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ABSTRACT 

This study deals with multivariate structural time series models, 

and in particular, with the analysis and modelling of cross-sections of 

time series. In this context, no cause and effect relationships are 

assumed between the time series, although they are subject to the same 

overall envirorunent. 

The main motivations in the analysis of cross-sections of time 

series are (i) the gains in efficiency in the estimation of the 

irregular, trend and seasonal components; and (ii) the analysis of 

models with common effects. 

The study contains essentially two parts. The first one considers 

models with a general specification for the correlation of the 

irregular, trend and seasonal components across the time series. Four 

structural time series models are presented, and the estimation of the 

components of the time series, as well as the estimation of the 

parameters which define this components, is discussed. 

The second part of the study deals with dynamic error components 

models where the irregular, trend and seasonal components are generated 

by common, as well as individual, effects. The extension to models for 

multivariate observations of cross-sections is also considered. 

Several applications of the methods studied are presented. 

Particularly relevant is an econometric study of the demand for energy 

in the U. K. 



-3- 

CONTENTS 

Introduction 10 

1. Multivariate Structural Time Series Models 16 

1.1 Introduction 16 

1.2 Definitions and Basic Statistical Properties of the Models 19 

1.3 The Kalman Filter 28 

1.4 The Diffuse Kalman Filter 38 

Appendix 1.1 Matrix Algebra Results for the Kalman Filter 42 

2. The Likelihood Function 44 

2.1 Introduction and General Results 44 

2.2 Diagonalisation of a Symmetric r-Toeplitz Matrix 49 

2.3 A Simple Expression for the Likelihood Function 54 

2.4 Comparison with the Frequency Domain Approach 64 

3. Maximum Likelihood Estimation of the Param 

3.1 Introduction 

3.2 Estimation of the Coefficients of the 

3.3 Estimation of the Variance Covariance 

3.4 Estimation Strategy 

3.5 Tests of Hypotheses. 

eters and Testing 67 

67 

Exogenous Variables 70 

Matrices 78 

82 

85 

4. The Demand for Energy in the U. K.: An Application 87 

4.1 Introduction 87 

4.2 The Econometric Model 90 

4.3 Estimation of the Model and Results 97 

4.4 Forecasting the Demand for Energy 112 



-4- 

4.5 Conclusions 119 

Appendix 4.1 Definition of the Data 121 

Appendix 4.2 Constrained Dependent Variables 122 

5. Dynamic Error Components Models 124 

5.1 Introduction and Formulation 124 

5.2 Basic Properties of the Models 135 

5.3 Extension to Multivariate Observations 142 

5.4 Extension to Factor Analysis 145 

6. Estimation of Dynamic Error Components Models Type 1 149 

6.1 Introduction 149 

6.2 Estimation of the Unobserved Components 151 

6.3 Maximum Likelihood Estimation of the Parameters 167 

6.4 Analysis of Labour Cost Time Series: An Application 180 

7. Estimation of Dynamic Error Components Models Type 11 185 

7.1 Introduction 185 

7.2 Estimation of the Unobserved Components 188 

7.3 Maximum Likelihood Estimation of the Parameters 207 

7.4 Analysis of Labour Cost Time Series: An Application 213 

8. Multivariate Dynamic Error Components Models 219 

8.1 Introduction 219 

8.2 Estimation of the Unobserved Components 224 

8.3 Maximum Likelihood Estimation of the Parameters 227 

8.4 The Demand for Energy in the U. K.: An Application 234 

References 241 



-5- 

LIST OF TABLES 

2.3.1: Coefficients of the Eigenvalues of the Powers of F 

to Form Xc, t-p 59 

4.3.1: Estimates of Price Effects 101 

4.3.2: Slopes of the Biases in Technical Progress 102 

4.3.3: Error Structure of the Models 103 

4.3.4: Test of Hypotheses 104 

4.3.5: Demand Elasticities 107 

4.4.1: Estimates in Total Quantity of Energy Models 116 

4.4.2: Demand Forecasts for 1987 117 

4.4.3: Absolute Value of Prediction Errors for 1987 118 

5.4.1: Eigenvalues and Eigenvectors of E. and E 71 148 

6.2.1: Parameter Values in the Evaluation of the Efficiency 160 

6.2.2 to 6.2.11: Relative Efficiency of Estimators Using a 

Single Time Series Compared to Estimators 

Using n Times Series 162-166 

6.4.1: Estimation Results for Univariate Models 183 

6.4.2: Estimation Results for the Multivariate Model 184 

7.2.1: Parameter Values in the Evaluation of the Efficiency 200 

7.2.2 to 7.2.11: Relative Efficiency of Estimators Using a 

Single Time Series Compared to Estimators 

Using n Time Series 202-206 

7.4.1: Ordinary Least Square Regressions 214 

7.4.2: Estimation Results for 'Univariate Models 216 

7.4.3: Estimation Results for the Multivariate Model 218 

8.3.1: Number of Parameters in Variance Covariance Matrices 

in Model Type 1 233 



-6- 

8.3.2: Number of Parameters in Variance Covariance Matrices 

in Model Type II 

8.4.1: Estimates of Price Effects 

8.4.2: Slopes of the Biases in Technical Progress 

8.4.3: Error Structure of the Model 

8.4.4: Demand Elasticities 

233 

237 

238 

239 

240 



-7- 

LIST OF FIGURES 

4.3.1: Biases in Technical Progress: Other Industry Sector 108 

4.3.2: Biases in Technical Progress: Domestic Sector 109 

4.3.3: Biases in Technical Progress: Other Final Users Sector 110 

4.3.4: Biases in Technical Progress: Transport Sector ill 

4.4.1: Price Index of Energy (1971 Q1 - 100) 115 

6.4.1: Labour Cost Time Series (in logarithms) 182 

7.4.1: Labour Cost Time Series (in logarithms) 215 



-8- 

To the memory of my father 



-9- 

ACKNOWLEDGMENTS 

First of all I wish to espress my gratitude to my supervisor, 

Professor Andrew C. Harvey, for his constant support and guidance at 

all stages of this work. 

am grateful to the participants at the Econometrics Workshop and 

the members of the Statistics Department at the London School of 

Economics for their comments and suggestions. 

I am also grateful to Guido del Pino, Osvaldo Ferreiro, German 

Rodriguez and Alvaro Vial who encouraged me to undertake postgraduate 

studies. 

Financial contributions by the British Council, the Pontificia 

Universidad Catolica de Chile and the Instituto Nacional de 

Estadisticas de Chile is acknowledged. A teaching assistantship at the 

London School of Economics is also acknowledged. 

Finally, I would like to thank my wife Carmen Gloria for a good 

deal of encouragement and endless patience during these years. 



-10- 

INTRODUCTION 

It has long been recognised that many economic time series can be 

decomposed as a sum of trend, seasonal and irregular components, 

(1) Yt ý At + 7t t=1,..., T, 

where yt denotes, perhaps after some transformation, the t-th 

observation and at, yt and ft are the trend, seasonal and irregular 

components. 

Structural time series modelling deals with the specification and 

estimation of these components, and of the parameters which define 

them. The historical development of structural time series models and a 

review of the specifications usually considered in the literature can 

be found in Harvey and Durbin (1986) and Harvey (1990). In the basic 

structural model, the trend and seasonal components are defined by 

At + pt-l + 71t, 

ot = ot-, + btl 

'Yt ý- 7t -1- 7t -2-'*'- 'yt - S+ 1 (S)t I 

where jAt is the level of the trend at time t, Ot is its slope, -yt is 

the seasonal component at time t, s is the seasonal period, and nt, bt, 

wt, and the irregular component et in (1), are random shocks assumed to 

be mutually and serially uncorrelated, with expected values equal to 

072 072 zero and variances ,, ag, o-,, 2 and . respectively. Thus, the trend and 

seasonal effects in the time series are assumed random variables 

changing over time. If the variances of the random shocks nt, bt and wt 

are equal to zero, model (1) collapses to a deterministic linear trend 

with fixed dummy seasonal variables. Allowing those variances to be 
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greater than zero gives flexibility to the trend and seasonal 

components to evolve over time. Model (l)-(4) can be written in state 

space form and as a result the Kalman filter algorithm can be used to 

estimate the unobserved components. The variances of the random shocks, 

usually called hyperparameters, can be estimated by maximum likelihood. 

Although the above specification may be extended to include 

cyclical components as in Harvey (1985a), or general ARMA structures as 

defined by Box and Jenkins (1976), there is substantial empirical 

evidence supporting specifications like the one presented above, or 

particular cases of it, for many economic time series; see Harvey and 

Todd (1983), Kitagawa and Gersh (1984), Harvey and Durbin (1986), 

Fernandez-Macho (1986), and Fernandez-Macho and Harvey (1989). 

This study is concerned with the construction of structural time 

series models for cross-sections of time series. In this context, an 

n-dimensional multivariate version of model (l)-(4) can be naturally 

constructed. It is assumed that there is no cause and effect 

relationships between the n time series. However, as these time series 

are subject to the same overall environment, the multivariate white 

noise random shocks which drive the irregular, trend, and seasonal 

components: ft, i7t, bt and wt, have variance covariance matrices: E,, 

E, qj F-6 and E, respectively. 

The two main motivations in the study of multivariate models for 

cross-sections of time series are (i) the gains in efficiency in the 

estimation of the trend and seasonal components, and (ii) the analysis 

of models with common trend and seasonal effects. 

Although, as mentioned earlier, the especification (l)-(4) can be 

extended straightforwardly to a multivariate model, the estimation and 

the analysis of a model with more than four or five time series becomes 

extremely complicated. In that sense, an important objective in the 
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formulation and estimation of multivariate models is the specification 

and testing of hypotheses which reduce the dimensionality of the 

problem and simplify the analysis and the interpretation. Related to 

these ideas is the development of simple estimation procedures. That is 

also an important objective in the study of multivariate models. 

Previous studies on multivariate structural time series models 

include Jones (1966), Enns et all (1982), Harvey (1985b), 

Fernandez-Macho (1986), Fernandez-Macho, Harvey and Stock (1987), 

Fernandez-Macho and Harvey (1989), Fernandez-Macho (1989), and Harvey 

(1990). Harvey (1990) and Fernandez-Macho (1986) are excellent reviews. 

Jones (1966) considered a multivariate smoothing model which 

corresponds to the multivariate version of (l)-(4) but with no slope or 

seasonal terms. Enns et all (1982) studied the same model as Jones and 

assumed that the two variance covariance matrices in the model, E. and 

E.,, were proportional; what is called the homogeneity hypothesis. They 

proposed a method to estimate the parameters of the model by maximum 

likelihood and showed how estimates of the trends could be computed by 

the Kalman filter. Harvey (1985b) extended the multivariate exponential 

smoothing model to include slope and seasonal components as in (l)-(4), 

studied the estimation of the unobserved components by the Kalman 

filter, and formed the likelihood function by using the Kalman filter 

and the prediction error decomposition. Fernandez-Macho (1986) and 

Fernandez-Macho (1989) developed the frequency domain maximum 

likelihood estimation of the parameters in the multivariate version of 

(l)-(4), and in particular cases of it. Fernandez-Macho and Harvey 

(1989) developed a test for the homogeneity hypothesis used by Enns et 

all (1982). Finally, Fernandez -Macho, Harvey and Stock (1987) and also 

Fernandez-Macho (1986) studied dynamic factor analysis models. 

The present study contains, basically, two parts. The first one, 
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which includes the first four chapters, is concerned with the 

multivariate structural time series models defined above. The main 

contributions here are (i) a more detailed study of the model with 

exogenous variables, as it is usually the case in analysing economic 

time series; (ii) a new expression for the likelihood function; and 

(iii) an econometric application where the unobserved trend components 

have an economic interpretation. The second part of the study includes 

chapters 5 to 8 and is concerned with the formulation and the 

estimation of dynamic error components models. Although these kind of 

models have received significant attention in the econometric 

literature, the approach developed here is new. 

The following lines present a detailed account of the content of 

this study, with special reference to the new material. 

Chapter 1 defines a multivariate regression model where the 

residuals follow a structural time series models. Four time series 

models, and basic statistical properties of them, are presented in 

Section 1.2. Section 1.3 presents the standard Kalman filter and 

Section 1.4 the diffuse Kalman filter. These two filters are 

alternative algorithms to obtain estimates of the unobserved components 

in the model. They differ in the way they deal with the initial 

estimates used to start the recursions of the filter. The main 

contributions of this chapter are the development of formulas to start 

the standard Kalman filter in Section 1.3, and the simple and direct 

derivation of the diffuse Kalman filter in Section 1.4. 

In Chapter 2, Section 2.1 presents three asymptotically equivalent 

expressions for the likelihood function: the one obtained using the 

standard Kalman filter and the prediction error decomposition, the 

frequency domain likelihood, and the diffuse likelihood which is based 

on the diffuse Kalman filter. Sections 2.2 and 2.3 develop a new 
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alternative expression for the likelihood function which is simple and 

has some advantages over the more standard approaches. Section 2.4 

compares the new expression with the frequency domain likelihood. 

Chapter 3 deals with the maximum likelihood estimation of the 

parameters in the regression model defined in Chapter 1. Section 3.2 

considers the estimation of the vector of exogenous variables, and 

Section 3.3 the estimation of the parameters in the variance covariance 

matrices of the random shocks. Section 3.4 analyses the estimation 

strategy and Section 3.5 presents results for the asymptotic behaviour 

of the estimators. Most of the results in this chapter have already 

been developed in the literature, although the results in Section 3.2 

are considerably more general than the ones found in previous studies. 

Chapter 4 presents an econometric study for the demand for energy 

in the U. K. for the period 1971-1986. The study illustrates the 

techniques and procedures of the first three chapters. Using a translog 

cost equation, Section 4.2 presents an econometric model where the 

technical progress takes the factor augmenting form. Assuming that 

these factors follow stochastic trends, the reduced form of the model 

has the form defined in Chapter 1. Section 4.3 estimates the model 

separately for each of four economic sectors: other industry, domestic, 

other final users, and transport; which use mainly four fuels: gas, 

electricity, oil and coal. Section 4.4 obtains forecasts of the 

individual demands. 

Chapter 5 formulates dynamic error components models. In Section 

5.1 the standard specification of static error components models 

considered in the literature is extended to dynamic models. Two kind of 

models are defined depending on whether the time series share the same 

trend and seasonal components or not. In the terminology of Engle and 

Granger (1987), the distinction between the two models is based on the 
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concept of cointegration. Basic statistical properties of the models 

are presented in Section 5.2, while sections 5.3 and 5.4 generalise the 

specifications to multivariate observations and factor analysis models 

respectively. The contents of this chapter, as well as of the ones 

which follows constitute a completely new approach to dynamic error 

components models. 

Chapter 6 studies the estimation of error components models type I 

where the time series are not assumed to share the same trend and 

seasonal components. Chapter 7 deals with the estimation of error 

components models type II, where the time series have the same trend 

and seasonal components. Finally, Chapter 8 presents results for the 

estimation of multivariate error components models. 

Some final comments with respect to the presentation of the 

material follows. Equations, tables and figures are numbered according 

to the section. The chapter number is omitted except when referring to 

an equation in another chapter. Finally, the presentation uses 

extensively definitions and results in matrix algebra. A good reference 

is Magnus and Neudecker (1988, chs. 1,2, and 3). 
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CHAPTER 1: MULTIVARIATE STRUCTURAL TIME SERIES MODELS 

1.1 Introduction 

This chapter defines a multivariate regression model with 

stochastic trend and seasonal components, reviews basic statistical 

properties of multivariate structural time series models, and presents 

the Kalman filter algorithm for the estimation of the unobserved 

components. For most of the definitions and results stated, 

Fernandez-Macho (1986) and Harvey (1990) are good references. 

The multivariate regression model with stochastic trend and 

seasonal components is defined as 

yt -B zt + at, t=� 

where yt is an (n x 1) vector of observations, zt is an (r x 1) vector 

of exogenous variables, B is an (n x r) matrix of fixed parameters 

which satisfy the restrictions 

vec(B) -Sß, 

and at is a residual component which follows a structural time series 

model. In (1.1b), S is a known (nr x k) selection matrix and 0 is a (k 

x 1) vector representing the functionally independent parameters in B. 

Alternatively, the model can be written as 

yt = xt. 0 at, 

with Xt the (n x k) matrix (z' @ In)S, where @ represents the Kronecker t 

product and In is the identity matrix of order n. For the residuals at, 

the following four alternative specifications are considered : local 

level, local linear trend, seasonal local level, and basic structural 
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model. Although detailed def initions are presented in Section 1-2, all 

the mentioned models for the vector at can be written in the state 

space form 

(1.3a) C't = (Z @ In) Ot + 'Et, t=1, ... 

(1.3b) Ot - (T @ In) Ot-, + (R @ In) Kt, 

where Z, T and R are time invariant and known matrices of dimension 

x P), (p x p) and (p x u) respectively, Ot is the state vector which 

contains the trend and seasonal components, and ft and Kt are (n x 1) 

and (nu x 1) dimensional random shocks assumed to be serially and 

mutually uncorrelated, normally distributed, with expected values equal 

to zero and variance covariance matrices Ef and E. respectively. The 

random shock Kt has u subcomponents of dimension (n x 1) each, which 

correspond to the random shocks of the trend and seasonal effects. 

These u subcomponents are also assumed to be mutually uncorrelated, and 

then , the matrix Y-K is block diagonal. In the state space 

representation (1.3), (1.3a) is called the measurement equation and 

(1.3b) the transition equation. 

Model (1.3) is said to be homogeneous if 

EK - DK @ 1: 
f P 

where DK is a diagonal matrix of dimension u. Thus, the model is 

homogeneous if the variance covariance matrices of the irregular random 

shock ft, and the variance covariance matrices of the u subcomponents 

in the vector Kt are proportional. 

Apart from this introduction, the chapter contains three more 

sections and an appendix. Section 1.2 defines the four time series 

models over at and presents some basic statistical properties of the 

models. The standard Kalman filter formulas, which are needed to handle 
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the state space model (1.3), with some additional results concerning: 

(i) the initialisation of the algorithm, (ii) the Kalman filter for an 

homogeneous model, and (iii) the treatment of the vector of 

coefficients 0, are presented in Section 1.3. Section 1.4 deals with 

the diffuse Kalman filter which extends the standard filter to handle 

state space models with very general diffuse or semi diffuse initial 

state vectors. Finally, Appendix 1.1 presents some basic matrix algebra 

results required in Section 1.3. 
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1.2 Definitions and Basic Statistical Properties of the Models 

This section defines four structural time series models for the (n 

x 1) vector of residuals cyt def ined in Section 1.1. The models are: 

local level, local linear trend, seasonal local level, and basic 

structural model. Basic statistical properties are also presented. 

Specific analyses for each model are considered in what follows. 

Local Level Model 

The local level model is defined as 

(2. la) Clt - ; It + Et, 

(2.1b) At = At-, + ? Itp 

where jAt is an (n x 1) vector representing the level or trend of at, 

and ft and nt are (n x 1) random shocks assumed to be normally 

distributed, serially and mutually uncorrelated, with expected values 

equal to zero and variance covariance matrices E. and E 71 respectively. 

The model is in the state space form (1.3) with p=u= 

1, and Kt = qt. Model (2.1) is not stationary given the presence of a 

random walk trend; however, the stationary form of the model is 

obtained by taking first differences in (2.1a). That gives 

(2.2) vt a (1-L) at - t7t + (1-L) ft, 

where L is the lag operator. From this expression, the autocovariance 

function of Pt is given by 

(2.3a) r(o) = Y-71 +2 Efy 
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(2.3b) r(ti) -- Y-ft 

and 

(2.3c) r(±k) = 0, if k ýý, 1. 

It then follows that the differences of at can be written as a 

restricted MA(l) model, which is called the reduced form of the local 

level model. The autocovariance generating function evaluated at e-iX, 

which is equal to 2w times the spectral density evaluated at the 

frequency X, is given by 

(2.4) E? 7 + (2 -2 cos(X)) Y-,, -w4X4W. 

Thus, the spectral density is real and the model is strictly invertible 

if E 71 is positive definite. 

The local level model can be extended to include af ixed slope in 

the transition equation (2.1b). In that situation, 

(2.5) At - At-, +0+ ? Itp 

and, by repeated substitutions, the trend Vt can be expressed as 

(2.6) At - 4t +t 0) 

with A*t satisfying (2.1b). Replacing (2.6) in (2.1a) shows that the 

model with a fixed slope 0 has the standard form (2.1) with t as an 

exogenous variable and 0 as its coefficient. Fixed seasonal components 

can also be included in the model as exogenous variables in the 

measurement equation (2.1a). 

Local Linear Trend Model 

The local linear trend model is defined as 
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(2.7a) Clt - At + ft It= 1'..., T, 

(2.7b) Pt - At-, Ot-, qtp 

(2.7c) ot = Ot-, 6tt 

where the (n x 1) vector At is the trend of at and the (n x 1) vector 

Ot is its slope. The (n x 1) dimensional random shocks Et, qt and 6t 

are assumed to be normally distributed, serially and mutually 

uncorrelated, with expected values equal to zero and variance 

covariance matrices E., E 77 and Eb respectively. 

The model is in the state space form (1.3), with p=u-2, and 

with 

(2.8a) 1039 

(2.8b) 
0 
i 

(2.8c) 

(2.8d) 17ý , 6ý )9 

and 

(2.8e) 

That is, Z is a (1 x 2) matrix, T and R are (2 x 2) matrices, and Kt 

and Ot are (2n x 1) vectors. Notice that in the state vector Ot, the 

first n elements correpond to the levels or trends pt while the last n 

elements correspond to the slopes Ot. That is the way the components 

are ordered in the state vector and the same principle will be used in 

the following models. The stationary form of the model is obtained by 
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taking second differences in (2.7a). That is, 

(2.9) pt a (1-L) 2 Cit = bt + (1-L) ? It + (1-L)2 ft I 

From where, the autocovariance function of Pt is given by 

(2.10a) r(o) - Eb +2 Y-71 +6 Y-ey 

(2.10b) r(ti) --E 77 -4 Ef, 

(2.10c) r(±2) = Ef, 

and 

(2.10d) r(±k) - 09 if k 2h, 2. 

t=3,..., T. 

It follows that the reduced form of the local linear trend model is a 

restricted MA(2). The autocovariance generating function evaluated at 

e-" is given by 

Eb + (2 -2 cos(X)) E 71 + (2 -2 COS(>, ))2 Yf9 

where -w 4X4 -r. The local linear trend model is strictly invertible 

if the matrix Eb is a positive definite matrix. 

Notice that when Eb is equal to zero and the component Ot at time 

zero is defined as a fixed parameter, the local linear trend model 

reduces to the local level model with af ixed slope in the trend lit; 

see equation (2.5). 

Seasonal Local Level Model 

The seasonal local level model, with seasonal period s, is defined 

as a 
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(2.12a) Cit - /At + 7t + ft, t-1, ... 

(2.12b) At = Ilt- I 

(2.12c) S(L) -yt = wt, 

where the (n x 1) vector At is the level or trend of at, and the (n x 

1) vector Tt the seasonal component. The polynomial in the lag operator 

Ll S(L), is defined as S(L) = (1 +L+... + Ls-1); and, the (n x 1) 

random shocks ft, qt and wt are assumed to be normally distributed, 

serially and mutually uncorrelated, with expected values equal to zero 

and variance covariance matrices E. I Y-,, and E. respectively. 

The model is transformed into the state space form (1.3) by 

defining auxiliary components Yltl***'-YS-2, t, and by setting p=s, u- 

2, and , 

(2.13a) 1,1,02 ... ' 0 ]p 

000 

0 -1 -1 1 
010 

(2.13b) 00 

00010 

12 

(2.13c) 
0 

(2.13d) 71 ý, 0)ý )v 

and 

I 
(2. l3e) ly; t 'YS - 2t 
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That is, Z is a (1 x s) matrix, T is an (s x s) matrix, R is an (s x 2) 

matrix, Kt is a (2n x 1) vector, and the state vector Ot has dimension 

(sn x 1) . The auxiliary components 71t''**"YS-2, t correspond to the 

seasonal effects at times (t-l),..., (t-s+2) respectively. The 

stationary form of the model is obtained by taking seasonal differences 

in (2-12a) and using the fact that (1-L) S(L) - (1-Ls). That is, 

(2.14) pt -E (1-Ls) at = S(L) qt + (1-L) wt + (1-Ls) ft, 

for t- s+l, ... J. The autocovariance function of Pt is then given by 

(2.15a) r(o) -s1: 77 +2 Y-cj +2 F- fp 

(2.15b) r(ti) - (s-1) E 71 - Ewy 

(2.15c) r(t2) - (s-2) E 77) 

(2.15d) Eqy 

(2.15e) r(ts) -- Eel 

and 

(2.15f) r(±k) -0p if 

It follows that the reduced form of the seasonal local level is a 

restricted MA(s) model. The autocovariance generating function 

evaluated at e-iX is 

(2.16) 
S2 E 

71 p 
if X= 

(cs/c, ) F-71 + cl Y-W + cs EEO if X ;d 

where cr ' (2 -2 cos(Xr)) and -, r :4X :4r. The model is strictly 

invertible if both E 71 and E. are positive definite matrices. 
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As in the local level model ,af ixed slope 0 can be added to the 

trend component At in (2.12b), and that is equivalent to include the 

time as an exogenous variable with 0 as its coefficient. On the other 

hand, if E. is equal to zero and the seasonal components at time zero 

are def ined as f ixed parameters, the model reduces to the local level 

model with fixed seasonal dummies as exogenous variables. 

Basic Structural Model 

The basic structural model, with seasonal period s, is defined as 

(2.17a) Cit ý At + Yt + ft, 

(2.17b) At - At-, + ot-l 

(2.17c) ot = ot-I + btp 

(2.17d) S(L) ^it - wt, 

Tq 

where the (n x 1) vector At is the trend of at, the (n x 1) vector Ot 

is its slope and the (n x 1) vector -yt is the seasonal component. S(L) 

= (1 +L+L2 + 
... +Ls-1), withL the lag operator; andthe n 

dimensional random shocks et, nt, bt and wt are assumed to be normally 

distributed, serially and mutually uncorrelated, with expected values 

equal to zero and variance covariance matrices Y-,, E17P Eb and E. 

respectively. 

The model is written in the state space form by defining auxiliary 

components Y1 to ***9 7S - 2t as in the seasonal local level model. In 

terms of the general form (1.3), p= (s+l), u-3, and 

(2.18a) [l 010 0]) 
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0 0 0 0 
0 0 0 0 0 
0 0 -1 -1 -1 -1 (2.18b) 0 0 1 0 0 0 
0 0 0 1 0 0 

0 0 0 0 10 

(2.18c) R-], 
0 

(2.18d) lqý , 
6ý 

, Wý )p 

and 

(2. l8e) III 0ý =( Aý , 
0ý 

, pyt I 'Yl t PYS 
-2t 

That is ,Z is a (1 x s+l) matrix, T is an (s+l x s+l) matrix, R is an 

(s+l x 3) matrix, Kt is a (3n x 1) vector and the state vector Ot has 

dimension (n(s+l) x 1). The stationary form of the basic structural 

model is obtained by taking seasonal and regular differences in 

(2.17a), and using also the relation (1-L) S(L) - (1-Ls). That is, 

. A)t (2.19) pt a (1-L)(1-Ls) at - S(L) bt + (1-Ls) i7t + (1-L) 2( 

+ (1L)(1Ls) s+2, 

From where the autocovariance function of Pt is given by 

(2.20a) r(O) =s Eb +2E 77 +6 Ew +4 Ef, 

(2.20b) r(±l) = (s-1) Y-6 -4 F-W -2 Y-C, 

(2.20c) r(±2) = (s-2) Eb + Eop 

(2.20d) r(t3) - (s-3) Eb, 
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(2.20e) y, 

(2.20f) r(ts) =- V- Lý -2 Ec 

(2.20g) Efy 

and 

(2.20h) r(±k) = 02 if k ý, 

Hence, the differences of at follow a restricted MA(s+l) model. The 

autocovariance generating function evaluated at e-" becomes 

(2.21) 
S2 F6, if X of 

(CS/Cl) Eb + CS + C2 +CC Eft if X0 71 11sI 

where cr ý (2 -2 cos(Xr)) and -v 4X4r. The model is strictly 

invertible if both F-6 and E. ) are positive definite matrices. 

When Y-6 is equal to zero, and the component Ot at time zero is 

defined as a fixed parameter, the basic structural model reduces to the 

seasonal local level with the time as an exogenous variable. If also E. 

is equal to zero and the seasonal components at time zero are def ined 

as fixed parameters, the model reduces to the local level model with 

the time and seasonal dummies as exogenous variables. 
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1.3 The Kalman-Filter 

This section presents the standard Kalman filter formulas for the 

state space model (1.3). The filter is used to obtain estimates of the 

unobserved components Ot and to form the likelihood of the model. The 

general formulas are presented assuming that the vectors a, , ... 1 CeT are 

observed and that the variance covariance matrices of the random shocks 

are known. This assumptions are of course unrealistic but the 

rationality is the following. To obtain estimates of the unknown 

parameters in the model, the likelihood function is maximised using a 

nonlinear optimisation procedure which requires the evaluation of this 

function. This evaluation is provided by the Kalman filter and, 

obviously, initial values for the parameters are needed. On the other 

hand, once the parameters of the model have been estimated, the Kalman 

filter presented in this section yields the estimates of the unobserved 

trend and seasonal components in the state vector Ot, as well as their 

mean square errors. 

The section presents first general formulas for the Kalman filter, 

and studies the construction of the initial quantities required in the 

filter recursions. Particular cases of interest are considered later: 

the Kalman filter for an homogeneous model and the treatment of the 

vector of exogenous variables 0 when the vectors at, t-1, ..., T, are 

not observed. 

To present the general Kalman filter recursions, the following 

definitions are required: 

(3.1a) 41t = fal, ..., at)f 

(3.1b) mt ý E(Ot / *t), 
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(3.1c) Pt . V(Ot / *t-, ), 

(3. ld) Pt - V( Ot / qvt) 
p 

(3. le) vt = at -E (at / Tt 
-1), 

(3. lf ) Ft = V(vt / iVt-, ), 

where E(x) and V(x) represent the expected value and variance 

covariance matrix of the random variable x. That is, 41t is the 

information set up to time t, mt is the estimator of the state vector 

at time t with information up to time t while vt is the one step ahead 

prediction error of at. Pt, Pt and Ft are condicional variances. With 

these definitions, the Kalman filter formulas for the general model 

(1.3) , are 

(3.2a) Pt - (T 0 In) Pt-1 (TI 0 In) + (R @ In) lK (RI 

(3.2b) Ft = (Z @ In) Pt (Z' @ In) + r-E, 

(3.2e) pt . pt - Pt (7-' @ In) Ftl (7- @ In) Pt) 

(3.2d) mt ý (T @ In) mt-1 + Pt (Z' @ In) Ftl vt, 

and 

(3.2e) vt - cit - (Z T0 In) 111t -1; 

see for example Anderson and Moore (1979, sec. 3.1) or Harvey (1990, 

sec. 3.3). Under normality, the Kalman filter yields the minimum mean 

square error estimator of Ot and at conditional on an information set. 

It also yields the mean square errors of these estimators. Without the 

normality assumption, the estimates obtained from the Kalman filter 
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equations minimise the mean square errors within the class of linear 

estimators. Formulas for smoothing and forecasting are found in 

Anderson and Moore (1979, ch. 7) and Harvey (1990, sec. 3.3). 

Two important questions, with respect to the recursions (3.2) arise 

at this point. These are, the existence of a steady state Kalman filter 

and the specification of the initial values mo and PO needed to start 

the filter. Harvey (1990, sec. 3.3) showed that the models presented 

here always satisfy necessary conditions for a steady state Kalman 

filter. That is, if the above formulas are started with a positive semi 

definite matrix Po, then 

(3.3) lim Pt ý P, 
t-. )w 

where P is unique, and independent of POI If also, the stationary form 

of the model is strictly invertible, the convergence is exponentially 

fast. 

With respect to the initial values mo and PO, as no prior 

information for these quantities is, in general, available, a dif fuse 

prior for the state vector at time zero is defined. That. is, the state 

vector at time zero is assumed to have a normal distribution with 

expected value zero and variance covariance matrix (T Inp), where T is 

a large number. On the other hand, it may be the case that only some 

linear combinations of the components of the state vector are def ined 

as diffuse, while for other linear combinations a proper prior at time 

zero can be defined. In that situation the state vector is said to have 

a semi diffuse prior. 

The general solution to deal with the Kalman filter under a diffuse 

or semi diffuse prior specification is presented in the next section, 

and that involves some modifications to the standard Kalman filter 

equations presented above. An alternative solution, although not very 
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general, is presented in Harvey (1990, sec. 3.3) and that may be 

simpler in many practical situations. Harvey showed that, for the 

models considered here, a proper prior can be formed using the first p 

vector of observations, where p is the number of components in the 

state vector for each time series. The procedure is the following. From 

(1.3a), the first p vectors p can be written in terms of Op, by 

repeated substitution for Ot from (1.3b). This yields 

(3.4a) 

ZT2 -P R 
Z T3-P R 

In] Kp-l 

0 

ce Z T' -P 
Ce 2Z 

T2-P 

In Op 

cep- Z T-1 
OLP iz. i 

Z Tl -P R 
Z T2-P R 

In] Kp 

Z T-1 R 
01 

Z T-1 R' ei ' 
2 

In] K2 + 

p 

which, with obvious notation, can be written as 

(3.4b) 0= (H @ In) Op + (H p@ In) Kp + -- + (H2 @ In) K2 

- In) Op + e, 

where oz, 0p and e are vectors of dimension np, H is a (p x p) matrix, 

HpI.... H2 are (p x u) matrices and e is a vector of dimension np and 

expected value zero. The generalised least squares estimator of 0p is 

then given by 

(3.5) mp ý (H-1 0 In) 0, 

and the variance covariance matrix of the estimation error by 

(3.6) ppý (H-1 0 In) V(e) (H'-' @ In), 

'A 
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where V(e) is the variance covariance matrix of the vector e; see also 

Duncan and Horn (1972). These quantities are then used to start the 

recursive formulas (3.2) from t- (p+l). The problem, however, is to 

find analytic expressions for H and V(e) in order to evaluate mp and 

P P, Harvey presented the solution for the local level model. In the 

following lines the solutions for the local linear trend, seasonal 

local level and basic structural models are also presented. The proofs, 

which require tedious matrix algebra, use equations (3.4) and the 

matrix algebra results presented in Appendix 1.1 

In the local level model the value of p is the unity, 

(3.7a) M, = Cill 

and 

(3.7b) PI - Ef* 

In the local linear trend model the value of p is two, 

Q2 

(3.8a) M2 

Ce2 - (YI 

and 

Ef 
(3.8b) P2 

+E 77 +2 

For the seasonal local level model the value of p is s, the 

seasonal period, and 
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as- 

(3.9a) m 
cis cis 

s 

Ce 2 ces 

where as = (a, + ... + us)1s. The matrix Ps is formed with (3.6) and 

(3.9b) V(e) = (Is @ Lve) + (A, @E 71 )+ (A2 @ 1: 6) 9 

where the (s x s) matrices H-1 and A, are given by 

(3.9c) (us) 

(S-1Y 
(S-1) i 

-1 

and 

(3.9d) 

(s-1) (s-2) (s-3) 0 
(s-2) (s-2) (s-3) 1 0 
(s-3) (s-3) (s-3) 

. .. 1 0 

1 0 
0 0 0. .. 0 0 

while the (s x s) matrix A2 has all its elements equal to zero with the 

exception of the element in the first column and first row which is the 

unity. 

Finally, for the basic structural model with seasonal period s, the 

value of p is (s+l), and 
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(3.10a) 

where , 

(3.10b) 

and 

(3.10b) 

MS+ i= 

cis 
9 

Qs+ i 5s 
cis + cy s 

Ce3 + (s-2)0 - -ces 

0= (C's+1 - 00 / 

cis= (11s) [Cis+, + (Cis+g) + (as-1+20) ++ (a 2+(S-1)0)1' 

The matrix Ps+j is formed using (3.6) and 

(3.10c) V(e) - (Is+, @ EE) + (A, 0E)+ (A2 (A3 77 2 

where the (s+l x s+l) matrices H-1, A,, A2 , and A3 are given by 

-(S-l) 

(3.10d) 

(3.10e) 

-2 
(S-1) 

H-1 - (1/2s) (s-3) 

-(s-3) 

s S-1 s-2 
S-1 S-1 s-2 
s-2 s-2 s-2 

1 1 1 
0 0 0 

222 (S+l) 
00.... 02 

-2 -2 .... -2 (S-1) 
-2 -2 .... 2(s-1) -(s-1) 

(s-5) 

.... 1 o 

.... 0 0 

I 
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(3.10f ) 

and 

(3.10g) 

A2 ýI 

s S-1 s-2 2 1 0 
S-1 s-2 s-3 1 0 0 
s-2 s-3 s-4 0 0 0 

1 0 0 0 0 0 
0 0 0 0 0 0 

2 -10.0' 
-1 10.0 
0 00.0 

A3= 

.... 

0 00.0 

Homozeneous Models 

It can be shown using an induction principle that under the 

homogeneity restriction (1.4), 

(3.11a) pt - Qt @ Ef) 

(3.11b) pt - Qt @ EE, 

and 

Ft - ft Ef, 

t=p,... �T, 

where Qt, Qt and ft have dimensions (p x p), (p x p), and (I x 1) 

respectively; and they are evaluated, from t= (p+l), according with 

the recursions 

(3.12a) Qt -T Qt-l T' +R DK RI, 

(3.12c) Qt ý Qt - Qt Z, ft, Z Qt, 
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and 

(3.12c) ft -Z Qt Z, + 1, 

which are exactly equivalent to the Kalman filter recursions of a 

univariate model with the variance of the irregular random shock Et 

equal to the unity and the variance covariance matrix Of Kt equal to 

DK . The estimates of the state vector Ot, t= p+l,..., T, are then 

obtained from 

(3.13) mt - (T @ In) mt -1+ (Qt Z' f t- 1@ In) vt , 

The vector mt in (3.13) can also be computed running the Kalman f ilter 

equations for each time series in turn, with the variance of Et equal 

to the unity and the variance covariance matrix of Kt equal to D.. 

Thus, the Kalman filter recursions for an homogeneous model can be 

computed separately for each time series as if the model were 

univariate. The full matrices Pt, Pt and Ft are then formed using 

(3.11). 

Exov-enous Variables 

To run the Kalman filter using equations (3.2), it was assumed that 

the vector of exogenous variable coefficients 0 was known. An important 

result proved by Kohn and Ansley (1985) for the univariate case, n-1, 

is that the f ilter can be run conditional on 0. That is, if the vector 

of coefficients 0 is unknown, the prediction errors and the estimators 

of the state vectors, can be expressed as explicit functions of 0. The 

idea can be extended to the multivariate case, n ýý, 1, in a 

straightforward form. Define the (np x 1) vector myt and the (np x k) 

matrix Mxt by 
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(3.14a) myt - (T @ In) Illy, t-1+ Kt ( yt - (Z T@ In) my, t-11, 

and 

(3.14b) Mxt = (T @ In) Mx, t-1+ Kt [ Xt - (Z T0 In) Mx, t-11, 

for t- p+l,..., T; where Kt is the gain matrix defined as Kt - (Pt (Z' 

@ In) Ft-l ] Then, from (3.2d) and (3.2e), the estimator of the state 

vector at time t, mt, can be written as 

(3.15) Mt = myt - Mxt ß, 

provide (3.15) holds for t-p; and that is immediat from (3.5). Using , 

(3.2e), the prediction error vt can be written as 

(3.16) Vt = Vyt - Vxt P, t=p+1,..., T, 

where vyt is an (n x 1) vector of pseudo innovations after running the 

Kalman filter over the time series yt, and Vxt is an (n x k) matrix of 

pseudo innovations after running the f ilter over each column of Xt. 

Notice that the recursions for the estimators of the state vectors and 

the prediction errors are the only quantities of interest in this 

situation because the variance covariance matrix of the state vector 

and the variance covariance matrix of the prediction error do not 

depend on the observations and hence on P. 
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1.4 The Diffuse Kalman Filter 

This section presents alternative and more general Kalman filter 

formulas for the situation in which the state vector in a state space 

model is defined as diffuse or semi diffuse. The results were developed 

by De Jong (1988,1989) although the presentation here is somehow 

different and more direct. The main advantage of the diffuse Kalman 

filter, over the standard formulas presented in the previous section, 

is that the problem of the initial conditions needed to start the 

recursions is solved by considering an extended filter. The 

disadvantage is that the recursions are slightly more complicated. 

Consider the state space model (1.3) with initial state vector 

given by 

00 =a+ 

where a is an (np x 1) normal random variable with expected value zero 

and variance covariance matrix Ea, A is an (np x r) matrix of known 

f ixed values, and Z is an (r x 1) normal random variable with expected 

value zero and variance covariance matrix EZ. Even more, assume that a 

and t are uncorrelated between them and with ct and Kt defined in 

(1.3). The vector ý is said to be diffuse if Ef 1 converges to zero in 

the Euclidean norm. In general, (4.1) specifies a semi diffuse state 

vector at time zero; but if a-0, and A- Inp, 00 is said to be 

diffuse and the results presented here coincide with the ones in the 

previous section. 

Consider the idea of running the Kalman filter conditional on E. 

Def ine mý , Pý, Pý, vý and Fý exactly as in (3.1) but conditional on 

Then, the matrices Pý, Pý and Fý are obtained, for t 'T, using 

the recursions (3-2a), (3.2b) and (3.2c) with starting value 
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(4.2) PC =E 0 

Using an algebraic manipulation similar to the one applied to the model 

with exogenous variables, it can be shown that mF and vý can be 

expressed as 

(4.3 a) Mý - Mlt - M2t ýo 
t-1,..., T, 

and 

(4.3b) Vý - Vlt - V2t E) 
t=1,..., T, 

where , 

(4.4a) m1t - (T 0 In) mi, t-1 + Ký vlt, 

(4.4b) M2t - (T @ In) M2, t-1 + Ký V2t$ 

(4.4c) vlt - at - (Z T0 In) mi, t-1, 

(4.4d) v 2t ý (Z T@ In) M2, t-ly 

mlo = 01 M20 = -A, and Ký is the gain matrix defined as Ký - [Pý (Z' 

In) (Fý) -I]; see also Rosenberg (1973). Thus , m, t and v, t are obtained 

after running the standard Kalman filter over the time series at with t 

= 0; while M2 t and V2t are obtained after running the same filter over 

each column of an (n x r) matrix of zeroes with the initial estimate 

for the state vector given by the columns of -A. 

At this stage, two general results concerning random variables are 

required. If ý and z are random variables, then 

(4.5a) E(z) =E E(z 

and 
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(4.5b) V(Z) -E V(z / Z) +V E(z / e). 
ZZ 

From (4.5) and (4.3) follows that the estimators of the state vector 

unconditional on E, the prediction errors unconditional on Z, and their 

conditional variance covariance matrices are given by 

(4.6 a) E(Ot / ýt) - Ull t- 142t E(E / ýt) 9 

(4.6b) at -E (cet / ýt 
-1)ý 

Vlt - V2t E(Z / ýt-, ), 

(4.6 c) V(ot / ýt) = Pý + 142t V(ý / Ot) M21tv 

and 

(4.6 d) V (cit / 4, t -, 
)- F£ + V2t V(Z / ýt-1) V; ts 

for t-1.... T. Thus, these quantities can be obtained from the 

formulas given by the conditional Kalman filter and with expressions 

for E(E / ýt) and V(Z / ýt). To obtain the last two quantities notice 

first that V2t, t- 11 
.... T, are non random and that all the sample 

information up to time t is contained in v11,..., v1t. From the Kalman 

filter and conditional on Z, 

(4.7) (v +v-N(01 Fc s is 2S 
vs 

and then, 

(4.8) v-N(V, Fc s is 2S 
ýs 

Using (4.5), the joint distribution of v- (v; 1,... v'lt)' and E is 

(4.9) 0F+V 
EE VI V 

Eý V, 
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where F and V are (nt x nt) and (nt x r) matrices given by 

(4.10a) diag[Fcl,..., 

and 

(4.10b) II V P211 
ýV2tll 

Finally, from (4.9) and using standard matrix algebra results, 

(4. lla) E(e / ýt) - [7-&' + V' F-' V]-' [V' F-' 

ý [E&' V2's (Fc)-1 ]-' [E V2's (Fc)-1 vl. 1, V2S 
s 

s 

and 

(4. l1b) V(t - E(E / ýt)) = [E&l + V' F-1 V]-i 

[Y-&' +E V2's (Fc)-l - 1. s 
V2S] 

s 

The same result is obtained by minimising the mean square error; see 

Theil (1970, sec. 7.8). If E is diffuse, Eýl converges to zero in 

(4.11). Replacing (4.11) into (4.6) gives all the quantities of 

interest in the Kalman filter. The existence of the estimator presented 

in (4.11) depends on whether (V' F-1 V) is non singular. Finally, 

notice that when the value of t in (4.11) is such that E has a proper 

distribution, further calculations of the state estimates can be made 

by the standard Kalman filter. 
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6RDendix 1.1 : Matrix Algebra Results for the Kalman Filter 

To obtain the initial quantities for the Kalman filter recursions 

using equations (3.4), the inverse and the powers of the matrix T are 

required. Consider the basic structural model which is the most general 

and from where can be obtained, with obvious substitutions, the results 

for the other three models. 

Let, for convenience of the presentation, (k+2) the dimension of 

the square matrix T defined in (2.18b). That is, 

T, 0 
1) T 

0 T2 

where T, has dimension (2 x 2) and T2 has dimension (k x k). The matrix 

T, is given by 

(Al. 2) 

and it is not difficult to verify that the powers of T, are given by, 

m 

(Al. 3) TM, =I for all m. 
01 

On the other hand, if ei is the i-th row Of Ik, the identity of order 

k, the matrix T2 can be written as 

T2 ý 

e2 ++ ek) 
el 
e2 

ek- 
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The inverse of T2 can be obtained by applying elementary operations 

over the rows of T2 and Ik. That yields, 

(Al. 5) T-1 2 

e2 

e3 

ek 
- (el +e2+-. -+ ek) 

while the powers of this matrix, which are easily obtained by direct 

multiplication, are given by 

(Al. 6) T2i 
ek 

- (el +e2+... + ek) 
el 

ei- , 

II or 1ziZ 

and T-k -T T-k-1 ' Ik. Hence, the matrix H defined in (3.4) has the 222 

form, 

-S 1 

1-s -1 

(Al. 7) H 

101 

and the inverse of H is computed using the formula for a partioned 

matrix; see for example Magnus and Neudecker (1988, sec. 1.11). To 

obtain the variance of the residual e in (3.4), V(e), notice that the 

postmultiplication of the matrices in (3.4a), by the matrix R defined 

in (2.18c), is equivalent to the selection of the first three columns 

of matrices which are similar to H but with the final rows equal to zero. 
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CHAPTER 2: THE LIKELIHOOD FUNCTION 

2.1 Introduction and General Results 

This chapter presents various expressions for the likelihood or, 

what is in practice equivalent, the log-likelihood function of the 

regression model (1.1.1) or (1.1.2), where the residuals at are assumed 

to satisfy one of the structural time series models presented in 

Section 1.2. The general state space representation for these models 

was given in (1.1.3). This introduction presents three expressions for 

the likelihood function which have been considered in the literature. 

Sections 2.2 to 2.4 develop a fourth expression which has some 

advantages and compare the results with the more standard approaches. 

Consider first the situation where the state vector at time zero is 

def ined as dif fuse. That is , the (np x 1) vector 00 in (1.1.3) has a 

normal distribution with expected value zero and variance covariance 

matrix (r Inp), where r is a large number. Under this assumption the 

likelihood for the whole set of observations Y1, --- YT is not defined. 

The likelihood is only defined for yp+,, ---, YT conditional on yl,..., yp 

as well as on Xt, t-1,..., T. The first p vectors of observations are 

used to form an initial estimate of the state vector; see Section 1.3. 

Two main approaches have been considered to forming the likelihood 

function. One of these obtains the likelihood by means of the 

prediction error decomposition and the standard Kalman filter presented 

in Section 1.3; see Harvey (1990, sec. 3.4). Alternatively, the 

likelihood function can be formed from the stationary form of the model 

presented in Section 1.2. The two approaches are necessarily equivalent 

since the differences needed to obtain the stationary form of the model 

can be seen as a transformation of the observations Yp+i, ---, YT, with 
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the Jacobian of the transformation equal to the unity. 

The log-likelihood function of the model defined by (1-1-1) or 

(1.1.2) constructed by means of the Kalman filter is, apart from a 

constant, given by 

(1.1) Q--ji: [logiFtl + (vyt - Vxt ß)' Ftl (vyt - Vxt ß)], 
t-p+l 

where vyt and Vxt are the (n x 1) vector and the (n x k) matrix defined 

in Section 1.3. That is, they are pseudo innovations after running the 

Kalman filter over the vector yt and each column of Xt. The matrix Ft 

corresponds to the (n x n) prediction. error variance covariance matrix 

defined in (1.3.1f). Expression (1.1) is, in general, a complicated 

function of the parameters in the variance covariance matrices of the 

random shocks in the model, and for the multivariate case, n ýý, 1, the 

non linear maximisation procedure needed to obtain the estimates 

becomes very time consuming. In fact, each evaluation of the 

log-likelihood (1.1) requires a run of the Kalman filter over yt and 

each column of Xt. 

Fernandez-Macho (1986, ch. 3) developed the frequency domain 

likelihood for multivariate structural time series models. This 

likelihood is obtained from the stationary form of the model and has a 

form which is easy to evaluate but, as it is based on asymptotic 

results , it is only an approximation for finite samples. The frequency 

domain log-likelihood is, apart from a constant, given by 

T 
E (logiCtl + trace(Gt-l Pt)], 

t-p+l 

where Gt and Pt are (n x n) matrices representing the autocovariance 

generating function and 2w times the periodogram of the differences of 
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the residuals at, defined as Pt in Section 1.2, at the frequency 

2w(t-p-l)/(T-p). A general expression for the matrix Gt is given by 

Gt = grt Ec + gqt E71 + gbt Eb + gwt jw, t- P+1,..., T, 

where gt, 9, qt, g6t and g, t are known scalars as defined in Section 

1.2. From (1.1.2), the matrix Pt can be written as 

(1.4) Pt - (wyt - Wxt P) (wyt - Wxt ß)*, t=l,..., T, 

where wyt and Wxt are (2, r) i times the Fourier transform of the 

differences of yt and Xt respectively, and the sign * represents the 

conjugate transpose. Alternatively, the matrix Pt can be obtained from 

(1.1-1). That gives 

(1.5) Pt = pyyt +B Pzzt B' -B Pzyt - Pyzt B'' 

where Pyytp Pzzt, Pzyt and Pyzt are (n x n), (r x r), (r x n) and (n x 

r) matrices respectively which correspond to 27 times the own and cross 

periodograms of the differences of the vectors yt and zt. It can be 

shown that only the real part of Pt is needed to evaluate the 

log-likelihood (1.2), and that the sum in (1.2) can be redefined to run 

from t= (p+l) to [(T-p)/2] only; see Fernandez-Macho (1986, ch. 3) for 

details. 

What makes the frequency domain approach attractive is the fact 

that Gt in (1.3) is an explicit function of the parameters in the 

variance covariance matrices of the random shocks, and that the Fourier 

transformation of the observations does not depend on the parameters of 

the model so it can be computed before the non linear optimisation 

procedure is carried out. 

Consider now a more general situation where the state vector is 

defined as semi diffuse; see Section 1.4. Then, in general, an initial 
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estimate of the state vector Ot can be formed with less than the full 

f irst p vectors of observations. Although (1.1) and (1.2) can still be 

evaluated, (1.1) is no longer the exact log-likelihood; now, both are 

approximations. The exact likelihood of the model in this situation was 

developed by De Jong (1988,1989). Using the notation in Section 1.4, 

the log-likelihood of yl, ---, YT can be obtained from the identity 

Q(YJ'---, YT) ý M) + CY1, 
--YT / Z) -M/ 

which holds for all possible values of E; in particular it does for E= 

0 which is the case of interest here. The f irst term on the right hand 

side of (1.6) is evaluated directly from the definition of E, the 

second term is given by the conditional Kalman filter defined in 

Section 1.4, and the third term is evaluated from (1.4.11). If ý is 

dif fuse , (1.6) is not def ined but (1.6) plus (j log I EZ I) is, and apart 

from a constant, that expression takes the form 

TT 
(1.7) Q+ý log 1 Ze 1--ý log 1[1: V2t (F£) -1 V2t 11 

-ý Y- loglF£, 
t-1 t-1 

TT 
vj t (Fý) -1 'V2t 1[ Y- V2t (Fý)-1 'V2t]-l [ Y- VI2t (F£)-' vlt] 

t-1 t-1 t-1 

-ý[ Y- vjt (Ff)-1 vlt], 
t=l 

which is called the diffuse log-likelihood; see De Jong (1988,1989). 

In the following sections of this chapter, an alternative 

expression for the likelihood of a structural time series model is 

presented. The proposed form is based on the stationary form of the 

model in which the state vector at time zero is diffuse. This new 

expression for the likelihood function is, in general, an asymptotic 
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approximation and it has some advantages over (1.1) and (1.2). It has a 

form which is easy to evaluate, with conditions which are apparently 

less restrictive than the ones in the frequency domain approach, and it 

reduces to the exact likelihood for the local level time series model. 

The remaining sections are organised in the following form. Section 2.2 

considers the asymptotic and exact diagonalisation of a symmetric 

r-Toeplitz matrix. Section 2.3 deals with the application of this 

result to the formation of the likelihood for the four structural time 

series models considered in section 1.2. Finally, Section 2.4 compares 

the expression obtained with the frequency domain likelihood. 
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2.2 Diagonalisation of a Symmetric r-ToeDlitZ Matrix 

This section defines a symmetric r-Toeplitz matrix. The results for 

the exact and asymptotic diagonalisation of it are presented in the 

following three lemmas. 

Def inition 2.2.1 :A symmetric matrix A=[ aij ] such that 

aij - ai+k, j+k, 

and 

(ii) ail - 01 

is called a symmetric r-Toeplitz matrix. 

for all i, j, k, 

for all i ý, r, 

Lemma 2.2.1 : Apart from corner elements, any symmetric r-Toeplitz 

matrix A of dimension (T x T) can be expressed as a unique linear 

combination of FO, Fl,..., Fr-1; where F- [fij], fij -1 if li-j I-1 

and fij =0 otherwise. 

Proof : Let -y(A) be the (r x 1) vector formed with the first r rows of 

the first column of A. Clearly, -y(A) has all the distinct elements of A 

and then, it defines the matrix A. 

It is not difficult to see that without considering the elements in 

or on the triangles formed with the components (l, l), (l, k-1), (k-1,1) 

and (T, T), (T, T-k), (T-k, T), the matrix Fk is a symmetric 

(k+l)-Toeplitz matrix for all the values of k 1. The result is 

clearly true for k=2, and suppose it is also true for k=m ýý, 2, then 

if Fm = [fllllj I, 
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fT91ZiZ Tp 1+i £TU-, 
f9t ij f 

fiT. 

Thus, apart from corner elements, Fm+1 is a symmetric (m+2)-Toeplitz 

matrix. In the top left corner of Fm+1, the rows i=2,..., m are 

obtained as the sum of the (i-l)-th and (i+l)-th rows of Fm; while the 

first row of FM+' is equal to the second row of Fm. This implies that 

the triangle formed with the elements (l, l), (l, m-1) and (m-1,1) in Fm, 

which does not satisfy the definition of a Toeplitz matrix, is 

augmented to (l, l), (l, m) and (m, l) in the matrix Fm+'. The same 

analysis aplies to the bottom right corner. 

Using (2.1) it is easy to obtain the matrices Fm for m-1,2 

For example, apart from corner elements and in terms of the vector y 

defined above, 

(FO) - 19 

1)9 

(F2) = (2 0 1) y 

and in general for k ýý, 1 the vector -y(Fk) of dimension (k+l) can be 

formed recursively as follows. If -yi(Fk) is the i-th element of the 

vector -y(Fk), then 

(2.2a) 

(2.2b) 

(2.20 

-yl (Fk) -2 72 (Fk- 1) 9 

-y, (Fk) - -y, _1 
(Fk -1)+ -y, + 1 (Fk -1), 

'Yk (Fk) =09 

for i-2,..., (k-1), 

and 
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(2.2d) ^tk+ 1 (Fk) .1. 

Let the (r x r) matrix r be formed with the column vectors 

, y(FO), . .. 7(Fr- 1 ), and zeros to complete the dimension. Clearly r is an 

upper triangular matrix with all the elements in the diagonal equal to 

the unity. Given an arbitrary vector -y(A) of dimension r, there is a 

uniquýe (r x 1) vector x such that 

(2.3) r 7(A), 

which implies that -y(A) can be formed as a linear combination of 

-y(FO) ...... y(Fr-1). The particular form of these matrices ensures that, 

apart from the mentioned triangles in the top left and bottom right 

corners , the matrix A can be expressed as the same linear combination 

of FO, ... Fr- 1. The solution of the system of equations (2.3) provides 

the coefficients of this linear combination. 

Lemma 2.2.1 implies that apart from top left and botton right 

elements, any symmetric r-Toeplitz matrix can be diagonalised by the 

eigenvectors of F. The corner elements, which does not satisfy the 

definition of a Toeplitz matrix, appear only because the matrix A has a 

finite dimension, and then, it is a natural idea to express an 

approximation of A as a linear combination of the powers of the matrix 

F. Using the same argument, the importance of these corner elements 

should dissipate as the dimension of the matrix A increases. Before 

presenting a formal result with respect to this question, the following 

lemma provides the eigenvalues and eigenvectors of the matrix F. 

Lemma 2.2.2 : The eigenvalues )ITt, and eigenvectors hTt, t 

11 
... . T, of the (T x T) matrix F defined in Lemma 2.2.1 are 

)ýTt ý2 cos(7rt/T+1), 
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(ii) hýt - (2/T+1)1 (sin(-rt/T+1), sin(2-rt/T+l) .... , sin(Txt/T+1)]- 

Proof :. See Theorem 6.5.5 in Anderson (1971). 

The only problem that remains with the diagonalisation of the 

symmetric r-Toeplitz matrix A is the presence of the corner elements. 

If A is a 2-Toeplitz matrix, the diagonalisation is exact because 

neither FO nor F have these distinct elements in the corners. However, 

when r is greater than 2, an exact diagonalisation of A using the 

eigenvectors defined in Lemma 2.2.2 is not possible; but, as the 

following lemma proves, when the dimension of A goes to infinity the 

diagonalisation result holds for any fixed value of r. 

Lemma 2.2.3 : Let A be a (T x T) symmetric r-Toeplitz matrix, A* the 

approximation of A obtained using Lemma 2.2.1, and HT ' [hTl,..., hTTI, 

with hTl,..., hTT defined as in Lemma 2.2.2; then, if A and A* are 

positive definite matrices, 

lim (1/T) trace(A A*-') 
T-. )W 

lim iA A*- 
T-*W 

(iii) If a is a (T x 1) vector with bounded elements, 

lim 
T-. )W 

Proof : Notice first that (A - A*) has only 2(r-2) columns different 

from zero. Then, rank(A - A*) 4 2(r-2). Now, 

(1/T) trace(A A*-') - (1/T) trace(A A*-l - IT) +1 

= trace(A*-i (A - A*) A*-i) 
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from where (i) follows because 

rank(A*-i (A - A*) A*-I) = rank(A - A*). 

Similarly, 

lim (1/T) trace(A-1 A*) 
T-*w 

and (ii) follows from the inequality 

trace-'(A-' A*) 4 IA A*-11(1/T) 4 (1/T) trace(A A*-'). 

Finally, (iii) follows because 

rank(A-1 - A*-') - rank(A - A*), 

and then a' (A-' - A*-') a is bounded. 

Lemma 2.2.3 says that as the dimension of A and A* goes to 

infinity, the harmonic, geometric and arithmetic mean of the 

eigenvalues of (A A*-') tends to the unity. In that sense, the matrix 

HT diagonalises A asymptotically. 
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2.3 A Simple Expression for the Likelihood Function 

This section considers the application of the results of Section 

2.2 to the formation of the likelihood for the structural time series 

models defined in Section 1.2. 

Define the (T-p x T-p) symmetric r-Toeplitz matrices A, B, Cs, Ds 

and Es with r equal to 2,3, s, (s+l) and (s+2) respectively, with the 

value p as defined for each time series model in Section 1.2, and with 

the y vectors, formed with the elements in the f irst r rows of the 

first column, equal to 

(3. la) oy' (A) = (2 - 1) 0 

(3. lb) y' (B) - (6 -4 1), 

(3. lc) -y' (CS) - (S S-1 s-2 

(3. ld) -y' (Ds) = (2 00 

and 

(3. le) y' (ES) - (4 -2001 

Using the results of the previous section, A is exactly diagonalised by 

HT-p defined in Lemma 2.2.3. The other four matrices are asymptotically 

diagonalised by HT-p as T goes to infinity. 

To form the likelihood of the model (1.1.1) or (1.1.2), it is 

assumed here a diffuse prior for the state vector Ot in the state space 

representation (1.1.3). Under that situation, the likelihood can be 

obtained from the stationary form of the model which considers the 

differences of the original observations; see Section 2.1. 

Let Pyt denote the (n x 1) vector of differences of the 
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observations yt, Nxt the (n x k) matrix of differences of Xt, and Pt 

(vyt - Nxt 9), for t= p+l, ..., T. The log-likelihood of v' 

(vt+,,..., vt), apart from a constant, is equal to 

(3.2) logifli -j PIO-1v, 

where 0 is the (n(T-p) x n(T-p)) variance covariance matrix of P. Using 

the autocovariance structure of the vector P presented in Section 1.2, 

the following lines show that for each of the four structural time 

series models considered in this chapter, the matrix 11 has, 

asymptotically, a simple form. This asymptotic expression for the 

matrix 11 is used later to simplify the general log-likelihood (3.2). 

Local Level Model 

For the local level model, the value of p is the unity and the 

variance covariance matrix of the vector of differences P is given by 

(3.3) f2 ' Y-i7) EC), 

where A is the (T-1 x T-1) matrix defined in (3.1) and the (n x n) 

matrices E 71 and F., are the variance covariance matrices of the level 

and irregular random shocks respectively. As A and IT-, are 

diagonalised by HT-1 defined in Lemma 2.2.3, the matrix 11 can be 

written as 

(3.4) 0=E (hT-1, t-1 ht-1, t-1) @ (y-i7 + Xa, t-1 Y-e), 

t-2 

with Xa, t-, the (t-l)-th eigenvalue of A. Clearly, 

(3.5) Xa, t-1 ý2- XT-ilt-1) t-2,..., T, 
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where )ýT- 1 t-1 was defined in Lemma 2.2.2. 

Local Linear Trend Model 

For the local linear trend model, the value of p is 2 and the 

variance covariance matrix of the vector of differences P is given by 

(3.6) 'U ' (IT-2 0 16) + (A 0 En) + (B @ Ye), 

where A and B are the (T-2 x T-2) matrices defined in (3.1); and Eb, E 77 

and E. are (n x n) matrices which represent the variance covariance 

matrices of the slope, level and irregular random shocks respectively. 

The matrix A is diagonalised by HT-2 defined in Lemma 2.2.3; while for 

large T, B is also diagonalised by HT- 2, and hence, the matrix 0 is 

asymptotically equivalent to the matrix 0 defined as 

(3.7) 0-Z (hT- 2p t- 2 ht- 2 t- 2) @ (1: 6 + Xa, t- 2 
Z77 + >%by t- 2 

ZE) 
1 

t-3 

where Xa, t-2 
is the (t-2)-th eigenvalue of A and )ýb, t-2 is the (t-2)-th 

eigenvalue of a matrix which apart from the elements (l, l) and 

(T-2, T-2) is equal to B; and it is formed as a linear combination of 

FOP F', and F2 in accordance with the results in Lemma 2.2.1. By 

noticing that this matrix is equal to A2, and using (3.5), it can be 

seen that 

(3.8a) Xa, t-2 ý2- )IT-2pt-21 

and 

= X2 [2 - 
XT-2, t-2 

]2 
(3.8b) )ýb, t-2 at-2 ý 

where ý%T-2, t-2 was defined in Lemma 2.2.2. 
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Seasonal Local Level Model 

For the seasonal local level model with seasonal period s, the 

value of p is equal to s and the variance covariance matrix of the 

vector of differences P is given by 

(3.9) 12 - (A (CS + (DS 

where A, Cs and Ds are the (T-s x T-s) matrices defined in (3.1) and 

the (n x n) matrices E., E 71 and E. are the variance covariance matrices 

of the seasonal, level and irregular random shocks respectively. A is 

exactly diagonalised by HT-S defined in Lemma 2.2.3, while the matrices 

Cs and D. are asymptotically diagonalised by HT-s. Then, the matrix 0 

is asymptotically equivalent to 0 defined as 

T 
(3.10) 11 -E [(hT-s, t-s ht-s, t-s) 0 01a, t-s F-w 

t-s+l 

xc, t-s ETI + )ýdt-s Ed], 

where Xa, t-s is defined, with obvious substitutions, as in (3.5) and 

(3.8a). The value Xc, t-s corresponds to the (t-s)-th eigenvalue of a 

matrix which, apart from corner elements, is equal to Cs, and it is 

formed as a linear combination of FO,... 'Fs-1 in accordance with Lemma 

The value ýId, t-s corresponds to the (t-s)-th eigenvalue of a 

matrix which, apart from corner elements, is equal to Ds, and it is 

formed as a linear combination of FO,..., Fs. It can be verified that 

for any value of the seasonal period s, 

ý, d, t-s ý Xa, t-s Xc, t-s, t= s+1,..., T, 

and although we do not have an analytic expression for Xc, t_s for the 

different values of s, these values can be computed for each value of s 
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in the following way. As Xc, t-s is the (t-s)-th eigenvalue of a matrix 

which is a linear combination of FO,..., Fs-1, it must be equal to the 

same linear combination of the (t-s)-th eigenvalues of the matrices 

FO,..., Fs-1. The coefficients of this linear combination are obtained 

by solving the system of equations (2.2). Table 2.3.1 gives the 

coefficients of the linear combinations of the eigenvalues of 

FO, ... 'Fs -1 to form Xc' t-s for values of s between 4 and 12. Thus, if 

the seasonal period is 4, 

(3.12) Xc, t-s ,2 ()ýT-s, t_S)2 + ()'T-s t_S)3, t= S+1,..., T. 
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Table 2.3.1 : Coefficients of the EiRenvalues of the 

Power of F to form X,, t-, 

Seasonal Period 

Power of F456789 10 11 12 

0121121 

1 -2 1 4 -4 1 6 

2 2 -1 -4 2 8 -2 -12 3 18 

3 12 -2 -6 4 14 -6 -26 9 

4 1 2 -3 -8 7 22 -13 -48 

5 1 2 -4 -10 11 32 -24 

6 1 2 -5 -12 16 44 

7 1 2 -6 -14 22 

8 1 2 -7 -16 

9 

10 

11 
1 
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Basic Structural Model 

For the basic structural model with seasonal period s, the value of 

p is equal to (s+l) and the variance covariance matrix of the vector of 

differences P is given by 

(3.13) f2 - (B @ Y-ü» + (CS @ 1: 6) + (DS @E 17 )+ (ES @ LE) , 

where Bp Cs, Ds and Es are the (T-s-l x T-s-1) matrices defined in 

(3.1), and the (n x n) matrices E. ), E6, E,, and E. are the variance 

covariance matrices of the seasonal, slope, level and irregular random 

shocks respectively. The matrices B, Cs, Ds, and Es are asymptotically 

diagonalised by HT-s-1 defined in Lemma 2.2.3, and then, the matrix 0 

is asymptotically equivalent to 5 defined as 

(3.14) ý-Z [(hT-s-1, t-s-, ht-s-1, t-s-1) @ ()lbpt-s-i r-ü) 
t-s+2 

+ Xc 
, t-s- 1 

16 + )ýd, t-s- 1 
Y-i? + Xe, t-s- 1 

Ed 1, 

where Xb, t-s-1, Xc, t-s-l and )ýd, t-s-l are defined, with obvious 

substitutions , as for the local linear trend and seasonal local level 

models. The value Xet-s-1 corresponds to the (t-s-l)-th eigenvalue of 

a matrix which, apart from corner elements, is equal to Es P and it is 

formed as a linear combination of FO, ... Fs+l in accordance with Lemma 

2.2.1. It can be shown that for any seasonal period s, 

(3.15) Xe, t-s-1 ý )lb, t-s-1 Xc, t-s-1, t- 

A Simple Form for the Likelihood Function 

From the analysis of the four models presented above, a general 

expression for which is taken to be equal to D for the local level 
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model, is given by 

T 
(3.16a) E (h h' 0 Rt) 

t=p+l I 

with Rt the (n x n) matrix given by 

(3.16b) Rt = r,, t E,, + r, t E, + rbt Eb + rt E., 

where the known scalars rit, i-e, n, 6 and w are chosen in accordance 

with the model and equations (3.5), (3.8), (3.11), (3.15) and Table 

2.3.1. Replacing the value of 11 by Q in the log-likelihood (3.2), and 

using Lemma 2.2.3, yields the asymptotically equivalent expression 

(3.17) log iE hthý 0 Rt trace[ (E hthý @ Rt) p P' t 
tt 

and using Lemma 2.1 in Magnus (1982), and the fact that the ht are 

orthogonal vectors, this expression can be written as 

E [logiRti + trace(Rt' Qt)], 
t 

with Rt given by (3.16b) and the (n x n) matrix Qt by 

(3.19) Qt - (pp+l,..., "T) hthý (pp+,,..., PT)', t- P+1,..., T. 

Alternatively, 

(3.20) Q=-jZ [log iRti + (P yt - Nxt ß)' Rtl (pyt - Nxt ß)], 
t 

where the (n x 1) vector Pyt is defined by 

(3.21) Pyt ý (Py, p+l, ---, PyT) ht, t= P+1,..., T, 

and each column of the (n x k) matrix Nxt is obtained by applying the 

transformation (3.21) to the corresponding column of Nxt. See below 
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equation (3.1e) for the definitions of Pt, Pyt and Nxt. 

A number of observations, with respect to this expression for the 

log-likelihood, are in order. First, (3.18) is of essentially the same 

form as the frequency domain log-likelihood, with Qt playing the role 

of 2, r times the periodogram and Rt the role of the autocovariance 

generating function. However, unlike the frequency domain approach, the 

eigenvalues ý'Tt defined in Lemma 2.2.2 do not occur in pairs and so the 

sum in (3.18) cannot be reduced to run from zero to [(T-p)/2] as in the 

frequency domain approach. 

Second, for the local level model, equation (3.18) corresponds to 

the exact log-likelihood under the assumption that the state vector at 

time zero, in the state space representation (1.1.3), is diffuse. The 

value of r, 7t is the unity and the value of rt, (2 - ý*T-1, t-O, is 

greater than zero for all t. Thus, the log-likelihood (3.18) is defined 

even if E 17 has rank less than n provided E. has full rank. Essentially 

the same result is valid in the local linear trend model, where rat is 

the unity, r,, t is (2 and r, t is r2t. For this model it is - )IT-2, t-2) ?I 

possible to have both E,, and Eb less than full rank, and provided E. is 

full rank, the approximate log-likelihood (3.18) is perfectly well 

defined. These results are important for the estimation of common 

trends models; see Section 5.4. 

Third, for the seasonal local level with seasonal period equal to 

4, r, )t is equal to (2 - )ýT-4, t-4)P r, 7t is given by (3.12) and r,, t is 

given by the product of r,, t and rt. Clearly, rwt is never zero, and 

r, t and r, t are zero only when (T-4) is odd because the roots of r., t - 

0 are 0 and -1. Thus, if (T-4) is odd, F-W should be positive definite; 

but if (T-4) is even, r,, t and then r,, t are never zero; and it is 

possible to have both E. ) and E, 
7 

less than full rank provided E. is 

strictly positive definite. Similar results apply to the basic 
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structural model. 

Fourth, the matrix F defined in Lemma 2.2.1 has already been used 

in previous studies to form the likelihood of an MAM model; see 

Cooley and Prescott (1973,1976), Balestra (1980), Pesaran and Slater 

(1980) and Enns et all (1982). The results of this and previous 

sections allow, with some obvious modifications, the formation of an 

asymptotically equivalent likelihood for a general MA(q) model. 

Fifth, analytic first and second derivatives of the log-likelihood 

(3.18) can be obtained in exactly the same way as in the frequency 

domain approach; see Section 3.3. 
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2.4 ComRarison with the Frequency Domain Approach 

This section compares the restrictions imposed on the model to 

construct the likelihood (3.18) with the circularity restrictions 

imposed by the frequency domain approach. The two approaches add or 

substract some elements to the corners of the matrices A, Bp Cs) Ds and 

Es defined in (3.1). As these matrices are symmetric, only the top left 

and top right corners need to be analised. 

For the local level model, (3.18) is the exact log-likelihood, 

while in the frequency domain approach the block 

(4.1) o -i 
0 0 ' 

is added to the top right corner of the matrix A defined in (3.1). This 

restriction can be interpreted as 

(4.2) fo = 

where ft is the irregular random shock. 

For the local linear trend model, the log-likelihood (3.18) places 

no restrictions over A; while the block 

(4.3) 00 

I10 

is substracted from the top left corner of the matrix B defined in 

(3.1). This restriction can be interpreted as 

(4.4) C-1 - fT = op 

with Et the irregular random shock. In the frequency domain approach, 

(4.1) is added to the top left corner of A, and the block 
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(4.5) 1 -4 
01 

to the same corner of B. The frequency domain restrictions can be 

interpreted as 

(4.6 a) f-1= 'ET- 1, 

(4.6b) E0= C-T, 

and 

(4.6c) 71o ' 77T, 

where et and qt are the irregular and level random shocks. Comparing 

the restrictions (4.4) with (4.6), it can be seen that if E. is zero, 

the log-likelihood (3.18) corresponds to the exact one, while the 

frequency domain log-likelihood still requires the condition (4.6c). 

In the seasonal local level model with seasonal period 4, the 

log-likelihood (3.18) substract the blocks 

210 00 
(4.7) 100 and 0 -1 0 

000 -1 00 

from the top lef t corner Of C4 and D4 def ined in (3.1). The frequency 

domain approach adds (4.1) and the blocks 

023000 

(4.8) 
0012 

and 
0 -1 0 

000100 -1 0 
0000000 -1 

to the top right corner of A, C4 and D4 respectively. 

Finally, for the basic structural model with seasonal period 4, the 

log-likelihood (3.18) substracts (4.3), (4.7) and 
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0 -2 
(4.9) 1 -2 10 

-2 100 
1000 

from the top left corner of B, C4, D4 and E4 respectively. The 

frequency domain approach adds (4.1), (4.8) and 

(4.10) 

1 -2 1 0 -2 
0 1 -2 1 0 
0 0 1 -2 1 
0 0 0 1 -2 
0 0 0 0 1 

to the top right corner of A, C4, D4 and E4 respectively. 

Apart from the local level model, where the log-likelihood proposed 

in the previous section is exact, it can be seen from the analysis 

above that in general, the restrictions imposed to form the 

log-likelihood (3.18) seems to be less restrictive than the ones 

imposed by the frequency domain approach, although no conclusive 

evidence has been presented in order to establish that the 

log-likelihood (3.18) is a better approximation. 
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CHAPTER 3: MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS AND TESTING 

3.1 Introduction 

This chapter considers the maximum likelihood estimation, and 

associated asymptotic tests of hypotheses, of the parameters in the 

regression model presented in Section 1.1. The parameters of the model 

are the vector of coefficients of the exogenous variables, 0, and the 

variance covariance matrices of the random shocks in the structural 

time series model for the residuals at. These are E., Y-, qp E6 and E.. 

It is assumed in this chapter, unless otherwise stated, that the 

appropriate model for the residuals is the basic structural model. The 

results for the other three time series models presented in Section 1.2 

are analogous and can be obtained with obvious substitutions. It is 

also assumed here that the log-likelihood of the model is defined for 

the observations Yp+l, ---, YT, conditional on yl,... yp, as well as on 

Xt$ t-1,..., T; where p is the number of components of the state 

vector Ot in (1.1.3) for each time series. 'That is equivalent to 

assuming a diffuse prior for the initial state vector. If the state 

vector is defined as semi diffuse, the exact likelihood is based on the 

diffuse Kalman filter defined in Section 1.4. That leads to the 

expression (2.1.7) which is substantially more complicated to handle. 

The situation of a semi diffuse prior will not be considered although, 

as stated in Section 2.1, the likelihood conditional on yl,..., yp is 

asymptotically equivalent to the exact likelihood function. Finally, it 

is assumed that the stationary form of the model is strictly 

invertible; see Section 2.1. For the basic structural model this 

implies that both Eb and E,, are strictly positive definite matrices. 

Three asymptotically equivalent expressions for the log-likelihood 
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function of the model (1.1.1) or (1.1.2) were def ined in Chapter 2. A 

general form for this function, which includes the one obtained by 

means of the Kalman filter as well as the ones formed using the 

frequency domain approach or the alternative transformation developed 

in Section 2.3, is given by 

T 
(1.1) Q=-ýZ[ log 1 Gt 1+ (wyt - Wxt P) ' Gt 1 (wyt - Wxt ß) ], 

t=P+l 

or alternatively, by 

T 
E (logiGti + trace(Gt-l Pt)], 

t=p+l 

where Pt = (wyt - Wxt 0) (wyt - Wxt 0)' and Gt are (n x n) matrices, 

and wyt and Wxt have dimensions (n x 1) and (n x k) respectively. 

Although (1.1) and (1.2) use the notation given in Section 2.1 to the 

frequency domain log-likelihood, they represent the log-likelihood 

formed by means of the Kalman filter if Gt is the prediction error 

variance defined in (1.3.1f) and wyt and Wxt are pseudo innovations 

after running the Kalman filter over yt and each column of Xt 

respectively; see Section 1.3. Expressions (1.1) and (1.2) also 

represent the alternative log-likelihood defined in Section 2.3 if Gt 

corresponds to the matrix defined in (2.3.16b), wyt corresponds to the 

vector defined in (2.3.21) and Wxt to a matrix obtained applying the 

transformation (2.3.21) to each column of the differences of Xt. 

If the log-likelihood is formed by means of the Kalman filter, Gt 

is a function of the parameters in the variance covariance matrices of 

the random shocks and it does not depend on the vector of coefficients 

of the exogenous variables 0; while wyt and Wxt depend on the 

observations as well as on the matrices E., E77) Eb and E. ). Of course, 
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wyt and Wxt are functionally independent of P. 

On the other hand, if the log-likelihood (1.1) or (1-2) corresponds 

to either the frequency domain log-likelihood or the alternative 

expression developed in Section 2.3, the matrix Gt is an explicit 

function of the parameters in the variance covariance matrices of the 

random shocks, and it can be written as 

Gt ý get Ef + gqt Y-, q + g6t Eb + gwt Ew, 

where g,, t, gnt, gbt and g, )t are known scalars. Also, under the same two 

expressions for the log-likelihood, the (n x n) matriz Pt can 

alternatively be defined as 

(1.4) Pt = Pyyt +B Pzzt B' -B Pzyt - Pyzt B', 

where Pyytv Pzzt, Pyzt and Pzyt are (n x n), (r x r), (n x r) and (r x 

n) matrices respectively which depend only on the observations. 

Equations (1.3) and (1.4) do not hold if the log-likelihood is formed 

by means of the Kalman filter. Finally, notice that for the frequency 

domain approach, the sign ' in (1.1) represents the conjugate 

transpose. 

The remainder of this chapter is organised as follows. Section 3.2 

presents the estimation of the vector of exogenous variables fl, and 

Section 3.3 the estimation of the parameters in the variance covariance 

matrices E. I E779 Eb and E. ). Section 3.4 discusses the estimation 

strategy. Finally, Section 3.5 presents asymptotic properties of the 

estimators and discusses the formulation of test of hypothesis. 
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3.2 Estimation of the____Coefficients of the Exogenous Variables 

This section presents formulas for the maximum likelihood estimator 

of the vector of coefficients of the exogenous variables, 0, in the 

regression model (1.1.1) or (1.1.2). General expressions for the 

estimator of 0 are presented first. Then, particular cases of interest 

are analysed. 

From (1.1), the maximum likelihood estimator of 0 minimises the 

objective function 

(2.1) Y- (wyt - Wxt ß)' Gt' (wyt - Wxt ß), 
t 

and the solution for 0 is given by 

(2.2) (E Wýt G-tl Wxt]-l [E Wýt G-tl wyt], 
tt 

while the information matrix with respect to 0, I(P), has the form 

(2.3) I(ß) - [E Wýt Gt' Wxt]. 
t 

As Magnus (1978) showed that the information matrix for all the 

parameters in the model is block diagonal with respect to 0 and the 

parameters in the variance covariance matrices of the random shocks, 

the inverse of 1(0) can be associated with the variance covariance 

matrix of the estimators under certain regularity conditions. The 

expression for ý in (2.2) can be replaced in the log-likelihood (1.1) 

to obtain a concentrated log-likelihood. This takes the form 

Cc y [logiCtl + wýt Gt-l w t] (2.4a) y 
t 

where 
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(2.4b) [F. Wýt Gil wyt]' [F. Wýt Gil Wxt]-l [F- Wýt Gil wyt]. 

ttt 

This expression has then to be maximised, using a nonlinear 

optimisation procedure, with respect to the parameters in the variance 

covariance matrices of the random shocks in the model; see Section 3.3. 

In the basic structural model, the number of parameters to be estimated 

using the non linear procedure is 2n(n+l). 

Important simplifications in the estimation procedure and also in 

the number of parameters in the model can be achieved under the 

homogeneity restriction (1.1.4). Using the results in Section 1.3 for 

the Kalman filter, and from (1.3), the homogeneity restriction implies 

that, whichever the approach to form the log-likelihood, 

(2.5) Gt - gt Ef, 

where E. is the variance covariance matrix of the irregular random 

shock and gt is an scalar which, in the basic structural model, is a 

function of three unknown parameters: q,,, qb and q.. These scalar 

parameters represent the proportional factors needed to obtain the 

variance covariance matrices of the level, slope and seasonal random 

shock respectively, from the variance covariance matrix of the 

irregular random shock E.. Replacing (2.5) in (2.2), (2.3) and (2.4), 

yields the estimator of 0, the information matrix with respect to 0, 

and the concentrated log-likelihood. Under the homogeneity restriction 

(1.1.4) the number of parameters to be estimated using a non linear 

procedure are reduced to (n(n+l)/2 + 3) for the basic structural 

model. 

In practice, if the variance covariance matrix of the irregular 

random shock is too small, the non linear optimisation procedure might 

exhibit numerical instability. In this situation, it may be convenient 
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to express Gt in (2.5) as a function of some of the other variance 

covariance matrices in the model. Particularly convenient for this 

purpose are the ones which, under the invertibility assumption, are 

restricted to be positive definite. In the basic structural model these 

are Eb and Y-,. 

An Alternative Expression for 6 

The formulas presented above are obtained from the log-likelihood 

(1.1) which was constructed from the model (1.1.2). That expression for 

the model considers implicitly the restrictions (1.1.1b) on B and it is 

very general in the sense that it can be used for the three procedures 

to obtain the log-likelihood. When the log-likelihood is formed using 

the frequency domain approach, or the alternative approach presented in 

Section 2.3, equivalent, although sometimes advantagous, formulas can 

be obtained by using the expression (1.4) for Pt. The idea is to treat 

the restrictions (1.1.1b) explicitly in the optimisation procedure. 

From (1.2), the objective function to be minimised in the estimation of 

0 is 

(2.6a) E trace[Gt-l (Pyyt +B Pzzt B' -2B Pzyt)], 
t 

subject to the restrictions 

(2.6b) vec(B) - 

Using the procedure proposed by Magnus and Neudecker (1988, chs. 9 and 

10) to obtain the derivatives of a function of matrices, the f irst two 

differentials of (2.6a), when Gt is known for all t, are 

(2.7a) dQ -E trace(Gt-l B Pzzt dB') - trace(Gt-l Pyzt dB') 

t 
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E (vec'(Gtl B Pzzt) - vec'(Gtl Pzyt)) vec(dB), 
t 

and 

(2.7b) d2Q E trace(Gtl dB Pzzt dB) 
t 

vec'(dB) (Pzzt @ Gtl) vec(dB), 
t 

respectively. Also, from (2.6b) 

(2.8) vec(dB) -S do, 

and then, replacing (2.8) into (2.7) yields the desired derivatives. 

From these, the estimator of 0 and the information matrix with respect 

to P can be written as 

(2.9) SIE (PZZ 
't 

@ Gt') S]-l (S' E vec(Gtl Pyzt)], 
tt 

and 

(2.10) [S' E (Pzzt @ Gt-l) 
t 

The advantage of using these formulas instead of (2.2) and (2.3), is 

that the Fourier transformation used in the frequency domain approach, 

as well as the one defined in (2.3.19), are applied only over the 

differences of the (r x 1) vector of exogenous variables zt and not 

over the differences of the whole (n x k) matrix Xt. 

As before, if the variance covariance matrices of the random shocks 

are unknownp a concentrated log-likelihood can be obtained by replacing 

(2.9) into the original log-likelihood (1.2). That yields, 

(2.11a) Qc E (logiGtj + trace(Gt-1 Pyyt)] + 
t 
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where 

(2. l1b) [S' E vec(Gt-l Pyzt)], [S' Y- (Pzzt @ Gtl) S 1-1 
tt 

(S' E vec(Gt-l Pyzt)], 
t 

This function has then to be maximised numerically with respect to the 

parameters in the variance covariance matrices of the random shocks. 

All the comments below equation (2.4) concerning the estimation of a 

homogeneous model apply here. 

Same Repressors in Each Eguation 

Consider the case where the same regressors are present in all the 

equations of the model. That is, there is no restrictions on the 

parameters of the matrix B. In terms of the notation in Section 1.1, S 

w-- Inr and vec(B) - 0. If the frequency domain or the alternative 

approach presented in Section 2.3 are used to obtain the 

log-likelihood, 

(2.12) Wxt - (wzt 0 t-p+1,..., T. 

However, (2.12) does not, in general, hold if the log-likelihood is 

formed by means of the Kalman filter. Simpler formulas for the 

estimator of 0, its information matrix, and the concentrated 

log-likelihood are obtained if (2.12) is replaced in previous formulas 

of this section. 

An interesting situation arises when the same regressors are 

present in all the equations and the model is homogeneous. Under this 

situation, (2.12) is also true if the log-likelihood is formed by means 

of the Kalman f ilter. The reason is that as Wxt are pseudo innovations 
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after running the Kalman filter over each column of Xt, the results in 

Section 1.3 concerning the formulas for the Kalman filter under 

homogeneity imply that this operation is equivalent to run the f ilter 

over each element of the matrix Xt. Then, (2.12) follows from the fact 

that Xt = ('ý 0 In)- Using (2.12) and (2.5), the estimator of 0= 

vec(B) in a homogeneous model is given by 

(2.13) E (Wýt g- I W, t) @ E- I ]- I(E (Wzt g- wt 
ttzftty 

vec[ [F- wyt gt-l wzlt) [F- wzt gt-l wýt]-' 
tt 

From which, the maximum likelihood estimator of the matrix B is 

(2.14) S wyt gtl wýt ][ 7- wzt gtl wz't ]- 1. 
t 

Thus, the estimator of B depends on the parameters q., q6 and q. but 

not on the variance covariance matrix E.. From (2.3), the information 

matrix with respect to 0 is 

(2.15) (Wzt gt-l WZ't)] 
t 

while the concentrated log-likelihood takes the form 

(2.16a) Qc [E loglE,, gtj] trace[E. 1 A], 
t 

where the (n x n) matrix A is equal to 

(2.16b) A wyt 9j' Wýt) - (E wyt 9t' wzt] 
tt 

-111 [r- wzt gt-, wztl-i ly- w yt gt wztl . 
tt 
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Analogous results are obtained from the expression (1.2) for the 

log-likelihood. That is, replacing S- Inr into (2.9), (2.10) and 

(2.11). The concentrated log-likelihood (2.16) has to be maximised with 

respect to the parameters q.,, qb, q. ), and the ones in E,,. However, it 

is clear from (2.16a) that E. can also be concentrated out of the 

log-likelihood; see Section 3.3. The conclusion is that when the same 

regressors are present in all the equations of a homogeneous model, it 

is possible to concentrate out of the log-likelihood both the matrix of 

coefficients B and the variance covariance matrix of the irregular 

random shock E., The non linear optimisation procedure is carried out 

only over the parameters q., qb and q.. 

Fixed Slopes 

In many practical situations the slope component Ot, in the local 

linear trend or basic structural models, is time invariant and can be 

treated as a fixed vector of parameters; see Section 1.2. Under this 

situation, the local linear trend and basic structural models can be 

written as a local level and a seasonal local level model respectively, 

with the time as an exogenous variable and the slope 0 as its 

coefficient. Thus, if there is no other exogenous variables, the 

estimation of a fixed slope can be obtained from the formulas in this 

section for the local level and seasonal local level models; and with 

zt -t Ot Xt -t In- 

Fernandez-Macho (1986, ch. 4) obtained simple expressions for the 

frequency domain estimators of the slope parameter 0 and the 

information matrix with respect to 0. For the local level model, the 

value of p is the unity and the estimator of 0 is 
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(2.17) (1/(T-1)) F- (yt - yt_, ), 
t 

with the information matrix given by 

(2.18) I(P) = Eýlo 

where E 71 is the variance covariance matrix of the level random shock. 

For the seasonal local level model, with seasonal period s, the value 

of p is s and the estimator of P is 

(2.19) (1/s) (1/(T-s)) E (yt - yt-S), 
t 

while the information matrix is given by 

(2.20) ((T-S)/S2) E-1 
17 

Formulas (2.17) and (2.19) are attractive because they are simple 

functions of the observations. Furthermore, it can be shown that the 

concentrated log-likelihood has exactly the original form (1.2) but 

with Pp+1 ý 0, and Pt - Pyyt for t -ý, (p+l). 

No simple formulas seems to be possible if the log-likelihood is 

formed using the Kalman filter or the alternative expression developed 

in Section 2.3. 
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3.3 Estimation of the Variance Covariance Matrices 

This section considers the maximum likelihood estimation of the 

parameters in the variance covariance matrices of the random shocks in 

the model: E., Eq, Eb and E.. 

It will be assumed, unless otherwise stated, that the vector of 

coefficients of the exogenous variables, 0, is known; and, that the 

log-likelihood is formed using either the frequency domain approach or 

the alternative procedure developed in Section 2.3. That implies (1.3) 

holds. If the log-likelihood is formed using the Kalman filter, (1.3) 

does not hold and first and second derivatives of the log-likelihood 

with respect to the parameters become much more difficult to obtain 

analytically. 

To obtain the first two derivatives of the log-likelihood, define 

(3.1) ei = v(Y-i) 7 
i=E, -q, 6 and w, 

(3.2) 

(3.3) 

0t=(0 VE , oý, 0ý, oý) p 

(gEt, 9-qt, g6t, gwt) 0 In(n+l)/2 19 

where v(Ei) is a (jn(n+l) x 1) vector obtained from vec(Ei) by 

eliminating all supradiagonal elements of Ei, and D is the (n2 X 

n(n+l)/2) duplication matrix defined in Magnus (1988, ch. 4) such that 

for any symmetric matrix A, vec(A) -D v(A). The (2n(n+l) x 1) vector 

contains the functionally independent parameters. Using the results 

developed by Fernandez-Macho (1986, ch. 5), the first two derivatives 

of the log-likelihood (1.2) with respect to 0 are 

(3.4) 
ae 

Y- Xt (vec(Gtl Pt Gtl) - vec(G t 

ao t 
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and 

(3 2Q 

(3.5) --ý Y- Xt [(G-1 @2 G-1 Pt G-1) - (G-1 @ G-1)] X' 
ao a0, ttttt. 

The matrix 

(3.6) 1(0) E Xt (Gil & Gtl) Xý, 
t 

is asymptotically equivalent to the information matrix; and, under some 

regularity conditions, its inverse can be associated with the variance 

covariance matrix of the maximum likelihood estimator of 0; see Section 

3.5. 

In general, none of the variance covariance matrices of the random 

shocks can be concentrated out of the log-likelihood, and for the basic 

structural model, the number of parameters to be estimated are 2n(n+l). 

Also , as the parameters in the model form variance covariance matrices 

which must be positive (semi) definite, some kind of restrictions 

should be imposed on the non linear optimisation procedure. The 

solution proposed by Magnus (1982), which seems to work quite well in 

practice, is to write each variance covariance matrix as Ei - (Li LI), 

i=c, q, a and u); where Li represents a lower triangular matrix whose 

elements, apart from the sign of the main diagonal, are unrestricted. 

The non zero elements in the matrices Li define the new set of 

parameters to be estimated. Under this new set of parameters, the 

formulas (3.4) to (3.6) can still be applied with the following changes 

in the definitions of 0 and Xt: 

(3.7) 0i - i=f, 17,6 and w, 

and 
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(3.8) (get me, 917t m Iv gbt mb, gwt Mw), 

where, 

(3.9) Mi - [(Li @ In) + (In @ Li) K] D9 

and K is the (n2 x n2) commutation matrix defined in Magnus (1988, ch. 

3) such that for any matrix A, K vec(A) - vec(A'). 

If the model is homogeneous, it is immediate from (1.2) and (2.5) 

that E. can be concentrated out of the log-likelihood irrespective of 

the procedure used to form the log-likelihood. The maximum likelihood 

estimator of E. is 

(3.10) (1/(T-p)) E Pt g-tll 
t 

and the concentrated log-likelihood takes the form 

Qc n [E log(gt) (T-p) logli,, In (T-p). 
t 

This function has then to be maximised with respect to the parameters 

qj7, qb and q. ) using a non linear optimisation procedure. If the vector 

of coefficients of the exogenous variables is unknown, E. in (3.11) is 

a function of fl, and the concentrated log-likelihood has to be 

maximised over 0 as well as over q., qb and q. ). However, when the same 

regressors are present in all the equations, the maximum likelihood 

estimator of E., from (2.16), is [(l/(T-p)) A] which does not depend 

on 0. In that situation, both 0 and E,, are concentrated out of the 

log-likelihood. 

For the homogeneous model, it is also possible to obtain analytic 

first and second derivatives of the log-likelihood with respect to the 

parameters v(E. ) and q' = (qn, qb, q, )). These are, 
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(3.12) (T-p) D'vec(Eil) +jE D'vec(E-fl Pt 9t 
t 

(3.13) E xt gtl [trace(E-. ' gt-l pt) - n], 
C-) qt 

C') 2 

(3.14) (T-p) 
OýV(F-d C 

- Pt gt' Efl)D 
t 

a2Q 

(3.15) Xt gt-2 n- trace(Eil P t gi, )] Xý aq j)q t 

a2 Q 

(3.16) 
aq' 

D'vec(E-. ' Pt gt-l Ef 1) 9t 1 Xý 
t 

where xý - (gnt, g6t, gwt). The matrix 

(T-p) D'(Efl E-f')D 

(3.17) I(v(E. ), q) 

E xt gtl vec'(E, I)D 
t 

F- D'vec(E-, ') gt-l xý 

nE xt gt-2 Xý 
t 

is asymptotically equivalent to the information matrix; hence the 

inverse of it can be associated with the variance covariance matrix of 

the maximum likelihood estimators; see Section 3.5. 
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3.4 Estimation Strategy 

The previous two sections considered separately the estimation of 

the two sets of parameters in the model: the coefficients of the 

exogenous variables 0, and the functionally independent elements in the 

variance covariance matrices of the random shocks E., Ell) Eb and E.. 

This section analyses the alternative options to obtain the maximum 

likelihood estimators. 

If the model is homogeneous and the same regressors are presented 

in all the equations, both 0 and E. can be concentrated out of the 

log-likelihood irrespective of the procedure used to form this 

log-likelihood; see (2.13) and (3.10). The concentrated log-likelihood 

(3.11) is then maximised with respect to the parameters q., q6 and q.. 

This has to be done using a non linear optimisation procedure. Analytic 

derivatives are difficult to obtain from (3.11). 

If the model is homogeneous but the regressors are not the same in 

all the equations, it is possible to concentrate out of the 

log-likelihood either 16 or E. but not both. If 0 is concentrated out, 

the estimator of 0 is given by (2.2) and the concentrated 

log-likelihood by (2.4). In both equations Gt is given by (2.5). On the 

other hand, if E. is concentrated out, the maximum likelihood estimator 

of Ec was presented in (3.10), with the concentrated log-likelihood in 

(3.11). Under this two alternative estimation procedures, the 

parameters which are not concentrated out of the log-likelihood have to 

be estimated using a non linear optimisation procedure, with no 

analytic derivatives. A third option, which seems to be quite 

N appropj-ateýd in these circumstances is a stepwise procedure; see Sargan 

(1964) and Oberhofer and Kmenta (1974). Given consistent initial 

estimates of 0, E, 6, qj7, q6 and q., which can be obtained as indicated 
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below, a new estimate of 0 is obtained from (2.2) or (2.9). This value 

of is then used to evaluate and maximise the log-likelihood (1.2), 

where E. can be concentrated out as in (3.10). The procedure is 

repeated until convergence of the log-likelihood and the parameters. 

All these results are independent of the log-likelihood used. 

If the model is not homogenous, the only set of parameters which 

can be concentrated out of the log-likelihood is 0; while the 

parameters in E., F-17v E6 and E. ) have to be estimated using a non linear 

optimisation procedure. This is true even if the regressors are the 

same in all the equations. The problem in concentrating 0 out is that 

it is difficult to obtain first and second derivatives of the 

concentrated log-likelihood (2.4) with respect to the parameters in the 

variance covariance matrices of the random shocks. If none of the 

parameters is concentrated out, analytic first and second derivatives 

with respect to all the parameters in the model are relatively easy to 

evaluate for the frequency domain log-likelihood and for the 

alternative log-likelihood developed in Section 2.3; see Sections 3.2 

and 3.3. 

Although this chapter is basically concerned with the maximum 

likelihood estimation procedure, preliminary and consistent estimators 

of all the parameters can be obtained from the stationary form of the 

model defined in Section 1.2. As this stationary form can be seen as a 

regression model with autocorrelated residuals, the ordinary least 

squares procedure gives consistent estimates of the vector 0, while the 

autocovariance matrices of the residuals give consistent estimates of 

the variance covariance matrices of the random shocks; see Hannan 

(1970, secs. 4.3 and 7.5). Of course, that suggests the possibility of 

a two step or scoring algorithm to obtain asymptotically efficient 

estimators. Fernandez-Macho (1986, sec. 3-3) developed the scoring 
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algorithm for the models presented here. As Magnus (1978) showed that 

the information matrix is block diagonal with respect to the two 

subsets of parameters: 0 and 0, the scoring algorithm is run in 

parallel. 
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3.5 Tests of Hypotheses 

Hannan (1970), Dunsmuir and Hannan (1976), and Dunsmuir (1979) 

studied the asymptotic properties of the frequency domain maximum 

likelihood estimators of vector ARMA models. The reduced form of the 

models considered in this chapter correspond to restricted ARMA models 

and then the results of the mentioned studies can be applied to 

establish the asymptotic properties of the estimators of the models 

considered here. 

The study by Dunsmuir and Hannan (1976) presents conditions for the 

strong consistency of the frequency domain maximum likelihood 

estimators. Kohn (1979) presents conditions for the strong consistency 

of the time domain maximum likelihood estimators. 

The asymptotic normality of the frequency domain estimator of 0 can 

be obtained from the results in Hannan (1970, sec. 7.4). Besides 

regularity conditions, Hannan assumes the Grenander's conditions over 

the vector of exogenous variables zt to obtain that Tf (0 - 0) has, 

asymptotically, a normal distribution with expected value zero and a 

variance covariance matrix which is consistently estimated by (T 

1-1(16)), where 1(0) defined in (3.2.4) is evaluated at the maximum 

likelihood estimator. 

A central limit theorem for the frequency domain maximum likelihood 

estimators of 0 is provided by Dunsmuir (1979). Under normality of the 

random shocks and certain regularity conditions, Ti (-0 - 0) has, 

asymptotically, a normal distribution with expected value zero and a 

variance covariance matrix which is consistently estimated by 

I-1(0)), where 1(0) defined in (3.3.6) or (3.3.17) is evaluated at the 

maximum likelihood estimator. 

Dunsmuir's central limit theorem is not the only one available for 
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vector ARMA models. The difference with other central limit theorems is 

that the parameters in the variance covariance matrix of the 

innovations and all the other parameters in the model are not 

partitioned into two subsets; see Dunsmuir and Hannan (1976) and Kohn 

(1979). That is exactly the situation of the structural time series 

models considered here where such partition is not, in general, 

possible. 

Finally, for the univariate case, n=1, Pagan (1980) presents 

conditions for the consistency and asymptotic normality of the time 

domain maximum likelihood estimator of (0 , 0). 

The above results enable the formulation of asymptotic tests of 

hypotheses. Particularly important is a test for the homogeneity 

hypothesis (1.1.4). As the model under homogeneity is substantially 

simpler to estimate, a test for homogeneity is better based on the IM 

principle. Fernandez-Macho (1986,. sec. 3.5) formulated an 114 test which 

has the form 

-2 E-1 pt E-1 - q-1 F--l) vec'(qt t 
t 

[E Xt qt2 
t 

-2 F-1 pt q-1 [E Xt vec(qt tf 
t 

The degrees of freedom associated to this statistic are (jn(n+1)3-3). 

To test hypotheses concerning the parameters in the vector 0, a Wald or 

a Likelihood Ratio test can be used. 
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CHAPTER 4 ý- THE DEMAND FOR ENERGY IN THE U. K. : AN APPLICATION 

4.1 Introduction 

This chapter presents an econometric study of the demand for energy 

in the U. K. economy. The study, which represents an application of the 

techniques presented in previous chapters, considers quarterly time 

series data for the period 1971-1986, four economic sectors: other 

industry, domestic, other f inal users and transport; and the four most 

important fuels : gas, electricity, oil and coal. The objectives of the 

study are (i) to construct an econometric model to explain the 

substitution possibilities between the four fuels in each economic 

sector, and (ii) to obtain forecasts of the individual demands. 

translog cost function is used to explain the production 

possibilities in each sector. Under the assumption of separability in 

energy inputs this leads to a share equation system in which the share 

of each energy input in the total cost of energy depends on the prices 

of all the energy inputs. Estimation of such a system enables 

estimates of substitution and demand elasticities to be made. There is 

a considerable literature on the use of translog production and cost 

functions; see the recent survey by Jorgenson (1986). 

Technical progress enters into the model in two ways. Neutral 

technical progress affects the' overall production, and hence the cost, 

irrespective of the mix of inputs employed and so is not associated 

with any particular input. On the other hand, factor augmenting 

technical progress affects output and cost via particular inputs. Such 

technical progress is clearly relevant in the case of energy where the 

changes in technology are often specific to particular inputs. The 

present study makes a methodological contribution to the way in which 
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factor augmenting technical progress is modelled by using stochastic, 

rather than deterministic 
, time trends. The use of stochastic trends to 

pick up the effects of technical progress has already proved to be 

quite effective in other contexts; see the studies by Harvey et all 

(1986) and Slade (1989). Similar improvements in parameter estimates 

and forecasts can likewise be expected here. From the statistical point 

of view , we draw on the notion of statistical homogeneity defined in 

Section 1.1. 

Using the estimated coefficients from the share equations, a price 

index for energy may be constructed for each sector. Since the total 

cost of energy is decomposed into a price index and a quantity index, a 

quantity index may also be constructed. Following the assumed 

specification of the cost function, this quantity index is modelled in 

terms of output, temperature, and a stochastic trend, part of which can 

be interpreted as neutral technical progress. Forecasts of future 

values of the quantity index are made from this model and combining 

these with a price index based on hypothesised future prices leads to 

predictions for total costs. Predictions for individual energy demand 

are then made using the share equations. 

Earlier work on U. K. energy demand by Pepper (1985) used a 

multivariate ARIMA modelling approach, and did not take account of the 

economic structure on production and cost functions. The attraction of 

the structural time series modelling approach adopted here is that it 

ties in much more naturally with the models suggested by economic 

theory. 

The chapter is organized as follows. Section 4.2 presents the 

econometric model. Section 4.3 considers the estimation of the share 

equation system in each economic sector. Section 4.4 contains the 

estimation of the total cost equations and the forecasts. The 
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conclusions are presented in Section 4.5. Finally, in Appendix 4.1 is 

presented the definition of the data and Appendix 4.2 contains a result 

concerning the estimation of a multivariate regression model with 

stochastic trend and seasonal components when the vector of dependent 

variables is constrained. 
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4.2 The Econometric Model 

This section considers the general specification of an econometric 

model for energy demand and discusses how forecasts can be made. 

The Economic Model 

Assume that a firm produces output Q using energy inputs Xj, 

X21 
... Xn; non-energy inputs X1, X21 Xm and a level of technology 

Then , 

Xi, -, Xm; T). 

Assume that the level of technology can be represented by an index of 

technical progress A which is neutral, and indexes Al,..., An, Al,..., Am 

of relative technical progress which take the factor augmented form. 

If the input prices P1, .... Pn, Pl, ---, Pm are exogenous to the firm, 

and under cost minimising behaviour, the characteristics of production 

can be represented by a cost function C of the form 

Pi Pn Pi PM 
(2.2) c C(-, A, 

A, An A, Am 

The factor augmented form hypothesis for the technical progress has 

been used in empirical work; see Binswanger (1974) and Wills (1979). As 

shown in Solow (1967) it imposes a constraint on the form in which the 

technology affects the production possibilities. The idea behind the 

augmentation factors is that they transform the inputs from "physical', 

to "efficient" units. From this point of view, the function (2.2) can 

be seen as a standard cost function in prices of "efficient" units. 

If the production function is homothetic weak separable (HWS) in 
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the energy inputs, then as shown by Shephard (1953), it is possible to 

write the total cost function (2.2) as 

Pe Pi PM 
(2.3) C (- ;, ----; A, 

Ae A, Am 

where 

Pe Pi Pn 
(2.4) -= Ce( . ..... -) . Ae A1 An 

Here I Pe is an aggregate price index of energy and Pe/Ae the price in 

augmented form. 

The HWS assumption is a standard one in the econometric literature 

when the interest of the study lies in analysing the substitution 

possibilities of a subset of inputs; see Magnus and Woodland (1987), 

Fuss (1977) and Pindyck (1979). Shephard (1953) showed that HWS is a 

necessary and sufficient condition for a two-stage allocation. At the 

first stage, the optimal mix of energy inputs is chosen by minimising 

the cost per unit of energy given by Pe/Ae in equation (2.4); while at 

the second stage the mix of energy, as an aggregate, and non-energy 

inputs is chosen from the minimisation of the total cost in (2.3). 

This study concentrates on analysing the substitution possibilities 

of the energy inputs. The translog second order approximation of (2.4) 

is 

Pe Pi Pi p 

(2.5) Qn -- ao +E ai Qn -+E ceij Qn - Qn 

Ae i Ai ij Ai Aj 

where uo) (cii, i-1, ... n) , (aij, ij = 1, ... n) are fixed parameters. 

Differentiating (2.5) with respect to the logarithm of augmented 

prices, Qn Pi/Ai, iý1, ---, n, yields the share equation system 
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(2.6) Si - ai +E aij Qn 
pj 

n, 
i Aj 

where, Si is the share of the energy input i in the total energy cost. 

If the production function associated with the cost function (2.4) 

is a well behaved production function, the following restrictions 

should be imposed on the parameters of equation (2.6): 

(2.7a) Cost Exhaustion: 

(2.7b) Homogeneity: 

(2.7c) Symmetry: 

Cei 

(ii) Y- ceij - 0, 
i 

Y- ceij = 
i 

clij = clj iI 

j=1,..., n. 

i- 1'..., n. 

ij - 1,..., n. 

(2.7d) Concavity: The price function (2.4) is concave in the input 

prices. 

Two commonly used measures of price responsiveness are the 

Allen-Uzawa partial elasticity of substitution, sij, and the price 

elasticity of demand, eij. Berndt and Wood (1975) showed that for the 

translog cost function these measures are 

(2.8a) sij (aij + sisj)/Sisj, if i ý- j, 

(aii + S? - Si)/Sl? ) (2.8b) Sii ý1 

(2.8c) eij sij sj , 
if i =ý j, 

(2.8d) eii - sii Si- 
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If sij Z 0, the factors i and j are said to be complements. If sij ý, 0 

the two factors are substitutes; and if sij = 0, they are independent. 

To measure the biases of the technical progress, which represent 

the change in the shares at constant prices, we use the definition of 

Binswanger (1974). That is, 

(2.9) 
dSi 

Bi - 
si 

i-1,..., n, 

where dSi is the change in the share of fuel i, with constant prices. 

The Stochastic Si)ecification 

Assume that the shares of each fuel for times t-1,..., T are 

observed. Adding a random disturbance term to system (2.6) gives 

(2.10) Sit - cei +E aij Qn (Pjt/Ajt) + cit, 1,..., n, 
i 

where the vector fý , (, Elt ... fnt) is assumed serially uncorrelated, 

with expected value zero and variance covariance matrix E., 

At this point, a specific form for the augmentation factors Ait, i 

= 1,..., n is needed. The logarithms of these factors are assumed to 

follow a random walk with drift. That is 

Qn Ait Qn Ait-, + pi + 77it, i= 1'..., n, 

where the slope parameters are fixed, and the disturbance vector nt 

00 it, --- 71nt) is serially uncorrelated, independent of lEt in equation 

(2.10), with expected value zero and variance covariance matrix E 77 * if 

the disturbance term is removed from (2.11), Qn Ait reduces to a 

deterministic trend. 

The system of share equations can now be written as 
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(2.12a) Sit = Ait +E ceij Qn Pjt + fit, i n, 

it 
'T, 

(2.12b) Ait - Ai't-1 + pi + nit, 

where, in terms of the system (2.10), the following relations are 

obtained 

(2.13a) Ait = cei - Y- aij Qn Aj t 
i 

(2.13b) ciij oj 

(2.13c) nit ceij nj t, 

i=1,..., n, 

i- 1'..., n, 

i-1,..., n. 

The system of equations (2.12) has the form of the multivariate 

regression model with stochastic trend components defined in Section 

1.1. The slopes Oi in (2.12b) can be written in (2.12a) as the 

coefficients of the time variable; see Section 1.2. That is, in terms 

of the structural time series models defined in Chapter 1, the 

residuals of the regression model (2.12) follow a local level model. 

The maximum likelihood estimation of the parameters and the estimation 

of the unobserved components in this model were considered in previous 

chapters. Three comments are in order: 

a) The sum of the dependent variables is unity for all t. It is shown 

in Appendix 4.2 that only (n-1) equations need to be estimated. 

b) For the identification of the augmentation factors Ait from 

(2.13a), the following extra conditions are required 

(2.14a) Qn Ail = Op i=1,..., n 
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(2.14b) E Qn Ait = 0, 

i t=1,..., T. 

The first of these restrictions is needed given the presence of the 

parameter cei in (2.13a); while the second restriction is required from 

the fact that we can estimate independently only (n-1) of the 

components Ait, i=1,..., n. 

c) A stochastic seasonal component can be added to the model if 

quarterly or monthly data is used at the estimation stage. 

Forecasting 

Suppose that forecasts of the individual energy demands X1, ... sXn 

are required. The system of equations (2.12) gives forecast of the 

shares given input prices. To obtain forecasts of the individual 

demands ,a forecast of the total cost of energy, TCet, is needed. This 

total cost of energy decomposes as 

Qn TCet - Qn Pet/Aet + Qn Qet Aet, t- 11 T, 

where Pet/Aet and Qet Aet are the price and quantity of energy in 

augmented form. In principle, we might forecast Qn TCet directly. 

However, we prefer to form a forecast of a price index of energy; and 

then to forecast the quantity of energy which is in real terms and can 

be associated with other real variables. 

The usual practice in the econometric literature is to use a 

Divisia index to form an aggregate of prices; see Fuss (1977) and 

Diewert (1976). For the model presented in this study, the Divisia 

index in differential form is 
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Pet n Pit 
(2.16) d Qn Sit d Qn t 

Aet i=1 Ait 

and a natural discrete approximation for this expression is 

Pet Pet-1 Pit Pit-, 
(2.17) Qn -- Qn --E (Sit + Sit-, ) ( Qn -- Qn - ). 

Aet Aet-1 i Ait Ait-1 

Using this expression and (2.15) gives a quantity index of energy. 

This index may be predicted using a structural time series model with 

output and temperature as exogenous variables, and a stochastic trend 

component which can be partially associated with the neutral technical 

progress in energy, Aet. 

The forecasting procedure as a whole consists then of the following 

steps. 

a) Given prices of the energy inputs, forecast the shares using the 

system (2.12). Use the same system to forecast the components Ait, 

1,..., n; and, with the restrictions (2.14), the augmentation factors 

Ait, 

Forecast Qn (Pet/Aet) using (2.17) and Qn (Qet Aet) using a 

univariate model. Form a forecast of Qn TCet using (2.15). 

c) Multiply the total cost TCet by the shares to obtain individual 

costs. These values divided by the prices give the individual demand 

forecasts. 
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4.3 Estimation of the Model and Results - Mý- 

This section considers the estimation, for each sector, of the 

share equation system (2.12). The fuels examined are gas, electricity, 

oil and coal for the other industry, domestic and other final users 

sectors; and electricity and oil for the transport sector. The sample 

period goes from 1971 Ql to 1986 Q4. 

Maximum Likelihood Estimation 

Adding a seasonal component to (2.12), the model can be written in 

matrix form as 

(3. la) St - jut + yt +A pt + Et, t-1, ... Ty 

(3. lb) Atý At-, +j3+ -Ott 

(3.1c) (1 +L+ L2 + L3) ^it - Wt 
) 

where L is the lag operator. In accordance with the definitions in 

Section 1.2, (3.1) corresponds to a seasonal local level model. St is 

the vector of shares, At is a vector of trends with i-th component Ait 

as defined in (2.12b), 0 is a vector of fixed parameters representing 

the slopes of the trends, and -yt is the vector of seasonal components. 

The logarithms of the input prices contained in the vector pt are 

assumed to be exogenous and the matrix A has as its (i, j)-th element 

the fixed parameter ciij defined in (2.5). Finally, the random shocks 

c-t, -qt and wt are assumed to be serially and mutually uncorrelated, 

with expected values zero and variance covariance matrices E., E 77 and 

Ew respectively. 

As noted earlier, one of the equations in (3.1) is redundant 
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because the sum of the dependent variables is unity for all times. 

Thus, for estimation purposes, the system has dimension three in the 

other industry, domestic, and other final users sectors, while it 

reduces to a single equation in the transport sector. 

Assuming the disturbances in (3.1) to be normally distributed 

allows estimation to be carried out by maximum likelihood. Although the 

normality assumption cannot be strictly valid for share equations, it 

is not unreasonable provided none of the shares is very small. The 

estimation can be simplified considerably by imposing the statistical 

homogeneity restriction (1.1.4). That is, 

(3.2a) EE =qc Ew 
j 

(3.2b) En = qn Y-W I 

where q. and q,, are scalar parameters. The restriction (3.2) is an 

important one in the estimation of structural time series models. It 

not only reduces the number of parameters in the model; but also, it 

allows the matrix 1. to be concentrated out of the likelihood, reducing 

significantly the number of parameters that have to be estimated using 

a nonlinear estimation procedure. 

If the matrix of coefficients of the exogenous variables were 

unrestricted, it could also be concentrated out of the likelihood, 

leaving the nonlinear optim. isation procedure to be carried out over the 

parameters q. and q, 7 only. However, in (3.1), the matrix A is subject 

to the economic restrictions (2.7a) to (2.7c). That is, A is a 

symmetric matrix and its rows sum to zero. The restriction (2.7d) was 

not imposed on the model; it can be checked afterwards using the matrix 

of substitution elasticities. The estimation of the model, for each 

sector, was done using the frequency domain approach; see chapter 3. Of 

course, for the transport sector where the system has only one 
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equation, the homogeneity restriction and the discussion which follows 

equations (3.2) is irrelevant. 

Results 

The results of the estimation procedure are presented in tables 

4.3.1,4.3.2 and 4.3.3. Most of the price coefficients, in Table 4.3.1, 

are significant at the 5% significance level. The estimates of the 

slopes of the trends, which are associated to the slopes of the biases 

in technical progress, are shown in Table 4.3.2. In the trends of the 

gas equations the slopes are greater than zero and clearly significant 

in all the economic sectors. For the electricity fuel, the slopes are 

greater than zero and significant in the other industry and other final 

users sectors; while in the domestic and transport sectors the 

estimates of the slopes are less than zero and not very significant. 

For the oil fuel, the estimates of the slopes are negative in all but 

the transport sector. However, its significance is important only in 

the other industry and other final users sectors. The estimates of the 

slopes in the coal equation are always less than zero and especially 

significant in the other industry and domestic sectors. 

Likelihood Ratio and Lagrange Multiplier statistics were used to 

test the economic restrictions (2.7a) to (2.7c) and the statistical 

homogeneity (3.2). The results are shown in Table 4.3.4. At the 5% 

significance level, the economic restrictions are accepted in the other 

industry, domestic and other final users sectors. In the transport 

sector, the restrictions are accepted at the 3% level. Statistical 

homogeneity is accepted in the other industry sector at any reasonable 

level; while in the domestic and other final users sectors, the 

statistics are very close to the critical value at the 5% significance 
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level. In fact, the hypothesis of homogeneity is accepted at the 4.6% 

and 3.6% level respectively. 

Tests for normality and serial correlation were applied to the 

residuals in all the four models. No evidence of misspecification was 

f ound. 
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Table 4.3.1: 
_Estimates of Price Effects(O 

Other Other 
Parameter Industry Domestic Final Users TransDort 

99 . 033 
. 155 

. 060 

(. 020) (. 039) (. 016) 
Cige -. 014 -. 117 -. 047 

(. 016) (. 021) (. 017) 

ago -. 032 -. 018 -. 027 
(. 010) (. 014) (. 008) 

agc . 013 -. 020 
. 014 

(. 017) (. 038) (. 008) 

Qee . 220 
. 239 

. 253 
. 005 

(. 025) (. 023) (. 026) (. 001) 

Qeo -. 133 -. 024 -. 160 -. 005 

(. 010) (. 010) (. 013) (. 001) 

Qec -. 073 -. 098 -. 046 - 
(. 022) (. 028) (. 012) 

aoo . 196 
. 057 

. 191 
. 005 

(. 013) (. 009) (. 012) (. 001) 

00C -. 031 -. 015 -. 004 

(. 010) (. 016) (. 004) 

acc . 091 . 133 . 036 

(. 029) (. 054) (. 013) 

Standard errors in parenthesis. Gas: g, Electricity: e, Oil: o, 

Coal: c. 
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Table 4.3.2: Slo-Des of the Biases in Technical Progress(l) 

Other Other 

Parameter Industry Domestic Final Users Transport 

08 (xlo-2) 
. 291 

. 354 
. 203 

(. 078) (. 080) (. 062) 

Pe (xlo-2) 
. 161 -. 068 

. 196 -. 003 

(. 076) (. 049) (. 099) (. 002) 

go (xlo-2) -. 346 -. 042 -. 298 
. 003 

(. 094) (. 036) (. 086) (. 002) 

pc (xlo-2) -. 106 -. 244 -. 101 

(. 069) (. 075) (. 085) 

(1) Standard errors in parenthesis. Gas: g, Electricity: e, Oil: o, 

Coal: c. 
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Table 4.3.3 : Error Structure of the Models(') 

Sector Y-W (X10- 5) qE qq 

. 767 

Other Industry -. 090 . 692 2.513 4.547 

-. 423 -. 493 1.147 (1.805) (1.727) 

-. 254 -. 109 -. 231 . 5941 

Li 

3.294 

Domestic -. 943 1.265 

-. 457 . 197 . 724 

1-1.894 -. 519 -. 464 2.8771 

Li 

I 

1 1.587 

Other Final Users 1-1.188 4.150 

1 -. 363 -2.762 3.225 

1 -. 036 -. 200 -. 100 

L 

Transport . 00095 

-. 00095 . 00095 

. 3361 

i 

1.719 1.017 

(. 835) (. 380) 

. 210 1.333 

(. 815) (. 800) 

2.947 3.648 

(5.804) (5.365) 

(1) Standard errors in parenthesis. 
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Table- 
. 3.4: Test of HyRothesis 

Chi-square 
U)Mothesis d. f. Statistics 

Economic Restrictions(') 

Other Industry 6 12.160 

Domestic 6 10.980 

Other Final Users 6 4.060 

Transport 1 4.700 

Statistical Homogeneity(2) 

Other Industry 10 8.466 

Domestic 10 18.329 

Other Final Users 10 19.522 

(1) Equations (2-7a) to (2.7c) 

(2) Equations (3.2) 
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Given the estimates of the parameters in the model, and for a given 

vector of shares, we can obtain substitution and demand elasticities as 

defined in (2.8). As the model does not consider the long term effects 

of prices, these elasticities should be interpreted as short term 

elasticities. Table 4.3.5 presents the demand elasticities for the 

average values of the shares in the sample period. In the other 

industry sector, the results are, in general terms, consistent with the 

findings by Magnus and Woodland (1987) for the Dutch manufacturing 

industry, and by Fuss (1977) for Canada; that is, gas, electricity and 

oil are substitutes. The own demand elasticity for gas is -. 62 while 

for electricity and oil these values are -. 06 and -. 07. In the domestic 

sector, it was also found that gas, electricity and oil are 

substitutes. The own demand elasticities for gas and oil are -. 21 and 

-. 28; while for the electricity and coal fuels, the own demand 

elasticities are very close to zero. The estimated elasticities for the 

other final users sector are, in general, similar to the ones in the 

other industry sector. The own demand elasticity for gas is -. 41 and 

for electricity and oil these values are very small. The estimated own 

demand elasticity for coal in this sector was . 23. The transport sector 

model considers only the electricity and oil fuel. They are substitutes 

and the own demand elasticities are -. 49 for electricity and zero for 

oil. 

Using estimates of the unobserved components At, in model (3.1), it 

is possible to compute the biases in technical progress using a 

discrete approximation to (2.9). This is defined as, 

(3.3) Bit - 100 [ j4t/T Sit, 

where Bit is the bias of input i at time t, Sit is the share of input i 

at time t, and Ait/T is the smoothed estimate of tit; that is, the 
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estimate based on all the sample information. 

Figures 4.3.1,4.3.20 4.3.3 and 4.3.4 show the annual averages of 

the biases in technical progress for the four economic sectors. In the 

other industry sector, Figure 4.3.1, the technology biases the use of 

fuels towards gas and electricity. The biases for gas are high but 

decreasing during the sample period. The large value of the 1971 bias 

for gas can be explained by the introduction of the North Sea gas. 

Figure 4.3.2 presents the biases for the domestic sector. The values 

for gas are greater than zero although smaller than in the other 

industry sector. The biases for electricity, oil and coal are, in 

general, less than zero. In the other final users sector, Figure 4.3.3, 

the biases are positive for gas and electricity, and negative for oil 

and coal. Finally, the biases for the two fuels in the transport sector 

are presented in Figure 4.3.4. The figure shows positive biases for oil 

and negative biases for electricity, although in both cases the values 

are very small. 

The system of share equations were also estimated using 

deterministic trends and dummy variables to capture the seasonal 

effects. The results of this exercise showed substantial changes in the 

price coefficients, and very significant serial correlation in the 

residuals of the models for all the sectors. The ratio of the Akaike 

information criteria for the models with fixed trends and seasonals, to 

the Akaike information criteria for the systems with stochastic 

components, were 1.29 for the other industry sector, 1.57 for the 

domestic sector, 3.49 for the other final users sector, and 16.89 for 

the transport sector. These results show significant evidence in favour 

of the models with stochastic trends and seasonals, as presented in 

this study. 
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Table 4.3.5 : Demand Elasticities('). 

Other Other 

Elasticity Industry Domestic Final Users Transport 

e 99 -. 62 -. 21 -. 41 

ege . 36 . 06 . 21 

ego . 09 . 04 . 06 

egc . 17 . 11 . 14 

eeg . 11 . 06 . 05 

eee -. 06 . 01 . 01 -. 49 

eeo . 03 . 03 -. 01 . 49 

eec -. 08 -. 10 -. 05 - 

eog . 04 . 17 . 03 - 

eoe . 05 . 11 -. 02 . 00 

eoo -. 07 -. 28 -. 02 . 00 

eoc -. 02 . 01 . 02 - 

ecg . 30 . 24 . 60 - 

ece -. 45 -. 23 -. 96 - 

eco -. 07 . 00 . 14 - 

ecc . 22 -. 01 . 23 - 

eij represent the change in the demand input i given a unit 

change in the price of input j. Gas: g, Electricity: e, Oil: 

o, Coal: c. 
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4.4 Forecasting the Demand for EnerZy- 

This section presents the estimation results for the total cost of 

energy equations, and the forecasts of individual demands for the four 

economic sectors. 

In each sector, the total cost of energy was decomposed into a 

price index and a quantity index, both in augmented form. The price 

index of energy was obtained from equation (2.17). For that, estimates 

of the augmentation factors Ait are needed, and these were computed 

using the smoothed estimates of the trends At defined in Section 4.3, 

and solving, at each time t, the system of equations (2.13a) for Ait, i 

= l'... 'n. To solve this system, the extra conditions (2.14) are used. 

Figure 4.4.1 presents the annual value of the estimated price 

indexes (1971 Ql - 100), in augmented form, for the four economic 

sectors. 

Using the price index of energy for each economic sector, a 

quantity index in augmented form was computed from (2.15). This 

quantity index, which is in real terms and can be associated with other 

real variables , was modelled using a univariate structural time series 

model with output and temperature as exogenous variables, that is, 

(4.1a) Qn Qet AIt et - 01 Xlt + 02 X2t + At + yt + 'Et, 

(4. lb) At - At- i ? It I 

(4.1c) (1 +L+ L2 + L3) oyt . Wtv 

where (Qn Qet Aet) is the quantity index in augmented form, x1t and X2t 

are the output and temperature variables, jLt and -yt are the trend and 

seasonal component, L is the lag operator, and 01 , 02 and 0 are fixed 

parameters. The random shocks ft, nt and wt are assumed to be normally 
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distributed and mutually and serially independent, with expected value 

C, Or2 (A) zero and variances U2 and or 2. The trend component At in (4.1) can 17 

be partially associated with the neutral technical progress in energy 

Aet - 

The model was estimated by maximum likelihood using the frequency 

domain approach, with data for the sample period 1971 Q1 to 1986 Q4. 

The results are reported in Table 4.4.1. The estimate of the output 

elasticity was . 43 in the other industry sector, . 63 in the economic 

sector, . 29 in the other final users sector, and . 35 in the transport 

sector. In all the cases, the estimates are significant at the 5% 

level. Temperature has a negative, and significant, effect on the total 

quantity of energy in all the sectors except in transport where the 

estimate of the coefficient is greater than zero and not clearly 

significant. The estimates of the slopes of the trends are greater than 

zero in the other industry and transport sectors, and less than zero in 

the domestic and other final users sectors. The estimates, however, are 

not very significant in any economic sector. We applied tests for 

normality, serial correlation and heteroscedasticity to the residuals 

of the four models. At the 5% significance level, all the tests 

supported the model. 

Forecasts of the quantity index for 1987 were made from these 

models and combining these with a price index based on 1987 prices led 

to predictions for total costs. Predictions for individual demands were 

then obtained using also the forecasts of the shares, from the share 

equat: Lon system estimated in section 3. Table 4.4.2 presents these 

predictions for the four fuels in each economic sector. The errors, 

defined as the per cent deviations of the forecasts from the observed 

demands, fluctuate between -10.5% , 
for the gas fuel in the other 

industry sector, and 14.3% for the coal fuel in the other f inal users 
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sector. The average of the absolute value of the errors in all the 

sector, and for all the fuels, is 5.1%. 

For comparative purposes, forecasts of the individual demands were 

also made from univariate structural time series models, which used no 

information on prices, output or temperature. Table 4.4.3 compares the 

average of the absolute value of the errors for the two sets of 

predictions. One and five year ahead predictions were made. The one 

year ahead predictions , which use information on demands up to 1986, 

show no significant differences between the forecasts obtained from the 

econometric model and the ones from univariate models. The five year 

ahead predictions, are based on the same parameter estimates, but are 

constructed using information on demands up to 1982 only. They reveal 

that in the medium term the predictions using the econometric model are 

more accurate. Although in the other industry sector the differences 

between the errors are small, for the other three economic sectors the 

errors from univariate models are more than twice as high as the ones 

obtained from the econometric model. 
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Table 4.4.1: Estimates in Total Quantity of Energy Models(') 

Other Other 
Parameter Industry Domestic Final Users TransDort 

01(output) . 427 
. 632 

. 294 
. 353 

(. 194) (. 254) (. 107) (. 151) 

02(temp. ) -. 013 -. 047 -. 039 
. 003 

(. 005) (. 005) (. 006) (. 002) 

O(Xlo-2) 
. 410 -. 544 -. 158 

. 112 

(. 366) (. 269) (. 090) (. 216) 

or2(xlo-3) . 000 
. 245 

. 870 . 014 

(. 170) (. 212) (. 038) 

u2(xlO-3) 77 . 835 . 316 . 044 
. 242 

(. 218) (. 136) (. 035) (. 081) 

U2(xlo-3) w . 114 . 107 . 044 . 003 

(. 050) (. 055) (. 031) (. 002) 

(i) Standard errors in parenthesis. 
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Table 4.4.2: Demand Forecasts for 19870) 

_ 
Other Industry Sector Gas Elec. Oil Coal 

Observed 4266 2602 3398 2017 

Forecast 4714 2710 3294 2202 

Error -10.5 -4.2 3.1 -9.2 

Domestic Sector Gas Elec. Oil Coal 

Observed 10502 3183 980 2061 

Forecast 10865 3515 982 1970 

Error -3.5 -10.4 -0.2 4.4 

Other Final Users Sector Gas Elec. Oil Coal 

Observed 2990 2370 1979 370 

Forecast 3296 2375 1990 317 

Error -10.2 -0.2 -0.6 14.3 

Transport sector Gas Elec. Oil Coal 

Observed 105 16833 

Forecast 105 16680 

Error 0.0 0.9 

Error - 100(l - Forecast/Observed). 
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Table 4.4.3 : Absolute Value of Prediction Errors for 19870) 

Other Other 
Prediction Industry Domestic Final Users Transport 

1 Year Ahead 

- Econometric 6.8 4.6 6.3 .5 
- Univariate 5.3 5.3 5.4 .7 

5 Year Ahead 

- Econometric 22.5 6.8 11.8 5.6 

- Univariate 24.1 15.6 23.8 15.3 

(1) See note (1) in Table 4.4.2 
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4.5 Conclusions 

Section 4.2 of the chapter presented an econometric model to study 

the inter-fuel substitution possibilities between energy inputs. Using 

a translog cost function, and factor augmenting technology, the study 

made a contribution to the way in which the factor augmenting technical 

progress is modelled by using stochastic, rather than deterministic, 

time trends. 

The econometric model led to a system of share equations. This 

system was estimated in Section 4.3 for four economic sectors: other 

industry, domestic, other final users and transport; for four fuels: 

gas, electricity, oil and coal; and using the sample period 1971 Ql to 

1986 Q4. The findings show significant price effects in the system of 

shares, although the resulting short term demand elasticities are, in 

general, quite small. Gas, electricity and oil are substitutes in all 

the sectors except in the other final users sector where electricity 

and oil were found to be complements. A study of the biases in 

technical progress for the four sectors, shows that at constant prices, 

the technology biases the use of fuels towards gas and against coal in 

all the sectors. The biases for electricity are positive in the other 

industry and other final users sectors and negative in the other two. 

For the oil fuel, the biases are positive in the transport sector only. 

Two comments are necessary in connection with the econometric 

model. The first is that the use of only current values of prices means 

that the price ef fects captured by the model are short term. Over the 

longer term changes in prices will lead to changes in demand as 

consumers switch to using equipment which is appropiate for the fuels 

which have become relatively cheaper. Such changes could take several 

years to come into effect and building appropiate lag structures into 
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the model is extremely difficult given the limited amounts of data 

available. The omission of lagged prices from the model means that some 

of the long term price effects will be absorbed by the stochastic 

trends, and this should be borne in mind in interpreting the results. 

The second comment concerns the economic and statistical restrictions 

imposed on the model. In some cases the tests for the validity of these 

restrictions indicated a rejection of the null hypothesis, albeit very 

marginally, at the conventional 5% level of significance. The decision 

to impose the restrictions could therefore lead to some distortion on 

the estimates, but we believe that the attendent parsimony more than 

justifies this decision. 

The estimation of a model for the total quantity of energy, using 

output and temperature as exogenous variables, and the computation of a 

price index of energy enabled predictions of individual demands to be 

made for 1987. These predictions were compared with the ones obtained 

from univariate structural time series models. The magnitudes of the 

errors were found to be very similar for the two sets of one year ahead 

predictions. However, for the five year ahead predictions, the 

econometric model was clearly superior. 
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ARRendix 4.1 : Definition of the Data 

The demands are in millions of therms, and adjusted to be on the 

SICC 1990 definition. 

The prices are in units of pence per therm. in 1975 money, deflacted 

by the Retails Price Index in the domestic and transport sectors and by 

the Producers Price Output Index in the other industry and other f inal 

users sectors. The prices of fuels in the other final users are assumed 

equal to the prices in the other industry sector. The price of oil in 

the other industry and other f inal users sectors is taken as the heavy 

fuel oil while the price of oil in the transport sector is based on a 

weighted average of four star petrol ( weight . 75 ) and DERV ( weight 

. 25 ). The price of all the other fuels are taken from published data 

in Energy Trends and in Digest of UK Energy Statistics. 

The variable output is taken as the consumer expenditure in billion 

of pounds in 1980 money for the domestic and transport sectors. In the 

other industry and other final users sectors, the variable output is 

defined as the Manufacturing Output Index ( 1980 - 100 ). 

The temperature variable is defined in terms of deviations from the 

seasonal mean and is in degrees Celsius. 

Some observations on demands and prices were identif Led as outliers 

and removed prior to the analysis. 
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ARlDendix 4.2 : Constrained DeDendent Variables 

Consider the following multivariate structural time series model 

(A2. l a) yt =B xt + lit + -yt + Et, t=1,..., T, 

(A2. lb) Pt- At-, +0+ -Ott 

(A2.1c) S (L) -yt - wt I 

where yt is an (n x 1) vector of dependent variables, B is an (n x 

matrix of fixed coefficients and xt is a (k x 1) vector of exogenous 

variables. The (n x 1) vectors gt, 9 and -yt represent the level, slope 

and seasonal components, with the seasonal period equal to s. The 

polynomial S(L) in the lag operator L is defined as in Section 1.2. 

Finally, the random shocks et, -qt and wt are assumed serially and 

mutually uncorrelated, normal, with expected values equal to zero and 

variance covariance matrices E., E 77 and E. respectively. 

Consider the following restriction on the dependent variable vector 

yt: 

(A2.2) Xlyt - 

where a is a fixed constant. Using (A2.1a), 

(A2.3) X'B xt +xI jit +XI 7t +XIct- 

As xt, jLt, -yt and ct are mutually uncorrelated, necessarily 

(A2.4a) X'B xt - a,, t- 1'..., T, 

(A2.4b) xlAt = a2, 

(A2.4b) xlyt - a3, t-1, ... 'TI 
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and 

(A2.4c) X'Et =a 41 t=1,..., T, 

with a=a, +a2+a3+a4* Clearly (A2.4a) cannot hold if xt changes 

with t unless a, =0 and XIB - 0. Similarly, a3= a4 ý0 because the 

expected value of wt and Et are zero. That gives a2 ý a. Premultiplying 

(A2.1b) by X', and with a similar argument, we obtain XIp -0 and X'nt 

= 0. 

We have then that the variance covariance matrices of all the 

random shocks, and the prediction error variance are of rank (n-1). 

Following the argument in Cramer (1986, ch. 7), the likelihood of the 

complete system is equivalent to the likelihood of any (n-1) components 

of the vector yt. 

After the estimation of the parameters for the (n-1) dimensional 

model, the original variance covariance matrices of the random shocks 

and the full matrix B can be recovered using the relations 

(A2.5a) X' B-0, 

(A2.5b) xi ß. 0, 

and 

(A2.5c) X' Ei - 0, i-Eý -q and üj. 
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CHAPTER 5: DYNAMIC ERROR COMPONENTS MODELS 

5.1 Introduction and Formulation 

This chapter considers the formulation and the basic properties of 

dynamic error components models based on the ideas of structural time 

series models. This first section presents some basic ideas and 

formulates the models. Section 5.2 studies basic statistical properties 

of the models; and sections 5.3 and 5.4 extend the specifications to 

multivariate observations and factor analysis respectively. 

Error components models have been used to analyse data collected by 

observing a number of individuals or units over time, usually called 

panel data, since the early work by Balestra and Nerlove (1966). 

Suppose for start that the random variable ait is observed over each 

unit i-1,..., n and time t-1,..., T. The basic idea behind the error 

components models is that the random effects acting over ait can be 

separated into three independent components: a unit specific effect 

which is the same for all times, a time specific effect which is the 

same for all units, and a time unit specific effect. The standard 

static model considered in the literature, without exogenous variables, 

is 

(1.1) a, it ý-- Xil) Xý2) xjý) 
I i=1,..., n, 

where the three stochastic components Xjl ), Xý2) and Xjý) are assumed 

to be normally distributed, mutually and serially uncorrelated, with 

expected values equal to zero and variances (y2, Or2 and U2 respectively. 123 

Several generalisations or modifications can be introduced to (1.1). In 

a two error components model, either the effect XJI) or Xý2) is not 

present; while in a fixed effect components model, either XJ0 or Xý2) 
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is fixed rather than stochastic. Finally, the components Xýý) might 

have unit specific variances. Hsiao (1986) presents a review of the 

basic methods that have been used in the literature. 

The dynamic version of (1.1) includes, in general, lagged dependent 

variables and autoregressive or more general ARMA structures for Xý 

and Xjý). Maddala (1971), Nerlove (1971), Trognon (1978) and Anderson 

and Hsiao (1981,1982) studied different aspects of a model like (1.1) 

with lagged dependent variables. Lillard and Willis (1978) used (1.1) 

with Xý2) =0 and Xjý) following an AR(l) process, while Revankar 

(1979) studied the case where Xý2) follows an AR(l) process. Similar 

specifications were considered by Lillard and Weiss (1979), Hause 

(1980) and Anderson and Hsiao (1982). MaCurdy (1982) considered a more 

general time series process for the component Xjý). 

Here, the approach used to transform (1.1) into a dynamic model is 

based on the ideas of structural time series models. To illustrate the 

concepts and facilitate the exposition in this introduction, the local 

level time series model defined in Section 1.2 is used. Several 

generalisations are considered later. 

Allowing a specification like (1.1) for both the irregular and 

level random shocks in the local level model (1.2.1), yields 

(1.2a) + E* i- 1'... 
'n, clit = pit + It it, 

(1.2b) + 77t + 77t Ait Ailt-i It, 

where the components Et, Ett, -qt and -qtlt are assumed to be normally 

distributed, mutually and serially uncorrelated, with expected values 

equal to zero and variances Or2' 
f 

0-2* 
f ' (T2 and 17 

(T2* respectively. 17 The 

random shocks ft and nt are common to all units, while ctt and -qtt are 

unit specific random shocks. The component XJ0, defined in (1.1), does 
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not appear in (1.2) because it has already been included in the 

stochastic unit specific trend Ait. 

Model (1.2) can be seen as a restricted n dimensional local level 

model, with the variance covariance matrices of the irregular and level 

random shocks equal to (U2 tL+ (T2* 1 (0-2 tt+ 0-2* fE n) and 71 ?) In) 

respectively; with t an (n x 1) vector of ones and In the identity 

matrix of dimension n. Thus, the error components model (1.2) imposes 

strong restrictions on the variance covariance matrices of the 

irregular and level random shocks. In the following subsections, where 

more general specifications are considered, some of these restrictions 

are relaxed and the unit specific random shocks Ett and ntlt are allowed 

to have unit specific variances. 

Some comments with respect to the specification (1.2) are in order. 

When 072 ý Or2* ý0, (1.2) reduces to the static model (1.1); and when a2 
71 17 71 

0 but (T2* ý 0, the n time series are cointegrated in the sense of 77 

Engle and Granger (1987). The distinction between the cases U2* 11,0 and 77 

a2* .0 is important not only in terms of the behavior of the trends 77 

#it in the long run; but also because introduces significant 

modifications in the way the model should be handle and estimated. That 

is the reason why two kinds of error components models are defined. In 

the model type I, the trends and seasonal components are generated by 

both a random shock common to all units and a unit specific random 

shock whose variance is greater than zero; that is, in (1.2), 0-2* 1,0. 

On the other hand, in the model type II, the trend and seasonal 

components are, apart from a time invariant effect, the same for all 

units; that is, in (1-2), o- 2* ý 0. 

Two kinds of panel data sets have been considered in the 

literature. In one case the number of units n is large and the number 

of time periods T is typically small; the inference in this case is 
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usually based on n going to infinity with T fixed or going to infinity 

as well. In the second kind of data sets, which is the one in which we 

are most interested here, n is fixed although, in general, large and 

the inference is based on T going to infinity. 

The remainder of this section defines more formally the dynamic 

error components models type I and II. Those definitions consider some 

generalisations: stochastic slopes and seasonal effects are 

incorporated into (1.2), and the unit specific random shocks are 

allowed to have unit specific variances. Finally, the components ait 

are defined as residuals of a regression model rather than observed 

values. 

Model Type I 

This subsection defines a dynamic error components model type I 

where (1.2) is extended to include stochastic slopes and seasonal 

components and the variances of the unit specific random shocks are 

allowed to be unit specific. The general error components model type I 

is defined as 

(1.3a) Olit -z Oit + ft + fitl 

(1.3b) Oit =T Oi, t-l +R (Kt + K'ýt), 1 

where ait is the observation for the unit i at time t; and Z, T and R 

are (1 x p), (p x p) and (p x u) matrices as defined, jointly with the 

values p and u, in Section 1.2 according with the time series model. 

The (p x 1) vector Oit corresponds to the state vector which contains 

the trend and seasonal components; and the random shocks ft, ft1t, Kt 

and K*it have dimensions 1,1, u, and u respectively; and they are 
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assumed to be normally distributed, serially and mutually uncorrelated, 

Or2, U2* and D* with expected values equal to zero and variances C- fl, DK Ki; 

the last two being (u x u) diagonal matrices. The stationary form of 

the model, which is obtained by taking differences, is assumed to be 

strictly invertible; see Section 1.2. That restricts some elements of 

D*i to be strictly positive. In the local level model, p-u-1, D- 9K 

Or2 and D*ý Or2t 0. 
'q Ki -q I In the local linear trend model, p-u=2, DK 

diag((T2 
, aj) and 77 D*i K diag (U2* 771 aj**) 1 with uj* 0. In the seasonal 

local level model, u 2, D K diag (Or2 , 17 ()r2) W and DKi - diag(O-2t 
, 171 

0-2* 
U)i) 

0. Finally, in the basic structural model, u=3, D- diag(O-2, K 77 

(Or2t, (71t, a2t ý, 0. or2) and D*Ki - diag I a,, 2*i), with aý*i ýý, 0 and W 711 W1 

Model (1.3) can be written as a multivariate structural time series 

model of the form (1.1.3). That is, 

(I. 4a) Cit I C- t+ c- 
* 

n) Ot +I ty t=1,..., T, 

(1.4b) Ot - (T @ In) Ot-, + (R @ In) ((IU @ L) Kt +K *P, 

where at is an (n x 1) vector with i-th component ait, Ot is the (np x 

state vector, and L is an (n x 1) vector of ones. The random shocks 

Et and xt are defined as in (1.3); while ct and Kt are (n x 1) and (nu 

x 1) vectors with i-th components EI't and Ktt respectively. The 

variance covariance matrices of Et and Kt are defined as the (n x n) 

and (nu x nu) diagonal matrices D* and D* respectively. With these EK 

definitions, the variance covariance matrices of the random shocks in 

the measurement equation (1.4a) and in the transition equation (1.4b) 

can be written as 

(l. 5a) v(t et +( 
*) 

=, L, U2 +D*t-1, ... 

and 
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(1.5b) V((Kt + K*) (D W) + D* t tK0 KI 

Model (1.4), with the variance covariances matrices of the random 

shocks as in (1.5), represents a very general specification where no 

restrictions are placed on the parameters of the models for each unit, 

but only on the parameters that capture the covariance structure across 

units. 

The error components model type I is said to be restricted if it 

satisfies 

(1.6a) D* -D or2* ffI 

(1.6b) D* - D** KK 

where D and D** are (n x n) and (u x u) diagonal matrices, and one K 

restriction should be imposed for identifiability. Restriction (1.6) 

says that the unit specific variance covariance matrices of the random 

shocks of the level, trend and seasonal components, in Kt, are 

proportional to the variance covariance matrix of the irregular random 

shock (-*. This is exactly the idea used in the homogeneous model t 

def ined in Section 1.1; however, model (1.4) is not homogeneous under 

(1.6) because no restrictions have been introduced to the common random 

shocks et and Kt. A more detailed discussion of the relationship 

between the restriction (1.6) and the homogeneity restriction is 

presented in Section 5.3. As a special case of (1.6), the matrix D may 

be known or it may be set equal to the identity. Of course, (1.4) under 

(1.6) and D= In reduces to (1.2) for the local level model. 

Section 5.2 considers some basic statistical properties of the 

models considered here. Chapter 6 studies the minimum mean square error 

estimation of the unobserved components in the state vector Ot in 

(1.4), and the maximum likelihood estimation of the parameters. 
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Model Type II 

This subsection defines the error component model type II, which is 

a special case of the model type I defined above in that the unit 

specific random shocks which generate the trend and seasonals 

components are zero for all t=1,..., T. Thus, in terms of the 

definitions in the previous subsection, D* =0 and the trend and K 

seasonal components are generated by the common to all units random 

shock Kt. The general error components model type II is defined as 

(1.7a) Clit =Z Oit + ft + f* i it, 

t 

(1.7b) Oit -T Oit-i +R Kt, 

where all the components in (1.7) are defined as in (1.3). In model 

U2* is assumed to be greater than zero for all i and according El 

to the time series model, some of the variances in D. are also assumed 

to be strictly positive. In the local level model 0- 2 ýý, 0 in the local 71 

linear trend ug 1 0, in the seasonal local level model 0-2 ýý, 0 and or 2 
17 (j) 

0, and in the basic structural model aj ý, 0 and U2 ýý, 0. 
(j) 

Model (1.7) can be written as a multivariate structural time series 

model of the form (1.1.3). That is, 

(1.8a) L' at - (Z @ In) Ot'+ It + 'ty 

Ot - (T 0 In) Ot-, + (R @ In) (Iu @0 Kt, 

where all the components in (1.8) are defined as in (1.4). The variance 

covariance matrices of the random shocks in the measurement equation 

(1.8a) and in the transition equation (1.8b) are given by 

(1.9a) VO ft +f *) = Lt, Or2 + D*fv t tf 
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and 

(1.9b) V(Ict @t)- DK @ tt II 

Although the trend and seasonal components contained in the state 

vector Oit in (1.7) are generated by the common to all units random 

shocks Kt, this does not mean that the trend and seasonal components 

are the same for all units because there may be initial differences 

between these trend and seasonal effects. Two alternative 

specifications for these initial differences are considered. First, the 

initial differences between the trend and seasonal components may be 

defined as fixed parameters; or second, the initial differences may be 

defined as random effects with a given prior distribution. Notice that 

these alternative specifications refer only to the differences between 

the components across units. Notice also that if Kt -0 in the local 

level model, (1.7) reduces to the static model (1.1) and the above two 

alternative specifications coincide with the two standard 

specifications in (1.1): the unit specific effect may be defined as 

fixed or random. The approach here is a straightforward generalisation. 

Whichever the specification for the initial differences between the 

trend and seasonal components across units, the state vector for the 

unit i at time 0 can be written as 

0io - xi i-1,..., n, 

where Xi is a (p x 1) vector representing the unit specific effect, and 

0* is a (p x 1) vector which contains the common to all units 
0 

components. Hence, at time t 

oit - Tt Xi + O*t, 

where 
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Kt, 

and then equation (1.8a) can be written as 

at - (Z Tt 0 In) )l +tZ O*t +I It + It 

= Ut X+tZ 0* +L Et + E* tt2 

where X is an (np x 1) vector with p blocks of n elements each. These 

blocks of n elements correspond to the unit specific effects for the 

trend and seasonal components. It follows that the error components 

model type II can alternatively be written as in (1.12) and (1.11b). 

Notice that the state vector 0* in (1.12) is only identifiable up to a t 

time invariant effect because of the presence of X. In the fixed 

effects model, and without loss in generality, the sum of the 

components Xi across units may be set equal to zero. In that case the 

state vector 0* is equal to the average of the state vectors Oit in t 

(1.7b) . 

The error components model type II is said to be restricted if it 

satisf ies 

or2* In c9 

with Or2* ýý- 0. Thus, all the units have the same variance for the f 

irregular unit specific random shock. 

Section 5.2 considers some basic statistical properties of the 

model presented here; while Chapter 7 deals with the estimation of the 

unobserved components and the maximum likelihood estimation of the 

parameters. 



-133- 

Exogenous Variables 

Until now, it has been assumed that the components ait are 

observations. Consider the more general situation where the ait are the 

residuals of a regression model of the form 

(1.14) Yit - zl't Oi + ait, i-1,..., n, 

where yit is the dependent variable, zit is an (r x 1) vector of 

exogenous variables, and Oi is an (r x 1) vector of fixed coefficients. 

Three special cases of (1.14), which are typically considered in the 

analysis of error components models, are the following 

(1.15a) , Yit - Zý 16i + ceitl 

(1.15b) yit - Zlt 0+ Cit, 

and 

(1.15c) Yit = Zý 0+ clit. 

In (1.15a), the exogenous variables are the same for all units, 

although the coefficients of these exogenous variables are unit 

specific. In (1.15b), the exogenous variables are time unit specific 

but the vector of coefficients is the same for all units. Finally, in 

(1.15c), both the exogenous variables and the vector of coefficients 

are the same for all units. In multivariate form, 

Yt - xt 0+ at 

where yt is the (n x 1) vector of observations, Xt is an (n x k) matrix 

of exogenous variables, 0 is a (k x 1) vector of coefficients, and at 

is the (n x 1) vector of residuals. Under (1.15a), k=nr, Xt = (In @ 
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zý) and the i-th component of 9 is Oi. Under (1.15b), k=r and the 

i-th row of Xt is zit. Finally, under (1.15c), k=r and Xt = (t @ zý), 

with ta vector of ones. 
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5.2 Basic PrODerties of the Models 

This section considers some basic properties of the two error 

components models defined in the previous section. Although the results 

presented in Section 1.2 for the unrestricted multivariate structural 

time series model can be applied here with obvious substitutions, this 

section presents results which are specific to the class of models 

studied in this chapter. Basic statistical properties of the error 

components model type I, under (1.6) and assuming that the diagonal 

matrix D def ined there is equal to the identity matrix, are considered 

first. Results for the model type II under (1.13) follow. 

Model Type I 

The autocovariance function of the first differences in the local 

level error components model as defined in (1.4), and under (1.6) and D 

= In, is given by 

(2. la) 

(2. lb) 

and 

(2.1c) 

r(o) - (2 or2 + U2) LL' + (2 U2* + U2*) In, 
f 77 f 71 

=- or2 tt or2* r(ti) 
fE In, 

r(±k) - if k N, 1, 

where t is an (n x 1) vector of ones and In is the identity matrix of 

order n. From (2.1), the autocorrelation matrices at lags zero and one 

are given by 

1 

(2.2 a) R(O) (2 0-2 + 0-2) t t' + (2 0-2* + 0-2*) 
f 77 E 71 

SP 
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and 

(2.2b) 0-2 Lt 0-2* 1 I-ff 

respectively; where ýo - (2 0-2 +2 Cr2* + U2 + U2*) 
. That is, the ff 17 71 

matrices R(O) and R(l) have the same form of the variance covariance 

matrices. The correlation coef f icients at lag one are the same f or any 

pair of units. Also, as U2 tends to zero, R(l) approaches a matrix f 

proportional to the identity, and as U2* tends to zero, R(1) approaches f 

a matrix proportional to LL'. It can be shown, using the results in 

Section 1.2, that the same kind of structure is found in the 

autocorrelation matrices of the more general models with stochastic 

slopes and seasonal components. For example, in the local linear trend 

model, the autocorrelation matrices at lags zero, one and two are given 

by 

1 

(2.3a) R (0) - [(6 U2 +2 or2 + UJ) Ltv 

or 2* +2 U2* 
f 17 

(2.3b) (4 or2 + or2) tt (4 0-2* + U2*) 
f 

and 

072 tL+ 072* (2.3c) R(2) -Iff n], 
lp 

respectively; where ýo = (6 o-2 +6 Or2* + f 2 (T2 +2 Or2* 
77 17 

+ qý + aj*) . The 

autocovariance generating function and the spectral density of these 

models can be obtained using the formulas above and the general results 
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in Section 1.2. Under the assumptions in Section 5.1, the 

autocovariance generating function is always positive definite and then 

the models considered here are strictly invertible. 

The general model type I was defined in (1.4). The following lines 

consider an alternative expression for that model which presents some 

advantages in the estimation of the components and parameters. It is 

still assumed here that (1.6) holds with D- In- Consider the (n x n) 

matrix H defined as 

n-1 -1 
(2.4) -1 n-1 -1 

-1 -1 n-1 -1 

whose determinant is (1/n), and its inverse is given by 

(2.5) H-1 In-1 

The premultiplication of an (n x 1) vector by this matrix H produces a 

transformed vector whose first component is the average of the elements 

in the original vector and the remaining (n-1) components correspond to 

deviations of the first (n-1) components of the original vector with 

respect to this average. Premultiplying (1.4a) by H yields 

(2.6a) H at -H (Z 0 In) Ot +H (t ft + f*) t 

=0t+H(Lft+ (-*t) , 

where, using (1.4b), 

(2.6b) (I p@ H) Ot = (T 0 In) (Ip @ H) Ot-, 

p@ H) ((IU @ t) Kt +K *). 

n) (I t 
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Thus, the transformation produces a structural time series model as 

defined in Section 1.1, where the new observations are (H cet) and the 

state vector is given by (Ip @ H) Ot. The advantage of this 

transformation is that the variance covariance matrices of the 

transformed random shocks H (t ct + E*) and (I H) ((IU @ L) Kt + K*) tpt 

have simple expressions, In fact, 

(2.7a) V[H(t c-t + c-*) BE, t 

and 

(2.7b) V [(1 0 H) ((IU @ L) Kt + K*)] - diag[B,,..., B pt PI, 

where Bk has the form 

+ aj*/n 0 

(2.8) Bk 

0 (In-1 - ttl/n) 

and k takes some or all of the values E9 -q, 6, w. It can be seen from 

(2.7) and (2.8) that the first transformed time series, which 

corresponds to the average across units, is uncorrelated with the 

remaining (n-1); thus, the estimation of the state vector in that time 

series can be treated separately as a univariate model. The remaining 

(n-1) time series, which correspond to deviations from the average, 

form a homogeneous structural time series model in which each 

disturbance vector has a variance covariance matrix proportional to the 

known matrix (In-1 - W/n); see Section 1.1 for the definition of a 

homogeneous model. As the transformation (2.6) is non singular, it can 

be exploited to estimate the unobserved components in the state vector 

and to form the likelihood of the model. 

The univariate model for cet, which corresponds to the first element 
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of the transformed observations, is given by 

(2.9a) cet =Z Ot + ft + -f* 
tf 

(2.9b) Ot -T Ot- +R (Kt + K*t) 

t=1,..., T, 

where, for any component xit, xt represents the average across units. 

The variances of the random shocks in (2.9a) and (2.9b) are given by 

(Or2 + 072*/n) and (D + D*/n) respectively. If n is large, these EEKK 

variances approach U2 and D respectively, and the state vector Ot in EK 

(2.9) becomes a vector with trend and seasonal components generated by 

the common to all units random shocks. 

On the other hand, the model for the i-th deviation from the 

average is given by 

(2.10a) (Ceit - at) -Z (Oit - Ot) + (ftt - I ft), t=1,..., T, 

(2.10b) (Oit - 
-0t) 

-T (0i't-, - 
-Ot-1) +R (ictt - 

-ic*t) 
. 

The variances of the random shocks in (2.10a) and (2.10b) are given by 

U2*(n-l)/n and D*(n-l)/n respectively. The trend and seasonal fK 

components in (Oit - Ot) are independent of the common to all units 

random shocks, and if n is large, (n-l)/n approaches unity, and (Oit - 

Ot) is generated by the unit specific random shocks. 

The transformation (2.6) is attractive because it does not depend 

on the parameters of the model. However, it assumes (1.6) with D- In- 

If (1.6) holds but D is not equal to the identity matrix, and if 

without loss in generality the restriction tD-1t =n is impossed, a--2, - 

transformation like (2.6) can still be applied with H replaced by the 

matrix 
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(2.11) = (1/n) 

(1/dn) 

(n-(l/dn-1)) -(l/dn) 

where di is the i-th element in the diagonal of D. The determinant of 

H* is (n dn)-l and its inverse is given by 

(2.12) H*- 

I- dn/d 1 

In- i 

dn/dn 

The transformation (2.6) with H* given by (2.11) gives a model where 

the variances of the random shocks are as in (2.7) but with matrices Bk 

given by 

aj + aeln 
(2.13) Bk 

where D* is an (n-I x n-1) diagonal matrix with i-th diagonal element 

equal to di. 

Model TyRe II 

The autocovariance and autocorrelation functions of the stationary 

form of the error components model type II can be obtained from those 

for the model type I with the unit specific variances of the trend and 

seasonal random shocks set equal to zero. 

On the other hand, the transformation of the model by using the 

matrix H in (2.4) is particularly attractive. Indeed, premultiplying 

(1.12) by H yields 
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(2.14) H at -H Ut X+HtZ Ot +H (t ft + f*) t 

where the f irst equation of this system is given by 

(2.15a) cet -Z Tt X+Z 0* + Et t 

and the last (n-1) equations have the form 

(2.15b) (Ciit - cet) -Z Tt (Xi - X) + Itt 

t=1,..., T, 

i=1,..., n-1, 

The component X in (2.15a) can be incorporated into the state vector O*t 

to produce the univariate model 

(2.16a) at =Z( Ot + X) + ft + ft, t 'T, 

(2.16b) (0* + _X) 
-T (C + X) +R Kt, 

which has the standard form of a univariate structural time series 

model with the variance of the irregular random shock equal to (or 2+ 
f 

U2*/n). Notice that equations (2.16) reveal the fact that 0* is not in f- t 

fact identifiable. The transformation (2.14) leads to a model where the 

trend and seasonal components are estimated from the univariate model 

(2.16) while (2.15b) is a multivariate stationary model. Although the 

above results were obtained assuming, if (1.13) does not hold, the main 

ideas here can still be applied with the transformation based on H* 

instead of H; see equation (2.11). 



-142- 

5.3 Extension_to Multivariate Observations 

This section considers the extension of the models already 

presented in this chapter to the case where ait is a (q x 1) vector 

rather than a scalar. A multivariate error components model was f irst 

estimated by Chamberlain and Griliches (1975). Magnus (1982) presents a 

full treatment of the static model, while a dynamic model with f irst 

order serial correlation over both the time specific and time unit 

specific effects was considered by Magnus and Woodland (1987). The 

dynamic error components model type I, defined in (1.3), is naturally 

extended to multivariate observations. The vector random shocks et, 

Ctt, Kt and Kit defined there have now dimensions q, nq, qp and nqp 

respectively, and the variance covariance matrices are given by Ee, 

F* and E*Ki; where the last two matrices are block diagonal with Cil EK 

generic (q x q) blocks Y-k and E*i, k= 71,6, w. The model can also be k 

written as an nq-dimensional structural time series model with the 

variance covariance matrices of the random shocks in the measurement 

and transition equation given by A. and diag[A,,..., Ap] respectively; 

where 

Il (3.1) Ak Ek) + diag[tk*lt ... 1 kn], k 

From (1.6), the error components model type I for multivariate 

observations is restricted if 

(3.2) Ak ' Ot' @ Ek) + (D 0 Ik**), k= tj, a, (); 

where t is an (n x 1) vector of ones, D is an (n x n) diagonal matrix 

and E** is a (q x q) symmetric matrix. A restriction like this, 
k 

although in a different context, was used by Magnus and Woodland 
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(1987). As a special case, D may be known or equal to the identity 

matrix In. 

Given the presence of a multivariate model for each unit, it is 

relevant to consider here the homogeneity restriction presented in 

Section 1.1. The following definition extends the idea of homogeneity 

to error components models. Two important results, whose proofs are 

trivial, are stated in the following lemmas. 

Definition 5.3.1 : An error components model type I is partially 

homogeneous if 

Ek qk Ef, 

Eti qtj E*, Eip 

k 't, 5,0), 

k= ? 7,6, w; 
i=1,..., n. 

Lemma 5.3.1 : If an error components model is partially homogeneous and 

if q* ki - qk for all i and k, then 

(i) The multivariate form of the error components model is 

homogeneous. 

(ii) The model for each unit is homogeneous. 

Lemma 5.3.2 : The error components model for univariate observations 

(1.3) or (1.4) is partially homogeneous. 

It can be observed from these results that if the model for each 

unit is homogeneous, the whole multivariate model is not necessarily 

partially homogeneous even if the proportional factors of the variance 

covariance matrices are the same for all units. On the other hand, it 

should be noticed that for the multivariate error components models 

considered in this section, the kind of restrictions introduced by the 

idea of homogeneity are independent of the restriction (3.2); while the 
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homogeneity restriction defines variance covariance matrices 

proportional across components, (3.2) defines the proportionality 

across units. 

As in the case of univariate observations, the error components 

model type I for multivariate observations, under (3.2) and D- In, can 

be transformed to a model which is simple to estimate. The 

transformation matrix is now given by (H 0 lq) and the variance 

covariance matrices of the random shocks in the measurement and 

transition equations of the transformed model are given by B. and 

diag[B,, ... Bp]; where, 

7-k + (l/n) C* 0 
k 

(3.3) Bk '> 

10 

(1 - tt/n) 0 E*k* n-i k 

and k takes some or all of the values iE p 1?, 6, w. The first block 

defines aq dimensional model for the average of the observations; 

while the second block defines an (n- 1) q- dimensional model independent 

of the first one. If the model is partially homogeneous, the second 

block is homogeneous but not necessarily the first, and if also qk = qk 

for all k, then the two models are homogeneous and with the same 

factors. The same kind of extension presented above can be used, 

jointly with the results in previous sections, to formulate a dynamic 

error components model type-II. 

Chapter 8 studies the estimation of the unobserved components and 

the maximum likelihood estimation of the parameters in the error 

components model for multivariate observations. 
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5.4 Extension__to Factor Analvsis 

The use of factor analysis, and other related techniques as 

principal components and canonical analysis, has long been an important 

topic in the analysis of multivariate time series. Quenouille (1957), 

Anderson (1963), Box and Tiao(1977), Engle and Watson (1981), Pena and 

Box (1987) and Tiao and Tsay (1989) have all considered factor analysis 

methods for time series. The common idea behind all these studies is 

the use of ARIMA time series models. An alternative approach was 

developed by Brillinger (1981), who extended the standard principal 

components techniques to the frequency domain, while Geweke (1977) and 

Geweke and Singleton (1981) discussed a frequency domain version of 

factor analysis. Within the framework of structural time series models, 

factor analysis models have been studied by Fernandez-Macho (1986, ch. 

7) and Fernandez-Macho, Harvey and Stock (1987). 

Extending the ideas presented in Section 5.1, and for the local 

level time series model, a very general factor analysis model can be 

defined as 

l a) at +r ft + f* t 
f tv 

(4. lb) A+r t At-l n nt 

where at is, as before, an (n x 1) vector of observations, while the 

component At of dimension (n x 1) represents the stochastic trends, and 

the vector random shocks Et, f*j nt and n* have dimensions rE, n, r tt 'q 

and n respectively. These random shocks are assumed to be normally 

distributed, serially and mutually uncorrelated, with expected values 

equal to zero, and variance covariance matrices IrE, D* I and D 
Er -q 

respectively; where D* and D* are diagonal matrices. Finally, the 
C 77 

matrices rf and r 
7? of dimension (n x r, ) and (n x ro contain fixed 
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parameters, and to solve the usual identification problem in factor 

analysis, their elements -ycij and -yl7ij are restricted to be zero for i 

z see for example Anderson (1984, sec. 14.2). 

The random shocks ft and i? t represent the irregular and trend 

common factors, while ft and qt are the specific factors. If r. =r 77 
1, and IF E- rq -t, with t an (n x 1) vector of ones, (4.1) reduces to 

the error components model type I. If also 17* =0 for all (4.1) t 

becomes the error components model type II. On the other hand, if r. 

rn and et 0 for all t, model (4.1) reduces to the 71 ? It 

unrestricted local level model defined in (1.2.1). Thus, the factor 

analysis model (4.1) can be seen as an intermediate class of models 

between the unrestricted structural time series models considered in 

the first chapter and the error components models of Section 5.1. 

Notice that if q* =0 for all t and rzn, the n time series are t 77 

cointegrated in the sense of Engle and Granger (1987). That is, the n 

trends pt are generated by only r 77 random shocks. 

The model studied by Fernandez-Macho (1986, ch. 7) assumes et . 77 t 

=0 for all t and r. - n. Hence, no restrictions are placed on the 

variance covariance matrix of the irregular random shock, and the 

variance covariance matrix of the trend random shock has rank r 17 4 n. 

Fernandez-Macho, Harvey and Stock (1987) considered the same model but 

allowed the irregular random shock to follow an autoregressive 

formulation. 

Definition 5.3.1 can be extended to the factor analysis model. If 

r. = r, 7, (4.1) is said to be partially homogenous if r, is proportional 

to r 
77, 

With respect to the estimation of the unobserved components and the 

maximum likelihood estimation of the parameters, the results that will 

be presented in Chapters 6 and 7 are straightforwardly generalised to 
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(4.1). The Kalman filter equations are substantially simplified under 

partial homogeneity, while the maximum likelihood estimation of the 

parameters is obtained by following very clossely the results in 

Section 6.3 when D* -\ 0 and in Section 7.3 when D* - 0. The 77 77 

generalisation, of (4.1) to deal with stochastic slope and seasonal 

components is also straightforward. 

An obvious practical problem in the specification of a model like 

(4.1) is the selection of the values r C- and r 77 * one possibility to 

solve this is to use the test of hypothesis developed by Stock and 

Watson (1988). A more descriptive approach is to apply principal 

components analysis. Starting from an unrestricted local level model, 

it is possible to obtain estimates of the variance covariance matrices 

of the irregular and trend random shocks, say E. and E, 7 respectively. 

This can be done using the maximum likelihood principle although 

consistent and preliminary estimates based on the autocorrelation 

function are also possible; see Section 3.4 and the references therein. 

Then, standard principal components analysis can be applied to each of 

the variance covariance matrices of the random shocks in order to 

choose the specific form of (4.1). 

An illustration of this technique using the Flour Price data used 

by Tiao and Tsay (1989) is presented in what follows. An unretricted 

local level model with a fixed slope was fitted. The frequency domain 

maximum likelihood estimates of E, and Eq were 

. 00 . 00 . 00 . 24 . 25 . 24 
10-4 

. 
00 . 68 . 88 and Y-,, ý 

10-2 
. 
25 . 27 . 26 

. 00 . 88 1.67 . 
24 . 26 . 28 

Table 5.4.1 presents the eigenvalues and eigenvectors of these two 

matrices. The largest eigenvalues capture 93% of the variation in the 

irregular random shock, and 97% of the variation in the trend or level 
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random shock. Their associated eigenvectors are, approximately, the 

average of the second and third time series for the irregular random 

shock, and the average of the three time series for the level random 

shock. A model with one factor in both the irregular and trend 

components may fit the data well and provide a simple interpretation of 

the mechanism that generates the observations. Finally, notice that the 

variance of the irregular random shock is close to zero , and in that 

case, the average of the three time series follows a random walk which 

represents a common trend that captures most of the variability. 

Table 5.4.1 : Eigenvalues and Eigenvectors of L. an 

Eigenvalues (x 103) Eigenveetors 

. 
218 

. 
000 

. 
504 

. 
864 

Ze . 016 . 000 -. 864 . 504 

. 000 1.000 . 000 . 000 

7.638 -. 551 -. 590 -. 590 

E 77 . 260 . 355 . 474 -. 806 

. 013 . 755 -. 654 -. 052 

(1) Eigenvectors in rows. 
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CHAPTER 6: ESTIMATION OF DYNAMIC ERROR COMPONENTS MODELS TYPE I 

6.1 Introduction 

This chapter considers the estimation of the error components model 

type I defined in Section 5.1. Assume that the observation yit for the 

unit i at time t is generated by 

(1.1) Yit - Zlt Oi + Citl 

where zit is an (r x 1) vector of exogenous variables, Pi is an (r x 

vector of fixed parameters and ait is a residual defined below. Special 

cases of (1.1) include the situations where the vector of exogenous 

variables is the same for all units, zit - zt for all i, and the 

situations where the vector of coefficients is the same for all units, 

Pi -0 for all i. In multivariate form, 

Yt - xt 0+ Cet p 

where yt and at are (n x 1) vectors with i-th component yit and ait 

respectively, Xt is an (n x k) matrix of exogenous variables and 0 is a 

(k x 1) vector of fixed parameters. The relationship between (Xt, 0, k) 

and (zit, Pi, r) was presented in Section 5.1. The vector of residuals 

i=1,..., n, 

cet in (1.2) satisfies (5.1.4). That is, 

(1.3a) cet In) Ot +L C-t Tp 

(1.3b) ((IU Kt + K*), Ot In) Ot_l + (R @ In) t 

where the (np x 1) vector Ot, which corresponds to the state vector, 

contains the unobserved trend and seasonal components and the random 

shocks ft, ft, Kt and Kt have dimensions 1, n, u and nu respectively, 
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and they are assumed to be normally distributed, serially and mutually 

uncorrelated, with expected values equal to zero and variance 

covariance matrices 0-2 Ej 
DEp DK and D*K respectively; the last three 

being diagonal matrices. According to the particular time series model, 

some elements of D* are assumed to be strictly positive; see Section K 

5.1 for details. 

Model (1.3) will also be studied under the restrictions on the 

variances of the random shocks given by (5.1.6). A restricted error 

components model type I satisfies 

(1.4a) D* -D (]r2* ffI 

(1.4b) D* - D** @ D, KK 

where D** and D are (u x u) and (n x n) diagonal matrices and, of K 

course, a restriction should be imposed on (1.4) for identifiability. 

As a special case of (1.4), D may be known or equal to the identity 

matrix. 

The chapter, apart from this introduction, is organised as follows. 

Section 6.2 presents the estimation of the unobserved components in the 

state vector Ot defined in (1.3). That section also analyses the 

efficiency of the estimates for the local level time series model in 

terms of both, the number of units and the number of time observations. 

Section 6.3 deals with the maximum likelihood estimation of the 

parameters in (1.1) and (1.3), and with the formulation of asymptotic 

tests of hypotheses. Finally, in Section 6.4, an application using time 

series of unit labour costs in Austria, Belgium and Luxemburg, and 

Netherlands is presented. 
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6.2 Estimation of the Unobserved Components 

This section considers the estimation of the state vector Ot 

defined in (1.3), assuming cet is observed and all the variances of the 

random shocks defined in the model are known. The formulas for the 

estimators of the state vector Ot, t=1, ..., T, and their mean square 

errors , are given by the Kalman filter equations presented in Section 

1.3. The results in that section concerning the steady state Kalman 

filter, and the formation of initial estimates, also apply to the 

models defined here. That follows from the fact that the only 

difference between the models here and the ones defined in Chapter 1 

are the restrictions over the variance covariance matrices of the 

random shocks, and these restrictions do not compromise the mentioned 

results. 

Equations (1.3.5) and (1.3.6) give the estimator of the state 

vector at time t-p, mp, and its mean square error, P P, Then, the 

Kalman filter recursions (1.3.2) are run from t- (p+l) to obtain 

estimates of the state vectors, and their mean square errors, for all t 

1, p. The expression for Pp in (1.3.6) and the Kalman filter equations 

(1.3.2) involve the variance covariance matrices of the random shocks 

which were defined in the introduction of this chapter. 

Unfortunately, it seems that the Kalman filter formulas cannot be 

simplified for the general error components model (1.3). Although the 

variance covariance matrices of the random shocks have a simple form, 

the matrices Pt and Ft, which represent the mean square errors of the 

estimators of the state vectors and the prediction error variances, do 

not have simple expressions for all t. 

The remainder of this section focuses on the estimation of the 

state vector under the restriction (1.4). It will be shown that the 
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Kalman filter equations can be simplified in that situation. Finally, 

The efficiency of the estimators, in terms of both the number of units 

and the number of time observations is studied. 

The Restricted Model 

This subsection presents simplified expressions for the Kalman 

filter formulas when applied over the model (1.3) under (1.4). The 

identifiability problem which arises when working with (1.4) can be 

solved by setting a2* or (t' D- t) equal to unity. The advantage of f 

setting (L' D-1 t) equal to unity will become clear later. Definitions 

(1.3.1) are assumed in what follows. 

Using an induction principle, it can be shown that if the mean 

square error of the estimator of the state vector at time (t-1), Pt-1, 

has a determined simple expression, Pt also has the same expression and 

that the dimension of the recursions needed to obtain Pt do not depend 

on n. Suppose that at time (t-1) 

Pt-1 - pit-1 @ "I + p2t-1 0 Di 

where Pit-, and P2t-j are (p x p) matrices. Using (1.3.2a) and 

(1.3.2b), it follows that 

(2.2) Pt - (T Plt-I T' +R DK R') 0 LL' + (T P2t-, T' +R D** R') 0D PC 

p1t 0Lt+p 
2t @ D, 

and 

(2.3) Ft = (Z P, t Z' + U2) @tL1+ (Z P2t Ze + or2 )0D 
ff 

= flt @ Lt' + f2t @ 
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where Plt and -P2t 
are (p x p) matrices and f1t and f 2t are scalars. To 

obtain Pt from (1.3.2c) the inverse of Ft is needed. Using a well known 

formula for the inverse of a matrix of the form (2.3), 

(2.4) Ft-l = h1t D-1 - h2t D-1 tt' D-1, 

where, 

(2.5a) h1t - fAl 

and 

(2.5b) h 2t ý f2ý D-1 t 2 

Then, using (1.3.2c), 

(2.6) Pt - Plt @ LL' + P2t @ D, 

where Plt and P2t are (p x p) matrices given by 

(2.7a) Plt - Plt + Plt Z' Z Plt (h 2t 
02 

- h1t 0) 

plt Zi Z P2t (h2t 0- hl t) 

P2t ZI Z Plt (h2t 0- hlt) 

+p 
2t 

Zt Z P2t h2t2 

and 

(2.7b) p2t ý p2t - P2t Zt Z P2t hlt, 

where 0 is defined as (L' D-1 L). Thus, (2.1) is true for all t provide 

it is for the initial values, and from (1.3.6), it is not difficult to 

see that this is the case. It follows that given an estimate of the 

state vector at time t-p, and its mean square error, the estimates 
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from t- (p+l) and their mean square errors are obtained by running the 

recursions (2.7). In other words , the Kalman f ilter formulas can be 

run with formulas which are essentially univariate, and their 

dimensions do not depend on the number of units, n. Furthermore, there 

is no need to compute the inverse of the prediction error variance Ft 

numerically and so the estimates of the state vector and their mean 

square errors can be obtained without difficulty even when the model 

contains a large number of units. 

The above results can, of course, be applied when D- In in (1.4); 

but, as it was shown in Section 5.2, in that case the model can be 

estimated by running a univariate model for the average at and a 

homogeneous model for a vector with (n-1) of the deviations (ait - at). 

The advantage of running a univariate and a homogeneous model instead 

of the recursions (2.7) is that in the former case the recursions are 

exactly equivalent, and not similar as in (2.7), to univariate Kalman 

filter recursions. Although this equivalence was proved in Section 5.2 

by using the non singular transformation (5.2.6), the following lines 

present an alternative proof in terms of the Kalman f ilter equations. 

From (2.1), (2.2) and (2.3) 

(2.8a) pt-1 - 
[p2pt-l 0 (In - tt/n)] + [(Plpt-l + P2 

pt-1 
/n) 0 tt'l, 

(2.8b) pt - 
[p2t 0 (In - LL'/n)] + Pplt + P2t/n) 

(2.8c) Ft = 
[f2t (In - tt'/n)] + [(flt + f2t/n) W]. 

Also from (2.4) and (2.5) 

(2.9) Ftl 
f2t 

(In - LL11n) -+ 

1 

(f 
it 

+f2 
t/n) 

(t t'/n2) , 

and then, using (2-7) and 
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h1t -n 
h2t = 

yields 

1/n 

(flt + f2t/n) 

(2.11a) p2t ý p2t - 

P2t Zt Z P2t 

f2t 

(P lt + P2t/n) - (plt + P2t/n) 

I 

(P 
lt + P2t/n) Z' Z (plt + P2t/n) 

(fit +f 
2t/n) 

Thus, P2t and (Plt + p2t/n) are formed exactly as univariate Kalman 

filter recursions. The first corresponds to the recursions of a 

homogeneous model with variance covariance matrix (In -t t'/n); while 

the second corresponds to the recursions for the average across units. 

The full matrices Pt, Pt and Ft are then formed using (2.8). 

The estimates of the state vector Ot are obtained from (1.3.2d); 

and by noticing that (In - LL'/n) tt' - 0, this formula reduces to 

(2.12a) mt - (T @ In) mt -1P2t 
Z' f2 (In -tt '/n) ] vt 

[(plt + P2t/n) Z' (flt + f2t/n)-1 @ ttl/n] vt, 

which can also be written as 

(2.12b) Mt = mit @L+ M2t' 

where m1t and M2 t are (p x 1) and (np x 1) vectors defined by 

(2.13a) mlt -T mlt-, 

(pit +p 2t /n) Z' 

(fit +f 
2t 

/ 
[Ot -ZTm, pt-11, 



-156- 

p2t Zq 

(2.13b) M2t In) M2, t-1 +(-@ In) 
f2t 

[ (cet -t 5t) - (Z T0 In) M2)t-11- 

Formula (2.13a) coincides with the estimates of the state vector in the 

univariate model for the average, while (2.13b) corresponds to the 

estimates of the state vector in the homogenous model of the deviations 

(ait - at). From Section 1.3, (2.13b) can also be written as n 

univariate recursions for each of the deviations (ait - at). The proof 

is completed by showing that initial values mP and PP also satisfy the 

above results; and that is almost immediate from (1.3.5) and (1.3.6). 

It follows that a univariate Kalman filter run for the time series at 

produces m, t and (: ýlt + E2 
t/n) for all t ;hp, and a univariate Kalman 

filter run for each of the deviations (ait - at) produces the 

components M2 t and p2t for all t :ýp. The full vector mt is formed with 

(2.12) and the full matrix Pt with (2.8a). 

When D is not equal to the identity matrix but (1.4) still holds, 

the transformation (5.2.6) with H replaced by H* in (5.2.11) also leads 

to a decomposition like the above, although the fact that H* is a 

function of the parameters in the model makes this approach less 

attractive. 

Efficiency Analysis 

The following lines analyse the efficiency of the estimates of the 

state vectors in model (1.3) under (1.4), D= In, and assuming the 

local level time series model. That is, 

ft + f* i 1'... 'n, (2.14a) ceit - /tit + it, 
t 
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(2.14b) Ait - Ai, t-, + ? It + '? it 

where Ait is the level or trend of ait and the random shocks f t, e'jtt, 

-qt and are assumed to be serially and mutually uncorrelated, 

normally distributed, with espected values equal to zero and variances 

o-2 (y2* Cr2 and (72* respectively. fE 17 71 

Previous results in this section presented formulas for the 

estimates of Ait for i-1,..., n and t=1,..., T; and their mean square 

errors for given values of n and T. This subsection considers the 

effects of changes in the values of n and T on the mean square errors. 

The motivation is the following. Suppose we are interested in the 

estimation of AiT for specific values of i and T. The problem can be 

stated as how many units and how many previous time periods should be 

considered in the estimation procedure in order to obtain a desired 

mean square error for the estimator Of AiT. As the number of previous 

time observations or the number of units increases, the mean square 

error of the estimator of PiT decreases and there is a trade-off 

between the number of units and the number of time observations. From 

an experimental design point of view, we may be interested in the pair 

(n, T) such that the desired mean square error is obtained at minimum 

cost. 

From equations (2.6) and (2.7), the mean square error of the 

estimator of Ait can be written as 

t, or2, cr2*, (T2, ly2*) +P ly2*, 0-2*) (2.15) Pit - Plt(n, f 71 71 2t(tl E 71 

where Plt and P2t satisfies the recursions (2.7) which for the model 

(2.14) reduce to 

(2.16a) p lt (pl, t_l + ow2 ) 17 
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n (P + or2) 2+2 (P + ýor2* + or2 77 2, t-1 71 
) (Pi 

't-1 77) 
n (P + or2 + 0-2 + 0-2* + or2*) 71 

P+ (p2, 
t-I 17 f 

(p2pt-1 + (3*2*) 2 (p 
1+ Cr2 + or2 71 17 f 

n (P + ()r 2+ or 2+ 0-2* + 0-2* + U2* + or2*) 2 I 't-1 71 () 
(p2, 

t-I 71 f)+ 
(p2lt-1 

77 f 

and 

(p2, 
t-1 + 0-2*)2 

(2.16b) p2t - (p2, 
t-1 + CF2* 71 

(P + or2* + or2* 2, t- 1 77 c 

for t=2,..., T; andwith P o-2 U2*. ii, EP 
P21 ýf In the above f ormulas, 

Plt represents basically the variance of the components which are 

common to all units and hence, Plt can be reduced by increasing the 

number of units; while P 2t represents the variance of the unit specific 

components, which are independent, and therefore P2t cannot be reduced 

by increasing the number of units n. 

It can be observed that P2t in (2.16b) has exactly the form of the 

variance of a standard univariate local level model, with irregular and 

level random shock variances equal to o72* and Or2* respectively. Also, I? 

from (2.16a), 

(2.17a) lim Pit , P*lt, 
n->oo 

where 

(2.17b) p *t + ar2 
1 77 

(T2) 2 

(P* + 0-2 + 0-2 1)t-1 17 

and then Plt also has the form of the variance of a standard univariate 

local level model with random shock variances equal to Or2 and 0-2. It 
f 77 

follows that as n goes to infinity, Pit is the sum of two standard 

univariate variances in a local level model. On the other hand, if only 
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the time series for unit i is considered in the estimation of JLiT; that 

is, if n is the unity, Pt satisfies the formulas of a standard local 

level model with irregular and level random shock variances equal to 

(U2 + 072* ) and (U2 + Or2*) respectively. C- f 17 77 

In what follows, the relative efficiency of the estimator of PiT 

with n-1 and T-1 compared to the estimator based on n time series 

with T observations each is computed. Some special cases are analysed 

f irst. 

a) If U2 = 072 0 the n time series are uncorrelated, Plt -0 for all 77 EI 

n and t, and no gains in efficiency can be obtained by increasing the 

number of units. 

b) If the model is homogeneous, 

(72 (3-2 

(2.18) PC 
(72 +C or2* 

Pq 

or 2+ 

17 

(T2* ff 17 77 

and the relative efficiency is independent of the number of units n and 

decreases only with T. This is true because in a homogeneous model the 

estimates obtained using a single time series and the estimates 

obtained using the whole multivariate system coincide; see Section 1.3. 

c) If T is the unity, (072 + U2*) for all n, and the relative PT 'fE 

efficiency is the unity for all values of n. 
I 

Apart from these special cases, it seems that it is not possible to 

obtain analytic expressions for the relative efficiency given the 

complicated recursive formulas for Plt and P2t in (2.16). However, 

given values of n and T and given the variances of the random shocks, 
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values of Plt and P 2t can be computed numerically. The results of this 

exercise for some specific values of the variances are presented below. 

Table 6.2.1 : Parameter Values in the Evaluation of the Relative 

Efficiency(O 

U2 + or2* o72 0,2 o-2 0,2* Table 71 17 pfP 17 fE 17 17 

6.2.2 . 20 . 20 . 80 
. 20 . 80 . 16 . 04 

6.2.3 . 50 . 20 
. 80 

. 20 . 80 . 40 . 10 

6.2.4 1.00 . 20 . 80 
. 20 . 80 . 80 . 20 

6.2.5 2.00 . 20 . 80 
. 20 . 80 1.60 . 40 

6.2.6 5.00 . 20 
. 
80 

. 20 . 80 4.00 1.00 

6.2.7 . 20 . 80 . 20 
. 80 . 20 . 04 . 16 

6.2.8 . 50 . 80 . 20 . 80 . 20 . 10 . 40 

6.2.9 1.00 . 80 . 20 . 80 . 20 . 20 . 80 

6.2.10 2.00 . 80 . 20 . 80 . 20 . 40 1.60 

6.2.11 5.00 . 80 . 20 . 80 . 20 1.00 4.00 

Pi = or2 / (Or2 + or2*) ;i. f II11 77. 

Table 6.2.1 shows the values of the parameters considered in the 

numerical evaluation of the relative efficiency. Without loss in 

generality, the value of (U2 + a2*) was f ixed as equal to unity. Five 

values of (0-2 + 072*) were considered : . 2, . 5,1,2 and 5. These values 77 71 

represent the relative value of the variance of the level random shock 

compared to the variance of the irregular random shock. Finally, two 

values were considered for the correlation of the random shock across 

units : .2 and . 
8. The correlation was never set equal in both the 

irregular and level random shocks because in that case the model is 

homogeneous, and as stated before, for a given value of T the relative 
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efficiency is the same for all values of n. 

The results of the numerical evaluation of the relative efficiency 

for the ten cases presented in Table 6.2.1 are shown in tables 6.2.2 to 

6.2.11. In all the situations studied, the relative efficiency of the 

estimators based on more than one time observation are less than unity 

and decrease as n or T increases. From (2.17) and the results in 

Section 1.3 concerning the steady state Kalman filter, the relative 

efficiency approaches a limit as n or T increases, and this limit and 

the way in which it is reached depend heavily on the relative values of 

the variances of the random shocks. In tables 6.2.2 to 6.2.11, the 

relative efficiency fluctuates between 
. 28 and . 72 when n and T are 

equal to one hundred. The smaller the variance of the level or trend 

random shock, the smaller the relative efficiency as T increases. With 

respect to the effect of increasing the number of units, the results 

show that the gains in ef f iciency are more independent of the relative 

values of the variances. For example, when T is equal to one hundred, 

the reduction in the relative efficiency by increasing the number of 

units from one to one hundred fluctuates between 16% and 23%. 



-162- 

Table 6.2.2 : Relative Efficiency of Estimates Using a Single 

Time Series CoMpared to Estimates Using n Time Series 
(u, 2 

- . 20 0-2* = . 80 072 ý 
. 16 0"2 

. 04) 6 ýq 43 

T 

2468 10 20 50 100 

1 1.00 . 55 . 39 . 36 . 36 . 36 . 
36 

. 36 . 36 

2 1.00 . 54 . 38 . 35 . 34 . 33 . 33 . 33 . 33 

4 1.00 . 54 . 37 . 33 . 32 . 31 . 
31 . 31 . 31 

6 1.00 . 54 . 
36 . 32 . 31 . 30 . 30 . 30 . 30 

8 1.00 . 54 . 36 . 32 . 30 . 30 . 29 . 29 . 29 

10 1.00 . 54 . 36 . 32 . 
30 . 30 . 

29 . 
29 . 

29 

20 1.00 . 54 . 
35 . 31 . 

29 . 29 . 28 . 28 . 28 

50 1.00 . 54 . 
35 . 31 . 29 . 28 . 28 . 

28 . 28 

100 1.00 . 54 . 35 . 30 . 29 . 28 . 28 . 28 . 28 

Table 6.2,3 : Relative Efficiency of Estimates Using a Single 

Time-Series CoMRared to Estimates Using n Time Series 
072, 

- 20 0-2* 80 (j-2 ý . 40 0-2* 10) 

T 

1 2 4 6 8 10 20 50 100 

1.00 . 
60 . 51 . 50 . 50 . 50 . 50 . 50 . 50 

2 1.00 . 59 . 48 . 46 . 46 . 46 . 46 . 46 . 46 

4 1.00 . 59 . 46 . 44 . 43 . 
43 . 43 . 43 . 43 

6 1.00 . 58 . 45 . 42 . 42 . 42 . 42 . 42 . 42 

8 1.00 . 58 . 44 . 
42 . 41 . 41 . 41 . 41 . 41 

10 1.00 . 58 . 44 . 41 . 41 . 
41 . 

41 . 41 . 41 

20 1.00 . 58 . 43 . 40 . 40 . 40 . ý40 . 40 . 
40 

50 1.00 . 58 . 42 . 40 . 39 . 39 . 39 . 39 . 39 

100 1.00 . 57 . 42 . 
39 . 39 . 39 . 39 . 39 . 39 
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Table 6.2.4 : Relative Efficiency of Estimates Using a Single 
Time Series Compared to Estimates Using n Time-Series 

((T26 
= . 20 or2* 80 0-2 . . 

80 o-, 2, * = . 20) 

T 

468 10 20 50 100 

1 1.00 . 67 . 62 . 62 . 62 . 62 . 62 . 62 . 62 
2 1.00 . 65 . 58 . 57 . 57 . 57 . 57 . 57 . 57 
4 1.00 . 64 . 54 . 53 . 53 . 53 . 53 . 53 . 53 
6 1.00 . 63 . 53 . 52 . 52 . 52 . 52 . 52 . 52 
8 1.00 . 63 . 52 . 51 . 51 . 51 . 51 . 51 . 51 

10 1.00 . 62 . 52 . 50 . 50 . 50 . 50 . 50 . 50 
20 1.00 . 62 . 51 . 49 . 49 . 49 . 49 . 49 . 49 
50 1.00 . 61 . 50 . 49 . 48 . 48 . 48 . 48 . 48 

100 1.00 . 61 . 50 . 48 . 48 . 48 . 48 . 48 . 48 

Table 6.2.5 : Relative Efficiency of Estimates Using a Single 

Time Series ComRared to Estimates Using n Time Series 

((Tj - . 20 or2* 80 0-2 - 1.60 or2* . . 40) 6 49 :4 

T 

2468 10 20 50 
, 

100 

1 1.00 . 75 . 73 . 73 . 73 . 73 . 73 . 73 . 73 

2 1.00 . 72 . 68 . 67 . 67 . 67 . 67 . 67 . 67 

4 1.00 . 70 . 64 . 63 . 63 . 63 . 63 . 63 . 63 

6 1.00 . 69 . 62 . 62 . 62 . 62 . 62 . 62 . 62 

8 1.00 . 68 . 61 . 61 . 61 . 61 . 61 . 61 . 61 

10 1.00 . 68 . 61 . 60 . 60 . 60 . 60 . 60 . 60 

20 1.00 . 67 . 60 . 59 . 59 . 59 . 59 . 59 . 59 

50 1.00 . 66 . 59 . 59 . 58 . 58 . 58 . 58 . 58 

100 1.00 . 66 . 59 . 58 . 58 . 58 . 58 . 58 . 58 
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Table-6.2.6 :- Relative Efficiency of Estimates Using a Single 

Time Series Compared to Estimates Using n Time Series 

o,. 2,2 0 jy2* 80 CF2 - 4.00 0-2* = 1.00) 
16 1 49 - 

T 

268 10 20 50 100 

1 1.00 . 86 . 85 . 85 . 85 . 85 . 85 . 85 . 85 

2 1.00 . 81 . 80 . 80 . 80 . 80 . 80 . 80 . 80 

4 1.00 . 78 . 76 . 76 . 76 . 76 . 76 . 76 . 76 

6 1.00 . 77 . 75 . 75 . 75 . 75 . 75 . 75 . 75 

8 1.00 . 77 . 74 . 74 . 74 . 74 . 74 . 74 . 74 

10 1.00 . 76 . 74 . 74 . 74 . 74 . 74 . 74 . 74 

20 1.00 . 75 . 73 . 73 . 73 . 73 . 73 . 73 . 73 

50 1.00 . 75 . 72 . 72 . 72 . 72 . 72 . 72 . 72 

100 1.00 . 75 . 72 . 72 . 72 . 72 . 72 . 72 . 72 

Table 6.2.7 : Relative Efficiency of Estimates Using a Single 

Time Series Compared to Estimates Using n-Time Series 

(U62 - . 
80 (y-2* ý or2 - 6 . 20 . 04 o--Z* - . 16) 

.1 

T 

2468 10 20 50 100 

1 1.00 . 55 . 39 . 36 . 36 . 36 . 36 . 36 . 36 

2 1.00 . 54 . 37 . 34 . 33 . 33 . 33 . 33 . 33 

4 1.00 . 54 . 36 . 32 . 31 . 31 . 31 . 31 . 31 

6 1.00 . 54 . 36 . 32 . 31 . 30 . 30 . 30 . 30 

8 1.00 . 54 . 36 . 31 . 30 . 30 . 30 . 30 . 30 

10 1.00 . 54 . 35 . 31 . 30 . 29 . 29 . 29 . 29 

20 1.00 . 54 . 35 . 31 . 29 . 29 . 28 . 28 . 28 

50 1.00 . 54 . 35 . 30 . 29 . 28 . 28 . 28 . 28 

100 1.00 . 54 . 35 . 30 . 29 . 28 . 28 . 28 . 28 
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Table 6.2.8 : Relative Efficiency of Estimates Using a Single 
Time Series Comared to Estimates Using n Time Series 

((y26 . . 80 (1-2* = CF2 -. 10 2* 
- 6 . 20 w (TA . 40) 

III 

T 

468 10 20 50 100 

1 1.00 
. 60 . 51 . 50 

. 50 . 50 . 50 . 50 
. 50 

2 1.00 . 59 . 48 
. 47 

. 46 . 46 
. 46 . 46 . 46 

4 1.00 
. 58 . 45 

. 44 
. 43 

. 43 
. 43 

. 43 
. 43 

6 1.00 . 58 . 44 . 42 . 42 
. 42 . 42 

. 42 
. 42 

8 1.00 . 58 . 44 . 42 . 41 . 41 . 41 . 41 . 41 

10 1.00 . 58 . 43 . 41 . 41 
. 41 . 41 

. 41 . 41 

20 1.00 . 58 . 43 . 40 
. 40 

. 40 . 40 . 40 . 40 

50 1.00 . 57 . 42 . 40 . 39 . 39 . 39 . 39 . 39 

100 1.00 . 57 . 42 . 39 . 39 
. 39 . 39 . 39 . 39 

Table 6.2.9 : Relative Efficiency of Estimates Using a Single 

Time Series CoMpared to Estimates Using n Time Series 

((T26 80 072* 20 0-2 . . 
20 0-2* 80) 

6q ýq 

T 

n 1 2 4 6 8 10 20 50 100 

1 1.00 . 67 . 62 . 62 . 62 . 62 . 62 . 62 . 62 

2 1.00 . 65 . 58 . 58 . 58 . 58 . 58 . 58 . 58 

4 1.00 . 63 . 55 . 54 . 54 . 54 . 54 . 54 . 54 

6 1.00 . 63 . 53 . 52 . 52 . 52 . 52 . 52 . 52 

8 1.00 . 62 . 52 . 52 . 51 . 51 . 51 . 51 . 51 

10 1.00 . 62 . 52 . 51 . 51 . 51 . 51 . 51 . 51 

20 1.00 . 
62 . 51 . 50 . 

49 . 
49 . 49 . 49 

. 
49 

50 1.00 . 
61 . 50 . 49 . 49 . 48 . 48 . 48 . 48 

100 1.00 . 61 . 50 . 48 . 48 . 48 . 48 . 48 
. 
48 
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Table 6.2.10 : Relative Efficiency of Estimates Using a Single 
Time Series CoMared to Estimates Using n Time Series 

. 80 ar2* ý U2 ý . 40 a 2* = 1.60) A . 20 :4;? 

T 

n 1 2 4 6 8 10 20 50 100 

1 1.00 
. 75 . 73 . 73 . 73 . 73 . 73 . 73 . 73 

2 1.00 . 72 . 69 . 69 
. 69 

. 69 . 69 
. 69 

. 69 

4 1.00 
. 70 . 65 . 65 . 65 

. 65 . 65 
. 65 

. 65 

6 1.00 . 69 . 63 . 63 
. 63 

. 63 
. 63 . 63 

. 63 

8 1.00 . 68 
. 62 . 62 . 62 

. 62 . 62 . 62 
. 62 

10 1.00 . 68 . 62 . 62 . 62 
. 62 . 62 . 62 . 62 

20 1.00 
. 67 . 60 . 60 . 60 

. 60 . 60 . 60 . 60 

50 1.00 . 66 . 59 . 59 . 59 . 59 . 59 . 59 . 59 

100 1.00 . 66 . 59 . 58 . 58 . 58 . 58 . 58 . 58 

Table 6.2.11 : Relative Efficiency of Estimates Using a Single 

Time Series Compared to Estimates Using n Time Series 

. 80 0-2* . . 20 0-2 . 1.00 U2* - 4.00) C. 49 

T 

n 1 2 4 6 8 10 20 50 100 

1 1.00 . 86 . 85 . 85 . 85 . 85 . 85 . 85 . 85 

2 1.00 . 83 . 82 . 82 . 82 . 82 . 82 . 82 . 82 

4 1.00 . 80 . 79 . 79 . 79 . 79 . 79 . 79 . 79 

6 1.00 . 78 . 77 . 77 . 77 . 77 . 77 . 77 . 77 

8 1.00 . 78 . 76 . 76 . 76 . 76 . 76 . 76 . 76 

10 1.00 . 77 . 75 . 75 . 75 . 75 . 75 . 75 . 75 

20 1.00 . 76 . 74 . 74 . 74 . 74 . 74 . 74 . 74 

50 1.00 . 75 . 72 . 72 . 72 . 72 . 72 . 72 . 72 

100 1.00 . 75 . 72 . 72 . 72 . 72 . 72 . 72 . 72 
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6.3 Maximum Likelihood Estimation of the Parameters 

This section considers the maximum likelihood estimation and the 

formulation of tests of hypotheses for the vector of coefficients of 

the exogenous variables 0 and the variance covariance matrices of the 

random shocks in the model def ined by (1.2) and (1.3). Following the 

results in Chapter 2, this introduction presents a general form for the 

log-likelihood function of the model. The estimation of the vector of 

coefficients 16, the results for the estimation of the parameters in the 

variance covariance matrices of the random shocks, and the formulation 

of asymptotic tests of hypotheses are considered later. 

Assuming that the (np x 1) state vector Ot defined in (1.3) is 

initialised with a diffuse prior, a general form for the log-likelihood 

of the model (1.2)-(1.3), which includes the log-likelihood formed 

using the Kalman filter, the frequency domain log-likelihood, and the 

alternative expression developed in Section 2.3 is, apart from a 

constant, given by 

(3. la) Q--ýE[ log 1 Gt 1+ (wyt - Wxt P) ' Gt 1 (wyt - Wxt P) 1, 

t-p+l 

or, alternatively, by 

T 
(3.1b) QE [logiGti + trace(Gtl Pt) 

t-p+l 

where Gt is an (n x n) matrix which depends on the parameters in the 

variance covariance matrices of the random shocks, and wyt and W, t have 

dimensions (n x 1) and (n x k) respectively and they are functions of 

the observations. If the log-likelihood is formed using the Kalman 

filter, wyt and Wxt depend also on the variance covariance matrices of 
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the random shocks. The (n x n) matrix Pt is defined as 

(3.2) Pt ý (wyt - wxt ß) (wyt - wxt ß)', t= P+l,..., T. 

If the log-likelihood is formed using the frequency domain approach, or 

the alternative procedure presented in Section 2.3, the matrix Gt has 

the form 

(3.3) Gt - get (U2 (Or2 LLI + D*c) + gqt + D*, n 17 q 

gbt (ul ttl + D*) + gwt (U2 ttl 

= gt W+ D*t, t=p+1,..., T, 

where g, -t, gnt, g6t and g,, t are known scalars. For details in the form 

of the log-likelihood and in the definitions above see Chapter 2. 

Estimation of 13 

The maximum likelihood estimator of 0, ý, minimises the quadratic 

form 

(3.4) 1: (wyt - Wxt P)' Gt' (wyt - Wxt P), 
t 

and the solution for P is given by 

(3.5a) ý- [E Wýt Gt' Wxt]-' [Z Wýt Gt' wyt], 
tt 

with the information matrix, I(P), equal to 

(3.5b) 1(0) -E Wýt Gtl Wxt. 
t 

In (3.5a), the maximum likelihood estimator of depends on the 
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variance covariance matrices of the random shocks. As these variances 

are usually unknown, some kind of joint estimation procedure must be 

considered. A concentrated log-likelihood can be formed by replacing 

(3.5a) into (3.1). This concentrated log-likelihood has then to be 

maximised numerically with respect to the parameters in the variance 

covariance matrices. 

If (3.3) holds, analytic expressions for the determinant and the 

inverse of Gt can be obtained using well known formulas. That reduces 

the computer time required in the evaluation of the log-likelihood 

(3.1). These expressions are, 

(3.6a) lGtl - ID* 1 (1 + gt (t' D*-' tt 

and 

(3.6b) Gl =- 

*- 1 Dt W D*-' t 

(g-I t 

Consider the estimation of 0 when the restriction (1.4) with D- In 

holds, and when either the vector of exogenous variables or the vector 

of coefficients of the exogenous variables are the same for all units. 

Suppose first that the vector of exogenous variables is the same for 

all units. Premultiplying (1.2) by the (n x n) matrix H defined in 

(5.2.4), produces 

(3.7a) zi Yt t0+ at, 

(3.7b) (Yit - Yt) - Zý (fli - 0) + (Ceit - Zit), i-1,..., n-1, 

where xt represent the average of the component xit across units. The 

joint likelihood of (-yt, t T) and ((yit - yt), it 

= 1, ... T) is, apart from a constant, equal to the likelihood of the 
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original observations because the determinant of H is equal to (1/n). 

Even more, as shown in Section 5.2, the random shocks in (3.7a) are 

uncorrelated with the random shocks in (3.7b), and the variance 

covariance matrices of the random shocks in (3.7b) are proportional to 

the matrix (In-1 - tL'/n); hence, (3.7b) represents a homogeneous 

model. It follows that the log-likelihood can be written as the sum of 

two log- likelihoods. One for the observations in (3.7a) and the other 

for the observations in (3.7b). The maximum likelihood estimator of 0 

is obtained from the univariate model (3.7a), while the estimators of 

(n-1), are obtained from the homogeneous model 

(3.7b). In fact, to be able to estimate the two models in turn, a 

reparametarisation of the variances of the random shocks is also 

required. It will be shown later that this is possible. If the 

objective of the analysis is to test the hypothesis that the vector of 

coefficients is the same for all units, only (3.7b) needs to be 

estimated. If the hypothesis of equal coefficients is accepted, the 

common to all units vector of coefficients is estimated from (3.7a). 

When the exogenous variables are unit specific but the vector of 

coefficients is the same for all units, premultiplying (1.2) by H 

yields 

(3.8a) Yt - -iý 9+ Zit, t-1,..., T, 

(3.8b) (Yit - Yt) - (Zit + (Ceit - iýt), i- 1'..., n-1, 
t-1,..., T. 

In this, situation, the results presented below equations (3.7) 

concerning the log-likelihood still hold but now the vector of 

coefficients fl appears in both models. The estimator of 0 obtained from 

the model (3.8a) is known in the literature as the "between groups" 

estimator, while the one which considers only (3.8b) is known as the 
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"within groups" estimator; see for example Hsiao (1986). Of course, 

none of these is the maximum likelihood estimator which minimises the 

sum of two quadratic forms; say 

(3.9) Qý Ql + Q29 

where Q, and Q2 are quadratic forms of the form (3.4) but defined for 

the models (3.8a) and (3.8b) respectively. The "between" and "within" 

estimators have the form (3.5); hence, they can be written as 

(3.10a) ýb 
- H-11 hjs 

and 

(3.10b) ow - H-1 h 22 

with obvious notation for H1, H2, h, and h2* It can be shown without 

difficulty that the maximum likelihood estimator of 0 is formed as an 

average of the "between" and the "within" estimators. That is, 

(H, + H2)- 1 H, ßb + (H, + H2)- 1 H2 OW- 

This result was shown by Maddala (1971) for the static model (5.1.1). 

The information matrix for 0 is given by 

(3.12) I(p) - H, + H21 

and then, if H, and H2 are positive definite matrices and if the 

inverse of 1(0) represents an approximation of the variance covariance 

matrices of the estimators, the maximum likelihood estimator is more 

efficient than both the "between" and the "within" estimators. 

Finally, consider the case where both the vector of exogenous 

variables and the vector of coefficients is the same for all units. 

Premultiplying (1.2) by H produces 
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(3.13a) Yt - Zý 0+ 5t, t. 1, ... 

(3.13b) (Yit (Ceit -i1,..., n-1, 
t 1,..., T. 

In this case, the maximum likelihood estimator of 0 is obtained simply 

from the univariate model (3.13a). 

In sum, the maximum likelihood estimator of the vector of 

coefficients of the exogenous variables can be obtained as in Chapter 3 

for the general structural time series model. If the number of units is 

large, several simplifications presented in this subsection avoid the 

inversion of large matrices. First, if the log-likelihood is formed by 

means of the frequency. domain approach or the alternative 

transformation in Section 2.3, formulas (3.6) give analytic expressions 

for the determinant and the inverse of the (n x n) matrix Gt. Second, 

when the restriction (1.4) holds and either the vector of exogenous 

variables or the vector of coefficents of the exogenous variables is 

the same for all units , the model can be decomposed into two parts and 

the estimation of the coeficients of the exogenous variables becomes 

much simpler. 

Estimation of the Variances 

This subsection considers the maximum likelihood estimation of the 

variances of the random shocks. Unless otherwise stated, it is assumed 

that the log-likelihood is formed using the frequency domain approach 

or the alternative transformation developed in Section 2.3. Then (3.3) 

holds, and it is not difficult to obtain first and second derivatives 

of the log-likelihood (3.1b) with respect to the variances even for the 

unrestricted model. To simplify the exposition, the basic structural 

time series model is assumed. The necessary modifications for the other 
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three time series models are obvious. 

From (3.1b), and the results in Magnus and Neudecker (1988), the 

first two differentials of the log-likelihood, when the only parameters 

in the model are contained in the matrices Ct, are 

(3.14a) dQt - vecl(Gil - Gt-l Pt Gt-l] vec[dGt], 

and 

(3.14b) d2Q t= vecl[dGt] [Gtl (2 (Gtl Pt Gtl) - Gt-l)] vec[dGt]. 

On the other hand, (3.3) implies that 

(3.15) vec[Gt] = (t xý) 01 +S (xý @ In) 02 

lt 
01 + X21t 02 

- 0, 

where L is an (n2 X 1) vector with all the elements equal to the unity; 

xt, 01 and 02 are (4 x 1), (4 x 1) and (4n x 1) vectors given by 

(3.16a) Xý - (9ft, 9, ot, 96t, gwt), 

(3.16b) Olt ý (U2, U2, orl, 072), 17 co 

and 

(072*, (y-2*, 2* . 1. (3.16c) I.. '072^ 
02 - fl en (Ttil, - wn), 

and S is an (n2 x n) selection matrix which transforms a vector of 

dimension n into the vector of an (n x n) diagonal matrix with the 

original vector in the diagonal. See Magnus (1988) for the form of this 

matrix. The vector 0' - (0; , 012) contains the functionally independent 

parameters in the model. The matrices X; t and X2t have dimension (n2 X 
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4) and (n2 x 4n) respectively, and then Xý has dimension (n2 x 4n+4). 

Clearly, 

(3.17) vec[dGtl ý Xý d02 

and then, the maximum likelihood estimator of 0 satisfies the non 

linear system of equations 

Xt vec[Gtl - Gtl Pt Gtl ]- 
t 

An asymptotically equivalent expression for the information matrix of 

02') is given by, 

(3.19) F. Xt [Gt-l 0 Gt-l] Xý. 
t 

If the restriction (1.4) holds, and D is known, all the above 

formulas can be applied with X12t and 02 replaced by X2t and 02 of 

dimension (n2 x 4) and (4 x 1) respectively, and given by 

(3.20a) X21t - vec(D) xt, 

and 

of . (0-2*, or2* UJ*, 0-2*) (3.20b) Eq9 2 (0 

Finally, if (1-4) holds but D is unknown, the above results can be 

formed following the same idea but from 

+1 (3.21) vec[Gt] - Xjt 01 + X2t 02 x3t 031 

where X' S is an (n2 x n-1) selection matrix which 3t 
(S Xý 02) 

0 

transform 03 into vec(D), and 03 is the (n-1 x 1) vector of 

functionally independet parameters in D. 

In the evaluation of (3.18) and (3.19), the analytic expression for 
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Gt-1 given by (3.6b) simplifies enormously the calculations. 

In practice, 0 is unknown and has to be estimated jointly with the 

parameters 0 in the variance covariance matrices. If 0 is concentrated 

out of the log-likelihood, by replacing (3.5a) into (3.1), it seems 

difficult to obtain first and second derivatives for the parameters 0. 

On the other hand, given the vector of first derivatives and the matrix 

of second derivatives with respect to 0 and 0, the results in this 

section suggest an iterative or stepwise procedure in the lines 

suggested in Section 3.4. As in the general multivariate structural 

time series model, the matrix of second derivatives in the models 

studied here is block diagonal with respect to the subsets of 

parameters 0 and 0; see Magnus (1978). 

If (1.4) holds and D- In, the estimation procedure for the 

variances can be simplified. It was shown in Section 5.2, and also 

below equations (3.7), that in this case the log-likelihood can be 

decomposed as the sum of two log-likelihoods; one for the average of 

the observations Yt and the other for (n-1) deviations of the form (yit 

- Yt). Using the results in Section 5.2, 

(3.22) Q-c+ 12 1+Q 21 

where c is a constant and 

(3.23a) Y- [log(git) + Pit/gitli 
t 

(3.23b) Q2 E [1091(In-1 - LLI/n) 92t' 

t 

trace((In-1 LL'/n)-l 9A P201' 

In (3.23), the scalar Plt and the (n-l x n-1) matrix P2t are 

transformations of the residuals 5t and (ait - 5t), i-1 n-1 
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respectively, as in (3.2); while the scalars g1t and 92t are defined by 

(3.24a) glt .gt (Or2 + or2*/n) + gnt (0-2 + 0-2*/n) ffE 17 77 

gbt (aj ++ gwt (U2 + U2*/n), Ww 

and 

(3.24b) ((72*) + gjt (or2*) + g6t + gWt 92t ý 9ft f (a2*). 
77 w 

Notice that by redefining the variances of the random shocks as (uj + 

aj*/n) and aj*, for k=E, -q, 6 and w, the two log-likelihoods in 

(3.23) can be maximised separately. Expression (3.23) is the standard 

log-likelihood of a univariate model and then all the results in 

Chapter 3 can be applied. Basically, one of the redefined variances can 

be concentrated out of the log-likelihood and if (3.7) or (3.13) holds, 

the vector of exogenous variables can also be concentrated out. 

Expression (3.23b) is the standard log-likelihood of a homogenous 

model but with a known common variance covariance matrix equal to (In- 1 

- tt/n). This log-likelihood can alternatively be written as 

(3.25) QcE [(n-1) trace(P* 2 
109(92t) + (1/92t) 

2011 
t 

where c is a constant and P* is an (n x n) matrix which is obtained by 2t 

applying the transformation (3.2) over the (n x 1) vector of 

differences of the form (ait - 5t). Notice that the only difference 

between Pt and P*t is that the former applies to (n-1) of the 22 

deviations (ait - cet) while the later applies to the n deviations. 

Expression (3.25) is obtained from (3.23b) by using the fact that the 

inverse of (In-1 - tL'/n) is equal to (I. 
-, + Lt'); and then, 

(3.26) trace((In-1 + LL 1) p2t )- trace(p2t) + tl P2t L 
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trace (P* 2t) 

because the sum of the n deviations (ait - 5t) is zero. It f ollows that 

the log-likelihood (3.25) has essentially the form of the 

log-likelihood of a univariate model. The results reported for (3.23a) 

also applies to (3.25). 

One obvious problem with the above decomposition is that, although 

the transformed variances are always non negative, the original ones 

may well be negative. The above decomposition may still be useful to 

form the log-likelihood which is then maximised Jointly with respect to 

all the variances. On the other hand, if both the exogenous variables 

and the vector of coefficients of the exogenous variables are unit 

specific, the decomposition does not lead to the independent estimation 

of the models. However, if a stepwise procedure is carried out, the 

joint maximisation of (3.23a) and (3.25) with respect to 0 is always 

possible, and two of the variances can always be concentrated out of 

the likelihood. 

As3Wtotic Tests of Hypotheses 

Under regularity conditions, 

(3.27) Ti 

T 
*. 1(3) 

O, 

0 T I, 
ic distribution, ý 

where the symbol d represent asymptot and 0 are the 

values that maximise the frequency domain log-likelihood, and 1*(0) and 

1*(0) are consistently estimated by (3.5b) and (3.19) evaluated at (ý, 

0) respectively. 

For hypotheses concerning the vector of exogenous variable 
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coefficients 0, a standard Wald statistic can be formed from (3.27). As 

a special case, when (1.4) holds with D= In and the vector of 

exogenous variables is the same for all units, the hypothesis 

(3.28) Ho : 01 = 02 = ... = On, 

is tested using only the (n-l)-dimensional homogenous model (3.7b). The 

hypothesis (3.28) being equivalent to the hypothesis that in the 

mentioned system, all the coefficients are zero. On the other hand, if 

both the vector of exogenous variables and the vector of coefficients 

are the same for all units, the Wald statistic to test a hypothesis 

concerning the common vector of coefficients 0 is obtained by 

estimating only the univariate model (3.13a). 

With respect to the parameters in the variance covariance matrices 

of the random shocks in the model, there are two test of hypothesis of 

obvious interest. The first test compares the general error components 

model (1.3) with a completely unrestricted multivariate structural time 

series model. The second test takes the restriction (1.4) as the null 

hypothesis and the general model (1.3) as the alternative. In both 

cases it is convenient to formulate an 1M test because it is always 

easy to estimate the restricted model. Using results in Section 3.5 and 

in Fernandez-Macho (1986, sec. 3.5), the LM statistic to test (1.3) 

against an unrestricted multivariate structural time series model is 

(3.29a) 114 E ht E Ht E ht 
ttt 

where , 

0-29b) ht - Xt vec[Gtl - Gtl Pt Gtl], 

(3.29c) Ht = Xt [Gt-l 0 Gt-l] 
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(3.29d) D (xý @ In(n+l)/2) 

D is the (n2 x n(n+l)/2) duplication matrix defined in Magnus(1988, ch. 

4), and Gt-1 and xt were defined in (3.6) and (3.16a) respectively. In 

the basic structural model, (1.3) contains 4 variance covariance 

matrices and the degrees of freedom for the LM statistic (3.29) are 

4(n+l)(n-2). 

To test the restriction (1.4), the 1M statistic has the same form 

(3.29) but with Xý defined as in (3.15) and Gil given by (3.6) with D*t 

9*D. If D in (1.4) is known, and for the basic structural model, the t 

degrees of freedom for this LM statistic are 4(n-1). 
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6,4. Analysis of Labour Cost Time Series : An ARplication 

This section illustrates the techniques presented in previous 

sections, using quarterly time series for the logarithms of the unit 

labour costs in Austria, Belgium and Luxemburg, and Netherlands for the 

period 1970 Q1 to 1987 Q4. The original data is in the index form with 

base 1985 - 100, and published in Department of Trade and Industry 

(1988). Figure 6.4.1 presents a graph of the three time series in 

logarithms. 

Univariate structural time series models were first fitted to each 

series. The results are reported in Table 6.4.1. A local level model 

with a fixed slope was appropriate in all the cases, and the variances 

of the irregular and level random shocks were similar for the three 

time series. Table 6.4.1 also presents some diagnostics for the 

residuals. The Normality statistic defined by Bowman and Shenton (1975) 

has a chi-square distribution with 2 degrees of freedom. The standard 

serial correlation statistic of Ljung and Box (1978) is also reported 

and none of the diagnostics present evidence of misspecification. This 

preliminary analysis suggests that an error components local level 

model, with equal variances for the specific random shocks might be 

appropriate. The first order serial correlation of the deviations of 

the time series from the average were . 63, . 75 and . 84. From the 

results in Section 5.2, these high correlations reveal that the error 

components model type I may be more appropriate than the error 

components model type II. In terms of the notation in previous 

sections, (1.4) with D equal to the identity matrix was assumed. The 

fixed slope in the model takes the form of the coefficients of an 

exogenous variable, time, which is the same for all units. The vector 

of coefficients was assumed unit specific. 
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The estimation results of the multivariate model, using the 

frequency domain approach, and some diagnostics for the residuals are 

reported in Table 6.4.2. The Normality statistics, and also the 

autocorrelation of the residuals , which are not reported in the table, 

show no significance evidence of misspecification in the model. 

Turning now to the estimation of the parameters, the three slopes 

are significant at the 5% level and they are very similar to each 

other. With respect to the variances, the estimate of a2 is zero, f 

suggesting that the irregular components are not correlated. The other 

three estimated variances are significant, and the correlation of the 

level random shocks is estimated at . 61. 

Three test of hypothesis were considered. In first place, the 

estimated model was compared with a totally unrestricted multivariate 

local level model using the IM statistic (3.29), which in this case has 

8 degrees of freedom. The value of the LM statistic was 11.66; and 

then, at the 5% significance level, the restricted model is accepted. 

The estimated model was also tested against the alternative hypothesis 

that D in (1.4) is not the identity matrix using a likelihood ratio 

test. The statistic was . 28 and again the restricted model is accepted. 

Finally, the hypothesis that the three slopes are the same was tested. 

This test requires only the estimation of a bivariate homogeneous model 

of two deviation from the average of the observations across units. The 

Wald statistic for this hypothesis was . 13 and then the hypothesis of 

equal slopes is accepted. From Section 6.3, the estimation of the 

common slope is obtained only from the univariate model for the 

average. The estimate of this common slope is 9.60xlO-3. 

Estimates of the trends are easily obtained using the formulas in 

Section 6.2. 
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Table 6.4.1 : Estimation Results for Univariate Models(') 

Parameter Austria 

Belgium and 

Luxemburg Netherlands 

U2 (XJO-3) 
. 048 

. 001 
. 000 

(. 079) (. 068) 

U2 (XJO-3) 
. 575 . 575 . 583 

(. 176) (. 167) (. 098) 
(XJO-2) 1.002 

. 956 . 926 

(. 284) (. 284) (. 286) 

Normality 5.07 1.15 
. 38 

Serial Correlation(12) 18.92 15.01 13.43 

(1) Standard errors in parenthesis. Normality is chi-square(2) and 

Serial Correlation is chi-square(ll) if 0 is known. 
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Table 6,4.2 : Estimation Results for the Multivariate Model(') 

Parameter Estimate S. Error 

Pa (XJO-2) 1.002 . 234 

Ob (Xlo- 2) 
. 956 . 234 

On (XJO-2) 
. 926 . 234 

072 (XJO-3) 
f . 

000 
-- 

a2*(XJO-3) 
f . 115 . 040 

Or2 (Xlo- 3) 
In . 249 . 067 

U2*(XJO-3) 
11 . 159 . 073 

Normality (a) 3.57 

(b) . 83 

(n) . 72 

Austria : a; Belgium and Luxemburg : b; Netherlands : n. 
Normality is chi-square (2). 
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CHAPTER 7: ESTIMATION OF DYNAMIC ERROR COMPONENTS MODELS TYPE II 

7.1 Introduction 

This chapter considers the estimation of the dynamic error 

components model type II presented in Section 5.1. Assume that the 

observation yit, for the unit i and time t, is generated by 

(1.1) Yit = Zl't pi + clit, i=1,..., n, 

where zit is an (r x 1) vector of exogenous variables, Pi is an (r x 1) 

vector of fixed parameters and ait is a residual defined below. Special 

cases of (1.1) include the situations where the vector of exogenous 

variables is the same for all units, zit - zt for all i, and the 

situations where the vector of coefficients is the same for all units, 

Oi -0 for all i. Model (1.1) can be written in the multivariate form 

(1.2) Yt = Xt 0+ Citt 

where yt and ut are (n x 1) vectors with i-t] 

respectively, Xt is an (n x k) matrix which 

variables zit, and P is a (k x 1) vector which 

Pi. The relationship between (Xt, 0, k) and 

general specification (1.1) as well as for the 

below (1.1), was presented in Section 5.1. 

Ii component yit and ait 

contains the exogenous 

contains the parameters 

(zit, Pi, r), for the 

special cases mentioned 

The vector of residuals at in (1.2) is assumed to be generated by a 

structural time series model of the form (5.1.7). That is, 

(I. 3a) cit In) Ot +' 't 

ot = (T 0 In) Ot_l + (R @ In) (lu 00 Kt, 
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where the (np x 1) state vector Ot contains the unobserved trend and 

seasonal components, t is an (n x 1) vector of onesý In is the identity 

of orden n, and the vector random shocks Et, ft, and Kt have dimensions 

1, n and u.; and they are assumed to be normally distributed, with 

expected values equal to zero and variances U2, D* and D respectively. fEK 

The last two matrices being diagonal. The diagonal matrix D*, is assumed 

to be strictly positive definite and, according to the time series 

model, some elements in the diagonal matrix DK are also assumed to be 

strictly positive; see Section 5.1 for details. 

In (1.3), the trend and seasonal components for all units are 

generated by the common random shock Kt. However, this does not mean 

that the seasonal and trend components are the same for all units 

because there may be initial differences between these trend and 

seasonal components. Two alternative specifications for the initial 

differences are studied: (i) the initial differences between the trend 

and seasonal components can be defined as fixed parameters, or (ii) the 

initial differences can be defined as random coefficients with a given 

distribution. Whichever the initial specification for the state vector 

Ot, model (1.3) can be written as 

(l. 4a) Cit ý Ut X+tZ o* +L Et + f* t= 1'..., T, 

(1.4b) 0* -T 0*- +R Kt, 

where the state vector O*t has now dimension (p x 1) and represents the 

common to all units trend and seasonal components. The (n x np) matrix 

Ut is known for all t and it was defined in (5.1.12), while the (np x 

1) vector X represents the initial specifications for the trend and 

seasonal components. Thus, according with this initial specification, X 

may be a random component or a fixed vector of parameters. In the fixed 

effects case, model (1.4) requires a restriction for the 
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identifiability of the state vector Ot. If the sum of the individual 

effects Xi across units is chosen to be equal to zero, the state vector 

0* in (1.4b) is equal to the average of the state vectors Oit defined t 

in (1.3b); see (5.2.16). 

Models (1.3) and (1.4) are said to be restricted if they satisfy 

the condition 

U2* I 
En 

where Or2* is assumed to be greater than zero. f 

The chapter is organised as follows. Section 7.2 presents the 

estimation of the unobserved trend and seasonal components under the 

two initial specifications. That section also compares the results 

obtained under these two initial definitions and analyses the 

efficiency of the estimators with respect to both the number of units 

and the number of time observations. Section 7.3 considers the maximum 

likelihood estimation of the vector of coefficients 0 and of the 

variances of the random shocks. The formulation of asymptotic tests of 

hypotheses is also considered in that section. Finally, Section 7.4 

illustrates the techniques presented with an empirical application. 
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7.2 Estimation of the Unobserved Components 

This section considers the estimation of the unobserved trend and 

seasonal ef f ects in the error components model type II def ined by (1.3) 

or (1.4), assuming at is observed and all the variances of the random 

shocks def ined in the model are known. The estimation of the unobserved 

components, by the Kalman filter, under the two initial conditions 

defined in the introduction of this chapter are considered first. Then, 

the results obtained under the two initial specifications are compared. 

Finally, the efficiency of the estimators as a function of both the 

number of units and the number of time observations is analysed. 

Fixed Initial Differences 

The initial differences between the trend and seasonal components 

across units may be defined as fixed constants to be estimated, jointly 

with the vector of coefficients 0 and the variances of the random 

shocks, using the maximum likelihood principle; see Section 7.3. In 

that case , these constants are assumed to be known at this stage and 

the objective in this subsection is to present estimates of the state 

vectors 0*, t in t 

Assume 

(21) 0 

where t is a (p x 1) random vector def ined as diffuse. There are two 

ways in which estimates of Ot can be obtained. One possibility is to 

apply the diffuse Kalman filter defined in Section 1.4. That procedure 

involves two steps. First, the standard Kalman filter for the state 

space model (1.4) is run conditional on ý=0. The second step computes 
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the estimates of Ot unconditional on ý, and their mean square errors. 

The standard Kalman filter can also be applied over (1.4) and that may 

be simpler. As (1.4) does not have the form of the models studied in 

Chapter 1, the results developed in Section 1.3 to form initial 

conditions, and the Kalman filter equations (1.3.2), cannot be applied 

here. The following lines show how initial values for the state vector 

are obtained, and present the Kalman filter recursions for (1.4). 

For the model (1.4), equation (1.3.4) can be written as 

(2.2a) ot - (H @t)0p+[ (H p9p+... + H2 K 2) 
0tI 

* 

* 

where a is an (np x 1) vector with k-th component "k; and H, Hp,..., H2 

are (p x p) matrices as defined in (1.3.4). In a more compact form, 

(2.2b) a- (H @t) OP 

where, E(e) -0 and 

(2.3) V(e) aV= (P @ tt) + Up @ D*). f 

From (2.2) and (2.3) follows that the minimum mean square error 

estimator of 0 and its mean square error, are given by 
p 

(2.4a) P* 
V- (H t') Mý 

and 

(2.4b) P* - [(H' V-1 (H L) 1- 1. 
p 

Although P in (2.3) is not strictly positive definite, it is semi 

positive definite, and so the inverse of V can be obtained using Lemma 
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2.2 in Magnus (1982). That is, 

(2.5) V-1 - Up 0 D*, E-1) - (1/0) [Ip - UP +0 P)-l ]0 (D*iE-1 tt' D*f-l), 

with 0- (t' D*, E-1 t). Thus, the estimates of the state vectors, and 

their mean square error are obtained applying the standard Kalman 

filter equations from t- (p+l) and with the starting values given by 

(2.4). From Anderson and Moore (1979, sec. 3.1) or Harvey (1989, sec. 

3.2), and using the definitions (1.3.1) with a* for the state vector 

0* 
t, the Kalman filter recursions for the model (1.4) are 

(2.6a) T P*-, T' +R Dk RI tI 

or2 (2.6b) F*t - (Z ý*t 7f+ t 

P* Z' t' F* -1tZ P* (2.6c) ý*t 
- 

-t 
ty 

*-+-;; * Z' t' F* -1 (2.6d) mt -T mt , pt t tt 

(2.6e) v*t - at -tZT mt- 

where t is a vector of ones, Pt and Pt are (p x 

(n x n) matrix, m* is a (p x 1) vector, and v* tt 

From the definitions (1.3.1), v* is the one step t 

at time t and F* its variance; while m* is the tt 

vector at time t conditional on information up 

mean square error. Notice that the inverse of th 

(2.6b), which is needed to compute P* in (2.6c), t 

p) matrices, F* is an t 

is an (n x 1) vector. 

ahead prediction error 

estimate of the state 

to time t and P* its t 

e (n x n) matrix F* in t 

and m* in (2.6d), can t 

be obtained analytically; see equations (2.9) below. 

If (1.5) holdsp the estimators of the state vectors 0* and their t 

mean square errors can also be computed by running a univariate Kalman 

filter for the average across units at. This result can be shown by 
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using the transformation (5.2.17), or directly by using the Kalman 

filter equations above. With the second alternative, (2.5) under (1.5) 

is equal to 

(2.7) V- 1ý (I n 
p In) Ip +- P) 

or2* 
p 

fn ()r2* 2* f 07 f 

Then, replacing this matrix in (2.11), the initial conditions become 

(2.8a) Mý - [H' Up 0 t') V-1 (Ip H] [H' (Ip @ t') V-1 cj] 

or2* jy2* 'E IE 
1 

Ip + P)-l H]-l (H' (- Ip+ p)-l -L]a 
nnn 

= (1/n) L) Ce, 

and 

072* E 
(2.8b) pp. H-1 -Ip+ P) H'-l. 

n 

The vector mp and the matrix Pp, in (2.8), correspond exactly to the 

initial estimators in a univariate model for the average of the 

observations , with the variance of the irregular random shock equal to 

(U2 + U2*/n). Hence, under (1.5), the initial conditions are formed Ef 

using only the average of the observations from t=1 to t=p. To show 

that this is also true for t= p+l,..., T, notice that from (2.6) 

(2.9a) (Z p* Z$ + 0-2) Lti + or2* I 
f 

ft LL' + 072* 1 
f 

and then, 
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1 

(2.9b) 
or 2 

from where it follows that 

(2.10a) 

and 

(2.10b) 

t' 

t' 

1 

(072*)2 (f-1 +n (U2*)-l) 
ftf 

1 

ft 

1 

072* 

tt 

Replacing (2.10a) and (2.10b) into (2.6c) and (2.6d) respectively, is 

easy to see that the recursions (2.6) are equal to the recursions of a 

univariate model for cit. In fact, a similar result is obtained if (1.5) 

does not hold. In that case, the variance covariance matrix of the 

irregular random shock can be written as (D U2*), with (t' D-1 n; f 

and it can be shown that the estimates of the state vectors, and their 

mean square errors, are obtained by running a univariate Kalman f ilter 

over the time series (t'D-1/n) cit. 

Finally, an alternative approach to the estimation of the state 

vectors is obtained by transforming the observations at by the matrix H 

in (5.2.4) if (1.5) holds; or the matrix H* in (5.2.11) if (1.5) does 

not hold. Under (1.5), and assuming that the sum of the unit effects 

xj, i= l'... 'n, is equal to zero, that gives 

t (2.11a) cit =z ot + ft + ft) 

(2.11b) 0* =T0 
*- +R Kt, 

and 
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(2.11c) (ceit - at) =Z Tt Xi + (f*it - 
-f*t), i n-1, 

t T; 

see equations (5.1.11). Alternatively, (2.11c) can be written in the 

state space form 

(2.12a) (ceit - Cit) -Z Xit +( f*it - 
-(*t) 

(2.12b) Xit - 

These expressions make clear that the estimates of the state vector 0* t 

require only the average of the observations; while the fixed effects 

Xi are estimated from the stationary model (2.11c), or from the state 

space model (2.12). As noted in the introduction, if the sum of the 

effects Xi across units is zero, 0* is equal to the average of the t 

state vectors Oit defined in (1.3b). 

Random Initial Differences 

If the initial differences between the trend and seasonal 

components in model (1.3) are defined as random with a proper 

distribution, the estimates of the state vector, and their mean square 

errors, can be obtained by means of the diffuse Kalman filter although 

there are situations where the standard Kalman filter can also be 

applied. Assume that the state vector at time zero is def ined as 

l? ) 00 .x+ (ip @ t) Z, 

where X is an (np x 1) normal random vector with expected value zero 

and variance covariance matrix EX, Ip is the identity of order P, L is 

an (n x 1) vector of ones, and t is a (p x 1) random vector def ined as 

diffuse. The vector X in (2.13) correponds exactly to the one in 
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(1.4a), and typically, its variance covariance matrix EX will be 

def ined as block diagonal with blocks of the f orm (61 In) ,k=1, ..., p. 

The vector E in (2.13) represents the diffuseness of the common trend 

and seasonal components, while the matrix that premultiply E considers 

the fact that these trend and seasonal components are common to all 

units. For example, in the local level model, 00 =X+tE, with E an 

scalar; and if E-0 and DK -0, model (1.3) reduces to the static 

three error components model (5.1.1). 

Estimates of Ot in the general model defined by (1.3) and (2.13) 

are obtained by applying the filter procedure presented in Section 1.4. 

If EX is defined as 

(2.14) EX = D>, @ In, 

with DX a (p x p) diagonal matrix, the first step in the diffuse Kalman 

f ilter procedure is obtained by running the standard Kalman f ilter 

defined in equations (1.3.2) from t-1 and with 

(2.15a) mo . 07 

(2.15b) po - E), - D>, @ Iny 

Ef. (or2 @LL1)+ DE ) (2.15c) E 

and 

I (2.15d) DK @ Lt . 

The estimators of the state vectors, unconditional on E, and their mean 

square errors, are then obtained with a straightforward application of 

the second step defined in Section 1.4. As in the fixed initial 

differences specification, the unconditional estimates of the state 

vector and their mean square errors exist only from t-p. 



-195- 

If (1.5) and (2.14) hold, the estimates of the state vectors, and 

their mean square errors, can also be obtained by means of the standard 

Kalman filter and that leads to simpler formulas. To show this, apply 

the transformation (5.2.17) to obtain 

(2.17a) cit z Ot + ft + ft, t T, 

(2.17b) Ot T Ot-I +R Kt, 

(2.17c) at) -Z (0 t- Ot) + ft), (ait 

(2.17d) (Oit - Ot) =T (Oilt-, - 

As the stochastic components in (2.17a) and (2.17b) are uncorrelated 

with the stochastic components in (2.17c) and (2.17d), Ot, týp, ... T 

can be estimated using the standard Kalman filter for the univariate 

model (2.17a)-(2.17b); while (Oit - Ot), t-1, ... 'T can also be 

estimated by means of the standard Kalman filter for the model (2.17c) 

and (2.17d) in which the state vector has initial expected value zero 

and mean square error equal to 

(2.18) Po = D), @ (In - (1/n) W). 

Notice that, although (Oit - Ot) can be estimated for all t, Oit is 

only estimable from t-p. In more general situations, where either 

(1.5) or (2.14) does not hold, the orthogonality in (2.17) is lost. 

CoMRarison of-the--Initial Conditions 

This subsection compares the results obtained in the estimation of 

the state vector Ot in (1.3) under the two alternative initial 

conditions studied in previous subsections. To simplify the analysis 
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assume that (1.5) and (2.14) hold. From (1.3), take the average across 

units and (n-1) deviations to obtain 

(2.19a) ce z0 tt+ ft + ft, t 

(2. l9b) Ot -T Ot-, +R nt, 

and 

(2.20a) at) -z (0 t- ot) (ait 

(2.20b) (Oit - Ot) -T (Oit-I - Ot-l). 

Previous results in this section showed that the estimates of the 

components Oit in (1.3) can be obtained by estimating first Ot from 

(2.19) and then (0it - Ot) from (2.20). From (2.19) follows that the 

estimates of Ot are the same under the two alternative initial 

specifications. The differences between the estimators under the two 

approaches are generated only by (2.20). 

Model (2.20) can be written in the multivariate form 

(2.21a) ** at . (z @ I n-0 Ot + ** 
I Et t 

(2.21b) ot (T In-, ) Ot-lp 

where at and ft are ((n-1) x 1) vectors with i-th component equal to 

(ait - at) and (E*it - 
-f7*t) respectively, and 0** is the ((n-l)p x 1) t 

state vector. Alternatively, 

** 
(2.22) at (Z Tt 0 In-1) Oo 

** 0** + E** = xt 0t9 

with X** an ((n-1) x (n-I)p) matrix. If 0** has an initial distribution 
t0 
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with expected value zero and variance covariance matrix equal to LO, 

the minimum mean square estimator of 0** conditional on information up 0 

to time t ýý p, mt , and its mean square error, Pt , are given by 

(2.23a) m** - yýl +y X*t (1 1 tEs n-1 - tt /n)-1 X*]-' s 
s=l 

t 
(U2*) -1 f 

S=l 

and 

Lt'/n)-l as], 

t 
(2.23b) [1: ýl + (or2*)-1 1: X*s' (In-1 - tt/n) X*]-', 

s-1 

see for example Theil (1971, sec. 7.8). If 0** is defined as fixed, 0 

0; while the estimator of 0** under the random initial specification, 0 

and its mean square error are obtained in (2.26) if EO - (DX @ (In-i - 

tt '/n)) . 

In the simple local level time series model, p=1, Z=T=1, Xt 

== 1, and formulas (2.23) for the fixed initial specification reduce to 

t 

(2.24a) E c, **f M*t s 
S-1 

and 

(2.24b) p ** - (or2*/t) 
- (1/n) Lt'], tf[ In- 1 

while, for the random initial specif ication DX - uý and m*t* and P** can t 

be computed from 

(2.25a) M** M** + t t-1 

1 

(072* / or f 

ce** t 
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and 

U2* 

(2.25b) P** = tt+ 
(U2* 

f 

and with m** - 0. As t goes to infinity, the mean square error of the 0 

estimator of 0** converges to zero irrespective of the initial 0 

conditions. For finite values of t, Pt is always smaller when the 

initial state vector is defined as random; compare (2.25b) with 

(2.24b). Notice that as aý increases, the model under random initial 

conditions approaches the model under f ixed initial conditions. On the 

other hand, as aj tends to zero, the model under random initial 

conditions becomes a model with fixed initial conditions. However, as 

these f ixed initial conditions are equal to zero, P** and m*t* tend to t 

zero for all t; see (2.25). Finally, notice that (2.24) are exactly 

equal to the formulas under a diffuse initial distribution. 

Efficiency Analysis 

The following lines analyse the efficiency of the estimates of the 

state vector in model (1.3) assuming the local level time series model 

under (1.5), and assuming also that the initial differences between the 

level components are fixed and equal to zero. That is, the model can be 

written as 

(2.29a) Ciit - At + ct + ett, i=1, ..., n, 
t-1, ... 'T, 

(2.29b) At = At_, + 71t y 

where At is an scalar which represents the common to all units level, 

and c-t, Ett and qt are scalar random shocks, assumed to be normally 
1 
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distributed, serially and mutually uncorrelated, with expected values 

equal to zero, and variances U2 u2* and C2 respectively. ff 17 

Earlier in this section were presented the minimum mean square 

estimator of At for given values of n and T. The analysis here 

considers the fact that in practice n and T have to be chosen, and so, 

a relevant question is what are the values of n and T needed to obtain 

a desired prefixed mean square error for the estimator of At. It will 

be assumed that the interes is place in the component At at time t= 

that is ItT. 

In principle, an estimate Of PT can be obtained using a single time 

series from t-1, a cross-section of n units at time t-T, or a 

cross-section of n time series from t-1. Other possibilities will not 

be considered here. Using a cross-section of n time series from t=1, 

the mean square error of the estimator of itt in model (2.29) can be 

written as 

(2.30) + or2) Pt - (Pt- 
1 71 

+ 0-2)2 (Pt- 1 17 

(pt_l + or2 + or2 + (or2*/n)) 17 f JE 

for t-2,..., T; and with P, = (U2 + a2*/n). From (2.30) it can also be 
EC 

obtained the expression for the mean square error when AT is estimated 

using a single time series, n=1, or when AT is estimated using a 

cross-section of units at time T, T=1. It should be notice that Pt 

does not converge to zero as n or T go to infinity provide 0-2 is 
f 

greater than zero. If U2 is equal to zero, the mean square error (2.30) 
C- 

converges to zero as n goes to infinity, but not necessarily if T goes 

to infinity with n fixed. 

In what follows, the relative efficiency of the estimate Of AT 

computed with n-1 and T-1 with respect to the estimate of AT 

computed with n cross-sections of T observations each is evaluated 
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numerically for different values of n and T and for the values of the 

parameters shown in Table 7.2.1. 

Table 7.2.1 : Parameter Values in the Evaluation of the 
Relative Efficiencv(l) 

Table pf o-2 
f 

0-2* 
f 

2 0' 77 

7.2.2 
. 20 

. 20 
. 80 

. 20 

7.2.3 
. 20 

. 20 
. 80 

. 50 

7.2.4 
. 20 

. 20 
. 80 1.00 

7.2.5 
. 20 

. 20 
. 80 2.00 

7.2.6 . 20 
. 20 . 80 5.00 

7.2.7 . 80 . 80 
. 20 

. 20 

7.2.8 . 80 . 80 . 20 
. 50 

7.2.9 . 80 . 80 . 20 1.00 

7.2.10 . 80 . 80 . 20 2.00 

7.2.11 . 80 . 80 . 20 5.00 

pe = (T2 / (Or2 + (72*) fff 

The value of (U2 + U2*), which corresponds to the mean square error fE 

when n-T-1, was set equal to the unity in all the cases. Two values 

for the correlation coefficient across units in the irregular random 

shock, defined as p,,, were considered : . 20 and . 80. Finally, five 

values for the variance of the level random shock, 0-2, are studied I? 

. 21 . 5v 1,2 and 5. 

The results of the numerical evaluation of the relative efficiency 

for the ten cases presented in Table 7.2.1 are shown in tables 7.2.2 to 

7.2.11. In all the cases the relative efficiency decreases as n and T 

increase. When n and T are equal to one hundred, the values of the 

relative efficiency fluctuate between . 
13 and . 61. The smaller (U2 

E 

f ), the smaller the relative efficiency as n increases; and for a 0-2* 
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given values of n, the bigger (U2 + U2*/n)/a2, fE7 the smaller the relative 

efficiency as T increases. The last statement implies that the marginal 

contribution to the relative efficiency of new time observations 

decreases as n increases. For example, in Table 7.2.2, the relative 

efficiency decreases from 1.00 to . 36 for n equal to unity, but from 

. 21 to . 13 only when n equals one hundred. 

Comparing the case of a single time series, n-1, with the case of 

a cross-section of units at time T, the increase of the number of time 

observations in a single time series may leads to more or less 

efficient estimators than the increase of the number of units in a 

cross-section at time T. In tables 7.2.2 to 7.2.6, where 0-2 is small f 

and a2* is large (. 8)', the relative efficiency of the estimator C- 

obtained from a cross-section at time T reaches the value . 21 as the 

number of units equals one hundred; while the relative efficiency of 

the estimator from a single time series is always greater than . 36 for 

T equal to one hundred. In other words, one hundred observations are 

more efficient as a cross-section than as a single time series. 

However, if a2 is large and a2* is small, as in tables 7.2.7 to 7.2.11, 
fE 

the opposite happens and one hundred observations are more efficient as 

a single time series. 

In all the cases studied and for a fixed value of n, a relative 

small number of time observations, which fluctuates between 4 and 6, is 

needed to reach, up to two 'decimal figures, the limiting relative 

efficiency. However, for a fixed value of T, the limiting relative 

efficiency up to two decimal figures is not reached, in most of the 

cases, even for values of n equal to one hundred. 
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Table 7.2.2 : Relative Efficienc: z of Estimates Using a Single 

Time Series CoMRared to Estimates Using n Time Series 
(q2, 

- . 20 or2* = . 80 or2 . . 20) 6 41 

T 

468 10 20 50 100 

1 1.00 . 55 . 39 . 36 . 36 . 36 . 36 . 36 . 36 

2 . 60 . 34 . 27 . 26 . 26 . 26 . 26 
. 26 . 26 

4 . 40 . 24 . 20 . 20 . 20 . 20 . 20 . 20 . 20 

6 . 33 . 21 . 18 . 18 . 18 . 18 . 18 . 18 . 18 

8 . 30 . 19 . 17 . 16 . 16 . 16 . 16 . 16 . 16 

10 . 28 . 18 . 16 . 16 . 16 . 16 . 16 . 16 . 16 

20 . 24 . 16 . 14 . 14 . 14 . 14 . 14 . 14 . 14 

50 . 22 . 14 . 13 . 13 . 13 . 13 . 13 . 13 . 13 

100 . 21 . 14 . 13 . 13 . 13 . 13 . 13 . 13 . 13 

Table 7,2.3 : Relative Efficiency of Estimates Using a Single 

Time Series ComRared to Estimates Using n Time Series 

or2* 80 0-2 . . 50) 
. 20 

it :q 

T 

1 2 4 6 8 10 20 50 100 

1.00 . 
60 . 51 . 50 . 50 . 50 . 50 . 50 . 50 

2 . 
60 . 

39 . 35 . 35 . 35 . 35 . 
35 . 35 . 35 

4 . 
40 . 

28 . 26 . 26 . 26 . 26 . 26 . 26 . 26 

6 . 
33 . 24 . 

23 . 23 . 23 . 23 . 23 . 23 . 23 

8 . 
30 . 

22 . 
21 . 21 . 21 . 21 . 

21 . 21 . 21 

10 . 
28 . 

21 . 
20 . 20 . 20 . 20 . 

20 . 20 . 20 

20 . 
24 . 

18 . 
18 . 

18 . 
18 . 

18 . 
18 . 

18 . 18 

50 . 
22 . 

17 . 
16 . 

16 . 16 . 16 . 
16 . 16 . 16 

100 . 
21 . 

16 . 
16 . 

16 . 16 . 16 . 
16 . 16 . 16 
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Table 7.2.4 : Relative Efficiency of Estimates UsinL a Single 
Time Series ComDared to Estimates Using n Time Series 

(q2, 
- . 20 (F2* ý . 

80 1.00) 

T 

n 1 2 4 6 8 10 20 50 100 

1 1.00 
. 67 

. 62 
. 62 

. 62 
. 62 

. 62 
. 62 

. 62 
2 

. 60 
. 44 

. 42 . 42 
. 42 

. 42 
. 42 

. 42 
. 42 

4 
. 40 

. 31 
. 31 

. 31 
. 31 

. 31 
. 31 

. 31 . 31 
6 

. 33 
. 27 

. 26 
. 26 

. 26 
. 26 

. 26 
. 26 . 26 

8 
. 30 

. 24 
. 24 . 24 . 24 

. 24 
. 24 . 24 . 24 

10 . 28 . 23 
. 23 . 23 

. 23 . 23 
. 23 . 23 . 23 

20 . 24 . 20 
. 20 . 20 

. 20 . 20 . 20 . 20 
. 20 

50 . 22 . 18 . 18 . 18 . 18 . 18 
. 18 . 18 . 18 

100 . 21 . 18 . 18 . 18 . 18 . 18 . 18 . 18 . 18 

Table 7.2.5 : Relative Efficiency of Estimates Using a Single 

Time Series Compared to Estimates Using n Time Series 
(a62 - . 20 (72* 80 0,2 - 2.00) 6 49 

T 

48 10 20 50 100 

1 1.00 . 75 . 73 . 73 . 73 . 73 . 73 . 73 . 73 

2 . 60 . 49 . 48 . 48 . 48 . 48 . 48 . 48 . 48 

4 . 40 . 34 . 34 . 34 . 
34 . 34 . 34 . 34 . 34 

6 . 
33 . 29 . 29 . 29 . 29 . 29 . 29 . 29 . 29 

8 . 30 . 27 . 26 . 26 . 26 . 
26 . 

26 . 26 . 
26 

10 . 
28 . 25 . 25 . 25 . 25 . 25 . 25 . 25 . 

25 

20 . 
24 . 22 . 22 . 

22 . 
22 . 22 . 22 . 

22 . 
22 

50 . 
22 . 

20 . 20 . 20 . 20 . 20 . 
20 . 

20 . 
20 

100 . 21 . 19 . 19 . 19 . 19 . 19 . 19 . 19 . 
19 
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Table 7.2.6 : Relative Efficiency of Estimates Using a Single 
Time Series__ComDared to Estimates Using n_Time Series 

(a2, 
- . 20___ or2* . . 

80 O-Z. 5.00) 

T 

n 1 2 4 6 8 10 20 50 100 

1 1.00 . 86 . 85 . 85 . 85 . 85 . 85 . 85 . 85 
2 . 60 . 54 . 54 . 54 . 54 . 54 . 54 . 54 . 54 
4 . 40 . 37 . 37 . 37 . 37 . 37 . 37 . 37 . 37 
6 . 33 . 31 . 31 . 31 . 31 . 31 . 31 . 31 . 31 
8 . 30 . 28 . 28 . 28 . 28 . 28 . 28 . 28 . 28 

10 . 28 . 27 . 27 . 27 . 27' . 27 . 27 . 27 . 27 
20 . 24 . 23 . 23 . 23 . 23 . 23 . 23 . 23 . 23 
50 -. 22 . 21 . 21 . 21 . 21 . 21 . 21 . 21 . 21 

100 . 21 . 20 . 20 . 20 . 20 . 20 . 20 . 20 . 20 

Table 7.2.7 : Relative Efficiency of Estimates Using a Single 

Time Series ComDared to Estimates UsinR n Time Series 

. 80 0-2* ý . 20 0,2 - . 20) 
-6 

41 

T 

2468 10 20 50 100 

1 1.00 . 55 . 
39 . 36 . 36 . 36 . 36 . 36 . 36 

2 . 90 . 49 . 36 . 34 . 34 . 34 . 34 . 34 . 34 

4 . 85 . 47 . 
34 . 33 . 32 . 32 . 32 . 32 . 32 

6 . 83 . 46 . 
34 . 33 . 32 . 32 . 32 . 32 . 32 

8 . 82 . 46 . 
34 . 32 . 32 . 32 . 32 . 32 . 32 

10 . 82 . 45 . 
33 . 32 . 32 . 

32 . 32 . 32 . 32 

20 . 
81 . 45 . 

33 . 32 . 32 . 31 . 
31 . 31 . 31 

50 . 80 . 45 . 
33 . 

32 . 31 . 31 . 31 . 31 . 31 

100 . 
80 . 45 . 

33 . 31 . 31 . 31 . 31 . 31 . 31 
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Table 7.2.8 : Relative Efficiency of Estimates Usin& a Sing-le 
Time Series CoMRared to Estimates Using n Time Series 

(u2, 
- . 

80 (72* 20 0,2 = . 50) 16 41 

T 

468 10 20 50 100 

1 1.00 . 60 . 51 . 50 . 50 . 50 . 50 . 50 . 50 

2 
. 90 . 55 . 47 . 47 . 47 . 47 . 47 . 47 . 47 

4 
. 
85 

. 52 . 45 . 45 . 45 . 45 . 45 . 45 . 45 

6 . 
83 

. 51 . 45 . 44 . 44 . 44 . 44 . 44 . 44 

8 . 82 . 51 . 44 . 44 . 44 . 44 . 44 . 44 . 44 

10 . 82 . 51 . 44 . 
44 . 44 . 44 . 44 . 44 . 44 

20 . 81 . 50 . 44 . 
43 . 43 . 43 . 43 . 43 . 43 

50 . 80 . 50 . 43 . 43 . 43 . 43 . 43 . 43 . 43 

100 . 80 . 50 . 43 . 43 . 43 . 43 . 43 . 43 . 43 

Table 7.2.9 : Relative Efficiency of Estimates Using a Single 

Time Series Compared to Estimates UsinR n Time Series 
2* 0-2 ý 1.00) (q62 = . 

80 
. 0,3- - . 

20 39, 

T 

468 10 20 50 100 

1 1.00 . 
67 . 62 . 

62 . 62 . 62 . 62 . 62 . 62 

2 . 
90 . 

61 . 57 . 57 . 57 . 57 . 57 . 57 . 57 

4 . 
85 . 58 . 55 . 55 . 55 . 55 . 55 . 55 . 55 

6 . 
83 . 57 . 54 . 54 . 54 . 54 . 54 . 54 . 54 

8 . 
82 . 57 . 54 . 54 . 54 . 54 . 54 . 54 . 54 

10 . 
82 . 57 . 53 . 53 . 53 . 53 . 53 . 53 . 53 

20 . 
81 . 56 . 53 . 53 . 53 . 53 . 53 . 53 . 53 

50 . 
80 . 56 . 53 . 53 . 53 . 53 . 53 . 53 . 53 

100 . 
80 . 55 . 53 . 53 . 53 . 53 . 53 . 53 . 53 



-206- 

Table 7.2.10 : Relative Efficiency of Estimates Using a Single 
Time Series Compared to Estimates Using n Time Series 

(o-. 2, 
= . 80 or2* 20 0-2 - 2.00) LG M, 

T 

n 1 2 4 6 8 10 20 50 100 

1 1.00 . 75 . 73 . 73 . 73 . 73 . 73 . 73 . 73 
2 . 90 . 69 . 67 . 67 . 67 . 67 . 67 . 67 . 67 

4 . 85 . 65 . 64 . 64 . 64 . 64 . 64 . 64 . 64 

6 . 83 . 64 . 63 . 63 . 63 . 63 . 63 . 63 . 63 

8 . 82 . 64 . 63 . 63 . 63 . 63 . 63 . 63 . 63 

10 . 82 . 64 . 62 . 62 . 62 . 62 . 62 . 62 . 62 

20 . 81 . 63 . 62 . 62 . 62 . 62 . 62 . 62 . 62 

50 . 80 . 62 . 61 . 61 . 61 . 61 . 61 . 61 . 61 

100 . 80 . 62 . 61 . 61 . 61 . 61 . 61 . 61 . 61 

Table 7.2.11 : Relative Efficiency of Estimates Using a Single 

Time Series CoMpared to Estimates Using n Time Series 

(or2, - . 80 or2* . 0,2 - 5.00) 
6- . 20 q 

T 

n 1 2 4 6 8 10 20 50 100 

1 1.00 . 
86 . 85 . 

85 . 85 . 85 . 85 . 85 . 85 

2 . 90 . 78 . 78 . 78 . 78 . 78 . 78 . 78 . 78 

4 . 85 . 74 . 74 . 74 . 74 . 74 . 74 . 74 . 74 

6 . 83 . 73 . 73 . 73 . 73 . 73 . 73 . 73 . 73 

8 . 82 . 72 . 72 . 72 . 72 . 72 . 72 . 72 . 72 

10 . 
82 . 72 . 72 . 72 . 72 . 72 . 72 . 72 . 72 

20 . 81 . 71 . 71 . 71 . 71 . 
71 . 71 . 71 . 71 

50 . 80 . 71 . 70 . 70 . 70 . 70 . 70 . 70 . 70 

100 . 80 . 
70 . 70 . 70 . 70 . 70 . 70 . 70 . 70 
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7.3 MaximmM Likelihood Estimation of the Parameters 

This section considers the maximum likelihood estimation and the 

formulation of tests of hypotheses for the vector of coefficients 0 and 

the variances of the random shocks in the model def ined by (1.2) and 

(1.3), or (1.2) and (1.4). Some general considerations are presented 

first. The analysis of some simple models, and their generalisation, 

f ollows. 

The exact log-likelihood of an error components model type II is 

formed by means of the diffuse Kalman filter. That leads to an 

expression of the form (2.1.7). From there follows that it is always 

possible to concentrate out of the log-likelihood the vector of 

coefficients 0. The solution for 0 can then be replaced into the 

original log-likelihood to form a concentrated expression which has to 

be maximised numerically with respect to the parameters in the variance 

covariance matrices of the random shocks. Analytic first and second 

derivatives of the log-likelihood with respect to these variances are, 

in general, difficult to obtain. 

An alternative procedure to form the log-likelihood is to 

differentiate the n time series to obtain the stationary form of the 

model; see Section 1.2. From the stationary form of the model are 

obtained the frequency domain log-likelihood, as well as the one 

defined in Section 2.3. In these cases, the log-likelihood has the form 

(3.1.1) and results closely related to the ones in Section 6.3 are 

obtained. Two problems arise with a log-likelihood formed from the 

stationary form of the model. First, as the models considered here are 

not strictly invertible, the matrices Gt defined in (3.1.3) are not 

always positive definite and the log-likelihood become undefined. 

Fernandez-Macho (1986, ch. 7) proposed a solution to this problem for 
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the frequency domain approach; and exactly the same idea can be used in 

the log-likelihood formed by means of the transformation defined in 

Section 2.3; although the likelihood formed by means of this 

transformation is in many cases defined for strictly non invertible 

models. The second problem with the log-likelihood formed from the 

stationary form of the model is that it is based on only (T-p)n 

observations while the exact log-likelihood based on the diffuse Kalman 

filter uses Tn-p observations. If n is large, the efficiency of the 

estimators obtained from the mentioned approximations may be low in 

practical situations where T is not very large. Furthermore, from the 

stationary form of the model the initial differences X, or its variance 

covariance matrix EX under the random effects specification, cannot be 

estimated because these differences cancel out. 

The remainder of this section concentrates on the situation where 

(1.5) holds, and so, the variance of the irregular random shock is the 

same for all units. In the random effects model, (2.14) is also 

assumed. 

Consider first the model under the fixed initial effects. Applying 

the transformation (5.2.6) with the matrix H defined in (5.2.4), the 

log-likelihood can be decomposed as 

el Q21 

where c is a constant, Q, is the log-likelihood of the average of the 

residuals at and Q2 is the log-likelihood of (n-1) of the deviations 

(ait - at). The log-likelihood Q, has the form of a standard univariate 

structural time series model with the variance of the irregular random 

shock equal to (0r2 + or2*/n). This variance can be defined as a new 
f 

parameter in the maximisation procedure, and so, all the results in 

Chapter 3 for an unrestricted model can be applied here. On the other 
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hand, Q2 corresponds to the log-likelihood of (2.22) which is a 

stationary model. If the fixed initial differences are included in the 

vector of coefficients the exact form of 22 is , apart from a 

constant, given by 

(3.2) Qý-IT log I (I tt '/n) 0-2* 2 n-1 - JE 

T 

t 

where 

(3.3) a** I- t[ (Cil t- cit) (an- 1, t- c1t) 

From (3.2), and using the fact that the inverse of (In-1 - tt/n) is 

(I + tt'), follows that the maximum likelihood estimator of U2* is n- 1 

given by 

Tn 
(3.4) 2* F af 

T(n-1) 
E (Ceit - Cit) 2 

t-1 i-i 

The maximum likelihood estimator of Or2 is obtained using (3.4) and the f 

maximum likelihood estimator of (U2 + U2*/n) from QA problem with ff11 

this procedure to obtain the estimator of U2 is that there is no f 

guarantee that it will be greater or equal to zero. In any case, the 

decomposition (3.1) may be used to evaluate the whole log-likelihood 

which is then maximised with respect to all the variances. With respect 

to the vector of coefficients of the exogenous variables, essentially 

the same results obtained in Section 6.3 apply here. If either the 

exogenous variables or the vector of coefficients is the same for all 

units, the estimators can be obtained by maximising 21 and Q2 in turn. 

In more general situations the decomposition (3.1) can still be applied 

if a stepwise optimisation procedure is implemented. Assuming the 
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log-likelihood Q, is formed by means of the frequency domain approach 

or the alternative procedure presented in Section 2.3 and a basic 

structural time series model, an espression which is asymptotically 

equivalent to the information matrix with respect to the parameters 01 
(Or2*' Or2' U2, orýp Or2) fE 17 . can be obtained from the results in chapter 3 

and from (3.2). This matrix has the form 

T(n-1) 
2K 

0 
-gLt 

n 
(3.5) 1(0) + 

t gý 
00 Xt 

where 

(3.6a) gt = get (Or2 + or2*/n) + g77t 0-2 + g6t al + gWt ow2 ff 71 wl 

(3.6b) Xý - (9 f t, gnt, 9 bt, 90)t) , 

n 

Xt 

and g,, t, gjt, gbt and g, t are known constants; see Section 1.2 for the 

value of these constants in the frequency domain approach, and Section 

2.3 for the values in the alternative approach. Analogous results are 

obtained for the other time series models. The matrix I-1(0) can be 

used as an approximation of the variances of the maximum likelihood 

estimators of 0. 

Consider now the model under random initial differences. The 

decomposition (3.1) still holds with Q, exactly as before and with 22 

representing the log-likelihood of the model (2.22). The difference 

with the previous situation is that now 0** is random. The 0 

log-likelihood of that model is not difficult to form; for example, if 

only the levels of the trends have a unit specific effect, X** -1 for t 

all t and the log-likelihood, apart from a constant, is given by 



-211- 
(3.7) Q (T2*) @ (1 1 2 1091(tt' (11 + IT f n-1 - LL 

072*) @ (I t' ol + IT i n- 1-t t'/n) ct, 

where 

(3.8) (C, ** I ** I 11.... CeT 

Using known formulas for the determinant and the inverse of the 

matrices in (3.7), Q2 can be written as 

(3.9) Qýc (n-1) (T-1) log(or2*) - log[ (0-2 2fj (n-1) f*/T) 

(1/or2*) 
- WIT) 0 (In + Lt 1)] C- C" [ (IT Q 

(or2*/T + o-K)) ci' [ (t t'/T2) f@ 

from where , the maximum likelihood estimators of U2* and (a2*/T + aK) 

are given by 

(3.10a) -2* 
= Uf 

(n-1)(T-1) tE1iE1 

and 

(3.10b) (a2* 

,E 
/T 

1n 

(n-i) 1=1 

at + a) 

(Cii - Ce)2, 

where 

T 
(1/T) E 

t-1 
i-1,..., n. 

In more general situations where also the slopes of the trends and the 

seasonal components have unit specific effects, the likelihood function 

can be formed using the same ideas although more complicated 
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expressions are obtained. The maximum likelihood estimators of the 

parameters aj and a2 are then obtained by simple substitution. The E 

former using (3.10), the later the estimator of (U2 + a2*/n) from the Ef 

maximisation of Ql* 

Finally, in the basic structural model, the information matrix with 

= (Uý, (y 2* or 2 or 2aa2 is respect to the parameter vector 01ff 77 W) 

asymptotically equivalent to 

T0 

(3.12) 0T (n- 1) 

o0 

00 

gLt 
-9 It n gi 

n 

Xt Xt 

where gt and xt were defined in (3.6). The inverse of this matrix can 

be seen as an approximation of the variance covariance matrix of the 

maximum likelihood estimators as T goes to infinity. 

Finally, if (1.5) does not hold, the transformation leading to 

(3.1) uses the matrix H* in (5.2.11) instead of the matrix H. In this 

case, the likelihood function has essentially the forms above but an 

extra term, representing the Jacobian of the transformation should be 

added to (3.1); see Section 5.1. 
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7,4 Analysis of Labour Cost Time Series : 
_An 

ARDlication 

The techniques presented in the previous sections are illustrated 

here using three time series of input labour costs in The United States 

industry. The data, obtained from Jorgenson, Gollop and Fraumeni 

(1987), is annual, for the period 1948 - 1971, and for the sectors 

sl : Nonmetallic mining and quarrying. 

s2 : Food and kindred products. 

s3 : Lumber and wood products, except furniture. 

Figure 7.4.1 presents a graph of the three time series in logarithms. 

All the analysis below uses this logarithmic transformation. From 

Figure 7.4.1, it seems obvious that the three time series present, at 

least, similar trends. The first exercise in the analysis of this data 

consisted in some ordinary least square regressions of the input costs 

on the variable time as well as on one of the other costs. The results 

are presented in Table 7.4.1. In equations 1,2 and 3 the independent 

variables are a constant and the time. The Durbin-Watson statistics 

show significant serial correlation in the residuals. That suggests the 

presence of stochastic trends. In equations 4,5 and 6 the dependent 

variables sl, s2 and s3 were regressed against a constant and s2, s2 

and s3 respectively. Stock (1987) showed that if the time series are 

co-integrated, the coefficients of these regressions are T-consistent; 

and so they represent, asymptotically, the relationship between the 

trends. 

Three important facts are observed from these regressions. First, 
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the Durbin-Watson statistics are much higher and the hypothesis of no 

serial correlation in equations 4 and 5 is accepted at the 5% 

significance level. In equation 6, the hypothesis of no serial 

correlation is rejected at the same significance level, while at the 1% 

level the test is inconclusive. The second important observation from 

equations 4,5 and 6 is that the constants are, at least in equations 4 

and 5, clearly different from zero. Finally, it can be observed that 

the coefficients of the independent variables are close to unity. The 

above analysis, although preliminary, suggests that the three time 

series share, apart from a constant, the same stochastic trend. 

Table 7.4.1 : Ordinary Least Square Regressions(l) 

Equation Dep. Variable Constant Time s2 s3 D-W 

1 sl -12.205 . 045 . 442 

(. 160) (. 001) 

2 s2 -11.490 . 044 . 368 

(. 128) (. 001) 

3 s3 -12.080 . 046 . 697 

(. 160) (. 001) 

4 sl -. 456 1.023 1.564 

(. 067) (. 010) 

5 sl -. 371 . 978 1.768 

(. 118) (. 017) 

,6 s2 . 
079 . 956 1.131 

(. 107) (. 015) 

(1) Standard errors in parenthesis. 
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Table 7.4.2 presents the results of the estimation of univariate 

time series model for the three time series. The model fitted is the 

local level model plus a fixed slope. In all the cases the model seems 

to represent the data ýquite well. The Normality statistic of Bowman and 

Shenton (1975) has a chi-square distribution under the null hypothesis 

of normality in the residuals, and the Serial Correlation statistic is 

the standard Ljung and Box (1978) test for serial correlation. The 

fixed slopes are very similar between sectors and the variances of the 

irregular and level random shocks are also similar. 

Table 7.4.2 : Univariate Time Series Models(') 

Parameter/Statistic sl s2 s3 

or2 (X10- 3) 
. 003 . 006 . 001 

(. 129) (. 071) (. 206) 

u2 (XJO-3) 
I? . 560 . 328 . 960 

(. 296) (. 170) (. 495) 

. 049 . 046 . 050 

(. 005) (. 004) (. 006) 

Normality . 255 . 264 . 717 

Serial Corr. (8) 4.461 6.883 3.538 

Standard errors in parenthesis. Normality is chi-square(2) and 

Serial Correlation(8) is chi-square(7) if 0 is known. 
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The above analysis suggests a multivariate model of the form 

l a) Yit - Xi + Itt + ft + fit, i 2,3, 
t 1'... 

'24, 

(4. lb) At = At-, +0+ 'qt I 

where yit is the logarithm of the input labour cots in sector i at time 

t, lAt is the common trend with fixed slope 0, Xi is the sector i fixed 

effect, and c- t, fit, nt are serially and mutually uncorrelated, 

normally distributed, with expected values equal to zero and variances 

U2 Or2* 0-2 EI Ell 19 21 3; and 71 respectively. That is, in principle, the 

variances of the unit specific irregular random shocks were assumed 

unit specific. 

The maximum likelihood estimates of the parameters in model (4.1) 

are presented in Table 7.4.3. To solve the identifiability problem with 

the constants Xi and the common trend pt, X, was set equal to zero. The 

diagnostics of the residuals of the models present no sign of 

misspecification. The Normality statistics were . 570,2.392 and . 318 

for the three sectors , and none of the auto or cross correlations was 

greater than or smaller than the usual critical values ± 2T-i. Two 

asymptotic test of hypothesis based on the Likelihood Ratio principle 

were performed. The hypothesis that the slopes were different in the 

three sectors gave a statistic equal to 4.82. This statistics has a 

chi-square distribution with 2 degrees of freedom and the common slope 

hypothesis is accepted. The hypothesis that the irregular unit specific 

random shocks have the same variance gave a statistic equal to 19.52. 

Again this has a chi-square distribution with 2 degrees of freedom and 

so the hypothesis of equal variances is clearly rejected. 
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Table 7.4.3 : Multivariate Time Series Model 

Parameter Estimate Standard Error 

(T2 f 
(Xlo- 3) 

. 
000 

0,2* f1 (Xlo - 3) 
. 
157 

. 
113 

(T2* (Xjo - 3) 
. 006 . 101 E2 

0-2* E3 
(Xlo- 3) 

. 523 . 158 

(T 2 (Xlo- 3) 
. 311 . 161 

. 573 . 028 
2 

X3 
. 240 . 058 

a . 046 . 001 
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CHAPTER 8: MULTIVARIATE DYNAMIC ERROR COMPONENTS MODELS 

8.1 Introduction 

This chapter extends the ideas of error components models to the 

case of multivariate observations. Although some basic concepts and 

definitions were presented in Section 5.3, this chapter defines the 

models more rigorously and studies the estimation procedure. Consider 

the regression model 

(1.1) Yit ý Zit oi + Uit, i-1,..., n, 

where yit is a (q x 1) vector of observations for the unit i at time t, 

Zit is a (q x ri) matrix of exogenous variables, Pi is an (ri x 1) 

vector of fixed coefficients, and ait is a (q x 1) vector which 

satisfies a structural time series model. In multivariate form, model 

(1.1) can be written as 

(1.2) Yt - Xt 0+ Cit I 

where yt and at are (nq x 1) vectors with n components of dimension q 

each, Xt is an (nq x k) matrix which contains the exogenous variable 

matrices Zit, i=1,..., n, and 0 is the (k x 1) vector of coefficients 

formed with Pi, i-1,..., n. In general, Xt is a block diagonal matrix 

with i-th block equal to Zit, and 0 has as its i-th component the 

vector Oi. Special cases of (1.2) also include the situations where the 

matrices of exogenous variables Zit are the same for all units, and the 

situations where the vector of coefficients are the same for all units. 

if Zit = Zt for all i, then ri r, Xt ' (In @ Zt), and k=qr. If Oi 

for all i, then ri - r, Xý [Z11t, 
... Z't], and k-r; and if also n 

zit - Zt for all i, Xt -00 Zt), where t is an (n x 1) vector of 
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ones. 

The structural time series model for the vector of residuals cet can 

be written in the state space form 

(1.3a) 

(1.3b) 

cit = (Z 0 inq) Ot + (L @ Iq) ýt + 6t, t 

Ot - (T 01 Ot-, + (R @ Inq) @ Iq t nq) 
( (IU L) Kt + K*) 

where, for any m, Im is the identity matrix of order m, t is an (n x 1) 

vector of ones, and the matrices Z,. T and R have dimensions (1 x p), (p 

x p) and (p x u) respectively, and they are defined, jointly with the 

values of p and u, as in Section 1.2. The (npq x 1) state vector Ot 

contains the trend and seasonal components, while the normal random 

shocks ft, ft, Kt, K* have dimensions (q x 1), (nq x 1), (uq x 1) and t 

(nuq x 1), expected values equal to zero and variance covariance 

matrices E. and E* respectively; where E* is a block diagonal fKKf 

matrix with i-th block E: is a block diagonal matrix as defined in (i 2 
EK 

Section 1.1, and Y-* is also a block diagonal matrix with nu blocks of K 

dimension (q x q) each. That is, 

(1.4a) C- diag(E*1,... ' 
r* 

tE En), 

and for the basic structural model, 

(1.4b) EK = diag(E, 7, 
Eb, EW), 

and 

F* ,..., 
I: * ). (1.4c) diag(E*., ,..., ? In ; Ell E*Wl wn 

The random shock et represents the common to all units irregular 

effects, while Kt contains the common to all units trend and seasonal 

random shocks. The elements of the vectors ft and Kt represent the unit 

specific random shocks. 
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The variance covariance matrix of the random shocks in the 

measurement equation (1.3a) is equal to 

(1.5a) V[ (L @I*]= Ae, q) f-t + ft 

while the variance covariance matrices of the random shocks of the 

trend and seasonal components, in the transition equation (1.3b), have 

the form 

(l. 5b) VI(Iu @L@ Iq)Kt + K*] - diag(Al,..., Au), t 

where the (nq x nq) matrices Ak in (1.5a) and (1.5b) are defined as 

(1.5c) Ak - (tt' 0 Ek) + diag(Y-tj,..., F-t,, ), k=f, 17,6, w. 

Model (1.3) is said to be a multivariate error components model type I 

if in the local level model E*ni is positive definite for all i, in the 

local linear trend model E*bi is positive definite for all i, in the 

seasonal local level E*ni and E*i are positive definite for all i, and w 

in the basic structural model E*bi and E*i are positive definite for all w 

i. That is, the stationary form of the error components model type I is 

strictly invertible; see Section 1.2. 

Extending in a natural way the restrictions used in the error 

components model type I for univariate observations presented in 

Section 5.1, the error components model type I for multivariate 

observations is said to be restricted if 

Ak -7k) + (D @ E**), k k-f, 771 6109 

where D is an (n x n) diagonal matrix and Et* is a (q x q) unrestricted 

variance covariance matrix. Thus, (1.6) implies that the variance 

covariance matrices of the unit specific random shocks differ acroos 

units only by an scalar. As a particular case, D may be equal to the 
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identity matrix of order n. 

Using Definition 5.3.1, the error components model type I is said 

to be partially homogeneous if 

(1.7) Ak - (LL' 0 qk F-d + diag(qtl E*,,..., q* E* k- 17, f kn en), 

and if the model is restricted and partially homogeneous, 

F**), Ak qk Ed + (D 0 qt f 17 9 6) co 2 

with q. - q* - 1. If also qk q* for all k, model (1.3) is Ek 

homogeneous. Notice that the restrictions introduced by the idea of 

homogeneity are, in some way, independent of the restrictions (1.6). 

While the homogeneity restriction (1.7) defines variance covariance 

matrices proportional across random shocks, (1.6) defines matrices 

proportional across units. 

Model (1.3) is said to be a multivariate error components model 

type II if K*t M0 for all t. In that case, the variance covariance 

matrix of the random shocks in the measurement equation (1.3a) is 

always given by (1.5), while the variance covariance matrix of the 

random shocks in the transition equation (1.3b) is now given by 

(1.9a) V[ Uu 0L0 Iq ) Kt] - diag(B,,..., Bu), 

where 

(1.9b) Bk ' (tt' @ Y-O, 17,6, w- 

The multivariate error components model type II assumes that the 

variance covariance matrix E*ei is positive definite for all i, and also 

that E 71 is positive definite in the local level model, F-6 is positive 

definite in the local linear trend, E Iq and F-, are positive definite in 

the seasonal local level, and Eb and E,, are positive definite in the 



-223- 

basic structural model. Finally, extending the restrictions used in 

Section 5.1 in the model for univariate observations, the multivariate 

error components model type II is said to be restricted if 

Iq) ft + E* ]=(tt+ (D @ E**) 
, tE 

where D is an (n x n) diagonal matrix, and Ej* is a (q x q) positive 

definite matrix. As a special case, D may be equal to the identity 

matrix of order n. Notice that, although the model type II is never 

homogeneous, it can be partially homogeneous. 

The chapter, apart from this introduction, is organised as follows. 

Section 8.2 considers the estimation of the unobserved trend and 

seasonal components, while Section 8.3 studies the maximum likelihood 

estimation of the parameters in the model. Finally, Section 8.4 

presents an illustration of the techniques presented, using the data 

and the econometric model in Chapter 4. 
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8.2 Estimation of the Unobserved ComDonents 

This section considers the estimation of the unobserved trend and 

seasonal components in the state space model (1.3) assuming at is 

observed for all t and the variance covariance matrices of the random 

shocks are known. As in all the models studied in previous chapters, 

the estimation of these unobserved components is carried out by means 

of the Kalman filter defined in sections 1.3 and 1.4. 

Consider first the error components model type I. In the 

unrestricted model, the estimates of the state vectors Ot, and their 

mean square errors are obtained by applying the recursions (1.3.2) from 

t= p+l, with the variance covariance matrices for the random shocks as 

def ined. in (1.5), and with initial estimate of the state vector, mp , 

and mean square error, Pp, obtained from (1.3.5) and (1.3.6) 

respectively. As in the unrestricted model for univariate observations, 

it seems that the recursions needed to obtain the mean square error of 

the estimator of Ot with information up to time t, Pt, and the 

prediction error variances, Ft, cannot be simplified. Although the 

variance covariance matrices of the random shocks in the model have 

simple forms, Ft and Pt do not. 

The same seems to be true when the model is partially homogeneous. 

No simplifications in the Kalman filter recursions are, apparently, 

possible. 

Consider now the restricted model where (1.6) holds with D- In- 

Premultiplying (1.3) by the matrix (H @ Iq), where H is the (n x n) 

matrix defined in (5.2.4), yields a new state space model with 

observations [(H @ Iq) at], and state vector [(Ip @H@ Iq) Otl- It is 

not difficult to verify that the variance covariance matrix of the 

random shocks in the measurement equation is now equal to A( , and the 
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variance covariance matrix in the transition equation is 

diag(A,,..., Au), where 

Ek Et* 

Ak 

0 

LL'/n) 

k- c-, ) q, 6, w. It f ollows that the variance covariance matrices of the 

random shocks in the transformed model are block diagonal matrices. The 

first blocks have dimensions (q x q) and correspond to a model for the 

average of the observations. The second blocks have dimensions ((n-l)q 

x (n-l)q) and correspond to a model for the first (n-1) deviations of 

the original observations with respect to the average. In other words, 

the unobserved trend and seasonal components in these two sub-models 

can be estimated separately. The first sub-model has only dimension q 

and the Kalman filter equations present no problems unless q is very 

large. The second sub-model has dimension (n-l)q and, although it is 

not in general homogeneous, it can be shown that the Kalman filter 

recursions have only dimension q. The idea is the following. Suppose 

the observations in the second sub-model are multiplied by the matrix 

Iq]; hence the transformed observations follow a 

model where the variance covariance matrices of the random shocks have 

the form @ r**) ,k 71,6, W. From there follows that the (In- 1 Lýk 

model for the transformed observations can be run for each unit in 

turn; that is, with a q-dimensional Kalman filter. The estimates of the 

original state vectors, and their mean square errors are then recovered 

using the transformation matrix above. If apart from the assumptions 

above the model is partially homogeneous, then the second sub-model 

becomes a homogeneous model. 

If (1.6) holds but D is not equal to the identity matrix, exactly 
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the same idea can be used if the matrix H is replaced by H* defined in 

(5.2.11). In that cases Ak, k-E, n, 6, w, have the form 

Ek + (1/n) Ek** 

(2.2) Ak 

0 

0 

tt'/n) 

where D* is an (n-1 x n-1) diagonal matrix with the first (n-1) 

elements of D. As before, under partial homogeneity, the second 

sub-model is homogeneous. 

Consider now the error components model type II under (1.7) and D- 

In- Premultiplying (1.3) by (H @ Iq) yields, 

(2.3a) cet - (Z @I) q Ot + (et + c*/n), t t 

(2.3b) Ot - (T @ Iq) Ot-, + (R @ Iq) Kt, 

and 

(2.4a) at) - (Z (ait - q(n-1» 
(Oit 0 t) +( EI t- 'E t) , 

(2.4b) (Oit - Ot) = (T @ Iq(n-1)) (0i, t-1 

for i=1,..., (n-1) and t-1,..., T. In (2.3) and (2.4), Oit is the 

state vector which contains the trend and seasonal components for the 

unit i, and at and Ot are the average of ait and Oit across units. In 

the fixed effects model, (OiO - 00) is a fixed vector of parameters 

which can be included in the vector of coefficients 0. This vector of 

coeffcients is assumed known at this stage. Hence, Ot represents the 

common to all units trend and seasonal components at time t, and as the 

random shocks in (2.3 and (2.4) are uncorrelated, the estimation of Ot 

require only the q-dimensional model (2.3). 
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8.3 Maximum Likelihood Estimation of the Parameters 

This section considers the maximum likelihood estimation of the 

vector of coefficients 0 in (1.2) and of the parameters in the variance 

covariance matrices of the random shocks. As the number of parameters 

in the model is large, even under the restrictions considered in the 

introduction, the log-likelihood functions obtained from the stationary 

form of the model are much more attractive than the one formed by means 

of the Kalman f ilter. Hence, this section assumes that the likelihood 

function is formed using the frequency domain approach or the 

alternative transformation developed in Section 2.3. 

Consider first the error components model type I, and assume that a 

diffuse prior is defined over the state vector Ot, From Section 3.1, 

the log-likelihood of the basic structural model has, apart from a 

constant, the form 

T 
(3.1) E [logjGtj + trace(Gt-l Pt)), 

t-p+l 

where Pt is an (nq x nq) matrix given by 

(3.2) Pt ý (wyt - wxt ß) (wyt - wxt ß)', t- P+1,..., T, 

and Gt is an (nq x nq) matrix of the form 

(3.3) Gt ý get Af + gqt A 10 + g6t A6 + gwt Awl t- P+1,..., T, 

where Ak, k-f, 719 6 and u) were defined in Section 8.1, and the (nq x 

1) vector wyt, the (nq x k) matrix Wxt, and the scalars g, t, gnt, g6t 

and gt, are defined as in Section 3.1. The matrix Gt in (3.3) can also 

be written as 

(3.4) Gt - Ot' @ Glt) + G2t 
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= Lt) (t' @ Lý) +G 2tp t= P+1,..., T, 

where t is an (n x 1) vector of ones, G1t is a (q x q) matrix equal to 

(Lt Lý), with Lt a lower triangular matrix; and G2t is an (nq x nq) 

block diagonal matrix with n blocks of dimension (q x q) each. 

The maximum likelihood estimator of 0 is obtained as in (3.2.2), 

with the information matrix of the form (3.2.3). A concentrated 

log-likelihood can be formed by replacing the estimator of 0 into 

(3.1). That concentrated function has to be maximised numerically with 

respect to the parameters in the variance covariance matrices of the 

random shocks. Alternatively, a stepwise procedure can be implemented 

as mentioned in Section 3.4, with the advantage that f irst and second 

derivatives of the log-likelihood with respect to all the parameters in 

the model can be computed analytically. The evaluation of the maximum 

likelihood estimator of P requires the inverse of the (nq x nq) matrix 

Gt, and the evaluation of (3.1) requires also the determinant of Gt- 

The following analytic expressions, which uses the inverse and the 

determinant of matrices of order (q x q) only, give those functions of 

the matrix Gt. 

(3.5a) iGti - IG2tl lIq + (Ll@ Lý) GA (L @ Lt)l, t 

and 

(3.5b) Gt-' -G2G2 Lt) Pq +W@ Lý) G2 Lt) 

GAI tp+1,..., T. 

Although formulas (3.5) imply a significant reduction in the 

calculations, the number of parameters in the model may still be too 

large to make the procedure feasible. In that sense, the partial 

homogeneity hypothesis is very attractive because although it does not 
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simplifies substantially the above formulas, the reduction in the 

number of parameters is very important; see Table 8.3.1. For example, 

if q=3 and n-3 as in the example in Section 8.4, the number of 

parameters in the variance covariance matrices of the random shocks in 

the unrestricted model are 48 in the local level model and 96 in the 

basic structural model. Under partial homogeneity, the number of 

parameters reduces to 28 for the local level model and to 36 for the 

basic structural model. 

Consider now the model type I under the restriction (1.6) and with 

D= In- Premultiplying the model by (H @ Iq), with H as in (5.2.4), the 

log-likelihood can be written as 

(3.6) Q-c+Q1+Q 29 

where c is a constant, Q, is the log-likelihood of a q-dimensional 

structural time series model for the average of the observations with 

the variance covariance matrices of the random shocks of the form (lk 

(1/n) Et*), k-e, q, 6 and w; which can be defined as new variance 

covariance matrices. Thus Q, has the form (3.1) and the results in 

Chapter 3 can be applied here. 

The expression Q2 represents the log-likelihood of the first (n-1) 

deviations of the original observations with respect to the average. 

That is, a (n-l)q-dimensional structural time series model. The 

variance covariance matrices of the random shocks have the form ( (In- 1 

-LL1 /n) @ Et ], k-c, q, 6 and w; and then, the matrix Gt in (3.1) has 

the form 

(3.7) Gt ý (I - Lt'/n) 0 G* n-i t 

where G*t is a (q x q) matrix. Using (3.1) and (3.7), Q2 can be written 

as 
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T 
(3.8) 1: (n- 1) log G* I+ trace (G* P*) 

t=p+l tt 

P* where t is a (q x q) matrix defined by 

(3.9) P*t Put, t=p+1,..., T, 

where Piit is the i-th (q x q) diagonal block in Pt. That is, in the 

evaluation of Q., the determinant and the inverse of only (q x q) 

matrices is required. If the model is partially homogeneous, Ej* can be 

concentrated out of the log-likelihood Q2. 

With respect to the coefficients of the exogenous variables, 

essentially the same results developed in Section 6.3 apply here : if 

the exogenous variables are unit specific but the vector of 

coefficients is the same for all units, this vector of coefficients can 

be expressed as an average of the estimator obtained from the 

maximisation of Q, and the one which maximises Q 2. On the other hand, 

if the coefficients are unit specific and the exogenous variables are 

common for all units, the estimator of the average of the coefficients 

is given by Q, while Q2 gives the estimators of the deviations of the 

coefficients with respect to the average. Finally, if both the vector 

of coefficients an, d the exogenous variables are the same for all units, 

this vector of coefficients is obtained only from the log-likelihood 

Ql 
. 

In the above cases , the variance covariance matrices in the model 

can be redefined for the estimation procedure and that implies that the 

two log-likelihoods in (3.6) can be maximised in turn. This procedure 

has the problem that the original variance covariance matrices are not 

necessarily positive (semi) definite; however, expression Q in (3.6) 

still has a simple form which can be maximised with respect to all the 
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parameters. 

The number of parameters in the variance covariance matrices of the 

random shocks in the multivariate error components model type I under 

(1.6) and D= In is presented in Table 8.3.1. The partial homogeneity 

is more attractive in models where q is large and n is small; while if 

the number of units is very large, restriction (1.6), with D- In, 

becomes very important because under this restriction the number of 

parameters does not depend on n. 

For the multivariate error components model type II, under (1.10) 

and D- In, (3.6) also applies. The log-likelihood Q, is formed with 

the average of the observations acroos units, and the variance 

covariance matrices of the random shocks in the basic structural model 

are equal to [EE + (1/n) E*,, ], ETII Eb 
, 

and E.. Thus, the results in 

Chapter 3 can be applied. The log-likelihood Q2 corresponds to the 

log-likelihood of a stationary model of dimension (n-l)q. Extending the 

results in Section 7.3, and for the fixed effects model, the maximum 

likelihood estimator of E*, is 

at) (ait - at)', 

where at is the average of ait across units. All the comments below 

(3.9) with respect to the maximisation of (Ql + Q2) 
, and the maximum 

likelihood estimators of the vector of coefficients 0 also apply to the 

multivariate error components model type II. 

Table 8.3.2 presents the number of parameters in the variance 

covariance matrices of the random shocks for the model type 11 under 

the two restrictions considered: partial homogeneity and the one in 

(1.7). Restriction (1.7) is attractive when the number of units, n, is 

large because the number of parameters is independent of n. On the 
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other hand, when q is large but n is small, the homogeneity restriction 

may produce a more important reduction in the number of parameters. 
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Table 
-8.3.1 : Number 

-of 
Parameters in Variance Covariance 

Matrices in_Model Type IO_ 

Model Unrestricted P. H. R. 

Local Level 2q*(n+l) q*(n+l)+(n+l) 4q* 

Local Linear Trend 3q*(n+l) q*(n+l)+2(n+l) 6q * 

Seasonal Local Level 3q*(n+l) q*(n+l)+2(n+l) 6q* 

Basic Structural 4q*(n+l) q*(n+l)+3(n+l) 8q* 

q* = fq(q+l). P. H. is partial homegeneity and R. is restriction 
(1.6) with D= In- 

Table 8.3.2 : Number of Parameters in Variance Covariance 

Matrices in Model TyRe II(l) 

Model Unrestricted P. H. R. 

Local Level q*(n+2) q*(n+l)+l 3q* 

Local Linear Trend q*(n+3) q*(n+l)+2 4q* 

Seasonal Local Level q*(n+3) q*(n+l)+2 4q* 

Basic Structural q*(n+4) q*(n+l)+3 5q* 

q* - jq(q+l). P. H. is partial homogeneity and R. is restriction 

(1.10) with D- In. 



-234- 

8.4 The Demand for Energy in the U. K.: An ARplication 

This section illustrates the techniques presented in previous 

sections of this chapter using the data and the econometric model for 

the demand for energy developed in Chapter 4. 

The econometric model presented in (4.3.1) was estimated in Chapter 

4 separately for each economic sector: other industry, domestic, other 

final users and transport; for the four fuels: gas, electricity, oil 

and coal; and for the sample period 1971 Ql to 1986 Q4. This section 

attempts the joint estimation of the model for the three most important 

economic sectors: other industry, domestic and other f inal users. The 

transport sector is not only smaller but uses basically two fuels while 

the other sectors use four, and that makes the joint formulation and 

estimation of the four sectors more complicated. 

Model (4.3.1) for the economic sector i can be written as 

(4.1a) Sit - Ait + yit + Ai pit + fit, i 1,2,3, 
t 1,..., T. 

(4. lb) Ait ý Ai't-l + fli + nit, 

(4.1c) (1 +L+ L2 + L3) Pyit - (jit 
9 

where Sit is a (3 x 1) vector of shares, pit and -yit are (3x 

vectors representing the trend and seasonal components, Ai is a (3 x 3) 

matrix of parameters satisfying the restrictions (4.2.7), and pit is a 

(3 x 1) vector of exogenous prices. Finally, for each i, fit, -qit and 

wit are assumed to be serially and mutually uncorrelated random shocks, 

with expected values equal to zero. 

Model (4.1) can be written as a 9-dimensional structural time 

series model of the form (1.1.3). That model contains 135 parameters in 
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the variance covariance matrices of these random shocks, and its 

estimation is extremely difficult. The idea of error components models 

presented in previous sections of this chapter provide a feasible 

alternative. Assume that the (3 x 1) random shocks cit, nit and wit can 

be written as 

(4.2a) fit = ft + f* It 

(4.2b) '? it = 17t + 71*it, 

and 

(4.2c) Wit - Wt + 04tv 

for i-1,2,3; and t-1, 'T; where the random shocks ft, c* it, 

? It 3_t, wt, and wtt have dimensions (3 x 1) and they are assumed to be 

serially and mutually uncorrelated, with expected values equal to zero 

I: * I: * and variances E., ni, EU) and E*, Wi respectively. Thus, ft, nt f10 
E71 

IW 

and wt are common to all sectors random shocks, while f*t, iftt and w* 11 it, 

i-1p2,3, are uncorrelated sector specif ic random shocks. In terms 

of the augmentation factors defined in Section 4.2, (4.2b) says that 

there are random shocks which affect the augmentation factors in all 

the economic sectors, while there are also sector specific random 

shocks affecting these augmentation factors. 

Model (4.1) under (4.2) has the form (1.2)-(1.3). Although the 

number of parameters in the variance covariance matrices has been 

reduced to 72 with the specification (4.2), it is still difficult to 

estimate. From Table 4.3.3, the partial homogeneity restriction (1.7) 

seems to be appropiate in this case because the estimation of the model 

for each sector, in Section 4.3, accepted the hypothesis of 

homogeneity. Although a partially homogeneous model for n units does 

not imply the model for each unit is homogeneous, it can be seen as an 
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approximation. Under (1.7) the number of parameters in the variance 

covariance matrices is reduced to 32, and from Section 8.3, the 

evaluation of the log-likelihood is more or less equivalent to the 

evaluation of a 3-dimensional structural time series model. 

Assuming, as an approximation, normality for the random shocks in 

(4.2), the model was estimated using the frequency domain likelihood. 

The results are presented in tables 8.4.1,8.4.2 and 8.4.3. Table 8.4.1 

presents the coefficients of the price variables. Most of the estimates 

are significant at the 5% significance level. The estimates of the 

slopes of the trends, which represent the slopes in the biases of 

technical progress, are shown in Table 8.4.2. The slopes of the gas 

trends are greater than zero and clearly significant in all three 

economic sectors. The slopes of electricity are positive in the other 

industry and other final users sectors, and negative in the domestic 

sector. The slopes of the oil trends are negative in all sectors 

although in the domestic sector the coefficient is not very 

significant. Finally, the slopes of the coal trends are negative in all 

sectors. Table 8.4.3 presents the parameters in the variance covariance 

matrices of the random shocks. 

Using (4.2.8), substitution and demand elasticities can be computed 

from estimates of the price coefficients and given values of shares. 

Table 8.4.4 presents the demand elasticities for the average value of 

the shares in the sample period. The results show that gas, electricity 

and oil are substitutes in all the economic sectors. 

The estimated model may not represent complety the covariance 

structure of the random shocks across sectors; although the 

specification used might capture most of this covariance structure in a 

way that the estimation of the model is feasible and the interpretation 

easy. 
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Table 8.4.1: Estimates of Price Effects(') 

Other Other 
Parameter Industry Domestic Final Users 

Q 99 . 038 
. 178 

. 061 
(. 017) (. 033) (. 014) 

age -. 015 -. 110 -. 041 
(. 014) (. 018) (. 016) 

ago -. 037 -. 027 -. 030 
(. 009) (. 012) (. 007) 

agc . 014 -. 041 
. 010 

(. 016) (. 036) (. 007) 

Qee . 225 
. 249 . 244 

(. 023) (. 020) (. 025) 

aeo -. 133 -. 030 -. 162 
(. 010) (. 009) (. 013) 

Ciec -. 077 -. 109 -. 041 

(. 021) (. 026) (. 012) 

aoo . 205 . 062 . 196 

(. 012) (. 008) (. 011) 

a0c -. 035 -. 005 -. 004 

(. 010) (. 015) (. 004) 

acc . 098 . 155 . 035 

(. 028) (. 052) (. 012) 

(1) g: gas, e: electricity, o: oil, c: coal. Standard errors in 

parenthesis. 



-238- 

Table 8.4,2 : SloDes of the Biases in Technical Progress(l) 

Parameter 

Other 

Industry Domestic 

Other 

Final Users 

09 (XJO-2) 
. 289 

. 373 . 207 

(. 070) (. 068) (. 061) 

Pe (XJO-2) 
. 165 -. 061 . 187 

(. 078) (. 049) (. 104) 

go (XJO-2) 
-. 346 -. 049 -. 299 

(. 093) (. 036) (. 086) 

pC (XJO-2) 
-. 108 -. 263 -. 095 

(. 067) (. 074) (. 085) 

g: gas, e: electricity, o: oil, c: coal. Standard errors in 

parenthesis. 
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Table 8.4.3 : -Error 
Structure of the Model(') 

Variance Seasonal 

Random Shock (xlO-5) q 77 

f . 119 

Other Industry 
. 014 

. 143 

-. 094 -. 115 . 264 

-. 039 -. 042 -. 055 . 1361 

f 1.967 

Domestic -. 447 
. 503 

-. 281 . 315 
. 197 

L-1.239 -. 371 -. 231 1.8411 

Other Final Users 
. 597 

-. 687 2.423 

-. 035 -1.666 1.787 

. 125 -. 070 -. 086 . 0311 

13.786 

(. 875) 

3.576 

(. 565) 

. 066 

(. 352) 

16.953 

(. 667) 

. 846 

(1.063) 

2.143 

(. 386) 

. 657 

Common to all -. 250 . 765 . 661 1.199 

Sectors -. 230 -. 338 . 486 1 (1.370) (1.516) 

L -. 177 -. 177 . 082 . 2721 

(1) Standard errors in parenthesis. The order of the fuels is gas, 

electricity, oil and coal. 
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Table 8.4.4 : Demand Elasticities(') 

Other Other 

Elasticity Industry Domestic Final Users 

e 99 -. 59 -. 15 -. 40 

ege . 36 . 08 . 25 

ego . 06 . 02 . 04 

e . 
18 . 05 . 11 

gc 

eeg . 11 . 08 . 06 

eee -. 05 . 03 . 00 

eeo . 03 . 01 -. 01 

eec, -. 09 -. 13 -. 04 

eog . 02 . 07 . 02 

eoe . 04 . 05 -. 03 

eoo -. 04 -. 22 -. 00 

eoc -. 03 . 10 . 02 

ec . 32 . 11 . 46 
g 

ece -. 50 -. 30 -. 80 

eco -. 12 . 06 . 14 

31 . 13 . 20 
ecc . 

g: gas, e electricity, 0 oil, c: coal. 



-241- 

REFERENCES 

Anderson, B. D. O. and J. B. Moore (1979), Optimal Filtering, New York: 
Prentice Hall. 

Anderson, T. W. (1963), The use of factor analysis in the statistical 
analysis of multiple time series, Psychometrika, 28,1-25. 

Anderson, T. W. (1971), The Statistical Analysis of Time Series, New 
York : John Wiley. 

Anderson, T. W. (1984), An introduction to Multivariate Statistical 
Analysis, second edition, New York : John Wiley. 

Anderson, T. W. and C. Hsiao (1981), Estimation of dynamic models with 
error components, Journal of the American Statistical Association, 76, 
598-606. 

Anderson, T. W. and C. Hsiao (1982), Formulation and estimation of 
dynamic models using panel data, Journal of Econometrics, 18,47-82. 

Balestra, P. (1980), A note on the exact transformation associated with 
the f irst order moving average process, Journal of Econometrics, 14, 
381-394. 

Balestra, P. and M. Nerlove (1966), Pooling cross section and time 
series data in the estimation of a dynamic model: the demand for 
natural gas, Econometrica, 34,585-612. 

Berndt, E. R. and D. O. Wood (1975), Technology, prices and the derived 
demand for energy, Review of Economics and Statistics, 57,259-268. 

Binswanger, H. (1974), The measurement of technical change biases with 
many factors of production, American Economic Review, 64,964-976. 

Bowman, K. O. and B. R. Sbenton (1975), Omnibus test contours for 

departures from normality based on b, and b2, Blometrika, 62,243-250. 

Box, G. E. P. and G. M. Jenkins (1976), Time Series Analysis: Forecasting 

and Control, revised edition, San Francisco: Holden Day. 

Box, G. E. P. and G. C. Tiao (1977), A canonical analysis of multiple time 

series, Blometrika, 64,355-365. 



-242- 

Brillinger, D. R. (1981), Time Series, Data Analysis and Theory, San Francisco : Holden Day. 

Chamberlain, G. and Z. Griliches (1975), Unobservables with variance-components structure: ability, schooling and the economic success of brothers, International Economic Review, 16,422-450. 

Cooley, T. F. and E. C. Prescott (1973), An adaptive regression model, International Economic Review, 14,364-371. 

Cooley, T. F. and E. C. Prescott (1976), Estimation in the presence of 
stochastic parameter variation, Econometrica, 44,167-184. 

Cramer, J. S. (1986), Econometric Applications of Maxinn, Likelihood 
Methods, Cambridge University Press. 

De Jong, P. (1988), The likelihood for a state space model, Blometrika, 
75,165-169. 

De Jong, P. (1989), The Diffuse Kalman Filter, Mimeo. 

Department of Trade and Industry (1988), Monthly Review of External 
Trade Statistics, Annual Supplement No. 9, London: Department of Trade 
and Industry. 

Diewert, W. E. (1976), Exact and superlative index numbers, Journal of 
Econometrics, 4,115-145. 

Duncan, D. B. and S. D. Horn (1972), Linear dynamic regression from the 
viewpoint of regression analysis, Journal of the American Statistical 
Association, 67,815-821. 

Dunsmuir, W. (1979), A central limit theorem for parameter estimation 
in stationary vector time series and its application to models for a 
signal observed with noise, The Annals of Statistics, 7,490-506. 

Dunsmuir, W. and E. J. Hannan (1976), Vector linear time series models, 
Adv. Appl. Probability, 8,339-364. 

Engle, R. F. and M. W. Watson (1981), A one-factor multivariate time 

series model of metropolitan wage rates, Journal of the American 
Statistical Association, 76,774-781. 

Engle, R. F. and C. W. J. Granger (1987), Co-integration and error 

correction: representation, estimation and testing, Econometrica, 55, 
251-276. 



-243- 

Enns, P. G., J. A. Machak, W. A. Spivey and W. J. Wrobleski (1982), 
Forecasting applications of an adaptive multiple exponential smoothing, Management Science, 28,1035-1044. 

Fernandez -Macho, F. J. (1986), Estimation and Testing of Multivariate 
Structural Time Series Models, Thesis, London School of Economics. 

Fernandez-Macho, F. J. (1989), Estimation and testing of multivariate 
exponential smoothing models in the frequency domain. (forthcoming in 
Journal of Time Series Analysis). 

Fernandez -Macho, F. J. and A. C. Harvey (1989), Seemingly unrelated time 
series equations and a test for homogeneity. (submitted for 
publication). 

Fernandez-Macho, F. J., A. C. Harvey, and J. Stock (1987), Forecasting 
and interpolation using vector autoregressions with common trends, 
Annales D'Economle et de Statistique, NO 6/7,279-287. 

Fuss, M. A. (1977), The demand for energy in canadian manufacturing, 
Journal of Econometrics, 5,89-116. 

Geweke, J. (1977), The dynamic factor analysis of economic time series 
models, in Latent Variables in Socio-Economic Models, eds. D. J. Aigner 
and A. S. Goldberger, Amsterdam: North Holland, 365-383. 

Geweke, J. and K. Singleton (1981), Maximum likelihood confirmatory 
factor analysis of economic time series, International Economic Review, 
22,37-54. 

Hannan, E. J. (1970), Multiple Time Series, New York: John Wiley. 

Harvey, A. C. (1985a), Trends and cycles in macroeconomic time series, 
Journal of Business, Economics and Statistics, 3,216-227. 

Harvey, A. C. (1985b), Analysis and generalisation of a multivariate 

exponential smoothing model, Management Sciences, 32,374-380. 

Harvey, A. C. (1990), Forecasting, Structural Time Series Models and the 

Kalman Filter, Cambridge University Press. 

Harvey, A. C. and J. Durbin (1986), The effects of seat belt legislation 

on british road casualties: a case study in structural time series 

modelling, Journal of the Royal Statistical Society, B-149,187-227. 



-244- 

Harvey, A. C., S. G. B. Henry, S. Peters and S. Wren-Lewis (1986), 
Stochastic trends in dynamic regression models: an application to the 
employment-output equation, The Economic Journal, 96,975-985. 

Harvey, A. C. and P. Todd (1983), Forecasting economic time series with 
structural and Box-Jenkins models: a case study (with discussion), 
Journal of Business, Economics and Statistics, 1,299-315. 

Hause, J. C. (1980), The finite structure of earnings and the on-the-job 
training hypothesis, Econometrica, 48,1013-1029. 

Hsiao, C. (1986), Analysis of Panel Data, Econometric Society 
Monographs 11, Cambridge University Press. 

Jones, R. H. (1966), Exponential smoothing for multivariate time series, 
Journal of the Royal Statistical Society, B-28,241-251. 

Jorgenson, D. W. (1986), Econometric methods for modelling producer 
behavior, in Handbook of Econometrics III, Edited by Z. Griliches and 
M. D. Intriligator. Amsterdam: North Holland, 1841-1915. 

Jorgenson, D. W. , F. Gollop and B. Fraumeni (1987), Productivity and U. 
S. Economic Growth, Cambridge: Harvard University Press. 

Kitagawa, G. and W. Gersh (1984), A smoothness priors-state space 
modeling of time series with trend and seasonality, Journal of the 
American Statistical Society, 79,378-389. 

Kohn, R. (1979), Asymptotic estimation and hypothesis testing results 
for vector linear time series models, Econometrica, 47,1005-1030. 

Kohn, R. and C. Ansley (1985), Efficient estimation and prediction in 

time series regression models, Biometrika, 72,694-697. 

Lillard, L. A. and Y. Weiss. (1979), Components of variation in panel 
data earnings: american scientists 1960-70, Econometrica, 47,437-454. 

Lillard, L. A. and R. Willis (1978), Dynamic aspects of earnings 

mobility, Econometrica, 46,985-1012. 

Ljung, G. M. and G. E. P. Box (1978), On a measure of lack of fit in time 

series models, Blometrika, 66,297-303. 

Ma Curdy, T. E. (1982), The use of time series processes to model the 

error structure of earnings in a longitudinal data analysis, Journal of 



-245- 

Econometrics, 18,83-114. 

Mc Cullagh, P. (1987), Tensor Methods in Statistics, Monographs on Statistics and Applied Probability ed. by D. R. Cox, D. V. Hinkley, D. 
Rubin and B. W. Silverman, Chapman and Hall. 

Maddala, G. S. (1971), The use of variance components models in pooling 
cross-section and time series data, Econometrica, 39,341-358. 

Magnus, J. R. (1978), Maximum likelihood estimation of the GLS model 
with unknown parameters in the disturbance covariance matrix, Journal 
of Econometrics, 7,281-312. 

Magnus, J. R. (1982), Multivariate error components analysis of linear 
and nonlinear regression models by maximum likelihood, Journal of 
Econometrics, 19,239-285. 

Magnus, J. R. (1988), Linear Structures, London: Charles Griffin. 

Magnus, J. R. and H. Neudecker (1988), Matrix Differential Calculus with 
Applications in Statistics and Econometrics, New York: John Wiley. 

Magnus, J. R. and A. D. Woodland (1987), Inter-fuel substitution in dutch 
manufacturing, Applied Economics, 19,1639-1664. 

Nerlove, M. (1971), A note on error components models, Econometrica, 
39P 383-396. 

Oberhofer, W. and J. Kmenta (1974), A general procedure for obtaining 
maximum likelihood estimates in generalised regression models, 
Econometrica, 42,579-590. 

Pena, D. and G. E. P. Box (1987), Identifying a simplifying structure in 

time series, Journal of the American Statistical Association, 82, 

836-843. 

Pepper, M. P. G. (1985), Multivariate Box-Jenkins analysis: a case study 
in U. K. energy demand forecasting, Energy Economics, July, 168-178. 

Pagan, A. (1980), Some identification and estimation results for 

regression models with stochastically varying coefficients, Jounal of 

Econometrics, 13,341-363. 

Pesaran, N. H. and L. J. Slater (1980), Dynamic Regression : Theory and 

Algorithms, Ellis Horwood. 



-246- 

Pindyck, R. S. (1979), Interfuel 
for energy: an International 
Statistics, 61,169-179. 

substitution and the industrial demand 
comparison, Review of Economics and 

Quenouille, M. H. (1957), The Anal7sis of Multiple Time Series, London: 
Charles W. Griffin. 

Revankar, N. S. (1979), Error components models with serially correlated 
time effects, Journal of the Indian Statistical Association, 17, 
137-160. 

Rosenberg, B. (1973), The analysis of a cross-section of time series by 
stochastically convergent parameter regression, Annals of Economic and 
Social Measurement, 2/4,399-428. 

Sargan, J. D. (1964), Wages and prices in the United Kingdom: a study in 
econometric methodology, in Econometric Anal7sIs for National Economic 
Planning, P. E. Hart, G. Mills and J. K. Whitaker eds., 25-54. 

Shephard, R. W. (1953), Cost and Production Functions, Princeton 
University Press. 

Slade, M. E. (1989), Modelling stochastic and cyclical components of 
technical change: an application of the Kalman filter, Journal of 
Econometrics, 41,363-383. 

Solow, R. M. (1967), Some recent developments in the theory of 
production, In M. Brown, ed. The Theory and Empirical Analysis of 
Production, Mat. Bur. Econ. Res. Stud. Income and Wealth, 31,25-53. 

Stock, J. H. (1987), Asymptotic properties of least squares estimators 
of cointegrating vectors, Econometrica, 55,1035-1056. 

Stock, J. H. and M. W. Watson (1988), Testing for common trends, Journal 

of the American Statistical Association, 83,1097-1107. 

Theil, H. (1971), Principles of Econometrics, New York: John Wiley. 

Tiao, C. C. and R. S. Tsay (1989), Model specification in multivariate 

time series (with discussion), Journal of the Royal Statistical 

Society, B-51,157-213. 

Trognon, A. (1978) Miscellaneous asymptotic properties of ordinary 

1---+. --e-m-c2l AnA maximum likelihood estimators in dynamic error JL t: C1 ý Lý . 31 %1 %AC; JL A. 

components models, Annales de L'INSEE, 30-1,631-657. 



-247- 

Wills, J. (1979), Technical change in the U. S. primary metals industry, 
Journal of Econometrics, 10,85-98. 


