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Abstract

This thesis provides a new geometric-combinatorial construction to characterise the
Nash equilibria of a non-degenerate bimatrix game and their indices. Considering a
non-degenerate m x n bimatrix game, the construction yields an (m — 1)-simplex X2
that is simplicially divided into (m — 1)-simplices, reflecting the best reply structure of
player II. Each (m — 1)-simplex in the triangulation is divided into best reply regions

of player I. This yields a division of X2 into regions with labels 1,...,m.

In this representation, the Nash equilibria are represented by completely labelled
points, and the index is the local orientation of the m regions around completely la-
belled points. For a missing label of player I, the Lemke-Howson algorithm follows
paths in X2 that are defined by m — 1 labels of playef L

This representation of bimatrix games is shown to be related to Sperner’s Lemma
in dimension m — 1. In particular, the existence of Nash equilibria in non-degenerate

bimatrix games is equivalent to Brouwer’s fixed point theorem.

The construction yields a new strategic characterisation of the index, conjectured
by Hofbauer (2000). It is shown that a Nash equilibrium in a non-degenerate bimatrix
game has index +1 if and only if one can add strategies to the game such that the

equilibrium is the unique equilibrium of the extended game.

The construction can be extended to outside option equilibrium components in
bimatrix games. The characterisation for such components is shown to bev similar to the
well-known Index Lemma. As a consequence, index zero boundary labellings allow
triangulations that do not contain a completely labelled simplex. The game theoretic
counterpart applies to outside option equilibrium components. It is shown that an
outside option equilibrium component is hyperessential if and only if it has non-zero

index. This question had been open for some time.

It is also shown how equilibrium components of arbitrary index can be constructed

by means of outside options in bimatrix games.
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Introduction

Since Shapley (1974) introduced the index for equilibria, its importance in the context
of game theory has been increasingly appreciated. For example, index theory can be
a useful tool with regards to strategic characterisations of equilibria and equilibrium
components. Demichelis and Ritzberger (2003) show that an equilibrium component
can only be evolutionary stable if its index equals its Euler characteristic. At the same
time, most of the existing literature on the index is technically demanding, and the
amount of algebraic topology required is substantial. As a consequence, this literature

is difficult to access for most economists and other applied game theorists.

The contribution of this thesis can be divided into two parts. The first part concerns
methods and techniques. By introducing a new geometric-combinatorial construction
for bimatrix games, this thesis gives a new, infuitive re-interpretation of the index. This
re-interpretation is to a large extent self-contained and does not require a background
in algebraic topology. The second part of this thésis concerns the relationship between
the index and strategic properties. In this context, the thesis provides two new results,
both of which are obtained by means of the new construction and are explained in
further detail below. The first result shows that, in non-degenerate bimatrix games, the
index can fully be described by a simple strategic property. It is shown that the index
of an equilibrium is +1 if and only if one can add strategies with new payoffs to.the
game such that the equilibrium remains the unique equilibrium of the extended game.
The second result shows that the index can be used to describe a stability property
of equilibrium components. For outside option components in bimatrix games, it is

shown that such a compbnent is hyperessential if and only if it has non-zero index.

The new geometric-combinatorial construction, which is referred to as the dual
construction, can be described as follows. For an m x n bimatrix géme, the construction
translates the combinatorial structure of the best reply regions for both players into an
(m — 1)-simplex that is divided into simplices and labelled regions (see, for example,
Figure 2.6 below). The simplices in the division account for the best reply structure
of player II. The simplices themselves are divided into best reply regions for player I,

accounting for the best reply structure of player L
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In this representation of bimatrix games, the Nash equilibria are represented by
points that are completely labelled with all pure strategies of player I. Earlier con-
structions required the use of all pure strategies of both players as labels. The index
is simply the local orientation of the labels around a completely labelled point (Fig-
ure 2.11). The Lemke-Howson algorithm, which builds the foundation for Shapley’s
original index definition, can be re-interpreted as a path-following algorithm in the new
construction (Figure 2.8). Since the new construction is of dimension m — 1, both the
index and the Lemke-Howson algorithm can be visualised in dimension at most 3 for

every m X n bimatrix game withm < 4.

But the construction does not merely yield an intuitive re-interpretation of the index
and the Lemke-Howson algorithm. More significantly, it can disclose relationships’
between the index and strategic properties. In this context, this thesis provides, as

mentioned, two new results.

As for the first result, it is shown that the index of an equilibrium is +1 if and only
if it is the unique equilibrium of an extended game. The result proves a conjecture by
Hofbauer (2000) in the context of equilibrium refinement. The proof is based on the
idea that one can divide an (m — 1)-simplex such that there exists only one completely
labelled point which represents the index 41 equilibrium (Figure 4.7). Then such a
division can be achieved as the dual construction of an extended game where strategies

for player II are added (Figure 4.8).

The second result solyes, for a special case, a problem that was open for some
time. This problem addresses the question whether and how topological essential-
ity and game theoretic essentiality (Wu and Jiang (1962); Jiang (1963)) are related.
Govindan and Wilson (1997b) argue that the resolution of this problem is highly rele-
vant with respect to axiomatic studies: Imposing topological essentiality as an axiom
in a decision-theoretic agenda is questionable if there is a gap between topological and
strategic essentiality. Hauk and Hmkens (2002) construct a game with an outside op-
tion equilibrium component that has index zero but is essential. This demonstrates that
topological essentiality is not equivalent to strategic essentiality. However, their exam-
ple fails the requirement of hyperessentiality, i.e. the component is not essential in all
equivalent games (Kohlberg and Mertens (1986)). The follow-up question is whether

hyperessentiality is the game theoretic counterpart of topological essentiality. In this
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thesis, it is shown that this is the case for outside option equilibrium components in
bimatrix games. That is, an outside option equilibrium component in a bimatrix game
is hyperessential if and only if it has non-zero index. The proof is based on creat-
ing equivalent games by duplicating the outside option. An example presented in this
thesis shows that one can create an outside option equilibrium component that has in-
dex zero and is essential in all equivalent games that do not contain duplicates of the
outside option. However, it‘can be shown that the component fails the requirement of

hyperessentiality if allowing duplicates of the outside option.

The proof of this result employs the combinatorial nature of the index for compo-
nents of equilibria. In the framework of the dual construction, the index for compo-
nents of equilibria is defined by a combinatorial division of a boundary into labelled
best reply regions. This re-interpretation of the index for components is very similar to
the index in the framework of the Index Lemma, a generalisation of Sperner’s Lemma.
For labellings as in the Index Lemma it is shown that, if the index of a boundary
triangulation is zero, then there exists a labelled triangulation such that the triangula-
tion does not contain a completely labelled simplex. The proof extends an index-zero
boundary division of a polytope into labelled regions such that no point in the interior
of the polytope is completely labelled. This extension is then translated into a triangu-
lation (Figure 6.2). The proof for outside option components works similarty. Given an
index-zero component, the dual of the component can be divided into labelled regions
such that no point is completely labelled. It is then shown that such a division can be
achieved as the dual construction of an equivalent game in which the outside option is

duplicated and perturbed (Figure 6.10).

The concept of essentiality is strongly influenced by the theory of fixed points and
essential fixed point components (Fort, 1950). In a parallel and independent work,
Govindan and Wilson (2004) show that, for general N-player games and general equi-
librium components, a component has non-zero index if and only if it is hyperessential.
Their proof is based on a well-known result from fixed point theory that shows that a
fixed point component is essential if and only if it has non-zero index (O’Neill, 1953).
Their proof is technically very demanding. In contrast, the proof presented here for the
special case provides a geometric intuition and does not require a knowledge of fixed

point theory.
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There is, however, a link between the combinatorial approach of this thesis and
fixed point theory. This link is established via Sperner’s Lemma (Sperner, 1928). The
representation of bimatrix games in form of the dual construction reveals strong analo-
gies with Sperner’s Lemma. Spei'ner’s Lemma is a classical result from combinatorial
topology and is equivalent to Brouwer’s fixed point theorem. Using the parallels of
the dual construction with Sperner’s Lemma it is shown that the existence of Nash
equilibria in a non-degenerate bimatrix game is equivalent to Brouwer’s fixed point
theorem. On a similar topic, McLennan and Tourky (2004) derive Kakutani’s fixed
point theorem using the Lemke-Howson algorithm.

An additional result of this thesis, which does not involve the dual construction,
is the construction of equilibrium components with arbitrary index. It is shown that
for every integer g there exists a bimatrix game with an outside option equilibrium
component that has index g. The construction is purely based on the properties of the
index, and does not require knowledge of algebraic topology. This result originates

from Govindan, von Schemde and von Stengel (2003).

The structure of this thesis is as follows. Chapter 1 introduces notations and con-
ventions used throughout this work (Section 1.1). Sections 1.2 and 1.3 contain reviews
of the Lemke-Howson algorithm and index theory. Section 1.4 shows how equilib-
rium components of arbitrary index can be constructed. Chapter 2 introduces the dual
construction (Sections 2.1 and 2.2) and gives a re-interpretation of the index and the
Lemke-Howson algorithm (Sections 2.3 and 2.4). Chapter 3 describes the parallels
between the dual construction, Sperner’s Lemma, and Brouwer’s fixed point theorem.
In Chapter 4, it is shown that the index for non-degenerate bimatrix games can be fully
described by a strategic property. In Chapter 5, the dual construction is extended to
outside option equilibrium components (Section 5.2). It also contains a review of the
Index Lemma (Section 5.1). Finally, Chapter 6 investigates thé relationship between
the index and hyperessentiality. Section 6.1 considers index-zero labellings in the con-
text of the Index Lemma. In Section 6.2, it is shown that an outside option equilibrium
component is hyperessential if and only if it has non-zero index. A list of symbols is
given at the end. Proofs and constructions are illustrated by ﬁgureé throughout this

work.
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Chapter 1

Equilibrium Components with

Arbitrary Index

This chapter describes a method of constructing equilibrium components of arbitrary
index by using outside options in bimatrix games. It is shown that for every inte-
ger g there exists a bimatrix game with an outside option equilibrium component that
has index ¢g. The construction is similar to the one used in Govindan, von Schemde
and von Stengel (2003). That paper also shows that g-stable sets violate a symmetry
property which the authors refer to as the weak symmetry axiom. The construction of

equilibrium components of arbitrary index is the main result of this chapter.

The structure of this chapter is as follows. Section 1.1 introduces notational con-
ventions and definitions that are used throughout this work. Section 1.2 gives a brief
review of the classical Lemke-Howson algorithm that finds at least one equilibrium in a
non-degenerate bimatrix game. Although the Lemke-Howson algorithm does not play
arole in the construction of equilibrium components of arbitrary index, it can be used in
the index théory for non-degenerate bimatrix games. Shapley (1974) shows that equi-
libria at the ends of a Lemke-Howson path have opposite indices. The Lemke-Howson
algorithm also plays an important role in subsequent chapters when it is interpreted in
a new geometric-combinatorial construction (see Chapters 2 and 3). Section 1.3 re-
views the concept of index for Nash equilibria in both non-degenerate bimatrix games
and general N-player games. Using basic properties of the index for components of

Nash equilibria, Section 1.4 shows how equilibrium components of arbitrary index can
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be constructed as outside options in bimatrix games. It is shown that for every inte-
ger g there exists a bimatrix game with an equilibrium component that has index g

(Proposition 1.6).

1.1 Preliminaries

The following notations and conventions are used throughout this work. The
k-dimensional real space is denoted as R¥, with vectors as column vectors. An m x n
bimatrix game is represented by two m x n payoff matrices 4 and B, where the entries
A;; and B;; denote the payoffs for player I and player II in the i-th row and j-th column
of A and B. The set of pure strategies of player I is denoted by / = {1,...,m}, and the
set of pure strategies of player II is represented by N = {1,...,n}. The rows of 4 and
B are denoted a; and b; for i € 1, and the columns of A and B are denoted 4; and B; for

J € N. The sets of mixed strategies for player I and player II are given by
X= {xER’" 1 1,1;x=1,x,~zovz'e1}, Y= {ye R |1]y=1,y; ZOVjEN},

where 1; € R* denotes the vector with entry 1 in every row. For easier distinction of
the pure strategies, let J = {m+1,...,m +n}, following Shapley (1974). Any j € N
can be identified with m + j € J and vice versa. A label is any element in /UJ. For
notational convenience, the label j is sometimes used to refer to the pure strategy j —m

of player II if there is no risk of confusion.

X is a standard (m — 1)-simplex that is given by the convex hull of the unit vectors
e, € R", i€l and Y is a standard (n — 1)-simplex given by the convex hull of the unit
vectors e;_, € R, j € J. The terms “(m — 1)” and “(n — 1)” refer to the dimension of
the simplex. In general, an (m — 1)-simplex is the convex hull of m affinely independent
points in some Euclidian space. These points are the vertices of the simplex, and the

simplex is said to be spanned by its vertices.

An affine combinatibn of points zy,...,2, in an Euclidian space can be written as
Yr Az with Y% A, =1land M €R, i=1,...,m. A convex combination is an affine
combination with the restriction A; > 0, i = 1,...,m. A set of m points zi,...,zy is
affinely independent if none of these points is an affine combination of the others. This

is equivalent to saying that ¥ | A;z; =0 and 372 | A, = 0 imply that A; = ... =4, = 0.

15



A convex set has dimension d if it has d + 1, but no more, affinely independent points.
A k-face of an (m— 1)-simplex is the k-simplex spanned by any subset of k+ 1 vertices.
The standard (m — 1)-simplex spanned by the unit vectors in R” is denoted by A™~1,
SoX=A"landYy = A",

For a mixed strategy x € X, the support of x are the labels of those pure strategies
that are played with positive brobability inx. The support for y € Y is defined similarly.v
So '

supp(x) = {i € I|x; > 0}, supp(y)={j€J|yj—m>0}.
The strategy sets X and Y can be divided into best reply regions X (/) and Y (i). These

are the regions in X where j € J is a best reply and the regions in Y wherei€/isa

best reply, so
X)) = {xeX'|B,Tx23,IkaeJ}, Yi)={yeY|ay>ayVkel}.

The regions X(j) and Y (i) are (possibly empty) closed and convex regions that cover
X and Y. For a point x in X the set J(x) consists of the labels of those strategies of

player II that are a best reply with respect to x. The set I(y) is defined accordingly, so

Jx)={jeJlxeX(}, 1) ={icllye¥(i)}. (1.1)

For i € I, the set X (i) denotes the (m — 2)-face of X where the i-th coordinate equals
zero. For j € J, the set Y () is defined as the (n — 2)-face of ¥ where the (j — m)-th

coordinate equals zero.

X(i) = {(xl,...,xm)T eX|x,-=o}, Y(j) = {(yl,...,y,,)T ey|yj_,,,=o}.

Similar to (1.1), the sets /(x) and J(y) are defined as

Ix)={ielixeXx(®)}, Jy)={jeJ|lyer()}. (1.2)
The labels L(x) of a point x € X and the labels L(y) of a point y € Y are defined as

Lx)={keIuJ|keX(k)}, L) ={kelUJ|keY(k)}.  (13)

From (1.1) and (1.2) it follows that L(x) = /(x) UJ(x) and L(y) = I(y) UJ(y). So the
labels of a point x € X are those pure strategies of player I that are played with zero
probability in x and those strategies of player II that are best replies to x. Similarly, the
labels of y € Y are those pure strategies of player II that are played with zero probability

in y and those strategies of player I that are best replies to y.

16



Definition 1.1 An m X n bimatrix game is called non-degenerate if for all x € X and
y € Y the number of best reply strategies against x is at most the size of the support of
x, and the number of best reply strategies against y is at most the size of the support of
y, i.e. [J(x)| < |supp(x)| and |I(y)| < |supp(y)| forallx € X and y € Y.

It follows directly that in a non-degenerate game a point x € X can have at most m labels
L(x) and that a point y in ¥ can have at most n labels L(y). Non-degeneracy implies that
X(j) and Y (i) are either full-dimensional or empty (in which case a strategy is strictly
dominated). For non-degenerate games the set of vertices ¥/ C X is defined as those
points in X that lie on some (k — 1)-face of X and that have k pure best reply strategies

in player II's strategy space. The set of vertices # in Y is defined accordingly, i.e.
V={veX|supp(v) =k [J(v)| =k}, W={weY supp(w)=k, [I(w)|=4k}.

Non-degeneracy implies that V" is the set of those points in X that have exactly m labels,
and W is the set of those points in ¥ that have exactly » labels. Notice that the unit
vectors in R” and R”, i.e. those representing the pure strategies in X and Y, are in V'
and . An edge in X is defined by m — 1 labels, and an edge in Y is defined by n — 1
labels. For subsets X,K' C TUJ let

XK)={xeX|KcCLx)}, YK)={reY|K CL()}. 1.4

That is, in case |[K| =m —1 and |K'| = n— 1, an edge in X is defined by X(X), and
an edge in Y is defined by Y(X’). If the game is non-degenerate, every edge in X and

every edge in Y is a line segment.

The notion of vertices and edges comes from the study of polyhedra and polytopes
(see e.g. Ziegler (1995)). In general, a polyhedron H is a subset of R that is defined by
a finite number of linear inequalities. If the dimension of H is d, then it is called full-
dimensional. A polyhedron that is bounded is called a polytope. A face of a polytope
P is the intersection of P with a hyperplane for which the polytope is contained in one
of the two halfspaces determined by the hyperplane. If these faces are single points,
they are called vertices, if they are 1-dimensional line segments, they are called edges.
If the dimension of a face is one less than the dimension of the polytope, it is called

facet.
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For a bimatrix game with payoff matrix B for player I1, one can define a polyhedron

over player I’s mixed strategy space X as follows.
H={(x,v) EXxR|1Jx=1, B x< 1y, ;> 0Viel} (1.5)

The polyhedron A is referred to as the best reply polyhedron. In a similar fashion,
one can define the best reply polyhedron over Y using the payoff matrix 4. Note
that one can assume that all entries of 4 and B are strictly greater than zero, since
adding a positive constant to the payoffs does not affect the Nash equilibria of a game.
The polyhedron H is described by the upper envelope, that is, the maximum, of the
expected payoffs for pﬁre strategies of player II as functions of the mixed strategy
played by player I.

Figure 1.1 depicts the polyhedron H for the payoff matrix

6 4 1
1 3 5|

For example, the line that describes the facet with label 3 is given by the line between
v = 6 for pure strategy 1, and payoff v = 1 for pure strategy 2. The labels of a point

“on the boundary of H are the “labels” of the linear inequalities that are binding in
that point. A vertex of A is described by m binding linear inequalities, edges of H are
described by m — 1 binding linear inequalities. Each (m — 1)-facet of the polyhedron H
is defined by a single binding inequality and corresponds either to a best reply strategy
of player II or to an unplayed strategy of player 1. If H is projected onto X, it yields the
division of X into best reply regions X (/).

The above definitions can be illustrated using the 3 x 3 bimatrix game that is given

by the following payoff matrices, taken from von Stengel (1999a).

0o 30| 01 =2
A=11 01 B=120 3]. (1.6)
3 45 21 0

The mixed strategy space X of player I is a 2-simplex, and so is the mixed strategy
space Y of player II. Figure 1.2 shows the divisions of X and Y into best reply regions.
For notational convenience, the subsets X (k) and Y (k), for k € 7UJ, are just denoted

by their label in Figure 1.2. The vertices v € V' are emphasised by dots and are exactly
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Figure 1.1: The best reply polyhedron

T 1

{ L 1 4
TXS X T XD X

those points in X that have three labels. A boundary 1-face of X carries the label of
the pure strategy that is played with zero probability on that face. So, for example, the
pure strategy (0,0,1)7 € X has labels {1,2,4}, since strategies 1,2 are played with
zero probability, and strategy 4 of player II is the pure best reply strategy.

Figure 1.2: The division of X and Y for the game in (1.6)

A perturbation of a bimatrix game is defined by two m X n matrices, €4 and €3.
The perturbed game is given by the game with payoff matrices 4 + €4 and B+¢€3. A
perturbation is said to be small if ||e4]|,||€s]| < € for some small € > 0, where || - ||
denotes the Euclidian (or the maximum) norm on R™". A perturbation is generic if the

resulting perturbed game is non-degenerate.

The subsequent chapters use the concept of orientation as a definition of the index

for Nash equilibria. For an m-tuple of vectors ¥ = (vi,...,v,) in R", an orientation
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can be defined using the following term:

sign det ¥ = sign det [v, vm] . (L7

This term is +1 or —1 if and only if the vectors in ¥ span an (m — 1)-simplex that is
contained in a hyperplane not containing 0 € R™. The two signs yield two equivalence
classes of ordered vectors in general position. Choosing a standard orientation (which
is usually that induced by the unit vectors ey,...,e,), the orientation of ¥ is +1 if it
belongs to the same orientation class as the chosen standard orientation, and it is —1

otherwise.

The orientation can also be described as the sign of a permutation matrix. Suppose
one has a set of m vectors that are in general position, and each vector has a distinét
label i € {1,..., m} Then the vectors can be ordered according to their labelling, and
(1.7) can be applied to determine the orientation of the labelled set of vectors. Let the
so-ordered set of vectors be denoted as 9/. At the same time, one can re-order the
vectors in such a way that (1.7) yields the same sign as that of the chosen standard
orientation. Let this re-ordered basis be denoted as 7/’. Both % and ¥’ are a basis of
R™, where one basis is a permutation of the other basis. The basis transformation is
described by a permutation matrix D such that ¥/ =D- 7/, so det ¥’ = det D-det .
Hence det D = +1 if det ¥/ = det ¥, and det D = —1 if det ¥/ = —det V. So the
determinant of the permutation matrix D, which is either +1 or —1, can also be used
to describe the orientation. An illustration of the orientation concept is depicted in

“Figure 1.3. For the vectors v,vs,v3 as in Figure 1.3 the determinant has sign —1.
The associated permutation of the labels, written as a product of cycles, is given by
(1)(23), and has also sign —1. This corresponds to an anti-clockwise orientation on
A2 if looked at from the origin 0 € R®, whereas the standard orientation induced by

the unit vectors yields a clockwise orientation.

One can also define an orientation relative to a point v, € R”. Let (vy,...,vy) be

an ordered m-tuple of vectors in R™. Then the orientation is defined by the term
sign det ¥ = sign det [Vl —Vp .o Vm —vp] . (1.8)

Expression (1.7) is the same as (1.8) for v, = 0 € R”. The term (1.8) is +1 or —1

if and only if the vectors n vy,...,Vm,vp span an m-simplex. That is, vi,...,V, span
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Figure 1.3: The orientation of a basis

an (m — 1)-simplex such that v, is not an affine combination of the vectors vi,...,Vp.
The hyperplane deﬁned by the affine combinations of the vectors vy, ..., v, divides R”
into two halfspaces. If two points v, and v;, lie in the same halfspace, the orientation
relative to v, and v;, is the same. If the two points lie in different halfspaces, (1.8)

yields opposite signs.

Let f be a function between two topological spaces S and T. If f is continuous
then f is called a mapping. For two mappings f,g from a topological space S to a
topological space T, i.e. f,g: S— T, a homotopy h between f and g is a continuous
deformation of f'into g. A homotopy & can be described as a mappingh: Sx[0,1] > T
such that h(x,0) = f(x) and h(x,1) = g(x) for all x € S. This is denoted as f ~; g. |

1.2 The Lemke-Howson Algorithm

In their seminal work, Lemke and Howson (1964) describe an algorithm for finding at
least one equilibrium in a non-degenerate bimatrix game. This algorithm is referred
to as the Lemke-Howson (L-H) algorithm, and it is the classical algorithm for finding
Nash equilibria in non-degenerate bimatrix games. This section gives a brief review
of the L-H algorithm, since it can be used in the theory of index for non-degenerate
bimatrix games. Detailed reviews of the L-H algorithm can be found in Shapley (1974)
and von Stengel (2002). Shapley (1974), motivated by the L-H algorithm, introduces
the notion of index for non-degenerate bimatrix games. He shows that the equilibria at

the two ends of an L-H path have opposite indices. The L-H algorithm also plays an
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important role in the subsequent chapters where it is translated into a new geometric-

combinatorial construction (see Chapters 2 and 3).

Proposition 1.2 Let G be an m X n bimatrix game (not necessarily non-degenerate).

Then (x,y) € X x Y is a Nash equilibrium of G if and only if L(x) UL(y) = IUJ.

Proof. This follows from the fact that in an equilibrium a pure strategy is a best reply
strategy or is played with zero probability. If the game is degenerate, both might be
the case. In any case, the condition L(x) U L(y) = IUJ ensures that only the best reply

strategies are played with non-zero probability. 0

If a game is non-degenerate, an equilibrium strategy x plays a pure strategy with
positive probability if and only if it is a best reply strategy against y, and vice versa.
So in equilibrium L(x) UL(y) = TUJ and L(x) N L{y) = 0. A pair (x,y) such that
L(x) UL(y) =1UJ is called completely labelled.

The fact that an equilibrium strategy x plays a pure strategy with positive probabil-
ity if and only if it is a best reply strategy against y (and vice versa) builds the basis
for the L-H algorithm. The L-H algorithm describes a path in the product space X x ¥
along which the points are almost completely labelled with a fixed missing label. A
pair (x,y) is said to be almost completely labelled if L(x) UL(y) = [U.J ~ {k} for some
k € IUJ. The endpoints of a path are fully labelled and hence equilibria of the game.
In order to obtain a starting point for the L-H algorithm one extends X and Y with the
points 0 € R™ and 0 € R". These zero vectors can be seen as artificial strategies where
the probability on each pure strategy is zero, i.e. no strategy is played. The pair (0,0)
is then completely labelled.

The following description of the L-H algorithm follows that given by Shapley
(1974). Let X; denote the boundary of the m-simplex spanned by 0 € R™ and ¢; € R”,
i€ I. So Xp consists of a union of (m — 1)-faces, where one (m — 1)-face of Xy is
given by X. The other (m — 1)-faces of Xy are spanned by vertices 0 € R” and ¢; € R™,
i € I - {k}. Accordingly, the set Yj is defined as the boundary of the n-simplex spanned
by 0 € R" and e;_, € R", j € J. The (n — 1)-face of ¥, that is spanned by e;_,, € R",
j € J, represents Y. The other (n — 1)-faces of Y; are spanned by vertices 0 € R” and
ej_m €R™, j€J—{1}. For x € Xy, the labels L(x) are defined as /(x) UJ(x) for x € X
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and as {i € I | x; = 0} otherwise. For y € ¥, the labels L() are defined as I(y) UJ(y) for
y€Yandas {j€J|y;m=0} otherwise. The vertices in X are the points with m la-
bels, and the vertices in ¥j are the points with » labels. So 0 € R™ is a vertex in X with
labels 7 and 0 € R” is a vertex in ¥ with labels J. The vertex pair (0,0) € R" x R"
is completely labelled, and it is feferred to as the artificial equilibrium. For subsets

K,.K' c1UJ, let
XK)={xeX|KCLx}, h(K)={relh|K cLp)}.

Xo is a graph whose vertices are points with m labels, and whose edges are described
by m — 1 labels. Similarly, the set ¥ is a graph whose vertices are points with » labels,
and whose edges are described by n — 1 labels. Depictions of Xy and ¥ for the game

in (1.6) are given in Figure 1.4.

Figure 1.4: The L-H algorithm for the game in (1.6)

~
~
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Now fix a label k£ € IUJ and consider the subset of labels /UJ — {k}. The idea
of the L-H algorithm is to follow a unique path of almost completely labelled points
with labels 7UJ ~ {k} in the product graph Xp X ¥p. As a starting point, one chooses
a completely labelled pair of vertices (x,y) in Xp x Y, so one can either start at an
equilibrium or the artificial equilibrium. Each path with labels 7UJ — {k} lies in the
set

M(k) = {(x,y) € Xy x Yo [ IUJ - {k} C Lx) UL(y)}. (1.9)

At the end of each path one finds another completely labelled pair of vertices, i.e. an
equilibrium. The paths of almost completely labelled points are referred to as L-H

paths. The following theorem and proof can also be found in von Stengel (2002).
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Theorem 1.3 (Lemke and Howson, 1964; Shapley, 1974) Let G be a non-degenerate
bimatrix game and k be a label in IUJ. Then M(k) as in (1.9) consists of disjoint paths
and cycles in the product graph Xy x Yy. The endpoints of the paths are the equilibria
of the game and the artificial equilibrium (0,0). The number of equilibria is odd.

Proof. Let (x,y) € M(k). Then x and y have together either m -+ n or m +n — 1 labels.
[n the former case, the tuple (x,y) is either an equilibrium or the artificial equilibrium.
In the latter case, one has L(x) UL(y) = [UJ — {k}, and there are the following three

possibilities:

a) |L(x)] =m and y has n — 1 labels. Then x is a vertex in Xp, and y lies on some

edge e(y) in ¥p. So {x} x e(y) is an edge in Xp X Yp.

b) x has m — 1 labels and is part of an edge e(x) in Xy, while y has » labels and is a
vertex in Y. Then e(x) x {y} is an edge in Xp X Y.

¢) x has m labels and y has n labels. So (x,y) is a vertex in the product graph Xp x Yp.

Therefore, the set M(k) defines a subgraph of Xp x Yo. If (x,y) is completely labelled,
then the vertex (x,y) is incident to a unique edge in the subgraph M(k), namely {x} x
Yo(L(y) — {k}) if k € L(y) or Xo(L(x) — {k}) x {y} if k € L(x). In case c), one has
L(x) UL{y) = TUJ — {k}, so there must be a duplicate label in L(x) N L(y). But this
means that (x,) is incident to both edges {x} x Yo(L(y) — {k}) and Xo(L(x) — {k}) x
{r}. Therefore, the set M(k) is a subgraph where all vertices are incident to one or two
edges. Hence, the subgraph M(k) consists of paths and cycles. The endpoints of the
paths are the equilibria and the artificial equilibrium. Since the number of the endpoints

is even, the number of equilibria is odd (not counting the artificial equilibrium). [

The L-H algorithm can be illustrated by the game in (1.6). This is depicted in
Figure 1.4. One starts in the completely labelled artificial equilibrium (0,0). Now
choose a label to drop, say label 1 of player I. This determines an edge in Xp along
which the points have labels 2,3. At the other end of this edge one finds a vertex
v € Xp with labels 2,3,5. The vertex pair (v,0) has labels 2,3,5 and 4,5,6,s0 Sis a
duplicate label. This determines an edge in I with labels 4, 6 leading to the vertex w

with labels 3,4,6. So the vertex pair (v, w) has the duplicate label 3, and one follows

24



the edge in Xp that is given by labels 2, 5, leading to v with labels 2,4,5. Now (V/,w)
has duplicate label 4. This yields an edge in ¥y defined by labels 6,3, leading to w/
with labels 6, 1,3. The pair (/,w') is completely labelled and hence an equilibrium of
the game in (1.6).

1.3 Index Theory

For non-degenerate bimatrix games, the index for equilibria was first introduced by
Shapley (1974). Shapley’s index theory is motivated by the L-H algorithm, and Shap-

ley shows that equilibria which are connected via an L-H path have opposite indices.

Formally, let (x,y) be an equilibrium of a non-degenerate bimatrix game with pay-
off matrices 4 and B. Let 4’ and B’ denote the square sub-matrices obtained from A
and B by deleting those rows and columns that correspond to pure strategies played

with zero probability in x and y. So

4= [Aij]i€supp(x)/\j€supp(y)a B = [Bij]itEsupp(x)/\j€supp(y) (1.10)

are the payoff matrices restricted to the support of x and y. Without loss of generality
it can be assumed that all entries of 4 and B are (strictly) greater than zero. This is
possible since adding a positive constant to the entries of 4 or B does not affect the

equilibria of the game.

Definition 1.4 (Shapley, 1974) The index of an equilibrium (x,y) of a non-degenerate
bimatrix game with payoff matrices A and B is given as the negative of the sign of the
determinant of the following index matrix obtained from A and B:

B

I(x,y) = —sign det
(4T o

Using basic laws for the calculation of the determinant, this expression simplifies to
I(x,y) = sign(—1)**1det(4") " det B', where k is the size of the support of x and y.
Remark 1.5 Shapley (1974) defines the index as

0 ¥

sign det
47T o
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i.e. Definition 1.4 is the negative of the original definition, for the following reasons.
Definition 1.4 is consistent with the generalisation of the index for components of equi-
libria. Furthermore, according to Definition 1.4, pure strategy equilibria and equilib-

ria that are the unique equilibrium of a game have index +1.

Shapley shows thatv equilibria that are connected via an L-H path have opposite
indices and that the sum of indices of equilibrta of a game equals 41 (using the index
as in Definition 1.4). In Shapley’s original work, the proof of this claim is not very
intuitive. A more intuitive approach can be found in Savani and von Stengel (2004).
Basically, it employs the fact that along a path with m +» — 1 labels that connects two
completely labelled vertices the “relative position” of the labels stays constant. This is
illustrated in Figure 1.5. The two fully labelled points are connected via a path with
labels 2,3, where 2 is always on the left of the path and 3 on the right (and the non-
missing labels have a similar fixed orientation in higher dimension). The fully labelled
vertex on the left reads 1,2,3 in clockwise orientation, and the fully labelled vertex
on the right reads 1,2,3 in anti-clockwise orientation. In this sense the index is an

orientation of the labels around a fully labelled vertex.

Figure 1.5: Equilibria at the ends of L-H paths have opposite indices

To apply this concept of orientation to bimatrix games, Savani and von Stengel
first consider symmetric games. In symmetric games, the L-H paths can be followed
in the strategy space of just one player, say player L, by replacing the labels of player II
in X by the corresponding best reply labels of player I in the division of Y. Then
the Nash equilibria of a symmetric game correspond to vertices in X that have labels
1,---,m. Forthe 3 x 3 coordination game, this is depicted in Figure 1.6. But every non-

symmetric game with payoff matrices 4 and B can be symmetrised by constructing the
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game with payoff matrices

C 0 4 | cT = 0 B

BT 0 AT 0
again assuming that all payoffs of 4 and B are strictly greater than 0. Then the equi-
libria of the game with matrices C and C" correspond to the equilibria of the orig-
inal game by restricting the solutions of the symmetrised game to X and Y, and re-

normalising the probabilities.

Figure 1.6: The index in the coordination game

In non-degenerate games, the Nash equilibria are singletons in the product space
X x Y. For degenerate games one has to consider sets of equilibria in X x ¥. Kohlberg
and Mertens (1986, Proposition 1) show that the set of Nash equilibria of any finite
game has finitely many connected components. A maximally connected set of Nash
equilibria is referred to as a component of equilibria. The index of a component of
equilibria of a game is an integer that is computed as the local degree of a map for
which the Nash equilibria of the game are the zeros. Loosely speaking, the local de-
gree of a map counts the number of cycles (in higher dimension spheres) around zero
obtained by the image of a cycle (in higher dimension sphere) around the component
(see e.g. Dold (1972, IV, 4)). The Nash equilibria of a game can be described as the
fixed points of a mapping f: X XY = X x Y (see e.g. Nash (1951) or Giil, Pearce
and Stacchetti (1993) for such mappings). Such maps are called Nash maps. Defining
F = f—Id yields a Nash field whose zeros are the Nash equilibria of a game. The
index is independent of the particular map used (see Govindan and Wilson (1997b),
for bimatrix games, and, for games with any number of players, Demichelis and Ger-

mano (2000)). For generic bimatrix games it is the same as the index in Definition 1.4
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(Govindan and Wilson (1997b)). An introduction to the concept of index for compo-
nents of equilibria can be found in Ritzberger (2002, 6.5).

Using the Kohlberg-Mertens (K-M) structure theorem (Kohlberg and Mertens (1986,
Theorem 1)), the index can also be expressed as the local degree of the projection map
from the equilibrium correspondence to the space of games (see Govindan and Wilson
(1997a), for bimatrix games, and, for games with any number of players, Demichelis

and Germano (2000)). This can be illustrated using the following parameterised game.

1—t,1—¢ 0,0
G(t) = (1.11)

0,0 tt
In this example, the games G(¢) are parameterised by ¢ € R. Figure 1.7 shows that the
equilibrium correspondence E(G(-)) C G() x (X x Y) over G(-) is homeomorphic to
G(-) itself. In Figure 1.7, p denotes the probability for the first strategy of player I in
equilibrium. If player I plays (p, 1 — p) € X in an equilibrium, then player II’s strategy
in that equilibrium is also (p,1 — p) € Y, where p = ¢ gives the mixed equilibrium of

the game when 0 < # < 1. <

Figure 1.7: The K-M structure theorem

BG() = 0 p=l

0 . p=0

G(-) } I f

In general, let I denote the space of games for a fixed number of players with a
fixed number of strategies. Then I can be parameterised by R*, where k equals the
number of players multiplied by the product of the numbers of pure strategies per
player. Let T denote the product space of mixed strategy spaces. Then the equilibium

correspondence over I is defined as
E(T) = {(G,0) €T x | ¢ is an equilibrium of G} .

The K-M structure theorem states that the space of games I'" is homeomorphic to E(T")

(after a one-point compactification). In general, the K-M structure theorem does not
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apply to restrictions of the space of games I' as in (1.11). If, for example, one re-
stricts I to a single point that represents a game with more than one component of
equilibria, the space of games, i.e. the single point, is not homeomorphic to the graph
of the equilibrium correspondence, which consists of several disjoint sets of equilibria.

Nevertheless, (1.11) gives a good illustration of the K-M structure theorem.

For the illustration in Figure 1.7, the local degree of the projection map from E(I")
on I measures, loosely speaking, the local orientation of the equilibrium correspon-
dence relative to the orientation of I'. In the example, all completely mixed equilibria
have index —1. The pure equilibria in the non-degenerate games (i.e. ¢ € {0, 1}) have
index +1. The corners of the Z-shaped correspondence are those pure strategy equi-
libria in the degenerate games (¢ € {0, 1}) which disappeaf or split into two equilibria

with opposite indices for small perturbations. These have index 0.

The index for components and for singletons in the non-degenerate case has useful
properties that are employed in the next section to construct cdmponents of arbitrary

index. -

1) For the non-degenerate case, the index defined as the local degree is the same as

the index defined in Definition 1.4 (Govindan and Wilson (1997b)).

2) The sum of indices of components of equilibria for a fixed game equals +1 (see

e.g. Govindan and Wilson (1997a)).

3) For sufficiently small generic perturbations of a degenerate game, the index of a
component equals the sum of indices of equilibria in the perturbed game close
to the component (see e.g. Govindan and Wilson (1997a;b) for a discussion).
This fact is illustrated in Figure 1.7. Take the pure strategy equilibrium in the
degenerate case ¢ = 1 that has index 0. If the game is perturbed “to the right”
(¢ + €) the equilibrium vanishes, if it is perturbed “to the left” (+ — €) it splits into

two equilibria close to it, one with index — 1 and one with index +1.

4) The index of a component is the same in all equivalent games (Govindan and
Wilson (1997a, Theorem 2; 2004, Theorem A.3)), i.e. it is invariant under adding
convex combinations of existing strategies with the respective payoffs as new

pure strategies.
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An equilibrium component is said to be essential if every small perturbation of the
game yields a perturbed game that has equilibria close to the component. It follows that
an equilibrium component with non-zero index is essential. An equilibrium component
is said to be hyperessential if it is essential in all equivalent games. Therefore an
equilibrium component with non-zero index is also hyperessential. Chapter 6 reviews
the concept of (hyper)essentiality in more detail. It addresses the question whether and
under what circumstances the converse is also true, i.e. whether (hyper)essentiality

implies non-zero index.

1.4 Construction of Equilibrium Components with Ar-

bitrary Index

In this section it is shown how games with equilibrium components of arbitrary index
can be constructed. This new result is based on a construction that uses outside op-
tions in bimatrix games. The construction is similar to the one used in Govindan, von
Schemde and von Stengel (2003), where the authors construct symmetric components
of arbitrary index in order to show that g-stability violates a notion of symmetry. A

great part of the following description is borrowed from this paper.

First, consider a 2 x 2 coordination game, say

10,10 0,0
0,0 10,10

H* =
(in agreement with the notation in (1.16) below). This game has two pure strategy
equilibria, and one mixed equilibrium, where both players play the mixed strategy

]i’ %) The index of any of these equilibria is easily determined by the following two
properties, which hold for any game: A pure strategy equilibrium which is strict (that
is, all unplayed pure strategies have a payoff that is strictly lower than the equilibrium
payoff) has index +1; The sum over all equilibria of their indices is +1. Therefore, the

mixed equilibrium in H? has index — 1. This can also be verified using Definition 1.4,
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Next, an outside option called Out is added to the set of pure strategies of player II,
say, giving the game
o = 10,10 0,0 0,9 . (L12)
0,0 10,10 0,9
An outside option can be thought of as an initial move that a player can make which
terminates further play, and gives a constant payoff to both players. If the player has
not chosen his outside option, the original game is played. The outside option payoff
above is 9 for player II. This has the effect that an equilibrium of the original game with
payoff less than 9 for player II disappears, in this case the mixed strategy equilibrium.
Geometrically, one can consider the upper envelope, i.¢. the maximum of the expected
payoffs for the pure strategies of player 11, as functions of the mixed strategy played
by player I as described in Section 1.1. Ahy equilibrium strategy of player I, together
with its payoff to player II, is on that upper envelope. The outside option gives an
additional constant function that “cuts off”” any former equilibrium payoffs below it.
This is depicted in Figure 1.8. It shows the upper envelope of the expected payoffs
for pure strategies of player II and the resulting division of player I’s strategy space X

before and after adding Out to player II’s strategy space.

Figure 1.8: Division of X before and after adding an outside option

In game G, the original pure strategy equilibria of H? are unaffected, and continue
to have index +1. Any such equilibrium, as long as it remains (quasi-)strict after in-
troducing the outside option, keeps its index, as the index of a strict equilibrium can be
defined in terms of the payoff sub-matrices corresponding to the pure best replies (see
Definition 1.4). The mixed strategy equilibrium of H? is absorbed into an equilibrium
component where player II plays his last strategy Out. The original mixed equilibrium

strategy (%, %) of player I is part of the outside option component, which is given by
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the set of mixed strategies of player I so that Out is a best response. In G~ above, it is
easy to see that these are all mixed strategies of player I where each pure strategy has
probability at most 9/10. In general, the outside option component is defined by a set

of linear inequalities, one for each pure strategy of the player who plays Out.

Let G be some game with an outside option. Then the outside option equilibrium
component of the game G by is denoted by C(G). In (1.12), the index of C(G™) is
—1, which is simply the sum of the indices of all equilibria of the original game H?
that have been absorbed into the outside option component, because the sum of all
indices is +1. As described in Section 1.3, the index of an equilibrium component also
equals the sum of indices of equilibria near the component when payoffs are perturbed

generically; this sum does not depend on the perturbation.

It is well-known that the best response structure of a bimatrix game remains un-
changed when adding a constant to any column of the payoffs to the row player, or
a constant to a row of the column player’s payoffs. This will allow to cut off pure
strategy equilibria rather than mixed equilibria by using an outside option. Start with
a 2 X 2 coordination game with payoffs 1, 1 on and 0, 0 off the main diagonal, and add
the constant 12 to the first column of player I and row of player I, and 7 to the second
column respectively row. The resulting game H and a corresponding outside option

game G are given by

13,13 7,12 13,13 7,12 0,9

12,7 88| 12,7 8,8 0,9

The game H has two pure equilibria with payoffs 13, 13 and 8§, 8, respectively, and one
mixed equilibrium where both play (%, %) with payoffs 10, 10. The outside option with
payoff 9 for player II cuts off the pure strategy equilibrium with payoffs 8, 8 but leaves
the other equilibria intact. Consequently, the component C(G) has index +1.-

Next, one can “destroy” the pure strategy equilibrium in G by adding another row

to the game. Consider the games

13,13 7,12 13,13 7,12 0,9
H=112,7 88}, G=112,7 88 09]-
14,1 1,2 141 1,2 0,9
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Compared to H, the pure strategy equilibrium with payoffs 13, 13 is no longer present
in H'. 1t is replaced by another, mixed equilibrium where player II plays (g, %) and
player I plays ( %,0, %), with payoffs 7 to player Il and 85/7 to player L. This new
mixed equilibrium has index +1. Since the payoff to player II in that equilibrium is
less than the outside option payoff 9, that equilibrium disappears in G'. Consequently,
the component C(G’) has index +2, because the only equilibrium that is not cut off has

index —1.
Finally, consider the following game H~, which is a symmetrised version of H':

13,13 7,12 1,14
H =112,7 838 2,1]. (1.13)
14,1 1,2 1,1

In this game, the mixed strategy equilibrium where both players play (%, %, 0) is the
equilibrium with the highest payoff, yielding 10 for both players. This equilibrium has
index —1. The other equilibria are as follows: The mixed strategy (%, 0, %) of player I,
which together with ($,1) of player I forms an equilibrium of A, is no longer part
of an equilibrium as the third strategy of player II in H~ gives a higher payoff. By
playing that strategy as well, one obtains a completely mixed equilibrium where both
players play (3}, {5, 3), With resulting payoff 15/2 to both players. This equilibrium
has index +1, as has the pure strategy equilibrium with payoffs 8, 8. There are no other
equiliﬁria of H™.

H~ is used for constructing components with arbitrarily high positive index. For
k> 1, let H* be the game consisting of & copies of the gaﬁe H~ on the diagonal and

zeros everywhere else, that is,

H™ 0,0 --- 0,0

_+ |0,0 H” 0,0
H*=|" - (1.14)

0,0 0,0 --- H™

k copies

Each player has 3k strategies in H~*. For any nonempty set of the & copies of A,
and any equilibrium in such a copy, one obtains an additional equilibrium of H~* by

suitable probability weights assigned to the copies. All such mixtures involving more
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than one copy, however, give payoffs less than 8. There are no other equilibria of H*

as the payoffs in a copy of H™ are all positive, and the other payoffs are zero.

The superscript in H~* indicates the sum of indices of those equilibria that are not
cut off by adding a suitable outside option. The outside option is, as before, added to
player II’s strategy space, and is also referred to as Our as an additional pure strategy.
This gives the game

0,9
Gl = | g+ 2. (1.15)

0,9
The game G**! has k+ 1 equilibrium components: the k mixed strategy equilibria
where both players play strategies 1 and 2 in one copy of A~ with probability % (yield-
ing a payoff of 10 for both), and the equilibrium component in which player II chooses
the last strategy, the outside option Out. That component C(G*¥*1) is given by those
strategy pairs where player Il plays Out, and player I playing such that Out is a best
response. All isolated equilibria have index —1. Since the indices of all equilibrium
components have to add up to one, the outside option equilibrium component C(G**!)
has index &£+ 1, which is chosen as a superscript for G in (1.15). Therefore, for each
positive integer g, the game G? in (1.15) has a component with index g; this includes

the trivial case ¢ = 1 and k=0, whichis a 1 X 1 game.

The division of player I’s mixed strategy space X for the game G? is depicted in
Figure 1.9. It shows that, except for the equilibrium vertex ( %, %,0) € X, all other

vertices that are part of an equilibrium in 4~ are cut off by the outside option.

Figure 1.9: The division of X for the game G? with outside option
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A similar, simpler construction gives equilibrium components with arbitrary nega-

tive index. For k > 2, let H* be the following & x k game:

10,10 0,0 --- 0,0
. | 00 1010 0,0
H = _ . _ (1.16)
0,0 0,0 --- 10,10
kcoflrlmns

Just as (1.15) is obtained from (1.14), one can add an outside option for player II, and

obtain
0,9

G®D= gk (k> 2). (1.17)
0,9
The equilibria of game G~¥~1) are the k pure strategy equilibria of the coordination
game, yielding a payoff of 10 for both playefs, and the outside option equilibrium com-
ponent C(G~¥*-1)) (see Figure 1.8 for the case k = 2). Since pure strategy equilibria
have index +1, it follows that C(G~(*~1) has index —(k—1).

Hehce, for each negative integer g, there exists a game that has an equilibrium
component with index g. The case £ = 1 gives an empty equilibrium component (which
can be thought of as having index 0), since in this case the first strategy by player II
strictly dominates Out. Therefore it is required that £ 2> 2 in (1.17).

From the above, one can now easily construct a game with a non-trivial equilibrium
component that has index 0. This is done by combining the games H¢and H~*Dina
new game by placing them on the diagonal, and adding an outside option for player II

as before. The case k = 2 is sufficient, so let G° be the following 5 x 6 game:

H* 0 0,9
G = : (1.18)
0 H- 0,9

As argued after (1.14), the only equilibria in G? that are not cut off are those with pay-
offs 10,10 in H% or H~. Thus, by a counting argument, the outside option equilibrium

component C(G?) has index 0. The constructions prove the following proposition.

Proposition 1.6 For each integer q, there exists a (bimatrix) game that has a compo-

nent of equilibria with index q.
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In general, index 0 components are easy to construct (see also £ = 1 in (1.17) for

the trivial case). Consider for example the game

1,1 0,0
0,0 0,0]

This game is the same as G(0) in (1.11) and has two pure strategy equilibria, one with
payoff 1 and the other one with payoff 0. It is easy to verify that the equilibrium with
payoff 1 has index +1. It “survives” every small payoff perturbation. The pure strategy
equilibrium with payoff 0 has index zero. The péyoﬂ‘s can be perturbed such that this
equilibrium either vanishes or splits into two equilibria with opposite indices (see also
Figure 1.7). The reason for providing G° as in (1.18) is that a similar construction is
used in Govindan et al. (2003) in order to show that 0-stable sets violate a notion of
symmetry. Furthermore, in Chapter 6 it is shown that the outside option equilibrium
component of the game G is essential in all equivalent games that do not contain a

duplicate of Our. However, it is not hyperessential when allowing copies of Out.

36



Chapter 2

A Reformulation of the Index for

Equilibria in Bimatrix Games

This chapter introduces a new geometric-combinatorial construction for non-degenerate
bimatrix games that allows one to give a new characterisation of Nash equilibria and
index in bimatrix games. Given an m X » non-degenerate bimatrix game (assuming
m < n without loss of generality), the construction yields a division of an (m — 1)-
simplex in which the Nash equilibria and the index can be characterised by the labels
of player I only. So, for example, any 3 x » bimatrix game can be represented by a

division of a 2-dimensional simplex using only labels 1,2, 3.

The new construction, which is referred to as the dual construction, allows an
intuitive definition of an orientation (or index) for equilibria in bimatrix games. It
is shown that the notion of orientation introduced here is the same as the notion of
index introduced by Shapley (1974) (modulo the sign in the definition as explained in
Remark 1.5). It is also shown that the L-H algorithm by Lemke and Howson (1964)
that finds an equilibrium in a non-degenerate bimatrix game can be interpreted as a
path-following algorithm in the dual construction. This allows one to visualise, in
dimension 3 or lower, both the index and the L-H paths for all m x n non-degenerate
bimatrix games with min{m,n} < 4, whereas the interpretation of L-H paths and the
definition of index by Shapley, or the interpretation by Savani and von Stengel (2004)

by symmetrising games (see Section 1.3), uses geometric objects in dimension m +
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n— 2. Furthermore, it illustrates how non-degenerate bimatrix games fit into the study

of solutions of piecewise linear equations as in Eaves and Scarf (1976).

This chapter is basic for the results in the subsequent chapters. Later, Chapter 3
shows how the results of this chapter are related to Sperner’s Lemma in dimension
(m — 1). In Chapter 4, the construction is used to give a strategic characterisation of
the index in non-degenerate bimatrix games. Chapter 5 shows how the dual construc-
tion can be extended to outside option equilibrium components, which is applied in
Chapter 6 to show that an outside option equilibrium component is hyperessential if

and only if it has non-zero index.

The structure of this chapter is as follows. In Section 2.1 the dual construction is
introduced and described in detail. Section 2.2 gives a characterisation of the Nash
equilibria in the dual construction. Using only labels of player [, it is shown that the
Nash equilibria are given by the fully labelled points in the dual construction (Proposi-
tion 2.6). Section 2.3 re-interprets the Lemke-Howson (L-H) algorithm and shows that
it yields a connected path in the dual construction (Proposition 2.7 and Lemma 2.8).
Finally, in Section 2.4, a notion of orientation for Nash equilibria is givén. It is shown

that it is equivalent to the notion of index defined by Shapley (Proposition 2.10).

2.1 The Dual Construction

This section describes a new geometric-combinatorial construction for non-degenerate
bimatrix games. Put briefly, the subdivided strategy simplex X is dualised to obtain a
dual space |X2). Vertices in X become simplices in | X2|, and best reply regions in X
become vertices in [X2|. There are two equivalent ways of constructing |X*|. One
uses polar polytopes, the other one is a combinatorial dualisation method. Into |X2|
one then inscribes those faces of Y that are of strategic relevance for the game, yielding
a division X*A of the dual space into labelled best reply regions for player L. The final
construction has the same dimension as X and uses only labels of player I. The division
into simpiices reflects the best reply structure for player I1, the division of the simplices

into labelled best reply regions reflects the best reply structure for player I. Combining
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these two, the Nash equilibria are represented by completely labelled points in the dual

construction.

The dual construction |X?| can be obtained by using a polarisation method for
polytopes (see e.g. Zkiegler (1995, Section 2.3)). A combinatorial dualisation method
is described further below. In brief, when polarising a polytope, vertices become sim-
plices and facets become vertices. The polytope itself is obtained from the best reply
polyhedron H in (1.5) that is given by the upper envelope of player II’s expected pay-
offs over X. The polyhedron H is neither bounded nor full-dimensional. Since full-
dimensional polytopes, i.e. bounded and full-dimensional polyhedra, are more conve-
nient to study, the polyhedron H can be projected in order to obtain a polytope P that
contatns the same information as A and that is full-dimensional and bounded. This de-
scription is similar to von Stengel (2002), which also gives references to related earlier

works.

The polyhedron H as in (1.5) is defined as
H={(x,v) eER"xR|1,x=1,B x< 1y, ;> 0Vicl}.

Without loss of generality it can be assumed that v > 0 for all (x,v) € H, since adding
a positive constant to the entries of B does not affect the equilibria or the best reply

structure of a game. Now consider the set
P={xecR"|B'x<1,x;,>0Vicl}. 2.1)

The mapping H — P — {0} is given by (x,v) — 1 -x, and the inverse # — {0} — H is
given by x — (ﬁ[, |x|) , where |x| = 1, x. The vertex 0 of P corresponds with “infinity”
over H. The set P’ is described by a finite number of inequalities and is both bounded
and full-dimensional. Hence, the set P is an m-dimensional polytope. Geometricaily,
the polytope P’ is the projection of the polyhedron H on the hyperplane described by
v = 1. This is depicted in Figure 2.1.

In order to obtain the polar (or dual) of a polytope of dimension m, it is convenient
if 0 € R™ lies in the interior of the polytope. This is not the case for the polytope 7, but
can easily be obtained by translating the polytope P’ to obtain the desired polytope P.

Consider the point (L,..., 1 %) € H with $ = max; ;jb;;+ c, where ¢ is some arbitrarily
large positive constant. The projection of this point is given by X = ml‘;, ooy —”E—vs) eP
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Figure 2.1: The projection of the polyhedron H and the polytope P

v

P’

X1

and lies in the interior of P'. So one can translate P’ by —x to obtain
P={xeR"|B (x+%) <l x,+5>0Viel}.

Note that every other point in the interior of P’ could be used for the translation. Then
0 € R™ lies in the interior of P. The polytope P is referred to as the best reply polytope.
A depiction of P is given by the dotted lines on the right in Figure 2.1. The inequalities

that describe P can be rewritten to obtain

P.—_{xeR”'l " Blx<1VjeN; —mf/x,-gl\/iel}, (2.2)

v—B;
— TR,
where B; = 1—’%:—31 is the average payoff for player II in column j.
In general, let P be a polytope given by

P-:{ZER”’ lc,jzgl, lﬁkgn}.

Geometrically, the polytope P is defined by halfspaces, which are given by hyper-
planes. The vectors ¢; € R™ are the normal vectors of these hyperplanes. The polar
polytope P> of the polytope P is defined as the convex hull of the normal vectors ci of

the hyperplanes that describe P, i.e.
P> =conv{cy....,cn}. (2.3)

One can show that the polar of the polar polytope is the original polytope, i.e. P22 = P
(see e.g. Ziegler (1995, Theorem 2.11)). Note that 0 € R”™ lies in the interior of P, and
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hence in the interior of P2. A depiction of the polar polytope for a given polytope is

given in Figure 2.2.

Figure 2.2: The dual of a polytope

For a non-degenerate bimatrix game, the polytope P as in (2.2) is simple, i.e. each
vertex of the m-dimensional polytope P is described by exactly m binding linear in-
equalities, so each vertex is contained in exactly m facets of P. Consequently, the polar
P2 is simplicial (see e.g. Ziegler; Proposition 2.16). Each vertex of P2 corresponds to

a facet of P, and each facet of P, representing a vertex in P, is an (m — 1)-simplex.

The study of polytopes is a very useful tool in the analysis of games. Von Stengel
(1999b), for example, uses cyclic polytopes to construct games in order to obtain a
new lower bound on the maximal number of Nash equilibria in a d X d non-degenerate
bimatrix game. Savani and von Stengel (2004) empioy a related method to construct

games in which L-H paths are exponentially long.

The simplicial surface of the polar polytope P> can be projected on the facet of
P2 that is given by the (m — 1)-simplex spanned by the vertices —mbe;, i € I, where
e; denotes the unit vector in R” with entry 1 in row i. The projection is defined by
the intersection of the line between a point x and (—mv)1,, with the facet spanned by
—mve;, § € I (see Figure 2.3). This yields a triangulation of the facet spanned by the
vertices —mve;, i € 1. A triangulation (or simplicial subdivision) of a simplex is a finite
collection of smaller simplices whose union is the simplex, and that is such that any
two of the simplices intersect in a face common to both, or the intersection is empty.

The vertices of a triangulation are the vertices of the simplices in the triangulation.
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Figure 2.3: The simplicial division of X2

Definition 2.1 The simplex spanned by —mbe;, i € I, is denoted as X™. The triangula-

tion induced by the projection P> — X® — X2 is denoted as | X2

, and referred to as
the dual construction. The facets of P2 other than X2, which are (m — 1)-simplices,
are denoted as V™. For notational parsimony, their projections on X2, which are also

(m — 1)-simplices, are also denoted as v*.

An illustration of | X" AJ is depicted in Figure 2.3. The vertices —mve; correspond to the
facets of P that represent unplayed strategies. All other vertices of P2 correspond to
facets of P that represent best reply facets of H. Each vertex v # —* of P represents
a vertex of H, and hence a vertex in the division of X into best reply regions. So
each vertex v in X or H corresponds to a unique (m — 1)-simplex v2 in |[X2| ot on
the surface of P2. The simplex X represents the vertex —%£ € P, and is spanned by
—mve;, i € 1.

The induced triangulation |X2| is regular. A triangulation is called regular if it
arises as the projection of a polytope O whose facets are simplices (see e.g. Ziegler
(1995, Definition 5.3)). The simplices in |X2| are the projections of the facets of P2.
Essentially, the projection |X2| is a so-called Schlegel-diagram of P® that is combi-
natorially equivalent to the complex 0P> — X2 (see e.g. Ziegler (1995, Proposition
5.6.)), where 9P denotes the boundary of P4,

Now suppose one has a regular triangulation |X2| of X2. Assume that the only
vertices of the triangulation that lie on the boundary of X are those that span X2, i.e.

—mve;, i € 1. Then one can obtain a payoff matrix B that induces this subdivision. For
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this, consider the polytope Q that induces this triangulation. Without loss of generality
it can be assumed that 0 € Q. Otherwise the vectors other than —mve;, i € I, can be
moved in the same manner along the projection line. Then Q is the polar polytope
P2 of a polytope P. The polytope P2 is given by conv{cy,...,c,} (see (2.3)), where
the first m vectors are given by —mbe;, i € I (these are the vertices of X2). Given a
polytope P2, the following lemma shows how one can construct the corresponding

payoff matrix B that yields P2 as the polar of the polytope P givenin (2.2).

Lemma 2.2 Consider P> as in (2.3) with 0 € P2, and let the first m vectors be given
by ci = —mve;, i € I. For all other c;, j > m, let (¢c;); > —mv Y i € I, where (c;);
T
denotes the i-th row of cj, and let T; > —V, where ¢; = l"#c Then P_A is the polar of
the polytope in (2.2) with

Proof. By definition, one has B ;= c; forall j > m. This 1mp11es that oy B =¢j,

soB =3 + p =7=Cj. Substituting this into B; = (—VBL) cjyields B; = el Note that the

first m vectors are ¢; = —mve;, i € I, and give the inequalities —mvx; g 1in (2.2).

Translating P as in (2.2) by ( gives the polytope P’ as in (2.1) with

my?* mv)
1

mv’”®

. mv) lying in the interior of P’. From P’ — {0} one obtains H via x (]—[, |x|)

So the upper envelope H satisfies v > 0 for all (x,v) € H, and (-”7 V) lies in the

7m7

relative interior of H with ¥ > B; V j€ N. O

The above construction shows that each strategy simplex X can be dualised in a
way such that one obtains a regular triangulation |X?| of an (m — 1)-simplex. This
construction is such that the vertices of X correspond to the simplices in [X2}, and
the best reply regions and unplayed strategies in X correspond to vertices in IXA|.
Furthermore, an edge in X that connects vertices v; and v; in X corresponds to the

common {m — 2)-face of the two adjacent (m — 1)-simplices le and va in [X2|.

The important aspects of | X2 | are the combinatorial properties of the simplices and
vertices in |X2|. A combinatorial equivalent of X2 |, which, for notational parsimony,
is also referred to as |X2|, can be obtained without using the polarisation method from
above. Instead, it can be derived directly from the division of X into best reply regions.

To illustrate the procedure, it is applied to the following example.
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Example 2.3
0,0 10,10 0,0 10,-10
10,6 0,0 0,10 0,8 (2.5)
8,10 0,0 10,0 8,8

Take player I's standard (m — 1)-simplex representing the mixed strategy space X.
Then X can be divided into best reply regions X( 7). Non-degeneracy implies that the
number of best replies in a vertex v € X equals the number of strategies played with
positive probability in v. Figure 2.4 gives the division of X into best reply regions for
player II for the game in Example 2.3. It shows that every vertex v € X has exactly m
labels, where the labels of a vertex v € X are the pure best reply strategies of player II
with respect to v and the pure strategies of player I not played in v. The labels of a
point x € X are given by L(x) as defined in (1.3).

Figure 2.4: The best-reply division of X for the game in Example 2.3

A combinatorial dualisation of X is now obtained as follows. For each best reply
region and each unplayed strategy, one chooses a representative point in R™~! that
serves as a vertex in |X2|. For best reply regions, these representatives are denoted as

X(j)2. For an unplgyed strategy i € I the representatives are denoted as X(i)2.

The points X (k)A, for k£ € TUJ, that are corresponding to best reply regions or
unplayed strategies, now become the vertices in the dual of X, so each such vertex has
label k. For every vertex v € X with labels L(v), the combinatorial dual simplex v®
is the simplex spanned by the dual vertices X (k)&, with k € L(v). For two vertices v

and v; that are joined by an edge with labels L(v;) N L(v;) in X, the two combinatorial
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simplices le and va are adjacent and share the (m — 2)-face that is spanned by the

dual vertices representing the labels L(v;) N L{v) in X2.

For the game in Example 2.3, the triangulation [X2| is illustrated in Figure 2.5.
The dotted lines in Figure 2.5 show the division of X into best reply regions. The
solid lines illustrate |X2|. The best reply regions in X and those labels that represent
unplayed strategies become dual vertices in | X2|. Each vertex in X is represented by a
unique (m — 1)-simplex in |X2|. The edges in X become (m — 2)-faces of two adjacent

simplices in |[X2|.

Figure 2.5: The triangulation of X & for Example 2.3

If a vertex of a simplex v2 is of the form X (i)2, for some i € 1, it is called an outer
vertex of v2. Outer vertices of v2 represent those strategies of player I that are played
with zero probability in v. The (m — 1)-simplex X 2 is spanned by all outer vertices
X(i)2, i € I. Accordingly, the inner vertices of a simplex v are of the form X(j)2,
for some j € J. The inner vertices of a simplex v represent best reply strategies of
player II. All simplices v* have at least one inner vertex, simplices representing a pure

strategy of player I have exactly one inner vertex.
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2.2 Labelling and Characterisation of Nash Equilibria

The aim is now to divide the simplex X2 into regions with labels i € I such that the
Nash equilibria are represented by fully labelled points. As above, it can be assumed
that all entries of the payoff matrix A are strictly greater than zero. Now consider
a simplex v* € |X2|. An inner vertex that represents the pure strategy of j € N of
player II has the corresponding payoff column 4 ;. The outer vertices do not represent
payoff columns of A4 and are dealt with by introducing slack variables. Each outer
vertex that represents a pure strategy i €  of player I played with zero probability is
assigned an artificial payoff vector e;, 1.e. the unit vector in R” with entry 1 in row i.
So suppose I(v) = {i1,.-.,ix}, s0 v2 is spanned by outer vertices X(i1)2, ..., X(iy)?
and some inner vertices X(jiz+1)2,-..,X (jm)>. The payoffs for player I with respect
to pure strategies ji41,..-,jm are given by the columns 4, ,,...,4;, of the payoff
matrix A. The artificial payoffs for player I with respect to the unplayed strategies

ily...,i are defined as e;,, ..., €;,. Let 4(v) be the following artificial payoff matrix,
A(V) = [ez-l o e Ajy, A (2.6)

This artificial payoff matrix now allows one to divide each simplex v* into labelled

“best reply” regions with labels i € 1.

Definition 2.4 4 point in V2 is denoted as w, described by its convex coordinates
with respect to the vertices of V2 (the subscript “s” indicates that wy contains slack

variables).

A

Then every simplex v= can be divided into labelled regions according to

vA(@0) = {ws € V2 | (4()ws)i = (AV)wsh V k€ T} @7

This is the same division as the division of player [I’s mixed strategy space in the case
A(v) is the payoff matrix of player I in some bimatrix gamie.

Dividing each simplex v* in |X%|, this gives, by non-degeneracy, a division of X' A

into full-dimensional regions X° A(§) with labels 1,...,m, where

XA = |J v )

veV
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Figure 2.6: The labelled dual construction X,ﬁA for Example 2.3

This division is well-defined, since, if two simplices vf and v.f share some common
face, the induced division on that face is the same in both simplices le and VZA . For

the game in Example 2.3 the resulting division of X2 is depicted in Figure 2.6.

Definition 2.5 The division of X2 into labelled regions X2 (i) is referred to as the
labelled dual construction, and is denoted as X2 4 point wy € X2 is assigned the

labels I{w;) of those regions that contain w, i.e.

I(ws) ={ieI|ws € X2()}. (2.8)

For each simplex v2, the inner £+ 1 (for some & > 0) vertices of v span some k-
face of v®. This k-face is referred to as the best reply face of v® and is denoted as W2,
So the best reply face WW*© is spanned by exactly those vertices of v* that represent
a best reply strategy of player II with respect to strategy v. The best reply face Vo2
corresponds to the face of Y that isl spanned by those pure strategies of player II that
are represented as vertices of W2, So each w € W can be identified with a unique
strategy y € Y of player II. The division of v* into labelled regions also yields a division
of v*& into labelled regions. These labelled regions are affine linear transformations
of the division of the face of Y into best reply regions that corresponds to W&, It
should be noted that if a point w lies on the best reply face of a simplex v, then the

set of labels /(w) as in (2.8) is the same as I(w) in (1.1).
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The space X,,A together with the labelling function in (2.8) now allows a complete
characterisation of the Nash equilibria of a non-degenerate bimatrix game. Before
proving the main result of this section, it should be noted that all points w; that lie in
the interior of X2 and in some v* can be projected on some w € v?** by dropping
those coordinates that are the slack variables associated with artificial payoff vectors
and normalising the resulting vector such that its entries sum to 1. So let w; € v2. Let
the set of outer vertices of v be X (i)2,...,X (ix)?, and let the set of inner vertices of
V™ be X(jer1)2,- .., X(jm)2. Note that for all simplices v2, the set of inner vertices
is non-empty. So let wy = (wyy, ..., Ws,), Where the first k entries are the coordinates

with respect to the outer vertices, and the last m — & entries are the coordinates with

respect to the inner vertices. Then define the projection p(wy) as

w; =0 ; 1<i<k
w = p(ws) = 2.9)
Wi= mprti— ; k+1<i<m
iz Wsi

The projection point w = p(w;) € W2 can be identified with a unique strategy vector
in Y. For w; on the boundary of X2, one defines p(ws) =0 € R™. This allows the

following characterisation.

Proposition 2.6 A point w; € X*A with ws € v is completely labelled if and only if
(v, p(ws)) is a Nash equilibrium of the game.

Proof. Let wy be completely labelled with w, € v2. Then consider the artificial payoff
matrix 4(v). A point is, by definition, completely labelled if A(v)w; = cl1,s, where c is
some positive constant. It is easy to verify that the payoffs of 4(v) are non-degenerate,
since the payoffs of 4 are non-degenerate. Hence w; lies in the interior of v®. By
construction one has w = p(w;) € V?™2. It implies that I(w) = I —I(v), where I(v) is
as defined in (1.2). Since w lies on the best reply face of v2, it means that player II
mixes only those strategies with positive probability in w that are a best reply to v. So,

using (1.1) and (1.2), one has
we Wt = J(v)UJ(w) =J. (2.10)

This is to say that player II is always in equilibrium when considering points in the
labelled dual construction. But then /{w) = I —I(v), so I(v)UI{w) = I. This means

that (v,w) is completely labelled, and hence an equilibrium.
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Now let (v, w) be a Nash equilibrium. Then J(v) UJ(w) = J, so w € Yo*2_ Since it
is a Nash equilibrium, one has I(v) =1 —I(w). So 4(v)w is a vector with maximum
entries in those rows that are strategies played with positive probability in v. Let ¢
be this maximum entry. Now assign weights to the columns representing unplayed
strategies to obtain a strictly positive vectors W; such that A(v)Ws = cl,. Normalising
the vector W, such that the entries add up to one yields the desired vector w, with

I{ws)=1. O

For the game in Example 2.3, the labelled dual construction is depicted in Fig-
ure 2.6. For the following description, the coordinates of w, carry a subscript, marking
the payoff vector they apply to. So, for example, the subscripts 1,2,3 refer to artificial
payoff vectors, and the subscripts 4, 5,6, 7 refer to payoff columns of A. The construc-
tion contains three completely labelled points, namely w; = ((§)1, (9%)4, (9%)7) lying
in the simplex v representing v = (0, 1,2), the point wy' = ()4, ()5, (1)) lying
in the simplex representing v = (3, 1,1), and wy” = ((3)2, (33, (57)s) lying in the
simplex representing v/ = (1,0,0). Projecting these vectors gives w = (‘—5‘,0, 0, %), the
point w = (&, 7, 11,0) and w” = (0,1,0,0). So (v,w), (V,w') and (/',w") are the
Nash equilibria of the game.

Instead of labelling the dual construction |X2|, which consists of the projected
simplicial facets of the polar polytope P2, one can also label the simplipial facets of
P2 directly via the artificial payoff matrix. The division of each simplicial facet of P2
is obtained in the same way as the division of the projected simplices. The result of

this construction is depicted in Figure 2.7 for the game given by the payoff matrices

A=100;B=641.
011 1 35
The resulting labelled surface of the polar polytope is denoted as P2 Tts simplicial
surface is denoted as \|PA|. In this construction, the equilibria are, as before, repre-
sented by exactly those points on the surface of the polar polytope that are completely
labelled. The artificial equilibrium (0, 0) can be identified with the completely labelled
point on the facet X of P2, Note that X2 corresponds to the vertex of P’ that has
all labels of player I, i.e. no strategy of player I is played with positive probability. So
the artificial payoff matrix that corresponds to this facet is the identity matrix that only
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consists of artificial payoff vectors. Its centre is a completely labelled point. So, in-
stead of considering the projection of the labelled facets, one might as well characterise

the equilibria using the “labelled sphere” PA.

Figure 2.7: The labelled polar polytope pPe

The labelled dual construction allows one to completely characterise the Nash equi-
libria of a non-degenerate bimatrix game in a geometric object of dimension m — 1 by
using only the set I of labels of player I. Assuming without loss of generality m < n,
it is possible to visualise X2 forall m < 4. 1t also demonstrates how non-degenerate
bimatrix games fit into the study of solutions of piecewise linear equations as in Eaves
and Scarf (1976), and allows one to illustrate how one can find a Nash equilibrium of

a non-degenerate bimatrix game.

2.3 The Lemke-Howson Algorithm in the Labelled Dual

Construction

The L-H algorithm described in Section 1.2 is the standard algorithm for finding a Nash
equilibrium in a non-degenerate bimatrix game. The L-H algorithm describes a path
in the product space X x Y (or Xy x ¥y when including the artificial equilibrium points)
that is given by a set of points (x,y) € X x Y that is described by labels L(x) UL(y) =
IUJ — {k} for some k € TUJ. This path consists of pairs of edges and vertices in the
product graph.

The fact that the L-H algorithm applies to a product graph makes it difficult to
visualise it for games of higher dimension. In this section, it is shown that every L-H

path in X x ¥ that is defined by a missing label £ € I of player I can be interpreted as a
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path in the labelled dual X2 that consists of paths that are almost completely labelled
with missing label 4. This allows one to give a new geometric interpretation not only
of the L-H algorithm but also of the fact that equilibria at the ends of an L-H path have

opposite indices (see Section 2.4 below).

Similar to the definition of M(k) in (1.9), one can define the set of almost com-
pletely labelled points on the labelled surface P2 fora missing label k of player L. So
let M (k)*A, for k € I, denote all those points w; in P that have at least labels 7 — {k},
Le.

M(k)$ = {ws € P2 | I - {k} C I(wy)}. @.11)

One obtains the following proposition (compare Theorem 1.3).

Proposition 2.7 Let G be a non-degenerate m x n bimatrix game. Fix a label k €
I. Then M(k),.(A consists of disjoint paths and cycles in P2 The endpoints are the

equilibria of the game, including the artificial equilibrium.

-Proof. As before, let |P2| denote the simplicial surface of P2. Since the payoff ma-
trix A(v) is non-degenerate for all simplices v in |P2|, the set of almost completely
labelled points in vA with a missing label £ is, if not empty, an edge (or line segment)
in v2*. Now take an endpoint w; € v of an edge in v** with labels 7 — {k}. Then
there are two cases. The first is where wy lies in the interior of v2. In this case, w;
represents an equilibrium and is fully labelled. So wy is endpoint of a unique edge in
V2. The second case is where wy lies on the bogndary of v2. In this case, due to the
non-degeneracy assumption, the point wy lies in the interior of some (m — 2)-face of
V2. This (m — 2)-face is the face of another simplex v/ S in |P2| that is adjacent to v2.
In V2, the point wy; must be the endpoint of another edge with labels I — {k}. So the
endpoints of edges of M (k)*A in V2 are incident to one or two edges of M (k),.‘A in P2

' a

Note that X2 is just a projection of the labelled facets of P~ — X2 on X2. So the
paths and cycles in X2 with labels T — {k} are projections of the paths and cycles in
Pf\‘ — X2 with labels I — {k}. For notational convenience, the projection of these paths
and cycles in X2 is also denoted as M (k)f. Equivalently, one can define M (k)*A =
{ws € X2 | I {k} C I(ws)}. The endpoints of the paths in X" are the equilibria of
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the game, not including the artificial equilibrium, since the artificial equilibrium lies
on the face X2 on which P2 — X2 is projected. Le. the artificial equilibrium is not
seen under the projection and can be thought of lying under X2, In the same way as

above one can confirm that M (k),.;A in X2 consists of paths and cycles.

The following lemma shows how the definitions of M(k) and M (k)*A are related.
This yields a straightforward interpretation of the L-H algorithm on the labelled surface
P£ and in the labelled dual construction X",

Lemma 2.8 Equilibria that are connected by a L-H path in M(k) are connected by a
path in M(K)2. An edge ex x {w} € M(k) is represented in M(k)Y by two adjacent
simplices. An edge {v} x ey € M(k) is represented in M(k)> by an edge in v> with
labels I - {k}.

Proof. First consider an edge ex X {w} € M(k). Then ey is an edge in Xj. Let this be
an edge in X between v; and v,. Edges in X; are represented in |[X2| and |P2| by an
(m — 2)-face that is common to le and vzA . As for the edge that connects the artificial
equilibrium with a pure strategy, i.e. the edge between @ and a pure strategy v, note that
every pure strategy v is represented in |[P2| by a simplex v that is adjacent to X2, the
latter representing the artificial strategy 0 € R”. In Xf this is reflected by the fact that
v~ has an (m — 2)-face on the boundary of X2, So, if (vi,w) and (v2,w) lie along a
L-H path, then le and VZA are adjacent and share the (m — 2)-face that corresponds to
the labels L(v;) N L(v3). So the L-H path in Xj yields a union of adjacent simplices in
|X2| and |P2|.

Now suppose one has (v,w) € M(k). Let (v, w) € X x Y. Then, by the equivalence in
(2.10), one hasw € vPr& This point corresponds to an almost completely labelled point
ws = I(w) € v* in the labelled dual construction. To see this, let (ws),, k € I(v) UJ(v),
denote the row of w; that corresponds to the column of A(v) that represents strategy
k. Also, let wg, k € J(v), denote the probability with which strategy k is played in w.

Then define
N Wy keJ(v)
I(w)e = :
c—(Aw)y kel(v)
where c is the maximum payoff for player [ when player II plays w, and (Aw); is the

payoff for player I in strategy £. In v, a strategy & € I{v) has probability zero. So, for
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k € I(v), the expected payoff for the unplayed strategy k is (4w);. Normalising /(w)
yields the vector wy = /(w) such that I(w;) = I{v) UI(w), so ws € M (k)*A. Therefore,
the mapping /(w) is a lifting of w € v?2 to a point wy € v® such that I(wy) = I(v) UI(w)
{compare the projection p in (2.9)).

Now consider an edge {v} x ey € M(k) that connects (v, w;) and (v, w;) with wy # 0
and w; # 0. By the equivalence in (2.10) one sees that then ey C W2, so the edge lies
on the best reply face of v2. But that means that / (ey) is an edge in v® connecting
I{wy) and I(w).

It remains to show that these lifted edges yield a connected path in the union of
simplices that correspond to the L-H path in Xy. So let w be an endpoint of the edge

ey. Then one can distinguish two cases.

The first is where 7(v) N I{w) = {i}. In this case the pair (v, w) has a duplicate label
i of player I. This means that strategy i of player I is a best reply, but is not played with
positive probability in v. Therefore, one has (Aw); = ¢, so /(w); = 0, i.e. the lifted point
I(w) lies on the (m — 2)-face where the weight on the artificial payoff vector ¢; is zero.
So it lies on the (m — 2)-face that corresponds to labels L(v) — {i}. This represents
the edge in Xj that is described by labels L(v) — {i} and connects v and another vertex
v, with (v,w) and (V/,w) both lying along a L-H path in M(k). So the lifted point is

adjacent to two edges, one In vA and one in V2.

The second case is where /(v) NI(w) = 0. In this case (v,w) has a duplicate label
j of player II. This implies that strategy j of player II is a best reply, but is not played
with positive probability. Therefore, w; = 0 and hence /(w); = 0, i.e. the lifted point
I{w) lies on the (m — 2)-face of v where the weight on the payoff vector 4; is zero.
So it lies on the (m — 2)-face that corresponds to labels L(v) — { j}. This represents the
edge in Xp that is described by labels L(v) — {j} and connects v and another vertex v/,
with (v,w) and (/,w) both lying along a L-H path in M(k). So the lifted point is also
adjacent to two edges, one in v* and one in v/ A,

Finally, one has to account for the simplices adjacent to X A and the artificial equi-
librium. The L-H path with missing label £ that starts in the artificial equilibrium is

such that, after two steps, it yields the pair (v, w), where v represents pure strategy £,

and w is the pure best reply to v. Then either (v, w) is an equilibrium, in which case the
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completely labelled point in v* is connected with the completely labelled point in X2
via an edge in v* and an edge in X2. If (v,w) is not an equilibrium, pure strategy v
is not a best reply to pure strategy w. The lifted point /(w) lies on the (m — 2)-face of
v2 that corresponds to labels L(v) — I(w), and is also connected with the completely
labelled point in X2 via an edge in v and an edge in X2. For pure strategies v and
w such that (v,w) is an equilibrium, the completely labelled point w; in v& connects
with a point on the (m — 2)-face corresponding to labels L(v) — {k}. This is also the
(m — 2)-face of V2 such that (v,w) and (v, w) both lie along a L-H path in M(k). O

Figure 2.8: The L-H paths for k = 2 in X2

The above lemma can be illustrated by considering the paths M (2)? for the game
in Example 2.3. This is depicted in Figure 2.8. According to the L-H algorithm, one
starts at the artificial equilibrium vy = 0, wo = 0 and looks at the path that has labels
1,3. Dropping label 2 means that one flips from the artificial equilibrium simplex
X2 into the simplex v? that represents pure strategy 2 of player I. Then v; has labels
1,3, 6, since 6 is a best reply to pure strategy 2, and wq has labels 4,5,6,7. Hence 6
is a duplicate label. This determines wy. Strategy wi represents the pure best reply to
pure strategy 2, which is 6. So w; = (0,0, 1,0) with labels 4,5,7, 3, since pure strategy
3 is a best reply to wy. In X*A, this is represented by wy;. Now 3 is a duplicate label.

This determines the simplex v2A by flipping over the face that corresponds to vertices
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representing strategies 1 and 6. Then v, has labels 1,7,6. Now 7 is a duplicate label,
determining wy. The strategy w» is the mixed strategy that mixes strategies 6 and 7,
with best replies 1 and 3. InX,.‘A , this gives wsy. Now wy has labels 5,4,1,3, so 1
is a duplicate label, which determines vs.A. The stmplex v3A is the simplex adjacent to
va with common face spanned by vertices representing 6 and 7. This is the simplex
spanned by vertices representing 4,6,7. Now 4 is duplicate, which determines w;
in which pure strategy 4 is played with positive probability. In X,,A, this gives wqs.
Strategy w3 has labels 4,6, 1,3, so now 6 is a duplicate label. Flipping over the face
of v_,,A that is spanned by vertices 4 and 7 gives vf spanned by vertices representing by
4,7 and 1. Finally, label 1 iS duplicate, determining w4 with labels 5, 6,2, 3, which, in

X2, is represented wqg. The tuple (v4, ws) is an equilibrium of the game.

This reinterpretation of the L-H paths in X,.,A also allows one to illustrate why Nash
equilibria might be inaccessible in the sense that they are not connected via a union
of paths with the artificial equilibrium as noted by Shapley (1974). An example for
this situation is depicted on the left in Figure 2.9. The union of paths ME (k), for
k € I, is depicted in bold lines. The game represented on the left in Figure 2.9 has
three equilibria, one pure strategy equilibrium and two in which player I plays all three
strategies with positive probability. Starting at one mixed strategy equilibrium, every
path in M,‘A (k) always leads to the other mixed strategy equilibrium and vice versa. So
for k € I, the L-H algorithm only finds the pure strategy equilibrium in which player I
plays only pure strategy 1 (the equilibria might not be isolated when considering paths
M(j) for j € J). X2 can also be used to show that M2 (k) might contain cycles. This is
depicted on the right in Figure 2.9, which illustrates a cycle with labels 1,3 in ME (2).

2.4 An Orientation for Nash Equilibria

This section gives a re-interpretation of the index by means of the labelled dual con-
struction. This allows a simple visualisation of the index for any m x # bimatrix game
with m < 4, since X,.,A is of dimension m — 1 for an m X n bimatrix game. Further-
more, this re-interpretation of the index extends to certain components of equilibria,
namely outside option equilibrium components in bimatrix games (Chapter 5).‘ This

re-interpretation of the index is then employed in Chapter 4 to obtain a strategic char-
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Figure 2.9: Inaccessible equilibria and cycles in X8

acterisation of the index in non-degenerate bimatrix games and in Chapter 6 to obtain

a characterisation of hyperessentiality in terms of the index.

The definition of the index in X7 is similar to the index as depicted in Figure 1.5,
i.e. it is defined by the relative ordering of the labels “around” an equilibrium. Consider
a completely labelled point w; € X2 that represents an equilibrium. Note that in this
case w; lies in the interior of some unique v. One now constructs a simplex wsA such
that it contains w; and such that each vertex of wsA lies in a different best reply region
of v2. Comparing the orientation of this simplex with the orientation induced by X2

then yields the index of the equilibrium represented by w;.

The simplex wsA can be obtained as follows. Let w, € v2 be completely labelled.
For i € I, let w; denote the vector, described as a convex combination of the vertices
of v, such that the payoff for player I from the artificial payoff matrix is such that
A(v)w; has the maximum entry c’, ,, in row i, and is the same constant ¢! < c’,, in all
other rows. Such vectors exist: If w; is completely labelled, extend the edge with labels
I —{i} into the best reply region with label i. Then any point that lics on the extension
of the edge in the best reply region with label i has this property. If a label i € T
represents an unplayed strategy, choose the vertex of X A that represents the unplayed
strategy i. In this case, w; is itself a unit vector such that A(v)w; = e;. The construction
of wsA is depicted in Figure 2.10, in which label 1 represents an unplayed strategy.

Then wsA is the (m — 1)-simplex spanned by w;, i € 1.

Now label each vertex w; with label ;. This means that w? is an (m — 1)-simplex

whose vertices are completely labelled, i.e. have all labels i € 1. This induces an order-
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Figure 2.10: The construction of wsA

ing of the vertices of w}ﬁ. The simplex X2 is also an (m — 1)-simplex that is completely
labelled, spanned by the vertices —mve; with label 7, i € I. To define the orientation in
X*A , choose the orientation of X2 as the standard orientation. The expression (1.7) for
the vertices of X is given by (—1)™. Let the coordinates of w; with respect to the unit
vectors be given by wi. So, if vi,...,v, are the vertices of v®, described as column
vectors with respect to the unit vectors, then w¥ = [v1,...,vy]w;. Then the index of an

equilibrium is defined as follows.

Definition 2.9 The index of an equilibrium represented by ws € X,.,A is+1if wsA lies in
the same orientation class as X2, and it is —1 otherwise. That is, the index is defined

as

sign (—1)™ det[wX, ..., wh] =sign (—1)™ det[vi,...,vm][w1, ..., W] (2.12)

Proposition 2.10 below shows that the index in Definition 2.9 is the same as that
in Definition 1.4. It follows that the index as defined here does not depend on the
particular vertices of wsA chosen. -Furthermore, the index i1s well-defined and does not
depend on whether one uses X,,A or Y*A. It also follows that the definition is independent
of the labelling of the strategies. This can also be seen as follows. Re-labelling the
strategies of player I would induce a re-labelling of regions in X2 , without affecting
them as such. Therefore, a re-labelling of the strategies induces the same re-labelling

of the vertices of X2 as of the vertices of wsA.
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An illustration of Definition 2.9 is given in Figure 2.11. The pure strategy equi-
librium where player I plays pure strategy 1, represented by w'’s, has index +1. The
labels around w"; read 1,2,3 in anti-clockwise direction, and so do the labels of the
vertices of X2, which are the corners of X*A. The labels around w/, read 1,3, 2 in anti-
clockwise direction or 1,2, 3 in clockwise direction. Hence the index is defined as —1.
The labels around wy are oriented as the labels of the comers of X,'FA , hence the index

s +1.

Thus, as described in Section 1.1, the index can be identified with a permutation
of the labels /. In particular, if, for example, strategies iy,..., i, are played with zero
probability in an equilibrium w;, then the (k— 1)-face of w5 that is spanned by the ver-
tices of w2 representing labels i1, ..., i is the same as the (k— 1)-face of X spanned
by the outer vertices representing labels iy,...,i;. Choosing the orientation of X* as
the standard, this implies that the associated permutation of the labels [ is the identity
on the subset {ii,...,ix}. It follows that pure strategy equilibria have index +1. If
(v,w) is a pure strategy equilibrium in which strategy i of player I is played with prob-
ability 1, the permutation of the labels 7 is the identity on the labels 7 — {i}. But then
it must be the identity on {i}. So the permutation is the identity and has sign +1. This
can also be verified using the expression (2.12), noting that the entries of w# are less

than zero.

Figure 2.11: The index in X for Example 2.3 -
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The above definition of index uses the orientation in X , which is the projection
of the labelled surface P,,‘A . One can also define the orientation by using the labelled
surface P directly. In the same way as the simplex w is constructed in X2 , one can
construct wsA in P*A such that it lies on the facet v® of P2 that contains w,. These

simplices are also denoted as wsA.

To define the index in P> , one has to account for the fact that the projection has an
effect on the orientation of simplices. Let w;A be a simplex around an equilibrium w;
contained in v2, where v is a facet of P2 — X2. Then the sign in (1.7) for the vertices
of wf, ordered by their labels, is the opposite as the sign in (1.7) for the vertices of the

projected simplex.

To see this, note that the expression (1.7) for vertices of a simplex on P,.<A =
is the same as (1.8) for vertices of the simplex relative to the projection point v, =
(—=mv,...,—mv).  This is due to the fact that both points 0 € R™ and
vp = (—m9,...,—mv) lie in the same of the two halfspaces which are defined by the
hyperplane containing the simplex. Furthermore, the expression (1.8) for a simplex
ws relative to vp is not affected by the projection of wf on X2, For the simplex X2,
the expression (1.7) for the ordered vertices of X2 is the negative as that in (1.8) rel-
ative to v, . Both 0 € R™ and v, lie in different halfspaces defined by the hyperplane
containing X2. So if a simplex wsA in X2 has the same orientation as X2, it means

that the corresponding simplex in P2 has the opposite orientation as X2

This is depicted in Figure 2.12. One the left, one looks at the surface of P2 from
the projection point v, through X' A where vp lies on the outside of P2, On the right,
one looks at the surface of P® from 0 € R™, which lies the inside of P2. Moving
from v, to 0 € R™ changes the orientation of X A, but not the orientation of the other

simplices.

Hence, in P,,A the index of an equilibrium wy is +1 if wsA has the opposite orienta-
tion as X2, and it has index —1 otherwise. This means that the artificial equilibrium
itself has, by definition, index —1. So let, as before, wy,...,w, be the set of vertices
of wsA described by their coordinates with respect to the vertices of v, where v*
is a facet of P2. Let the vertices of v2 be given as vy,...,Vp, described as column

vectors with respect to the unit vectors as basis. Let w4,...,w}, denote the set of ver-
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Figure 2.12: The index in o

tices of wsA described by their coordinates with respect to the unit vectors as basis. So

w = [v1,...,Vm|w;. Then the index is given by
sign(—1)"det[w¥, ..., wk] = sign(—1)" det[vy, ..., vp][W1,..., Wm].  (2.13)

So the index as in (2.13) for the construction P*A is the negative of the expression
(2.12) for the construction Xf). This accounts for the effect of the projection on the

orientation.

Proposition 2.10 The index as in Definition 2.9 is the same as the index in Defini-

tion 1.4.

Proof. Without loss of generality, it can be assumed that the entries of the payoff
matrices 4 and B are strictly greater than zero. Consider the labelled surface P®. Let
(v,w) be an equilibrium, and let wsA be the corresponding completely labelled simplex
contained in the facet v of P2. The simplex VA is spanned by some vectors vy, ..., Vp,
which are described as column vectors with respect to the unit vectors as a basis. These

vectors are some m vertices of the polar polytope P2 asin (2.3).

If v; represents a strategy j of player II, then v; = A;B;, where A; = # s a
J
positive scalar (compare (2.2)). If v; represents an unplayed strategy i of player I, then

v; = —mve;. So vj = —Aze;, where A; = mv is a positive scalar.

Let wy,...,w, denote the ordered set of vertices of WSA, given by their coordinates
with respect to the vertices of v2*. These vectors are, by construction, such that A(v)w;
has the maximum entry c},,, in row i, and is the same constant ¢' < ¢}, in all other

rows. Let C denote the matrix A(v)[w; ...wy,]. Then det C has positive sign, since any
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convex combination of C with the identity matrix has full rank. Note that all entries of

C are strictly greater than zero, since all entries of 4 are strictly greater than zero.

One obtains [wi,. .., wy) = 4(v)~'C. With respect to the unit vectors, the vertices
of wsA are given by the vectors [w¥,...,w"] = Blwy,...,wy|, where B = [vy,...,vy].
The rows of B can be ordered such that if row Jj of B represents an unplayed strategy,
then B; = —Ae;. If the rows of B are ordered in this way, then the j-th column of 4 (v)

is given by A(v); =e;.

Let k denote the size of the support in (v,w), and let 4’ and B’ be defined as in
(1.10). For the expression in (2.13), this gives

sign (—=1)"*! det [W{...w#] = sign (~1)"*!det [BA(v)"!C]
= sign (—1)*! det B det 4’.. (2.14)

Note that sign det 4(v)~! = sign det 4(v) = sign det 4, since A(v); = e; if col-
umn j represents an unplayed strategy. One also has sign det C = +1 . Furthermore,
sign det B = (—1)™*sign det B'. This is due to the fact that the rows of B are ordered
such that if row j of B represents an unplayed strategy, then B; = —Aje; with ; > 0.
All other rows of B are positive multiples of columns of B. Thus the expression in

(2.13) is the same as the expression in Definition (1.4). O

The expression in (2.14) can be interpreted as follows. The term (—1)**! accounts
for the alternating sign of the matrix corresponding to X" A, sign det B’ gives the orien-
tation of v2, and sign det A’ gives the orientation of w5 within v2. -

In X*A , the artificial equilibrium is not represented as such. Instead, it can be
thought of lying under X? , since it is covered by the projection of PR X2, Al-
ternatively, the artificial equilibrium can be represented in X,.A by attaching a mirrored
version of X2 along some (m —2)-face to X2 as depicted in Figure 2.13. The represen-
tation of the index in X allows to intuitively show that indices which are connected

via a L-H path have opposite indices. This result was first proven by Shapley (1974).

Proposition 2.11 Equilibria connected by an L-H path have opposite indices. The

sum of indices of equilibria in a non-degenerate bimatrix game is +1.

Proof. The proof is illustrated in Figure 2.13. Note that the dual construction can also

be applied to player II’s strategy space ¥ to obtain Y2 to follow L-H paths defined by a
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missing label j € J. The proof here applies to X2 and L-H paths defined by a missing
label & € I of player I. The proof for L-H paths in Y*A is equivalent.

Take two equilibria (vi,w;) and (v2,ws) that are connected in X x ¥ via an L-
H path in M(k) for some k€ 1. In X*A, this corresponds to two completely labelled
points wg| and wy, that are completely labelled and are connected in X,,A by some path
in M*A(k). Along the path, the relative position of the regions with labels 7 — {} is
constant. Fixing the face with labels I — {k}, the vertex with label & lies on one side in
wSAl, and on the other side in w‘s%, SO wﬁ and wﬁ must have opposite indices (see e.g.

Eaves and Scarf (1976) or Garcia and Zangwill (1981, Theorem 3.4.1)).

Figure 2.13: Orientation along L-H paths

As argued above, the artificial equilibrium has orientation —1. Since for a given
missing label the L-H paths always yield equilibrium pairs (including the artificial
equilibrium), the sum of indices of equilibria equals 0 if one also counts the artificial

equilibrium, and it equals +1 if one does not. O

Proposition 2.10 shows that the index is independent of unplayed strategies. This
is also illustrated by the dual construction, since the permutation of the labels repre-
senting unplayed strategies is trivial. The following observation shows that this invari-
ance property, together with the fact that the sum of indices of equilibria of a game

equals +1, actually defines the index.

Proposition 2.12 Let Ind(v,w) be some index function that assigns an index +1 or

—1 o equilibria (v,w) of a non-degenerate bimatrix game. If Ind(v,w) is such that the
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indices of equilibria of a game add up to +1 and such that the index does not depend

on unplayed strategies, then Ind(v,w) must be the same as in Definition 1.4.

The proofis by induction on the number & of strategies played in equilibrium. The case
k =1 reflects pure strategy equilibria, for which both concepts yield index +1. Now
fix a non-degenerate bimatrix game G, and consider an equilibrium of G in which each
player plays k strategies. Consider the game & x & bimatrix game G’ that is obtained
from the original game G by deleting all unpiayed strategies, i.e. consider the game
with payoff matrices 4’ and B’. Then the equilibrium is the only completely mixed
equilibrium in G’. The sum of indices of the equilibria of G’ equals +1 with respect
to both /nd(-) and Definition 1.4. But for all equilibria of G that use k— 1 or less
strategies, both indices are the same, noting that both concepts only depend on the
strategies played in equilibrium. The sum of indices of the equilibria of G’ equals +1,
thus the indices of the completely mixed equilibrium of G’ must coincide. These, in

turn, are the same as the indices of the equilibrium as an equilibrium of G. O

In the same way as in the proof of Proposition 2.12, one can show that the invari-
ance property, i.e. the index does not depend on unplayed strategies, and the property
that equilibria at the ends of L-H paths have opposite indices completely characterise

the index.
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Chapter 3

Sperner’s Lemma and Labelling

Theorems

This chapter shows how the labelled dual construction X*A relates to labelled triangula-
tions as in Sperner’s Lemma. Sperner’s Lemma is a result from combinatorial topology
that applies to triangulations of the unit simplex together with a labelling of the vertices
in the triangulation. Sperner’s Lemma states the existence of a fully labelled simplex if
a certain boundary condition is satisfied. This condition is a restriction on the labelling

function for vertices on the boundary.

Sperner’s Lemma ié equtvalent to Brouwer’s fixed point theorem (see e.g. Garcia
and Zangwill (1981)). Since the Nash equilibria of a game can be described as the fixed
points of a suitable mapping f: X x ¥ — X x Y, a “connection” between Sperner’s
Lemma and bimatrix games is nothing new. What is new, however, is the fact that the
dual construction for m x n bimatrix games relates to Sperner’s Lemma in dimension
m— 1. This also allows one to show that the existence of a Nash equilibrium in an non-
degenerate m X n bimatrix game implies Brouwer’s fixed point theorem in dimension
m — 1. Since Nash equilibria can, conversely, be described as fixed points, Brouwer’s
fixed point theorem is equivalent to the existence of Nash equilibria in non-degenerate

bimatrix games.

The structure of this chapter is as follows. Section 3.1 reviews Sperner’s Lemma in
its classical form. It shown that Sperner’s Lemma is equivalent to the KKM Lemma,

a classical result by Knaster, Kuratowski and Mazurkiewicz (1929), and to Brouwer’s
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fixed point theorem. In Section 3.2 it is shown how these results apply to bimatrix
games. In particular, it is shown that for every labelled regular triangulation | A™~! |
with no vertices on the boundary other than the unit vectors e; with label 7, there exists
an m X n non-degenerate bimatrix game such that the labelled dual construction for the
game 1s equivalent to the labelled triangulation (Proposition 3.9). The L-H algorithm
in that bimatrix game is equivalent to a well-known algorithm that finds completely
labelled simplices. It is also shown that for every labelled dual construction X2 there
exists a refinement of |X2| and a labelling of the vertices that is consistent with the best
reply regions such that the Nash equilibria are represented by the completely labelled
simplices (Proposition 3.14). The relation of the dual construction to Sperner’s Lemma
is then used to show that the existence of Nash equilibria in non-degenerate bimatrix
games is equivalent to Brouwer’s fixed point theorem (Corollary 3.13). Section 3.3
translates the division of X2 into a mapping that characterises the Nash equilibria.

This section is important, as it lies the technical foundation of the subsequent chapters.

3.1 Sperner’s Lemma

Sperner’s Lemma (Spermer (1928)) applies to triangulations of a simplex with labelled
vertices. Sperner’s lemma states that there exists an odd number of completely labelled
simplices in a labelled triangulation of the standard (m — 1)-simplex A™~! if a bound-
ary condition is fulfilled. This boundary condition states that the label of a vertex v
on the boundary is one of the labels of the vertices that span the face that contains v.
Sperner’s Lemma is a classical result from combinatorial topology and is equivalent
to Brouwer’s fixed point theorem and the KKM Lemma (see e.g. Garcia and Zangwill
(1981)).

A triangulation (or simplicial subdivision) of A™~!, denoted as | A™~!|, is a finite
collection of smaller (m — 1)-simplices whose union is the simplex, and that is such
that any two of the simplices intersect in a face common to both, o-'r the intersection is
empty. Let ¥ denote the set of vertices of the smaller simplices in | A™~!|. A labelling
function is a function that assigns a label i € I = {1,...,m} to each vertex ve ¥, i.e.
L: ¥V — 1. An example of a triangulation of | A™~! | with a labelling L is depicted
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in Figure 3.1. A triangulation together with a labelling of the vertices is referred to as
labelled triangulation.

Figure 3.1: A labelled triangulation

The simplex A™~! is spanned by the unit vectors ¢; € R”, i € I, where I = {1,...,m}.
The Sperner boundary condition, which is referred to as the Sperner condition, states
that if a vertex v € ¥ lies on the (k— 1)-face of A™"! that is spanned by e;, j € I,
with I = {i\,...,ix} C I, then L(v) € It. Note that the Sperner condition only restricts
the labelling of vertices that lie on the boundary (f; C I and I; # I). For vertices in
the interior of A™~! there is no restriction (/; = I). So it is appropriate to refer to the
Sperner condition as a boundary condition. The Sperner condition implies that the unit
vectors ¢; have label . So every vertex v can only be assigned one of the labels of those
vertices that span the (minimal) face that contains v. For the example in Figure 3.1, the
Sperner condition is fulfilled. For example, the vertices that lie on the boundary face

spanned by vertices with labels 1 and 2 only have labels 1 or 2.

Definition 3.1 (Sperner condition) Let v € V be contained in a (k— 1)-face of A™!
spanned by e, j € It, with I = {i1,...,ix} C I, and let k be minimal in this réspect.
Then a labelling L : V — I fulfils the Sperner condition if L(v) € I .

Sperner’s Lemma states that there éxists an odd number of completely labelled sim-
plices if the Sperner condition is satisfied. A simplex is called completely labelled if
the vertices of the simplex have distinct labels, i.e. if the vertices have labels 1,...,m.
It follows that there exists at least one completely labelled simplex. Sperner’s Lemma
also states that there exists one more completely labelled simplex with positive orienta-
tion than with negative orientation. An orientation is an equivalence class as described

through (1.7). According to (1.7), the sign of the determinant associated with the unit
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simplex A™~! with vertices labelled L(¢;) = i is +1. If a simplex is completely la-
belled, one can order the vertices according'to their labelling. Applying (1.7) and
choosing the orientation of the unit simplex as the standard orientation, one can define

the orientation of a completely labelled simplex.

Definition 3.2 (Orientation) A completely labelled simplex has orientation +1, if it
falls in the same equivalence class as the unit simplex A™ with vertices labelled

L(e;) =i, and —1 otherwise.

The labels of a completely labelled simplex can be seen as an ordering of its vertices,
and the orientation of a fully labelled simplex corresponds to a permutation of the
labels of the vertices as described before. The orientation is +1 if the permutation has
sign +1, and it is — 1 otherwise. For the example in Figure 3.1, the completely labelled
simplex in the bottom right corner has orientation +1; the labelling reads (1,2,3) in
anti-clockwise direction. The completely labelled simplex in the centre of Figure 3.1

has orientation —1; its labelling reads (1,2, 3) in clockwise direction.

Theorem 3.3 (Sperner’s Lemma) Consider a labelled triangulation | A™ 1| such
that the labelling satisfies the Sperner condition. Then there exists an odd number of

completely labelled simplices, one more with orientation +1 than with orientation —1.

Proof. This proof employs methods from combinatorial topology and is by induction
(see e.g. Henle (1994, p. 38) for the case m = 3). The case for m = 1 is trivial, and

m = 2 is also easy to verify. So suppose the claim is true for triangulations of A™2,

Fix a label k € I, and consider a simplex A € | A™~1| that is spanned by vertices
V1,-..,Vm. Consider an (m — 2)-face of A that is spanned by, say, vertices vi,...,Vp_1.
Relative to A, each (m — 2)-face has an orientation induced by the orientation of A™~!
and the labels 7 — {k}: If the m — 1 vertices of the face do not have labels 7 — {k}, the
orientation is 0. If the vertices of the face have m — 1 distinct labels / — {k}, then the
orientation of the (m — 2)-face is the orientation of the completely labelled simplex
that would be obtained by giving vy, the missing label &. This is depicted in Figure 3.2

for £ = 1. There are three cases.
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1) A simplex A does not have labels 7 — {k}. In this case the orientations of its
(m — 2)-faces are zero since no (m — 2)-face can have labels I — {k}. Hence the

sum of the orientations over the (m — 2)-faces of A is zero.

2) A simplex A has exactly the m — 1 distinct labels 7 — {k}. Then exactly two
(m—2)-faces of A are such that they have the same m ~ 1 distinct labels 7 — {k},
while all other (m —2)-faces have labels other than 7 — {k}. The latter ones have
by definition orientation zero, while the two former ones are such that they have
opposite orientations. Hence the sum of orientations over the (m — 2)-faces of

A is also zero.

3) A simplex A is completely labelled. Then, by definition, their exists exactly one
(m — 2)-face of A with labels I — {k}. This face has orientation +1 if A has

positive orientation, and orientation —1 if A has negative orientation.

Now consider an {(m —2)-face that lies in the interior of A™~1, By definition, it belongs
to exactly two simplices that are adjacent. With respect to one simplex its orientation
is the negative of its orientation with respect to the other simpiex (including the case
where the orientation is zero). So, adding up the orientations of all (m — 2)-faces of
all simplices in | A™~!|, this sum must equal the sum of orientations of the boundary
(m — 2)-faces of | A™~1|, since the orientations of (m — 2)-faces in the interior cancel

out.

Boundary (m — 2)-faces of | A™~! | with labels / — {k} can only lie on the (m —2)-
face spanned by e;, i € I — {k}. But the sum of orientations of these (m — 2)-simplices
equals +1 by induction assumption. Hence, there exists exactly one more completely
labelled simplex with positive orientation than with negative orientation. Note that the

proof is independent of the label & chosen for the proof. O

An illustration of the proof in the case m = 3 is depicted in Figure 3.2 for the
example in Figure 3.1. Consider a triangle A € | A%}, and fix the label k= 1. The
assigned orientation is +1 if the edge has labels 2,3 oriented in the same way as the
edge 2,3 in the original simplex, and —1 if it has labels 2,3 oriented in the opposite
way. All other edges have orientation 0. Now consider two triangles A and A’ that

share an edge. Then the edge in one triangle has the opposite orientation as the same
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Figure 3.2: The proof of Sperner’s Lemma for A2

edge in the adjacent simplex. The sum of orientations of the edges of a triangle is
either 41, —1 (if completely labelled) or O (if not completely labelled). But adding
up the sums of orientations of edges over all triangles in | A? | is the same as the sum
of orientations of edges on the boundary of | A? |, since the orientations of edges in
the interior of | A2 | caricel out. The Sperner condition ensures that this outer sum is
+1. Boundary edges with labels 2,3 can only lie on the (m — 2)-face of A2 spanned
by ez and e3. On this 1-face, the orientations add up to +1. Hence, there exists an odd
number of completely labelled simplices, one more with positive orientation than with

negative orientation. In Figure 3.2 these are depicted by bold edges.

So the Sperner condition, which is a restriction of the labelling. on the boundary,
determines the existence of a completely labélled simplex. An alternative proof of
Theorem 3.3 can be given by using degree theory from algebraic topology, described
next. This proves useful when comparing the Sperner situation with the labelled dual
construction X and when formalising a generalised version of Sperner’s Lemma that
applies to components of equilibfia in Chapter 5. For this, one translates the labelled
triangulation into a mapping between two standard (m — 1)-simplices. The mapping
also yields a division of A™~! into labelled regions such that one can apply the KKM

Lemma (see below).

Definition 3.4 Consider the standard (m — 1)-simplex A™. Then A™! is the (non-
disjoint) union of m convex regions A™1(i) with labels i € I as _follows: A™ (i) =

{x € A™ 1| x; = maxies x}. This division of ™! into convex regions is referred to
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as the canonical division and is denoted as A™~. Each point in p € A™ ! is assigned
the labels of the regions that contain p, i.e. L(p) = {i € I | p € A™1(i)}. The vertices
of A™! are the vertices of the sets A™1(i), i € I. The completely labelled point in

the centre of AT~ is denoted as v..

Essentially, the division of A”~! into labelled regions is same as the division of X =
A™ 1 into best reply regions in the m x m coordination game with identity matrices
as payoffs, and the vertices of AT~ ! are the vertices in X = A™~1. A depiction of the

canonical division is given in Figure 3.3.

Figure 3.3: The canonical division A1

The labelling now defines a mapping f5 from | A”~!| to A?~!. Consider a simplex
A € | A™| that is spanned by vertices v1,..., V. Each vertex has a label L(v;), and is
mapped to the vertex ey, in AT, This mapping preserves the labels of the vertices,
i.e. L(v) = L(f3(v)). Having defined the mapping on the vertices of A, it can be
linearly extended to a mapping from A by mapping a convex combination of vertices

on the convex combination of their images, i.e. f5(Z™,Awvi) = 37, LifS(vi).

It is easy to verify that /5 maps every k-face of a simplex in | A™~! | on some k-face
of A”~! In particular, if the k+ 1 vertices of a k-face have distinct labels iy, ..., ig+1,
it is mapped affinely on the k-face of A™~! that is spanned by unit vectors ¢;,. .., €, -
If the k+ 1 vertices of that face have labels i;,...,i; (with I < k+ 1, so some labels
might be duplicate), it is mapped on the (7 — 1)-face of A™~! that is spanned by unit
vectors e;,,...,&;. Since this also holds for the (m — 2)-faces that lie on the boundary

of | A™1|, the mapping > maps boundary on boundary, i.e.
S amte A ) — (AT aarh. (3.1
The mapping in (3.1) is referred to as the Sperner mapping, and induces a division
of | A™~!| into labelled regions | A™~1|(i). This is depicted in Figure 3.4. These

70



regions are the pre-images of the regions A™~!(i) in the canonical division A"~
This division of A™~! into labelled regions is denoted as | A™ ! |,. The subscript
“*” symbolizes a division into labelled regions (as in the case X2 ). The labels of a
point p € | A™~!|, are defined as L(p) = L(f(p)). The bold numbers and lines in
Figure 3.4 mark the regions | A”1|(i). In this representation, the completely labelled
points correspond to completely labelled simplices, since only the centre of completely

labelled simplices is mapped to v,.

Figure 3.4: A division of A™~! into labelled regions

Alternatively, let vy,...,v, be the vertices of some simplex A in | A™!| with
labels L(v;), for i € I. A point in A is given by its coordinates p with respect to
Vi,-..,Vm. Then, on each A, the mapping f5 can be described by the matrix 43(A) =
leL(v,) - --€L(v)] - This matrix is referred to as the Sperner matrix. So a point in A
with coordinates p is mapped to 45(A)p. The labels of a point with coordinates p are
given by L(p) = {k € I| (43(A) p)i = maxic;(45(A)p);}. So the division into labelled
regions is obtained in a similar way as the labelled dual construction is obtained via
A(v). The difference is that in the Sperner case the columns of the matrix 45(A) are
unit vectors, whereas in case of 4(v) the matrix consists of a mixture of payoff vectors

and unit vectors.

The Spemer condition determines the degree of the Sperner mapping f5. The
concept of degree is a useful tool that incorporates what was done “manually” in the
proof of Theorem 3.3. For the mapping f5, the degree counts the number of pre-
images of the completely labelled point v, € A”~! where each pre-image is counted
with its local degree. The local degree at a pre-image of v, equals the orientation of the

completely labelled simplex that contains the pre-image. For a mapping that permutes
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the vertices of a simplex, the degree equals the sign of the permutation. In Figure 3.4,

this is depicted by the oriented arc around completely labelled points.

Furthermore, the degree of a mapping is the same as the degree of the mapping re-
stricted to the boundary. The degree of f5 restricted to the boundary of A™~! counts,
for an arbitrary but fixed label k € I, the number of almost completely labelled points
on the boundary | A™~! |, with labels I — {k}, again counting each with its local de-
gree. The local degree of fS restricted to the boundary equals the orientation that was
assigned to (m — 2)-faces in the proof of Theorem 3.3. In particular, it is independent
of the label k chosen.

The two paragraphs above contain all that is needed in terms of degree theory for
the remainder of this work: A detailed account of the degree can e.g. be found in Dold

(1972, IV, 4 and 5).

Lemma 3.5 If the Sperner condition is satisfied then the degree of the Sperner map-
ping fSis+1.

Proof. The proof is by induction. For m =1 the case is trivial (and for m =2 it is
also easy to check). So suppose the statement is true for triangulations of the standard
(m — 2)-simplex. Fix a label k£ € I. In the division of A7! into labelled regions
consider the vertex v with labels I — {k} that lies on the (m — 2)-face spanned by
unit vectors ¢;, i € I — {k}. Now restrict /5 to the boundary. For f5 restricted to
the boundary, the pre-images of v can only lie on the (m — 2)-face of | A"~ | that
is spanned by e;, i € I — {k} (see also Figure 3.4). This is ensured by the Sperner
condition. But then the degree of f5 restricted to the boundary is +1 by induction
assumption, which equals the degree of f5. O

After translating the labelling into a mapping, Sperner’s Lemma is simply a conse-
quence of Lemma 3.5. The degree of 15 equals + 1. This degree is, as explained above,
the sum of local degrees at pre-images of v,. But the local degree at a pre-image of
V4 is the same as the orientation of the completely labelled simplex that contains the

pre-image.

The induced division | A™~!|, is a division to which one can apply the KKM

Lemma, a classical result by Knaster, Kuratowski and Mazurkiewicz (1929).
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Theorem 3.6 (KKM Lemma) LetC;, withicI={1,...,m}, be acollection of closed
subsets of A™ ! such that for all subsets I C I the face of A™! that is spanned by e;,
Jori € I, is contained in Uiy, C;. Then ;e Ci # 0.

Proof. The KKM Lemma is implied by Sperner’s Lemma. To see this assume that
Nic;Ci = 0. Now each subset C; is closed by assumption, and since it is bounded,
it is compact. So the set [L;c/C; is compact, and the mapping I1;c;C; — R defined
by (x1,...,%) = max;;||x; — x;|| takes a minimum € > 0. Therefore there exists an
g€ > 0 such that for all x € A™! the £-neighbourhood U(x) around x is such that
Ue(x) N C; = 0 for at least one set C;. Now choose a triangulation of A™~! such that
each simplex in the triangulatioﬁ has a diameter smaller than €. Label the vertices v
such that L(v) € {i | v € C;}. Then one has a triangulation of A™~! that fulfils the
Spemer condition but does not contain a completely labelled simplex. This violates

Spemer’s Lemma. L]

Conversely, it is easy to see that the KKM Lemma implies Sperner’s Lemma. As-
suming a triangulation of A™~! that fulfils the Sperner condition but does not contain a
completely labelled simplex, one obtains a division of A™~! via the Sperner mapping
13 that satisfies the assumptions of the KKM Lemma but does not contain a completely
labelled point. Thus Sperner’s Lemma is equivalent to the KKM Lemma (see also e.g.

Garcia and Zangwill (1981)).

There exists a well-known algorithm that finds a completely labelled simplex in
| A™~1| (or a completely labelled point in | A™~1],). This algorithm is described be-
low, and is referred to as the Sperner algorithm. First, “extend” | A™~! | by inscribing
it into a larger (m — 1)-simplex | A™~! | as shown in Figure 3.5 (see e.g. Scarf (1983)).
This gives a triangulation of the extended simplex that coincides with the triangulation
| A™=1| in the interior. Now label the vertices that span | A™~! |¢ such that there are
no completely labelled simplices except from those in | A™~!|. This is possible due to
the Sperner condition: Take the outer vertex of the extended structure that lies on the
outside of the face of | A1 | on which the vertices can only have labels i € 7 — {k}.
Labelling the outer vertex with ¥4 1 (mod m) ensures that no new completely labelled
simplices are created. Furthermore, it ensures that, for every set of labels 7 — { k}, there

exists exactly one (m — 2)-face on the boundary of | A™~! |€ that has labels 7 — {k}.
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Figure 3.5: An algorithm for finding completely labelled triangles

The algorithm can now be described as follows (see Figure 3.5). Start from the
outside of the extended construction (or at a completely labelled simplex once one has
been found). Choose a label k € I and flip over the (m — 2)-face that has labels 7 - {k}.
If the new simplex is not completely labelled, it must have exactly one other (m —2)-
face (other than the face one flipped over) with the same labels 7 — {k}. Then flip over
this (m — 2)-face into an adjacent simplex, and so on. Eventually, this algorithm yields
a completely labelled simplex in | A1 | (see e.g. Scarf (1983)). Simplices that are

connected through the algorithm have opposite orientation.

The Sperner algorithm translates easily into the topological setting. Let /5 denote
the Sperner mapping from the enlarged simplex | A™~! [ to A?~!. This yields a
division of the extended simplex into labelled regions in which the completely labelled
simplices correspond to pdints that are mapped to v, under f5. For every label £, there
exists exactly one point on the boundary with labels 7 — {k}. The path with labels
I — {k} that starts on the boundary leads to a completely labelled point.

To emphasise the relevance of Sperner’s Lemma in fixed point theory, this section
concludes by proving the familiar theorems that show that Sperner’s Lemma implies
Brouwer’s fixed point theorem and vice versa. This also allows one to show in the
next section that the existence of Nash equilibria in non-degenerate bimatrix games is

equivalent to Brouwer’s fixed point theorem.
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Figure 3.6: The Spemner algorithm as a path-following algorithm

Theorem 3.7 (Brouwer’s fixed point theorem) Every mapping f: A™ ! — Am~]
has a fixed point, i.e. Ix* € A" ! : f(x*) =x*.

Proof. Assume the contrary, i.e. for all x € A™~! one has f(x) # x. This defines a
mapping r: A" 1 — 9A™~! that retracts A™! on its boundary. Define r(x) as the
point on the boundary that is given by the intersection point between the line defined by
x and f(x) in direction of x and the boundary (see the left picture in Figure 3.7). Since
r is continuous and defined on a compact set, the mapping r is uniformly continuous.
Now take a triangulation of A™~! into sufficiently small simplices, say with diame-
ter smaller than some 8. Then label the vertices according to L(v) = L(r(v)), where
L(r(v)) is the label of the point »(v) in the canonical division. Then one has a labelling
that satisfies the Sperner condition (since  is the identity on the boundary) and is such
that no simplex is fully labelled if 3 is sufficiently small: Every d-neighbourhood of x
is mapped on some small g-neighbourhood of #(x), which does not contain more than

m — 1 distinct labels for small €. This contradicts Sperner’s Lemma. O

Brouwer’s fixed point theorem depends on the fact that A™~! cannot be retracted
to its boundary. If there exists a subdivision | A™~! | with a labelling that satisfies the
Sperner condition and does not contain a completely labelled simplex then the Sperner
mapping /5 is a mapping that retracts A™~! to its boundary. Assuming without loss of
generality there are no vertices except those of A™~! on the boundary (by inscribing

| A"=1| into an extended structure as above), the mapping f° is the identity on the
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boundary. Thus the “no-retraction” property implies Sperner’s Lemma. But Sperner’s

Lemma can also be deduced directly from Brouwer’s fixed point theorem.

Figure 3.7: Sperner’s Lemma implies Brouwer and vice versa

Proposition 3.8 Brouwer’s fixed point theorem implies Sperner’s Lemma and Sperner’s

Lemma implies Brouwer’s fixed point theorem.

Proof. The latter implication was shown in the proof of Theorem 3.7. So it remains to
show that Brouwer’s fixed point theorem implies Sperner’s Lemma. Suppose one has
a labelling that satisfies the Sperner condition and that does not contain a fully labelled
simplex. Then the Sperner mapping /3 is such that 5(x) # v, for all x € A™!. Then
define g(x) as the point on the boundary that is defined as the intersection of the line
between f5(x) and v, in direction of v. with the boundary (see the right picture in
Figure 3.7). Then g(x) is a mapping for which g(x) # x for x in the interior of A™~ 1,
Now suppose x lies on some k-face of A™~!. By construction of the Sperner mapping,
the point f3(x) lies on that k-face, and the line connecting f5(x) and v, does not go
elsewhere through this face. So g(x) # x for all points on the boundary, and hence g

has no fixed points. This contradicts Brouwer’s fixed point theorem. (W

3.2 The Application to Bimatrix Games

The division | A™~! |, into labelled regions induced by the labelled triangulation al-
ready shows strong similarities with the labelled dual construction X2, The division

of | A™=1], is induced by the Sperner matrix 45(A) as described on page 71, whereas
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the division of X is induced by the artificial payoff matrix 4(v). The difference, how-
ever, is that 45(A) only consists of unit vectors, whereas 4(v) consists of a mixture
of unit vectors representing unplayed strategies and columns of 4 representing pure
strategies of player II. So the division of a simplex in |[X2| into best reply regions is
in general more complex than the division of simplices in | A™~!|. Furthermore, the
triangulation |X2| is regular as it arises from the projection of a simplicial polytope.

The triangulation in the Sperner case can be any triangulation.

Despite the differences, there are still striking similarities between | A™ ! |, and
|X% |4, and this section shows how and under what circumstances one can translate
one situation into the other and vice versa. The equivalence of Brouwer’s fixed point
theorem and the existence of Nash equilibria in non-degenerate bimatrix games (Corol-

lary 3.13 below) also shows that these differences are not very deep.

Proposition 3.9 Let | A™1| be a labelled triangulation of the unit simplex with no
vertices on the boundary other than e;, for i € 1. Let the Sperner condition be satisfied,
so L(e;) = i. If the triangulation of N™~! is regular, then there exists a non-degenerate
m x n bimatrix game such that | A™ | = |X?| and | A"}, = X2 (after identifying
X2 with A™)),

Proof. Let | A™!| be a regular trianguiation. Consider the simplex X A that is spanned
by the vertices —mve;, for i € I and some positive constant ». Then A™! can be
identified with X2 via a linear mapping defined by e; — —mve;. This mapping induces
a regular triangulation | X2| of X2. The label of a vertex v € | X2| is defined by the

label of its pre-images.

This yields a labelled and regular triangulation of X A Since the triangulation is
regular, the triangulation is the projection of some simplicial polytope P2 asin 2.3,
with the first m vertices of P2 given by —mie;, i € I. The vertices of P2 satisfy the
conditions in Lemma 2.2 since the triangulation is regular. Also, it can be assumed that
0 € R™ lies in the interior of P2. If not, one could just move the vertices except for
—mve;, i € I, along the projection lines to obtain a combinatorially equivalent polytope
that contains 0 € R”. As described in Lemma 2.2, this yields the columns of a payoff

matrix B such that the best reply polytope P that arises from B is the polar of P2. This
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determines the payoffs for player II. Note that if there are n vertices in the interior of

| A™~!|, then the resulting game is of dimension m x n.

Finally, one has to determine the payoff matrix 4 for player 1. These payoffs are
determined by the labelling of the vertices. Each vertex v € | X2| represents a pure
strategy of player II. If the label of a vertex is i for some i € I, then define the payoff
for player I with respect to the pure strategy that is represented by vertex v as e;, the
unit vector with entry in row i. Then the induced polyhedral division into best reply
regions of the simplices in |X2| is the same as the division induced by the labelling
of the vertices in | A™!|. The payoff matrix B that induces |X%| is generic. So is
the payoff matrix 4 that only consists of unit vectors and induces the division into best

reply regions. O

Corollary 3.10 For a missing label k € I of player I, the L-H algorithm for the game
constructed in Proposition 3.9 follows the same path of simplices as the Sperner algo-

rithm.

Proof. This is an immediate consequence from the construction. The L-H algorithm
follows the path of almost completely labelled points in the labelled dual construction.
This corresponds to flipping over (m — 2)-faces in the triangulation which have m — 1
distinct labels. The labelled dual construction is identical with the division of A™~!
that is induced by the Sperner mapping /5. But the Sperner algorithm also flips over
those (m — 2)-faces in the triangulation that have m — | distinct labels. Hence the paths
of both algorithms are identical. U

Proposition 3.9 is used to conclude Brouwer’s fixed point theorem from the exis-
tence of Nash equilibria in bimatrix games. The idea of the proof is based on translat-
ing a division | A”™~! |, that arises from a Sperner labelling into a division X2 with a

triangulation | X2 that is regular and arises from a payoff matrix B.

For this, consider some triangulation of A™~!. Then add a vertex v. Suppose this
vertex is contained in some simplex A that is spanned by vertices vy, ...v,. Note that
it is allowed for v to lie on some k-face of A. Then consider the refinement of A that

is given by the simplices spanned by
{wvay-eosvmbs {(viovvas o ovmbs oo (Ve Vm—1,vE (3.2)
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If v lies on the k-face of two or more simplices, the refinement in (3.2) applies to each
simplex that contains v. An illustration for this is given on the left in Figure 3.8. First
the vertex v is added, then the vertex v/, and finally the vertex v". Note that some of
the simplices in (3.2) are not full-dimensional in case v lies on some k-face of A with

k < (m—2). In this case, they become faces of simplices in the triangulation.

A refinement of a given triangulation that is achieved by iteratively adding vertices
at a time to the triangulation is referred to as an iterated refinement. The following
lemma shows an iterated refinement can divide a simplex into arbitrarily small sim-
plices. The mesh of a triangulation is defined as the maximum diameter of a simplex

in the triangulation.

Lemma 3.11 For every € > 0 there exists an iterated refinement of A\~ such that the

mesh size of the triangulation is smaller than €.

Proof. Tt is shown that the barycentric subdivision is an iterated refinement. The
barycentric subdivision is known to produce simplices of arbitrarily small maximal

diameter (see e.g. Dold (1972, 111, 6)).

A depiction of the barycentric subdivision is given on the right in Figure 3.8. Take
a simplex in the triangulation. Then add the barycentre of the (m — 1)-simplex as a
vertex. Next, add the barycentres of its (m — 2)-faces as vertices, and continue with
the lower dimensional faces and their barycentres. Note that if one adds a vertex to a
k-face that is common to more than one simplex in the triangulation, then the vertex
is the barycentre of that k-face, i.e. the added vertex is the same for all simplices that

contain the £-face. This procedure yields the barycentric subdivision. O

Figure 3.8: An iterated refinement of a simplex and the barycentric subdivision

Lemma 3.12 Let | X 2| be a regular triangulation of X 2 with no vertices on the bound-

ary other than those that span X®. Then every iterated refinement of | X™| that does
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not add vertices to the boundary of X is a regular triangulation. In particular, if
|X2| arises from a payoff matrix B, then the refinement arises from an extended payoff

matrix that consists of the original columns of B and additional columns.

Proof. 1t is required that the added vertices do not lie on the boundary of X2 so that the
resulting triangulation can still be achieved as the dual construction for some bimatrix

game.

So let | X2| be a regular triangulation. Then consider the polytope P2 that yields
|X2| via projection. Now take a point v in the interior of | X2 |. This point is represented
by some point V¥ on the boundary of the polytope P2. Now take a point on the line
defined by v and V¥ that lies outside of P> but is still close P2. This is depicted in
Figure 3.9. Let this point be denoted by c.

Figure 3.9: An iterated refinement of | X2 |

Let P2 be defined as the convex hull of points as described in (2.3). Now consider
the polytope PcA that is given by

PCA =conv{c¢,C1,.--,Cn}-

Then ¢ becomes a new vertex of the polytope. Then the vertex ¢ refines the simplicial
structure of P2 in a way such that the projection of Pc‘/‘\ yields the iterated refinement
that is obtained by adding the point v as a vertex. The vertex v is the projection of the

vertex c.

For each added point, the polytope PcA satisfies the requirements of Lemma 2.2.
Hence, by Lemma 2.2, one can obtain a payoff matrix that induces the refinement. If

the original triangulation arises from a payoff matrix B, the refinement corresponds to
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a payoff matrix which contains the original columns of B and that has an extra column

for each added vertex. d

In Section 3.1 it was shown that Spemer’s Lemma is equivalent to Brouwer’s fixed
point theorem. This section shows how to construct non-degenerate bimatrix games
from regular labelled triangulations such that the dual construction has the same prop-
erties as the labelled triangulation. Combining these results, one obtains the following

result.

Corollary 3.13 The existence of a Nash equilibrium in a non-degenerate m x n bi-
matrix game implies Brouwer’s fixed point theorem in dimension m — 1. Since Nash
equilibria can, conversely, be described as fixed points, Brouwer’s fixed point theorem

is equivalent to the existence of Nash equilibria in non-degenerate bimatrix games.

Proof. Consider a mapping f: A"~ 1 — A™ 1 Assume f(x) #x forallx€ A™1. As
in the proof of Theorem 3.7, this yields a retraction r that is defined by the intersection
of the line between x and f(x) in direction of x with the boundary of A™~!. The
mapping r then divides A™! into labelled regions by considering the pre-images of
the labelled regions on dA™~!. In the proof of Theorem 3.7, this division is used to
create a labelled triangulation of A™~! such that no simplex is completely labelled.
Here, it is shown that one can create a regular labelled triangulation of A™ 1 with no
vertices added to the boundary of A™! such that no simplex is completely labelled.
Using Proposition 3.9 one can then create an m X n non-degenerate bimatrix game that

does not possess an equilibrium, leading to a contradiction.

Take the division of A™~! into labelled regions induced by the retraction r. Con-
struct iteratively a triangulation of A™~! such that its mesh is so small that no simplex
is completely labelled. As before, the label of a vertex is a label of a region that con-
tains the vertex. Note that the mesh of the triangulation can be constructed arbitrarily

small (see Lemma 3.11)

Let vi,...,vy be the set of vertices added to the triangulation, where the subscript
reflects the order in which the vertices are added. Let A C {1,...,N} denote the or-
dered subset for those vertices that were added to the boundary of A™~!, Now take

the vertex vy, for A € A, that is added last to the triangulation, and consider the iterated

81



refinement that is obtained by adding the set of vertices {vy,...,v~} — {v, } in canon-
ical order. Continuing with the second-to-last vertex that was added to the boundary
of A™! and so forth finally gives an iterated refinement with no vertices added to the
boundary of A™! that, by Lemma 3.12, is regular (see also Lemma 4.2 in the next
chapter).

It remains to show that the deletion of vertices on the boundary does not create
completely labelled simplices. Let v be a vertex that was added to the boundary. Then
v= YL mv; with g; > 0 and 1] g = 1, for some v,...,v;. Note that the retraction 7
is the identity on the boundary of A™~!. In particular, the labelling satisfies L(v) =
L(v;) for some i € {1,...,1}. So the face spanned by {vi,...,Vi-1,V,Vit1,--.,Vx} has
the same labels as the face spanned by {vi,...,vi=1,Vi,Vit1,...,Vk}. So a simplex
spanned by {vi,...,vi—1,V,Vit1,...,v} and some {Vks{,...,Vm} is fully labelled if
and only if the simplex spanned by {vi,...,Vi—1,Vi,Vit1,.-.,Ve} and {vgr1,...,Vm} is
fully labelled. Hence v can be removed without creating a completely labelled simplex

(see also Lemma 4.4 in the next chapter). O

McLennan and Tourky (2004) have recently shown how Kakutani’s fixed point
theorem can be proven by game theoretic concepts. They create games whose Nash
equilibria yield approximate fixed points, where the existence of the Nash equilibria is
ensured by the Lemke-Howson algorithm. The authors argue that “the Lemke-Howson
algorithm embodies, in algebraic form, the fixed point principle itself, and not merely
the existence theorem for finite two person games” (p. 3-4). The analysis above sup-

ports this view.

This section concludes with an observation that shows how to translate the labelled
dual construction X,,=A into a labelled triangulation that satisfies the Sperner condition

such that it reflects the combinatorial properties of X*A .

Proposition 3.14 Let X2 be the labelled dual construction for some (m x n)-bimatrix
game, and let | X2| denote the regular triangulation of X*. Then there exists a labelled
refinement of |X A[ such that a vertex in the refinement has label i if and only if it is
contained in the region with label i and such that a simplex is completely labelled if

and only if it contains a completely labelled point ws € X2,
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Proof. Take some simplex v>. The polyhedral division is generally not such that one
can just label the vertices of v with the respective best reply labels without refining
v2. Consider for example the polyhedral subdivisions depicted in Figure 3.10. In the
first case, just labelling the vertices would yield a labelling such that the simplex is not
completely labelled, although it contains a fully labelled point. In the second case, one
would obtain a completely labelled simplex, although it does not contain a completely

labelled point. Therefore, refinement is necessary.

Figure 3.10: A refinement of v

Now one can refine the mesh of |[X2|. This can, for example, be achieved by an
iterated refinement. If the refinement is sufficiently smﬁll, a simplex contains a fully
labelled point if and only if all its vertices lie in distinct best reply regions. Labelling
the vertices according to the best reply region yields the desired labelled refinement.

a

A possible refinement for the game in Example 2.3 is depicted in Figure 3.11. In
this case, it is sufficient to add a vertex to the edge between vertices representing strate-

gies 4 and 7. The resulting refinement fulfils the requirements of Proposition 3.14.

Figure 3.11: A labelled triangulation for the game in Example 2.3

1
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3.3 A Topological Interpretation of the Dual Construc-

tion

In the Sperner case above, a mapping f5 characterises the completely. labetled sim-
plices in the sense that a simplex is completely labelled if and only if it contains a
point that is mapped to the completely labelled point v, € A”~!. This mapping can
be described by the Sperner matrix 45(A\) for each simplex A in the triangulation.
The aim of this section is to construct a similar mapping f* for X2 via the artificial
payoff matrix A(v). This mapping is used in extending the dual construction to outside
option equilibrium components and when giving a new characterisation of index +1
equilibria.

Take the payoff matrix 4 for player I. First the columns 4; of 4, for j € J, are
normalised as follows. Without loss of generality it can be assumed that all entries
of A; are greater than zero. Otherwise one can add a positive constant to all payoffs
without affecting the best reply regions and hence the equilibria of the game. Let
|4;| = I, 4;;, ie. |4;| denotes the sum of entries in column 4;. By assumption
|4j| # 0. Let Apax = maxjcj|4;|. Add the positive constant é@i—l to column j.
Adding a positive constant to a column of player I’s payoff matrix also leaves the
equilibria and best reply regions invariant. In the modified payoff matrix, the entries in
each column add up to A4,,4,. Now divide all payoffs by A,,4,. This, again, leaves the
Nash equilibria invariant. Hence one obtains an equivalent payoff matrix, also denoted

as 4, in which all entries are positive and in which the column entries add up to +1.

Now consider a simplex v2 in |X2[. Let w, be a point in v2. The point w; can be
described by convex coordinates with respect to the vertices of v*. So for a point w;
in v2 that is given by its coordinates with respect to the vertices v2 one can simply

define f;(w;) = A(v)ws. Then f,(w) € A™ ! since
[A(v)w| = Z(A(v)w),- = ZZA(V),-jwj = ZZA(V)UWj = ij ZA(V)U- = ij =1.
i i j i oo J

A depiction of £, is given in Figure 3.12. It shows a simplex v spanned by vertices
v1,v2 and v3 and its image in A~!. The columns of 4(v) are given by 4,4, and 4.
By construction, the columns 4; (i = 1,2, 3) are elements of A™~!. So the image of f,

is the subset of A~ that is spanned by the payoff vectors 41,45 and 43 in A? L. In
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particular, the image is some simplex that lies in A™~! (this simplex is not necessarily
full dimensional, even for non-degenerate payoff vectors). The division of v® into
best reply regions is an affine transformation of the division of the simplex spanned by

A1,4, and 43, whose division is that induced by the division of A}~ L

Figure 3.12: The mapping f,

If v; and v; share a common face, the mappings f,, and f;, are identical on that

face. Hence, by defining f piecewise on each simplex V2 as f;, one obtains a mapping

[ (XB,0x%) — (A7 04T, (3.3)

Note that the mapping on the boundary of X2 is given by the unit vectors as com-
ponents of 4(v), so f maps boundary on boundary. Furthermore, by construction, the
labels of a point w; are the same as the labels of its image. The mapping f in (3.3) is
referred to as the payoff mapping, since the value of f is the expected payoff of player I
under a strategy profile w; of player II (including the slack variables). A depiction of
the underlying geometry is given in Figure 3.13. It shows that the simplex marked in
dashed lines is mapped affinely on a simplex in A7, also described by dashed lines.

The vertices of the simplex in A”~! are the images of the vertices in |X2|.

This is a crucial difference to the Sperner case. There, the images of simplices are
either the simplex A”~! itself (if the simplex is completely labelled), or the images
are faces of A™~! (if the simplex is not completely labelled). In the dual construction,
the images of simplices v2 are simplices which are contained in A”~!. Nevertheless,
the simplex v2 contains a completely labelled point if and only if its image under f

contains the completely labelled point v.,.

Note that X = A" 1. So, so far, f is a mapping f: X — X. To define the

index via a mapping, it is more convenient to have a mapping X,~ —+ X A where X2 is
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Figure 3.13: The payoff mapping f

divided into best reply regions as in P*A, i.e. via the unit matrix that assigns each vertex
—mve; of X2 the artificial payoff e;. The simplices A™ ! and X2 are homeomorphic
via the mapping Id2 that is described by the matrix —mv - [d, where Id is the m x m
identity matrix. In particular, the labels of a point w € A™! are the same as the labels
of its image Id®(w). This is due to the fact that the vertex in A™~! with label i is

mapped to the vertex of X2 with label .

Using 1d2, one defines the dual payoff mapping f D as the composition of 1d> and
f,ie. f=1d®of. This yields

fB (XB,0X5) — (X5,0x%) (3.4)

A depiction of /2 is given in 3.14. The only difference to the payoff mapping f is that

it maps X2 on X2 instead of A1,

The difference between X2 and A"~ ! is that they have the same orientation rela-
tive to projection point v, = (—m¥,...,~m?) for odd m, and opposite orientation for
even m. This is depicted in Figure 3.15, and can be verified using an inductive argu-

ment.

For notational convenience, let v, denote the completely labelled point in X A (as
it does in A™!). Note that both completely labelled points in X> and A™~! have
coordinates (L, ..., L) with respect to the vertices of X and A~ So the equilibria
of a game are represented by exactly those points w; that are mapped to v, under the

mapping f* 2 Also, the index can be described by the local degree of f* A.}
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Figure 3.14: The dual payoff mapping /2

Figure 3.15: The orientation of the X2 and A™~!

-
~——

3

Lemma 3.15 Let wy € (f2)"(v.). Then the index of ws as in Definition 2.9 is the

same as the local degree of f° D at w.

Proof. The index in Definition 2.9 is defined by a permutation of the labels 7 of a sim-
plex wsA, which corresponds to a permutation of vertices. For a mapping that permutes
the vertices of a simplex, the degree equals the sign of the permutation (see e.g. Dold
(1972, 1V, 4, Example 4.3)). O

Using the mapping f* 4 and degree theory, it follows that the sum of indices over
the equilibria of a game equals +1, so the number of equilibria is odd. This can be seen
as follows. The degree of the mapping f* has similar properties to the degree of the
Sperner mapping f> described on page 72. Similar to the Sperner mapping, the degree

of the mapping 2 counts the number of completely labelled points in x2 , where each
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point is counted with its local degree. This local degree is, by Lemma 3.15, the same

as the index.

Furthermore, the degree of the mapping f2 is the same as the degree of /2 re-
stricted to the boundary of X2. Similar to the Sperner mapping, the degree of f2
restricted to the boundary of Xf counts, for a fixed label k € /, the number of almost
completely labelled points on the boundary of X2 with labels I — {k}, counted by their
local orientation. The orientation on the boundary is induced by the orientation of the
boundary of X2. This number is independent of k. For each k € I, there is exactly one
point on the boundary of X2 with labels T — {k}. The local orientation of this point
is +1 as it is contained in the face of X2 spanned by —mve;, i € I - {k}. Alternatively,
one sees that f2 restricted to the boundary is the identity, and hence its degree is +1
(for a detailed account of degree theory see e.g. Dold (1972) as cited on p. 72).
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Chapter 4

A Strategic Characterisation of the

Index

This chapter provides a new characterisation of the index for equilibria in
non-degenerate bimatrix games in terms of a strategic property. It is shown that an
equilibrium has index +1 ifand only if one can add strategies with new payofls to the

game such that the equilibrium is the unique equilibrium of the extended game.

Suppose one can add strategies to a game such that an equilibrium remains the
unique equilibrium of the extended game. Since the indices of equilibria of a game
have to add up to +1, it follows that the equilibrium must have index +1 in the
extended game. But the index only depends on the strategies played with positive
probability, so it follows that the index of the equilibrium in the original game also
equals +1. Hence, if one can extend the game such that the equilibrium becomes the
unique equilibrium of the extended game, the index of that equilibrium must equal +1.
Here it is shown that the converse is also true, i.e. if an equilibrium has index +1 then
one can add strategies such that thé equilibrium becomes the unique equilibrium of the
extended game. This yields a new characterisation of the index purely in terms of a

strategic property.

The structure of this chapter is as follows. Section 4.1 shows the result for the
special case of pure strategy equilibria (Lemma 4.1) and motivates the general result
by examining particular examples. Section 4.2 provides some technicalities that are

also needed in Chapter 6. Section 4.3 shows that an equilibrium in a non-degenerate
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bimatrix game has index +1 if and only if one can add strategies to the game such that
the equilibrium is the unique equilibrium of the extended game (Theorem 4.6). It turns

out to be sufficient to just add strategies for one player.

4.1 A Geometric Interpretation

The properties of the index imply that the index of an equilibrium is +1 if one can add
strategies such that the equilibrium becomes the unique equilibrium in the extended
game. The indices of equilibria of a game have to add up to +1. So the index of a
unique equilibrium in an extended game equais +1. But the index does only depend
on strategies played with posiﬁve probability, and hence the index of the equilibrium

in the original game equals +1.

Pure strategy equilibria in non-degenerate bimatrix games have index +1. For
these it is easy to see that they can be made the unique equilibrium in some extended

game.

Lemma 4.1 Let G be an m x n non-degenerate bimatrix game. Then every pure strat-

egy equilibrium of the game is the unique equilibrium in some extended game.

Proof. Let G be represented by m x n payoff matrices 4 and B. Without loss of general-
ity (otherwise one can reorder the strategies) assume that the pure strategy equilibrium
is given by player I playing strategy 1 and player II playing strategy m+ 1 (i.e. both
play their first strategy). Then add strategy with label m 4 n + 1 for player II with
payoff column, for small € > 0,
1,by1 —¢€
0,maxj=1,. . nb2; +€ @
0,max;=1, . ,bm;+¢€
Then strategy m + n -+ 1 strictly dominates all other strategies except for strategy m + 1
of player II. Note that b1 > by, forall j € J, for j # 1. So strategies j =m+2,...,m+
n can be deleted. Thereafter, strategy 1 strictly dominates all other strategies 2,...,m
of player L. By iterated elimination of strictly dominated strategies, only the strategy

pair (1,m+ 1) remains. ‘ 0
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Adding strategies as in Lemma 4.1 alters the dual construction for the game. Take,

for example, game H~ as in (1.13). The game is given by

13,13 7,12 1,14
H =|12,7 8,8 2,1
14,1 1,2 1,1
This game has three equilibria. The mixed equilibrium with index —1 in which both
players play (%, %, 0), the pure strategy equilibrium with index +1 in which both play-
ers play (0,1,0), and the completely mixed equilibrium with index +1 in which both
players play (%, Tli’ %) The labelled dual construction for the game is depicted on the

left in Figure 4.1.

Figure 4.1: An index +1 equilibrium in 4~

1 2/ 1
5 ~T
. ) . /5

Now suppose the game is extended in the following way, so that only the pure

strategy equilibrium remains.

13,13 7,12 1,14 0,20

A =]12,7 88 2,1 10,7}

14,1 1,2 1,1 0,20
The added strategy dominates strategies 4 and 6 of player II. So strategies 4 and 6 can
be deleted. Then strategy 2 of player [ is the best reply to both strategies 5 and 7, and
the best reply to strategy 2 is 5. Thus the pure strategy equilibrium in which player I
plays strategy 2 and player II plays strategy 5 (with payoff 8 for both players) is the

unique equilibrium of the extended game.

Adding strategies changes the dual construction for the game. Consider the labelled

dual construction for the extension of the game (1.13), which is depicted on the right
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in Figure 4.1. The paths that start from the completely labelled point that represents
the pure strategy equilibrium lead directly to the boundary. In the original game some
paths in the dual construction lead to other equilibria of the game as shown on the left
in Figure 4.1. So, in order to make an index +1 equilibrium the unique equilibrium
of an extended game, the paths that start in the fully labelled point representing the
equilibrium have to be “re-routed” such that they connect directly with the boundary
of the dual construction, also not creating other equilibria (e.g. pairs of inaccessible

equilibria).

The idea of “re-routing” the paths is the main idea in the proof of Theorem 4.6
below. To give the reader an idea of the process, the procedure is first applied to ex-
amples before it is technically specified in the proof of Theorem 4.6. Take for example
the following game.

L3 0,2 1,0
0,0 1,2 0,3|

4.2)

Game (4.2) has 3 equilibria. The pure strategy equilibrium (1,0),(1,0,0) with in-
dex +1, the mixed equilibrium (3,1),(5,3,0) with index —1, and the mixed equilib-
rium (},%),(0,4,1) with index +1. The dual construction for this game is given on

the left in Flgure 4.2 (the dots represent the vertices of the simplices vR).

Figure 4.2: An index +1 equilibrium for m = 2

6 4 5
X 2 3, 4 , 5 1 > | | 1
A N _!-_ T_ — | 1
X, 297 2 2 i Yy 2 T2 1

Now suppose one wants to make the equilibrium (3 , 3) (0, 2, 2) the unique equi-
librium of an extended game. The dual construction shows how to achieve this. Add a
strategy 6 for player II, covering the best reply region of strategy 3 and a small part of
the best reply region of strategy 4. This can, for example, be achieved by choosing the

payoff vector () for player IL The new division of X and its dual are depicted on the
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right in Figure 4.2. Then choose strategy 2 to be the best reply to the new strategy 6
by, for example, choosing the payoff vector (§) for player L. Then (4,2),(0,1,1,0) is
the unique equilibrium of the extended game

L3 0,2 1,0 0,4

0,0 1,2 0,3 1,0

4.3)

The orientation around an index +1 equilibrium in the labelled dual construction
agrees with the orientation of X2. This allows one to “re-label” the regions in the
dual construction by adding strategies such that the index +1 equilibrium remains the
unique equilibrium in the extended game. For any 2 x n game the procedure is very
straightforward and easy. It can easily be verified that one only has to add at most two
strategies for player II to make any index +1 equilibrium the unique equilibrium in an

extended game.

In higher dimensions, the process of eliminating the other equilibria without cre-
ating new equilibria is more advanced. Consider, for example, the following 3 x 3
coordination game.

10,10 0,0 0,0

0,0 10,10 0,0 |- 44

0,0 0,0 10,10
Game (4.4) is the same as the game H> given by (1.16). All three pure strategy equi-
libria have index +1, the three mixed equilibria with two strategies as support have
index —1, and the completely mixed equilibrium has index +1 again. Making a pure
strategy equilibrium of (4.4) the unique equilibrium in an extended game is straight-
forward (see Lemma 4.1). So suppose one wants to make the completely mixed equi-
librium the unique equilibrium of some extended game. In order to do so, one first
has to cover the old equilibria with new strategies. This can be done, for example, by
adding strategies with labels 7, 8 and 9 for player II as shown in Figure 4.3. In a neigh-
bourhood of the vertex v = (%, %, %) € X, the structure of the best reply regions remains
~ unchanged. This implies that the simplex v containing the completely labelled point
remains unaffected by the added strategies. This first step determines the payoffs of
player II for the added strategies and gives a triangulation |X2| in which the original

simplex v2 and its division are as in the original game.
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Figure 4.3: A unique index +1 equilibrium in an extension of the coordination game

Second, one has to choose the appropriate payoffs for player I. The right of Fig-
ure 4.3 shows how the paths starting in the corresponding dual of the equilibrium can
be “re-routed”. So the payoffs for player [ are chosen in such a way that the almost
completely labelled points on the boundary of v are connected with the respective
almost completely labelled points on the boundary of the dual. The game that corre-

sponds with the labelled dual on the right in Figure 4.3 is given by

10,10 0,0 0,0 0,11 10,5 0,—-10
0,0 10,10 0,0 0,-10 0,11 10,5 7}- 4.5)
0,0 00 10,10 10,5 0,-10 0,11

So, in order to prove that an index +1 is the unique equilibrium in some extended
game, one essentia_llly has to show two things. First, that the paths can in fact be re-
routed. This is ensured by the index +1 condition. Second, one has to show that these
paths can actually be created by extending the game. This is to say that in the labelled
dual construction of the extended game the paths starting in the equilibrium connect
directly with the boundary. Adding columns to the payoff matrix B refines the mesh of
|X2|, and the payoffs for player I determine the paths.

4.2 Some Technical Requisites

The proof of Theorem 4.6 below is based on the approximation of a homotopy that
“re-routes” the paths. In order to show that the approximation of the homotopy can

be achieved by adding strategies, this section provides some technical results that are
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required in the proof of Theorem 4.6. These technical results are also used in the

characterisation of index zero outside option equilibrium components in Chapter 6.

Let A be an (m — 1)-simplex in a regular triangulation | A" ! | of A”~! with no
vertices on the boundary of A™-! other than e;, i € I. Now consider an iterated refine-
ment of | A™~!| — A that is achieved by subsequently adding vertices to | A™ 1| — A,
allowing to add vertices on the boundary of | A”~!| or A. Let the added vertices be
denoted as vy, ..., vy, where the subscript denotes the order in which the vertices were
added. Now add the simplex A. The resulting object is a division of | A™~!| into
simplices that is not a triangulation of | A™~!|. Such a division of | A™~!} is referred
1o as an iterated pseudo refinement. An illustration of an iterated pseudo refinement is

given in Figure 4.4.

Figure 4.4: An iterated pseudo refinement

Lemma 4.2 Given an iterated pseudo refinement of A™ ', one can subsequently delete
those vertices that were added to the boundary of /A and A™ ! in order to obtain a

regular refinement of | A™! |,

Proof. Let vy,...,vy be the set of vertices added to the triangulation, where the sub-
script reflects the order in which the vertices are added. Let A C {1,...,N} denote the
ordered subset for those vertices that were added to the boundary of A or A™~!. Now
take the vertex vy, for A € A, that is added last to the triangulation, and consider the iter-
ated pseudo refinement that is obtained by adding the set of vertices {vy, ..., vy} —{w\}
in canonical order. Continuing with the second last vertex that was added to the bound-
ary of A or A™"! and so forth, finally gives an iterated pseudo refinement with no
vertices added to the boundary of A or A™~1. Hence, the refinement achieved by
adding the set of vertices {vi,...,vw} — {v; | A € A} (in canonical order) is regular by
Lemma 3.12. O
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Figure 4.5: The regular refinement obtained from the iterated pseudo refinement

The refinement that is obtained by the iterated pseudo refinement in Figure 4.4 is
depicted in Figure 4.5. The result of Lemma 4.2 extends in a straightforward way
to collections of simplices |J; A; in a triangulation | A™!| and iterated pseudo re-
finements that are obtained by refining | A™~!| — ; Ai. So every iterated pseudo
refinement yields a regular refinement by omitting those vertices that were added to

the boundary of |J; &; or A™1,

Now consider an iterated pseudo refinement of | X2| —v2. Vertices that were added
to the boundary of X2 or v* are referred to as pseudo vertices. Assign a payoff vector
Ay, to each added vertex v;. If the added vertex is a pseudo vertex, then the payoff
vector is referred to as a pseudo payoff vector. Each pseudo vertex v can be described
as a convex combination of m — 1 vertices vy,...,v,—1 on the boundary of X" D or the

boundary of v&, i.e. ¥ = ;"=*11/1;v,~, with 174 =1 and z; > 0.
Definition 4.3 The pseudo payoffs are called consistent if 4; = ):;"z']l widy,.

For each simplex in the pseudo refinement of |X2| — 2, the payoff vectors and
pseudo payoff vectors induce a division into labelled regions as described by (2.7),
where the columns of the payoff matrix consist of the payoff vectors and pseudo payoff
vectors that are assigned to the vertices of the simplex. This division is referred to as a

pseudo division.

Now consider the regular refinement induced by an iterated pseudo refinement. The
following lemma is similar to what was used in the proof of Corollary 3.13. That is, if
the pseudo vectors have consistent payoffs, then the induced division of |.X’ A —v2 into
labelled regions is unaffected by deleting the pseudo vectors from the iterated pseudo

refinement.
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Lemma 4.4 If the pseudo payoffs are consistent, then the pseudo division of | X2 | —v®
into labelled regions is identical with the division of |X®| —v* into labelled regions

that is obtained by deleting the pseudo vertices from the iterated pseudo refinement.

Proof. The proof is illustrated in Figure 4.6. The consistency of the payoff ensures
that the division of a larger simplex is given by the division of the smaller simplices.
In the figure, the payoff for v is consistent with the payoffs for v; and v,. Then the
union of the simplices spanned by {v1,v2,v} and {v;,v3,v} yields the same division as

the simplex spanned by {v;,vs,v3}.

Figure 4.6: Pseudo vertices with consistent payoffs

Y hé)
L2 /%\

V,- & g Vz Vv,
Let v denote the simplex that was last added to the face of v® or X2. Thenv =

1

Z{":l Uivi, with 1,E,u =1 and g; > 0, where the vertices v; span the (kK — 1)-simplex on
the (m — 2)-face that contains v. These vertices might be original vertices or pseudo
vertices. In any case, one has 4, = 3¥_ u;4,.. Now delete v from the iterated pseudo
refinement. Consider a simplex A spanned by vi,...,v; and some v 1,...Vy,. The

division of A is induced by the payoff vectors 4,,,...,4,,.

The simplex A is the union of smaller simplices for which the vertex v replaces one
of the vertices v;, 1 <i< k, of A. Since the payoffs are consistent, the induced division
of A into labelled regions is also the same as the union of the smaller simplices divided

into labelled regions. O

Finally, one needs a topological lemma, which says that the payoff mapping f (as
in (3.3)) restricted to the boundary of v can be deformed into a mapping that maps
the boundary of v on the boundary of AT~

Lemma 4.5 Let v2 be a simplex in |X2|. Then there exists a homotopy h that deforms

f (or fB) restricted to the boundary of v2 into a mapping that maps the boundary
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of V2 on the boundary of A" (or the boundary of X2). The homotopy is such that
h(x,t) # ve V(x,t) € > x [0, 1].

Proof. Take a simplex v* in |X2|, and let 9™ denote its boundary. If the image of v2
contains v,, then v, must lie in the interior of £(+*). If the image does not contain v,,
then v, must have a positive distance from f (vA). This is due to the non-degeneracy

assumption.

Then one can retract the image of the boundary f(9v?) as follows: Let x be a
point on f (avA) Then take the line between x and v, in direction of x, and define
the retraction r(x) as the point on the boundary of A”~! in which the line intersects
with the boundary of A7~!. Algebraically, the point r(x) is the normalised form of
the vector x — (min;esx;) - 1,,. The retraction r(x) can be described as a homotopy
h: ov® x[0,1] = A" ! given by h(x,t) =t - r(x) + (1 — 1) - x. Note that h(x,t) #
va V (x,) € 9v® x [0,1], since x and r(x) have the same labels.

A deformation of f restricted to v yields a deformation of f2 restricted to Hv2,
since /2 =1d%o f. O

Lemma 4.2 and 4.4 are needed in the proof of Theorem 4.6 below. In the proof,
a certain mapping is approximated. For this one needs to construct a triangulation
with a sufficiently small mesh. This can only be achieved by adding vertices to certain
boundary faces. However, if the payoffs are consistent, then these vertices can be
omitted, as it does not change the combinatorial division into best reply regions. In
particular, one obtains a regular triangulation and a division into labelled regions that
can be obtained as the dual construction for some bimatrix game. Lemma 4.5 is needed

to construct the mapping that is approximated.

4.3 A Game Theoretic Characterisation of the Index

This section proves the main result of this chapter, i.e. an equilibrium in a game has
index +1 if and only if one can add strategies to the game such that the equilibrium
becomes the unique equilibrium in the extended game. The 1dea of the proof is to “re-

route” the paths as described earlier. Say (v, w) is an equilibrium. In the labelled dual
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construction, this equilibrium is represented by some wy € v2. In particular, if the in-
dex of the equilibrium is +1, the dual payoff mapping % restricted to the boundary of
v® has also degree +1. By a well-known result from algebraic topology, f° D restricted
to the boundary of v* and f2 restricted to the boundary of the X°* are homotopic
via some homotopy 4. This allows one to “re-route” the paths starting in w; so as to

connect them directly with the boundary without creating new equilibria.

Theorem 4.6 Let G be some non-degenerate bimatrix game. Let (v,w) € X X Y be an
equilibrium of the game. Then (v,w) has index +1 if and only if one can add finitely
many strategies such that (v,w) is the unique equilibrium of the extended game. It

suffices to add strategies for only one player.

Proof. Let (vyw) € X x Y be an equilibrium of the game. First, all unplayed strategies
of player II can be eliminated by new strategies that dominate them. If pure strategy
7 € J is not played in equilibrium, one can add a pure strategy j/ with payoff B; +¢,
where € € R” is a vector with small positive entries. This replaces the original vertex
in |X®| representing strategy j with a vertex representing the new strategy /. In the
dual polytope P2, this corresponds to adding a vertex to the boundary of P2 that lies
slightly above the original vertex. This yields the same regular triangulation |X*| as

before.

Now consider the boundary of v*. Without loss of generality assume that all pay-
offs for player I are positive and that the payoffs in the columns of 4 add up to 1, i.e.
|4j| = 1 for j € J as assumed in the construction of f A Let (v,w) be an equilibrium

and consider the restriction of /2 to v2. Denote this restriction as fﬁA

The degree of the equilibrium is given by the local degree of fl‘f}A around fhe com-
pletely labelled point wg, where w; denotes the lifted point of w. The local degree is
the same as the degree of jﬁA restricted to the boundary of V2, denoted as fﬁ La» and
has degree +1. The degree of f 2 restricted to the boundary of X, denoted as f|§XA’
is also +1. Considering the payoff mapping f instead of the dual payoff mapping, this
implies that fj3,1 and fi5xa are homotopic (see e.g. Spanier (1966, 7.5.7)). First retract
fjave to the boundary of AT as shown in Lemma 4.5, then deform it into fjya along

dA™ 1 The construction is such that no point along the homotopy is mapped on v.
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Denote this homotopy as 4. The homotopy /4 is givenas 2 : 9 A™ ! x[0,1] = A7~
such that 4(-,0) = fi,a and h(-,1) = fiaya. If v shares a common -face with X2
(i.e. not all strategies of player I are played with positive probability in v), then the
mappings f]avA and fj3xa agree on that face by construction, and it can be assumed

that A(x,-) = fi5,a (x) for points x on that face.

But this gives a mapping, also denoted as 4, on the space X2 — v that agrees with

S on the boundaries of X and v and whose image does not contain v,. So

hi X5 A — AP (4.6)

This yields a division of X —* into labelled regions such that no point is com-
pletely labelled. The regions are defined as the pre-images of the regions in A”~!. The
division of v** is as before. This is depicted in Figure 4.7 for the equilibrium (vi,w;)

in the game of Example 2.3.

Figure 4.7: A homotopy

Now consider the triangulation [X2|, and consider an iterated pseudo refinement of
|X2| —v2. This iterated pseudo refinement can be assumed to be such that no simplex
has a diameter more than some & > 0 (see Lemma 3.11). Now assign payoffs for
player I to the added vertices according to 4, = hA(v). If the simplices are small, their
images in A”~! are also small simplices ( is uniformly continuous), and no simplex

contains v,. This is depicted in Figure 4.8.

The pseudo payoffs for vertices that were added to the boundaries of X and v
are consistent with the payoffs for the vertices of X A and v2 . Therefore, these VCﬁiCCS
can safely be omitted without creating fully labelled points according to Lemma 4.4,

and the resulting refinement is regular by Lemma 4.2. This refinement is a regular
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triangulation and can be achieved by a payoff matrix where strategies for player II are
added (Lemma 3.12). The refinement determines the payoffs for player II. The payoffs
for player 1 are given by the homotopy 4. O

Figure 4.8: An approximation of the homotopy

In the proof of Theorem 4.6, the simplices in the refinement are chosen to be suffi-
ciently small since the homotopy # is not further specified. It is likely that, in the case
of the payoff mapping f, one can easily describe the deformation of f restricted to the
boundary, especially if considering the combinatorial aspects of the probiem (instead
of describing it as a topological problem). Furthermore, one is not necessarily bound
to refining [X2|, but can actually create a new regular triangulation that leaves the sim-
plex v® unaffected. So, instead of adding sufficiently many strategies, it is likely that

“a few” added strategies are enough.

As for the equilibrium (vq,w;) of the game in Example 2.3, it is sufficient to just
add one strategy instead of many as suggested by Figure 4.8. The game described

below only has the equilibrium (v, w1) as a unique equilibrium.

0,0 10,10 0,0 10,—10 0,11
10,0 0,0 0,10 0,8 1,1
8,10 0,0 10,0 88 Ol
Figure 4.9 depicts the corresponding labelled dual for the extended game.

So the natural question arises about the minimal number of strategies one needs to
add in order to make an equilibrium the unique equilibrium of an extended game. In

the 2 x n player case, it is sufficient to just add two strategies for player II to make any
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Figure 4.9: The labelled dual for an extension of the game in Example 2.3

index +1 equilibrium the unique equilibrium of an extended game. Whether adding m

or 2m strategies suffices in higher dimensions is unclear.

Remark 4.7 Instead of considering the homotopy h on X —v*, one can actually
define it on the “cylinder” that is obtained by deleting X© and v® from the surface of

the polar polytope P2 that corresponds to the game.

Hofbauer (2000) defines two pairs (G, (v,w)), (G, (V,w')), where (v,w) is an equi-
librium of G, and (V/,w/) is an equilibrium of G, equivalent if the game G restricted
to the support of (v,w) is the same as the game G’ restricted to the support of (/,w').
He calls an equilibrium (v, w) of a game G sustainable if there exists an equivalent pair
(G, (V,w)) such that (/,w) is the unique equilibrium of G'. He conjectures that an
equilibrium has index +1 if and only if it is sustainable. The results from above prove

this conjecture in the case of non-degenerate bimatrix game.
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Chapter 5

Outside Option Equilibrium

Components

The aim of this chapter is to extend the dual construction to outside option equilibrium
components. This yields a new interpretation of the index for outside option equilib-
rium components that is very similar to a generalisation of Spemer’s Lemma which
is in the literature referred to as the Index Lemma (see e.g. Henle (1994), p. 47). The
Index Lemma applies to more general boundary conditions, and states that the sum of
orientations of completely labelled simplices can be deduced from the boundary con-
dition. This new approach allows a new characterisation of index zero outside option

equilibrium components in bimatrix games, which is the subject of Chapter 6.

An outside option can be thought of as an initial move that a player can make
which terminates further play, and gives a constant payoff to both players. If the player
has not chosen his outside option, the original game is played. Take for example the
game described in (1.15) in Chapter 1. A representation of the game G? is given in
Figure 5.1, where the bottom left entries in a cell are the payoff for player I and the
top right entries in a cell are the payoffs for player II. This game has two equilibrium
components: The single equilibrium of A~ with payoff 10 to both players, and the
outside option equilibrium component with payoff 9 for player II and payoff 0 for

player L.

In terms of forward induction the only reasonable equilibrium is that with pay-

off 10. Not playing Out in the first place is only reasonable if player II plays the equi-
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Figure 5.1: A representation of an outside option game

13 12 14

13 7 1 9
7 8 1 0

12 8 2
1 2 1

14 It 1

librium strategy that yields payoff 10 in H~. Player I knows this and plays accordingly
once the game H™ is entered. The notion of forward induction is a concept that applies
to extensive form games (van Damme (1989)). Other authors, in particular Kohlberg
and Mertens (1986), argue that games should be analysed in their normal form and that
solution concepts should be independent of the representation of the game. The index
of an equilibrium component is an invariant, i.e. the same in all equivalent games and
hence independent of the representation of the game. Therefore, understanding the na-
ture of the index for outside option equilibrium components can help in understanding
which solution concepts might capture the notion of forward induction (see e.g. Hauk
and Hurkens (2002)). In Chapter 6, it is shown that an outside option equilibrium com-
ponent is hyperessential if and only if it has non-zero index. It follows that an outside
option outcome cannot be hyperessential if the forward induction equilibrium is a pure
strategy equilibrium that is strict (that is, all unplayed pure strategies have a payoff that
is strictly lower than the equilibrium payoff).

The structure of this chapter is as follows. Section 5.1 reviews a generalisation
of Sperner’s Lemma which is sometimes referred to as the Index Lemma (Proposi-
tion 5.2). In Section 5.2 it is shown how this relates to outside option equilibrium
components (Corollary 5.4). Section 5.3 discusses potential generalisations and the
apparent limitations of the dualisation method regarding general components of equi-

libnia.
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3.1 A Generalised Version of Sperner’s Lemma

In Sperner’s Lemma, the existence of a completely labelled simplex is ensured by the
Sperner condition. Moreover, accounting for the orientation, the boundary condition
determines that there exists one more completely labelled simplex with orientation + 1
than with orientation —1. In this section, it is shown how Spemer’s Lemma can be
extended to cope with more general boundary conditions. This yields a generalisation
of Sperner’s Lemma that is in the literature referred to as the Index Lemma (see e.g.

Henle (1994, p. 47)).

Let P be an (m — 1)-dimensional polytope. Furthermore, let |P| be a triangulation
of P into simplices of dimension m — 1. A triangulation of P is a finite collection of
simplices whose union is P, and that is such that any two of the simplices intersect in
a face common to both, or the intersection is empty. A triangulation of P induces a
triangulation |dP| of the boundary oP into simplices of dimension m —2. Let Lbe a
labelling of the vertices of |P| with labels in I = {1,...,m}. As before, one can define
a Sperner mapping

S2: (1P, 0P — (A771,04771),
where A1 denotes the canonical division described in Chapter 3 (see Definition 3.4):
Every vertex of | P| is mapped to the vertex in A”~! with the corresponding label, i.e.
L(v) = L{f5(v)). Then £ is obtained by linearly extending it to the simplices in |P|.
Note that if a (k— 1)-simplex has j < & distinct labels I; C I, then it is mapped on the
(j — 1)-face of AT that is spanned by the vertices with labels 1;. The restriction of
18 to the boundary of P is denoted as fl‘g -

Definition 5.1 The index of the labelling L of |P| is defined as
(L) = deg f|\3p, (5.1
where deg fI%P denotes the degree of the mapping f|sa >

As for the Sperner case, the degree deg flg p measures, for an arbitrary but fixed label
k € I, the number of almost completely labelled points with labels 7 — {k} on the
boundary, where each such point is counted with its orientation. The orientation on

the boundary is induced by A7~!. This is depicted in Figure 5.2. The dotted line
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represents the image of the boundary dP “around” dA™~!. The mapping in Figure 5.2
has degree +1. The image of the boundary is homotopic to a single winding around
AT, So the index of the labelling in Figure 5.2 is +1.

Figure 5.2: A general version of Sperner’s Lemma

The degree deg fBP on the boundary is the same as the degree deg f5 of the map-
ping 5. The proof of this claim is equivalent to the construction in the proof of The-
orem 3.3. There, the orientations of {m — 2)-faces in the interior cancel out. The
degree /5 measures the number of completely labelled points, i.e. the pre-images of
v«, Where each pre-image is counted with its orientation, which is the local degree (see
Figure 5.2). This fact that deg jBP is the same as deg f* yields the following, well-
known result, which says that the labelling of the vertices on the boundary determines
the number of completely labelled simplices in the triangulation (for a detailed account

of degree theory see e.g. Dold (1972) as cited on p. 72).

Proposition 5.2 (Index Lemma) Let |P| be as above with labelling L. Then the sum
of orientations of the completely labelled simplices in |P| equals I(L).

Proof. The pre-images of v, correspond to the completely labelled simplices, and the
local degree at a pre-image is the same as the orientation of the simplex that contains
it. The degree equals the sum of local degrees, and is determined by the boundary

condition.

Alternatively, one can use the same approach as in the proof of Theorem 3.3 to
obtain the result without using degree theory. In this case, one would essentially show

that deg f]%P on the boundary is the same as the degree deg /5. 0
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The Index Lemma is sometimes summarised with the phrase “The index equals the
content” (see e.g. Henle (1994, p. 47)), meaning that the boundary condition (i.e. the
index) determines the number of completely labelled simplices in the triangulation (i.e.
the content), accounting for orientation. In the next section, it is shown that a similar

description applies to outside option equilibrium components.

3.2 The Index for Qutside Option Equilibrium Compo-

nents

In Chapter 3 above it is shown how the classical Sperner condition applies to equilibria
in non-degenerate bimatrix games. This section demonstrates how the Index Lemma
relates to components of equilibria. The dual construction shows that the index of a
component is defined by a boundary property similar to the Index Lemma. This bound-
ary property determines the sum of indices of equilibria close to the component if the
game is generically perturbed by small generic perturbations. In particular, it is shown
that the sum of indices of equilibria close to the component is independent of the per-
turbation. This “invariance” property of the index for components of equilibria is not a
new result (see the properties for components of equilibria listed in Section 1.3). What
is new, however, is the geometric-combinatorial view on the index for components of
equilibria.

The analysis is restricted to generic outside option equilibrium components in bi-
matrix games represented in strategic form by payoff matrices 4 and B. Without loss
of generality it is assumed that the player with the outside option is player II. When
player II plays the outside option, the payoffs for player I and player II are independent
of player Is strategy choice. So the column of A4 that represents the payoffs for player I
in the outside option has identical entries, and so has the column of B that represents
the payoffs for player II in the outside option. An outside option equilibrium compo-
nent is referred to as generic if the payoffs for player II are generic and if all payoffs for
player I other than the outside option payoffs are generic. Thus the only degeneracy of

the game arises through the payoffs to player I in the outside option. This implies that
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the payoffs for the equilibria that are cut off by the outside option are strictly smaller

than the payoff in the outside option.

When constructing components of equilibria via outside options (see Section 1.4),
it is possible to compute the index of such components purely on grounds of basic
properties of the index. In particular, one does not have to go into details regarding the
geometric-combinatorial aspects. These aspects, nevertheless, play an important role
in the characterisation of index and (hyper)essentiality in Chapter 6. The examples
given below are meant to illustrate the geometry behind the index for outside option
equilibrium components by means of the labelled dual construction X*A. A formal

definition is given later in this section.

The problem with degenerate games is that, instead of having singleton solutions,
one has to consider components of equilibria. This is due to the fact that the number
of best reply strategies is not bounded by the size of the support (see Definition 1.1).
In the case of an outside option in an m X n bimatrix game with an outside option for
player I, the pure strategy representing the outside option for player II has m pure best
reply strategies since all the payoffs for player I are the same in the outside option. In

this case, the outside option equilibrium component C is given by
C = {(x,0Out) € X x Y | Out is best reply to x},

where Out denotes the pure strategy that represents the outside option.

In general, the dual construction cannot be applied to degenerate games. This is
due to the fact that | X2| is not well-defined if the payoff matrix B is degenerate. In
the case of generic outside options in bimatrix games, however, the payoff matrix B
is generic, since it does not matter if a column of B has identical entries. This allows
one to apply the dual construction to such games. Consider, for example, the following

3 x 4 coordination game with an outside option for player II:

10,10 0,0 070 0?9
0,0 10,10 0,0 0,9]- (5.2)
0,0 0,0 10,10 0,9

This is the same game G *in (1.17) in Chapter 1. The outside option equilibrium

component has index —2. The three pure strategy equilibria of the game with payoff
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10 (which are not cut off by the outside option) each have index +1. Since the sum of
indices over all equilibrium components must equal +1, the outside option equilibrium
component has index —2. This can be interpreted geometrically in the following way.
Label the strategies of player I with 1,2 and 3, and those of player II with 4,5,6 and
Out. Then apply the dual construction to X to obtain X‘,A . Figure 5.3 shows the division
of X into best reply regions on the left. Next to it is the corresponding labelled dual
construction X Strategy Out yields a constant payoff to player 1. Therefore, the best
reply regions in simplices v2 for which a vertex of v2 represents Out all join in the

vertex that represents Out.

Figure 5.3: An outside option component with index —2

’
4

The dual payoff mapping f° 2 ag in (3.4) is, however, well-defined on X2, including
those simplices that are the duals of the vertices of the best reply region for Out. In
particular, the dual payoff mapping f 4 is well-defined on the boundary of the dual of

the outside option component.

The dual of the outside option component is the union of all those simplices that are
the duals of the vertices of the best reply region for Out. These are the simplices that
have Out as a vertex. The vertex that represents Out has all labels, since every strategy
_ of player I is a best reply against Out. In particular, the completely labelled point
does not lie in the interior of a simplex, which would be the case for non-degenerate

bimatrix games. This is depicted on the right in Figure 5.3.

The dual of the component can now be used to define the index of an equilibrium
component. For this, consider the dual payoff mapping restricted to the boundary of
the dual of the component. For the exampie in Figure 5.3, the image of fA restricted
to the boundary cycles twice around the completely labelled vertex v,, but in opposite

direction: Following the boundary of the component in anti-clockwise direction in
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X2 , the resulting paths runs in clockwise direction around v.. Hence, the index of
the component is —2. As in the case of the Index Lemma, the index counts, for a
fixed k € I, the number of almost completely labelled points with labels 7 — {k} on the
boundary of the dual of the component, where each such point is counted by is local
orientation. For the example in Figure 5.3, there are two points on the boundary of the
dual of the component with labels 1,3, both of which are oriented in the opposite way
as the point with labels 1,3 on the boundary of X2. The same holds when considering
points with labels 1,2 or 2, 3.

As another example, consider the 3 x 4 game with an outside option for player I

as shown below.
13,13 7,12 1,14 0,9

12,7 8,8 2,1 0,9|. (5.3)
14,1 1,2 1,1 0,9
This is the game G2 (1.15) as in Chapter 1. The outside option has, by the same rea-
soning as before, index +2. Figure 5.4 depicts the division of X into best reply regions

Figure 5.4: An outside option component with index +2

and the dual construction X for this game. For the above example, the mapping f A
restricted to the boundary of the dual of the component yields a path running twice
around v,. This time, the orientations of the boundary and its image agree. For every
k € I ={1,2,3}, there are exactly two points on the boundary of the dual of the com-
ponent with labels 7 — {k} and whose orientation is the same as that of the point on the

boundary of X© with labels I — {k}. Therefore, the index of this component is +2.

These observations can be formalised as follows. Consider an m X n bimatrix game
with an outside option for player IL. Note that it is not necessary to assume that m < n.

Let C denote the outside option equilibrium component. Let ¥ be the set of those
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vertices in player I’s strategy space X that have Out as a best reply, so V = {veVr|
Out € L(v)}. Now take the union of those v2 for which v € ¥, so C2 = U,er V™. This
union is referred to as the dual of the component C or the dual of the outside option
equilibrium component. For generic outside options, the region X (Out), i.c. the region
in X where Out is a best reply, is a full-dimensional and convex region with vertices
that have m labels (or it is empty). Hence, the set C© is a union of (m — 1)-simplices.
These simplices yield a triangulation of C2. If vo,; denotes the vertex in C2 that
represents the best reply region with label Out, then C2 s star-shaped with respect to
vour- This follows from the fact that C2 is a union of simplices who all have vp,s as a

vertex.

The boundary of C2 is denoted as 9C2. The simplex v2 is an (m — 1)-simplex for
all v € ¥, and the boundary 9C2 is the union of the (m — 2)-faces in C2 that do not
include the vertex that represents Out. From the dual construction it follows that the
pair (CA,BCA) is homeomorphic to (A™=!,3A™!). The dual payoff mapping 1P as
in (3.4) is well-defined on the boundary dC2. The restriction of /2 to the boundary of
C?2 is denoted as fﬁcA' The image of f|§CA consists of the union of (m — 2)-simplices
in X% that are spanned by the images of vertices of the (m — 2)-faces on the boundary
of C2. The image of fﬁcﬂ itself does not contain v,. So the image of f|§cA can be

thought of as some (m — 2)-sphere around v, that consists of (m — 2)-faces.

Definition 5.3 Let C be an outside option equilibrium component of a game with a

generic outside option. Then the index I(C) of the component C is defined as the

degree of the mapping f|§CA'

So, as in the Index Lemma, the index is defined by the division of a boundary into
labelled regions. In the Index Lemma, the regions arise from the mapping 15, defined
by unit vectors on each (m —2)-face. In the game theoretic context, the regions arise
from the mapping f2, defined by a mixture of payoff vectors and unit vectors. As
in the Index Lemma, however, the index of a component measures, for a fixed label
k, the number of almost completely labelled points on the boundary of the dual of the

component. Each such point is counted with its local orientation, and the measure does

not depend on the choice of £.
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Note that the image of /ré\cﬁ can be retracted to the boundary of X, This works
in the same way as Lemma 4.5: If p is a point in the image of f]?CA’ define the re-
traction as the intersection of the line between v, and p, in the direction of p, with the
boundary of X2, Note that v, does not lie in the image of fﬁcﬁ' This is due to the

non-degeneracy of the payoffs representing other strategies than Out.

For generic outside options, only payoff perturbations for player I in the outside
option are of relevance. This can also be seen using the labelled dual construction.
Small perturbations of the payoff matrix B leave the combinatorial structure of |X2|
invariant, since the combinatorial structure of the best reply regions in X is unaffected.
Small perturbations of the payoff matrix A4 leave the combinatorial division of C2
into best reply regions invariant, since for ail simplices v and their faces that do not
involve Out, the combinatorial division into best reply regions is invariant with respect
to small perturbations. It follows from Definition 5.3 that small perturbations of the
payoffs leave the index /(C) invariant. Perturbations of player I’s payoffs in the outside
optibn, however, split C2 generically into labelled regions and determine those points
in the interior of C2 that are mapped to v,. These are the Nash equilibria that “survive”

perturbations of the payoffs.

The local degree of f2 at these pre-images is the index of the equilibrium (see
Lemma 3.15). But the sum of local degrees equals the degree of the mapping, which
is again the same as the degree of f2 restricted to the boundary of the dual of the

component. As a consequence, one obtains the following, well-known result.

Corollary 5.4 Let the index of a generic outside option equilibrium component be
I(C). Then every small generic perturbation yields equilibria close to the component

C such that the indices of these equilibria add up to 1(C).

Proof. The proof follows the same lines as the proof of the Index Lemma, and is a
consequence of the fact that the degree of a mapping is the same as the degree of a
mapping restricted to its boundary.

An illustration of the proof is given in Figure 5.5 for a perturbation of G2 asin
- (1.17) (compare Figure 5.3). The perturbation that is depicted is given by the payoff
vector (g,0,0) " for player I in the outside option. For the illustration, € is chosen to

be large. It should be noted, however, that the combinatorial division of the dual of the
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component does not depend on the magnitude of € (see also Lemma 6.4 in Chapter 6).

Figure 5.5: A perturbation of an index —2 component

The combinatorial and geometric properties of the mapping f|§cA are not affected
by small perturbations. Generic perturbations, however, perturb the dual payoff map-
ping £ in the interior of C2. Let the restriction of /2 to C2 be denoted as fI?A' Thus
every small generic perturbation of the game gives a mapping jlga . CA — XD AL
though the mapping itself does depend on the perturbation, the index I(C) does not,
since the degree of f]?cA stays invariant under small perturbations for the reasons ex-
plained above. The payoff perturbation renders the game generic and, hence, yields a

generic division of C2 into labelled best reply regions (see Figure 5.5).

The degree of féA is the same as the degree of ]I?CA’ and can be computed as the
sum of local degrees at the pre-images of v, in C2. These are the completely labelled
points in C that represent equilibria in which Out is played with positive probability.

This local degree is the same as the index of an equilibrium.

Since the perturbation is generic, these pre-images lie in the interior of some v® in

C2 and, for small perturbations, lie close to the vertex that represents Out. J

For example, in Figure 5.5 one obtains two completely labelled points that read
1,2,3 in clockwise direction, i.e. both have index —1. As noted above, Figure 5.5
depicts the case for a large €. For a small g, the completely labelled points lie close to

the original vertex representing Out, but the combinatorial division stays invariant.
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Corollary 5.4 is of course not a new result (see Section 1.3). New, however, is
how it relates to the Index Lemma. In the Index Lemma, the index was defined as
the degree of f5 on the boundary. For outside options it is the degree of /2 on the
boundary of the dual of the component. Although /5 arises from unit vectors while
S arises from general payoff vectors, in both cases the division of the boundary into
labelled regions determines the sum of orientations of completely labelled points (or
simplices) in the interior. As for the Index Lemma, one can summarise the result under
“The index equals the content”. The boundary condition (i.e. the degree of the mapping
on the boundary of the dual of the component) determines the number of completely
labelled points in the interior of the dual of the component (i.e. the Nash equilibria that

use Out), accounting for orientation.

3.3 Degenerate Games and General Equilibrium Com-

ponents

This section describes how the dual construction might be applied to other components
of equilibria. For example, the above analysis does not require that the payoffs for
player II in the component are constant and independent of player I’s strategy choice
(as it is the case for outside options). Nevertheless, there are limits to the application
of the dual construction to general components of equilibria in degenerate bimatrix

games.

Take an m X n bimatrix game. If the payoffs for player II are non-degenerate, the
triangulation |[X2| is well-defined. Furthermore, the dual payoff mapping /2 in (3.4)
is well-defined since the payoff mapping f is well-defined. It is easy to verify that
the Nash equilibria correspond with those points that are mapped to v, under 5. So
the Nash equilibria still correspond to completely labelled points. This follows from
the definition of the payoff mapping f as in (3.3) via the artificial payoff matrix. The
difference is that completely labelled points might, for example, lie on the boundary of
a simplex v2, or that almost completely labelled points lie on some lower dimensional
k-face of some v for k < m— 2. Also, there can be connected sets of completely

labelled points in the labelled dual construction.
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The latter case is illustrated by the following example.

0,0 10,10 0,0 0,—10
0,0 0,0 0,10 0,8 54)
0,10 0,0 10,0 0,8

This is a variant of Example 2.3. Against strategies 4 and 7 of player II, player I is
indifferent between strategies 1,2 and 3. So the equilibrium component here is for
player I to play some strategy in the union of the best reply regions X(4) and X(7), and
for player II to play a best reply strategy, which is either strategy 4 or 7, or a mixture of
both. In the latter case, the strategy of player I lies in the intersection of the best reply
regions X(4) and X(7), and player II can play any mixture between strategies 4 and 7.

The dual of this component is depicted in Figure 5.6, in which the union of the
best reply regions X(4) and X(7) is represented by a dashed line between the vertices
that represent the best reply regions with labels 4 and 7. The mapping /2 is well-
defined. In particular, it is well-defined on the boundary of the dual of the component
C, and has degree zero: There is no point on the boundary of the dual of the component
with labels 2,3, and there are exactly two points on the boundary with labels 1,2, and
exactly two points with labels 1,3. Each such pair of points is such that one almost
completely labelled point has the opposite orientation of the other almost completely

labelled point.

Hence, every (small) perturbation that makes the payoffs of player I generic yields
a game with equilibria involving strategies 4 or 7 and whose indices add up to zero.
Take, for example, the original game as in Example 2.3. This game is a perturbation
of player I’s payoffs in strategies 4 and 7, and has two equilibria using strategies with
labels 4 or 7 and whose indices add up to zero. Multiplying the columns of A repre-
senting strategies 4 and 7 with some small constant € > 0 yields a game with the same

combinatorial properties that is close to the original game (see also Lemma 6.4).

The problem is that, in general, degeneracies occur in the payoff matrices of both
players. Furthermore, components (and hence their duals) are not necessarily homeo-
morphic to some simplex. This limits the direct application of the dual construction

to general components of equilibria. Consider, for example, the following game con-
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Figure 5.6: The dual of the component in (5.4)

structed by Kohlberg and Mertens (1986):

1,1 0,-1 -1,1
-1,0 0,0 —1,0 (3.5)
1,-1 0,—1 —=2,-2

In this example, the equilibrium component is a cycle, both in player I's as well as
in player II’s strategy space. It can easily be verified that the component in (5.5) has
index +1. It is the unique component, and strategies 1 and 4 weakly dominate the
other strategies, so a slight perturbation only leaves one pure strategy equilibrium. The
dual construction cannot be applied directly, since neither the “vertices™ in X nor the
“vertices” in Y are well-defined, i.e. they have more than three labels. For example,
the “vertex” corresponding to pure strategy 1 by player I has labels 2,3 (the unplayed
strategies) and 4, 6 (best replies). Thus neither X A nor Y2 are well-defined.

Nevertheless, there are ways of still applying the dual construction to such compo-
nents. Take an m X n bimatrix game (with m < n). Then the payoffs for, say, player II,
can be made non-degenerate by small payoff perturbations. Then | X 8| is well-defined
for the perturbed payoff matrix B. This then yields the mapping f° 2 and a division of
|X?| into labelled regions. The drawback of this approach is that the dual construction
LX2| and hence f° 2 are not independent of the payoff perturbations used for player II.
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Chapter 6

Index Zero and Hyperstability

This chapter shows that outside option equilibrium components that have index zero
are not hyperessential. This yields a characterisation of hyperessentiality of outside
option equilibrium components in terms of the index: An outside option equilibrium
component is hyperessential if and only if it has non-zero index. In a parallel and
independent work, Govindan and Wilson (2004) show that the result presented here for
outside option equilibrium components also holds for general equilibrium components
in N-player games. The merit of the approach presented here is that it requires only

basic tools from algebraic topology and provides a geometric intuition.

An equilibrium component is said to be essential if for every small perturbation of
the game there exists an equilibrium of the perturbed game that is close to the compo-
nent (Wu and Jiang (1962); Jiang (1963)). Kohlberg and Mertens (1986) extend the
concept of essentiality to perturbations of all equivalent games, i.e. games obtained by
adding convex combinations of existing strategies as pure strategies. A component is
referred to as hyperessential if it is essential in all equivalent games. They define a

component that is a minimal hyperessential component as hyperstable.

This chapter addresses the question how (hyper)essentiality in a game theoretic
context and essentiality in a topological context (i.e. non-zero index) are linked (see
e.g. Govindan and Wilson (1997a;b) for a discussion). It is a well-established fact
that topological essentiality implies strategic essentiality. The converse, however, is
not true, as an example of an equilibrium component with index zero that is essential

shows (Hauk and Hurkens (2003)). However, until recently, it was unknown whether
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hyperessentiality implies topological essentiality. This question is answered affirma-
tively for outside option equilibrium components in bimatrix games by employing the

dual construction to outside option components.

The structure of this chapter is as follows. Given the similarities between the Index
Lemma and the index for outside option equilibrium components, Section 6.1 studies
index zero labellings in case of the Index Lemma. It is shown that for every index zero
boundary labelling there exists a triangulation and a labelling (subject to the division
on the boundary) such that the triangulation does not contain a completely labelled
simplex (Theorem 6.1). Section 6.2 reviews the concepts of essentiality and hyper-
essentiality, and it is shown how the results for index zero labellings apply to index
zero outside option equilibrium components. It is shown that an outside option equi-
librium component is hyperessential ifand only if it has non-zero index (Theorem 6.7).
The result is based on duplicating the outside option, which yields a refinement of the
triangulation of the dual of the component. This allows one to divide the dual of the
component into labelled regions such that no point is completely labelled. This work
concludes with Section 6.3. It gives an example of an outside option equilibrium com-
ponent that is essential in all equivalent games that do not contain a copy of the outside

option {Lemma 6.10).

6.1 Index Zero Labellings

This section discusses index zero labellings for triangulations of (m — 1)-dimensional
polytopes P. Given a triangulation of |dP| into (m — 2)-simplices with a labelling L of
the vertices of |0P)|, the definition of the index as in Definition 5.1 is well-defined via
the Sperner mapping /5. The Index Lemma implies that every labelled triangulation
of P that agrees with the given triangulation and labelling on dP must contain com-
pletely labelled simplices whose orientations add up to the index of the labelling on
the boundary. This section shows that if the boundary labelling on 0P has index zero,
then there exists a labelled triangulation of P that agrees with the given triangulation

and labelling on dP and that does not contain a completely labelled simplex.
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Let P be an (m — 1)-dimensional polytope. Furthermore, let | 3P| be a triangulation
of 9P into (m — 2)-simplices together with a labelling of the vertices of |9P|. This
defines the Sperner mapping f® on the boundary 9P as in (3.1). The index of the
boundary labelling is defined as the degree of f5 restricted to the boundary and counts,
for a given label k € I, the almost completely labelled points on the boundary with
labels 7 - {k}, accounting for their orientation. The following results for labellings as
in the Index Lemma might not be new (Theorems 6.1 and 6.3). The author, however,

is not aware of results as stated below in the literature.

Theorem 6.1 Let |0P| be a labelled triangulation of oP into (m — 2)-simplices with
index zero. Then there exists a labelled triangulation |P| that agrees with the given
labelled triangulation of the boundary and that does not contain a completely labelled

simplex.

Proof. Let fi3p denote the restriction of /5 to the boundary. The fact that deg flgP =0
implies that fEP 1s homotopic to some constant map via a homotopy 4 (see e.g. Bredon
(1994, 11, Corollary 16.5 and V, Lemma 11.13)). This means that /> =, x, where x
denotes some constant map. In other words, there exists a mapping #: oP x [0,1] =
oA such that 4(x,0) = f5(x) and h(x,1) = « for all x € 9P. Since 4 is constant
on dP x 1, one obtains a mapping, which is also denoted as k, from dP x [0, 1] J~(1)
to AT 1, where aP x [0, 1] /~(-,1) denotes the quotient space that is generated by the
equivalence relation that identifies (-, 1) with a single point; the space 9P x [0, 1] Jn(e1)

can be thought of as a “cone” over dP, which is homeomorphic to P.

Figure 6.1: The cone over oP

This is depicted in Figure 6.1 for P being the 2-dimensional disk. The boundary of
the disk is the 1-dimensional sphere S!. Then S! x [0, 1] is a cylinder as depicted on the
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left. Identifying (-, 1) with a single point yields the “cone” as depicted in the middle,

which is homeomorphic to the 2-dimensional disk depicted on the right.

Thus 4 can be seen as a mapping # : P — AT~ ! that agrees with /5 on the
boundary. This is a well-known result that states that a mapping from the unit {m — 1)-
sphere to the unit (m — 1)-sphere that has degree zero can be extended to a mapping
from the unit m-ball D™ to the unit (m — 1)-sphere. The result goes back to Hopf (see
e.g. Bredon (1994) as cited above).

The mapping # divides P into labelled regions which are the pre-images of the
regions in A1 This is depicted in Figure 6.2. Now choose a triangulation of P
with no vertices on the boundary other than the original vertices on dP. This can, if
necessary, be achieved by adding a single vertex in the centre of P, since P is convex.
Next, choose an iterated pseudo refinement of this triangulation that allows vertices on
the boundary and that is such that each simplex is smaller in diameter than some given
& > 0. Now label every vertex in the interior of |P| according to L(v) € L(h(v)), where
L(h(v)) are the labels of the image of v in A”~! (see Figure 6.2). There is no point
on the boundary 9A™~! that has all m labels, so no simplex in the refinement can have
more than m — 1 distinct labels, as long as the simplices are sufficiently small. Notice

that, since P is compact, the mapping 4 is uniformly continuous.

Figure 6.2: A labelling with index zero

1

I

Finally, one has to get rid of the vertices that were added to the boundary dP. This
works in the same way as in Lemma 4.4, since the labelling of vertices on the boundary

is consistent. That is, if a vertex v lies on an 4-face of the original triangulation spanned
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by original vertices vi,...,v, then L(v) € {L(v1),...,L(v)}. This is the labelling

equivalent to the consistency as in Definition 4.3.

So let the vertices that were added by the iterated pseudo refinement be vi,...,v,,
and let A be the ordered index set of the vertices that were added to the boundary. Let
v be a vertex on the boundary. Then v = ¥!_, g with g; > 0, for some vy, ...,v.
In particular, the labelling satisfies L(v) = L(v;) for some i € {1,...,/}. So the face
spanned by {v1,...,vi—1,,Viv1,...,v} has the same labels as the face spanned by
{V1y-- o, Vi1, Vi, Vig 1, .-+, Vi) A simplex spanned by {vi,...,vi_1,V,Vit1,.--, vk} and
some {Vgi1,...,vm} is fully labelled if and only if the simplex spanned by

{vl,. cosVie13Vis Vig1,y .- .,vk} and {vk.H,. .. ,vm} is fully labelled.

So the vertices that were added by the iterated pseudo refinement and that lie on
the boundary of dP can be removed (in reverse order) to obtain a refinement with no

vertices added to the boundary and no completely labelled simplex. O

Remark 6.2 In Figure 6.2, the Sperner mapping f° on the boundary has index zero,
but is onto. Suppose one is restricted in subdividing P. For example, assume a trian-
gulation |P| with the same boundary labelling as in Figure 6.2, but that has only one
vertex in the interior of P. This is depicted in Figure 6.3. Then every labelling of the
interior vertex yields (pairs of) completely labelled simplices. The reason is that the
interior vertex is connected to all boundary faces. For every label k € {1,2,3}, there
are faces on the boundary with missing label k, that is, faces with labels 1,2 or 2,3
or 1,3. These almost completely labelled faces come in pairs of opposite orientation
because of the index zero property. Thus, in the restricted case, one always obtains
completely labelled simplices whose orientations add up to zero. In the next section,
it is shown how this restricted case compares with the essentiality of an equilibrium
component as in the example by Hauk and Hurkens (2002), and how the unrestricted

case compares with the hyperessentiality of an equilibrium component.

For non-zero labellings one obtains the following result.

Theorem 6.3 Let |0P| be a labelled triangulation of oP with index k. Then there exists
a labelled triangulation |P| that agrees with the given labelled triangulation of the
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Figure 6.3: A labelling with index zero and a restricted triangulation

boundary and is such that |P| contains |k| completely labelled simplices, each with

orientation sign k.

Proof. The idea is to divide P into labelled regions such that there exist exactly |k|
completely labelled points in P with orientation sign k. This division is then covered

by small simplices.

Choose a subset B in the interior of P that is homeomorphic to an (m — 1)-ball.
Define a mapping fj35 on the boundary of B that maps the boundary of B on oAT!
and that is such that each almost completely labelled point on the boundary of A1
has exactly |k| pre-images in 0B with orientation sign k. Such a mapping exists and
can be constructed as follows. Identify the boundary 8B with the unit sphere S~ !.
For (x1,---,xm) € ™1, the tuple (x,x;) can be seen as a complex number z, and the

mapplng fiaB(zvx.’n o 7xm) = (Zk7x3, s ,x,,,) will do.

The mapping fj53 has the same degree as the Sperner mapping /5 on the boundary
of P. Hence, the mapping f° restricted to the boundary 9P and fjop are homotopic via
some homotopy, denoted as 4. The homotopy 4 can be identified with a mapping from
P — B to dA™ 1, since [0,1] x oP is homeomorphic to P— B. Note that dB and oP
are homeomorphic to dA™ !, and are hence themselves homeomorphic. This yields a
division P — B into labelled regions with no completely labelled point. Label the region
B with some arbitrary but fixed label. Then the division of P into labelled regions is
such that there exist exactly || points that are completely labelled. These lie on the

boundary of B. This is depicted in Figure 6.4 for a boundary mapping with index +1.

From here, the proof follows the same lines as the proof of Theorem 6.1. Cover

P with sufficiently small simplices and label the vertices according to the regions they
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Figure 6.4: Obtaining a division with exactly || completely labelled points

are contained in. The vertices that are added to the boundary of P can be omitted by

the same argument as in the proof of Theorem 6.1 and Lemma 4.4. (W

As explained in Chapter 5, there are strong similarities between the situation in
the Index Lemma and outside option equilibrium components. The next section shows
how the results from above translate into the game theoretic context and how one can
divide the dual of an outside option into best reply regions, given the boundary division,
such that it does not contain a completely labelled point, i.e. an equilibrium. This can

be achieved by duplicating the outside option only.

6.2 Index Zero Outside Option Equilibrium Compo-

nents

In this section, it is shown that an outside option equilibrium component (in a bimatrix
game with generic outside option) is hyperessential if and only if it has non zero index.
It is also explained how the results of the previous section fit in the game theoretic
context. Before proving the main result of this section, the concepts of essentiality and

hyperessentiality are briefly reviewed.

Wu and Jiang (1962) define essential fixed points. The extension to compact sets
of Nash equilibria is described by Jiang (1963), and is also discussed in van Damme
(1991, Section 10.2). In analogy to the concept of essential fixed point sets (Fort
(1950)), an equilibrium component C of a game G is called essential if and only if

for every small payoff perturbation of the game G there exists an equilibrium of the
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perturbed game that is close to C. A game G is called an equivalent game to G if G can
be obtained from G by adding a finite number of convex combinations of strategies of
G as pure strategies. In other words, the games G and G have the same reduced normal

form. For example, the two games shown below are equivalent.

10,10 0,0 5,5 3,3
10,10 0,0 "
G= ; G=1 0,0 10,10 55 7,7
0,0 10,10
1,1 99 55 23

A strategy in an equivalent game can be interpreted as a strategy of the original game
and vice versa by rescaling the probabilities for the strategies. An equilibrium com-
ponent C of a game G is referred to as hyperessential if it is essential in all equivalent
games G. Kohlberg and Mertens (1986) define a set S as hyperstable if it is minimal
with respect to the following property: S is a closed set of Nash equilibria of G such
that, for any equivalent game, and for every perturbation of the normal form of that
game, there is a Nash equilibrium close to S. It follows that a hyperessential equilib-
rium component must contain a hyperstable set (Kohlberg and Mertens (1986)): Let
F denote the family of subsets of a single connected component that is hyperessential,
ordered by set inclusion. Every decreasing chain of elements in F has a lower bound,

and therefore, applying Zorn’s Lemma, the family F must have a minimal element.

It is a well-established fact that non zero equilibrium components are both essen-
tial and hyperessential. The index of a Nash equilibrium component is invariant under
addition or deletion of redundant strategies Govindan and Wilson (1997a, Theorem 2;
2004, Theorem A.3). Therefore the index of a component is the same in all equiv-
alent games. Since the index measures the sum of indices of equilibria close to the
component if the game is slightly perturbed, a non-zero index implies both essentiality
and hyperessentiality of the component (see also Section 1.3 for the properties of the

index).

Whether the converse is also true was an open question until recently. In fixed
point theory, a component of fixed points under a mapping f is called essential if every
mapping close to f has fixed points close to the component. O’Neill (1953) shows that
a fixed point component is essential if an only if it has non-zero index. In game theory,
the Nash equilibria can be described as the fixed points of a map. A perturbation of the

game yields a mapping for the game that is close to the original fixed point mapping.
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So the question arises whether, by suitably perturbing the game, one can show
equivalence between strategic and topological essentiality. Referring to the results of
O’Neill (1954), Govindan and Wilson {1997b) write: “The resolution of this puzzle is
important for axiomatic studies because in a decision-theoretic development it would
be implausible to impose topological essentiality as an axiom unless it is provable
that the space of games is rich enough to obtain equivalence between strategic and

topological essentiality.”

Hauk and Hurkens (2003) found an example of a bimatrix game with an outside
option in which the outside option equilibriuin component has index zero and that is
nonetheless essential. This shows that game theoretic and topological essentiality are
not equivalent. If restricted to perturbations of the original game, the space of games
is not rich enough to-obtain equivalence between topological and strategic essential-
ity. However, their example fails the requirement of hyperessentiality. So the ques-
tion arises whether the concept of hyperessentiality is the game theoretic equivalent of

topological essentiality.

In this section, it is shown that this is the case for outside option equilibrium com-
ponents with a generic outside option. Furthermore, it is demonstrated why an index-
zero component can be strategically essential, but not hyperessential. Comparing it
with the case of the Index Lemma, essentiality compares with a triangulation in which
one is restricted in the number of simplices in the subdivision, and hyperessentiality
compares with the unrestricted case (see Remark 6.2). Govindan and Wilson (2004),
in a parallel and independent work, show that index zero components cannot be hyper-
essential in general. Their approach is discussed at the end of this section. The merit
of the proof presented here is that it only needs basic tools from algebraic topology.
Also, since the dual construction can easily be visualised, it also provides a geometric

and combinatorial intuition for the resuit.

The idea of the proof can be explained by considering an example of an outside
option equilibrium component that is essential but not hyperessential. Such an example

is given by the game in (6.1). This is the game by Hauk and Hurkens (2002) showing
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that topological essentiality is not the equivalent of topological essentiality.

45 0,-23 2,-1 0,0
0,—15 8,-1 -2,-21 0,0 (6.1)
2,-11 1,3 3,1 0,0

The dual construction for this game is given in Figure 6.5. The dual payoff map-
ping f2, restricted to the boundary of the dual of the outside option component, has
degree zero. The image does not complete a full cycle. Hence, the outside option
equilibrium component has index zero. This can also be verified by a simple counting
argument. There is only one other equilibrium of the game, namely the pure strategy

equilibrinm with payoffs (4,5).

Figure 6.5: An index zero essential component

LYY

Hauk and Hurkens show that the component is essential. It should be noted that
only payoff perturbations of the payoffs for player I in the outside option are of impor-
tance. All other payoffs are generic. Looking at the dual construction of the game, it
can be scen that the restricted dual payoff mapping f|§cA :9C2 — X2 is such that the

image of f|§CA “wraps” completely around v, but does not complete a full cycle.

A more detailed depiction of the image of f|§CA is given in Figure 6.6. The image
of f]?cA consists of a union of (m — 2)-simplices in X2. These are the images of the
faces of C2, and are depicted in bold dashed lines. In the figure, v, is the image under
f2 of the vertex in X A that represents best reply region Out in X, and the vertices v;
are the images of the vertices in X' D that represent a best reply region with label / or

an unplayed strategy / in X (/ = 2,5,6).

Now suppose one perturbs the payofis in the outside option. Then voy, lies close to

v«. Consider, for example, a perturbation of Out such that strategy 1 of player I is the
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Figure 6.6: The essentlallty of the component

best reply to Out. Then vo, lies in the region with label 1 close to v, as depicted in
Figure 6.6. So there are two simplices in the image of C2 that contain v,, namely the
simplex spanned by vs,vs and v, and the simplex spanned by vg, v» and voy:. The
former simplex represents the vertex in X with labels 5, 6 and Out, the latter represents
the vertex in X with labels 6, unplayed strategy 2 and Ouz. A similar analysis applies if
VOut lies in one of the regions with label 2 or 3. Therefore, the component is essential.

This is the game theoretic counterpart to the situation described in Remark 6.2.

It should be noted, however, that it is not sufficient to just count the almost com-
pletely labelled points on the boundary of a component to see whether a component
is essential or not. The payoff mapping is generally more complex than the Spemer
mapping, since the payoff vectors are generally not unit vectors. Consider, for exam-
ple, the component depicted in Figure 6.7. This component is similar to that of game
(6.1). The difference is that the payoffs for player I in the column of (6.1) representing
strategy 6 are modified such that vy is shifted to the left compared with vg in Figure
6.6. There are two points on the boundary of C® with labels 1,2, two with labels 1,3
and two with labels 2,3, and each pair is such that the points have opposite orientation.
But the component is not essential. There is a “gap” in the image around v,. If the
perturbation of the outside option for player I were such that vpy, lies in the shaded
area as depicted, then there would not exist an equilibrium that uses Out. A necessary
and sufficient condition for the essentiality of a component is that the retraction of the
image of 3C2 is onto. The retraction is defined as on page 112 for components and is
similar to that described in Lemma 4.5: If p is a point in the image of -’ﬁcﬁ’ define the

retraction as the intersection of the line between v, and p, in the direction of p, with
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the boundary X2. This condition ensures that there is no “gap” in the image of 9C2,

so the image “wraps™ completely around v,.

Now suppose one duplicates Out and perturbs the payoff for player II such that the
original regions in X where Out is a best reply is divided as depicted in Figure 6.8.
This yields two vertices in the dual construction that are associated with the outside
option. Hence, by looking at equivalent games in which Out is duplicated, one obtains
“richer” divisions of C2 into best reply regions. For example, if one makes strategy 2
of player I the best reply to Out, and strategy 1 the best reply to Out;, one obtains a
perturbation of the eqﬁivalent game that has no equilibrium close to the component.
The associated labelled dual of this perturbed equivalent game is iflustrated in Fig-
ure 6.8. Since there is no completely labelled point in the dual of the outside option,
there is no equilibrium that involves Out, and hence no equilibrium close to it. The

associated payoff perturbations are given in (6.2).

45 0,-23 2,—-1 0,0 &0
0,—15 8—-1 -=2,-21 &0 0. (6.2)
2,-11 1,3 3,1  0,2¢ 0,0

The method of duplicating Out is the underlying idea in the proof of Theorem 6.7.
The idea is to divide the dual of the component into labelled regions such that there
exists no completely labelled point, as in Theorem 6.1. One then has to show that
such a division can in fact be created by duplicating Out and perturbing the payoffs in
the duplicates of Out. Duplicating Out and perturbing the payoffs for player II in the
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Figure 6.8: Duplication of the outside option

duplicates refines the triangulation of C2 into simplices v2. The difference to Theo-
rem 6.1 is that the new vertices are close to the vertex representing Out. Perturbing the
payoffs for player I then divides the simplices in the refined triangulation into labelled
regions. Unlike the proof of Theorem 6.1, this is achieved by assigning payoffs to the

vertices, as opposed to assigning labels.

Consider an outside option game with a generic outside option for player II. It
is first shown that the magnitude of the perturbations for player I in the outside op-
tion does not matter when analysing the essentiality of an outside option equilibrium
component. The following lemma shows first that the combinatorial division of X8
into simplices and labelled regions is invariant under multiplying payoff columns of
player I with some positive constant. Two m X n games are referred to as combinatori-
ally equivalent if both yield combinatorially equivalent triangulations |X A4 and if the

divisions of the simplices in the triangulation are combinatorially the same.

Lemma 6.4 Let G be an m X n bimatrix game represented by payoff matrices A and
B. Let G be represented by A =[MA1,...,Ady] and B, where h; >0, for j=1...,n.

Then G and G are combinatorially equivalent.

Proof. Let Ay > 0and A; = 0 for j # 1. Let (x,y) be a Nash equilibrium of G. Define
¥ = (7%’ ¥2,.--,¥n)- Rescaling 7 such that it lies in Y yields j such that (x,7) is a Nash
equilibrium of G. Continuing in the same fashion with the other 4; yields the desired

result. O

Lemma 6.4 shows that the combinatorial equilibrium properties of a game are un-

affected if a column of 4 or a row of B is multiplied by some positive constant. One
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just has to adjust the weights on the strategies to account for the multiplication of the
columns and rows. It also shows that the combinatorial structure of | X2| and the com-

binatorial division X is invariant under such operations. As a corollary one obtains

the following result.

Corollary 6.5 Let G be a game with outside option for player II in which the outside
option equilibrium component has index zero. Let G be obtained from G by copying
Out a finite number of times. If there exists a perturbation of G with small payoff
perturbations for player II and large payoff perturbations for player I in the copies of
Out such that there is no equilibrium that plays a copy of Out with positive probability,
then there exists a small perturbation of G such that there exists no equilibrium close

to the outside option equilibrium component.

Proof. Without loss of generality it can be assumed that the payoffs to player I in the
outside option are zero. Adding or subtracting some constant to the payoff columns
of 4 does not change the best reply properties. The payoffs for player I in G can be

described as follows.

yln yOm
- .
7 N~ ~

|
Ala-"1An—l IAOutl AOutk

Let (3%",y%") be a strategy profile that makes player I indifferent between best reply

strategies i1,...,it. Now multiply the columns 4oy, by some € > 0, and consider the
n Out b . . .
strategy (-"[7,}'—0-'}/5), where ¢ = 3 ; yj." + Z,ZIE—. Then strategies iy, ..., i are still the
best reply strategies. Thus one can easily switch from large perturbations to small
perturbations for player I in copies of Out, and vice versa, without changing the equi-

librium properties of the game. |

The proof of Theorem 6.7 below uses a similar argument as in Corollary 6.5 for the
payoff perturbations for player II in the copies of Out. In the proof of Theorem 6.7 one
divides the dual of an outside option into smaller simplices by adding vertices. These
vertices correspond to added strategies for player II. The following lemma shows that

one can obtain a combinatorially equivalent refinement such that the added vertices are
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close to the vertex representing Out. Any two vertices that are close have payoffs to
player II that are close. This follows from Lemma 2.2. Two triangulations with vertices
Ve and ‘/ke x are called combinatorially equivalent if the affine linear extension of
g(vx) = v}, k € K, on the vertices is an isomorphism that maps simplices on simplices

and faces on faces.

Lemma 6.6 Let C> be the dual of an outside option equilibrium component, and let
Vow denote the vertex in C2 representing Out. Consider an iterated refinement of C2
with no vertices added to the boundary of C®. Then there exists a combinatorially

equivalent iterated refinement in which the added vertices are close to vpy.

Proof. The proof is by induction on the number of added vertices. Note that C2 is

star-shaped (see page 111). So the case is clear for just one added vertex.

Now suppose one has an iterated refinement with & added vertices. Consider the
refinement that is obtained by adding the first Kk — 1 vertices. For this refinement, there
exists a combinatorially equivalent refinement with k£ — 1 vertices close to vp,;. The
vertex added last in the iterated refinement lies in some simplex in this refinement
(which might not be unique, in case it lies on some face). This simplex corresponds
to a simplex in the refinement where all vertices are close to vg,,. Hence, one can
add a vertex close to voy to the k— 1 other vertices close to vp, in order to obtain a

combinatorially equivalent iterated refinement. O

The following theorem is the game theoretic equivalent of Theorem 6.1. The index
is given by a division of the boundary into labelled regions. If the index is zero, this
division can be extended to a division of C2 such that no point in C2 is completely
labelled. As in the proof of Theorem 4.6, one then has to account for the restriction
imposed by the game theoretic context. In particular, one has to show that this division
can be achieved by perturbing an equivalent game in which Out is duplicated a finite

number of times.

Theorem 6.7 Let C be an outside option equilibrium component in a generic outside

option game. Then C is hyperessential if and only if 1(C) # 0.

Proof. Without loss of generality assume that all payoffs for player [ are positive and
that the payoffs in the columns of 4 add up to 1, i.e. |4j| = 1 (this can be achieved by
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first adding a suitable constant to each column and then scaling; see Section 3.3). Let
I(C) = 0, so the dual payoff mapping f|§CA has degree zero. Instead of considering
the dual payoff mapping fﬁcﬁ’ it is more convenient to consider the payoff mapping
S and its restriction fiaca to the boundary 9C2. Note that f2 is simply Id® o f. In
particular, the image of fﬁcﬁ completes a cycle around v, if and only if the image of

ﬁaCA completes a cycle around v.. Therefore, the mapping flaCA has also degree 0.

It follows that fiaca 1s homotopic to some constant map * (see e.g. Bredon (1994,
II, Corollary 16.5 and V, Lemma 11.13)), where the constant lies on the boundary of
AM=L, First the mapping can be retracted to the boundary of A™! (see Lemma 4.5
and p. 112), and can then be deformed into a constant map along A”~!. Let this
homotopy be denoted as . So h: 9C2 x[0,1] = A1, and v, does not lie in the

image of A.

Figure 6.9: A homotopy for outside option equilibrium components

As in the proof of Theorem 6.1, the mapping fj3ca extends to a mapping on C2
such that no point is mapped on v,. This can be seen as follows. The homotopy is
constant on (9C2, 1). This yields 4 : (0C2 x [0, a1y = A™! where 9C2 x 1 is
identified with a single point. The dual component C?2 is star-shaped (see page 111),
50 (0C % [0,1]) /(. 1) is homeomorphic to C®. This gives a mapping, also denoted as
h, that maps C2 — A™~! such that v, does not lie in the image of 4. The pre-images
of the labelled regions in A7~ ! now divide C 2 into labelled regions such that no point
in C2 is completely labelled. This is depicted in Figure 6.9 for the component in the
example (6.1).

One now has to show that such a division can be achieved in a game theoretic

context as a division into best reply regions by refining the triangulation of C2 and
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choosing the payoffs for player I accordingly. For this, as in the proof of Theorem 4.6,
choose an iterated pseudo refinement of the triangulation of C2 that allows one to
add vertices to the boundary of C2. Now assign a payoff #(v) to each vertex v in the
iterated pseudo refinement. Then the payoffs 4(v) for vertices added to the boundary
are consistent with the payoffs for the original vertices on the boundary of C2. If the
simplices in the refinement have a sufficiently small diameter, the image of a simplex
is a simplex in A”~! that does not contain v,. This is ensured by 4 being uniformly

continuous.

Now delete all vertices that were added to the boundary of |C2|. According to
Lemma 4.4, this does not create completely labelled points, and, by Lemma 4.2, yields
a regular triangulation. This results in a division of C2 as depicted in Figure 6.10 for

the component in the example (6.1).

Figure 6.10: An approximation of the homotopy

So far, one has created an extended game in which strategies for player II are added
(see Lemma 3.12). Each added vertex corresponds to an added strategy. The corre-
sponding payoffs to player II in the added strategies are determined by Lemmé 2.2,and
those for player I are given by the value of the homotopy at the vertex that represents
the added strategy. The extended game is such that neither Out nor any of the added

strategies are played in an equilibrium.

It remains to show that a similar game, 1.e. one that yields a combinatorially equiv-
alent division of C2 into simplices and best reply regions, can be created as a perturbed

equivalent game. This is achieved by duplicating Out and perturbing the payoffs in the

copies of Out.
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Let vick be the set of vertices added, where K is an ordered set, reflecting the
order in which the vertices were added. From the above construction each vertex Vi
has a payoff (vi). Lemma 6.6 shows that there exists a combinatorially equivalent
refinement of C in which all added vertices lie close to Vou, the vertex representing
Out in C2. Let the set of the vertices in this refinement be denoted as Viek> Where v}

1s close to vy, and corresponds to vy.

Now assign the payoffs #(v;) to vertex v,. This yields a division of C# into best
reply regions that is combinatorially equivalent to the original division. In particular,
it does not contain a completely labelled point. This is depicted in Figure 6.11 for the

component in (6.1).

Now every vertex in |[X2| that is close to the vertex vo, has payoffs to player II
that are close to the payoffs of Out to player II if the regular triangulation is translated
into an extended payoff matrix B’ (see Lemma 2.2). So B’ consists of B and perturbed
copies of Out. As for the payoffs h(v,) for player I, Corollary 6.5 shows that one can
make them arbitrarily small without creating equilibria. Hence, one created a game
that is a perturbed equivalent game in which the outside option is duplicated a finite

number of times. =

Figure 6.11: Adding vertices close to voy,

In the same way as an outside option equilibrium component with index zero might
be essential (i.e. having at least 2/ (I > 0) equilibria for every small perturbation), an
index k outside option equilibrium component might have |k + 2/ ( > 0) equilibria
for every small perturbation of the original game. Using the dual construction, such an

example would be easy to create (a 3 X n game would be sufficient for that). Allowing
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perturbations of equivalent games, one gets, similarly to Theorem 6.3, the following

result.

Proposition 6.8 Let C be an outside option equilibrium component with index I(C) =
k. Then there exists an equivalent game and a perturbation of the equivalent game

such that there are only |k| equilibria close to C and whose indices add up to k.

Proof. The proof follows the same lines as the one of Theorem 6.7, and is the game
theoretic equivalent of Theorem 6.3. If the index of a component is /(C) = k, then
there exists a homotopy between the payoff mapping fjaca and a mapping that maps
an (m — 2)-ball exactly k times around itself, This homotopy is used to divide C2 into
labelled regions such that there exist exactly || completely labelled points in C2 with
Jocal degree sign k (as in the proof of Theorem 6.3). Then this division of C® can be
imitated by duplicating Out a sufficient number of times and choosing the payoffs for

player [ accordingly, just as in the proof of Theorem 6.7. O

Section 5.3 above discusses the limits of the dualisation methods with respect to
general components of equilibria. Problems arise from the fact that, in general, de-
generacies occur in the payoff space of both players. Therefore, the above method is

insufficient to prove that general index zero components cannot be hyperessential.

In a parallel and independent work, Govindan and Wilson (2004) show that an
equilibrium component has non-zero index if and only if it is hyperessential. Their
results are based on results from fixed point theory and apply to general N-player

games, and their proof uses highly technical arguments.

In fixed point theory, a fixed point component of a mapping f is called essential if
every mapping close to f has fixed points close to the component (Fort (1950)). It is
a well-known result in fixed point theory that if the fixed point index of a component
is zero, and if the underlying space is “well behaved”, then there exists a fixed point
free mapping close to the original mapping (O’Neill (1953)). In game theory, the Nash
equilibria can be described as the fixed points of a suitable mapping. A perturbation
of the game yields a mapping for the perturbed game that is close to the original fixed
point mapping. The Hauk and Hurkens example and the example presented in the next
section, however, show that just considering perturbations of the original game is not

sufficient to obtain equivalence between strategic and topological essentiality.
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The index of a component is the same in all equivalent games (Govindan and Wil-
son (1997a, Theorem 2; 2004, Theorem A.3)). By considering equivalent games, one
increases the space of possible perturbations. Thus the space of mappings that can be
obtained from perturbing equivalent games increases in dimension. This is the under-
lying idea in the proof of Govindan and Wilson for general components of equilibria.
The authors show that, if allowing equivalent games, the space of games, i.e. the space
of perturbed equivalent games, is rich enough to obtain equivalence between topolog-

ical and game theoretic essentiality.

The authors start from a map that has no fixed points close to the component.
Such a map exists after O’Neill (1953). From this map the authors create a perturbed
equivalent game that is such that the Nash map for this game, i.e. the mapping that
describes the Nash equilibria of the game as fixed points, copies the properties of the
original fixed point free map. That is, the Nash map does not have fixed points close
to the component. Thus a component is hyperessential if and only if it has non-zero

index.

In essence, the key idea of the approach by Govindan and Wilson and of the ap-
proach presented here is the same. One has the existence of mappings with certain
properties. For outside option components, the mapping does not map a point in the
dual of the component to the completely labelled point. Considering the parallels with
the Index Lemma, the index reflects a combinatorial property of the component. In the
case of Govindan and Wilson, one has a fixed point free mapping. The index describes
a topological property of the component. By adding redundant strategies it is shown

that the these mappings can arise as mappings from a perturbed equivalent game.

Remark 6.9 The combinatorial nature of the approach presented above is such that,
by duplicating Out, one creates one equivalent game such that, for all € > 0, there
exists a perturbation of that game smaller than € that has no nearby equilibria. In
particular, the equivalent game is independent of €. This is not the case for the equiv-
alent game constructed by Govindan and Wilson (2004), where the equivalent game

depends on €. Typically, one has to add more and more redundant strategies as €

becomes smaller.
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6.3 Restricted Duplication of Strategies and Index Zero:

An Example

Hauk and Hurkens (2002) show the non-hyperessentiality of the component in the
game (6.1) by adding a convex combination of strategies as a new strategy for player I,
i.e. not by duplicating Our. The added strategy is a convex combination of strategies 1

and 2 (for details see Hauk and Hurkens (2002)).

This section provides an example of an index zero outside option equilibrium com-
ponent that is not only essential, but is essential in all equivalent games that do not
contain a duplicate of Out. It shows that duplicating Out is not only sufficient, but in
cases also necessary to create an equi;valent game in which an index zero outside op-
tion equilibrium component is not essential. For general index zero equilibrium coni-
ponents, this suggests that it is necessary to add redundant strategies for both players

in order to create an equivalent game in which the component is not essential.

The example is constructed as follows. Consider the following game.

H> 0 09

G = , (6.3)
0 H 0,9
with
0 13,13 7,12 1,14
10,10 0,0 B
2 — , H =|12,7 88 21/. (6.4)
0,0 10,10

14,1 1,2 1,1
Game GP is the same as the game in (1.18) in Section 1.4. The 2 x 2 game H? in
the upper left part in G° is a 2 x 2 coordination game, and the 3 x 3 game H~ in the
lower middle part of G° is a game where the mixed strategy equilibrium in which both
players mix um'foﬁnly between their first two strategies yields the highest equilibrium
payoff, which is 10 to both players (see also (1.13) and (1.16) for further discussion).
In Section 1.4, it is shown that the outside option equilibrium component of the game
G? has index 0. The only equilibria that are not “cut off” by the outside option are the
pure strategy equilibrié in H? and the mixed strategy equilibrium in H~ with payoff
10 for both players. The two former ones have index +1, the latter one has index —1.

Hence, the outside option equilibrium component has index 0.
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Lemma 6.10 The outside option equilibrium component C(G®) of the game in (6.3) is
essential in all equivalent games that do not contain a duplicate of Out. In particular,

the component is essential.

Proof. Consider the games G2 and G~! as below.

o [m2 " o B
Gl'= F, G’ = : (6.5)
0,0 4, 0,0 o

Then the outside option equilibrium components in G2 and G~! are both essential and
hyperessential. The games G* and G~ are variants of the games G? as in (1.15) and
G ! as in (1.17). By the same reasoning as in Section 1.4, it is easy to verify that
C(G?) has index +2, and that C(G~ ') has index —1, where C(-) denotes the outside
option equilibrium component of a game. Thus both C(G?) and C(G~!) are essential
and hyperessential. Now consider the equivalent game, denoted as G, in which one

adds convex combinations for player I. Then every such game is of the form

[ H2 0,0 0,9 ]
£9 <9
P=] <9 <9 : |, (6.6)
<9 £9 0,9
| 0,0 H-

where the entry *£ 9 means that at least one payoff for player Il in that part of the
game is larger than 9, and *< 9’ means that all the payoffs for player II in that part of
the matrix are less than or equal to 9. Note that the payoffs in H+2? and H™ are such
that a convex combination does not allow entries larger than 9 in both parts of a row,
i.e. in both the H*2 and the H~ part of a convex combination of original columns. It is
now sufficient to consider only payoff perturbations for player I in the outside option,
since all other payoffs of the game G° are generic. Let the perturbation vectors of
player I’s payoffs in the outside option be denoted by &, €” and €’ for perturbations in
the upper, middle and lower part of the game (6.6). Without loss of generality it can be
assumed that € > 0, €” > 0 and € > 0. It can also be assumed that the perturbation
is generic, i.e. there is a unique maximal perturbation. Suppose there were two (or
more) maximal perturbations. If one is among the € and one among the &/, then

player I mixing uniformly between the strategies with the maximal perturbation and
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player II playing Out is an equilibrium close C(GP). All other cases of non-generic

perturbations are covered by the three cases below.

1) The maximal perturbation is among the €. In this case, player I playing the
strategy with that maximal perturbation and player II playing Out is an equilib-
rium close to C(GY).

2) The maximal perturbation is among the €. Then consider the game consisting
of the first two strategies of player Il and Out and the strategies as in (6.6) for
player I, with payoffs and perturbations as above, i.e. consider

- &9 T

T=|<9 ', (6.7)

T is an perturbed equivalent form of the game G~ in (6.5). Since C(G™1) is
hyperessential, there exists a strategy pair (x, y) that is an equilibrium close to the
outside option equilibrium component C(G—!). It is now shown that this strategy
pair, if interpreted as a strategy pair of the game G, is also an equilibrium close
to C(G%). First consider player L. By construction, player I has no incentive to
deviate from the strategy x, seen as a strategy of the game G° as in (6.6), if
player Il plays strategy y as a strategy of the game GO.

It remains to show that player II has no incentive to deviate from y, seen as a
strategy for the game G° via the mapping (y1,¥2,y0u) — (1,2,0,0,0,¥0u).
The strategy profile x is such that the first two strategies of player II must yield
a payoff of less than or equal to 9, where at least one must yield a payoff of 9.
Otherwise, player II would play Out only, and this cannot be an equilibrium for
the game T due to the maximal perturbation ¢!, But, by the choice of the payoffs
in the games H*? and H~, this means that the other strategies of player II’s
(except for Our) cannot be best replies against x, i.e. they all yield a payoff
strictly less than 9. This is because either the first strategy of player I or the

second strategy of player I must have a weight of around %. This implies that
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the remaining weight is not sufficient to yield an expected payoff larger than 9 for
player Il in the other strategies (except from Out). Thus (x,») is an equilibrium
of the game G°, which is also close to C(G?).

3) The maximal perturbation is among the sf. Then consider the game consisting
of the third, fourth and fifth strategy of player Il and Out and the strategies as in

G for player I, with payoffs and perturbations as above, i.e. consider
- 9 7

bl

T'=| <9 |, (6.8)

H-
Then the analysis is analogous to the one above. The game T is a perturbed
equivalent form of the game G? in (6.5). The component C(G?) is both essential
and hyperessential. Thus there exists an equilibrium (x,y) of T’ that is close
to C(G?). In the same way as above it can be verified that (x,y) is also an

equilibrium of the game GP that is close to C(G°).

Thus the component is essential in all equivalent games of the form (6.6). It remains
to show that it is also essential when adding convex combinations for player II, but no
copies of Out. For this, extend the game T as in (6.7) by three columns of zeros, and
the game 7" as in (6.8) by two columns of zeros. Then the index of the components
in these modified games stays invariant, and the components remain hyperessential.
Now consider the game G?° as in (6.6) and add convex combinations of strategies for
player II, but no duplicate of Out. If the maximal perturbation in the outside option
lies in the upper part, the added convex combinations can be translated into convex
combinations of the modified game T by assigning the weight on columns 3,4, 5 to the
added columns of zeros in T. The component in the modified game T is hyperessential,
and one shows that the equilibrium close to the component in the modified game T is
also an equilibrium of the equivalent game of (6.6). For maximal perturbations in
the lower part of the game one does the same analysis with the modified game S by
treating the weights on columns 1,2 as weights on the two added columns of zeros. If

the maximal perturbation lies in the middle part, the case is trivial. O
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Index of Symbols

Symbol

1

Am—l1
N
At
jantl,
AS(L)

1(-)
J()
L()
I(w)
M(K)

ME (k)

Description

vector in R¥ with entry 1 in every row

the standard (m — 1)-simplex

standard (m — 1)-siinplex with canonical division
simplicial division of the standard (m — 1)-simplex
division of | A™~! | into labelled regions
Sperner matrix

artificial payoff matrix

payoff matrixes for player [ and II

outside option equilibrium component

dual of a component of equilibria

Sperner mapping from | A™~1 | to A"~
payoff mapping

dual payoff mapping

best reply polyhedron

the index for equilibria as defined by Shapley
mapping identifying X> with A™!

set of pure strategies of player I and II
projection of L(-) on /

projection of L(-) on J

labelling function for points in X and Y

lifting of w € Vo2 into v2

set of L-H paths in X x Y with missing label £

the set of L-H paths in X2 with missing label £

best reply polytope
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15
16
69
65
71
71
46
15
32,110
111
70
85
86
18
25
86
15
16
16
16
53
23
51

40



polar of the best reply polytope

simplicial surface of the polar polytope

labelled surface of the polar polytope

projection of ws € v2 on the best reply face W&
k-dimensional real space

support of mixed strategy

(m — 1)-simplex in |X2|

best reply face of v

completely labelled point in A”~! and X2

set of vertices in X and ¥

a point in VA

the simplex containing ws in x4

mixed strategy spaces of player I and II

enlarged strategy spaces spanned by X' (¥) and 0
best reply regions in X and ¥

unplayed strategy faces of X and ¥

the dual space of X

dual construction

labelled dual construction
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49
48
15
16
41
47
69, 86
17
46
56
15
23
16
16
41
41
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