
STOCHASTIC TRENDS IN SIMULTANEOUS EQUATION SYSTEMS

by

Mariane Streibel 

1992

Thesis submitted for the Degree of Doctor of Philosophy 

at the London School of Economics and Political Science, 

University of London



UMI Number: U063018

All rights reserved

INFORMATION TO ALL USERS  
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Disscrrlation Publishing

UMI U063018
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition ©  ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



f H i E S E S

F
6 9 2 9



ABSTRACT

The estimation of univariate and multiple regression models with 

stochastic trend components has been considered in the time domain 

and in the frequency domain. Such models assume as regressors weakly 

exogenous variables. However if the regression equations are part of 

a simultaneous equation system some of the regressors will no longer 

be weakly exogenous and estimators obtained by ignoring this fact 

will be inconsistent.

One way of proceeding in such situations is to estimate the whole 

system, that is, to construct full information maximum (FIML) 

estimators. Alternatively, single equation estimators such as 

limited information maximum likelihood (LIML) can be constructed, as 

well as estimators based on the instrumental variable (IV) principle 

which possess the merit of consistency.

As in the analogous situation in classical simultaneous equation 

systems, within this class of limited information estimators, LIML is 

asymptotically efficient. Hence it is appropriate to study the 

asymptotic properties of LIML and review the possibility of 

alternative consistent estimators, using LIML as a benchmark.

The purpose of the thesis is thus:

to examine the issues of identifiability when stochastic trends



are present in simultaneous equation systems;

to examine the computational issues associated with FIML, LIML 

and various IV estimators in simultaneous equation systems with 

stochastic trends and derive the asymptotic properties in the 

frequency domain of these estimators;

to compare the performance of IV and LIML via Monte Carlo 

experiments ;

to apply the methods to real data.
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CHAPTER 1

INTRODUCTION

Stochastic trend components are introduced into econometric equations 

when the level of a nonstationary dependent variable cannot be 

completely explained by observable explanatory variables. The 

presence of a stochastic trend can often be rationalised by the fact 

that a variable has been excluded from the equation because it is 

difficult, or even impossible, to measure. Thus in

Harvey et al(1986) and in Slade(1989) a stochastic trend is used as a 

proxy for technical progress, while in the demand equation for UK 

spirits estimated by Kohn and Ansley(1989) the stochastic trend can 

be thought of as picking up changes in tastes. Such rationalisation 

not only lends support to the specification of the model, but it also 

means that the estimated stochastic trend can be analysed and 

interpreted.

Economic theory often suggests the appearance of stochastic trend 

components in particular equations within a simultaneous equation 

system. Indeed many published econometric models contain a time 

trend. For example the wage equation in the textbook Klein model has 

a time trend which is included to account for union pressure. As in
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single equations, such effects are more appropriately modelled by 

stochastic trends. If they are not explicitly modelled, their 

effects will be picked up indirectly by time trends and lags on the 

variables. This can lead to a proliferation of lags which have no 

economic meaning, and which are subject to common factors and 

problems of inference associated with unit roots; see 

Harvey et al(1986). Thus if economic theory suggests the presence of 

stochastic trends there are likely to be considerable gains from 

estimating the implied structural relationships directly.

The focus of this thesis is on models where the behaviour of a 

dependent variable is explained by observable explanatory variables 

and unobservable components. The unobservable components are 

modelled using the ideas of structural time series. Thus the 

components have a direct interpretation, see Harvey(1989).

When the explanatory variables are weakly exogenous variables we 

shall refer to the model as a time series regression model. Examples 

include the seat belt study of Harvey and Durbin(1986) as well as the 

application by Harvey at al referred to earlier. Multivariate 

structural time series, in particular seemingly unrelated time series 

equations (SUTSE) models were studied in Fernandez(1986) and 

Fernandez and Harvey(1990), while the inclusion of explanatory 

variables in SUTSE models is examined in Marshall(1990) and Harvey 

and Marshall (1991).

Our interest centres on a single equation within a simultaneous 

equation system with stochastic trend components. The estimation of
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time series regression models is based on the maximum likelihood 

principle and the assumption that the regressors are weakly exogenous 

is crucial. However, if some of the regressors are not assumed to be 

weakly exogenous variables, the maximum likelihood criterion function 

will not be a valid basis for inference. In simultaneous equation 

systems some of the regressors are endogenous variables to the system 

and estimators obtained by ignoring this fact will be inconsistent.

In order to obtain consistent estimators we have to proceed as we 

would in the classical simultaneous equation systems, that is, 

without stochastic trends. So, if the complete system of equations 

can be specified, a full information maximum likelihood (FIML) 

procedure may be employed. If only a subsystem is specified, but all 

the predetermined variables are named, a limited information maximum 

likelihood (LIML) procedure is appropriate. When the rest of the 

system has not been specified at all, ML methods cannot be applied, 

but a valid instrumental variable (IV) estimator can be obtained.

As in the analogous situation in classical simultaneous equation 

systems, within this class of limited information estimators, LIML is 

asymptotically efficient. Hence it is appropriate to study the 

asymptotic properties of LIML and review the possibility of 

alternative consistent estimators, using LIML as a benchmark.

A well known result in classical simultaneous equation systems is 

that LIML can be obtained by applying FIML to a ''new'' system formed 

from the structural equation of interest and the reduced form 

corresponding to the endogenous variables included in the equation of
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interest. It turns out that this new system is a triangular one. 

This is also true for models with stochastic trends components. The 

estimation of triangular systems is somewhat easier since such

systems can be formulated as a set of seemingly unrelated regression

equations (SURE) with stochastic trend components and can be carried 

out in the time domain framework.

Unfortunately, the triangular property is not helpful in deriving the 

asymptotic properties of LIML. In order to obtain the asymptotic 

properties we have to study the properties of FIML. The frequency 

domain framework turns out to be most appropriate.

The purpose of the thesis is thus:

(a) to examine the computational issues associated with FIML and LIML

in simultaneous equation systems with stochastic trends;

(b) to derive the asymptotic properties of FIML and LIML;

(c) to examine the computational issues arising with various IV 

estimators ;

(d) to derive asymptotic properties of viable IV procedures;

(e) to compare IV and LIML on the basis of asymptotic theory and 

Monte Carlo experiments ;

(f) to examine the issues of identifiability when stochastic trends 

are present;

(g) to apply the methods to real data.
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The plan of the thesis is as follows.

In chapter 2 we review some standard results which are needed to 

handle multivariate structural time series models. We look at state 

space form models and discuss estimation in the time domain and in 

the frequency domain, as well as asymptotic properties of the 

estimators. Chapter 3 provides a basis for the estimation of a 

single equation within a simultaneous equation system, as well as of 

the whole system.

Chapter 4 contains material on alternative limited information 

estimators based on the instrumental variable principle. Several 

time-domain instrumental variable estimators for single equations 

with stochastic trend are presented. We also deal with 

frequency-domain instrumental variable estimators and their 

asymptotic properties.

In chapter 5 we introduce simultaneous equation systems with 

stochastic trend components and discuss the role played by stochastic 

trends in helping to identify a single equation in the system.

The purpose of chapter 6 is to derive the asymptotic properties of 

FIML. As mentioned earlier, LIML is a special case of FIML and so to 

obtain the asymptotic properties of LIML we have to consider those of 

FIML. Again these properties are derived in the frequency domain. 

We also present a computational method for FIML itself, based on the 

nonparametric approach of Hannan and Terrell(1973), and 

asymptotically efficient two-step full information estimators.
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However we have not computed such estimators. The reason is because 

from our experience with LIML we thought that in order to able to 

make meaningful comparisons a complete study of FIML should be done.

In chapter 7, we extend the results given in Hall and Pagan (1981) in 

order to provide a computational method for LIML when the system 

contains stochastic trends. We also compare the asymptotic 

distribution of LIML with that of our preferred IV estimators. We 

determine the conditions under which the IV estimator has the same 

efficiency as LIML.

An application to the employment-output equation is presented in 

chapter 8. A series of Monte Carlo experiments are reported in 

chapter 9. Finally the conclusions are presented in chapter 10.
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CHAPTER 2

STRUCTURAL TIME SERIES MODELS

1. Introduction

In this chapter we review some standard results which are needed to 

handle multivariate structural time series models. We look at state 

space form models and discuss the estimation in the time domain and 

in the frequency domain, as well as asymptotic properties of the 

estimators. We also present in appendix, a brief review of 

optimisation procedures.

2. State Space Form Models

The models that will be considered here have a time invariant state 

space form given by

y^ - Z (measurement equation) (la)

« T (transition equation) (lb)

t-l,...T, where y^ is a pxl vector of observable variables, is a
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mxl vector of unobservable variables, known as the state vector, Z is 

a pxm matrix , T is a mxm matrix, is a pxl vector of serially 

uncorrelated disturbances with mean zero and covariance matrix and 

7]̂  is a mxl vector of serially uncorrelated disturbances with mean 

zero and covariance matrix We also assume that and rĵ  are

normally distributed and uncorrelated with each other for all periods 

of time and with the initial state vector which is assumed to have 

a normal distribution with mean a^ and covariance matrix Pq .

Although ARMA models can be cast in the space state form we shall 

only consider nonstationary structural time series models. 

Specifically, the i-th series, y^^ i-l,...p, may be modelled as

a) a local linear trend model, that is,

Yit “ ^it ^it » (2a)

^it “ ^i,t-l 0i,t-l ^it » (2b)

^it “ 0i,t-l ^it » (2c)

b) a random walk plus noise model, that is,

Yit “ ^it » (3a)

H t  “ H,t-1 + ^it : (3b)

c) or simply as a sequence of independent variables.

We note that (2) and (3) may be formulated as

Yit - Zi'Oit + ^it •

H t  - Ti*i,t-1 + ^it ,
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where for the random walk plus noise, z^'-l and T̂ -=l,

whereas for the local linear trend

H t • 1 1-
“it - zi'- [ 1 . 0 ]  ; T -

Pit . 0 1.

Thus for each series, z^' and are known and fixed,

SUTSE Models

If all series have the same state form, that is, Zi'-Z2' 
and Ti=T2=...-Tp-T, (1) becomes

=Zp-Z

(4a)

(4b)

where and are of dimension mxl. We remark that in (4b), T is 

mxm, while in (lb) T is mxm, where m-pm, and m-1 if each series 

follows a random walk plus noise and m=2 if each series follows a 

local linear trend model. The associated parameters are the pxp 

covariance matrix and the pmxpm covariance matrix The

distinct elements of these matrices are known as the hyperparameters 

and will be denoted by the vector Such models are known as SUTSE

(Seemingly Unrelated Time Series Equations), see Harvey (1989,page 

432) for a comprehensive study. The simplest SUTSE model is the 

multivariate random walk plus noise, obtained when m-1. Thus
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>it Git"
yt - • + • (5a)

>lt-l" %lt"
H  - + • (5b)

and both associated covariance matrices are of order (pxp). Because 

the matrices and are symmetric it will prove convenient to 

define as being the p(p+l)xl vector obtained from vec(Eg:l^) by 

eliminating all supradiagonal elements of Eg and Following

Magnus and Neudecker (1988,page 49) we have

and

[: 2]'
[2V]

vec[Eg:I^; (6)

(7)

where the p2 x ip(p+l) matrix D is the duplication matrix and D'*’ is 

the Moore-Penrose inverse of D, given by

D+ - (D'D)-lD'. (8)

Prediction Error Decomposition

Given the normality assumption on the initial state ag, and on the 

disturbances and y - vec [y^ y-p] will have a

multivariate normal distribution with mean p (Tpxl) and covariance 

matrix Ü (TpxTp). Now the density of y can be written in terms of 

the conditional densities, that is,
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where , . ..,yi). Therefore the density of y becomes

T - iJ(yt-EytlYt-l)'Ft’l(yt-EytlYt.i)
f(yip,n) - (2ir)-iT n \F^\-i « “ (9)

t—1

where is the conditional covariance matrix of y^ given

Yt-l»Yt-2'••'Yl"

It can be shown, see Harvey (1981,page 13), that Ey^lY^,]^ and are 

respectively the MMSE (Minimum Mean Square Estimator) of y^ given 

Y^.i and its MSE (Mean Square Error) matrix.

Once the model is formulated in a state space form these prediction 

errors can be obtained from the Kalman filter equations, see 

Schweppe (1965) and among others Harvey (1981) . The Kalman filter 

equations will be given in next sub section.

Kalman Filter Equations

When the model is cast in the state space form the parameters 6 are 

elements of a^, Pq and \J/, where ^ is the vector containing the 

distinct hyperparameters, rather than (/x,n). Clearly there is a 

relation between 6 and . The assumption of normality of the

initial state and disturbances implies that the process (yt,#t)
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is jointly Gaussian, and therefore the MMSE of given 

and the information at time t-0 is given by

^ [“ t A t  ] (1 ° * )

with associated MSE

- E^(a^- a^)(a^- a^)' (10b)

and the MMSE of ct̂  given Y^.i and the information at time t-0 is 

given by

*t/t-l" ^ht/Yt.i] 

with associated MSE

^t/t-l“ ^t-l^“t/t-l' *t/t-l)(*t/t-l" *t/t-l

The notation E%[ ] indicates the conditional expectation given 

and the information at time t-0. The necessary equations to compute 

these quantities are known as the Kalman filter equations and are:

the prediction equations

*t/t-l “ *t-l (12a)

^t/t-1 “ ^ t̂-l"̂ ' t-l,...T (12b)

and the updating equations

^t “ *t/t-l ^t/t-1 ^'^t^ ’’t (13a)

^t “ ^t/t-1 " ^t/t-1 ^ ^t/t-1 t-l,...T (13b)
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where

^ ‘ (14a)

"t " ^ ®t/t-l. t-l,...T (14b)

Note that from (la) and (11a) we have

Yt - EytlYt-i - 7t - Za^lt-l * »'t (15&)

and

Et-i(yt-Eyt'Yt-i)(yt-EytiYt-i)'

- Et-l[Z(at-atlt-l)+Ct][Z(Gt-*tlt-l)+Ct]' “ ̂t (15%)

where the last equality in (15b) follows from (11b).

Thus, omitting additive constants that do not depend on the

parameters, the loglikelihood function of y takes the form

I T  I T  1
Q ( 6 )  2 log IFVI - - y rt'ft'l ''t (16)2 t«l ^ 2 t-1 c c ^

where 6 - (a^,?^,^), and r̂ ~‘i'̂ (û) and F^-F^(Pq,v̂-) are obtained from 

the Kalman filter equations with starting a^ and Pq.

The Link between Cholesky Decomposition and State Space Techniques

If n is positive definite it can be factorized (Cholesky 

decomposition) in such a way that - L'F"’L, where L is a lower

triangular matrix with I's on the diagonal and F is a diagonal 

matrix. In multivariate models it turns out that L has diag{Ip,..,Ip)
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on its main block diagonal and F is a block diagonal matrix, i.e., 

F—diag{F]^. . .F-p) .

We shall now derive the matrix L for the univariate random walk plus 

noise model in order to show the obvious result that the prediction 

errors t«l,...T delivered by the Kalman filter can be written as 

V-L(y-p).

The matrix L will be derived for notational rather than computational 

purposes. In fact, in practice we never perform the Cholesky 

decomposition, since the major advantage of the Kalman filter is 

exactly to avoid the storage of a high dimensional matrix such as L.

By repeated substitution of in the measurement equation we have

yt - j-i

Hence, the mean of y^ is constant and equal to a^ and the 

relationship between fi and and the hyperparameters, \p -= (Og2 ^^2) 

is

- Pq + i cr̂ 2 + #^2 i=l,...T

O’ij - Pq + k cr̂ 2  ̂ k-min(i,j), i,j-l,...T.

Substituting these values in fi, constructing the Cholesky

decomposition of Q and inverting the triangular matrix yields
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0 0 0 . . . 0 0
P 1 0 0. . . 0 0 ̂1

L - - [ 1- 1 0. . . 0 01̂ ^2 ^2

_^yO[l_F^1][l_F^2] [l-^^2] - ^ ^ 2  1. . .0 0
 ̂2  ̂3  ̂2 ^3 3

[1-^1-l/T-2 ] ........................Pl-l/I-2 1
^2 lT-1 lT-1

(17a)
and

F - diag(fi,...,fx), (17b)

where Pt/t-1 as in (12b) and f^ is as in (14a). It is easy to 

verified that V- L(Y - la^) is the T-dimensional vector containing 

the prediction errors given in (14b). It is interesting to note that 

when the initial state is regarded as fixed these prediction errors 

are identical to the prediction errors obtained by means of the 

Rosenberg (1973) algorithm.

The relationship between and (aQ.Po,^) can be easily

established for the local linear trend, as well as for SUTSE models. 

We write

Yt - (z'0lp)(T0lp)^ Qq + (z'®Ip)J^(T®Ip)t'j + 6% , (18)
"j-1

hence

E y-Xo^o (19)
where

y-vec[yi yj]
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and

Xo - [(z-T'®Ip)’ (z'TTglp)']', (20)

and analogously as before the lower triangular and the block diagonal 

matrices L and F can be constructed with elements being functions of 

Z,T,^ and Pq . (Note that the superscript T in (2) is the sample 

size). Therefore (16) can be also written as

I T  1
B(,e) - - - % log iFpl - - L(y-Xoao)’I'-’L(y-Xoao) (21)2 t—1 2

where e-(aQ,?Q,v^) and y - vec[yi,y2 y?]

Conditional Likelihood Function

As it stands the loglikelihood function given in (21) is a function 

of 6, the distinct parameters which enter into (aQ,?Q,^). Often 

prior information on the initial state is available and of course 

should be taken into account. Typically prior information arises 

when the process is stationary or when the initial state may be 

regarded as fixed. When this is the case the Kalman filter yields 

the exact likelihood function for Y-j— (yĵ , . . . .y-p) via the prediction 

error decomposition. For the models considered here however, no 

prior information is avaiable. de Jong (1988) derived an expression 

for the likelihood function of Y-p, not conditional on Qq, where the 

place of both aQ and Pq is made explicit in the likelihood function. 

He pointed out that it is not possible to find the ML estimates of 

both aQ and Pq. He also justifies the specification of the
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unconditional distribution of in terms of a diffuse or

noninformative prior. This kind of specification can be interpreted 

as if the process has started in the remote past. In particular, for 

the random walk plus noise model, assuming that the process has 

started at time s, s<0, repeated substitution for in the

transition equation yields

“jLïJ "
The diffuse prior of ocq is obtained as s Certain caution,

however, should be taken when we say that the process has started in 

the remote past. First because there might be no physical 

interpretation, usually an economic time series has started in some 

finite time and second Yj will have an improper distribution since 

all elements of Y<p will have infinite variance.

Nevertheless, although the unconditional distribution of Y-p is not 

defined, the conditional distribution of YT'-'-Ym+l» given yi>••.Ym 
is defined. We note that in univariate models, if Pq is bounded, 

then conditionally on yi.-.-Ym, YT'-'-Ym+l normally distributed, 
with t-th element of the (T-m)xl mean vector being ZTt-Ma^. The 

(T-m)x(T-m) covariance matrix is (L'F‘iL)’i where L and F are 

obtained by eliminating the first m rows and columns of L, and F, and 

L'F'ib is the covariance matrix of the unconditional distribution of 

Y-p. Now if Pq goes to infinity, it is easy to verify that for the 

univariate random walk plus noise model,

ap -* yp (22a)
Pi -♦ (7̂ 2 (22b)
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and for the local trend model

®2 [ y p y j  (23a)

P2 - 2 j U j ^ < r . 2 ]  ■ (23b)'.2 2P(2+pq2+p^2,

On the other hand, rather than assuming a diffuse prior for the 

initial state we could construct a proper prior for Ojjj from the first 

observations. It turns out, however, that the resulting estimators 

of the mean and variance of are the same as the converging values 

given in (22) and (23) for the random walk and local trend models 

respectively. In other words, the use of a diffuse prior is 

equivalent to constructing a proper prior from the first m 

observations, in the sense that either would result in the same 

conditional likelihood function, see Harvey(1989, pages 120-128).

For complex multivariate models it is not always clear how to 

construct a proper prior from the first observations. Therefore the 

conditional likelihood function is obtained starting the filter with 

a^ and Pq-KIJJJ where K is a large finite number, is the mxm

identity matrix, and m is the dimension of the state. Initial 

observations are discarded. Alternatively the conditional likelihood 

function can be computed by means of an algorithm devised by 

de Jong (1988,1991). Nevertheless, since the multivariate model that 

we are primarly interested in is the multivariate random walk plus 

noise given in section 2, (22) can be generalized straightforwardly. 

Thus a^ becomes the pxl vector y^ while the pxp matrix . From 

the above discussion the resulting conditional loglikelihood function
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becomes

I T  1 -----
C W  - - - 2 log iFf, . - (L(y - X o V ’ L(y -X^am) _ (24)2 t—m+1 2

where y-vec(y^^2 For the models we shall consider onwards the

p(T-m)xpm matrix Xq , becomes

- a T-1 vector of ones for the univariate random walk;

T-1 identity matrices of order p stacked together for the

multivariate random walk ;

- a T-2 vector with t-th element equal to z'T^-Z for the local trend 

model.

For a given Q(xl') is evaluated applying the Kalman filter to ŷ ., 

t-m,...T, with starting values â  ̂and Pjj, as discussed above. Often we 

shall write (24) as

e w  - - i I log iFfi - 1 2 (25)2 t—m+1 2 t—m+1

where and ,t-m+l,...T, are respectively the prediction errors 

and MSEs delivered by the Kalman filter.

In univariate models the place of one of the m+1 hyperparameters 

contained in \J/ can be made explicit in the loglikelihood function. 

This can be done by scaling the hyperparameters. That is, in the 

Kalman filter equations, is replaced by and by (1,^*)

where ig the hyperparameter whose place is made explicit and v'*

is the mxl vector containing the remaining m scaled hyperparameters. 

It turns out that the prediction errors delivered by the Kalman
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filter with scaled hyperparameters will be unaffected whereas their 

MSEs, ft*» will also be scaled. The resulting loglikelihood function 

then becomes

rt 1 T T-m 1 A T A
- - — 2 ^t ■ --- - — O’*" S ?t /^t (26)2 t-m+1 2 2 t-m+1

where we have omitted the star on which indicates that these MSEs 

are delivered by the Kalman filter with scaled hyperparameters.

For multivariate models unless the system is homogeneous, it is not 

possible to reparametrize in terms of an entire covariance matrix. 

However one element can always be made explicit in the loglikelihood 

function.

Clearly the MLE of (o*2^ is the point, (a*2 that maximises

the loglikelihood function. Since (T*2 can be concentrated out the 

maximisation of (26) is nonlinear only with respect to .

3. Estimation in the Frequency Domain

We shall now turn to the frequency-domain approach for estimating 

structural models. We introduce the spectral likelihood function and 

derive the asymptotic information matrix.

The Spectral Likelihood Function

Let Uc, t-0,±l,±2,.. be a p-variate stationary, zero mean, Gaussian
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process. Let F(X,^) be the spectral matrix of the process, where ^

belongs to the parameter set 0 and Xe[-ir,ir). F(X,^) is defined by

F(X.^) - 2 r(T,ÿ) e (1)
7 — -00

where

r(T,v^) - EutUt_f', T-0 ,±1 ,.. (2)

is the autocovariance matrix at lag t, see Harvey (1989,page 428). 

The diagonal elements of F(X) , where we have omitted the argument \J/ 

and often shall do so, are the power spectra of the individual 

processes. The ij-th element is the cross-spectrum between the i-th 

and the j-th variable for j^i. The spectral matrix, see

Fuller (1976), is Hermitian, that is, F(X) - F*(X) and positive 

semidef inite, that is, w*F(X)w > 0 for any complex vector such that

w*w>0, where here and onwards [•]* denotes the complex conjugate

transpose of a matrix or of a vector.

Let F(Xj), j-0,...T-l, denote the spectral matrices at frequency Xj, 

where

Xj — — , j “ 0,...T-l.

Let

U ’ - [ui,U2 u-p] ,

and let Ipj'uC^j) he the Hermitian matrix of periodograms and

crossperiodograms of U', or as we shall say, the periodogram matrix, 

given by
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We also introduce, I'p(X)«Iu'u(X), which we shall need later, the 

periodogram matrix defined for all X in [-%,?). Of course we cannot 

evaluate l-pĈ ) numerically as a continuous function of X.

As is well known, see among others Robinson (1978), the 

frequency-domain or spectral likelihood function for vecU' is given 

by

C(ÿ) - -iX^oglF(xpi - i V t r  [F-l(X,)Iu.u(Xp]. (4)j—0 j=0

If the process u^ is a non-zero mean one then j-0 has to be excluded 

from the sum to mean-correct the process. We remark that if the 

covariance matrix of vecU' has the form of a circulant matrix then 

(4) is the exact time domain loglikelihood function, otherwise (4) 

has to be regarded as an approximate version of the time domain 

loglikelihood function, see Harvey (1989,page 193). Because the 

periodogram matrix does not depend on the parameters, changes when a 

new estimate of these parameters is produced in an iterative 

optimisation scheme only affect the estimates of the spectral matrix. 

As we shall see below in structural time series models the spectrum 

can be easily evaluated. Hence the optimisation procedure can be 

carried out quite rapidly.

The structural processes introduced in the previous section are 

clearly nonstationary. Nevertheless for a univariate process

stationarity can be achieved by differencing the process, once, if it
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is assumed that the process follows a random walk plus noise with 

Oq2>0 and twice if it is assumed to follow a local linear trend with 
Of2>0. It can be shown that the differenced processes are 

respectively restricted MA(1) and restricted MA(2). Moreover they 

are invertible and therefore the respective spectral densities are 

strictly positive over [-%,*).

We note that in the random walk plus noise model if (T̂ 2 » q the 

process is already stationary with mean different from zero and in 

the local linear trend model if (Tf2»0 we only need to difference once 
to obtain a stationary non zero mean process. Overdifferencing will 

yield a strictly non-invertible process with non-strictly positive 

spectrum over [-%,%).

The multivariate processes that we shall consider are the SUTSE 

models introduced in section 2, in particular the multivariate random 

walk plus noise, given in (2.5) with associated covariance matrices 

Ig and Lyj. Therefore if is positive definite then differencing 

once yields a multivariate stationary and invertible process with 

spectral matrix

F(Xj) - F(Xj,ÿ) - (2t)-1 (c(Xj)I; + Iq), (5a)

where

c(Xj) - 2(1 - cos Xj), (5b)

and ^ is the p(p+l) vector containing the distinct elements of Ig and 

I^. We note that F(Xj), j-0,...T-l are real, positive definite, 

symmetric matrices, and therefore the determinant of F(Xj) is 

strictly positive.
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It should also be noted that because lu«u(Xj) is a Hermitian matrix 

it can be expressed as

 ̂Inilu'u(^j) (6)

where ^%u'u(Xj) is a real symmetric matrix and Imlu'u(^j) is a real

skew symmetric matrix, that is, (Imlu*u(^j ) ) ’ “ - Jmly,y(Xj). Now
since F(Xj) is symmetric we have that

tr[F(Xj)"ilmlu'uC^j)] “ - tr[Imlu'u(^j)F(^j)’^]

— - tr[F(Xj)"l ZmlyiyCXj)] — 0.

Hence,

tr [(F(Xj)-lly.u(Xj)] - tr[F(Xj)-l JÎIu.u(Xj)]. (7)

and therefore the periodogram matrix in (4) is in fact only the real 

part of the periodogram matrix. We shall however keep the notation. 

It can easily verified that the real part of the periodogram matrix 

can be written as

aiy.ufXj) - U'*jU , (8)

where the TxT matrix 'J'j , j-l,...T-l, is real, symmetric, with (C,k)

entry being

i/j(C,k) - cos(Xj(<?-k)), C,k-1,...T. (9)

Using (9), the spectral likelihood takes the form



38

e w  - -iVloglF(Xj)l - ijigtr [F-l(Xj)U'$jU] . (10)

Asymptotic Information Matrix

It is well known that the asymptotic information matrix is determined 

by

where \j/Q is the true parameter vector and is the loglikelihood

function of the T observations. We shall only consider the case 

where the observations are generated by a multivariate random walk 

plus noise process. Hence ^ is given in (2.7). Now the first and

second derivatives of (10) with respect to ^ are given in 

Harvey (1989) or in Fernandez(1986) and are

- \ j i ^ j ■ Tj-lU'»jUFj-l ] (11)

and

[KFj-l@Fj-l) - (Fj-l@Fj-lu'*jUFj-l)] Sj (12)J=0

where

BvecF;

and

Fj - F(Xj.^) - (2*)-l .

Cj-c(Xj)-2(1-cosXj).
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Vectoring Fj and using (2.6) we have

hence Sj becomes

Sj - (2t )-1 [cjD :D] . (13)

Using the fact, see Priestley (1981,page 418), that

ElT(k)lk - F(k'^o)lk + O(T-llogT), l,k-l p (14)

we have

lA(^o) - J S(X)' [F-1(X)®F-1(X)] S(X)dX (15)
-T

where F(X) - F(X,^o), S(X) - [c(X)D ; D], c(X) - 2(l-cosX) and D is 

the duplication matrix.

Maximum Likelihood Estimation

In order to find the point that maximises given in (4) we need

a numerical method. Now from appendix 2.1, where we briefly discuss

optimisation procedures, we have the iterative scheme defined by

V'k+1 " (\̂ k) &(^k)' (16)

where g(^%) is the first derivative of Q with respect to \J/ evaluated

at \lr̂ and H(^%) is the Hessian matrix evaluated at
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Alternatively, replacing by minus H(^%) yields the scoring

algorithm, where for the multivariate random walk plus noise, T times 

H(^@) is a finite approximation of the integral given in (15). Hence 

H(^k) is given by

T _ 1
H(^k) - i , (17)

where Fj-Fj . As shown in Robinson (1978), under certain 

regularity conditions -T"^H(\^) and T'lH(^) are asymptotically 

equivalent.

4. Asymptotic Theory

The spectral likelihood function given in (3.4) has to be regarded as 

an approximation to the time-domain likelihood function. However the 

spectral ML estimators have the same asymptotic properties of the 

time-domain ML estimators. Therefore we are only going to consider 

the asymptotic properties of spectral estimators. This issue was 

considered in Fernandez (1986). Since, after differencing, the 

structural models considered here are vector MA's, the underlying 

asymptotic theory in Fernandez (1986) is regarded as a specialization 

of the asymptotic theory for stationary vector time series given in 

Deistler et al (1978), Dunsmuir and Hannan(1976) and Dunsmuir(1979). 

However, since we are primarily interested in the asymptotic 

properties of estimators obtained by the iterative scheme given in 

(3.16), for example the two-step estimator obtained as v̂2 vhen v'l is
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consistent, the asymptotic theory given in Robinson (1978) seems to 

be more appealing.

In what follows we state without proof asymptotic results for 

estimators of the parameters involved in a scalar structural process. 

These results are a specialization of the ones given in 

Robinson (1978) for more general stationary processes.

Let
1 T-t

c(T) - : : <1)1 t—i

V' - G(c(o),c(l).... c(t)), (2)

where G is continuously differentiable in a neighbourhood of 

(7(0),7(1).•••,7(f)):

and a single iteration of the scheme given in (3.16) with initial 

value .

Under suitable conditions, we have

lim (c(t)-7(7))“0 a.s. for all fixed t ; (3)

I dTi(c(0)-7(0),c(l)-7(l).... c(t)-7(t)) N(0, ), for all t)1; (4)

lim (i/- - vJ-q ) - 0 a.s. ; (5)T->oo

1 - dT:(^ - -> N(0, ■ ) ; (6)

lim (^ - - 0 a.s. ; (7)T-Ko
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The condition under which (3) holds is

(Al) is zero mean, Gaussian, second order stationary and
27(t)2 < 00.

We remark that Gaussianity can be replaced by conditions on the 

fourth cumulant. If the mean of the process is unknown then c(r) in 

(1) must be mean-corrected.

Result (4) can be shown for Gaussian processes, see Priestley 

(1981,page 339). In Robinson (1978) result (4) is imposed plus 

additional conditions on û ..

Results (5) and (6) follow from a straighforward application of the 

mean value theorem.

Results (7) and (8) hold under (Al) and the following additional 

conditions.

(A2) u^ has spectrum f(X,^) belonging to Lip f, the Lipschitz

class of degree f.

(A3) \I/q is an interior point of 0, which is the compact closure of an 

open submanifold in a twice-differentiable p-dimensional 

manifold.

(A4) f(X,\J') is continuous in Xf [-*,?], ^(0.

(A5) f(X,v̂ ) f(X,^o) for all ^ ^(0.
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(A6) Within a neighborhood of f(X,^) has first and second 

derivatives with respect to yp, these being continuous in 

X and

(A7) f(X,^o) > 0; f'(X,^o) e Lipf, f>J.

(A8) IA(^q) is positive definite.

It can be easily verified that these conditions will be satisfied for 

the models considered here. For the random walk plus noise model, 

since

- [-7(1) : 7(0)+27(1)],

the estimator suggested in (2) becomes

[-c(l) : c(0)+2c(l)]. (9)

We also note that result (8), i.e., an asymptotically efficient

estimator for is obtained by a single use of the iterative scheme 

provided that the current estimate is consistent, is particulary 

useful when we consider time series regression models.

Results (3-8) can be generalized to vector processes. The conditions 

are basically the same but are on the elements of the spectrum matrix 

F(X,^). Also in (A7) f(X,^o)>0 is replaced by F(X,^q ) positive

definite.
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Appendix 2.1

Optimisation Procedures

The maximum likelihood estimates emerge as a solution of the 

likelihood equations

^  L(#lx) — 0 (1)

These equations are often nonlinear in 6, hence they must be solved 

numerically. The basic procedure to solve a nonlinear set of 

equations is the well known Newton-Raphson method

*k+l “ ^k • Gk'l gk (2)

where d-̂ is a vector of initial values, 6̂ , k-1, . . . is the current 

estimate of 0 , 0% and g^ are respectively the Hessian matrix and the 

gradient vector evaluated at the current estimate.

Different subroutines have been written for the implementation of the 

Newton's method or variations of it. Hence from the computational 

point of view we do not need to worry about the actual calculation of 

the maximum likelihood estimates. We do not even need to derive the 

analytic form of the first and second derivatives since they can also 

be computed numerically. However for a large number of parameters, 

as is the case in simultaneous equation systems, the computational 

time burden is formidable and it might be worth to examining 

different iterative procedures by exploiting the structure of the
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model.

Variations of Newton-Raphson method arise by replacing G by a

positive definite matrix H close to G. In the particular case where 

G is replaced by the information matrix the procedure is known as the 

scoring algorithm.

Sometimes the parameter set can be partitioned as 0 - (5,^^ such that 

the likelihood equations are linear in 6 given v̂' and vice versa. To 

exploit this property Sargan (1964) introduced the stepwise 

optimisation procedure. From the theoretical point of view, however, 

the procedure is valid for any partition of 6. Such a procedure

which induces separate optimisation of the parameters in 6 can be

regarded as (2) with G* replacing G where G* - diag{ Hii,H22 ) and 

where and H22 are the submatrices of the Hessian matrix

corresponding to the second derivatives with respect to Ô and ^

respectively. Thus the iterative scheme is for j-2,..

&j(k+l) - 5jk + Hii(6jk,^j)-lg5(6jk,^j) k-0,... (3a)

^j(k+l) " V̂ jk + H22(&j,^jk)'^6^(&j'^jk) k-0, . . . (3b)

where 6̂  and are initial values, 5jO “ 5j , ^jO " are the final 

estimates computed at step j-1. gg, the first derivatives with 

respect to Ô, and are evaluated at the current estimate of 6 and 

at the final estimate of ^ at step j-1; similary g^ and H22- The 

procedure is bound to converge, see Oberhofer and Kmenta (1974), 

Clearly if the likelihood equations are linear in 5 given \J/ then



46

can be obtained directly, and vice-versa.

On the other hand linearity in a subset of parameters given the

second set, say, in 5 given \p can be explored by concentrating Ô out

of the likelihood function. In other words, Ô is replaced in the

likelihood function by the solution of the equations for Ô, say, 

ô-ô(^) yielding the concentrated likelihood function which has to be 

maximised nonlinearly with respect to \p. Once we have obtained the

maximum likelihood estimator of Ô is given by .
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CHAPTER 3

TIME SERIES REGRESSION MODELS

1. Introduction

This chapter is a continuation of chapter 2 in the sense that more 

known material is presented. It provides a basis for our discussion 

of a single equation from a simultaneous equation system, as well as 

for the whole system, to be given in the next chapters. Also its 

notational content will be relevant for our purposes.

Although this material could have been presented in the remaining 

chapters together with new material, we have chosen to bring it 

together in this chapter, so that it might be skipped by the well 

informed reader, and also to avoid burdening the reading of the 

related chapters.

Our main purpose is the discussion of time series regression models, 

more specifically, the inclusion of regressors in the models formerly 

handled. Since the generalization from scalar to vector processes is 

straighforward we shall consider in some detail only scalar models. 

Such models can be formulated in state space form. Two possibilities
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are open. Firstly, augmenting the state to Include the regression 

coefficients, and secondly via the Kohn and Ansley (1985) approach. 

Our emphasis relies on the latter. In either case, the Kalman filter 

plays an important role.

2. Regression Models with Stochastic Components

We shall now consider the inclusion of explanatory variables in 

structural time series models. Since the generalization to more 

complex models is straightforward, for simplicity, only the local 

level model will be considered. Thus, let the model be

Yt - Zt'& + ^t (la)

Wt - Pt + ^t (lb)

- Pt-i+ Vt (Ic)

where z^' is a IxK row vector of explanatory variables which we 

initially assume to be non-stochastic. The assumptions on w^ are as 

in chapter 2, that is, and independent and normally

distributed. No information about the initial state is available. 

We also assume that rank(Z)-K, where Z'*(z]^, . . . ,z-p) , Let

6 - (0',^')', \p - (Og2,Œq2) denote the parameters of interest.

Now conditionally on wp the loglikelihood function for w^,...,*^ is 

given in (2.2.24). Hence, since is non-stochastic, it follows 

immediately that the loglikelihood function for 72»-''«yT 

conditionally on yp is given by
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e(») - - i f  log ft ■ i[L[y-Iyi-(Z-Izi)«)]’F-lL[y-Iyi-(Z-2zi)«] (2)t-2

where y'-(y2,- -,7%)' Z'-(z2, . . . ,z-p) and I is a T-1 vector of ones. 

As discussed above (2.2.25), Q(d) is evaluated applying the Kalman 

filter to y^-z^'ô with starting yĵ -xĵ 'ô and Pi-Og?. However, since

L[y-Iyi-(Z-2zi)5] - L[y-Iyi]-L[(Z-Iz^)Ô],

applying the Kalman filter to y^-z^ô, t-2......T is equivalent to

applying the Kalman filter separately to y^ and to each column of z^' 

with respective starting values y^ and [zii,...,z%i]. Hence, if the 

hyperparameters are scaled as in (2.2.26) the resulting loglikelihood 

function becomes

#(5,0*2,^*) “ J log f(. - i(T-l)loga*2 _  ̂ ^ (3&)
t“2 t—2

where

L-'t^ft'^ - 5 (ÿt-2t«)^/ft - (3b)t=2 t“2

and ŷ -, z^' are the 'innovations' delivered by the Kalman filter with 

scaled hyperparameters.

We now consider the case where the exogenous variable are stochastic. 

Clearly, if this is the case, in principle, the whole distribution of 

y and Z, which depends on the full set of parameters, say, X must be 

specified. However if z^ is weakly exogenous for 0 then (3) is a 

valid basis for inferences purposes since in this case z^ could be
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regarded as being fixed. We shall confine ourselves to the concept

of weak exogeneity given in Engle, Hendry and Richard (1983). In the

normal framework, X consists of the mean vector and the covariance 

matrix. Usually the elements of 6, the parameters of interest, do not 

coincide with those in X. Thus, let 6^ be a reparameterization of X 

such that where 6 and 6^ are variation free, i.e. 6 and 6̂

are not subject to cross restrictions so that for any admissible 

value of #2, 6 can take any value in its parameter space and vice

versa. Then is weakly exogenous for 6 if the joint distribution of

[Y-p,Zj] can be factorized as

f(Y,Z;et)-nf(ytlZt,Yt_i,Zt_i;4)f(yilzi;e) Of (z^ lY^-.i.Z^.i; 0z)f I 0^)t—2 t—2 (4)

Hence all sample information concerning 6 can be obtained from the

first term in the RHS of (4). For prediction purposes we have to

assume that z^ is strongly exogenous. We note that z^ is strongly

exogenous for 6 if it is weakly exogenous and in addition past values

of y^ does not Granger-cause z^, that is, conditionally on 

Zt_i,Zt_2,.., z^ is independent of past values of y^.

Multivariate Time Series Regression Models

Multivariate models can be handled in the same way. Thus, let the 

model be

Yt “ B'zt + '̂ t (5)
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where is a pxl vector, B' is a pxK matrix, is a Kxl vector and 

plimT’^Z'Z is positive definite, where Z*-(z]^, . . . ,z-p) . w^ follows a 

multivariate random walk plus noise model. Let #-(0,^) the 

parameters of interest, where /3-vecB and ^ is the p(p+l)xl vector 

containing the unrestricted elements of and Using rules on

Kronecker products, see Magnus and Neudecker (1988,page 47), (5) can 

be rewritten as

yt - (Ip8Zc')P + ^t (6)

We note that if some of the elements of ^ are constrained to be zero 

then (6) can be written as

yt
Zlt' 0 
0 Z2t’
0 0

0 
0
0 z

(7)

where Z^t' are the explanatory variables in the i-th equation and /3* 

contains the unrestricted elements of /5-vecB.

Now conditionally on the first observations the loglikelihood 

function for w-vec(w2,...,w^) is given in (2.2.25). Hence arguing as 

in the univariate case it follows that the conditional loglikelihood 

function for y-vec(y2,..•.yj) takes the form

4(4) - -i 2 log IF^It—2
where

"t " yt ■ Zt'^ ,

- i j  .t—z (8a)

(8b)
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and ŷ . is obtained by applying the multivariate Kalman filter to y^, 

t“2,...T, with starting value yi (pxl) and Z^' is obtained by 

applying the multivariate Kalman filter separately to each column of 

(Ip®z^.'>, t-2,...T, with starting values being the respective column 

of (IpQzi').

Maximum Likelihood Estimation

In the next section we are going to derive the asymptotic information 

matrix in the frequency domain. We are going to show that the 

asymptotic information matrix is block diagonal with respect to 

regression coefficients and hyperparameters. As pointed out in 

chapter 2 the asymptotic properties in the frequency domain are the 

same as in the time domain, hence the time domain asymptotic 

information matrix must be block diagonal. Therefore the stepwise 

algorithm seems to be a natural way to obtain the ML estimates. 

Alternatively the ML estimates can be obtained by concentrating the 

vector containing the regression coefficients out of the 

loglikelihood function.

From the discussion of the optimisation procedures given in appendix 

2.1, the optimisation of (3) by means of the stepwise algorithm 

consist of two parts, one for and one for b. The part for

consists of finding the point that maximises (3) with 

respect to conditionally on a given b. We shall denote this

point by (5), Clearly, (a?. is
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obtained as it would be for a model without explanatory variables. 

The part for 6 consists in finding the point that maximises (3b) with 

respect to 6, conditionally on a given This is simply the GLS

(Generalized Least Squares) estimator, that is,

««*) - [ ]‘M  ■ (9)

MW  ̂  ̂  ̂ ^ ^Hence, given an initial value, say Ô, 0’* “0'^(5), ^*-^*(&) and

5-5(^*) are evaluated as described above. Then, making use of 5,

 ̂ and 5 are updated. The procedure is repeated until

convergence is attained. We mention that the OLS (Ordinary Least 

Squares) estimator of 6 of the differenced model may be used as a 

starting value for 6.

On the other hand replacing (9) in (3b) yields the

concentrated loglikelihood function with respect to (#*2,^*). Once 

the point that optimises ,\}/̂) is found, say g is

evaluated by means of (9) with replacing

Finally we mention that for multivariate models, with loglikelihood 

function given in (8) , 0(\p) becomes

(10)

and the optimisation procedures described for the univariate case can 

be generalized straightforwardly.
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From the computational point of view, for a large number of 

regressors concentrating 6 out of the loglikelihood function might be 

more time consuming. This will be so, because the iterative scheme 

activated to optimise requires the computation of Ô at

each iteration. For disturbances following a univariate random walk 

plus noise model, is optimised nonlinearly with respect to

one parameter only. In this case the NAG subroutine E04JBF calls 

approximately 50 times. So 50 times a large matrix must 

be inverted. In the stepwise procedure 6 is computed only at each 

step. Our experience shows that only a few steps are required for 

convergence to be attained.

3. Frequency Domain Estimation

In the previous section we have considered the model 

yt - B'Zt + Wt ,

where the vectors y^ (pxl) and (kxl) are the observable variables 

and the vector w^ (pxl) is the non observable process following a 

multivariate random walk plus noise. We shall now discuss the 

frequency-domain approach to handling such model. The first step is 

to transform to a regression model with stationary disturbances. 

Because w^ follows a multivariate random walk plus noise differencing 

once y^ and yields

yt - B'Zt + ut , (1)
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where we deliberately omitted the differencing operator A in front of 

and and will do so in the rest of this chapter, to avoid 

overelaborate notation. Thus whenever we refer to ŷ - or z^ we are in 

fact referring to ^y^ or Az^. The spectrum matrix of u^ was given in 

(2.3.5). The exogenous variables are assumed totally independent 

of the process u^ and it is assumed that the following limit exists,

T
lim T‘  ̂J Zt Zt+r' - FzCr) a.s., t-0,±1,±2,... (2)T-»oo t-1

with FzCO) nonsingular. The existence of the limit implies that there 

exists a spectrum matrix F^CX) such that

Trz(r) - J Fz(dX) ,
-  IT

see Hannan (1970, ch 2) for details concerning this assertation. We 

also assume that liraT'^J z^ exists.

In matrix notation (1) can be written as

Y ’ - B'Z' + U ’ (3)

where

Y' - [YI-'-Yt ] where y^ is pxl
Z' - [z]^...z-p] where z^ is Kxl

U' - ['̂ 1---'̂ t ] where u^ is pxl

Now the spectral likelihood for vecU' is given in (2.3.4) and since Z
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and U are totally independent the spectral likelihood function for 

vec(Y') becomes

1 T-1 1 T-1 , .C(9) - - - T loglFil - - I trrFi-lU't.U] , (4)
2 j-0 J 2 j-0 J

where /3 - vecB and is as in (2.2.7), that is, the p(p+l)xl

vector obtained from vecCI^:!^) by eliminating the supradiagonal 

elements of and I^. U'^'jU -lu'u(Xj) is the real part of the 

periodogram matrix of U where U' is expressed in terms of the 

observations through (3). Thus,

B'l2'z(kj)B (5)
where

lY'Y(kj) Iz'Y(kj)l [Y'i'jY Z'*jYl
lY'z(^j) l2'Z(Xj) Y'^'jZ Z'*jZ

(6)

is the real part of the periodogram matrix of the augmented process 

[yt'zt']', 'J'j as given in (2.3.9).

The spectral ML estimates of #=(0',^')' are those which maximise (4). 

Before discussing the maximisation of (4) we shall derive the 

asymptotic information matrix.

Asymptotic Information Matrix

The first and second derivatives of (4) can be obtained as a 

specialization of the ones given in chapter 6 when we shall handle
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simultaneous equation systems. They are also given in 

Fernandez (1986) although with respect to vecB'. The reason why we 

prefer to define /3-vecB rather than |5-vecB' will become clear in the 

simultaneous equation system context.

Thus

a .  r T -1C - vec[ Fj-1 ] (7a)

«% * -- - jyj'vec[(Fj-l - Fj-1 U'*jU Fj-1) ] (7b)

and

- -jlJ [(Fj-l@Z'*jZ)] (8a)

[(Fj-lU'»jZ@Fj-l)Kkp] (8b)

[i(Fj-l@Fj-l) - (Fj-l@Fj-lU'$jUFj-l)]Sj (Sc)

where K^p is a KpxKp commutation matriz and Sj is given in (2.3.13), 

that is,

Sj - (2i)-l [cjD : D] .

Since u^ and z^ are totally independent and u^ has zero mean we have 

and because of (2) and (2.3.14) we have the asymptotic 

information matrix.

- lim T-1 f-E 32 e
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0 J S(X)' [F(X)-1®F(X)-1)] S(X)dX-r
(9)

where is the true value, F(X) - F^(X,0q ), S(X) - (2*)"l[c(X)D:D], 

c(X) - 2(l-cosX) and D is the p2x&p(p+l) duplication matrix.

Spectral Maximum Likelihood Estimates

As in the time domain, the spectral ML estimates of (|3,\/) can be 

obtained by means of the stepwise algorithm. From (7a), we have that 

conditionally on \p, the spectral ML estimator of 0, is given by

i W  - veclz.y(j)] (10)

where I^'zO) “ Z'^jZ and Iz'yCj) “ Z'^jY are the real part of the
respective periodogram matrices. Hence the point that optimises (4)

with respect to (0,^) can be found as follows.

Step 1- An initial value for /3 is evaluated, say 0-vec where

Bls is the least squares estimator, that is.

ÈLS - [Z'Z]-lZ'Y ; (11)

Step 2- Conditionally on (4) is maximised with respect to i/'',
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Step 3- Making use of (10), is evaluated, where yp was obtained

in step 2.

Steps 2 and 3 are repeated until convergence is attained. However as 

we shall see in the next section, provided that we start with a 

consistent estimator of 0 no gain in efficiency will be achieved if 

the procedure is repeated. Also, in obtaining we do not need

to iterate until convergence, if we start with a consistent estimator 

of \P. This efficiency, however is asymptotic and in practice it will 

be best if we iterate until convergence is attained. Therefore any 

starting value might suffice.

Alternatively, the ML estimates of could be obtained by

concentrating /3 out of the spectral likelihood function. The 

concentrated likelihood function becomes

1 T-1 1 T-1
Q, ~cW  - - - j%ologlFj, - - Fj-lu'tjU ] .

where U-Y-ZB, and B is such that vecB=/3, and 0 is given in (10)

4. Asymptotic Theory of Time Series Regression Models

The asymptotic theory of regression time series models is discussed 

in Fernandez (1986). However as we find that some of the results may 

not be as straighforward as they appear and because we will need 

these results in the next chapter when we shall handle Instrumental 

Variable estimation a brief discussion is in order. We shall
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restrict ourselves to the asymptotic properties of the stepwise 

estimator of 6, #-(0,^) outlined in the previous section. Details

will be omitted since our results follow directly from the results 

given in Robinson (1978), Hannan (1973), Hannan (1971). Moreover as 

the vector case is essentially the same as the scalar case, for 

simplicity of presentation we shall handle only the scalar case. 

Thus, let the model be

Yt - zt'a + ut

where u% - %% + "̂ t̂ fy(X) - (7^22(l-cosX) + Under the

condition on given in (3.2), we have from Hannan (1971) that

iT-l 1 /plim T-1 % [$j Iz'z(j)] - - J $(X)Fz(dX) (1)
 ̂ ^ -TT

and
-T-1

plim T-1 I [$; Iz'u(j)l - 0 (2)j-0

where $(X) is a continuous, even, function of X, satisfying $(X))0, 

Xc[0,ir]. Clearly these results hold if $j-fj, however as in 

Hannan (1971) we need these results to remain valid if is replaced 

by fj-1, fj-fj(^), where ^ is a consistent estimator of ^ .

From Hannan (1973), for more general processes generating the 

stationary disturbances than the ones considered here, we have the 

following central limit theorem

T _ 1 J 1 ^
T -i Iz'U(j)] 3 N [0 . - J  fu-l(X)Fj(dX) ] (3)
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We note that, if ^ is /T-consistent, that is, T&(^-^o)-Op(l) then, 

because f^/X) satisfies the regularity conditions given in section 

2.4, we can expand fj'l in a Taylor's series for random functions, 

see Fuller(1976,page 191), and write

;T-1. , T-1T- ■

where the derivative is evaluated at the true parameter vector 

fj-fj(^o) and fj-fj (̂ ) . Now from (2) it follows that the RHS of the 

above expression converges in probability to zero. Thus (3) holds if 

fj is replaced by fj.

In appendix 3.1 we show that

d
^ N [0, lA-l(vSo) ] (4)

and
d

Ti(5-6o) ^ N [0, IA-l(«o)] , (5)

where IA(6q ) and are respectively the top left block and the

bottom right block of the asymptotic information matrix given in

(3.9), specialized for the univariate model;

^ ^ + Hri(^o g^(&,^), (6)

"  2 jio ■
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where and g^(0,^) is a specialization of (3.7b) for the

univariate model evaluated at (0,^);

« W  - ] : (7)‘•J—0

Ti(«-«o) - Op(l),

Ti(ÿ-ÿo)- Op(l).

We note that because - [-7(1): 7(0)4-27(1)]', a yT-consistent

estimator of say v^^(ô), can be constructed from c(r), where 

c(t) - T"1 ^ u^Ut-T, Ut=yt-Zc& and 5 is the OLS estimator of Ô. From 

the discussion in section 2.4, we have that Ti(c(r)-7(7)) -4 N(0,-), 

where c(t) - T’^ J u^-u^.^. However since T&(6-ôo) - Op(l) , it can be 

verified that the central limit theorem above holds if c(t) is 

replaced by c ( t ).

For the vector process given in (3.1), the results (1-3) take the 

form

T *■ 1 1 ^
plim T-1 iglFj'lQIz'zCj)] - - J  Fu-l(X)@Fz(dX), (8)

,T-1 ,
plim T-1 I [(F;-l@lk) veclz'u(j)] " (9)j-0

.T-1 , d  ̂ 1 f* .T %Q[(Fj-l 0lp)vecIz.u(j)] ^ N [0 , -- jFu-l(X)®Fz(dX) ], (10)
 ̂  ̂~r
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and as discussed below (2) and (3) results (8-10) hold if Fj is 

replaced by Fj-Fj(^), where T - ^q ) - Op(l). Hence proceeding in

an analogous way to the scalar case and bearing in mind that the 

information matrix is block diagonal, we have

^ N(0.IA-1(9o)).

where ^ is a single iteration of the Newton-Raphson scheme with 

initial value constructed from u^ - y^-B'z^-, and 0 is given in (3.10) 

with ^ replacing \p. *'̂ o') ' IA(#o) is given in (3.9).

Finnaly we mention that the asymptotic results can be extended to the 

case where the z^'s satisfy the Grenander conditions given in 

Hannan (1970,page 77).
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Appendix 3.1

Proof of Asymptotic Results

We start discussing the asymptotic properties of given in (4.4), 

that is,

V' - ^ (vi') g^(5,V') , (1)
where

— ~ 1 T-1 - n
H(V̂ ) - - Sj'fj-2 Sj ,

and b ,\}/ are yT-consistent estimators of b and respectively. g^(6,^) 

is (3.7b) evaluated at (6,^). We note that the first order Taylor 

expansion of g^(5,^) around (ô,^o) is

g^(ô.ï) - g^(5,^o) + HY,^X5,^o)(^-^o)+0p(Tl ) (2)

where H^^(6,^o) is (3.8c) evaluated at (ô ,\̂q ). Hence subtracting 

and multiplying by T^ both sides of (1), from (2) we have

Now
1 1 T-1 « 1 T-1- - —  ^2^ Sj'fj-2 Sj - - Sj'fj-3 Sj
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-  ^  j i g  S j ' f j - 2 S j  - 1  j I q S j ’ f j - 3  [ I Ù ' ^ ; ( j ) - I U ' u ( j ) ] S j

■ Î j S  lU'u(j) Sj (4)

where

V i z u ( j ) - i u z ( j ) ( ^ - V + ( ^ - V i z z ( j ) ( ^ - V  (5 )

Clearly, the first term in (4) converges to IA(^q) . Because Ô is 

yT-consistent, using (4.1) and (4.2), the second term in (4) is 

Op(T’i), and from Robinson (1978,th 2) the third term in (4) 

converges in probability to -2IA(^q). Hence

plim - -IA(^o).

Now, because is yT-consistent,

plim T-lH(ÿ) - lA(^o),

hence the first term in (3) converges in probability to zero. 

Writing T"i g^(6,^o ) as

T* 1
T-J gÿ(«.^o) - - è T-i Sj'[fj - fj-2lu'u(j)]

and arguing as above, the second term in (7) converges in probability 

to zero. From Robinson (1978,th 4) the limit distribution of the
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first term is N(0, IA(\̂ q )).

Obviously the third term in (3) converges in probability to zero and 

therefore making use of Slutsky's theorem we have that

On the other hand subtracting and multiplying by Ti both sides of 

(4.7) we have

T-1 . , 1-1 . T-1.
Ti(s - «o) - [t-1 i [fj-iiz.z(j)) ]■ ri j fj-iiz.u(J).J—0 j—0 (9)

where fj-fj(^) and \p - \p(à)

Now from (4,1) and from the discussion below (4.2) we have

plim T -lVlfj-llz-z(J)! - lA(«o) j “0

and from (4,2) and the discussion below (4.2) we have

T -iXfj-llz'uO) ^ N [0 . IA(«o)]

Hence, using Slutsky's theorem we have

t J(5 . «o) * N [0 . XA-l(So)]. (10)
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CHAPTER 4

INSTRUMENTAL VARIABLE ESTIMATION

1. Introduction

In this chapter we shall deal with the problem of estimation and 

asymptotic properties of the estimators for the parameters involved 

in a regression equation with stochastic trend components. 

Differently from the previous chapter some of the regressors are not 

assumed to be weakly exogenous variables. Hence, as discussed

previously the maximum likelihood criterion function will not be a 

valid basis for inference. A typical situation where some of the 

regressors are not weakly exogenous variables arises when the 

equation to be estimated is a single equation from a simultaneous 

equation system. In other words some of the regressors are 

endogenous variables to the system. One way of proceeding in such 

situations is by estimating the whole system, that is, to construct 

full information estimators. We defer a detailed discussion of 

simultaneous equation systems to chapters 5 and 6.

As an alternative, to full information estimators, limited estimators 

can be derived. Such estimators are highly attractive if the other
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equations in the system have not been specified. All we have 

specified is the equation of interest, say the first, and the reduced 

form of the right hand endogenous variables of this equation. That 

is, we have the following equations

yit “ Zlt'71 + "It - %lt'&l + "It (la)

Ylt' - Zlt'Hl + Zzt'Hz + Vit' - zt'n + Vit' (lb)

where Yxt' & Ixpx row vector of observations on the endogenous 

variables and is a Ixk^ row vector of observations on the

exogenous variables appearing in the first equation.

- (Zxt',Z2t') is the IxK row vector of observations on all
exogenous variables appearing in the system. The lx(px+l) row vector 

of disturbances, [w^^ is assumed to follow a multivariate

random walk plus noise model with associated covariance matrices Igi 

and .

The estimator of the parameter vector 6 - (01'7l'#^e'&^%)' where 

and are respectively the top left hand elements of and

is known as a limited information estimator, limited because we do 

not impose the complete specification of all equations. The most

efficient estimator within this class is the LIML (Limited

Information Maximum Likelihood). However because LIML can be viewed 

as a special case of FIML (Full Information Maximum Likelihood) we 

defer the discussion of LIML to chapter 7, after we have discussed 

FIML.

Alternative limited information estimators can be obtained based on
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the instrumental variable principle. The construction of these 

estimators is examined in Harvey (1989). We present alternative 

estimators and discard those which have unsatisfactory properties.

The chapter is divided as follows. Section 2 contains standard 

material on instrumental variable estimation for a single equation. 

It is mainly drawn from Bowden and Turkington (1984). The reader 

familiar with the instrumental variables technique may skip this 

section. In section 3 several time-domain instrumental variable 

estimators for single equations with stochastic trend are presented. 

Section 4 deals with frequency-domain instrumental variable 

estimators as well as asymptotic properties of the constructed 

estimators.

2. Instrumental Variable Principle

In general, because and are not diagonal matrices, is

correlated with Now, the ML estimator of the regression

coefficients derived in previous chapter is the GLS (Generalized 

Least Squares). Hence, because is correlated with w^ we have that

plim T'lXi'O'lwi^O, where Q is the covariance matrix of the 

disturbances. Therefore, the GLS estimator will be inconsistent.

On the other hand, if the equation of interest contains no endogenous 

variables but a lagged dependent variable and the disturbances are 

serially correlated we also have a situation where regressors and 

disturbances are correlated. However, because in this case
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plim T'Iy.iO'lw - 0, the ML procedure provides consistent estimators 

for the associated parameters. Although alternative estimators based 

on the instrumental variable principle may be constructed, since ML 

methods can be applied we shall consider instrumental variable 

procedures mainly inside the simultaneous equation context.

The instrumental variable principle exploits the fact that even when 

disturbances and regressors are correlated it is often possible to 

use economic theory to find other variables that are uncorrelated 

with the disturbances, in large samples. These variables are 

admissible instruments in allowing us to estimate the parameter of 

interest. To be useful, the instruments must also be closely enough 

related to the regressors. The choice of the instruments is in 

general suggested by the structure of the model. In the case of the 

simultaneous equation systems a useful choice consists of the 

excluded exogenous variables from the equation of interest. If there 

are no exogenous variables excluded from the equation of interest, we 

have no instruments, but this is a problem of identification and will 

be discussed in next chapter.

In the case of serial correlation in the presence of lagged dependent 

variables, a useful choice is the remaining exogenous variables in 

the equation lagged once or twice. With a very large sample we can 

add as many instruments as we please. In small samples, however, a 

large set of instruments is in itself undesirable.

In what follows we shall assume that such admissible instruments 

exist and present a review of the instrumental variable estimation
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procedure .

Serially Uncorrelated Disturbances

To avoid overelaborate notation we shall omit all the subscripts 

indicating that the equation of interest is the first equation from a 

simultaneous equation system. The equation is then, in matrix 

notation,

y - X Ô + w (1)

where X Z^) is a Tx(pi+ki) matrix of observations on the

regressors and w is a Txl vector of disturbances which we shall, 

initially, assume to be independent with zero mean and variance cf̂  . 

Let Z be a Txk matrix containing the instruments. Pre-multiplying (1) 

by Z' yields

Z ’y - Z'X a + Z'w. (2)

Now if (T^Z'Z is the estimated covariance matrix of the new 

disturbances Z'w, then applying the standard GLS formula to (2) we 

obtain

Ô - [X'Z(Z'Z)-1Z'X] ^X'Z(Z'Z)-! Z'y (3)

or

Ô - (M'X)-l M ’y (4)

where
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M - Z(Z'Z)-lZ'X. (5)

Formula (4) is the standard textbook IV estimator. In a simultaneous 

equation system if the matrix Z contains the full set of exogenous 

variables, (3) is the two stage least squares estimator (2SLS). We 

also note that while Z is the matrix containing the instruments, M is 

known as the instrumental variable.

Serially Correlated Disturbances

We shall now consider the case where the disturbances in (1) are 

serially correlated, that is, Eww' » where Q is positive definite 

which we shall initially assume to be known. In handling this kind 

of model Bowden and Turkington (1984, Ch.3) present different 

estimators for 6 all based on the Instrumental Variable Principle. 

These are:

i) The OLS analog

The Ordinary Least Squares analog of 6 is obtained by applying the 

GLS formula to (2) with cr̂ Z'fi Z as an estimate for the covariance 

matrix of the new disturbances Z'w. Thus

Ô - [x'Z(Z'nZ)-lZ’x] ^X'Z(Z'nZ)-! Z ’y (6)

(ii) The GLS Analog

In order to obtain the so called Generalized Least Squares analog the
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first step is to transform the serially correlated disturbances into 

uncorrelated disturbances. This can be achieved by pre-multiplying

(1) by F'&L where F is a diagonal matrix and L is a lower triangular 

matrix with ones on the main diagonal such that 0"^ - L'F’^L. The 

resulting equation to be estimated becomes

F-iLy - F-iLXô + F ’ibw. (7)

Now pre-multiplying (7) by Z'L'F'i, regarding as an estimate

of the new disturbance Z'L'F"^Lw and applying the GLS formula yields

Ô1 -[x'n-iz (z'n-iz)-iz'n-ix] ^x'n-iz(z'n-iz)-iz'n-iy. (S)

Formula (8) can be rewritten as

Ô1 - [x'L’F-i ?i F-i LX ] ^X'L'F'i P^F-i Ly, (9)

where is the idempotent projection matrix given by

Pi - F-i LZ (Z'n-lz)-l Z'L'F-i. (10)

If the matrix Z contains the full set of exogenous variables in the 

system the estimator given in (8) is also known as G2SLS (Generalized 

2 Stage Least Squares) and was first used by Theil (1961).

The nomenclature OLS and GLS analog arises from the fact that if the 

number of instruments is the same as the number of regressors then 

(6) and (9) reduce respectively to
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5 - [Z'X]-lZ'y and \  - [Z'frix]-! Z'fi-ly.

It is now readily apparent that the former can be regarded as an

IV-OLS analog while the latter is an IV-GLS analog.

Bowden and Turkington (1984) also explored the relative efficiency of 

the IV—OLS and IV—GLS analogs. No firm conclusion is available. 

Nevertheless it is the IV-GLS that provides the interpretation of 

LIML and FIML as iterated IV estimators. Moreover, since we are 

primarly interested in models with stochastic trend components the 

estimation of the hyperparameters is somewhat simpler by means of the 

GLS analog. We shall therefore not consider the OLS analog any 

further.

iii) Alternative IV estimator

An alternative IV estimator can be obtained by pre-multiplying 

equation (7) by the Z', that is, without transforming the matrix of 

instruments. The resulting estimator is then

&2 - [x'L'F-i Z(Z'Z)-lZ'F"i LX]  ̂X'L'F'l Z(Z'Z)-lZ'F'i Ly (11)

or

Ô2 - [x'L'F-i ?2 F-i LX ] ^X’L'F'i ?2 F"* Ly (12)

where

?2 - Z(Z'Z)-lZ'. (13)

The only difference between (12) and (9) is the replacement of by
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?2. Campos (1986a) uses untransformed instruments in the estimation 

of single equation with ARMA disturbances. However as it is pointed 

out in Bowden and Turkington (1984) the estimator given in (11) is

usually dominated in efficiency by one or both of the IV—OLS or

IV-GLS analogs.

Finally we note that if the process generating the disturbances is 

stationary, an estimator of 6 can be obtained using the standard IV 

estimator given in (3), that is, the 2SLS. If the number of

instruments is bigger than the number of regressors in general the 

OLS analog will be more efficient than the standard IV estimator,

otherwise they are exactly the same.

Asymptotic Properties of the GLS-IV Analog

The asymptotic properties of the IV—GLS estimator can be obtained 

straightforwardly under certain regularity conditions. Subtracting 

6q, where 5q is the true parameter vector, from (9) and multiplying 

by Ti yields

Ti(6 - 5o) - Z 2 ^ x j - i

Hence Ô is consistent provided that

(i) plim T'lX'O'lz exists and has full column rank;

(ii) plim T"l(Z'f2"lz) exists and is positive definite;

(iii)plimT-l(Z'n-lw) - 0.
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Furthermore if (i)-(ili) hold and in addition

(vi) T"i has a limiting normal distribution with zero mean

and covariance matrix plim then Ti (Ô - 6^) has a

limiting normal distribution with zero mean and covariance matrix V, 

where

V - plim [ ^  ^  j - l r p C j - l  (14)

We observe that, for model (1.1), V is asymptotically equivalent to

V - (t2 plim r ]’! (15)

where

see Wickens (1969).

3. Instrumental Variable Estimation for Models with Stochastic Trends 

We shall now consider the equation given in (1.1a), that is,

Yt - Xt'* + (1)

where w^ follows a random walk plus noise process with associated 

parameters and Again we have omitted the subscript

indicating that (1) is a single equation from a simultaneous equation
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system.Generalizations to the local linear trend model are immediate. 

As in chapters 2 and 3 the initial state /Xq will be modelled in terms 

of a diffuse prior, that means, all estimators considered are 

conditional on the first observation. The estimation problem is 

therefore concerned with respect to #-(5,0*2,^*) where 

the signal-noise ratio, is and if

When the hyperparameters (T*2 and are known, the IV-GLS analog 

given in (2.9) can be obtained by means of the Kalman filter. That 

is, the Kalman filter is applied separately to y and to each column 

of X and Z with respective starting values y^ and the first row of 

the matrices X and Z.

Similarly Ô2 given in (2.11) can be constructed by applying the 

Kalman filter only to y and each column of X. As already noted, the 

fact that the nonstationary process, w^, is converted into a 

stationary one suggests that Ô2 niay not be very attractive. Even 

though the elements of X and Z may be highly correlated, applying the 

Kalman filter only to X could result in the correlation becoming much 

smaller. On the other hand, if the instruments are differenced by 

the degree of differencing needed to make the stochastic trend 

stationary, once for the random walk plus noise model, they are 

likely to be more effective instruments.

In summary, denoting by y, X and Z the 'innovations' delivered by the 

Kalman filter, and assuming <J*2 and to be known, the three

possible IV estimators that we shall consider onwards can be regarded 

as the ones obtained from the minimand
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- (ÿ - Xi)'rèPiPi ('y-X6), 1-1,2,3 (2)

where

?l - F-iz[Z’r l z j l  ^Z'Fi (3)

?2 - Z(Z'Z)-lZ' (A)
?3 - AZ[AZ'4Z]-lAZ' (5)

We shall now construct estimators of the regression coeficients as 

well as of the hyperparameters by bringing together both procedures, 

the IV and the ML discussed in chapter 3. For this, we rewrite the 

ML criterion function given in (3.2.3) as

T0(3,0*2,^*) - ^ log ft - i (T-l)log<j*2 -  ̂cr*"2 S(6,^*) (6a)
t—2

where

S(6,^*) - (y - X ô)t 1 (y-Xô), (6b)

We recall that the optimisation of (6) can be carried out by means of 

the stepwise algorithm and by means of the concentrated likelihood 

function, with respect to Based on these two optimisation

procedures two alternative estimators can be obtained. These are:

(i) The IIV/ML

The IIV/ML (Iterated Instrumental Variable / Maximum Likelihood) 

estimator is closely related to the ML estimator obtained by means of 

the stepwise algorithm. We assume that an initial consistent 

estimator of 5, say 6, is available. Later we shall discuss the 

construction of such an estimator. We replace 5 in (6b) by Ô and 

optimise (6a) with respect to (7*2 and We note that (7*2 can be
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concentrated out of (6a), hence the maximisation is nonlinear only 

with respect to The resulting estimators of and can be

used to construct each of the feasible IV estimators, i - 1,2,3

minimising (2). The procedure is then iterated until convergence is 

attained. Although iterating will not change the asymptotic 

properties of the estimators of Ô and when there are no

lagged dependent variables it may yield estimators with better small 

sample properties.

(ii) The IV/QML

The IV/QML (Instrumental Variable / Quasi Maximum Likelihood) 

estimator, as suggested in Harvey (1989), is closely related to the 

ML estimator obtained by optimising the concentrated likelihood 

function with respect to So Ô in (6b) is replaced by 5»

where 5 is one of the IV estimators obtained minimising (2). Thus 

here 5, y , X, and f^ are all functions of the same ÿ-*. The resulting 

concentrated criterion function becomes

T
Cc - -i L  log ft ■ !(T-1) log o2* - Jcr2* (7)t—2
where

S c ( M  - (y - X5)'f1 ('y-'X6). (8)

We note that (7) is not the concentrated likelihood function as it 

was in chapter 3. It is simply a criterion function that we have 

obtained when proceeding in a similar way as in the case where the 

matrix X contains only weakly exogenous variables.
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The optimisation of (7) is carried out nonlinearly with respect to 

vf-*. In practice (7*2 can be concentrated out. Once we have found the 

optimal point Ô is obtained from the minimand given in (2).

Comparison of Estimators

At first sight the estimates obtained from these two procedures might 

be seen as being numerically equivalent. However this is not the case

and can be justified as follows. First we note that the IV/QML can

be regarded as being the point ,^*) that optimises (6)

subject to the restriction

6 - [ k r i  p r i x j i  'xpi ? r T y  - o, (9)

where P is any of the projection matrices given before. On the other

hand the IIV/ML estimates for the hyperparameters are those which 

optimise (6) conditional on a given 6. Let be the point

that optimises (6) conditional on Ô, where 5 is the IV/QML estimate. 

Of course, ((72*,^*) will be different from since the

optimisation is now unrestricted.

Initial Consistent Estimator

As we have already mentioned in section 2, before discussing the 

asymptotic properties of the GLS-IV estimator, provided that the 

process generating these disturbances is stationary we may use the
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2SLS as an estimator for Ô. Clearly the models considered here are 

nonstationary, however, the variables may be differenced so as to 

make the disturbances stationary. Thus, after differencing once, 

model (1) becomes

'6 + Ut , (10)

where The 2SLS of Ô is then given by

02sls“ [AZ'AZ]-1a Z'Ax ] ^AX'AZ [ AZ'AZ ]-1a Z'Ay (11)

This estimator will be consistent provided that does not contain 

lagged values of the endogenous variables. If it does, the 

instruments should exclude lagged values of these (differenced) 

variables which are correlated with u^. (For u^ as below (10) then 

only those at lag one are inadmissible instruments.)

It is well known, see Wickens (1969) that the 2SLS given in (11) has 

a limiting normal distribution, i.e.

(&2SLS " ^o) N ( 0 , V) ,
where

• AZ'AZ ■-1
V - plim R' R

T
R'

AZ'n^AZ
R

AZ'AZ 
R'  R

-1

where

(12)
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It can be easily verified that if z^, the K-dimensional vector 

containing the exogenous variables, follows a multivariate random 

walk model with associated disturbance covariance matrix Eg, then

AZ'OuAZ
plim -------  - (20g2+Œq2)E2, (13)

and the asymptotic covariance matrix of Ô2SLS becomes

Avar Ô2SLS “ T"! (2a£2+ûr^2 )[r . ]-l . (14)

There a number of ways of estimating the hyperparameters. In the 

simple cases, closed form expressions based on the residual 

autocorrelations are available as discussed in chapter 2.

4. Instrumental Variable Estimation in the Frequency Domain

The frequency domain estimation procedure which we have discussed in 

section 3.3 can be conveniently adapted to handle the model given in 

(3.1). After differencing once the equation of interest is as in

(3.10), namely

6y^ - '6 + u^ .

Comparing (3.2.9) with (3.3.10) specialized for the univariate case, 

we observe that the spectral ML estimator of Ô can be regarded as the
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resulting estimator obtained from (3.2.9), by making use of 

asymptotically equivalent expressions similar to

X'F-I'X « - (1)

where the (i,k) entry of the matrix Ix'x(j) is the crossperiodogram 

between ^x^ and Ax%. Hence, using similar expressions, it follows 

immediately that the spectral IV estimator of Ô corresponding to the 

time-domain IV estimator obtained from the minimand given in (3.2) 

with weighting matrix becomes

6(^)
T-2 Ix'z(j) y T-2 Iz'z(j) y ■^T-2 Iz'x(j)y

-1

lj-0 fj [j-0 fj j-0 fj

T-2 Ix'z(j)
X  J  ---------

j-0 f,
T-2 Iz'z(j)
j-o

-1T-2 Iz'y(j)
1   -j-0 f;

(2)

where (&g2 ^^2) We mentioned that if we do not transform the 

instruments or if we use differenced instruments we cannot have an 

expression for 6 in terms of the periodogram.

We can now proceed as described in section 3.3, but with (2) 

replacing (3.3.10) to find the spectral IIV/ML. The 2SLS estimator 

given in (3.12) can be used as an initial consistent estimator for 6.

Asymptotic Properties

The asymptotic theory given in section 3.4 can be straightforwardly
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extended to handle the case we are interested in. Because Ô2SLS 

given in (3.12) is /T-consistent, arguing as below (3.4.7) a 

yT-consistent estimator of say ^—^Xë2SLs)' can be obtained from 

the autocorrelations of the residuals y^-Zc^- Moreover, from 

appendix 3.1, it follows immediately that Ti(^ -^^), where ^^(6) is 

as in (3.4.6) but with ^ and & as above, has normal limiting 

distribution with zero mean and covariance matrix IA(\^q)"^, where

lA(vto) - - [ [c(X),l]'[c(X).l]fu'2(X)dX ,

and c (X)“ 2(1-c o s X).

We now turn to the limiting distribution of 6, where 5 is given in

(2) but with fj-fj(^) replaced by fj-fj(^). So Ô is a feasible IV 

estimator. Subtracting 6q and multiplying by Ti yields

. . T-2 Iz'u(j)
Ti (Ô - 5o) - H ri L  ---:---

j-0 fi

where

T-2lx'z(j) 
j-0 T fj

T-2^z'z(j)
I

j-0 T f.
T-2iz'x(j) 
j-0 T fj

^T-2lx'z(j) 
j-0 T "fj

(3)

T-2^z'zU) 1
j-0 T^f;

(4)

Now, since ^ is a consistent estimator of assuming AZ totally 

independent from u it follows from (3.4.3) that

T'i y 
j-0
T-2 Iz'u(j) d

N [0. J fu-l(X)Fz(X)dX ]
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Moreover, differencing (1.1b), that is, the reduced form of the 

endogenous variables included in the equation of interest,

AX - (AYi:AZi) can be written as

AX - AZ R + (AV^iO) 

where

^ -  [n^

(5)

(6)

It now follows from (3.4.2) and (3.4.1) that if AZ is totally 

independent from AV^, H converges in probability to H, where H is 

given by

H - -  R' J  fu-l(X)F2(X)dX R
- X

(7)

Hence, making use of Slutsky's theorem we have that

Ti (5-5.) N ( 0 , V-1)

where

V - - R- f fu"l(X)Fz(X)dX R .
2x

(8)

We note that if the exogenous variables, z^, follow a multivariate 

random walk process with disturbance covariance matrix then the 

differenced variables will have constant spectrum matrix, that is,

F-(X) -

and the asymptotic covariance of Ô becomes
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Avar« - [ R'Ez |fu(X)-ldX R ]'} (9)
-X

which can be written as

since

r rJfu(X)-l dX - 2x j [20c2+aq2-2ag2cosX]-& dX
- X - X

- 4x2 [Oq4+4Pq2F^2 ]-i .

Estimator Suggested by Hannan and Terrell

Proceeding as in Hannan and Terrell (1973) we could replace, in (2), 

Ix'z(j) by R'l^'zCj). where R is a consistent estimator of R given in

(6). The resulting estimator of Ô then becomes

- T-2 Iz'z(j)-R' y -------- R
j-0 fj

T-2 Iz'y(j)
-'j:. - r -  ^

Making use of (11) rather then (2) we can obtain (S,̂ ) in the same 

way as we have obtained the spectral IIV/ML. Clearly the resulting 

estimator is as efficient as the spectral IIV/ML. We note that a 

consistent estimator of R can be obtained estimating II by means of 

the stepwise optimisation procedure described in section 3.3, 

although it is not necessary to iterate since the Least Squares
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estimator of H given in (3.3.11) is already consistent.

When is zero, so that the disturbances have constant spectrum,

(11) becomes

5 - [R' (6Z'AZ)R]-]- 'k'AZ'Ay.

Now if R is estimated by means of LS then Ô collapses to 2SLS, as 

given in (2.3). In our case, since the spectrum is not constant the 

estimators given in (11) and (2) are not numerically equivalent.

We mention that making use of expressions similar to (1) , the time 

domain expression for (11) becomes

'h M  - [ r ' f t  ]'^R’ . (12)

and similary as we have constructed the IIV/ML and the IV/QML we can 

construct these modified estimators.

Relative Asymptotic Efficiency of IIV/ML Compared with 2SLS

In the special case when the exogenous variables follow a random walk 

we can see that each element of the asymptotic covariance matrix of 

2SLS, as given in (3.14), is greater than the corresponding element 

of the asymptotic covariance matrix of IIV/ML, as given in (4.10), by 

a factor of
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(2+q)
F -

(q2+4q)*

where q-o^Z/PgZ The closer q is to zero, the more inefficient is 

2SLS. For example if q-1, F-1.34, while if q-0.01, F-10.04. As q 

goes to infinity, that is, goes to zero, 2SLS tends to the same

distribution as IIV/ML as the disturbances in the differenced 

observations are tending to white noise.
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CHAPTER 5

SIMULTANEOUS EQUATION SYSTEMS WITH STOCHASTIC TREND COMPONENTS

1. Introduction

In this chapter we shall introduce simultaneous equation systems with 

stochastic trend components and discuss the role played by stochastic 

trends in helping to identify a single equation in the system.

We start by specifying the model. In section 3 we present a brief 

review of the issue of identifiability in simultaneous equation 

systems with no stochastic trends, and generalize the classical rank 

condition to simultaneous equation systems with stochastic trends. 

In section 4 we show how the multivariate Kalman filter can be used 

to deliver the likelihood function.

2. Model Formulation

We shall consider the complete simultaneous equation system given by

- Yc'* + Zt'T - Wt', t - 1 .....T, (la)
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where ,z^') and A-(B',r')'. is a pxl vector of observed

endogenous variables, is a Kxl vector of observed exogenous

variables. The non-singular pxp matrix B and the Kxp matrix F are 

unknown fixed parameters matrices of the endogenous and of the 

exogenous variables respectively. The pxl vector w^ contains the 

unobserved stochastic components and is assumed to follow a 

multivariate random walk plus noise model as introduced in (2.2.5) 

i.e.

wt - Pt + ^t* (lb)

/̂ t “ Pt-1 + (Ic)

with covariances matrices Zg and The reduced form of (1) is

Yt
where

n

vt'

zt'n + vt',

- FB-l,

Wt’B-1 = Pt*'+ Ct*',

H-1* + %t*

(2a)

(2b)
(2c)
(2d)

The covariance matrices of and 17̂ * are respectively

Ig* - B-l'ZgB-1 and - Erl'I^B'l.

Combining the observations we define X « [Y : Z],

Y -
Yl’- Yll- -Ypl"

Z -
= 1 ' ' Z11''ZX1

y t ’- YlT- -YpT- Zt ' • ziT- • -ZjrT-
and similary
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■wi" >1" n " %l'-
w -

.Wt ’.
-

•p t ' •
£ -

CT'-
V -

%T'"

We use the notation Xĵ  for any submatrix of X. Thus, X^ - [^i'^i]» 

where is a Txpj_ submatrix of Y and Zĵ  is a Tx/ĉ  submatrix of Z. We

use the notation Y^t' and Z^t' for the t-th row of Y^ and Z^ 

respectively. Thus, ]. We can then write (1) as

XA - YB + zr - W,

where

W - /X + € ,

H - fi(-l) + ri,

(3a)

(3b)

(3c)

and its reduced form as

Y

where

V

zn + V,

ti* + £*,

/(-I) + V

(4a)

(4b)

(4c)

The distribution of the endogenous variables is determined by the 

reduced form, and in order to be able to make any statistical 

inference about the structural parameters, these parameters must be 

identifiable. As we shall see in section 3, stochastic trends play 

an active role in helping to identify a single equation in a 

simultaneous equation system. Therefore, before discussing the 

identification issue concerning simultaneous equation systems with 

stochastic trends, we present an alternative formulation for system



92

given in (1) which is more convenient for handling individual 

equations.

An Alternative Formulation

Let us assume that we have a priori restrictions on B and F. We shall 

only consider zero restrictions, that is, the corresponding variable 

is excluded from the equation in question, plus normalisation 

constraints, that is for i-l,...p, and of course the symmetry

constraint on and 1^. Such constraints can best be handled if we 

introduce a selection matrix. We define the rxl vector Ô,

Ô’ - (5)

where

h' - - [Pi':?i'], (6)

and the p^xl vector and the vector ^i consist of the unknown 

elements in the i-th columns of the matrices B and F, so that 

r (Pi+^i)• We define the rxp(p+K) selection matrix S^' such that

6 - - S^'vecA. (7)

Thus S^' may be interpreted as a selection matrix to choose only the 

elements corresponding to unknown elements of A. It is easy to verify 

that

SA'SA-Ir, (8)
Saô « - vec(A+), (9)
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vec(A) - - + s, (10)

where A+ - A - J, J - [Ip : O p ^ ]' and s - vecJ. Also

Sa - ■ 3 g,vec(A), (11)

and

fXl 0
(lp®X)SA - 0 X2

. 0 0 0 Xp
(12)

where is the Tx(pj+kj^) submatrix of X formed by the

included endogenous variables other than the dependent variable, and 

by the included exogenous variables, considered to be the

explanatories variables included in the i-th equation. We note that 

while chooses the unrestricted elements of A, chooses the

columns of (Ip®X) which correspond to the included variables in each 

equation, other than the dependent variable.

Bearing in mind that we only have zero constraints plus normalisation 

constraints the i-th equation in (la) may be written as

y i^ “  ^ i t  ^i ^ i t ’ ^"“1» • • • 11 1 i“ l , . . . ,p (13)

where [Yit': Zit'] and î is given in (6). The entire system

can then be writen as

[Xl 0 0 0 ■
vec Y - 0 X2 0 0 6 + vec W. (14)

. 0 0 0 Xp.

We note that (14) could have been obtained directly by vectoring (3a)
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and making use of the properties of the selection matrix given in 

(10) and (12).

3. Identifiability

In this section we seek to extend the identifiablity conditions for 

simultaneous equation models in the classical case in order to take 

account of the role played by stochastic trends. We start the 

discussion from the concept of identifiability.

The Concept of Identifiability.

Let X « (x]̂  ,X2, . . .Xj) be a vector of random variables with continuous 
density function f(x,0) where 0 is a p-dimensional parameter vector. 
Suppose we intend to estimate 6 by maximum likelihood. The 

identification assumption states there cannot exist such that

C(gt;x)-C(#,x) for all x, where Q(6;x) is the loglikelihood function. 

If two points, and 6, lead to the same loglikelihood they are said 

to be observationally equivalent.

The Identification Problem in Simultaneous Equation Systems

In a classical model with no stochastic trends, under the assumption 

that the rank of Z is K, the reduced form parameters are always 

identified, see Magnus and Neudecker (1988, page 333). However in
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the majority of the situations one is interested in the structural 

form parameters, and these are identified if and only if their values 

can be deduced from the reduced form parameters.

The general approach to identifiability is then to determine whether 

any observationally equivalent parameter vector can be produced by 

premultiplying the transpose of (2.1a), that is,

B'yt + r'zt - w^, (1)

by a nonsingular pxp matrix F; see Hsaio(1983) for a full discussion. 

We note that if no restrictions are placed on B and F, then for any 

matrix F, in the reduced form, the expectation of y^ and its 

covariance matrix are identical for any t, which implies identical 

distributions under normality asssumptions. Hence B and F cannot be 

determined from the reduced form. However if a priori restrictions 

on B and F are placed then of course F must be such that FB' 

satisfies the same a priori restrictions as B' , and FF' the same as 

F' . The model is identified if the only matrix F which yields a 

system satisfying the same a priori restrictions is the identity 

matrix. Thus identification is achieved by imposing restrictions on 

the structural parameters.

Often we may be interested only in a subset of parameters, say and 

, the unknown elements of the i-th rows of B' and F', which 

correspond to the parameters of the i-th equation. Without lost of 

generality we suppose that is the first equation we wish to identify. 

If we order the variables so that the zero coefficients in the first
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row of B' and F ’ appear last, we have

1 Pi'I O' 

®2l' I B22'
Yt

71' I O' 

F2i'I P22'
w. (2)

where Pi' is Ixpi, B21' is (p-l)x(pi+l), B22' is (p-l)x(p-pi-l), 71' 
is Ixki, F2i' is (p-l)x ki and F22' is (p-l)x(JC-ki). Thus the 

matrices B22' &Tid F22' are submatrices of B' and F' corresponding to 

the coefficients of the variables in the equations other than the 

first which do not appear in the first equation. Using the notation 

given in the previous section for single equation this leads to the 

question whether

Ylt - Xlt'*l + Wit' t-1.... 1, (3)

is identifiable, where Xi^'- [Yi^'^Zi^'] and 6i' (Pi',7i').

Now equation (3) is identifiable if (2) premultiplied by (1 f ' ) only 

yields an equation satisfying the same a priori restrictions if the 

(p-l)xl vector f is null. In the classical model, it is well known 

that a necessary condition for identifiability is the order 

condition, K > Pl+^l- A necessary and sufficient condition, the rank 

condition, requires that

Rank [B22' *̂ 2̂2' ] " P-1- (4)

If all equations are identified the system is identified.
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The Identification Problem in Simultaneous Equation Systems with 

Stochastic Trends

We shall now consider the identification problem in simultaneous

equation systems with stochastic trends. The simplest kind of

stochastic trend is a random walk, and a good deal of insight into 

the problem can be obtained by considering this case first. 

Initially we consider F'- 0, that is, no exogenous variable are 

included in the model. We also assume B' normalised. The model is 

then

B'yt - Pt + Ct (5a)

Pt “ Pt-1 + %t' t - 1,...,T. (5b)

with associated parameters contained in 6, 0 - (B',Ig,I^).

Premultiplying (5a) by B'"l we obtain the reduced form

Yt - Pt* + ^t* » (Ga)

Pt* “ Pt-1* + %t*, (Gb)

with associated parameters being the covariances matrices 

Zg*-B'"lZgB"l and I ^ * - = B ' . Clearly premultiplying (5a) by F, 

where F is any pxp positive definite matrix, would result in a model 

with the same reduced form parameters as model (5), but with 

structural form parameters 6̂  - (FB',FIgF',FI^F'). Therefore model 

(5) is not identifiable. However, if, say the first equation, does 

not contain a stochastic trend and all the other equations contain 

stochastic trends, then the first equation is identifiable, since any
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linear combination involving the other equations would yield a 

stochastic trend, hence violating the distributional assumptions of 

the first equation. In other words the first row of matrix F must be 

(1,0").

In what follows we shall give some details concerning the 

identifiability of a single equation. We initially consider a 

two-equation system. Under the assumption that i-1,2, is fixed,

we can express in terms of a deterministic and a stochastic part. 

The model is then

H i  M [ y 2 t l  ■ * [p2c'] ^ ['atl t-l T (7*)
where

M^it " ^^i,t-l ^ %it' t"l,...,T , (7b)
with for i-1,2.

Now if we assume that 1^(1,1) - 1^(1,2) - 0, that is, is

excluded from the model, (7) can be reparametrised as

[I2 M l y 2 t ^  ■ [p2%] " [ S ]^2t^ + [e2^]. t-l.....T

where

P i t  “ P2,t-1 + %2t' t-l T (8b)
Var(T/2t) - 1 and s^ - 1^(2,2).

Now the reduced form of model (8) is

yit - 1̂ 11 + *12P2t^ + Vit, (9a)

Y2t " T̂ 21 + *22^2t^ + V2t, t-l,...,T (9b)
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where

▼11 - (PlO ■ #1P20)/(1 ■ #1^2)
▼21 “ (P20 ' P2P10)/(1 ■ P1P2)
▼12 - -s Pi/(1 - P102)
▼22 “ ® /(I - 0102)"

This reduced form contains a common stochastic trend component /̂ 2t̂ - 

Estimators of the parameters %21' ^12 ^22 can be computed by

ML and unique estimators of the structural parameters 0%

obtained by noting that

/?1 - - *i2/*22
and

n o  - ▼ll - *T2*2l/*22-

The first equation is therefore exactly identified. If it were known 

that ^20 were zero, it would be overidentified as could also be 

estimated from ▼ll/^12- Thus both the deterministic and the

stochastic part of a stochastic trend can help in identification, but 

as will be seen in the general case they do not count in quite the 

same way.

We have just seen that identification of the parameters in the first 

equation is achieved because of the exclusion of the stochastic

component /̂ it̂ - If (8a) is written as

(P2 M [ y 2 t l  ■ ^ t-1 T (10)
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and is regarded as an explanatory variable the rank condition

given in (4) is verified provided that s is strictly positive. Thus 

the exclusion of the stochastic component is similar in its effect to

the exclusion of an explanatory variable.

We observe that the assumption that the intitial state is fixed is

not necessary. In the context of (8) identiflability of the first

equation is also achieved if the initial state is modelled in terms 

of a diffuse prior.

The generalization to p>2 is straightforward. Suppose p-3, and there 

is no stochastic component at all in the first equation. For 

simplicity we also assume a diffuse prior for P20 Th® model

is then

yit
Y2t
Y3t [ ] É : ]  +

Clt
^2t
^3t

t-1 T (11)

where S is any matrix such that S'S and (^2t« P3t)' follows a

multivariate random walk with associated covariance matrix being the 

identity matrix. The reduced form of (11) is as in (6) with 

associated covariance matrices

and

- B'
0 0 0 : B-1
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Now conditionally on the first observations the covariance matrices 

Zg* and Hyj* can be estimated by ML, and unique estimators of the 

srtuctural form parameters appearing in the first equation can be 

obtained by noting that since

B ’V  - (12)

the first row of is zero, and so we can recover the first row

of B' from

However if one of equations two and three in (11) does not contain a 

stochastic trend, it can be easily verified that has rank equal

to one. This in turn implies that the three equations obtained 

equating the first row of the matrix in the LHS of (12) to zero are 

identical, and therefore the first equation is not identifiable. 

This is also the case when the trends are perfectly correlated, in 

other words if they are what Engle and Granger (1987) call 

C O -integrated. To summarize, in the context of model (11), the first 

equation is identifiable if and only if Z^, the covariance matrix 

associated with the stochastic trends appearing in all equations 

other than the first equation has full rank, or equivalently if S has 

full rank, where S'S-Z^.

We now consider the identifiability of the first equation in a 

general model with exogenous variables. Assuming a diffuse prior for 

Pn"(P20'P30''"Pp0)' no stochastic trend component at all in the
first equation, the model becomes
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1 Pi'I O' 

B21' I B22' yt
7l' I O'

^21*I ^22*
t ■ [ §•] ''t + «t. (13)

where is a (p-l)xl multivariate random walk with associated

covariance matrix being the identity matrix . S is any (p-l)x(p-l) 

matrix such that S'S- A necessary and sufficient condition for

the identifiability of the first equation is that

Rank [B22' ^22* S'] - p-1. (14)

On the other hand if the initial state /Xq is regarded as being fixed, 

the necessary and sufficient condition is that

Rank [B22' ^22' pg S'] - p-1. (15)

Local Linear Trends

Consider the p-dimensional process w^ following a multivariate local 

linear trend model. Taking

2’ - (1,0) and T - [J J], 

it follows from (2.2.4) that w^ is given by

*t - Pt + ̂ t«

/̂ t - H - 1  + ̂ t-1 + Vt

^t “ &t-l + *"t'

(16a)

(16b)

(16c)
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where and are assumed to be independent of each other with 

associated covariance matrices and Zf respectively. The initial 

state is assumed to be fixed. Let the pxp positive definite matrices 

S^, Sf and S* such that S^'S^-Z^, Sf'Sp* Zf and S*S^-Sf. Clearly Ŝ , 

Sf and S* are not unique. We reparametrise (16) as

vt - Sq'pc + e^,

H  “ Â t-1 + S*'5t-1 + ^t'

^t “ *c_l + T f

where Var 17̂. - and Var - I.

(17a)

(17b)

(17c)

We split up the model (17) into a deterministic and a stochastic 

component by writing

w.ft - PO (18a)
where

- Mt-1^ + ^t' " 0, t-l,...,T (18b)

- ôf2^ + t̂» ^0^ “ - 0, t«=2,...,T (18c)

We now consider a general simultaneous equation system with 

unobservable components modelled as (18). If the first equation

does not contain a trend component, the system in question is given 

by

[1 Pl'l O' • 71’ 1 0’ •
- - - 1 - “ yt + - - - 1 - - ZtB21' 1 B22' • T2i 'I F22'

0 0 ■ • 1 ■ • O' • • O' '
+

po ^0 . t . Sq' Sf'.
Sçt + (19)
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where and 6̂ ^ are (p-l)xl vectors obeying the equations of the

form (18b) and (18c). and are (p-l)x(p-l) matrices such that

the covariance matrices of the (p-l)xl disturbance vectors and 

are identity matrices. Hence the necessary and sufficient condition

for the identifiability of the first equation is that

Rank [B22' ^22' PQ ^0 (20)

The appearance of some kind of trend component in the first equation

leads to a modification of (20). For example, if the first equation 

contains a stochastic trend which is a random walk plus drift, then 

PO, 6q and disappear from (20) and only Sf can help

identifiability.

Note that in (19), the deterministic components, one and t, are 

treated in exactly the same way as the exogenous variables in z^. The 

stochastic components and 5%?, both contribute to identifiability

since the first is white noise in the first differences while the 

second is white noise in second differences and so they cannot be 

confused. Indeed if the model contains no lagged endogenous 

variables, it is possible to let 17̂  and be stationary, invertible 

stochastic processes without affecting the identifiability 

conditions.
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4. The Likelihood Function

As in the classical case where the disturbances are serially 

uncorrelated, the loglikelihood function of y-vecY' can be expressed 

in terms of the reduced form parameters or in terms of the structural 

form parameters. Since the transpose of the reduced form given in 

(2.2a) is as in (3.2.5), it follows from (3.2.8) that conditional on 

the first observations the loglikelihood function of y, expressed in 

terms of the reduced form parameters, 6* - (n,!^*,!^*), is given by

e(«*) - -} f log 1 Ft*I - } -t*. (1)t—2 t—2

where and F^* are delivered by the Kalman filter applied to the 

vt - Yt - n'zt , 

with starting values ai*-yi-n'zi and

In order to obtain the loglikelihood function in terms of the 

structural parameters e-(B,r,Ig,1 )̂ we note that premultiplying 

(2.2.13a), specialized for the multivariate random walk plus noise 

model, by B' yields

B'ac* - B'ac_i* + B'Pt/t-l*B(B’Ft*B)‘^B’ (2)

where the superscript * indicates that we are dealing with the 

reduced form, and »'t*“''^t"^t-l*’ if the Kalman filter is applied
to the structural form
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wt - B'yt + r'zt , 

with starting values a^-B'yi+n'zi and we have

^t - ^t-1 + Pt/t-lFt'^^t' (3)

where »'t“'^f^t-l• Comparing (3) with (2), we note that a^ - B'a^*, 

Pt/t-l - B'Ptyt_i*B, — B'Fc*B and BV^*. Hence

'C*.t-2 t-2

and the loglikelihood function in terms of the structural form 

parameters becomes

T T
Q(6) ~ (T-l)loglBl - 2 loglFtI - I rt'Ft-lpt" (4)t—2 t"=2

As it stands, to obtain the prediction errors via the Kalman 

filter we have to construct first w^ - A'x^ -B'y^+F'z^ for each t, 

t-l,...,T, and then apply the Kalman filter to A'x^ with 

hyperparameters and Alternatively, using results on matrices

given in Magnus and Neudecker (1988, page 47) we can write w^ as

w^ - A'Xt - (Ip@Xt')vecA,

and using (2.10) we have

Wt - - (Ip®Xt')S6 + (Ip@Xt')s - yt - Xt'a,
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where

Xit' 0 0 0
0 X2t’ 0 0
Ô 0 ‘o Xpt'

and X^t' are the endogenous variables other than the dependent 

variable and the exogenous variables included in the i-th equation. 

Hence the prediction errors can be obtained by applying the 

multivariate Kalman filter separately to y^ and to each column of 

X^' . Such formulation will be more convenient for handling LIML, as 

we shall see in chapter 7.
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CHAPTER 6

FREQUENCY DOMAIN APPROACH TO SIMULTANEOUS EQUATION SYSTEMS WITH

STOCHASTIC TREND COMPONENTS

I . Introduction

In this chapter we present a computational method for finding the 

spectral FIML (Full Information Maximum Likelihood) estimators, and 

asymptotically efficient 2-step estimators of the parameters involved 
in a SES (Simultaneous Equation System) with disturbances following a 

multivariate random walk plus noise process.

The computational method that we present is an adaptation of the 

Hannan and Terrell (1973) approach for simultaneous equation systems 

with stationary disturbances. It may also be interpreted as a 

reflection of the Durbin (1988) iterative scheme for the classical 

case, that is, serially uncorrelated, normally distributed 

disturbances. We shall speak of this as the uniform error-spectrum 

case. (We mention that although recently published, copies of 

Durbin's paper have been circulated since 1963). In the uniform 

error-spectrum case the procedure is also known as iterated 3SLS, see 

Hendry (1976).
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As pointed out in Hausman (1983) it is unlikely that these sort of 

iterative schemes will have good numerical properties. However they 

give us an insight into the construction of asymptotically equivalent 

estimators.

2. The Spectral Likelihood Function

As in chapter 2, the first step is to transform the system given in 

(5.2.1) into a system with stationary disturbances. Thus, let the 

model be

Yt'B + Zt'T - Ut' (la)

uc - (lb)

where the vectors y^, pxl, and z^, kxl, contain the differenced 

observable variables and the pxl vector u^ contains the unobservable 

components in the model. Again, for presentational convenience we 

have omitted the differencing operator à in front of y^' and z^'. In 

matrix notation (1) becomes

XA - YB + Zr - U . (2)

Let 6 denote the vector containing the unknown elements of the matrix

A. From chapter 5 we have

6 - - Sa'vecCA), (3)
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Sa Ô “ vecJ'-vecA (4)

where

vec(A) . (5)

and

“ [Ip'O(pxk) ] •

As regards the hyperparameters, we have from (2.2.7) that the

distinct elements of Lg and are contained in the vector

- [ ^ 0+] (6)

and from (2.3.13) that

Sj - - (2*)-l[cjD ; D] (7)

Now, as the reduced form of (2) is

Y - Zn + UB-1, (8)

the spectral likelihood function of vecY', in terms of the reduced

form parameters, is as in (3.3.4). It can be easily verified that

the spectral likelihood function in terms of the structural form

parameters is given by

T-1 T-1 ,
C(«) - TlogllBlI - } I loglF(X.)l - i J trF-l(X.)Io,u(X.), (9)

j—0 j—0 **

where #'-(5',^') is the vector containing the unknown parameters and
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u is expressed in terms of the observations through (2).

Alternatively, replacing lu'u(^j) A'X'WjXA where Ÿj is defined in 

(2.3.9) and denoting F(Xj) as Fj , (9) can be written as

T-1 T-1 .0(6) - TlogllBlI - i J loglF. I - a 2 tr F;-1(XA)'*;(XA). (10)j-0 J j-0 J J

Clearly, the spectral maximum likelihood estimates emerge as a 

numerical solution of the likelihood equations

g|, C(«) - 0 . (11)

Numerical methods to solve (11) are described in appendix 2.1. In 

the classical case, that is, when the disturbances are serially 

uncorrelated, the standard way to obtain FIML is by concentrating the 

covariance matrix of the disturbances out of the likelihood function, 

see Hendry (1976) , Hausman (1983) or Rothenberg and Leenders (1964) 

among others. Reinsel (1979) in handling SES models with ARMA errors 

also concentrated out the covariance of the disturbances of the white 

noise process. For the models considered here the vector 

containing the hyperparameters cannot be concentrated out of the 

spectral likelihood function, except in a rather special case, 

proportional to (homogeneity). Nevertheless the iterative scheme 

for the uniform error-spectrum case can be used as a basis to solve 

(11).

In preparation for the numerical solution of (11) we derive the first
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order conditions and the Hessian matrix,

The First Order Conditions

Magnus and Neudecker (1988,theorem 16.5) derived the information 

matrix for SES models with uncorrelated disturbances. Their approach 

is very elegant and we can generalize it to the case in which we are 

interested without to much difficulty.

Applying the following results

(i ) dlog lAi - tr(A-l)dA , (12a)

(ii ) dA-1 - - A-ldAA'-l , (12b)

(iii) tr(ABCD) - vec'(D')(C'®A)vecB , (12c)

the first differential of Q(6) given in (10) becomes

1 T-1 1 ,dC - Tvec'B'l'vecdB + 4 S vec'[Fi"lA'X'*iXAF;"l]vecdF< ̂ J J ' J

T-1 . T-1 ,- y vec'[(X'*iXA)Fi"l]vecdA -  ̂ T vec'Fi"lvecdF;. j-O J " J ' J J

Now because 6 and ^ are functionally independent we have from (5) and

(7) that
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or

dvecA - - (S^:O)d0 ; dvecA' - - K(p+]^)p(S^:O)d0;

dvecB - - (Ip®J)(SA:0)de ; dvecB’ - - Kp(Ip8J)(SA:0)d9; (13)

dvecFj - (O:Sj)d0 ; dvecFj' - (0:Sj)dO.

Hence, the first order conditions are

C : - S^' vec[ TJ'B'-l 'i'j (XA)Fj-1)] - 0 (14a)

C : -  ̂j2QSj'vec[(Fj-l - Fj-l(XA)'»j(XA)Fj-l)] - 0 (14b)

The Hessian Matrix

The second differential of the time domain loglikelihood function for 

SES with normal independent disturbances is derived in Magnus and 

Neudecker (1988, page 339). Since we can pass the differential 

operator under the summation operator we end up in our case, with

dZg- - T tr (B-ldB)2 + T tr B'ldZB + i J tr (Fj-ldF)2

. * % tr Fj-ld2Fj - Jtr Fj-l(dA)'X'%jXdA

+ 2 2 tr Fj-l(dFj)Fj-lA'X'i^jXdA - J tr Fj-Ia ’X''i'jX d2A

- I tr A'X'i^jXA(Fj-ldFj)2Fj-l + * % tr Fj-Ia’X'«'jXAFj-ld2Fj .

Because d^Fj-O and d^A-O, using (12c) and (13) the expression above 

can be rewritten as
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dZg- - T (d«)' [S^:O]'(Ip®J')Kp(B-l’0B-l)(lp®J)[SA:O] d e  
+ i 1 (d«)' I0:Sj]'(Fj-l®Fj-l)[O:Sjl d«
- I  (d,)' [SA:0]'K(p+k)p'(X'$jX@Fj-l)K(p+k)p|SA:0] d e

- 2 I (d*)'[SA:0]'K(p+k)p' (X'*jXAFj-l®Fj-l)[0;Sj] d9

- I (dfl)' [0:Sj]'(Ip®Fj-l)(Fj-l®A'X'$jXAFj-l[O:Sj] d«

where the square matrices Kp and K(p+%)p are commutation matrices of 

order p2 and (p+k)p respectively.

Now using standard rules on Kronecker products given in Magnus and 

Neudecker (1988,page 47) the first and the third term in the above 

expression can be written more compactly as

- T (d«)' [SA:0]'(Ip@J'B-l')Kp(Ip®B-lj)[SA:0] d« 

and as

-(dO)'[SA:0]' [S^:O]d0.

Thus the second differential becomes 

d2C-

•(d9)'[Sa :0]'[T(lp®J'B-l')Kp(Ip®B-lj) + 2(Fj'l®X'*jX) ][SA:0]d#

+ (d«)' Y [0: Sj)'[i(Fj-l®Fj-l) - (Fj-l®Fj-lA'X'$jXAFj-l][0:Sj] d« 

2 (d«)' [SA:0]'Kp(p+k) S [(X'*jXAFj-l@Fj-l)[0:Sj]] d« .

Now using the second identification theorem in Magnus and 

Neudecker (1988,page 189) we have



115

- 2 Sa ’[(Ip®J'B-l')Kp(Ip®B-lj) + (Fj-l®X’*jX)] Sa  (15a)

g§j, - - 2 Sj’ [(Fj-lA’X ’,jX8Fj-l)K(p+k)p] SA (15b)

Z Sj' [i(Fj-l®Fj-l) - (Fj-l®Fj-lA’X ’*jXAFj-l)]Sj. (15c)

3. A Computational Method for Finding the Spectral ML Estimator

In order to obtain the spectral FIML (Full Information Maximum 

Likelihood) for 6 we are going to proceed in a similar way to 

Hendry (1976) and Hausman (1983) when they considered simultaneous 

equation systems with uniform error-spectrum.

First we note that if (14b) had an analytic solution say ( ô), we 

could construct the concentrated spectral likelihood with respect to 

& and use the Newton-Raphson method to find the spectral FIML 

estimator for Ô by solving

Cc(«) - 0 (1)

where 2^(5) is the concentrated likelihood function, i.e., 

( 6)-C ( Ô ,^( Ô) ) . However this is not the case here. The likelihood 

equations are non-linear in and so we cannot construct the 

concentrated likelihood function. Nevertheless, because we only need 

the first derivatives of at a given 5, say we can still use

the iterative procedure. We note that these derivatives, evaluated
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at ôjç, are the derivatives of the unconcentrated likelihood with 

respect to ô at (5%, where 5^) is the solution of (14b) with 6 

replaced by Thus,

and whether is obtained analytically or numerically makes no

difference. The only issue is with respect to the Hessian matrix of 

Qç, since, as pointed out before, because ^ is obtained numerically we 

do not have a closed form for q(6) and therefore we obviously cannot 
compute the second derivatives. However we can replace the Hessian 

by an asymptotically equivalent matrix. We return to this point 

later.

We shall now derive an expression for q(0) close to the one given in 

Hendry (1976,page 53). We keep the notation q(0), although q(0) does 

not have a functional form. For this purpose we need the following 

identity

where Fj - Fj(^) and ^(0) solves (2.14b) for a given Ô. Clearly, 

(2) is trivially satisfied in the uniform error-spectrum case since 

in this case I - U'U/T solves (2.14b). Also, in the nonpararaetric 

framework (2) is satisfied by construction, see Espasa (1977). 

However in our case is not as immediate as it might appear. We leave 

the proof to appendix 6.1 to avoid discontinuity. Now, making use of
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(2) we have

TJ . T-1 , ...'B'-l - y J'B'-lA'X'*iXAF;-l , j-0 J J (3)

where J-[Ip:Op%k). Therefore, if in equation (2.14a), we replace Fj 

by Fj, and the first term within the brackets by (3) we have

q({) _ -Ê c| . - - S.'vec f 2 [J'B'-1a 'X"J'<XAF<-1 - X'f^XAF.-l]]
as l(S,vt) * ‘ j-0 J J j j '

SA’vec[^yj'B'-l(B':r')[^:]tjXAÏj-l - [z:]$jXA}j-l]]

c . r ? ; ^ r Y '% iX A F i - i  + B ' - i r ' Z ' i ^ ; X A  F r ^ i  r Y ' ^ ^ i X A F r i i  - S A ' v e c [ j J  J j 0 J J j i  Z'tjxAF^-lJ

SA'vec[ 1
%

B'-ir'z'

Z'
i'jXAFj-l ]. (4)

Hence, the spectral FIML estimator of 6 emerges as a solution of

T-1 1q (6)- vec[ ^ P'Z'%, XA F;-l]
j-0

where

P - 1 n:Ik ]

and

n - - r B-1.

(5)

(6)

(7)

The solution of (5) can be obtained by the Newton-Raphson iterative 

procedure described in appendix 2.1. The first differential, dq(5)
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IS

T-1
dq(6) - S^’ veCj^Q [dP'Z'ŸjXAFj-l + P'Z'*jX dA Fj-l + P'Z'^jXAdFj'l ]

However, as we do not have a closed form for Fj(5) we cannot obtain 

its differential. Nevertheless because and u^ are totally

independent, from the results given in section 3.4, we have

1 T-1 . .T-1. .plim T-lveCj2^dP'Z'*jXAFj-l -(Ip0dP')plim T'l^ J^(Fj-l ®Iy.)vecl2.u(j )“0

and

1 T-1 . - .T-1 .plim T-lvec 2^P'Z'$jXdFj-l - (Ip®P')plim T*l^J^(dFj®I^)vecl2» u Ü )“0.

Therefore 9q(6)/9ô is asymptotically equivalent to H, where

T-1 .
Sa ’ [ , L  Fj-l ® P'Z'VjX ]SA.J“0 (8)

in the sense that
T * 1plim T-1 dq(g) « plim T’l S^'vec[ j^P'Z*’I'jX(dA)Fj"l ]S^

— plim T’^Hdô,

where the last equality above follows from (2.13).

Moreover, replacing X by ZP + [V:0] in (8) we have

T • Xplim T-ldq(6) - - plim T"1 [ j^(Fj-l®P’Z'i'jZP) js^dg

T “ 1 ^
- plim T-1 Sa ’[ j^(Fj-l®P’Z'*j[V;0]) js^dS. (9)
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Now, since and are totally independent, from the results given 

in section 3.4, it follows that the last term in (9) is equal to 

zero. Hence 3q(ô)/3ô is also asymptotically equivalent to H, where

Now if we make use of (10) the iterative scheme becomes

+[sAj2^[Fj-l GTP'Z'VjZP) SA]'^[sA'vecXÎF'Z'*jXÂFjl ]] (11)

/S /s /S /S /V
where here Fj - Fj (\̂ ), yj/ — ^ and A are also constructed from

6̂ . Because Z'ijZ - Iz'z(^j) Z'ŸjX - Iz'xX^j) where Iz'z(^j) and
Iz'x^^j) are the real part of the respective periodogram matrices

(11) could also be written as

«k+l-'«k+ [sAjIqIFj - 1 @P' I z ' Z<)>j fp 1 Sa] ■ ̂  [Sa ' veCjS^P' I z .x(Xj ) iF jl ) ] (12)

For SES models with stationary disturbances Hannan and Terrell (1973) 

and Espasa (1977) considered the same iterative scheme as given in

(12) but with Fj replaced at each iteration by a nonparametric 

estimate of the spectrum of the process U based on U - XA^. Thus,

where Aj consists of mj of the w^ frequencies clustered around
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Xj--T+xj/M, Our method thus differs from the Hannan and

Terrell (1973) iterative scheme in the use of a parametric estimator 

of the spectrum. Assuming our model to be correct, we would expect 

our estimator to have better small sample properties.

On the other hand if we make use of (8) the iterative scheme becomes 

«k+r 0 P'Z'tjX]SA\+ SA'vecVp'Z'tjjSFjl ]. (13)

Now vectoring and making use of (2.4), the second term in square 

brackets in (13) becomes

- Sa ’ P’Z ’$jX|l Sa\  + S A % [  Fj-l® P'lvecZ’tjY .J J“0

Therefore (13) takes the form

*k+l - [ s A % t F j - l 0  P'Z'$jX] Sa ] SA'Y[Fj-l0P']vecZ'l'jY. (14)

where Fj and P are formed from 6̂ . In terms of the periodogram 

notation (14) can be written as

«k+l -  [ s A ^ g l F j - l ®  P ' I z ’ x ( y ) ]  Sa ] SA’X r F j - ^ 8P ’]veclz,y(Xj). (15 )

Clearly both procedures (12) and (15) are numerically equivalent. In 

the uniform error-spectrum case, if is the 3SLS (Three Stages 

Least Squares) estimator, the iterative scheme given in (15) is known
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as iterated 3SLS, see Hendry (1976).

It remains to say something about the spectral ML estimator for 

We have, for both iterative procedures, (12) and (15), that at each 

iteration ^(6%) solves (2.14b). Thus, if à is the convergence point, 

i.e., Ô solves (5), ^ ^ ( 6) will be the spectral FIML estimate of

Before presenting asymptotically efficient 2-Step estimators for 6, 

we shall derive the asymptotic information and covariance matrices.

4. Asymptotic Information and Covariance Matrices

Asymptotic Information Matrix

Let #o"(&0'^o) true parameter vector. The asymptotic information
matrix for 6q is

IA(e_) - - lim T-1 ET-»oo
82c ' ^11 ^12
8#8#'

. ^21 f22^o

where the second derivatives are given in (2.15). We write X as

X - ZPq + UBq -Ij , where J - [Ip:Opxk],

and

X'*jX - Po'Z'VjZPo + Po'Z'*jUBglj + J'B-l'U'*jZPo + J'B"l'U'*jUB-lj.

Since and u^ are totally independent and u^ has zero mean we have

E X'VjX - E Po'Z'*jZPo + E J'Bgl'U'*jUBglj . (1)
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Also

EAo'X'l'jX - EU'i^jUBglj . (2)

Now let

s - (Ip® Bglj)SA. (3)

Making use of rules on Kronecker products, it follows immediately 

from (1), (2), (3), (2.3.13), (2.3.14) that

•fll - S'KpS + SA^^j[F(X)-l®Po'F2(dX)Po]SA + S ’ij[F(X)-1®F(X) ]dXS (4a)

fpi - fi2' - - J S(X)' [F(X)-l®Ip] dX S

f22 - - f S(X)' [F(X)-1@F(X)-1] S(X) dX ,
4ir

where

S(X) - (2ir)“l[c(X)D : D], 

c(X) - 2(l-cosX), 

and D is the duplication matrix.

(4b)

(4c)

Asymptotic Covariance Matrix

We shall use the notation Avar(O) for the asympotic covariance matrix 

of 0. We remark that Avar(6) relates to the distribution of 6 and 

not T&#. Thus,

Avar(ê)-T-l%A-l(eo) •
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In appendix 6.2 we show that the inverse of the asymptotic 

information matrix is given by

fll fl2 
f21 f22

where

fll - [ i SA'j(F(X)-l@P'Fz(dX)P) Sa  ]-1 (5a)

fl2 - - 2[ i SA'|(F(X)-l®P'Fz(dX)P)SA] S’[dp®r£)D+':(Ip®I,)D+'](5b)

f22 . 16*3
D+A-1

D+A-lc(X)
[ F(X)-1®F(X)-1 ]

D+'

D+'c(X)
dX

+ 4
D+(Ip®l£>

D + ( I p ® I , )
S fllS' [(Ip®Ij)D+':(Ip®r,)D+'] (5c)

where

A - JJ(F(X)-1f(0‘1 ® F(X)-lp(i.)-l) (c(X)2-c(X)c(r))dXdr , (6)

and F(X)-F(X,«o), Eq-Eq(^o). P-P(«o)-
5. Asymptotically Efficient 2-step Estimators

We shall now deal with the problem of constructing asymptotically 

efficient 2-step estimators for Ô and We begin presenting

yT-consistent estimators for 5 and \l̂, since it is well known that the 

first step in such estimators consists in finding yT-consistent
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estimators.

A jT-consistent Estimator for Coefficients

A yT-consistent estimator for b can be constructed as follows. Let 

Y -  zn + V

be the reduced form of the model with associated covariances matrices 

and I^B'^. Let \}̂* be the p(p+l)xl vector

obtained from vec(Lg*:I^*) by eliminating the supradiagonal elements 

of Ig* and Eq*. In section 3.3 we have seen how to construct an 

estimator of IT and \p*. Let these estimators be n and ^  . Let 

Fv(j) - F.̂ (Xj ,1/̂  ) be the estimated spectrum matrix of the reduced 

form disturbances. Let P - [IT: I^] . The formula for 6 suggested by 
Hannan and Terrell (1973) is

« - [sA’V(Fv(j)-l0P'Iz'Z<j)'P)SA] S A ' V f F ^ a ^ l  ®P']vecIz.Y(j) (1)j-0 J-0

Proceeding in the same way as Hannan and Terrell (1973), we can show 

that TÏ(ô - ÔQ)-Op(l). For details, see appendix 6.3.

A yr~consistent Estimator for Hyperparameters

Let be the estimator of the reduced form hyperparameters as

discussed in section 3.3, and let Ô be the estimator of Ô given in
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(1). A natural estimator for the structural form hyperparameters, 

is then given by

* - [ o V ]  , (2)

where B - B(ô), I* -I* ($ ) and I* -I* (J ). Later we shall discuss

the asymptotic efficiency of the 2-step estimator for Using the

same approach it can be easily verified that ^ is /T-consistent.

The 2 -step Estimator for Coefficients 

Let 6 as given in (3.15), that is,

« -  [sA^y'Fj-l® P'Iz-xa)] Sa ]'^SA'V[Fj-l®P']vecIz.Y(j) (3)

where P-P(ô), Fj-Fj(\^), Ô and are yT-consistent estimators for 6 

and \P respectively.

We shall show that

d
Ti(«.«o) ^ N(O.fll). (4)

where is given in (4.5a).

Subtracting 6^ and multiplying by li both sides of (3) yields

T- L
Ti(i-6o>- [-Hrl ]-lr}{sA'<Ip®P’) ijFjP®Ik]veclz.Y(j)^HTl «„ ]} (5)
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where
T-1 .H - P'iz'x(j)] Sa]- C6)

Now from (6) and (2.4) we have that

T-1  ̂ ~ T-1HT- ^«o-Sa ' Ipf'Fj-l® > ’Iz'x(j)l''®<=Ao - SA’̂ S^('Fj-1 ®P')vec Iz.yCj). (7)

hence (5) becomes

T " X
Ti(«-So) - [ - H r l  J-1 Sa '(Ip ® P ’)[t } t (>4-1 alk)veclz.u(j)] . (8) ̂ *• j“0

Now, since Ô and ^ are yT-consistent, arguing as in (3.10) we have 

that

plim HT-1 - - SA’(Ip0P') plim [T'^ iglFj-’’® lZ'Z<J)l ] (Ip®P)SA

- - SA'(Ip@P') Qu (Ip®P)SA , (9)

where the last equality follows from (3.4,8), being

Qu - I jJ Fu-l(X)@Fj.(X)dX . (10)

From (3.4.10) we also have that the term in squared brackets in (8) 
converges in distribution to N(0,Q^). Hence (4) follows from 

Slutsky's theorem.

Finally we mention that the asymptotic covariance matrix of 6 can be 

consistently estimated by
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avar(«) - T-1 [sA'(Ip®P’)̂ iJ fIi:i®_ÏZ:iü>l(ip8P)SA ] (11)

The 2-step Estimator for Hyperparameters

Let 6 as in (3) and FI -n(0). Hence II is an estimator of H which 

takes into account the restrictions on B and P. Let (II) be an

estimator of the reduced form hyperparameters. Thus is obtained 

by maximising the spectral likelihood function for vec Y' , in terms 

of the reduced form parameters, conditional on IT. Clearly 

Tivec(n-riQ)-Op(l) and therefore as discussed in section 3.4

(12)

where IA(^Q*) is the bottom right block of (3.3.9), that is.

D+ 0 Jc2(F^-l8Fv-l) Jc(F^-l®F^-l)' -1 D+' 0

0 D+ Jc (Fv-l@Fv'l) J (Fv-1®F^-1) 0 D+'
(13)

where F.̂ -F.̂ (X) is the spectrum of the reduced form disturbances and 

C“c(X)—2(1-cosX).

Now let

(14)

where B - B(6) and

veclî/ : I*] -
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We shall now show that

d
T*(ÿ-ÿo) ^ N(0,f22) (15)

where is given in (4.5c)

First we note that

[(1^:1,) - (Ec:Eq)o] - [B’i f B  c V e ^ ' b ]  - [B^'E^t %  : B^’E,* B*]

- [ (B' (E * -Eeo* )B : B' (E^ -E^J )B ]

+ [(B.Bo)'E(o*Bo : (B-Bo>-E,o*Bo]

+ [ (B-E^o*(B-Bo) : B'E^* (B-Bq ) ] .
Hence,

vec[(Ê(:Eq) - (E(:Eq)o] -

:e*-2; *)B1 rvec B T  * tB-Bo)| rvecCB-B,,) ’ E * B̂ '
;*-E,o*)bJ Ivec BT^* (B-Bo)J lvec(B-Bo)'E,* B„.

or

and therefore

D+] r ’ f B . é ' K o  : ]

+ i r  D+] (iG)

+ it  D+] ■
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Since plimB-BQ, making use of Slutsky's theorem, we have that the 

first term in (16) converges in distribution to N(0,f22"^). where £22 
is given in (4.Ac). Now, rewriting Bq as Bq-JAq, J-[Ip:Op%k], from 

(2.4) and (4.3) it follows that

vec(B-Bo) - vecJ(A-Ao)

- - (Ip®J)S^(V Ôq )

- .(Ip@Bo)S (ô-Ôq ). (17)

Hence, making use of Slutsky's theorem it follows that the sum of the 

last two terms in (16) has limiting normal distribution with zero 

mean and covariance matrix being the second term in (4.5c). Thus, 

provided that and Ô are asymptotically independent (15) follows.

The asymptotic independence between and ô can be justified as 

follows. We have seen in section 3.4 that H and ^  are 

asymptotically independent. Now, because n-ri(ô) takes into account 

the restrictions on B and F

Avar(fl,vf*) - Avar(n,ÿ ) > 0. (18)

However, because and are asymptotically equivalent, (18) holds 

only if Avar(H,^ ) is diagonal. Thus Tl and ^  are asymptotically 

independent and, since Ô is uniquely determined from FI, Ô and are 

asymptotically independent.
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Appendix 6.1

Proof of Expression (6.3.2)

We shall show that 

T-1
-:p' (1)

where Ij is the real part of the crossperiodogram matrix of U' (pxT) 

and Fj is the estimated spectral matrix. Thus,

Fj - (cjij +1,). (2)

Ig - Ig(^), - Zq(^), and is the solution of

jjsj' vec[(Fj-l - Fj-lijFj’l)] - 0 (3)

where Sj is given in (2.7).

Replacing Sj, (3) becomes 

T-1 rD'c (4)(2*)-! I D'̂] - 0
Now since D has full column rank, (4) implies that

V [cjFj-l - cjFj-lljFj-1] - 0 (5a)

and

2 [ Fj-l - Fj-lljFj-1 ] - 0 (5b)
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Solving (5) for it does not matter if it is numerically, we have

2 (Cj Fj-l - Cj ) - 0 (6a)
and  ̂ ^

I ( Fj-1 - Fj-lljFj-1 ) - 0 (6b)

Now premultiplying (2) by Zg'l yields

V ^ F j  - (2t )-1 (Cjlp + Q)

where

Q - •

Thus,

(2*)Ê;-1 -  (Cjlp +  Q)fy-1 . (7)

Adding and subtracting QFj'l to the LHS and QFj'^ IjFj ̂  to the RHS of

(6.a) we have

2 (Cjlp + Q)Fj-l - Q 2 Fj-1 - 2 (CjIp+"Q)Fj-l IjFjl -*Q f  Fjl IjPi . 

Using (7) we have

2rTÎ;-l . Q 2 Fj-1 - 2 I f j l  -'q  2'Fjl IjFjl

and from (6.b) we have

2TTZg-1.2%Ig-l^IjFj-l - 0,

hence (1) follows
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Appendix 6.2

Asymptotic Covariance Matrix

We have

-1 W"^ - #"1̂ 22^22"^
- •̂22'̂ -̂ 21 f2 2 ' 2 2 ' ^ ^ 2 1 ^ 2 2 ' ^

where

W - fii - ■fi2^22‘ '̂̂ 21 
and -fij . i,j-l,2 are given in (4.4).

We rewrite f 2̂ and £22 as

1 _
^12 2S' jc(F-l0lp) : J (F-l®Ip) D 0 1

0 D

and as

£22
D' 01

16x^ 0 D'

Jc2(F-1®F-1) jc(F-l@F-l)

jc (F-1@F-1) j (F-1®F-1)

D 0 

0 D

(1)

(2)

where in (1) and (2) c-c(X) and F-F(X). We shall often omit the 

argument variable X in situations where there will be no risk of 

confusion.

Now using the fact that the square matrices /c2(F"^®F"^),

/c(F"l®F"l) and /(F"1®F"1) commute with each other we have

£22  ̂“ 16x^
D+ 0 A-1 0 j(F-l@F-l) -jc(F-l@F-l) D+' o'

0 D+ 0 A-1 .jc(F-l@F-l) jc2(F-l®F-l) 0 D+’
(3)
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where D"*" is the Moore-Penrose inverse of D and A is given by

A - Jc(X)2(F(X)-l®F(X)-l)dX j(F(X)-l@F(X)-l)dX 

- jc(X)(F(X)-l@F(X)-l)dxjc(X)(F(X)-l@F(X)-l)dX

-jj(F(X)-lF(r)-l ® F(X)-lF(r)-l) (c(X)2_c(X)c(p))dXd, . (4)

Let be partitioned as

^12^22'^ " [Bl:B2] -

From (1) and (3) and from the properties of D we obtain

S'[|c(F-l0Ip)(I+Kp)A-lj(F-l@F-l)

- J(F-l@Ip)(I+Kp)A-l Jc(F-l®F-l) ]d+' 

which can be rewritten as

- 47t S'A-1[ jc(F-l®Ip) j(F-l®F-l) - j(F-l®Ip) Jc(F-1®F-1)]d+’

-4TS'A-l[jj(F(X)-lF(y)-l®F(r)-lF(X)-l)(Ip® F(X))(c(X)-c(r))dXdr]D+’
(5)

by noting that A'"̂  commutes with Kp and with /(F"^®Ip) and KpD+'=D+' . 

Now because

(Ip®F(X)) (c(X)-c(O) - (2t )-1[(I @(c (X)E£ + I )](c(X) - c(r))
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W - fil - fl2f22'^^21 “ ^ SA’|(F(X)-l®P'F2(dX)P)SA

and

fil - SA'J(F(X)'l0P'F2(dX)P) ]-1 (8)

Now using (8) and (7) we have

fl2 _ . 2[ i SA'j(F(X)-l8P'Fz(dX)P)SA]'^S'[(Ip8l()D+':(Ip@Eq)D+'] (9)

and using (9) and (7) and (3) we have

f22 —16%3 D+A'l 0 
0 D+A-1

j(F-l@F-l) -jc(F-l®F-l) 

-jc(F-l®F-l) jc2(F-l@F-l)

D+’ 0 

0 D+’

+ 4
D+ 0 lp®^e
0 D+ lp®^i7

S W-ls'(Ip@Ij):(lp0E,)
D+' 0 

0 D+'

or, after some algebra, 

D+6-1
f22 — 16%3

D+4-lc(X)
[ F(X)-1®F(X)-1 ]

D+'

D+'c(X)
dX

+ 4
D+dpSSe)
D+(Ip@Iq)

S W-ls' [(Ip@E;)D+':(Ip8Eq)D+'] . (10)
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Appendix 6.3

yT-consistency of Coefficient Estimators

We shall show that 6 given In (5.1) Is a /T-conslstent estimator for 

6, that is

Ti(5-{o)-0p(l) (1)

Subtracting from both sides of (5.1) we have

(5 - Jo) - Sa ' fijFv-l(j)® P'lvecIz.ù(J) ]
J-0

where

where

j-0

Thus (5) becomes

(2)

T ■ 1
Hv - Sa' i ( V^(j) 8 P'Iz'z(j)P)SA. (3)j-o

and

vec l2'lj(j) - vec " (IpG^Z' z(j (̂ )

Now from (2.4), after some algebra, (4) becomes

vec Iz-ÙÜ) - vec Iz'VÜ) ’ [ (Ip-^o) ' Z'Z Ü  ) ] vec(n-no). (5)

Now from (3.3.10) we have that

vec(rt-no) - z veclz.v(j). (6)
j-0
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vec
T-1 _ .

) “ vec l2»vü) - lIj^^Z'zU)] )0li^]vecl2'v(j )

+ [Bo'S %Z'z(j)] vecl2.v(j) . (7)j-0

Hence, replacing (7) in (2) we have after some algebra

T-1
« - «0 - Hv'lSA'(Ip0P') Av(Bo'@Ik) V ^ . L l ' f v ^  O)j—0

Now from (3.4.8) and (3.4.9) we have 

plim T'^A^ - Q.y

and

T-i 5 )veclz.v(j) i N(O.Qv)
j-0

where

1 /  T
Qv - - J Fv-l(X)® Fz(dX).2t

- IT

Also because plim P - P,

plim T-IRj, - plim T'ISa’(lp®î" ) Av(Ip0P’)SA 
-SA’(Ip®P') Qv(lp®P)SA-

Hence making use of all of this, (1) follows from Slutsky's theorem
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CHAPTER 7

THE LIMITED INFORMATION MAXIMUM LIKELIHOOD ESTIMATOR OF A SINGLE 

EQUATION IN A SIMULTANEOUS EQUATION SYSTEM WITH STOCHASTIC TRENDS

1. Introduction

In this chapter we are going to consider the LIML (Limited 

Information Maximum Likelihood) estimator of the parameters in a 

single equation of a simultaneous equation system with stochastic 

trend components.

The LIML estimator was developed by Anderson and Rubin (1949) in 

order to estimate a single overidentified equation from a system of 

equations with uncorrelated normally distributed disturbances. It is 

obtained by considering only the portion of the system that relates 

the endogenous variables in the equation of interest. Because it is 

hard to grasp the theory underlying LIML, many different procedures 

have been derived, which are numerically or asymptotically 

equivalent, e.g. least variance ratio, instrumental variables. It is 

sometimes referred as the least generalized residual variance 

estimator. For a comprehensive study see, among others,

Hausman (1983), and Hendry (1976).
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A relatively easy way to understand LIML is by considering it as FIML 

applied to the new system formed by the equation of interest in its 

structural form and the reduced equations corresponding to the 

endogenous included in the equation of interest. As pointed out by 

Hall and Pagan (1981) this result can be found in a number of places 

in the literature. It has the interesting property that the new 

system is a triangular system and therefore, based on Lahiri and 

Schmidt's theorem (1978) concerning FIML estimation of triangular 

systems, LIML can be interpreted as an iterated version of the SURE 

(Seemingly Unrelated Regression Equations) estimator. Following 

these lines Hall and Pagan (1981) investigated the situation where 

the disturbances follow a multivariate MA(1) process.

Our task is to study the situation where the disturbances in the 

complete system follow a multivariate random walk. Proceeding in an 

analogous manner to Hall and Pagan (1981) we show that, as in the 

classical case, the LIML estimator of the parameters in the equation 

of interest can be obtained by applying FIML to the new system 

consisting of the first (structural) equation and the reduced form 

for the endogenous appearing in this equation. We derive a 

computational method for LIML in the time domain via the multivariate 

Kalman filter and consider the asymptotic properties in the frequency 

domain as a specialization of the results given in chapter 6. We 

finish by examining the efficiency of the estimators studied in 

chapter 4 relative to LIML.
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2. The LIML Estimator

We shall consider the complete system as in chapter 5 , that is,

Yt'B + Zt'T - , (1)

where B is pxp ,F is kxp and follows a multivariate random walk 

plus noise model with associated covariance matrices Eg and Let

yt' - [yit:?lt':Y2t'] 
zt' - [Zlt':Z2c']
«t’ - :"2t']

where y^^ and w^^ are scalars, is (Ixp^), Y2c" is Ix(p-l-pi),

Zit' is lx&i, Z2t' is lx&2 and

• 1 Bi2 B13‘ T ^12 ^13'
B - B22 B23 and r -

. 0 B32 B33. • 0 ^22 ^23

Within this notation, the first equation, the equation of interest, 

may be then written as

Ylt —  Yit'P - ^It'y + ^It + ^It « 

n t  - Pi, t-1 + ’îlt •

(2a)
(2b)

Thus, Yit' and Z^^' contain, respectively, the endogenous and 

exogenous variables included in the first equation, while Y2t' and 

Zzt' contain, respectively, the endogenous and exogenous variables
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excluded from this equation.

The reduced form of (1) is given by

[yit Ylt'Y2t' ] - [Zlt'Z2t’ ] n + [vit V l t ’V 2 t ’ ]
where

■nil ^12 ni3"
.021 ^22 H23

and

n - -r B-i

• b11 b12 b 13-

n t  Vit'Vzt'] - [«It «lt’«2t'j b21 b22 b 23
. b 31 b 32 b 33.

(3)

(4)

where i,j-l,3, are the ij-th submatrices of the inverse of B.

Now the LIML estimator of the parameters in (2) is obtained by 

maximising the loglikelihood function of the system

[yit Ylt’j - [zit'Z2t’] Oil Oi2
021 O22

+ [ n t  Vit']

where

[vit Vit'] - [ "It %lt'%2t']
fill b12 
b21 b22 
b31 b32

(5)

(6)

The loglikelihood function of (5) is as in (5.4.1). However the 

maximisation is subject to constraints guaranteeing that only the 

exogenous variables contained in Zi^ are included in the first 

equation. These constraints are

O21 + O220 " 0 (7a)
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and

^11 " 7 . (7b)

As pointed out in Hall and Pagan (1981), (7b) is not a restriction as 

such, but it will hold, and we can deduce 7 from the reduced form 

parameters.

3. LIML Viewed as a Special Case of FIML

We are now going to proceed as in Hall and Pagan (1981) in order to 

show that the ML estimator of (2.5) subject to the restrictions given 

in (2.7) is numerically equivalent to the FIML estimator of the new 

incomplete system consisting of the first (structural) equation, 

given in (2.2), and the reduced form for the endogenous variables 

appearing in this equation. We remark that recognizing LIML as a 

special case of FIML, will allow us to obtain the ML estimates from 

the structural form, which, from the computational point of view is 

easier to handle then the reduced form subject to restrictions.

The new system may be written as

[yit ?it']
1 0
0 Ipi

[zit'Zzt']
7 -Hl2'

0 ’̂ 22
where

[*lt Vit'] - [*lt Wit’W2t’]
1 b12
0 b22
0 b32

h t  Vit’] (1)

(2)
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The reduced form of (1) is given by

[yit ?it' ] - [zit'Z2t’ ] + [vit* Vie'*] (3)

where

7 -^12' 1 0 ■-1 Hilt Ui2
nt -  . -

. 0 ”^22‘ ■ p Ipl ' ri2it H22
and

[nt* Vit*'] - [«It Vit'] 1 0

P Ipl

-1

(4)

(5)

Now the restrictions on 11̂ are the same as the one given in (2.7). 

Moreover, noting that

1
0 b22
0 b32

1 0 1

P Ipl

fill b12 
b21 b22
b 31 b 32

we have that (5) is identical to (2.6): hence the equivalence of the 

two procedures.

Finally we note that if we assume that the disturbances of the 

complete system follow a multivariate random walk plus noise model, 

with associated covariance matrices Eg and E^, then the disturbances 

(wit.Vit')' of the new incomplete system given in (1) will also 

follow a multivariate random walk plus noise but with associated 

covariance matrices
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S '

■ 1 0 O ' 1 b12-
0 b 22

Bl2«B22«g32t . 0 B 2̂.

1 0 O ' • 1 Bl2'
T̂7 0 b 22

b 12'b 22'b 32i 7
. 0 b 32.

(6a)

(6b)

This fact has the relevant property of allowing us to make use of the 

estimation techniques and asymptotic properties for FIML with random 

walk plus noise disturbances as discussed in the previous chapter.

For models with disturbances following an unrestricted multivariate 

MA(1) process, if we proceed as above and consider only the 

incomplete system with reduced form equations for the endogenous 

variables in the first equation, the MA structure of the disturbances 

will not be maintained. In other words if w^' in (2.1) is given by

wt' - et' + et_i' e, 

then the disturbances in (1) will take the form

[«It V i t ' ] -  «t-
■ 1 b21i • 1 b21i
0 b22 + Cfl' ® 0 b22

. 0 b32. . 0 b32.

and clearly will not follow a vector MA(1), since the matrix in 

square brackets and 0 do not commute. Hence in this case, in order 

to be able to use the literature, such as Reinsel (1979), concerning 

FIML estimation of simultaneous equation systems with vector ARMA 

disturbances. Hall and Pagan (1981) considered LIML as FIML applied 

to the system consisting of the (structural) equation of interest and
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the reduced form for all endogenous variables in the system apart 

from yif Moreover constraints on the MA coefficient matrix must be 

imposed. These constraints in turn restrict us to models in which 

all disturbances follow a vector MA, apart from the one in the first 

equation, which follows a univariate MA process. Such models do not 

seem to be very natural. Structural models in which both and î t̂ 

may be correlated with the corresponding disturbances in the other 

structural equations are more appealing.

4. Computational Method

We are now going to derive the FIML estimates of the system given in 

(3.1), which may be written as

(1)

where the pxp matrix and the Kxp matrix , where p-p^+l, JC*=k]̂ +k2,
are

1 0 

^ Ipl
and

7 -Hi2 
0 "1̂ 22

As we pointed out before the pxl vector w^^ - i'̂ lt ^It' ] ' follows a 

p-variate random walk plus noise model with associated covariance 

matrices and given in (3.6a) and (3.6b).

Let ct denote the unrestricted elements of -vec [B^'F^']'. Thus
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a
vec

Conditional on the first observations the loglikelihood function of

(1) is given in (5.4.4), that is,

- (T-1) log IB? I - } I loglFtI - i f • <2)t“2 t-=2

where is the p(p+l)xl vector obtained from vec(Ig^;I^^) by

eliminating the supradiagonal elements of and Now because

is a triangular matrix, lB^l-1, hence log iB^l is absent in the 

loglikelihood function. Moreover from the discussion given below 

(5.4.4) we have that

t - 7t - %t'o (3)

where y^ is obtained by applying the multivariate Kalman filter to 

the p-dimensional process, y^ - [yit ^It'^ is obtained by

applying the multivariate Kalman filter separately to each column of 

X(.' , where

Yit' Zlt' 0
0 (Ipl® ^t')

(4)

Replacing (3) in (2) yields

C(a,ÿt) - - i f loglFtI - i f (ÿt - Xt’“ )'Ft'^(yt - ) (5)t—2 t—2
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which has to be maximised with respect to a and .

As in the univariate case the maximisation of (5) can be carried out 

in two different ways. Firstly a can be concentrated out of the 

loglikelihood function. Thus, solving the likelihood equations for a 

we have

Replacing (6) in (5) yields the concentrated loglikelihood function

- - i i  loglFt' - i L < ÿ t  - Xt'a )'Ft-l(yt - X t ’“ ) (?)t“2 t—2

and the ML estimate of \J/̂ is obtained by maximising (7) nonlinearly 

with respect to • Once we have found ) is obtained from

(6) .

Alternatively we could maximise (5) in a stepwise fashion. A 

consistent estimator of a is constructed by differencing all the 

variables, and then applying 2SLS to the first equation and least 

squares to the second set of equations given in (1). The residuals, 

ŵ '̂  - y^ - X̂ 'CK, are computed and the matrices and are

estimated maximising the loglikelihood of w^^ . a is reestimated 

using (6). As noted in Lahiri and Schmidt (1978) the two-step 

estimator of a is asymptotically inefficient. However, if the 

procedure is repeated until convergence, apart from computational 

restrictions, the same estimator is obtained.
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5. Asymptotic Theory of LIML

Although the fact that the determinant of is equal to unity helps

regarding the computation of LIML it does not help regarding the 

asymtotic properties. Thus, in order to obtain the asymptotic 

properties of LIML we have to proceed in the same way as we would in 

obtaining the asymptotic properties of FIML in the general case where 

is not a triangular matrix. This has nothing to do with the fact 

that the disturbances are serially correlated, since even in the 

classical case we have to proceed in this way. Now the asymptotic 

properties of FIML were studied in the frequency domain in the 

previous chapter. From section (6.5) we have that T&(a-Oo) has a 

normal limiting distribution with zero mean and covariance matrix 

given in (6.4,5a). Hence the asymptotic covariance matrix of a is

Avar(a) - —

where

SA'dpgP^') - [F(X)-l@Fz(X) ]dX(Ip@pt)SA
-T

(1)

F(X) - F(X,^t) - (2*)-l[2(l-cosX)Zgt + !_?],

with and as given in (3.6), positive definite; F%(X) is

the spectral matrix of the process generating the (differenced) 

exogenous variables;

pt - [nt I*], nt -
n u t  ni2 
n2it n22

as given in (3.4),
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where is k^xl, ÏI12 is kixpi, Il2i^ is k2%l and 1122 is k^xpi; Sp̂

is the selection matrix as given in (5.2.7). For LIML becomes

0 lx(pl+kl) 
Ipl+kl 

^ k2x(pl+kl)

p̂l
0 (pl+l)x(kl+k2) 
Ikl+k2

and so

(Ip@Pt)SA
0

Ipl®Ik

where

"l2 ^kl 
II22 0

Therefore (1) becomes

(2)

(3)

(4)

Avara
R' 0 IT

(F(X)-l@Fz(X))dX
R ■ 0

0  .(ipl®ik) ' -TT 0 . (Ipl®ik)
(5)

Because the parameters in (5) are unknown, the asymptotic covariance 

matrix of a can be consistently estimated by

R' 0 T - , R 0
avara - V (Fj-l0l2(j)) j—00 .(Ipl@Ik). 0 . (Ipl8lk)

-1

(6)

where R is (4) with IÏ22 &rid II22 replaced by their ML estimators; 

Fj-F(Xj,^t), where is the p(p+l)xl vector containing the ML
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estimators of the unrestricted elements in vec(Egt 1^^); Ig^j) is the 

periodogram matrix of the differenced exogenous variables.

Our main interest is centered on the asymptotic covariance matrix of 

Ô, where contains the estimators of the regression

coefficients appearing in the first equation. The relevant 

expression is given by the left top (pi+k^ x Pi+k^) submatrix of (5). 

Writing (5) as

2*
Avara — —  

I

R'jF(X)ll@F2(X)dX R
-T

R'jF(X)12@F2(X)dX
-X

jF(X)21@Fz(X) dX R
-T

J F(X)22@Fz(X)dX
-X

-  1

(7)

where F(X)lj ,i,j-l,2 are the (i,j)-th submatrices of the inverse of 

F(X), and using the partitioned form of an inverse, it turns out that 

the asymptotic covariance matrix of 6 is given by

Avar Ô 

2ir

T
j F ( X ) l l @ F z ( X )  - j F ( X ) 1 2 @ F z ( X ) [ j F ( X ) 2 2 @ F z ( X ) ] " l j F ( X ) 2 1 @ F z ( X )

-1
R

(8)
which can be written as

Avar6 - — {k'[ [jF(X)-l@Fz(X)dx]ll r]"^
^ -T

(9)

where here [• denotes the kxk top left submatrix of the inverse of 

the pkxpk matrix in squared brackets. As in (6), (9) can be

consistently estimated as
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avar« - (â' f . (10)

Explanatory Variables Following a Multivariate Random Walk

If we assume that the explanatory variables follow a multivariate 

random walk with disturbance covariance matrix Zg, then the 

differenced variables will have constant spectrum, that is,

Fz(X) - (2ir)-l Zg , -IT < X <T (11)

and expression (9) becomes

Avars - {r ’[[ jF(X)"ldX ® r }"^. (12)
T

Now
TC

[ jF(X)-ldX ® (2T)-llz]'l - 2t [ jF(X)'ldx]'l® Eg-l ,

hence

[ jF(X)'ldX ® (2%)-lZz]ll - 2ir[ jF(X)-ldx]ll Z^’l . (13)

Making use of (13), (12) becomes after some algebra

Avars - [ jF(X)-ldX [ R ’Z^R ]'^ (14)

where F(X)-F(X,^t)

This being the case, the integral in (14) can be computed in the
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following way. For disturbances following a multivariate random walk 

plus noise process, we have

F(X.ÿf) - (2x)-l [c(X)Zjt + ], (15a)

where

c(X) - 2(1 - cosX). (15b)

After some algebra the inverse of (15a) becomes

[F(X,ÿt)]-l- 2* [Ip - B cosX]-l[2Z;t + ]-l

where

B - [2:;' + 2i;t

We note that if is positive definite then the eigenvalues of B

are less than one, see Magnus and Neudecker (1988,page 25), and 

because the norm of a positive semidefinite matrix is its largest 

eigenvalue, it follows that llBlKl, and so

(Ip - B cosX)"l - ^ B^cos^X 
^ k-0

Therefore

Now

jF(X,^f)-ldX - jcoskxdX [21^? +

Jcos^XdX - 0 for k odd,

Jcos^XdX - r
-X

and using the fact that for j>2
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c T tJcos^j■2xsin2xdX - — jcos2j"2xdX
-X 2j

we have

X X X
Jcos^jxdX - jcos2j-2xdX - Jcos^j’2xsin2xdX
_x -X

2j-l
2j

Thus,

Jcos^j•2xdX.

% 00 
J F(X,^f)-ldX - 4x2^2^CjB2j[2Zet + (16)

where
2j-l 

""j “ 2j
CQ - 1,

and the integral can be evaluated numerically with a desired 

precision.

6. Efficiency Comparisons

We shall now examine the efficiency of the estimators studied in 

chapter 4 relative to LIML. The criterion used here is the the ratio 

of the determinants of the asymptotic covariance matrices.

The asymptotic covariance matrix of LIML is given in (5.9), namely
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AvarÔLiML "" —  ^®F2(X)dX
11

1"«1
-1

(1)

while the asymptotic covariance matrix of the estimator

studied in chapter 4 is T'^ times the inverse of (4.4.8), namely

I t

Avar ÔIIV/ML ” R' f(X)-lF2(X)dX R
-T

-1
(2)

with f(X) - [F(X,^t)]ii - [F(X,^)]ii, where the last equality

follows from (3.6), and [ • ] n  is the top left element of the matrix 

in square brackets.

T hus,

I Avar ÔLIML •

IAvar ÔIIV/ML*

R' f(X)-lFz(X)dX R 
-ir

R' (F(X)-l@Fz(X))dX
•T

11
(3)

lim
T-KO

R' [ ] ] R

(4)

Now let

Because B and C are positive definite and C-B is positive 

semidefinite, see appendix 7.1, we have that B"l-C"l is positive
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semidefinite. Therefore R'B’^R - R ’C'^R is positive semidefinite and 

so

iR'B-lRl > iR'C-lRl.

Hence the LIML estimator of 6 is at least as efficient as the IIV/ML 
estimator of 5.

Cases Where IIV/ML is Efficient

There are two cases where IIV/ML is efficient in the sense that it 

has the same asymptotic distribution as LIML.

a) Homogeneity

In the homogeneous case, that is, - qZg and of course qZ^t,

we have

- (2t)-1[ c(X)E;t + ] - (2T)-ll^tc(X),

where c(X) - c(X)+q. Therefore

[jF(X,^t)-l@Fz(X)dx]ll - [j2*(E;t)-lc(X)-l8F2(X)dx]ll
-T -X

- [2T(E(t)-l@J c(X)-lF2(X)dx]ll
-X

x _  _
- (2i)-1[E£(1,1)-1J c(X)-lFz(X)dx]'l

-  [ j f ( X ) ' l F 2 ( X ) d x ] ' l ,  (5 )
-X
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where the last equality follows because

2, c(X)]'^- 2x [Ej (1.1)c (X) + 1,(1,1) ]'l- f(X)-l.

Hence, making use of (5) it follows that (1), the asymptotic 

covariance matrix of coincides with the asymptotic covariance

of «IIV/ML given in (2).

b) Disturbances in First Equation Uncorrelated with Those in Other 

Equations

Suppose pi-p-1, that is the first equation contains all the 

endogenous variables in the system. This being the case

F(X,ÿt) - (2*)-l [E;tc(X) + - B'F(X,vt)B,

e
—  fl glZnB - 1̂0 g22j is square and positive definite.

Therefore,

[/ F(X,^t)-l@Fz(X)dx]' - (B'@Ik)[ f F(X,ÿ)-l@Fz(X)dx]' (B®Ik). (6)

The top left hand kxk submatrix of the matrix on the left hand side 

of (6) appears in (1), but on evaluating the right hand side we find 
that F(X,^i) can be replaced by F(X,^). Now if the disturbances in 

the first equation, e^t ?̂lt» are uncorrelated with the

disturbances in the other structural equations, then F(X,^) is block
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diagonal and so the top left submatrix of the matrix on the left hand 

side of (6) becomes

[I’' F(X.V^)-l8Fz(X)dx]^^ - [ j*^f(X)-lFz(X)dX ]. (7)

and again (1) reduces to (2).

7. Stochastic Trend in First Equation Only

Up to this point we have been assuming that given in (3.6b) is

positive definite. If p^-p-l this is the same as requiring that 

stochastic trends be present in all the structural equations in the 

system. There is no reason why this should be true in general. If 

the assumption is not true, LIML can still be calculated in the time 

domain since the exact likelihood is still produced by the Kalman 

filter. The question concerns its asymptotic distribution, since 

differencing the observations in the system (4.1) will yield a 

strictly noninvertible model and so the conditions for the asymptotic 

distribution theory used to obtain (5.9) will no longer hold. Note 

that the distribution of IIV/ML is unaffected and so (6.2) remains 

true irrespective of whether or not equations other than the first 

contain stochastic trends.

We shall investigate the properties of LIML when only the first 

structural equation contains a stochastic trend. It will be also 

assumed that (i) p^-p-l and (ii) the exogenous variables are random 

walks. These two assmptions mean that if stochastic trends were, in
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fact, present in all the structural equations, the asymptotic 

covariance matrix of the LIML estimator of Ô would be given by 

(5.14). Because of (6.6), F(X,^t) can be replaced by F(X,^). Thus

Avars - [ J F(X)-ld).]^^ [ R T ^ R  (1)
-T

where F(X)-F(X,^), and because F(X)-F(-X), (1) can be written as

2x 1 *Avar6 - ^
o

In the case we are interested in F(X) is not positive definite at 

X-0. Based on heuristic arguments we take

Avara -= lim ^ [ j[ 2tF(X) ] - l d x ] [ R'l^R ]'^. (3)
x ^ # +  X

as an expression for the asymptotic covariance matrix of &LIML- 

Evaluating the limit, see appendix 7.2, (3) becomes

Avara - -p2)]i [R'E^R ]"1, (4)

where and are the variances of the disturbances appearing in

the first equation and p2, as given in appendix 7.2, is the 

coefficient of determination between e^t the other p^ elements in

the vector
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In terms of the signal-noise ratio q - becomes

Avars - T-l(r^2[q2 + 4q(i -p2)]i [R'ZgR]-!. (5)

Again demonstrating the asymptotic superiority of LIML compared with

IIV/ML, we have from (4.4.10) that

AvarSiiv/ML " + 4q]* [R’l^R]"^, (6)

hence

AvarÔLiML [ +  4q(l "P^)]^

Avar6iiv/ML [sf + 4q]*
< 1

When p2 is zero, we have a special case of the result given at the 

end of section 6 showing the LIML and IIV/ML have the same asymptotic 
distribution when the disturbances in the first equation are 

uncorrelated with those in the others. Conversely, the maximum gain 

from using LIML comes as p2 tends to unity. Hence the only thing 

affecting the asymptotic distribution of the LIML estimator of ô is 

the correlation between c^t the other elements in When there

is correlation present, there is a gain in efficiency over IIV/ML 

since the IIV/ML does not use this information.
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Appendix 7.1

Result on Matrix Inversion

Let A(j), j-l,...T, be mxm matrices partitioned as

A(j) -
All(j) Ai2(j) 
A21U )  A22(j)

where A]̂ ]̂  is A 2̂ is m]^xm2, A21 is m2xm]̂ , A22 is #2x^2 and

m^+m2"m .

We want to show that

-1 r T , ill (1)[ J  An(j)-i]‘ - [ j  A(j)-i ] ) 0
j-1 J-1

where [ • ]H is the mg^xm^ top left submatrix of the inverse of the 

matrix in squared brackets.

Proof. Let us proceed by induction. It can be shown that (1) is true 

for T-2; see Harvey,Neudecker and Streibel (1991). Assume (1) to be 

true for T-k-1. We then have to show that (1) is true for T-k. The 

argument is as follows. We subtract and add

k-1 , ,11 ,-l , ,-l

to the LHS of (1) for T-k. This yields
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11

(2)

Using the fact that for D>0 and F>0, D-F)0 if and only if F ”^-D"^)0, 

we have from (1) that

rk-1 .nll-i-1 k-1{ [ i A(j)-i]^^}-^ T A n ( j ) - i  > 0
j-1 j-1

or
rk-1 ,-illi-l

or

{ } + Aii(k)-1 - .2 Aii(J)-l > 0
j-1 j-1

[i,An(J)-i ]-' - [ U % A ( j ) - i ] ' Y '  + An(k)-1 ]-' > 0. (3)

On the other hand, noting that

[{,1

we can write
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and because (1) is true for T-2, we have that the RHS matrix of the 

above expression is positive semidefinite. Hence (2) is a sum of two 

positive semidefinite matrices and therefore (2) is also positive 

semidefinite.
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Appendix 7.2

Asymptotic Covariance Matrix When Only the First 

Equation has a Stochastic Trend

For simplicity we consider a two-equation system. Thus p-2 and p^-l 

Let
Og2 w •

- and -
.0) fig . .0 0.

For convenience we write

a b ' d-a 0
2 Ze - and Tyj -

b c . .0 0.
where d - (r̂ 2 + 20g2 Hence

d b " a b ■ d-a cosX b(l-cosX)”
2tF(X) - - cosX —

. b c . . b c . b(l-cosX) c(l-cosX).

Now as

det[2xF(X)] - (1-cosX) (d]^-d2COsX) , 
where

^2 " dc - - (2w)2
and

^2 — ac 

and as

c(d-a cosX)

- - (2w)2,

b2
c det[2irF(X)] c(l-cosX) c(ẑ ]̂ -Ẑ 2C0sX)

we have

J[2iF(X) ]-ldX-
di"d2CosX

b

dX

•J ÂT-V -L ^2CosX dX

■Îd^-d2CosX 

b2

dX

c(l-cosX) dX + c(6i-d2CosXdX
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Because

det[J[2xF(X)]-ldx] - j a .4 J T~^ cosX
X X ^ X

we have

[ j[2TF(X)]-ldx]ll
X

Now

lim f T  - lim cot[-ff] - 00. J 1-cosX . k 2 J
x->o^ X x -*o^

and

l ^ d ^ c o s x  -  w Y Z r W  [ Î  ]

2t
2 (AiZ-AgZ)* '

b2
+

dX dX
C  T :------------, C6i-AocosX J 1-cosX

X ^ X
= J r

and so

lim [ j[2%F(X)]-ldx]ll - . (1)
X ^ 0 +  X

In terms of the covariance matrices Eg and E^, we have that

- 4 [Cq^Og + 4(0g2ng - o)2) ],

and after some algebra

- [«,4 + 4d,2 [f,2 . wZ/O; ] ]* . (2)

Since we are assuming p-2, fig and w are scalar. For p>2 and p^-p-l,
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Og is a p^xpi matrix and w is a p^xl vector. It can be verified that

(2) holds with replaced by w'Og'lw.

Finally, using the notation p2 for the coefficient of determination 

between c^t the other p^ elements in the vector e^, i.e.

p2 - Og-Zw'Og-lw, (3)

(1) becomes

lln. [ jf2TF(X)]-ldx]^^ - + 4dq2fc2[l- p2 ] . (4)
X ^ 0 +  X
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CHAPTER 8

AN APPLICATION TO REAL ECONOMIC TIME SERIES

1. Introduction

As an illustration of the estimation techniques described in the 

previous chapters we now focus our attention on the employment-output 

relationship. Our model is in the same spirit as the one analysed in 

Harvey et al(1986), namely

Ht - &l9t ^2^t-l + ^t + (la)

H  - Pt-1 + #t-l + Vt (lb)

“ Pt-1 + ^t (Ic)

where refers to employment and refers to output. However while 

the approach adopted in Harvey at al(1986) treats output as a weakly 

exogenous variable here we treat it as an endogenous one. This seems 

more reasonable, since the assumption that output is fixed in advance 

and employment simply adapts to it is rather a strong one. It seems 

more plausible that output and employment are jointly determined. 

But since we do not wish to specify a model for the determination of 

output, single equation estimation of the employment equation is
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appropriate.

We estimated (1) using various IV procedures. The variables we have 

chosen to act as instruments are: world trade, UK investment and UK 

government expenditure.

Data Definitions

The five data series used run from 1963Q1 to 1983Q3 and are 

seasonally adjusted. They are:

a)EMP - logarithm of UK manufacturing employment in thousands;

b)OUT - logarithm of UK manufacturing output index, with 1980-100;

c)WTT - logarithm of total world trade index, with 1980-100;

d)QDK - logarithm of UK total investment, 1980 prices;

e)GEXP- logarithm of UK government expenditure, 1980 prices.

2. Estimation of the Model

Our estimation of (1.1) by means of instrumental variable estimators 

is conducted by considering two different sets of instruments. So we 

have

Case A - where the instruments used are the predetermined variables

EMP-1 and OUT-1, acting as their own instruments, WTT, QDK

and GEXP, and all these variables lagged once;

Case B - as above plus all variables lagged twice .
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So two observations are lost in case A and three in case B. However, 

for comparison purposes we have discarded the first observation when 

estimating case A.

The organisation of the study is the following. We begin 

reestimating (1.1) where we have discarded the first 2 observations, 
without taking into account the endogeneity of output. Our estimated 

version of (1.1) is given in table 1. The estimates obtained are 

slightly different from those reported in Harvey et al(1986), (after 

correction the coefficient of lagged output in equation 17 of Harvey 

et al should read 0.058 and the constant term in equation 18 should 

read -0.00159). The differences are primarly because we have less 

observations.

Next we estimate the model by the instrumental variable procedures 

outlined in section 4.3. For each case, A and B, we consider four 

different procedures. These are:

1)IIV/ML with transformed instruments;

2)IIV/ML with untransformed instruments;

3)IV/QML with transformed instruments;

4)IV/QML with untransformed instruments.

In all procedures is concentrated out, and the starting values

for the hyperparameters were (Tg2«o.000001, 0^2-0.000005 Of2-0.00000. 

For IIV/ML, the starting values for the regression coefficients on 

(n^, q^, qt-l) are (0.10 0.76 0.06). In preliminary estimation we 

have considered different starting values and we find out that the
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final results seem not to be affected by the choice of the starting 

values. The program was run on the VAX and the optimisation 

subroutine was E04JBF from the NAG library. The CPU time consumed by 

the IIV/ML procedure is considerably less then by the IV/QML one. 

The results are reported in tables 4 to 11.

Model in First Differences

Since, in all cases, the estimate of is equal to zero, we

estimate the model in differences by means of the TSF program for 

comparisons purposes. We note that when - 0, differencing once

model (1.1) yields

— (3 + XAn^_ 2 + + d^Aq^.i + w^ (la)

where

w% - + Ac^ (lb)

Because the disturbances, w^, are serially correlated and An^.^ is a 

lagged dependent variable, consistent estimation is achieved based on 

instrumental variable estimators with An^_2 acting as an instrument 

for An^_2. As before we shall consider two cases. These are:

Case C - where the instruments are

CONST AOUT-1 AEMP-2 AOUT-2 AGEXP AWTT AQDK AGEXP-1 AWTT-1 AQDK-1
and
Case D - where in addition to the instruments given in C, we also 

consider AEMP-3 AOUT-3 AGEXP-2 AWTT-2 AQDK-2 as instruments.

However, since dominates using AEMP-1 as an instrument for

itself should also give coefficients close to those obtained in cases
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A and B. Therefore, two more cases are considered:

Case C*- 6EMP-1 is included in the set of instruments given in C 

and

Case D ’- AEMP-1 is included in the set of instruments given in D.

The results are reported in tables 12 to 15. These results may be 

compared with the OLS and IV estimates of the first differenced 

equation reported in tables 2 and 3.

3. Conclusions

Although the results obtained do not allow us to draw dramatic 

conclusions about the endogeneity of output, it is worth paying 

attention to the following points.

i) Whether the equation is formulated in levels as in (1.1), and IV 

estimation is carried out with transformed instruments, or in first 

differences as in (2.1), there is, although small, a systematic 

increase in the coefficient for output which varies from 2.8% to 8% 
according to the estimation procedure and a minimum decrease in the 

lagged output coefficient. The changes in the lagged employment 

coefficient are negligible. Compare the results given in tables 

4,5,8 and 9, and in tables 13 and 15 with those in table 1.

ii) Taking lagged once or lagged twice instruments seems not to 

affect the results systematically. Compare tables 4,5,6 and 7 with 

tables 8,9,10 and 11, respectively.
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iii)Differences between the two estimation procedures, IV/QML and 

IIV/ML seem to be dominant. Different estimates were expected, 

since, as pointed out in earlier chapters, the two estimation 

procedures are not numerically equivalent.

iv)There is no longer an increase in the the coefficient of output 

when untransformed instruments are used, see tables 6,7,8 and 9.

v)When the model is formulated in first differences and ZlEMP-1 is 

taken as an instrument for itself, all coefficients are affected, 

compare table 12 with 13, and 14 with 15.
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Appendix 8.1 - Tables

Table 1 GLS estimates for equation with stochastic trend

LEVEL TREND OUT EMP-1 OUT-1

1.355372 -0.001603 0.111968 0.752064 0.059587

(0.290319) (0.000318) (0.013930) (0.037596) (0.015755)
0-̂ 2 _ 0.0000013880 a 2 -0.0000048945 af2 - 0.0000000000

Table 2 - OLS estimates for first differenced equation

CONST

-0.001717

(0.000396)

OUT

0.106017

(0.014522)

EMP-1

0.728599

(0.045486)

OUT-1

0.063339

(0.016119)

Table 3 - IV estimates for first differenced equation 
INSTR.: CONST AOUT AOUT-1 AEMP-2

CONST

-0.001547

(0.000411)

OUT

0.103886

(0.014632)

EMP-1

0.761677

(0.050002)

OUT-1

0.057802

(0.016533)
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Table 4 - IV/QML estimates with transformed instruments, case A

LEVEL TREND OUT EMP-1 OUT-1

1.378326 -0.001627 0.114613 0.748057 0.059503

(0.297369) (0.000335) (0.026826) (0.039626) (0.016234)

<r̂ 2 _ 0.0000012152 - 0.0000051951 <Tf2 - 0.0000000000

Table 5 - IIV/ML estimates with transformed instruments, case A

LEVEL TREND OUT EMP-1 OUT-1

1.331485 -0.001614 0.120290 0.751617 0.057341

(0.284708) (0.000318) (0.026123) (0.037767) (0.016626)
(Tg2 _ 0.0000015553 a^2 - 0.0000046499 (Tf2 - Q .0000000000

Table 6 - IV/QML estimates with untransformed instruments, case A

LEVEL TREND OUT EMP-1 OUT-1

1.384608 -0.001594 0.101688 0.751917 0.063755

(0.296205) (0.000336) (0.028813) (0.039913) (0.016473)

(Tg2 « 0.0000012986 - 0.0000050924 Pf2 _ 0.0000000000

Table 7 - IIV/ML estimates with untransformed instruments, case A

LEVEL TREND OUT EMP-1 OUT-1

1.398523 -0.001502 0.101428 0.750384 0.063871

(0.300016) (0.000341) (0.028836) (0.040413) (0.016347) 

- 0.0000011987 <r 2 - 0.0000052636 o-f2 _ 0.0000000000
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Table 8 - IV/QML estimates with transformed instruments, case B

LEVEL TREND OUT EMP-1 OUT-1

1.366334 -0.001623 0.115793 0.749059 0.059051

(0.294011) (0.000327) (0.021076) (0.038571) (0.016032)

- 0.0000013011 - 0.0000050496 (7^2-0. 0000000000

Table 9 - IIV/ML estimates with transformed instruments, case B

LEVEL TREND OUT EMP-1 OUT-1

1.338629 -0.001611 0.117879 0.751696 0.058039

(0.286208) (0.000317) (0.020985) (0.037552) (0.016176)

(Tg2 - 0.0000015047 - 0.0000047175 (Tj-2 _ Q.0000000000

Table 10 - IV/QML estimates with untransformed instruments, case B

LEVEL TREND OUT EMP-1 OUT-1

1.361570 -0.001603 0.107679 0.751692 0.063237

(0.287485) (0.000320) (0.024287) (0.037928) (0.016375)

- 0.0000014860 0-̂ 2 - 0.0000047482 a\p- - 0.0000000000

Table 11 - IIV/ML estimates with untransformed instruments, case B

LEVEL TREND OUT EMP-1 OUT-1

1.391155 -0.001614 0.105319 0.749175 0.063884

(0.296412) (0.000331) (0.024349) (0.039110) (0.016174)

(Tg2 _ 0.0000012613 - 0.0000051292 orj-2 _ Q.,0000000000
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differenced equation. case C

CONST OUT EMP-1 OUT-1

-0.001654 0.092805 0.736950 0.062869

(0.000420) (0.031269) (0.048963) (0.016238)

Table 13 - IV estimates for first differenced equation, case C

CONST OUT EMP-1 OUT-1

-0.001591 0.115784 0.756682 0.057791

(0.000422) (0.033890) (0.050279) (0.016511)

Table 14 - IV estimates for first differenced equation, case D'

CONST OUT EMP-1 OUT-1

-0.001708 0.104078 0.7298243 0.063270

(0.000405) (0.022519) (0.0467747) (0.016132)

Table 15 - IV estimates for first differenced equation. case D

CONST OUT EMP-1 OUT-1

-0.001600 0.117573 0.7555205 0.057860

(0.000412) (0.023756) (0.0490003) (0.016502)
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CHAPTER 9

MONTE CARLO STUDY

1. Introduction

We conducted a series of Monte Carlo experiments to examine the 

performance of the estimators and their small sample behaviour. The 

basic model is a two equation simultaneous system as in Hendry and

Harrison (1974). However the unobserved part follows a multivariate

random walk plus noise, and the exogenous variables are non

stationary. Thus the form of the model is

Ylt “ ^lY2t + &yit-l + Tl^lt + Mit + ^It (la)
4

Y2t " PlYlt +.5^7iZit + M2t + «2t (1%)1— 2

where - (Mlt>M2t)' la a Gaussian multivariate random walk and

- (eiti^2t)' la ® Gaussian multivariate white noise process. The 

covariance matrices of the disturbance vectors and r]̂ are

respectively and I^. The exogenous variables Z£^.,i-1,4 are

independent random walks generated by

Zic - Zit-1 + "it * (2)
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where is a Gaussian white noise process with variance

i-1,4. Our interest centres on estimation of the first equation. This 

is overidentified.

2. The Choice of the Parameters

The values chosen for ^2 'Vi* i"l,4 are at 0i^O.2, 02-0.4 and 
7l"72"73"74"l O' When a lagged dependent variable is included, 
Ô-0.5. These values are close to the ones in Hendry and 

Harrison (1974). is fixed at 2.0.

The values for Ig and were fixed according to the following 

argument. Differencing (1.1) yields, in matrix notation,

Ay^'B + - u^' (1)

where » V2t^^^20* is a vector MA(1) process with
disturbances covariance matrix fi.

n
ü>ii (j)i2 

(j>21 W2 2

Models with stationary disturbances were studied in Campos (1986b). 

So we have chosen the values for the diagonal elements of fi, 

proportional to the ones given in Campos (1986b). The values for the 

off diagonal elements are such that the correlation between U]̂ -̂ and
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U2t Is 0.5. This yields

n
1.5 1.5

1.5 6.0

With n given above, the asymptotic reduced form multiple correlation 

coefficient of the differenced model when no lagged variable is 

included is equal to 0.7. Next we split into 2Ig and in such a 

way that we have the homogeneous case with q-1. That is,

0.5 0.5'
and

0.5 0.5-

0.5 2.0. 0.5 2.0.

We call this experiment A.

We also consider experiment B where only the measurement disturbances 

6(. are correlated, so

0.5 0.5- 0.5 0 •
- and -

0.5 2.0. . 0 2.0.

experiment C, where the stochastic trend is absent in the second 

equation, so

0.5 0.5- 0.5 0 ■
- and -

.0.5 2.0. . 0 0 .

and experiment D where the variability is more in the measurement
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disturbances than in the stochastic trend, so

0.6 0.55- 0.3 0 •
- and -

.0.55 2.0. . 0 2.0.

If a lagged dependent variable is included in the first equation we 

consider experiment A', the homogeneous case, and experiment C*, when 

there is no stochastic trend in the second equation.

We mention that we have tried several different sets of parameters 

not reported here. We found in some cases that when performing LIML 

around 10% of the replications gave anomalous results. In other 

estimation procedures this did not happen. We note that in order to 

obtain LIML we have to optimise the criterion function nonlinearly 

with respect to , where the p(p+l)xl vector contains the

elements of the triangular matrices obtained when and are

factored by means of the Cholesky decomposition. The reason might be 

explained by the fact that if l^^t|»l for some i, i-1, . . . ,p(p+l) 
numerical problems might arise when optimising by means of the NAG 

subroutine. It is possible that this problem could be overcome by 

suitable re-scaling.

3. Data Generation

The simulations are carried out with sample sizes T-50 and T-200. 

Values for y^', t-l,...,T are obtained by solving the reduced form of 

(1.1), that is.
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Yt'- + (/xt- + .

The (T+30)x4 matrix Z containing the exogenous variables is generated 

as follows. Using the NAG subroutine G05DDF, for t running from 1 to 

T+30, the (4x1) vector is generated as a Gaussian white noise 

process with covariance matrix - diag{2.0 2.0 2.0 2.0) and the 

t-th row of the matrix Z is obtained by adding the transpose of to 

the previous row of Z. We have set Z(0,l)-Z(0,2)-Z(0,3)-Z(0,4)-0.

Similarly, for t running from 1 to T+30, the 2x1 vector 17̂. is

generated as a bivariate Gaussian white noise process with covariance 

matrix in order to obtain the (T+30)x2 matrix /x containing the

stochastic trends. Again we have set /x(0,l)-/x(0,2)-0.

Finally the (T+30)x2 matrix e is formed with each row generated as a 

bivariate Gaussian white noise process with covariance Eg.

We then form the Tx2 matrix Y, where the t-th row is obtained adding

the t-th row of e+/x to the t-th row of Z post-multiplied by F, and

postmultiplied the sum by B"l. The first 30 observations are 

discarded.

If a lagged dependent variable is included in the first equation the 

matrix Z is augmented to include y^f-l). Thus each row of Z is given 

by

t̂' “ [yit-1' %lt' %2t' %3t' 4̂t ]
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where yit«l obtained from the previous row vector [yit-1* y2t-2] 
We set y^o - 0 and again discard the 30 first observations.

In subsequent replications we do not change the exogenous variables.

4. Estimation Procedures

The following estimation procedures were considered in order to

obtain estimates of the parameters in the first equation:

a)GLS - is the ML estimate under the assumption that all the

explanatory variables in the first equation are exogenous. 

This is described in section 3.2. The criterion function is 

given in (3.2.3) which is optimised by means of the stepwise 

algorithm. The hyperparameter concentrated out is in

a preliminary study we have concentrated out Although

the results were not significantly different from the ones 

obtained when is concentrated out, it proved more

appropriate to concentrate out for numerical reasons,

b)IV/QML - as described in section 4,3. The criterion function is given 

in (4.3.7). is concentrated out. The three estimators 

considered differ according to the transformation applied to 

the instruments. They are:

IV/QML^ - Kalman filter is applied to the instruments. Thus, b in 

(4.3.8) is obtained from the minimand given in (4,3.2) with 

projection matrix Pi as given in (4.3.3);



182

IV/QML^ - differencing the instruments once. As above but with

projection matrix as given in (4.3.5);

IV/QML^ - untransformed instruments. As above but with projection

matrix as given in (4.3.4).

c)IIV/ML - as described in section 4.3. As for the IV/QML estimation 

procedures we have considered three estimators, these are:

IIV/ML,! - Kalman filter is applied to the instruments. That is, at

each step (4.3.6) is optimised with respect to and

with Ô replaced by ô(^*), where 6(^*) is the

feasible IV estimator obtained from the minimand given in

(4.3.2) with projection matrix as given in (4.3.3). 

was obtained in the previous step;

IIV/ML^ - differencing the instruments once. As above but with

projection matrix as given in (4.3.5);

IIV/ML^ - untransformed instruments. As above but with projection

matrix as given in (4.3.4).

d)2SLs! - as given in (4.3.II), that is, 2SLS is applied to the first

equation after all the variables have been differenced. The 

estimates of and were obtained from the variance and 

first-order autocovariance of the residuals. These

estimators are inefficient, but they are useful for an 

iterative procedure.

2SLs2 - as above, but without differencing the instruments.

e)LIML - as described in section 7.4, that is the criterion function

given in (7.4.7) is optimised with respect to the vector ^^
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containing the 6 parameters. The LIML estimate of and y-̂ 

are the first elements of the vector a, which is given in 

(7.4.6).

The criterion functions were optimised by means of the NAG subroutine 

E04JBF. We have chosen as starting values the true hyperparameters 

to avoid extra computing time. However we had carried out a 

preliminary study to check whether the optimal point is affected by 

the choice of the initial values and we found that this seems not to 

be the case.

5. Asymptotic Standard Errors

We shall now report the asymptotic standard errors (ASE), given by 

the square roots of the diagonal elements of the Avar matrix, for the 

LIML, IIV/ML^ and 2SLS^ estimators of as outlined above. The

relevant formulae for the 2SLS and IIV/ML estimators are given in 

(4,3.14) and (4.4.10), respectively, and are

Avarf^l] - T’l[ 2(7̂ 2 + a 2] [r'I r]-1 (1)
hVlSLS '■ ^ ■*

A v a r + 4o_2^ 2]& [R'I R]-l (2)^71J IIV/ML ^ V e j L z j

The asymptotic covariance matrix for the LIML estimators of and yi 

varies according to the experiment. So in experiment A, the 

homogeneous case, IIV/ML is as efficient as LIML, see section 7.6.; 

in experiment C, where no stochastic trend appears in the second
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equation, we have from (7.7.4) that

Avar (3)

where p2 - Og"2w2/ng; for experiments B and D, the asymptoti£ '*/•*£
covariance is evaluated as outlined at the end of section 7.5

1C

Now, for the parameter values given in section 2, we have

— 0.25, (4)

and if no lagged dependent variable is included

1 -0.4 ■ 1/0.92 0.4/0.92 1 0 0 1B - B-1- and r —
-0.2 1 . 0.2/0.92 1/0.92. U i 

. 0 1 .

Thus,

■^11^12'
1/0.92 0.4/0.92-

n -
•^21^22'

0.2/0.92
0.2/0.92
0.2/0.92

1/0.92 
1/0.92 
1/0.92 .

and from (7.5 4)

ni2 1
R “ -

.022 0 .

and so

0.4/0.92 ll
1/0.92 0
1/0.92 0
1/0.92 0

0.14107 -0.06134

-0.06134 0.52665
(5)
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Thus, for T-50, for experiment A, the homogeneous case, from (5), (2) 

and (1) we have

ASEiiy/j^lC^i) “ " 0.05616 (6a)
ASEiiy/f^L(7l) - ASEliml(7i> - 0.10852 (6b)

ASE2s l s (^1> - 0.06505 (7a)

ASE2s l s(7i ) - 0.12570 (7b)

For experiment B, the ASEs of the LIML estimators of and yi are

ASEliml(^i) - 0.05557 (8a)
ASEliMl(Ti) - 0.10737 (8b)

Clearly, because the hyperparameters, associated with the

disturbances in the first equation, are the same as the ones

considered in experiment A, the ASEs of the IIV/ML and 2SLS 

estimators of 0-̂ and are as given in (6) and (7) respectively.

For experiment C, from (3) and (5), it follows that the ASE's of the

LIML estimators of 0-̂ and y-̂ are

ASEliMl (^i ) - 0.05312 (9a)

ASEliML^Ti ) - 0.10263 (9b)

Again the ASEs of the IIV/ML and 2SLS estimators of 0-̂  and 7 ]̂ are as
in (6) and (7).

Finally for experiment D we have
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ASEliMl (^i ) - 0.04995 (10a)
ASEliMl (7i ) - 0.09652 (10b)

ASEjiv/m l ^^i ) “ 0.05039 (11a)

ASEi i y/m l (7i ) " 0.09737 (lib)

The ASEs for the 2SLS estimators are as in (7)

6. Discussion of the Results

The results, which are based on 100 replications in each experiment 

are shown in appendix 9.1. In Tables 1 to 7 and 12 to 35 are 

reported the results from experiments A, B, C and D, that is, no 

lagged dependent variable in the first equation while tables 8 to 11 
and 36 to 55 contain the results from experiments A' and C*, that is, 

a lagged dependent variable is included in the first equation. 

Initially we analysed the results for experiments A, B, C and D.

The top entry in each box of tables 1 to 7 gives the estimate of the 

bias while the two figures below give the standard deviation and root 

mean square error (RMSE) respectively. The ASEs given in the 

previous section are reported at the bottom of these tables. The 

main findings may be summarised as follows.

(i) The GLS estimator is, as expected, biased, and this more than 

offsets the relatively small variance when the MSE is calculated.
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(II) The ASEs seem to give a reliable guide to the performance of the 

2SLSl, IIV/ML^ and LIML for T-200. For experiment A, the 

homogeneous case, and T-200, the RMSEs of the two estimators LIML and 

IIV/ML^ are, as expected, roughly the same. The RMSEs are slightly 

larger than the corresponding ASEs. This Is not uncommon In 

econometrics, although here the discrepancy may be because of holding 

the explanatory variables constant throughout the simulations. The 

LIML and IIV/ML^ procedures are also similar for experiment B, 

although from the theoretical point of view LIML should yield smaller 

RMSEs. However, the difference between the ASEs Is so small that we 

cannot expect a significant difference between the estimators. In 

experiment C, the ASEs are slightly smaller for LIML and this also Is 

shown In the simulations.

(III) In experiments A and B, for T-50, IIV/ML^ tends to be slightly 

better than LIML. The comparison between LIML and IV/QML^ Is not 

conclusive. While LIML has smaller RMSE for 0^2 , IV/QML^ has smaller 

RMSE for 02 "yi- In experiment C, LIML has smaller RMSEs than has 

IIV/ML^ which In turn has smaller RMSEs than IV/QML^ and 2SLS.

(Iv) In experiment D, we find that the performance of IIV/ML^ Is 

relatively better when compared with 2SLS than It Is In experiments 

A, B and C. This Is also expected since the 2SLS Is optimal under 

the assumption that q-<», hence for q-0.5 (experiment D) we expected a 

relative better performance of IIV/ML^ than for q-1 (experiments A,B 

and C). In a general way, however, the overall performance of the 

2SLS Is quite good, although there are clearly gains to be had from 

using IIV/ML^ and LIML. It certainly seems reasonable to recommend
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using 2SLS estimates of both the explanatory variable coefficients 

and the hyperparameters as starting values for an iterative 

procedure.

(v) The question of using transformed or untransformed instruments is 

well illustrated. All estimation procedures with untransformed 

instruments yield estimates with considerable larger RMSEs for all 

estimates of the parameters. * This is not surprising since the 

untransformed instruments are integrated of order one 

(non-stationary) while the transformed variables are all stationary. 

Therefore the correlation between them and the transformed 

explanatory variables will tend to be smaller. Using first 

difference instruments rather than transformed via Kalman filter 

seems to be appropriate.

(vi) 2SLS and IIV/ML have finite moments up to the order of 

overidentification, which in our model is 3. However LIML does not 

have any moments, and so one must be careful in drawing conclusions 

based on RMSEs. However tables 12 to 35 indicate that we can be 

confident in using the estimated RMSEs as a basis for comparison. 

These tables contain the minimum and maximum values of the estimates, 

various percentiles, the first interdecile range and the theoretical 

first interdecile range under the assumption of normality with 

standard deviation being the standard deviation obtained from the 

simulations. We find that for T-50 the observed interdecile range is 

slightly smaller than we would expect if the distribution were 

normal. Thus there is only a small tendency towards heavy tails, and 

it seems that extreme observations are very unlikely to arise in
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practice. This is consistent with the fact that the random numbers 

are generated as truncated normals, and, as Sargan (1982) has argued, 

MSEs calculated from simulations can still provide a good guide in 

such cases. Overall the differences between these two interdecile 

ranges are small, indicating our Monte Carlo study gives a reasonably 

reliable indication of the variability of our estimators in small 

samples.

(vii) The apparent superiority of IIV/ML^ over LIML indicated by 

comparison of RMSEs in the homogeneous case for T-50 is also 

confirmed in tables 14 and 15, by noting that the range of the first 

interdecile is slightly smaller for IIV/ML^ then for LIML. For T-200 

they are more or less the same.

First Equation Containing a Lagged Dependent Variable

We now turn our attention to the results obtained from experiments A' 

and C ,  that is, the case where a lagged dependent variable is 

included in the first equation. The estimated biases, standard 

deviations and root mean square errors are given in tables 8 and 9 

for experiment A' and in tables 10 and 11 for experiment C  . The 

percentiles for experiments A' and C  are given in tables 36 to 45 

and 46 to 55 respectively. No substantial differences between the 

two experiments were encountered, neither for T-200 nor for T-50. 

The important finding is the admirable performance of IIV/ML^ in the 

presence of a lagged dependent variable in the first equation. Our 

experience with LIML was somewhat disappointing. Extreme LIML
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observations where encountered for , see tables 36, 41, 46 and 51. 

Also for the LIML estimates of 6, in experiment A',

the ratio of the RMSEs for T-50 to that for T-200 ranges from 1.19 to 

3.02. For the IIV/ML^ procedure the ratio ranges from 2.19 to 2.63. 

Thus, as expected, the RMSEs for IIV/ML^ are halved. IIV/ML^ behaves 

in a consistent fashion with respect to transformations. Its 

superiority over other IV estimators is still apparent despite the 

fact that there is no firm theoretical foundation for this when a 

lagged dependent variable is present. Since LIML is so erratic 

further investigation is necessary to check if the bad performance 

arises due to the presence of a lagged dependent variable or due to 

computational difficulties. From the results obtained its use seems 

risky.
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Appendix 9.1 - Tables

Table 1 - Estimated biases, standard deviations and RMSE's for
Experiment A, T - 5 0

- 0.500 (T̂ ? - 0.500 Pi - 0.200 yi — 1.000
-0.13399 -0.03944 0.11384 -0.09763

GLS
0.171 0.217 0.247 0.251 0.035 0.120 0.107 0.145

0.00446
iv/q m l I

-0.00604 0.01585 -0.03153

0.272 0.272 0.371 0.371 0.050 0.053 0.123 0.127

0.00117 -0.00661 0.00985 -0.01323
IV/QML?

0.244 0.244 0.321 0.322 0.052 0.053 0.121 0.122
0.09806 0.00151 0.03975 -0.09919

IV/QML3
0.412 0.424 0.431 0.431 0.094 0.103 0.246 0.266

-0.02806 0.03265 0.00349 -0.01113
2SLSl

0.279 0.280 0.370 0.371 0.053 0.053 0.136 0.136

0.02243 -0.03343 0.00200 -0.01491
IIV/MLl

0.224 0.226 0.267 0.269 0.048 0.048 0.122 0.123

-0.00282 -0.00462 0.00412 -0.01101
IIV/ML?

0.214 0.214 0.259 0.259 0.052 0.052 0.124 0.125

0.01731 0.18881 0.03344 -0.09106
2SLS?

0.459 0.460 0.555 0.586 0.118 0.123 0.340 0.352

0.08108 0.04847 0.02993 -0.08752
IIV/ML^

0.352 0.361 0.450 0.453 0.106 0.110 0.277 0.291

0.05248 -0.01783 -0.00847 -0.00499
LIML

0.276 0.281 0.308 0.309 0.057 0.057 0.133 0.133

Asymptotic 2SLSl 0.0650 0.1257
standard IIV/MLl 0.0562 0.1086
errors LIML 0.0562 0.1086



192

Table 2 - Estimated biases, standard deviations and RMSE's for
Experiment A, T - 200

- 0.500 a^? - 0.500 - 0.200 yi — 1.000
-0.15635 -0.00960 0.12106 -0.07152

GLS
0.080 0.176 0.125 0.126 0.015 0.123 0.044 0.084

0.00782 -0.00996 0.00342 -0.01810
IV/QMLl

0.133 0.133 0.176 0.176 0.032 0.032 0.052 0.055

0.00595 -0.00525 0.00137 -0.01640
IV/QML?

0.121 0.121 0.148 0.149 0.032 0.032 0.053 0.056

0.02374 0.16474 0.00589 -0.01427
IV/QMl 3

0.244 0.245 0.409 0.441 0.071 0.071 0.257 0.258

-0.00068 0.00184 0.00055 -0.01657
2SLSl

0.129 0.129 0.152 0.152 0.033 0.033 0.061 0.063

0.01006 -0.01420 0.00078 -0.01604
IIV/MLl

0.109 0.109 0.124 0.125 0.032 0.032 0.052 0.055

0.00652 -0.00634 0.00012 -0.01584
IIV/ML?

0.110 0.110 0.122 0.122 0.032 0.032 0.054 0.056

-0.00877 0.22684 0.00067 -0.00934
2SLS?

0.172 0.172 0.424 0.482 0.075 0.075 0.267 0.267

0.00130 0.19885 0.00255 -0.01141
IIV/MLl

0.158 0.158 0.422 0.467 0.074 0.074 0.264 0.264

0.01237 -0.01252 -0.00044 -0.01525
LIML

0.109 0.110 0.126 0.126 0.032 0.032 0.052 0.055

Asymptotic 2SLSl 0.0325 0.0628
standard IIV/MLl 0.0281 0.0543
errors LIML 0.0281 0.0543
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Table 3 - Estimated biases, standard deviations and RMSE's for
Experiment B, T - 5 0

(TgZ » 0.500 (T̂ ? - 0.500 - 0.200 Yi " 1.000
-0.10000 0.01679 0.08435 -0.07470

GLS
0.191 0.216 0.279 0.279 0.038 0.093 0.116 0.138

0.01294 -0.01358 0.01025 -0.02275
IV/QMLl

0.249 0.249 0.324 0.325 0.049 0.050 0.122 0.125

0.00295 -0.00226 0.00675 -0.01015
IV/QML?

0.227 0.227 0.289 0.289 0.052 0.052 0.123 0.123

0.18983 -0.00473 0.01729 -0.06999
IV/QML3

0.470 0.507 0.394 0.394 0.098 0.100 0.259 0.268

-0.02701 0.04075 0.00144 -0.00987
2SLSl

0.274 0.276 0.365 0.367 0.054 0.054 0.136 0.137

0.02510 -0.03249 0.00059 -0.01223
IIV/MLl

0.225 0.226 0.256 0.258 0.049 0.049 0.122 0.123

-0.00149 0.00090 0.00259 -0.00863
IIV/ML?

0.212 0.212 0.249 0.249 0.052 0.052 0.125 0.125

0.05378 0.23686 0.01378 -0.05233
2SLS?

0.439 0.442 0.560 0.609 0.119 0.120 0.345 0.349

0.13154 0.07854 0.01140 -0.05569
IIV/MlS

0.352 0.376 0.385 0.393 0.110 0.110 0.290 0.296

0.04466 -0.02715 -0.00594 -0.00446
LIML

0.259 0.263 0.266 0.267 0.054 0.054 0.133 0.133

Asymptotic 2SLSl 0.0650 0.1257
standard IIV/MLl 0.0562 0.1086
errors LIML 0.0556 0.1074
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Table 4 - Estimated biases, standard deviations and RMSE's for
Experiment B, T - 200

(Tg2 _ 0.500 (T̂ 2 . 0.500 Pi - 0.200 7]̂ — 1.000
-0.11778 0.04541 0.08760 -0.05683

GLS
0.088 0.147 0.130 0.138 0.018 0.090 0.049 0.075

0.00789 -0.01201 0.00263 -0.01737
IV/QMLl

0.120 0.120 0.139 0.140 0.031 0.031 0.052 0.055

0.00604 -0.00716 0.00101 -0.01625
IV/QMl 2

0.114 0.114 0.123 0.123 0.031 0.031 0.054 0.056

0.03240 0.15206 -0.00075 -0.00953
IV/QMLl

0.188 0.191 0.265 0.306 0.068 0.068 0.255 0.256
-0.00113 0.00211 0.00044 -0.01661

2SLSl
0.127 0.127 0.146 0.146 0.033 0.033 0.061 0.063

0.00974 -0.01504 0.00085 -0.01598
IIV/MLl

0.107 0.108 0.108 0.109 0.031 0.031 0.052 0.055

0.00600 -0.00727 0.00018 -0.01588
IIV/Ml 2

0.109 0.109 0.108 0.109 0.031 0.031 0.054 0.056

-0.00216 0.21816 -0.00451 -0.00756
2SLs2

0.161 0.161 0.315 0.384 0.072 0.072 0.265 0.265

0.00911 0.18861 -0.00266 -0.00811
IIV/MLl

0.150 0.151 0.305 0.359 0.070 0.070 0.262 0.262

0.01021 -0.01482 0.00043 -0.01549
LIML

0.107 0.108 0.108 0.109 0.031 0.031 0.053 0.055
Asymptotic 2SLSl 0.0325 0.0628
standard IIV/MLl 0.0281 0.0543
errors LIML 0.0278 0.0537
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Table 5 - Estimated biases, standard deviations and RMSE's for
Experiment C, T - 5 0

- 0.500 - 0.500 - 0.200 — 1.000
-0.12197 0.02450 0.09825 -0.08556

GLS
0.186 0.223 0.282 0.283 0.041 0.107 0.114 0.142

0,01124
IV/QMLl

-0.02228 0.01108 -0.02487
0.246 0.247 0.320 0.320 0.051 0.052 0.122 0.125

0.00040
IV/QMlZ

-0.00955 0.00730 -0.01034

0.223 0.223 0.283 0.283 0.054 0.054 0.124 0.124
0.17828

IV/QML3
-0.02210 0.01852 -0.07559

0.405 0.443 0.361 0.361 0.107 0.108 0.266 0.277
-0.02701

2SLSl
0.03113 0.00204 -0.01000

0.272 0.274 0.355 0.356 0.056 0.056 0.137 0.138
0.02026

IIV/MLl
-0.03813 0.00223 -0.01460

0.216 0.217 0.249 0.252 0.050 0.050 0.122 0.123
-0.00189

IIV/ML?
-0.00862 0.00331 -0.00899

0.211 0.211 0.246 0.246 0.054 0.054 0.126 0.126
0.04760

2SLS?
0.17870 0.01830 -0.07324

0.386 0.389 0.497 0.529 0.118 0.119 0.329 0.337

0.12473
IIV/ML3

0.05159 0.01379 -0.06883

0.351 0.372 0.348 0.352 0.114 0.114 0.293 0.301

0.01194 -0.03861 0.00164 -0.01166
LIML

0.221 0.222 0.237 0.241 0.047 0.047 0.114 0.115

Asymptotic 2SLSl 0.0650 0.1257
standard IIV/MLl 0.0562 0.1086
errors LIML 0.0531 0.1026
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Table 6 - Estimated biases, standard deviations and RMSE's for
Experiment C, T - 200

£Tg2 « 0.500 <r̂ 2 . 0.500 - 0.200 Yl — 1.000
-0.13778 0.04631 0.10645 -0.06518

GLS
0.085 0.162 0.132 0.140 0.021 0.109 0.048 0.081

0.00798 -0.01519 0.00270 -0.01731
IV/QMLl

0.119 0.119 0.141 0.142 0.032 0.032 0.052 0.055

0.00611 -0.01072 0.00113 -0.01612
IV/QML2

0.113 0.113 0.123 0.124 0.032 0.032 0.053 0.056
0.03121 0.14903 -0.00430 -0.00807

IV/QML3
0.175 0.178 0.274 0.312 0.068 0.068 0.257 0.257
-0.00142 -0.00067 0.00041 -0.01645

2SLSl
0.127 0.127 0.146 0.146 0.033 0.033 0.060 0.063

0.00932 -0.01760 0.00081 -0.01589
IIV/MLl

0.107 0.108 0.108 0.110 0.032 0.032 0.052 0.055

0.00559 -0.01015 0.00023 -0.01573
IIV/ML2

0.109 0.109 0.108 0.109 0.032 0.032 0.053 0.056

0.00043 0.20463 -0.00820 -0.00680
2SLs2

0.149 0.149 0.302 0.366 0.071 0.071 0.265 0.265

0.01083 0.18072 -0.00660 -0.00591
IIV/ML3

0.141 0.142 0.301 0.351 0.069 0.070 0.264 0.264

0.00255 -0.01510 0.00169 -0.01392
LIML

0.101 0.101 0.100 0.101 0.030 0.030 0.051 0.053

Asymptotic 2SLSl 0.0325 0.0628
standard IIV/MLl 0.0281 0.0543
errors LIML 0.0266 0.0513
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Table 7 - Estimated biases, standard deviations and RMSE's for
Experiment D, T — 50

— 0.600 (T̂ ? - 0.300 01 - 0.200 7]̂ “ 1.000
-0.10639 0.02544 0.07611 -0.08045

GLS
0.188 0.216 0.208 0.210 0.037 0.085 0.104 0.132

0.01039 -0.01393 0.01018 -0.02875
IV/QMLl

0.222 0.222 0.227 0.228 0.046 0.047 0.110 0.113

-0.01110 0.01500 0.00658 -0.01032
IV/QML?

0.214 0.214 0.209 0.209 0.050 0.050 0.115 0.115

0.12496 0.00032 0.01475 -0.05643
IV/QML3

0.379 0.399 0.315 0.315 0.078 0.079 0.196 0.205

-0.03551 0.05182 0.00095 -0.00918
2SLSl

0.284 0.286 0.339 0.343 0.055 0.055 0.136 0.136

0.02619 -0.03127 0.00124 -0.01531
IIV/MLl

0.219 0.221 0.173 0.176 0.045 0.045 0.110 0.111
-0.00755 0.01140 0.00250 -0.00808

IIV/ML?
0.206 0.206 0.175 0.175 0.051 0.051 0.119 0.119

0.03002 0.17192 0.01248 -0.04395
2SLS?

0.421 0.422 0.447 0.479 0.101 0.102 0.282 0.286

0.11103 0.02054 0.00760 -0.03920
IIV/ML^

0.315 0.334 0.241 0.241 0.087 0.087 0.217 0.221

0.04547 -0.03024 -0.00403 -0.00819
LIML

0.225 0.230 0.177 0.179 0.051 0.051 0.124 0.125

Asymptotic 2SLSl 0.0650 0.1257
standard IIV/MLl 0.0504 0.0974
errors LIML 0.0499 0.0965
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Table 8 - Estimated biases, standard deviations and RMSE's for
Experiment A', T - 5 0

(Tg2 - 0.500 - 0.500 - 0.200 h — 0.500 yi — 1.000
-0.23436

GLS
0.152 0.280

0.04252 

0.237 0.241

0.12214 

0.036 0.128

-0.08136 

0.055 0.099

-0.05555 

0.121 0.133

-0.14920
IV/QMLl

0.323 0.356

0.12038 

0.410 0.427

0.03292 

0.055 0.064

-0.04209 

0.078 0.089

-0.02682 

0.141 0.144

-0.16948
IV/QML?

0.281 0.329

0.14838 

0.398 0.425

0.02856 

0.057 0.064

-0.04554 

0.077 0.090

-0.02242 

0.135 0.137

0.14961
IV/QML^

0.550 0.570

0.09049 

0.648 0.654

0.02667 

0.106 0.109

-0.00652 

0.088 0.088

0.01013 

0.323 0.323

-0.09561
2SLSl

0.377 0.389

0.06463 

0.424 0.429

0.02612 

0.070 0.075

-0.04538 

0.127 0.135

-0.01719 

0.148 0.149

-0.00617
IIV/MLl

0.329 0.329

-0.04788 

0.275 0.279

0.01509 

0.062 0.064

-0.01650 

0.072 0.074

-0.01692 

0.138 0.139

-0.05092
IIV/ML?

0.284 0.288

-0.01019 

0.275 0.276

0.02057 

0.061 0.065

-0.02286 

0.074 0.077

-0.02739 

0.139 0.142

0.17037
2SLS?

0.500 0.529

0.11827 

0.689 0.699

0.02034 

0.113 0.115

0.02754 

0.142 0.145

-0.07046 

0.418 0.424

0.19785
IIV/MlS

0.545 0.580

0.11125 

0.672 0.681

0.01252 

0.121 0.122
-0.01062 

0.112 0.113

0.04698 

0.357 0.360

-0.00310
LIML

0.515 0.515

0.38073 

0.990 1.061

0.00627 

0.060 0.061

-0.01702 

0.132 0.133

0.01477 

0.142 0.143
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Table 9 - Estimated biases, standard deviations and RMSE's for
Experiment A*, T - 200

- 0.500 (7̂ 2 « 0.500 Pi - 0.200 Ô — 0.500 yi “ 1.000
-0.19696

GLS
0.079 0.213

0.03769 

0.127 0.132

0.12148 

0.015 0.123

-0.05599 

0.028 0.063

-0.03809 

0.053 0.066

-0.09623
iv/q m lI

0.133 0.165

0.10816 

0.211 0.238

0.00612 

0.024 0.025

-0.01672 

0.035 0.039

0.00530 

0.063 0.063

-0.05910
IV/QMl 2

0.128 0.141

0.05851 

0.178 0.187

0.00472 

0.026 0.026

-0.00934 

0.034 0.036

-0.00472 

0.064 0.064

-0.02670
IV/QMlS

0.267 0.268

0.28384 

0.579 0.645

0.00731 

0.080 0.081

-0.00464 

0.129 0.129

0.06085 

0.222 0.230
-0.02627

2SLSl
0.174 0.176

0.01728 

0.208 0.209

0.00542 

0.028 0.029

-0.00932 

0.055 0.055

-0.00476 

0.070 0.070

0.00255
iiv/m l I

0.125 0.125

-0.01651 

0.137 0.138

0.00146 

0.024 0.025

-0.00050 

0.030 0.030

-0.00139 

0.063 0.063

-0.00020
IIV/ML2

0.132 0.132

-0.01476 

0.141 0.142

0.00303 

0.026 0.026

0.00108 

0.034 0.034

-0.00758 

0.064 0.065

0.26159
2SLs2

0.454 0.525

0.32176 

0.824 0.885

-0.02355 

0.079 0.082

0.10303 

0.196 0.222

-0.11751 

0.365 0.384

0.02946
IIV/ML3

0.324 0.326

0.24897 

0.572 0.624

0.00390 

0.083 0.084

-0.00297 

0.143 0.143

0.06171 

0.255 0.262

-0.02429
LIML

0.172 0.173

0.47919 

0.758 0.898

0.00279 

0.032 0.032

-0.00112 
0.044 0.044

0.00463 

0.102 0.102
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Table 10 - Estimated biases, standard deviations and RMSE's for
Experiment C , T - 50

- 0.500 a^2 . 0.500 01 - 0.200 6 - 0.500 " 1.000
-0.22268

GLS
0.183 0.289

0.10812 

0.276 0.297

0.10959 

0.045 0.119

-0.08120 

0.062 0.102
-0.04979 

0.124 0.134

-0.14938
iv/q m l I

0.286 0.323

0.12936 

0.390 0.411

0.03000 

0.056 0.064

-0.04621 

0.077 0.090

-0.01756 

0.138 0.139

-0.14514
IV/QML2

0.271 0.308

0.12406 

0.348 0.369

0.02570 

0.060 0.066

-0.04498 

0.077 0.089

-0.02055 

0.137 0.139

0.15922
IV/QML^

0.478 0.504

0.06275 

0.466 0.471

0.00967 

0.111 0.112
-0.00643 

0.088 0.089

0.04059 

0.302 0.305
-0.09055

2SLSl
0.355 0.366

0.06402 

0.414 0.419

0.02456 

0.067 0.072

-0.04423 

0.125 0.132

-0.01646 

0.147 0.148
-0.01986

IIV/MLl
0.316 0.317

-0.02892 

0.278 0.280

0.01538 

0.062 0.064

-0.02318 

0.073 0.076

-0.01162 

0.138 0.138

-0.06182
IIV/ML2

0.271 0.278

0.00955 

0.278 0.278

0.02046 

0.061 0.065

-0.02934 

0.073 0.079

-0.02358 

0.139 0.141

0.18887
2SLs2

0.528 0.561

0.13490 

0.631 0.645

-0.00038 

0.119 0.119

0.03395 

0.141 0.145

-0.04310 

0.407 0.410

0.19562
IIV/Ml 3

0.500 0.537

0.06507 

0.475 0.479

-0.00094 

0.116 0.116

-0.00729 

0.103 0.104

0.06880 

0.345 0.352

-0.08790
LIML

0.462 0.470

0.46775 

1.067 1.166

0.01241 

0.060 0.061

-0.03388 

0.150 0.154

0.01447 

0.131 0.132
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Table 11 - Estimated biases, standard deviations and RMSE's for
Experiment C , T - 200

- 0.500 a^2 . 0.500 01 - 0.200 5 - 0.500 7]̂ 1.000
-0.18731

GLS
0.090 0.209

0.10717 

0.145 0.181

0.10728 

0.018 0.109

-0.05535 

0.029 0.063

-0.02976 

0.056 0.064

-0.07903
IV/QMLl

0.127 0.150

0.08485 

0.179 0.198

0.00569 

0.025 0.026

-0.01906 

0.034 0.039

0.00891 

0.062 0.063
-0.05346

IV/QMl2
0.128 0.139

0.05220 

0.160 0.168

0.00462 

0.026 0.027

-0.01414 

0.035 0.037

-0.00254 

0.064 0.064

0.04888
IV/QML3

0.238 0.243

0.13835 

0.232 0.270

0.00433 

0.082 0.083

-0.00426 

0.131 0.131

0.07436 

0.178 0.193
-0.02357

2SLSl
0.174 0.176

0.01916 

0.205 0.206

0.00503 

0.028 0.029

-0.00807 

0.056 0.056

-0.00482 

0.070 0.070
-0.01139

IIV/MLl
0.126 0.126

-0.00145 

0.134 0.134
0.00250 

0.025 0.025

-0.00796 

0.031 0.032

0.00449 

0.062 0.062
-0.01514

I1V/Ml 2
0.130 0.131

0.00404 

0.140 0.140

0.00347 

0.027 0.027

-0.00736 

0.034 0.035

-0.00442 

0.064 0.064

0.27976
2SLS2

0.453 0.534

0.42809 

1.418 1.482

-0.03283 

0.084 0.090

0.10215 

0.233 0.255

-0.09191 

0.437 0.447

0.01514
IIV/ML^

0.307 0.308

0.23796 

0.448 0.508

0.00509 

0.085 0.085

-0.01138 

0.152 0.152

0.09536 

0.228 0.248

-0.02286
LIML

0.150 0.152

0.46751 

0.672 0.820

0.00185 

0.030 0.030

0.00040 

0.044 0.044

0.00652 

0.099 0.100
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Table 12 - Percentiles and first ID for for experiment A, T-50

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML
minimum 0.0000 0.0000 0.0675 0.0783

5 0.0983 0.0527 0.2095 0.2078
10 0.1657 0.1651 0.2758 0.2806
25 0.2289 0.3335 0.3729 0.3819
50 0.3462 0.5098 0.4958 0.5208
75 0.4920 0.6679 0.6121 0.6449
90 0.5877 0.8017 0.8581 0.8742
95 0.6519 1.0677 0.9781 1.0374

maximum 0.8720 1.3239 1.1843 2.0586

ID
ID(theor.)

0.5823
0.5743

0.5936
0.7077

Table 13 - Percentiles and first ID for <j^ for experiment A, T-50

percentages GLS
MCI

IV/QMLl
)EL

IIV/MLl LIML
minimum 6.224E-5 6.276E-5 3.122E-5 lE-8

5 0.0644 6.493E-3 0.0856 0.0809
10 0.1420 0.0716 0.1451 0.1351
25 0.2767 0.2260 0.2821 0.2770
50 0.4343 0.4219 0.4396 0.4341
75 0.6185 0.7048 0.6066 0.6175
90 0.8137 1.1028 0.8461 0.8975
95 0.9186 1.2452 0.9869 1.0566

maximum 1.1048 1.4830 1.5056 1.7695

ID
ID(theor.)

0.7010
0.6846

0.7624
0.7897
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Table 14 - Percentiles and first ID for for experiment A, T-50

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML
minimum 0.2063 0.0662 0.0659 -5.675E-3

5 0.2557 0.1338 0.1306 0.0972
10 0.2654 0.1536 0.1465 0.1273
25 0.2884 0.1794 0.1684 0.1532
50 0.3153 0.2154 0.2051 0.1943
75 0.3425 0.2529 0.2318 0.2292
90 0.3594 0.2842 0.2673 0.2640
95 0.3643 0.2990 0.2802 0.2783

maximum 0.3910 0.3067 0.3064 0.3033

ID
ID(theor.)

0.1208
0.1231

0.1367
0.1461

Table 15 - Percentiles and first ID for for experiment A, T-50

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML

minimum 0.6643 0.6561 0.7158 0.7146
5 0.7256 0.7874 0.7946 0.7951
10 0.7700 0.8176 0.8256 0.8236
25 0.8278 0.8708 0.8911 0.8967
50 0.8901 0.9602 0.9727 0.9713
75 0.9751 1.0554 1.0727 1.0900
90 1.0504 1.1424 1.1473 1.1633
95 1.0804 1.1731 1.1891 1.2411

maximum 1.1788 1.2725 1.3490 1.3454

ID
ID(theor.)

0.3217
0.3128

0.3397
0.3410
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Table 16 - Percentiles and first ID for for experiment A, T-200

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML

minimum 0.1256 0.1573 0.2734 0.2734
5 0.2129 0.2875 0.3373 0.3270
10 0.2591 0.3412 0.3800 0.3752
25 0.2954 0.4324 0.4390 0.4382
50 0.3380 0.5079 0.5018 0.5094
75 0.3951 0.5627 0.5683 0.5710
90 0.4449 0.6760 0.6547 0.6565
95 0.4807 0.7423 0.6866 0.7001

maximum 0.5904 0.9981 0.9060 0.9041

ID
ID(theor.)

0.2747
0.2795

0.2813
0.2795

Table 17 - Percentiles and first ID for for experiment A, T-200

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML

minimum 0.1976 0.1451 0.1864 0.1878
5 0.3133 0.2575 0.2932 0.2902
10 0.3506 0.3018 0.3298 0.3220
25 0.3939 0.3426 0.3809 0.3825
50 0.4823 0.4842 0.4928 0.4978
75 0.5778 0.6003 0.5808 0.5855
90 0.6604 0.7278 0.6313 0.6321
95 0.6924 0.7881 0.6898 0.6982

maximum 0.3812 1.0178 0.7607 0.7538

ID
ID(theor.)

0.3015
0.3179

0.3101
0.3231
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Table 18 - Percentiles and first ID for for experiment A, T-200

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML

minimum 0.2923 0.0989 0.0969 0.0907
5 0.3000 0.1439 0.1430 0.1377
10 0.3008 0.1623 0.1592 0.1596
25 0.3108 0.1826 0.1817 0.1792
50 0.3190 0.2083 0.2046 0.2035
75 0.3303 0.2278 0.2252 0.2245
90 0.3432 0.2415 0.2367 0.2352
95 0.3514 0.2457 0.2431 0.2416

maximum 0.3609 0.2561 0.2553 0.2539

ID
ID(theor.)

0.0775
0.0820

0.0756
0.0820

Table 19 - Percentiles and first ID for ^1 for experiment A, T-200

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML

minimum 0.8254 0.8593 0.8643 0.8633
5 0.8542 0.8917 0.8948 0.8932
10 0.8682 0.9082 0.9094 0.9127
25 0.8970 0.9434 0.9446 0.9466
50 0.9279 0.9900 0.9921 0.9936
75 0.9658 1.0192 1.0198 1.0225
90 0.9821 1.0439 1.0501 1.0504
95 0.9972 1.0633 1.0677 1.0681

maximum 1.0130 1.1051 1.1018 1.1047

ID
ID(theor.)

0.1407
0.1333

0.1377
0.1333
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Table 20 - Percentiles and first ID for for experiment B, T-50

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML

minimum 0.0000 0.0000 0.0935 0.0961
5 0.1027 0.1168 0.2022 0.2431
10 0.1722 0.2371 0.2695 0.2697
25 0.2576 0.3409 0.3681 0.3826
50 0.3929 0.5089 0.4974 0.5050
75 0.5534 0.6465 0.6188 0.6431
90 0.6358 0.8005 0.8577 0.8685
95 0.7210 1.0081 0.9603 1.0054

maximum 0.9901 1.2686 1.2375 1.7751

ID
ID(theor.)

0.5882
0.5769

0.5988
0.6641

Table 21 - Percentiles and first ID for for experiment B, T-50

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML

minimum 6.252E-5 6.31E-5 3.106E-5 lE-8
5 0.0973 0.0446 0.0810 0.0787
10 0.1673 0.0896 0.1637 0.1379
25 0.3087 0.2543 0.2985 0.2798
50 0.5062 0.4285 0.4462 0.4553
75 0.6810 0.6379 0.6045 0.6572
90 0.8992 1.0181 0.8226 0.8289
95 1.0086 1.1405 0.9257 0.9118

maximum 1.4105 1.4027 1.2725 1.3966

ID
ID(theor.)

0.6589
0.6564

0.6910
0.6820
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Table 22 - Percentiles and first ID for for experiment B, T-50

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML

minimum 0.1947 0.0718 0.0708 -0.0255
5 0.2209 0.1330 0.1313 0.1059
10 0.2314 0.1507 0.1435 0.1307
25 0.2558 0.1723 0.1680 0.1610
50 0.2870 0.2149 0.2013 0.1931
75 0.3141 0.2452 0.2328 0.2273
90 0.3327 0.2766 0.2657 0.2617
95 0.3430 0.2916 0.2837 0.2798

maximum 0.3575 0.3137 0.3134 0.3129

ID
ID(theor.)

0.1222
0.1256

0.1310
0.1385

Table 23 - Percentiles and first ID for for experiment B, T-50

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML

minimum 0.6669 0.6832 0.7123 0.6655
5 0.7356 0.7954 0.7994 0.8047
10 0.7803 0.8249 0.8308 0.8326
25 0.8410 0.8798 0.8969 0.8991
50 0.9180 0.9712 0.9745 0.9915
75 1.0012 1.0674 1.0717 1.0924
90 1.0917 1.1503 1.1509 1.1617
95 1.1131 1.1721 1.1968 1.2398

maximum 1.2148 1.2819 1.3419 1.3469

ID
ID(theor.)

0.3201
0.3128

0.3291
0.3410
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Table 24 - Percentiles and first ID for for experiment B, T-200

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML
minimum 0.1436 0.2057 0.2658 0.2628

5 0.2454 0.3250 0.3354 0.3205
10 0.2932 0.3616 0.3765 0.3732
25 0.3268 0.4332 0.4395 0.4435
50 0.3705 0.5024 0.5028 0.5115
75 0.4418 0.5678 0.5678 0.5695
90 0.4907 0.6683 0.6491 0.6436
95 0.5419 0.7234 0.6818 0.6753

maximum 0.6046 0.9577 0.8946 0.8985

ID
ID(theor.)

0.2726
0.2743

0.2704
0.2743

Table 25 - Percentiles and first ID for for experiment B, T-200

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML
minimum 0.2341 0.1966 0.2099 0.2168

5 0.3496 0.2866 0.3063 0.2986
10 0.3930 0.3344 0.3391 0.3372
25 0.4423 0.3832 0.3893 0.3960
50 0.5550 0.4823 0.4986 0.4929
75 0.6419 0.5821 0.5623 0.5670
90 0.7100 0.6627 0.5976 0.6026
95 0.7477 0.6951 0.6375 0.6543

maximum 0.9266 0.9664 0.7730 0.7870

ID
ID(theor.)

0.2585
0.2769

0.2654
0.2769
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Table 26 - Percentiles and first ID for for experiment B, T-200

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML
minimum 0.2468 0.1012 0.1005 0.0999

5 0.2590 0.1447 0.1440 0.1416
10 0.2645 0.1626 0.1607 0.1612
25 0.2754 0.1811 0.1802 0.1792
50 0.2864 0.2043 0.2036 0.2016
75 0.2991 0.2268 0.2249 0.2272
90 0.3121 0.2396 0.2371 0.2352
95 0.3199 0.2446 0.2445 0.2417

maximum 0.3273 0.2581 0.2577 0.2562

ID
ID(theor.)

0.0764
0.0795

0.0740
0.0795

Table 27 - Percentiles and first ID for 7^̂ for experiment B , T-200

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML

minimum 0.8339 0.8590 0.8633 0.8611
5 0.8623 0.8924 0.8941 0.8951
10 0.8789 0.9092 0.9100 0.9140
25 0.9078 0.9435 0.9437 0.9436
50 0.9442 0.9924 0.9934 0.9915
75 0.9795 1.0203 1.0207 1.0232
90 1.0037 1.0464 1.0506 1.0487
95 1.0206 1.0652 1.0680 1.0708

maximum 1.0378 1.0975 1.0954 1.0894

ID
ID(theor.)

0.1406
0.1333

0.1347
0.1359
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Table 28 - Percentiles and first ID for for experiment C, T=50

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML
minimum 0.0000 0.0000 0.0947 0.1326

5 0.0748 0.1118 0.2083 0.2038
10 0.1393 0.2262 0.2803 0.2593
25 0.2561 0.3700 0.3710 0.3638
50 0.3648 0.5147 0.4922 0.5078
75 0.5234 0.6499 0.6270 0.6141
90 0.5933 0.7694 0.8634 0.7605
95 0.6114 1.0034 0.9608 0.9361

maximum 1.0677 1.3131 1.1473 1.3751

ID
ID(theor.)

0.5831
0.5538

0.5012
0.5666

Table 29 - Percentiles and first ID for for experiment C, T-50

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML
minimum 6.252E-5 6.279E-5 3.14E-5 0.0245

5 0.1180 0.0615 0.0896 0.1044
10 0.1824 0.1108 0.1681 0.1927
25 0.3033 0.2444 0.2847 0.2902
50 0.4821 0.4089 0.4184 0.4393
75 0.6966 0.6398 0.6037 0.6011
90 0.8921 0.9038 0.8235 0.7915
95 1.0414 1.1362 0.9004 0.9077

maximum 1.2836 1.5110 1.3033 1.2616

ID
ID(theor.)

0.6554
0.6384

0.5988
0.6077



211

Table 30 - Percentiles and first ID for for experiment C, T-50

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML
minimum 0.1979 0.0555 0.0548 0.0753

5 0.2274 0.1324 0.1318 0.1300
10 0.2482 0.1498 0.1454 0.1487
25 0.2716 0.1736 0.1660 0.1659
50 0.2953 0.2149 0.2035 0.2048
75 0.3263 0.2498 0.2342 0.2301
90 0.3523 0.2838 0.2673 0.2651
95 0.3693 0.2925 0.2852 0.2870

maximum 0.3829 0.3327 0.3310 0.3225

ID
ID(theor.)

0.1219
0.1282

0.1164
0.1205

Table 31 - Percentiles and first ID for experiment C, T-50

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML
minimum 0.6598 0.6830 0.7162 0.7312

5 0.7235 0.7892 0.7995 0.8046
10 0.7756 0.8105 0.8180 0.8292
25 0.8390 0.8838 0.8938 0.9084
50 0.9060 0.9658 0.9706 0.9855
75 0.9996 1.0598 1.0783 1.0724
90 1.0666 1.1376 1.1460 1.1212
95 1.1071 1.1605 1.1949 1.1874

maximum 1.1866 1.2981 1.3421 1.2906

ID
ID(theor.)

0.3280
0.3128

0.2920
0.2923
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Table 32 - Percentiles and first ID for for experiment C, T-200

percentages GLS
MCI

IV/QMLl
)EL

IIV/MLl LIML
minimum 0.1352 0.1995 0.2635 0.2607

5 0.2197 0.3190 0.3345 0.3379
10 0.2772 0.3630 0.3742 0.3853
25 0.3135 0.4343 0.4420 0.4436
50 0.3502 0.5070 0.4969 0.4924
75 0.4121 0.5678 0.5703 0.5587
90 0.4796 0.6712 0.6489 0.6171
95 0.5139 0.7200 0.6849 0.6857

maximum 0.5476 0.9198 0.8714 0.8673

ID
ID(theor.)

0.2747
0.2743

0.2318
0.2590

Table 33 - Percentiles and first ID for for experiment C, T-200

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML
minimum 0.2350 0.1923 0.2016 0.2050

5 0.3396 0.2854 0.3083 0.3343
10 0.3961 0.3250 0.3358 0.3494
25 0.4286 0.3783 0.3910 0.4041
50 0.5474 0.4769 0.4906 0.4964
75 0.6413 0.5871 0.5656 0.5551
90 0.7100 0.6710 0.5972 0.6050
95 0.7418 0.7013 0.6349 0.6415

maximum 0.9257 0.9740 0.7726 0.7518

ID
ID(theor.)

0.2614
0.2769

0.2556
0.2564
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Table 34 - Percentiles and first ID for for experiment C, T-200

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML
minimum 0.2584 0.0985 0.0976 0.1096

5 0.2761 0.1456 0.1449 0.1536
10 0.2802 0.1626 0.1609 0.1619
25 0.2932 0.1810 0.1796 0.1816
50 0.3042 0.2074 0.2048 0.2038
75 0.3201 0.2275 0.2253 0.2254
90 0.3361 0.2399 0.2386 0.2377
95 0.3434 0.2458 0.2449 0.2411

maximum 0.3521 0.2570 0.2563 0.2587

ID
ID(theor.)

0.0777
0.0820

0.0758
0.0769

Table 35 - Percentiles and first ID for 7]̂ for experiment C, T-200

percentages GLS
MOI

IV/QMLl
)EL

IIV/MLl LIML
minimum 0.8261 0.8584 0.8628 0.8616

5 0.8511 0.8899 0.8950 0.9006
10 0.8725 0.9088 0.9097 0.9139
25 0.9036 0.9458 0.9454 0.9498
50 0.9398 0.9929 0.9938 0.9942
75 0.9689 1.0192 1.0197 1.0179
90 0.9933 1.0461 1.0499 1.0480
95 1.0129 1.0663 1.0679 1.0710

maximum 1.0309 1.1028 1.1012 1.1037

ID
ID(theor.)

0.1402
0.1333

0.1341
0.1308
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Table 36 - Percentiles for (j^ for experiment A' , T-50

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.0000 0.0000 0.0000 l.OOOE-8
5 0.0000 0.0000 0.1268 l.OOOE-8
10 0.0818 0.0000 0.1747 1.762E-3
25 0.1632 0.11832 0.2537 0.1344
50 0.2545 0.2994 0.4107 0.3298
75 0.3597 0.5063 0.6054 0.6812
90 0.4739 0.6558 0.9467 1.2178
95 0.5059 1.1748 1.0931 1.6415

maximum 0.8242 1.3842 1.6559 2.3128

Table 37 - Percentiles for for experiment A', T-50

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 1.2486E-4 1.486E-4 1.0997E-4 8.51161E-
5 0.1747 0.0616 0.1031 0.0846
10 0.2809 0.1491 0.1424 0.1861
25 0.3850 0.3268 0.2578 0.2565
50 0.5025 0.5426 0.3999 0.5464
75 0.7072 0.8809 0.6078 1.1624
90 0.8681 1.1761 0.8994 1.8702
95 1.0230 1.3914 0.9743 3.1720

maximum 1.1307 1.7970 1.2745 6.1585
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Table 38 - Percentiles for for experiment A*, T-50

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.2247 0.0158 6.49778E-3 0.0648
5 0.2703 0.1587 0.1114 0.0846
10 0.2821 0.1707 0.1406 0.1229
25 0.2963 0.2012 0.1758 0.1654
50 0.3190 0.2426 0.2300 0.2104
75 0.3460 0.2641 0.2544 0.2573
90 0.3714 0.2950 0.2832 0.2782
95 0.3829 0.3186 0.3002 0.2891

maximum 0.4056 0.3506 0.3438 0.3401

Table 39 - Percentiles for 6̂  for experiment A*, T-50

percentages MODEL
GLS IV/QMLl IIV/ML] LIML

minimum 0.2795 0.2753 0.3048 0.1774
5 0.3123 0.3277 0.3724 0.2895

10 0.3368 0.3532 0.3874 0.3129
25 0.3881 0.4168 0.4438 0.3672
50 0.4251 0.4514 0.4735 0.4718
75 0.4537 0.5072 0.5374 0.6006
90 0.4889 0.5670 0.5741 0.6621
95 0.5041 0.5880 0.6038 0.6813

maximum 0.5412 0.6388 0.6743 0.7285

Table 40 - Percentiles for "yi for experiment A', T-50

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.6674 0.6730 0.6837 0.6610
5 0.7474 0.7097 0.7409 0.7417
10 0.7711 0.7742 0.7936 0.8360
25 0.8585 0.8942 0.8991 0.9251
50 0.9391 0.9804 0.9856 1.0153
75 1.0294 1.0511 1.0605 1.1319
90 1.0963 1.1351 1.1415 1.2044
95 1.1583 1.2082 1.2352 1.2381

maximum 1.2567 1.3691 1.4081 1.2930
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Table 41 - Percentiles for (7̂ 2 for experiment A', T-200

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.1194 0.1089 0.1858 0.0230
5 0.1842 0.2086 0.3231 0.2165
10 0.2129 0.2319 0.3480 0.2421
25 0.2533 0.3181 0.4256 0.3613
50 0.2936 0.3885 0.4948 0.4710
75 0.3573 0.4889 0.5694 0.5870
90 0.4117 0.5903 0.6546 0.6975
95 0.4415 0.6261 0.7071 0.7589

maximum 0.5068 0.7995 1.0138 0.9232

Table 42 - Percentiles for (7̂ 2 for experiment A', T-200

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.2328 0.2138 0.2184 0.2472
5 0.3516 0.3042 0.2612 0.3248
10 0.3859 0.3735 0.3261 0.3870
25 0.4604 0.4428 0.3894 0.5157
50 0.5259 0.5841 0.4753 0.7188
75 0.6097 0.7464 0.5498 1.2011
90 0.7104 0.8835 0.6675 1.7448
95 0.7724 0.9965 0.7460 2.8731

maximum 0.8516 1.3278 0.9200 4.4243
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Table 43 - Percentiles for for experiment A' , T-200

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.2767 0.1374 0.1373 0.1056
5 0.2963 0.1624 0.1545 0.1488
10 0.2999 0.1755 0.1708 0.1578
25 0.3109 0.1918 0.1885 0.1854
50 0.3222 0.2052 0.2027 0.2062
75 0.3328 0.2234 0.2180 0.2253
90 0.3408 0.2385 0.2319 0.2399
95 0.3444 0.2441 0.2402 0.2504

maximum 0.3527 0.2641 0.2559 0.2802

Table 44 - Percentiles for 6̂  experiment A', T-200

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.3803 0.3939 0.4222 0.3796
5 0.3839 0.4212 0.4419 0.4104
10 0.4120 0.4334 0.4610 0.4311
25 0.4243 0.4605 0.4805 0.4732
50 0.4444 0.4873 0.5031 0.5090
75 0.4644 0.5075 0.5190 0.5322
90 0.4753 0.5256 0.5333 0.5462
95 0.4827 0.5401 0.5454 0.5507

maximum 0.5186 0.5800 0.5710 0.5820

Table 45 - Percentiles for 7  ̂ for experiment A', T-200

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.8352 0.8491 0.8333 0.7699
5 0.8787 0.9086 0.8980 0.8071
10 0.8929 0.9213 0.9165 0.8468
25 0.9228 0.9646 0.9535 0.9431
50 0,9546 1.0039 0.9989 1.0179
75 0.9971 1.0370 1.0305 1.0766
90 1.0378 1.0918 1.0846 1.1270
95 1.0532 1.1118 1.1044 1.1578

maximum 1.1039 1.1926 1.1896 1.2211
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Table 46 - Percentiles for for experiment C , T-50

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.0000 0.0000 0.0000 l.OOOE-8
5 0.0127 0.0000 0.1085 l.OOOE-8
10 0.0454 5.550E-3 0.1704 l.OOOE-8
25 0.1460 0.1284 0.2611 0.0563
50 0.2453 0.3016 0.3900 0.3074
75 0.3769 0.4757 0.6222 0.5216
90 0.5226 0.6644 0.9396 1.0251
95 0.5818 1.0192 1.0783 1.2576

maximum 0.9950 1.1403 1.7989 2.7206

Table 47 - Percentiles for for experiment C , T-50

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 1.9132E-4 1.9704E-4 1.3983E-4 0.0101
5 0.2161 0.1065 0.0546 0.1570
10 0.2755 0.1921 0.1407 0.2128
25 0.3891 0.3239 0.2528 0.3106
50 0.5646 0.5792 0.4284 0.6094
75 0.7946 0.8456 0.6120 1.1861
90 1.0372 1.1554 0.8710 2.2638
95 1.1782 1.3426 1.0000 3.3483

maximum 1.2044 1.9310 1.2358 6.1755
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Table 48 - Percentiles for for experiment C , T-50

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.1636 0.0574 5.53021E-3 0.0739
5 0.2443 0.1408 0.1083 0.1301
10 0.2639 0.1608 0.1361 0.1420
25 0.2822 0.1945 0.1746 0.1691
50 0.3095 0.2406 0.2295 0.2058
75 0.3346 0.2612 0.2518 0.2587
90 0.3749 0.2996 0.2931 0.2858
95 0.3914 0.3167 0.3061 0.3152

maximum 0.4109 0.3529 0.3465 0.3512

Table 49 - Percentiles for 6]̂ for experiment C’ , T-50

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.2687 0.2618 0.3075 0.1693
5 0.3091 0.3203 0.3558 0.2391
10 0.3321 0.3533 0.3845 0.2562
25 0.3879 0.4117 0.4291 0.3364
50 0.4225 0.4456 0.4701 0.4700
75 0.4572 0.5015 0.5260 0.5992
90 0.4937 0.5690 0.5756 0.6629
95 0.5159 0.5820 0.5942 0.6873

maximum 0.5641 0.6402 0.6545 0.7388

Table 50 - Percentiles for for experiment C  , T-50

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.6587 0.6721 0.6738 0.6970
5 0.7388 0.7431 0.7435 0.7793
10 0.7678 0.7925 0.7946 0.8394
25 0.8843 0.9047 0.9060 0.9362
50 0.9546 0.9922 0.9949 1.0026
75 1.0294 1.0646 1.0722 1.1090
90 1.0875 1.1458 1.1413 1.2000
95 1.1821 1.2146 1.2229 1.2289

maximum 1.2605 1.3940 1.4244 1.3277
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Table 51 - Percentiles for for experiment C , T-200

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.1058 0.1210 0.1738 0.1256
5 0.1703 0.2241 0.3142 0.2292
10 0.2157 0.2556 0.3358 0.3069
25 0.2486 0.3270 0.4085 0.3820
50 0.2951 0.4107 0.4898 0.4695
75 0.3764 0.4981 0.5565 0.5634
90 0.4398 0.5880 0.6320 0.6589
95 0.4610 0.6193 0.6908 0.7493

maximum 0.5277 0.7974 0.9902 0.9207

Table 52 - Percentiles for for experiment C , T-200

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.2378 0.2147 0.2299 0.2547
5 0.3599 0.2997 0.2772 0.3551
10 0.4414 0.3796 0.3366 0.4224
25 0.5088 0.4538 0.4134 0.4978
50 0.6118 0.5760 0.4840 0.7217
75 0.6795 0.6940 0.5663 1.2456
90 0.8051 0.8342 0.6827 1.7964
95 0.8724 0.9013 0.7769 2.2773

maximum 1.0019 1.1373 0.8458 3.7368
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Table 53 - Percentiles for for experiment C , T-200

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.2578 0.1393 0.1376 0.1267
5 0.2822 0.1589 0.1551 0.1537
10 0.2866 0.1736 0.1710 0.1619
25 0.2960 0.1909 0.1878 0.1832
50 0.3059 0.2038 0.2026 0.2024
75 0.3200 0.2220 0.2189 0.2220
90 0.3302 0.2372 0.2329 0.2478
95 0.3355 0.2453 0.2432 0.2428

maximum 0.3455 0.2663 0.2584 0.2768

Table 54 - Percentiles for experiment C  , T-200

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.3810 0.3962 0.4150 0.3832
5 0.3992 0.4164 0.4382 0.4147
10 0.4053 0.4347 0.4483 0.4326
25 0.4260 0.4596 0.4737 0.4750
50 0.4434 0.4831 0.4935 0.5075
75 0.4655 0.5024 0.5125 0.5356
90 0.4778 0.5190 0.5320 0.5483
95 0.4938 0.5396 0.5442 0.5580

maximum 0.5224 0.5648 0.5669 0.5716

Table 55 - Percentiles for 7  ̂ for experiment C’, T-200

percentages MODEL
GLS IV/QMLl IIV/MLl LIML

minimum 0.8468 0.8576 0.8489 0.7723
5 0.8770 0.9153 0.9069 0.8255
10 0.9035 0.9234 0.9230 0.8554
25 0.9307 0.9706 0.9634 0.9479
50 0.9633 1.0054 1.0032 1.0117
75 1.0013 1.0470 1.0384 1.0782
90 1.0520 1.0965 1.0905 1.1338
95 1.0660 1.1119 1.1057 1.1737

maximum 1.1375 1.1984 1.1952 1.1942
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CHAPTER 10

CONCLUSIONS

1. Introduction

The aim of the thesis was to examine the estimation of a single 

equation which contains a stochastic trend and is part of a system.

We looked at identification issues and extended the classical rank 

condition to show the role played by stochastic trends. Basically a 

deterministic trend in another equation in the system contributes to 

identification in the same way as any exogenous variables. 

Identification can also be achieved if the trend in another equation 

is stochastic, while in the equation of interest it is deterministic.

As regards estimation, a wide range of IV estimators were studied. 

The basis of these estimators were suggested in Harvey(1989). We 

found that some of these estimators have unsatisfactory properties 

and so cannot be recommended. The best approach is based on feasible 

G2SLS estimators. Such estimators can be obtained by concentrating 

the vector containing the regression coefficients out of the 

criterion function, as suggested in Harvey(1989). This estimator we
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called IV/QML. We suggested adopting a stepwise approach as an 

alternative. This estimator we called IIV/ML. The Monte Carlo 

experiments showed that IIV/ML performs better than IV/QML, as regard 

small sample properties. Moreover, IIV/ML is less time consuming to 

compute than IV/QML.

For a single equation efficiency can be defined in terms of the LIML 

estimator. We were able to work out expressions for the asymptotic 

variances of IIV/ML and LIML. This all was done in the frequency 

domain. We were also able to show that when the stochastic part of 

the model is homogeneous, IIV/ML is asymptotically efficient, i.e., 

it has the same distribution as LIML. Other cases when IIV/ML is 

asymptotically equivalent to LIML were noted.

Particularly interesting is the case where no stochastic trend is

present in any equation other than first. Asymptotic theory for LIML 

is not straightforward to work out, but by using limiting arguments 

we succeeded in obtaining an expression for the asymptotic covariance 

matrix of LIML. We were then able to compare this with the 

asymptotic variance of IIV/ML.

The Monte Carlo experiments were not intended to be a comprehensive 

guide to small sample distribution. However we learned a good deal. 

In the homogeneous case, for small samples, we found that IIV/ML does 

better, relative to LIML, than asymptotic theory would suggest. In 

cases far from homogeneity, as is the case when no stochastic trend

is present in the second equation, the superiority of LIML is

apparent.
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As regards computation, IIV/ML is more reliable. LIML can 

occasionally give non-convergence problems and implausible results, 

whereas IIV/ML almost always gives sensible results.

Our practical recommendation is to adopt IIV/ML with 2SLS providing 

initial values. There may be gains to be had from LIML in certain 

circumstances. However it should only be adopted if it converges to 

what seems to be a reasonable answer.

Although we have worked with random walk stochastic trends, 

extensions to local linear trends seem to be easy to handle.

We have also conducted Monte Carlo experiments for models with lagged 

dependent variables. The performance of LIML was somewhat 

disappointing. More work is needed to obtain computationally 

reliable procedures. However IIV/ML worked well and we are quite 

content to recommend it.

Other areas of future research would include constructing a 

computationally reliable and efficient method for FIML, the 

implementation of system IV estimators such as feasible G3SLS, and a 

thorough Monte Carlo study to analyse the performance of the 

estimators.
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