STOCHASTIC TRENDS IN SIMULTANEOUS EQUATION SYSTEMS

by
Mariane Streibel

1992

Thesis submitted for the Degree of Doctor of Philosophy
at the London School of Economics and Political Science,

University of London



UMI Number: U063018

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U063018
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



fHiESES

F

6929



ABSTRACT

The estimation of univariate and multiple regression models with
stochastic trend components has been considered in the time domain
and in the frequency domain. Such models assume as regressors weakly
exogenous variables. However if the regression equations are part of
a simultaneous equation system some of the regressors will no longer
be weakly exogenous and estimators obtained by ignoring this fact

will be inconsistent.

One way of proceeding in such situations is to estimate the whole
system, that is, to construct full information maximum (FIML)
estimators. Alternatively, single equation estimators such as
limited information maximum likelihood (LIML) can be constructed, as
well as estimators based on the instrumental variable (IV) principle

which possess the merit of consistency.

As in the analogous situation in classical simultaneous equation
systems, within this class of limited information estimators, LIML is
asymptotically efficient. Hence it is appropriate to study the
asymptotic properties of LIML and review the possibility of

alternative consistent estimators, using LIML as a benchmark.

The purpose of the thesis is thus:

- to examine the issues of identifiability when stochastic trends



are present in simultaneous equation systems;

to examine the computational issues associated with FIML, LIML
and various IV estimators in simultaneous equation systems with
stochastic trends and derive the asymptotic properties in the

frequency domain of these estimators;

to compare the performance of IV and LIML via Monte Carlo

experiments;

to apply the methods to real data.
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CHAPTER 1

INTRODUCTION

Stochastic trend components are introduced into econometric equations
when the 1level of a nonstationary dependent variable cannot be
completely explained by observable explanatory wvariables. The
presence of a stochastic trend can often be rationalised by the fact
that a variable has been excluded from the equation because it is
difficult, or even impossible, to measure. Thus in
Harvey et al(1986) and in Slade(1989) a stochastic trend is used as a
proxy for technical progress, while in the demand equation for UK
spirits estimated by Kohn and Ansley(1989) the stochastic trend can
be thought of as picking up changes in tastes. Such rationalisation
not only lends support to the specification of the model, but it also
means that the estimated stochastic trend can be analysed and

interpreted.

Economic theory often suggests the appearance of stochastic trend
components in particular equations within a simultaneous equation
system. Indeed many published econometric models contain a time
trend. For example the wage equation in the textbook Klein model has

a time trend which is included to account for union pressure. As in
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single equations, such effects are more appropriately modelled by
stochastic trends. If they are not explicitly modelled, their
effects will be picked up indirectly by time trends and lags on the
variables. This can lead to a proliferation of lags which have no
economic meaning, and which are subject to common factors and
problems of inference associated with unit roots; see
Harvey et 81(1986). Thus if economic theory suggests the presence of
stochastic trends there are likely to be considerable gains from

estimating the implied structural relationships directly.

The focus of this thesis is on models where the behaviour of a
dependent variable is explained by observable explanatory variables
and unobservable components. The wunobservable components are
modelled using the ideas of structural time series. Thus the

components have a direct interpretation, see Harvey(1989).

When the explanatory variables are weakly exogenous variables we
shall refer to the model as a time series regression model. Examples
include the seat belt study of Harvey and Durbin(1986) as well as the
application by Harvey et al referred to earlier. Multivariate
structural time series, in particular seemingly unrelated time series
equations (SUTSE) models were studied in Fernandez(1986) and
Fernandez and Harvey(1990), while the inclusion of explanatory
variables in SUTSE models is examined in Marshall(1990) and Harvey

and Marshall (1991).

Our interest centres on a single equation within a simultaneous

equation system with stochastic trend components. The estimation of
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time series regression models is based on the maximum 1likelihood
principle and the assumption that the regressors are weakly exogenous
is crucial. However, if some of the regressors are not assumed to be
weakly exogenous variables, the maximum likelihood criterion function
will not be a valid basis for inference. 1In simultaneous equation
systems some of the regressors are endogenous variables to the system

and estimators obtained by ignoring this fact will be inconsistent.

In order to obtain consistent estimators we have to proceed as we
would in the classical simultaneous equation systems, that is,
without stochastic trends. So, if the complete system of equations
can be specified, a full information maximum 1likelihood (FIML)
procedure may be employed. 1If only a subsystem is specified, but all
the predetermined variables are named, a limited information maximum
likelihood (LIML) procedure is appropriate. When the rest of the
system has not been specified at all, ML methods cannot be applied,

but a valid instrumental variable (IV) estimator can be obtained.

As in the analogous situation in classical simultaneous equation
systems, within this class of limited information estimators, LIML is

asymptotically efficient. Hence it is appropriate to study the
asymptotic properties of LIML and review the possibility of

alternative consistent estimators, using LIML as a benchmark.

A well known result in classical simultaneous equation systems is
that LIML can be obtained by applying FIML to a ''new'' system formed
from the structural equation of interest and the reduced form

corresponding to the endogenous variables included in the equation of
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interest. It turns out that this new system is a triangular one.
This is also true for models with stochastic trends components. The
estimation of triangular systems is somewhat easier since such
systems can be formulated as a set of seemingly unrelated regression
equations (SURE) with stochastic trend components and can be carried

out in the time domain framework.

Unfortunately, the triangular property is not helpful in deriving the
asymptotic properties of LIML. In order to obtain the asymptotic
properties we have to study the properties of FIML. The frequency
domain framework turns out to be most appropriate.

The purpose of the thesis is thus:

(a) to examine the computational issues associated with FIML and LIML

in simultaneous equation systems with stochastic trends;

(b) to derive the asymptotic properties of FIML and LIML;

(c) to examine the computational issues arising with wvarious IV

estimators;

(d) to derive asymptotic properties of viable IV procedures;

(e) to compare IV and LIML on the basis of asymptotic theory and

Monte Carlo experiments;

(f) to examine the issues of identifiability when stochastic trends

are present;

(g) to apply the methods to real data.
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The plan of the thesis is as follows.

In chapter 2 we review some standard results which are needed to
handle multivariate structural time series models. We look at state
space form models and discuss estimation in the time domain and in
the frequency domain, as well as asymptotic properties of the
estimators. Chapter 3 provides a basis for the estimation of a
single equation within a simultaneous equation system, as well as of

the whole system.

Chapter 4 contains material on alternative 1limited information
estimators based on the instrumental variable principle. Several
time-domain instrumental variable estimators for single equations
with stochastic trend are presented. We also deal with
frequency-domain instrumental variable estimators and  their

asymptotic properties.

In chapter 5 we introduce simultaneous equation systems with
stochastic trend components and discuss the role played by stochastic

trends in helping to identify a single equation in the system.

The purpose of chapter 6 is to derive the asymptotic properties of
FIML. As mentioned earlier, LIML is a special case of FIML and so to
obtain the asymptotic properties of LIML we have to consider those of
FIML. Again these properties are derived in the frequency domain.
We also present a computational method for FIML itself, based on the
nonparametric approach of Hannan and Terrell(1973), and

asymptotically efficient two-step full information estimators.
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However we have not computed such estimators. The reason is because
from our experience with LIML we thought that in order to able to

make meaningful comparisons a complete study of FIML should be done.

In chapter 7, we extend the results given in Hall and Pagan (1981) in
order to provide a computational method for LIML when the system
contains stochastic trends. We also compare the asymptotic
distribution of LIML with that of our preferred IV estimators. We
determine the conditions under which the IV estimator has the same

efficiency as LIML.

An application to the employment-output equation is presented in
chapter 8. A series of Monte Carlo experiments are reported in

chapter 9. Finally the conclusions are presented in chapter 10.
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CHAPTER 2

STRUCTURAL TIME SERIES MODELS

1. Introduction

In this chapter we review some standard results which are needed to
handle multivariate structural time series models. We look at state
space form models and discuss the estimation in the time domain and
in the frequency domain, as well as asymptotic properties of the
estimators. We also present in appendix, a brief review of

optimisation procedures.

2, State Space Form Models

The models that will be considered here have a time invariant state

space form given by

Ye = Z o + € (measurement equation) (la)

or = T ar.1 + n¢ (transition equation) (1b)

t=1,...T, where y, is a pxl vector of observable variables, ar is a
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mx1 vector of unobservable variables, known as the state vector, Z is
a pr matrix , T is a mxm matrix, €y is a pxl vector of serially
uncorrelated disturbances with mean zero and covariance matrix ¥, and
ne is a mxl vector of serially uncorrelated disturbances with mean
zero and covariance matrix Zﬂ' We also assume that e, and 7. are
normally distributed and uncorrelated with each other for all periods
of time and with the initial state vector o, which is assumed to have

a normal distribution with mean a, and covariance matrix P,.

Although ARMA models can be cast in the space state form we shall
only consider nonstationary structural time series models.

Specifically, the i-th series, yj i=l,...p, may be modelled as

a) a local linear trend model, that is,

Yie = Hit t &it (2a)
it = Hi t-1 * Bi t-1+ Mt » (2b)
Bit = Bi,t-1+ Fit s (2¢)

b) a random walk plus noise model, that is,

Yit = Hit t €it (3a)

Bit = Hi,t-1 % Mic (3b)

c) or simply as a sequence of independent variables.

We note that (2) and (3) may be formulated as

Yie = Zi'ejr + €i¢ o

aje = Tioq ¢.1 + ni¢
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where for the random walk plus noise, ojy¢=pj¢, 2i'=l and Tji-1,

whereas for the local linear trend

a5e = [pit] . zg'=[1,0] ; T~ [ ' 1].

Bit

Thus for each series, zj' and T; are known and fixed.

SUTSE Models

If all series have the same state form, that is, zl'-zz'-...=zp'-z'

and T1=T2-...-Tp-T, (1) becomes

Ye = (2'8Ip) ap + e (4a)

where ay and 7., are of dimension mxl. We remark that in (4b), T is
mxm, while in (1b) T is a&a, where anm, and m=1 if each series
follows a random walk plus noise and m=2 if each series follows a
local linear trend model. The associated parameters are the pxp
covariance matrix I, and the pmxpm covariance matrix Zﬂ' The
distinct elements of these matrices are known as the hyperparameters
and will be denoted b& the vector Y. Such models are known as SUTSE
(Seemingly Unrelated Time Series Equations), see Harvey (1989,page
432) for a comprehensive study. The simplest SUTSE model is the

multivariate random walk plus noise, obtained when m=1. Thus
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Plc e1t
Ye = (5a)
[#1t-1 Mt
ke = . + . (5b)
Fpt-1 Mpt
and both associated covariance matrices are of order (pxp). Because

the matrices I, and Zﬂ are symmetric it will prove convenient to
define y, as being the p(p+l)xl vector obtained from vec(Ze:Zn) by
eliminating all supradiagonal elements of X, and Zn. Following

Magnus and Neudecker (1988,page 49) we have

[g g]'/’ = vec[Le:ly) (6)

and

+
v o= [g DE] vec[ZS:Zn] (7)

where the p2 X ip(p+l) matrix D is the duplication matrix and D% is
the Moore-Penrose inverse of D, given by

+ = (D'D)-1D'. (8)

Prediction Error Decomposition

Given the normality assumption on the initial state o, and on the
disturbances & and 7., Yy - vec [y1 ... yr] will have a
multivariate normal distribution with mean pu (Tpxl) and covariance
matrix  (TpxTp). Now the density of y can be written in terms of

the conditional densities, that is,
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T
flyipu,) = tn [f(ytlYt-l.u,Q)]f(yll#,Q),
-2

where Y¢_ 3=(yt.1,..-,¥1). Therefore the density of y becomes
I e -1
T - 3 2(eByelYe 1) Fe TN (ye-ByeiYe.1)
f(y1p,Q) = (2x)- 3T nllFtn-i e (9)
t=

where F, 1is the conditional covariance matrix of y, given

ye-1-Yt-2+---Y1-

It can be shown, see Harvey (1981,page 13), that Ey.IYy_ 1 and F. are
respectively the MMSE (Minimum Mean Square Estimator) of y. given

Y..1 and its MSE (Mean Square Error) matrix.

Once the model is formulated in a state space form these prediction
errors can be obtained from the Kalman filter equations, see
Schweppe (1965) and among others Harvey (1981). The Kalman filter

equations will be given in next sub section.

Kalman Filter Equations

When the model is cast in the state space form the parameters 6 are
elements of a,, P, and {, where y is the vector containing the
distinct hyperparameters, rather than (u,2). Clearly there is a
relation between 6 and (u,)). The assumption of normality of the

initial state and disturbances implies that the process (ye,o¢)
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t=1,... is jointly Gaussian, and therefore the MMSE of oy given Y.

and the information at time t=0 is given by

a, ~E [“t/Yt ] (10a)
with associated MSE
Pt - Et(at- at)(at- at) (10b)

and the MMSE of o given Y ._; and the information at time t=0 is

given by
Be/t-1" E[at/Yt_l] (11a)
with associated MSE
(11b)

Peje1 Et-l(at/t-l- at/t-l)(at/t-l' 3 e-1 )

The notation E [-] indicates the conditional expectation given Y,
and the information at time t=0. The necessary equations to compute

these quantities are known as the Kalman filter equations and are:

the prediction equations

=T a

8e/t-1 t-1 (12a)

Poreop = T BT + 5y t=1,...T (12b)

and the updating equations

' Ft':l y

3 = 81 Y Py ? t (13a)

- - ' '1
Pt Pt/t-l Pt/t-l z Ft z Pt/t-l (13b)
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where

€ (14a)

t=1,...T (14D)

Note that from (la) and (lla) we have

yt - EytlYt_l - yt - zatlt_l - l’t (15&)
and
Ec.1(¥e-Eye!¥e.1) (ye-Eye1¥eo1)!

= Ec.i[Z(ap-agie.1)+ec [ Z(oc-apte.1)+ee )" = Fe (15b)
where the last equality in (15b) follows from (11b).

Thus, omitting additive constants that do not depend on the

parameters, the loglikelihood function of y takes the form

T 1 T 1
tZIIOg |Ft| - '5 tZl”t.Ft. Vt (16)

2(8) = -

Nl

where 6 = (ay,P,,y), and re=r (68) and F=F(P,,y) are obtained from

the Kalman filter equations with starting a, and P,.

The Link between Cholesky Decomposition and State Space Techniques

If Q is positive definite it can be factorized (Cholesky
decomposition) in such a way that Q°' = L'F-'L, where L is a lower
triangular matrix with 1's on the diagonal and F is a diagonal

matrix. In multivariate models it turns out that L has diag(IP,..,Ip)
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on its main block diagonal and F is a block diagonal matrix, i.e.

’

F=diag(F;...Fr).

We shall now derive the matrix L for the univariate random walk plus
noise model in order to show the obvious result that the prediction

errors vy, t=1,...T delivered by the Kalman filter can be written as

V=L(y-p).

The matrix L will be derived for notational rather than computational
purposes. In fact, in practice we never perform the Cholesky
decomposition, since the major advantage of the Kalman filter is

exactly to avoid the storage of a high dimensional matrix such as L.

By repeated substitution of u¢ in the measurement equation we have

t
Ye = Ho +.21nj tee.

Hence, the mean of y, is constant and equal to a, and the

relationship between {1 and P, and the hyperparameters, Vo= (Gez,dnz),

is
0j3 = Po + 1 0p2 + 0.2, i=1,...T

0jj = Bo + k 0p2 k=min(i,j), 1,j=1,...T.

Substituting these values in ({1}, constructing the Cholesky

decomposition of ! and inverting the triangular matrix yields
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1 0 0 0 0 0
. Piso 1 0 0 0 0
f‘l
- _P (o} -P 1 _P 1
L %f [ 1 f“f] %f 1 0 0 0

-Pizo[l_P%Ltl [1-PI?LLI;2] -PI;%ll;z 1
g 1 2 T-1 T-1
(17a)
and
F = diag(fy,....f1), (17b)

where Pt/t-l is as in (12b) and f{ is as in (l4a). It is easy to
verified that V= L(Y - lao) is the T-dimensional vector containing
the prediction errors given in (14b). It is interesting to note that
when the initial state is regarded as fixed these prediction errors
are 1identical to the prediction errors obtained by means of the

Rosenberg (1973) algorithm.

The relationship between (,01) and (a,,P,,¥) can be easily

established for the local linear trend, as well as for SUTSE models.

We write
t .
Ye = (2'@Ip) (TRl o + (z'@ngzl(T®Ip)t’J IR (18)
hence
E y=X,a, (19)
where

y=vec[y1,...,¥T]
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and

Xo = [(z'T'8Ip) ", ..., (2'TTRIp) ' ]', (20)

and analogously as before the lower triangular and the block diagonal
matrices L and F can be constructed with elements being functions of
Z,T,y and P,. (Note that the superscript T in (2) is the sample

size). Therefore (1l6) can be also written as

1 T 1
e(6) = - — Y log 1IFel - = L(y-X58,) 'F 'L(y-X5a,) (21)
2 t=1 2
where 6=(a,,P,,¥) and y = vec[yy,¥2,...,¥T1].

Conditional Likelihood Function

As it stands the loglikelihood function given in (21) is a function
of 6, the distinct parameters which enter into (ao,Po,w). Often
prior information on the initial state is available and of course
should be taken into account. Typically prior information arises
when the process is stationary or when the initial state may be
regarded as fixed. When this is the case the Kalman filter yields
the exact likelihood function for Yr=(y1,...,¥T) via the prediction
error decomposition. For the models considered here however, no
prior information is avaiable. de Jong (1988) derived an expression
for the likelihood function of Y, not conditional on &, where the
place of both a, and P, is made explicit in the likelihood function.
He pointed out that it is not possible to find the ML estimates of

both a, and P,. He also justifies the specification of the
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unconditional distribution of oo, in terms of a diffuse or
noninformative prior. This kind of specification can be interpreted
as if the process has started in the remote past. In particular, for
the random walk plus noise model, assuming that the process has
started at time s, s<0, repeated substitution for o in the
transition equation yields

0
og =D

N3 + 0¢.
j-s+1j s

The diffuse prior of a, is obtained as s - -». Certain caution,
however, should be taken when we say that the process has started in
the remote past. First because there might be no physical
interpretation, usually an economic time series has started in some
finite time and second Y7 will have an improper distribution since

all elements of Yp will have infinite variance.

Nevertheless, although the unconditional distribution of Yr is not
defined, the conditional distribution of yp,...yps1, given yi3,...¥yn
is defined. We note that in univariate models, if P, is bounded,
then conditionally on yj3,...¥y, YT»---Ym+l is normally distributed,
with t-th element of the (T-m)x1l mean vector being ZTt'mam. The
(T-m)X(T-m) covariance matrix is (i'f'lf)'l where L and F are
obtained by eliminating the first m rows and columns of L, and F, and
L'F-1L is the covariance matrix of the unconditional distribution of
Yp. Now if P, goes to infinity, it is easy to verify that for the

univariate random walk plus noise model,

ay @y (22a)

P - 0.2 (22b)
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and for the local trend model

Y2
as = (23a)
2 [yz-yl
2 2
O¢ O¢
P2 > [062 20€2+on2+a;2] - (23b)

On the other hand, rather than assuming a diffuse prior for the
initial state we could construct a proper prior for o from the first
observations. It turns out, however, that the resulting estimators
of the mean and variance of o are the same as the converging values
given in (22) and (23) for the random walk and local trend models
respectively. In other words, the use of a diffuse prior is
equivalent to constructing a proper prior from the first m
observations, in the sense that either would result in the same

conditional likelihood function, see Harvey(1989, pages 120-128).

For complex multivariate models it is not always clear how to
construct a proper prior from the first observations. Therefore the
conditional likelihood function is obtained starting the filter with
a, and P,=KI; where K is a large finite number, I, is the mxm
identity matrix, and m is the dimension of the state. Initial
observations are discarded. Alternatively the conditional likelihood
function can be computed by means of an algorithm devised by
de Jong (1988,1991). Nevertheless, since the multivariate model that
we are primarly interested in is the multivariate random walk plus
noise given in section 2, (22) can be generalized straightforwardly.
Thus aj becomes the pxl vector yj while P; the pxp matrix L,. From

the above discussion the resulting conditional loglikelihood function
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becomes

1 1 _ _ — - —
[} - - 1 Fel - = (L(y - X ' F-1 Ly -X 24
¢'2) > tim+gg IFet > (L(y om) (y -Xoap), (24)

where ;-vec(yh+1,..yr). For the models we shall consider onwards the

p(T-m)xpm matrix X,, becomes

- a T-1 vector of ones for the univariate random walk;

- T-1 identity matrices of order p stacked together for the
multivariate random walk ;

- a T-2 vector with t-th element equal to z'Tt-2 for the local trend

model.

For a given ¢, 2(y) is evaluated applying the Kalman filter to yg,
t=m,...T, with starting values aj and P as discussed above. Often we

shall write (24) as

2(¥) - § log IF . S Fo-1 (25)
- - - og IFel - —= vy 'Fo-dyp

2 t2mi1C b 2 e-mel € T
where ». and Fy ,t=m+l,...T, are respectively the prediction errors

and MSEs delivered by the Kalman filter.

In univariate models the place of one of the m+l hyperparameters
contained in Yy can be made explicit in the loglikelihood function.
This can be done by scaling the hyperparameters. That is, in the
Kalman filter equations, Pp is replaced by Pm*=Pm/o*2 and ¢y by (1,y4)
where 042 is the hyperparameter whose place is made explicit and V4
is the mxl vector containing the remaining m scaled hyperparameters.

It turns out that the prediction errors delivered by the Kalman
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filter with scaled hyperparameters will be unaffected whereas their
MSEs, ft*, will also be scaled. The resulting loglikelihood function

then becomes

Q(o*2 Vi) = - i § log £+ - I;E logos? - l a*'z § v 2/f (26)
’ 2 témtl- © 2 2 tmfitl ©°F

where we have omitted the star on fi which indicates that these MSEs

are delivered by the Kalman filter with scaled hyperparameters.

For multivariate models unless the system is homogeneous, it is not
possible to reparametrize in terms of an entire covariance matrix.
However one element can always be made explicit in the loglikelihood

function.
Clearly the MLE of (0*2, y«) is the point, (3*2 ,@*), that maximises

the loglikelihood function. Since 0«2 can be concentrated out the

maximisation of (26) is nonlinear only with respect to .

3. Estimation in the Frequency Domain
We shall now turn to the frequency-domain approach for estimating

structural models. We introduce the spectral likelihood function and

derive the asymptotic information matrix.

The Spectral Likelihood Function

Let uy, t=0,%1,22,.. be a p-variate stationary, zero mean, Gaussian
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process. Let F(M\,y) be the spectral matrix of the process, where y

belongs to the parameter set © and Ae[-x,x). F(\,y) is defined by

FOLY) = (20)°1 S TG,y e ~3M (1)

T=-0

where

I'(r,y) = Eugug_,', 7=0,%1,.. (2)

is the autocovariance matrix at lag 7, see Harvey (1989,page 428).
The diagonal elements of F(\A), where we have omitted the argument y
and often shall do so, are the power spectra of the individual
processes. The ij-th element is the cross-spectrum between the i-th
and the j-th variable for j=i. The spectral matrix, see
Fuller (1976), is Hermitian, that is, F(A) = F*(\) and positive
semidefinite, that is, w*F(Mw ) 0 for any complex vector such that
w*w>0, where here and onwards [-]* denotes the complex conjugate

transpose of a matrix or of a vector.

Let F(Xj), j=0,...T-1, denote the spectral matrices at frequency X\;:,
where
27j s
Xj- —T— ’ J‘O,...T'l.
Let
U' = [up,up,...,ur],

and let IU-U(xj) be the Hermitian matrix of periodograms and
crossperiodograms of U', or as we shall say, the periodogram matrix,

given by
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1 I irnste & -inst
Igigp(h;) = — u e J u' e 17, (3)
vuy) = o e 211

We also introduce, IT(MN)=Iy:y()), which we shall need later, the
periodogram matrix defined for all M\ in [-x,x). Of course we cannot

evaluate I()\) numerically as a continuous function of \.

As is well known, see among others Robinson (1978), the

frequency-domain or spectral likelihood function for vecU' is given

by

, T-1 T-1 1
W) - -4 3 logIFOp)1 - 45 e [FLOpIyyOy) ] (4)

If the process u, is a non-zero mean one then j=0 has to be excluded
from the sum to mean-correct the process. We remark that if the
covariance matrix of vecU' has the form of a circulant matrix then
(4) is the exact time domain loglikelihood function, otherwise (4)
has to be regarded as an approximate version of the time domain
loglikelihood function, see Harvey (1989,page 193). Because the
periodogram matrix does not depend on the parameters, changes when a
new estimate of these parameters 1is produced in an iterative
optimisation scheme only affect the estimates of the spectral matrix.
As we shall see below in structural time series models the spectrum
can be easily evaluated. Hence the optimisation procedure can be

carried out quite rapidly.

The structural processes introduced in the previous section are
clearly nonstationary. Nevertheless for a wunivariate process

stationarity can be achieved by differencing the process, once, if it
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is assumed that the process follows a random walk plus noise with
aﬂ2>0 and twice if it is assumed to follow a local linear trend with
a;2>0. It can be shown that the differenced processes are
respectively restricted MA(1l) and restricted MA(2). Moreover they
are invertible and therefore the respective spectral densities are

strictly positive over [-x,x).

We note that in the random walk plus noise model if anz = 0 the
process is already stationary with mean different from zero and in
the local linear trend model if 6;2-0 we only need to difference once
to obtain a stationary non zero mean process. Overdifferencing will
yield a strictly non-invertible process with non-strictly positive

spectrum over [-«x,7).

The multivariate processes that we shall consider are the SUTSE
models introduced in section 2, in particular the multivariate random
walk plus noise, given in (2.5) with associated covariance matrices
I, and Xﬂ' Therefore if Zﬂ is positive definite then differencing
once yields a multivariate stationary and invertible process with

spectral matrix

F(Aj) = FOj,¥9) = 2071 (eI, + Iy, (5a)
where
c(xj) = 2(1 - cos xj), | (5b)

and y is the p(p+l) vector containing the distinct elements of I, and
Zﬂ‘ We note that F(xj), j=0,...T-1 are real, positive definite,
symmetric matrices, and therefore the determinant of F(xj) is

strictly positive.
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It should also be noted that because IU-U(Xj) is a Hermitian matrix

it can be expressed as

IU'U()‘j) - RIU'U()‘j) + 1 Iqulu(Xj) (6)

where RIU-U(kj) is a real symmetric matrix and Imluuu(xj) is a real
skew symmetric matrix, that is, (ImIUoU(xj))' - - ImIU-U(xj). Now

since F(xj) is symmetric we have that

tr[F(r )" Mmlyig(a)] = - tr[Ialyg(A))F(hg) 1]
- - tr[F(xj)-l Imly g(rg)] = 0.
Hence,

tr [(FO) " lIgigray)] = tr[FO) -1 RIgigAp ], (7)

and therefore the periodogram matrix in (4) is in fact only the real
part of the periodogram matrix. We shall however keep the notation.
It can easily verified that the real part of the periodogram matrix

can be written as

RIyry(rj) = U'¥U (8)

J

where the TxT matrix Wj, j=1,...T-1, is real, symmetric, with (¢, k)

entry being

Wj(Q,k) - cos(kj(Q-k)), e,k=1,...T. (9)

Using (9), the spectral likelihood takes the form
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T-1 T-1
e(y) = -}jzologlF(kJ)l - &jzotr [F'l(kj)U'WjU] . (10)

Asymptotic Information Matrix

It is well known that the asymptotic information matrix is determined

by

N o - 14m T-1 320 (y)
o - vl n R,

where Y, is the true parameter vector and €(y) is the loglikelihood
function of the T observations. We shall only consider the case
where the observations are pgenerated by a multivariate random walk
plus noise process. Hence y is given in (2.7). ©Now the first and
second derivatives of (10) with respect to ¢ are given in

Harvey (1989) or in Fernandez(1986) and are

o 1Tl -1 -1 -1

3= ; | z sj'vec[ Fy1 - Fy-lurwyury-l | (11)
and

820 T- -1 -1 - =111 -

Sa Z [}(Fj 6Fs-1) - (Fy~lgFy-1u' v UFy 1)] 55 (12)
where
OvecF;

S5 = g

and

1
Fj = FO\j,9) = (25)-1 [zezzﬂ][°ipp]

cj-c(kj)-Z(l-coskj).
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Vectoring Fj and using (2.6) we have

vecFy = (21)'1[(°j1p:1p)®IP] [g g] Vo

hence Sj becomes

Sy = (27)°1 [e5D :D] . (13)

Using the fact, see Priestley (1981,page 418), that

EIT(M) 1k = FOM\yo)1k + O(T-1logT), 1,k=1,...,p (14)
we have
1 L
IA(G) = 4= [ SO0 [FrLO0er-10n] sooa (15)
X ¢ .

where F(A) = F(M\,¥o), S(A\) = [c¢(M\)D : D], e¢(A) = 2(1l-cos\) and D is

the duplication matrix.
Maximum Likelihood Estimation
In order to find the point @ that maximises €(y) given in (4) we need

a numerical method. Now from appendix 2.1, where we briefly discuss

optimisation procedures, we have the iterative scheme defined by

:bk+1 - :l/k - w1l (Axl/k) g(‘&k). (16)

where g(@k) is the first derivative of ¢ with respect to y evaluated

at @k and H(@k) is the Hessian matrix evaluated at‘bk.
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Alternatively, replacing H(&k) by minus ‘ﬁ(@k) yields the scoring
algorithm, where for the multivariate random walk plus noise, T times
ﬁ(wo) is a finite approximation of the integral given in (15). Hence

ﬁ(@k) is given by

B = 4 58y (Fleril)s (17)
Yk je0 3 VI TR

where %j-Fj(@k). As shown in Robinson (1978), under certain
regularity conditions -T'lﬁ(¢) and T'1H(¢) are asymptotically

equivalent.
4. Asymptotic Theory
The spectral likelihood function given in (3.4) has to be regarded as

an approximation to the time-domain likelihood function. However the

spectral ML estimators have the same asymptotic properties of the

time-domain ML estimators. Therefore we are only going to consider
the asymptotic properties of spectral estimators. This issue was
considered in Fernandez (1986). Since, after differencing, the

structural models considered here are vector MA's, the underlying
asymptotic theory in Fernandez (1986) is regarded as a specialization
of the asymptotic theory for stationary vector time series given in
Deistler et al (1978), Dunsmuir and Hannan(1976) and Dunsmuir(1979).
However, since we are primarily interested in the asymptotic
properties of estimators obtained by the iterative scheme given in

(3.16), for example the two-step estimator obtained as @2 when Ql is
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consistent, the asymptotic theory given in Robinson (1978) seems to

be more appealing.

In what follows we state without proof asymptotic results for
estimators of the parameters involved in a scalar structural process.
These results are a specialization of the ones given in

Robinson (1978) for more general stationary processes.

Let
N (1)
c - - usu ;
T T 21 tYt+7
¥ = G(c(0),c(l),...,c(7)), (2)

where G 1is continuously differentiable in a neighbourhood of

(y(0),y(1), ..., y¥());

~

and ¢y a single iteration of the scheme given in (3.16) with initial

value 2.

Under suitable conditions, we have

lim (c(7)-9(7))=0 a.s. for all fixed 7 ; (3)
T
d

T4(c(0)-v(0),c(1)-y(1),...,c(7)-y(7)) > N(O,-), for all 731; (4)

lim (§ - Yg) = 0 a.s. ; (5)

T

-~ d
TH(Y - ¥o) » N(O, - ) ; (6)

lim (@ -¥Yo) =0 a.s. ; (7
T
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~ d
TH(Y - ¥o) = N(O,Ia°1(yy)). (8)

The condition under which (3) holds is

(Al) uy is zero mean, Gaussian, second order stationary and

27(7)2 < o,

We remark that Gaussianity can be replaced by conditions on the
fourth cumulant. If the mean of the process is unknown then c(7) in

(1) must be mean-corrected.

Result (4) can be shown for Gaussian processes, see Priestley
(1981,page 339). In Robinson (1978) result (4) 1is imposed plus

additional conditions on u..
Results (5) and (6) follow from a straighforward application of the
mean value theorem.

Results (7) and (8) hold under (Al) and the following additional

conditions.
(A2) up has spectrum f(\,y) belonging to Lip ¢, (>}, the Lipschitz
class of degree ¢.

(A3) Yo, is an interior point of 6, which is the compact closure of an
open submanifold in a twice-differentiable p-dimensional

manifold.
(A4) £(\,y) is continuous in Ae[-x,7], YeB.

(AS) £(X,¥) # £(N\,¥y) for all ¥ # y,, yeO.
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(A6) Within a neighborhood of y,, f£(\,y) has first and second
derivatives with respect to {, these being continuous in

A and .
(A7) £(N,¥o) > 0; £'(N\,¥y) € Lipt, >3

(A8) IA(Y,) is positive definite.

It can be easily verified that these conditions will be satisfied for
the models considered here. For the random walk plus noise model,

since
$r=[0e2 1 0y2] = [-4(1) @ y(0)+29(1)],
the estimator suggested in (2) becomes

Y'= [-c(1) : c(0)+2c(1)]. (9)

We also note that result (8), i.e., an asymptotically efficient
estimator for y, is obtained by a single use of the iterative scheme
provided that the current estimate is consistent, 1is particulary

useful when we consider time series regression models.

Results (3-8) can be generalized to vector processes. The conditions
are basically the same but are on the elements of the spectrum matrix
F(M,¥). Also in (A7) f£(N,¥,)>0 is replaced by F(N\,¥o) positive

definite.
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Appendix 2.1
Optimisation Procedures

The maximum 1likelihood estimates emerge as a solution of the

likelihood equations
o L(6ix) = O (1)
a6

These equations are often nonlinear in 6, hence they must be solved
numerically. The basic procedure to solve a nonlinear set of

equations is the well known Newton-Raphson method

beel = 0 - Gl gy (2)

where 67 is a vector of initial values, 6y, k=1,... is the current
estimate of 6 , Gy and gy are respectively the Hessian matrix and the

gradient vector evaluated at the current estimate.

Different subroutines have been written for the implementation of the
Newton's method or variations of it. Hence from the computational
point of view we do not need to worry about the actual calculation of
the maximum likelihood estimates. We do not even need to derive the
analytic form of the first and second derivatives since they can also
be computed numerically. However for a large number of parameters,
as is the case in simultaneous equation systems, the computational
time burden is formidable and it might be worth to examining

different iterative procedures by exploiting the structure of the
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model.

Variations of Newton-Raphson method arise by replacing G by a
positive definite matrix H close to G. In the particular case where
G is replaced by the information matrix the procedure is known as the

scoring algorithm.

Sometimes the parameter set can be partitioned as 6 = (4,y) such that
the likelihood equations are linear in & given y and vice versa. To
exploit this property Sargan (1964) introduced the stepwise
optimisation procedure. From the theoretical point of view, however,
the procedure is wvalid for any partition of @. Such a procedure
which induces separate optimisation of the parameters in 6 can be
regarded as (2) with G* replacing G where G* = diag(l Hy1,Hyo ) and
where Hj; and Hp,; are the submatrices of the Hessian matrix
corresponding to the second derivatives with respect to & and ¥

respectively. Thus the iterative scheme is for j=2,..

85 (k+1) = ik *+ H11(85k,¥5) "LBs(85k,¥5) k=0, ... (3a)

Vi (k1) = ¥ik + H22(85.¥51) " Ley (85, ¥41) k=0, ... (3b)

where §é; and yp are initial values, 5j0 - 6j, ¢j0 - ¢j are the final
estimates computed at step j-l1. g5, the first derivatives with
respect to 4, and Hj; are evaluated at the current estimate of § and
at the final estimate of y at step j-1; similary gy and Hpj. The
procedure is bound to converge, see Oberhofer and Kmenta (1974).

Clearly if the likelihood equations are linear in & given y then 03
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can be obtained directly, and vice-versa.

On the other hand linearity in a subset of parameters given the
second set, say, in § given y can be explored by concentrating § out
of the likelihood function. In other words, & is replaced in the
likelihood function by the solution of the equations for §, say,
%-%(¢) yielding the concentrated likelihood function which has to be
maximised nonlinearly with respect to y. Once we have obtained & the

maximum likelihood estimator of & is given by EAE(J).
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CHAPTER 3

TIME SERIES REGRESSION MODELS

1. Introduction

This chapter is a continuation of chapter 2 in the sense that more
known material is presented. It provides a basis for our discussion
of a single equation from a simultaneous equation system, as well as
for the whole system, to be given in the next chapters. Also its

notational content will be relevant for our purposes.

Although this material could have been presented in the remaining
chapters together with new material, we have chosen to bring it
together in this chapter, so that it might be skipped by the well
informed reader, and also to avoid burdening the reading of the

related chapters.

Our main purpose is the discussion of time series regression models,
more specifically, the inclusion of regressors in the models formerly
handled. Since the generalization from scalar to vector processes is
straighforward we shall consider in some detail only scalar models.

Such models can be formulated in state space form. Two possibilities
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are open. Firstly, augmenting the state to include the regression
coefficients, and secondly via the Kohn and Ansley (1985) approach.
Our emphasis relies on the latter. 1In either case, the Kalman filter

plays an important role.

2. Regression Models with Stochastic Components

We shall now consider the inclusion of explanatory variables 1in
structural time series models. Since the generalization to more
complex models is straightforward, for simplicity, only the local

level model will be considered. Thus, let the model be

Ye = 2¢'d + we (la)
We = pe t+ g (1b)
e = MBe-t Nt (1e)

where 2z ' is a 1xK row vector of explanatory variables which we
initially assume to be non-stochastic. The assumptions on w. are as
in chapter 2, that 1is, e and 17 independent and normally
distributed. No information about the initial state is available.
We also assume that rank(Z)=K, where Z'=(zy,...,z7). Let

6 = (&6',¥'")', ¢y = (oez,anz) denote the parameters of interest.

Now conditionally on wj the loglikelihood function for wp,...,w, is
given in (2.2.24). Hence, since z; is non-stochastic, it follows
immediately that the loglikelihood function for yi,...,¥yT

conditionally on y; is given by
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T - -
2(6) = -Qtzzlog fe - Q[L[y-lyl-(z-lzl)él]'F‘lL[y-lyl-(Z-lzl)b] (2)

where y'=(y2,...,y1), 2'=(23,...,2z7) and 1 is a T-1 vector of ones.
As discussed above (2.2.25), Q(6) is evaluated applying the Kalman

filter to y -z, 'é with starting yj-xy's and Py=0,2. However, since
Lly-1y1-(2-121)8] = Lly-1y1]-L[(Z-121) 5],

applying the Kalman filter to y¢-z¢é, t=2,...,T is equivalent to
applying the Kalman filter separately to y and to each column of z'
with respective starting values yj and [z77,...,2g3]. Hence, if the
hyperparameters are scaled as in (2.2.26) the resulting loglikelihood

function becomes

T T
0(6,042,0x) = -4 zzlog fr - 3(T-1)logos? - 4 042 22»t2ft-1 (3a)
t— t-
where
T T . . - - - -
zzwt2ft-1 - zz(yt-zta)2/ft - (Y-25)'F1 (Y-zs) (3b)
t= t=

and §tv Et' are the 'innovations' delivered by the Kalman filter with

scaled hyperparameters.

We now consider the case where the exogenous variable are stochastic.
Clearly, if this is the case, in principle, the whole distribution of
y and Z, which depends on the full set of parameters, say, A must be
specified. However if 2z, is weakly exogenous for 6 then (3) is a

valid basis for inferences purposes since in this case z, could be
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regarded as being fixed. We shall confine ourselves to the concept
of weak exogeneity given in Engle, Hendry and Richard (1983). 1In the
normal framework, A consists of the mean vector and the covariance
matrix. Usually the elements of 8, the parameters of interest, do not
coincide with those in A\. Thus, let 61 be a reparameterization of X\
such that 07-(0,02), where 6 and 6, are variation free, i.e. 6 and 4,
are not subject to cross restrictions so that for any admissible
value of 6,, 6 can take any value in its parameter space and vice
versa. Then z; is weakly exogenous for 8 if the joint distribution of

[YT,ZT] can be factorized as

T T
f(Y,z;eT);ng(ytnzt,Yt_l,zt_l;o)f(y1|zl;o)tng(ztuYt_l,zt_l;ez)f(zluez)
(4)

Hence all sample information concerning 6 can be obtained from the
first term in the RHS of (4). For prediction purposes we have to
assume that zy is strongly exogenous. We note that z, is strongly
exogenous for 6 if it is weakly exogenous and in addition past values
of yr does not Granger-cause 2z., that 1is, conditionally on

Z¢.1,2¢-2,--, 2¢ is independent of past values of y..

Multivariate Time Series Regression Models

Multivariate models can be handled in the same way. Thus, let the

model be



51

where y. is a pxl vector, B' is a pxK matrix, z; is a Kxl vector and
plimT'lz'Z is positive definite, where Z'=(z7,...,27). Ww¢ follows a
multivariate random walk plus mnoise model. Let 6=(B,y) the
parameters of interest, where (=vecB and ¢y is the p(p+l)xl vector
containing the unrestricted elements of I,  and Zﬂ' Using rules on
Kronecker products, see Magnus and Neudecker (1988,page 47), (5) can

be rewritten as

e = (1p®2¢')B + we. (6)

We note that if some of the elements of ff are constrained to be zero

then (6) can be written as

Yt = g* (7)

where Zj.' are the explanatory variables in the i-th equation and g*

contains the unrestricted elements of fB=vecB.

Now conditionally on the first observations the loglikelihood
function for w=vec(wsp,...,w.) is given in (2.2.25). Hence arguing as

in the univariate case it follows that the conditional loglikelihood

function for y=vec(yp,...,yr) takes the form
0(6) 3 ZT 1 F i %‘ F.-1 (8a)
- - og IFs1 - re'Fe-dvy a
22 g Ire (2t Tt e
where

ve = Ve - Z¢'B (8b)
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and §t is obtained by applying the multivariate Kalman filter to y,,
t=2,...T, with starting value y; (pxl) and ét' is obtained by
applying the multivariate Kalman filter separately to each column of

(Ip®zt'), t=2,...T, with starting values being the respective column

of (Ip®21')-

Maximum Likelihood Estimation

In the next section we are going to derive the asymptotic information
matrix in the frequency domain. We are going to show that the
asymptotic information matrix is block diagonal with respect to
regression coefficients and hyperparameters. As pointed out in
chapter 2 the asymptotic properties in the frequency domain are the
same as in the time domain, hence the time domain asymptotic
information matrix must be block diagonal. Therefore the stepwise
algorithm seems to be a natural way to obtain the ML estimates.
Alternatively the ML estimates can be obtained by concentrating the
vector containing the regression coefficients out of the

loglikelihood function.

From the discussion of the optimisation procedures given in appendix
2.1, the optimisation of (3) by means of the stepwise algorithm
consist of two parts, one for (0*2.¢*) and one for 6. The part for
(a*2,¢*) consists of finding the point that maximises (3) with
respect to (o*z.w*) conditionally on a given §. We shall denote this

point by (042,¥x), 02 = 02 (8), Va=yx(8). Clearly, (0% y¥x) is
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obtained as it would be for a model without explanatory variables.
The part for & consists in finding the point that maximises (3b) with
respect to &, conditionally on a given yx. This is simply the GLS

(Generalized Least Squares) estimator, that is,
- T ~ - -ir T ~ ~
3(yx) = fool zoz! folz . (9)
Vx [ tZZ t " ZtZt ] [ tzzl t tyt]

Hence, given an initial value, say :S, 8*2-},3 (6), A¢*:¢*~(6) and

:S-AB(A\L*) are evaluated as described above. Then, making use of A&,
3*2, :L* and & are updated. The procedure 1is repeated until
convergence is attained. We mention that the OLS (Ordinary Least

Squares) estimator of & of the differenced model may be used as a

starting value for 5.

On the other hand replacing (9) in (3b) yields Qc(o*z,dz*), the
concentrated loglikelihood function with respect to (0*2,¢*). Once
the point that optimises Qc(o*z,\l/*) is found, say (:7*2,;'/*), 5 is

evaluated by means of (9) with ;L* replacing .

Finally we mention that for multivariate models, with loglikelihood

function given in (8), 230//) becomes
- T . ~ -1 T~ -~
B(Y) = Z Fe 1z |70 S 2 ety (10)
[tzz tft T4t ] g2y tt Yt

and the optimisation procedures described for the univariate case can

be generalized straightforwardly.
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From the computational point of view, for a 1large number of
regressors concentrating & out of the loglikelihood function might be
more time consuming. This will be so, because the iterative scheme
activated to optimise Qc(0*2,¢*) requires the computation of 3 at
each iteration. For disturbances following a univariate random walk
plus noise model, QC(U*2,¢*) is optimised nonlinearly with respect to
one parameter only. In this case the NAG subroutine EO4JBF calls
Qc(a*z,w*) approximately 50 times. So 50 times a large matrix must
be inverted. 1In the stepwise procedure 3 is computed only at each
step. Our experience shows that only a few steps are required for

convergence to be attained.

3. Frequency Domain Estimation

In the previous section we have considered the model

yt=B'zt+wt N

where the vectors y. (pxl) and z; (kxl) are the observable variables
and the vector wy (pxl) is the non observable process following a
multivariate random walk plus noise. We shall now discuss the
frequency-domain approach to handling such model. The first step is
to transform to a regression model with stationary disturbances.
Because w; follows a multivariate random walk plus noise differencing

once y, and z, yields
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where we deliberately omitted the differencing operator 4 in front of
Yt and z¢ and will do so in the rest of this chapter, to avoid
overelaborate notation. Thus whenever we refer to ys or z, we are in
fact referring to Ay, or Az.. The spectrum matrix of u; was given in
(2.3.5). The exogenous variables z. are assumed totally independent

of the process ug and it is assumed that the following limit exists,

T
lim T-1 § zp z¢y,' 2 T,(7) a.s., 7=0,21,32,. .. (2)
T t=1

with I';(0) nonsingular. The existence of the limit implies that there

exists a spectrum matrix F, (M) such that

x
ry) = [ e Fyeany

-7
see Hannan (1970, ch 2) for details concerning this assertation. We

also assume that limT’lz z, exists.
In matrix notation (1) can be written as
Y = B'Z' + U (3)
where
Y' = [y;...yr] where y; is pxl
Z' = [2z7...27] where z is Kxl

U' = [u;...ur] where u, is pxl

Now the spectral likelihood for vecU' is given in (2.3.4) and since Z



56

and U are totally independent the spectral likelihood function for

vec(Y') becomes
1 T:1 1 T-1
0(6) = - - logiFst - - S tr[Fi-lu'w.u], (4)
2 jZO B3 T jZO %3 3]

where 6=(8,y), B = vecB and y is as in (2.2.7), that is, the p(p+1)xl
vector obtained from vec(ZC:Zn) by eliminating the supradiagonal
elements of I, and Zﬂ' U'WJU -IU-U(Xj) is the real part of the
periodogram matrix of U where U' is expressed in terms of the

observations through (3). Thus,

Iyrg(Ay) = Iyry(Ag) - Iyiz(A§)B - B'Iziy(Ay) + B'Iziz()5)B (5)
where

Iyy(Ay) IZ.Y(xj)] _ [Y'WjY Z'¥5Y 6
Iy (A Iz:Z00) YWz 2'Y2Z

is the real part of the periodogram matrix of the augmented process

[ye'ze'l', Wj as given in (2.3.9).

The spectral ML estimates of 6=(f8',y')' are those which maximise (4).
Before discussing the maximisation of (4) we shall derive the
asymptotic information matrix.

Asymptotic Information Matrix

The first and second derivatives of (4) can be obtained as a

specialization of the ones given in chapter 6 when we shall handle
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simultaneous equation systems. They are also given in
Fernandez (1986) although with respect to vecB'. The reason why we
prefer to define f=vecB rather than f=vecB' will become clear in the

simultaneous equation system context.

Thus
ag 0 = vec Tg;z'wju Fy-l ] (7a)
and

géa_'c -jzz [Fy-lez'¥;2)] (8a)
St - 'jéisj' [(F5~10" 32685k ()
3337,9 T 1 [Q(Fj lgrs-1) - (F; 1®F -lyry, jUFy° 1)]5 (8c)

where KKP is a KpxKp commutation matriz and Sj is given in (2.3.13),

that is,
Sj = (2x)°1 [esD : D] .
Since u; and z; are totally independent and u, has zero mean we have

EIZ-U(Xj)-O and because of (2) and (2.3.14) we have the asymptotic

information matrix,

2
- 13 1. o040
IA(6) = lim T [-E 555716
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1 x
o: JFOO-1gF (an)) 0

-%

IA(0,)=- (9)

1 ("5 -1 -1
0 R J-i(x) [FO)-1gF(M)-1) ] s(yyax

where 6, is the true value, F(A) = Fy(},68,), S(\) = (27)-1[c(2)D:D],
c(\) = 2(l-cos)\) and D is the pzxip(p+1) duplication matrix.

Spectral Maximum Likelihood Estimates

As in the time domain, the spectral ML estimates of (fB,y) can be

obtained by means of the stepwise algorithm. From (7a), we have that

conditionally on y, the spectral ML estimator of f, is given by
- T-1 -17T-1
B(Y) = Fi-1g I515(3) Fi-lgIy] vecIsiv(j) (10)
v [g&J 221 ] h%[j K] veeIziy(i)]
where Iziz(j) = Z'¢j2 and Izvy(j) = Z’¢jY are the real part of the
respective periodogram matrices. Hence the point that optimises (4)

with respect to (f,y) can be found as follows.

Step 1- An initial value for B is evaluated, say B—vec ELS’ where

BLS is the least squares estimator, that is,
BLS - [Z'Z]']‘Z'Y ; (11)

Step 2- Conditionally on B, (4) is maximised with respect to y;

’
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Step 3- Making use of (10), b?b(@) is evaluated, where‘v was obtained

in step 2.

Steps 2 and 3 are repeated until convergence is attained. However as
we shall see in the next section, provided that we start with a
consistent estimator of B no gain in efficiency will be achieved if
the procedure is repeated. Also, in obtaining QQJ(B), we do not need
to iterate until convergence, if we start with a consistent estimator
of y. This efficiency, however is asymptotic and in practice it will
be best if we iterate until convergence is attained. Therefore any

starting value might suffice.

Alternatively, the ML estimates of (B,y) could be obtained by
concentrating [ out of the spectral 1likelihood function. The

concentrated likelihood function becomes
1 T-1 1 T-1 - ~
Lo(y) = - - logIFs1 - - tr[ Fs-lU'vwu 1.
¢ 2 jZO & J 2 _‘]ZO [ J J ]

where ﬁ-Y-Z%, and’h is such that veéh;ﬁ, andA6 is given in (10).

4. Asymptotic Theory of Time Series Regression Models

The asymptotic theory of regression time series models is discussed
in Fernandez (1986). However as we find that some of the results may
not be as straighforward as they appear and because we will need
these results in the next chapter when we shall handle Instrumental

Variable estimation a brief discussion is in order. We shall
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restrict ourselves to the asymptotic properties of the stepwise
estimator of 6, 6=(B,y) outlined in the previous section. Details
will be omitted since our results follow directly from the results
given in Robinson (1978), Hannan (1973), Hannan (1971). Moreover as
the vector case is essentially the same as the scalar case, for
simplicity of presentation we shall handle only the scalar case.

Thus, let the model be

yt- zt'é +ut

where up = 7¢ + dey and f,(N) = 0622(1-COSX) + a2ﬂ. Under the

condition on z; given in (3.2), we have from Hannan (1971) that

x

T-1 1
plim T'1j20[¢j Iz - j ®(N)F, (dN) (1)
-7

and

T-1
plim T'ljzo[d’j Izvy(i)] =0 (2)

where ¢(A) is a continuous, even, function of A\, satisfying &$(2)30,
Ne[O,x]. Clearly these results hold if ¢j-fj, however as in

Hannan (1971) we need these results to remain valid if ¢j is replaced

by fj'l, %j-fjfﬂ), where~¢ is a consistent estimator of .

From Hannan (1973), for more general processes generating the
stationary disturbances than the ones considered here, we have the

following central limit theorem

Tl d Lt
T szo[fJ L1,y S n[o, iw!rf“ L(M\F,(aN) ] (3)



61

We note that, if B is /T-consistent, that is, Tf(@-¢°)-0p(1) then,
because f,(\) satisfies the regularity conditions given in section
2.4, we can expand fj'l in a Taylor's series for random functions,

see Fuller(1976,page 191), and write

T-1. T-1
T3 SF:-11,0(3) - S £5°11,00(5)
[jﬁo j 1z @ &3 Ttz h ]

3 ;
5Efj-1]rz.u<3> TH(§-y0)+05 (T 1)

T-1

j=0
where the derivative is evaluated at the true parameter vector V.,
£5-£5(Yo) and £5=£5(¥). Now from (2) it follows that the RHS of the
above expression converges in probability to zero. Thus (3) holds if

fj is replaced by %j'

In appendix 3.1 we show that

d
Ti(Y-yo) = N[0, Ia"l(yy)] (4)
and
) d
Ti(8-5,) » N[O, Ia"l(s) ], (5)

where IA(é,) and IA(Y,) are respectively the top left block and the
bottom right block of the asymptotic information matrix given in

(3.9), specialized for the univariate model;

V=V +EL) gy (50, (6)

H(Y) .
2
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where %j-fj(?) and gwfkfﬂ) is a specialization of (3.7b) for the

univariate model evaluated at (3,@);
A A T’lr\ - -1 T“lA _1 .
s(h - [jgolfjllz-zm] ] [jgotfj Iy | (7

T(3-8,) = Op(l),

TH(Y-Yo)= 0p(1).

We note that because y' = [-y(1):y(0)+2y(1)]', a J/T-consistent
estimator of ¢, say EQJ(%), can be constructed from ~c('r), where
c(r) = 11 Z'Lght,,,’htwyt-zga and 5§ is the OLS estimator of &§. From
the discussion in section 2.4, we have that Ti(c(r)-y(f)) - N(O, ),
where c(7) = T-1 Z ucu,_,. However since Ti(%-ao) - Op(l), it can be
verified that the central limit theorem above holds 1if c(7) is

replaced by c(r).

For the vector process given in (3.1), the results (1-3) take the

form
K4
B 55 S 1 1
plim T-1 § (Fy-lolziz(1)] = - [ Fyrlover,(an, (8)
j=0 2T-w
T-1
plim T'1jzo[(Fj'1@Ik) veclziy(i)] = O, (9)
LT . d 1
T o3 [yl glpveeTziy(] > N [0, - [FarloveF,(any) 1, 10)

x
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and as discussed below (2) and (3) results (8-10) hold if Fj is
replaced by ?j-Fj(@), where T 5(@ - ¥o) = Op(l). Hence proceeding in
an analogous way to the scalar case and bearing in mind that the

information matrix is block diagonal, we have

T3 9-30 ] S .1 2(ee)),
[o]

where Yy 1is a single iteration of the Newton-Raphson scheme with
initial value constructed from Lt - yt-i'zt, and B is given in (3.10)

with Q replacing y. 0,=(By'.¥o')' and IA(6,) is given in (3.9).

Finnaly we mention that the asymptotic results can be extended to the
case where the z;'s satisfy the Grenander conditions given in

Hannan (1970,page 77).
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Appendix 3.1
Proof of Asymptotic Results

We start discussing the asymptotic properties of @ given in (4.4),
that is,
v=v+ 1) gyls,9), (1)
where
R - = 5 sy g2 s
V - -— : -,
2 320 37373
and E,E are /T-consistent estimators of § and ¥y respectively. g¢(3:¢)
is (3.7b) evaluated at (3,@). We note that the first order Taylor

expansion of g¢(3,a) around ($,¢o) is
gp(3,¥9) = gy(8,¥o) + Hyy(8,90) (Y-yo)+0p(T1 ) (2)

where H¢¢(31¢o) is (3.8¢c) evaluated at (3,¢°). Hence subtracting y,

and multiplying by T? both sides of (1), from (2) we have

TP -
TH(Y-yo) = [1(_‘“) [w) Hyp(8,¥g )] T3 (Y-vo)
T T
HO) T L. y HWY "L )

+ [T ] T gyGve) + | - ] “tioyrly. (3)
Now
1. 1T, 1Tl
; Hlﬁlﬁ(é"l’o) - E jZO Sj fj SJ - .'E jZO Sj fj IU'U(j) Sj
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1T-1 1 T-1 - s :
- = j};o Sj'£5°28y - E j-z-o $;'£573 [1§Ud) - Ty i) I8

1Tl L,
SR R G ©

where

I i) -1y 3D 1=- (3-8 ) " T i 3) - T yz(3) (3-8 ) +(8-8 o) ' T 22(3) (3-8 ) (5)

Clearly, the first term in (4) converges to IA(Y,). Because & is

/T-consistent, using (4.1) and (4.2), the second term in (4) is

op(T-%), and from Robinson (1978,th 2) the third term in (4)

converges in probability to -2IA(y,). Hence
plim T-luw("a,%) - -IA(Y,) -

Now, because @ is /T-consistent,
plim T-IH(Y) = IA(Y,),

hence the first term in (3) converges in probability to =zero.

Writing T-3 g¢(3,¢o ) as

- T-1
T-3% gy (8.¥o) = - T-ijzo s;'[£5 - fJ-'2IU.U(j)]

-3 s e o201 .
T 38 E T ud - Ty ] (7

and arguing as above, the second term in (7) converges in probability

to =zero. From Robinson (1978,th 4) the limit distribution of the
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first term is N(O, IA(Y,)).

Obviously the third term in (3) converges in probability to zero and

therefore making use of Slutsky's theorem we have that
. d
T -¥o) » N(O,I1a°1(y5)) . (8)

On the other hand subtracting 6, and multiplying by T? both sides of

(4.7) we have

. T-1 . -1, Tale
T3 - 6o) = [T'ljzo[fj'llz.z(j)] ] T‘fjgofj'llznu(j), (9)

~

where fj-fj(@) and‘l -’Jfb).

Now from (4.1) and from the discussion below (4.2) we have
. 1T-l s 1 . v
plim T - _Zolfj‘ I702(3)] = IA(6,)
J-

and from (4.2) and the discussion below (4.2) we have

- d
T 43 £ Izp() 5 N[0, TAG) ]

Hence, using Slutsky's theorem we have

~ d
Ti(s - 8,) » N[0, 1a"1(5,)]. (10)
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CHAPTER 4

INSTRUMENTAL VARIABLE ESTIMATION

1. Introduction

In this chapter we shall deal with the problem of estimation and
asymptotic properties of the estimators for the parameters involved
in a regression equation with stochastic trend components.
Differently from the previous chapter some of the regressors are not
assumed to be weakly exogenous variables. Hence, as discussed
previously the maximum likelihood criterion function will not be a
valid basis for inference. A typical situation where some of the
regressors are not weakly exogenous variables arises when the
equation to be estimated is a single equation from a simultaneous
equation system. In other words some of the regressors are
endogenous variables to the system. One way of proceeding in such
situations is by estimating the whole system, that is, to construct
full information estimators. We defer a detailed discussion of

simultaneous equation systems to chapters 5 and 6.

As an alternative, to full information estimators, limited estimators

can be derived. Such estimators are highly attractive if the other
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equations in the system have not been specified. All we have
specified is the equation of interest, say the first, and the reduced
form of the right hand endogenous variables of this equation. That

is, we have the following equations

Yie = Y1e'P1 + Z1¢'71 + wie = X1e'd1 + wie (la)

Yi¢' = th'nl + Zo¢'llyp + Vig' =z '+ V! (1b)

where Yj¢' is a 1xpj; row vector of observations on the endogenous
variables and Zj.' is a 1xk; row vector of observations on the
exogenous variables appearing in the first equation.
z¢' = (Z21¢',292¢") 1is the 1xK row vector of observations on all
exogenous variables appearing in the system. The 1lx(p;+l) row vector
of disturbances, [wjy Vi¢']l, 1is assumed to follow a multivariate
random walk plus noise model with associated covariance matrices Ze*

and an.

The estimator of the parameter vector 6 = (Bl,yl,aze,azn), where 02e
and UZU are respectively the top left hand elements of ZeT and EUT'
is known as a limited information estimator, limited because we do
not impose the complete specification of all equations. The most
efficient estimator within this <class is the LIML (Limited
Information Maximum Likelihood). However because LIML can be viewed
as a special case of FIML (Full Information Maximum Likelihood) we

defer the discussion of LIML to chapter 7, after we have discussed

FIML.

Alternative limited information estimators can be obtained based on
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the instrumental variable principle. The construction of these
estimators is examined in Harvey (1989). We present alternative

estimators and discard those which have unsatisfactory properties.

The chapter 1is divided as follows. Section 2 contains standard
material on instrumental variable estimation for a single equation.
It is mainly drawn from Bowden and Turkington (1984). The reader
familiar with the instrumental variables technique may skip this
section. In section 3 several time-domain instrumental wvariable
estimators for single equations with stochastic trend are presented.
Section 4 deals with frequency-domain instrumental variable
estimators as well as asymptotic properties of the constructed

estimators.

2. Instrumental Variable Principle

In general, because Xef and an are not diagonal matrices, Yq. is
correlated with wj. Now, the ML estimator of the regression
coefficients derived in previous chapter is the GLS (Generalized
Least Squares). Hence, because Y; is correlated with wj we have that
plim T‘1X1'Q'1w1#0, where ! is the covariance matrix of the

disturbances. Therefore, the GLS estimator will be inconsistent.

On the other hand, if the equation of interest contains no endogenous
variables but a lagged dependent variable and the disturbances are
serially correlated we also have a situation where regressors and

disturbances are correlated. However, ©because in this case
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plim T‘lY_lﬂ‘lw = 0, the ML procedure provides consistent estimators
for the associated parameters. Although alternative estimators based
on the instrumental variable principle may be constructed, since ML
methods can be applied we shall consider instrumental variable

procedures mainly inside the simultaneous equation context.

The instrumental variable principle exploits the fact that even when
disturbances and regressors are correlated it is often possible to
use economic theory to find other variables that are uncorrelated
with the disturbances, in large samples. These wvariables are
admissible instruments in allowing us to estimate the parameter of
interest. To be useful, the instruments must also be closely enough
related to the regressors. The choice of the instruments is in
general suggested by the structure of the model. 1In the case of the
simultaneous equation systems a wuseful choice consists of the
excluded exogenous variables from the equation of interest. 1If there
are no exogenous variables excluded from the equation of interest, we
have no instruments, but this is a problem of identification and will

be discussed in next chapter.

In the case of serial correlation in the presence of 1agged dependent
variables, a useful choice is the remaining exogenous variables in
the equation lagged once or twice. With a very large sample we can
add as many instruments as we please. In small samples, however, a

large set of instruments is in itself undesirable.

In what follows we shall assume that such admissible instruments

exist and present a review of the instrumental variable estimation



71

procedure .

Serially Uncorrelated Disturbances

To avoid overelaborate notation we shall omit all the subscripts
indicating that the equation of interest is the first equation from a
simultaneous equation system. The equation 1is then, in matrix

notation,

y=X46+w (L)

where X =(Y3: Zj) is a Tx(pj+ky) matrix of observations on the
regressors and w is a Txl vector of disturbances which we shall,
initially, assume to be independent with zero mean and variance 02,
Let Z be a Txk matrix containing the instruments. Pre-multiplying (1)

by Z' yields

Z'y = 2'X & + 2'w. (2)

Now if 022'Z is the estimated covariance matrix of the new

disturbances Z'w, then applying the standard GLS formula to (2) we

obtain

. -1

5 = [X'Z(z'Z)-lz'x] X'z(z'2)-1 z'y (3)
or

3= (M)l My (4)

where
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M= 2(2'2)-12'x. (5)

Formula (4) is the standard textbook IV estimator. 1In a simultaneous
equation system if the matrix Z contains the full set of exogenous
variables, (3) is the two stage least squares estimator (2SLS). We
also note that while Z is the matrix containing the instruments, M is

known as the instrumental variable.

Serially Correlated Disturbances

We shall now consider the case where the disturbances in (1) are
serially correlated, that is, Eww' = 020 where Q is positive definite
which we shall initially assume to be known. In handling this kind
of model Bowden and Turkington (1984, Ch.3) present different
estimators for & all based on the Instrumental Variable Principle.

These are:

i) The OLS analog

The Ordinary Least Squares analog of & is obtained by applying the
GLS formula to (2) with ¢22'Q Z as an estimate for the covariance

matrix of the new disturbances Z'w. Thus
- -1
5 = [X'Z(Z'QZ)-IZ'X] X'z(z'Qz)-1 z'y (6)

(ii) The GLS Analog

In order to obtain the so called Generalized Least Squares analog the
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first step is to transform the serially correlated disturbances into
uncorrelated disturbances. This can be achieved by pre-multiplying
(1) by F-iL where F is a diagonal matrix and L is a lower triangular
matrix with ones on the main diagonal such that 0-1 = L'F-1L. The

resulting equation to be estimated becomes
F-iLy = F-1Xs + F-iLw. (7

Now pre-multiplying (7) by Z'L'F-%, regarding 022'Q-1Z as an estimate

of the new disturbance Z'L'F-lLw and applying the GLS formula yields
- -1
81 -[x'n-lz (z'o-lz)-lz'n-lx] x'rlzz'alzy-lz'q-ly. (8)

Formula (8) can be rewritten as

A -1

5, = [X'L'F-'} P, F} LX] X'L'F ¢ piFi Ly, (9)
where P is the idempotent projection matrix given by

Py = F-1 1z (2'0-1z)-1 z'L'F-3. (10)

If the matrix Z contains the full set of exogenous variables in the
system the estimator given in (8) is also known as G2SLS (Generalized
2 Stage Least Squares) and was first used by Theil (1961).
The nomenclature OLS and GLS analog arises from the fact that if the

number of instruments is the same as the number of regressors then

(6) and (9) reduce respectively to
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3= [2'X)"1z2'y and %1 - [z'alx)-lzioly,

It is now readily apparent that the former can be regarded as an

IV-OLS analog while the latter is an IV-GLS analog.

Bowden and Turkington (1984) also exélored the relative efficiency of
the IV-OLS and IV-GLS analogs. No firm conclusion is available.
Nevertheless it is the IV-GLS that provides the interpretation of
LIML and FIML as iterated IV estimators. Moreover, since we are
primarly interested in models with stochastic trend components the
estimation of the hyperparameters is somewhat simpler by means of the
GLS analog. We shall therefore mnot consider the OLS analog any

further.

iii) Alternative IV estimator

An alternative IV estimator can be obtained by pre-multiplying
equation (7) by the Z', that is, without transforming the matrix of

instruments. The resulting estimator is then

. -1
8y = [x'L'F-% z(2'z)"1z2'F-} Lx] X'L'F-? z(z'2)-12'F 3 1y (11

or

. -1

by - [X'L'Ft Py P X ] X'L'FE Py FY oLy (12)
where

P, = 2(2'2)-1z". (13)

The only difference between (12) and (9) is the replacement of P; by
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Pp. Campos (1986a) uses untransformed instruments in the estimation
of single equation with ARMA disturbances. However as it is pointed
out in Bowden and Turkington (1984) the estimator given in (11) is
usually dominated in efficiency by one or both of the IV-OLS or

IV-GLS analogs.

Finally we note that if the process generating the disturbances is
stationary, an estimator of & can be obtained using the standard IV
estimator given in (3), that is, the 2SLS. If the number of
instruments is bigger than the number of regressors in general the
OLS analog will be more efficient than the standard IV estimator,

otherwise they are exactly the same.

Asymptotic Properties of the GLS-IV Analog

The asymptotic properties of the IV-GLS estimator can be obtained
straightforwardly under certain regularity conditioms. Subtracting
85, where 6, is the true parameter vector, from (9) and multiplying

by T yields

T-32'0- 1w,

THG - 5y - [XEZ z%z]—l Z%I_X]'l X'Q:-Z [Z'Q';lz]‘l

T

Hence 6 is consistent provided that

(i) plim T-1X'0-1Z exists and has full column rank;
(ii) plim T'l(Z'ﬂ'lz) exists and is positive definite;

(iii)plimT-1(2'0-1w) = 0.
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Furthermore if (i)-(iii) hold and in addition

(vi) T-? 2'Q-ly has a limiting normal distribution with zero mean
and covariance matrix plim ¢2T-12'0-1Z, then T} (5 - bo) has a
limiting normal distribution with zero mean and covariance matrix V,

where

X'0-1z [ z'Q-1z ]-1 z'0-1x ]-} (14)

- g2 i
V = ¢4 plim [ T T T

We observe that, for model (1.1), V is asymptotically equivalent to

2'0-1z R]-l

- 2 '
V = ¢2 plim [R = , (15)

where

- [ ),

see Wickens (1969).

3. Instrumental Variable Estimation for Models with Stochastic Trends
We shall now consider the equation given in (1.la), that is,

Ye = X¢'b + w, (1)
where wy follows a random walk plus noise process with associated

parameters 052 and an' Again we have omitted the subscript

indicating that (1) is a single equation from a simultaneous equation
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system.Generalizations to the local linear trend model are immediate.
As in chapters 2 and 3 the initial state p, will be modelled in terms
of a diffuse prior, that means, all estimators considered are
conditional on the first observation. The estimation problem is
therefore concerned with respect to 0-(6,0*2,¢*) where 0*2'052 if Yu,

the signal-noise ratio, is 0,72/062 and a*z-onz if ¢*-o€2/on2.

When the hyperparameters 0*2 and Y4 are known, the IV-GLS analog
given in (2.9) can be obtained by means of the Kalman filter. That
is, the Kalman filter is applied separately to y and to each column
of X and Z with respective starting values yj; and the first row of

the matrices X and Z.

Similarly 32 given in (2.11) can be constructed by applying the
Kalman filter only to y and each column of X. As already noted, the
fact that the nonstationary process, w¢, is converted into a
stationary one suggests that 32 may not be very attractive. Even
though the elements of X and Z may be highly correlated, applying the
Kalman filter only to X could result in the correlation becoming much
smaller. On the other hand, if the instruments are differenced by
the degree of differencing needed to make the stochastic trend
stationary, once for the random walk plus noise model, they are

likely to be more effective instruments.

In summary, denoting by }, X and Z the 'innovations' delivered by the
Kalman filter, and assuming 0*2 and Y4 to be known, the three
possible IV estimators that we shall consider onwards can be regarded

as the ones obtained from the minimand
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S;(8,¥x)T = (v - X8)'FipyF i (y-X9), i=1,2,3 (2)
where

P, = F-iZ[2'F12}1 2'r! (3)

Py = 2(2'2)" 12" (4)

Py = Az[az'Az] 1Az (5)

We shall now construct estimators of the regression coeficients as
well as of the hyperparameters by bringing together both procedures,
the IV and the ML discussed in chapter 3. For this, we rewrite the

ML criterion function given in (3.2.3) as

T
0(6,042,yx) = -3 tzz log fy - % (T-1)logow? - % 04x"2 S(5,¢x) (6a)
where
S(8,yx) = (y - X8)'F1(y-Xs), (6b)

We recall that the optimisation of (6) can be carried out by means of
the stepwise algorithm and by means of the concentrated 1likelihood
function, with respect to 0x2,x. Based on these two optimisation

procedures two alternative estimators can be obtained. These are:

(i) The IIV/ML

The 1IIV/ML (Iterated Instrumental Variable / Maximum Likelihood)
estimator is closely related to the ML estimator obtained by means of
the stepwise algorithm. We assume that an initial consistent
estimator of &, say 3, is available. Later we shall discuss the
construction of such an estimator. We replace & in (6b) by % and

optimise (6a) with respect to 0*2 and yx. We note that 0*2 can be
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concentrated out of (6a), hence the maximisation is nonlinear only
with respect to yYx. The resulting estimators of 024 and yYx can be
used to construct each of the feasible IV estimators, 31, i=1,2,3
minimising (2). The procedure is then iterated until convergence is
attained. Although iterating will not change the asymptotic
properties of the estimators of 4§ and 02*, ¥+« Wwhen there are no
lagged dependent variables it may yield estimators with better small

sample properties.

(ii) The IV/QML

The IV/QML (Instrumental Variable / Quasi Maximum Likelihood)
estimator, as suggested in Harvey (1989), is closely related to the
ML estimator obtained by optimising the concentrated 1likelihood
function with respect to (0*2,¢*). So & in (6b) 1is replaced by 3,
where % is one of the IV estimators obtained minimising (2). Thus
here 3, },'k, and f, are all functions of the same Y. The resulting

concentrated criterion function becomes

T
R (024,¢x) = -3 tzz log £y - #(T-1) log 024 - 4024 So(¥x) (7)
where
Sc(Wx) = (¥ - X8)'F1 (yXs). (8)

We note that (7) is not the concentrated likelihood function as it
was in chapter 3. It 1is simply a criterion function that we have
obtained when proceeding in a similar way as in the case where the

matrix X contains only weakly exogenous variables.
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The optimisation of (7) is carried out nonlinearly with respect to
¥x. In practice 0%2 can be concentrated out. Once we have found the

optimal point &*, s is obtained from the minimand given in (2).

Comparison of Estimators

At first sight the estimates obtained from these two procedures might
be seen as being numerically equivalent. However this is not the case
and can be justified as follows. First we note that the IV/QML can
be regarded as being the point ’é-(':S,:r,@ ,Adz*) that optimises (6)

subject to the restriction
3 - [XFt P FEXTL %Pt P PYy - 0, (9)

where P is any of the projection matrices given before. On the other
hand the IIV/ML estimates for the hyperparameters are those which
optimise (6) conditional on a given §. Let (024,V%) be the point
that optimises (6) conditional on 3, where % is the IV/QML estimate.
Of course, (32*,@*) will be different from G;.*:¢*) since the

optimisation is now unrestricted.
Initial Consistent Estimator
As we have already mentioned in section 2, before discussing the

asymptotic properties of the GLS-IV estimator, provided that the

process generating these disturbances is stationary we may use the
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2SLS as an estimator for &. Clearly the models considered here are
nonstationary, however, the variables may be differenced so as to
make the disturbances stationary. Thus, after differencing once,

model (1) becomes

where u =7, +4¢,.. The 2SLS of & is then given by

- -1
- [ [ -1 ' ' ' -1 [
byor o= |AX'4Z [az'az]laziax] “ax'az [az'az]lazay. (11)

This estimator will be consistent provided that X, does not contain
lagged values of the endogenous variables. If it does, the
instruments should exclude 1lagged values of these (differenced)
variables which are correlated with ui. (For u, as below (10) then

only those at lag one are inadmissible instruments.)

It is well known, see Wickens (1969) that the 2SLS given in (11) has

a limiting normal distribution, i.e,

d
T% (625Ls - 60) - N ( 0 , V),
where
az'az y-lp azrquaz az'az -1
V = plim [R' R] [R' R] R' R ] , (12)
T T T
where

- ' -
Qu Euu and R [n ol-
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It can be easily verified that if z,, the K-dimensional wvector
containing the exogenous variables, follows a multivariate random

walk model with associated disturbance covariance matrix ¥,, then

AZ'Q,A7
plim ———m — = (20€2+0
T

D) (13)

and the asymptotic covariance matrix of 32SLS becomes

Avar §yg1g = T-1 (20.240,2)[R'IRTL . (14)
There a number of ways of estimating the hyperparameters. In the
simple cases, closed form expressions based on the residual
autocorrelations are available as discussed in chapter 2.
4. Instrumental Variable Estimation in the Frequency Domain
The frequency domain estimation procedure which we have discussed in
section 3.3 can be conveniently adapted to handle the model given in
(3.1). After differencing once the equation of interest is as in
(3.10), namely

Comparing (3.2.9) with (3.3.10) specialized for the univariate case,

we observe that the spectral ML estimator of & can be regarded as the
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resulting estimator obtained from (3.2.9), by making wuse of

asymptotically equivalent expressions similar to
213 T-2
X'FFiX = % Ixyx(j)/fj , (1)
j=0

where the (i,k) entry of the matrix I, 4(j) is the crossperiodogram
between Ax; and Axp. Hence, using similar expressions, it follows
immediately that the spectral IV estimator of & corresponding to the
time-domain IV estimator obtained from the minimand given in (3.2)

with weighting matrix P; becomes

- T-2 Ix'2(3) [1-2 Iz'2(3) “lr o Ie(i) 771
b = |3 —— |5 —— | 5 ——
. - 2
T-2 IX'Z(J) [T-2 Iz'z(j) ] 1'[‘-2 Iz‘y(j) ()
X _— —_— . A
j=0 . j=0 . j=0
J fJ J fJ J fj
where ¢-(062,0n2). We mentioned that if we do not transform the

instruments or if we use differenced instruments we cannot have an

expression for % in terms of the periodogram.

We can now proceed as described in section 3.3, but with (2)
replacing (3.3.10) to find the spectral IIV/ML. The 2SLS estimator
given in (3.12) can be used as an initial consistent estimator for 4.

Asymptotic Properties

The asymptotic theory given in section 3.4 can be straightforwardly
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extended to handle the case we are interested in. Because SZSLS
given in (3.12) 1is /T-consistent, arguing as below (3.4.7) a
/T-consistent estimator of ¢, say J;a(bZSLS)' can be obtained from
the autocorrelations of the residuals yt-zts. Moreover, from
appendix 3.1, it follows immediately that Tf(; -¥o), Wwhere @éb(é) is
as in (3.4.6) but with E and & as above, has normal 1limiting

distribution with zero mean and covariance matrix IA(¢O)‘1, where

1 x
IA(G) = = [ [cO0, 1] e, 1]E,"200dn

L% .

and c(A)=2(1l-cos\).

We now turn to the limiting distribution of 3, where & is given in
(2) but with £;=f;(§) replaced by %j-fj(fa). So & is a feasible IV

estimator. Subtracting &, and multiplying by T? yields

~ N T-2 Iz1u(d)
T (6 - 6,) = H Tt'S it (3)
j=0 fj

where

f-{ [T-ZIX'Z(j) [T-ZIz'z(j) ]-1T-2Iz‘x(j) ]-IT-ZIx'z(j) [Té‘ZIz'Z(j) ]-1

j=0 T . j=0 T f, j=0 Tf.
J=VrT £5 J=VTf¢ J T £

j=0 T %, 3

j=0 T ¢,
j J=vrT £y

(4)

~

Now, since y is a consistent estimator of y, assuming AZ totally

independent from u it follows from (3.4.3) that

T-2 Iz u(d) "
T4 jZO — > N[0, %,r [ faloor,00ax ).
J -%
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Moreover, differencing (1.1b), that 1is, the reduced form of the
endogenous variables included in the equation of interest,

AX = (4Y1:4Z9) can be written as

AX = AZ R + (AVq:0) (5)
where
M Iy
R [n2 1] (6)

It now follows from (3.4.2) and (3.4.1) that if AZ 1is totally
independent from A4Vy, H converges in probability to H, where H is
given by

1 x -1
H = [ - R'[ £, 1OOF,00an R| R (7)
2

x -

Hence, making use of Slutsky's theorem we have that

d
T (3-85) » N (0, V1)
where
1 n
Ve - R'j £,-TO0F, (VAN R . (8)
27 .

We note that if the exogenous variables, z¢, follow a multivariate
random walk process with disturbance covariance matrix I, then the
differenced variables will have constant spectrum matrix, that is,

F,(\) = (2r)-1%,

and the asymptotic covariance of & becomes
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- 2 x -
Avars = %1 [ R'L, Ifu(k)'ldk R ] } (9
-x
which can be written as
Avars = T'1[0n4+40n2062] { [R'I,R]I, (10)

since
x x
[£a00 1 ax = 25 [ [20.240,2-20,2cosN] % ax
-T -7

- 472 [an4+40n2052]'i )

Estimator Suggested by Hannan and Terrell

Proceeding as in Hannan and Terrell (1973) we could replace, in (2),

A

I41,(j) by ﬁ'Iz-Z(j), where R is a consistent estimator of R given in

(6). The resulting estimator of § then becomes

- ) i{ Tiz I,.2() . 1-1 Tiz Iz'y(j)
5 - [ _ R R' —_—
i =0 j=0 gy

(11)

Making use of (11) rather then (2) we can obtain 5-(%,}) in the same
way as we have obtained thé spectral IIV/ML. Clearly the resulting
estimator is as efficient as the spectral IIV/ML. We note that a
consistent estimator of R can be obtained estimating II by means of
the stepwise optimisation procedure described in section 3.3,

although it is not necessary to iterate since the Least Squares
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estimator of Il given in (3.3.11) is already consistent.

When 052 is zero, so that the disturbances have constant spectrum,

(11) becomes

% = [R'(az'42)R}L R'AZ'ay.
Now if R is estimated by means of LS then 3 collapses to 2SLS, as
given in (2.3). 1In our case, since the spectrum is not constant the

estimators given in (11) and (2) are not numerically equivalent.

We mention that making use of expressions similar to (1), the time

domain expression for (11) becomes
~ A~ T ~ o~ A "1 T -~ -~
5(vx) = |R folzz 'R | R' S f:l 2 , (12)
* [ tZZ t T 2t?t ] tZZ tT ZeYe

and similary as we have constructed the IIV/ML and the IV/QML we can

construct these modified estimators.

Relative Asymptotic Efficiency of IIV/ML Compared with 2SLS

In the special case when the exogenous variables follow a random walk
we can see that each element of the asymptotic covariance matrix of
2SLS, as given in (3.14), is greater than the corresponding element
of the asymptotic covariance matrix of IIV/ML, as given in (4.10), by

a factor of
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(2+q)

(q2+4q) %

where q-anz/acz. The closer q is to zero, the more inefficient is
2SLS. For example if q=1, F=1.34, while if q=0.01, F=10.04. As q
goes to infinity, that is, 052 goes to zero, 2SLS tends to the same

distribution as IIV/ML as the disturbances in the differenced

observations are tending to white noise.
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CHAPTER 5

SIMULTANEOUS EQUATION SYSTEMS WITH STOCHASTIC TREND COMPONENTS

1. Introduction

In this chapter we shall introduce simultaneous equation systems with
stochastic trend components and discuss the role played by stochastic

trends in helping to identify a single equation in the system.

We start by specifying the model. In section 3 we present a brief
review of the issue of identifiability in simultaneous equation
systems with no stochastic trends, and generalize the classical rank
condition to simultaneous equation systems with stochastic trends.
In section 4 we show how the multivariate Kalman filter can be used

to deliver the likelihood function.

2. Model Formulation

We shall consider the complete simultaneous equation system given by

Xe'A = ye'B+ z'T = w.', t=1,...,T, (1la)
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where x¢'=(y¢',z¢') and A=(B',I'")'. y¢ is a pxl vector of observed
endogenous variables, z. 1is a Kxl1 vector of observed exogenous
variables. The non-singular pxp matrix B and the Kxp matrix I' are
unknown fixed parameters matrices of the endogenous and of the
exogenous variables respectively. The pxl vector w,; contains the
unobserved stochastic components and is assumed to follow a
multivariate random walk plus noise model as introduced in (2.2.5)
i.e.

We = pr t+ e, (1b)

He = Heo1 t+ e, (1c)

with covariances matrices I, and ¥ The reduced form of (1) is

n

ye' = ze'T+ vty (2a)
where

n - - re-l, (2b)

ve' = w'Bl = p Yy e ¥ (2¢)

Ft* - “t-l* + ﬂt*- (2d)
The covariance matrices of et* and nt* are respectively

* -1 - * -1 -
I =B l'fB-l anda r*-sB-lrype-l
Combining the observations we define X = [Y : Z],

L 1)

Y1 ¥11---Ypl z] z11---2x1

yT' Y1T---YpT zT Z1T---2KT

and similary
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w1 K1

1

wT er’ nT
We use the notation Xj for any submatrix of X. Thus, Xj; = [Yi:Zi],
where Y; is a Txpj; submatrix of Y and Z; is a Txk;j submatrix of Z. We
use the notation Yj.' and Zj.' for the t-th row of Y; and 2;

respectively. Thus, Xj¢'= [Yj¢': Zi¢']. We can then write (1) as

XA = YB + Z' = W, (3a)
where

We=p+e, (3b)

p=pu(-1) + 7, (3¢)

and its reduced form as

Y =2z0 +V, (4a)
where
Vo=t o+ e, . (4Db)
p* o= p* (-1 + gt (4e)

The distribution of the endogenous variables is determined by the
reduced form, and in order to be able to make any statistical
inference about the structural parameters, these parameters must be
identifiable. As we shall see in section 3, stochastic trends play
an active role in helping to identify a single equation in a
simultaneous egquation system. Therefore, before discussing the
identification issue concerning simultaneous equation systems with

stochastic trends, we present an alternative formulation for system
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given in (1) which is more convenient for handling individual

equations.

An Alternative Formulation

Let us assume that we have a priori restrictions on B and I'. We shall
only consider zero restrictions, that is, the corresponding variable
is excluded from the equation in question, plus normalisation
constraints, that is @ji=1, for i=l,...p, and of course the symmetry
constraint on L. and Zﬂ' Such constraints can best be handled if we

introduce a selection matrix. We define the rxl vector §,

8' = [61'...85'], (5)
where
6i' = - [Bi":vi'ly (6)

and the pjx1 vector @; and the kj vector 7y; consist of the unknown
elements in the i-th columns of the matrices B and I, so that

r =Y (pij+kj). We define the rxp(p+K) selection matrix S,' such that

6 = - Sp'vecA. (7

Thus Sp' may be interpreted as a selection matrix to choose only the
elements corresponding to unknown elements of A. It is easy to verify
that

Sa'Sa=1,, (8)

Spd = - vec(At), (9
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vec(A) = - Spd + s, (10)

where At = A - J, J = [Ip : °pr]' and s = vecJ. Also

Sp = - Bé,vec(A), (11)

and

X]_ 0 0 0
0 X9 0 0

6 .0 .0 Xé

(1,8X)5, - (12)

where X;=[Y;{°Zj] is the Tx(pj+kj) submatrix of X formed by the pj
included endogenous variables other than the dependent wvariable, and
by the kj included exogenous variables, considered to be the
explanatories variables included in the i-th equation. We note that
while Sp' chooses the unrestricted elements of A, S, chooses the
columns of (Ip®X) which correspond to the included variables in each

equation, other than the dependent variable.

Bearing in mind that we only have zero constraints plus normalisation

constraints the i-th equation in (la) may be written as
yit - Xit'bi + Wit, t‘l,.. .,T, i"l, ... ,p (13)

where Xj¢'= [Yj¢''Zi¢'] and &; is given in (6). The entire system

can then be writen as

>
=

o

[eNe]

0
0
5 + vec W. (14)

o o o x

We note that (14) could have been obtained directly by vectoring (3a)
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and making use of the properties of the selection matrix S, given in

(10) and (12).

3. Identifiability

In this section we seek to extend the identifiablity conditions for
simultaneous equation models in the classical case in order to take
account of the role played by stochastic trends. We start the

discussion from the concept of identifiability.

The Concept of Identifiability.

Let X = (X1,X2,...XT) be a vector of random variables with continuous
density function f(x,6) where 6 is a p-dimensional parameter vector.
Suppose we intend to estimate 6 by maximum likelihood. The
identification assumption states there cannot exist 676 such that
Q(O*;x)-Q(G,x) fqr all x, where 2(6;x) is the loglikelihood function.
If two points, 6t and 6, lead to the same loglikelihood they are said

to be observationally equivalent.

The Identification Problem in Simultaneous Equation Systems

In a classical model with no stochastic trends, under the assumption

that the rank of Z is K, the reduced form parameters are always

identified, see Magnus and Neudecker (1988, page 333). However in
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the majority of the situations one is interested in the structural
form parameters, and these are identified if and only if their values

can be deduced from the reduced form parameters.

The general approach to identifiability is then to determine whether
any observationally equivalent parameter vector 6' can be produced by

premultiplying the transpose of (2.la), that is,

Blyt + r’zt bl Wt, (1)

by a nonsingular pxp matrix F; see Hsaio(1983) for a full discussion.
We note that if no restrictions are placed on B and I', then for any
matrix F, in the reduced form, the expectation of y, and its
covariance matrix are identical for any t, which implies identical
distributions under normality asssumptions. Hence B and I' cannot be
determined from the reduced form. However if a priori restrictions
on B and I' are placed then of course F must be such that FB'
satisfies the same a priori restrictions as B', and FI'' the same as
I''. The model is identified if the only matrix F which yields a
system satisfying the same a priori restrictions is the identity
matrix. Thus identification is achieved by imposing restrictions on

the structural parameters.

Often we may be interested only in a subset of parameters, say B; and
¥i, the unknown elements of the i-th rows of B' and I'', which
correspond to the parameters of the i-th equation. Without lost of
generality we suppose that is the first equation we wish to identify.

If we order the variables so that the zero coefficients in the first
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row of B' and I'' appear last, we have

1 61|| o' ‘Yl" 0!
e [ 2 e

By1' 1 Bpp!' "1 !

where B1' is lxpy, Bp1' is (p-1)x(p1+l), Bjo' is (p-1)x(p-p1-1), 7'
is 1xky, To1' is (p-1)x ky and Typ' 1is (p-1)x(K-ky). Thus the
matrices Bjyp' and INpp' are submatrices of B' and I'' corresponding to
the coefficients of the variables in the equations other than the
first which do not appear in the first equation. Using the notation
given in the previous section for single equation this leads to the

question whether

Yie = X1¢'61 + Vieo t=1,...,T, (3)
is identifiable, where Xj.'= [Y1¢'°Z1¢'] and &1'=-(B1',71").
Now equation (3) is identifiable if (2) premultiplied by (1 f') only
yields an equation satisfying the same a priori restrictions if the
(p-1)x1 vector f is null. 1In the classical model, it is well known
that a necessary condition for identifiability 1is the order

condition, K } pj+kj. A necessary and sufficient condition, the rank

condition, requires that
Rank [322':F22'] = p-1. (4)

If all equations are identified the system is identified.
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The Identification Problem in Simultaneous Equation Systems with

Stochastic Trends

We shall now consider the identification problem in simultaneous
equation systems with stochastic trends. The simplest kind of
stochastic trend is a random walk, and a good deal of insight into
the problem can be obtained by considering this case first.
Initially we consider I''= 0, that is, no exogenous variable are

included in the model. We also assume B' normalised. The model is

then
B'ye = ne + ¢ (5a)
Bt = Me.1 + Mg t=1,...,T. (5b)
with associated parameters contained 1in e, 0 = (B',Ee,Zn).

Premultiplying (5a) by B'-1 we obtain the reduced form

Ye = ”t* + Ct* ) (6a)

pe* = e 1+ ¥, (6b)

with associated parameters being the covariances matrices
I*-B'-15B-1 and I,*-B'-1r B-1. Clearly premultiplying (5a) by F,
where F is any pxp positive definite matrix, would result in a model
with the same reduced form parameters as model (5), but with
structural form parameters 07 = (FB',FZeF',FZnF'). Therefore model
(5) is not identifiable. However, if, say the first equation, does
not contain a stochastic trend and all the other equations contain

stochastic trends, then the first equation is identifiable, since any
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linear combination involving the other equations would yield a
stochastic trend, hence violating the distributional assumptions of
the first equation. In other words the first row of matrix F must be

(1,0').

In what follows we shall give some details concerning the
identifiability of a single equation. We 1initially consider a
two-equation system. Under the assumption that pjg, i=1,2, is fixed,
we can express p. in terms of a deterministic and a stochastic part.

The model is then

t
6, TI05E) = [30] + [ + (28], e 72)
where
i = w1ty eo1 + Mies t=1,...,T , (7b)

with FTio'o for i=1,2.

Now if we assume that Zn(l,l) = Zn(l,Z) = 0, that Iis, #11:T is

excluded from the model, (7) can be reparametrised as

5, TIE2] = [20) + [ § Joae” + [2E] e, (82)
where
Bloe = 512 ¢o1 + Moo t=1,...,T (8b)

Var(mye) = 1 and s2 = T,(2,2).

Now the reduced form of model (8) is

Y1t = 711 + *12K2¢t + Vi, (9a)

Yor = 721 + woompet + voe, t=1,...,T (9b)
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where
711 = (p10 - Bim20)/(1 - B1B7)
21 = (poo - Bamo)/(1 - B1B82)
-5 B1/(1 - B162)
s /(1 - B187).

*12

*22

This reduced form contains a common stochastic trend component ;2t1-
Estimators of the parameters x3j, 727, %17 and 7y, can be computed by
ML and unique estimators of the structural parameters pjg and f3

obtained by noting that

B1L = - *12/722

and

K10 = *11 - *12721/7%22-

The first equation is therefore exactly identified. If it were known
that pjp were zero, it would be overidentified as B; could also be
estimated from =xj17/779. Thus both the deterministic and the
stochastic part of a stochastic trend can help in identification, but
as will be seen in the general case they do not count in quite the

same way.

We have just seen that identification of the parameters in the first
equation 1is achieved because of the exclusion of the stochastic

component pltf. If (8a) is written as

(e, 1B - BaS < 1 Lot *+ (3], emn, i 10)
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and ;2tT is regarded as an explanatory variable the rank condition
given in (4) is verified provided that s is strictly positive. Thus
the exclusion of the stochastic component is similar in its effect to

the exclusion of an explanatory variable.

We observe that the assumption that the intitial state is fixed is
not necessary. In the context of (8) identifiability of the first
equation is also achieved if the initial state is modelled in terms

of a diffuse prior.

The generalization to p>2 is straightforward. Suppose p=3, and there
is no stochastic component at all in the first equation. For
simplicity we also assume a diffuse prior for uj;p and p3g. The model

is then

[532] -1%°] [ﬁ;z [GZt] T (11)

where S is any matrix such that S'S -fn, and (;2t’ ;3t)' follows a
multivariate random walk with associated covariance matrix being the
identity matrix. The reduced form of (1l1) is as in (6) with

associated covariance matrices

¥ - B'-1r-1

and
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Now conditionally on the first observations the covariance matrices
Ze* and Zn* can be estimated by ML, and unique estimators of the
srtuctural form parameters appearing in the first equation can be

obtained by noting that since
0 0 O

B'L,* - [ 0 ]B‘l (12)
0

the first row of B'Zn* is zero, and so we can recover the first row

of B' from Zﬂ*'

However if one of equations two and three in (1l1) does not contain a
stochastic trend, it can be easily verified that Zﬂ* has rank equal
to one. This in turn implies that the three equations obtained
equating the first row of the matrix in the LHS of (12) to zero are
identical, and therefore the first equation is not identifiable.
This is also the case when the trends are perfectly correlated, in
other words if they are what Engle and Granger (1987) call
co-integrated. To summarize, in the context of model (11), the first
equation is identifiable if and only if fq, the covariance matrix
associated with the stochastic trends appearing in all equations
other than the first equation has full rank, or equivalently if S has

full rank, where §'§-fn.

We now consider the identifiability of the first equation in a
general model with exogenous variables. Assuming a diffuse prior for

;o'(FZO»F30»~-~FpO)' and no stochastic trend component at all in the

first equation, the model becomes
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1 B]_‘I 0 .ylv | o' 0 _
[' - =0 - - ] Ye + [‘ = =1 - - ]zt - [ Eq] Be + ¢, (13)
Bp1' 1 Bpo' Fa1'1 Tpo!

where ;t is a (p-1)x1 multivariate random walk with associated
covariance matrix being the identity matrix . S is any (p-1)x(p-1)

matrix such that S'S= fﬂ' A necessary and sufficient condition for

the identifiability of the first equation is that
Rank [Byy' Tpp' '] = p-1. (14)

On the other hand if the initial state ;o is regarded as being fixed,

the necessary and sufficient condition is that

Rank [322' Tao! ;0 s ] = p-1. (15)

Local Linear Trends

Consider the p-dimensional process wi following a multivariate local

linear trend model. Taking

z' = (1,0) and T = [é i .

it follows from (2.2.4) that wy is given by

We = pe + o€g, (16a)
Bt = Be-1 t 0e.1 + ng, (16b)
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where 7. and {, are assumed to be independent of each other with
associated covariance matrices Zn and Iy respectively. The initial
state is assumed to be fixed. Let the pxp positive definite matrices
Sﬂ' St and Sy such that Sn'sn—Zn. S¢'Sg= It and S*Sn-S;. Clearly Sﬂ’

St and Sy are not unique. We reparametrise (16) as

wt - Sn';t + Ct, (173)
Bt = Bp-l *+ Sk'del + Mp, (17b)
B = b6p-1 + feo (17¢)

where Var ;t = I, and Var ?t - IP'

We split up the model (17) into a deterministic and a stochastic

component by writing

we = po + Spt + Sptpet +Sprat + e (18a)
where

et = weqt + e, wt =0, t=1,...,T (18b)

et = 26p.q7 - Beot + T, St =53t =0, t=2,...,T (18c)

We now consider a general simultaneous equation system with
unobservable components modelled as (18). If the first equation
does not contain a trend component, the system in question is given
by

[1 By 0'] [71'| 0']
S N BB 7 R R P

By1' 1 Bpyp' Fp1'"1 Tao!

0 o 1 0 _ 0' 1_
RH [T EON T
#o 6o t Sn' S¢!
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where Ztt and Et? are (p-l)xl vectors obeying the equations of the
form (18b) and (18c). §ﬂ and §; are (p-1)x(p-1) matrices such that
the covariance matrices of the (p-1l)x1 disturbance vectors ;t and ?t
are identity matrices. Hence the necessary and sufficient condition

for the identifiability of the first equation is that
Rank [322' Fao! ;O Eo -S-n gg-] - p-1. (20)

The appearance of some kind of trend component in the first equation
leads to a modification of (20). For example, if the first equation
contains a stochastic trend which is a random walk plus drift, then

ZO' EO and S.,7 disappear from (20) and only 5; can help

identifiability.

Note that in (19), the deterministic components, one and t, are
treated in exactly the same way as the exogenous variables in z.. The
stochastic components ;tf and EtT, both contribute to identifiability
since the first is white noise in the first differences while the
second is white noise in second differences and so they cannot be
confused. Indeed if the model contains mno lagged endogenous
variables, it is possible to let 7. and {, be stationary, invertible
stochastic processes  without affecting the identifiability

conditions.
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4, The Likelihood Function

As in the classical case where the disturbances are serially
uncorrelated, the loglikelihood function of y=vecY' can be expressed
in terms of the reduced form parameters or in terms of the structural
form parameters. Since the transpose of the reduced form given in
(2.2a) is as in (3.2.5), it follows from (3.2.8) that conditional on
the first observations the loglikelihood function of y, expressed in

terms of the reduced form parameters, 0% = (n,ze*,zn*), is given by

T
2(6*) = -3 S logiF *1 - 3 § ve¥U(F*) L v ¥, (1)
tzzgt 2ot (Ft t
where vt* and Ft* are delivered by the Kalman filter applied to the
vt-yt-n'zt,
with starting values al*-yl-ﬂ'zl and Pl*-Ze*.
In order to obtain the loglikelihood function in terms of the
structural parameters 8-(B,F,Z€,Xn) we note that premultiplying
(2.2.13a), specialized for the multivariate random walk plus noise
model, by B' yields
B'ac® = B'ag.1* + B'Py e 1*B(B'F¢*B)"1B'y ¥, (2)
where the superscript * indicates that we are dealing with the

reduced form, and "t*'vt’at-l*' Now if the Kalman filter is applied

to the structural form
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wt - B'yt + r'zt ’
with starting values aj=B'y;+[''z; and Py=L., we have
ag = ag.1 + Prye-1Felre, (3)

where »vy=wi-a,_1. Comparing (3) with (2), we note that a¢ = B'a.”,

Pese-1 = B'Prye.1™B, Fr = B'F¢*B and »e= B'v*. Hence

T T
' - %4 *\ - *
tgzvt Ft 1l’t -tzzyt (Ft ) 1 "'t ’

and the 1loglikelihood function in terms of the structural form

parameters becomes

T T
2(6) = (T-1)logIBI - ZzloglFtl - gzut'Ft-lyt. (4)

t= t=

As it stands, to obtain the prediction errors v, via the Kalman
filter we have to construct first w, = A'x, =B'y #I''z, for each t,
t=1,...,T, and then apply the Kalman filter to A'xy with
hyperparameters I, and Zn. Alternatively, using results on matrices

given in Magnus and Neudecker (1988, page 47) we can write Wy as
We = A'Xe = (Ip®xt')vecA,
and using (2.10) we have

wp = - (Ip@xe')S6 + (Ip@xe')s = ye - X¢'s,
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where

and Xj.' are the endogenous variables other than the dependent
variable and the exogenous variables included in the i-th equation.
Hence the prediction errors can be obtained by applying the
multivariate Kalman filter separately to y. and to each column of
it'- Such formulation will be more convenient for handling LIML, as

we shall see in chapter 7.



108

CHAPTER 6

FREQUENCY DOMAIN APPROACH TO SIMULTANEOUS EQUATION SYSTEMS WITH

STOCHASTIC TREND COMPONENTS

1. Introduction

In this chapter we present a computational method for finding the
spectral FIML (Full Information Maximum Likelihood) estimators, and
asymptotically efficient 2-step estimators of the parameters involved
in a SES (Simultaneous Equation System) with disturbances following a

multivariate random walk plus noise process.

The computational method that we present is an adaptation of the
Hannan and Terrell (1973) approach for simultaneous equation systems
with stationary disturbances. It may also be interpreted as a
reflection of the Durbin (1988) iterative scheme for the classical
case, that is, serially wuncorrelated, normally distributed
disturbances. We shall speak of this as the uniform error-spectrum
case. (We mention that although recently published, copies of
Durbin's paper have been circulated since 1963). In the uniform
error-spectrum case the procedure is also known as iterated 3SLS, see

Hendry (1976).
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As pointed out in Hausman (1983) it is unlikely that these sort of
iterative schemes will have good numerical properties. However they
give us an insight into the construction of asymptotically equivalent

estimators.

2. The Spectral Likelihood Function

As In chapter 2, the first step is to transform the system given in

(5.2.1) into a system with stationary disturbances. Thus, let the

model be
Ye'B + z¢'T = ug! (la)

where the vectors y,, pxl, and z;, kxl, contain the differenced
observable variables and the pxl vector ug contains the unobservable
components in the model. Again, for presentational convenience we
have omitted the differencing operator 4 in front of y.' and z.'. 1In

matrix notation (1) becomes

XA=YB+ 2l =U . (2)

Let & denote the vector containing the unknown elements of the matrix

A. From chapter 5 we have

6 = - Sp'vec(A), (3)
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SA6 = vecJ'-vecA (4)
where

Sp = - 3%' vec(A). (5)
and

J = [Ipzo(pxk)]'

As regards the hyperparameters, we have from (2.2.7) that the

distinct elements of I, and Zﬂ are contained in the vector

D* 0
v o= [ p+] veelZeiIy] (6)
and from (2.3.13) that

S5 = 9%%255 - (21)-1[ch : D] (7)

Now, as the reduced form of (2) is

Y = zIl + UB-1, (8)
the spectral likelihood function of wvecY', in terms of the reduced
form parameters, is as in (3.3.4). It can be easily verified that

the spectral 1likelihood function in terms of the structural form

parameters is given by

2(8) = TlogNBi gTill F(hg) 1 5Tilc F- 1) Igig(hg) (9
= TloguBil - IF(A )1 - rF- ' ,
g PRI 20 Ty

where 6'=(é',y') is the vector containing the unknown parameters and
4 P
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U is expressed in terms of the observations through (2).

Alternatively, replacing IU-U(XJ) by A'X'WJXA where Wj is defined in

(2.3.9) and denoting F(kj) as Fj, (9) can be written as

T-1 T-1
0(6) = TloglBil - % ¥ loglFj1 - 3§ tr Fj-1(XA)'¥5(xa). (10)
j=0 j=0

Clearly, the spectral maximum 1likelihood estimates emerge as a

numerical solution of the likelihood equations
a5 2(6) = 0. (11)

Numerical methods to solve (1l1) are described in appendix 2.1. In
the classical case, that 1is, when the disturbances are serially
uncorrelated, the standard way to obtain FIML is by concentrating the
covariance matrix of the disturbances out of the likelihood function,
see Hendry (1976), Hausman (1983) or Rothenberg and Leenders (1964)
among others. Reinsel (1979) in handling SES models with ARMA errors
also concentrated out the covariance of the disturbances of the white
noise process. For the models considered here the wvector
containing the hyperparameters cannot be concentrated out of the
spectral 1likelihood function, except in a rather special case, Zn
proportional to I, (homogeneity). Nevertheless the iterative scheme

for the uniform error-spectrum case can be used as a basis to solve

(11).

In preparation for the numerical solution of (11) we derive the first
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order conditions and the Hessian matrix.

The First Order Conditions

Magnus and Neudecker (1988,theorem 16.5) derived the information
matrix for SES models with uncorrelated disturbances. Their approach
is very elegant and we can generalize it to the case in which we are

interested without to much difficulty.

Applying the following results

(i ) dlog 1Al = tr(A-l)da , (12a)
(ii ) da-1l = - A-laaa'-1 | (12b)
(iii) tr(ABCD) = vec'(D')(C'®A)vecB , (12¢)

the first differential of €(8) given in (10) becomes

T-1
d¢ = Tvec'B-l'vecdB + § § vec'[Fj‘lA'X'WjXAFj’l]vechj
j=0

T-1 , , 1 T-1 —
-jzovec [(X WjXA)Fj Jvecda -}jzovec Fj-ivecdFy.

Now because é and y are functionally independent we have from (5) and

(7) that

e R SRR CH U IO 9%%$Ej - (0:552
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or
dvecA = - (55:0)d0 ; dvecA' = - K(pik)p(5a:0)d6;
dvecB = - (I,®7)(S4:0)d6 ;  dvecB' = - K,(I;87)(Sp:0)d6; (13)
dvecFy = (0:84)d0 ; dvecFy' = (0:54)d0.

Hence, the first order conditions are

T-1
‘g‘a 0 : -85, vec[ 13'8' -1 -jZOX'\I/j(XA)Fj‘l)] -0 (14a)
3 ) 1T-1 , . . , _

S0 - ; Zosj vec[(Fj 1 - Fymloxa) ¥y (XA)F; 1)] -0 (14b)

The Hessian Matrix

The second differential of the time domain loglikelihood function for
SES with normal independent disturbances is derived in Magnus and
Neudecker (1988, page 339). Since we can pass the differential

operator under the summation operator we end up in our case, with

d2¢= - T tr (B-1dB)? + T tr B-1d?B + 3 § tr (F;-1dF)?2

$ 3 tr Fy-la2F; - Str Fy-1(dA)'X'¥;XdA

+

2 3 tr Fy~1(dFj)Fy-1A'X'¥XdA - § tr Fy-la'X'¥;X d2a

X -14F.)2F; -1 -1A" X' ¥ XAF; - 1d2F.
S tr A'X'¥yXA(Fy 1P 2y + 3 3 er Fyolatx'¥yxaF;-la2ry

Because szj-O and d2A-0, using (12c) and (13) the expression above

can be rewritten as
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d20= - T (d6)' [Sp:0]'(I580")K,(B~1'@B-1)(1,87)(5,:0] 46

+

343 (de)’ [O:Sj]'(Fj'1®Fj'1)[0:Sj] de

3 (d0)' [S5:0]"K(pak)p' (X' ¥5X8F; IR (py1)p[Sa:0] db

25 (d0)'[Sp:0]"K(pax)p' (X'¥;jXAF;-1@F5-1)[0:54] do

' PR =1 ~lRA'R W, .~110:5.
Y (de6) [O.SJ] (Ip®FJ )(FJ @AX\IIJXAFJ [O.SJ] de

where the square matrices K, and K(p4x)p are commutation matrices of

order p2 and (pt+k)p respectively.

Now using standard rules on Kronecker products given in Magnus and
Neudecker (1988,page 47) the first and the third term in the above

expression can be written more compactly as

- T (d6)' [SA:0)'(Ip@3'B-1")K (1,68 13)[S4:0] do
and as

-(d0) ' [S,:0]" S(Fj-1@X'¥4X [S5:0)d6.
Thus the second differential becomes

d20=

-(de)'[SA:O]'[T(Ip@U'B'l')Kp(Ip®B’1J) + S(F5- 16X ¥5X) ][SA:O]dH
+ (d8)' 3 [0: sj]'[g(rj-l@Fj-l) - (Fj‘1®Fj‘1A'X'WjXAFj'1][O:Sj] de
- 2 (d6)" [Sp:0]'Kp(pak)y 3 [(X'¥5%aF;-1gFy-1)[0:551] do .

Now wusing the second identification theorem in Magnus and

Neudecker (1988,page 189) we have
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320

Sesm - S Sa'[(1p@ B 1Ky (1,68°10) + (Fy~1gx'¥5%)] sp (15a)
2

Sor - - 25y (@ Ry D] Sa (13b)
829 ' -1 -1 -1 ~latrys -1

s 383 [1(Fy-1aF;-1) - (Fy-lgry-la'x ¥yxaF;-D)]s;. (15¢)

3. A Computational Method for Finding the Spectral ML Estimator

In order to obtain the spectral FIML (Full Information Maximum
Likelihood) for & we are going to proceed in a similar way to
Hendry (1976) and Hausman (1983) when they considered simultaneous

equation systems with uniform error-spectrum.

First we note that if (14b) had an analytic solution say @—&(6), we
could construct the concentrated spectral likelihood with respect to
5 and use the Newton-Raphson method to find the spectral FIML

estimator for & by solving

0
3 e.(8) = 0 (1)
where @.(3) is the concentrated 1likelihood function, i.e.,

Qc(a)-Q(b,&(é)). However this is not the case here. The likelihood
equations are non-linear in ¢y and so we cannot construct the
concentrated likelihood function. Nevertheless, because we only need
the first derivatives of ¢, at a given &, say 3k' we can still use

the iterative procedure. We note that these derivatives, evaluated
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at 3k' are the derivatives of the unconcentrated likelihood with
respect to § at (3k, @) where Vébfak) is the solution of (14b) with §

replaced by %k- Thus,

A 3 3 .

and whether @(%k) is obtained analytically or numerically makes no
difference. The only issue is with respect to the Hessian matrix of
¢. since, as pointed out before, because @ is obtained numerically we
do not have a closed form for q(é) and therefore we obviously cannot
compute the second derivatives. However we can replace the Hessian
by an asymptotically equivalent matrix. We return to this point

later.

We shall now derive an expression for q(é) close to the one given in
Hendry (1976,page 53). We keep the notation q(é), although q(é) does
not have a functional form. For this purpose we need the following

identity

Tl F.-1
jZOA X \l/jXAFj - IP (2)

[

where %j - Fj(@) and EQQ(a) solves (2.14b) for a given §. Clearly,
(2) is trivially satisfied in the uniform error-spectrum case since
in this case i = U'U/T solves (2.14b). Also, in the nonparametric
framework (2) 1is satisfied by construction, see Espasa (1977).
However in our case is not as immediate as it might appear. We leave

the proof to appendix 6.1 to avoid discontinuity. Now, making use of
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(2) we have

T-1 R
TJ'B'-1 = § J'B'-1A'X'¥5XAF; L1, (3)

where J-[Ip:Opxk). Therefore, if in equation (2.14a), we replace Fj

by %j' and the first term within the brackets by (3) we have

a [] T-l ' l-l Tyt 5 ~1 ' I 'l
a(8) = = ¢ (. T SaTvee | J_ZO[J B'-la'x'¥yXaFy-l - X ¥yxaFy1]

- - SA'vec[jgz[J'B"l(B':F')[gz]WjXA Fy-1 - [X]vyxa Tyl

1[Y'Wj""j“j'1 + BIriziygxa AFJ'l] | Y'ijAi“j'll]
0

T-
= - Sp'vec '2 1 . -
[J' 0 Z WjXAFJ

- Sp'vec[ |

T-1 -B -lrlzl
J'Ol

] VyxaF; 1], (4)
zl

Hence, the spectral FIML estimator of & emerges as a solution of

q ()= Su' vec| ;ggp'z'wj Xa Fyly -0 (5)
where

P=[ MIy ] (6)
and

m=--rsgl, (7)

The solution of (5) can be obtained by the Newton-Raphson iterative

procedure described in appendix 2.1. The first differential, dq($)
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is

T'l -~ ~ ~
- 5, 2 wixaFl + P2V -1  XAdF -1
dq(8) = Sy vecjzo [ap 2 ¥yxaFy-1 + Pz wgx aa Byl + przi¥gxadryl]

However, as we do not have a closed form for %J(é) we cannot obtain
its differential. Nevertheless because z; and wu; are totally

independent, from the results given in section 3.4, we have

1 T-1 o s~ , . _lT-l ~ 1 )
plim T vechOdP Z'V;XAF4 =(I,@dP')plim T jZO(Fj ®Ix)vecIziy(j)=0
and

-1 T‘l ' ' ~ -1 ' . -lT‘l ~ .
plim T vecj_op Z'¥5XdF; - (I,@P')plim T jzo(dFj®Ik)vech-U(J)-0.

Therefore 0q(é)/3é is asymptotically equivalent to H, where
' Tl - -1 1
H= -5, [jZO Fy7l @ P'2' 94X J54, (8)

in the sense that
-1 : -] ' Tl X X) T -1
plim T-1 dq(é) = plim T-1 s, vec[jZOP 4 WjX(dA)Fj Isa

- plim T-1lHds,
where the last equality above follows from (2.13).

Moreover, replacing X by ZP + [V:0] in (8) we have
T-1 .

plim T-ldq(s) = - plim T-1 SA'[‘ZO(F3'1®P'Z'W52P) ]sAda
J-

T-1 .
- plim T-1 SA'[jZO(Fj‘1®P'Z'Wj[V=01> ]sads. (9)
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Now, since z{ and v, are totally independent, from the results given
in section 3.4, it follows that the last term in (9) is equal to

zero. Hence 8q(8)/8é is also asymptotically equivalent to ﬁ, where
- T-1 .
- - ] .-1 1 L]
H sa' | jZO(FJ 8P'Z'¥;ZP) |Sp . (10)

Now if we make use of (10) the iterative scheme becomes

Be1 = Bk +[S ?51[}‘41@'?'2'w-ﬁp] S ]’1[5 'vechlfP'z'w-izfﬂl 1] an
k+1 k Aj-O J j A A <0 j J

where here %j - Fj(@),‘ﬁ -’@Ebk).AP and A are also constructed from

Ek- Because Z'WjZ - IZ.Z(xj) and Z'ij - IZ.X(xj) where IZ-z(xj) and
IZ.X(xj) are the real part of the respective periodogram matrices

(11) could also be written as
s T L g o151 s, vee 5B 1yon (0 SARL
6k+1-6k+[SAjZO[Fj GP'Iz1z(7j)P1S5] " [sa vecj§$P I.xO\IARE 1] (12)

For SES models with stationary disturbances Hannan and Terrell (1973)
and Espasa (1977) considered the same iterative scheme as given in
(12) but with %j replaced at each iteration by a nonparametric

estimate of the spectrum of the process U based on U - ka. Thus,

Fie(ng) = 1 S Iy(wy) j=1,...2M

o5 wteAj

where Aj consists of my of the w; frequencies clustered around
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xj--r+1j/M, j=1,...2M. Our method thus differs from the Hannan and
Terrell (1973) iterative scheme in the use of a parametric estimator
of the spectrum. Assuming our model to be correct, we would expect

our estimator to have better small sample properties.

On the other hand if we make use of (8) the iterative scheme becomes

~ T'L\ ~ ~ T‘l A

- - -1 ' -1 /AR 'R ' ' -1
bp= [HT1[54 [jZOFj 8 P'Z'¥;X ]S55,+ Sp vechOP z'¥;XaF;l ], (13)
Now vectoring and making use of (2.4), the second term in square

brackets in (13) becomes

T‘l ~ ~ T‘l ~
- sA'[jZO[Fj-lg P'Z'WjX]] SpAbk + sA3§0[ Fj]-® P']vecZ'¥;Y .

Therefore (13) takes the form

F TS 1@ prae Tel e 1 oo '
41 [SAjZo[Fj 8 P'2'¥X] S5 sp jZO[Fj ®P']vecZ'V:Y, (14)

J

where %j and P are formed from ’bk. In terms of the periodogram

notation (l4) can be written as

-~

T-l ~ 1 ~ '1 T'lA 1 PN
T [SAEZOIFj' ® P'Izrx(Ay)] sA] SA'jZo[Ff ®F' JvecIziy(ry). (15)

Clearly both procedures (12) and (15) are numerically equivalent. In
the uniform error-spectrum case, if 31 is the 3SLS (Three Stages

Least Squares) estimator, the iterative scheme given in (15) is known
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as iterated 3SLS, see Hendry (1976).

It remains to say something about the spectral ML estimator for y.
We have, for both iterative procedures, (12) and (15), that at each
iteration @(%k) solves (2.14b). Thus, if‘} is the convergence point,

i.e., % solves (5), Egﬁ(ﬁ) will be the spectral FIML estimate of y.

Before presenting asymptotically efficient 2-Step estimators for ¢,

we shall derive the asymptotic information and covariance matrices.

4, Asymptotic Information and Covariance Matrices
Asymptotic Information Matrix

Let 6,=(6,,Yo) the true parameter vector. The asymptotic information

matrix for 6, is

320 f11 f12
1A(6,) = - lim T-1 E o= ,
Ty 0600 0 £ f
o 21 £22

where the second derivatives are given in (2.15). We write X as

X = ZP, + UB,"1J , where J = [Ip:0p4y],
and

X'¥iX = Po'2'¥5ZP, + Po'Z'¥5UBGLI + J'Bi1'U¥yzZR, + 3Byl U UBSLY.

Since z; and u; are totally independent and u; has zero mean we have

E X'¥jX = E Po'Z'¥5ZP, + E J'Bl'U'¥5UBgly | (1)
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Also

EAo'X'¥5X = EU'¥5UB;LT . (2)
Now let

S = (Ip8 Bgli)s,. (3)

Making use of rules on Kronecker products, it follows immediately

from (1), (2), (3), (2.3.13), (2.3.14) that

- 1 -1 —
£17 = S'KS + SAé;I[F(X)‘lgPO'Fz(dX)PO]SA + s;;j[F(x)-1®F(x)]dxs (4a)

1 -
f21 = f12" = - [ soor [Fou-le1p] an S (4b)
1
f22= = [sO0 [FOITeFON1] 500 an (4e)
where

S(\) = (2x)"[c(M)D : D],
c(\) = 2(1-cos)),

and D is the duplication matrix.

Asymptotic Covariance Matrix

We shall use the notation Avar(6) for the asympotic covariance matrix

of 6. We remark that Avar(%) relates to the distribution of 0 and

not Tf%. Thus,

Avar(8)-T-11a-1(6,)
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In appendix 6.2 we show that the inverse of the asymptotic

information matrix is given by

f11  f12
1a-1(0,) = ,
° £21  £22
where
1 -1
f11 - [ = sy [(FO) 1R Fp(aM)P) S, | (5a)
2%

1 -1
£12 = . 2[2; sa' [(FOO-1gP Fp(an)P)S,] 75" [ (158 D% : (1p85,)D* " ] (Sb)

p*a-1 p*'
£22 = 1613J [ FOu-lgron-1 | ax
pta-le () D*'c(N)
DH(Ip8T) | _ _
+ 4 s 115" [(1,8T,)D*" : (1,65,)D*" ] (5¢)
D+(Ip®2n)
where
A= [[FOu-IFG) L @ FOOTIFG) D) (e 2-cVe(r))drdr ,  (6)

and F()‘)-F()\neo)’ 00-(601¢o); z€-£€(¢0)' y—-n-zn(\bo)- P‘P(ao)-
5. Asymptotically Efficient 2-step Estimators

We shall now deal with the problem of constructing asymptotically
efficient 2-step estimators for & and . We begin presenting
/T-consistent estimators for & and ¢, since it is well known that the

first step in such estimators consists in finding /T-consistent
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estimators.

A /T-consistent Estimator for Coefficients
A J/T-consistent estimator for & can be constructed as follows. Let
Y=ZN + V

be the reduced form of the model with associated covariances matrices
Ze*-B'l'ZeB'l and Zn*-B'l'ZnB’l. Let ¢y* be the p(p+l)xl vector
obtained from vec(Ze*:Zn*) by eliminating the supradiagonal elements
of Ze* and Zn*. In section 3.3 we have seen how to construct an
estimator of I and y*. Let these estimators'be M and 37. Let
Fv(j) - Fv(kj,v?) be the estimated spectrum matrix of the reduced
form disturbances. Let P = [ﬁ:Ik]. The formula for & suggested by

Hannan and Terrell (1973) is

- T-1. 1.5 -~ -1 T-1. ] 3 .

b= [sar 3 (Fo(irler 122(3IPISA] Sa' S TEVYL 6P IvecIziy () (D)
J= J=

Proceeding in the same way as Hannan and Terrell (1973), we can show

that Tﬁ(% - 60)-0p(1). For details, see appendix 6.3.

A /T-consistent Estimator for Hyperparameters

Let y* be the estimator of the reduced form hyperparameters as

discussed in section 3.3, and let & be the estimator of & given in
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(1). A natural estimator for ¥, the structural form hyperparameters,

is then given by
v o= [P °] vec[B'LXB : B'I} B] (2)
0 Dt € : n ’

where B -'B(B),TZ:'-Z: E$ ) and~Z; -Z; Zt ). Later we shall discuss
the asymptotic efficiency of the 2-step estimator for y. Using the

same approach it can be easily verified that l is /T-consistent.

The 2-step Estimator for Coefficients

Let & as given in (3.15), that is,

3 - [sA"rj [Fi-l@ P'I5x(i)] S ]'ls 'Til[”}"-l @P' JvecIyiy(d) (3)
DNES z'X al sa 3lF Z'Y

~

where ?—P(E), Fj-Fj(J),~6 and~¢ are J/T-consistent estimators for §

and Y respectively.

We shall show that

d
T3(6-5,) » N(0,f11), (4)
where fll is given in (4.5a).
Subtracting 6, and multiplying by T} both sides of (3) yields

) . . T-1 -
T a)= [T P (s (1) S[FfL ehiveetz v (DI 5]} (5)
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where
H-- [sA?il[? 19 P 1:x(3)] Sa]. (6)
350"
Now from (6) and (2.4) we have that

=1 I 3 I S .
HT-15,=S, jZO[Fj ® P'Izix(j)]vecA, - Sy jZO(Fj ®P')vec Iziy(j), (7)

hence (5) becomes
~ - - T-1.
T$(3-5,) = [-HT1}1 sA'(Ip@p')[T-éjzo(Fjl sl veelzy(i)] - (8)

Now, since & and @ are J/T-consistent, arguing as in (3.10) we have

that
- ‘ T:1 .
plim HT-1 - - Sa'(IpBP') plim [T'ljZO[Fj'1® I7:7(3)] ] (I,8P)Sy

= - Sp"(Ip@P') Qy (IpBP)Sy (9)

where the last equality follows from (3.4.8), Q, being
1
Q, = E?J Fy-lOO@F,(\)dx . (10)

From (3.4.10) we also have that the term in squared brackets in (8)
converges in distribution to N(0,Q,). Hence (4) follows from

Slutsky's theorem.

Finally we mention that the asymptotic covariance matrix of 3 can be

consistently estimated by
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3 - verepry st (Fl@ 122D 1 -1
avar(3) = T-1 [s,' (1,60 )jgo 3 . 22230 (1,6p)s, | (11)

The 2-step Estimator for Hyperparameters

Let 3 as in (3) and ﬁ ;h(é). HenceAﬂ is an estimator of Il which
takes into account the restrictions on B and I'. Let J*-&*(ﬁ) be an
estimator of the reduced form hyperparameters. Thus @* is obtained
by maximising the spectral likelihood function for vec Y', in terms

of the reduced form parameters, conditional on II. Clearly

vaec(ﬁ-no)-op(l) and therefore as discussed in section 3.4
THY*-yo*) » N(0,1a°1(y %)), (12)

where IA(¢O*) is the bottom right block of (3.3.9), that is,

p* 0 | [ [e2(Fy"lary"l)  [e(r, lgr,"1)] Mo+ o
IA-1(y *)=16x3 (13)
o ot | fe (Fylery"ly [ (Fy-lery"L)| [0 D

where F=F,(\) is the spectrum of the reduced form disturbances and

c=c(A)=2(1l-cos\).

Now let

Dt 0
0 p*

<o

] vec[B'TXB : BL} B) (14)

where ﬁ - %(3) and

vec[ie* : 3.:,7*] - gg] }&"
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We shall now show that
R d
T!(¢-yo) ~» N(0,£22)
where £22 is given in (4.5c).

First we note that

[Ee:Tp - (CeiIpol = [BIXB :'BiL) B] - [B,'TS% B,

- [(B'EFX-L)B @ B(If -I,d )B]

+ [(B-Bo)'Ieo*By 1 (B-Bg)'IyotBo]
+ [(B'Eo* (B-By) : B L, (B-By)] .
Hence,

vec[(ie:in) - (Zezzn)o] -

[vec B (E'*-Z ] vec B 25%'(8 Bo )] vecZB-B
vec B' (Z'*-Z vec B' Z (B-By)
or
- P g ] vee [EF T ¢ G ory) ]
B,'L
[iﬁgg % ] vec(B-By) + [ co*gp]l(pvec(s B,)

and therefore

T Gve) = [5 o] [B ®B'B i llo o] T v

* 5] BERErhedn
D+ 0 ] [1 PBBs' Lo

0o D+ Tp@By 'Z *]vaec(B Bo) .

vec(B-B,

(15)

Bo ]

5]

(16)
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Since plimﬁ-Bo, making use of Slutsky's theorem, we have that the
first term in (16) converges in distribution to N(O,fzz'l), where fgo
is given in (4.4c). Now, rewriting B, as By=JA,, J=[I,:0p4y], from

(2.4) and (4.3) it follows that

vec(B-Bo) - vecJ(R-Ao)
= - (1p89)54(3-5)

- -(Ip8B)S (3-3,). (17)

Hence, making use of Slutsky's theorem it follows that the sum of the
last two terms in (16) has limiting normal distribution with zero
mean and covariance matrix being the second term in (4.5c). Thus,

provided that @* and § are asymptotically independent (15) follows.

The asymptotic independence between ;b* and & can be justified as
follows. We have seen in section 3.4 that I and 3* are
asymptotically independent. Now, because ﬁ-h(k) takes into account

the restrictions on B and I'
Avar(fl,*) - avar(l, ) 3 O. (18)

However, because @* and 1* are asymptotically equivalent, (18) holds

~

only if Avar(f'l,;L*) is diagonal. Thus T and Y* are asymptotically

~

independent and, since 3 is uniquely determined from II, s and 1? are

asymptotically independent.
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Appendix 6.1
Proof of Expression (6.3.2)

We shall show that
T
-1 . F:~1 =
T Z I:.F Ip, (1)

where fj is the real part of the crossperiodogram matrix of U' (pxT)

and %-

3 is the estimated spectral matrix. Thus,

Fy = (27)°1 (e4I, + L), (2)
ie - Ze(@),‘tn - anﬂ), andA¢ is the solution of

T-1
jzosj' vee[(Fj-1 - Fy-l15F5-1)] = 0 (3)

where Sj is given in (2.7).

Replacing Sj, (3) becomes

T-1 D'c.
(21)-1j§o DD?J] vec[(Fj-l - Fj'llij'l)] - 0. (4)

Now since D has full column rank, (4) implies that

§ [cyF3-1 - c5F3-115Fy-1] =0 (5a)
and

§ [ Fy-l- Fy-lngry-l ]=-0 (5b)
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Solving (5) for y, it does not matter if it is numerically, we have

§ (Cj %j-l - CJ %j'IIJ}J'l ) =20 (6a)
and R R R

YO Fyl - Fylyrel ) =o0 (6b)

J

Now premultiplying (2) by ie'l yields

TeolFy = (201 (e41, + Q)

where

Thus,

(2mT L = "(eyIp + QFyL . (7

Adding and subtracting 6%3'1 to the LHS andlafjl I{Fjl to the RHS of

(6.a) we have

~ ~

) NOF-1 -0 S Fl o 1.+ O3F:1 I°F:l - Crl 1.
Jg (e5Ip + QF;y Q § Fj § (ejIp+ QFjL 15F; Q JZ Fj IJI-‘Jl

Using (7) we have

2xTL,1 - Q§ 1 = 2rz;1 §1ij-1 -Q ?Fjl I;F;l

and from (6.b) we have

2518 1-27L 1515751 - o,
J

hence (1) follows.
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Appendix 6.2

Asymptotic Covariance Matrix

We have
W'l - W'lflzfzz’l
F'l -
- £p71f£pp W1 £op-l4£gp-1Fp W-1Epf )51
where
W o= f1) - f1pfyp 1fp
and fij' i,j=1,2 are given in (4.4).
We rewrite f12 and f22 as
1 _ [I 1 I 1 D 0
f19g = —,5" c(F-legr) : [ (F-1gI,) ][ ] (1)
1 (21)2 P P o D
and as
L [0 jc2(F-1@F-1) jc(F-lgp-l) D 0
16x3|p p [e &-lgr-1y [ r-lgr-ly || 0

where in (1) and
argument variable

confusion.

(2) c=c()\) and F=F(\). We shall often omit the

A in situations where there will be no risk of

Now wusing the fact that the square matrices fcz(F'1®F’1),

fc(F'1®F'1) and f(F'1®F'1) commute with each other we have

fgp-1 = 1643

0 p*{ |0 a-1 -Jc(F‘1®F'1) Icz(F'1®F’1) 0 p+'

p*+ o][a-1 0 I(F'1®F'1) -Jc(F'1®F'1) p*' 0

(3)
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where D* is the Moore-Penrose inverse of D and A is given by

8 = [en2FO-lgr)-hiar [(FO)-1gr(n) -1yan

- JeOn FOV-TgrO) "D ar[e ) (FO) ~1gF () ~1yax

=[[FO-1F()-1 @ FOIF(1) D) (eZ-ce(x))drdr . (4)

Let f12f22’1 be partitioned as
f19fyp71 = [B1:By] .
From (1) and (3) and from the properties of D we obtain

By = 2r §'[[c(F-la1,) (14Kky)a-1[(F-1gF-1)
- I(F‘1®Ip)(I+Kp)A'1 Ic(F'1®F'1) ]D+'
which can be rewritten as
- 4nx E'A-l[ jc(F-lgxp) I(F'1®F'1) . j(F-1®1p) jc(F-I@F-1>]D+'
-awE'A-l[II(F(x)-lF(»)-lgp(y)-1F(x)-1)(1p® F(x))(c(x)-c(p))dxdp]n+'

(5)

by noting that A-l commutes with Ky and with f(F'1@Ip) and KpD+'=D+'.

Now because

(I8F(N)) (e(M)-e(r)) = (20) 1 (I,8(c(MET, + L) Je (V) - c(r))
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bood, . 30d c_
s| 4 ((tz0d1:77081) s o= -
dor.05f flo T 1
4 .
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1
Vo= f1) - f1pfy7lfy =7 sa' [(FOV) -1gP' F,(aN)P)S,

and

1 .
f11 - [ - sA'j(F(x)-l@P'Fz(dx)P) Sa ] 1 (8)
2%
Now using (8) and (7) we have
£12 = - 2| Ls (PO 1P Fp (@) P)S ]'1§'[(1 BEIDH' 1 (I,8E,)D*' | (9)
2% A z A pere TATPETT

and using (9) and (7) and (3) we have

p*ta-1 o I(F'1®F'1) -fc(F-lgp-l) D*' 0
£22 1643

0 pta-l -jc(F-lgp-l) jc2(F-1@F-1) o p+'

D+ 0 18T |- D+' 0
+ & S w-ls'(Ip®Ze):(Ip®Zn> '
0 DY | 16T, 0 D*

or, after some algebra,

pta-1 pt'
£22 1673J [ FOM) -lgF(n) -1 ] ax
pta-lc(n) D*H'c())
D+(IP@Z€) _ _
+ 4 5 w15 [(1,8Z0)D%" : (1,8Z,)D%" ] . (10)
| D¥(I,8%y)
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Appendix 6.3

/T-consistency of Coefficient Estimators

We shall show that & given in (5.1) is a /T-consistent estimator for

6, that is

T4(3-85)=0p (1)

Subtracting &, from both sides of (5.1) we have

- -1 . ~
(6 - 65) = Hv’l Sy’ §20[Fv71(j)® P']veclziy(j) ]
where
T-1 . - ~
H, = SA'jZo(Fv'l(j) ® P'Izi7(3)P)S,,
and

vec I1z7:{(3) = vec Iziy(3) - (Ip®Iz:7(3)P)Spé,.

Now from (2.4), after some algebra, (4) becomes

vec Iz7:(3) = vec Iziy(3) - [(Ip-By)'@Iziz(3)] vec(ll-N).

Now from (3.3.10) we have that

¢

5 T-1 .
vec(fl-N,) = Av'ljZOIFv(J)'1®Ik] vecIziy(j),

where

T-1 .
v = JZo[FErl(J)(aIznz(J)]

Thus (5) becomes

)

(2)

(3)

(4)

(5)

(6)
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-1 .
vec Izwy(j) = vec Izwy(j) - [Ip@Isz(j)] Av'§zo[Fv°1(j)@Ik]veclzvv(j)

+ [By'® Iz12(3)] Av-ligzti*v-l(j)@lk] veclziy(j) . (1)
Hence, replacing (7) in (2) we have after some algebra
8 - 8o = Hy'lsp'(I,R') Ay(B,'Ik) Av-ljgz[”rgl (3)8Ik]veclziy(§). (7)
Now from (3.4.8) and (3.4.9) we have

plim 'I“]-A.v = Qy
and
T-1 . d
T-tjzo(Fv-l(j)@Ik yvecIziy(j) = N(0,Qy)

where

x

1
Qv = [ Forlon® Fp(any.

Also because plim'f = P,

plim T-1H, = plim T-15," (1,8P') A (I,@P')S,

-SA' (IPQP' ) QV(IP®P)SA'

Hence making use of all of this, (1) follows from Slutsky's theorem.
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CHAPTER 7

THE LIMITED INFORMATION MAXIMUM LIKELIHOOD ESTIMATOR OF A SINGLE

EQUATION IN A SIMULTANEOUS EQUATION SYSTEM WITH STOCHASTIC TRENDS

1. Introduction

In this chapter we are going to consider the LIML (Limited
Information Maximum Likelihood) estimator of the parameters in a
single equation of a simultaneous equation system with stochastic

trend components.

The LIML estimator was developed by Anderson and Rubin (1949) in
order to estimate a single overidentified equation from a system of
equations with uncorrelated normally distributed disturbances. It is
obtained by considering only the portion of the system that relates
the endogenous variables in the equation of interest. Because it is
hard to grasp the theory underlying LIML, many different procedures
have ©been derived, which are numerically or asymptotically
equivalent, e.g. least variance ratio, instrumental variables. It is
sometimes referred as the 1least generalized residual wvariance
estimator. For a comprehensive study see, among others,

Hausman (1983), and Hendry (1976).
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A relatively easy way to understand LIML is by considering it as FIML
applied to the new.system formed by the equation of interest in its
structural form and the reduced equations corresponding to the
endogenous included in the equation of interest. As pointed out by
Hall and Pagan (1981) this result can be found in a number of places
in the literature. It has the interesting property that the new
system is a triangular system and therefore, based on Lahiri and
Schmidt's theorem (1978) concerning FIML estimation of triangular
systems, LIML can be interpreted as an iterated version of the SURE
(Seemingly Unrelated Regression Equations) estimator. Following
these lines Hall and Pagan (198l) investigated the situation where

the disturbances follow a multivariate MA(l) process.

Our task 1s to study the situation where the disturbances in the
complete system follow a multivariate random walk. Proceeding in an
analogous manner to Hall and Pagan (1981) we show that, as in the
classical case, the LIML estimator of the parameters in the equation
of interest can be obtained by applying FIML to the new system
consisting of the first (structural) equation and the reduced form
for the endogenous appearing in this equation. We derive a
computational method for LIML in the time domain via the multivariate
Kalman filter and consider the asymptotic properties in the frequency
domain as a specialization of the results given in chapter 6. Ve
finish by examining the efficiency of the estimators studied in

chapter 4 relative to LIML.
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2. The LIML Estimator

We shall consider the complete system as in chapter 5 , that is,

Ye'B + zo'T = we', (1)

where B is pxp ,I' is kxp and w, follows a multivariate random walk

plus noise model with associated covariance matrices X, and Zﬂ' Let

ye' = [y1e:¥1e':¥oe" ]
ze' = [Z1¢':29¢" ]

we' o= [w1eiWie' tWoe' ]

where yj. and wj. are scalars, Yj;.' is (1xpy), Yo¢' is 1x(p-1-p3),

Z1¢' is lxky, Zg¢' is lxky and

1 Bjp B3 v T12 I3
B=1]P8 Byy Bj3 and r =
0 B3y B33 0 Ty Iy3

Within this notation, the first equation, the equation of interest,

may be then written as

Yit = - Y1¢'8 - Z1¢'y + e * €1t (2a)

Flt = H1,t-1 + "1t - (2b)

Thus, Yj3.' and Zj.' contain, respectively, the endogenous and
exogenous variables included in the first equation, while Y;.' and

Z9.' contain, respectively, the endogenous and exogenous variables
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excluded from this equation.

The reduced form of (1) is given by

[y1e Yie'Yoe' ) = [Z1¢'22¢" 1 0 + [vie Vie'Vor'] (3)

where

0o el ["11 M2 rI13]

Mly1 Mo M3
and
pll gl2 pl3

31 p32 33

where BiJ i,j=1,3, are the ij-th submatrices of the inverse of B.
Now the LIML estimator of the parameters in (2) is obtained by

maximising the loglikelihood function of the system

e me] = ezl ] o e e ®
Mzy M2
where
pll pl2
[Vlt V1c'] - [ Wit ch'ch'][ gg} ggg ] (6)

The loglikelihood function of (5) is as in (5.4.1). However the
maximisation is subject to constraints guaranteeing that only the
exogenous variables contained in Z;. are included in the first

equation. These constraints are

My + M8 = O (7a)
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and

My + MaB = - v . (7b)

As pointed out in Hall and Pagan (1981), (7b) is not a restriction as
such, but it will hold, and we can deduce ¢ from the reduced form

parameters.

3. LIML Viewed as a Special Case of FIML

We are now going to proceed as in Hall and Pagan (1981) in order to
show that the ML estimator of (2.5) subject to the restrictions given
in (2.7) is numerically equivalent to the FIML estimator of the new
incomplete system consisting of the first (structural) equation,
given in (2.2), and the reduced form for the endogenous variables
appearing in this equation. We remark that recognizing LIML as a
special case of FIML, will allow us to obtain the ML estimates from
the structural form, which, from the computational point of view is

easier to handle then the reduced form subject to restrictions.
The new system may be written as

1 0

vy -N
] + [th'ZZt'] [ 12] - [Wlt V1c'] (1)
0

e
e e’ iy

where
pl2
] (2)

1
[Wlt Vlt'] - [Wlt Wlt""Zt'][ g | ggg
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The reduced form of (1) is given by

[yie Y1e' ) = [Z1¢'Zo¢' ] O + [vie* V'™ (3)
where
y -M 1 0 7y-1 Mt my
O DA 0 Lt
0 -My B Ip Mgyt My
and
1 0 1-1
fre ] = el | ] ®

6 Ipl

Now the restrictions on N are the same as the one given in (2.7).

Moreover, noting that

1 Bl2 1 07-1 pll pl2
o B32 i Ipl B3l p32

we have that (5) is identical to (2.6): hence the equivalence of the

two procedures.

Finally we note that if we assume that the disturbances of the
complete system follow a multivariate random walk plus noise model,
with associated covariance matrices X, and Zn, then the disturbances
(w1¢,Vie')' of the new incomplete system given in (1) will also
follow a multivariate random walk plus noise but with associated

covariance matrices
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1 0 0 1 Bl
.t - [ 121222130 ] £, | 0 B22 (6a)
Bieipéctpiat | 0 B32]
1 0 0 1 812
r,t - [ ] T 0 B22 (6b)
1] ] t 1 ﬂ
Bl21p22:p32 0 B32)

This fact has the relevant property of allowing us to make use of the
estimation techniques and asymptotic properties for FIML with random

walk plus noise disturbances as discussed in the previous chapter.

For models with disturbances following an unrestricted multivariate
MA(l) process, 1if we proceed as above and consider only the
incomplete system with reduced form equations for the endogenous
variables in the first equation, the MA structure of the disturbances

will not be maintained. 1In other words if w¢' in (2.1) is given by

Wt' - Ct' + Ct_l' e,

then the disturbances in (1) will take the form

1 Bgé 1 Bgé
w Vas'l = €' O B 4+ €+_1' © 0 B ,
[o1e Vie'] t[o 332] e e |0 332]

and clearly will not follow a vector MA(l), since the matrix in
square brackets and 6 do not commute. Hence in this case, in order
to be able to use the literature, such as Reinsel (1979), concerning
FIML estimation of simultaneous equation systems with vector ARMA
disturbances, Hall and Pagan (1981) considered LIML as FIML applied

to the system consisting of the (structural) equation of interest and
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the reduced form for all endogenous variables in the system apart
from y;¢. Moreover constraints on the MA coefficient matrix must be
imposed. These constraints in turn restrict us to models in which
all disturbances follow a vector MA, apart from the one in the first
equation, which follows a univariate MA process. Such models do not
seem to be very natural. Structural models in which both €y, and 79y,
may be correlated with the corresponding disturbances in the other

structural equations are more appealing.

4. Computational Method

We are now going to derive the FIML estimates of the system given in

(3.1), which may be written as

[Ylt Ylt'] BY + [th'zzc'] rt= wt (1)

where the Exg matrix B! and the KxE matrix I'T, where §=p1+1, K=kq+ko,
are

1 0 y -M2
Bt - and rt =
g Ipl 0 -l

As we pointed out before the le vector wtT = [wi¢ V1¢']' follows a
;-variate random walk plus noise model with associated covariance

matrices 267 and Zn7 given in (3.6a) and (3.6b).

Let o denote the unrestricted elements of -vec [BT'I't']'. Thus
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- B
-]
* vee[M12]

Conditional on the first observations the loglikelihood function of

(1) is given in (5.4.4), that is,

; + T $, p.-1
2(a,yT) = (T-1) log 1BT| - } tZzloglFtl -3 tZth Feoive (2)

where y' 1is the ;(5+1)x1 vector obtained from vec(ZeT:ZnT) by
eliminating the supradiagonal elements of ZeT and an. Now because
BT is a triangular matrix, |B'|-1, hence log IBT| is absent in the
loglikelihood function. Moreover from the discussion given below

(5.4.4) we have that
Vt - S’t - ‘Xt'a (3)

where §t is obtained by applying the multivariate Kalman filter to
the E-dimensional process, Yy = [y1¢ Y1¢']' and it' is obtained by
applying the multivariate Kalman filter separately to each column of
it', where

Yie' 21¢’ 0

X' = . (4)
0 (1p1® z¢")

Replacing (3) in (2) yields

T T - - - .
e(a,yt) = - & tzzloglFtl -3 tzz(yt - Xe'a )'Fel(ye - Xe'e ) (5)
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which has to be maximised with respect to a and ¢T.

As in the univariate case the maximisation of (5) can be carried out
in two different ways. Firstly a can be concentrated out of the
loglikelihood function. Thus, solving the likelihood equations for o

we have

a=a @) - [ %ktpt'rxt']-l §:~XtFE]‘~Yt : (6)
t=2 t=2
Replacing (6) in (5) yields the concentrated loglikelihood function

T T - ~ A ~ A

0c(¥1) = - 4 3 logiFel - 4 5 (ye - Xe'a )'Fel(ye - Xp'a) (7
t=2 t=2

and the ML estimate of y' is obtained by maximising (7) nonlinearly

with respect to ¢T. Once we have found 27, &;&(w ) is obtained from

(6).

Alternatively we could maximise (5) in a stepwise fashion. A
consistent estimator of o 1is constructed by differencing all the
variables, and then applying 2SLS to the first equation and least
squares to the second set of equations given in (1). The residuals,
;tT - Y¢ - it'a, are computed and the matrices 'iéf and ’fg' are
estimated maximising the loglikelihood of ;tT. a is reestimated
using (6). As noted in Lahiri and Schmidt (1978) the two-step
estimator of a is asymptotically inefficient. However, 1if the

procedure is repeated until convergence, apart from computational

restrictions, the same estimator is obtained.
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5. Asymptotic Theory of LIML

Although the fact that the determinant of B! is equal to unity helps
regarding the computation of LIML it does not help regarding the
asymtotic properties. Thus, in order to obtain the asymptotic
properties of LIML we have to proceed in the same way as we would in
obtaining the asymptotic properties of FIML in the general case where
B! is not a triangular matrix. This has nothing to do with the fact
that the disturbances are serially correlated, since even in the
classical case we have to proceed in <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>