-faces on the boundary 

of CA. The image of itself does not contain v*. So the image of f^ , A can be 

thought of as some (m — 2)-sphere around v* that consists of (m — 2)-faces. 

Definition 5.3 Let C be an outside option equilibrium component of a game with a 

generic outside option. Then the index 1(C) of the component C is defined as the 

degree of the mapping f ^ ^ . 

So, as in the Index Lemma, the index is defined by the division of a boundary into 

labelled regions. In the Index Lemma, the regions arise from the mapping 7 s , defined 

by unit vectors on each (m — 2)-face. In the game theoretic context, the regions arise 

from the mapping / A , defined by a mixture of payoff vectors and unit vectors. As 

in the Index Lemma, however, the index of a component measures, for a fixed label 

k, the number of almost completely labelled points on the boundary of the dual of the 

component. Each such point is counted with its local orientation, and the measure does 

not depend on the choice of k. 
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Note that the image of can be retracted to the boundary of XA. This works 

in the same way as Lemma 4.5: If p is a point in the image of define the re-

traction as the intersection of the line between v* and /?, in the direction of p, with the 

boundary of XA. Note that v* does not lie in the image of / j ^ . This is due to the 

non-degeneracy of the payoffs representing other strategies than Out. 

For generic outside options, only payoff perturbations for player I in the outside 

option are of relevance. This can also be seen using the labelled dual construction. 

Small perturbations of the payoff matrix B leave the combinatorial structure of \XA\ 

invariant, since the combinatorial structure of the best reply regions in X is unaffected. 

Small perturbations of the payoff matrix A leave the combinatorial division of dCA 

into best reply regions invariant, since for all simplices v^ and their faces that do not 

involve Out, the combinatorial division into best reply regions is invariant with respect 

to small perturbations. It follows from Definition 5.3 that small perturbations of the 

payoffs leave the index 1(C) invariant. Perturbations of player I's payoffs in the outside 

option, however, split CA generically into labelled regions and determine those points 

in the interior of CA that are mapped to v*. These are the Nash equilibria that "survive" 

perturbations of the payoffs. 

The local degree of f A at these pre-images is the index of the equilibrium (see 

Lemma 3.15). But the sum of local degrees equals the degree of the mapping, which 

is again the same as the degree of fA restricted to the boundary of the dual of the 

component. As a consequence, one obtains the following, well-known result. 

Corollary 5.4 Let the index of a generic outside option equilibrium component be 

1(C). Then every small generic perturbation yields equilibria close to the component 

C such that the indices of these equilibria add up to 1(C). 

Proof. The proof follows the same lines as the proof of the Index Lemma, and is a 

consequence of the fact that the degree of a mapping is the same as the degree of a 

mapping restricted to its boundary. 

An illustration of the proof is given in Figure 5.5 for a perturbation of G~2 as in 

(1.17) (compare Figure 5.3). The perturbation that is depicted is given by the payoff 

vector (e,0,0)T for player I in the outside option. For the illustration, e is chosen to 

be large. It should be noted, however, that the combinatorial division of the dual of the 
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component does not depend on the magnitude of 8 (see also Lemma 6.4 in Chapter 6). 

Figure 5.5: A perturbation of an index - 2 component 

The combinatorial and geometric properties of the mapping f ^ A are not affected 

by small perturbations. Generic perturbations, however, perturb the dual payoff map-

ping / A in the interior of CA. Let the restriction of / A to CA be denoted as Thus 

every small generic perturbation of the game gives a mapping f ^ A : CA —> XA. Al-

though the mapping itself does depend on the perturbation, the index 1(C) does not, 

since the degree of /¡^A stays invariant under small perturbations for the reasons ex-

plained above. The payoff perturbation renders the game generic and, hence, yields a 

generic division of CA into labelled best reply regions (see Figure 5.5). 

The degree of f ^ A is the same as the degree of f ^ , A , and can be computed as the 

sum of local degrees at the pre-images of v* in CA. These are the completely labelled 

points in CA that represent equilibria in which Out is played with positive probability. 

This local degree is the same as the index of an equilibrium. 

Since the perturbation is generic, these pre-images lie in the interior of some v^ in 

CA and, for small perturbations, lie close to the vertex that represents Out. • 

For example, in Figure 5.5 one obtains two completely labelled points that read 

1,2,3 in clockwise direction, i.e. both have index -1 . As noted above, Figure 5.5 

depicts the case for a large 8. For a small e, the completely labelled points lie close to 

the original vertex representing Out, but the combinatorial division stays invariant. 

113 



Corollary 5.4 is of course not a new result (see Section 1.3). New, however, is 

how it relates to the Index Lemma. In the Index Lemma, the index was defined as 

the degree o f f on the boundary. For outside options it is the degree o f / A on the 

boundary of the dual of the component. Although f arises from unit vectors while 

/ A arises from general payoff vectors, in both cases the division of the boundary into 

labelled regions determines the sum of orientations of completely labelled points (or 

simplices) in the interior. As for the Index Lemma, one can summarise the result under 

'The index equals the content". The boundary condition (i.e. the degree of the mapping 

on the boundary of the dual of the component) determines the number of completely 

labelled points in the interior of the dual of the component (i.e. the Nash equilibria that 

use Out), accounting for orientation. 

5.3 Degenerate Games and General Equilibrium Com-

ponents 

This section describes how the dual construction might be applied to other components 

of equilibria. For example, the above analysis does not require that the payoffs for 

player II in the component are constant and independent of player I's strategy choice 

(as it is the case for outside options). Nevertheless, there are limits to the application 

of the dual construction to general components of equilibria in degenerate bimatrix 

games. 

Take an mxn bimatrix game. If the payoffs for player II are non-degenerate, the 

triangulation \XA\ is well-defined. Furthermore, the dual payoff mapping / A in (3.4) 

is well-defined since the payoff mapping / is well-defined. It is easy to verify that 

the Nash equilibria correspond with those points that are mapped to v* under / A . So 

the Nash equilibria still correspond to completely labelled points. This follows from 

the definition of the payoff mapping / as in (3.3) via the artificial payoff matrix. The 

difference is that completely labelled points might, for example, lie on the boundary of 

a simplex vA, or that almost completely labelled points lie on some lower dimensional 

¿-face of some vA for k < m - 2. Also, there can be connected sets of completely 

labelled points in the labelled dual construction. 
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The latter case is illustrateci by the following example. 

0,0 10,10 0,0 0,-10 

0,0 0,0 0,10 0,8 

0,10 0,0 10,0 0,8 

This is a variant of Example 2.3. Against strategies 4 and 7 of player II, player I is 

indiffèrent between strategies 1,2 and 3. So the equilibrium component here is for 

player I to play some strategy in the union of the best reply régions X(4) andX(7), and 

for player II to play a best reply strategy, which is either strategy 4 or 7, or a mixture of 

both. In the latter case, the strategy of player I lies in the intersection of the best reply 

régions X(4) and X(l), and player II can play any mixture between strategies 4 and 7. 

The dual of this component is depicted in Figure 5.6, in which the union of the 

best reply régions X(A) and X(l) is represented by a dashed line between the vertices 

that represent the best reply régions with labels 4 and 7. The mapping / A is well-

defined. In particular, it is well-defìned on the boundary of the dual of the component 

C, and has degree zero: There is no point on the boundary of the dual of the component 

with labels 2,3, and there are exactly two points on the boundary with labels 1,2, and 

exactly two points with labels 1,3. Each such pair of points is such that one almost 

completely labelled point has the opposite orientation of the other almost completely 

labelled point. 

Hence, every (small) perturbation that makes the payoffs of player I generic yields 

a game with equilibria involving strategies 4 or 7 and whose indices add up to zero. 

Take, for example, the originai game as in Exampie 2.3. This game is a perturbation 

of player Ps payoffs in strategies 4 and 7, and has two equilibria using strategies with 

labels 4 or 7 and whose indices add up to zero. Multiplying the columns of A repre-

senting strategies 4 and 7 with some small constant e > 0 yields a game with the same 

combinatoria! properties that is close to the originai game (see also Lemma 6.4). 

The problem is that, in general, degeneracies occur in the payoff matrices of both 

players. Furthermore, components (and hence their duals) are not necessarily homeo-

morphic to some simplex. This limits the direct application of the dual construction 

to general components of equilibria. Consider, for example, the following game con-
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Figure 5.6: The dual of the component in (5.4) 

structed by Kohlberg and Mertens (1986): 

1,1 0,-1 -1,1 

-1,0 0,0 -1,0 

1,-1 0,-1 - 2 , -2 

In this example, the equilibrium component is a cycle, both in player I's as well as 

in player II's strategy space. It can easily be verified that the component in (5.5) has 

index +1. It is the unique component, and stratégies 1 and 4 weakly dominate the 

other strategies, so a slight perturbation only leaves one pure strategy equilibrium. The 

dual construction cannot be applied directly, since neither the "vertices" in X nor the 

"vertices" in Y are well-defined, i.e. they have more than three labels. For example, 

the "vertex" corresponding to pure strategy 1 by player I has labels 2,3 (the unplayed 

strategies) and 4,6 (best replies). Thus neither XA nor YA are well-defined. 

Nevertheless, there are ways of stili applying the dual construction to such compo-

nents. Take an m x n bimatrix game (with m < h). Then the payoffs for, say, player II, 

can be made non-degenerate by small payoff perturbations. Then |XA| is well-defined 

for the perturbed payoff matrix B. This then yields the mapping / A and a division of 

\XA | into labelled régions. The drawback of this approach is that the dual construction 

\XA | and hence / A are not independent of the payoff perturbations used for player II. 
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Chapter 6 

Index Zero and Hyperstability 

This chapter shows that outside option equilibrium components that have index zero 

are not hyperessential. This yields a characterisation of hyperessentiality of outside 

option equilibrium components in terms of the index: An outside option equilibrium 

component is hyperessential if and only if it has non-zero index. In a parallel and 

independent work, Govindan and Wilson (2004) show that the result presented here for 

outside option equilibrium components also holds for general equilibrium components 

in N-player games. The merit of the approach presented here is that it requires only 

basic tools from algebraic topology and provides a geometric intuition. 

An equilibrium component is said to be essential if for every small perturbation of 

the game there exists an equilibrium of the perturbed game that is close to the compo-

nent (Wu and Jiang (1962); Jiang (1963)). Kohlberg and Mertens (1986) extend the 

concept of essentiality to perturbations of all equivalent games, i.e. games obtained by 

adding convex combinations of existing strategies as pure strategies. A component is 

referred to as hyperessential if it is essential in all equivalent games. They define a 

component that is a minimal hyperessential component as hyperstable. 

This chapter addresses the question how (hyper)essentiality in a game theoretic 

context and essentiality in a topological context (i.e. non-zero index) are linked (see 

e.g. Govindan and Wilson (1997a;b) for a discussion). It is a well-established fact 

that topological essentiality implies strategic essentiality. The converse, however, is 

not true, as an example of an equilibrium component with index zero that is essential 

shows (Hauk and Hurkens (2003)). However, until recently, it was unknown whether 
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hyperessentiality implies topological essentiality. This question is answered affirma-

tively for outside option equilibrium components in bimatrix games by employing the 

dual construction to outside option components. 

The structure of this chapter is as follows. Given the similarities between the Index 

Lemma and the index for outside option equilibrium components, Section 6.1 studies 

index zero labellings in case of the Index Lemma. It is shown that for every index zero 

boundary labelling there exists a triangulation and a labelling (subject to the division 

on the boundary) such that the triangulation does not contain a completely labelled 

simplex (Theorem 6.1). Section 6.2 reviews the concepts of essentiality and hyper-

essentiality, and it is shown how the results for index zero labellings apply to index 

zero outside option equilibrium components. It is shown that an outside option equi-

librium component is hyperessential if and only if it has non-zero index (Theorem 6.7). 

The resuit is based on duplicating the outside option, which yields a refinement of the 

triangulation of the dual of the component. This allows one to divide the dual of the 

component into labelled régions such that no point is completely labelled. This work 

concludes with Section 6.3. It gives an example of an outside option equilibrium com-

ponent that is essential in ail équivalent games that do not contain a copy of the outside 

option (Lemma 6.10). 

6.1 Index Zero Labellings 

This section discusses index zero labellings for triangulations of (m — 1)-dimensionai 

polytopes P. Given a triangulation of |3P| into (m - 2)-simplices with a labelling L of 

the vertices of the définition of the index as in Definition 5.1 is well-defined via 

the Sperner mapping Z8. The Index Lemma implies that every labelled triangulation 

of P that agréés with the given triangulation and labelling on dP must contain com-

pletely labelled simplices whose orientations add up to the index of the labelling on 

the boundary. This section shows that if the boundary labelling on dP has index zero, 

then there exists a labelled triangulation of P that agréés with the given triangulation 

and labelling on dP and that does not contain a completely labelled simplex. 
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Let P be an (m - 1)-dimensionai polytope. Furthermore, let |àP| be a triangulation 

of BP into (m - 2)-simplices together with a labelling of the vertices of \dP\. This 

defines the Sperner mapping Z8 on the boundary dP as in (3.1). The index of the 

boundary labelling is defined as the degree of Z8 restricted to the boundary and counts, 

for a given label k e l, the almost completely labelled points on the boundary with 

labels / -{£}, accounting for their orientation. The following results for labellings as 

in the Index Lemma might not be new (Theorems 6.1 and 6.3). The author, however, 

is not aware of results as stated below in the literature. 

Theorem 6.1 Let |3P| be a labelled triangulation ofdP into (m - 2)-simplices with 

index zero. Then there exists a labelled triangulation |P| that agréés with the given 

labelled triangulation of the boundary and that does not contain a completely labelled 

simplex. 

Proof. Let f^P denote the restriction of Z8 to the boundary. The fact that deg f^p = 0 

implies that/jl^ is homotopic to some constant map via a homotopy h (see e.g. Bredon 

(1994, II, Corollary 16.5 and V, Lemma 11.13)). This means that ß where * 

denotes some constant map. In other words, there exists a mapping h : dP x [0,1] -> 

3AJ1-1 such that h(x,0) = ^(x) and h(x, 1) = * for ail JC 6 dP. Since h is constant 

on dP x 1, one obtains a mapping, which is also denoted as A, from dP x [0, l]/~(.?i) 

to 3AÏ1"1, where dP x [0,1 ]/ 1) denotes the quotient space that is generated by the 

équivalence relation that identifies (•, 1) with a single point; the space 3P x [0, i) 

can be thought of as a "cône" over dP, which is homeomorphic to P. 

This is depicted in Figure 6.1 for P being the 2-dimensional disk. The boundary of 

the disk is the 1-dimensionai sphere S1. Then S1 x [0,1] is a cylinder as depicted on the 

Figure 6.1 : The cone over dP 
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left Identifying (-,1) with a single point yields the "cone" as depicted in the middle, 

which is homeomorphic to the 2-dimensional disk depicted on the right. 

Thus h can be seen as a mapping h : P —• d A f - 1 that agréés with Z8 on the 

boundary. This is a well-known resuit that states that a mapping from the unit (m - 1)-

sphere to the unit (m - l)-sphere that has degree zero can be extended to a mapping 

from the unit m-ball U11 to the unit (m - l)-sphere. The resuit goes back to Hopf (see 

e.g. Bredon (1994) as cited above). 

The mapping h divides P into labelled régions which are the pre-images of the 

régions in AJ1"1. This is depicted in Figure 6.2. Now choose a triangulation of P 

with no vertices on the boundary other than the original vertices on dP. This can, if 

necessary, be achieved by adding a single vertex in the centre of P, since P is convex. 

Next, choose an iterated pseudo refinement of this triangulation that allows vertices on 

the boundary and that is such that each simplex is smaller in diameter than some given 

8 > 0. Now label every vertex in the interior of |P| according to L(v) G L(h{v)), where 

L(h(v)) are the labels of the image of v in AJ1-1 (see Figure 6.2). There is no point 

on the boundary 3AJ1"1 that has ail m labels, so no simplex in the refinement can have 

more than m - 1 distinct labels, as long as the simplices are sufficiently small. Notice 

that, since P is compact, the mapping h is uniformly continuous. 

Figure 6.2: A labelling with index zero 

1 

Finally, one has to get rid of the vertices that were added to the boundary dP. This 

works in the same way as in Lemma 4.4, since the labelling of vertices on the boundary 

is consistent. That is, if a vertex v lies on an Mace of the original triangulation spanned 
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by original vertices vi,...,vjt, then L(v) e {¿(vi),...,I(v*)}. This is the labelling 

équivalent to the consistency as in Définition 4.3. 

So let the vertices that were added by the iterated pseudo refinement be vi,..., v„, 

and let A be the ordered index set of the vertices that were added to the boundary. Let 

v be a vertex on the boundary. Then v = Y!ì=ìjuìvì with m > 0, for some vi,..., v/. 

In particular, the labelling satisfies ¿(v) = I(v/) for some i e {1,...,/}. So the face 

spanned by {vi,..., v/_ i, v, v i+i,..., v*} has the same labels as the face spanned by 

{vi,..., v,_i, v/, Vj+i,..., v*}. A simplex spanned by {vi,..., v,_1, v, v / + i , . . . , v*} and 

some {vjt+i,...,vm} is fully labelled if and only if the simplex spanned by 

{vi,..., v/_i, v,-, v,-+i,..., v*} and {vjt+i,..., vm} is fully labelled. 

So the vertices that were added by the iterated pseudo refinement and that lie on 

the boundary of dP can be removed (in reverse order) to obtain a refinement with no 

vertices added to the boundary and no completely labelled simplex. • 

Remark 6.2 In Figure 6.2, the Sperner mapping f on the boundary has index zero, 

but is onto. Suppose one is restricted in subdividing P. For example, assume a trian-

gulation |P| with the same boundary labelling as in Figure 6.2, but that has only one 

vertex in the interior of P. This is depicted in Figure 6.3. Then every labelling of the 

interior vertex yields (pairs of) completely labelled simplices. The reason is that the 

interior vertex is connected to ali boundary faces. For every label k E {1,2,3}, there 

are faces on the boundary with missing label k, that is, faces with labels 1,2 or 2,3 

or 1,3. These almost completely labelled faces come in pairs of opposite orientation 

because of the index zero property. Thus, in the restricted case, one always obtains 

completely labelled simplices whose orientations add up to zero. In the next section, 

it is shown how this restricted case compares with the essentiality of an equilibrium 

component as in the example by Hauk and Hurkens (2002), and how the unrestricted 

case compares with the hyperessentiality of an equilibrium component. 

For non-zero labellings one obtains the following result. 

Theorem 6.3 Let 1be a labelled triangulation ofdP with index k. Then there exists 

a labelled triangulation |.P| that agrees with the given labelled triangulation of the 
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Figure 6.3: A labelling with index zéro and a restricted triangulation 

2 

boundary and is such that |P| contains |&| completely labelled simplices, each with 

orientation sign k. 

Proof The idea is to divide P into labelled régions such that there exist exactly \k\ 

completely labelled points in P with orientation sign k. This division is then covered 

by small simplices. 

Choose a subset B in the interior of P that is homeomorphic to an (m — l)-ball. 

Define a mapping f^g on the boundary of B that maps the boundary of B on 3 A™-1 

and that is such that each almost completely labelled point on the boundary of AJ1-1 

has exactly \k\ pre-images in dB with orientation sign k. Such a mapping exists and 

can be constructed as follows. Identify the boundary dB with the unit sphere S7"-1. 

For (jci, • • • ,xm) G «S"1-1, the tuple (^1,^2) can be seen as a complex number z, and the 

mapping f\^B(z,x3, • • • ,xm) = ( / ,x3 , will do. 

The mapping has the same degree as the Spemer mapping/3 on the boundary 

of P. Hence, the mapping fi restricted to the boundary dP and f^g are homotopic via 

some homotopy, denoted as h. The homotopy h can be identified with a mapping from 

P-B to 3A?"1, since [0,1] x dP is homeomorphic to P-B. Note that dB and 3P 

are homeomorphic to and are hence themselves homeomorphic. This yields a 

division F—B into labelled régions with no completely labelled point. Label the région 

B with some arbitrary but fixed label. Then the division of P into labelled régions is 

such that there exist exactly \k\ points that are completely labelled. These lie on the 

boundary of B. This is depicted in Figure 6.4 for a boundary mapping with index +1. 

From here, the proof follows the same lines as the proof of Theorem 6.1. Cover 

P with sufficiently small simplices and label the vertices according to the régions they 
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Figure 6.4: Obtaining a division with exactly \k\ completely labelled points 

are contained in. The vertices that are added to the boundary of P can be omitted by 

the same argument as in the proof of Theorem 6.1 and Lemma 4.4. • 
» 

As explained in Chapter 5, there are strong similarities between the situation in 

the Index Lemma and outside option equilibrium components. The next section shows 

how the results from above translate into the game theoretic context and how one can 

divide the dual of an outside option into best reply regions, given the boundary division, 

such that it does not contain a completely labelled point, i.e. an equilibrium. This can 

be achieved by duplicating the outside option only. 

6.2 Index Zero Outside Option Equilibrium Compo-

nents 

In this section, it is shown that an outside option equilibrium component (in a bimatrix 

game with generic outside option) is hyperessential if and only if it has non zero index. 

It is also explained how the results of the previous section fit in the game theoretic 

context. Before proving the main result of this section, the concepts of essentiality and 

hyperessentiality are briefly reviewed. 

Wu and Jiang (1962) define essential fixed points. The extension to compact sets 

of Nash equilibria is described by Jiang (1963), and is also discussed in van Damme 

(1991, Section 10.2). In analogy to the concept of essential fixed point sets (Fort 

(1950)), an equilibrium component C of a game G is called essential if and only if 

for every small payoff perturbation of the game G there exists an equilibrium of the 
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perturbed game that is close to C. A game G is called an equivalent game to Gif G can 

be obtained from G by adding a finite number of convex combinations of strategies of 

G as pure strategies. In other words, the games G and G have the same reduced normal 

form. For example, the two games shown below are equivalent. 

10,10 0,0 5,5 3,3 
G = 

10,10 0,0 

0,0 10,10 
G — 10,10 5,5 7,7 0,0 

1,1 9,9 5,5 

A strategy in an equivalent game can be interpreted as a strategy of the original game 

and vice versa by rescaling the probabilities for the strategies. An equilibrium com-

ponent C of a game G is referred to as kyperessential if it is essential in all equivalent 

games G. Kohlberg and Mertens (1986) define a set S as hyperstable if it is minimal 

with respect to the following property: S is a closed set of Nash equilibria of G such 

that, for any equivalent game, and for every perturbation of the normal form of that 

game, there is a Nash equilibrium close to S. It follows that a hyperessential equilib-

rium component must contain a hyperstable set (Kohlberg and Mertens (1986)): Let 

F denote the family of subsets of a single connected component that is hyperessential, 

ordered by set inclusion. Every decreasing chain of elements in F has a lower bound, 

and therefore, applying Zorn's Lemma, the family F must have a minimal element. 

It is a well-established fact that non zero equilibrium components are both essen-

tial and hyperessential. The index of a Nash equilibrium component is invariant under 

addition or deletion of redundant strategies Govindan and Wilson (1997a, Theorem 2; 

2004, Theorem A.3). Therefore the index of a component is the same in all equiv-

alent games. Since the index measures the sum of indices of equilibria close to the 

component if the game is slightly perturbed, a non-zero index implies both essentiality 

and hyperessentiality of the component (see also Section 1.3 for the properties of the 

index). 

Whether the converse is also true was an open question until recently. In fixed 

point theory, a component of fixed points under a mapping / is called essential if every 

mapping close to / has fixed points close to the component. O'Neill (1953) shows that 

a fixed point component is essential if an only if it has non-zero index. In game theory, 

the Nash equilibria can be described as the fixed points of a map. A perturbation of the 

game yields a mapping for the game that is close to the original fixed point mapping. 
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So the question arises whether, by suitably perturbing the game, one can show 

equivalence between strategic and topological essentiality. Referring to the results of 

O'Neill (1954), Govindan and Wilson (1997b) write: "The resolution of this puzzle is 

important for axiomatic studies because in a decision-theoretic development it would 

be implausible to impose topological essentiality as an axiom unless it is provable 

that the space of games is rich enough to obtain equivalence between strategic and 

topological essentiality." 

Hauk and Hurkens (2003) found an example of a bimatrix game with an outside 

option in which the outside option equilibrium component has index zero and that is 

nonetheless essential. This shows that game theoretic and topological essentiality are 

not equivalent. If restricted to perturbations of the original game, the space of games 

is not rich enough to obtain equivalence between topological and strategic essential-

ity. However, their example fails the requirement of hyperessentiality. So the ques-

tion arises whether the concept of hyperessentiality is the game theoretic equivalent of 

topological essentiality. 

In this section, it is shown that this is the case for outside option equilibrium com-

ponents with a generic outside option. Furthermore, it is demonstrated why an index-

zero component can be strategically essential, but not hyperessential. Comparing it 

with the case of the Index Lemma, essentiality compares with a triangulation in which 

one is restricted in the number of simplices in the subdivision, and hyperessentiality 

compares with the unrestricted case (see Remark 6.2). Govindan and Wilson (2004), 

in a parallel and independent work, show that index zero components cannot be hyper-

essential in general. Their approach is discussed at the end of this section. The merit 

of the proof presented here is that it only needs basic tools from algebraic topology. 

Also, since the dual construction can easily be visualised, it also provides a geometric 

and combinatorial intuition for the result. 

The idea of the proof can be explained by considering an example of an outside 

option equilibrium component that is essential but not hyperessential. Such an example 

is given by the game in (6.1). This is the game by Hauk and Hurkens (2002) showing 
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that topological essentiality is not the equivalent of topological essentiality. 

4,5 0,-23 2 , - 1 0,0 

0,-15 8 , -1 - 2 , - 2 1 0,0 
2,-11 1,3 3,1 0,0 

The dual construction for this game is given in Figure 6.5. The dual payoff map-

ping / A , restricted to the boundary of the dual of the outside option component, has 

degree zero. The image does not complete a full cycle. Hence, the outside option 

equilibrium component has index zero. This can also be verified by a simple counting 

argument. There is only one other equilibrium of the game, namely the pure strategy 

equilibrium with payoffs (4,5). 

Figure 6.5: An index zero essential component 

Hauk and Hurkens show that the component is essential. It should be noted that 

only payoff perturbations of the payoffs for player I in the outside option are of impor-

tance. All other payoffs are generic. Looking at the dual construction of the game, it 

can be seen that the restricted dual payoff mapping /¡^A ^CA is such that the 

image of f^ c A "wraps" completely around v*, but does not complete a full cycle. 

A more detailed depiction of the image of f ^ , A is given in Figure 6.6. The image 

of consists of a union of (m - 2)-simplices in XA. These are the images of the 

faces of CA, and are depicted in bold dashed lines. In the figure, vout is the image under 

/ A of the vertex in XA that represents best reply region Out in X, and the vertices v/ 

are the images of the vertices in XA that represent a best reply region with label I or 

an unplayed strategy / in X (I = 2,5,6). 

Now suppose one perturbs the payoffs in the outside option. Then vout lies close to 

v*. Consider, for example, a perturbation of Out such that strategy 1 of player I is the 
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Figure 6.6: The essentiality of the component 

best reply to Out. Then vout lies in the région with label 1 close to v*, as depicted in 

Figure 6.6. So there are two simplices in the image of CA that contain v*, namely the 

simplex spanned by vs,v^ and v^t and the simplex spanned by V6, v2 and vout- The 

former simplex represents the vertex inX with labels 5, 6 and Out, the latter represents 

the vertex inX with labels 6, unplayed strategy 2 and Out. A similar analysis applies if 

vout lies in one of the régions with label 2 or 3. Therefore, the component is essential. 

This is the game theoretic counterpart to the situation described in Remark 6.2. 

It should be noted, however, that it is not sufficient to just count the almost com-

pletely labelled points on the boundary of a component to see whether a component 

is essential or not. The payoff mapping is generally more complex than the Sperner 

mapping, since the payoff vectors are generally not unit vectors. Consider, for exam-

ple, the component depicted in Figure 6.7. This component is similar to that of game 

(6.1). The différence is that the payoffs for player I in the column of (6.1) representing 

strategy 6 are modified such that v6 is shifted to the left compared with vç in Figure 

6.6. There are two points on the boundary of CA with labels 1,2, two with labels 1,3 

and two with labels 2,3, and each pair is such that the points have opposite orientation. 

But the component is not essential. There is a "gap" in the image around v*. If the 

perturbation of the outside option for player I were such that vout lies in the shaded 

area as depicted, then there would not exist an equilibrium that uses Out. A necessary 

and sufficient condition for the essentiality of a component is that the retraction of the 

image of 3CA is onto. The retraction is defìned as on page 112 for components and is 

similar to that described in Lemma 4.5: If p is a point in the image of f^,A, defìne the 

retraction as the intersection of the line between v* and p, in the direction of p, with 
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the boundary XA. This condition ensures that there is no "gap" in the image of 3CA, 

so the image "wraps" completely around v*. 

Figure 6.7: A non-essential component 

Now suppose one duplicates Out and perturbs the payoff for player II such that the 

original régions in X where Out is a best reply is divided as depicted in Figure 6.8. 

This yields two vertices in the dual construction that are associated with the outside 

option. Hence, by looking at équivalent games in which Out is duplicated, one obtains 

"richer" divisions of CA into best reply régions. For example, if one makes strategy 2 

of player I the best reply to Out\, and strategy 1 the best reply to Outi, one obtains a 

perturbation of the équivalent game that has no equilibrium close to the component. 

The associated labelled dual of this perturbed équivalent game is illustrated in Fig-

ure 6.8. Since there is no completely labelled point in the dual of the outside option, 

there is no equilibrium that involves Out, and hence no equilibrium close to it. The 

associated payoff perturbations are given in (6.2). 

4,5 0,-23 2,~1 0,0 e,0 

0,-15 8 , -1 - 2 , - 2 1 e,0 0,e 

2,-11 1,3 3,1 0,2e 0,0 

The method of duplicating Out is the underlying idea in the proof of Theorem 6.7. 

The idea is to divide the dual of the component into labelled régions such that there 

exists no completely labelled point, as in Theorem 6.1. One then has to show that 

such a division can in fact be created by duplicating Out and perturbing the payoffs in 

the duplicates of Out. Duplicating Out and perturbing the payoffs for player II in the 
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Figure 6.8: Duplication of the outside option 

duplicates refines the triangulation of CA into simplices The difference to Theo-

rem 6.1 is that the new vertices are close to the vertex representing Out. Perturbing the 

payoffs for player I then divides the simplices in the refined triangulation into labelled 

regions. Unlike the proof of Theorem 6.1, this is achieved by assigning payoffs to the 

vertices, as opposed to assigning labels. 

Consider an outside option game with a generic outside option for player II. It 

is first shown that the magnitude of the perturbations for player I in the outside op-

tion does not matter when analysing the essentiality of an outside option equilibrium 

component. The following lemma shows first that the combinatorial division of X^ 

into simplices and labelled regions is invariant under multiplying payoff columns of 

player I with some positive constant. Two m x n games are referred to as combinatori-

ally equivalent if both yield combinatorially equivalent triangulations \XA\ and if the 

divisions of the simplices in the triangulation are combinatorially the same. 

Lemma 6.4 Let G be an mxn bimatrix game represented by payoff matrices A and 

B. Let G be represented by A = [X\A \,..., X„An] and B, where Xj > 0, for j = 1 . . . , n. 

Then G and G are combinatorially equivalent. 

Proof Let X\ > 0 and Xj = 0 for 1. Let (JC,>>) be a Nash equilibrium of G. Define 

/ = (j^ ... Rescaling/ such that it lies in Y yields j; such that is a Nash 

equilibrium of <5. Continuing in the same fashion with the other Xj yields the desired 

result. ^ 

Lemma 6.4 shows that the combinatorial equilibrium properties of a game are un-

affected if a column of A or a row of B is multiplied by some positive constant. One 
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just has to adjust the weights on the strategies to account for the multiplication of the 

columns and rows. It also shows that the combinatorial structure of \XA | and the com-

binatorial division X^ is invariant under such opérations. As a corollary one obtains 

the following result. 

Corollary 6.5 Let G be a game with outside option for player II in which the outside 

option equilibrium component has index zero. Let G be obtainedfrom G by copying 

Out a finite number of times. If there exists a perturbation of G with small payoff 

perturbations for player II and large payoffperturbations for player I in the copies of 

Out such that there is no equilibrium that plays a copy of Out with positive probability, 

then there exists a small perturbation of G such that there exists no equilibrium close 

to the outside option equilibrium component. 

Proof Without loss of generality it can be assumed that the payoffs to player I in the 

outside option are zero. Adding or subtracting some constant to the payoff columns 

of A does not change the best reply properties. The payoffs for player I in G can be 

described as follows. 
yl» 

/ A V A \ 

Ai,...,A„-i I Aoutx Aoutk 

Let (yn,y0ut) be a strategy profile that makes player I indiffèrent between best reply 

strategies i\,..., i*. Now multiply the columns Aoutj by some e > 0, and consider the 

strategy ( £ , w h e r e c = ^j/" + Then strategies i\,..., ik are stili the 

best reply strategies. Thus one can easily switch from large perturbations to small 

perturbations for player I in copies of Out, and vice versa, without changing the equi-

librium properties of the game. • 

The proof of Theorem 6.7 below uses a similar argument as in Corollary 6.5 for the 

payoff perturbations for player II in the copies of Out. In the proof of Theorem 6.7 one 

divides the dual of an outside option into smaller simplices by adding vertices. These 

vertices correspond to added strategies for player II. The following lemma shows that 

one can obtain a combinatorially équivalent refìnement such that the added vertices are 
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close to the vertex representing Out. Any two vertices that are close have payoffs to 

player II that are close. This follows from Lemma 2.2. Two triangulations with vertices 
vkzK and \/keK are called combinatorially équivalent if the affine linear extension of 

on the vertices is an isomorphism that maps simplices on simplices 

and faces on faces. 

Lemma 6.6 Let CA be the dual of an outside option equilibrium component, and let 

vout denote the vertex in CA representing Out. Consider an iterated refinement ofCA 

with no vertices added to the boundary of CA. Then there exists a combinatorially 

équivalent iterated refinement in which the added vertices are close to vout-

Proofi The proof is by induction on the number of added vertices. Note that CA is 

star-shaped (see page 111). So the case is clear for just one added vertex. 

Now suppose one has an iterated refinement with k added vertices. Consider the 

refinement that is obtained by adding the first k~ 1 vertices. For this refinement, there 

exists a combinatorially équivalent refinement with k- 1 vertices close to vout- The 

vertex added last in the iterated refinement lies in some simplex in this refinement 

(which might not be unique, in case it lies on some face). This simplex corresponds 

to a simplex in the refinement where ail vertices are close to VQUt- Hence, one can 

add a vertex close to vout to the k - 1 other vertices close to vout in order to obtain a 

combinatorially équivalent iterated refinement. • 

The following theorem is the game theoretic équivalent of Theorem 6.1. The index 

is given by a division of the boundary into labelled régions. If the index is zero, this 

division can be extended to a division of CA such that no point in is completely 
labelled. As in the proof of Theorem 4.6, one then has to account for the restriction 

imposed by the game theoretic context. In particular, one has to show that this division 

can be achieved by perturbing an équivalent game in which Out is duplicated a finite 

number of times. 

Theorem 6.7 Let C be an outside option equilibrium component in a generic outside 

option game. Then C is hyperessential if and only ifI(C) ^ 0. 

Proof Without loss of generality assume that ail payoffs for player I are positive and 

that the payoffs in the columns of^ add up to 1, i.e. \Aj\ - 1 (this can be achieved by 
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first adding a suitable constant to each column and then scaling; see Section 3.3). Let 

I(C) = 0, so the dual payoff mapping has degree zero. Instead of considering 

the dual payoff mapping f ^ A , it is more convenient to consider the payoff mapping 

/ and its restriction f ^ A to the boundary 3CA. Note that / A is simply IdA o / . In 

particular, the image of /J^A complétés a cycle around v* if and only if the image of 

ZjacA complétés a cycle around v*. Therefore, the mapping f ^ A has also degree 0. 

It follows that fìdCA is homotopic to some constant map • (see e.g. Bredon (1994, 

II, Corollary 16.5 and V, Lemma 11.13)), where the constant lies on the boundary of 

AJ1-1. First the mapping can be retracted to the boundary of AJ1"1 (see Lemma 4.5 

and p. 112), and can then be deformed into a constant map along A™"1. Let this 

homotopy be denoted as h. So h : dCA x [0,1] -y A?"1, and v* does not lie in the 

image of h. 

Figure 6.9: A homotopy for outside option equilibrium components 

As in the proof of Theorem 6.1, the mapping f^CA extends to a mapping on CA 

such that no point is mapped on v*. This can be seen as follows. The homotopy is 

constant on (3CA, 1). This yields h : (3CA x [0, l])/~(.,i) A?"1 , where 3CA x 1 is 

identifìed with a single point. The dual component CA is star-shaped (see page 111), 

so (3CA x [ 0 , 1 ] ) i s homeomorphic to CA. This gives a mapping, also denoted as 

h, that maps CA AJ1-1 such that v* does not lie in the image of h. The pre-images 

of the labelled régions in AJ1"1 now divide CA into labelled régions such that no point 

in CA is completely labelled. This is depicted in Figure 6.9 for the component in the 

example (6.1). 

One now has to show that such a division can be achieved in a game theoretic 

context as a division into best reply régions by refìning the triangulation of CA and 
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choosing the payoffs for player I accordingly. For this, as in the proof of Theorem 4.6, 

choose an iterated pseudo refinement of the triangulation of CA that allows one to 

add vertices to the boundary of CA. Now assign a payoff h(v) to each vertex v in the 

iterated pseudo refinement. Then the payoffs h(v) for vertices added to the boundary 

are consistent with the payoffs for the original vertices on the boundary of CA. If the 

simplices in the refinement have a sufficiently small diameter, the image of a simplex 

is a simplex in AJ1"1 that does not contain v*. This is ensured by h being uniformly 

continuous. 

Now delete ail vertices that were added to the boundary of |CA|. According to 

Lemma 4.4, this does not create completely labelled points, and, by Lemma 4.2, yields 

a regular triangulation. This results in a division of CA as depicted in Figure 6.10 for 

the component in the example (6.1). 

Figure 6.10: An approximation of the homotopy 

So far, one has created an extended game in which stratégies for player II are added 

(see Lemma 3.12). Each added vertex corresponds to an added strategy. The corre-

sponding payoffs to player II in the added stratégies are determined by Lemma 2.2, and 

those for player I are given by the value of the homotopy at the vertex that represents 

the added strategy. The extended game is such that neither Out nor any of the added 

stratégies are played in an equilibrium. 

It remains to show that a similar game, î.e. one that yields a combinatorially équiv-

alent division of CA into simplices and best reply régions, can be created as a perturbed 

équivalent game. This is achieved by duplicating Out and perturbing the payoffs in the 

copies of Out. 
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Let vkeK be the set of vertices added, where K is an ordered set, reflecting the 

order in which the vertices were added. From the above construction each vertex v* 

has a payoff/r(vjfc). Lemma 6.6 shows that there exists a combinatorially équivalent 

refinement of CA in which ail added vertices lie close to v0uty the vertex representing 

Oui in Let the set of the vertices in this refinement be denoted as v^keK, where vj. 

is close to VQut and corresponds to v*. 

Now assign the payoffs h{vk) to vertex Vk. This yields a division of CA into best 

reply régions that is combinatorially équivalent to the original division. In particular, 

it does not contain a completely labelled point. This is depicted in Figure 6.11 for the 

component in (6.1). 

Now every vertex in \XA\ that is close to the vertex vout has payoffs to player II 

that are close to the payoffs of Oui to player II if the regular triangulation is translated 

into an extended payoff matrix B' (see Lemma 2.2). So B' consists of B and perturbed 

copies of Out. As for the payoffs h(Vk) for player I, Corollary 6.5 shows that one can 

make them arbitrarily small without creating equilibria. Hence, one created a game 

that is a perturbed équivalent game in which the outside option is duplicated a finite 

number of times. • 

Figure 6.11: Adding vertices close to vout 

In the same way as an outside option equilibrium component with index zero might 

be essential (i.e. having at least 21 (/ > 0) equilibria for every small perturbation), an 

index k outside option equilibrium component might have \k\ + 2/ (/ > 0) equilibria 

for every small perturbation of the original game. Using the dual construction, such an 

example would be easy to create (a 3 x n game would be sufficient for that). Allowing 
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perturbations of equivalent games, one gets, similarly to Theorem 6.3, the following 
result. 

Proposition 6.8 Let C be an outside option equilibrium component with index 1(C) = 

k. Then there exists an equivalent game and a perturbation of the equivalent game 

such that there are only |£| equilibria close to C and whose indices add up to k. 

Proof The proof follows the same lines as the one of Theorem 6.7, and is the game 

theoretic equivalent of Theorem 6.3. If the index of a component is 1(C) = k, then 

there exists a homotopy between the payoff mapping F^A and a mapping that maps 

an (m — 2)-ball exactly k times around itself. This homotopy is used to divide CA into 

labelled regions such that there exist exactly \k\ completely labelled points in CA with 

local degree sign k (as in the proof of Theorem 6.3). Then this division of CA can be 

imitated by duplicating Out a sufficient number of times and choosing the payoffs for 

player I accordingly, just as in the proof of Theorem 6.7. • 

Section 5.3 above discusses the limits of the dualisation methods with respect to 

general components of equilibria. Problems arise from the fact that, in general, de-

generacies occur in the payoff space of both players. Therefore, the above method is 

insufficient to prove that general index zero components cannot be hyperessential. 

In a parallel and independent work, Govindan and Wilson (2004) show that an 

equilibrium component has non-zero index if and only if it is hyperessential. Their 

results are based on results from fixed point theory and apply to general N-player 

games, and their proof uses highly technical arguments. 

In fixed point theory, a fixed point component of a mapping / is called essential if 

every mapping close to / has fixed points close to the component (Fort (1950)). It is 

a well-known result in fixed point theory that if the fixed point index of a component 

is zero, and if the underlying space is "well behaved", then there exists a fixed point 

free mapping close to the original mapping (O'Neill (1953)). In game theory, the Nash 

equilibria can be described as the fixed points of a suitable mapping. A perturbation 

of the game yields a mapping for the perturbed game that is close to the original fixed 

point mapping. The Hauk and Hurkens example and the example presented in the next 

section, however, show that just considering perturbations of the original game is not 

sufficient to obtain equivalence between strategic and topological essentiality. 
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The index of a component is the same in all equivalent games (Govindan and Wil-

son (1997a, Theorem 2; 2004, Theorem A.3)). By considering equivalent games, one 

increases the space of possible perturbations. Thus the space of mappings that can be 

obtained from perturbing equivalent games increases in dimension. This is the under-

lying idea in the proof of Govindan and Wilson for general components of equilibria. 

The authors show that, if allowing equivalent games, the space of games, i.e. the space 

of perturbed equivalent games, is rich enough to obtain equivalence between topolog-

ical and game theoretic essentiality. 

The authors start from a map that has no fixed points close to the component. 

Such a map exists after O'Neill (1953). From this map the authors create a perturbed 

equivalent game that is such that the Nash map for this game, i.e. the mapping that 

describes the Nash equilibria of the game as fixed points, copies the properties of the 

original fixed point free map. That is, the Nash map does not have fixed points close 

to the component. Thus a component is hyperessential if and only if it has non-zero 

index. 

In essence, the key idea of the approach by Govindan and Wilson and of the ap-

proach presented here is the same. One has the existence of mappings with certain 

properties. For outside option components, the mapping does not map a point in the 

dual of the component to the completely labelled point. Considering the parallels with 

the Index Lemma, the index reflects a combinatorial property of the component. In the 

case of Govindan and Wilson, one has a fixed point free mapping. The index describes 

a topological property of the component. By adding redundant strategies it is shown 

that the these mappings can arise as mappings from a perturbed equivalent game. 

Remark 6.9 The combinatorial nature of the approach presented above is such that, 

by duplicating Out, one creates one equivalent game such that, for all 8 > 0, there 

exists a perturbation of that game smaller than £ that has no nearby equilibria. In 

particular, the equivalent game is independent ofs. This is not the case for the equiv-

alent game constructed by Govindan and Wilson (2004), where the equivalent game 

depends on 8. Typically, one has to add more and more redundant strategies as 8 

becomes smaller. 
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6.3 Restricted Duplication of Stratégies and Index Zero: 

An Example 

Hauk and Hurkens (2002) show the non-hyperessentiality of the component in the 

game (6.1) by adding a convex combination of stratégies as a new strategy for player I, 

i.e. not by duplicating Out. The added strategy is a convex combination of stratégies 1 

and 2 (for détails see Hauk and Hurkens (2002)). 

This section provides an example of an index zero outside option equilibrium com-

ponent that is not only essential, but is essential in ail équivalent games that do not 

contain a duplicate of Out. It shows that duplicating Out is not only sufficiente but in 
j 

cases also necessary to create an équivalent game in which an index zero outside op-

tion equilibrium component is not essential. For general index zero equilibrium com-

ponents, this suggests that it is necessary to add redundant stratégies for both players 

in order to create an équivalent game in which the component is not essential. 
The example is constructed as follows. Consider the following game. 

H2 0 0,9 

0 H~ 0,9 
G° = (6.3) 

with 

H2 = 
10,10 0,0 

0,0 10,10 
H~ = (6.4) 

13,13 7,12 1,14 

12,7 8,8 2,1 

14,1 1,2 1,1 

Game (fi is the same as the game in (1.18) in Section 1.4. The 2 x 2 game H2 in 

the upper left part in G° is a 2 x 2 coordination game, and the 3 x 3 game H~ in the 

lower middle part of G10 is a game where the mixed strategy equilibrium in which both 

players mix uniformly between their first two strategies yields the highest equilibrium 

payoff, which is 10 to both players (see also (1.13) and (1.16) for iurther discussion). 

In Section 1.4, it is shown that the outside option equilibrium component of the game 

G° has index 0. The only equilibria that are not "cut off ' by the outside option are the 

pure strategy equilibria in H2 and the mixed strategy equilibrium in H~ with payoff 

10 for both players. The two former ones have index +1, the Iatter one has index -1 . 

Hence, the outside option equilibrium component has index 0. 
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Lemma 6.10 The outside option equilibrium component C(G°) o/the game in (6.3) is 
essential in ali équivalent games that do not contain a duplicate ofOut. In particular, 
the component is essential. 

Proof. Consider the games G2 and Òr1 as below. 

H + 2 . 
G 2 = 

- H -

G 2 = 
- H -

. 0 . 0 0,9 . . 0 . 0 0 , 9 . 

(6.5) 

Then the outside option equilibrium components in G2 and G - 1 are both essential and 

hyperessential. The games G2 and G_1 are variants of the games G2 as in (1.15) and 

G - 1 as in (1.17). By the same reasoning as in Section 1.4, it is easy to verify that 

C(G2) has index +2, and that C(G_1) has index -1 , where C(-) denotes the outside 

option equilibrium component of a game. Thus both C(G2) and C(G_I) are essential 

and hyperessential. Now consider the équivalent game, denoted as G°, in which one 

adds convex combinations for player I. Then every such game is of the form 

H+2 0,0 0,9 

¿ 9 < 9 i 

G° = < 9 < 9 (6.6) 

< 9 ¿ 9 0,9 

0,0 H~ ! 

where the entry ' ¿ 9 ' means that at least one payoff for player II in that part of the 

game is larger than 9, and '< 9' means that ali the payoffs for player II in that part of 

the matrix are less than or equal to 9. Note that the payoffs in H+1 and H~ are such 

that a convex combination does not allow entries larger than 9 in both parts of a row, 

i.e. in both the H+2 and the H~ part of a convex combination of originai columns. It is 

now sufficient to consider only payoff perturbations for player I in the outside option, 

since ali other payoffs of the game G° are generic. Let the perturbation vectors of 

player Fs payoffs in the outside option be denoted by E", EM and £/ for perturbations in 

the upper, middle and lower part of the game (6.6). Without loss of generality it can be 

assumed that e" > 0, em > 0 and e1 > 0. It can also be assumed that the perturbation 

is generic, i.e. there is a unique maximal perturbation. Suppose there were two (or 

more) maximal perturbations. If one is among the e" and one among the e-, then 

player I mixing uniformly between the strategies with the maximal perturbation and 
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player II playing Out is an equilibrium dose C(G°). Ali other cases of non-generic 

perturbations are covered by the three cases below. 

1) The maximal perturbation is among the ef. In this case, player I playing the 

strategy with that maximal perturbation and player II playing Out is an equilib-

rium dose to C(G°). 

2) The maximal perturbation is among the e". Then consider the game consisting 

of the first two strategies of player II and Out and the strategies as in (6.6) for 

player I, with payoffs and perturbations as above, i.e. consider 

H+2 e?,9 * 

¿ 9 

< 9 
e'i',9 

< 9 
e\,9 

0,0 • 

T is an perturbed equivalent form of the game G_1 in (6.5). Since C(G_1) is 

hyperessential, there exists a strategy pair (*,>>) that is an equilibrium dose to the 

outside option equilibrium component C(G_1). It is now shown that this strategy 

pair, if interpreted as a strategy pair of the game G°, is also an equilibrium dose 

to C(G°). First consider player I. By construction, player I has no incentive to 

deviate from the strategy x, seen as a strategy of the game G° as in (6.6), if 

player II plays strategy^ as a strategy of the game G°. 

It remains to show that player II has no incentive to deviate from y, seen as a 

strategy for the game G° via the mapping (yi^yout) »-» iy \ ,y i ,0 ,0 ,0 ,^) . 

The strategy profile x is such that the first two strategies of player II must yield 

a payoffof less than or equal to 9, where at least one must yield a payoff of 9. 

Otherwise, player II would play Out only, and this cannot be an equilibrium for 

the game T due to the maximal perturbation ej. But, by the choice of the payoffs 

in the games H+2 and H~, this means that the other strategies of player II's 

(except for Out) cannot be best replies against x, i.e. they ali yield a payoff 

strictly less than 9. This is because either the first strategy of player I or the 

second strategy of player I must have a weight of around This implies that 
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the remaining weight is not sufficient to yield an expected payofflarger than 9 for 

player II in the other strategies (except from Out). Thus [x,y) is an equilibrium 

of the game <5°, which is also close to C(G°). 

3) The maximal perturbation is among the e-. Then consider the game consisting 

of the third, fourth and fifth strategy of player II and Out and the strategies as in 

G° for player I, with payoffs and perturbations as above, i.e. consider 

0,0 

< 9 ; 

< 9 

¿ 9 
e{,9 

H~ • 

Then the analysis is analogous to the one above. The game T' is a perturbed 

equivalent form of the game G2 in (6.5). The component C(G2) is both essential 

and hyperessential. Thus there exists an equilibrium (x,y) of T' that is close 

to C(G2). In the same way as above it can be verified that (x,y) is also an 

equilibrium of the game <5° that is close to C(G°). 

Thus the component is essential in ali equivalent games of the form (6.6). It remains 

to show that it is also essential when adding convex combinations for player II, but no 

copies of Out. For this, extend the game T as in (6.7) by three columns of zeros, and 

the game T' as in (6.8) by two columns of zeros. Then the index of the components 

in these modified games stays invariant, and the components remain hyperessential. 

Now consider the game as in (6.6) and add convex combinations of strategies for 

player II, but no duplicate of Out. If the maximal perturbation in the outside option 

lies in the upper part, the added convex combinations can be translated into convex 

combinations of the modified game T by assigning the weight on columns 3,4,5 to the 

added columns of zeros in T. The component in the modified game T is hyperessential, 

and one shows that the equilibrium close to the component in the modified game T is 

also an equilibrium of the equivalent game of (6.6). For maximal perturbations in 

the lower part of the game one does the same analysis with the modified game S by 

treating the weights on columns 1,2 as weights on the two added columns of zeros. If 

the maximal perturbation lies in the middle part, the case is trivial. • 
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Index of Symbols 

Symbol Description Page 

h vector in M* with entry 1 in every row 15 

the standard (m - 1)-simplex 16 

A r 1 Standard (m - 1)-simplex with canonical division 69 

\Am~l\ simplicial division of the standard (m - 1)-simplex 65 

I Am_11* division of | A"1-11 into labelled régions 71 

As( A) Sperner matrix ^ 71 

artificial payoff matrix 46 

A, B payoff matrixes for player I and II 15 

C(-) outside option equilibrium component 32,110 

CA dual of a component of equilibria 111 

fi Sperner mapping from | Am~l \ to Am_l 70 

f payoff mapping 85 

/ A dual payoff mapping 86 

H best reply polyhedron 18 

ifoy) the index for equilibria as defined by Shapley 25 

idA mapping identifyingwith Am~x 86 

hJ set of pure strategies of player I and II 15 

projection of !(•) on / 16 

projection of L(-) on J 16 

labelling function for points in X and Y 16 

i(w) lifting ofw e vbrA into yA 53 

M(k) set of L-H paths in X x Y with missing label k 23 

the set of L-H paths in JfA with missing label k 51 

P best reply polytope 40 
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p A polar of the best reply polytope 40 

\PA\ siraplicial surface of the polar polytope 49 

PÏ labelled surface of the polar polytope 49 

projection of ws € vA on the best reply face vbrA 48 

Rk £-dimensional real space 15 

supp(-) support of mixed strategy 16 

V^ (m - l)-simplex in \XA\ 41 

ybrA best reply face of v^ 47 

V* completely labelled point in A? - 1 andXA 69,86 

v,w set of vertices in X and Y 17 

Ws a point in v^ 46 
A ws the simplex containing ws in XA 56 

XJ mixed strategy spaces of player I and II 15 

Xq, Yq enlarged strategy spaces spanned by X (7) and 0 23 

X(A Y(i) best reply régions in X and Y 16 

m , y(j) unplayed strategy faces of X and Y 16 

XA the dual space of X 41 

\XA\ dual construction 41 

X* labelled dual construction 47 
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