
SCHEDULING OF MULTIPLE VEHICLE TYPES: THE ALLOCATION OF

LOCOMOTIVES TO TRAINS

A thesis presented for the degree 

of Doctor of Philosophy

by

Karen Maria Reddington

Department of Operational Research 

London School of Economics and Political Science



UMI Number: U062882

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U062882
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



c t - 2 i  - i 5 & s <* +  ' 6



ABSTRACT

Each year railway network organisations concern themselves with the complete 

specification of a commercial timetable. Once a timetable is established for a region 

and a limited number of locomotives of different types are allocated to the region, the 

stock diagramming exercise commences. The problem is to schedule locomotives to 

work the timetabled trains such that every train is worked on a daily basis and no 

more than the available locomotives are used. The stock diagramming problem can 

therefore be characterized as a scheduling problem. The objective is to minimize the 

light-run time incurred by locomotives having to perform unproductive runs, i.e. not 

working a train, between stations in the region.

The proposed solution procedure uses a column generation technique. The 

problem is decomposed into two parts, the master problem and the subproblems. The 

master problem, formulated as a set-partitioning problem, selects a subset of 

locomotive schedules from a set of known feasible schedules. The subproblems 

generate the feasible schedules. The linear programming relaxation of the master 

problem is solved and a constraint branching technique used to locate an integer 

solution.

Due to the size of the problems encountered in practice, the solution 

methodology is essentially a heuristic. At the branch and bound stage, an optimal 

solution is not pursued. Instead, a ‘good’ integer solution, strongly based on the 

optimal solution to the linear programming relaxation of the set-partitioning problem, 

is found.

The computational results presented refer to problems drawn from real data.

2



ACKNOWLEDGEMENTS

My first word of thanks must go to my supervisor Dr. S. Powell whose door 

was always open, and whose advice and assistance was always delivered with patience 

and a friendly smile.

I should also like to thank all the staff of the Operational Research Department 

who helped me out along the way, especially Dr. G. Appa and Dr. D. Connolly. 

Thanks to my fellow students for their friendship and for the good memories they 

have given me.

Thanks are due to British Rail for providing me with the problem as well as 

real-world data sets. I would also like to thank Dr. M. Wright of Lancaster 

University for the additional data sets. I am grateful to the SERC for funding this 

course of study. Also, I owe a great debt of gratitude to Dr. A. Maxwell who lent 

me his computer for the duration of my work, and in doing so made life a good deal 

easier for me.

To Cath, you are a wonderful person to live with and laugh with. A special 

thank you to my best friend Angus for supporting me both financially and morally, 

but most of all for just putting up with me.

In conclusion, this thesis is dedicated to my parents who, as always, gave me 

their unquestioning love and support throughout.

3



List of Contents

LIST OF CONTENTS

Chapter 1 INTRODUCTION

1.1 Outline of the Problem .......................................................................  8

1.2 Structure of the T h e s is ...........................................................   9

Chapter 2 PROBLEM OUTLINE

2.1 Problem Description ..........................................................................  10

2.2 Problem Formulation..........................................................................  15

2.3 Extensions to the basic Stock Diagramming Problem...................  17

Chapter 3 REVIEW OF ROUTING AND SCHEDULING PROBLEMS

3.1 Placing the Stock Diagramming Problem in C on text...................  18

3.2 Solution Techniques.............................................................................  20

3.2.1 Heuristic Approaches ..........................................................  20

3.2.2 Mathematical Programming Approaches..........................  30

Chapter 4 SOLUTION METHODS

4.1 Introduction...............................................................................................43

4.2 Data Sets ..................................................................................................43

4.3 Regions, Areas and Gap Trains......................................................... 44

4.4 Exact Method........................................................................................  47

4.4.1 SET33 ...................................................................................  49

4.5 Reduction of Variables.......................................................................  54

4.5.1 D ataS ets ................................................................................  55

4.5.2 Reduction of Variables Formulation................................... 55

4.6 Generating Sequences..........................................................................  61

4.6.1 Heuristic Procedure used to Generate Sequences  62

4.6.2 Set Partitioning Problem....................................................... 68

4.6.3 Testing the Generation of Sequences M eth od .................  70

4.6.4 Further Development of the Heuristic Procedure  77

4



List of Contents

Chapter 5 COLUMN GENERATION

5.1 Introduction..........................................................................................  83

5.2 Column Generation................................    83

5.3 Applications of the Column Generation Technique 92

5.4 R eview ......................................... 93

5.5 Decomposition for the Stock Diagramming Problem ..................  97

Chapter 6 SUBPROBLEMS

6.1 Nature of Subproblem ...................................................................  103

6.2 Alternative Formulation ................................................................. 105

6.3 Solution of Subproblem M ethods..................................................  110

6.3.1 Shortest Path........................................................................ 110

6.3.2 Simplex Method.................................................................. 113

6.3.3 Assignment Method ..........................................................  114

6.4 Constructing Subproblems.............................................................. 119

Chapter 7 OPTIMAL SOLUTION

7.1 Introduction.......................................................................................  120

7.2 The Master Problem ......................................................................  120

7.2.1 Solution of the Master Problem ...................................... 120

7.2.2 Construction of the Set Q .................................................  121

7.2.3 Phase I .................................................................................  121

7.2.4. Phase I I .........................................................   123

7.3 Test Set of D a ta ............................................................................... 125

7.4 Subproblem M ethods......................................................................  125

7.4.1 Shortest Path Method ......................................................  125

7.4.2 Simplex Method.................................................................. 137

7.4.3 Assignment Method ..........................................................  144

5



List of Contents

Chapter 8 INTEGER SOLUTION

8.1 Introduction..........................................................................................  151

8.2 R eview ................................................................................................... 151

8.3 Constraint Branching Strategy......................................................   154

8.3.1 Interpretation of the Constraint Branch............................  154

8.3.2 Implementation of the Constraint Branching Scheme . . 160

8.3.3 Construction of Schedules...................................................  164

8.4 R esults................................................................................................... 167

8.4.1 Constraint Branching............................................................ 167

8.4.2 Use of the Partition to Generate Integer Solutions . . .  168

8.5 Comments and Future W ork.............................................................. 174

Chapter 9 TESTING THE METHOD

9.1 Introduction..........................................................................................  177

9.2 Data Sets .............................................................................................  177

9.2.1 Description of Data S ets .....................................................  177

9.2.2 Calculation of Locomotive Availability............................  178

9.2.3 Distribution of Locomotives .............................................  180

9.2.4 Summary of the Data Sets ................................................ 181

9.3 Generation of an Initial Set of Columns.......................................... 182

9.4 Column Generation - Phase I and Phase I I ....................................  184

9.4.1 Phase I ..................................................................................  184,

9.4.2 Phase I I ..................................................................................  185

9.5 Constraint Branching.........................................................................  191

9.6 Parametric Investigation ...................................................................  197

9.7 Discussion............................................................................................. 203

9.8 A Method for Solving the Stock Diagramming Problem . . . .  203

6



List of Contents

Chapter 10 CONCLUDING REMARKS

10.1 Summary ..........................................................................................  209

10.2 Future W o r k ....................................................................................  211

REFERENCES.............................................................................................  214

APPENDIX A ....................................................................................  221

APPENDIX B ................................................................................................  224

APPENDIX C ................................................................................................  225

APPENDIX D .............................................................................................  227

7



Chapter one: Introduction

CHAPTER ONE 

INTRODUCTION

1.1 Outline of the Problem

An effective distribution or transportation system is based on decision 

problems at all levels of operations, from decisions about the levels of capital 

investment to the day-to-day planning of the movements of vehicles and crews. Given 

the growth of such sectors the potential for large scale savings at every level of this 

planning process is widely recognized. An organisation such as British Rail concerns 

itself every year with these decisions when specifying the commercial timetable. The 

final timetable results from the processes, in order of development, of: train timing; 

stock diagramming; crew diagramming; and, local area scrutiny. It is the problem of 

stock diagramming which is considered in this thesis.

The output of the train timing exercise is a train timetable specifying trains 

which must travel at fixed times between fixed locations. The stock diagramming 

problem involves the scheduling of a heterogeneous set of locomotives to work the 

trains. The timetable must be covered at minimum cost using no more than the 

available locomotives. The costs involved are the costs of locomotives making 

unproductive journeys from the end location of one train to the start location of 

another. As the locomotives are of different types, it must also be ensured that the 

locomotive assigned to a train is compatible with that train. The information on the 

locomotive types permitted to work a train is supplied in the timetable. The output 

from the stock diagramming exercise is a set of schedules. Each schedule describes 

the order in which the trains in the schedule are to be worked and has an associated 

locomotive type compatible with all trains in the schedule. The purpose of this thesis 

is to devise a method for finding optimal or near-optimal solutions to British Rail’s 

stock diagramming problem.

8



Chapter one: Introduction

1.2 Structure of the Thesis

Chapter two gives a detailed description of the stock diagramming problem.

Chapter three reviews solution approaches to the stock diagramming problem. 

This problem is a member of a broader class of routing and scheduling problems. 

Therefore, the discussion in this chapter extends to a consideration of solution 

methods for such problems.

Chapter four discusses the initial solution methods attempted in this thesis. The 

chapter concludes by proposing that a mathematical programming approach which 

uses a column generation technique is adopted.

Chapter five introduces the theory of the column generation technique and in 

chapters six, seven and eight a description of how the column generation technique 

is applied to the stock diagramming problem is given. Chapters six and seven 

describe the method used to obtain optimal solutions to the linear programming 

formulation of the stock diagramming problem. Chapter eight describes a branching 

strategy used to resolve any fractionalities occurring in these solutions.

Chapter nine summarizes the final method proposed and presents the results 

of applying the method to a number of real world stock diagramming problems.

In chapter ten some concluding remarks are made and suggestions for further 

research into this problem are given.

9



Chapter two: Problem Outline

CHAPTER TWO 

PROBLEM OUTLINE

2.1 Problem Description

Before outlining the stock diagramming problem it is necessary to introduce 

some basic terminology. The output from the train timing exercise is a train timetable 

which provides the starting point for the stock diagramming process. It is usually the 

case that within British Rail there is a weekday timetable for Tuesday through to 

Friday and separate timetables for Saturday, Sunday and Monday. However, in this 

thesis, it is assumed that the same trains are timetabled every day and the solutions 

found for the stock diagramming problem represent schedules which can be repeated 

day after day. In practice this is how British Rail proceed with the problem. Once a 

set of repeatable schedules have been found they then make adjustments to tackle the 

changes which occur at the weekends. A typical train timetable covers trains which 

have a start time within a one-day period. Each line of the timetable represents a job 

or task which has to be executed on a daily basis. The tasks are referred to as 

‘trains’. Each train has associated characteristics as follows: a start-time; an end-time; 

a start location; an end location; and a set of allowed locomotive types. The 

‘locomotives’ are the vehicles used to pull the trains, and only a subset of the types 

of locomotives available are compatible with a particular train. An example of such 

a timetable is given in table 2.1.i. The key to the table is:

‘HEAD CODE’ - this is a four character identification code for the train.

‘DEPART’ - this is the departure time for the train.

‘FROM’ - this is a four character code used to indicate the station

from which the train departs.

‘TO’ - this is a four character code used to indicate the station

at which the train arrives.

10



Chapter two: Problem Outline

‘ARRIVE* - this is the arrival time for the train.

‘TYPE’ - the different locomotive types are distinguished by a

number. This column indicates which locomotives are 

compatible with the train.

HEAD CODE DEPART FROM TO ARRIVE TYPE

5T02 00.20 LDSC LDSC 01.05 1

1D18 02.40 LDSC HULL 11.56 1 2

1M16 05.48 DONC SHEM 13.22 1 2

9T03 12.11 HULL SHEM 08.50 2

2M68 14.40 HULL HULL 15.15 1 2

3T50 14.56 DONC LDSC 23.30 2

7F44 16.55 HULL LDSC 22.20 1

8M62 17.11 SHEM SHEM 18.00 1 2

3H45 20.32 DONC SHEM 13.46 2

4D10 23.13 LDSC HULL 02.25 1

Table 2.1.i

The start time of a train (‘DEPART’ in the above table) includes an allowance for the 

preparation of the train, e.g. the time taken to attach the train to the locomotive. 

Similarly, the end time of a train (‘ARRIVAL’ in the above table) includes an 

allowance for the disposal of the train , e.g. detaching the train from the locomotive, 

and a performance time which caters for probable late running of the train. So, the 

start time of the train is the time at which a locomotive must be available and the end 

time is the earliest time at which the locomotive is free.

In addition to the train timetable, information on the types and number of 

locomotives of each type available is supplied. An example of this data is given at

11



Chapter two: Problem Outline

table 2.1.ii. The key to the table is:

‘TYPE* - a number indicating the locomotive type.

‘AVAILABLE* - the number of locomotives of the specified type

available.

TYPE AVAILABLE

1 12

2 6

Table 2.1.ii

The only constraints pertaining to the locomotives are the type and number available. 

There are no conditions requiring a locomotive to return to a pre-specified depot, nor 

are there any driver related restrictions.

The stock diagramming problem requires that two decisions are made for each

train:

1) which type of locomotive should work the train; 

and, 2) after this train which train should the chosen locomotive work next?

Consider a simple problem consisting of three trains and two locomotive types, types

1 and 2. In this problem train 1 is compatible with locomotive types 1 and 2, train

2 is compatible with locomotive types 1 and 2, and train 3 is compatible with 

locomotive type 1 only. A representation of these options for train 1 is given at figure 

2 .l.i. In this figure the solid lines represent the train arcs and the dashed lines 

represent the light-run arcs. ‘Tn’ indicates train n.

12



Chapter two: Problem Outline

  Type 1

  Type 2

Figure 2 .l.i

The allocation of trains to a locomotive type and the decision regarding the 

order in which the trains should be worked describes schedules for the locomotives. 

As the timetable has to be worked on a daily basis, these schedules take the form of 

cycles which can be repeated day after day. All trains in a schedule are compatible 

with the locomotive type which works the schedule, and over all schedules the total 

number of locomotive types used should satisfy the availability constraints. A cycle 

may take one day or a number of days to traverse. In the latter case, the cycle of 

length n days can be considered as n locomotives working a one-day cycle. To 

illustrate this, an example of a locomotive schedule is given at figure 2.1.ii. In this 

figure the solid lines represent the train arcs and the dashed represent the light-run 

arcs. ‘Tn’ indicates train n.

13



Chapter two: Problem Outline

T1
T2

T3

0000
TIME

1

2

2400

DAYS

Figure 2 .l.ii

In this example two locomotives are required to work the schedule. The periodic 

nature of such scheduling problems is considered in Carraresi and Gallo [14].

The objective of the stock diagramming problem is to schedule the locomotives 

to work all trains in a given timetable at minimum cost. A cost is incurred when a 

locomotive makes an unproductive journey from the end location of one train to the 

start location of the following train. This cost is known as the Tight-run’ cost and is 

expressed in terms of a journey time which is independent of the type of locomotive 

used.

14



Chapter two: Problem Outline

2.2 Problem Formulation

Armed with a set of constraints and a declared objective it is now possible to 

formulate the problem mathematically.

Let the set of trains be r= {i | i is the i* train in the timetable}. Let the set 

of locomotives be A ={k | k is the number of a locomotive type}. Then, define P(k) 

to be the set where P(k)={i | train i is compatible with locomotive type k}

SD
MIN Cjj Xjjk

s.t.

w  x«k = yik v ie p (k ) ,k E A  s d i

£jep« x/  = y ‘ V i£P(k), k£A  SD2

I « Ay,k « l  V i 6 r  SD3

Ei£TEj£r (nij yfk +  M8 Xjjk) < UK V k €A  SD4

S  {0,1} V i,j GP(k), kGA SD5

yik 6  {0,1} V i6P(k), k €A  SD6

where the zero-one variables are:

- 1 if train j follows train i on locomotive Jtype k ,

0 otherwise.

y k - 1 if train i is worked by locomotive Jtype k?

0 otherwise.

15



Chapter two: Problem Outline

The data for the problem are:

Cy - light-run time from end location i to start location j ;

m* - the number of times a locomotive working train i crosses

midnight;

Mjj - the number of times a locomotive performing a light-run from

end location i to start location j crosses midnight;

Uk - the total number of locomotives of type k available to work the

timetable.

The variables and data are related to the options shown at figure 2 .l .i  in Figure 

2 .l.iii. In this figure the solid lines represent the train arcs and the dashed lines 

represent the light-run arcs.

1

Figure 2 .l.iii

Constraint set SD1 ensures that the total number of light-runs from end location i to 

any start location j on a locomotive type k is equal to the number of times locomotive 

type k works train i. Constraint set SD2 ensures that the total number of light-runs 

from any end location j on locomotive type k to the start location of i is equal to the 

number of times locomotive type k works train i. Constraint set SD3 ensures that 

train i is only worked once by one type of locomotive k, as required. Constraint set 

SD4 ensures that no more than the available number of locomotives are used.

16



Chapter two: Problem Outline

Constraints SD1 and SD2 ensure a conservation of flow and constraint SD3 

ensures that a train is worked exactly once. These constraints are straightforward, but 

constraint SD4 warrants some further explanation. As the schedules take the form of 

cycles the number of locomotives required to work a timetable of a one-day period 

can be calculated by counting the number of times a locomotive crosses midnight. 

Referring back to the example in figure 2 .l.ii, nij =  0, m2 =  0, m3 =  0, M12 =  0, 

=  1 and M31 =  1, and so (m1+m 2+m 3+M 12+M 23+M 31)= 2 , showing that two 

locomotives are required to work the schedule shown in this example. Constraint SD4 

checks that the number of locomotives of each type used in a solution does not exceed 

the number available by counting the number of times the schedules worked by a 

particular locomotive type cross midnight.

2.3 Extensions to the basic Stock Diagramming Problem

As with most practical problems the statement of the problem can over­

simplify the reality of the situation. Actually, British Rail divides the total area in 

which trains have start and end locations into regions. The effect of this is that, 

although the problem is solved on a region-wise basis, trains will cross-over from one 

region to another. The details of this facet of the problem are discussed later in 

chapter four.

17



Chapter three: Review of Routing and Scheduling Problems

CHAPTER THREE 

REVIEW OF ROUTING AND SCHEDULING PROBLEMS

3.1 Placing the Stock Diagramming Problem in Context

Stock diagramming is a specific instance of a class of problems which occur 

practically and theoretically. In order to appreciate the driving characteristics of the 

problem and the solution methodologies which may be applicable, it is worth 

introducing and discussing the broad-based class of problems known as "routing and 

scheduling" problems.

In common, routing and scheduling problems have the same basic output: for 

each vehicle or driver providing a service to a set of entities a route or schedule is 

given. A route specifies the order in which the entities are to be serviced and a 

schedule specifies the times at which the entities are serviced. Bodin and Golden [9] 

attempt to define routing and scheduling problems. The definition they give for a 

routing problem is: "If the entities to be serviced have no temporal restrictions and 

there are no precedence relations among these entities then we have a routing 

problem." A well-known example of a routing problem is the Travelling Salesman 

problem. They define a scheduling problem as follows: "If each entity has a definitive 

service time, then a scheduling problem results." In accordance with this definition, 

the stock diagramming problem is a member of the class of scheduling problems. For 

completeness it should be noted that a further class of combined routing and 

scheduling problems exists. Typically such problems arise when time windows and/or 

precedence relationships exist so that both routing and scheduling problems need to 

be considered. Further to these definitions Golden et al. [38] outline the main 

characteristics of routing and scheduling problems which can be used to identify the 

nature of the problem being tackled. This taxonomy is given in Figure 3 .l.i.

18



Chapter three: Review of Routing and Scheduling Problems

CHARACTERISTICS

1. Size o f available fleet

2. Type o f vehicle fleet

3. Housing of vehicles

4. Nature o f demands

5. Location of demands

6. Underlying network

7. Vehicle capacity restrictions

8. Maximum route times

9. Operations

10. Costs

11. Objectives

Figure 3 .l.i

POSSIBLE OPTIONS

a. one vehicle
b. multiple vehicle

a. homogeneous (only one vehicle type)
b. heterogeneous (multiple vehicle types)
c. special vehicle types (compartmentalized,etc.)

a. single depot (domicile)
b. multiple depot

a. deterministic demands
b. stochastic demands
c. partial satisfaction of demand allowed

a. at nodes (not necessarily all)
b. on arcs (not necessarily all)
c. mixed

a. undirected
b. directed
c. mixed
d. euclidean

a. imposed (all the same)
b. imposed (different vehicle capacities)
c. not imposed (unlimited capacity)

a. imposed (same for all routes)
b. imposed (different for different routes)
c. not imposed

a. pick-ups
b. drop-offs (deliveries) only
c. mixed (pick-ups and deliveries)
d. split deliveries (allowed or disallowed)

a. variable or routing costs
b. fixed operating or vehicle acquisition costs
c. common carrier costs (for unserviced demands)

a. minimize total routing costs
b. minimize sum of fixed and/or variable costs
c. minimize number of vehicles required
d. maximize utility function based on service or convenience

e. maximize utility function based on customer priorities

19



Chapter three: Review of Routing and Scheduling Problems

Different combinations of these characteristics can give rise to a plethora of 

routing and scheduling problems, but how does the stock diagramming problem fit 

into this picture? The stock diagramming problem is a multiple vehicle problem with 

a heterogeneous fleet of locomotives and so categories l.b. and 2.b. apply. The 

locomotives are not considered to be housed and so category 3 does not apply. 

Demand is deterministic, as given by the timetable, and is located on the arcs so 

categories 4.a and 5.b apply. The underlying network is directed and category 6.h 

applies. There are no vehicle capacity restrictions, only type restrictions, and no 

maximum route times, so categories 7 and 8 do not apply. The operations are mixed 

as the locomotive picks up and delivers a train at pre-specified times and locations so 

category 9.c applies. The costs are routing costs and the objective is to minimize the 

total cost, so categories lO.a and 1 l.b apply.

Any slight variation in the characteristics between one problem and another 

can significantly alter the nature and complexity of a problem, but this does not 

preclude a comparison of available solution strategies for routing and scheduling 

problems.

3.2 Solution Techniques

3.2.1 Heuristic Approaches

Consider the formulation SD given in chapter two. For a problem consisting 

of 10 trains and 2 locomotives types the formulation SD generates up to 200 x^ 

variables. This size of problem is manageable, but in practice a problem may involve 

500 trains and 10 locomotive types and the number of x^ variables could rise to a 

maximum of 2.5 million. This prohibitively large number of variables suggests that 

exact solution techniques are impractical. For this reason heuristic approaches have 

tended to dominate the solution techniques used to solve vehicle routing and

20



Chapter three: Review of Routing and Scheduling Problems

scheduling problems. In many instances they attack these combinatorially complex 

and often large problems by breaking up the problem into manageable components. 

This is the principle behind British Rail's solution technique.

British Rail currently use a heuristic procedure to solve the stock diagramming 

problem. The heuristic produces good solutions which are then improved upon by the 

intervention of a British Rail analyst who, using intuition and experience, inserts or 

deletes specific connections with a view to improving the solution. The heuristic is 

based on a scheme which manages the size and complexity of the problem by 

considering each locomotive type k in turn. The partial problem associated with 

locomotive type k only considers the subset of trains which is compatible with 

locomotive type k. Before outlining the algorithm used it is useful to introduce the 

theory underpinning the method.

From the formulation SD, if only one locomotive type is considered the 

problem reduces to an assignment problem with the additional constraint that there 

is a limit on the number of locomotives available. Suppose that k is the locomotive 

type being considered, then the following formulation arises:

SDk

MIN Eiep(k)£jep(k) cij xijk
s.t.

^jepoc)Aij ~ A 

Ejepooxjik=l 

îeP(k)̂ j6P(k) (mi+M ij)xijk <  Uk

x ijk e {0 ,1 }

SDk3

Vi,jEP(k) SDk4

V iEP(k) SDkl  

V iEP(k) SD^

21



Chapter three: Review of Routing and Scheduling Problems

The zero-one variables are:

k 1 if train j follows train i on locomotive type k; 

0 otherwise.

The data elements are:

Uk

the light-run time from end location i to start location j;

the number of times a locomotive working train i crosses

midnight;

the number of times a locomotive performing a light-run from 

end location i to start location j crosses midnight; 

the total number of locomotives type k available.

Now consider the Lagrangean relaxation which arises from relaxing constraint SDk3.

where the variables and data are as defined in SDk and /x is the Lagrangean multiplier. 

For a given value of /x LSDk is an assignment problem solvable in polynomial time. 

The variables x;jk only take zero-one values in a solution to LSDk and so constraint 

SDk4 is redundant in the formulation LSDk. The interpretation of /x is that it 

represents the marginal cost of a locomotive in this system. So, as the cost of the 

assignment "train j follows train i" is (Cy-f /xm^/xM^), any assignment of the trains 

considers a trade-off between the light-run cost and the cost of employing an

LSDk
M IN  Eiep(k)Ejep(k) (c ij+ fxm i+ /x M ij)xijk /xUk

s.t.

'jepoo Aji -

x;ik >  0

ViGP(k) LSDkl  

ViGP(k) LSD,^ 

V ijG P (k) LSDk3

22



Chapter three: Review of Routing and Scheduling Problems

additional locomotive. If /x is positive and small compared to the light-run costs in the 

problem the schedules produced will use a large number of locomotives. Conversely, 

if fj. is positive and large compared to the light-run costs involved, the solution will 

use fewer locomotives. Therefore, there is a value of p  which produces a "good" 

solution, i.e. a solution which incurs a low light-run cost without 

exceeding the limit on the number of locomotives available. The question is: how to 

calculate such a value of /x? In practice, British Rail make an educated guess for the 

value of /x based on a procedure known as "The Investigation of Extra Locomotive 

Cost". This procedure is carried out before the assignment problems are solved and 

the value of /x used in the assignment problems is chosen to be the same for each 

locomotive type. British Rail’s heuristic proceeds by solving a series of assignment 

problems similar to LSDk. The procedure can be outlined as follows.

Let the set K0={k | locomotive type k has been considered}, initially 1 ^ = 0 . 

Let MLSDk be a modified version of LSDk with the fixed cost /xUk removed from the 

objective function.

i) Select a locomotive type k not yet considered and add k to the set K,,.

ii) Set ^ = 0  for all i such that iE P (k) and iEP(k) for some k€Ko.

iii) Solve the assignment problem MLSDk.

iv) From the solution at iii):

if Xjjr =  1 for i^ j then fix Xjjk =  1 and remove train i and 

train j from each set P(k) where kGEKo. 

if xyr = l  and iEP(k) for any kEK*, then fix xiiir=  1. 

if xur = 1 and iE  P(k) for some kEK<, then reset cu to its 

original value.

Steps ii) and iv) are not necessary when considering the final locomotive type. The 

variables x^ fixed at value 1 during the above procedure indicate that a locomotive 

type k should be used to work train i and that train j should follow train i. Using this

23



Chapter three: Review of Routing and Scheduling Problems

information it is then a simple matter to construct a set of schedules to work the 

timetable. There is no guarantee that the solution found by using this procedure is 

optimal. More importantly, it may happen that for one or more of the locomotive 

types there are insufficient locomotives available to work the schedules. It is for these 

reasons that the British Rail analyst may need to intervene during this procedure to 

move the solution towards feasibility or improve the solution value by banning or 

allowing certain connections. Clearly, the order in which the locomotives are 

considered will, in general, produce different solutions. Also, as already stated, the 

value of /x chosen affects the number of locomotives used in the solution and for this 

reason it may be worthwhile using a different value of /x for each locomotive type.

An outline of this procedure is also given by Wright [83] and referred to as 

the "Deterministic Algorithm". Wright seeks to override the need for manual 

intervention by use of stochastic algorithms. The first algorithm proposed by Wright 

is a simple local improvement method and the second uses the theory of simulated 

annealing. The starting point for both algorithms involves randomly assigning a 

locomotive type to a compatible train. Both algorithms attempt to improve the 

solution by banning connections and then evaluating the change in the value of the 

solution. In the case of the local improvement algorithm, only improvements in the 

cost of the solution are accepted. For the simulated annealing method, almost any 

perturbation to the solution is accepted initially, then towards the end almost no 

perturbation which increases the cost of the solution is accepted. The random element 

introduced at the start of the algorithms means that the algorithms can be repeated as 

many times as desired and only the best solution kept at each stage. Wright compares 

the results of the deterministic algorithm with those of the stochastic algorithms and 

concludes that, for larger problems, the simulated annealing approach outperforms the 

other methods. However, Wright points out that it is impossible to compare the 

solutions with an optimal solution as the optimal solutions are not known. Wright 

does not say how the solutions compare with those found by British Rail. The main 

drawback of Wright’s method is that the limit on the number of locomotives of each

24



Chapter three: Review of Routing and Scheduling Problems

type is not considered and so it is not known if Wright’s solutions are feasible. 

Wright does not propose a method for dealing with the situation where the solution 

found is infeasible.

Ferland and Michelon [29] review a number of heuristic and exact methods 

which may be used to solve the vehicle scheduling problem with time windows and 

multiple vehicle types. Although the problem they consider differs from the stock 

diagramming problem, some of the heuristic procedures they propose typify the way 

in which heuristic procedures are used to tackle combinatorially complex or large 

problems. Ferland’s and Michelon’s model includes time-windows for the start times 

of the tasks, temporal precedence constraints and depots for the vehicles. In the 

context of the Golden et al. [38] characterization of routing and scheduling problems, 

the problem might better be described as a combined routing and scheduling problem.

The mathematical formulation of the problem is based on the quasi-precedence 

graphs (N(k),A(k)) of the tasks associated with the vehicle type k where:

i) iEN(k) if q;<hk, where is the vehicle capacity required to execute 

task i, and hk is the capacity of vehicle k. Also, two nodes, s and t, 

are associated with the depot to indicate the start and finish of a 

vehicle sequence.

ii) arc (i,j)EA(k) if task j can be executed after task i, i.e. if 

where:

aj is the earliest start time for task i; 

bj is the latest start time for task j;

D k is the time for vehicle k to execute task i;

tijk is the time for vehicle k to travel from the end

location of task i to the start location of task j.

25



Chapter three: Review of Routing and Scheduling Problems

Also, for each task iEN(k) there exists arcs (s,i),(i,t)E A(k).

Based on these graphs and denoting by K the set of vehicle types and by N the set of 

tasks, the mathematical formulation follows:

FM

s.t.

kv kMIN EkeicE(ij)eA(k) cij x

> W )  Xijk= yjk V jEN(k)-{s,t}, kEK  FM1

Ejes(i,k) x ijk= y ik V iEN(k)-{s,t}, kEK FM2

k̂GQ(o y k= l  ^ i E N  FM3
Xjj>0 =  >  STi+Dk+tijk<STj V (ij)EA (k),

kEK FM4

ai<STi<bi V i E N  FM5

Xjjk E {0,1} V (i,j)E A(k), kEK FM6

y k E {0,1} V iE N , kEK FM7

where Q(i) =  {k | q ^ h k, kEK}, A(k) =  {(i,j)EA(k) | i=£s,t; j=£s,t}. For iENOc), 

P(i,k) =  {jEN(k) | (j,i)EA(k)}andS(i,k) =  {jEN(k) | (i,j)EA(k)}. The variables are 

defined as follows:

Xjf - 1 if a vehicle of type k traverses arc (i,j)E A(k);

0 otherwise.

y k - 1 if task i is executed with a vehicle type k;

0 otherwise.

ST; is a candidate start time for task i which is not fixed but must belong to the given 

time window [a^bj. The costs c^ may be routing costs and/or investments costs.

26



Chapter three: Review of Routing and Scheduling Problems

Comparing the above problem to the stock diagramming problem, it is apparent that 

the graphs which underpin Ferland’s and Michelon’s problem can be made acyclic by 

the inclusion of the nodes s and t. This contrasts with the stock diagramming problem 

where the associated graphs are cyclic. The importance of this characteristic will 

become apparent as the heuristics presented by Ferland and Michelon are discussed. 

Also, provided that task i is a member of at least one of the sets N(k), there will be 

a feasible solution to the problem FM. For instance, a feasible solution would be to 

assign a separate vehicle to execute each task. This is not necessarily the case with 

the stock diagramming problem.

Ferland and Michelon discuss three possible heuristic procedures for solving 

the problem FM, though they do not report any results. It is clear that, as with the 

stock diagramming problem, the formulation FM gives rise to a large number of 

variables in any sizeable problem and it is therefore worthwhile considering heuristic 

methods.

The first heuristic procedure is based on a model which simplifies the problem

FM by discretizing the time window interval. Swersey and Ballard [75] solve this

discretized problem for a single vehicle type where the objective is to minimize the

total number of vehicles used. They solve the discretized problem by first solving the

linear programming relaxation of the integer programming problem. This method may

yield continuous solutions and in such instances Swersey and Ballard achieved integer

solutions by the addition of constraints or by manually adjusting the output. For a 102
in

task problem, Swersey and Ballard observed that an increase the number of candidate
k

start times in each of the time windows from 3 to 4 gave rise to problems with 

computer storage capacity. This suggests that the a discretized model of the problem 

FM may only be practical for smaller problems. An additional drawback of this 

method is that it may be necessary to call upon the intervention of an experienced 

scheduler to locate an integer solution.

27



Chapter three: Review of Routing and Scheduling Problems

The second heuristic method is based on a procedure known as the "two-phase 

method", originally proposed by Orloff [56]. Orloff only considers a single vehicle 

type, but Ferland and Michelon suggest a means of extending this method to the 

multiple vehicle case. Ferland and Michelon tackle the size of the problem by using 

cost considerations to decide which vehicle type should be assigned to a task and then 

implementing Orloff s two-phase method for a single vehicle type. The procedure is 

as follows:

i) For each task iE N , associate a node i.

ii) With each pair of nodes i j ,  associate two arcs:

arc (i,j) with cost 

Cjj= MINkeQ(ix"|QG) {tijk+Dik | a i+D k-l-tyk<bj}, 

arc (j,i) with cost 

Cji=MINkeQ(onQ(j) {tj|k+Djk | aj+D f+tf^b*},

where the minimum over an empty set is equal to oo.

Phase one commences by solving a matching problem based on this graph. If an arc 

(i,j) with cost Cij< oo exists in the matching, then an updated graph is constructed by 

collapsing the nodes i and j to form a single node i’ and re-evaluating the costs on the 

arcs for this updated node set. The time-window for node i’ is the intersection of the 

closed intervals [ai}bi] and [a^bj, and Q(i’) = Q(i)nQ(j) - This procedure is repeated 

until no further matchings are possible. At the end of the procedure, each node 

represents a feasible solution to the problem FM. This procedure is short-sighted in 

the sense that it makes choices based on immediate cost considerations and so it is 

possible that towards the end of phase one the costs on the arcs will become large. 

In phase two Orloff proposes an improvement procedure based on Lin’s [48] "3-opt" 

heuristic for the Travelling Salesman Problem. A schedule is 3-opt if it is not possible 

to obtain a schedule with a better cost by replacing any 3 of its matchings with any 

other set of 3 matchings. The solutions produced are feasible, but not optimal in

28



Chapter three: Review of Routing and Scheduling Problems

general.

It is possible to apply this heuristic to the stock diagramming problem by 

associating a cost with the use of a locomotive type to control the number of 

locomotives of each type used. However, as with Wright’s [83] methods, there is no 

guarantee that the solution found will be feasible.

In the third heuristic proposed by Ferland and Michelon a transportation 

problem is constructed at each iteration. As with the second heuristic the costs are 

used to decide which vehicle type should be assigned to a task. The precedence 

relationships in the model allow for the specification of source and sink nodes at each 

iteration. The set of source tasks includes the tasks most recently executed by the 

vehicles now available for other tasks. The set of sink tasks includes those tasks 

which have not yet been assigned, but cannot be executed after any of the other non­

assigned tasks. As with the matching method, a series of transportation problems are 

solved until all tasks have been assigned.

It is not possible to apply this heuristic to the stock diagramming problem, as 

the cyclic nature of this problem means that such precedence relationships do not 

exist.

It is clear from the discussion so far that heuristic procedures such as Wright’s 

or those proposed by Ferland and Michelon may not be adequate for solving the stock 

diagramming problem. For a problem with tight constraints on the number of 

locomotives of each type available these heuristics may fail to find feasible solutions. 

British Rail’s procedure is used in practice, but relies heavily on the intervention of 

an experienced scheduler. These considerations suggest that it is necessary to 

investigate exact procedures for solving the problem. Orloff [56] and Swersey and 

Ballard [75] reject exact procedures on the grounds that the amount of computer time 

and storage required to solve such problems makes them impractical. Orloff states

29



Chapter three: Review o f Routing and Scheduling Problems

that "...research on general fleet scheduling must focus exclusively on heuristic 

methods." However, Bott and Ballou [11] point out that developments in 

mathematical programming software and computer hardware have been encouraging, 

and methodologies which combine heuristic and exact procedures have led to success 

in obtaining optimal solutions to routing and scheduling problems. Also, in a paper 

on fleet routing and scheduling problems, Levin [47] states that "...the solution 

methods developed here and the extensive computational evidence gathered by the 

author in the course of his work lead to the rather gratifying conclusion that obtaining 

the optimal integer solutions to these large problems is indeed practicable." 

Encouraged by these comments, the following section reviews applications of 

mathematical programming techniques for solving routing and scheduling problems.

3.2.2 Mathematical Programming Approaches

Sub-Optimal Methods

Ryan [66] outlines an optimization technique for the solution of the air-crew 

scheduling problem. The problem involves the sequencing of crew movements in 

space and time so as to staff the airplane movements. The crew scheduling problem 

is essentially similar to vehicle scheduling problems, but the former usually involves 

numerous restrictions related to rest-periods, airline regulations, crew mix, etc. The 

crew scheduling problem is usually broken down into two stages.

The first stage of the process involves the production of trips. A trip is 

composed of a series of flights and rest periods which cover the airline timetable, and 

may run over a number of days. Trips originate and terminate at a crew base. The 

trips should be constructed so as to comply with all conditions imposed by the airline 

regulations and crew restrictions.

The second stage is referred to as "Rostering". In this stage the trips are

30



Chapter three: Review of Routing and Scheduling Problems

assigned to individual crew members to produce a line of work (LoW) over the 

rostering period for each crew member. It is this second stage procedure which is 

discussed in Ryan’s paper.

The procedure starts by constructing a set of feasible LoW’s for each crew 

member from which exactly one must be chosen. The candidate LoW’s are the 

variables in the mathematical model of the rostering problem. The rostering problem 

can be formulated as a set partitioning problem as follows:

CSP
M IN  Ej Cj Xj

s.t.

A x  =  b CSP1

Xj E {0,1} Vj CSP2

where A is a 0-1 matrix partitioned to correspond to the LoWs for each crew member 

and the crew and trip constraints. So, for p crew members and t trips,

A  =
Q  C 2 C3 . . .  Cp

Li L 2 L3 . . .  L p

Where Cs =  e;eT is a (pxnj matrix with §  the i111 unit vector and eT = (1,1,...,1). The 

n{ LoWs for crew member i form the columns of the (txnj matrix L; with elements 

lqk defined as 1^=1 if the k* LoW for crew member i covers the q* trip and lqk=0  

otherwise. The right-hand side vector b is such that b;= l  ( i= l,...p )  for the crew 

constraints and bj=rj ( i= p + l,.. .,p + t)  for the trip constraints, where r4 =  the number 

of crews required to work trip i.

31



Chapter three: Review of Routing and Scheduling Problems

The solution method for this set partitioning problem first solves the linear 

programming relaxation of the problem CSP and then applies a branching scheme to 

achieve integer solutions.

Ryan reports that the solution of the linear programming relaxation has proved 

to be a "computational bottleneck". One difficulty is the number of variables in the 

formulation CSP. Even with the use of sensible choice strategies to limit the number 

of Lo W’s generated, the number of variables entering into the linear programming 

model can often exceed 200000. Ryan deals with the size of the linear program by 

dividing up the variables into classes which are ranked in decreasing order of 

attractiveness. ‘Attractiveness’ may be a function of the objective value of an LoW, 

but could also be based on other considerations such as crew preferences. This 

division by class is then used during the solution of the linear program to control the 

problem size by only allowing certain classes of variables to be considered during the 

entering variable pricing stage of the primal convergence. If the solution is primally 

infeasible then variables from other classes are allowed to enter until primal feasibility 

is achieved. In effect, variables can be turned on and off as required.

The branching scheme used to resolve fractional solutions is a stronger tool 

than the conventional procedure which only fixes one variable along the 1-branch and 

the 0-branch at each node of the tree. In this situation a number of variables are set 

to zero on the 1-branch, but only one variable is fixed at zero along the 0 -branch. 

Instead Ryan proposes constraint branching.

For an optimal fractional solution at any node of the branch and bound tree 

a crew constraint s and a trip constraint t can be identified such that,

0 <  ^jej(s,t) ^  <  1

where J(s,t) =  { j | a,j =  1 and = 1 }. Then on the 1-branch set

32



Chapter three: Review of Routing and Scheduling Problems

Ejej<s,t) x j — 1

i.e. crew member s must perform trip t, and on the 0-branch

£jej(«,t) x j =  0

i.e. crew member s must not perform trip t. Ryan implements the 0-branch by fixing 

all variables with an index in J(s,t) to take the value 0. The 1-branch is imposed by 

fixing all variables with an index in J (s,t) =  (j | (a8J= l  and 2̂ = 0) or (a,j =  0 and 

ati=i)} to 0 .

In practice, s and t are chosen at each node so that SjGj(Sit) Xj is maximized and 

the branch and bound procedure is implemented by evaluating the 1-branch at each 

node and leaving the 0-branch unfathomed. The rationale behind this is that the 1- 

branch reflects the preference indicated by the linear programming optimum of a crew 

member s for a trip t at the current node. Therefore, the 0-branch can be disregarded 

as it is unlikely that a better solution will be found on a 0-branch. Ryan reports that 

the method used to solve the crew scheduling problem imposes a structure on the 

problem which means the relaxed linear programming solutions exhibit strong integer 

properties. The effect of this is that the constraint branching technique is effective in 

finding integer solutions, as any fractions which occur during branching must involve 

more than one crew member.

Ryan’s solutions cannot be guaranteed optimal as all possible LoW ’s are not 

considered. However, this optimization technique has been successful in constructing 

feasible rosters for a real world problem. Ryan reports that the optimization approach 

is an improvement on heuristic methods. When using heuristic methods to solve this 

problem it was believed that the rostering problems were close to infeasibility, 

whereas Ryan’s method shows that it is possible to find a number of alternative 

feasible solutions. An added benefit of the optimization technique is that it identifies

33



Chapter three: Review of Routing and Scheduling Problems

infeasibility with certainty. With the heuristic method it is unclear whether or not the 

problem is infeasible or the heuristic inadequate. This result is important when 

evaluating the case for using an optimization technique for the stock diagramming 

problem. For both Wright’s heuristics and British Rail’s heuristic it cannot be proven 

whether infeasibility is due to an insufficient availability of locomotive types or the 

limitations of the heuristic procedures.

Many crew-scheduling problems adopt a similar approach to that described by 

Ryan. These methods proceed by: generating a set of feasible schedules; solving the 

linear programming relaxation of a set-partitioning or set-covering problem over the 

restricted feasible region; implementing a branch and bound procedure to find an 

integer solution. See Wren [78] and Rousseau [64] for a number of examples of this 

approach.

In an earlier paper, Foster and Ryan [34] consider the Vehicle Scheduling 

Problem (VSP) formulated as:

VSP
MIN Ejej (V+rrij) Xj

s.t.

EjGJ ByXj — 1

xj e { o , i }

i= l , . . . ,n  VSP1

Vj GJ VSP2

where the variables represent feasible routes with:

1 if route j is in the schedule; 

0  otherwise.

34



Chapter three: Review o f Routing and Scheduling Problems

The data elements are:

V - mileage equivalent cost of each vehicle;

nij - the total mileage of route j;

â  - 1 if delivery i is covered in route j,

0  otherwise.

J is the set of feasible routes and n is the number of deliveries to be made.

A feasible route in the set J may be required to comply with a number of 

restrictions, for example, vehicle capacity or route duration constraints. Nevertheless, 

if  J contains all possible feasible routes this can give rise to a problem VSP with an 

extremely large number of x,- variables, rendering standard integer programming 

techniques impractical. Foster and Ryan attack the size of the problem by imposing 

additional constraints on the composition of J and thereby restricting the feasible 

region of the problem VSP. The method then proceeds by solving the linear 

relaxation of the problem VSP for the over-constrained set J. Integrality is maintained 

throughout by restricting the number of vehicles used to be a fixed integer and by 

introducing cutting planes to exclude fractionalities as they occur. The over- 

constrained feasible region is then successively relaxed to allow other promising 

routes to enter the problem. This approach is shown to be computationally attractive 

because of the near-integer nature of the over-constrained linear program. Also, Ryan 

and Foster find that the over-constrained approach produces good solutions as the 

limited set J contains the most promising routes. As with the crew-scheduling problem 

described above, the solutions found using this method cannot be guaranteed optimal 

as the entire feasible region is not considered when solving the problem. Foster and 

Ryan discuss the possibility of using a column generation technique to find optimal 

solutions to the VSP but they conclude that such a method is only practical for very 

small problems as it is "...slow to converge and rarely gives rise to near-integer or 

integer solutions at the linear programming optimum."

35



Chapter three: Review of Routing and Scheduling Problems

Optimal Methods

In contrast to Foster’s and Ryan’s experience, Desrosiers et al. [24] have 

reported success with the column generation method when applied to the problem of 

vehicle routing with time windows. Swersey and Ballard tackled this problem by 

solving a discretized version of the problem and thereby reducing the feasible 

region(see section 3.2.1). In Desrosiers et al. the continuous problem is considered 

and an optimal solution found over the entire feasible region.

The Desrosiers et al. formulation of the problem is constructed as follows. Let 

P be the set of trips i to be executed and I be the set of intertrip arcs, where an 

intertrip is an unproductive run between the end of one trip and the start of another. 

The network underpinning the model can be defined by a set of nodes N=PU{s,t}, 

where s and t represent the start and end depots for the vehicle, and a set of directed 

arcs A=PU{s}xPUPx{t}. Then:

RTWP
^IIN (̂i j)GA Cjj Xjj

s.t.

EjEN xij — ^j6N Xji V iG P RTWP1

ĵEN Xjj 1 V iG P RTWP2

*ij S  0 V (ij )E A RTWP3

Xjj >  o = >  t, +  % <  tj V (i,j)6 I RTWP4

aj <  t, <  bj V iG P RTWP5

m © V (ij)G A RTWP6

The solution method involves constructing a set of feasible routes, then solving 

a set-partitioning problem to find an optimal subset of feasible routes which includes 

each trip exactly once. The set-partitioning problem is formulated as follows.

36



Chapter three: Review of Routing and Scheduling Problems

Let 0  : the set of routes, r, which satisfy the scheduling constraints. 

yr : a binary variable; 1 if route r is used, 0  otherwise 

5ri : binary constant; 1 if route r includes trip i, 0  otherwise 

cr : cost of route r

MRTWP
MIN E,en c, y.

s.t.

Eren r̂i Yr 1
Yr e {0,1}

V i E P  MRTWP1

V rEO MRTWP2

Desrosiers et al. do not consider all possible routes at the outset as this can 

give rise to a large number of variables yr in the problem MRTWP. Instead a column 

generation procedure is used and the routes are constructed as required. The network 

constraints of RTWP are divided between the master problem and the subproblem. 

The master problem MRTWP deals with the requirement that each trip is performed 

exactly once and the corresponding subproblem is a routing problem with the addition 

of scheduling constraints. The subproblem is formulated as follows:

SRTWP
M I N  E (ij)£A fe j  -  a )  Xjj

S.t.

V iE P  SRTWP1 

V (i,j) EI SRTWP2 

V i E P  SRTWP3 

V (i,j)EA  SRTWP4

where o- are the dual values retrieved from the solution of the linear programming



Chapter three: Review of Routing and Scheduling Problems

relaxation of master problem.

The column generation procedure proceeds as follows:

1) Use an adaptation of the Bellman-Ford algorithm to find a set of least cost 

feasible routes for the subproblem.

2) Add the routes found at 1) to the master problem and solve the linear 

programming relaxation of the master problem.

3) Update the costs Cy - o- using the dual values retrieved at stage 2). Go to

step 1).

If at stage 1) no new routes are found the solution of the master problem is optimal 

and the procedure terminates.

The solution of linear programming relaxation of the master problem when 

optimality is achieved may be fractional. The generation of integer solutions is 

encouraged by introducing cuts which require an integer number of vehicles to be 

used and travel costs to be rounded up to the nearest integer, but if fractionality 

occurs an explicit enumeration procedure is used. At each node of the branch and 

bound tree the column generation technique is used to restore the linear programming 

relaxation of MRTWP problem to optimality. Therefore, Desrosiers et al. find 

optimal solutions to the problem RTWP.

Desrosiers et al. report that the algorithm allows large savings in the size of 

the fleet required to cover the trips and large problems with fairly wide time-windows 

can be solved. Compare this result with that found by Swersey and Ballard where 

problems were encountered with the computer storage space j required to handle 

| the linear programming problem.

For a further example of the use of a column generation procedure to solve

38



Chapter three: Review of Routing and Scheduling Problems

a vehicle scheduling problem see Riberio’s and Soumis’s [63] method for solving the 

Multiple-Depot Vehicle Scheduling Problem formulated by Carpento, Dell’amico, 

Fischetti and Toth [12].

The power of the column generation approach has been shown to be effective 

in dealing with routing and scheduling problems where the number of feasible routes 

and schedules is large. The results found by the above authors therefore suggest that 

such a method may be successfully applied to the stock diagramming problem. 

However, in a recent paper Forbes, Holt and Watt [32] claim to have found an exact 

procedure for solving the stock diagramming problem which explicitly considers all 

possible locomotive schedules.

Forbes et al. formulate the stock-diagramming problem as follows:

FSD
MIN EjEjE* CjjV

s.t.

^ x yk= l  

Ej x8k -  Ej Xjik= 0  

E fi Msk x8k <  Uk 

xsk €  {0,1}

where:

i,j are train indices;

k is the locomotive type index;

Cjjk is the cost of train j following train i, with train i assigned a 

locomotive type k;

Myk is the number of times midnight passes between the end time of train

i and the first feasible occurrence of train j as its successor using

locomotive type k;

39

V i ESDI 

V i,k with 5^=1 FSD2 

V k FSD3 

V i,j,k FSD4



Chapter three: Review of Routing and Scheduling Problems

Xijk is a zero-one variable which is one if train j follows train i on a

locomotive type k;

5* is an indicator function which is one if train i may legally be operated

by locomotive type k, and zero otherwise;

xsk and Cjjk exist only if 6^ = 1.

Constraint FSD1 ensures that each train is worked exactly once and FSD2 ensures a 

conservation of flow.

Forbes et al. solve the linear programming relaxation of FSD, here on 

referred to as RFSD. A branch and bound scheme is then used to obtain integer 

solutions. Before solving RFSD, Forbes et al. formulate a further relaxation in which 

the locomotive type restrictions are removed. The formulation of this problem is 

equivalent to an assignment problem and is given by:

FAP
MIN eijZij

s.t.

Si zs= l V i FAP1

Ej Zji=l V i FAP2

Zij €  {0,1} V ij FAP3

where:

ejj is minkCijk;

Zjj is a zero-one variable, which is one if  train i is followed by train j.

The solution to FAP can be converted into a dual feasible solution to FSD by setting 

Xjjk= l  if Zij=l and k is the "smallest" 7  such that c f  equals e .̂ Using this solution 

to FAP Forbes et al. then solve the problem RFSD using the dual simplex algorithm.

40



Chapter three: Review of Routing and Scheduling Problems

This method appears promising at first sight as Forbes et al. report pleasing 

results. However, there are a number of drawbacks and assumptions made which 

invalidate the method as an exact way of solving a real world stock diagramming 

problem. The number of variables in a problem with many trains and locomotive 

types is extremely large. It was this consideration which led Wright and British Rail 

to use heuristic approaches. Forbes et al. describe a procedure for reducing the 

number of variables which uses a domination argument. They use Wright’s data to 

test their method and observe that for some data sets "...any train which can legally 

be operated by locomotive type 1 or 2 can also be operated by locomotive type 3. If 

there are no constraints on the numbers of locomotives, and the objective value is 

independent of locomotive type, it is therefore possible to disregard locomotive types 

1 and 2." There are two problems with this argument. Firstly, although the 

formulation FSD includes a constraint on the number of locomotives of each type 

available, they then disregard this constraint and this greatly simplifies the problem. 

If the locomotive availability constraint is present it is not possible to ignore 

locomotive types in the way they propose, as in a real world problem there is not 

usually the level of locomotive availability which allows a scheduler to avoid using 

two of the locomotives types in a feasible solution. The second problem with this 

procedure is that they use the fact that the objective value is dependent on locomotive 

type to solve the problem FAP and this suggests that locomotive type cannot be 

ignored in the way suggested. Even if the variables are reduced in this way, it can 

be seen from the results given by Forbes et al. that the number of variables remaining 

is large for any sizeable problem. A further drawback with this method arises when 

Forbes et al. use the solution to FAP to solve the problem RFSD. Recall that they 

assign the trains to the "smallest" locomotive type k such that Cgk equals ê . If the 

costs Cijk do not vary according to locomotive type, and this is the case with the stock 

diagramming problem, then it is likely that in the dual feasible solution to RFSD most 

of the trains are assigned to the smaller locomotive types. The consequence of this 

is that it is probable that the constraint FSD3 is violated for small values of k and 

ineffective for large values of k. In such instances the gap between the optimal

41



Chapter three: Review of Routing and Scheduling Problems

solution of FAP and the optimal solution of RFSD may be significantly larger than 

the gaps recorded by Forbes et al. for their test problems. In addition, if the costs c^ 

do not vary according to locomotive type and the constraints on locomotive 

availability are tight, then it is likely that the gap between the solution to RFSD and 

FSD is significant, thereby incurring a large amount of branch and bound work.

42



Chapter four: Solution Methods

CHAPTER FOUR

SOLUTION METHODS

4.1 Introduction

This chapter describes a number of solution methods considered for the stock 

diagramming problem, and draws conclusions from the results which justify the use 

of the solution method eventually adopted and presented in detail in the succeeding 

chapters.

In section 4.2 the data sets used to test the methodologies are introduced. 

Section 4.3 provides some background information on the way in which British Rail 

prepare data. Sections 4.4, 4.5 and 4.6 describe and discuss the three solution 

methods dealt with in this chapter.

4.2 Data Sets

British Rail supplied two sets of data along with solutions obtained using their 

heuristic procedure (outlined in Chapter three). The data sets are referred to as SET33 

and SET 189. SET33 consists of 33 trains and two locomotive types working in a 

region consisting of six stations. SET189 consists of 189 trains, including ‘gap 

trains’, and 10 locomotive types working in a region consisting of 26 stations. The 

concepts of ‘gap trains’ and ‘regions’arediscussed in section 4.3. It is these data sets 

which are used to test the solution methods considered in the latter sections of this 

chapter.

43



Chapter four: Solution Methods

4.3 Regions. Areas and Gap Trains

Regions

As mentioned in Chapter two, British Rail solve the stock diagramming 

problem by dividingI the railway network into regions. Each of the above data sets 

specifies the trains which must be worked in a particular region along with 

information on the stations in the region and the locomotives available to work the 

trains.

Areas

As well as a division of the railway network by region, British Rail may also 

specify areas within a region. It is normally the case that stations designated to be 

within an area are in close proximity, in terms of the light-run time between the 

stations, compared with the other stations in the region. To see what the purpose of 

this is, consider a region consisting of n stations and suppose that m (m <n) of these 

stations are said by British Rail to be within an ‘area*. From the m stations chosen 

to be within the same area, British Rail also nominate a single station as the main 

station. Then, when solving the stock diagramming problem for the region, the value 

of the light-run cost used in the objective function is taken to be 0  for all light-runs 

between the m stations in the area. For light-runs from a station within the area to a 

station outside of the area the light-run cost used in the objective function is taken to 

be the value of the light-run time from the main station in the area to the station 

outside the area, and vice versa. In addition to designating certain stations to be 

within an area, British Rail automatically‘area’ a station with itself. This means that 

Cij=0 if the end location of a train i is the same as the start location of a train j. In 

any region a number of areas may be specified, but a station can only lie within at 

most one area. The interpretation of the use of these divisions by area to specify the 

objective function is that British Rail are interested in the amount of "out-of-area"

44



Chapter four: Solution Methods

light-run time incurred in any solution. To illustrate the effect of using areas with an 

example, consider a region with six stations with the light-run times between stations 

as shown below.

I 2 3 4 1 £

I 10 70 81 69 108 104

2 70 10 41 44 79 75

1 81 41 10 47 78 74

4 69 44 47 5 43 39

5. 108 79 78 43 15 18

6 104 75 74 39 18 5

Suppose stations 5 and 6  constitute an area and station 5 is the main station. If the 

end location of a train i is station 5 and the start location of a train j is station 6 , then 

in the objective function c— 0 rather than 18. If the end location of a train i is station 

6 and the start location of a train j is station 1, then c;j= 108 rather than 104.

British Rail may also approximate the total light-run time in a solution by 

rounding down the values ca to the nearest 10. It should be noted that although the 

costs in the objective function may be adjusted to record out-of-area or approximate 

light-run times, the true light-run times are used in the model to ensure that 

connections between trains are feasible within the time available.

From here on, any solution presented for data sets SET33 and SET189 is 

based on an objective function in which ĉ  has been rounded down to the nearest 10 

and all stations are automatically ‘area-ed’ with themselves. Any further specification 

of areas within the region covered by a data set are made clear during the discussion 

of results.

45



Chapter four: Solution Methods

Gap Trains

The concept of a gap train is a consequence of the specification of the problem 

on a region-wide basis. Consideration needs to be given to the spare capacity of those 

locomotives based outside but working into a region, the aim being to utilize the 

‘gaps* in such locomotive schedules to best advantage. To see how these gaps are 

used, suppose that a train has a start location in region 1 and an end location in 

region 2. This gives rise to the situation illustrated below where a locomotive based 

in region 1 works into region 2  and, as the schedule for a locomotive is cyclic, 

returns to region 1.

Train

Light-run

Consider region 1 only, then the picture ‘appears’ as:

Region 1

Region 2

Region 1

46



Chapter four: Solution Methods

It is clear from this representation that one can think of the locomotive working a 

‘train* from A to B with duration given by the time the locomotive takes to perform 

the section of the schedule between A and B. So, in effect, one can specify the time 

for which the locomotive is unavailable to work trains within region 1 by introducing 

the notion of a ‘gap train*. The gap train is specified in the train timetable for region 

1 in the same way as any other train within the region. The gap train has a start 

location and start time at A and an end location and end time at B. There is only one 

locomotive type compatible with this train, namely, the locomotive type which 

entered region 1 from region 2. Hence, once the gap train has been specified the 

stock diagramming problem can be solved as if all trains are restricted to running 

within a region.

The problem of assignment between regions will not be considered in this 

thesis. British Rail have supplied the data for single regions and the gap trains have 

been incorporated into the timetable for the region.

4.4 Exact Method

Recall the formulation of British Rail’s stock diagramming problem given in 

Chapter two.

Let the set of trains be r= {i | i is the i* train in the timetable}. Let the set 

of locomotives be A={k | k is the number of the locomotive type}. Then define P(k) 

to be the set of trains where P(k)={i | train i is compatible with locomotive type k}.

47



Chapter four: Solution Methods

SD

s.t.
M IN  Ei€fI } € A e A c « x ijk

W  xyk =  y> V iGP(k), kGA SD1

Ejep(k) Xjik =  y> ViG P(k), kGA SD2

X ^ y f - l  V i G r  SD3

Ei6TEjer (nij y k +  My Xyk)  <  Uk V kGA SD4

xyk G {0,1} Vi,jGP(k), kGA SD5

y k G {0,1} V iGP(k), kGA SD6

The zero-one variables are:

Xyk - 1 if train j follows train i on locomotive type k,

0  otherwise.

y k - 1 if train i is worked by locomotive type k,

0  otherwise;

The data elements are:

Cy - light-run cost from the end location of train i to the start

location of train j;

m{ - the number of times a locomotive crosses midnight while

working train i;

My - the number of times a locomotive crosses midnight while

performing the light-run from the end location of train i to the 

start location of train j;

Uk - the total number of locomotives of type k available.

48



Chapter four: Solution Methods

It is this formulation which underpins the exact method discussed here.

There are various commercial packages available which can be used to find 

exact solutions to integer linear programming problems such as SD. It seemed 

obvious that the first step in the search for an optimal solution would be to run the 

sets of test data on one of these packages. The aim of this exercise was to compare 

the speed, improvement and veracity of the results against those found by British 

Rail. The tests were performed on a commercial mathematical programming package 

known as LAMPS [41]. LAMPS is an acronym for Linear And Mathematical 

Programming System, and is described as ’..a general purpose Mathematical 

Programming code, which is designed to solve problems of many thousands of rows.* 

For the formulation SD, if n is the number of trains and K is the number of 

locomotive types then there is a maximum of (n2K+nK) variables (columns) and 

(2nK+n+K) constraints (rows). A ‘maximum* because all trains are not necessarily 

compatible with all locomotive types. The software required to specify the problem 

in AMS format, as required by the LAMPS optimizer, was developed from scratch 

using the programming language FORTRAN.

4.4.1 SET33

The first test is performed for the data set SET33. To evaluate the results 

obtained by solving SD on LAMPS for SET33, first consider the solution British Rail 

found using their heuristic procedure (outlined in chapter three).

British Rail’s Solution

Before entering the heuristic procedure British Rail perform two preliminary 

investigations. First they calculate a peak requirement for the number of locomotives. 

The peak requirement figure gives a lower bound on the number of locomotives 

needed to work the timetable. The method used to calculate this lower bound is

49



Chapter four: Solution Methods

described in detail in chapter nine. For SET33 it was found that 15 locomotives are 

needed, 3 less than the total of 18 locomotives available (12 type 1 and 6  type 2). The 

second investigation calculates a lower bound on the light-run cost for the problem. 

The lower bound is found by ignoring the type restrictions and solving an assignment 

problem with input costs Cg+pmj+pMy. Cg is the light-run cost incurred when 

performing a light-run from end location i to start location j. For data set SET33 two 

stations were designated to be within an area and so ca was adjusted to reflect the cost 

of the out-of-area light-running. mf is the number of times train i crosses midnight 

and My is the number of times a locomotive crosses midnight in performing the light- 

run from i to j. n is the marginal cost of a locomotive expressed in terms of light-run 

time. As explained in chapter three, by adjusting fi it is possible to vary the number 

of locomotives used. Setting \l equal to 180 light-run minutes for SET33, British Rail 

found that only 15 locomotives were used and the total light-run cost incurred was 

390 light-run minutes i.e. £^0^=390. For SET33 this figure is the lower bound on 

a solution which uses 15 locomotives.

On completion of these preliminary investigations, British Rail then use their 

heuristic procedure to find a set of schedules to work the trains in the region at 

minimum cost. At various stages during the execution of the heuristic an experienced 

user intervenes to manipulate the schedules and force or block specific connections. 

This was done for SET33 and a solution which uses 390 light-run minutes and 15 

locomotives was found.

Exact Solutions for SET33 Using LAMPS

The maximum possible number of variables for this set is 3,244 and the 

maximum number of constraints is 167. Some of these variables and constraints may 

not exist as all trains are not compatible with all locomotive types. The AMS data file 

required by LAMPS used 257 Kbytes of memory. Four test runs are performed. Each 

time the linear programming relaxation of SD, referred to as RSD, is solved.

50



Chapter four: Solution Methods

TEST 1

For the purposes of comparison, the values of data are taken to be the same 

as those used by British Rail. The optimal solution to RSD was found in 29 seconds 

of CPU time. The solution cost was 140 light-run minutes and all o f the 18 

locomotives available were used. The solution found was integer but this cannot be 

guaranteed in general.

TEST 2

The formulation used in test 1 is modified in test 2 so that the objective 

function of RSD changes from:

EjEj c8 xsk

to: SiEj c8 + n itij + ( iM j xsk

with n =  180 to coincide with British Rail’s parameter for the cost of a locomotive.

The CPU time to find an optimal solution to RSD with the modified objective 

function was 31 seconds. The objective function value was 390 light-run minutes and 

the solution used 15 locomotives. In this instance the solution was not integer. 

LAMPS uses Branch and Bound to solve integer programming problems. By 

specifying to LAMPS that the variables y* should take integer values, an integer 

solution was found in a further 30 seconds of CPU time. Four nodes of the branch 

and bound tree were explored. The optimal integer solution cost 390 light-run minutes 

and used 15 locomotives. The cost of this solution agrees with the solution found by 

British Rail and the same number of locomotives are used. The schedules found 

differed from those found by British Rail, but this is due to the existence of multiple 

solutions.

51



Chapter four: Solution Methods

TEST 3

The formulation used in test 1 is modified by the addition of a constraint to 

limit the total number of locomotives used. The new formulation is:

SDX
MIN Cjj Xyk

s.t.

Ejeroa xyk =  y k V i€P (k ), k6 A S D 1

Ejeroa =  V* V i€P (k ), k € A SD 2

=  1 V iG r S D 3

S i e ^ j e ,  (mi y k +  X,*) =  Nk V kGA S D 4

Nk <; Uk V k E A SD 5

Ek Nk £  TOTAL S D 6

€  {0 , 1} V ijG P (k), kGA S D 7

y k e  {0 , 1} V iEP(k), kGA S D 8

where:

Nk - number of locomotives of type k used;

TOTAL - total number of locomotives used.

This modification adds K variables and K + 1 constraints to the problem, where K is 

the number of types of locomotive.

For this test TOTAL is set at 15. The solution to the linear programming 

relaxation of SDX was found after 26 seconds of CPU time. The cost of the solution 

was 390 light-run minutes and, as expected, 15 locomotives were used. The solution

52



Chapter four: Solution Methods

was continuous, but the Branch and Bound algorithm was used as in test 2. The 

integer solution was found after a further 15 seconds of CPU time and a search of 6 

nodes. The integer solution used 390 light-run minutes and 15 locomotives.

TEST 4

Having set up the problem as in test 3, it is easy to vary the value of 

parameter TOTAL and test the objective value found. The results shown in table

4 .4 .l .i  refer to the integer solutions found, except where the solution is infeasible.

TOTAL OBJECTIVE
VALUE

18 140

17 140

16 220

15 390

14 Infeasible

Table 4 .4 .l .i

These results show that 14 locomotives are insufficient to work the trains, 

verifying the peak requirement of 15 locomotives found by British Rail. They also 

suggest that the cost saving of 170 light-run minutes may make a solution which uses 

1 locomotive above the peak requirement more attractive.

53



Chapter four: Solution Methods

The results of these tests on the SET33 data are encouraging in a number of 

ways. Optimal solutions can be found in a short time and, once the problem has been 

defined, it is easy to vary the limit on the total number of locomotives used or adjust 

the number of each type used. LAMPS will also allow the user to modify the problem 

easily so that certain connections can be banned or forced, or the light-run values 

changed. If the solution is multiple, i.e. if  the reduced cost for some of the non-basic 

variables is zero, then trains may be alternatively scheduled at no increased cost.

The use of this formulation performs well for the small data set SET33, but 

how will it perform for the larger data set SET 189? Consider formulation SD for 

SET189. SET189 consists of 189 trains and 10 locomotive types. This suggests a 

maximum of 392,931 variables and 3,979 constraints. Given that the AMS file 

required by LAMPS for the SET33 problem used approximately 0.25 Mbytes of 

computer memory, these values suggest that AMS file for SET189 would be very 

expensive in terms of storage. Also, LAMPS uses the simplex algorithm to solve the 

linear programming problem RSD and, as this algorithm is not known to be a 

polynomial time algorithm, the time to solve a problem of this size could be 

unacceptably large. It is for these reasons that the following sections investigate 

alternative methods for solving the stock diagramming problem.

4.5 Reduction of Variables

The premise behind the ‘Reduction of Variables’ method is that certain 

connections are ‘bad’ in that they involve long light-runs which would probably never 

be used in an optimal or near optimal solution. Based on this observation a number 

of strategies are devised in the hope of sensibly reducing the number of variables to 

a manageable size. So, using this method a restricted feasible region is considered.

54



Chapter four: Solution Methods

4.5.1 Data Sets

The data set used to test the strategies is based on SET189 and referred to as 

SET178. SET178 consists of 178 trains and 5 locomotive types. This ‘artificial* data 

set is constructed by first removing the gap trains. As well as identifying locomotives 

by type, each locomotive type is a member of a set known as ‘locomotive class’. 

Having removed the gap trains it is possible to partition the locomotive types 

compatible with the remaining 178 trains into 5 classes. These 5 classes are then used 

as if they are the locomotive types for the data set SET178. This data set is 

developed solely to test this method. It was decided that SET33 is too small, but 

SET189 is too large for the initial stages of testing and SET178 represents a 

compromise. If the results found for SET178 suggest that the method is viable, then 

the next step is to test the method for the real data set SET189.

4.5.2 Reduction of Variables Formulation

An alternative formulation to SD is used to test the Reduction of Variables 

method. The sets r, A and P(k) are as defined for SD. Let A be the set of pairs 

where A={(i,j) | the light-run from train i to train j is permitted}. Then define 

S(i) =  {j | (i,j)E A} and S(i)=(j | (j,i)G A}. Then the new formulation is:

MIN Cy Xyk

s.t.

ViGP(k), kGA R V il 

ViGP(k), kGA RVj2

Vi Gr  RVt3 

Vi,jGP(k), kGA

y* e  {0 , 1}

with (i,j) G A RVj4 

ViGP(k), kGA RVj5

55



Chapter four: Solution Methods

The variables and data are as defined for formulation SD.

Notice that there is no limit on the number of locomotives available. This 

allows for some freedom in the problem at this stage where the methodology is being 

developed. The specification of the set A controls the number of variables in the 

problem. The construction of this set is based on the strategy being used to reduce 

the number of variables. Three such strategies are tested.

Strategy 1

Only allow connections from a station to the nearest three stations i.e. the 

station itself and its two nearest neighbours. This strategy ensures that only the 

smaller light-runs enter into any solution. This specification of the set A has the effect 

of splitting jup a region into sectors by clustering the stations. Connections between 

the sectors are effected by trains working out of one sector and into another. The 

number of light-run variables x̂ k resulting from this strategy is 18,001.

The linear programming relaxation of RVj was solved using LAMPS. The 

solution found was infeasible with a sum of infeasibilities equal to 12. This figure of 

12 indicates by how much the trains are being underworked, or more precisely 

EiEkyik=166=(178 - 12).

In an attempt to gain greater insight into the structure of the problem an 

alternative formulation is used on data set SET 178 for strategy 1:

56



Chapter four: Solution Methods

r v 2

m in  EieTEjeA eA Cjj

s.t.

-jes® u “  j i

-jes® V  =  y '  

y*  ^  1

X > g  {0,1}

V iEP(k), kGA RV^  

V iEP(k), kGA RV^

V i G r  RVj3 

Vi,jGP(k), kGA

y k e  {0 ,1 }

with (i,j)GA RVj4 

ViGP(k), kGA RVj5

where the sets, variables and data are as defined in RV\.

This formulation allows a train to be worked more than once. A train may be 

overworked in order to ensure that the problem is feasible. That is, a light-run which 

is not permitted by strategy 1 is mimicked by the overworking of the trains. 

Alternatively a train may be overworked in order to reduce the total light-run cost. 

By isolating those trains which are overworked because of feasibility considerations 

it may be possible to identify where the deficiency in the light-running is occurring, 

and thereby devise an alternative strategy to strategy 1. The procedure used to do this 

is as follows.

The linear programming relaxation of the problem RV2 for strategy 1 is solved 

and the value of OVERWORK =  (yk - 1) recorded. Attempts are then made to 

reduce the value of OVERWORK by setting Ek;yik=1 for a particular train i currently 

overworked, then resolving and recalculating the value of OVERWORK. Where 

possible train i is chosen if it is worked within a sector. If this is the case, as the 

available light-run connections are confined to sectors, it is probable that train i is 

being overworked to reduce the value of the objective function. Given that the sum 

of infeasibilities is 12, it is known that the minimum possible value of OVERWORK

57



Chapter four: Solution Methods

is 12. The results of this exercise are shown in the table below.

ITERATION OVERWORK

1 22

2 22

3 20

4 17

5 18

6 16

7 13

8 12

9 15

10 12

11 12

Table 4.5.2.i

It was observed that there is an imbalance in the number of trains working in 

to and out of each sector. Also, some stations are more ‘popular’ than others in that 

there are more trains arriving and departing from these stations, and from the results 

of iterations 8 , 10 and 11 it appeared that the overworked trains were passing through 

these stations. The second strategy is based on these observations.

Strategy 2

The proposal for the second strategy is that the number of light-runs associated 

with each station are weighted according to the popularity of the station. This not 

only allows more light-runs into and out of popular stations, but also allows ‘out-of­

58



Chapter four: Solution Methods

sector* light-runs to enter into the problem. Suppose that a train i departs from station 

Order all possible light-runs Xjk from a train j to the train i for a locomotive type 

k according to the increasing duration of the light-runs. If the weighting chosen for 

station ¥  is a, then select the first a  of these light-runs as candidate light-runs into 

the start of train i on locomotive type k. So, if  the weighting for station ¥  is 2, for 

a specific locomotive type the picture is:

This procedure is repeated for all locomotive types compatible with train i. The same 

procedure is then carried out for the arrival station for train i. Once each train in the 

problem has been considered the set A is completely specified for strategy 2.

The value of a  for a station is chosen to be equal to the total number of trains 

arriving at and departing from a station. The value of a  is then adjusted where 

necessary so that it lies within specified upper and lower bounds. For the first test of 

strategy 2 the upper andlower bounds are chosen to be 30 and 5, respectively. So, if 

a < 5  then set or=5 and if a > 30  then set a =30. Using these weightings the number 

of Xjjk variables generated is 15,491.

The solution to the linear programming relaxation of RVj for strategy 2 was 

infeasible, but the sum of the infeasibilities was reduced to 3. The linear 

programming relaxation of RV2 is then solved for strategy 2. As with strategy 1, the 

value of OVERWORK is calculated and then successive attempts are made to reduce 

this value. The results are as follows:

 ̂ train i 

— light-runs

59



Chapter four: Solution Methods

ITERATION OVERWORK

1 11

2 11

3 13

4 11

5 10

6 10

7 10

8 10

9 9

10 9

11 9

12 6

13 5

14 5

15 3

Table 4.5.2.ii

At this point no further reductions are possible. This exercise did not suggest an 

alternative strategy for reducing the number of variables. It may be possible to find 

a feasible solution to RVt by increasing the lower and upper limits on a. However, 

such a step would increase the number of variables without guaranteeing a feasible 

solution to the problem SD. An alternative strategy is proposed.

Strategy 3

Strategy 3 is a simple modification of strategy 2. This time all ‘loop* light-

60



Chapter four: Solution Methods

runs are permitted to enter the problem. That is, for each train i and each locomotive 

type k compatible with train i, all Xyk variables are included in the problem RVj. This 

means the addition of a maximum possible of 178 x 5 variables (178 trains and 5 

locomotive types). The solution to formulation RV1 is bound to be feasible as no limit 

has yet been imposed on the number of locomotives. The linear programming 

relaxation of RVt was submitted to LAMPS, but after 36,000 iterations an optimal 

solution had not been found and therefore the optimization procedure was interrupted.

It was felt at this stage that the Reduction of Variables approach was not 

proving promising, and this solution method was abandoned and an alternative method 

tested.

4.6 Generating Sequences

A sequence in this context describes a schedule for a locomotive which works 

a subset of the trains in the stock diagramming problem. A sequence is characterized 

by: the trains in the sequence; the order in which the trains are worked in the 

sequence; and, the locomotive type used to work the sequence. Each train in a 

sequence must be compatible with the locomotive type which works the sequence. 

The cost of the sequence is the sum of the light-running between trains in the 

sequence. The aim of this method is to construct a set of sequences ft, and from this 

set choose a subset which works the trains at minimum cost without exceeding the 

limits on locomotive availability. Only a subset of the set of all feasible sequences is 

constructed. Therefore, as with the Reduction of Variables Procedure, this method 

is used to solve the stock diagramming problem over a limited feasible region. 

Obviously the cost of the optimal solution depends on how ‘good’ the set ft is. At the 

other extreme, a ‘bad’ set of sequences 0  may yield an infeasible solution. The 

notional idea is that a ‘good’ sequence does not include too many long light-runs and 

is not expensive in terms of the number of locomotives used. A heuristic which 

takes account of the light-run time and the limit on the number of locomotives

61



Chapter four: Solution Methods

available is used to generate a set of sequences.

4.6.1 Heuristic Procedure used to Generate Sequences

Before using the heuristic procedure to generate sequences, the problem is 

decomposed according to locomotive type compatibility. It is easiest to describe the 

method employed using an example data set. Suppose that there are 5 trains to be 

worked in the data set, so the set of trains r= {l,2 ,3 ,4 ,5}. Also suppose that the data 

set has two locomotive types, type 1 and type 2. Let the pattern of compatible 

locomotive types for the trains in set r be:

train no. compatible locomotive types

1 1
2 2
3 1
4 1 2
5 1 2

Using this information each train in the data set can be categorized according to the 

compatible locomotive types in the way shown in table 4 .6 .l.i.

TYPE 1 ONLY TYPE 2 ONLY TYPE 1 TYPE 2 TYPE 1 AND 2

1 1

2 2

3 3

4 4 4

5 5 5

Table 4.6. l .i

62



Chapter four: Solution Methods

There are five different categories shown in table 4 .6 .l.i. Let these categories be 

referred to as ‘type sets’. As indicated in the table, the trains which can only be 

worked by a locomotive of type 1 are trains 1 and 3. Trains which can be worked by 

a locomotive of type 1 but may or may not be compatible with a locomotive of type 

2 are trains 1,3,4 and 5. Hence, the type set ‘TYPE 1 ONLY* =  {1,3} is a subset of 

‘TYPE 1*={1,3,4,5}. Also, ‘TYPE 1 AND 2’={4,5} is the intersection of type sets 

‘TYPE 1*={1,3,4,5} and ‘TYPE 2*={2,4,5}. In general, the type sets are 

constructed as follows. Suppose that a data set has K locomotive types. For a given 

value o fL ^ K , construct type sets based on all possible combinations of length L of 

the K locomotive types. There are

(K-L)\L\

such combinations. Suppose that one of these combinations of length L contains the 

locomotive types k,,k2,...,k^. Based on these L locomotive types two type sets are 

constructed. The first type set is given by ‘TYPE kx AND TYPE k2...AND TYPE 

kL* and includes all trains which are compatible with the L locomotive types 

kt,k2,...,k L, but may also be compatible with other locomotive types besides these. 

The second type set is given by ‘TYPE kj AND TYPE k2...AND TYPE kL ONLY’ 

and includes those trains which are compatible with the L locomotive types 

ki,k2,...,k L, but are not compatible with any other locomotive types besides these. 

Therefore, each value of L gives rise to

2K\
0K-L)\L\

type sets, except when L=K in which case the two type sets described above are 

equivalent. Varying the value of L from 1 to K generates

63



Chapter four: Solution Methods

t L£ -1 2KI1+ EtTi (K-L)\u

type sets. Some of these type sets may be empty and can therefore be ignored.

The heuristic then proceeds by constructing an assignment problem for each 

of the type sets. The costs in the assignment matrix are the light-run costs Cy. The 

assignment problem formulation for a type set x is:

AP
MIN EiexEjex Cy ay

s.t.

£j€xaij = 1 v i e x  API
= l V i E x  AP2

ay e  {0,1} V i j E x  AP3

The zero-one variables are:

ay - 1 if the locomotive performs a light-run from the end location

of train i to the start location of train j,

0  otherwise.

The data are:

Cy - the light-run time from the end location of train i to the start

location of train j.

64



Chapter four: Solution Methods

X  is the type set being considered where x is a subset of the trains in the data set 

considered.

The matrix structure of the problem AP is unimodular, therefore the condition 

that ay is zero-one variable can be relaxed.

The solution of the assignment problem gives a valid set of sequences for all 

locomotive types associated with the type set x- ‘valid* in the sense that each train 

is compatible with the locomotive types which define with type set x  and the total 

light-running cost of a sequence is the sum of the costs on the light-run arcs which 

make up the sequence. As an example, a solution for the type set TYPE 2={2,4,5}  

might be:

The formulation AP will tend to eliminate long light-runs, but as AP does not 

consider the number of locomotives available the result is that any solution will 

reduce the total light-run cost by using more locomotives. This is not in line with the 

notion of a good sequence. The solution to this problem lies in considering the two 

schedules below.

65



Chapter four: Solution Methods

T1 C12=0

T2 ! 023=°

T3
i--------
111fi

0000

1

2 

3

2400

DAYS

TIME

Figure 4.6.1.ii

T3 <C 32= 1 P  T2 , ^21=20 T1 , C13=20
DAYS

0000 2400
TIME

Figure 4.6.1.iii

In the above figures the solid lines represent the train arcs and the dashed lines 

represent the light-run arcs. ‘Tn’ indicates the train n.

In figure 4.6.1 .ii the assignment cost is 0, but the schedule uses 3 

locomotives. In figure 4.6.1 .iii the assignment cost is 50, but the schedule only uses 

1 locomotive. Both schedules work the same three trains. However, in the second 

schedule time between connections has been reduced and the result of this is that 

second schedule requires fewer locomotives. Suppose that the time which elapses

66



Chapter four: Solution Methods

between the end of a train i and the start of a train j when the connection i-*j is made 

is ty minutes. With a view to reducing the amount of time between connections in the 

sequences generated by solving AP, the assignment problem is modified to allow only 

those connections which are possible within a pre-specified time interval. This 

restriction on the admissible connections is made possible by introducing the condition 

that tij<INTERVAL, where INTERVAL is a parameter supplied in the heuristic 

procedure. In the formulation AP the condition is implemented by setting C;j=oo if 

tjj >  INTERVAL. (In practice Cy is set equal to a large value M.) This restriction on 

the connection time between trains has two effects which encourage the generation 

of good sequences. Firstly the idle-time, or the time when a locomotive is not 

working a train or performing a light-run, is reduced. Secondly, the maximum light- 

run time which can occur in a schedule is restricted to be no greater than the value 

of INTERVAL.

It was discovered that in their work on air-crew scheduling Ryan and Falkner 

[67] used a similar procedure to limit the amount of idle-time in a schedule. The air­

crew scheduling problem involves constructing an optimal schedule of "duties" (or 

sequences in the stock diagramming problem), each of which performs a sequence of 

"runs" (or trains in the stock diagramming problem). Ryan and Falkner do not 

consider all possible runs which could follow run r in a duty, instead they construct 

a list of "next availables" by "..restricting the idle time between runs." This allows 

them to restrict the number of variables in the problem and, at the same time, 

encourage a solution which reduces idle-time between duties.

The value of INTERVAL can be increased during the execution of the 

heuristic procedure to generate different sequences by allowing additional light-run 

variables to enter the assignment problem. Such an outcome is not guaranteed though 

as an increase in INTERVAL may not result in a change in the optimal solution of 

the assignment problem. This means that repeated sequences may be created. A 

problem arises if INTERVAL is fixed too low. It might happen that it is not possible

67



Chapter four: Solution Methods

to schedule all trains in a type set as too many connections are banned. In this case 

the value of INTERVAL is increased until a first solution is found, and the 

corresponding value of INTERVAL is recorded as base value. This base value is 

characteristic of the type set. The solution to the problem AP for a type set gives 

valid sequences for each of the locomotive types considered by the type set. So, for 

a type set which considers the locomotive types i„i2, . . . , iL, the assignment problem 

is solved once and copies of the sequences found are then taken for each of the 

locomotive types

The heuristic procedure used to generate a set of sequences is known as HAP 

and summarized as follows. Once all possible non-empty type sets have been 

constructed for the stock diagramming problem being considered, the heuristic 

procedure HAP commences. For each type set in turn:

i) For a given value of INTERVAL solve the problem AP.

ii) If the solution to AP is finite go to step iii). Otherwise, increase the 

value of INTERVAL and go to step i).

iii) Make copies of the sequences found at i) for each locomotive type 

considered by the current type set. Add the sequences to the set of 

sequences 0 .

Steps i), ii) and iii) can be repeated for a number of values of INTERVAL.

Once a set of sequences Q is found for the problem, the next step is to find 

a subset of sequences from the set fi which works each train exactly once at minimum 

cost and uses no more than the available number of locomotives of each type.

4.6.2 Set Partitioning Problem

Given the set of sequences Q the problem of selecting an optimal subset of the

68



Chapter four: Solution Methods

set of sequences is a set-partitioning problem. The set-partitioning formulation for the

stock diagramming problem is:

SPP
MIN E,eo c a

s.t.

Er(=o 5risr=  1 V iE r  SPP1

Ereo L* sr ^  Uk V kGA SPP2

sr G { 0 , l }  VrGO SPP3

The sets r and A are as defined for formulation SD.

The zero-one variables are:

sr - 1 if sequence r is used,

0  otherwise.

The data elements are:

5ri - is a binary constant; 1 if sequence r includes train i,

0  otherwise;

cr - cost of sequence r equal to the sum of the light-run costs which

make up the sequence r;

La - the number of locomotives of type k required to work sequence

r;

Uk - the total number of locomotives of type k available to work the

timetable.

69



Chapter four: Solution Methods

4.6.3 Testing the Generation of Sequences Method

SET33

The testing of ‘Generation of Sequences’ method proceeds by: constructing the 

type sets for the data set; using the heuristic HAP to generate a set of sequences 0; 

then, solving the linear programming relaxation of the problem SPP, from here on 

referred to as RSPP.

The initial tests of this method are performed on the data SET33. 

Remembering that SET33 consists of two locomotive types, type 1 and type 2, there 

are five possible type sets: ‘TYPE 1 ONLY’; ‘TYPE 2 ONLY’; TYPE 1’;

‘TYPE 2 ’; and ‘TYPE 1 AND 2*. Die costs Cy for SET33 used in the heuristic 

procedure HAP are the same as those used in the exact method described in section 

4.3. By varying the initial value of INTERVAL and the number of values of 

INTERVAL used in the heuristic HAP it is possible to produce different sets of 

sequences 0. For SET33 seven different sets of sequences are created. The results of 

solving the problem RSPP for each of these type sets is given in table 4.6.3.i. The 

key to the table is:

‘SET’

‘INTERVAL’

‘SEQ’

‘OBJ’

is a name given to the set of sequences being 

considered.

gives the number of different values of the 

parameter INTERVAL used to construct the 

sequences.

shows how many sequences there are in the set 

of sequences being considered, 

gives the value of the objective function for the 

optimal solution to the problem RSPP.

70



Chapter four: Solution Methods

‘Tk’ - indicates how many locomotives of type k are

used.

‘INT’ - indicates whether or not the solution of RSPP is

integer.

Recall that there are 12 type 1 locomotives and 6 type 2 locomotives.

SET INTERVAL SEQ OBJ T1 T2 INT

SEQ1 2 29 800 12 4 YES

SEQ2 3 66 576.67 11.67 6 NO

SEQ3 4 74 576.67 11.67 6 NO

SEQ4 5 94 570 12 6 NO

SEQ5 5 80 510 12 5 YES

SEQ6 7 135 383.33 12 6 NO

SEQ7 7 186 372.86 12 6 NO

Table 4.6.3.i

For the pairs of results SEQ4/SEQ5 and SEQ6/SEQ7, although in each case 

the heuristic HAP is executed for the same number of values of INTERVAL, 

different values of the parameter are used in each instance. Also, in SEQ7 all 

singletons are included, i.e. all sequences of the type:

^  . Train i

-►------- Light-run

where i is a particular train. The singleton sequence is replicated for each locomotive 

type compatible with train i.

71



Chapter four: Solution Methods

The best result found for data set SET33 was 372.86 light-run minutes using 

18 locomotives. It is known from the results found in section 4.4.1 that the optimal 

integer solution for 18 locomotives is 140 light-run minutes. Nevertheless, these 

results are encouraging given that only 186 variables are considered in test problem 

SEQ7. Also, a consequence of the size of problem SEQ7 is that the time to solve 

SEQ7 to optimality using LAMPS was only 6  seconds of CPU time on an IBM PS/2 

Model 55SX.

The important question now is : ‘How will this method cope with the larger 

data sets SET178 and SET189?’

SET178

For the purpose of the j exercise of generating sequences, only locomotives 

types 1,2,3 and 4 are considered in an attempt to reduce the number of type sets 

considered at this experimental stage. This is possible for SET178 because type 5 is 

dominated by all other types, i.e. every train compatible with locomotive type 5 is 

also compatible with at least one of the locomotive types 1,2,3 or 4. There are 29 

possible type sets arising from these four locomotive types. For SET178, once the 

base value of INTERVAL is found for a particular type set, the value of INTERVAL 

is increased by 60 minutes and heuristic HAP is repeated. The number of repetitions 

of the heuristic is controlled by specifying a stopping criterion. As INTERVAL is 

increased with a view to admitting more light-run variables into the problem AP and 

thereby reducing the value of the optimal solution, the optimal solution of the AP 

should be reduced at each iteration. However, there is an upper limit on the value of 

INTERVAL, as beyond a certain threshold value (characteristic of the type set 

considered) all possible connections are included in the problem AP. Therefore, for 

each of the type sets INTERVAL is only increased until there is no change in the 

value of the optimal solution to AP for four repetitions of HAP. Obviously, the value

72



Chapter four: Solution Methods

of INTERVAL at the time when the iterations are suspended does not necessarily 

coincide with the threshold value for the type set as further reductions in the value 

of the optimal solution may still be possible. As with the set of sequences SEQ7 for 

SET33 all singletons are included in the set of sequences ft and the resulting set 

contained 9,285 sequences.

The results of solving the problem RSPP for the set of sequences ft are 

presented in table 4.6.3.ii.The problem RSPP is solved four times and each time the 

limit on the availability of the locomotive types varied. The variations are listed as 

test problems T178/1, T178/2, T178/3 and T178/4. The availabilities of the 

locomotive types for test T178/lan& approximated from the data for SET189. The key 

to the table is:

‘TEST’ - gives the name of the test problem.

‘OBJ’ - gives the value of the objective function for the

optimal solution to the problem RSPP.

‘Tk’ - indicates how many locomotives of type k are

used. Two figures a/b are given, where a is the 

number of locomotives of type k used and b is 

the number of locomotives of type k available.

‘INT’ - indicates whether or not the solution of RSPP is

integer.

‘SUM OF INF* - gives the sum of the infeasibilities if the solution

to RSPP is infeasible.

73



Chapter four: Solution Methods

TEST OBJ T1 T2 T3 T4 INT SUM OF 
INF.

T178/1 INF -/14 -122 -no -132 - 12.5435

T178/2 5000.05 27/27 22/22 20/20 32/32 NO -

T178/3 980 100/100 10/100 2/100 6/100 NO -

T178/4 980 119/1000 6/1000 0/1000 1/1000 YES -

Table 4.6.3.ii

LAMPS reported the problem T178/1 was infeasible due to a deficit of 

12.5435 in the number of type 1 locomotives available. So, in T178/2 the number of 

locomotives of type 1 available is increased by 13 (=12.5345 rounded up) and a 

feasible solution found which used a total of 101 locomotives. For T178/3 the number 

of locomotives available is 100 for each locomotive type. An optimal feasible solution 

was found and only the constraint on the availability of locomotive type 1 was 

effective. Now compare the result of test T178/4 with the results obtained from the 

reduction of variables exercise discussed earlier. For the reduction of variables 

exercise there is an unlimited number of locomotives available, but for strategies 1 

and 2 the solution found was infeasible. For T178/4 the level of locomotive 

availability for each of the locomotive types effectively removes the constraint on 

locomotive availability, and an optimal feasible solution of 980 was found.

It was felt that, compared with the reduction of variables results, these results 

suggested a way forward for the problem. So, it was decided to apply this method to 

the real data set SET189.

SET189

The data set SET 189 has 10 locomotive types which implies a maximum 

possible 1,275 type sets, though some of these may be empty sets. Given the number

74



Chapter four: Solution Methods

of type sets the policy this time is to run the heuristic HAP for only two values of 

INTERVAL, namely, 360 minutes and 720 minutes. The set of sequences so 

produced contains 16,051 sequences including all singleton sequences. Based on these 

sequences, the problem RSPP is solved for two test problems which have different 

limits on the number of locomotives available. In test T 189/1 the number of 

locomotives available for each type is:

TYPE No. AVAILABLE

1 14

2 6

3 16

4 6

5 14

6 12

7 20

8 5

9 2

10 4

These are the values as given for the data set SET189. In test T189/2 an upper limit 

100 is imposed on each locomotive type.

The results for these test sets are given in table 4.6.3.iii. The key to the table 

is as follows:

75



Chapter four: Solution Methods

‘TEST’ - gives the name of the test problem.

‘OBJ* - gives the value of the objective function for the

optimal solution to the problem RSPP.

‘TOTAL LOCO* - gives the total number of locomotives used.

*INT - indicates whether or not the solution of RSPP is

integer.

‘SUM OF INF* - gives the sum of the infeasibilities if the solution

to RSPP is infeasible.

TEST OBJ TOTAL LOCO. INT SUM OF INF.

T189/1 INF - - 13.3367

T189/2 1260.00 118 YES -

Table 4.6.3.iii

In the case of test T189/2, none of the constraints on the availability of a 

locomotive type were effective and the optimal integer solution for this limited set of 

sequences was found. For test T189/1 the solution found was infeasible. It may be 

possible to run HAP for additional values of INTERVAL in the hope of finding 

additional sequences which could work the timetable for the given locomotive 

availability. However, such a strategy could give rise to an undesirable explosion in 

the number of sequences generated with no guarantee of reaching feasibility.

It was for this reason that the direction taken at this stage is to use a column 

generation technique to achieve feasibility as a first goal and optimality as a second 

goal. However, before discussion of the details and application of the column 

generation technique there are a few more words to be said about the generation of 

sequences heuristic.

76



Chapter four: Solution Methods

4.6.4 Further Development of the Heuristic Procedure

Heuristic ModHAP

The starting set of sequences for the column generation technique are provided 

by the heuristic HAP and the dual values obtained from the solution of the problem 

RSPP are then used to generate new sequences. It is therefore a worthwhile exercise 

to find a good starting set of sequences. To this end, the heuristic HAP is modified. 

It was the inclusion of singletons in the set of sequences which suggested a way of 

improving the heuristic HAP. The modified version of HAP is referred to as 

ModHAP.

The heuristic HAP increases the value of INTERVAL until a base value is 

found which corresponds to a value of INTERVAL for which all trains in the type 

set can be scheduled. That is, if the value of INTERVAL for the type set x  is greater 

than or equal to the base value for type set x, for each train iE  x there exists at least 

one train jE x  such that c^oo and a finite solution to the problem AP for type set x 

exists. This ensures that, as all trains in the data set being considered are included in 

at least one type set, every train will be represented in at least one of the schedules 

of the set 0. Unfortunately, this can also mean that INTERVAL takes a high value 

and this is not desirable as the connection times entering into the sequences created 

may be large.

In the modified version ModHAP all possible singletons of each train i, one 

for each compatible locomotive type, are included in the set of sequences 0  at the 

outset to ensure that each train is included in at least one sequence. Then in the cost 

matrix cti of the problem AP cu equals light-run time from end location i to start 

location i and, if there does not exist a train j (j^i) such that ty< INTERVAL then 

as before c5j=oo . This construction means that there now exists a finite solution to AP 

for all values of INTERVAL as no matter how low the value of INTERVAL is the

77



Chapter four: Solution Methods

assignment i-*i will always be possible. The solutions to AP can include both 

schedules of length ̂  2 and singleton schedules. However, when using the heuristic 

ModHAP as all singletons are automatically included in the set Q only those schedules 

of length >  2  are added to the set Q.

The new heuristic ModHAP is tested on the data set SET189. The values of 

INTERVAL used to construct the set of sequences are the same as those used for the 

previous tests on SET189 using the heuristic HAP. The resulting number of sequences 

was 16,336 including the singletons. The restrictions on the availability of the 

locomotives in tests T189/1M and T189/2M are the same as those in T189/1 and 

T189/2, respectively. The results of solving the problem RSPP for the two test 

problems are given at table 4.6.4.L

TEST OBJ TOTAL LOCO. INTEGER SUM OF INF.

T189/1M INF - - 12.1053

T189/2M 770.00 124 YES -

Table 4.6.4.i

Comparing the test problem T189/1M with T189/1, the results show that the 

use of ModHAP has led to an improvement in the sum of infeasibilities and this 

translates to a reduction in the minimum number of locomotives required to achieve 

feasibility. As with the solution for T189/2, for the solution to T189/2M the upper 

limit on the availability of each of the locomotive types is not constraining the 

problem. The optimal solution to T189/2M requires a greater number of locomotives 

than the corresponding solution T189/2, but this is coupled with a significant 

reduction in the objective value of the optimum solution. This last result suggests that 

by accepting smaller values of INTERVAL, the restriction which the value of 

INTERVAL imposes on the light-run times means that the heuristic ModHAP

78



Chapter four: Solution Methods

generates sequences with smaller light-run times.

Heuristic LOCOST

As already shown by British Rail’s method, another means of generating good 

sequences is to solve the assignment problem and control the number of locomotives 

used by placing a cost on the use of a locomotive. This is done using a heuristic 

LOCOST and the results compared with ModHAP.

The formulation of the assignment problem for LOCOST is similar to AP, but 

the objective function has been changed to account for the cost of using a locomotive. 

The formulation for a type set x is as follows:

APL MIN £iex£j€x (c« +  +  /*My)ay

s.t.

^j€x **ji — 1 

ay G {0 , 1}

V i G x APL1 

V iG x  APL2 

V i j G x  APL3

The zero-one variables are:

1 if the locomotive performs a light-run from the end location 

of train i to the start location of train j,

0  otherwise.

79



Chapter four: Solution Methods

The data are:

Cy - the light-run time from the end location of train i to the start

location of train j;

mj - the number of times a locomotive crosses midnight while

working train i;

My - the number of time a locomotive crosses midnight while

performing the light-run from the end location of train i to the 

start location of train j; 

fi - the marginal cost of a locomotive.

X is the type set being considered, where x is a subset of the trains in the data set 

considered.

The matrix structure of the problem APL is unimodular, therefore the condition that 

ay is a zero-one variable can be relaxed.

For heuristic LOCOST all possible connections are allowed, i.e. the value of Cy is not 

altered as is the case with ModHAP.

The problem APL is solved for each type set associated with the data set 

SET189. Two values of the parameter /x are used, /x=150 and /x = 300. These values 

of fi were not chosen arbitrarily. The value of 150 coincides with the marginal cost 

of a locomotive used in British Rail’s heuristic to solve the stock diagramming 

problem for SET 189. As before, all singletons are added to the set of sequences 0  

prior to the use of heuristic LOCOST. The final number of sequences in the set fi is 

8,978. This is significantly fewer than the number created when using ModHAP. 

Using these sequences two test problems are solved. For tests T189/1L and T189/2L 

the limits on the number of locomotives used are the same as those used for T189/1

80



Chapter four: Solution Methods

and T189/2, respectively. The key to the columns of table 4.6.4.ii is the same as for 

table 4.6.4.i.

TEST OBJ TOTAL LOCO. INTEGER SUM OF INF.

T189/1L INF - - 9.2942

T189/2L 1200.00 106 YES -

Table 4.6.4.ii

Comparing these results with those found using ModHAP. It is clear that 

heuristic LOCOST generates schedules which use fewer locomotives to work the 

trains. The sum of infeasibilities has fallen from 12.1053 for testT189/lM to 9.2942 

in test T189/1L, a drop which represents a decreased requirement of almost 3 

locomotives. Similarly, for the second sets of tests the difference in the number of 

locomotives required is notable. However, the restrictions imposed on connection 

time mean that ModHAP out-performs LOCOST when comparisons are made of 

light-run times incurred for T189/2M and T189/2L.

Clearly, it might be possible to improve the results obtained for both methods 

by using alternative values of INTERVAL or fi. These alternative values could be 

selected at random or a method could be developed to test the most promising values, 

values which could be dependent or independent of the type sets. Also it is possible 

to generate more sequences by using additional values of the parameters INTERVAL 

and fi as only two values are used in the above tests. A further possibility would he/to 

combine the two procedures ModHAP and LOCOST by adding the sequences 

generated by both of the heuristics to the set 0. These extensions to the procedure for 

generating sequences are not considered at this stage. For now, given that the next 

step is to use a column generation technique to find optimal solutions to the problem 

RSPP, a reasonably good set of sequences will suffice. It is stated at the time of

81



Chapter four: Solution Methods

implementing the column generation procedure which heuristic procedure is used to 

produce the initial set of sequences 0 .

82



Chapter five: Column Generation

CHAPTER FIVE 

COLUMN GENERATION

5.1 Introduction

This chapter introduces the column generation technique. Section 5.3 reviews 

the use of this method in a theoretical and a practical context. To conclude, a 

description of how the technique is applied to the stock diagramming problem dealt 

with in this thesis is given.

5.2 Column Generation

The seminal paper on the column generation technique is by Dantzig and 

Wolfe [20] and dates back to 1959. The technique provides a means for the efficient 

computation of large scale mathematical programming problems. The method involves 

decomposing a linear problem into independent linear subproblems representing its 

several parts and a coupling problem, the master problem, which links the 

subproblems by means of coupling (common) equations. The master problem is 

obtained from the subproblems by means of linear transformations. In general, the 

master problem contains only a few more rows than there are coupling equations in 

the original problem, but a large number of columns corresponding to the extreme 

points and extreme rays of the poly topes associated with the subproblems. In practice 

though the master problem need only contain a subset of the set of possible columns. 

This is because the original problem is solved to optimality by generating columns 

and introducing them to the master problem as required, rather than tabulating all 

possible columns at the outset. This technique is referred to as "column generation". 

It is this attribute of the column generation technique which makes it an attractive 

procedure for the solution of large scale problems where the number of variables in 

the original problem is prohibitively large.

83



Chapter five: Column Generation

The column generation procedure involves alternating between the 

subproblems and the master problem. The subproblems receive a set of dual values 

associated with the coupling equations. The subproblems are resolved using the new 

dual values and the solutions are sent back to the master problem. The master 

problem then evaluates an optimal combination of the new solutions along with the 

old ones, and sends a revised set of dual values back to the subproblems. This 

iterative procedure continues until an optimality test is passed, or in economic terms 

until an ‘agreement* is achieved between the master problem and the subproblems. 

This iterative process is finite.

Mathematically, the general principle is as follows. Consider a general linear 

programming problem.

LP
MIN cx +  dy LP1

Ax +  By =  b LP2

> X II cr LP3

By =  b2 LP4

x £> 0 LP5

y >  0 LP6

Where A, B, A and B are matrices, b, bj and b2 are vectors with mo, and m2 

components, respectively, x and y are vectors for which values have to be found so 

as to minimize expression LP1.

Now consider the following theorems. Consider a system of linear equations 

Ex=/3. Initially, suppose that the polyhedron p =  {x |E x=/?,x>0) is non-empty and 

bounded.

84



Chapter five: Column Generation

Theorem 5.2.1 (Lasdon T421)

Let p={x\Ex=(3, x^O} be non-empty and bounded, and le tx it i = l , . . . , r  be 

its extreme points. Then any element x S p  may be written as

i=l,...,r, 
\ —l,

The importance of this theorem in the theory of the simplex method lies in the 

following theorem and its implication.

Theorem 5.2.2 (Dantzig ri811

A basic feasible solution corresponds to an extreme point in the convex set o f  

feasible solutions.

Conversely, the set of extreme points corresponding to feasible solutions of 

E x=0 constitutes a convex set. Therefore, any feasible point of the simplex can be 

represented by extreme points by the above two theorems. In the above theorems, it 

is assumed that p  was bounded. Is this assumption necessary, or is it possible to 

represent the simplex of an unbounded problem in a similar way? To see that it is, 

first consider a theorem from Cohn [15].

85



Chapter five: Column Generation

Theorem 5.2.3 

Let

Ex=0 C l

be a system o f  m equations in n unknowns. Then the following assertions are 

equivalent:

i) the system C l has a solution,

ii) the augmented matrix (E,&) has the same rank as E,

iii) fo r  any vector u o f length m, uE—O => u^—0.

When a solution exists, the general solution o f C l has the form x0 +  x ’, where 

x ’ is a particular solution o f C l and x0 is the general solution o f the associated 

homogeneous system

Ex=0 C2

Therefore, by theorem 5.2.3 a complete solution of the system Ex=/3 incorporates 

the homogeneous solutions. The specification of a general solution is of import if 

p={x|E x=/3, x > 0 }  is unbounded. In this case the simplex method not only locates 

the extreme points of the polyhedron given by p, but also the homogeneous solutions 

of p and these correspond to extreme rays of the unbounded polyhedron p. Theorem

5.2.1 can therefore be extended to encompass the situation where p is unbounded.

86



Chapter five: Column Generation

Theorem 5.2.4 (Lasdon T421)

Let p= {x \E x= fi, x^O } be non-empty. Then a point, x, is in p  if  and only if  

it can be written as a convex combination o f extreme points o f p  plus a nonnegative 

linear combination o f extreme rays (homogeneous solutions) o f p; i.e.,

jc,X,

where

Dj —1 ,

and

=  1 ifx t is an extreme point o f p , or

0 if  xt is an extreme ray o f p.

So, returning to the problem LP. For the sets of equations given by LP3 and 

LP4 theorem 5.2.4 says that if

p, =  { x | Ax =  b1? x ^  0}

p i =  { y I By =  t>2, y a  °)

then any element of p, can be written as

x=E i xiXi (5.2.1)

where

M iX — l (5.2.2)

and Xj is an extreme point/extreme ray of p l9 with

5i =  1 if Xj is an extreme point of p lt or
0  if x{ is an extreme ray of p v

87



Chapter five: Column Generation

Similarly,

(5.2.3)

where

Ej W = 1 (5.2.4)

and yj is an extreme point/extreme ray of p2, with

7j =  1 if yj is an extreme point of p2, or
0  if yj is an extreme ray of p2.

Viewing problem LP as: choose from all solutions of LP3 to LP6  those which satisfy

LP2 and minimize LP1. All solutions of LP3 to LP6  can be represented by

appropriate values of \  and /xj in expressions (5.2.1) and (5.2.3), and constraint LP2 

can then be enforced by substituting (5.2.1) and (5.2.3) into LP2 to obtain:

Si (A x ^  +  Sj (By>j =  b (5.2.5)

Performing the same linear transformation for LP1 gives:

Si ( c x ^  +  Sj (dy>j (5.2.6)

Now, defining

Rj =  Byj.

and substituting in expressions (5.2.2), (5.2.4), (5.2.5) and (5.2.6) gives a linear 

problem, which is equivalent to LP, expressed in terms of the variables \  and /q.



Chapter five: Column Generation

MP
MIN Ej +  Ej gj/xj MP1

s.t.

Ei +  Ej Rj/Xj = b MP2

Ei 5^  = 1 MP3

Ej = 1 MP4

\  ^  0 MP5

0 MP6

The problem MP is the master problem. The matrix associated with the problem MP 

has only m+ 2  rows and as many columns as the polyhedra p x and p2 have extreme 

points and extreme rays. Rather than tabulating all such columns, initially the master 

problem only contains a subset of the set of possible columns. To see how columns 

are subsequently added to the master problem, consider the dual vector x = (x 0,x1,x2) 

obtained by solving the master problem based on a subset of the possible columns.

x0 corresponds to constraint set MP2 and scalars and x2 correspond to constraint

sets MP3 and MP4. Pricing out variables \  and ^  gives,

fi =  fi - iToPi - *i5i (5.2.7)
gj =  gj - XoRj - x27j (5.2.8)

The usual simplex criterion will seek to find a variable X, or fit which represents the 

greatest violation in the optimality conditions f;> 0 and g j > 0 .  Such a variable is then

chosen to enter the basis. The question is: how is the entering variable found?

Back substitution for Pj and Rj in (5 .2 .7 )  and (5 .2 .8 )  yields expressions in 

terms of the original variables, i.e.:

?i =  (c - XoA)Xi - x ^  (5 .2 .9 )

gj = (d - XoB)yj - x 25j (5 .2 .1 0 )

89



Chapter five: Column Generation

Without loss of generality, suppose that:

minfogj) =  f. =  (c - XoA)x, - (5.2.11)

Recalling that X; is an extreme point/extreme ray of p x. If p { is bounded an optimal 

solution of Ax =  bj will occur at an extreme point. If p x is unbounded, then the 

simplex method will locate an extreme ray corresponding to a homogeneous solution 

Ax =  0, x >  0. Therefore (5.2.11) is equivalent to solving the subproblem

SP

s.t.

MIN (c -  *oA)x

Ax =  bx 

x >  0

SP1

SP2

SP3

The solution x. of the problem SP gives the next column P. which enters the basis, 

and hence the next column which is added to the subset of columns in the master 

problem. The column P, is given by:

P, =  {Ax.}
{ M

where 6,=  1/0 depending on whether or not x. is an extreme point/extreme ray of the 

polytope p^

Note that in the master problem any point on an extreme ray can be expressed 

as a nonnegative multiple of the point on the extreme ray located by the simplex 

method, hence the stipulation that 6j=0 if xt is a homogeneous solution of Ax=bj.

If f ,< 0  then, barring degeneracy, the inclusion of P. in the basis of the master

90



Chapter five: Column Generation

problem will result in a decrease in the value of the objective. If f8= 0  then there are 

no columns which will reduce the value of the objective function further and the 

procedure terminates.

It is clear from the above discussion, that although the column generated by 

the subproblem achieves the maximum violation of the optimality conditions, any 

column with a negative relative cost could be added to the basis with a promise of a 

decrease in the value of the objective function. Therefore, an extension is to locate 

two columns corresponding to min(?i) < 0  and min(gj)<0 , or even all columns with 

f i< 0 andgj< 0 .

The assertion made at the beginning of this chapter that this procedure is finite 

is based on the following theorem.

Theorem 5.2.5 (Dantzig T1811

Only a finite number o f iterations o f the simplex algorithm is required if  each 

basic feasible solution is improved by introducing into the basis either an extreme 

point P \, where P*t={AxJ with x{ a solution ofA x= bI, chosen so that

i n

tP \ =  minfTcPJ <  0

where x  are the simplex multipliers o f the basis, and Pt is defined in a similar way 

to P*f, or by introducing into the basis P \, where P \= {A xJ, and xt is a

{ 0}

homogeneous solution o f Ax^ 0 ,  from a finite set such that tP \ <  0.

91



Chapter five: Column Generation

A similar theorem can be expressed for the set p2*

A simple outline of the proof is given. It is clear that in the bounded case 

there is only a finite number of distinct extreme points of the subproblem polytopes, 

and therefore if the algorithm were to continue indefinitely it could only do so by 

repeating the set of variables defining the extreme point. In the unbounded case, when 

the simplex method obtains a homogeneous solution, the vector Xj found corresponds 

to a point on the extreme ray located by the method. The number of such vectors, 

ignoring multiples, is finite corresponding to the finite number of extreme rays of the 

subproblem polytopes. Hence the set of Pi is finite.

5.3 Applications of the Column Generation Technique

Dantzig and Wolfe [20] acknowledge a paper presented by Ford and Fulkerson 

[33] as the inspiration behind the development of the column generation technique. 

Ford and Fulkerson propose a method for solving the maximal multicommodity 

network flow problem. For this problem there are K subproblems, one for each of 

the K commodities in the network. At the time of writing Ford and Fulkerson stated 

that: “Straightforward application of the simplex method to such problems is usually 

not feasible, since even small networks may generate linear programs which are too 

large for present machine capacity." Since this work the column generation technique 

has been applied to a number of multicommodity flow problems see: Bellmore, 

Bennington and Lubore [5]; Riberio and Soumis [63]; Appelgren [1]; and, Ferland 

and Michelon [29].

Although the strength of the column generation technique lies in the potential 

for a large reduction in the size of the problems which have to be worked with, the 

situation can be further simplified by means of an intelligent decomposition which 

constructs subproblems that are easily solved. For examples of this see: Desrosiers, 

Soumis and Desrochers [24]; Riberio and Soumis [63]; and, Ford and Fulkerson [33].

92



Chapter five: Column Generation

For these applications of the column generation technique the subproblems are 

shortest path problems. Also see Bellmore, Bennington and Lubore [5] where, by 

means of a simple consideration of the optimality conditions, the subproblems could 

be solved directly as minimal cost network flow problems.

5.4 Review

Before discussing the particular decomposition applied in this thesis, some of 

the aforementioned work warrants further discussion.

Ford and Fulkerson [33] formulate the maximal multicommodity network flow 

problem in such a way that the matrix of the linear program is the incidence matrix 

of arcs vs. chains joining sources to sinks for the various commodities. So, if  

A,,...,An, are the set of arcs in the network and Cj,...,Cn the set of chains, including 

sources and sinks for each commodity, then A =(ari) is the incidence matrix where:

al„ - 1 if C, contains arc Ar,

0  otherwise.

The linear programming formulation which follows is:

MMNF

MAX , x, MMNF1

s.t.

E.-1 +  xn+r =  b,

x, >  0 s = l , . . . ,n + r  MMNF3

r = l,.. .,m  MMNF2

93



Chapter five: Column Generation

where br is the flow capacity of Ar. x,, s = i s  the amount of flow of commodity 

along C, and x„ s = n + l,.. .,n + r , is the spare capacity on arc Ar. The problem 

MMNF corresponds to the master problem in the theory of column generation.!Not 

all possible columns of A, i.e. the chains, are enumerated at the outset. Instead, they 

are generated from the subproblems using an 0 (n2) polynomial time shortest path 

algorithm, made acyclic by introducing source and sink nodes for the commodities. 

The subproblems ensure conservation of flow of commodities and are unbounded. 

The solutions to the subproblems are extreme rays and therefore do not have to 

satisfy a convex combination constraint in the master problem. In the application of 

the procedure a bounded subproblem is obtained by only admitting nonnegative dual 

values, thereby eliminating the possibility of producing negative cycles and ensuring 

that the solution of the subproblem only admits 0-1 elements to the matrix A.

Ford and Fulkerson could not report any computational experience with the 

method. However, they assert that: ”It would certainly be more practicable...than 

straightforward application of the simplex method to a node-arc formulation of the 

problem...”

A more recent multicommodity flow problem solved using the column 

generation technique is the multiple-depot vehicle scheduling problem presented by 

Riberio and Soumis [63]. Simply stated, the problem considers a set of n trips 

T ,,...,T n with pre-defined starting and ending times. There also exists a set of m 

depots D j,...,D m each containing vehicles, respectively. If rs is the travel

time from the end location of trip i to the start location of trip j, the problem is to 

find a feasible assignment of trips to vehicles so that: each trip is completed; no more 

than the available vehicles are used; and, the total cost is minimized. A cost is 

incurred when an intertrip is made, i.e. the cost of moving a vehicle when it is not 

performing a trip.

Mathematically, the problem can be expressed as:

94



Chapter five: Column Generation

MDVSP
MIN Efc Ej Ej Cy Xyk

s.t.

j =  l,,.,n + m  MDVSP1 

k = l,...,K ,  

j =  l,...n + m  MDVSP2 

k = l,. . . ,K  MDVSP3 

k = l,...,K ,  

j =  l,...n + m  MDVSP4 

k = l,...,K , 

j =  l,...n + m  MDVSP5

where Xyk is the flow of vehicle type k from end location of trip T; to start location 

of trip Tj. Cy is the cost of the intertrip and is independent of the vehicle type. Note 

that i ,j= n + l,... ,n + m  represent the depots.

The decomposition then runs as follows:

D MDVSP
MIN Ek EpeQ̂ ) cpyp

s.t.

Ek SPeQ(k) ajPyp =  1 j =  1 ,...,n D_MDVSP1

p̂eO(k> Yp — *k k = l,. .. ,K  D MDVSP2

yp E {0,1} D_MDVSP3

Ek A xijk =  1

Ei Xyk - Ej Xjik =  0

Ej Xn+kjlt — rk 
Xyk ^  0

Xyk integer

95



Chapter five: Column Generation

where fl(k) is the set of paths leaving and returning to the depot Dk. If p is a path in 

fl(k), then cp is the cost of traversing the path p and ajp= l  if p covers trip Tj. 

Associating a variable yp with each path p, the above formulation states that the 

master problem is to choose among the available paths so as to satisfy the conditions 

of the original problem.

There are K subproblems, one for each depot. The subproblems seek to satisfy 

the conservation of flow constraints, constraint set MDVSP2, and the solutions to the 

subproblems are either zero or unbounded as a result of the homogeneity of the 

constraint set. As a result, there is no convexity constraint in D MDVSP. An 

unbounded solution to the kth subproblem is a circuit through depot D*. In practice, 

extreme ray solutions for the subproblems are found by solving unconstrained shortest 

path problems based on the network underpinning the subproblems. The shortest path 

problems are made acyclic by the addition of source and sink nodes for the depot.

Riberio and Soumis report the solution of problems with up to 300 trips and 

6  depots. They state that the "...final set of test problems is formed by instances four 

to five times larger than the largest problems exactly solved so far."

Among the papers which seek to solve multicommodity flow problems using 

column generation is that of Appelgren [1]. This paper is worth mentioning as it 

opens the discussion on what is known as a ‘restricted* master problem. Essentially, 

the master problem can be represented at two extremes. One extreme is the ‘full’ 

master problem for which all possible solutions of the subproblems are represented. 

The other extreme is the restricted master problem, obtained from the full master 

problem by dropping all columns except those in the basis and the new columns about 

to be introduced. This restriction on the number of columns allowed to exist in the 

master problem is of use when the problem could expand by an indefinite number of 

columns. Even though a column is dropped from the active set of columns, it still 

exists in the subproblems and may be generated again if required.

96



Chapter five: Column Generation

In practice, Dantzig [18] suggests three variants for controlling the number of 

columns in the restricted master problem:

i) The restricted master problem is augmented by each new column, but

each column that drops out of the basis is dropped from the current 

restricted master.

ii) The restricted master problem is augmented by more and more

columns and those dropping out of the basis are retained as 

supplementary columns. r

iii) The restricted master problem is augmented by more and more

columns, and those dropping out of the basis are retained up to the 

available memory capacity within the electronic computer; at this 

point, columns that price out most positive are dropped.

In Appelgren’s restricted form of the master problem, all columns generated 

by the subproblems are added to the restricted master but each column that 

subsequently drops out of the basis is dropped from the restricted master. So, 

Appelgren allows room for the columns in the basis plus as many columns as there 

are subproblems. This scheme effectively reduces the size of the master problem. The 

drawback, however, is that previously discarded columns may have to be regenerated 

by the subproblems as the simplex method requires them.

5.5 Decomposition for the Stock Diagramming Problem

The decomposition applied to the problem covered in this thesis places the 

conservation of flow constraints in the subproblems. The requirement that each train 

is worked exactly once is held in the master problem along with the constraint 

limiting the number of locomotives of each type used. The conservation of flow

97



Chapter five: Column Generation

constraints can be represented by K independent subsystems of linear equations, one 

for each vehicle type k. There are, therefore, K independent subproblems. Recalling 

the original problem SD first, the formulations which follow describe this 

decomposition.

Let the set of trains be r= {i | i is the i* train in the timetable}. Let the set 

of locomotive types be A ={k | k is the number of the locomotive type}. Then define 

the set P(k) as P(k)={i | train i is compatible with locomotive type k}.

SD
MIN EieTEjerEkeA Cy x>

s.t.

'j€P<Jc) Aij

'jepflc) Aji

V iEP(k), kEA  SD1 

V iEP(k), kEA SD2

V iE r  SD3 

V kEA  SD4EierEje, ("W* +  ^  Uk
Xjk S  {0 , 1}

y ‘ e  {0,1}

V i j 6 P(k), k6 A SD5 

V i€P (k ), k6 A SD6

where the zero-one variables are:

k 1 if train j follows train i on locomotive type k, 

0  otherwise;

1 if train i is worked by locomotive type k, 

0  otherwise.

98



Chapter five: Column Generation

The data elements are:

Cy - cost of performing the light-run from the end location of train

i to the start location of train j;

m; - number of times a locomotive crosses midnight while working

train i;

My - number of times a locomotive crosses midnight whilst moving

from end location i to start location j;

Uk - the number of locomotives of type k available.

If 0  is the set of schedules satisfying constraint sets SD3 and SD4 in SD, then the 

master problem can be written as a set-partitioning problem with the added constraints 

on locomotive availability. The formulation is given as:

SPP
MIN Eren crsr

s.t.

^r€0 r̂iSr — 1 V iE r SPP1

Ereo LrfcSr — Uk V k E A SPP2

Sr £  {0,1} V rG fl SPP3

where the zero-one variables are:

sr - 1 if sequence r is used,

0  otherwise.

99



Chapter five: Column Generation

The data elements are:

cr - total light-run cost of working sequence r;

5ri - 1 if train i is included in sequence r,

0  otherwise;

La - number of times locomotive type k crosses midnight whilst

working sequence r;

Uk - number of locomotives of type k available.

The dual problem associated with SPP is given by:

DSPP
MAX EiGr Zj+Sjcga Ukwk

s.t

SriZi+L^W k <  Cr

Zj free variable 

wk <  0

The variables are:

^ - the dual values associated with constraint set SPP1. Zj can take

positive or negative values as SPP1 is an equality constraint.

wk - the dual values associated with constraint set SPP2. wk takes

non-positive values as SPP2 is a less than or equal to 

constraint.

The data are as defined for the problem SPP.

V r e i i  DSPP1 

V iE r  DSPP2 

V k € A  DSPP3

100



Chapter five: Column Generation

Therefore a sequence violating the optimality conditions has a reduced cost given by:

cr—SriZj-L^Wk <  0. (5.5.1)

So the aim is to find a sequence which maximally violates the optimality condition 

and add this sequence to the master problem. Rewriting (5.5.1) in terms of the 

variables xyk and y k gives the expression

CijXgk- z iyik- w t(miyik+ M ijxak) (5.5.2)

Therefore as the maximum violation in the optimality conditions is the minimum 

value of the expression given by (5.5.2), this minimum value can be found by solving 

the subproblems given by:

S*

MIN EiepooEjepd,) C8x8k- z lyik- w l[(miy1k+ M ijXiik)

s.t.

£j€pw x ijk =  y ‘

EjePOO V  =  y k 
x«k ^ 0

yk o

V i£P (k ) Skl

V i€P (k ) Sk2 

V i,jeP (k ) St3

V i6 P(k) Sk4

•manner
The variables x^ and yjk are defined in the samejas in SD except that the restriction 

that the variables are binary is relaxed. The data elements m;, My and cti are as 

defined for SD. The data elements zx and wk are the dual values associated with 

constraint sets SPP1 and SPP2, respectively, and are retrieved from the solution to 

SPP.

101



Chapter five: Column Generation

The solution to the master problem does not have to satisfy the convex 

combination constraint, as the formulation Sk is a system of homogeneous equations. 

Note also that as the problem Sk is unimodular, therefore, the variables x8k and y* 

only take integer values in an optimal solution to Sk.

The solutions to the above subproblem consist of one or more sequences which 

when priced out have a zero or negative cost. The solution value is the sum of the 

reduced costs of the sequences in the solution. As the variables are not restricted to 

take binary values, the solutions are either zero or unbounded.

The next chapter presents a detailed discussion of the exact nature of the above 

subproblems. The methods employed to solve the subproblems are compared and 

criticized. Also, in response to the discussion in this chapter, there is a description 

of a scheme used to restrict the size of the master problem in the situation where a 

large number of columns are being passed to the master problem from the 

subproblems.

102



Chapter six: Subproblems

CHAPTER SIX

SUBPROBLEMS

6.1 Nature of Subproblem

In chapter five it is stated that the solutions to the subproblems are zero or 

unbounded. How do these solutions arise and how are they interpreted in terms of a 

graphical representation? Remembering that a schedule is a cycle with periodicity one 

day, then the generation of a column with a negative reduced cost consists of finding 

a negative cost circuit in the network underpinning the subproblem. A minimum cost 

solution with value zero indicates that all circuits have a non-negative cost. An 

unbounded solution is analogous to repeated traversals of circuits with negative costs. 

A feasible solution need not include every train considered by the subproblem, but 

a non-trivial solution should include at least one such train. Examples of an 

unbounded solution and of a zero (non-trivial) solution are given below.

UNBOUNDED

T1

Z i=10
T2

Ci2=10 ’I— “ ►
Z2=30

W k=-10
► —

C21=0

cost=-20

ZERO

T1
Wk=-10 cost=0

Z i=20

Z3=0 C31=10

Figure 6.1.i

103



Chapter six: Subproblems

In the above figure the solid lines represent the train arcs and the dashed lines 

represent the light-run arcs. T n ’ indicates train n.

The example of an unbounded solution corresponds to a schedule which 

includes trains 1 and 2. The zero example corresponds to a schedule which includes 

trains 1 and 3. The first solution has cost=-20 and the second solution has cost=0.

An unbounded solution corresponds to an extreme ray of the polytope of the 

subproblem. Consider the formulation Sk introduced in chapter five. By adding the 

constraint that each train should be worked no more than once, a bounded subproblem 

is obtained with each extreme point corresponding to an extreme ray of the 

unbounded subproblem. The new formulation is given below as BSk. A non-trivial 

solution now corresponds to a circuit (circuits) in the network which is (are) traversed 

exactly once.

In chapter five it is stated that optimal solutions to BŜ  are integer as the 

problem is unimodular. Now that the variables are bounded by a value 1, x^ and y* 

take zero-one values in any optimal solution to BSk.

BSk
MIN EieP<k)Kj6 P(v) csxsk- z iyik- w t(miyik+M sx8k)

s.t.

'j€P(k) Aij

'j €  P(k) Aji

V iGP(k) BSkl

V iEP(k) BSk2

V iGP(k) BSk3 

V ijE P (k ) BSk4 

V iEP(k) BSk5

104



Chapter six: Subproblems

6.2 Alternative Formulation

As the subproblem BSk is a network problem it lends itself to a graphical 

representation. As before P(k) is the set of trains compatible with locomotive type k. 

For this set of trains the network used by the locomotives can be described by a graph 

Gk=(Vk,Ak) where Vk=P(k)UP(k) is a set of nodes representing the start and end 

points of each of the trains in P(k), and Ak=P(k)UP(k)xP(k) is the set of oriented 

arcs comprising of |P(k)| train arcs and |P(k) | 2 light-run arcs. An example of such 

a graph for the case where P(k)={l,2,3} is given below.

Figure 6.2.i

105



Chapter six: Subproblems

The labels on the nodes are defined as follows: 

i, =  start node for train i; 

i6 =  end node for train i.

The arcs described by ■■ - ► are the train arcs and, referring to the formulation 

BSk, illustrate the variables y k. Similarly, the arcs described by are the light-run 

arcs which illustrate the variables x^. As the only outward arc for each node i, is the 

train arc and the only inward arc for the node ie is the train arc, it is clear from 

the argument that follows that nodes i, and ^ can be merged to i and a simplified 

graphical representation obtained.

Figure 6.2.ii

The above graph is a complete graph CGk=(CVk,CAk) where CVk=P(k) is the set of 

nodes and CAk=P(k)xP(k) the set of arcs which now excludes the train arcs.

Is this new graphical representation a valid description of the subproblem and 

how does it translate to the formulation of the subproblem?

For the problem BSk consider the objective function for a particular train i. If 

Xijk= l  for some j, by constraint set BSkl this implies that yjk =  1. Conversely, if

106



Chapter six: Subproblems

y-̂ —l this implies that there exists a j such that Xjjk= l .  So, Xjjk= l  =1. By a 

similar argument X;jk=0 y k:=0. Hence, the objective function can be rewritten as:

£iep(i)Ejep(k> (c i, ~ z , ~ m j Wk- ( 6 . 2 . 1 )

Now consider an alternative definition of the train variables y k and the light-run 

variables x^.

STARTi E N D i STARTj END j

k
y .

Figure 6.2.iii

As illustrated in the above diagram, y k represents a locomotive type k running from 

the start location of train i to the end location of train i, and xijk represents a 

locomotive type k running from the end location of train i to the start location of 

train j. Let v^ represent a locomotive of type k running from the start location of i 

to the end location of i and then to the start location of train j. i.e.

107



Chapter six: Subproblems

START i END i START j

Figure 6.2.iv

As already stated, for a particular train i worked by a locomotive type k then there 

is a train j such that ^ = 1  y k= l ,  or for every train j ^ = 0  y ^ O . Therefore, 

for a train i worked by a locomotive type k, if  Xijk=  1 for a train j (if Xjjk= 0  for every 

train j) then y k= l  (yik= 0) and, by definition, Vijk= l  for train j (Vijk= 0  for every train 

j). Conversely, for a train i worked by a locomotive type k, if v̂ k= l  for a train j (if 

Vik= 0  for every train j) this implies that Xik= l  for train j (Xyk= 0  for every train j) 

and y k= l  (yilc=0). So x ^ l  «  vsk= l ,  xijk= 0  °  Vjjk=0, and (6.2.1) can be rewritten 

as:

EiEP(k)£jep(io (c ij—Z;- m iw k—MjjWjVjj11 (6 .2 .2 )

What about constraint sets BSkl, BSk2 and BSk3? Consider constraint set BSkl. If 

Ejep(k)xijk==0  this implies that y k= 0  and this in turn implies that Ejep(k)vijk=0 - 

Similarly, if E ^ ^ x ^ l  this implies that y k= l  and this gives £jeP(k)Vijk= l .  By 

symmetry, BSk2 also holds. Thus:

108



Chapter six: Subproblems

Ejepoc) xijk — Yik “  ĵep(k) vijk (6.2.3)

and

W  x /  = yt =  Ejgpd, Vjik (6.2.4)

Now from BSkl and BSk2:

Ejepflc) Xjjk =  SjgP(k) Xj£k =  y k <  1 (6.2.5)

(6.2.3), (6.2.4) and (6.2.5) together give:

Ej€P(k) vijk =  ^jepw vj»k (6 .2 .6)

ĵepoc) vgk ^  1 (6.2.7)

Constraint set (6.2.6) ensures conservation of flow and constraint set (6.2.7) ensures 

that the subproblems are bounded. So bringing expressions (6.2.2), (6.2.6) and

(6.2.7) together gives a formulation of the subproblem BSk in terms of the newly

defined variables Vjf, i.e.

BSk
EierooEjepM (cs - z,- m,wk- M;jw,)

s.t.

Ejep<k) vijk =  ĵep(k) vjik V iEP(k) B Skl

ĵep(k) vijk — 1 V iEP(k) B S ^

Vjjk > 0  V i€P (k) B S k3

The variables vyk take zero-one values as the matrix structure of this problem 

is totally unimodular.

109



Chapter six: Subproblems

(Clearly the argument given above could equally be applied to formulation SD 

and a new formulation obtained which replaces the variables and y k with the 

variables Vyk.)

The next section discusses the methods used to solve the subproblems given 

by B Sk.

6.3 Solution of Subproblem Methods

6.3.1 Shortest Path

In a paper on "Routing with Time Windows by Column Generation", 

Desrosiers et al. [24] solve the subproblems using a specialized version of the Ford- 

Bellman algorithm which they refer to as the "Shortest Path with Time Windows" 

(SPTW). The time-dependency of the problem allows for the construction of an 

acyclic network, in most instances, within which a shortest path must be located. It 

is stated in chapter five, one column or many columns can be added to the master 

problem during an iteration of the column generation technique. The SPTW algorithm 

is a polynomial time algorithm and Desrosiers et al. use the speed of the algorithm 

to advantage. Their strategy is to generate a number of different routes at each 

iteration of the column generation technique by repetition of the SPTW algorithm. 

The aim of this scheme is to accelerate progression to an optimal solution.

A shortest path algorithm is used to solve the subproblems generated in the 

Multiple-depot Vehicle Scheduling Problem described by Riberio and Soumis [63]. 

The graphs which represent the networks underpinning the subproblems are made 

acyclic by exploiting the relation that any ordered pair of trips (T^T,) is compatible 

if and only if e{ +  ty <  Sj, where ej is the end time of trip Tj, ty is the travel time 

between trips Tj and Tj and Sj is the start time of trip Tj. To complete the acyclic 

graph a copy of the depot node is taken to produce source and sink nodes. A fuller

110



Chapter six: Subproblems

description of the method of construction of such a graph is given by Levin [47] and 

the resulting graph referred to as a "schedule map".

It would be desirable to represent the subproblems dealt with in this thesis 

using acyclic graphs and thereby solve the subproblems in polynomial time using a 

shortest path problem. Unfortunately, such a simple transformation is not possible for 

two reasons. The first problem is that there are no time-dependent precedence 

relationships limiting the order in which trains can appear in a schedule as is true in 

the above cases. The second complication arises because there are no depots in the 

stock diagramming problem and therefore no natural starting point for a schedule. 

Nevertheless, these considerations do not preclude the use of a shortest path algorithm 

to locate circuits with negative costs in the subproblem networks, as shortest path 

algorithms can be used to detect negative cycles. The negative cycles correspond to 

schedules which violate the optimality conditions and hence, new columns to be added 

to the master problem SPP.

The shortest path algorithm used to detect negative cycles in the graphs 

associated with the subproblems BSk is the matrix multiplication method. (See 

Appendix A for a description of the algorithm.) The matrix multiplication method 

finds shortest paths between all pairs of nodes and so it is not necessary to specify a 

starting node. If the method is terminated as soon as a negative cycle is found the 

complexity of the algorithm is 0(n4) (see Appendix A for proof). This gives a method 

for generating columns in polynomial time. However, there are two drawbacks to this 

method. The first concerns the amount of computer memory needed to keep a record 

of the order in which nodes are visited in a path. This information must be kept in 

order to reconstruct a path which forms a negative cost cycle. The second drawback 

is the most important disadvantage of this method. As the procedure terminates as 

soon as a first negative cost cycle is found, the maximum possible violation in the 

optimality conditions is not necessarily found. This may mean that the resulting drop 

in the value of the objective function of the master problem is small at each iteration

111



Chapter six: Subproblems

of the column generation technique. This affects the time taken to find an optimal 

solution to the original problem. This tendency is illustrated and discussed further in 

chapter seven, but for now a strategy for dealing with the first drawback is suggested.

In an attempt to overcome storage problems which may be encountered when 

using the matrix multiplication method for large data sets, an alternative scheme is 

proposed. As a first step the matrix multiplication method is used to find a node 

through which a negative cycle passes. However, instead of keeping a record of all 

the nodes visited along each path, only the node I at the start of the path is recorded. 

If a negative cycle is found to pass through node I, the matrix multiplication method 

stops and the Bellman-Ford Algorithm (see Appendix B) is used to find a negative 

cycle using node I as a starting point. For comparison, for a problem with n nodes 

the matrix multiplication method stores the information on the nodes in the negative 

cycles in an nxnxn matrix, whereas given a starting node the Bellman-Ford Algorithm 

keeps this record in an nxn matrix. The trade-off for a reduction in storage is an 

increase in computing time as both the matrix multiplication and the Bellman-Ford 

algorithms are being solved. For the matrix multiplication method, now that only the 

details of the starting node of a negative cycle are required, the algorithm has 

complexity 0(n3logn) (see Appendix A). The Bellman-Ford Algorithm has complexity 

0(n3) (see Appendix B).

An extension to the above method is to make multiple passes through the 

matrix multiplication method at each major iteration, with the intention of producing 

a number of columns. One way of doing this is to ban a particular connection in a 

negative cycle just located by the Bellman-Ford algorithm for the current subproblem. 

So, if a negative cycle through starting node I has the connection I-*J, introduce a 

large positive cost on the arc W  before the next execution of the matrix 

multiplication method. This added loop can be executed until no further negative 

cycles exists, but it is advisable to control the number of new columns produced by 

introducing a limit on the number of times the matrix multiplication method is

/

112



Chapter six: Subproblems

invoked.

6.3.2 Simplex Method

The second method proposed is to solve the subproblems using the simplex 

method. This method was not adopted initially due to complexity considerations. In

a discussion of complexity of algorithms Papadimitriou and Steiglitz [60] present an
of

argument due to Klee and Minty [40] which asserts that there exists a class linear 

programming problems in n variables which require 2“-l iterations of simplex to find 

an optimum. Nemhauser and Wolsey [55] confirm that the simplex algorithm is not 

a polynomial time algorithm, but also present the simplex algorithm as outstanding 

evidence against the practice of worst-case analysis of algorithms as the simplex 

method performs well in many real-world applications. Moreover, recent probabilistic 

analysis suggests that the expected running time of the simplex method is bounded by 

a polynomial in m , the number of constraints, and n, the number of variables, in the 

standard linear programming problem.

Given that the running time may prove reasonable and that the simplex method 

locates a column which corresponds to a maximum violation of the optimality 

conditions, this method is tested. The hope is that the trade-off between the time 

taken to solve the subproblems and the quality of the columns located would give rise 

to a positive payoff in terms of the reduction in the objective function value of the 

master problem. It is shown in chapter seven that the results are outstanding 

compared to those achieved using the shortest path method and this led to the simplex 

method being adopted as the method for solving the subproblems.

Having opted for a method which finds optimal solutions to the subproblems, 

the only remaining doubts concern the use of a non-polynomial time algorithm. These 

doubts were finally allayed when it was found that there is a startlingly simple way 

to achieve the same quality of solutions using a polynomial time procedure.

113



Chapter six: Subproblems

6.3.3 Assignment Method

For the subproblem given by BSk, a non-trivial solution is a set of schedules 

which includes at least one but not necessarily all trains in the set P(k). Suppose that 

for a locomotive type k the set P(k)={l,2,3,4,5,6}. Further suppose that the optimal 

solution to the subproblem BSk is found using the simplex method, and that the set 

of schedules corresponding to this solution do not include train 6 . This solution is 

illustrated below using the complete graph CGk associated with this subproblem.

Now, consider a two stage modification of the formulation B Sk. The 

modification converts the inequalities of constraint set B Sk2  to equalities to give 

constraint set BSkl of BS^ Then, adds constraint set BSkl to constraint set BShl to 

give constraint set BSk2 of BSk. The conservation of flow condition becomes implicit.

Figure 6.3.3.i

114



Chapter six: Subproblems

s.t.

'jGP(k) vij

/j6P(k) Vji -

vak ^  0 V i,j G P(k) B S^

V ieP (k )B S k l
V iEP(k) BS^

This is the same as problem BSk, except that this time the solution must correspond 

to a set of schedules which include every train in the set P(k). The formulation BSk 

is recognizable as an assignment problem, also known as a bipartite weighted 

matching problem. Papadimitriou and Steiglitz give the following theorem:

Theorem 6.3.3.1

The Hungarian Method correctly solves the assignment problem fo r  a complete 

bipartite graph with 2n nodes in 0(r?) arithmetic operations.

For a description of the Hungarian Method see Appendix C.

So, if it is possible to construct a complete bipartite graph associated with the 

problem BS*, then it is possible to solve the problem given by BS* in polynomial time 

using the Hungarian Method.

By duplication of the trains in the set P(k) it is possible to create a complete 

bipartite graph BGk=(SVk,TVk,BAk), where SVk=P(k), TVk=P(k) are the sets of 

source and sink nodes and BAk=P(k)xP(k) is the set of arcs. The weight on the arc

115



Chapter six: Subproblems

given by the ordered pair ( ij) , iE SV k, j£ T V k, is given by 

(cij - z i- m iwk- M iiwk)= C ij. Note that the Hungarian Method requires that the costs 

on the arcs are non-negative, so if CyCO for any ordered pair (i,j) then calculate 

M C=m ax(ij)( —Cjj) and then solve the problem with costs C ^ C y + M C . The cost of 

the minimum solution can be found by calculating the value of ( $ — |P(k)|xM C), 

where <f> is the solution to the assignment problem.

So for the above example with P(k) =  {l,2,3,4,5,6}, the graph BGk is:

Figure 6.3.3.ii

The example solution of figure 6.3.3.i shown on this graph appears as:

116



Chapter six: Subproblems

© ©

Figure 6.3.3.iii

Clearly, this is not a solution to the assignment problem as node 6 has not been 

covered. However, performing the matching 6-*6 achieves a feasible solution to the 

problem BSk. Additionally, if the cost on the arc (6,6) is taken to be zero then the 

solution is not only a feasible but also an optimal solution to the assignment problem 

as the objective function value agrees with that found using the simplex method. 

Moreover, if all arcs (i,i) have a cost Cu=0, then any optimal solution to B S k can 

be converted to an optimal solution to BS* by assigning any unassigned train to itself. 

The question is: Is it possible to construct the subproblems so that it becomes 

reasonable to set Ci;=0, solve the assignment problem and from the solution to BS* 

derive an optimal solution to the problem B S k?

117



Chapter six: Subproblems

In the context of the column generation technique, if all singleton sequences, 

i.e. all sequences of the type i-*i, are included in the master problem at the outset 

then in the pricing out exercise all singleton sequences will have a non-negative 

reduced cost. This means that if a singleton sequence appears in a solution set of

sequences for the problem BSk, it contributes a zero cost to the value of objective

function of BSTk. This is clear, as a singleton sequence with a positive reduced cost 

would never appear in the solution to BSk. It is the inclusion of all singletons in the 

master problem which makes it is possible to set 0^=0 in the assignment matrix and 

find a solution to BS* which has the same value as the solution to BSk. Moreover, 

the optimal solution to BS*. can be converted into an optimal solution to B Sk. To see 

this, consider the possible states of a train i in an optimal solution to the problem 

B Sk:

i) train i is included in a schedule length >  2;

ii) train i is included in a schedule length =  1, i.e. i-*i;

or, iii) train i is not included in any schedule.

If a particular train i must be present in a schedule of length ̂  2 in any optimal 

solution of B Sk, then the Hungarian Method will locate such a schedule. If train i 

must not appear in any schedule of length > 2  in an optimal solution of BSk but may 

or may not appear in a singleton sequence, then in this situation the assignment i-*i 

is made. In effect, the assignment i-*i is a default setting which is used to satisfy the 

specification that an optimal solution to BSk need not include all the trains in P(k). 

A feasible and optimal solution for the problem B Sk is then obtained from the 

solution to B ^  by removing all singleton sequences. The removal of all singleton 

sequences from the solution to BSk is valid as the addition of the singleton sequence 

to the master problem represents a duplication of columns. Therefore only those 

sequences of length >  2 need to be added to the master problem. The validity of this 

approach is confirmed empirically and the results of the experiments are given in 

chapter seven.

118



Chapter six: Subproblems

6.4 Constructing Subproblems

For the stock diagramming problem with K locomotive types the set of 

subproblems has a natural order equal to K, one subproblem for each locomotive 

type. If the solution to each of these subproblems is zero then the optimality condition 

is satisfied and an optimal solution to the original problem given by SD is found. 

However, it may be possible to accelerate the progression towards optimality by 

constructing and solving additional subproblems to generate more columns at each 

iteration of the column generation technique. Given that there are K subproblems 

based on the sets P(k)={i | train i can be worked by locomotive type k}, it is 

possible to construct subproblems based on the proper subsets of P(k). Such a family 

of subsets of the set P(k) can be constructed using the argument of chapter four, i.e. 

by considering type sets. Recall from the discussion of chapter four that the problem 

AP is solved for one locomotive type in a type set and then copies made of the 

sequences found. For the subproblems, it is not possible to solve the subproblem for 

one locomotive type in the type set and then make copies of the sequences found, as 

the values of wk may differ between locomotive types. Therefore, based on the trains 

in the type set, a subproblem is constructed for each locomotive type which defines 

the type set. For example, if the type set ‘TYPE kj AND k2 ONLY*={4,5,6}, then 

two subproblems based on the set of trains {4,5,6} are constructed. The first 

subproblem relates to locomotive type kj and the second relates to locomotive type 

k2. It is possible to control the number of subproblems considered by an appropriate 

specification of the type sets. For instance, a limiting condition may be: "Consider 

the type sets based on all combinations of length <  3 of locomotive types." During the 

solution of the subproblems using the three methods described above, the actual 

control strategies used are stated in chapter seven.

119



Chapter seven: Optimal Solution

CHAPTER SEVEN 

OPTIMAL SOLUTION

7.1 Introduction

This chapter describes in detail the application of the column generation 

technique to the stock diagramming problem. This discussion begins with a 

description of how the master problem is constructed, augmented and solved. 

Following on, there is a comparison of the different subproblem solution 

methodologies employed.

7.2 The Master Problem

7.2.1 Solution of the Master Problem

In every instance in the following discussion the linear programming relaxation 

of the master problem is solved using the primal simplex algorithm. This algorithm 

is available in LAMPS, the commercial mathematical programming package 

introduced in chapter four.

The formulation of the linear programming relaxation of the master problem 

SPP presented in chapter five is given here as:

120



Chapter seven: Optimal Solution

RSPP
MIN Eren crsr

s.t.

^ren r̂iSr “  1

^r€0 L,kSr <  U k 

sr >  0

V iG rR S P P l

V k £ A  RSPP2

V r£Q  RSPP3

The sets, variables and data are as defined for formulation SPP.

The problem as specified is to find a subset of sequences from a given set of 

sequences 0. The subset chosen must represent a minimum cost mix of sequences 

which work each train exactly once whilst using no more than the number of 

locomotives available. So, in order to solve the master problem, and commence the 

column generation technique, a set of starting sequences 0  is required.

7.2.2 Construction of the Set Q

The starting set of sequences is constructed using one of the heuristic 

procedures described in chapter four. The resulting set of sequences may not contain 

a subset of sequences which represent a feasible solution to the master problem. If 

this is the case then a standard Phase I procedure is used in conjunction with the 

column generation technique to locate a feasible solution to the master problem.

7.2.3 Phase I

The formulation used for the Phase I procedure is a simple adaption of the 

master problem RSPP.

121



Chapter seven: Optimal Solution

RSPPI
MIN Ek pk

s.t.

^ r € Q  ^riSr “  1

^r€0 L*sr <  Uk+ Pk 

Sr 0

pk >  0

V iE r  RSPPI1

V kEA RSPPI2

V rEft RSPPI3

V kEA RSPPI4

where the sets, variables and data are as defined for SPP with the addition that:

Alternative Phase I formulations exist but, as all singletons are automatically included 

in the set 0, it is known that the constraint set RSPPI 1 is satisfied immediately and 

constraint set RSPPI2 can then be satisfied by the addition of artificial variables pk. 

So, the problem RSPPI seeks to find a solution which works each train exactly once 

but uses as few locomotives above the limit on the stipulated number available as 

possible. If the optimal solution to RSPPI for the set Q is not zero, then there does 

not exist a mix of sequences from the set Q which represents a feasible solution to the 

problem RSPP. It is therefore necessary to use the column generation technique to 

generate sequences and augment the set 0  until: Ek pk= 0 and feasibility is achieved; 

or, the column generation procedure terminates with Dk pk> 0  and the problem is 

proven infeasible. If the problem RSPP is feasible, then when Dk pk= 0 all the 

artificial variables pk are at their lower limit of zero and can be eliminated.

is the artificial variable associated with locomotive type k.

122



Chapter seven: Optimal Solution

The subproblems associated with RSPPI are exactly the same as those of the 

problem RSPP barring a change in the objective function coefficients of the variables 

i.e.

The iterative process of Phase I is illustrated in figure 7.2.3.i. Notice that each 

time the master problem is augmented it is not solved from a slack basis. Instead, the 

previous basis is stored and the simplex algorithm recommences from this old basis.

Having found an initial feasible solution to RSPP the Phase II procedure 

commences.

7.2.4. Phase II

In Phase II the column generation technique is used to solve RSPP and take 

the optimal solution to RSPPI from the status of a feasible solution to RSPP to that 

of an optimal feasible solution.

BSkI
MIN EjDj (—Zj— —Mywjv;jk

s.t.

V iGP(k) BSkI l

V iGP(k) BSkI2 

V i,j€P(k) BSJ3

123



YES

Are there any 
new columns?

NO

Add new columns

Insert stored basis

Problem infeasible

Solve RSPPI

i
Store current basis

Is the objective 
function=0?

YES

NO

Output dual values

Solve subproblems 
BSkI

 ̂ Delete artificial 
variablesT

Enter Phase II



Chapter seven: Optimal Solution

The Phase II procedure is similar to the Phase I procedure except that, having 

secured feasibility, there is only one stopping criterion, namely: if no negative cycles 

exist, then the solution is optimal and the procedure terminates. Schematically the 

procedure is as shown in figure 7.2.4.i.

The interaction between the master problem and the subproblems during the 

Phase I and Phase II procedures is now established. The solution methods used to 

solve the subproblems are now discussed. A data set SET189, described in chapter 

four, is used as a tool for explanation.

7.3 Test Set of Data

In chapter four the heuristics HAP and ModHAP are applied to the data set 

SET 189. For each of the heuristics the solution of the master problem based on the 

initial set of sequences was found to be infeasible. The sum of infeasibilities was 

equal to 13.3367 when heuristic HAP was used and 12.1053 when ModHAP was 

used. Hence, having used either HAP or ModHAP to create the initial set of 

sequences, both Phase I and Phase II procedures are required to find an optimal 

solution to RSPP for SET189. As each subproblem solution methodology is discussed, 

it is made clear which heuristic is used to create the set fi.

7.4 Subproblem Methods

7.4.1 Shortest Path Method

Interaction between Master and Subproblems

Having solved the Master Problem using the primal simplex algorithm of 

LAMPS, LAMPS produces an output file of the dual values. The FORTRAN

125



Chapter seven: Optimal Solution

YES

Are there any 
new columns?

NO

Solve RSPP

Add new columns

Insert stored basis

Output dual values

Store current basis

Optimal solution 
to problem RSPP

Solve subproblems

Figure 7 .2 .4 .i 

126



Chapter seven: Optimal Solution

program AUTONEG is then used to find new columns using the matrix multiplication 

method in conjunction the Bellman-Ford algorithm. AUTONEG produces an output 

file which stores the new columns in the AMS format required by LAMPS. LAMPS 

is re-entered, the new columns added, and the master problem resolved. A flow- 

diagram of AUTONEG is given at figure 7.4. l.i. The parameter COUNT is used to 

control the number of repetitions of the shortest path method for each of the 

subproblems. Figure 7 .4 .l.ii describes how this method is incorporated into the 

column generation technique for a Phase II procedure.

Type Sets

The number of subproblems solved at each iteration of the column generation 

technique is dependent on:

i) the number of type sets specified and therefore the number of 

subproblems created (see chapter six for further details);

ii) the number of times the shortest path method is repeated for each 

subproblem.

Dealing with i) first. For the data set SET189 the type set specification was: 

"Consider all combinations of length< 3  of locomotive types." An example of such 

a type set might be: ‘TYPE 158 ONLY’= {all those trains which can be worked by 

locomotive types 1 and 5 and 8 but no other locomotive types}. Recall that for each 

combination of locomotive types two type sets are specified. Therefore, for the data 

set SET189 which has 10 locomotive types, for this specification the maximum 

number of type sets possible is 350. Some of these type sets may be empty, ii) refers 

to the value given to the parameter COUNT.

127



Chapter seven: Optimal Solution

Are there any unsolved 
subproblems left?

STOP

Select an unsolved 
subproblem

M:=0I
Use matrix multiplication 

method to find a start 
node I in a negative cycle

NO

M:=M+1

Are there any 
negative cycles?

Use Bellman-Ford method 
to construct a negative 

cycle through I

Add negative cycle to 
AMS format file containing 

new columns

If arc I-J is in negative 
cycle, set Cij=bignum

Is M > COUNT?

NO

Fieure 7 . 4 . l . i

it YES

128



Chapter seven: Optimal Solution

YES

Are there any 
new columns?

NO

Call AUTONEG

Insert stored basis

Add new columns

Store current basis

Optimal solution. 
Phase II complete

Procedures carried out by LAMPS are indicated by the shaded boxes.

Figure 7 .4 .l.ii 

129



Chapter seven: Optimal Solution

Restricted Master

For large problems such as SET189, by solving a number of subproblems at 

each iteration of the column generation technique, the number of columns generated 

may be sufficient to result in an explosion in the number of variables in the master 

problem. This growth in the number of variables may give rise to storage and running 

time problems. Therefore, a restricted form of the master problem is constructed at 

each iteration. The restriction used here is to delete all current non-basic variables 

from the master problem before addition of the new columns. The singletons are 

excluded from consideration during the deletion process. This ensures that during 

Phase I constraint set RSPPI1 is satisfied andjfeasible solution to the problem RSPPI 

exists. See chapter five for a more detailed discussion on the theory of the restricted 

master problem. Figure 7 .4 .l.iii is the same as figure 7 .4 .l.ii except that it 

incorporates the use of this restricted master problem.

Results o f Phase I

The results shown in table 7 .4 .l.iii refer to the Phase I procedure applied to 

the data set SET189. The starting set of sequences were created by the heuristic HAP. 

The value of COUNT was set at 1 up to iteration 12 when it was increased to 

min(ns,10), where n, is the number of trains in the current subproblem. As expected 

the number of columns added increased once COUNT was increased. In the table, the 

value of the objective function after each iteration of the column generation technique 

is given, along with the percentage decrease in the objective function and the number 

of columns added. The key to the columns of the table is:

130



Chapter seven: Optimal Solution

YES

Are there any 
new columns?

NO

Call AUTONEG

Delete variables

Insert stored basis

Add new columns

Store current basis

Output non-basic variables

Optimal solution. 
Phase II complete

Create list of variables 
to be deleted

Procedures carried out by LAMPS are indicated by the shaded boxes.

Figure 7 .4 . l.iii

131



Chapter seven: Optimal Solution

‘ITERATION* - number of the iteration.

‘COL. ADD.* - the number of columns added .

‘OBJECTIVE* - the value of the objective function.

‘% DECREASE’ - the percentage decrease in the objective

function.

ITERATION COL. ADD OBJECTIVE % DECREASE

0 - 13.3367 -

1 480 12.7951 4.06

2 1376 12.7889 0.05

3 800 12.7888 0.00

4 1280 12.3685 3.29

5 448 12.1646 1.65

6 1088 12.0142 1.24

7 193 11.8157 1.65

8 480 11.8071 0.07

9 449 11.7376 0.59

10 256 11.7059 0.27

11 321 11.6758 0.26

12 852 11.6478 0.24

13 1816 11.2649 3.29

14 1900 10.6873 5.13

15 2202 9.6947 9.29

16 1600 9.4192 2.84

17 1474 9.2410 1.89

18 1835 9.0160 2.43

19 2173 8.4577 6.19

Table 7 .4 .l.iii

132



Chapter seven: Optimal Solution

Discussion o f Results

Clearly progression towards zero is very gradual, even though a marked 

improvement occurred after the value of COUNT was increased. This method proved 

to be, not only inefficient in producing a decrease in the objective function, but also 

very cumbersome and slow. As shown by the results, a large number of columns 

were generated at each iteration. This justifies the use of the word ‘cumbersome* as 

a label for the method as a number of variables had to be handled at each iteration. 

This translates into the use of a large amount of computing time due to: i) the 

generationjthe columns; ii) the retrieval and deletion of the columns within LAMPS; 

and, iii) the addition of the columns to the master problem. Although LAMPS is 

versatile and incorporates many useful features, it remains a generalized mathematical 

programming package and therefore does not lend itself to the large amount of data 

manipulation required by this shortest path method. Additionally, as an example of 

i), the time to generate the 2173 columns at iteration 19 in table 7 .4 .l.c  using the 

FORTRAN program AUTONEG on a VAX 6330 was 39*03" of CPU time. When 

AUTONEG was translated to Salford FORTRAN and run on an Epsom PC AX3, 

after 2 hours only 884 columns had been generated and so the procedure was 

interrupted.

It is for these reasons that the shortest path method was dismissed as a viable 

means of solving the stock diagramming problem using a PC-based method. This 

method was abandoned at this stage in favour of the simplex method. However, 

before proceeding to discuss the simplex method, some further investigations carried 

out using the shortest path method are described. The experiments are based on the 

interpretation of the dual values.

133



Chapter seven: Optimal Solution

Interpretation o f Dual

In an attempt to accelerate the progression of the objective function of the 

master problem towards zero, before passing the information on the dual values to 

the subproblems, the dual value for the locomotives is doubled; i.e. wk becomes 2wk 

for each k. The rationale behind this transformation is based on a twofold argument. 

Firstly, by increasing the marginal cost of a locomotive and thereby presenting 

locomotives as a scarce resource, the hope is that the solutions to the subproblems are 

sequences which use fewer locomotives. The aim is to satisfy constraint set RSPPI2 

in as few iterations as possible. The second intention is that, the doubling of the 

marginal cost of a locomotive type makes sequences with a small negative cost take 

a non-negative cost, and those with a large negative cost remain negative. Hence, 

when the pricing out exercise is performed using the true dual values, the negative 

cycles found represent a greater violation in the optimality conditions. To illustrate 

this hypothesis consider two pairs of negative cycles which represent the situation 

before and after the transformation of the dual values. In the following diagrams the 

solid lines represent the train arcs and the dashed lines represent the light-run arcs. 

‘Tn’ indicates train n.

BEFORE

134



Chapter seven: Optimal Solution

‘BEFORE* the dual value wk is doubled, the first sequence is a negative cycle and 

would be located by the matrix multiplication method before the negative cycle shown 

by the second sequence. This is because the first sequence contains only two trains.

Z i=10

Z2=10 Wk=-30
cost=10

T3
Z3=10 T4

Z4=20 T5
Z5=10 Wk=-30

cost=-10

AFTER

‘AFTER’ the value of wk is doubled the first sequence has a positive cost, but the 

second sequence still has a negative cost after the transformation.

If after a number of iterations no negative cycles are located, this does not 

mean that the stopping criterion for the column generation technique has been 

satisfied, as the doubling of wk may have made a negative cost cycle appear to be 

non-negative. The next step is to reduce the factor by which the dual value wk is 

multiplied by a step size less than or equal to 1. The process can be repeated, 

reducing the multiplication factor once all negative cycles are found, until the 

multiplication factor equals 1 and the true dual values are being used. The results of 

using this scheme, hereafter referred to as M2, are given in table 7.4.1.iv. The dual 

values used to start M2 were the same as those used for iteration 8 of the original 

scheme. For each iteration the multiplication factor used was 2. The value of COUNT

135



Chapter seven: Optimal Solution

was fixed at 1 up to iteration 5, then increased to min(n,,10) for iteration 6 onwards.

ITERATION COL. ADD OBJECTIVE % DECREASE

0 - 11.8157 -

1 474 11.7382 0.67

2 193 11.7153 0.20

3 449 11.7153 0.00

4 464 11.7142 0.01

5 464 11.7072 0.06

6 1504 11.2649 3.78

7 1676 10.5704 6.17

8 1622 9.7750 7.52

9 1035 8.3713 14.36

10 2265 7.6880 8.16

11 1779 7.0132 8.78

12 1775 6.5621 6.43

13 1033 6.0136 8.39

14 1806 5.4381 9.57

15 1104 4.7505 12.64

16 883 4.7470 0.07

17 949 4.3728 7.88

18 1712 4.1840 4.32

19 949 3.7157 11.19

20 1453 3.5969 3.20

21 1521 3.2874 8.60

22 1753 2.9657 9.79

23 1179 2.8583 3.62

Table 7.4.1.iv

136



Chapter seven: Optimal Solution

In the main, the decrease in the value ‘OBJECTIVE’ appears to be more 

promising than that shown in table 7 .4 .l.iii. Nevertheless, it is still not sufficient to 

justify pursuing with this method.

7.4.2 Simplex Method

Interaction between Master and Subproblems

Using the dual values retrieved from LAMPS, the FORTRAN program 

NEGAUTOB constructs a subproblem from the list of subproblems in the AMS 

format required by LAMPS. Each subproblem is then called by LAMPS and solved 

using the primal simplex algorithm. If a negative cost solution to a subproblem is 

found, the solution is output by LAMPS. The FORTRAN program OPTCONB is then 

used to convert the solution from LAMPS and produce an AMS format file which 

describes the new columns to be added to the master problem RSPP. LAMPS is re­

entered, the new columns added and the master problem resolved. A flow-diagram 

of the procedure for Phase II is given at figure 7.4.2.i.

Type Sets

As the simplex algorithm is non-polynomial, it was decided that the best policy 

is to use fewer type sets than the number used for the shortest path method. The type 

set specification is: "Consider all combinations of length=1 of locomotive types". For 

the SET 189 data set this gives rise to 20 possible subproblems, and these are all of 

the form:

137



Chapter seven: Optimal Solution

YES

NOAre there any 
new columns?

NO YES

Are there any unsolved 
subproblems left? .

Output solution

Solve RSPP

Solve subproblem

Call OPTCONB

Call NEGAUTOB

Insert stored basis

Add new columns Output dual values

Store current basis

Select an unsolved 
subproblem

Optimal solution. 
Phase II complete

Procedures carried out by LAMPS are indicated by the shaded boxes.

Figure 7 .4 .2 . i

138



Chapter seven: Optimal Solution

‘TYPE k ONLY’ =  {all those trains which can be worked by a

locomotive type k, but no other locomotive 

type};

and,

‘TYPE k’ =  {all those trains which can be worked by a

locomotive type k}.

Some of these sets are empty, and therefore not considered. For example, ‘TYPE 7 

ONLY’= { }.

Iterations

The 20 subproblems are each solved once. Again, this is done in recognition 

of the fact that the simplex method is non-polynomial. It is possible to find additional 

columns to add to the master problem by banning a connection in a negative cost 

solution just located by the simplex method, then resolving the modified subproblem 

using the simplex method. This is done for the shortest path method. If such a 

repetition policy is pursued, the first solution found for each subproblem is the 

minimum cost solution. Any subsequent non-zero solutions are multiple solutions, or 

solutions which violate the optimality conditions but have an increased solution value.

Restricted Master

Only a few columns are produced at each iteration, see results table 7.4.2.i, 

therefore all columns added to the master problem are kept along with the original 

set Q.

139



Chapter seven: Optimal Solution

Results o f Phase I

The results given in table 7.4.2.i refer to the Phase I procedure. The starting 

set of sequences Q was created by the heuristic ModHAP. The results are presented 

for each iteration of the column generation technique for Phase I. The column 

headings are the same as those given in the tables of section 7.4.1.

ITERATION COL. ADD OBJECTIVE % DECREASE

0 - 12.1053 -

1 29 11.3090 6.58

2 25 9.0374 20.09

3 34 6.1336 32.13

4 36 3.7472 38.91

5 31 2.4037 35.85

6 25 1.1889 50.54

7 21 0.4613 61.20

8 23 0.0000 100.00

Table 7.4.2.i

The Phase I procedure was completed successfully in only 8 iterations of the 

column generation technique.

As an indication of the time required to a solution to a subproblem using this 

method, an example is given here for a single type set with 100 trains. For SET 189

140



Chapter seven: Optimal Solution

the orders of the type sets range from a maximum of 161 to a minimum of 3. The 

times were recorded on an EPSON PC AX3.

CREATE: 57 seconds

Modules of LAMPS: CONVERT: 97 seconds

SETUP: 24 seconds

PRIMAL: 100 seconds

CREATE refers to the time to specify the subproblem in an AMS format file using 

the Salford FORTRAN program NEGAUTOB. Once specified, the subproblem can 

be called from LAMPS. There are three modules of LAMPS which have to be 

entered to solve the problem. CONVERT takes the AMS format file and converts it 

into a format which is easily acceptable to all the tasks of LAMPS. SETUP further 

converts the file created by CONVERT into a more compact and efficient format 

suitable for the primal simplex algorithm. PRIMAL invokes the primal simplex 

method to find an optimal solution to the problem. The total time represented by the 

above parts is 278 seconds.

Discussion o f Results

Compared to the shortest path method, this method yields a significant 

decrease in the objective function of the master problem at each iteration. Also, given 

that a subproblem with 100 trains can be solved in under 300 seconds, the time to 

complete an iteration of the column generation technique on a PC is more acceptable. 

The number of columns retained in the master problem when using the simplex 

method is greater than in the shortest path method, i.e. c. 17,000 compared with 

c.2000. This is as a result of the different policies used for restricting the size of the

141



Chapter seven: Optimal Solution

master problem in the two cases. However, as the basis of the current solution to the 

master problem is saved after each iteration of the column generation technique, the 

time taken to perform the task PRIMAL in LAMPS does not become prohibitively 

great. As an example, when a partial pricing policy is used, the time to solve a 

problem of 18,931 columns and 210 rows from a stored basis is 470 seconds of CPU 

time and takes 731 iterations of simplex. Under a total pricing policy for the same 

problem, the time is 794 seconds of CPU time and takes only 272 iterations of 

simplex. Times were recorded on an IBM PS/2 Model 55 SX computer. These results 

affirm the superiority of the simplex method over the shortest path method. It was 

therefore decided that this method should be adopted for the Phase II procedure.

Phase II

The implementation and the type sets used are exactly the same as for the 

Phase I procedure.

Results o f Phase II

On replacement of the objective function of RSPPI with that of RSPP, the 

solution found by the Phase I procedure was shown to have a cost of 6438.5970 light- 

run minutes. The Phase II procedure terminated after 94 iterations of the column 

generation technique. The cost of the solution to the master problem was 710 light- 

run minutes. This is the value of the optimal solution to the linear programming 

relaxation of the original problem. However, the solution found was not integer so 

the value of 710 light-run minutes only represents a lower bound on the solution to 

the original problem given by SD. The method used to find an integer solution is 

described in chapter eight.

142



Chapter seven: Optimal Solution

The problem of degeneracy was encountered during the execution of the Phase 

II procedure and the figure of 94 for the number of iterations includes some instances 

of cycling. In fact, the solution value of 710 was found after 54 iterations and 

thereafter the problem continued to cycle until the optimality conditions were 

satisfied. Problems with degeneracy also occurred during the execution of the primal 

simplex algorithm for the master problem. It was as a consequence of these 

experiences that methods for dealing with degeneracy are reviewed.

Degeneracy

It is not the purpose of this thesis to provide a well-constructed analysis of 

degeneracy resolution methods. Instead, the limited experience achieved during the 

solution of this problem \5 related. A discussion of how to deal with cycling 

between iterations of the column generation technique is given in chapter nine. The 

discussion which follows considers degeneracy resolution techniques when degeneracy 

occurs during the execution of the LAMPS primal simplex algorithm.

One method attempted was a right-hand side perturbation scheme. See Ryan 

[66] for an example of the use of this scheme. This method worked on nearly all the 

occasions on which it was employed. However, interaction with LAMPS and the 

amount of data manipulation required made this exercise a cumbersome task. A 

discussion with one of the authors of LAMPS revealed that LAMPS incorporates a 

right hand side perturbation scheme for dealing with degeneracy, and it was the use 

of a partial pricing scheme which was giving rise to problems with degeneracy. So, 

the alternative approach was to override the partial pricing facility and price out all 

variables at each iteration of the primal simplex algorithm. This is time consuming 

but not as frustrating as observing a problem continue to cycle. This method proved 

to be successful each time it was used.

143



Chapter seven: Optimal Solution

7.4.3 Assignment Method

Interaction between the Master and Subproblems

For each subproblem in turn, the file containing dual values output by LAMPS 

is called by the FORTRAN program SOLVE. The program SOLVE then: constructs 

assignment problem BSk for foe particular subproblem; solves the assignment problem 

using the Hungarian Method; interprets the results; and, if the solution is non-zero, 

augments AMS format file containing the new columns. The column generation 

technique for Phase I and Phase II then continues as for the simplex method. The 

flow-diagram of the procedure for Phase II is given at figure 7.4.3.i.

Assignment Method v. Simplex Method

This method was not used to solve RSPP for SET 189 using the column 

generation technique. Instead, a straight comparison was made between the simplex 

method and the assignment method to: a) check that they gave the same results; and, 

b) compare solution times. To make these comparisons two sets of actual dual values, 

retrieved during the solution of SET 189 using the simplex method, were used as the 

costs for the subproblems. The two sets of dual values are referred to as DV1 and 

DV2. For each set of dual values tests were performed on 11 subproblems based on 

11 type sets of varying order.

Results

In the following tables, 7.4.3.i and 7.4.3.ii, the results of solving the 

subproblems are given for the simplex method and the assignment method. Tables

7.4.3.i and 7.4.3.ii refer to sets DV1 and DV2, respectively. The key to the tables 

is:

144



Chapter seven: Optimal Solution

YES

NOAre there any 
new columns?

Are there any unsolved 
subproblems left? „

NO YES

Call SOLVE

Solve RSPP

Insert stored basis

Add new columns Output dual values

Store current basis

Select an unsolved 
subproblem

Optimal solution. 
Phase II complete

Procedures carried out by LAMPS are indicated by the shaded boxes.

Figure 7 .4 .3 .i

145



Chapter seven: Optimal Solution

‘TYPE SET’ - is the name of the type set on which the subproblem is

based.

‘TRAINS* - states the number of trains in the subproblem, i.e. the

order of the type set.

‘OBJ. SIM’ - gives the cost of the solution to the subproblem found

using the simplex method

‘OBJ. ASS* - gives the cost of the solution to the subproblem found

using the assignment method.

TYPE SET TRAINS OBJ. SIM. OBJ. AS S.

Tli 34 -319.29 -319.30

T2i 8 0.00 0.00

T3i 13 0.00 0.00

T4i 23 0.00 0.00

T5i 14 -140.46 -140.47

T6i 53 -2700.27 -2700.37

T7i 31 -307.86 -307.89

T8i 51 -1325.64 -1325.65

T9i 53 -2195.53 -2195.50

TIOi 3 0.00 0.00

T lli 8 0.00 0.00

Table 7.4.3.i

146



Chapter seven: Optimal Solution

TYPE SET TRAINS OBJ. SIM. OBJ. ASS.

Tlii 44 -942.96 -943.00

T2ii 17 -391.20 -391.20

T3ii 13 0.00 0.00

T4ii 33 -185.29 -185.24

T5ii 47 -1385.20 -1385.24

T6ii 81 -4977.64 -4977.32

T7ii 72 -2020.43 -2020.36

T8ii 99 -6683.48 -6682.91

T9ii 100 -7504.69 -7505.00

TIOii 3 0.00 0.00

T llii 15 -43.28 -43.28

Table 7.4.3.ii

Any disparity in the values ‘OBJ. SIM.’ and ‘OBJ. ASS.* is due to rounding 

errors. Solutions to the assignment problem which did not agree with those found by 

the simplex method were subsequently proved to be a multiple solution of the 

solutions found by the simplex method. This was done by first observing the reduced 

costs of the variables. Then, for completeness, the simplex solution was forced to be 

the same as the assignment solution and a check of the objective function value 

confirmed it to be an optimal solution.

Having established that the solution found by the assignment method agrees 

with that found by the simplex method, the following tables compare the CPU times 

to find an optimal solution to a subproblem using both methods. Table 7.4.3.iii relates 

to table 7.4.3.i and table 7.4.3.iv to table 7.4.3.iii. All the times in the tables are 

given in seconds. For the simplex method the times given are:

147



Chapter seven: Optimal Solution

‘CREATE’ - 

‘CONVERT’ - 

‘SETUP’ 

‘PRIMAL’ - 

‘TOTAL’

see section 7.4.2 for definition.

see section 7.4.2 for definition.

see section 7.4.2 for definition.

see section 7.4.2 for definition.

this is the sum total of the times used by CREATE,

CONVERT, SETUP and PRIMAL.

For the assignment method the times given are:

‘SOLVE’ - the total time to execute the program SOLVE.

‘ASS.* - the time to solve the subproblem using the Hungarian

Method. (This time is included in ‘SOLVE’.)

TYPE
SETS

SIMPLEX METHOD ASSIGNMENT
METHOD

CREATE CONVERT SETUP PRIMAL TOTAL SOLVE ASS.

Tli 10.77 12 4 8 34.77 8.79 0.50

T2i 4.29 2 2 2 12.29 4.73 0.11

T3i 7.36 6 2 6 21.36 6.27 0.22

T4i 4.78 3 2 3 12.78 6.05 0.11

T5i 4.95 3 2 2 11.95 6.15 0.16

T6i 18.95 29 7 22 76.95 14.95 1.38

T7i 9.78 11 4 7 31.78 8.95 0.49

T8i 17.97 27 6 21 71.97 15.05 2.09

T9i 17.42 26 6 19 70.42 16.04 2.14

TIOi 4.50 3 2 < 1 10.50 4.34 0.11

T lli 4.23 2 2 1 9.23 4.73 0.11

Table 7.4.3.iii

148



Chapter seven: Optimal Solution

TYPE
SIMPLEX METHOD ASSIGNMENT

METHOD
SETS

CREATE CONVERT SETUP PRIMAL TOTAL SOLVE ASS,

Tlii 13.96 20 5 15 53.96 11.59 0.33

T2ii 4.67 4 2 3 13.67 5.05 0.16

T3ii 8.96 11 3 6 29.86 8.52 0.22

T4ii 4.56 4 2 3 13.56 5.49 0.11

T5ii 15.50 33 6 20 74.50 13.46 0.82

T6ii 38.35 66 16 53 173.35 29.34 5.11

T7ii 31.10 51 12 43 137.10 21.88 2.14

T8ii 56.27 98 21 86 261.27 39.07 5.28

T9ii 57.25 97 24 100 278.25 46.59 11.43

TIOii 3.13 2 2 1 8.13 4.07 0.11

T llii 4.29 3 2 2 11.29 4.73 0.11

Table 7.4.3.iv

The relative speed of the methods can be seen by comparing the times to 

describe and solve the subproblems. For the simplex method this time is given by 

TOTAL and for the assignment method this time is given by SOLVE. For a 

comparison of the speed of the primal simplex algorithm with the assignment 

algorithm see the values given by PRIMAL and ASS, respectively. These 

comparisons indicate that the assignment method provides a means of finding 

sequences which violate the optimality conditions in appreciably faster times than the 

simplex method. Also, with the assignment method there is no need to transfer 

between LAMPS and specialized FORTRAN programs as is the case with the simplex 

method, compare figures 7.4.2.i and 7.4.3.i. Therefore, it is recommended that the 

assignment method is adopted in favour of the simplex method for solution of the 

subproblems. Also, in future applications, the improvement in solution times using

149



Chapter seven: Optimal Solution

the assignment method suggests that it may be worthwhile using the idea proposed in 

section 6.3 .1 of chapter six, and solving a greater number of subproblems at each 

iteration of the column generation technique.

150



Chapter eight: Integer Solution

CHAPTER EIGHT 

INTEGER SOLUTION

8.1 Introduction

Chapter seven establishes a means of finding an optimal solution to the linear 

programming problem RSPP. If the optimal solution found is integer, then the set of 

sequences sr which take the value 1 represent a workable set of schedules for the 

stock diagramming problem. Where this is not the case it is necessary to use a branch 

and bound scheme to find an integer solution. This chapter describes the scheme used 

in this thesis.

Section 8.2 reviews some branch and bound strategies which have proved 

popular in other scheduling applications. Section 8.3 describes the procedure used in 

this application. To conclude, the results of implementing the scheme for the data set 

SET189 are shown in section 8.4.

8.2 Review

For the scheduling problems discussed in [5],[21],[61],[66],[28],[68],[81]the 

solution method proceeds by first solving the linear programming relaxation of the 

problem using the technique of column generation. Their differences lie in the means 

by which the solution method makes the journey from a continuous solution to an 

integer solution. A common trait amongst recent problems formulated as set- 

partitioning or set-covering problems is that the conventional variable branching 

strategy has been abandoned in favour of branching on sets of variables.

151



Chapter eight: Integer Solution

Marsten [50] describes an enumerative method for resolving fractionally in 

large set-partitioning problems which does not involve the selection of a single 

variable on which to branch. Instead, in Marsten’s procedure "...the variables are 

grouped together in classes and the basic choice involved is which class should be 

responsible for covering a particular row." The first stage of the procedure is to 

group the variables into a number of classes. The branching then proceeds by 

generating a tree in which each branch represents the association of a row of the set- 

partitioning problem with a class of variables. Once each row has been fixed to a 

class of variables the decision about an individual variable is automatically 

determined. This method is subsequently used by Nemhauser et. al. [54] and Marsten 

and Shepardson [51] in set-partitioning applications.

Another branch and bound scheme which has proved popular in set- 

partitioning and set-covering problems is proposed by Etcheberry [27] in the context 

of set-covering. The essential idea of this branching scheme, herewith referred to as 

"constraint branching", is as follows. Consider the set-covering (set-partitioning) 

problem

such that

M IN  Ejej CjXj

Ej€i ajjXj^l (=1)

Xj E {0,1}
v i e i  

v j e i

where I= {l,...,m }  is the index set of the m constraints in the problem and 

J = { l,...,n }  is the index set corresponding to the columns Xj. The data a;j is given by:

152



Chapter eight: Integer Solution

ajj - 1 if i is in column j,

0  otherwise.

Suppose that s and t are the indices of two distinct constraints of the set-covering (set- 

partitioning) problem and define:

F(s)=(i I % - l .  v j € J }
and

F(t)={j 1 3^=1, V j e j } .

Then, the 1-branch is imposed by replacing the constraints indexed by s and t by

EjGF(«)nF(t) xj ^  1 ( =  1)>

and the 0 -branch by replacing the constraint set indexed by s with

£jGF(*)\F(t) Xj ^  1 (=1),

and setting

Xj=0 V j6 F(s)HF(t).

This scheme is used by Desrochers and Soumis [21], Ryan [66] and Wren et al. [82] 

in crew scheduling applications. Constraint branching is also used by Forbes, Holt 

and Watts [32] in their work on the stock diagramming problem discussed in this 

thesis.

The advantage of Marsten’s branching scheme and the constraint branching 

scheme over the conventional variable branching strategy is that branching takes place 

on a number of variables at each node rather than a single variable. It is clear that for

153



Chapter eight: Integer Solution

the conventional variable branching case, although the 1-branch imposes significant 

structure on the problem, the 0-branch has little effect. On the other hand, constraint 

branching provides a more balanced branching structure, and this is advantageous for 

problems where a large number of variables are present. With particular regard to the 

set-partitioning problem, Ryan [66] states: "It is well known that the conventional 

variable branch is particularly ineffective in the resolution of fractional solutions 

which arise at the optimal solution of the relaxed set-partitioning problem." It is for 

these reasons that the constraint branching scheme is adopted as a means of resolving 

fractionality arising in the optimal solution of the problem RSPP.

8.3 Constraint Branching Strategy

8.3.1 Interpretation of the Constraint Branch

Define T(k) =  {r | sequence sr is worked by locomotive type k} and for a 

particular train and locomotive pair (i,k) consider the value of

^rGT(k) ^riSr*

This expression gives the fraction of train i which is worked by locomotive type k. 

Now consider an optimal fractional solution at any node of the branching tree and any 

compatible train and locomotive pair (i,k), three situations can occur.

i) £r€T(k) ^riSr= 0*

The interpretation of this is that no fraction of train i is worked by a locomotive of 

type k.

154



Chapter eight: Integer Solution

ii) 0  <  EjeX(k) 5risr <  1.

This shows that train i is partially worked by a locomotive type k, the remainder 

being worked by other compatible locomotive types.

iii) ^ r€ T (k ) ^ r iSr = l*

In this case train i is worked by a locomotive type k. Note that this does not 

necessarily mean that there exists an r€T(k) such that sr =  1. The sr with r€T(k) may 

still be fractional. Contrast this with Ryan’s work [66] where satisfaction of 

conditions i) and iii) for every possible crew and trip pairing is usually sufficient to 

ensure an integer solution. Does this mean that for the problem considered in this 

thesis that even after using a constraint branching to achieve a situation where i) and 

iii) hold for all possible (i,k) pairs, it will still be necessary to use a variable 

branching technique to resolve any remaining fractionalities?

To see that this is not the case, consider what the successful implementation 

of the constraint branching scheme establishes for the stock diagramming problem. 

For every (i,k) pair which satisfy iii), the question: "Which locomotive should work 

train i?" is answered. The question remaining to be answered in order to specify a 

solution set of schedules is: "Which train should be worked after train i?". Ignoring 

for now the limit on the number of locomotives of each type available, the second 

question can be answered by solving a series of two-dimensional assignment 

problems. To show this, consider the following diagrams. Each diagram is a tri-axial 

representation of simple examples of the stock diagramming problem. In the first 

example problem there are four trains and a single locomotive type. A feasible 

solution to this problem is illustrated by the pattern of x’s shown at figure 8 .3 . l . i  

below.

155



Chapter eight: Integer Solution

Train worked
after train i

Train i

Figure 8 .3 .l .i

The problem becomes more complicated when trains can be worked by more than one 

locomotive type. In the second example there are still four trains, but now there are 

two locomotive types type 1 and type 2. Suppose the pattern of compatibility is:

train allowed locomotive type

1 1

2 1 2

3 1 2

4 2

Then, the shaded areas of figure 8.3. l.ii indicate where assignments are incompatible 

on a particular locomotive type for this example.

156



Locomotive type

Chapter eight: Integer Solution

Type 2

Train worked 
after train i

T y p e l

Train i

Figure 8.3.1.ii

From the diagram it can be seen that train 1 cannot be worked by locomotive 

type 2 and train 4 cannot be worked by locomotive type 1. Therefore, the decision 

about the allocation of a locomotive type to a train is automatic for trains 1 and 4 and 

the remaining decision problem concerns trains 2 and 3. Suppose that it is arbitrarily 

decided that train 2 should be worked by locomotive type 1. This automatically rules 

out the possibility of train 2 and train 4 being in the same schedule and may therefore

157



Chapter eight: Integer Solution

render the solution non-optimal or infeasible. In general, the cost preference or 

feasibility of such an arbitrary allocation of a locomotive type k to a train i is 

unknown. However, once an optimal solution to the linear programming relaxation 

of the stock diagramming problem is found, a preference indicated by the value of the 

expression

^rETflc) ^ri^r

emerges. Provided that a feasible solution exists, by implementing the constraint 

branching technique a node is reached where for each train i there exists a locomotive 

type k such that

EreT$5risr= l .

At this node, even though the sr*s may still be fractional, it is known which is the 

preferred locomotive type for each train i for the solution at this node. So supposing 

that for the second example given above the preference found is:

train preferred locomotive type

1 1

2 2

3 1

4 2

Then figure 8.3 .l.ii can be redrawn as

158



Chapter eight: Integer Solution

Locomotive type

Type 2

Train worked 
after train i

Type 1

Train i

Figure 8.3.1.ii.

Now, solving the assignment problem for each locomotive type in turn gives a 

solution in which each train is worked exactly once. Moreover, the solution found 

takes account of cost preferences and feasibility.

159



Chapter eight: Integer Solution

Therefore, the primary aim of the constraint branching scheme describe here 

is to establish which locomotive type should work each train. Once this is done it is 

a matter of using this information to construct a set of feasible schedules. First 

consider how the constraint branching scheme is implemented.

8.3.2 Implementation of the Constraint Branching Scheme

At each node of the branch and bound tree, for each train i not already 

allocated a locomotive type at a node farther up the branch or as a consequence of 

automatic allocation (i.e. only one locomotive type is compatible), the value of

Er6T(k) r̂iSr

is computed for each compatible locomotive type k. Then for those train and 

locomotive pairs (i,k) for which

0  <  £rex(k) r̂iSr <

the value of

fnux =  m a x (i,k) ^ r€ T (k ) ^riSr

is calculated. For a train and locomotive pair (i,k) with

^r€ T (k ) ^ riSr =  fmax>

the constraint

^r€ T (k ) ^ ris r = l

160



Chapter eight: Integer Solution

is added to the master problem to fix train i to locomotive type k. The master 

problem is resolved from a stored basis using the dual simplex algorithm. The 

formulation of the master problem RSPP with the new constraints added is as follows.

Let F be the set of pairs with F={(i,k) | train i is fixed to locomotive type 

k}. Then the formulation follows:

CSPP

s.t.

MIN Erg0 c^

Ereo 5risr=1 V iE r  CSPP1

E re o  L * s r < U k V kE A CSPP2

W ) 5 risr= l  V (i,k)EF CSPP3

Sr 0 V rEQ CSPP4

The sets r and A, the variables and the data are as given for formulation RSPP. The 

subproblems associated with this revised form of the master problem are now 

described.

Let R(k) =  {i | train i is compatible with locomotive type k and train i has not 

been fixed to a locomotive type k, where k?*k}. Suppose that the dual value 

associated with constraint set CSPP3 of the master problem CSPP is given by fi? 

where fj can take positive or negative values. Then the subproblem for a locomotive 

type k is:

161



Chapter eight: Integer Solution

CBS..

MIN EieR<k)Ej£R<k) (cs- Zi- f  - w^m,+ M^)

s.t.

'jGR(k) v ij

'jGR(k) vji -

vHk 0

ViER (k) CBS^  

V i,j E R(k)

V iER(k) CBSkl

where the variables and the data is as defined for the subproblems given by BS*.

The formulation of the subproblems given by CBS,, ensures that whenever 

column generation is used at a node of the branching tree, the subproblems 

considered comply with the way in which trains have been fixed to locomotives at the 

current node of the search tree. Therefore, any columns which are added to the 

master problem CSPP satisfy the constraints CSPP3. It may be necessary to use the 

column generation technique in the following situations.

To ensure that the value of f ^  reflects a strong preference of a train for a 

particular locomotive type, a parameter MINPREF is specified to indicate an 

acceptable threshold value for f ^ .  For example, a suggested value is 

MINPREF=0.75. If it happens that the value of fmax< MINPREF, then at the current 

node the column generation procedure is repeated and f ^  recalculated at each 

iteration until f ^ ^  MINPREF. Observe that the number of iterations of the column 

generation procedure at each node can be reduced or bypassed altogether by reducing 

the value of MINPREF.

The addition of a new constraint may make the problem infeasible, indicating 

that the limits on locomotive availability have been breached. In this instance, remove 

the new constraint, i.e. backtrack to the parent node, and implement the column 

generation procedure. After addition of the columns to the master problem CSPP,

162



Chapter eight: Integer Solution

solve the updated problem CSPP and calculate f ^ .  If >  MINPREF, add the 

constraint which corresponds to this value of f ^ .  Continue in this way until the 

solution to CSPP, after addition of the new constraint, is feasible.

The pairing of a train i with a locomotive type k is chosen so that the 

expression

r̂GT(k) r̂iSr

is maximized and reflects the preference of train i for a locomotive type k in an 

optimal fractional solution. It is for this reason that the depth first 1-branch is pursued 

until all trains are allocated a locomotive type and the 0-branch is left unexplored. As 

the 1-branch becomes deeper the value of f ^  may fall to 0.5 or less or the solution 

may exhibit an increased tendency to become infeasible after the addition of the new 

constraint. As already described above, in such cases further columns are added in 

the hope of resolving the problem. However, it may happen that no further column 

generation can take place as there are no new columns which violate the optimality 

conditions. This indicates that, the linear programming relaxation of the original 

problem is restored to optimality at the current node. If this occurs the 0-branch at 

the current node is evaluated and, if necessary, 0 -branches farther up the tree are 

explored.

Observe from the above description, that where column generation takes place 

it only continues until a solution is found which is feasible, or yields a value of f ^  

which is deemed to be acceptable within the prescribed limits. This implementation 

contrasts with that of Desrosiers et al. [24] where at each node of the branch and 

bound tree "...thecovering problem is reoptimized generating new routes as needed."

Once a feasible solution is found such that for each train i there exists a 

locomotive type k with

163



Chapter eight: Integer Solution

^ r€ T (k ) ^ riSr — 1

the branching terminates. At this stage the sr’s may be fractional or integer. In the 

latter case, a solution to the stock diagramming problem is found and the next phase 

of the procedure can be bypassed. Otherwise, using the partition of trains according 

to locomotive type which now exists, the next step is to construct a feasible set of 

schedules.

8.3.3 Construction of Schedules

As described in section 8.3.1 this stage can be viewed as a problem which 

involves solving a series of assignment problems, one for each locomotive type. 

Unfortunately, the limit on the number of locomotives available means that the 

problem is not so straightforward. Suppose that for each locomotive type in turn an 

assignment problem is constructed with cost matrix LRk=(Cjj), where ĉ  is the light- 

run time from end location i to start location j and i,jEP(k) = {i | train i is 

compatible with locomotive type k}. Then the solution found reflects a situation 

where light-run cost is minimized without regard for the number of locomotives of 

type k available. If the constraint on locomotive availability is added the problem 

becomes NP-hard, and is referred to in Nemhauser and Wolsey [55] as ‘a flow 

problem with budget constraint*. The formulation of the problem for a particular 

locomotive type k is:

PAPk
MIN E ie P (k )£ j€ P (k )  CijVjjk

s.t.

Ejepoo v ijk = l

^ j€ P (k ) Vjik = l

îep(k)Ejep(k) (irij +  Mjj)Vijk <  Uk

V  e {0,1}

PAPk3 

V i j  EP(k) PAPk4

V iEP(k) PAPkl

V iEP(k) PAPk2

164



Chapter eight: Integer Solution

Where the set P(k) and the variables and data are as defined before.

The solutions of the linear programming relaxation of PAPk are not necessarily 

integer. However, it is possible to find integer feasible solutions to this problem by 

solving an assignment problem. As shown in chapter three, the Lagrangean relaxation 

problem which arises from relaxing constraint set PAPk3 is an assignment problem 

solvable in polynomial time. Constraint set PAPk4 becomes redundant in this problem 

as the solutions to this assignment problem only take zero-one values. If p  is the 

Lagrangean multiplier associated with constraint set PAPk3, then the cost matrix of 

the assignment problem is LRk=(cs+/ttmi+^Mij). Recall that ml is the number of 

times a locomotive crosses midnight whilst working train i and Mg is the number of 

times a locomotive crosses midnight whilst performing the light-run from train i to 

train j. Using a large value for p  and running the assignment problem for each 

locomotive type in turn a set of schedules are found and a lower bound on the number 

of locomotives required to work the trains, according to the current partition, is 

found. If for any of the locomotive types the limit on the number of locomotives of 

that type available is violated, then this indicates that for the current partition there 

is no feasible integer solution. If this is the case it is necessary to return to the branch 

and bound tree and investigate branches as yet unexplored. In the results for the data 

set SET189 which follow, it is shown that for the schedules constructed in accordance 

with the first partition found, the constraints on locomotive availability hold.

Once a feasible integer solution is found using the above method, it is then 

possible to associate a parameter pk with each locomotive type and by using different 

values of pk find alternative schedules. This investigation was carried out for the data 

set SET 189 and the results are presented in the following section.

The value chosen for pk for each run of the assignment problem was fairly 

arbitrary, so it was decided that an improved method would be to perform a 

parametric investigation using a linear programming formulation of the problem.

165



Chapter eight: Integer Solution

The mathematical programming package LAMPS allows the user to specify 

lower and upper bounds for the parametric investigation of the right-hand side of 

constraint PAPk3. Continuously varying the value of Uk between these specified limits 

investigates the trade-off, in terms of light-run time, between the total cost of 

performing light-runs and using fewer or more locomotives type k. The linear 

programming relaxation of the problem PAPk is solved during the parametric 

investigation. Only the integer solutions are of interest, therefore if a continuous 

solution is found two steps are taken to locate an integer solution. If the value of Uk 

is non-integer in the continuous solution, the first step is to round down the value of 

Uk to the nearest integer value. If the solution remains continuous after 

reoptimization, the next step is to use the branch and bound facility of LAMPS to 

find an optimal integer solution for the current value of Uk.

The parametric investigation using the linear programming relaxation was 

performed for the partition found for SET 189 for each locomotive type in turn. It was 

found that during this investigation none of the solutions found were continuous and 

so it was never necessary to add cuts or use branch and bound to find integer 

solutions. The results of this exercise are presented in the next section.

The linear programming relaxation method proved more effective and efficient 

than the Lagrangean relaxation method at finding alternative integer solutions to the 

problem PAPk. The solutions found by continuously varying the value of Uk for 

SET 189 not only included those found when the assignment problem was solved for 

different values of juk, but also included additional integer solutions. Moreover, it is 

shown in the following section that for SET 189 an optimal integer solution was found 

for every integer value of Uk between the upper and lower limits specified. A more 

detailed discussion of the relationship between the Lagrangean relaxation and the 

linear programming relaxation of the problem PAPk is given in Appendix D.

166



Chapter eight: Integer Solution

8.4 Results

8.4.1 Constraint Branching

Discussion o f Results

The optimal solution to the linear programming relaxation of the master 

problem RSPP for data set SET189 was 710 light-run minutes using 99 locomotives. 

This solution was non-integer and so the branching scheme described in section 8.3.2 

was implemented. For this exercise the value of MINPREF was set at 0.75. A 

partition was found after the 1-branch was explored to a depth of 123 nodes of the 

branching tree. The solution of the problem CSPP was non-integer with an objective 

function value of 1181.6257 light-run minutes and a total of 97 of the available 99 

locomotives were used. In total it was necessary to perform 25 iterations of the 

column generation technique. 18 of these iterations were required to satisfy the 

stipulation that f ^  ̂  MINPREF and 7 iterations were performed when the problem 

became infeasible.

It was observed that near the root of the tree the value of was close to 1 

and as a consequence the value of the objective function to the solution of CSPP 

remained close to 710 as the new constraints were added. Not until node 65 was it 

necessary to use the column generation technique to restore the value of f ^ ,  and 

feasibility held until node 76.

Clearly, for a problem with 189 trains and given that 27 of these trains are 

compatible with only a single locomotive type, a branch depth of 123 nodes indicates 

that a high proportion of trains had to be allocated a locomotive type by means of a 

constraint branch. However, for the data set SET 189 consider the following: each of 

the 189 trains is compatible with an average of approximately 4 different locomotive 

types; no distinction, in terms of a train’s preference, is made between locomotive

167



Chapter eight: Integer Solution

types; and, the costs in the problem are independent of locomotive type. All these 

factors encourage a breadth of choice which in turn means that the linear 

programming relaxation of the set-partitioning problem does not exhibit strong integer 

properties.

When the constraint branching procedure was being developed for this 

problem one strategy attempted was to fix all those trains, compatible with more than 

one locomotive type, currently being worked by only one locomotive type. That is, 

suppose that at any node of the branching tree a train and locomotive pairing (i,k) had 

not been fixed but

^r€T(k) 5 riSr= l ,

then fix train i to locomotive type k. This has the effect of reducing the number of 

trains which have to be considered when calculating 4ux* Also, a number of variables 

sr are automatically forced to take the value zero. Unfortunately, it was found that 

this strategy resulted in the problem becoming infeasible early on in the constraint 

branching procedure, and it became necessary to backtrack and evaluate a number of 

O-branches. It was for this reason that this strategy was abandoned before a partition 

had been found.

8.4.2 Use of the Partition to Generate Integer Solutions

Assignment Method

The partition found for SET 189 was used to construct a feasible set of 

schedules for the locomotives. The assignment problem was solved for each 

locomotive type in turn using a large value of fi equal to 6000 light-run minutes. 

(This figure was chosen arbitrarily.) The results are given at table 8.4.2.L The key 

to the column headings is:

168



Chapter eight: Integer Solution

‘LOCO. TYPE’ - the locomotive type being investigated.

‘AVAIL’ - the number of locomotives of the specified type

available.

‘USED’ - the number of locomotives of the specified type

used.

‘LR COST’ - the total light-run cost of the schedules created

for the specified locomotive type.

In the last two rows of the table, totals are given for the number of locomotives 

available, the number used and the light-run cost incurred by the schedules.

LOCO. TYPE AVAIL USED LR COST

1 14 14 120

2 6 5 0

3 16 16 30

4 6 6 10

5 14 13 300

6 12 12 90

7 20 19 250

8 5 5 60

9 2 2 20

10 4 4 20

TOTAL LOCO. 99 96 -

TOTAL LR - - 900

Table 8.4.2.i

These results show that the partition is feasible as AVAIL >  USED for all 

locomotive types. The set of schedules found for this value of uses 96 locomotives

169



Chapter eight: Integer Solution

and 900 minutes of light-run time.

The value of fi was then varied for each locomotive type and alternative 

solutions found. A solution which used more locomotives than the solution shown in 

table 8.4.2.i but had a reduced light-run time total is given at table 8.4.2.ii. The 

columns are the same as those of 8.4.2.a with one addition:

/zk - the value of the parameter /z chosen for locomotive type k.

LOCO. TYPE Uk AVAIL USED LR COST

1 60 14 14 120

2 60 6 5 0

3 60 16 16 30

4 60 6 6 10

5 50 14 13 300

6 60 12 12 90

7 30 20 20 200

8 60 5 5 60

9 60 2 2 20

10 60 4 4 20

TOTAL LOCO. 99 97 -

TOTAL LR - - 850

Table 8.4.2.ii

Comparing these results with those of table 8.4.2.i, an extra locomotive type 7 has 

been used to reduce the light-run cost by 50 minutes to 850 minutes.

170



Chapter eight: Integer Solution

Parametrics

The next set of tables summarizes the results of performing the parametric 

investigation procedure, described in 8.3.3, on the partition found for data set 

SET189. In the headings preceding each table the locomotive type k is named 

followed by three parameters indicating: the number of locomotives available, this is 

the original value of Uk; the lower bound for the parametric variation of Uk; and, the 

upper bound for the parametric variation of Uk. The key to the columns in the table 

is:

‘USED* - the number of locomotives used by the solution.

‘LR COST* - the total light-run cost of the solution.

Only feasible solutions are given. Also, a solution is not given for every value of Uk 

between its upper and lower bounds, only those solutions for which the total light-run 

cost changes are reported.

Locomotive type 10. U1T>=4. Lower bound = l. Upper bound=8

USED LR COST

4 20

Table 8.4.2.iii

Locomotive type 9. IL=2. Lower bound=1. Upper bound=4

USED LR COST

2 20

Table 8.4.2.iv

171



Chapter eight: Integer Solution

Locomotive type 8. U .= 5 . Lower bound=l. Upper bound=8

USED LR COST

5 60

6 40

Table 8.4.2.V

Locomotive type 7. U7=20. Lower bound=l. Upper bound—30

USED LR COST

19 250

20 200

Table 8.4.2.vi

Locomotive type 6. IL=12. Lower bound=l. Upper bound=12

USED LR COST

12 90

13 30

Table 8.4.2.vii

172



Chapter eight: Integer Solution

Locomotive type 5. U<=14. Lower bound=l. Upper bound =21

USED LR COST

13 300

14 260

15 220

16 200

Table 8.4.2.viii

Locomotive type 4. IL = 6 . Lower bound =  1. Upper bound=9

USED LR COST

6 10

Table 8.4.2.ix

Locomotive type 3. IL =  16. Lower bound =  l. Upper bound=24

USED LR COST

16 30

Table 8.4.2.x

173



Chapter eight: Integer Solution

Locomotive type 2. U»=6 . Lower bound =  l. Upper bound =9

USED LR COST

5 0

Table 8.4.2.xi

Locomotive type 1. U, =  14. Lower bound=l. Upper bound =21

USED LR COST

14 120

15 90

16 70

Table 8.4.2.xii

According to this investigation there is a feasible set of schedules which has 

a total light-run cost of 810 light-run minutes and uses a total of 98 locomotives. This 

is the minimum cost solution which uses no more than the available locomotives for 

this partition. This investigation also indicates where savings can be achieved by 

increasing the number of locomotives available. For example, increasing the 

availability of each of the locomotive types 1,5,6 and 8 by 1 would give a solution 

which uses 102 locomotives at a cost of 660 light-run minutes.

8.5 Comments and Future Work

It is felt that the constraint branching phase of this solution method is an area 

which warrants further study. One possibility may be to use the data on preferred 

locomotive type which is provided for each train, but no longer used in practice by

174



Chapter eight: Integer Solution

British Rail. It would then be possible to bias the choice of locomotive type for each 

train by including a preference weighting as a component of the costs in the objective 

function. A further suggestion concerns the possibility of reducing the time taken to 

perform the branching by starting at the root with a restricted master problem. The 

argument for this is that the greatest proportion of the columns in the master problem 

are created by the heuristic procedure carried out prior to column generation, and 

many of these columns may remain inactive throughout the implementation of column 

generation and constraint branching procedure. Neither of these ideas have been 

tested here.

The results presented in section 8.4.2 are only valid for the partition being 

considered, and for an alternative partition the feasibility and potential savings would 

differ. This suggests that a further area of research may be to develop a swap 

heuristic to investigate the savings which might be made by allocation of trains to 

alternative locomotive types and thereby develop an alternative partition. At the start 

of a swap procedure, it is suggested that the information provided by the dual values 

associated with the problem CSPP could be used to decide where a swap might take 

place. For example, suppose a train i has been fixed to a locomotive type k and that 

the dual value fj associated with constraint set CSPP3 in CSPP has the most negative 

value. This suggests that fixing train i to locomotive type k is expensive in the current 

solution. Therefore when deciding which train-locomotive pairings to swap, unfix 

train i from locomotive type k and fix train i to an alternative compatible locomotive 

type k. Again it is suggested that the information on the marginal cost of the 

locomotive types in the current solution to CSPP is used to decide which locomotive 

type k should be chosen. If k is compatible with train i and w* has a least negative 

value then choose locomotive type k. Whether or not such a procedure is worth 

pursuing for a particular partition depends on how good the partition is believed to 

be. Unless the solution found at the end of Phase II is integer, as the optimal integer 

solution is not known, the only yardstick for assessing the quality of a partition is the 

value of the continuous solution found at the end of Phase II. To make the

175



Chapter eight: Integer Solution

comparison for the data set SET189, the value of the continuous solution at the end 

of Phase II was 710 light-run minutes for a solution which used 99 locomotives. For 

the partition found for SET189, the best feasible solution cost 810 light-run minutes 

and used 98 locomotives. It is not possible to compare this result with the result that 

British Rail found for the SET189 problem for two reasons. Firstly, British Rail used 

more locomotives of type 6 than there are available. Secondly, during the solution of 

the problem, the British Rail analyst changed the values of the performance times for 

some of the trains in the timetable, and this effectively alters the number of days 

required to make connections between trains. Given that an aim of this thesis is to 

override the need for such manual intervention it is not reasonable to make such 

changes when using the method described here. Also it is not possible to make such 

changes without having a detailed knowledge of what is and what is not permitted 

when altering a given timetable.

176



Chapter nine: Testing the Method

CHAPTER NINE 

TESTING THE METHOD

9.1 Introduction

Chapters six, seven and eight describe a method for solving the stock 

diagramming problem. During the development of the method the data set SET189 

is used as a test set. In this chapter the method used to solve SET 189 undergoes 

refinement and a number of additional data sets are solved.

In section 9.2 the data sets are introduced and some necessary assumptions are 

discussed. Sections 9.3, 9.4, 9.5 and 9.6 cover the four stages of the method: the 

generation of an initial set of sequences; the column generation technique for the 

Phase I and Phase II procedures; the constraint branching scheme; and the parametric 

investigation. Section 9.7 comments on the results found. The chapter concludes with 

section 9.8 which summarizes the final method proposed for the solution of the stock 

diagramming problem.

9.2 Data Sets

9.2.1 Description of Data Sets

The data used in this chapter have been provided by Dr. M. Wright and are 

used by Wright [83] and Forbes et. al. [32] in their work on the stock diagramming 

problem. Hereafter, in this thesis, these data sets are referred to as Wright’s data sets. 

The data include all the required information on the trains to be scheduled, i.e. the 

start and end times of each train; the start and end location of each train; and, the 

compatible locomotive types for each train. Unfortunately, for each of Wright’s data 

sets no information is provided on the number of locomotives of each type available

177



Chapter nine: Testing the Method

as Wright does not use this information (Wright [84]). Clearly, for a real world 

problem there is a limit on the number of locomotives available, and so the problem 

becomes unrealistic and simplified if  the constraint on the number of locomotives is 

omitted. In order to make Wright’s data sets realistic, a tight limit on the number of 

locomotives of each type available for a data set has been approximated.

9.2.2 Calculation of Locomotive Availability

For any stock diagramming problem it is possible to find a lower bound on 

the number of locomotives required to work the trains in the data set. To find this 

minimum a ‘connection’ matrix, which incorporates the condition on locomotive 

compatibility, is created for the set of trains in the data set. The connection matrix 

indicates for all connections between each pair of trains whether or not the connection 

is permissible. So, if  train i is only compatible with a locomotive type 1 and train j 

is only compatible with locomotive type 2 the elements (i,j) and (j,i) in the connection 

matrix will take the value oo , indicating that the connection is not allowed. If a 

connection between the train i and train j is permissible, i.e. they have a locomotive 

type in common, then the value of element (i,j) is equal to the number of days a 

locomotive would take to make the connection from the start of train i to the start of 

train j. Following the notation of previous chapters, element (i,j) equals n ij+ M y .  

Where is the number of times a locomotive crosses midnight whilst working train 

i and My is the number of times a locomotive crosses midnight whilst performing the 

light-run from the end of train i to train j. Having created the connection matrix, an 

assignment problem is solved over the matrix to give the required lower bound 

LBjot. Clearly, the figure found is a lower bound and not necessarily the minimum 

number of locomotives required to work the set of trains. This can be shown by use 

of an example. Suppose that in the solution to the assignment problem the following 

assignment is made

178



Chapter nine: Testing the Method

Figure 9.2.2A

and that train 1 is compatible with locomotive type 1 only, trains 2 and 4 are 

compatible both with locomotive types 1 and 2, and train 3 is compatible with 

locomotive type 2 only. According to the connection matrix the connections shown 

in the diagram are permissible. However, such a schedule will never be allowed in 

a solution to the stock diagramming problem as this subset of trains has no 

locomotive type in common.

For data set SET 189 the total number of locomotives available is known and 

equal to 99. Using the above procedure it was found that 92 is a lower bound on the 

number of locomotives required for SET 189. In preceding chapters, SET 189 was 

solved based on an availability of 99 locomotives and, although a solution using only 

92 locomotives was not found during the parametric investigation, solutions which 

used fewer than 99 locomotives were found, indicating a surplus in the number of 

locomotives required. For Wright’s data sets, as the upper bound on locomotive 

availability is not known, it was decided that the lower bound should be used instead 

and increased only if it appears that there is no feasible solution for this number of 

locomotives. (The way in which the number of locomotives is increased is discussed

179



Chapter nine: Testing the Method

later in this chapter.) As before, the objective is to minimize the total light-run cost.

9.2.3 Distribution of Locomotives

For the stock diagramming problem it is not sufficient simply to specify the 

total number of locomotives available;} information on the number of locomotives 

| of each type available is also required 1. For each of Wright’s data sets a 

formula was used to specify the number of locomotives of each type, namely:

(no. of trains compatible with locomotive type k) x LBr0X.
(total no. of trains)

The decision about the way in which locomotive types are distributed may 

automatically make the problem infeasible. For instance, if  the number of locomotives 

of type k is insufficient to work those trains which can only be worked by a 

locomotive type k, then it is clear that the problem is infeasible. Therefore, having 

used the above formula to devise a distribution, further checks need to be made to 

ensure the integrity of this distribution. For each locomotive type kx a proper subset 

of trains is defined by the condition ‘trains which can be worked by a type kj 

locomotive only’, and a connection matrix for this subset created. The assignment 

problem is then solved for this matrix to find a lower bound on the number of type 

kj locomotives required to work those trains which are only compatible with type lq. 

It is then verified that the number of locomotives of type kt available is greater than 

this lower bound. The calculation is also made for proper subsets based on two 

locomotive types, i.e. the connection matrix is created for all proper subsets based 

on the condition ‘trains which can be worked by type k, and type k2 locomotives but 

no other type’. A check is then made to ensure that the total number of type kt and 

type k2 locomotives is sufficient. Finally, this process is repeated for combinations 

of three locomotive types. These checks can be made for all combinations of up to 

K-l locomotive types, where K is the number of locomotive types in the data set, but

180



Chapter nine: Testing the Method

it is believed that a check of up to three types is adequate. If it happens that the 

values of the lower bounds found during these checks are greater than the number of 

locomotives available, then the problem is infeasible and it is necessary to change the 

way in which the locomotives are distributed among the types before proceeding.

9.2.4 Summary of the Data Sets

Table 9.2.4.i below gives a brief description of each of Wright’s data sets. 

The key to the table is:

‘NAME’

‘TRAIN’

‘LOCO’

L B to t 

‘TYPE k’

gives the name by which the data set is referred to in 

this thesis.

gives the number of trains in the data set.

gives the number of different types of locomotive in the

data set.

gives the value of LBtot for the data set.

gives the number of locomotives of type k available.

NAME TRAIN LOCO LB tot TYPE 1 TYPE 2 TYPE 3 TYPE 4 TYPE 5

W R503 50 3 34 4 17 13 - -

W R 505 50 5 33 4 1 10 8 10

WR75 5 75 5 52 5 1 17 14 15

WR100 5 100 5 64 7 2 20 17 18

WR150 5 150 5 97 12 4 28 26 27

Table 9.2.4.i

In each of the regions covered by Wright’s data sets there are 32 stations. 

None of Wright’s data sets include any gap trains. Note that for the data sets solved

181



Chapter nine: Testing the Method

in this chapter, none of the light-run times have been rounded down to the nearest ten 

nor have any of the stations been grouped to form an area (this includes single 

stations).

9.3 Generation of an Initial Set of Columns

Recall from chapter four that before starting the column generation procedure 

it is necessary to create an initial set of sequences 0. For the solution of data set 

SET 189 the heuristic procedures HAP and ModHAP described in chapter four were 

used to create initial sets of sequences. However, chapter four also shows that the 

heuristic procedure ModHAP performs better than HAP for SET 189 and that 

LOCOST also performs well for SET189. Based upon the results found for SET189, 

a combination of the heuristics ModHAP and LOCOST is used to create the sets of 

sequences 0  for the data sets considered in this chapter. For each data set all 

singletons are included in 0  at the outset then additional sequences are created using 

ModHAP and LOCOST for a number of values of the parameters INTERVAL and 

/*, respectively.

Table 9.3.i gives the number of sequences created using the above method and 

the solution found when the linear programming problem RSPP is solved using 

LAMPS. RSPP is the linear programming relaxation of the set-partitioning problem 

SPP. The formulation of the problem SPP is given in chapter four and repeated here.

SPP
MIN Ereo crs,

s.t.

Ereo  ^riSr— 1

^ren L,tSr ^  U k

sr e {0 , 1}

V kEA SPP2

V rEQ SPP3

V iE r S P P l

182



Chapter nine: Testing the Method

Where the set r= { i | train i is the i* train in the timetable}, the set A={k | k is the

number of the locomotive type} and r is the index of the r* sequence in the set 0 .

The variables are:

sr - 1 if sequence r is used,

0  otherwise.

The data elements are:

5ri - is a binary constant; 1 if sequence r includes train i,

0  otherwise;

cr - cost of sequence r, i.e. the sum of the light-run costs which

make up the sequence r;

La - the number of locomotives of type k required to work sequence

r;

Uk - the total number of locomotives of type k available to work the

timetable.

The key to table 9.3.i is as follows:

‘NAME’ - gives the name of the data set.

‘SEQ* - gives the total number of sequences generated.

‘INT* - gives the number of values of INTERVAL used.

V*’ - gives the number of values of n used.

‘OBJ’ - indicates the value of the optimal solution to RSPP, and

is equal to INF if the problem is infeasible.

‘SUM INF’ - if the problem is infeasible this shows the sum of the

infeasibilities.

183



Chapter nine: Testing the Method

NAME SEP INT \k OBJ SUM INF

W R503 528 7 1 INF 1.1010

WR50_5 1693 7 7 INF 3.1837

W R755 2505 7 7 INF 5.0989

W R1005 3210 7 7 INF 7.6216

W R1505 2772 5 5 INF 13.8392

Table 9.3.i

Notice that the number of values of INTERVAL and n used for the last data set was 

reduced. This was done to limit the number of columns created so as to reduce the 

amount of computer memory used.

9.4 Column Generation - Phase I and Phase II

For each of Wright’s data sets, the subproblems used during the column 

generation technique were based on type sets for which the type set specification was: 

"Consider all combinations of length=1 of the locomotive types". The effect of this 

specification is that, if a data set has K different locomotive types, there are 2K type 

sets and consequently 2K subproblems are created. Some of the type sets may be 

empty, in which case they can be ignored. (For a detailed discussion on how the type 

set specification affects the number of subproblems created for the column generation 

technique see chapter six.)

9.4.1 Phase I

The solution to the problem RSPP, for the initial set of sequences, is infeasible 

for each of the data sets. Therefore, the next stage is to find a feasible solution using 

the column generation technique described in chapter seven to solve the Phase I

184



Chapter nine: Testing the Method

problem. The results are given in table 9 .4 .l . i  and the key to the table is as follows:

‘NAME’ - gives the name of the data set.

‘SEQ’ - gives the number of sequences in the set 0  on

completion of Phase I.

‘OBJ* - gives the value of the objective function of RSPP when

a feasible solution is found.

NAME SEP OBJ

WR50 3 555 6312.00

WR50 5 1753 4121.75

W R755 2663 6568.62

WR100 5 3361 6727.26

WR150 5 3192 9662.00

Table 9 .4 .l.i

Phase I was completed successfully for each of the data sets. However, if a 

feasible solution is not found this indicates that the availability of a least one of the 

locomotive types has to be increased.

9.4.2 Phase II

In Phase II an optimal solution is found for each of the data sets. The column 

generation procedure used for Phase II is the same as that used for Phase I, and is 

described in chapter seven.

185



Chapter nine: Testing the Method

It is stated in chapter seven that during the solution of SET 189 it was observed 

that the problem was cycling for a number of iterations of the column generation 

technique. This tendency is discussed here and a means of dealing with the problem 

of cycling is proposed.

The column generation procedure alternates between a master problem and a 

set of subproblems. (See chapter five for a description of the procedure.) One 

iteration of the column generation procedure involves: solving the current set of 

subproblems; adding a new set of variables to the master problem; resolving the 

master problem. In this thesis, the solutions to the subproblems are valid sequences 

which may be added to the master problem given by RSPP. A non-trivial (i.e. non­

zero) solution to a single subproblem may produce a single sequence or many 

sequences. If the solution to at least one of the subproblems has a value less than 

zero, then this indicates that there exists a sequence which if introduced to the 

problem RSPP has an associated reduced cost which violates the condition for 

optimality. Suppose that such a sequence sn has a reduced cost with an absolute value 

of rf (77 > 0). If sn is introduced into the basis at level 6 (0>O) and the current value 

of the solution to the problem RSPP is A then the new value will be A-rjd. However, 

when the current solution is degenerate, i.e. at least one of the basic variables is 0 , 

it is possible that sn may enter the basis at value 0. This is a degenerate iteration and 

the effect is that the value of RSPP remains at A. So, barring degeneracy, the value 

of the problem RSPP decreases after one iteration of the column generation 

procedure. However, in the presence of degeneracy, it is possible for the solution 

value to remain the same for a number of iterations of the column generation 

procedure. If the solution value remains the same and in addition the solution is 

repeated after a number of iterations of the column generation technique, then the 

problem is said to ‘cycle’. It was observed during the execution of the Phase II 

procedure for the data sets that degeneracy was causing the column generation 

procedure to cycle in this way. This tendency to cycle was not observed initially but

186



Chapter nine: Testing the Method

occurred more frequently as the drop in the objective function between iterations of 

the column generation procedure became less significant. Cycling was often resolved 

within less than five iterations, but for some data sets it continued for more than ten 

iterations. It was noted that when such prolonged cycling occurred the magnitude of 

the violation in the optimality conditions for each of the subproblems was less than 

0.05% of the current value of the objective function for at least one iteration of the 

column generation procedure. Therefore, weighing up the potential decrease in the 

objective function against the possibility of continuing to cycle, it was decided that 

in such instances the Phase II procedure should be stopped. So, it is proposed that the 

second criterion (the first being that optimality has been proven) for stopping the 

Phase II procedure is: if the solution value has remained the same for ten iterations 

of the column generation procedure and, for at least one of these iterations, the 

magnitude of the violation in the optimality conditions for each of the subproblems 

is less than 0.1% of this solution value, then the Phase II procedure should be 

stopped. The solution value when the Phase II procedure is interrupted cannot be 

guaranteed optimal. However, it is believed that it is highly probable that the solution 

found is optimal or near-optimal. This belief is supported by considering the 

following graphs. Graphs 9.4.2.i and 9.4.2.ii plot the number of an iteration against 

the objective function value at that iteration. Graph 9.4.2.i shows the decrease in the 

objective function for during the Phase II procedure for data set WR75_5. For this 

data set Phase II was halted as the first stopping criterion was met, i.e. the solution 

satisfied the optimality conditions. Graph 9.4.2.ii refers to the Phase II procedure for 

data set WR50_5. For this data set Phase II was halted as the second stopping 

criterion was met. The pattern of decrease in graph 9.4.2.ii mirrors that of graph 

9.4.2.i, and the flattening off of the graphs suggests that the solution is near-optimal 

in the second case.

187



Chapter nine: Testing the Method

D a ta  S e t  -  WR75 5
7 0 0 0

6 5 0 0 -

6 0 0 0

75 5 5 0 0 -

m 5 0 0 0 -

4 5 0 0  -

4 0 0 0  -

3 5 0 0  -

3 0 0 0  -

2 5 0 0
45 50 550 5 10 15 20 25 30 35 40

No. of Iterations

Graph 9 .4 .2 .i

188



Chapter nine: Testing the Method

Data  S e t  -  WK50 5
4 2 0 0

4 0 0 0

3 8 0 0

pi 3 6 0 0

£  3 4 0 0 -

3 2 0 0

■H 3 0 0 0 -

A  2 8 0 0 -

2 6 0 0 -

2 4 0 0  -

2 2 0 0
35 45 505 15 25 30 400 10 20

No. of Iteration

Graph 9 .4 .2 .i i

189



Chapter nine: Testing the Method

The results of the Phase II procedure for the data sets considered in this 

chapter are given in table 9.4.2.L The key to the table is as follows:

‘NAME*

‘SEQ’

‘OBJ*

‘OPTIMAL* -

‘INTEGER’

gives the name of the data set.

gives the number of sequences in the set 0  at the

termination of Phase II.

gives the value of the objective function on completion 

of Phase II.

a ‘NO’ in the column indicates that Phase II was 

stopped because the second stopping criterion was 

satisfied, and a ‘YES* indicates that optimality was 

proven.

indicates whether or not the solution found was integer.

NAME SEP OBJ OPTIMAL INTEGER

W R 5 0 3 1089 2947.00 NO YES

W R 5 0 5 2085 2349.00 NO NO

WR75 5 3140 2976.40 YES NO

W R 1 0 0 5 3992 3277.67 YES NO

WR150 5 5044 5149.00 NO NO

Table 9.4.2.i

Although the solution found for data set WR50_3 has not been proven optimal, 

it is integer and so a partition of trains according to locomotive type has been found. 

The next stage in the solution method for data set WR50_3 is to perform the 

parametric investigation. For the remaining data sets the constraint branching strategy 

needs to be invoked to find the partition of trains by locomotive type. The 

implementation of the branching scheme for these data sets is described in the next

190



Chapter nine: Testing the Method

section.

9.5 Constraint Branching

Two main changes to the constraint branching scheme discussed in chapter 

eight have been investigated using Wright’s data sets as test sets.

The first change is aimed at investigating an alternative way of imposing the 

constraint branch. Recall that the set T(k) is defined to be T(k)={r | sequence sr is 

worked by locomotive type k}. Then for a train i and a locomotive type k pairing, 

train i is forced to be worked by locomotive type k by adding the constraint

^rG T(k) 5riSr = l  ( 9 . 5 . 1 )

to the problem RSPP, and train i is forced to be worked by a locomotive type other 

than type k by adding the constraint

E r6T (k) ^riSr =  0  ( 9 . 5 . 2 ) .

Under the alternative strategy, there is an upper bound Br associated with each

variable sr in the problem RSPP. During the solution of RSPP for the initial set of

sequences and for Phases I and II the value of Br remains fixed at 1, but once the 

constraint branching stage is reached the above system of adding constraints to the 

problem is emulated by simply adjusting the bounds on the variables. To see how this 

is done, let T(k) be as defined above and define T(k)={r | sequence sr is not worked 

by locomotive type k}. Then, for a train i and a locomotive type k pairing, if  train 

i is to be worked by locomotive type k set Br= 0 if 5ri= l  and rE T(k) and this has the 

same effect as adding constraint (9.5.1). Similarly, if train i is not to be worked by 

locomotive type k set Br= 0  if 5ri= l  and rET(k) and this has the same effect as 

adding constraint (9.5.2). In a sense the variables are being switched on and off as

191



Chapter nine: Testing the Method

required, and this is similar to the way in which Ryan [66] imposes the constraint 

branches.

The advantage of using the upper bounds method is that no additional 

constraints need to be added to the master problem RSPP. As with the constraint 

branching procedure described in chapter eight, new formulations are given for the 

master problem and the subproblem associated with this constraint branching scheme. 

The formulation for the master problem is the same as RSPP except that upper 

bounds have been introduced for the variables sr. These upper bounds are stated 

explicitly in constraint set USPP4 of the new formulation USPP.

USPP
MIN Er€a CjSr

s.t.

Ereo5riSr= l  V i £  r USPP1

Er€0 LAsr < Uk V k €  A USPP2

sr >  0 V tEQ USPP3

sr <  Br V r6n U S P P 4

Where the sets, variables and data are as given for formulation RSPP and Br is the 

value of the upper bound placed on variable sr. The value of Br is given by:

Br - I 0 if 5ri and rET (k), where k=£k and (i,k)£F;

1 otherwise.

Where T(k) =  {r | sr is worked by locomotive type k} and F={(i,k) | train i is fixed 

to locomotive type k}.

192



Chapter nine: Testing the Method

The subproblem for locomotive type k is given by:

i j b s l

MIN Sr6R<k)Sre*(k) fe j -z  - w ^ m ^ M ^ 1"

s.t.

'jGR(k) v ij

OeR(k) vji -

V:ik ^ 0

V iG R (t) UBS.,2 

V i,jeR(k)UBSk3

V iER (k) UBSkl

Where the variables and data are as defined for BSPV and the set of trains 

R(k) =  {i|train i is compatible with locomotive type k and train i is not fixed to 

locomotive type k?*k}.

There are two disadvantages with the upper bounds method. Firstly, with the 

constraint method each new constraint has an associated dual value and this provides 

an insight into where fixing a train to particular locomotive type is proving costly. As 

stated at the end of chapter eight this information may prove useful if in future work 

a swap heuristic were developed to analyze alternative partitions. Secondly, unfixing 

a train-locomotive pairing when using the constraint method is done by removing a 

constraint from the problem CSPP, and this does not affect the way in which other 

trains have been fixed to locomotive types. However, when the upper bounds method 

is used this reversal is not so straightforward. To see this, consider two sets A and 

B and let A = {sr | <5ri= l  and rET(k)} and B ={sr | 5q =  l and rET(k)}. If train i and 

train j must not be worked by locomotive type k all the variables in the set A(JB have 

upper bounds equal to 0. If A f)B^0, simply resetting to 1 the upper bounds on the 

variables srE A also changes the status of the variables in Af|B. Therefore it must be 

ensured that only the variables in A\B have their upper bounds reset to 1. This makes 

backtracking more difficult than in the constraint method. Weighing up the advantages 

and disadvantages of the two methods it is felt that the constraint method is preferable

193



Chapter nine: Testing the Method

and should be used in any future work on this problem.

The second change concerns the way in which infeasibility arising during 

branching is dealt with. The strategy described in chapter eight is to remove the most 

recently added constraint, then use the Phase Q column generation procedure to add 

additional sequences in the hope that the constraint added after an iteration of the 

column generation method would leave the master problem CSPP feasible. This 

process is cumbersome in that at each iteration a new constraint has to be constructed 

and added with no guarantee of an improvement in feasibility. The new strategy 

proposed here is to use the Phase I column generation procedure to restore the 

problem to feasibility at the current node without ever changing the way in which 

trains are fixed to locomotive types. As well as being easier to implement, this 

alternative method reveals immediately whether or not it is feasible to fix a particular 

train to a locomotive type. With the old strategy it is possible to travel farther down 

the tree before discovering that this is the case. It is therefore proposed that for future 

work this new method of dealing with infeasibility should be adopted.

The above conclusions regarding the viability of the upper bounds method and 

the use of a Phase I procedure to resolve fractionality were made after the two new 

strategies were tested on Wright’s data set. A constraint branching scheme, which 

uses the upper bounds method and resolves feasibility using the Phase I procedure, 

was implemented for each of the Wright’s data sets with fractional solutions at the 

end of Phase II. As with SET 189 the value of MINPREF was set at 0.75 for each of 

the data sets. For Wright’s data sets it was decided that if fmax< MINPREF at the 

current node of the tree, the (i,k) pairing for which 4ux=max(j k)f(i,k) is accepted if 

after four iterations of the column generation technique the value of remains less 

than MINPREF. This was done to limit the total number of iterations of the column 

generation technique carried out during the constraint branching procedure, and is 

also an effective means of dealing with instances of cycling which may occur as a 

result of degeneracy. It is proposed that this practice is adopted in any future work.

194



Chapter nine: Testing the Method

Before presenting the results of the constraint branching scheme, it is 

necessary to make a further note which applies only to Wright’s data and arises as a 

result of the incompleteness of the data sets. In the case of data sets for which the 

limit on the availability of locomotives is known, if an infeasibility at a node can not 

be resolved, it is necessary to evaluate the 0-branch at that node and O-branches 

farther up the tree if necessary. However, for the data sets discussed in this chapter, 

where an infeasibility can not be resolved the first step taken is to adjust the number 

of locomotives of each type available without increasing the total locomotive 

availability. Exactly where the adjustments are made is decided by considering how 

the train being fixed is currently being worked. For instance, if train i is to be fixed 

to locomotive type kj but a proportion of the train is worked by locomotive type k2, 

then the number of locomotives type k2 is decreased and the number of locomotives 

type kj increased. If it is not possible to restore feasibility using this scheme, then the 

next step is to increase the total number of locomotives available by increasing by one 

the number of locomotives type kj. The master problem USPP, with the new limits 

on locomotive availability, is then resolved and the procedure repeated if the solution 

remains infeasible.

The results of implementing the branching strategy are presented in table 9.5.i. 

The key to the table is:

‘NAME’

‘OBJ’

‘TOTAL’

‘TYPE k’

gives the name of the data set.

gives the value of the objective function value of the

problem USPP when branching stops.

gives the total number of locomotives available.

gives the number of locomotives type k available.

195



Chapter nine: Testing the Method

NAME OBJ TOTAL TYPE 1 TYPE 2 TYPE 3 TYPE 4 TYPE 5

WR50 5 2395.00 33 3 1 9 8 12

W R755 3129.00 53 6 1 16 15 15

W R1005 3998.80 64 9 2 18 17 18

W R1505 5149.00 97 12 4 28 26 27

Table 9.5.i

In all cases, except data set WR100_5, the solution when a partition was established 

was integer. A comparison of table 9.5.i with table 9.2.4.i shows that, during 

branching, it was only necessary to increase the total number of locomotives available 

for data set WR75_5. The distribution of the locomotive types has been altered for 

data sets WR50_5, WR75_5 and WR100_5.

The following table 9.5.ii provides information on the number of nodes 

visited, and the number of iterations of the column generation procedure performed 

during branching. The key to the table is:

‘NAME’ - gives the name of the data set.

‘SEQ’ - gives the number of sequences in the set U when

branching stops.

‘NODES’ - gives the number of nodes investigated.

‘PHASE I* - gives the number of iterations of the column generation

technique when the Phase I procedure is used.

‘PHASE II’ - gives the number of iterations of the column generation

technique when the Phase II procedure is used.

196



Chapter nine: Testing the Method

NAME SEP NODES PHASE I p h a s e  n

W R505 2299 27 17 25

W R755 3328 55 20 6

W R1005 4304 62 30 6

W R1505 5044 1 0 0

Table 9.5.ii

9.6 Parametric Investigation

Having found a partition for each of the data sets the next step is to perform 

a parametric investigation. With the exception of data set WR100_5, the integer 

solutions found indicate that a solution exists which uses no more than the number of 

locomotives available. (See table 9.5.i for the current status of locomotive 

availability.) The parametric investigation is carried out in the same way as described 

in chapter eight. For each of the data sets the results and comments are presented in 

the following tables. For the sake of brevity, the variation in the objective function 

as the availability of each locomotive type is changed is not shown. Instead, the 

minimum cost solution found as the total number of locomotives changes is given. 

Remember that these results relate to the way in which the trains in the data sets have 

been partitioned and are not global. Each table consists of three columns:

‘TOTAL’ - shows the total number of locomotives used.

‘OBJECTIVE* - gives the minimum cost solution for the number

of available locomotives.

‘DECREASE’ - shows the decrease in the cost incurred by

increasing the value of TOTAL by one.

197



Chapter nine: Testing the Method

W R 5 0 J

TOTAL OBJECTIVE DECREASE

< 34 INF -

34 2947.00 -

35 2632.00 315

36 2546.00 86

37 2480.00 66

38 2437.00 43

39 2430.00 7

40 2425.00 5

Table 9.6.i

If fewer than 34 locomotives are available the solution is infeasible. This 

supports the earlier finding that 34 represents a lower bound on the number of 

locomotives required to schedule the trains in this data set. Notice that the value of 

OBJECTIVE when 34 locomotives are available agrees with the value found on 

completion of Phase II. This is especially encouraging as Phase II was stopped when 

the second stopping criterion was satisfied, and therefore the solution was not proven 

optimal. Of course, this is still not a guaranteed optimal solution as an alternative 

partition could give a better result.

198



Chapter nine: Testing the Method

W R50_5

TOTAL OBJECTIVE DECREASE

< 33 INF -

33 2375.00 -

34 2290.00 85

35 2177.00 73

36 2086.00 91

37 2033.00 53

38 2013.00 20

39 1993.00 20

40 1978.00 15

Table 9.6.ii

The value of LBtqt found for this data set has been verified. The value of 

OBJECTIVE found for 33 locomotives uses 2375.00 light-run minutes compared with 

the value of 2395.00 light-run minutes found when branching stopped, a saving of 

20.00 light-run minutes.

199



Chapter nine: Testing the Method

W R75_5

TOTAL OBJECTIVE DECREASE

< 53 INF -

53 2909.00 -

54 2548.00 361

55 2382.00 166

56 2229.00 153

57 2209.00 20

58 2189.00 20

Table 9.6.iii

The total number of locomotives available was increased during the branching 

procedure from the lower bound value of 52 to 53. However, the above results show 

that, for this partition, it is not possible to schedule the trains using fewer than 53 

locomotives. At the end of the branching procedure the cost of the solution found was 

3129.00, but after the parametric investigation it was found that there was a cheaper 

solution which used only 2909.00 light-run minutes and 53 locomotives, a decrease 

of 220.00 light-run minutes.

2 0 0



Chapter nine: Testing the Method

W R100J

TOTAL OBJECTIVE DECREASE

< 64 INF -

64 3645.00 -

65 3270.00 375

66 2918.00 352

67 2672.00 246

68 2449.00 223

69 2371.00 78

70 2304.00 67

71 2253.00 51

72 2206.00 47

73 2186.00 20

74 2166.00 20

75 2146.00 20

76 2126.00 20

77 2111.00 15

78 2101.00 10

79 2091.00 10

80 2088.00 3

Table 9.6.iv

The value LBtOX= 64 has been verified for this partition, but more importantly 

a solution which uses no more than 64 locomotives has been proved to exist. Unlike 

the other data sets, this result was not automatic as the solution found when branching 

stopped was non-integer. As was the case for data set WR75_5 the table shows a 

reduction in the light-run cost from 3998.80, at the end of branching procedure, to 

a value of 3645.00, a reduction of 353.80 light-run minutes.

201



Chapter nine: Testing the Method

W R 1 5 0 J

TOTAL OBJECTIVE DECREASE

<  97 INF -

97 5149.00 -

98 4733.00 416

99 4459.00 274

100 4312.00 147

101 4193.00 119

102 4079.00 114

103 4014.00 65

104 3956.00 58

105 3931.00 25

106 3911.00 20

107 3891.00 20

108 3871.00 20

109 3851.00 20

110 3836.00 15

111 3826.00 10

112 3816.00 10

113 3806.00 10

114 3800.00 6

115 3795.00 5

Table 9.6.v

The value of LBtOT found has been verified. The value of OBJECTIVE for 97 

locomotives agrees, not only with that found at the end of the branching procedure, 

but also with that found at the end of Phase II.

202



Chapter nine: Testing the Method

9.7 Discussion

It is interesting at this stage to compare these results with those found by 

Forbes et. ah [32]. Overlooking the assumptions made by Forbes et. ah (discussed 

in chapter three), and comparing solutions which use the same number of locomotives 

it is clear that for each data set they have found a cheaper solution. This shows that 

for the above data sets there is an alternative partition or distribution of locomotives 

among the locomotive types which gives a better solution. This is bound to be the 

case, as the solutions found at the end of Phase II have light-run costs greater than 

those found by Forbes et. al. This highlights the way in which the distribution of the 

locomotive types affects the achievable solution values. It is also worth remembering 

that when the information on the locomotive availability is given for each locomotive 

type the Forbes et. al. method cannot be guaranteed to find a feasible solution. In 

contrast, the method described in this thesis will find a feasible solution or show that 

a feasible solution does not exist. It is not possible to make a comparison with the 

solutions found by Wright [83], as Wright attaches a cost to the use of a locomotive 

and gives the solution values as the sum of the light-run costs and the locomotive 

costs without indicating how many locomotives are used.

9.8 A Method for Solving the Stock Diagramming Problem

The development and refinement of the solution method for the stock 

diagramming problem is now complete, and in this section a summary of the final 

method is given. As already stated the method can be considered as a four stage 

procedure. The stages are:

i) the generation of an initial set of sequences;

ii) column generation using Phase I and Phase II procedures;

iii) constraint branching;

and, iv) parametric investigation of the partition of trains according to

locomotive type.

203



Chapter nine: Testing the Method

Stage.,i)

In the initial set of sequences all singleton sequences are first included, and 

additional sequences are then generated using a combination of the heuristic 

procedures ModHAP and LOCOST. Refer to chapter four for the description of these 

heuristics, and this chapter for an example of how this scheme is implemented in 

practice. Based on this set of sequences the linear programming relaxation of the set- 

partitioning problem, referred to as RSPP, is solved.

Stage ii)

An optimal (or near-optimal) solution to RSPP is found using the column 

generation technique described in chapter seven. RSPP is the master problem for the 

column generation technique and the associated subproblems are solved using the 

assignment method described in chapter six. A Phase I procedure is used if the 

solution to RSPP found at stage i) is infeasible. Once a feasible solution is found, 

Phase II is then used to find an optimal or near-optimal solution.

Stage iii)

The constraint branching scheme is used to find a partition of trains according 

to locomotive type. It is not required that an integer solution is found. Branches are 

imposed by adding constraints to the master problem. A description of how these 1- 

branch and 0 -branch constraints are constructed is given in chapter eight.

The branching scheme is implemented with a depth-first 1-branch and the 0- 

branch left unfathomed as the 1-branch is constructed to reflect the preference of a 

particular train for a locomotive type. This preference is ensured at each node of the 

search tree by choosing a pairing (i,k) so that the value of

204



Chapter nine: Testing the Method

E r € T (k)^riSr>

where f(i,k) <  1 and T(k)={r | sr is worked by locomotive type k}, is maximized. Let 

be the maximum value of f(i,k) found. To maintain a strong preference on the 1- 

branch a parameter MINPREF is specified at the start of branching and only a pairing 

for which f ^  ̂  MINPREF is accepted. (For the data sets solved in this thesis the 

value of MINPREF was chosen to be 0.75). The 1-branch at the current node then 

forces train i to be worked by its preferred locomotive type k. If f ^  falls below the 

threshold value MINPREF then one iteration of the column generation technique for 

the Phase II procedure is carried out, and f ^  recalculated. If after four iterations of 

the column generation technique the value of f ^  remains less than MINPREF, the 

(i,k) pairing for which fnMX=max(i k)f(i,k) is then accepted. The subproblems for the 

column generation technique are modified so that they reflect the way in which trains 

are fixed at the nodes farther up the current branch of the search tree. It may happen 

that the value of f ^  indicates that the train i does not have a preferred locomotive 

type. For example, suppose that for a train i and for two (or more) locomotive types 

kj and k2 compatible with train i fnux=f(i,k1)=f(i,k2). If this is the case then 

arbitrarily select one of the locomotive types k with f ( i , k ) = 4 a x  and fix train i to 

locomotive type k.

If on addition of a 1-branch constraint the solution to the master problem 

becomes infeasible the column generation technique is implemented for the Phase I 

procedure to restore the problem to feasibility. If the master problem remains 

infeasible the 0 -branch at that node is evaluated, and if necessary, 0 -branches farther 

up the tree are also explored until a feasible solution is found. Branching then 

continues as before, evaluating only the 1-branch at each node.

Once the value of

r̂eT(k) r̂iSr

205



Chapter nine: Testing the Method

is equal to 0  or 1 for all (i,k) pairs, a partition of trains by locomotive types has been 

established and branching stops.

The constraint branching procedure is summarized at figure 9.8.i.

Stage iv)

A parametric investigation of the partition of trains according to locomotive 

type is performed. A method used to perform this analysis is described in chapter 

eight.

The method for the solving the stock diagramming problem is summarized at 

figure 9.8.ii. The four stages of the method are indicated on the diagram.

It is possible to extend the solution method and obtain alternative partitions by 

evaluating all nodes of the branching tree. A further possibility is to use the column 

generation procedure at each node to restore the linear programming relaxation of the 

original problem to optimality. This is done by Desrosiefs et. al [24]. However, it 

is suggested that the extra work required to perform such a complete analysis is not 

worthwhile as an optimal or near-optimal solution is found to the problem RSPP and 

the branching procedure maximizes the preference exhibited at each node of a train 

for a particular locomotive type. Hence, the solution method proposed in this thesis 

is not an exact method, but it has its roots in optimality making it a powerful 

heuristic.

20 6



Chapter nine: Testing the Method

START

YES Partition found 
-STOP

Does a partition 
exist?

NO

COUNT:=0

Find pairing (i,k) s.t. 
f(i,k) is maximised

YES
COUNT :=COUNT+1Is fmtx < MINPREF?

NO
YES NO Phase II: Use col. gen. 

for one iteration
Add 1-branch 

constraint to RSPP
Is COUNT=4?

Solve RSPP

YES Feasible?

NO

Phase I: Use col. gen. 
to find feasible solution Add 0-branch constraint 

at current node

YESNOYES Was the last constraint 
added the 1-branch 

\  constraint? /

Remove 1-branch 
constraint at current nodeFeasible?

NO
NO Backtrack to 

previous node

No feasible 
solution exists 

-STOP
YESIs this node the 

root node?

Figure S 

2 0 7



Chapter nine: Testing the Method

STAGE i

YES
Feasible?

NO

NO
Feasible? STAGE ii

.YES

STAGE iii

NO

YES

NO
STAGE iv

YES

Has a partition 
. been found? .

Is there a solution which 
uses no more than the 

available locomotives^

Solve RSPP

Solution found 
-STOP

Problem
infeasible
-STOP

Problem
infeasible
-STOP

Constraint branch 
to find partition

Generate initial set 
of sequences

Perform parametric investigation 
for the partition

Phase I: Use column generation 
to find feasible solution

Phase II: Use column generation 
to fmd optimal solution

Return to branching 
tree to fmd alternative 

partition

Figure 9.8.ii

208



Chapter ten: Concluding Remarks

CHAPTER TEN 

CONCLUDING REMARKS

10.1 Summary

In this thesis a real world scheduling problem faced by British Rail, the stock 

diagramming problem, has been considered. Recall the description of the stock 

diagramming problem. Given a fixed timetable, which is assumed to be repeated on 

a daily basis, the problem is to work all the trains in the timetable using a non- 

homogeneous set of locomotives. There is a limited number of locomotives of each 

type available. Each train is not necessarily compatible with all the available 

locomotive types thus, for each train, information is provided which specifies those 

locomotive types compatible with the train. The objective is to schedule all trains in 

the timetable so as to minimize the total light-run time used without violating the 

limits on the locomotive availability. The solution to the stock diagramming problem 

is a set of cyclic schedules. Each schedule describes the order in which the trains 

should be worked and the type of locomotive which works the trains in the schedule. 

The set of schedules cover each train in the timetables exactly once. It may take one 

or more locomotives of a given locomotive type to complete a schedule.

The number of trains and the number of locomotive types in a stock 

diagramming can give rise to a large combinatorially complex problem. In this thesis 

a method is provided which successfully tackles the size of the problem and thereby 

makes a PC-based solution method viable. This method will find a good feasible 

solution to the stock diagramming problem if such a solution exists. If a feasible 

solution does not exist, then the method will prove that the problem is infeasible. 

These facts contrast with the methods developed by other authors who have 

considered this problem. As well as British Rail’s attempts to solve the stock 

diagramming problem, this problem has received attention from Wright [83] and

209



Chapter ten: Concluding Remarks

Forbes et. al. [32]. British Rail and Wright tackle the size of the problem by use of 

heuristic procedures which break the problem down into components of a manageable 

size. These heuristic procedures can give rise to good feasible solutions. 

Unfortunately, such heuristic procedures may also fail to find a feasible solution. In 

such instances it is not clear whether the problem is infeasible or the heuristic 

inadequate. Forbes et. al. propose an exact method, but they do not suggest a 

practical means of dealing with the size of the problem nor do they explicitly 

incorporate the constraint on locomotive availability.

The method used to solve the problem is summarized in chapter nine. The 

stock diagramming problem is formulated as an integer linear programming problem. 

This problem is then decomposed into a number of subproblems and a coupling 

problem, the master problem. Instead of including all possible columns (schedules) 

in the master problem at the outset, the feasible region is limited by considering only 

a subset of the set of all possible columns. The method proceeds by solving the linear 

programming relaxation of the master problem to optimality by using a column 

generation technique. Additional columns are introduced into the master problem as 

required. It is the use of this technique which makes the method accessible to large 

problems. In this thesis the master problem is solved using the simplex algorithm. It 

was discovered that the subproblems in the column generation technique can be 

formulated as assignment problems and solved in polynomial time. This use of a 

polynomial time algorithm to solve the set of subproblems significantly reduces the 

time taken to execute one iteration of the column generation technique. This also 

allows for the possibility of solving an increased number of subproblems at each 

iteration. Once the optimal solution to the linear programming relaxation of the 

master problem is found, if the solution is not integer, a constraint branching 

procedure is invoked. The purpose of the constraint branching procedure is to find 

a partition of the trains according to locomotive type. That is, at the end of the 

constraint branching procedure each train is assigned a locomotive type. The solution 

at the end of the procedure may or may not be integer. If the solution is not integer,

21 0



Chapter ten: Concluding Remarks

instead of using a variable branching procedure to find which schedules cover each
,of

train an alternative means has been devised. Based on the set [trains worked by a 

specific locomotive type an assignment problem is constructed. The assignment 

problem includes an additional constraint on the number of locomotives of the 

specified type available. The solution of the assignment problem is a set of schedules 

which cover the trains in the assignment problem exactly once. In this thesis the 

assignment problem, with the added constraint, is solved using the simplex algorithm. 

This method allows alternative schedules to be generated by considering the multiple 

solutions which may exist for the given number of locomotives. The solutions found 

are optimal integer solutions at the current node of the branching tree. Also, by 

varying the number of locomotives of each type available, solutions which use more 

or fewer locomotives are found. This is the parametric investigation phase of the 

solution method.

The method proposed in this thesis for the stock diagramming problem may 

be used to find optimal solutions to the problem. However, it is suggested that it is 

more practical in a real world problem to find a good feasible solution in a reasonable 

amount of computing time. Therefore, the column generation technique may be halted 

before an optimal solution is found to the relaxed linear programming formulation of 

the master problem and not all branches of the constraint branching tree are explored. 

The final method summarized in chapter nine proposes that, barring degeneracy, the 

optimal solution to the relaxed master problem is pursued and, barring infeasibility 

at a node, only the 1-branch of the branching tree is explored at each node. Hence, 

this method may best be described as an ‘optimal heuristic’ procedure.

10.2 Future Work

In this section extensions to the methodology summarized in chapter nine 

along with suggestions for future work are listed.

211



Chapter ten: Concluding Remarks

1) The next stage in the development of the method is to computerize the 

entire procedure. This means incorporating the modules of LAMPS in a single 

program which includes: the use of the column generation technique for Phase I and 

Phase II procedures; the constraint branching procedure; and, the parametric 

investigation of the partition.

2) A further development is to devise a swap heuristic to investigate 

alternative partitions of trains to locomotive types. This idea is mentioned in chapter 

eight.

3) As mentioned in section 10.1, an extension of the method is to find 

optimal solutions to the stock diagramming problem. This entails finding an optimal 

solution to the linear programming relaxation of the master problem at every node of 

the constraint branching tree. The optimal solution is found by using the column 

generation technique. In general, the search for an optimal solution will involve a 

significant increase in the amount of computing time used to solve the problem. For 

a particular stock diagramming problem it is worth considering the trade-off between 

the reduction in the objective function and the increase in the computing time required 

to achieve the reduction. If relatively few nodes of the constraint branching tree are 

explored before a partition is found, then it is likely that the optimal integer solution 

at the current node is the optimal or near-optimal integer solution of the original 

problem.

4) In addition to minimising the light-run cost in a solution, it is also 

possible to try and minimize the total number of locomotives used. This can be done 

by the addition of a constraint which limits the total number of locomotives used. For 

example, the additional constraint could specify that no more than the peak 

requirement of locomotives are used. Recall that the peak requirement is a lower 

bound on the number of locomotives required to schedule the trains. (See chapters 

four and nine for a description and method of calculating the peak requirement.) The

212



Chapter ten: Concluding Remarks

limit on total availability can then be relaxed if the problem is infeasible at the end 

of Phase I or if the problem becomes infeasible during constraint branching. Instead 

of adding a constraint which limits the total number of locomotives used it is also 

possible to tighten the limits on availability for selected locomotive types. For an 

example of the implementation of this idea see chapter nine. For Wright’s data sets, 

the limits on locomotive availability were chosen so that the total number of 

locomotives available was no more than the peak requirement. It was only necessary 

to increase this limit for one of the five data sets and this was done during constraint 

branching. This strategy is of use if the scheduler wishes to investigate locomotive 

type requirements for a given timetable.

6) It may be possible to improve the speed of the column generation 

technique by restricting the total number of columns in the master problem. This can 

be done by employing a strategy to delete a subset of the non-basic variables in the 

master problem. A typical strategy is described in chapter seven when the shortest 

path method is used to solve the subproblems. In this strategy, at each iteration of the 

column generation technique, all non-basic variables are deleted before the addition 

of new columns to the master problem. Dantzig [18] also gives a number of strategies 

for restricting the master problem and these are reported in chapter five. For the final 

method proposed in this thesis all columns are retained in the master problem as 

relatively few columns are added during the use of the column generation technique.

213



References

REFERENCES

1. Appelgren, L.H. (1969) A Column Generation Algorithm for a Ship 
Scheduling Problem. Transportation Science 3, 53-68.

2. Assad, A.A. (1978) Flows - A Survey. NETWORKS 8 , 37-91.

3. Balas, E. and Toth, P. (1985) Branch and Bound Methods. The Travel ing 
Salesman Problem, Ed. Lawler, E.L., Lenstra, J.K., Rinnooy, A.H.G. and 
Shmoys, K.D.B., 361-397. John Wiley and Sons Ltd, New York.

4. Ball, M. and Magazine, M. (1981) The Design and Analysis of Heuristics. 
NETWORKS 11, 215-219.

5. Bellmore, M., Bennington, G. and Lubore, S. (1977) A Multivehicle Tanker 
Scheduling Problem. Transportation Science 5, 36-47.

6 . Benders, J.F. (1962) Partitioning Procedures for Solving Mixed-Variables 
Programming Problems. Numerische Mathematik 4, 238-252.

7. Berge, C. (1972) Balanced Matrices. Mathematical Programming 2, 19-31.

8 . Bertossi, A.A., Carraresi, P. and Gallo, G. (1987) On Some Matching 
Problems Arising in Vehicle Scheduling Models. NETWORKS 17, 271-281.

9. Bodin, L.D. and Golden, B.L. (1981) Classification in Vehicle Routing and 
Scheduling. NETWORKS 11, 97-108.

10. Bodin, L., Golden, B., Assad, A. and Ball, M. (1983) Routing and 
Scheduling of Vehicles and Crews: The State of the Art. Computers and 
Operations Research 10, 63-211.

11. Bott, K. and Ballou, R.H. (1986) Research Perspectives in Vehicle Routing 
and Scheduling. Transport Research - A 20a, 239-243.

12. Carpaneto, G., Dell’amico, M., Fischetti, M. and Toth, P. (1989) A Branch 
and Bound Algorithm for Multiple Depot Vehicle Scheduling Problem. 
NETWORKS 19, 531-548.

13. Carpaneto, G. and Toth, P. (1986) Some New Branching and Bounding 
Criteria for the Asymmetric Traveling Salesman Problem. Management 
Science 26, 736-743.

214



References

14. Carraresi, P. and Gallo, G. (1984) Network Models for Vehicle and Crew 
Scheduling. European Journal o f Operational Research 16, 139-151.

15. Cohn, P.M. (1974) Algebra - Volume 7, John Wiley and Sons, New York.

16. Crainic, T.G. and Rousseau, J-M. (1987) The Column Generation Principle 
and the Airline Crew Scheduling Problem. INFOR 25, 136-151.

17. Cullen, F.H., Jarvis, J.J. and Ratliff, H.D. (1981) Set Partitioning Based 
Heuristics for Interactive Routing. NETWORKS 11, 125-143.

18. Dantzig, G.B. (1963) Linear Programming and Extensions. Princeton 
University Press, Princeton, New Jersey, U.S.A.

19. Dantzig, G.B. and Fulkerson, D.R. (1954) Minimizing the Number of 
Tankers to Meet a Fixed Schedule. Naval Logistics Quarterly 1, 217-222.

20. Dantzig, G.B. and Wolfe, P. (1959) Decomposition Principle for Linear 
Programs. Operations Research 8 , 101-111.

21. Desrochers, M. and Soumis, F. (1989) A Column Generation Approach to the 
Urban Transit Crew Scheduling Problem. Transportation Science 23, 1-13.

22. Desrosiers, J., Dumas, Y. and Soumis, F. (1988) The Multiple Vehicle Dial- 
a-Ride Problem. In Lecture Notes in Economics and Mathematical Systems 
308: Computer-Aided Transit Scheduling, Ed. Daduna, J.R. and Wren, A., 
15-27.

23. Desrosiers, J. and Soumis, F. (1983) Locomotive Maintenance Scheduling and 
Train Assignment (Extended Abstract). Methods o f Operations Research 45, 
217-219.

24. Desrosiers, J., Soumis, F. and Desrochers, M. (1984) Routing with Time 
Windows by Column Generation. NETWORKS 14, 545-565.

25. Desrosiers, J., Soumis, F., Desrochers, M. and Suav6 , M. (1986) Vehicle 
Routing and Scheduling with Time-Windows. Mathematical Programming 
Study 26, 249-251.

26. Dexter, K.L.W. (1981) Scheduling an Urban Railway. In Computer 
Scheduling o f Public Transport, Ed. Wren, A., North Holland Publishing Co., 
Amsterdam, 147-180.

215



References

27. Etcheberry, J. (1977) The Set-Covering Problem: A New Implicit 
Enumeration Algorithm. Operations Research 25, 760-772.

28. Falkner, J.C. and Ryan, D.M. (1988) Aspects of Bus Crew Scheduling Using 
a Set Partitioning Model. In Lecture Notes in Economics and Mathematical 
Systems 308: Computer-Aided Transit Scheduling, Ed. Daduna, J.R. and 
Wren, A., 91-103.

29. Ferland, J.A. and Michelon, P. (1988) The Vehicle Scheduling Problem with 
Multiple Vehicle Types. Journal o f the Operational Research Society 31, 
577-583.

30. Fisher, M.L. (1981) The Lagrangian Relaxation Method for Solving Integer 
Programming Problems. Management Science 27, 1-18.

31. Fisher, M.L. and Jaikumar, R. (1981) A Generalized Assignment Heuristic 
for Vehicle Routing. NETWORKS 11, 109-124.

32. Forbes, M.A., Holt, J.N. and Watts, A.M. (1991) Exact Solution of 
Locomotive Scheduling Problems. Journal o f the Operational Research Society 
42, 825-831.

33. Ford, L.R. and Fulkerson, D.R. (1957) A Suggested Computation for 
Maximal Multicommodity Network Flows. Management Science 5, 97-101.

34. Foster, B.A. and Ryan, D.M. (1976) An Integer Programming Approach to 
the Vehicle Scheduling Problem. Operational Research Quarterly 27, 
367-384.

35. Geetha, S. and Vartak, M.N. (1989) Time-Cost Trade-Off Analysis in Some 
Constrained Assignment Problems. Journal o f the Operational Research 
Society 40, 97-101.

36. Geoffrion, A.M. (1970) Elements of Large Scale Mathematical Programming 
Part I: Concepts. Management Science 16, 652-675.

37. Geoffrion, A.M. (1970) Elements of Large Scale Mathematical Programming 
Part II: Synthesis of Algorithms and Bibliography. Management Science 16, 
676-691.

38. Golden, B., Assad, A., Levy, L. and Gheysens, F. (1982) The Fleet Size and 
Mix Vehicle Routing Problem. Management Science and Statistics Working 
Paper Series MS/S 82-020.

21 6



References

39. Hartley, T. and Wren, A. (1985) Two Complementary Bus Scheduling 
Programs. In Computer Scheduling o f Public Transport 2, Ed. Rousseau, 
J-M., Elsevier Science Publishers B.V., North-Holland, 345-369.

40. Klee, V. and Minty, G.J. (1972) How Good is the Simplex Algorithm? In 
INEQUALITIES III, Ed. Shisha, O., New York: Academic Press, Inc., 
159-175.

41. LAMPS User Manual, Version 1.66 (1991). Advanced Mathematical
Software, Yukon Court, 4 Yukon Road, London. SW12 9PU.

42. Lasdon, L.S. (1970) Optimization Theory for Large Systems. The Macmillan 
Co., New York.

43. Lavoie, S., Minoux, M. and Odier, E. (1988) A New Approach for Crew
Pairing Problems by Column Generation with and Application to Air
Transportation. European Journal o f Operational Research 35, 45-58.

44. Lawler, E.L. (1976) Integrality of Flows and the Unimodular Property. In 
Combinatorial Optimization: Networks and Maitroids, Holt, Rinehart and 
Winston, U.S.A., 160-165.

45. Lemke, C.E., Salkin, H.M. and Spielberg, K. (1971) Set Covering by Single- 
Branch Enumeration with Linear Programming Subproblems. Operations 
Research 19, 998-1022.

46. Levary, R.R. (1981) Heuristic Vehicle Scheduling. OMEGA 9, 660-663.

47. Levin, A. (1970) Scheduling and Fleet Routing Models for Transportation 
Systems. Transportation Science 5, 232-255.

48. Lin, S. (1965) Computer Solutions to the Traveling Salesman Problem. The 
Bell System Technical Journal 44, 2245-2269.

49. Lundy, M. and Mees, A. (1986) Convergence of an Annealing Algorithm. 
Mathematical Programming 34, 111-124.

50. Marsten, R.E. (1971) An Algorithm for Large Set Partitioning Problems. 
Management Science 20, 774-787.

51. Marsten, R.E. and Shepardson, F. (1981) Exact Solution of Crew Scheduling 
Problems Using the Set Partitioning Model: Recent Successful Applications. 
NETWORKS 11, 167-177.

21 7



References

52. Mitra, G. and Darby-Dowman, K. (1985) CRU-SCHED - A Computer Based 
Bus Crew Scheduling System Using Integer Programming. In Computer 
Scheduling o f Public Transport 2, Ed. Rousseau, J-M., Elsevier Science 
Publishers B.V., North-Holland, 223-232.

53. Mitra, G. and Welsh, A.P.G. (1981) A Computer-Based Crew Scheduling 
System Using a Mathematical Programming Approach. In Computer 
Scheduling o f Public Transport, Ed. Wren, A., North Holland Publishing Co., 
Amsterdam, 281-296.

54. Nemhauser, G.L., Trotter, L.E. and Nauss, R.M. (1974) Set Partitioning and 
Chain Decomposition. Management Science 20, 1413-1423.

55. Nemhauser, G.L. and Wolsey, L.A. (1988) Integer and Combinatorial 
Optimization John Wiley and Sons, New York.

56. Orloff, C.S. (1976) Route Constrained Fleet Scheduling. Transportation 
Science 10, 149-167.

57. Oyama, T. and Han-I, S. (1987) Application of Discrete Optimization 
Techniques to Train Scheduling Problems. Asia-Pacific Journal o f Operational 
Research 4, 158-186.

58. Padberg, M.W. (1973) Perfect Zero-One Matrices. Mathematical 
Programming 2, 199-215.

59. Paixao, J. and Branco, I.M. (1988) Bus Scheduling with a Fixed Number of 
Vehicles. Lecture Notes in Economics and Mathematical Systems 308: 
Computer-Aided Transit Scheduling, Ed. Daduna, J.R. and Wren, A.,
28-40.

60. Papadimitriou, C.H. and Steiglitz, K. (1982) Combinatorial Optimization: 
Algorithms and Complexity. Prentice-Hall Inc., New Jersey, U.S.A.

61. Parker, M.E. and Smith, B.M. (1981) Two Approaches to Computer Crew 
Scheduling. In Computer Scheduling o f Public Transport, Ed. Wren A., North 
Holland Publishing Co., Amsterdam, 193-211.

62. Popken, D. A. (1988) Multiattribute Multicommodity Flows in Transportation 
Networks. Ph.D. Thesis, Air Force Institute of Technology, Wright-Patterson 
AFB OH 45433-6583, University of California, Berkeley.

218



References

63. Riberio, C.C. and Soumis, F. (1991) A Column Generation Approach to the 
Multiple-Depot Vehicle Scheduling Problem. Presented at the 14th 
International Symposium on Mathematical Programming, Amsterdam.

64. Rousseau, J-M., Ed. (1985) Computer Scheduling o f Public Transport 2, 
Elsevier Science Publishers B.V., North-Holland.

65. Rubin, J. (1973) A Technique for the Solution of Massive Set Covering 
Problems with Application to Airline Crew Scheduling. Transportation 
Science 7, 34-48.

6 6 . Ryan, D.M. (1992) The Solution of Massive Generalized Set Partitioning 
Problems in Aircrew Rostering. Journal o f the Operational Research Society 
43, 459-467.

67. Ryan, D.M. and Falkner, J.C. (1988) On the Integer Properties of Scheduling 
Set Partitioning Models. European Journal o f  Operational Research 35, 
442-456.

6 8 . Ryan, D.M. and Foster, B.A. (1981) An Integer Programming Approach to 
Scheduling. In Computer Scheduling o f Public Transport, Ed. Wren A., North 
Holland Publishing Co., Amsterdam, 269-280.

69. Scott, D. (1985) A Large Scale Linear Programming Approach to the Public 
Transport Scheduling and Costing Problem. In Computer Scheduling o f Public 
Transport 2, Ed. Rousseau, J-M., Elsevier Science Publishers B.V., North- 
Holland, 473-491.

70. Seshan, C.R. (1981) Some Generalisations of the Time Minimising 
Assignment Problem. Journal of the Operational Research Society 32, 
489-494.

71. Shepardson, F. (1985) Modelling the Bus Crew Scheduling Problem. In 
Computer Scheduling o f Public Transport 2, Ed. Rousseau, J-M., Elsevier 
Science Publishers B.V., North-Holland, 247-261.

72. Simonnard, M. (1962) Integer Programming. Prentice-Hall Inc., New Jersey, 
U.S.A.

73. Smith, B.M. and Wren, A. (1981) VAMPIRES AND TASC: Two 
Successfully Applied Bus Scheduling Programs. In Computer Scheduling of  
Public Transport, Ed. Wren, A., North Holland Publishing Co., Amsterdam, 
97-119.

219



References

74. Solomon, M.M. and Desrosiers, J. (1988) Time Window Constrained Routing 
and Scheduling Problems - A Survey Paper. Transportation Science 22, 
844-853.

75. Swersey, A.J. and Ballard, W. (1984) Scheduling School Buses. Management 
Science 30, 844-853.

76. Ward, R.E., Durrant, P.A. and Hallman, A.B. (1981) A Problem 
Decomposition Approach to Scheduling the Drivers and Crews of Mass 
Transit Systems. In Computer Scheduling o f Public Transport, Ed. Wren, A., 
North Holland Publishing Co., Amsterdam, 297-312.

77. Wolfe, P. (1963) A Technique for Resolving Degeneracy in Linear 
Programming. SIAM J. 11, 205-211.

78. Wren, A. (1981) Computer Scheduling o f Public Transport, North Holland 
Publishing Co., Amsterdam.

79. Wren, A. (1981) General Review of the Use of Computers in Scheduling 
Buses and their Crews. In Computer Scheduling o f Public Transport, Ed. 
Wren, A., North Holland Publishing Co., Amsterdam, 3-16.

80. Wren, A. and Holliday, A. (1972) Computer Scheduling of Vehicles from one 
or more Depots to a Number of Deliver Points. Operational Research 
Quarterly 23, 333-344.

81. Wren, A. and Smith B.M. (1988) Experiences with a Crew Scheduling System 
Based on Set Covering. Lecture Notes in Economics and Mathematical 
Systems: Computer-Aided Transit Scheduling, Ed. Daduna and Wren, 263-278.

82. Wren, A., Smith, B.M. and Miller, A.J. (1985) Complementary Approaches 
to Crew Scheduling. In Computer Scheduling o f Public Transport 2, Ed. 
Rousseau, J-M., Elsevier Science Publishers B.V., North-Holland, 263-278.

83. Wright, M.B. (1989) Applying Stochastic Algorithms to a Locomotive 
Scheduling Problem. Journal o f the Operational Research Society 40, 
187-192.

84. Wright, B.M. (1992) Personal communication.

2 2 0



Appendix A

APPENDIX A 

Matrix Multiplication Method 

Version 1

The matrix multiplication method finds the shortest paths between all pairs of 

nodes in a network.

Define

<£ij =  the length of a shortest path from i to j,

=  the length of a shortest path from i to j, subject to the 

condition that the path contains no more than m arcs.

Then define

<kj(1) =  C,,

where Cs is the cost associated with arc i-»j. Notice that if (^ > 0  then it is known 

that any negative cycle through i passes through more than one node and it is 

therefore possible to set Cii= 0  and not overlook any negative cycles which may exist. 

So, defining,

* > +1> =  mink {**«  +  Ckj}.

If <£H(m) <  0 for some m, then there is a negative cycle through i. As no cycle can 

contain more than n arcs, if for all m, 1 <  m <  n, then there are no

negative cycles through i.

221



Appendix A

In these equations, each <f> tm), of which there are approximately n3 requires 

about n computations, giving a complexity of 0 (n4).

Version 2

This complexity can be improved by defining a matrix multiplication, denoted by H 

and defining the product of two matrices ABB by

ABB =  (p^,

where

Pi, =  mint {a* +  by}.

Defining $ (") to be the matrix (<£,/“'), then defining

$ (l) =  C,

where C =  (Cy. As before a check is made that (^ > 0  for all i and then Cy is set 

equal to zero for all i.

^ (m + l)  _  ^ (m ) g j  Q

Repeated squaring gives

«|><2m) _  <£(m) g j £(m)^

If for some m $ (m) has a negative i* diagonal entry then there is a negative cycle 

through i.

There are approximately n3 $ (m) matrices, and the maximum number of 

operations B to prove that there are no negative cycles is 0(log2n). Therefore the

22 2



Appendix A

complexity of this method is 0 (n3log2n).

Version 2 is used in this thesis in conjunction with the Bellman-Ford 

algorithm.

223



Appendix B

APPENDIX B

Bellman-Ford Algorithm

Define <f>fm) to be the length of a shortest path the start node i to node j, 

subject to the condition that the path contains at most m arcs. Define

*im =  c 5

where Qj is the cost of traversing the arc i-»j in the network, and

<#>/"+11 =  min {^j(m), mint*j{^k<m> +  Ckj}}.

Having checked that C ^ O  for all i, then any negative cycle will pass through more 

than one node and it is possible to set C u= 0  without overlooking any negative cycle 

which may exist. Then, i(1)= 0 .

If 0 i(m> < 0  for any m then the method has located a negative cycle and the 

algorithm terminates. Since no cycle from i can contain more than n arcs, if  <£j(m) ̂  0  

for all m, 1 <  m <  n then there are no negative cycles through i. Each evaluation of 

(j)j(m) requires n-1 additions and n-1 comparisons. There are approximately n2 <£j(m)’s, 

and therefore the complexity is 0 (n3).

224



Appendix C

APPENDIX C

Hungarian Method

For the complete bipartite graph B=(V,U,E) with | V | =  | U | =n under the nxn 

cost matrix Cy, the Hungarian Method is described by the following steps.

1. Reduce: For each iE V  let a i=minjcij and update^ = 0^ .  

For each jE U  let /3j=minicij and update Cg=Cy-jSj.

2. Initialize: For each i E V set mark(i)=-1 and for each jE U

set mark(j)=-l. Set the value of nummkd=0. Then for each iE V , if there exists 

jE U  with mark(j)=-l and Cy=0 set mark(j)=i, mark(i)=j and 

nummkd= nummkd+1. Continue until each iE V  has been considered.

3. Check: If nummkd=n a complete matching has been

found, go to 8 . Otherwise, for all iE V  set label© =-1, and for all jE U  set 

label© = - 1.

4. Unmarked: Find an i E V with mark©=-1 and set label© =0.

5. Label: Find i E V with label© =£-1. If there is j E U with

mark©=£i and Cy=0 and label(j)=-l set label(j)=i. Continue until all iE V  with 

label© £-1 have been considered. If there exists j E U with label© £-1 and mark©= -  

1 then an augmenting path has been found; set OGPATH=j, go to 6 . Otherwise, for 

each jE U  with label© £-l, if mark(j)=i, for some iE V , and label©=-1, set 

label© =j. Continue until all jE U  with label© =£-1 have been considered. Go to 7.

225



Appendix C

6 . Augmenting path: For j*=OGPATH, find i’£ V  such that

i"=label(j*). Then, set mark(i*)=j*, mark(j*)=i\ Update j* such that j*=label(i*). If 

j*=0 then set nummkd= nummkd+ 1, go to 3. Otherwise, update i* with i*=label(j*). 

Continue marking nodes until a row labelled 0 is found.

7. Update: Update the matrix Cy to find another 0. For all

iE  V with label(i)=£-l, and jE U  with label(j)=-l, find 5=minijcij. For all iE V  with 

label(i)=£-l update <^=0^+ 5  and c^Cy-5. For all jE U  with label(j)^-l update

j= j—5 and cij= c ij+5. Go to 4.

8 . Solution: The assignment is given by: neighbour of iE V

is mark(i). The cost of the assignment is £ ^ ( 0^+/^).

22 6



Appendix D

APPENDIX D

The Lagrangean relaxation with respect the resource constraint PAPk3 in the 

formulation PAPk given in chapter eight is:

The set P(k), the variables and data are as defined for the formulation PAPk, and /* 

is the Lagrangean multiplier associated with constraint set PAPk3. Constraint PAPk4 

of PAPk is now redundant as the solutions to LPAPk only take zero-one values.

The problem PAPk is referred to by Nemhauser and Wolsey [55] as a flow 

problem with budget constraint. The problem LPAPk is solvable in polynomial time 

and is considerably easier to solve than the original problem PAPk. To see the 

relationship between the problem PAPk, the linear programming relaxation of PAPk 

and the problem LPAPk, consider figure Di shown below.

In the diagram the points denoted by I; are integer points and the points R, are 

non-integer points. The shaded polytope represents the feasible region of the problem 

PAPk. The polytope described by represents the feasible region of the linear

programming relaxation of PAPk. The polytope described by I1I10I4 represents the 

feasible region of the problem LPAPk and the bold line LI is the constraint PAPk3 

which dissects this feasible region. Therefore, the poly tope I1R2I7I4 is the intersection

LPAPk

s.t.

'j€P(k) v ij

'jepoo vji -  

Viik >  0

V iEP(k) LPAPkl

V iEP(k) LPAP^ 

V i,j E P(k) LPAPk3

227



Appendix D

of the convex set of the points which satisfy constraint set PA P^ with the polytope 

I1W 4.

h11

Fieure Pi

It is clear from the diagram that by an appropriate choice of the value of the 

Lagrangean multiplier /x an optimal solution of LPAPk which satisfies the constraint 

PAPk3 locates at least one of the extreme points I,, I4 and I7 of the polytope I1R2I7I4. 

The integer solutions found using this method depend on the values of c^, m{ and My

228



Appendix D

in LPAPk. In addition, by choosing other values of /x which correspond to the 

constraint PAP^ being ineffective or violated, it may be possible to locate other 

integer points of the polytope described by I1I10I4. This can be viewed as being 

equivalent to increasing or decreasing the value of Uk in constraint PAPk3, and 

thereby causing a shift in the line LI. Therefore, it is clear that by varying the value 

of the Lagrangean multiplier /t it is possible to find the optimal integer solutions to 

the problem PAPk which correspond to different values of Uk.

The alternative method for locating optimal integer solutions to PAPk for 

different values of Uk, is to vary the value of Uk in constraint PAPk. As before, 

altering the value of Uk is equivalent to a shift in the line LI. For the position of the 

line LI indicated in the diagram, an optimal solution to the linear programming 

relaxation of the problem PAPk is at least one of the extreme points Rt, R3,17 and I4. 

By shifting the line LI, other points become extreme points of the linear 

programming relaxation of PAPk. Therefore, the parametric investigation of the right- 

hand side of constraint PAPk3, along with a branch and bound procedure, can be used 

to locate optimal integer solutions to PAPk for different values of Uk.

It is straightforward to implement the parametric investigation of the right- 

hand side of constraint set PAPk3 using the facility available in LAMPS. This method 

is especially attractive if all or almost all of the solutions found are integer and very 

little branch and bound work is required. Initially, the use of assignment algorithm 

to solve the problem LPAPk was rejected in favour of this method, on the grounds 

that it is more cumbersome to implement and the values of /x are chosen arbitrarily. 

However, it was belatedly realised that by using an alternative formulation for 

LPAPk, it is possible use a facility in LAMPS which allows the user to perform a 

parametric investigation of the objective function coefficient of a specified variable. 

The alternative formulation is given by:

229



Appendix D

PPAR

s.t.

MIN Eiep(k)Ejep(k) £1 +  V-%2 A*Uk

Ejepflo v «k==l

^jGP(k) Vjik =  1 

^ i e  P(k)^j£P(k) CijV ijk =  £  1

îep(k)Ejep(k) /i(mi+ M s)v5k={2

Vijk >  0  

?1, 2̂ — 0

V i£P(k) PPAPkl

V ieP (k ) PPAPt2

PPAPk3 

PPAPk4 

V i,jEP(k) PPAP^ 

PPAPk6

This problem is essentially the same as LPAPk as constraints PPAPk3 and PPAPk4 are 

simply used to define the new variables and £2. So, the variables v^ take only 

zero-one values and, as the data c ,̂ nij and M;j take integer values, the variables & 

and £2 only take integer values. Using this formulation it is possible to continuously 

vary the value of /x, the objective function coefficient of £2, and find alternative 

integer solutions to the problem PAPk for different values of Uk. When performing 

the parametric investigation of /x the constant term /xUk can be dropped. The 

advantage of this method over the use of a parametric investigation of the value Uk 

in PAPk is that the solutions found using this method are always integer.

2 3 0


