
OPTIMAL LOCATION OF SINGLE AND MULTIPLE OBNOXIOUS

FACILITIES: ALGORITHMS FOR THE MAXEVHN CRITERION

UNDER DIFFERENT NORMS

IOANNIS GIANNIKOS

London School of Economics and Political Science

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

in the Faculty of Economics

March 1993

UMI Number: U062991

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U062991
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

x ' - x j - l U o £ o 3

F
“ 7

Abstract

ABSTRACT

This thesis investigates the computational problem of locating obnoxious

(undesirable) facilities in a way that minimizes their effect on a given set of clients

(e.g. population centres). Supposing that the undesirable effects of such a facility on

a given client are a decreasing function of the distance between them the objective is

to locate these facilities as far away as possible from the given set of clients, subject

to constraints that prevent location at infinity. Emphasis is given to the MAXIMIN

criterion which is to maximize the minimum client-to-facility distance. Distances are

measured either in the Euclidean or the rectilinear metric.

The properties of the optimal solution to the single facility problem are viewed

from different, seemingly unrelated, perspectives ranging from plane geometry to

duality theory. In particular, duality results from a mixed integer programming

model are used to derive new properties of the optimal solution to the rectilinear

problem.

A new algorithm is developed for the rectilinear problem where the feasible

region is a convex polygon. Unlike previous approaches, this method does not

require linear programming at all. In addition to this, an interactive graphical

approach is proposed as a site-generation tool used to identify potential locations in

realistic problems. Its main advantages are that it requires minimal user intervention

and makes no assumptions regarding the feasible region. It has been applied in large

scale problems with up to 1000 clients, whereas the largest reported application so

far involved 10 clients.

Alternative models are presented for the multi-facility problem as well. Each

of them is based on different assumptions and is applicable to specific situations.

Moreover, an algorithm is established for the two-facility problem based on the

properties of the optimal solution. To the best of our knowledge this is the first

attempt to address this problem in the plane.

Finally, a number of unresolved issues, especially in the multi-facility

problem, are outlined and suggested as further research topics.

2

ACKNOWLEDGMENTS

I am grateful to Dr Gautam Appa, for his friendship and cooperation without

which this thesis would never have been possible.

I must also thank the Alexander S. Onassis public benefit foundation for

financing this course of study.

Thanks are also due to Eleni, Dimitris and Karen for their help and friendship

and all the happy times we have had.

My special thanks to Panos for his invaluable support throughout this effort

and his encouragement when things went wrong.

I am indebted to Eleni, my best friend who was always ready to listen and

offer her advice and, more importantly, her moral support whenever I needed it.

I really cannot find words to describe my gratitude towards my parents. This

thesis is dedicated to them because, simply, I owe them everything.

3

2 T o U S v" i \ S |> o \j

4

TABLE OF CONTENTS

Chapter 1: INTRODUCTION

1.1 Problem O utline... 9

1.2 Structure of the T h e s is .. 10

Chapter 2: THE SINGLE FACILITY PROBLEM

2.1 Introduction... 12

2.2 Description of the Problem .. 13

2.3 Properties of the Optimal Solution in the MAXIMIN

Prob lem ... 15

2.3.1 The MAXIMIN Criterion with Euclidean Distances 15

2.3.2 The MAXIMIN Criterion Using the Rectilinear Metric . . 17

2.4 Bisectors: an Alternative Framework ... 20

2.4.1 Definition and Properties.. 20

2.4.2 Interpretation of the B isectors.. 24

2.5 A Mathematical Programming Formulation for the Rectilinear

P rob lem ..25

2.5.1 Introducing the M odel.. 25

2.5.2 Using Extreme Point Properties of the M IP 27

2.5.3 Using Duality Information from the M I P 28

2.6 Summary ... 36

Chapter 3: PREVIOUS APPROACHES TO THE MAXIMIN PROBLEM

3.1 Introduction... 38

3.2 Approaches to the Euclidean Problem .. 39

3.2.1 Complete Enumeration Approaches.................................... 39

3.2.2 Bisection A pproaches.. 44

3.2.3 Graphical M ethods... 46

3.3 Approaches to the Rectilinear Problem 48

3.3.1 A Boundary and Segment Search Approach..................... 48

5

3.3.2 A Complete Enumeration Approach 50

3.3.3 Linear Programming Based Approaches............................ 51

3.4 Comments on the Complexity of the Previous Approaches . . . 57

3.5 The Voronoi Diagram A pproach... 58

3.5.1 Definitions and Properties .. 58

3.5.2 The Unweighted Problem.. 59

3.5.3 The Weighted Case ... 60

3.6 Summary ... 62

Chapter 4: LINEAR PROGRAMMING BASED APPROACHES TO THE

RECTILINEAR PROBLEM

4.1 Introduction.. 63

4.2 The Closest Point Algorithm ... 64

4.2.1 Description of the Algorithm for the Weighted

Problem ... 64

4.2.2 Feasibility C h eck s... 67

4.2.3 Characteristics of the M e th o d .. 68

4.3 An Alternative Method Based on the Closest Point Algorithm . 69

4.3.1 Aspects of the Method ... 69

4.3.2 Finding Local Solutions... 70

4.3.3 Description of the Algorithm.................... 74

4.4 Computational Results ... 79

4.5 Summary ... 81

Chapter 5: AN INTERACTIVE GRAPHICAL APPROACH

5.1 Introduction.. 83

5.2 Description of the Graphical M o d e l ... 84

5.3 OBNLOC: An Interactive Graphical Optimization Procedure . . 88

5.4 A Stochastic Termination R u l e ... 94

5.5 Computational Results ... 95

5.6 A Parametric Version of the M o d e l ... 99

5.7 Applications and Extensions of the Graphical M o d e l.....................104

6

5.8 Summary 106

Chapter 6: THE MULTIPLE FACILITY PROBLEM

6.1 Introduction... 108

6.2 Alternative Models for the Multifacility P ro b lem109

6.2.1 Definitions...109

6.2.2 Models without Existing Facilities 110

6.2.3 Models Considering Existing Facilities................................. 113

6.3 Previous Approaches to the Multifacility Problem in the Plane 115

6.3.1 An Interactive Graphical Approach...................................... 115

6.3.2 A Duality-Based Approach.. 116

6.3.3 A One-Dimensional Algorithm ..118

6.4 Solving the Two-Facility Rectilinear Problem in the Plane . . . 120

6.4.1 Problem Form ulation.. 120

6.4.2 A Bisection Approach.. 122

6.4.3 An Enhancement of the Two-Facility Algorithmm 129

6.4.4 An Alternative Version of the Problem 131

6.5 Computational Experience..132

6.6 Summary .. 134

Chapter 7: CONCLUDING REMARKS

7.1 Summary .. 135

7.2 Future W o r k .. 138

APPENDICES... 140

APPENDIX A: EUCLIDEAN WEIGHTED BISECTORS 141

APPENDIX B: AN ALGORITHM FOR IDENTIFYING INFEASIBLE

AND PARTLY FEASIBLE RECTANGLES FOR

LP-BASED METHODS...143

7

APPENDIX C: A BRIEF DESCRIPTION OF OBNLOC 146

APPENDIX D: USING THE GRAPHICAL APPROACH TO OBTAIN THE

EXACT SOLUTION TO THE SINGLE FACILITY PROBLEM 153

APPENDIX E: FINDING A FEASIBLE SOLUTION TO

THE ONE-DIMENSIONAL MULTIFACILITY PR O B L EM162

APPENDIX F: A BRIEF DESCRIPTION OF TWOPROFLAWLP....................164

APPENDIX G: PROGRAM D ISK ..170

REFERENCES ... 171

BIBLIOGRAPHY.. 175

8

Chapter 1: Introduction

CHAPTER ONE

INTRODUCTION

1.1 Problem Outline

Although location theory can be traced back as far as the 17th century, most

of the literature refers to the location of desirable facilities such as hospitals or police

stations. However, as a result of the extensive industrialization of the early 1960’s,

modem societies have become increasingly concerned about the problem of locating

obnoxious (undesirable) facilities such as nuclear power plants, chemical factories or

dump sites for waste disposal. The accidents at Bopal, Chernobyl and elsewhere

shocked the whole world by revealing the disastrous effects of such facilities on

nearby population centres. TIME magazine (1989) devoted a special issue to

environmental problems and especially the growing problem of waste disposal. More

recently, the Environment Secretary in Britain had to reject plans for a large scale

toxic waste plant in South Yorkshire because of the threat to unpolluted water

supplies (see THE GUARDIAN, 13 November 1991).

Despite the increasing number of undesirable facilities throughout the world,

very little research has been done on the problems associated with them. A recent

survey revealed that only 2% of the location literature deals with obnoxious facilities.

Obviously, the problem of locating obnoxious facilities in a way that

minimises their undesirable effects on a given set of clients (e.g. population centres)

is extremely complex since it involves environmental, economic and social issues.

Most of the attempts to address the problem so far have assumed that the effect of an

undesirable facility on a client is a decreasing function of the distance between them,

thus reducing the problem to a distance maximisation one.

9

Chapter 1: Introduction

In addition to this, distance maximisation models can be used for the location

of some desirable facilities which, for some reason, must be kept apart from each

other. A typical application is the need to disperse business franchises to achieve

maximum penetration in a market area.

The objective of this thesis is to investigate distance maximisation models in

the two-dimensional plane and show how their characteristics can be viewed from

different perspectives. In addition to this, our purpose is to propose new efficient

algorithms for some of these models and exploit ideas suggested by other researchers

to develop a graphical method, applicable to realistic large-scale problems.

Moreover, we discuss the particular issues associated with multiple facility location

and review different models applicable to different situations.

It should be kept in mind that this thesis does not intend to provide the

ultimate answer to the problem of locating undesirable facilities which is very

complicated anyway. It merely attempts to present theoretical and algorithmic tools

which will help the decision maker understand the structure of the problem and,

possibly, select several candidate solutions which he/she can then assess based on

whatever criteria he/she considers important.

1.2 Structure of the Thesis

In chapter 2 we discuss the single facility problem in the two-dimensional

plane under two alternative distance metrics (Euclidean and rectilinear) and two

maximisation criteria (MAXISUM and MAXIMIN). We state the problem formally

and analyze the properties of the optimal solution using different, seemingly unrelated

techniques. We also present a mixed integer programming (MIP) formulation for the

rectilinear version of the MAXIMIN problem and use duality results from the MIP

to prove known and establish new properties of the optimum.

10

Chapter 1: Introduction

In chapter 3 we concentrate on the MAXIMIN problem and review previous

attempts to address it. For each existing algorithm we discuss its complexity and its

applicability to realistic problems.

Chapter 4 discusses linear programming (LP) based approaches to the single

facility rectilinear MAXIMIN problem. After proving that one of the most efficient

methods in the literature is not entirely correct, we introduce a new algorithm which

solves the problem without using LP at all.

In chapter 5 we introduce an interactive graphical approach to the single

facility MAXIMIN problem. This method is based on previous graphical techniques

and uses two simple heuristics to minimise user intervention. We also demonstrate

that the method is applicable to realistic problems and that it offers the possibility to

experiment with various parameters of these problems and compare the results.

Chapter 6 considers the multifacility problem and discusses the issues raised

by the introduction of more than one undesirable facility. We present several

alternative models, each appropriate to particular applications and introduce a new

algorithm which solves the two-facility rectilinear problem without using LP.

Finally, chapter 7 summarises our results and poses several future research

questions which, in our opinion, are of great interest.

11

Chapter 2: The Single Facility Problem

CHAPTER TWO

THE SINGLE FACILITY PROBLEM

2.1 Introduction

Like most good mathematical problems the single obnoxious facility problem

is very easy to state: given a set of demand points (existing facilities) on the plane

and a bounded permissible region S, locate a new obnoxious facility within S in a

way that minimizes its undesirable effects on the demand points. The terms existing

facility, client or customer will all be used to denote a demand point. Examples of

undesirable facilities include industrial plants which emit pollutants, noise or

radiation, pieces of hazardous equipment within a working environment, dump sites

for waste disposal etc.

Assuming that the effect of the obnoxious facility on a given demand point is

a decreasing function of the distance between them, the problem is to locate the new

facility within S as far away as possible from the demand points. Clearly, in facility

location problems distance from the customers is only one of the factors which should

be taken into consideration. Travel costs to and from the facility as well as operating

and maintenance costs may be equally important. As a result, the problem becomes

extremely complex and analytical methods can only treat a small fraction of the

relevant issues.

The models we present assume that the perceived cost of "living" near an

undesirable facility outweighs all other costs. Consequently, distance is considered

to be the most significant factor and the objective is to place the new facility as far

away as possible from the demand points.

Section 2.2 presents several models for the single facility problem. Sections

2.3 and 2.4 discuss the properties of the optimal solution under alternative objectives

12

Chapter 2: The Single Facility Problem

and distance metrics. Section 2.4, in particular, introduces the Euclidean and

rectilinear bisectors i.e. the lines of equidistance from two demand points and

explains how the properties of the optimal solution can be viewed from that

perspective. Finally, section 2.5 shows how a mixed integer programming (MIP)

formulation can be used to prove these properties for the rectilinear problem and

reveal ways of making existing algorithms more efficient.

2.2 Description of the Problem

Let (xj, Yi) for i= l,2 ,...,n be the coordinates of n demand points in the two-

dimensional plane. The problem is to locate a single obnoxious facility at X(x, y) so

as to maximize its distance from the n demand points. Mathematically the problem

can be formulated as follows:

max G(X) (PI)

s.t. x e s
where G(X) is a measure of the system’s effectiveness and S is a bounded closed

permissible region which prevents location at infinity.

Problem (PI) actually represents a whole class of problems depending on the

maximization criterion and the distance metric. More specifically, G(X) could be the

total weighted distance of the undesirable facility to all demand points, which is

known as the MAXISUM criterion, i.e.

G(X) - £ > , • * (* , ? ,)
1

where:

13

Chapter 2: The Single Facility Problem

- wi is a positive weighting factor expressing the importance of demand point

Pj or, equivalently, the relative incompatibility between Pj and the undesirable facility

to be located.

- d(X, P j) denotes the distance between location X and demand point Pj (in

some distance metric).

The distance metric could be either Euclidean, i.e.

dE (X ,P i) = ((x - x i)2 + (y -y i)2)1/2

or rectilinear, i.e.

d, (X, P j) = | x - jq | + | y - y j |

The rectilinear metric, also known as the Manhattan metric, is adopted when

travelling is possible along a grid of streets or corridors. Typical applications include

locating a piece of hazardous equipment in an industrial plant or warehouse that is

arranged into rectangular bays, or locating a chemical factory along a rectangular

network of water canals.

Melachrinoudis and Cullinane (1986a) proved theorem 2.1 below stating that

when the MAXISUM criterion is used with either distance metric the optimal solution

to (PI) is one of the vertices of the convex hull H of S.

Theorem 2.1

Let H be the convex hull of S. If the MAXISUM criterion is used, then the

set N of vertices of H contains the optimal solution to problem (PI).

Proof:

Since S C H

maxX G H ^(X) ^ maxx e s G(X) (1)

Clearly, G(X) is convex in H and S; hence, the maxima on each side of (1)

occur on extreme points of H and S i.e. on the vertices of H and S respectively.

However, N is a subset of the set of vertices of S, therefore it contains the optimal

solution to (PI).

14

Chapter 2: The Single Facility Problem

Hence, Melachrinoudis and Cullinane (1986a) proved that in order to solve the

MAXISUM problem it suffices to evaluate G(X) on all vertices of H and take the one

which maximizes it. However, the MAXISUM criterion can be viewed as an

aggregate measure of efficiency since it focuses on the "average" demand point.

Since an obnoxious facility may even have lethal effects on its nearest demand point,

it would seem more appropriate to adopt the MAXIMIN criterion, which is concerned

with the distance to the nearest rather than the average customer.

Using the MAXIMIN criterion and assuming that the permissible region S is

a two dimensional polygon, not necessarily convex, (PI) can be formulated as

follows:

max L (P2)

s.t. L ^ wj d (X, P i) i= l , . . . ,n (2)

x e s (3)
The properties of the optimal solution to (P2) are discussed in the following section.

2.3 Properties of the Optimal Solution in the MAXIMIN Problem

2.3.1 The MAXIMIN criterion with Euclidean distances.

The MAXIMIN location problem using Euclidean distances is stated as follows:

max L (P3)

s.t. L £ Wj ((x - Xj)2 + (y - y;)2)m i= l , . . . ,n (4)

X S S (5)

Although the objective function of (P3) is linear, the problem is nonlinear and

nonconvex because of constraints (4) which define regions outside circular cones in

the (x, y, L) space that have their vertices on the x-y plane and their axes of

symmetry perpendicular to that plane. Hence, it is possible to have more than one

local maximum for (P3).

15

Chapter 2: The Single Facility Problem

Definition 2.1

A local maximum for (P3) is a location X(x, y) at distance L from its nearest

points such that in the epsilon (e) neighbourhood of X there is no better solution.

Melachrinoudis and Cullinane (1982) state and prove four properties of local

solutions for the Euclidean MAXIMIN problem using simple geometric arguments.

These properties are illustrated in figure 2.1 where it is assumed, without loss of

generality, that w; =1 for all i.

X

X
1

Figure 2.1: Local optima in the Euclidean metric

Property 0

A local optimum to (P3) will lie either on the boundary of the feasible region

S or within the convex hull H defined by the n demand points.

Proof:

Point M which is outside the convex hull H in figure 2.1 cannot be a local

solution. Since M ^H there exists a line AB separating M and H. Moving

Chapter 2: The Single Facility Problem

infinitesimally perpendicular to this line away from H increases the distance to all

clients, hence M cannot be a local optimum.

Property 1

If a local optimum X is at a vertex of S, at least one point is at distance L.

See vertex Xj in figure 2.1 whose nearest demand point is P1 . Note that although

there is a nearest point to every vertex of S, not every vertex provides a local

solution.

Property 2

A local solution X (x, y) on the boundary of S (but not at a vertex) is at

distance L from at least two demand points. Point X2 in the above figure is

equidistant from two customers, namely P2 and P3 .

Property 3
A local solution in the interior of S is equidistant from at least three demand

points. Point X3 in the interior of S is equidistant from P4 , P5 and P6 .

2.3.2 Hie MAXIMIN criterion using the rectilinear metric.

When the rectilinear distance metric is adopted, the problem can be formulated

as follows:

max L (P4)

S.t. L £ Wj (I x - X; I + I y - y; I) i = l n (6)

X e S (7)

Problem (P4) is also nonlinear and nonconvex because of constraints (6) that

define regions outside pyramids in the (x, y, L) space which have their vertices on

the x-y plane and their axes of symmetry perpendicular to the plane. Since (P4) is

nonconvex, it is likely to have more than one local optimum. The form of these local

solutions and their properties, as investigated by Melachrinoudis and Cullinane

17

Chapter 2: The Single Facility Problem

(1986a), Melachrinoudis (1988) and Appa and Giannikos (1992), are illustrated in

figure 2.2 where it is assumed for simplicity that w{ =1 for all i.

X
1

Figure 2.2: Local optima in the rectilinear metric

Property 0

A local solution to (P4) will lie either on the boundary of S or within S D H ,

where H is the smallest rectangle encasing all demand points. Clearly, point M in

figure 2.2 cannot be a local solution since by the same argument used in the

Euclidean case, there exists a movement away from M towards the boundary of S that

increases the value of the objective function.

Property 1

A local solution on a vertex of S is at distance L from at least one demand

point (see Xj in figure 2.2 with closest point P^.

Property 2

A local solution on an edge of S (but not on a vertex) is equidistant from at

least two demand points (see X2 in the same figure with closest points P2 and P3).

18

Chapter 2: The Single Facility Problem

Property 3

A local solution within S n H occurs along a ±45° edge at which at least two

constraints from set (6) of (P4) are binding (e.g. edge X3X4 equidistant from P4 and

Ps).
Proof:
Let X* be a local optimum inside S D H . Also, let L* be the corresponding

value of the objective function. If only one constraint from set (6) is binding at X*,

e.g. the i-th one, X* cannot be a local maximum since moving away from X* and Pj

by a small distance d either in the x or in the y direction would improve L* .

Suppose that two constraints from (6), say the i-th and the k-th are binding at X* .

It can be shown that the locus of points, whose weighted rectilinear distance from Pj

is L* , is a diamond with centre Pj and semi-diagonal distance equal to L*/W j , as

illustrated in figure 2.3. Consequently, X* which is at weighted distance L* from

both Pj and Pk, must lie on the 45° segment AB, all points of which are at weighted

distance L* from both demand points.

L/w,

Figure 2.3: Two intersecting diamonds

19

Chapter 2: The Single Facility Problem

These properties form the basis of several solution techniques either to the

Euclidean or to the rectilinear problem some of which are discussed in the following

chapter.

2.4 Bisectors: an Alternative Framework

2.4.1 Definition and Properties

In the previous section we showed that, apart from solutions on the vertices

of S, a local solution to the single facility problem is equidistant from at least two

existing facilities. Consequently, it would make sense to investigate the locus of

points which are equidistant from two customers, known as the bisector. A formal

definition of bisectors is given below.

Definition 2.2

Let Pj and Pj be two demand points on the plane and w; and Wj be the

corresponding weights. The bisector of P; and Pj is the locus of points equidistant

from Pj and Pj, i.e.

BH = {X | Wjd(X, P;) = Wjd(X, Pj) } ,

where d (P, Q) denotes the distance between P and Q in any distance metric.

2.4.1.1 The Unweighted Bisector.

Lee (1980) contains an excellent description of the bisectors in the unweighted

case, i.e. when the weights corresponding to all demand points are equal. It can be

seen that in the Euclidean case BH is simply the perpendicular bisector between P; and

Pj (see figure 2.4).

20

Chapter 2: The Single Facility Problem

A

B

Figure 2.4: Euclidean unweighted bisector

In the rectilinear case the bisector depends on the relative position of the two

demand points. Definition 2.3 distinguishes between two cases.

Definition 2.3

Two points Pj (Xj, ys) and Pj (xj, ys) are said to form a tall box if

I Xi - Xj I < I y, - yj I and a long box if | X; - X, | > | y, - y, | .

As shown in figure 2.5, in the normal case where | x, - Xj | i= | y, - y, |

=£ 0, the rectilinear unweighted bisector defined by Pj and Pj consists of one diagonal

segment and two horizontal lines when Pj and Pj form a tall box, or two vertical ones

when they form a long one. More specifically, returning to figure 2.5, there is a 45°

line denoted as BC, along which the distance from Pj and Pj remains the same; along

BA and CD the distance between the two is equal and increasing.

21

Chapter 2: The Single Facility Problem

45

Figure 2.5: Rectilinear unweighted bisector in the normal case

When | X; - Xj | = 0 or | yt - yi | = 0, the diagonal segment collapses into

one point and the bisector is a vertical or a horizontal line respectively. If

I xi " xi I = I Yi • Yi I > the bisector, as illustrated in figure 2.6, consists of the

diagonal segment BC and areas A and D, in which the distance from both demand

points is equal but increasing as we move away from B or C.

Figure 2.6: Rectilinear bisector when Pj and P2form a square

22

Chapter 2: The Single Facility Problem

It can be seen that in the normal case of figure 2.5 each bisector B— divides

the plane in two half planes. The half plane h (Pj, P j) defined by Bj.j and containing

Pi is the locus of points closer to Pj than to P j , i.e.

h (P j ,P j) = {X | d(X, P j) ^ d(X, P j) }.

2.4.1.2 The Weighted Bisector.

Things are much more complicated in the weighted case, i.e. when each

demand point has been assigned a different weight. Let us consider two existing

facilities Pj and Pj with weights Wj and Wj respectively. Without loss of generality,

let us assume that wj > w j.

It can be shown that in the Euclidean case the weighted bisector between Pj

and Pj is the circle with centre (wjPj - WjPj)/(wj - W j) and radius

wi wj dE (P j, Pj) / (Wj - Wj) where dE (P j, P j) denotes the Euclidean distance

between Pj and Pj (see appendix A). Figure 2.7 shows the Euclidean bisector

between Pj and Pj with Wj = 1 and Wj = 2.

Figure 2.7: Euclidean weighted bisector when w{= l and Wj—2

23

Chapter 2: The Single Facility Problem

In the rectilinear metric the bisector is a closed polygon containing the demand

point with the largest weight and consisting of ±45° segments and also segments with

slope related to the respective weights of the two demand points, instead of the

horizontal or vertical lines. See figure 2.8 where Wj = 1 and Wj = 2; segments BC,

DE and AF are diagonal, whereas segments AB and CD have a slope of

±(Wj + Wj)/Wi = 3 and segment EF a slope of Wj/(Wj + Wj) = 1/3.

Figure 2.8: Rectilinear weighted bisector when w, = 7 and Wj=2

2.4.2 Interpretation of the Bisectors

The concept of the bisectors enables us to give a geometrical interpretation to

properties 1 to 3 of section 2.3, both in the Euclidean and in the rectilinear case.

More simply, supposing that a local solution X* is at distance L* from its nearest

demand points, the properties presented in the previous section can be restated as

follows:

24

Chapter 2: The Single Facility Problem

2.4.2.1 The Euclidean case.

X* will either be on a vertex of the feasible region S, or on the intersection

of a bisector with an edge of the boundary of S, or on the intersection of three

bisectors in the interior of S.

2.4.2.2 The rectilinear case

Similarly, a local solution X* will either be on a vertex of S, or on the

intersection of a bisector with a boundary edge of S, or in the interior of S where it

must lie on the ±45° section of a bisector .

2.5.1 Introducing the Model

When the feasible region S is a convex polygon defined by the intersection of

m linear constraints, the properties of the Euclidean problem can be investigated using

the Kuhn-Tucker theorem to characterize all possible local optima (see

Melachrinoudis (1985)). More specifically, problem (P3) can be written as follows:

Let Uj for i= l , . . ,n and Vj for j = l,..,m be the Lagrangean multipliers

corresponding to constraints (8) and (9) respectively of problem (P5). Melachrinoudis

(1985) observes that all local maxima can be generated by allowing three (or more)

Lagrangean multipliers from (8) and (9) to be nonzero and solving the corresponding

system of simultaneous equations. Three nonzero multipliers corresponding to

2.5 A Mathematical Programming Formulation

for the Rectilinear Problem

s.t. L < W |((x - x,)2 + (y - y,)2)'n

a,-x + bdy < q

max L (P5)

i = l,...,n (8)

j = l,...,m (9)

25

Chapter 2: The Single Facility Problem

constraint set (8) define a local maximum within the convex hull of S, whereas one

or more nonzero multipliers from set (9) define a local solution on the boundary of

S.

A similar analysis for the rectilinear problem can be carried out using a mixed

integer programming (MIP) formulation for problem (P4)1 when S is a convex

polygon. Let pdx* represent the deviation of x from x± when x ^ x*, and ndxi the

absolute deviation when x < Xj. Define pdy ̂and ndy ̂similarly. Moreover, let zxj

and zyx be zero-one variables which ensure that the positive and negative deviations

are correctly represented by the previously defined deviation variables. More simply:

let zxj = 1 imply ndx ̂ = 0 and zxj = 0 imply pdxj = 0, and

let zyj = 1 imply ndyj = 0 and zyx = 0 imply pdyj = 0.

If ux and uy are upper limits on x and y respectively, (P4) can be formulated

as follows:

s.t.

pdxj ^ ux*zxj

max L <P6)
i = 1,.., n (10)

(11)
j = 1,.., m (12)

i = 1,.., n (13)

ndxj < ux * (1-zxj)

pdyj < uy * zyi

14)

15)

16)

17)

ndy; S uy * (1-zyj)

pdXj & 0, ndXj & 0

pdy; a 0, ndy; a 0 H

zxj = 0 or 1, zyj = 0 or 1

L < wj ((pdxi+ ndxj) + (pdy{ + ndy{)) tv

vt 18)

19)

1This formulation and some of the results in 2.5.2 are borrowed from Dr. Appa’s
lecture notes for the Mathematical Programming II course at the LSE (1989-90). The
formulation also appears in Appa and Giannikos (1992).

Chapter 2: The Single Facility Problem

Constraints (13) to (18) allow either the positive or the negative deviation (but

not both) to be non-zero while constraints (19) are the distance constraints which

ensure that each demand point is at least distance L away from the obnoxious facility.

The model presented above is by no means the most efficient way to solve the

problem since the number of zero-one variables, namely 2n, can get extremely large

for realistic applications. However, at this stage we are interested in the MIP

formulation merely to investigate the properties of the problem, as proposed by Appa

and Giannikos (1992), rather than to solve it efficiently.

2.5.2 Using Extreme Point Properties of the MIP

Problem (P6) is solved by implicitly solving each LP derived by assigning

value zero or one to each integer variable. Obviously, many of these LPs will be

infeasible. Let P be a typical feasible LP. At least one solution to P must be an

extreme point. Since each zx; and zy; is assigned a value zero or one before defining

P, it has 4n+3 non-negative variables and an extreme point of P is a feasible

intersection of 4n+3 independent constraints. Each zxj = 0 or 1 implies that one of

the corresponding pair of constraints (13) or (14) is satisfied as an equality, while the

other is satisfied as a strict inequality. The same applies to each zy; and the

corresponding pair of constraints (15) and (16). Hence, in all we have 2n constraints

satisfied as equalities for each problem P derived from (P6). These constraints,

together with 2n equalities given by (10) and (11) give a total of 4n independent

constraints for P which are satisfied as equalities. Consequently, at each extreme

point of P, three independent constraints out of the remaining m +n constraints given

by (12) and (19) must be satisfied as equalities. Moreover, at most two out of the

m border constraints from set (12) can be independent. Hence, each extreme point

is defined by k distance constraints from set (19) and 3-k border constraints, where

k = l , 2 or 3, proving theorem 2.2. below.

Chapter 2: The Single Facility Problem

Theorem 2.2

Let X(x, y) be a local solution to the rectilinear single obnoxious facility

problem and let L be the corresponding value of the objective function. Then X is

either:

(Case 1) at a vertex of S with at least k = l point at distance L, or

(Case 2) on an edge of S with at least k=2 points at distance L, or

(Case 3) in the interior of S with at least k=3 demand points at distance L.

If the solution is degenerate there will be more than k points at distance L in

all three cases.

Case 3 of theorem 2.2 seems to be in contrast with property 3 given in section

2.3.2. However, lemma 2.2 proven below based on the dual of problem P reveals

that theorem 2.2 and the properties of section 2.3.2 are equivalent.

2.5.3 Using Duality Information from the MIP

Let us define the dual variables corresponding to the constraints of P as

follows:

Table 2.1:Primal Constraints and Dual Variables for P

Constraints (10) (11) (12) (13) (14) (15) (14) (17)

Dual Vars. Ti Si Pj Pti ntj PU; nuj q*

Note that r4 and st for i = 1 ,...,n are unrestricted variables, while the remaining

ones are restricted to be non-negative. It turns out that the dual constraints

corresponding to the primal variables of P (obtained after eliminating the zero-one

variables from (P6)) are as follows:

28

Chapter 2: The Single Facility Problem

Table 2.2: Primal Variables and Dual Constraints for P

Primal Vars. Dual Constraints

L

-M

II
X

+ ' L aj * p J * 0
* j

y
+ Y . bi* P i = 0

»' j

pdx(-r, + pt, - vv . q. > 0

ndx;
r. + nti - > 0

pdy* -J, ♦ pu, - w, * q, a 0

ndy. st + nui - w. * qt > 0

Note that if in the primal optimal solution zxj = 1 then ndxj = 0 in the primal

and ptj = 0 in the dual. Also, pdxj is basic and ndx; non-basic so that by

complementary slackness we have:

- I - - w j q j = 0 or r, = - w ^ .

On the other hand, if zx; = 0 then r; = Wj q .

Based on duality information for cases 1 to 3 of theorem 2.2 Appa and

Giannikos (1992) established four lemmas which reveal several interesting properties

of local optima.

29

Chapter 2: The Single Facility Problem

The first lemma shows how duality information can be used to prove a result

which is intuitively obvious.

Lemma 2.1

Let points P j , P2 and P3 define a local solution (x, y) in the interior of S and

le txmin = rain (*1 . *2 • *3) nnd^mw = (X1 » x2 > x3)• Define ymin 311(1 ynua
similarly. Then x ^ £ x =£ and y ^ S y S y ^ .

Proof:
Suppose x < xmin . Then zxj = 0 and r$ = wj qj for i= l , 2, 3.

Consequently, the first two dual constraints are:

qi + q2 + q3 = 1 and wj qt + w2 q j + w3 q3 = 0,

which are inconsistent, since q* ^ 0 (for dual feasibility) and w* > 0. Similarly it

can be shown that x > X j^ or y < ym;n or y > y , ^ give inconsistent equations.

The second lemma also refers to local solutions in the interior of S and is

based on the dual of case 3 of theorem 2.2.

Lemma 2.2

The basic solution corresponding to any local solution in the interior of S is

multiply optimal.

Proof:

If points P } , P2 and P3 define a local solution (x, y) at distance L from all

three of them, the following dual constraints must be satisfied:

qi + q2 + q3 = 1, ^ + r2 + r3 = 0, Sj + s2 + s3 = 0,

qj ^ 0, Tj ^ 0 and Sj ^ 0 for i = 1,2,3.

Looking at all possible locations for (x, y) within the bounds set by lemma 2.1, this

is equivalent to the following system of equations:

with qj ^ 0 required for dual feasibility. If all three terms in equation (21) or (22)

have the same sign, the three equations are inconsistent. Hence, at least one term in

<ll + <12 + 13 = 1
± Wj qj ± w2 q2 ± w3 q3 = 0

± w3 qt ± w2 q j ± w3 q3 = 0

(20)
(21)

(22),

30

Chapter 2: The Single Facility Problem

both (2 1) and (2 2) must have a positive sign and at least one must have a negative

sign. It can be shown that in all such cases one of the ’s has value zero.

For example, if zx! =zx 2 =zy 1 =zy 3 =0 and zx3 =zy 2 =1, we have:

qi + c\2 + q3 = 1

Wjqi + w2q2 - w3q3 = 0

Wiqi - w2q2 + w3q3 = 0

which is solved by q! = 0, q2 = w3 /(w2 + w3) and q3 = w2 /(w 2 + w3). Since a

basic variable in the dual is equal to zero, the dual is degenerate or, equivalently, the

primal has multiple optimal solutions.

Geometrically, this implies that although local solutions along the diagonal

segment of a bisector are equidistant from two customers, there is always one

solution, corresponding to the basic solution of P, which is equidistant from three

customers, as shown in figure 2.9.

Bk-j

Figure 2.9: Three intersecting bisectors

31

Chapter 2: The Single Facility Problem

This solution is defined by the intersection of three bisectors, as illustrated by

point X in figure 2.9. Clearly, such a solution, at distance L from its nearest points,

must be on the diagonal segment of at least one bisector, defined by say, Vt and P j,

since three distinct bisectors cannot intersect in any other way. All points of the

segment which are further away from the third point i.e. segment XC from Pk in the

figure, are also local solutions, since they are at least L away from all three points.

However, note that the end of the segment, namely point C in the figure is not a local

solution since a slight movement away from C along the horizontal part of BH would

increase the distance from all three demand points.

Clearly, as Melachrinoudis (1988) observes, if such a diagonal edge is globally

optimal both of its endpoints must be local optima, as shown in figure 2 . 1 0 .

R
B si-m /

R

1*171

Figure 2.10: Globally optimal edge

32

Chapter 2: The Single Facility Problem

Equivalently, there must be a fourth demand point, Pm in figure 2.10

preventing us from moving along B— in a way that increases the distance from all

demand points. Each endpoint of the edge is defined by the intersection of three

bisectors and corresponds to a basic solution of problem P. Point X in the figure is

equidistant from P j , Pj and Pk and X' is equidistant from P j , Pj and Pm .

The third lemma refers to case 1 of theorem 2.2. To simplify the notation we

assume, without loss of generality, that vertex V (xv , yv) is the intersection of the

first two constraints, and that demand point P^ is nearest to V at distance Ly .

Lemma 2.3

There is no local solution at V if:

(si a2 - Ti b^/A < 0 or (rt bt - S! ai)/A < 0,

where: A =at b2 - a2 b i ,

ri = Wi if Xy ̂ X! and = -wx if Xy > xx ,

and Si = Wi if yv ̂ yt and Si = -Wi if yv > Yi •

Proof;
A local solution to P must satisfy the following three equalities for dual

feasibility:

qi = 1, ri + aj pj + a2 P2 = 0 and Si + b j pi + b2 P2 = 0

in such a way that Pi ^ 0 and p2 ^ 0, with rj = ŵ qj if zx ̂ = 0 etc.

Consequently, Pi = (Si a2 - ri b2)/A ^ 0, and p2 = (ri bi - Si ai)/A ^ 0 which

proves the lemma.

Lemma 2.3 implies that although the distance from the nearest point to any

vertex can be used as a lower bound to the objective function, there may be no local

solution at a given vertex. Example 2.1 presents an extreme case where there is no

local solution at any vertex.

33

Chapter 2: The Single Facility Problem

Example 2.1

Consider n=4 demand points Pj to P4 with coordinates (3, 8.5), (9.5, 8.5),

(10, 4.5) and (3, 1.5) respectively. Also consider a feasible polygon S defined by

vertices A to E with coordinates (0, 8), (9, 11), (12, 5), (4, 1) and (0, 2) respectively

(see figure 2 . 1 1).

B

Figure 2.11: Example 2.1

It can be checked that vertex A, for instance, cannot provide a local maximum

since we can move towards E along AE and increase the distance from its nearest

point, i.e. Pj.

The fourth lemma refers to case 2 of theorem 2.2. Without loss of generality

let us assume that demand points Pj and P2 are the nearest clients to a possible local

solution at X (x, y) on an edge defined by ax + by = c.

34

Chapter 2: The Single Facility Problem

Lemma 2.4

X (x, y) is not a local solution if

either | Xj - x2 | < | yi - y2 | and | b/a | > 1,

or | X! - x2 | > | yj - y2 I and | b/a | < 1 .

Proof:

Consider the case where | x2 - x2 | < | yt - y2 | . Clearly, if Pj and P2 are

in S, X (x, y) must satisfy:

either (case 1) x < x, < x2 and y, < y < y2

or (case 2) x < Xj < x2 and y2 < y < y!

either (case 3) x > Xj > x2 and yi < y < y2

or (case 4) x > x, > x2 and y2 < y < y^

The dual conditions to be satisfied for case 1 are:

Qi + <b = ri + r2 + ap = 0, s, + S2 + bp = 0, p ^ 0, q, ^ 0, > 0.

Note that x < x, implies that zxj = 0 and, as shown in the proof of lemma

1, r, = Wj q j . By a similar analysis we can infer that r2 = w2 q2, S! = - Wj qj and

Sj = w2q2 . Substituting in the first three equations of (18) we get:

p = -2wj w2/A, q, = w2(a+b)/A and q2 = Wj(a-b)/A

where A = (a-b)Wj + (a+b)w2. For p to be non-negative, A < 0. Consequently,

q, > 0 and q2 > 0 imply a+b < 0 and a-b < 0 respectively or, equivalently

| b/a | < 1 .

Cases 2 to 4 can be proven similarly.

Lemma 2.4 can be interpreted graphically as follows. We call an edge of the

boundary of S a "tall edge" if its end vertices form a tall box, and a "long edge" if

they form a long one. Then lemma 2.4 states that the bisector of two demand points

forming a tall box cannot define a local solution on a long edge while the bisector of

two points forming a long box cannot define a local solution on a tall edge. See

figure 2.12, where the bisector of P; and Pj intersects edge MK of S at X, where

35

Chapter 2: The Single Facility Problem

no local solution is possible since a slight movement towards M increases the distance

from both demand points.

In this chapter we presented various formulations of the single undesirable

facility problem and focused our attention on the MAXIMIN version of the problem.

We also stated the properties of the optimal solution, both in the Euclidean and the

rectilinear distance metric. Finally, we used the concept of the bisectors to interpret

these properties geometrically, and showed how duality, a seemingly unrelated

Tall Box - Long Edge Long Box - Tall Edge

Figure 2.12: Graphical interpretation o f lemma 2.4

2.6 Summary

36

Chapter 2: The Single Facility Problem

technique, can be utilized to derive several interesting results about the nature of local

solutions to the problem.

37

Chapter 3: Previous Approaches to the MAXIMIN Problem

CHAPTER THREE

PREVIOUS APPROACHES TO THE MAXIMIN PROBLEM

3.1 Introduction

In the previous chapter we stated the single undesirable facility problem and

emphasised the MAXIMIN version of the problem, both with the Euclidean and the

rectilinear distance metric. We also analyzed the properties of the optimal solution

and showed that they can be viewed from various equivalent perspectives.

In this chapter we will outline several existing solution methods which exploit

these properties to find the optimal location. We will also discuss other approaches

which use special geometrical structures to solve the problem.

Section 3.2 reviews solution techniques for the Euclidean problem. Most of

them are based on the properties presented in the previous chapter and enumerate all

local optima in order to select the best one. Other methods transform the problem

into an equivalent MINIMAX problem which is then solved to yield the optimal

solution to the original problem. Finally, there exist graphical solution techniques

which obtain an approximate solution to the problem. Their main advantage is that

they are applicable in realistic problems since they do not require the feasible region

to be convex or even connected.

Section 3.3 discusses the existing approaches to the rectilinear problem, which

has not been as popular as the Euclidean one. Three major approaches will be

discussed. The first one searches for the optimal location on the boundary and then

in the interior of the feasible region. The second is essentially a complete

enumeration technique using the properties of the optimal solution whereas the third

approach starts by dividing the feasible region into rectangular areas and then solves

a linear programming problem (LP) for each of them.

38

Chapter 3: Previous Approaches to the MAXIMIN Problem

Section 3.4 briefly discusses the complexity of these approaches and concludes

that the number of constraints as much as the number of demand points affects the

overall performance of any method.

Finally, section 3.5 refers to the Voronoi diagram, a very elegant geometrical

structure which has been used very efficiently to solve the unweighted problem,

where all demand points are considered equally important.

3.2 Approaches to the Euclidean Problem

3.2.1 Complete Enumeration Approaches

Dasarathy and White (1980) are the first to consider the unweighted

MAXIMIN problem in k dimensions where the feasible region is a bounded, non­

empty convex polyhedron in Rk. More specifically, given n demand points Pj for

i= l , . . . ,n and a feasible region S, the aim is to find the largest hypersphere centred

in S, whose interior is free of points P j . If R is the radius of that hypersphere and

X a k-dimensional vector representing its centre, the problem can be formulated as

follows:

max L

s.t. dE (X , P j) ^ L

X e S

Dasarathy and White use the Kuhn-Tucker conditions to prove that the

properties derived in chapter 2 for the two-dimensional problem can be extended in

k dimensions as well. They then propose a complete enumeration algorithm which

is described below:

(PI)

i= l , . . . ,n

39

Chapter 3: Previous Approaches to the MAXIMIN Problem

Algorithm A1

1. (Initialization)

Let L be the radius of the best hypersphere found so far. Initialize it

to 0.

2. (Search in the interior of S)

Generate all local maxima in the interior of the convex hull by

considering all combinations of the P j’s taken k+1 at a time. For

each such combination, if the radius of the corresponding hypersphere

is greater than L and its interior free of points P; , update L. If not,

discard the combination.

3. (Search on the faces of S)

Consider all d-dimensional faces F of S where d < k.

For each F consider all combinations of P; ’s taken d + 1 at a time and

for each of them check if it can define a local solution on F which is

better than L.

If so, update L.

Clearly, the worst case complexity of the above algorithm is O (nk+2) since in

step 2 for each of the combinations, n demand points have to be checked for

inclusion in the corresponding hypersphere. In order to improve the performance of

the algorithm, Dasarathy and White use upper and lower bounds on R, details of

which can be found in Dasarathy and White (1980). As a result, they report that the

average complexity of their algorithm in three dimensions is n3 85, much less than n5.

Melachrinoudis (1985) addresses the problem when the feasible region S is a

two-dimensional convex polygon and, basically, uses the properties of the optimal

solution to solve it. He states the problem as follows:

40

Chapter 3: Previous Approaches to the MAXIMIN Problem

S.t.

max L (P2)

(1)
(2)

where

- X (x, y) is the location of the undesirable facility,

- &(*. y) = L2 - [WidE(X, Pj)]2 £ 0 and

- hj(x, y) = ajX + bjy + Cj

The best value L0 of the objective function at the vertices of S can be used as

a lower bound for the global optimum, i.e.

L0 = maxfmin w.d^Vj.P.)} (3)
J *

The solution method is essentially a complete enumeration of local optima,

very similar to the one presented in Dasarathy and White (1980) and can be described

as follows:

Algorithm A2

1. (Initialization)

Start with the lower bound Lq .

(Clearly, this step requires nm calculations and nm-1 comparisons).

2. (Search inside the convex hull)

Take all combinations of three non-collinear points Pu , Pv and Pw ,

solve the system of three simultaneous equations g{ (x, y) = 0 for i=u,

v, w and check each solution for feasibility of (1) and (2). If a

solution is feasible and yields a value of L greater than the best

solution found so far, update the current best.

3. (Search on the boundary)

Assume that Lq in (3) is achieved for demand point i= k and vertex

j =p. Move along the p-th side of S and find all the points where two

41

Chapter 3: Previous Approaches to the MAXIMIN Problem

constraints from set (1) are binding. If the value of L at any such

point is greater than the current solution, update the current best.

Move in the same fashion until all sides of S have been considered.

At the end of the process the current best solution is the global optimum which

might not be unique, since the problem is not convex. The worst case complexity of

the algorithm is 0(n4) since combinations are considered in step 2 and each

of them has to be tested for feasibility of constraint set (1).

A heuristic approach based on algorithm A2 is presented in Melachrinoudis

and Cullinane (1985a) where step 2 is slightly modified to ignore combinations of

points located far apart from each other since it is unlikely that a local maximum will

result from such a combination.

Melachrinoudis and Cullinane (1986b) formulate the problem as a MINIMAX

model assuming that the undesirable effect of the new facility to any demand point

is inversely proportional to the distance between them. The solution method is almost

identical to the one given by Melachrinoudis (1985) with a worst case complexity of

0(n4).

A slightly different model is presented in Melachrinoudis and Cullinane

(1985b) where the new facility must be at distance at least vx from demand point Pj

and the feasible region S can be a non-convex polygon represented by a clockwise

sequence of its vertices Qj. In this case the problem is formulated as follows:

max L (P3)

s.t. WjdE(Pj, X) > L i = l,...,n (4)

dE(Pi , X) > r i " (5)

x e s

The properties of the optimal solution are almost identical to the ones

presented in the previous chapter, the exception being that a vertex of S cannot be a

42

Chapter 3: Previous Approaches to the MAXIMIN Problem

local solution if it is associated with an interior angle greater than x. Algorithm A3

is slightly modified to cater for constraints (5) as explained below:

Algorithm A3

1. Relax constraints (5). Solve the resulting problem using algorithm A2.

2. If the solution from step 1 satisfies all constraints (5), stop.

Otherwise, add into the problem the constraints of set (5) which are

violated.

3. Solve the new problem using algorithm A2 and go to step 2.

As reported in Melachrinoudis (1985) and Melachrinoudis and Cullinane

(1986a), the computation times of algorithms A2 and A3 are increasing with a power

of n approximately equal to 3.

An interesting variation of problem (PI) is introduced by Karkazis and

Karagiorgis (1986, 1987) who outline an algorithm for locating an obnoxious facility

within a closed polygon S that contains a number of polygonal regions characterised

as either restricted or protected. Restricted regions are areas where the facility may

not be located whereas protected ones are areas for which care should be taken to

locate the facility as far away as possible from their perimeters. The problem, as

stated by Karkazis and Karagiorgis, is to rind a feasible location in S, i.e. a point in

S neither restricted nor protected, that maximizes the minimum distance between that

point and the perimeter of the protected regions. Equivalently, find the maximum

circle centred inside a free area and intersecting none of the protected regions.

Karkazis and Karagiorgis introduce the notion of a local maximum circle

following a feasible course, i.e. intersecting no protected regions, while "rolling"

around the perimeter of protected regions. They prove that as the circle is "rolling"

its centre forms a trajectory consisting of first or second order segments (straight line

43

Chapter 3: Previous Approaches to the MAXIMIN Problem

segments, circular arcs, parabolic, elliptic or hyperbolic segments). They then

develop a method for scanning this trajectory until the optimal location is found.

Although this version of the problem is much more realistic, no computational

results are provided and, to the best of our knowledge, no actual implementation of

the method has been reported.

3.2.2 Bisection Approaches

Drezner and Wesolowsky (1980) introduce the weighted single facility problem

in a two-dimensional convex region. The optimal location should maximize the

weighted distance of the undesirable facility from its nearest demand point. At the

same time the facility must be within a pre-specified distance tx from each client Pj

for i= l , . . . ,n . Hence, the feasible region is the intersection of n circles of radius ri}

each centred at a facility point Pj and representing a maximum distance constraint

with respect to the point in question.

Drezner (1983) presents a unified approach to solving single facility

MINIMAX as well as MAXIMIN problems in the plane and on the sphere.

According to this approach the system’s effectiveness is measured either by the

Euclidean distances themselves, or by a general function of these distances. More

simply, a function fj [dE (P j, X)] is associated with demand point P j ; for regular

Euclidean distances f- [dE (Pj , X)] = Wj dE (Pj , X) where Wj is the weight

corresponding to P j . There are two sets of constraints, set S j , limiting the solution

to lie inside given circles, and S2 , limiting it to lie outside given circles.

Consequently, the MINIMAX problem is formulated as follows:

min F(X) (P4)

s.t. Sj and S2 ,

where F(X) = ifi \dE (^V -X)]) .

44

Chapter 3: Previous Approaches to die MAXIMIN Problem

If the problem is MAXIMIN, fj [dE (P j, X)] is simply replaced by -fj [dE (P j, X)].

For a given value F0 , F(X) ^ F0 is equivalent to fj [dE (P j, X)] < F0 for

i= l , . . . ,n . When fj (d) is strictly monotonic, there exists an inverse function gj such

that fj [gj (f)] = f. If fj (d) is increasing, then fj [dE (P j, X)] ^ F0 is inside the

circle with centre Pj and radius R j, and if fj (d) is decreasing then it is outside that

circle where Rj = gj (F).

A lower bound Fmin and an upper bound FmaT on the objective function are

calculated as explained in Drezner (1983) and the optimal solution F* is found by a

bisection method, which can be outlined as follows:

Algorithm A4

1. Find and Fmax.

2. Let F0 = (Fmjn + Fmax)/2. Consider all circles Cj satisfying the

inequality fj [dE (P j, X)] ^ F0 for i= l , . . . ,n . If fj (d) is increasing,

add Cj to Sj , otherwise add it to S2 . Let these extended groups of

constraints be Sj and S2 respectively.

3. Find a point satisfying S[and S2.

4. If such a point exists, then update F j ^ to F0 . Otherwise, update

Fmm to F0 •
5. If F , ^ - Fmin < e, where e is a pre-specified tolerance, F* = F , ^

and the optimal location is the last feasible solution found in step 3.

Otherwise, go to step 2.

Drezner generalizes a procedure used in Drezner and Wesolowsky (1980) to

rind a feasible point in step 3. Briefly, if there is a point in the interior of some

circles and the exterior of some others, then there must be a point which is on one

of the circles. Therefore, we can consider each circle in turn and cut off the parts

of its circumference which are infeasible to other circles one by one. If the

intersection of the circumference of that circle with all others is not empty, we have

45

Chapter 3: Previous Approaches to the MAXIMIN Problem

found a feasible point. On the other hand, if the intersection of every circle with all

others is empty, no feasible point exists. The complexity of this procedure, as stated

in Drezner (1983), is 0(n3). The number of iterations of algorithm A2 is independent

of n, when all circles are bounded in the same area. Hence, the overall complexity

of the algorithm is 0(n3).

The above algorithm cannot cater for linear constraints, unless they are

approximated by circles with large radii. However, the transformation of a set of

linear constraints into a circle is not obvious at all.

3.2.3 Graphical Methods

Most of the approaches referred to in the previous sections assume that the

feasible region is a connected polygon. However, this assumption makes it

impossible to model realistic situations, since this is rarely the case in real life

problems. Consequently, a number of researchers propose graphical solution

procedures to obtain a number of near-optimal locations.

The main idea behind these procedures is very simple: circles of increasing

radius are drawn around each demand point and the final area not covered by any

circle indicates the optimal location. The fact that the graphical methods do not

require the feasible region to be convex or even connected implies that natural

barriers, such as mountains or lakes, can be dealt with easily. Moreover, the

forbidden regions can have any shape, not necessarily circular, as assumed in

Melachrinoudis and Cullinane (1985b). Details on the implementation of interactive

graphical approaches can be found in Melachrinoudis and Cullinane (1985a) and

Melachrinoudis (1985), where it is reported that the graphical method was not

applicable to large scale problems, with more than 10 clients, due to the rapid

increase in computation time as the number of demand points increased. However,

in chapter 5 we show that with suitable modifications the graphical approach can be

used to solve problems with more than 500 demand points in reasonable time.

46

Chapter 3: Previous Approaches to the MAXIMIN Problem

Hansen, Peeters and Thisse (1981) present what is perhaps the most

comprehensive approach to the single undesirable facility problem. They consider a

general distance metric and a feasible region defined by the union of m convex

polygons Pj which might even be disjoint. The cost associated with each demand

point is a decreasing function D{ of distance, not necessarily linear or quadratic. The

objective is to minimize the maximum of these costs. The algorithm, called Black

and White, can be described as follows:

Algorithm A5

1. (Initialization)

Represent the points P; and the feasible region S on a map. Choose a

few feasible points s G S and compute the corresponding values of the

objective function. Let denote the smallest cost and s ^ the

corresponding point.

2. (Elimination of Regions)

Compute Rj = Gj (L^,) for each i, where Gj is the inverse function of

Dj. Trace the corresponding iso-cost curves on the map and shade the

interior of each of them.

3. (Improvement of Solution)

Consider the unshaded regions. If all of them have diameter smaller

than a pre-specified tolerance, terminate with s^ the optimal solution.

Otherwise, select a central point sh in each unshaded region Sh ,

compute the objective function for all Sj, and let be the minimum

of all Lh and sh the corresponding point. Then return to step 2.

However, as Hansen et al. admit, the method requires significant user

intervention in step 3 since the user has to determine the feasible areas Sh and to find

points Sj, G Sh where the function is to be evaluated. Hence, the algorithm above

47

Chapter 3: Previous Approaches to the MAXIMIN Problem

difficult to implement on a computer as an automated process and as a result, no large

scale application of this method has been reported.

3.3 Approaches to the Rectilinear Problem

3.3.1 A Boundary and Segment Search Approach

The first attempt to address the rectilinear problem is by Drezner and

Wesolowsky (1983) who state the problem as follows:

max F(X) (P5)

s.t. ajX + tyy < Cj j = l,...,m (6)

where:

- F(X) = minj { Widr(X, Ps) }

- Pj are n demand points and w{ their corresponding weights

- X (x, y) is the facility to be located.

Drezner and Wesolowsky propose a boundary and segment search technique

for solving (P5). More simply, they search for the optimal location first on the

boundary B and then in the interior I of the feasible region S. In order to search

along B, they pre-process the constraint set (6) and obtain a description of B as a list

of closed segments Bj for j = l,...,m . Having done that, they then calculate Fy, an

upper bound on F (X) on segment Bj. Since w{ dr (X, Pj) is convex on the segment,

its maximum Uj must occur at either end of Bj. Consequently, an upper bound is

given by Fy = minj { us }.

These upper bounds are then sorted in descending order. Starting from the

segment with the largest upper bound, Drezner and Wesolowsky use the value of the

objective function at any point on the segment as a lower bound F-' and then perform

a binary search to find the optimal solution on this segment. At each stage of this

binary search they check whether a given value f = (F^ + Fy)/2 for F(X) is feasible

for the segment Bq in question by considering a diamond with semi-diagonal f/Wj

48

Chapter 3: Previous Approaches to the MAXIMIN Problem

around each P{ and discarding the part of Bq which is inside the diamond. If one or

more subsegments of Bq are left, then a feasible solution with value f exists on Bq and

Fy = f. Otherwise, FV = f.

This search yields the optimal solution on Bq. The process is repeated until

the next largest upper bound is less then the current optimal solution.

Having found the optimal solution F0 on B, Drezner and Wesolowsky search

the interior I next. They acknowledge that if the optimal solution to the whole

problem is in I, it must be equidistant from at least two clients, say Pj and Pj and the

optimal distance will be F* = = (WjWj/(w; + Wj))dr(Pi, Pj). Moreover, they

state that in the non-degenerate case the locus of points which are at distance from

both Pj and Pj is a 45° segment as explained in the previous chapter.

Consequently, they consider all pairs of Pf ’s and use F0 as a lower bound on the

optimal solution, as explained below:

Algorithm A6

1. Find the optimal solution F0 on the boundary as explained above.

2. Consider all pairs of demand points P{ and P j . If < F0, then

discard the pair.

Otherwise, for all Pk for k=£i,j discard the points of whose distance

from Pk is less than .

If some point(s) of remain then F0=Hi_j.

Otherwise, discard the pair.

3. F* = F0.

Drezner and Wesolowsky do not give complexity bounds for their algorithm.

However, it can be seen that the calculation of the upper bound Fy for each segment

j of S involves computing the Uj’s for i = l,...,n and finding their minimum. Hence,

computing the upper bounds for all segments requires O(mn) calculations. Moreover,

49

Chapter 3: Previous Approaches to the MAX1MIN Problem

the search in the interior I requires 0(n3) calculations since n(n-l)/2 pairs of points

are considered and n-2 feasibility checks are performed for each of them.

3.3.2 A Complete Enumeration Approach

Apart from the Euclidean problem, Melachrinoudis and Cullinane (1986a)

discuss the rectilinear version as well. They formulate the problem as follows:

max L (P6)

s.t. L < Widr (X, Pj) i= l , . . .n (7)

3jX + tyy < Cj j = l,..,m (8)

The solution technique, based on the properties of the optimal solution presented in

the previous chapter, is very similar to algorithm A2, as outlined below:

Algorithm A7

1. (Search on the vertices of S).

Evaluate the objective function at all the vertices of S. Let Lq be the

maximum of these values.

2. (Search in the interior of S).

For all pairs of points P; and Pj find the value of L where the two

corresponding constraints from set (7) are binding.

If L > L0 then find the feasible part of the corresponding 45° segment.

If such a part exists then L0 = L.

3. (Search on the boundary).

For each boundary equation of (8) and each pair of constraints (7) let

L be the solution of the system of these three equations and X the

corresponding location.

If L > L0 and X is feasible then Lq = L.

At the end of the process Lq is equal to the global optimum. By the same

argument that was used for the search in the interior for algorithm A6, the worst case

50

Chapter 3: Previous Approaches to the MAXIMIN Problem

complexity of algorithm A7, according to Melachrinoudis and Cullinane, is O (n3) as

well.

3.3.3 Linear Programming Based Approaches

Apart from the binary and segment search algorithm, Drezner and

Wesolowsky (1983) present also a method based on linear programming (LP). Its

basic idea is quite simple: given n demand points Pj (X;, yt) and a convex feasible

region S, defined by m linear constraints, construct the smallest rectangle encasing

S and then draw one horizontal and one vertical line through each demand point. As

a result, the rectangle is divided into at most (n + 1) 2 rectangles some of which may

be entirely outside S, as shown in figure 3.1.

Figure 3.1: Relevant rectangles for n = 4

Clearly, the optimal location must lie inside S in one of these rectangles.

However, as Drezner and Wesolowsky observe, a location X (x, y) inside a rectangle

determines uniquely for each Pj the sign of x-Xj and y-y;. Consequently, the problem

for each rectangle can be formulated as an LP as follows:

51

Chapter 3: Previous Approaches to the MAXIMIN Problem

S.t.

max L

i = l,...,n

(P7)

(9)

(10)

(11)

where xmin , x ^ , ymin and are the upper and lower bounds on x and y

respectively, defining the rectangle in question, and the plus (minus) sign in (9) is

used when the succeeding expression is positive (negative). Problem (P7) can be

solved separately for each rectangle and the solution with the largest L over all

rectangles is then the solution to the original problem.

Since this approach results in 0(n2) LP problems, Drezner and Wesolowsky

develop special techniques in order to improve the performance of the algorithm.

Firstly, they check each rectangle for feasibility before performing linear

programming and discard the rectangles which are outside S. More specifically, they

define the segments [y ,, y2] and [y3, y4] as the parts of the lines x=xmin and x=xmax

respectively, which are inside the feasible region (see figure 3.2).

Figure 3.2: Identifying infeasible rectangles

They also define [x ,, x2] and [x3, x4] similarly, although they do not explain

how they derive these segments from the m original constraints describing S.

R
R

2

max

X = X max

52

Chapter 3: Previous Approaches to the MAXIMIN Problem

Clearly, there is no feasible point inside a given rectangle if all of the following

conditions hold:

yi > ym« or y2 < y,™

y3 > ynuu or y4 < y ^

x, > x ^ or x2 < x ^

x3 > x ^ or x4 < x ^

Secondly, they calculate an upper bound UBk on L inside rectangle k by

evaluating the objective function on the four vertices Vj to V4 of k and setting:

UBk = min {w. max {dr(P., V.)}} (12)
v j

Hence, the complete algorithm can be outlined as follows:

Algorithm A8

1. Eliminate all infeasible rectangles using the conditions described

above.

2. Calculate the upper bounds UBk for all remaining rectangles using (12)

and sort them in descending order.

3. Solve the dual of (P7) for all rectangles, starting from the one with the

largest upper bound. Stop when the next largest upper bound is not

greater than the best LP solution found so far.

According to Drezner and Wesolowsky algorithm A8 was generally faster than

algorithm A6 (the boundary and segment search approach). However, it requires

much more memory since up to (n+1)2 upper bounds and their associated coordinates

may have to be stored. Moreover, the preprocessing stage required for the

elimination of infeasible rectangles is not very obvious.

Melachrinoudis (1988) adopts essentially the same approach to the problem,

by constructing the grid of rectangles and then solving the dual of (P7) for each of

53

Chapter 3: Previous Approaches to the MAXIMIN Problem

them. If the dual solution is degenerate, a dual Simplex pivot is performed yielding

another optimal point and, thus defining a multiple solution edge within the rectangle

in question. In other words, Melachrinoudis recognizes that solutions in the interior

of S are equidistant from two demand points and are multiply optimal.

Mehrez, Sinuany-Stem and Stulman (1986) suggest an interesting improvement

of Drezner and Wesolowsky’s LP-based method, for the unweighted version of the

problem. They observe that by the construction of each rectangle k, every demand

point must fall into one of the four regions R1 to R4 (see figure 3.3) and that if a

particular region is empty, only one demand point in that region, defined as the

closest point, will form an active constraint of type (9) for (P7). All other clients in

that region must be further away from the entire rectangle, thus forming redundant

constraints.

R
R.2

P.

A

D C

R3

Figure 3.3: Four regions around a rectangle

Consequently, the calculation of the upper bounds is simplified and the

dimension of the LP’s is reduced. More specifically, let us define regions Rj and R:

to be opposite each other when | i-j | = 2, and neighbours of each other when

Chapter 3: Previous Approaches to the MAXIMIN Problem

| i-j | =£2 ; let also Pj be the closest point corresponding to region Rj for a particular

rectangle k. According to Mehrez et al. the upper bound UBk for rectangle k can be

calculated as follows:

Case 1

Suppose that only two neighbouring regions, say Rj and R4 , are non empty.

Mehrez et al. implicitly consider the bisector defined by Pj and P4 , as shown in

figure 3.4 where C and B are the comers of the rectangle opposite Pj and P4

respectively and M the point where the bisector between P, and P4 intersects the line

x=xmax, if that intersection exists. If L = dr (M, Pt) = dr (M, P4),

L, = dr(C, P j) and L4 = dr(B, P4) then UBk = min { L, L , , L4 }.

R 1

p,
........ •

A

r 2

B

\
M

4
F
i

4

D c

Ra

X—Xmin x ~ x max

Figure 3.4: Two neighbouring non empty regions

55

Chapter 3: Previous Approaches to the MAXIMIN Problem

Case 2

In all other cases, if say region is not empty let Lx be either the half

distance of from P3 if region R3 is not empty, or its distance from the opposite

comer of k i.e. point C in figure 3.4 if R3 is empty. The remaining L j ’s are

calculated similarly. The upper bound in this case is the minimum of .

Given these conditions for the calculation of the upper bounds the closest point

algorithm can be described by the following iterative process:

Algorithm A9

1. Create the grid of rectangles.

2. Eliminate any infeasible rectangles, as explained in Drezner and

Wesolowsky (1983).

3. Calculate the upper bounds UB and sort them in descending order.

4. If the point producing the largest upper bound falls within its

rectangle, then it is the exact solution to the problem. If not, solve

(P7).
5. Continue step 4 for rectangles with progressively smaller upper bounds

and stop when the next largest upper bound is not greater than the best

exact solution found so far.

Clearly, algorithm A9 is a significant improvement of the LP-based method

by Drezner and Wesolowsky, since it results in considerably smaller LP’s and reduces

the number of LP’s that have to be solved. Moreover, the upper bounds proposed

by Mehrez et al. are tighter than the ones given by Drezner and Wesolowsky and can

lead to more efficient solutions. In fact, algorithm A9 seems to be the most efficient

LP based method to date and will be discussed in greater detail in the following

chapter, where some improvements of the algorithm will be suggested.

56

Chapter 3: Previous Approaches to the MAXIMIN Problem

3.4 Comments on the Complexity of the Previous Approaches

Apart from the Black and White algorithm, the algorithmic complexity for

most of the methods presented so far, both for the Euclidean and the rectilinear

problem, is reported in terms of the number of demand points n. However, all of

them at some stage perform a search along the boundary B of the feasible region,

(a) either to calculate a lower bound on the objective function, or

(b) to identify candidate solutions on the boundary.

This search implies that for each boundary constraint j,

(a) at least n computations are performed to find a lower bound, or

(b) it is checked whether each of the 0(n2) pairs of clients can yield a local solution

on j.

Hence, if B is defined by m constraints, there may be 0(mn2) locations which

have to be checked for feasibility. The search along B may require a total of 0(mn2)

computations. The methods presented in the previous sections seem to ignore this

factor and merely give the complexity as a function of n.

However, if m is sufficiently large, say m > n, the search along B may

become more costly than the search in the interior. In these cases, the complexity

given in terms of n can be misleading and it does not make much sense to compare

alternative methods on this basis.

Hence, it should be kept in mind that the number of clients is not the only

critical aspect in location problems. The number m of boundary constraints may be

equally important and if the complexity of any method is to be taken as a measure of

its efficiency, it should be expressed in terms of m as well.

57

Chapter 3: Previous Approaches to the MAXIMIN Problem

3.5 The Voronoi Diagram Approach

3.5.1 Definitions and Properties

The Voronoi diagram of a given set of points N is a well known geometric

structure which contains proximity information about the members of N. It has been

used very efficiently in a wide scope of applications ranging from physics to

archaeology. Shamos (1975) and Shamos and Hoey (1975) introduce the Voronoi

diagram to computational geometry and use it to solve a variety of closest-point

problems in the Euclidean metric.

Given n points Pj on the plane (i= l,...,n) , they define the Voronoi polygon

associated with P j , denoted by V j, as the locus of points closer to Pj than to any

other point.

In the previous chapter we defined the unweighted bisector Bj.j between two

points Pj and Pj either in the Euclidean or in the rectilinear metric and stated that it

divides the plane into two half-planes each containing one of the two points.

Obviously, if h (i, j) is the half-plane containing P j , then = , i.e. the

Voronoi polygon is the intersection of all half-planes containing P j . The entire set

of these polygons, some of which may be unbounded, is referred to as the Voronoi

diagram of the given set of points.

An edge shared by two Voronoi polygons Vj and Vj is called a Voronoi edge

and is a portion of the bisector Bj.j . The intersection of two or more such edges is

called a Voronoi vertex and is equidistant from at least three points.

Lee (1980) contains a very detailed discussion of the Voronoi diagram in the

generalised p-metric where the distance dp between two points Pj (Xj, y j) and

Pj (x j, y j) in that metric is:

dp (Pi,P j) = (Ixj-Xj | P + | y r yj | p)1/p f o r i S p < oo

and

58

Chapter 3: Previous Approaches to the MAXIMIN Problem

d» (Pi, Pj) = max { | Xj-Xj | , | yr yj | }

Clearly, the rectilinear and the Euclidean metric correspond to p = l and p=2

respectively. See figure 3.5 for an example of the unweighted Voronoi diagram of

five points in the rectilinear metric.

Figure 3.5: Rectilinear unweighted Voronoi diagram with 5 points

Lee states that, given n points on the plane, the number of Voronoi edges as

well as the number of Voronoi vertices are linear functions of n. Furthermore, he

presents an optimal divide-and-conquer algorithm for the construction of the Voronoi

diagram with worst case complexity of O (nlogn) (see Lee (1980) for details).

3.5.2 The Unweighted Problem

Shamos (1975) and Shamos and Hoey (1975) address the Euclidean

MAXIMIN problem when the feasible region S is taken to be the convex hull of the

demand points Pj. They observe that the problem is equivalent to finding the largest

circle centred in the interior of S and containing no demand points and that the centre

59

Chapter 3: Previous Approaches to the MAXIMIN Problem

of that circle must lie at a Voronoi vertex or at the intersection of a Voronoi edge and

the boundary of the convex hull of the Pj’s. They then prove that linear time suffices

to examine all candidate solutions and conclude that the overall complexity is

O(nlogn) since the running time is dominated by the time required for the

construction of the Voronoi diagram.

Dasarathy and White (1980) modify that algorithm so as to cater for the

general case when the feasible region S is any convex polygon, described by k linear

constraints. Based on the properties of the optimal solution and the definition of the

Voronoi diagram, they confine the set of candidate solutions to the Voronoi vertices,

the intersections of the Voronoi edges with the edges of S and the vertices of S. The

O(n) Voronoi vertices can be generated in O(nlogn) time and checked for inclusion

in S in O(nlogk) time using a construction presented in Shamos and Hoey (1975).

The number of intersection points is a linear function of n since each Voronoi edge

can intersect the boundary of S at most twice. Hence, these O(n) intersections can

be generated in O(nlogk) time by a technique given in Dasarathy and White (1980).

Finally, the vertices of S can be checked for optimality in 0(klog2n + nlogn) time,

as explained in Shamos (1975). Hence, the overall complexity of the algorithm is

0 (klog2n + nlogn + nlogk).

This algorithm can be applied to the unweighted rectilinear problem as well,

since the non-diagonal segment of a bisector can still intersect the boundary at most

twice and the set of candidate solutions is the same as in the Euclidean case.

3.5.3 The Weighted Problem

Although the Voronoi diagram can be applied very efficiently to the

unweighted problem, it has several very unpleasant properties when each demand

point is assigned a positive weight. In the previous chapter we illustrated that in the

weighted case the bisector between two points is a circle, in the Euclidean metric, or

a closed polygon in the rectilinear one.

60

Chapter 3: Previous Approaches to the MAXIMIN Problem

Let us define the region of dominance of a demand point P; as the set of points

which are closer to Pj than to any other demand point, and denote it by regj. Since

the weighted bisector in the Euclidean case is a circle, regj consists of circular edges

and the weighted Voronoi diagram (WVD) is a subdivision of the plane with such

edges. See figure 3.6 showing the Euclidean WVD of five points Pj with weights W!

=w3 =2, w2 =1 and w4 =w5 =2.

B2-5

'2-3

3-5

3-4
4-5

’2-4

Figure 3.6: Euclidean weighted Voronoi diagram with five points

Aurenhammer and Edelsbrunner (1984) prove that the WVD of n points has

at most 0(n2) edges and at most 0(n2) vertices. Since each circular Voronoi edge can

intersect each boundary edge at most twice, there exist 0(mn2) such intersections to

be checked for optimality in addition to the 0(n2) vertices. Hence, it seems that the

WVD can provide an efficient solution technique for the weighted problem as well.

Aurenhammer and Edelsbrunner outline a theoretical algorithm which constructs it

in 0(n2) time. However, they do not provide enough details on the implementation

of their algorithm which seems to require extremely complex data structures. Hence,

61

Chapter 3: Previous Approaches to the MAXIMIN Problem

as Angell and Moore (1986) conclude, a practical implementation of this algorithm

is "out of the question".

As for the rectilinear problem, to the best of our knowledge there exists no

polynomially bounded algorithm for the construction of the WVD. Hence, the results

given in Dasarathy and White (1980) and Lee (1980) for the unweighted case cannot

be directly utilised in the weighted version of the problem.

As a result, to the best of our knowledge, no attempt has been made to solve

the weighted problem using Voronoi diagrams.

3.6 Summary

In this chapter we reviewed various alternative approaches to the MAXIMIN

problem and outlined several existing solution methods for both the Euclidean and the

rectilinear version. We observed that the complexity of these methods, given in

terms of the number of clients, can often be misleading. Finally, we discussed the

use of the Voronoi diagram to solve the unweighted problem efficiently and explained

why it cannot yield equally efficient solutions to the weighted version.

62

Chapter 4: LP-Based Approaches to the Rectilinear Problem

CHAPTER FOUR

LINEAR PROGRAMMING BASED APPROACHES

TO THE RECTILINEAR PROBLEM

4.1 Introduction

Most of the literature on the single facility MAXIMIN problem refers to the

Euclidean distance metric. As evidenced by the review of the existing methods given

in the previous chapter, the dominant procedure for this problem is the enumeration

of local optima using the Kuhn-Tucker conditions. Although this analysis can be

extended to the rectilinear problem as well, the dominant approach there seems to be

one of dividing the feasible region into rectangular segments and solving a sequence

of LPs.

In this chapter we will focus our attention on the closest point algorithm

proposed by Mehrez et al. (1986) which seems to be the most efficient LP-based

method to date. Section 4.2 discusses the theoretical significance of this algorithm

and illustrates that although it is, in general, very efficient, it is not entirely correct.

Section 4.3 introduces PROFLAWLP, an alternative method based on the

closest point algorithm, which does not require linear programming at all.

Finally, section 4.4 presents some computational results comparing the two

techniques and showing that in all the test problems used PROFLAWLP was faster.

63

Chapter 4: LP-Based Approaches to the Rectilinear Problem

4.2 The Closest Point Algorithm

4.2.1 Description of the Algorithm for the Weighted Problem

In the previous chapter we gave a brief description of the closest point

algorithm which is used in Mehrez et al. (1986) to solve the unweighted MAXIMIN

problem. As explained below, we have slightly modified the method to cater for the

weighted version as well.

The first step is to construct the grid of rectangles in exactly the same way as

in the unweighted problem, namely by drawing one horizontal and one vertical line

through each demand point. Since at most four clients are relevant for each rectangle

k, the optimal solution for k is given by the following LP :

max L

w, (x - x, + y, - y) a L (la)
w2 (x2 - x + y2 - y) a L (lb)

w3(x3 - x + y - y3) a L (lc)

w4 (x - x, + y - y„) a L (Id)

ajx + bjy £ Cj j = l,...,m (2)

x™, ^ x < x„„ (3a)

y™. ^ y ^ y™» (3b)

where P; (xj, yt) is the closest point corresponding to region R j, constraints (2) are

the m linear constraints defining the feasible region S and constraints (3) define the

rectangle in question.

Mehrez et al. use the conditions developed in Drezner and Wesolowsky (1983)

to eliminate all rectangles which are entirely outside the feasible region. The method

seems to imply taking each constraint in turn and using it to cut off the part of each

of the lines x=xmin, x=xmax, y=yniin and y=ymax which is outside the feasible region

(see figure 4.1). A particular rectangle is infeasible if the feasible part of each of

64

Chapter 4: LP-Based Approaches to the Rectilinear Problem

these four lines is outside the rectangle or, equivalently, if all the conditions of

section 3.3.3 are satisfied.

y max

y

Xmin X — X max

Figure 4.1: Drezner and Wesolowsky’s method for eliminating infeasible rectangles

In the weighted version of the problem the upper bound UB* for a particular

rectangle k can be calculated as follows :

Case 1

Suppose that two neighbouring regions, say R, and R4, are non empty and that

w, =2 and w4 =1. Consider the weighted bisector defined by Pj and P4 and the

points where that bisector intersects the boundary of k and let M be the intersection

whose weighted distance from both points is maximized, if such intersections exist

(see figure 4.2). Let also C and B be the comers of the rectangle opposite P, and P4

respectively. If L = w ,dR(M, P ,) = w4dR(M, P4), L, = w ,dR(C, P J and

L4 = w4dR (B, P4) then UBk = min { L, L , , L4 }.

65

Chapter 4: LP-Based Approaches to the Rectilinear Problem

R 1
F

............ 4

D
1
1 A

R 2

B

i M

i
F

R 4

►...........

'4

D C

R 3

X—x min X—Xmax

Figure 4.2: Example illustrating case 1

Case 2

In all other cases, if say region R, is not empty let Li be either

(a) the weighted half distance of P, from P3 if R3 is not empty, namely

Lj = dR (P ,, P3) * (w,w3)/(w, +w 3), or

(b) its weighted distance from the opposite comer of k, namely point C in the figure,

if R3 is empty.

The remaining Lj’s are calculated similarly. The upper bound in this case is

UBk = min { Lj } for i = l,...,4 .

The upper bounds are then sorted in descending order and if the point

producing the largest upper bound falls within the feasible part of its corresponding

rectangle and satisfies the distance constraints of set (1), it is the global optimum.

If not, an LP is solved to obtain the optimal location inside that rectangle. The

process is repeated until the next largest upper bound is less than the best exact

solution found so far.

6 6

Chapter 4: LP-Based Approaches to the Rectilinear Problem

4.2,2 Feasibility Checks

Obviously, each upper bound point must be checked for feasibility of

constraint set (2) even when it is within its rectangle and an LP must be solved

whenever the upper bound point is in the infeasible part of the rectangle. In the next

section we will present a technique which exploits the structure of the grid of

rectangles to identify the infeasible ones as well as the ones which are intersected by

one or more linear constraints. In this way the feasibility check can be avoided for

rectangles which are inside S.

In addition to this, each upper bound solution must be checked for feasibility

of constraint set (1) as well, as proven in Appa and Giannikos (1993a). The

following counter example, shown in figure 4.3, demonstrates a case where the

application of the closest point algorithm, as given by Mehrez et al. would lead to the

wrong solution.

y = 1

y = 0

X = 0 x = 1

Figure 4.3: Counter example

Counter Example

Without loss of generality assume that a particular cell is defined by the lines

x=0, x = l, y=0 and y = l and that three of the regions around the cell are occupied

67

Chapter 4: LP-Based Approaches to the Rectilinear Problem

by the points P, (0, Y), P2 (l, 1) and P3 (X, 0) with X > 1 and Y > 1 (see figure

4.3). The optimal distance for this cell, according to Mehrez et al., is

min {2,(X+Y)/2}; if X+Y > 4 Mehrez et al. indicate that the optimal location will

be (0, 0) with value 2. However, if Y < 2 or X < 2, this will not be correct since

point P, (0, Y) or P3 (X, 0) respectively will be at distance less than 2 from (0, 0).

4.2.3 Characteristics of the Method

We described how the closest point algorithm can be modified to address the

weighted single facility MAXIMIN problem in a feasible region defined by m linear

constraints. The main idea behind the method is that at most four demand points are

relevant for each rectangular area. As a result the size of the LP, when one is

required, is reduced significantly, especially in large problems. Moreover, the simple

form of constraint set (1) of (PI) simplifies the calculation of the upper bound for

each rectangle. In fact the upper bounds, as calculated in Mehrez et al. (1986), are

tighter than the ones originally suggested by Drezner and Wesolowsky (1983) and can

lead to more efficient solutions.

In addition to this, fewer LP’s might have to be solved since each upper bound

point is checked for inclusion in the corresponding rectangle, unlike the Drezner-

Wesolowsky algorithm where an LP is solved instead.

Apart from the inclusion test, each upper bound point is checked for feasibility

of all m linear constraints, although none or only a few of them might be relevant for

the rectangle in question. In the following section we will present an alternative

technique, that identifies which constraints, if any, intersect each rectangle and checks

the upper bound point for feasibility of these constraints only.

The first step of the closest point algorithm is the elimination of all infeasible

rectangles which implies considering each constraint with each horizontal or vertical

line passing through each client. The alternative technique referred to in the previous

paragraph exploits the structure of the grid of rectangles to identify infeasible

68

Chapter 4: LP-Based Approaches to the Rectilinear Problem

rectangles and implies considering each constraint with only the horizontal lines it

intersects.

Finally, the properties of the optimal solution, as stated in chapter 2, are not

used at all. As a result, upper bounds are calculated even for rectangles which cannot

yield local optima e.g. ones that are entirely inside the feasible region and have only

two non empty regions.

Hence, although the closest point algorithm is a significant improvement of

the original Drezner-Wesolowsky algorithm, there are still ways it can be further

improved.

4.3 An Alternative Method Based on the Closest Point Algorithm

4.3.1 Aspects of the Method

In the previous section we outlined the characteristics of the closest point

algorithm and discussed aspects of the method that could be improved. By combining

the main ideas of this algorithm and the properties of all local optima, as stated in

Melachrinoudis (1988) and Appa and Giannikos (1992), we develop a Properties-

based Rectilinear Obnoxious Facility Location Algorithm Without Linear

Programming (PROFLAWLP). As mentioned in Appa and Giannikos (1993b),

PROFLAWLP has the following features :

1. It identifies rectangles which cannot contain a local solution satisfying

the properties mentioned above and eliminates them from the

subsequent calculations.

2. It exploits the structure of the grid of rectangles to identify the

infeasible ones and, at the same time, mark the constraints intersecting

each rectangle.

3. It uses the properties of local solutions to solve (PI) for each rectangle

without using linear programming.

69

Chapter 4: LP-Based Approaches to the Rectilinear Problem

More specifically, as stated in chapter 2, a local solution to problem (PI)

satisfies the following properties :

1. At a local solution on a vertex of the feasible region S, at least one

constraint from set (1) of (PI) is binding.

2. A local solution on the boundary of S (but not on a vertex) is

equidistant from at least two demand points.

3. A local solution in the interior of S occurs along a multiple solution

edge which is equidistant from two demand points. However, there

exists at least one point on such an edge corresponding to a basic

solution of (PI) which is equidistant from three demand points.

Combining these properties with the fact that at most four points are relevant

for each rectangle, we can reduce the work required by the closest point algorithm

in two ways. Firstly, we can eliminate all rectangles in the interior of S which

cannot contain a point equidistant from three clients. Secondly, we can derive

algebraic rules for finding the optimal location in all other rectangles, so that the

global optimum can be found without using linear programming.

4.3.2 Finding Local Solutions

Definition 4.1

A rectangle is called infeasible if it is entirely outside S, partly feasible if

some points of the rectangle are on the boundary of S, and feasible otherwise. Note

that feasible rectangles are always in the interior of S, as shown in figure 4.4. Also

note that there may exist partly feasible rectangles where all points are feasible; these

are rectangles where a boundary edge coincides with a side of the rectangle.

70

Chapter 4: LP-Based Approaches to the Rectilinear Problem

Feasible

Partly FeasibleInfeas

Figure 4.4: Feasible, Infeasible and Partly feasible rectangles

4.3.2.1 Eliminating Some Feasible Rectangles

Since local solutions in the interior of S correspond to basic solutions of (PI)

where three constraints from set (1) are effective, we can discard feasible rectangles

with one or two non empty regions without even calculating their upper bound. As

a result the number of upper bound values that have to be stored and then sorted is

less than the total number of rectangles, namely (n + 1)2 .

4.3.2.2 Finding Solutions in Feasible Rectangles

For simplicity of the subsequent calculations we will assume that Wj =1 for

i = l,...,n . The following results can be extended to the weighted problem without

any theoretical difficulty.

Case 1: Three non empty regions.

Suppose that regions R ,, R2 and R3 are non empty. A local solution (x, y) at

distance L from P , , P2 and P3 must satisfy the following system of equations :

71

Chapter 4: LP-Based Approaches to the Rectilinear Problem

(x - x ,) + (y, - y) = L

(x2 - x) + (y2 - y) = L

(x3 - x) + (y - y3) = L

Solving this 3x3 system with respect to x, y and L we get the coordinates of

the location which is equidistant from P ,, P2 and P3 . If this location is inside the

rectangle, it defines a local solution.

The coordinates of candidate local solutions in all possible cases are given in

the following table.

Table 4.1: Possible Locations in Feasible Rectangles

NON­
EMPTY
REGIONS

2 * x 2 * y 2 * L

1.1 Rl>R2>R3 xry i+x2+y2 x2+y2-x3+y3 yr xi+x3-y3

1.2 Rl»R2*^4 xr y,+x2+y2 yr x,+x4+y4 x2+y2-x4-y4
1.3 x3-y3+x4+y4 y,-x,+x4+y4 yr xi+x3-y3

1.4 ^2>^3>^4 x3-y3+x4+y4 x2+y2-x3+y3 x2+y2-x4-y4

If Xniill < x < x ^ and y,^ < y < yolax (1.5)

then the best location in the rectangle is (x, y) at distance L from all three points.

If not, there is no local solution in the rectangle.

Case 2: Four non empty regions.

For a feasible rectangle k with all regions Rj non empty, the optimal distance

is :

L = min { L,.3, }

where L,.3 = (-x, + y, + x3 - y,)/2

with x and y coordinates from 1.1 or 1.3, and

Lm = (x2 + y2 - x4 - y„)/2

72

Chapter 4: LP-Based Approaches to the Rectilinear Problem

with x and y coordinates from 1.2 or 1.4.

If L = L j.j ^ L-2_4 , we check if the location equidistant from P j , P2 and

P3 or from Pj , P3 and P4 is within k. More simply, we check whether the

coordinates given by either 1.1 or 1.3 (table 4.1) satisfy 1.5. If so, this is the optimal

location for k. Note that if the optimum is defined by, say Px , P2 and P3 then the

distance of this location to the remaining demand point, viz. P4 , will be at least L

since ^ . Similarly, if L 1-3 > we check whether the coordinates

given by 1.2 or 1.4 satisfy 1.5, thus defining the optimal solution for k.

4.3.2.3 Finding Solutions in Partly Feasible Rectangles

The properties of local optima indicate that in a partly feasible rectangle k we

can have three types of local solution: solutions at a vertex of S, solutions on a

boundary edge of S or solutions in the interior of (S D k). Note that there can be

more than one type of local solution in a partly feasible rectangle k. Rules 1 to 3

below check for the existence of all three types of local optima in k.

Rule 1: If there is more than one constraint passing through k, we evaluate

the objective function at each of the corresponding vertices of S, i.e. we calculate the

distance of each vertex to the nearest client and store the largest of these values.

Rule 2: To cater for solutions on the boundary of S, we consider each

constraint which intersects k with all possible pairs of closest points corresponding

to k. Note that there are at most three such pairs for each constraint. For each such

pair (Pu , Pv) and each constraint H: ax + by < c, we check whether there exists

a local solution on H equidistant from both Pu and Pv which is inside k. If u=2 and

v=4, such a solution must satisfy the following system of equations:

w 2 (x2 - X + y2 - y) = L

w4 (x - X4 + y4 - y) = L

a * x + b * y = c

73

Chapter 4: LP-Based Approaches to the Rectilinear Problem

If there is more than one such intersection, we choose the one with the largest value

for L.

Rule 3: If there are three non empty regions around k, we use the results of

table 4.1 to check whether the corresponding closest points define a local solution

inside k, equidistant from all three of them.

The location with the largest objective function from rules 1 to 3 is the optimal

solution for rectangle k. However, in order to calculate the optimal solution for any

partly feasible rectangle k we need to know which constraints from set (2) of (PI)

intersect k. In appendix B we give a representation method for S and an algorithm

to identify the infeasible and partly feasible rectangles. The main idea behind this

method is to take each constraint in turn and mark which rectangles it intersects. As

a result, for each partly feasible rectangle k we have a list of the relevant constraints

from set (2). Hence, when checking each candidate solution for feasibility, we only

consider the constraints that are relevant for the corresponding rectangle rather than

all m constraints which define S.

4.3.3 Description of the Algorithm

Assuming that the feasible region S is defined by a set of vertices to Vm

given in clockwise order, PROFLAWLP can be outlined as follows :

STEP 1 Data Preparation

1.1 Construct the grid of rectangles.

1.2 Mark each rectangle as feasible to start with. For each constraint Vj to V i

mark the rectangles intersected by that edge as partly feasible and the ones on the

infeasible side of Vj -► Vj+i as infeasible. (See appendix B for details). At the end

of the process for each rectangle k we have its status (Feasible, Partly Feasible or

Infeasible) and if Partly Feasible a list of consecutive edges intersecting k.

74

Chapter 4: LP-Based Approaches to the Rectilinear Problem

STEP 2 Finding Upper Bounds

For each rectangle k in turn :

(i) if k is infeasible, discard it;

(ii) if not, check if it is feasible and has at most two non empty regions; if so,

discard it;

(iii) in all other cases, calculate the upper bound UB^ using the rules suggested by

Mehrez et al. and store it in the array UArray of upper bounds.

STEP 3 Sort

Sort the elements of UArray in descending order.

STEP 4 Finding Local Solutions

If the point producing the largest upper bound falls within its rectangle, it is the

global optimum. If not, find the optimal solution for that rectangle as explained in

section 4.3.2.

STEP 5 Termination Rule

Repeat Step 4 for rectangles with progressively smaller upper bounds. Stop when the

next largest upper bound is less than the best exact solution found so far.

PROFLAWLP tests each rectangle for the existence of a local solution and

discards the rectangle if it does not contain one, whereas other LP-based methods

solve an LP instead. The following example illustrates the algorithm.

Example 4.1

Consider five demand points within a convex polygon S bounded by five

vertices (see figure 4.5).

75

Chapter 4: LP-Based Approaches to the Rectilinear Problem

10
9

8

6

4

2

0 2 3 6 8 10

Figure 4.5: Demand points and feasible region for example 4.1

The x and y-coordinates of the demand points as well as the vertices of S are given

in the following tables :

Table 4.2i: Demand Points for Example 4.1

Point P; i 2 3 4 5

2 3 6 6 8

y; 2 6 4 9 8

and

Table 4.2ii: Vertices of S for Example 4.1

Vert. Vj 1 2 3 4 5

xi 0 4 10 9 1

yj 5 10 8 3 0

76

Chapter 4: LP-Based Approaches to the Rectilinear Problem

The upper bound as well as the status (Feasible, Partly Feasible or Infeasible)

for each rectangle are given in table 4.3. (See appendix B for details). Note that 6

rectangles have been discarded either because they are infeasible (rectangles 1, 2, 5,

6 and 30) or because they are feasible but have only two non-empty regions (rectangle

22).

Since the upper bound point for rectangle 25 (which has the largest upper

bound) is infeasible, i.e. not within the feasible region, we calculate the best local

solution within that rectangle as explained in section 4.3.2. The optimal location

satisfying the necessary properties is point (9, 3) at distance 1-25=4 from its nearest

point. Since L25 is less than the next largest upper bound, i.e. 6 for rectangle 29,

we consider that rectangle next. It turns out that there is no local solution inside

rectangle 29 satisfying any of the known properties, hence we continue with rectangle

11 whose upper bound point is also infeasible. This rectangle does not contain any

appropriate local solution either, so we check rectangle 20 next. The upper bound

point for this rectangle is also infeasible; however, there exists a local solution at

(9.4, 5) at distance L20 =4.4 from its nearest demand points. In fact this location

is the best exact solution found so far. Similarly, the optimal solution for rectangle

28 is I^g =3.5 at (5, 1.5) and for rectangle 16 L16 =4.4 at (0.1, 4.5). Since the

next largest upper bound, namely 4 for rectangle 7, is not better than the best current

solution i.e. 4.4 the process is terminated and the global optimum is point (9.4,5) (or

(0.1, 4.5)) at distance L=4.4.

77

Chapter 4: LP-Based Approaches to the Rectilinear Problem

Table 4.3: Upper Bound and Status for each Rectangle

Rect i Status Uo. Bound Uo. Bound Point
25 PART. FEASIBLE 6 110. 2)
29 PART. FEASIBLE 6 18. 01
11 PART. FEASIBLE 5 (0. 81
20 PART. FEASIBLE 5 n o . 5i
28 PART. FEASIBLE 5 15. 01
16 PART. FEASIBLE 4.5 (0. 4.51
7 PART. FEASIBLE 4 (2. 91
3 PART. FEASIBLE 4 13. 101
15 PART. FEASIBLE 4 n o . 61
24 PART. FEASIBLE 4 18. 21
26 PART. FEASIBLE 4 10. 01
21 PART. FEASIBLE 4 (0. 41
12 PART. FEASIBLE 3 12. 81
13 FEASIBLE 3 14.5. 7.51
14 FEASIBLE 3 17. 61
19 FEASIBLE 3 17. 61
23 FEASIBLE 3 14. 31
10 PART. FEASIBLE 3 n o . 9i
8 PART. FEASIBLE 3 14.5. 7.51

27 PART. FEASIBLE 3 (3.01
4 PART. FEASIBLE 2.5 (7.5. 101
17 FEASIBLE 2.5 (2.5. 41
18 FEASIBLE 2.5 (4.5. 51
9 PART. FEASIBLE 1.5 (7. 8.51
1 INFEASIBLE

22 FEASIBLE
6 INFEASIBLE
5 INFEASIBLE
2 INFEASIBLE

30 INFEASIBLE - -

78

Chapter 4: LP-Based Approaches to the Rectilinear Problem

4.4 Computational Results

A series of test problems were randomly generated to assess the relative

performance of PROFLAWLP and the correct version of the closest point algorithm.

For each combination of n and m, 5 random problems were generated and the results

were averaged over these 5 problems. The problems were tested on a PS\2 with an

80386 processor. Some of the average execution times are given in table 4.4. In all

cases PROFLAWLP was significantly faster than the closest point algorithm.

Table 4.4: A Comparison of Computation Times in Seconds

Dem. Points Constraints PROFLAWLP Closest point
algorithm

20 6 2.77 4.77

40 6 6.03 8.97

60 6 9.96 16.47

80 6 11.77 18.27

100 6 15.35 22.17

20 15 3.53 4.90

40 15 6.50 9.90

60 15 8.80 18.67

80 15 9.26 19.93

100 15 11.50 23.26

20 50 3.38 11.25

40 50 5.68 16.30

60 50 7.10 19.54

80 50 8.63 22.31

100 50 9.90 26.65

79

Chapter 4: LP-Based Approaches to the Rectilinear Problem

The n demand points were generated by a uniform probability distribution on

[0, 10] on each coordinate. The m constraints were constructed as a convex polygon

circumscribed around a circle of given radius r centred at (5,5). For example, with

five constraints and r= 5 the feasible region would be a pentagon with coordinates

(10, 8.63), (3.09,10.88), (-1.18,5), (3.09, -0.88) and (10, 1.37). The weights were

also randomly generated by a uniform distribution on [1,5].

The description of both algorithms given in the previous sections explains the

significant reduction in computation time achieved by PROFLAWLP. Firstly, the

closest point algorithm identifies and eliminates the infeasible rectangles by

considering each rectangle k and then using each constraint j to cut off the infeasible

parts of the boundary of k. In other words, in the worst case, each of the m

constraints is considered for each of the (n+1)2 rectangles. On the other hand,

PROFLAWLP takes each constraint j in turn, checks which particular rectangles it

intersects and exploits the structure of the grid to identify the infeasible rectangles.

As explained in appendix B, for each j at most n checks have to be made, thus

resulting in a significant reduction in computation time.

Secondly, PROFLAWLP uses the properties of local optima to eliminate

feasible rectangles which cannot contain proper local solutions. As a result, fewer

upper bounds have to be stored and then sorted and computation time is saved,

especially as the problem size increases.

Thirdly, whenever the upper bound point corresponding to a particular

rectangle k does not fall within the feasible part of k, the closest point algorithm

performs an LP. On the other hand, PROFLAWLP performs at most six simple

calculations to find the optimum for k, as explained in section 4.3. Mehrez et al.

claim that their method hardly requires LP. When the feasible region S is rectangular

it is indeed difficult to find cases where LP would be performed. However, when S

has five or more vertices LP is almost always necessary as indicated by table 4.5

which presents the average number of LP’s required for various problem sizes.

80

Chapter 4: LP-Based Approaches to the Rectilinear Problem

Table 4.5: Average Number of LP’s for the Closest Point Algorithm

Dem. Points Constraints No. of LP’s

20 5 3.7

40 5 6.3

60 5 17.3

80 5 25.8

100 5 32.6

Hence, the execution time is reduced considerably since PROFLAWLP does

not require linear programming at all. Moreover, in order to find the optimum for

a partly feasible rectangle k, PROFLAWLP only considers the constraints intersecting

k, as given by the corresponding list of edges referred to in the description of the

algorithm. On the other hand, the closest point method solves an LP for k using all

m constraints.

One could argue that although PROFLAWLP is significantly faster than the

closest point method, it requires much more memory since it needs to store the

constraints which intersect each rectangle k. However, in most problems many of

these lists are empty anyway since the corresponding rectangles are feasible.

Furthermore, the upper bounds stored by PROFLAWLP are, in general, fewer than

the ones required by the closest point method since the rectangles which do not

contain proper local solutions are discarded.

4.5 Summary

In this chapter we described how the closest point algorithm, as introduced by

Mehrez et al., can be modified to solve the weighted version of the single facility

MAXIMIN problem. After illustrating that it constitutes an efficient improvement

81

Chapter 4: LP-Based Approaches to the Rectilinear Problem

of the original Drezner and Wesolowsky algorithm, we pointed out some logical

shortcomings of the method as well as ways of further improvement. We also

established an alternative solution method, based on the same theoretical principles,

which exploits the properties of local optima and does not require linear programming

at all. Finally, we presented some computational results indicating that this

alternative approach is significantly faster than the closest point method.

82

Chapter 5: An Interactive Graphical Approach

CHAPTER FIVE

AN INTERACTIVE GRAPHICAL APPROACH

5.1 Introduction

Most of the models discussed in the previous three chapters assume that the

feasible region is a convex polygon. However, in real life problems the permissible

area, say a city or a county, is usually a union of non convex and disjoint areas; it

may even have non permissible regions such as rivers or parks where the undesirable

facility cannot be located. Hence, the assumptions of convexity and connectivity are

quite restrictive when it comes to realistic situations.

Consequently, several researchers have introduced graphical models with

general feasible regions that can cater for real life problems. These models can be

used to obtain approximate solutions to problems which cannot be solved by existing

analytical methods. However, these approaches require extensive user intervention

and have only been applied to small scale problems with fewer than 10 demand

points.

We present an interactive graphical method, based on existing approaches, that

can solve realistic problems with up to 1000 demand points in reasonable time. This

method allows for totally flexible feasible regions that can even contain non

permissible subregions. It requires minimal user intervention and can easily be

modified to find the exact solution to the problem whereas previous techniques find

only approximate solutions. It can even produce a list of candidate solutions which

can then be assessed using various criteria.

Section 5.2 briefly discusses previous graphical approaches and introduces an

enhanced graphical model which reflects more aspects of the real world than any

analytical model reviewed so far. This model has been implemented on a

microcomputer as an interactive process.

83

Chapter 5: An Interactive Graphical Approach

Section 5.3 gives a detailed description of LOCOBNOX, the software

implementing the above model, and explains the options available to the user at each

stage of the interactive process.

Section 5.4 introduces a stochastic termination rule whose objective is to

minimize user intervention in the first steps of the iterative process.

Section 5.5 presents some computational results regarding the performance of

the termination rule as well as the overall performance of LOCOBNOX. These

results indicate that the stochastic termination rule is effective even in large instances

of the problem.

Section 5.6 presents a parametric version of the single facility problem where

all the weights are raised by a parameter q. The speed and efficiency of the graphical

approach allows us to solve the problem for different values of q and study the effect

of the parameter on the optimal solution. This parametric investigation often reveals

interesting information about the structure of the problem since in some examples the

solution is quite sensitive to changes in the value of q while in others it is not affected

at all.

Finally, section 5.7 discusses the advantages of the graphical method in

comparison to the analytical approaches. It also suggests ways of enhancing the

method so that it may be used in real life applications effectively.

5.2 Description of the Graphical Model

The rapid developments in computer software and hardware and especially the

advent of computer graphics has enabled several researchers to use geometric insight

and develop graphical solution methods to location problems. The first interactive

graphical procedure in the location literature is by Brady and Rosenthal (1980) who

solve the weighted Euclidean MINIMAX problem for a single facility on an arbitrary

feasible region. A typical application of this problem is the location of a radio

84

Chapter 5: An Interactive Graphical Approach

receiver to monitor a given set of transmitters. The main idea behind the method is

to draw circles of radius r around each transmitter and visually inspect whether there

exist feasible locations within reach of all transmitters, i.e. within all these circles.

If so, the value of r can be reduced until this condition is violated. More simply, the

optimal distance is the smallest value of r for which the intersection of all circles is

not empty.

In the literature of the MAXIMIN problem there are two major attempts to

solve the problem graphically. Melachrinoudis (1985) outlines a graphical technique

which involves drawing circles of increasing radii around the demand points and

selecting the final point not covered by any circle. However, he reports that the

method is not applicable to problems with more than 10 demand points due to the

rapid increase in computation time.

As mentioned in chapter 3, the Black and White algorithm by Hansen, Peeters

and Thisse (1981) is the most general approach to the problem. Assuming that a cost

function ty is associated with each demand point Pj, the objective is to minimize the

maximum of these costs. However, as explained in chapter 3, the method assumes

that the feasible region is the union of a finite number of convex polygons, requires

significant user intervention and is not easy to implement on a computer as an

automated process.

The method we will outline in this section was originally suggested to us by

Professor Ailsa Land and does not make any assumption regarding the feasible

region. Given any permissible region S and n demand points Pj for i= l , . . . ,n the

objective is to locate a new undesirable facility at X, so that its distance to the nearest

demand point is maximized. In other words the optimal location is the solution to the

following problem :

max L (PI)

s.t. Widj(Pi,X) > L i= l , . . . ,n

X 6 (S - N)

where :

85

Chapter 5: An Interactive Graphical Approach

- S is the union of m feasible polygons S j, not necessarily convex, each

represented by a list of vertices given in clockwise order

- N is the union of q non permissible areas Nk , assumed to be bounded

polygons where the facility cannot be located; each Nk is also given as a list of

vertices in clockwise order

- dj (P{, X) is the distance of demand point i to the new facility, either in the

Euclidean or in the rectilinear metric

- Wj is the positive weight associated with demand point i; note that the smaller

the weight the more important the corresponding demand point.

The method is simply based on the fact that the locus of points which are at

weighted distance less than or equal to L from a given point P is :

(a) the circle with centre P and radius L/w; in the Euclidean case, or

(b) the diamond with centre P and semi-diagonal equal to L/wj, in the

rectilinear case (see figure 5.1).

PA = L /w

Figure 5.1: Locus o f points at rectilinear distance L from P

Clearly, for any value Lq of the objective function of (PI) the feasible points,

if any, must be outside shapes (circles or diamonds depending on the distance metric)

86

Chapter 5: An Interactive Graphical Approach

having centres Pi and sizes Lq /Wj. The existence of such points inside S and outside

the non-permissible regions Nk indicates that the objective function may still be

increased. Hence, starting from an initial size Lq we can go on increasing the size

of these shapes by a predetermined quantity AL until the feasible area not covered by

them is sufficiently small to be considered a point. This area is a close approximation

of the optimal location.

During the early stages of development it was discovered that the overall

performance of the algorithm is highly dependent on the initial size of the shapes.

If the initial size is poorly chosen it may take a great number of iterations before the

optimal location is found. Two relatively simple heuristics are used to obtain a good

initial size and speed up the whole process.

Firstly, let Ly be the value of the objective function at vertex V of S i.e. the

distance of V to its nearest demand point. Similarly, let be the value of the

objective function at vertex W of N. Clearly, the maximum Lj of all the Ly’s and

the Lw ’s can be used as a lower bound since we will need shapes of size at least Lj

to cover all the vertices of S and all vertices of N.

Secondly, supposing the feasible area is covered by non-overlapping shapes,

the area of each shape can be calculated simply by dividing the total area by n.

Knowing its area, the size of each shape can be easily computed and this estimate

gives a second lower bound L2 . The total area is given by the following formula:

Total Area = AS. - ANk
I *

where ASj is the area of the j-th feasible polygon and ANk the area of the k-th non-

permissible one. Supposing that ASj has mj vertices with coordinates (Xy , yu) for

u= l,...,n ij its area is given by

| IE I
* M-0

87

Chapter 5: An Interactive Graphical Approach

where indices are taken modulo nij, as proven in Shamos (1975). The area of ANk

is calculated similarly.

The largest of L, and is used as the initial size of the shapes. After each

iteration the user may terminate the process if he/she is satisfied with the current

solution or continue by increasing the size of the diamonds or circles. The process

stops when the user feels that the feasible area(s) still uncovered are sufficiently

small.

Apart from its obvious simplicity the main advantage of the method is its

flexibility and the ability to represent more aspects of the real world. In fact it is not

limited to any distance metric. For example, one might wish to use the Chebyshev

distance metric where dc = max { | X; -Xj | , | yt -y, | } is the Chebyshev distance

between points Pj and P j. It can be seen that in this case instead of circles or

diamonds one would draw squares with centre Ps and sides 2L/w{. The method has

been implemented as an interactive graphical process on a microcomputer. A detailed

description of the software is given in the following section.

5.3 LOCOBNOX: An Interactive Graphical Optimization Procedure

The model presented in the previous section was originally implemented using

Borland’s Turbo Pascal Graphics Toolbox, a graphics environment accompanied by

a library of predefined routines. Quite surprisingly, polygon or curve filling was not

one of them. Consequently, we had to write our own area filling routines, which

were obviously much slower than the predefined ones. Since speed was a major

concern we decided to develop our own graphics environment from scratch and

exploit the predefined filling routines of Turbo Pascal which, unfortunately, were not

accessible through the Toolbox.

88

Chapter 5: An Interactive Graphical Approach

/

The resulting software, called LOCOBNOX, runs under DOS version 3.2 or

higher on an IBM or compatible microcomputer and produces an approximate solution

interactively. It can solve problems with up to 1000 demand points, 500 boundary

constraints and 20 non-permissible areas. A brief outline of the program is given in

the flow diagram of figure 5.2.

Input consists of the coordinates of the demand points and the details regarding

the feasible region which may be the union of up to 20 disjoint areas, each

approximated by a closed polygon. The user may supply the coordinates of the

vertices of these polygons or use the mouse to draw them interactively on the screen.

Similarly, he/she may represent each of the non-permissible areas, if any. These

forbidden areas are filled beforehand and are thus eliminated as candidates for the

optimal location.

The distance metric can be Euclidean, rectilinear or Chebyshev depending on

the particular application. The user is then asked to supply the weights corresponding

to the existing facilities or set them all equal to one if he/she wishes to solve the

unweighted version of the problem. Finally, he/she has to select a step size AL by

which the objective function is to be increased if there are still uncovered feasible

points. Clearly, in the weighted case the size of the shape (circle or diamond)

corresponding to demand point P± should increase by AL/Wj after each iteration.

Given the description of the feasible region and the coordinates of the demand

points the program calculates a lower bound on the objective function using the

heuristics of the previous section. The user may then keep this bound as the initial

size Lq of the shapes or change it if he/she wishes to. Table 5.1 presents some

experimental results showing that for most randomly generated problems Lq was on

average at least 40% of the approximate optimal distance L* .

89

Chapter 5: An Interactive Graphical Approach

Yes / Read
> ^ new LChang©

No

/ Read

new weight
No

Yes

No
— -(STOP)

Yes

'" 'Feas.
Area

Covered

different
weights

L =

/ Input

data

Draw shapes
of size

Calculate
lower bound

Figure 5.2: Flow diagram for LOCOBNOX

90

Chapter 5: An Interactive Graphical Approach

Table 5.1: L»/L* (%)

Number of
dem. points

Number of Vertices of S
10 50 100

20 86 91 92

60 70 82 82

100 58 72 84

200 61 74 71

300 70 69 41

400 45 41 44

500 48 54 32

The next step is the implementation of the method itself; shapes of size Lq are

drawn around each demand point. The user is then asked whether he/she is satisfied

with the current solution. If so, he/she may use the mouse to click the uncovered

area(s) and obtain an approximate solution. If not, he/she can increase the objective

function until most of the feasible area is covered. At the end of the program, the

user may choose to solve the same problem using different weights in order to study

the effect of the new weight set on the optimal location. Figures 5.3 to 5.5

demonstrate a small realistic example.

Example 5.1

Suppose that we wish to locate an undesirable facility, such as a nuclear

factory, somewhere in the British Isles. The facility must be as far away as possible,

in the Euclidean sense, from twenty major population centres, represented by black

91

Chapter 5: An Interactive Graphical Approach

dots in figure 5.3. In addition to this it cannot be located in any of six forbidden

regions (mountains and lakes) represented by hatched areas in the same figure.

Figure 5.3: Example with 20 population centres and 6 non permissible areas

If all population centres are considered equally important the optimal location turns

out to be in the north of Scotland, as shown in figure 5.4. However, if each

population centre is assigned a weight relative to its size then the optimal area is the

south-western comer of Cornwall (see figure 5.5).

A brief description of the program is given in appendix C. The program itself

accompanied by several test problems is available in the final appendix of this thesis.

92

Chapter 5: An Interactive Graphical Approach

Figure 5.4: Solution when all weights are equal

Figure 5.5: Solution when weights are proportionate to the population o f each centre

93

Chapter 5: An Interactive Graphical Approach

5.4 A Stochastic Termination Rule

A comparison of the graphical approaches to the single facility MAXIMIN

problem reveals that they all have the same theoretical principle: they are based on

the sequential construction of iso-cost curves of value Lt and the elimination of all

locations which are within these curves. The Black and White algorithm by Hansen

et al. (1981) selects several feasible locations, calculates the objective function at each

of them, sets In equal to the largest of these values, and draws the iso-cost curves of

value Lt thus eliminating the locations inside them. On the other hand, LOCOBNOX,

as well as similar methods, try increasing values of the objective function and

check whether there are still feasible locations outside the corresponding iso-cost

curves.

Both approaches rely on the human user to identify whether the termination

criterion has been satisfied after each iteration of the process. However, in the early

stages it is rather tedious for the user to be asked whether he\she wishes to continue

the process, when large parts of the feasible region are still uncovered by the iso-cost

curves. Hence, we developed a stochastic termination rule to minimize user

intervention and speed up the whole procedure.

The rule is very simple but effective in the two dimensional space which is

relevant for most location problems anyway. It makes use of the predefined

GetCoIor function in Turbo Pascal which returns the colour of a specified point on

the screen. Given that the iso-cost curves (diamonds or circles) in our case are filled

in a predetermined colour, we can use the above function to check whether a

randomly chosen point is covered or not. Repeating the test for a sufficiently large

number of points, say 100 , we can thus get an estimate of the proportion of the

feasible area which is already covered.
N

If this estimate exceeds a certain limit, say 95%, we repeat the test 10 times

to reduce the probability of sampling error. If for each of the 10 random tests the

94

Chapter 5: An Interactive Graphical Approach

proportion of the area that is covered is still more than 95%, control is passed on to

the user who can decide whether the process should be continued. At this stage the

user can increase as well as decrease the value of the objective function until he/she

is satisfied with the solution. If the estimate in any test is less than the limit, the

process continues automatically. Note that the number of randomly chosen points,

the limit of the proportion as well as the number of times the test is repeated can all

be changed by the user.

Obviously, there is no guarantee that the stochastic rule will never fail. One

can always come across the odd case where the automatic process terminates, passing

the control to the user whereas the objective function can still be increased

considerably. However, in most examples the random rule performs satisfactorily as

indicated by the following experimental results.

5.5 Computational Results

The overall performance of LOCOBNOX was assessed using a number of

randomly generated examples. The vertices of the feasible region were generated by

a uniform probability distribution on [0 , 1000] on each coordinate subject to the

constraint that these vertices formed a simple polygon, not necessarily convex. The

demand points were also generated by a uniform distribution on the same range under

the condition that they were all within the feasible region. Finally, the weights were

also randomly generated by a uniform distribution on [1, 5]. In all randomly

generated problems a step size AL=10 was chosen.

All experiments were performed on a PS\2 with an 80386 processor. The

computational results for different problem sizes are given in tables 5.2 to 5.4. In

each example we recorded :

95

Chapter 5: An Interactive Graphical Approach

(a) the average time required for the calculation of the lower bound (column 1),

(b) the average time required for the main part of the algorithm (column 2), namely

drawing shapes around the clients until the stochastic rule decided that control should

be passed on to the user,

(c) the average total computation time (column 3) i.e. the sum of (a) and (b) and

finally

(d) the average ratio Lt /L* (column 4) where Lt is the objective function when the

termination condition is satisfied and L* the approximate optimal solution.

Table 5.2: Computation Times in Seconds
(Number of vertices of S = 101

Number of
demand

points

Time required for
Lower Bound Draw. Shapes Total Time
(1) (2) (3)

V L *
(%)

(4)

20 0.56 5.88 6.44 94

60 0.84 17.50 18.34 96

100 1.68 15.82 17.50 92

200 3.08 29.96 33.04 90

300 4.76 24.99 29.75 86

400 5.88 23.52 29.40 87

500 7.56 29.12 36.68 93

Table 5.3 contains the results for problems where the feasible polygon has 50

vertices.

96

Chapter 5: An Interactive Graphical Approach

Table 5.3: Computation Times in Seconds
(Number of vertices of S = 50"!

Number of
demand

points

Time required for
Lower Bound Draw. Shapes Total Time

(1) (2) (3)

u / v
{ %)

(4)

20 1.40 5.74 7.14 96

60 3.92 13.02 16.94 94

100 6.44 16.68 23.12 90

200 9.24 21.84 31.08 93

300 20.16 14.00 34.16 79

400 26.32 29.68 56.00 97

500 33.04 35.56 68.60 90

Finally, table 5.4 presents the results for even larger problems, where S is

defined by 100 vertices.

Table 5.4: Computation Times in Seconds
(Number of vertices of S = 1001

Number of
demand

points

Time required for
Lower Bound Draw. Shapes

(1) (2)
Total Time

(3)

V L *

(%)
(4)

20 6.16 5.18 11.34 96

60 18.20 5.60 23.80 88

100 30.24 9.31 39.55 93

200 60.48 10.22 70.70 82

300 90.44 10.92 101.36 91

400 120.96 12.18 133.14 88

500 151.20 15.96 167.16 90

97

Chapter 5: An Interactive Graphical Approach

As evidenced by the results above, the stochastic termination rule is very

effective even in large instances of the problem. In all cases but one, when the

iterative process terminated, the objective function was on average more than 80%

of the optimal distance. User intervention is thus minimized and is only required at

the final stage when the user is asked to click the uncovered area(s) and obtain the

approximate solution(s).

The results regarding the total computation time indicate that LOCOBNOX can

indeed be used as a site-generation tool even in large scale applications. Problems

with 500 demand points lying in feasible regions with 100 vertices can be solved in

less than 3 minutes on a microcomputer. Given that geographical restrictions (e.g.

non-permissible areas) can easily be catered for, this implies that the method is

applicable to realistic situations.

In addition to this, the analysis of the total computation time reveals that the

number of vertices of S as much as the number of demand points affects the

complexity of the algorithm. Although the iterative stage, as indicated by column (2)

of the tables above, is not affected significantly, the calculation of the lower bound

is much slower as the number of vertices of S increases. These results confirm the

analysis of existing algorithms in chapters 3 and 4 where it was stated that the

complexity of these algorithms should be expressed in terms of both the number n of

demand points and the number m of vertices of S rather than just in terms of n alone.

In fact, as far as LOCOBNOX is concerned, for feasible regions with more

than 100 vertices it is worthwhile omitting the calculation of the lower bound and

starting with an initial size Lq =0. Execution time in this case is less than the total

time required for the calculation of the lower bound and the iterative step of the

method, as shown in table 5.5.

98

Chapter 5: An Interactive Graphical Approach

Table 5.5: Computation Times in Seconds
(Number of vertices of S = 3001

Number of
demand

points

Time required for
Lower Bound Draw. Shapes Total Time

(1) (2) (3)

Time required
starting

from Lo=0
(4)

20 9.1 7.3 16.40 30.5

60 27.6 7.9 35.50 44.6

100 45.0 13.1 58.10 55.8

200 87.8 14.6 102.40 65.2

300 135.4 15.2 150.60 78.7

400 180.8 12.4 193.20 115.6

500 216.0 2 2 .6 238.60 135.6

For such large scale problems the program suggests a lower bound of zero,

although the user may ask for the lower bound to be calculated if he\she wishes to

do so.

5.6 A Parametric Version of the Model

In section 5.3 we presented a small real life application of the single facility

MAXIMIN problem where an undesirable facility had to be located in the British

Isles. We also demonstrated how the optimal location may be affected by the weights

representing the relative incompatibility between a given population centre and the

facility to be located.

Although several researchers have studied the weighted version of the

problem, most of them do not investigate the effect of the weight set on the optimal

solution. Erkut and Oncii (1991) present a parametric version of the problem and

99

Chapter S: An Interactive Graphical Approach

observe how the optimal location changes as the effect of the weights is cancelled out

systematically. More specifically, they study the following version of the problem:

max L (P2)

s.t. (W i) I/qd E (X, Pj) > L i= l , . . . ,n

X E S

where 1 < q < oo, S is the feasible region and w{ is the positive weight

corresponding to demand point P{. Note that q = 1 corresponds to the ordinary

weighted version of the problem and also that as q tends to infinity (P2) tends to the

unweighted version.

Erkut and Oncu prove that for q = 2 (P2) is equivalent to a MINIMAX

problem first introduced by Melachrinoudis and Cullinane (1986a). They then give

two small numerical examples and graphically display the trajectory of the optimal

locations as a function of the parameter q. Their results demonstrate that the optimal

solution may be quite sensitive to changes in the value of q. Consequently, selecting

the "correct" weights is of vital importance since the solution is highly affected by

them.

The graphical approach, as described in the previous sections, can be used

very efficiently to perform a parametric investigation in larger, more realistic

problems. This investigation may provide the decision maker with useful information

regarding the structure of a particular problem. In the examples presented by Erkut

and Oncu the solution is indeed very sensitive to changes in the value of q.

However, this is not always the case; certain problems may have a more "stable"

structure where the optimal location is less affected. In the example of section 5.3,

where the feasible region are the British Isles and the weights are proportionate to the

population of each city, the optimal location is in Cornwall at location A for

1 < q < 1.55, and in Scotland at location B for q > 1.56 as shown in figure 5.6.

Hence, the decision maker in this case can be fairly confident that regardless of the

weights there are just two candidate locations which can be assessed with respect to

other criteria like transportation or maintenance costs.

100

Chapter 5: An Interactive Graphical Approach

B

Figure 5.6: Parametric investigation for example 5.1

If rectilinear distances are used, the results are very much the same. There

exist problems where the optimal solution is highly dependent on the value of q.

Figure 5.7 shows example 6.1 with 6 clients where S is defined by 5 vertices.

Example 5.2

Consider 6 demand points Pj (xj, yt) and a feasible region S bounded by 5

vertices. The coordinates and the weights of the demand points as well as the

coordinates of the vertices of S are given in the following tables:

Table 5.6i: Demand Points for Example 5.2

Point i 1 2 3 4 5 6

*i 2 2 4 5 7 9

y* 1 4 8.5 6 2 8

Wj 3.75 4.5 3.0 3.21 2.25 1

101

Chapter 5: An Interactive Graphical Approach

Table 5.6ii: Vertices of S for Example 5.2

Vert, j 1 2 3 4 5

xj 0 3 1 0 8 2

yj 4 1 0 9 1 0

The optimal location is along segment (a) for 1 < q < 1.12, segment (b) for

1.12 < q < 5.5 and segment (c) for 5.5 < q < o o . The arrows in the figure

indicate the movement of the optimal location as q is increased.

Figure 5.7: Parametric investigation for example 5.2

On the other hand, it is easy to construct problems where the solution is not

affected by q at all. Figure 5.8 shows another example where the optimal location

is at vertex V regardless of the value of the parameter.

102

Chapter 5: An Interactive Graphical Approach

Example 5.3

Consider 6 demand points within the feasible region of example 5.2. Their

coordinates are given in the following table:

Table 5.7i: Demand Points for Example 5.3

Point i 1 2 3 4 5 6

Xj 2 2 5 6 7 9

Yi 2 5 4 1 9 8

W; 3.75 4.5 3.0 3.21 2.25 1

The optimal location is at vertex V regardless of the value of the parameter,
as shown in figure 5.8.

V

Figure 5.8: Parametric investigation for example 5.3

These results indicate that the parametric investigation described in this section

is always worth attempting in real life problems since it can reveal valuable

103

Chapter 5: An Interactive Graphical Approach

information about the structure of a given problem. It should be kept in mind that

it does by no means free the decision maker from setting the weights themselves. It

does, however, allow him/her to investigate the "stability" of a particular problem,

i.e. the effect on the optimal location as the weights become less important. The

graphical approach seems to be the most appropriate method for this investigation

since it can be applied in realistic problems where this analysis is most required.

5.7 Applications and Extensions o f the Graphical M odel

It goes without saying that the real world problem of locating obnoxious

facilities is extremely complex. According to Erkut and Neuman (1989) it is even

more complex than the one of locating desirable facilities. They feel that the

perceived disutility associated with an undesirable facility is higher than the perceived

utility associated with a desirable one. Consequently they suggest that the decision

process for locating an obnoxious facility should consist of two stages: (a) identifying

a small set of candidate locations (site-generation) and (b) selecting the final location

(site-selection).

Most of the methods reviewed in chapter 3 can be used as site-generation tools

since they find all local optima of the problem. However, the interactive graphical

approach seems to be the most appropriate although its theoretical principles are very

simple. In fact its simplicity and ease of implementation are major advantages since

most decision makers feel much more comfortable with methods they can understand

rather than with ones they know very little of. In addition to this, since the method

is interactive the user may use his/her experience to identify potential locations which

he/she can then evaluate using a number of often conflicting criteria.

Moreover, the graphical method is much more flexible than any analytical

technique and can represent many more aspects of the real world. We have already

104

Chapter 5: An Interactive Graphical Approach

mentioned that it is not limited to the Euclidean or the rectilinear distance metric. In

fact it can cater for all Lp-norms depending on the particular application. It is even

possible to use one metric for some points and another for others.

Specific distance constraints related to a particular problem can be modelled

fairly easily. A lower bound of on the distance between a client and the new

facility can be represented by a forbidden region of size Lmin around this client. An

upper bound can be incorporated by not allowing the size of the shape (diamond,

circle or whatever) around the client to grow above . Regions of varying

environmental compatibility with the facility to be located can be represented by

varying shades of background colour on the screen.

Another useful extension of the graphical approach would be to allow the user

to "zoom in" on a subregion of the graphics screen when the vicinity of the optimal

location has been identified. Hence, accuracy can be improved by giving the user a

cleaner picture to analyze.

Having mentioned these possible enhancements one could argue that, though

flexible and versatile, the graphical method is not very useful since it only yields

approximate solutions. However, especially in complex large scale problems, where

the primary objective is to select several candidate areas, which will then be assessed

on the basis of other criteria, good approximate solutions are more than satisfactory.

Moreover, in appendix D we demonstrate how the graphical approach can be

combined with the properties of the optimal solution to obtain the exact solution to

the problem. In general, given the approximate solution X*, we find the demand

points that are nearest to it, three in the Euclidean problem or four in the rectilinear

one. We then examine whether these points can determine a local solution in the

interior of the feasible region S, on the boundary of S, or on the boundary of a non

permissible area. In the Euclidean problem, for instance, we check whether the point

equidistant from all three clients is uncovered, thus defining a solution in the interior

of S. If it is covered, we then check whether each pair of clients can determine a

solution along a side of S or along a side of a non permissible area. More simply,

105

Chapter 5: An Interactive Graphical Approach

we check whether the intersection of the corresponding bisector with each side of S

(or each side of the non permissible regions) is uncovered. If it is, then it must be

the optimal location. For more details of the method see appendix D.

Undoubtedly there are many issues associated with obnoxious facility location

which the graphical approach does not consider. Like all other methods it does not

discuss economic factors at all. There are certain operating, transportation or

maintenance costs associated with each location. For particular applications safety

issues may also be important. It would be too risky, for instance, to locate a nuclear

factory in an earthquake prone area. These issues which may be of great importance

do not come into the analysis. However, one should always keep in mind that the

graphical method should primarily be used as a site-generation tool, simply to identify

several candidate areas rather than find ihg optimum. These candidates should then

be evaluated considering the issues mentioned above, which cannot be represented by

analytical models anyway.

5.8 Summary

In this chapter we have presented an interactive graphical approach to the

single facility problem and explained that its main advantage is flexibility and the

ability to represent aspects of the real world which other approaches do not cater for.

In addition to this we introduced a stochastic termination rule aimed at reducing user

intervention and presented computational results regarding the overall performance

of the algorithm. These results indicate that the method can be used to address real

life problems efficiently. We also demonstrated how the graphical model can be used

to perform a parametric investigation which may reveal useful information about the

underlying structure of a given problem. However, we pointed out that, though

flexible and effective, the graphical model is far from a precise representation of the

106

Chapter 5: An Interactive Graphical Approach

real world. Hence, it should be seen as a site-generation tool, used to identify

potential locations rather than as a rigorous technique trying to achieve optimality.

107

Chapter 6: The Multiple Facility Problem

CHAPTER SIX

THE MULTIPLE FACILITY PROBLEM

6.1 Introduction

Although the single obnoxious facility problem has been studied by several

researchers, very little research has been done on the multiple facility problem in the

two dimensional plane. This may be due to the fact that there is no unique way of

defining the multifacility problem. The introduction of more undesirable facilities

raises a number of issues regarding the interaction of the demand points with the

facilities to be located as well as the interaction of the undesirable facilities with each

other. As a result a number of multifacility location models have been generated

depending on the way we address these issues.

Some of these models deal with problems where there are no demand points

and the objective is to maximize some function of distance between the new facilities

whereas other models consider existing facilities as well. In addition to this, there

exist minimization models with minimum distance constraints ensuring that the

distances between the undesirable facilities and the demand points exceed specified

values. Section 6.2 presents several of these models and discusses the situations

where each of them is appropriate.

Throughout this chapter we will focus our attention on models involving

existing facilities as well. Most of the published approaches refer to problems where

the feasible locations are on a network. Section 6.3 contains a review of the

published approaches on the MAXIMIN problem where the feasible region is a

bounded area in the two-dimensional plane.

Section 6.4 introduces TWOPROFLAWLP, a new analytical algorithm for the

108

Chapter 6: The Multiple Facility Problem

rectilinear two-facility problem in the presence of demand points. The method is

essentially a bisection technique exploiting the ideas of the LP-based approaches to

the single facility problem. It is a generalization of the PROFLAWLP algorithm

introduced in chapter 4 and solves the two-facility problem without using linear

programming.

The new algorithm was tested on problems with up to 60 demand points.

Section 6.5 presents some computational results which invoked a slight modification

of the algorithm in order to improve its overall performance.

6.2 Alternative Models for the Miiltifacilitv Problem

6.2 * 1 Definitions

Let Pj for i = l,...,n be n existing facilities (clients) in a feasible region S and

Wj be the corresponding weights expressing the relative importance of each client.

Let also d(P{, X) express the distance between client i and facility location X in a

given distance metric. The feasible region S may be :

(a) A network in which case the P; ’s are restricted to be points on the network and

d(Pj, X) denotes any distance norm defined on the network, usually the shortest path

between Pj and X. Moreover, X can only be on a node of the network (discrete

problem) or is allowed to be on an edge as well (continuous version).

(b) A bounded area in the two-dimensional plane in which case the Pj’s are points in

the plane and d(P;, X) represents either the Euclidean or the rectilinear distance

between Pj and X.

The problem is to locate r identical obnoxious facilities at Xj (for j = 1,... ,r)

as far away as possible from all clients. The existence of more than one undesirable

facility poses several issues regarding the interaction between the clients and the

facilities to be located.

109

Chapter 6: The Multiple Facility Problem

Firstly, we need to decide which of these interactions are undesirable. This

depends on the kind of facilities to be located as well as the nature of the feasible

region. When locating several dump sites for waste disposal for example, the only

interactions that matter are between the dump sites and the population centres served

by these sites. On the other hand, when locating missile depots in an unpopulated

area, it usually suffices to consider the interactions between depots. Finally, when

locating a number of nuclear power plants in a country, the interactions between the

population centres and the plants as well as the ones between plants are important.

Secondly, we need to clarify how to measure the distance between a client and

the solution set. In some applications a client interacts with all obnoxious facilities,

in which case the sum of the distances to the solution set is required. However, in

other cases a client is affected only by the nearest undesirable facility, so the

minimum distance to the solution set is used.

The issues outlined above give rise to a number of alternative formulations

some of which are presented below.

6.2.2 Models without Existing Facilities

The existing literature in this area deals with models where there are no

demand points since only the interactions between the facilities to be located are

considered important. All the models in this category address problems where the

feasible region is a network and the distance metric is the shortest path between two

points on the network. Clearly, such models are useful when locating mutually

undesirable facilities. A typical example is the dispersion of military installations to

prevent damage of several facilities by the same attacker. Another example is the

location of franchises in a populated area by the same company. Such franchises are

mutually undesirable since they may compete for the same customer base;

consequently, a deeper market penetration may be achieved through spatial dispersion

of the franchises.

Assuming that each franchise is only affected by its nearest "competitor" the

110

Chapter 6: The Multiple Facility Problem

problem is to maximize the minimum distance between any two franchises, known

as the MAXIMIN-MIN or dispersion problem:

max L (PI)

s.t. L < Vj j = l , . . . , r

Xj G S

where Vj = mink*j { d(Xj, Xk) } is the distance of facility j to its nearest facility.

(PI) seems to be by far the most popular problem in the area. Shier (1977)

and Tansel et al. (1982) establish a duality relationship between the r-dispersion

problem and the (r-l)-centre problem on a tree network. The objective of the latter

problem is to locate r-1 new facilities so that the maximum distance between them

and a given set of clients is minimized. Shier and Tansel et al. prove that on a tree

network the MAXIMIN distance solution to the r-dispersion problem is exactly twice

as large as the MINIMAX distance solution to the (r-l)-centre problem.

Ghandrasekaran and Daughety (1981) use this duality relationship and present an

algorithm which involves solving a finite number of anti-cover problems for the

dispersion problem and a finite number of cover problems for the centre problem.

The cover problem minimizes the number of facilities to be located under the

restriction that each demand point is covered by at least one facility i.e. its distance

from the facility is smaller than a specified constant. On the other hand, the anti­

cover problem locates the maximum number of facilities under the restriction that no

two are closer than a specified distance from each other. For more details on these

problems see Moon and Chaudhry (1984).

Kuby (1987) studies the discrete dispersion problem on a network and presents

a mixed integer programming formulation but does not propose an algorithm to solve

realistic instances of the problem.

The dispersion problem is based on the assumption that each facility is only

affected by its nearest facility. However, there are situations where each facility

interacts with all others. When locating several radio transmitters, for instance, each

of them may be affected by all the others. Hence, in order to minimize the maximum

111

Chapter 6: The Multiple Facility Problem

interference we should maximize the minimum sum of distances between the

transmitters (MAXIMIN-SUM or dispersion-sum model) also discussed in Kuby

(1987).

max L (P2)

s.t. L < Vj j= l , . . . , r

X j G S

where

v, - £ * * , * ,)
*-1

Adopting the MAXISUM rather than the MAXIMIN criterion in (PI) leads

to a MAXISUM-MIN or defence problem, discussed by Moon and Chaudhry (1984),

who present an integer programming (IP) formulation for the discrete version of the

problem without actually solving it. Such a model is applicable when locating

strategic installations to protect them from simultaneous enemy attacks.

max L (P3)

s.t. Xj £ S j = l , . . . , r

where ^ = and Vj = m in^ {d(X^Xt)} .

Similarly, maximizing the total sum of distances between the new facilities

gives rise to a MAXISUM-SUM or defence-sum problem, stated in Erkut and

Neuman (1991). Locating chairs in an examination hall in order to minimize

communication between participating students is an example of such a situation.

max £ £ d(Xr X,) (P4)
y-i *-/+1

s.t. Xj E S j= l , . . . r .

112

Chapter 6: The Multiple Facility Problem

Although, the above models have only been applied to problems on networks,

their logic can be extended to problems on the plane as well. However, to the best

of our knowledge, no application in planar problems has been reported.

6.2.3 Models Considering Existing Facilities

Although dispersion models can be useful when locating mutually undesirable

facilities which are not themselves obnoxious, they cannot be used in obnoxious

facility location. Undoubtedly, the undesirability of a chemical factory or a nuclear

power plant is considered with respect to a number of existing facilities (e.g.

population centres). Consequently, any multiple obnoxious facility model should take

into account the interactions between the undesirable facilities as well as the ones

between these facilities and the existing demand points. Supposing that each demand

point interacts with all undesirable facilities and that the MAXISUM criterion is

adopted, the problem of locating r such facilities can be formulated as a MAXISUM-

SUM model as follows:

max L (P5)

s.t. Xj e S j = l , . . . ,r

where

L = ' t ' t wj*d(Pj,Xj) * £ £ d(Xj,Xk) (1)
i“l y«=l y-l k=1

S is the set of permissible locations (either a network or a bounded area on the

plane) and the distance metric is defined accordingly. If the interactions between the

new facilities are considered negligible the second term of (1) can be omitted in

which case extra restrictions e.g. minimum distance constraints, have to be added to

ensure that the facilities to be located are not placed on the same location.

On the other hand, using the MAXIMIN criterion and assuming that each

demand point is affected by its nearest undesirable facility leads to a MAXIMIN-

113

Chapter 6: The Multiple Facility Problem

MIN model:

max L (P6)

s.t. W id (P i,X j)^ L i= l , . . . ,n and j = l , . . . ,r (1)

d(Xj, Xk) > L j ,k = l , . . . , r (2)

Xj G S j = l r (3)

Alternatively, constraints (2) of (P6) can be replaced by minimum distance

constraints ensuring that the facilities to be located will not be placed on top of each

other. More simply, if facilities j and k must be at least cjk away from each other, the

optimal locations are given by the following model:

max L (P7)

s.t. Wjd(Pj,Xj) > L i = l,...,n and j = l , . . . ,r (1)

d(X j,X k) > c jlc j ,k = l , . . . , r (2)

Xj € S j = l r (3)

Drezner and Wesolowsky (1985) propose a model similar to (P7) where the

objective is to maximize the nearest client-to-facility weighted distance under the

restriction that every client is "within reach" of the nearest facility. More simply,

max L (P8)

s.t. minj { d(Ps, Xj) } < bj i= l , . . . ,n (1)

Xj G S j = l r (2)

where L = min ̂ { w{ d(P; , Xj) } and bj denotes the "within reach" distance from

client i.

In addition to this, Drezner and Wesolowsky present a modification of the r-

centre problem where the objective is to minimize the maximum client-to-facility

distance. If the facilities are obnoxious, minimum distance constraints are added to

ensure that each new facility must be at least Cj away from client i. Formally stated,

the model is:

min D (P9)

s.t. d (P j , X j) > c 5 i = l,...,n and j = l , . . . ,r (1)

Xj 6 S

114

Chapter 6: The Multiple Facility Problem

where D = maXj { rninj { u{ d(Pj, Xj) } } and u; is a positive weight expressing the

relative importance of client i.

Drezner and Wesolowsky establish certain duality relationships between

problems (P8) and (P9) and propose an algorithm for the one-dimensional problem

where S is a line. Their findings are discussed in greater detail in the following

section. To the best of our knowledge, problems (P6) and (P7) have not been

addressed yet for polygonal feasible regions on the plane, although they seem to be

the natural generalisation of the single facility models given in chapter 2 .

It should be kept in mind that the models presented in this section are by no

means equivalent to each other. They are merely some alternative ways of modelling

the problem of locating multiple undesirable facilities. Each model is based on

different assumptions and is only applicable in certain situations for which these

assumptions are valid.

6.3 Previous Approaches to the Multifacilitv Problem on the Plane

6.3.1. An Interactive Graphical Approach

Although model (P9) of the previous section is essentially a MINIMAX model,

more appropriate for locating desirable facilities, the minimum distance constraints

(1) guarantee that all new facilities will be at least q away from demand point i.

Hence, provided that the c-t ’s are sufficiently large, (P9) can be used to locate

facilities that serve the given set of clients but also have certain undesirable effects.

In chapter 5 we described a single facility algorithm by Brady and Rosenthal

(1980). This technique involves drawing circles of decreasing radii around each

demand point and continuing while the intersection of all the circles is not empty i.e.

stop when two circles are tangent.

Brady, Rosenthal and Young (1983) develop an interactive graphical

115

Chapter 6: The Multiple Facility Problem

technique, based on the above algorithm, for the MINIMAX problem with general

constraints. More specifically, using the notation of the previous section, they define

the problem as follows:

min maXj { minj { Wj d(Pj, X j) } } (P10)

s.t. Xj G S' j = l , . . . ,r

where Wj is the weight corresponding to Pj and S' is the set of feasible locations.

Clearly, (P10) is a more general version of (P9).

The multi-facility algorithm is basically a recursive application of the original

Brady and Rosenthal algorithm and can be described as follows:

Bradv. Rosenthal and Young Multifacility Algorithm

1. Represent the demand points Pj and the feasible region S' on a map.

2. Set j 1.

3. I f j= rs to p .

Otherwise, use the original Brady-Rosenthal algorithm to locate the j-

th undesirable facility.

4. Delete the demand points served by the j-th facility, i.e. the ones

whose circles yield the first tangency.

5. Set j j + 1.

Return to step 3.

Hence, we can use the above algorithm to solve problem (P9) if we define S'

as the intersection of S and constraint set (1) of (P9).

6.3.2 A Duality-Based Approach

As mentioned in the previous section, Drezner and Wesolowsky (1985) present

two alternative formulations for the multifacility problem in the k-dimensional space.

The first one is a MAXIMIN model aiming to maximize the minimum client-

to-facility distance, constraining every client to be "within reach" of the nearest

116

Chapter 6: The Multiple Facility Problem

facility. Thus, the problem is stated as follows:

maxL (Pll)
s.t. minj { d(Pj, Xj) } ^ bj i= l,...,n (1)

Xj 6 S j= l , . . . , r (2)

where L = miiijj { Wj d(Pj, X j) } is the minimum distance in the system, wi is a

positive weight and bj denotes the "within reach” distance from client i. Recall that

this is model (P8) discussed earlier.

The second model, (P9) in the previous section, is a modification of the well-

known r-centre problem, aiming to minimize the maximum client-to-facility distance

under the restriction that all undesirable facilities must be at least Cj away from client

i. More simply:

min D (P12)

s.t. d (P j , X j) ^ C j i= l , . . . ,n and j= l , . . . , r (1)

X j € S

where D = maxj { minj { Uj d(Pj, X j) } } and Uj is a positive weight expressing the

relative importance of client i. Note that in general Wj ^ Uj. A large Uj implies a

relatively important demand point whereas a large Wj implies a relatively trivial one.

Drezner and Wesolowsky define (P ll) and (P12) to be dual to each other for

a value f0 if Wj Cj =Uj bj =f0 for i= l,...n . They then use this definition to establish

several useful properties for both problems.

Firstly, supposing that Sj (f0) is the set of all feasible locations for (P ll) for

which L < f0 and S2 (fo) the set of all feasible locations for (P12) for which D ^

f0, they prove that if (P ll) and (P12) are dual then Sj (f0) = S2 (fo).

Secondly, they prove that if Xj for j= l , . . . , r are the optimal locations for

(P ll) and L* the optimal distance, then the x j’s are also optimal for the dual created

by Wj Cj =Uj bj =L and that D* =L* .

The significance of this result is illustrated by the following example, also

presented in Drezner and Wesolowsky. Suppose that model (P ll) is used to locate

several dump sites as far away as possible from n cities under the restriction that each

117

Chapter 6: The Multiple Facility Problem

city is less than 10 miles away from the nearest site. Suppose, also, that the optimal

distance for (P ll) is 5 miles and that at least one city is 5 miles away from a dump

site. Then, the dual is a problem where we aim to minimize the maximum city-to-

site distance and require each city to be at least 5 miles away from the nearest site.

The result given by Drezner and Wesolowsky states that the optimal distance to this

dual problem will turn out to be 10 miles.

Thus, starting from (P ll) and a given value f0 we can construct the dual by

setting Cj = f0 /wj and Uj =f0 /bj and solve it using the Brady, Rosenthal and Young

algorithm. If a feasible solution exists to this dual then we know from the results

discussed above that a feasible solution also exists for (P ll) , consequently L* ^ f0.

On the other hand, if the dual is not feasible L* < f0. Hence, the duality results by

Drezner and Wesolowsky can be combined with the interactive graphical algorithm

by Brady, Rosenthal and Young to yield a bisection solution method for the original

maximization problem (P ll) on the two-dimensional plane.

Apparently unaware of the graphical algorithm, Drezner and Wesolowsky

report that finding a feasible solution for (P12) is complicated by the combinatorics

involved in the allocation of facilities to demand points. Consequently, they only

present an algorithm for the one-dimensional rather than the two-dimensional version

of the problem.

6.3 .3 A One-Dimensional Algorithm

Let Pj for i= l , . . . ,n be the locations of n given demand points as measured

from an arbitrary origin in the one-dimensional space. Let also Wj be the

corresponding weights. Without loss of generality, assume that Pj < Pj+1 for

i = 1,... ,n -l. Problem (PI 1) now becomes:

max L (P13)

s.t. minj { |Pj-Xj | } < bj i= l , . . . ,n .

where L = minjj { Wj |Pj -Xj | }.

Figure 6.1 shows an example with three clients.

118

Chapter 6: The Multiple Facility Problem

Example 6 .1

Consider three demand points located at Pj =2, P2 =4 and P3 =7 with weights

w, =0.25, w2 =1 and w3 =1.5 and "within reach" distances b, =1, b2 =1.5 and

b3 = 2 respectively.

0

A 5 A 6 A 7

q- moQom— ooe-

• Dem. Points

O C andidate Locations

A 8
 e --------------------------

Figure 6.1: Example 6.1

Figure 6.1 also illustrates the "weighted mid-points" for each range i.e. the

points X for which ws | Pj -X | = wi + 1 | Pi + 1 -X | . These are locations A4 and A7 in the

figure. Drezner and Wesolowsky state that a maximum for L of (PI3) will occur at

such a "weighted mid-point" or at a point Pj ± b j. Thus, they identify the set of

candidate locations denoted by Ak such that Ak < Ak+I for k = l,...,N -l where N is

the number of these locations. It can be seen that for the particular example N = 8

with A, =1, A2 =2.5, A3 =3, A4 =3.6, A5 =5, A6 =5.5, A7 =5.8 and Ag =9.

Drezner and Wesolowsky exploit the structure of the problem and develop a

heuristic to find which r of the Ak’s constitute a feasible solution to (PI3). They then

describe their algorithm as follows:

119

Chapter 6: The Multiple Facility Problem

One-Dimensional Algorithm

1. Find a set of r locations for an initial feasible solution using the

heuristic mentioned above.

2. Evaluate the objective function L for the current feasible solution.

3. Reject all Ak (k= l,...,N) for which |Pj -Ak | < L for some i.

4. Try to find a feasible solution for the reduced set of sites.

5. If no feasible solution exists, the previous feasible solution is optimal.

Otherwise, go to step 2.

A detailed description of the heuristic is given in appendix E. It can be

checked that if r= 2 the optimal solution for example 6.1 is L*=0.25 with X* =A 1

=1 and X j =A5 =5. Note that this solution is not unique; e.g. x j = Ai or x j =A 3

and X j =Ak for k ^ 3 are also optimal.

Clearly, the fact that the new facilities have to be located along a line is a

rather unrealistic assumption. In the next section, we will introduce an algorithm to

locate two obnoxious facilities when the feasible region is a two-dimensional polygon.

6.4 Solving the Two-Facility Rectilinear Problem on the Plane

6.4.1 Problem Formulation

Suppose that Iwq undesirable facilities are to be located as far away as possible

from a given set of n demand points P* (pxj ,pyj) with corresponding weights wj for

i= l,. . . ,n . Suppose, also, that each client is affected only by its nearest undesirable

facility and that we wish to maximize the minimum client-to-facility rectilinear

distance. The optimal locations Xj (x j, yj) under these assumptions are the solutions

to problem (P6) for r=2. If the feasible region S is a convex polygon defined by the

intersection of m linear constraints, problem (P6) can be rewritten as follows:

120

Chapter 6: The Multiple Facility Problem

max L (P14)

s.t. W;dr (Pj, Xj) > L i = l,...,n and j = 1,2 (1)

dr (X j, X2) > L (2)

aqXj + bqyj < cq j = l,2 and q = l,... ,m (3)

A naive way to address (PI4) would be to solve the single facility problem

using any of the LP-based algorithms presented in chapter 4, consider the optimal

location as a new demand point and solve the enhanced problem to find the location

of the second facility. However, this sequential approach does not guarantee

optimality as illustrated by the following example:

Example 6.2

Consider six demand points within a convex polygon S defined by 0 < x <

1 0 and 0 < y < 1 0 (see figure 6 .2) and suppose that w{ = 1 for i = l , . . . , 6 .

* 2 X 1

10

6

3

0 2 3 7 8 1 0

Figure 6.2: Example 6.2

121

Chapter 6: The Multiple Facility Problem

The coordinates of the demand points are given in the following table:

Table 6.1: Data for Example 6.2

Point Pj 1 2 3 4 5 6

P*i 0 2 3 7 8 10

PYi 6 0 6 3 0 6

Using PROFLAWLP, the single facility algorithm established in chapter 4, we

get Xj (6.5, 10) as the optimal location at distance Lj =7.5 from P3 and P6 .

Considering Xj as an extra client and solving the new problem produces X2 (1.25,

10) as the optimal location at distance L2 =5.25 from Pj and Xj . Hence, the

solution to the original problem is L=5.25 since this is the minimum client-to-facility

distance and dr (X j, X2)=5.25 as well. However, this solution is not optimal since

locating the two facilities at Xj (6.5, 8) and X2 (1.5, 10) yields L=5.5 as the

objective function value.

6.4 .2 A Bisection Approach

Obviously, the solution to the single facility problem provides an upper bound

Lmax on the optimal distance L* of (P14) whereas the sequential approach provides

a feasible solution to (P14) and, consequently, a lower bound on L* . These

bounds form the basis of a bisection algorithm which solves (P14) optimally. At each

stage of the process we check whether there exists a feasible solution to (P14) with

objective function value L. If so, L* ^ L. Otherwise, L* < L.

Hence, we need a method to check whether there exists a feasible solution

with value L, namely whether there exist two locations Xj and X2 which are at least

L away from all demand points and L away from each other.

Let us consider the loci of points which are at least L away from all demand

points. These are the areas outside diamonds drawn around each client with semi­

122

Chapter 6: The Multiple Facility Problem

diagonal L/wj. For the data of example 6.2 and L=5 these loci are the hatched areas

in figure 6.3.

X1

10

6

3

0 2 3 7 8 10

Figure 6.3: Hatched areas in example 6.2 for L = 5

It can be seen that these areas must be simple polygons Sj formed by the

intersection of linear constraints, namely the sides of the diamonds and the boundary

constraints defining the feasible region.

The problem is to find two locations in these polygons which are at least L

away from each other. If two such locations exist they constitute a feasible solution

to the whole problem. The method for finding a feasible solution, if it exists, is

based on the following two theorems.

Theorem 6.1

Let A, B and X0 (x0, y0) be three points in the two-dimensional plane. Let

also X(x, y) be any point along the line AB. The function f with f(X) = dr (X0, X)

123

Chapter 6: The Multiple Facility Problem

is convex on AB.

Proof:

Let X! (x j , y i) and X2 (x2 , y2) be two points along AB. Let also 0 < X < 1.

By the definition of f we have

f[XXj + (1-X)X2] = |Xxt + (1-X)x2 - *0 I + |Xy2 +(1-X)y2 - y0 |

= |X(Xi -Xq) + (1-X)(X2 - Xq) | +

IM yi-yo) + (i-^)(y2 - Yo) I
S, X |(x i-xo)| + (l-X)|(x2 - x o) | +

XI <yi -y0) I + (i-X) I (y2 - y0) I
= X[I (x 2 -Xq) | + | (y 2 -y 0) |] +

(1-X)[|(x2 - Xq) I + |(y2 - y0) |]

= Xf(Xt) + (l-X)f(X2)

Since f[XXj + (1-X)X2] <> Xf(Xj) + (l-X)f(X2) for every X such that 0 ^ X ^

1, f is convex on AB.

Theorem 6.2

The maximum rectilinear distance between two simple polygons is realised by

two vertices.

PlPQf;
Let Si and S2 be two simple (non self-intersecting) polygons. Suppose that

the maximum distance between Sj and S2 is given by points X q and X where X is in

the interior of S2 (see figure 6.4). Since X is an interior point of S2 there must be

at least two points A and B on the boundary of S2 such that X is between them.

However, by theorem 6.1 f(X)=dr (X q , X) is convex on AB; therefore it must

achieve its maximum at an extreme point of AB i.e. one of its endpoints, say A.

Suppose that A is on edge UV of the boundary of S2 but not on a vertex. However,

f(A) is convex on UV, hence the maximum is achieved at one of the endpoints i.e.

at a vertex of S2 . By the same argument we can show that X0 must be at a vertex

o fS j .

124

Chapter 6: The Multiple Facility Problem

Figure 6.4: Maximum distance between two polygons

Theorem 6.2 implies that it suffices to check the vertices of the Sj’s to see if

any two of them provide a feasible solution with value L. If no two such vertices

exist or, equivalently, if the maximum distance between all these vertices is less than

L, such a solution cannot exist. Hence, we need to identify these vertices first. By

the definition of the Sj’s it can be seen that each vertex of such a polygon is:

(a) either the intersection of a boundary constraint with a diamond side, i.e. a location

on the boundary at distance L from a demand point e.g. location X 1 in figure 6.3, or

(b) the intersection of two diamond sides i.e. a location at distance L from two clients

e.g. location X2 in the figure.

Having used PROFLAWLP to obtain the upper and the lower bound on the

optimal distance, we can exploit the technique further in order to identify the vertices

of the Sj’s. As explained in chapter 4, PROFLAWLP divides the feasible region into

rectangular areas by drawing one horizontal and one vertical line through each

demand point. For each rectangle M it then calculates an upper bound UBj^ on the

125

Chapter 6: The Multiple Facility Problem

optimal distance and finds the boundary constraints, if any, passing through M. The

upper bounds for the data of example 6 .2 are given in table 6 .2 .

Table 6.2: Upper Bounds for Example 6.2

Rectangle Upper Bound

1 5.5

2 5

3 7.5

4 7

5 6

6 4

7 3.5

8 3.5

9 3

10 3

11 4

12 3.5

13 4

14 2

15 4

After sorting the upper bounds in descending order the algorithm starts from

the rectangle with the largest upper bound and solves the problem for the rectangle

in question. It then continues with the rectangle corresponding to the next largest

upper bound until this bound is less than the best solution found so far. These ideas

are used to identify the list VS of vertices of the Sj’s for a given value L as explained

below.

126

Chapter 6: The Multiple Facility Problem

Finding the Vertices of the Sj's

1. (Initialization).

Set VS 0 .

Start from the rectangle M with the largest upper bound.

2. (Termination Criterion).

If UBm < L then stop.

Otherwise, go to step 3.

3. (Identifying locations at distance L from two clients).

For each pair of closest points Pj and Pk around M find a location V

at distance L from both of them by solving the system of two

simultaneous equations: dr (Pj, V) = L and dr (Pk, V) = L.

If V is within M and is feasible then add it to the list of vertices

(VS *- VS U { V }).

4. (Identifying locations on the border at distance L from one client).

For each closest point Pj and each constraint H: ax + by < c passing

through M solve the system of equations: dr (Pj, V) = L and

au + bv = c. If V(u, v) is within M then add it to the list of vertices

(VS VS U { V }).

5. Let M be the rectangle with the next largest upper bound.

Return to Step 2.

At the end of the process we have a list VS of locations which are at least L

away from all demand points. If any two of these locations are at least L away from

each other they provide a feasible solution. For the data of example 6.2 and L=5

it can be checked that there exist seven such locations V, to V7 with coordinates

(1, 10), (1.5, 9.5), (2, 10), (4, 10), (6.5, 7.5), (7, 8) and (9,10) respectively. For

L=5.5 there exist five locations Vj to V5 with coordinates (1.5, 10), (4.5, 10), (6.5,

8), (7, 8.5) and (8.5, 10) respectively as shown in figure 6.5.

127

Chapter 6: The Multiple Facility Problem

V,

1 0 -------
!

1

o

2 i 3 i r ; v.
i v 3 : 4
i i i i

r_ _ 4 ____________ !___

5

p 1 1 P3 i1 1 1 1 > 1 • 1 ■ 1 1 1 1_____ ______ A ___

»----------------
CL°

O

P* !' 4 ii i i i 15

P2
---------- 4

i i • i i i i i
1---- i-----------------------i---- 4

P5
1— ■—

0 2 3 7 8 10

Figure 6.5: Hatched areas in example 6.2 for L = 5.5

Having established the process for finding a feasible solution to problem (PI4)

or (PI5) the whole algorithm can be described as follows:

TWOPROFLALP: A Two-Facilitv Algorithm

1. Use the PROFLAWLP algorithm to obtain an upper bound L ^ and

an initial feasible solution as well as a lower bound L,llin on the global

optimum.

2. If Lnux - Lmin < e, where e is the specified tolerance, L* = Lmin and

the optimal solution is the last feasible solution.

Otherwise, set L = (Lmin + Lmax)/2.

3. Check whether there exists a feasible solution to (P14) with objective

function value L.

If so, then set Lmin = L.

Otherwise, set Lmax = L.

4. Return to Step 2.

128

Chapter 6: The Multiple Facility Problem

It turns out that the maximum distance for the data of example 6.2 is L*=5.5

and the optimal locations are Vj and any of V3 , V4 or V5 , all of which are at

distance L* from their nearest clients (see figure 6.5). Considering one of these

multiply optimal solutions, say Vj and V3 , we can see that any movement away from

V1 will decrease the distance to its nearest clients, namely P1 and P3 , and thus

decrease the value of the objective function. On the other hand, it is possible to

move away from V3 , along the vertical bisector defined by P3 and P6 and increase

the distance from both clients until we get at distance L*=5.5 from Vx . Location

Vj is, in this sense, critical whereas V3 is non-critical. Although there is nothing we

can do about the critical facility, it is reasonable to try and locate the non-critical

facility as far away as possible from its nearest demand points under the restriction

that it remains at least L* away from the critical one. Even though this alternative

solution yields the same value of the objective function as the one given by the two-

facility algorithm, it is more satisfactory for realistic situations since the non-critical

facility can, in general, be more than L* away from its nearest client(s). This

philosophy is known as lexicographic optimization (see Brady, Rosenthal and Young

(1983)). A method which uses the solution given by the two-facility algorithm to

achieve lexicographic optimization for problem (P14) is described below.

6.4.3 An Enhancement of the Two-Facility Algorithm

Let L* be the optimal solution to problem (P14). Let also X* and be the

optimal locations of the undesirable facilities and VS the list of vertices of Sj’s as

given by TWOPROFLAWLP.

Definition 6 .1

An undesirable facility located at X* is called critical if any movement in the

e-neighbourhood of X* away from X* will decrease L * , and non-critical otherwise.

Note that if the maximum distance between the vertices of VS is equal to L*

129

Chapter 6: The Multiple Facility Problem

then both facilities are critical since any movement away from their current locations

will bring them either closer to a demand point or closer to each other.

The process of improving the solution given by TWOPROFLAWLP to achieve

lexicographic optimization is described below:

Method for Improving the Solution

1. Based on definition 6.1 find the critical facility(ies).

2. If both facilities are critical then stop.

Otherwise, let Xq be the location of the critical facility and Xn the

location of the non-critical one and go to Step 3.

3. Let M be the rectangle with the largest upper bound.

Set D*=L* and X*=Xn .

4. If UBm < D* stop.

Otherwise go to Step 5.

5. Use the procedure for Partly Feasible cells given in chapter 4 to find

the optimal location X(x, y) inside M under the additional constraint:

dr(X ,x ;) > L * (1)

Let D0 be the optimal solution.

6 . If D0 > D* then set D*=D0 and X*=X.

7. Let M be the rectangle with the next largest upper bound.

Return to Step 4.

Constraint (1) is a simple linear constraint depending on the location of the

critical facility with respect to a particular rectangle M. The critical facility in

example 6.2 is located at (1.5, 10). Consequently, constraint (1) for rectangle 3

which has the largest upper bound becomes: (x - 1.5) + (10 - y) > 5.5.

It can be seen that the optimal locations for rectangle 7 under the new

constraint are all points along the segment E,!^ in figure 6 .6 , at distance D*=7 from

the nearest demand point. Since UBM < 7 for M=£3 this is, in fact, the largest

130

Chapter 6: The Multiple Facility Problem

distance we can achieve for the non-critical facility. Hence, the improved optimal

solution to (PI4) is Xj =(1.5, 10), X2 =X with L*=5.5 where X is any point along

EiE,.

------•
: \ E 'X : / ■ \ / /

1

0

2 :
1 |
' 1

_ _ _ A _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ L

5

p 1

-< >
►-

--

»-------------
CD

CL
o

P, !' 4 i
1 i
1 i 15

P2
1-------- «

1 i
1 i ' i
1 i

>-----------------------*--- 1

P5
>----------

0 2 3 7 8 1 0

Figure 6 . 6 : Lexicographic optimization in example 6.2

6.4.4 An Alternative Version of the Problem

Alternatively, constraint (2) of (PI4) can be replaced by a minimum distance

constraint in which case the problem becomes:

max L (PI5)

s.t. wjdr (Pi ,X j) > L i = l,...,n and j = 1,2

dr(X ,, X2) > c1 2

aqxj + bqyj < cq j = 1,2 and q = l,..,m

where c l 2 is the minimum distance between the two facilities to be located. A feasible

solution to (PI5) is a pair of vertices of VS which are at least c1 2 away from each

other. With that slight modification TWOPROFLAWLP can be used to solve

131

Chapter 6: The Multiple Facility Problem

problem (P15) as well.

Moreover, lexicographic optimization for (PI5) can be achieved using the

ideas described in the previous paragraph. The critical facility is identified based on

definition 6.1. Note that in the case of (PI5) both facilities are critical when the

maximum distance between the vertices of VS is c12. Having identified the critical

facility(ies) we can improve the solution with respect to the non-critical one simply

by replacing the additional constraint (1) by: dr (X, X£) > c12 .

6.5 Computational Experience

A series of 45 test problems were randomly generated to assess the

performance of TWOPROFLAWLP. All problems were created using the ideas

discussed in section 4.4. More specifically, the demand points were generated by a

uniform probability distribution on [0 , 10] on each coordinate whereas the boundary

constraints were constructed as a simple polygon circumscribed around a circle of

given radius centred at (0.5, 0.5). Finally, the weights were generated by a uniform

distribution on [1, 5].

The problems were tested on a PS\2 with an 80386 processor. The first

computational results revealed that a considerable amount of time was spent on the

calculation of the initial feasible solution i.e. when the problem was solved

sequentially to obtain a lower bound on the optimal distance. This was due to the

fact that the construction of the grid of rectangles and the calculation of the upper

bounds, which were quite costly in terms of computational complexity, had to be

repeated when the problem was solved for the second time.

Consequently, rather than solving two single facility problems (method 1) we

used an alternative technique (method 2) which solves only one such problem and

exploits the solution to find an initial feasible solution for the two-facility problem.

132

Chapter 6: The Multiple Facility Problem

Method 2 for Finding an Initial Feasible Solution

1. Solve the single facility problem. Let Lj be the optimal distance, X*

the optimal location and the rectangle containing the optimal

location.

2. Let M be the rectangle following M, in the list of sorted rectangles.

3. Solve the problem for M, let L' be the optimal distance and X' the

optimal location.

4. If dr (Xj , X') > L' then stop, setting L ^ =L '.

Otherwise, let M be the rectangle with the next largest upper bound

and return to Step 3.

The second method was indeed significantly faster than the sequential approach

especially in larger problems, as indicated by the average execution times given in

the following table:

Table 6.3: Average Execution Times in Seconds

Demand Points Constraints
Average Time

using
Method 1

Average Time
using

Method 2

20 6 6.1 4.3

40 6 43.8 27.5

60 6 163.3 103.8

20 15 6.5 5.7

40 15 46.3 29.1

60 15 180.4 109.0

20 50 7.3 6.3

40 50 56.2 36.2

60 50 194.6 114.7

133

Chapter 6: The Multiple Facility Problem

6.6 Summary

In this chapter we discussed the problem of locating several undesirable

facilities. We presented alternative formulations of the problem and explained the

situations where each of them is more appropriate. We observed that most of the

existing literature refers to problems where the feasible region is a network although

problems in the two-dimensional plane are more realistic. Finally, we introduced a

two-facility algorithm based on the single facility method given in chapter 4 and

explained how experimental results led to a modification of the method to improve

its overall performance.

134

Chapter 7: Concluding Remarks

CHAPTER SEVEN

CONCLUDING REMARKS

7.1 Summary

The problem of locating obnoxious facilities in a way that minimizes their

undesirable effects on a given set of demand points was discussed in this thesis.

Typical applications include locating industrial plants, dump sites for waste disposal

or even placing pieces of hazardous equipment within a working environment.

Assuming that the effect of such a facility on a given demand point is a decreasing

function of the distance between them, the problem was to locate the new facilities

within a specified two dimensional feasible region as far away as possible from the

given set of demand points. Distances were measured either in the Euclidean or in

the rectilinear metric, the latter being applicable in situations where movement is

possible along a grid of roads or channels. Since an obnoxious facility can even have

disastrous effects on a demand point, we considered MAXIMIN models whose

objective is to maximize the minimum rather than the average distance between a

facility and its nearest demand point. These models are also applicable in the location

of desirable facilities which, for some reason, must be kept apart from a set of

demand points or from each other (e.g. locating military installations in order to

minimize the effects of an enemy attack). The objective of this thesis was to analyze

the properties of this problem and exploit them to establish new, more efficient

solution techniques.

Most of the literature on obnoxious facility location in the two-dimensional

plane refers to single facility models. In chapter 2 we defined the single facility

problem formally and discussed the properties of the optimal solution both in the

135

Chapter 7: Concluding Remarks

Euclidean and in the rectilinear case. We demonstrated how these properties can be

viewed from different, seemingly unrelated perspectives. More specifically, we used

simple geometric arguments to verify properties that have been proven algebraically

in the literature. We also introduced a mixed integer programming formulation for

the rectilinear single facility problem and used duality results to prove known and

establish new properties of the optimal solution.

In chapter 3 we analyzed previous approaches to the single facility MAXIMIN

problem. We observed that the most popular method in the Euclidean case seemed

to be the enumeration of local optima whereas in the rectilinear case the dominant

approach was based on linear programming (LP). We concluded that the most

efficient technique in terms of computational complexity was the use of Voronoi

diagrams to find the optimal solution to either the Euclidean or the rectilinear problem

when all demand points are equally important. However, we did not find any

application of this method in the weighted problem where each demand point is

assigned a positive weighting factor, expressing its relative importance. Apparently

this is due to the lack of an efficient algorithm for constructing the weighted Voronoi

diagram (WVD) in the two-dimensional plane. The most flexible and efficient of all

methods seem to be interactive graphical techniques which, unlike other methods, do

not make any assumptions regarding the feasible region. In our opinion these

techniques, which only provide approximate solutions, have not been fully exploited

although they are the only ones that can be applied to realistic problems.

Chapter 4 contained a detailed discussion of the LP based approaches to the

rectilinear problem. The most efficient of them seems to be the closest point

algorithm introduced by Mehrez et al. (1986) for the unweighted problem where all

demand points are equally important. After pointing out its theoretical significance,

we modified this algorithm in order to solve the weighted problem as well. We then

proved that the method has certain logical errors and as a result does not always

produce the correct solution. Combining the main ideas of this algorithm with the

properties of the optimal solution we developed PROFLAWLP, an algorithm which

136

Chapter 7: Concluding Remarks

solves the problem without using linear programming at all as opposed to all other

methods. Computational results indicated that PROFLAWLP by far outperforms the

closest point method in all test problems.

Chapter 5 established LOCOBNOX, a graphical model which has been

implemented on a computer as an interactive process. Like previous graphical

approaches, LOCOBNOX is applicable to realistic problems where the feasible region

may be nonconvex or even disconnected. Since previous methods require a

significant amount of user intervention, we introduced a stochastic termination rule

to keep this intervention minimal. As a result we developed a realistic and efficient

method which has been used effectively even in large scale problems with up to 1000

demand points. We then outlined how real life aspects, like areas of varying

environmental importance, can be incorporated into the model. Hence, we argued

that the flexibility of the method makes it an ideal site-generation tool, aiming to

identify potential solutions which the decision maker can then assess based on a

number of possibly conflicting criteria.

In chapter 6 we discussed the problem of locating more than one obnoxious

facility. Most of the literature on this problem refers to models where a finite set of

candidate solutions has already been specified. Although in most realistic situations

the feasible region is a two dimensional area very little research has been done on this

problem. We gave alternative formulations of the multifacility problem in the plane

and discuss the situations where each of them is more appropriate. We then

introduced TWOPROFLAWLP, an algorithm which solves the two-facility rectilinear

problem without using linear programming. This algorithm is based on

PROFLAWLP and exploits the geometry of the problem to find the optimal solution.

To the best of our knowledge it is the only attempt to locate more than one facility

within a planar area.

137

Chapter 7: Concluding Remarks

7.2 Future W ork

It has to be said that the models discussed in this thesis are by no means

precise representations of the real life problem of locating obnoxious facilities.

Consequently, there are many more interesting avenues of research some of which

are outlined below.

1) Although the single facility problem on the plane is well documented there

is a severe lack of published methods on the multifacility problem. We plan to

investigate the geometry of this problem and try to extend the two-facility algorithm

of chapter 6 for more facilities.

2) Clearly, the problem of locating undesirable facilities is a multiobjective

one. Apart from the distance considerations, economic and social issues are also

relevant. Ignoring these issues may lead in unrealistic solutions. For example, a

purely distance maximization model may locate an undesirable facility at the top of

Mount Everest. Hence, single objective models are not satisfactory. We feel that

emphasis should be given to multiobjective models where maximizing the distance

between demand points and facilities is only one of the relevant objectives.

3) At the moment the graphical model presented in chapter 5 can be used to

generate candidate solutions to the problem. We wish to exploit the ideas introduced

by Baneijee et al. (1992) and develop this model into a decision support system where

candidate solutions will be evaluated on the basis of pre-determined quantitative or

qualitative criteria which may be associated with certain demand points or subsets of

the feasible region. An object-oriented programming environment seems to be the

most appropriate setting for such a model.

138

Chapter 7: Concluding Remarks

4) In chapter 2 we discussed the use of Voronoi diagrams in the single facility

problem. Recall that the only published method for constructing the weighted

Euclidean Voronoi diagram (WVD) is extremely complex and has not been

implemented. It may be possible to design and implement an efficient algorithm for

constructing the WVD and extend it to the rectilinear metric as well. Such an

algorithm would form the basis of a solution method for the weighted problem which

would be of lower computational complexity than all existing techniques.

5) The single facility algorithm of chapter 4 involves the division of the

feasible region into rectangular areas and the calculation of an upper bound for each

of them. Since this process can be done in parallel, it may be worth investigating the

use of parallel algorithms to solve the problem efficiently.

6) Some of the multifacility problems presented in chapter 6 have been

formulated as mixed integer programming (MIP) models. Recall that in chapter 2 we

used duality results from an MIP to prove known and reveal new properties of the

single facility problem. A natural extension is to examine whether similar results can

be derived for the multifacility problem as well.

7) Finally, it is worth examining whether the problem can be formulated and

solved using the concept of minimax algebra as defined by Cunninghame-Green

(1991). Minimax algebra is the system M = {RU {-oo,+ 00}} ®, ®'} where

x0 y=max {x, y}, x® y=x+y, x0 'y=min (x, y} and x® 'y= x+ y .

Whether these avenues of research will be explored or not remains to be seen.

One thing that is certain, though, is our desire to follow them, preferably in the near

future.

139

APPENDICES

140

Appendix A: Euclidean Weighted Bisectors

APPENDIX A

EUCLIDEAN WEIGHTED BISECTORS

Let Pj (xj , y i) and P2 (x2 , y2) be two points in the two-dimensional plane

with weights wj and w2 respectively. Without loss of generality assume that

w2 > Wj .The locus of points X(x, y) which are at weighted distance L from both

Pj and P2 is given by the following equation:

* dE (X, Pt) = w2 * dE (X, Pj) = L, or

wf * [(x-Xj)2 + (y-yj)2] = w | * [(x-x2)2 + (y-y2)2] < = >

W2 * [(x-xt)2 + (y-yj)2] * (w2-Wj) =

w2 * [(x-x2)2 + (y-y2)2](w2-W!) < = >

w2 * t(x-x2)2 + (y-y2)2] + wi* Kx‘xi)2 + (y-yi)2] =
w?w§ » [(x-xt)2 + (y-yj)2 + (x-x2)2 + (y-y2)2] < = >

W2 * [(x-x2)2 + (y-y2)2] + w |« [(x-xj)2 + (y-y2)2] =

* (x f+ x |-2 xlx2 + y j+ y |-2yiy2+ 2x2-2x1x

-2x2x + 2x1x2 + 2y2-2y1y-2y2y + 2y1y2) < = >

W2(X-X2) 2 + W j (X-Xj)2-2W j W2 (X-Xj)(X-X2) +

w (̂y-y2)2+wi(y-yi)2-2w^(y-y1)(y-y2) =
w jw |* [(xj-xj)2 + (ypyj)2] < = >

141

Appendix A: Euclidean Weighted Bisectors

[w^x-x^-wftx-xj)] 2 + [w|(y-y2)-wfty-yi)] 2 =
wfw2 * [(x1~x2)2 + (yj-yj)2] < = >

(w^x-wjx-w^+wfxj)2 + (W2y-wfy-ŵ y2+wiyi)2 =
* [(xj-xj)2 + (yr y2)2] < = >

[x-(w^x2-wixl)/(w2 -wi)]2 + [y-(w|y2-w ŷ j)/(w^-wf)]2 =
[(xr x2)2 + (yry2)2] . [w jw ^ -w ?)]2 (1)

If Xq = (v^x2-wfx1)/(w^-wj), y0 = (w§y2-wjyi)/(v^-w?) and
r = dE(P j , P2) * w1w2/(w2-w2) then (1) is equivalent to:

(x-xo)2 + (y-y,,)2 = r2

which is the equation of a circle with centre (xq , y0) and radius r.

142

Appendix B:Identifying Infeasible and Partly Feasible Rectangles

APPENDIX B

AN ALGORITHM FOR IDENTIFYING INFEASIBLE AND PARTLY

FEASIBLE RECTANGLES FOR LP-BASED METHODS

Suppose that the feasible region S is described by a list of extreme points

Vj, given in clockwise order rather than as a set of linear constraints. Let also XL

be the smallest and XU the largest x-coordinate of all V{. YL and YU are defined

similarly.

In order to construct the grid of (n+1)2 rectangles we need a list of the x-

coordinates of the P{ *s in ascending order and a similar list of their Y-coordinates.

In general these lists are:

XList : XL, x , , x2, ..., xn, XU

YList : YL, y , , y2, ..., yn, YU

where Xj and Yj do not necessarily correspond to the same demand point j.

Consider a particular constraint G: Vs Vt where X8 < Xt and let the line

between V8 and Vt be given by H: ax + by = c. Constraint G is called "upper"

("lower") if the feasible region S is below (above) G. Equivalently, G is "upper"

("lower") if for every demand point P; (x; , yj), yj is less (greater) than the y-value of

H for x=Xj. This can be found very simply by checking whether any demand point

is above or below G.

In order to find the rectangles which are intersected by G we start from the

vertex V8 (Xs, Y,) with the smallest x-coordinate and progress towards the end-point

Vt (Xt , Yt) calculating the values of the corresponding constraint for each value in

the XList between X8 and Xt . More simply, suppose that the coordinates of V8 and

Vt are in the following ranges of the XList and the YList:

..., Xj , Xs , Xi+1 , ..., Xi+k , Xt , Xj+k + j , ...

•••» Yj » Ys » Yj+l » *•*» Yj+m » Yt > Yj+m + l > •••

143

Appendix B:Identifying Infeasible and Partly Feasible Rectangles

Clearly the constraint V, -* Vt intersects the cell with

Xmin Xj » ^max X j+ j & n d Ymjn Yj , Ymax Y j+1

If the value of H for x = xi+1 is y' such that yj+u < y' < yj+u-»-i» then the

constraint in question also passes through the following rectangles :

Xmin Xj , ^ n u x X j+ j 3 T ld Ymin Y j+1 » ymax Y j+ 2

Xmin Xj , ^m ax X j+ j * m d Ymjn Y j+2 > Ymax Yj + 3

Xmin Xj » \ n a x Xj + i & n d Ymjn Y j+ u > Ymax Y j+ u+ 1

and also through

Xmin Xj + j » ^max ^ i+ 2 3 n d Ymjn Y j+ u » Ymax Y j+ u+ 1

The rectangles which are infeasible because of constraint G can be identified

as follows:

Case 1

If G is "upper” then the following rectangles are above G and, hence, are

infeasible:

Xmin Xj , \ i i a x Xj + j « m d Ymin Y j+ u + i , Ymax Y j+ u + 2

Xmin Xj , ^max Xj + j 2 n d Ymjn Yj + u+ 2 » Ymax Yj + u+3

Xmin = Xj, x ^ = xi+1 and ymin = yn, ymax = YU

Case 2

If G is "lower" the following rectangles are infeasible since they are below G:

Xmin X j , X ,,^ xi+, and Ymjn Yj , Ynux Yj-1

Xmin Xj , n̂ux Xj+j and Ymjn Yj-3 > Ynux Yj-2

144

Appendix B:Identifying Infeasible and Partly Feasible Rectangles

^ m i n » \ n a x ^ i + 1 Y m i n Y L , Y n u x Y l

Continuing the same process for all X-values in the XList up to Xt we can

mark all the rectangles which are intersected by that particular constraint.

For the data of example 4.1:

XL = 0, XU = 10, YL = 0 and YU = 9.

Consequently, the XList and the YList for this example are:

XList : 0, 3, 5, 8 , 9, 10

YList : 0, 2, 4, 6 , 8 , 9

Suppose we want to find the rectangles which are intersected by constraint

Vi -* V2 whose equation is y = 1.25 * x + 5 (see figure 4.4). Since the starting

point V, is within rectangle 16, that rectangle is intersected by the constraint in

question. For x = 2 which is the next largest in the XList, y = 7.5 on the edge

V i - V 2, which is between 6 and 8 in the YList. Hence this constraint intersects cell

11 which has xmin = 0 , xnux = 2 and yinin = 6 , ynwx = 8 as well as cell 12 with x ^ = 2 ,

Xjhjx =3 and ymin = 6 , ymax = 8 . Moreover, since it is an "upper" constraint it leaves

rectangles 1 and 6 infeasible since they are above it. The next largest x value is 3;

for x = 3, y = 8.75 on the edge, which is between 8 and 9 in the YList, hence the

constraint intersects rectangles 7 and 8 and leaves rectangle 2 infeasible. Finally,

since the end point V2 is in rectangle 3 that rectangle is also partly feasible.

145

Appendix C: A Brief Description of LOCOBNOX

APPENDIX C

A BRIEF DESCRIPTION OF LOCOBNOX

This appendix outlines the main modules of LOCOBNOX, the computer

program implementing the interactive graphical approach discussed in chapter 5. The

program consists of a number of units written in Turbo Pascal and can run on any

IBM PC or compatible with a VGA graphics card.

The user is first asked to supply the details regarding the feasible region which

may consist of up to 20 disjoint polygonal areas. The coordinates of their vertices

can be entered either using the keyboard or from a text file; alternatively these areas

may be drawn on the screen using the mouse. The same options are available for the

description of the non-permissible areas. Finally, the coordinates of the demand

points are either randomly generated or specified by the user interactively or from a

text file.

Having read the input data the program applies the iterative method of chapter

5 to find an approximate solution to the problem. More specifically, it draws

progressively larger shapes (circles or diamonds) around each demand point and

performs the stochastic test to estimate the proportion of the area that has been

covered. If this estimate exceeds the specified limit the test is repeated a certain

number of times and if in every one of them the estimate is higher than the limit, the

approximate solution has been found. The program then uses this solution to find the

exact optimal location if the user wishes to do so.

We would like to stress at this point that this appendix is by no means a

complete documentation of LOCOBNOX. It merely intends to explain the structure

of the program and provide a broad outline of the most significant modules.

We start by describing the global data type definitions and variable

declarations given in listing C.l below.

146

Appendix C: A Brief Description of LOCOBNOX

Listing C .l: Definitions and Declarations

unit Declar ;
interface
const

Epsilon = le-3 ;
MaxPoints= 1000;
MaxSize= 1000 ;
ManyPoints=200 ;

MaxPolys = 20 ;
MaxNonPerm=20 ;

MaxTimes=10 ;

Limit=95 ;

type

PointArray=array [L.MaxPoints] of real ;
Points= record

X, Y : integer
end ;

PlotArray=array [L.MaxPoints] of Points ;

Polys = array [L.ManyPoints] of Points ;

FeasScreens = array I 1.. MaxPolys] of Polys ;

NonPermShapes= array [L.MaxNonPerm] of Polys ;

Metrics = (Euclid, Rect, Chebyshev) ;

Poly Array = array [1.. MaxPolys] of integer ;

var
NrPoints : integer ;
DemCoord : PlotArray ;
Weight : PointArray ;

Metric: Metrics ;

RandCoord : boolean ;

SameWeight : boolean ;

NewWeight: boolean ;

UseMouse : boolean ;

147

Appendix C: A Brief Description of LOCOBNOX

Lower : integer ;

NrFeas : integer ;
NrVertices : PolyArray ;
FeasRegion : FeasScreens ;

NrRestr : integer ;
NonPermArea : NonPermShapes ;
Vert : array [L.MaxNonPerm] of integer ;

X Coord, YCoord : integer ;

XOpt, YOpt, LOpt : real ;

implementation
end.

Interpretation of Constants
MaxSize : Maximum size of the x and y axis
MaxTimes : Maximum times the test for the termination of

Limit
for

the algorithm is repeated
: Proportion of the screen that must be covered

the algorithm to terminate

Interpretation of Variables
NrPoints
DemCoord

Weight

: Number of demand points
: Array containing the coordinates of the demand

points.
: Weights corresponding to demand points

Metric : Kind of distance metric

RandCoord : TRUE when the demand points coordinates are
randomly generated

SameWeight : TRUE when all demand points have equal
weights

NewWeight : TRUE when the user wishes to solve the
problem again using a different set of weights

UseMouse : TRUE when the user wishes to use the mouse

Lower : Lower bound on the optimal distance

148

Appendix C: A Brief Description of LOCOBNOX

NrFeas : Number of feasible areas
NrVertices : Array containing the number of vertices of each

feasible area
FeasRegion : Array of feasible polygons

NrRestr : Number of non-permissible areas
Vert : Array containing the number of vertices of each

non-permissible area
NonPermArea : Array of non-permissible areas

XCoord, YCoord : x and y coordinate of approximate solution
XOpt, YOpt : x and y coordinate of exact solution
LOpt : Exact optimal distance

The main program body is given in listing C.2 followed by an explanation of

the most important subprograms.

Listing C.2: Main Program Body

program LOCOBNOX ;
uses

Dos, Crt, Graph, MousePac, Declar, Screen, InData, GenFunctions ;

begin { Main }

InputData (NrPoints, Rand Coord, DemCoord, NrFeas, NrVertices, FeasRegion, NrRestr,
NonPermArea, Metric, Weight, Step) ;

Setup (NrPoints, RandCoord, DemCoord, NrFeas, NrVertices, FeasRegion, NrRestr,
NonPermArea) ;

repeat

MainProcedure (NrPoints, DemCoord, XCoord, YCoord) ;
AskNewWeight (NewWeight) ;
if NewWeight then

begin
FileWeights (NrPoints, Weight) ;
RedrawScreen (NrPoints, DemCoord, NrFeas, NrVertices, FeasRegion,

NrRestr, NonPermArea)
end

until not NewWeight;

149

Appendix C: A Brief Description of LOCOBNOX

repeat until Keypressed ;

CloseGraph

end.

Unit Graph contains the predefined graphics routines available in Turbo

Pascal whereas MousePac is a collection of subprograms related to the mouse.

Declar includes the global definitions and declarations of the program. Screen

contains subprograms that actually draw on the graphics screen whereas InData

consists of routines associated with data input. Finally, GenFunctions includes

several arithmetic and logical functions used in the program.

Explanation of Subprograms

Setup initialises the graphics environment and draws the feasible region on the

screen. It then reads the coordinates of the demand points or generates them

randomly. The whole procedure is given in listing C.3 below.

Listing C.3: Procedure Setup

procedure Setup (NrPoints : integer ; RCoord : boolean ;
var FCoord : PlotArray ; NrFeas : integer ;
var NrVert : WHAT ; var FeasReg :FeasScreens;
NrRestr : integer ; var RestrArea : NonPermShapes) ;

begin { Setup }
Initialise (NrFeas, NrVert, FeasReg, NrRestr, RestrArea) ;
MakeCoord (NrPoints, RCoord, DemCoord)

end ; { Setup }

If the user has already input the description of the feasible region and the non-

permissible areas, in the InputData procedure, Initialise draws the corresponding

polygons on the screen. On the other hand, if the user wishes to draw these polygons

interactively, Initialise offers the option to do so using the mouse.

MakeCoord reads the coordinates of the demand points or generates them

randomly if requested by the user.

150

Appendix C: A Brief Description of LOCOBNOX

MainProcedure in listing C.2 basically implements the graphical method of

chapter 5. The procedure is given in listing C.4 below.

Listing C.4: Main Procedure

procedure MainProcedure (NrPoints : integer var Coord : Plot Array) ;
var

WhichPoly : l..MaxPoIys ;
Inside, OnNonPerm, OnBound, Exact : boolean ;

begin { MainProcedure }

CalcBound (Lower) ;

FindRegion ;

Find Coordinates (XCoord, YCoord) ;

DisplayCoordinates (XCoord, YCoord, Exact) ;

if Exact then
begin

FindNearest (Metric, XCoord, YCoord, Nearest) ;
Checklnterior (Metric, Nearest, Inside, Xopt, YOpt) ;
if not Inside then

begin
CheckNonPerm (Metric, XCoord, YCoord, Nearest,

OnNonPerm, XOpt, YOpt) ;
if not OnNonPerm then

begin
WhichPoly := FindPoly (XCoord, YCoord) ;
CheckBoundary (Metric, XCoord, YCoord,

Nearest, WhichPoly, OnBound, XOpt, YOpt)
end

end ;
Display Exact (XOpt, YOpt)

end
end ; { MainProcedure }

CalcBound calculates the lower bound Lower on the optimal distance.

FindRegion draws the progressively larger shapes and performs the stochastic

termination test. FindCoordinates allows the user to move the mouse and click the

uncovered area to find the approximate optimum (XCoord, YCoord).

151

Appendix C: A Brief Description of LOCOBNOX

If the user wishes the exact solution the program applies the method described

in appendix D. It finds the relevant demand points (FindNearest) depending on the

distance metric and then checks whether the optimal location (XOpt, YOpt) is in the

interior of the feasible region (Checklnterior), on a boundary edge (CheckBoundary)

or on the boundary of a non-permissible area (CheckNonPerm).

Finally, AskNewWeight asks the user whether he/she wishes to solve the

problem using a different set of weights. If so, the new weight set is read

(FileNewWeight) and the problem is solved again.

The Pascal code for all the units of listing C.2 can be found in the final

appendix of this thesis.

152

Appendix D: Using the Graphical Approach to Obtain the Exact Solution

APPENDIX D

USING THE GRAPHICAL APPROACH TO OBTAIN THE EXACT

SOLUTION TO THE SINGLE FACILITY PROBLEM

In chapter 5 we explained how the interactive graphical approach can be used

as a site generation tool to identify potential locations for the single facility problem.

We pointed out that the solutions produced by this method are approximate, since the

process terminates when the user regards the uncovered area(s) sufficiently small to

be considered as points. However, especially in small problems, an approximate

solution may not be satisfactory; the exact optimum may be required. In this section

we will demonstrate how the graphical approach can be combined with the properties

of the optimal solution, as given in chapter 2 , to produce the exact solution to the

single facility problem. Note that the technique presented below is by no means the

best way of finding the exact optimum. It merely shows that it is possible to obtain

the exact solution from a graphical method.

Consider problem (PI) of chapter 5 and let X* (x* , y*) be the exact optimal

location and L* the exact optimal distance. Let also Xa (xa , y*) be the approximate

solution produced by LOCOBNOX and La the corresponding distance. As explained

in chapter 2, X* will be :

(i) On a vertex of a feasible polygon S j , at distance L* from at least one demand

point, or

(ii) On the boundary of an S j, but not on a vertex, at distance L* from at least two

demand points, or

(iii) In the interior of an Sj . In the Euclidean metric such a location must be

equidistant from at least three demand points. In the rectilinear metric it will occur

along a ±45° segment, both ends of which are equidistant from at least three clients,

while all points in between are equidistant from at least two.

Finally, the optimal location may turn out to be :

153

Appendix D: Using the Graphical Approach to Obtain the Exact Solution

(iv) On the boundary of a non-permissible area Nk (either on a vertex or on a side).

If X* is on a vertex V of Nk there will be at least one client at distance L* from V.

If X* is along edge w of Nk , but not on a vertex, at distance L* from only one client

Pj we can always move it towards one of the endpoints of w and increase its distance

from P | . Hence, X* on an edge w must be equidistant from at least two demand

points both in the Euclidean and the rectilinear case.

If the optimal location was on a vertex of S or N, it would have been

identified at the first step of LOCOBNOX, namely the calculation of the lower bound

Lq, where the objective function is evaluated at all vertices of S and N.

Consequently, the whole of the feasible region would be covered after the first

iteration and there would be no uncovered areas. In other words, the existence of

uncovered areas implies solutions in the interior or along the boundary of S or even

on the boundary of a non-permissible region Nk .

Without loss of generality, suppose that the rectilinear metric is adopted and

that the optimal location is in the interior of a feasible polygon S j. See figure D .l

in the following page where ABCD is the area left uncovered after the process has

terminated and Xa is the approximate optimal location, as indicated by the user

clicking the mouse. Clearly, there are four "closest” demand points P1 to P4

corresponding to four "walls” that define the optimal area, one in the north-western,

one in the north-eastern, one in the south-eastern and one in the south-western

direction of Xa. Note that it would not be possible to have a situation like the one

shown in figure D.2, where five walls form an L-shaped figure, because we could

increase the size of the diamonds until we are left with only four walls. However,

in some large scale problems with more than 100 demand points the final uncovered

area is so small that it is not visually clear whether it is defined by four walls. In this

cases, the analysis presented below is not valid. However, in large problems one is

usually content with an approximate solution whereas in smaller problems one expects

exact optima.

154

Appendix D: Using the Graphical Approach to Obtain the Exact Solution

Figure D.l: Solution in the interior (rectilinear case)

Figure D.2: Example where the objective function may still be increased

155

Appendix D: Using the Graphical Approach to Obtain the Exact Solution

If the global optimum is on the boundary of an Sj (or an N J it can be seen that

the uncovered area will have to be a triangle formed by a boundary constraint and

two diamonds, as illustrated in figure D.3, where the uncovered area ABC is bounded

by the constraint Qr -*• Qr+ j and the diamonds corresponding to demand points P, and

P2.

Figure D.3: Solution on the boundary (rectilinear case)

In the Euclidean case a solution in the interior is defined by three closest

demand points, as proven in chapter 2. On the other hand, a solution on the

boundary is equidistant from two clients.

Hence, given the approximate solution Xa we can find the relevant demand

points in each case and compute the exact solution analytically, as explained below.

156

Appendix D: Using the Graphical Approach to Obtain the Exact Solution

(I) Solution in the Interior

(a) Rectilinear Case

Let P j , P2 , P3 and P4 be the nearest demand points in the north-west, north­

east, south-east and south-west direction of X* respectively.

Let also L13 = dR (P j , P3)(wj * w3)/(Wj +w 3) and

L24 = d R ^ 2 > P4)(w 2 * w 4 V (w 2 + w 4)

In chapter 2 we explained that if X* is in the interior of S it must lie along a

multiple solution edge XjX2 . If L13 < L2 4 then all points of this edge will be

equidistant from Pj and P3 as shown in figure D.4 where it is assumed, without loss

of generality, that Xj is equidistant from P j , P3 and P2 whereas X2 from Vl , P3 and

P4 .

'1-23-4

1-3

1-3

3-4

Figure D.4: Multiple optimal edge X1 X2

The coordinates of Xj and X2 are given by the following two systems of linear

equations.

157

Appendix D: Using the Graphical Approach to Obtain the Exact Solution

Wi dR (P ,, X ,) = L

w 3 dR (P3, X j) = L

W2 (1*2 > Xj) = L
and

w ,dR(P,, X2) = L

w3dR(P3, X2) = L

W4^r(P 2 » X2) = L
On the other hand, if L13 > , Xt will be equidistant from say, P2, P4 and

P , , in which case X2 will be equidistant from P2, P4 and P3 and their coordinates

will be the solutions of two systems of equations similar to the above.

ftp Euclidean Case

Given X* let P !, P2 and P3 be the three nearest demand points. The optimal

location X* will be given by the following system of quadratic equations.

wi dE (P j, X*)= L

w2dE(P2, X*)= L

w3 dE (P3, X*) = L

(II) Solution on Edge u of Sj

Let ax + by = c be the equation of the u-th side of feasible polygon Si . If

Pj and P2 are the two relevant demand points X* is given by the following system of

equations.

wj d (P ,, X) = L

w2 d(P2, X) = L

ax + by = c

where the distance is expressed either in Euclidean or in rectilinear terms.

158

Appendix D: Using the Graphical Approach to Obtain the Exact Solution

(IQ) Solution on Edge w of Nk

If ax + by = c is the equation of the w-th side of Nk and and P2 the

relevant demand points, the optimal location X* is given by a system of equations

similar to case 1.2 above.

Hence, the whole process of using the approximate solution X* to obtain the

exact optimum X* can be described as follows:

1. Given X*. find the relevant demand points.

(i) rectilinear case : find the four demand points nearest to X‘ as explained in (I)(a)

above.

(ii) Euclidean case : find the three clients nearest to Xa.

2. Check for a solution in the interior.

(i) rectilinear case

2.1 If the clients found in step (1) are less than four then go to step 3

(solution on boundary of feas. area).

Otherwise, go to step 2.2

2.2 If at least one point X of X! X2 is uncovered then X* = X.

Otherwise, go to step 4.

(ii) Euclidean case

2.1 If point X from (I)(b) is uncovered then X* = X

Otherwise, go to step 3 (solution on boundary of feas. area)

3. Check for a solution on the boundary of S.

3.1 Find which polygon Sj contains Xa .

(Use a technique described in Akl (1989). The main idea is to draw

a vertical line through Xa and count the number of intersections

159

Appendix D: Using the Graphical Approach to Obtain the Exact Solution

between this line and the edges of each S j. If the number of such

intersection points above Xa is odd, then Xa is inside Sj; otherwise it

is outside. See figure D.5 for an illustration).

Figure D.5: Test for inclusion o f a point in a simple polygon

3.2 For each pair of relevant clients and each edge of Sj consider point X

from (II).

If X is uncovered then X* = X

3.3 If no solution was found in 3.2 then go to step 4

4. Check for a solution on the boundary of an Nk

4.1 For each non-permissible area Nk repeat 4.2

4.2 For each pair of relevant clients and each edge of Nk consider point X

from (III)

If X is uncovered then X* = X

160

Appendix D: Using the Graphical Approach to Obtain the Exact Solution

Hence, the main idea behind the method is to identify the closest demand

points to the uncovered area and then use the properties of the optimal solution to

check all candidate optima. Consequently, the process is guaranteed to find the

global optimum.

However, in all experimental problems the approximate solution La given by

LOCOBNOX was more than satisfactory since it was at least 95 % of the exact

optimal distance L*. Hence, although it can be argued that it is not necessary, the

program offers the option to calculate the exact optimum if the user wishes to do so

for a particular application.

161

Appendix E: Finding a Feasible Solution to the One-dimensional Multifacility Problem

APPENDIX E

FINDING A FEASIBLE SOLUTION TO THE ONE-DIMENSIONAL

MULTI-FACILITY PROBLEM

Finding a feasible solution to problem (P13) of chapter 6 is essentially a set

covering problem in the sense that each demand point must be covered by at least one

new facility. Maintaining the notation of chapter 6 , Pj is covered by candidate

location Ak when |Pj -Ak | ^ bj . Let h ^ =1 if Pi is covered by Ak and 0

otherwise. Define variables vk = 1 if Ak is chosen and vk = 0 otherwise. The set

covering problem is to find vk for k = l,...,N such that S ^ h ^ vk ^ 1 for i= l , . . . ,n

and

Drezner and Wesolowsky observed that the matrix H = { hik } has a very

interesting property. Consider the matrix for example 6.1:

Table E .l : Matrix H for example 6.1

Ai a 2 A3 A4 a 5 A6 A? A 8

Pi 1 1 1 0 0 0 0 0

p2 0 1 1 1 1 1 0 0

p3 0 0 0 0 1 1 1 1

Note that in each row the sequence of l ’s is uninterrupted, since the Ak’s are

ordered along the line. Consider columns 1 and 2 of the above table. Every 1 in

column 1 corresponds to a 1 in column 2 ; moreover, column 2 has more l 's than

column 1. Hence, site A2 can cover all sites covered by A1 and even more. Site A2

162

Appendix E: Finding a Feasible Solution to the One-dimensional Multifacility Problem

by setting v, =0. Using the concept of dominance, the procedure for finding a

feasible solution can be described as follows:

Procedure for Selecting a Feasible Set of r Sites

1. Find site Ak, for the smallest k, such that Ak+1 does not dominate it.

2. Set vk =1.

3. Delete all rows of H that correspond to demand points covered by

Also, delete columns 1 to k.

4. Repeat steps 1 to 3 until all clients are covered by r or fewer columns

(if fewer, place the remaining facilities on the last chosen site).

Supposing that in example 6 .1 we wanted to locate 2 facilities, it can be seen

that the above process would give sites A2 and A5 as an initial feasible solution with

objective function value L=0.125.

163

Appendix F: A Brief Description of TWOPROFLAWLP

APPENDIX F

A BRIEF DESCRIPTION OF TWOPROFLAWLP

This appendix gives a short description of TWOPROFLAWLP, the software

implementing the two-facility algorithm introduced in chapter 6 . The program is

written in Turbo Pascal and can run on any IBM PC or compatible. It accepts as

imput the coordinates of the demand points and the coordinates of the vertices of the

feasible polygon and locates two obnoxious facilities in a way that maximizes the

minimum distance between the demand points and the facilities to be located. This

program can be used to solve the single facility problem as well since

TWOPROFLAWLP starts by solving this problem to obtain an upper bound on the

global optimum of the two-facility problem. After finding the optimal distance the

program improves the solution with respect to the noncritical facility to achieve

lexicographic optimization as explained in chapter 6 .

It should be kept in mind that this appendix is by no means a complete

documentation of the program. It merely provides an outline of the most significant

modules.

The most significant data type definitions and variable declarations are given

in listing F .l below.

Listing F .l: Definitions and Declarations
unit Declar ;
interface

type
Points = record

X, Yrreal
end ;

Longitudes = (North, South) ;
Latitudes = (West, East) ;

164

Appendix F: A Brief Description of TWOPROFLAWLP

DemPoints = array [1.. MaxPoints] of Points ;

Weights = array [1..MaxPoints] of real ;

ExtrPoints = array [L.MaxVertices] of Points ;

State = (Feasible, Partly, Infeasible) ;

Real Array = array [0..MaxPoints] of real ;

BoundArray = array [L.MaxRects] of real ;

Indexes = array [L.MaxRects] of integer ;

OptArray = array [L.MaxObnox] of real ;
LocArray = array [L.MaxObnox] of Points ;

ConLists = AConRec ;
ConRec = record

Con : integer ;
Next : ConLists

end ;

Lists = AListRec ;
ListRec = record

Cell : integer ;
ConList : ConLists ;
Next : Lists

end ;

var
NrDem : integer ;
NrVert : integer ;
NrRectangles : integer ;
NrObnox : integer ;

OptDist: OptArray ;
OptLocation : LocArray ;

L0, LU, L, LMin, LMax : real ;

Status : array [L.MaxRects] of State ;

DemCoord : Facilities ;
Weight : Weights ;

Vertices : ExtrPoints ;

X Array, Y Array : Real Array ;

165

Appendix F: A Brief Description of TWOPROFLAWLP

UArray : BoundArray ;

OptPoint: Points ;

IArray : Indexes ;

CList: Lists ;

implementation
end.

Interpretation of Variables

NrDem : Number of demand points

NrVert : Number of vertices of feasible
polygon

NrRectangles Number of rectangles

NrObnox Number of undesirable facilities

OptLocation Array of optimal locations

Status Status for each rectangle as far as
feasibility is concerned

DemCoord Details regarding demand points

Weight Array of weights

Vertices Details regarding the vertices of the
feasible region

XArray Array of the x-ccordinates of the demand points
given in ascending order after values that
appear more than once have been omitted

YArray Same as above for y-coordinates

UArray Array of upper bounds

166

Appendix F: A Brief Description of TWOPROFLAWLP

IArray : Indices of rectangles given in descending order
of the corresponding upper bound.

CList : List of partly feasible rectangles each
accompanied by a list of boundary constraints
passing through it.

L : Optimal distance

LO : Lower bound on L

LU : Upper bound on L

The main body of the program is given in listing F.2.

Listing F.2: Main Program Body

program MULTIPLE ;

Dos, Crt, Declar, GeoFunct, FindOptimum ;

begin { Main }

InputData (NrDem, NrVert, NrObnox, DemCoord, Vertices, XArray, YArray) ;

PreProcessData (NrFac, DemCoord, XArray, YArray) ;

FindStatus (NrRectangles, Status) ;

ProcessData (NrRectangles, UArray, IArray) ;

FindSolution (LU, OptLocation [1], Rect) ;

FindFeasSolution (NrObnox, Rect, LO) ;

MainProcedure (NrObnox, Rect, OptLocation, L) ;

ImproveSolution (L, OptLocation) ;

PrintSolution (output, L, OptLocation) ;

end. { Main }

uses

167

Appendix F: A Brief Description of TWOPROFLAWLP

Unit Declar contains the global declarations of the program. GenFunct

consists of some general arithmetic and logical functions whereas FindOptimum

contains the subprograms which actually solve the problem.

Explanation of Subprograms

PreprocessData accepts as input the x and y coordinates of the demand points,

discards values that appear more than once and sorts the remaining ones in ascending

order.

ProcessData calculates the upper bound for each rectangle using the ideas of

chapter 4 and sorts the array of upper bounds (UArray) in descending order. (NB.

Actually it sorts the array of indices IArray rather than the upper bounds themselves

so that IArray [1] contains the rectangle with the largest upper bound).

FindSolution essentially finds the optimum of the single facility problem as

explained in chapter 4, thus providing an upper bound LU on the global optimum L.

Rect is the rectangle containing the optimal location.

FindFeasSolution finds a feasible solution to the two-facility problem using

method 2 of section 6.5. This yields a lower bound LO on L.

MainProcedure implements the bisection technique for finding the optimal

solution L using LU and LO above. The procedure is given in listing F.3.

Listing F.3: Main Procedure

procedure MainProcedure (NrObn, Rect: integer;
var OptLoc: LocArray; var Dist: real) ;

var
LMin, LMax: real ;

begin { MainProcedure }
LMin := LO ;
LMax : = LU ;
if NrObn = 1 then

L : = LMax
else

while LMax - LMin > Epsilon do
begin

168

Appendix F: A Brief Description of TWOPROFLAWLP

L := (LMin + LMax)/2.0 ;
if ExistSol (L) then

LMin : = L
else

LMax := L
end

end ; { MainProcedure }

ExistSol returns TRUE when a feasible solution with value L exists. The

method for checking that is described in section 6.4.

Finally, ImproveSolution in listing F.2 identifies the critical facility and then

improves the solution with respect to the noncritical one, thus achieving lexicographic

optimization.

The remaining subprograms are fairly self explanatory. The program itself

can be found in the final appendix of this thesis.

169

Appendix G: Program Disk

APPENDIX G

PROGRAM DISK

(Attached to the back cover of this thesis)

170

References

REFERENCES

Akl, S. (1989), "The design and analysis o f parallel algorithms",
Prentice-Hall International Editions.

Angell, I. O. and Moore, R.E.M. "A Quad-Tree Algorithm for
Displaying a 2-Dimensional Slice of an N-Dimensional Weighted
Voronoi Tesselation", Eurographics '86, Elsevier Science Publishers
BV (North-Holland), 19-27.

Appa, G. and Giannikos, I. (1992) "Using Duality Information from
a Mixed Integer Program to Derive New and Old Results for the
Rectilinear Obnoxious Facility Location Problem", Working Paper
Series in Operational Research, LSE OR 92.2.

Appa, G. and Giannikos, I. (1993a), "A good enhancement with
logical weaknesses", Journal o f the Operational Research Society,
44/1, 103-106.

Appa, G. and Giannikos, I. (1993b), "Is linear programming necessary
for single facility location with maximin of rectilinear distance?", to
appear in the Journal o f the Operational Research Society.

Aurenhammer, F. and Edelsbrunner, H. (1984), "An optimal
algorithm for constructing the weighted Voronoi diagram in the plane",
Pattern Recognition 17/2, 251-257.

Baneijee, P., Montreuil, B., Moodie, C.L. and Kashyap, R.L. (1992),
"A modelling of interactive facilities layout reasoning using qualitative
patterns", International Journal o f Productions Research 30/3, 433-
453.

Brady, S.D. and Rosenthal, R.E. (1980), "Interactive computer
graphical solutions of constrained minimax location problems", AIIE
Transactions 12, 241-248.

Brady, S., Rosenthal, R. and Young, D. (1983), "Interactive graphical
minimax location of multiple facilities with general constraints", IIE
Transactions 15/3, 242-253.

171

References

Chandrasekaran, R. and Daughety, A. (1981), "Location on tree
networks: p-centre and n-dispersion problems", Mathematics o f
Operations Research 6/1, 50-57.

Cunninghame-Green, R.A. (1991), "Minimax algebra and
applications", Fuzzy Sets and Systems 41/3, 251-267.

Dasarathy, B. and White, L.J. (1980), "A maximin location problem",
Operations Research 28/6, 1385-1401.

Drezner, Z. (1983), "Constrained location problems in the plane and
on a sphere", 1IE Transactions 15/3, 300-304.

Drezner, Z. and Wesolowsky, G.O. (1980), "A maximin location
problem with maximum distance constraints", AIIE Transactions 12,
249-252.

Drezner, Z. and Wesolowsky, G.O. (1983), "The location of an
obnoxious facility with rectangular distances", Journal o f Regional
Science 23/2, 241-248.

Drezner, Z. and Wesolowsky, G.O. (1985), "Location of multiple
obnoxious facilities", Transportation Science 19/3, 193-202.

Erkut, E. and Neuman, S. (1989), "Analytical models for locating
undesirable facilities", European Journal o f Operational Research 40,
275-291.

Erkut, E. and Neuman, S. (1991), "Comparison of four models for
dispersing facilities", Infor 29/2, 68-85.

Erkut, E. and Oncu (1991), "A parametric 1-maximin location
problem", Journal o f the Operational Research Society AH I, 49-55.

Hansen, P., Peeters, D. and Thisse, J.-F. (1981), "On the location of
an obnoxious facility", Sistemi Urbani 3, 299-317.

Karkazis, J. and Karagiorgis, P. (1986), "A method to locate the
maximum circle(s) inscribed in a polygon", Belgian Journal o f
Operations Research, Statistics and Computer Science 26, 4-36.

172

References

Karkazis, J. and Karagiorgis, P. (1987), "The general problem of
locating obnoxious facilities in the plane", Proceedings o f the 11th
1FORS Conference, Buenos Aires, 703-717.

Kuby, M.J. (1987), "Programming models for facility dispersion: The
p-dispersion and maxisum dispersion problems", Geographical
Analysis 19, 315-329.

Lee, D.T. (1980), "Two-dimensional Voronoi diagrams in the Lp
metric", Journal o f the ACM 27/4, 604-618.

Mehrez, A., Sinuany-Stem, Z. and Stulman, A. (1986), "An
enhancement of the Drezner-Wesolowsky algorithm for single facility
location with maximin of rectilinear distance", Journal o f the
Operational Research Society 37/10, 971-977.

Melachrinoudis, E. (1985), "Determining an optimum location for an
undesirable facility in a workroom environment", Applied
Mathematical Modeling 9, 365-369.

Melachrinoudis, E. (1988), "An efficient computational procedure for
the rectilinear maximin location problem", Transportation Science
22/3, 217-223.

Melachrinoudis, E. and Cullinane, T.P. (1982), "A maximin approach
to the location of an undesirable facility in a nonconvex region",
Modeling and Simulation 13, 533-538.

Melachrinoudis, E. and Cullinane, T.P. (1985a), "A heuristic approach
to the single facility maximin location problem", International Journal
o f Productions Research 23/3, 523-532.

Melachrinoudis, E. and Cullinane, T.P. (1985b), "Locating an
undesirable facility within a geographical region using the maximin
criterion", Journal o f Regional Science 25/1, 115-127.

Melachrinoudis, E. and Cullinane, T.P. (1986a), "Locating an
obnoxious facility within a polygonal region", Annals o f Operations
Research 6, 137-145.

Melachrinoudis, E. and Cullinane, T.P. (1986b), "Locating an
undesirable facility with a minimax criterion", European Journal o f
Operational Research 24, 239-246.

173

References

Moon, I.D. and Chaudhry, S.S. (1984), "An analysis of network
location problems with distance constraints", Management Science
30/3, 290-307.

Shamos, M.I. (1975), "Geometric complexity", Proc. o f the Seventh
Ann. ACM Symposium on Theory o f Comp., 224-233.

Shamos, M.I. and Hoey, D. (1975), "Closest-point problems", 16th
Ann. Symposium on Foundation o f Computer Science, 151-162.

Shier, D.R. (1977), "A min-max theorem for p-center problems on a
tree", Transportation Science 11/3, 243-252.

Tansel, B.C., Franscis, R.L., Lowe, T.J. and Chen, M.I. (1982),
"Duality and distance constraints for the nonlinear p-center problem
and covering problem on a tree network", Operations Research 30/4,
725-744.

TIME magazine January 2 1989, 20-24.

Wainwright M., "Heseltine rejects toxic waste plant", The Guardian,
November 13 1991, page 5.

174

Bibliography

BIBLIOGRAPHY

Angell, I. and Griffith (1988), "High Resolution Graphichs using
Pascal", Macmillan Education, Macmillan Computer Science Series.

Borland's Turbo Pascal reference manual.

Chatteiji, M. (1987), "Hazardous Material Disposal: Siting and
Management", Gower Publishing Co., Brookfield, VT.

Church, R.L. and Garfinkel, R.S. (1978), "Locating an obnoxious
facility on a network", Transportation Science 12/2, 107-118.

Current, J., Min, H. and Schilling, D. (1990), "Multiobjective
analysis of facility location decisions”, European Journal of
Operational Research 49, 295-307.

Elzinga, J. and Hearn, D. (1972), "Geometrical solutions for some
minimax location problems", Transportation Science 4, 172-181.

Erkut, E. (1990), "The discrete p-dispersion problem", European
Journal o f Operational Research 46, 48-60.

Erkut, E., Baptie, T. and von Hohenbalken, B. (1990), "The discrete
p-maxian location problem", Computers in Operations Research 17/1,
51-61.

Francis, R.L. and White, J.A. (1974), "Facility layout and location:
an analytic approach", Prentice-Hall, New Jersey.

Hsu, W.-L. and Nemhauser, G.L. (1979), "Easy and hard bottleneck
location problems", Discrete Applied Mathematics 1, 209-215.

Mehrez, A., Sinuany-Stem, Z. and Stulman, A. (1983), "The one­
dimensional single facility maximin distance location problem”,
Journal o f Regional Science 2312, 233-239.

Mehrez, A., Sinuany-Stem, Z. and Stulman, A. (1985), "A single
facility location problem with a weighted maximin-minimax rectilinear
distance", Computers in Operations Research 12/1, 51-60.

175

Bibliography

Minieka, E. (1983), "Anticenters and antimedians of a network",
Networks 13, 359-364.

Moon, D. and Papayanopoulos, L. (1991), "Minimax location of two
facilities with minimum separation: interactive graphical solutions",
Journal o f the Operational Research Society 42/8, 685-694.

Saaty, T.L. and Alexander, J.M. (1981), *Thinking with models",
Pergamon Press, Oxford.

176

