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ABSTRACT
The classical multivariate theory has been largely based on the multivariate normal 

disitribution (MVN): the scarcity of alternative models for the meaningful and consistent 
analysis of multiresponse data is a well recognised problem. Further, the complexity of 
generalising many non—normal univariate distributions makes it undesirable or impossible 
to  use their multivariate versions. Hence, it seems reasonable to inquire about ways of 
transforming the data so as to enable the use of more familiar statistical techniques that 
are based implicitly or explicitly on the normal distribution.

Techniques for developing data—based transformations of univariate observations 
have been proposed by several authors. However, there is only one major technique in the 
multivariate (p—variable) case by Andrews et. al. [1971]. Their approach extended the 
power transformations proposed by Box 6  Cox [1964] to the problem of estimating power 
transformations of multiresponse data so as to enhance joint normality. The approach 
estimates the vector of transformation parameters A by numerically maximising the 
log—likelihood function. However, since there are several parameters to be estimated, 
p(p+5)/2 for multivariate data without regression, the resulting maximisation is of high 
dimension, even with modest values of p and sample size n. The purpose of the thesis is to 
develop computationally simpler and more informative statistical procedures which are 
incorporated in a package. The thesis is in three main parts:

— A proposed complementary procedure to the log—likelihood approach which 
attempts to reduce the size of the computational requirements for obtaining the estimates 
of A. Though computational simplicity is the main factor, the statistical qualities of the 
estimates are not compromised, indeed the estimated values are numerically identical to 
those of the log—likelihood. Further, the procedure implicitly produces diagnostic statistics 
and some useful statistical quantities describing the structure of the data. The technique is 
a generalisation of the constructed variables method of obtaining quick estimates for 
transformation parameters [Atkinson 1985]. To take into account the multiresponse nature 
of the data and, hence, joint estimates for A, a seemingly unrelated regression is carried 
out. The algorithm is iterative. However, there is considerable savings in the number of 
iterations required to converge to the maximum likelihood (MLE) estimates compared to 
those using the log—likelihood function. The technique is refered to as the Seemingly 
Unrelated Regressions/Constructed Variable {SURCON) analysis, and the estimates 
obtained are the Sur con estimates.

— The influence of individual observations on the need for transformations is quite 
crucial and, hence, it is necessary to investigate the data for any spurious or suspicious 
observations, outliers. The thesis also proposes an iterative technique for detecting and 
identifying outliers based on Mahalanobis distances computed from sub—samples of the 
observations. The results of the analysis are displayed in a graphical summary called the 
Stalactite Chart, hence, the analysis is refered to as the Stalactite Analysis.

— The development of a userfriendly microcomputer—based statistical package which 
incorporates the above techniques. The package is written in the C programming language.
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CHAPTER ONE

1.0 INTRODUCTION

1.1 Background

This thesis deals with the problem of transforming multivariate data to the 

multivariate normal (MVN) distribution. In general, the transformations can be based on 

theoretical considerations or be estimated from the data that are being analysed. The thesis 

concentrates on the latter which is sometimes refered to as "data—based" transformation. 

Techniques for data—based transformations of univariate data have been proposed by 

several authors e.g. Moore & Tukey [1954], Box & Cox [1964] and Andrews [1971]. 

However, there is only one major technique in the general multivariate (p-variable) case. 

The technique is by Andrews et.ai. [1971] and is an extension of the power transformations 

to normality, proposed by Box & Cox [1964], to multivariate data so as to enhance joint 

normality. The approach estimates the vector of transformation parameters A by 

numerically maximising the log—likelihood function. Since there are several parameters to 

be estimated, p(p+5)/2 for p dimensional multivariate data without regression, the 

resulting maximisation problem is of high dimension even with modest values of p and 

sample size n.

The main aim of the thesis, therefore, is to propose a complementary procedure to 

the log—likelihood approach which attempts to reduce the size of the computational 

requirements for obtaining the estimates A. Although computational simplicity is the focus 

of the technique, the statistical qualities of the estimates are not compromised; indeed the 

estimates derived are numerically identical to those from the log—likelihood. The procedure 

also implicitly produces diagnostic statistics and some useful quantities which describe the 

structure of the data. The technique is a combination of two regression analysis methods, 

namely, that of obtaining "quick" estimates for transforming the response in a regression 

model using constructed variables [Atkinson 1985] and that of seemingly unrelated 

regressions [Zellner 1962] and is thus referred to as the Seemingly Unrelated
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Regressions! Constructed Variable {SURCON) analysis. The estimates obtained are called 

the Surcon estimates. The SURCON method is an iterative generalisation of the 

constructed variables method, the seemingly unrelated regressions being adopted to take 

into account the multiresponse nature of the data through the covariance structure. There 

is considerable savings in the number of iterations required to converge to the maximum 

likelihood (MLE) estimates compared to those using the log—likelihood.

The influence of individual observations on the need for transformations is quite 

crucial to a proper understanding of data and, hence, it is necessary to investigate the data 

for any spurious or suspicious observations or outliers. Even normal data may fail to 

exhibit normality due to such observations. These spurious observations may be valid 

(outliers) or may not be from the same population (contaminants) or may be genuine errors 

introduced into the sample during the different stages of data collection (e.g. enumeration 

errors, data capture errors or even in the sampling design). It is, therefore, necessary to 

perform a thorough statistical check on the data for the existence of outliers. The thesis 

discusses the problem of detecting and identifying such observations. It proposes an 

iterative technique for the task based on Mahalanobis distances computed from 

sub—samples of the observations. The results of the analysis are summarised in a graphical 

display called the Stalactite Chart (or Plot) and the analysis is refered to as the Stalactite 

Analysis. The technique is compared to a number of other outlier detection methods.

The transformations process should be carried out in a number of stages. The 

multivariate data should first be tested for any departures from multivariate normality. If 

there is evidence of departures, the next stage would be to check for any outlying 

observations which may be causing them. A decision can be made on any such observations 

to either discard them and proceed with the transformations or accommodate them and 

make note of the fact. In an ideal case, both alternatives should be used and comparisons of 

the results made. The whole process is exploratory and so a dedicated software tool for the 

task is required. Such a tool is also presented in the thesis. It implements the proposed
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techniques together with the related existing methods into a microcomputer—based 

user-friendly statistical package called tSTAT  (short for transformation STATistics). The 

package is not designed to be a comprehensive statistical analysis package but to 

complement the well-known statistical packages with the specific tasks of carrying out 

transformations to normality and of outlier detection. The package is written in C.

The structure of the thesis follows the order of outlier detection and then 

transformations. In Chapter two, techniques for detecting outliers in multivariate data are 

investigated and compared. These include univariate screening techniques which are used 

to study the marginal characteristics of the data. The main result of the chapter is the 

proposed Stalactite analysis. A number of examples are analysed using both simulated data 

sets and some well known data used for outlier detection techniques in the multivariate 

literature.

In Chapter three, discussion and presentation of some techniques for assessing the 

violation of the normality assumption is made. The chapter then investigates 

computational methods for transformations to multivariate normality. The main result of 

the chapter is the presentation of the proposed Surcon analysis. Some well known data sets 

are used as examples to demonstrate the theory. Simulated data sets are also used to study 

the expected behaviour of the techniques under known predetermined conditions.

The tSTAT software package is discussed and presented in Chapter four. The 

chapter begins by describing the overall design and structure of the package. It displays 

some of the main algorithms used together with the source code in the C programming 

language. The general usage of the package is outlined in the form of a reference manual.

Finally, Chapter five is a summary of conclusions and recommendations.

The rest of this chapter outlines the the main results obtained and described in each 

of the chapters. The following section is an overview of the role of the multivariate normal 

distribution in the theory of multivariate analysis and thus provides the justification for 

the need for transformations.
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1.2 The Role of the MVN

Since the beginnings of the theory of multivariate analysis the multivariate normal 

distribution (MVN), defined in Definition 1.1, has played a central role in the subject. 

However, the computations were usually very time-consuming, even with a good desktop 

calculator, and the distributions of the various test statistics were not tabulated. For 

example, likelihood ratio test statistics were developed for a wide range of hypothesis tests, 

but they all involve finding p*p determinants, where p is the dimension of the data, and 

only asymptotic distributions were known. A great deal of effort was then put in to find 

good approximations for the distributions of these test statistics and their power functions.

The advent of powerful computers, however, helped the subject to free itself from 

the multivariate normal strait jacket and multivariate problems could be tackled in a more 

general manner without being cramped by lack of computational power. Automated 

procedures have allowed the graphical exploration of data, which is so necessary for good 

data analysis, to become a practical possibility and have facilitated the calculation of tables 

of exact percentage points of a number of test statistics. However, good approximations are 

still important for the automatic presentation of significance levels in a computer printout.

The multivariate normal distribution, however, still has a central role in 

multivariate analysis since the classical multivariate theory has been largely based on it. 

Among the reasons for its ascendancy in the multivariate context are the following:

• The MVN is an easy generalisation of its univariate counterpart, and the 

mutlivariate analysis runs almost parallel to the corresponding analysis based on univariate 

normality. Generally, the same cannot be said of other multivariate generalisations of 

univariate distributions.

• The MVN distribution is entirely defined by its first and second order moments — 

a total of only ^p(p+3) parameters in all. This compares with 2^—1 for the multivariate 

binary or logit distributions [Mardia et.al., 1979; p59]. This economy of parameters 

simplifies the problems of estimation.
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• In the case of normal variables zero correlation implies independence.

• Linear functions of a multivariate normal vector are themselves univariate 

normal.

• Even when the original data is not MVN one can often appeal to the central limit 

theorem which proves that certain functions such as the sample mean are normal for large 

samples.

• The equiprobability contours of the MVN are simple ellipses, which by a suitable 

change of coordinates can be made into circles (or in general, hyperspheres). Amongst other 

things, this geometric simplicity allows us to graphically assess departures from the 

distribution with ease especially in the bivariate case.

DEFINITION 1.1 Multivariate Normal Distribution (MVN)

Let y = (2/1, 2/2,..., 2/p) be a p-dimensional vector of random variables. Then y is said 

to have a nonsingular MVN distribution with mean vector and covariance matrix S 

(denoted by N[/x, E]) if its density function is

m  =  (24-^/^ |2 r l / 2 e x p [ - ^ ( y - / , f 2 - ' ( y - „ )  ] (1.1)

where (-m < 2/j < m, j= l, 2 , . . .,  p) and S > 0.

□

1.3 The Stalactite Analvsis

As mentioned previously, the proposed Stalactite analysis algorithm is presented in 

Chapter two. The procedure is used for the detection of multiple outliers in multivariate 

data using Mahalanobis distances and iterative resampling of the data. It involves a 

sequential construction of an outlier free subset of the data, starting from a small random 

subset. The Stalactite plot provides a summary of suspected outliers as the subset size 

increases. A combination of the diagnostic quantities derived and probability plots leads to 

the identification of multivariate outliers. These outliers are identified even in the presence 

of appreciable masking where the presence of a clustering of outliers may obscure their 

outlyingness due to the influence they would have on the estimates of the means and
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covariance matrix used in calculating the distances. Usually, the classical approach of using 

the Mahalanobis distances computed from the full sample cannot detect such outliers. A 

recent method to overcome this problem by Rousseeuw and van Zomeren [1990] uses 

distances based on robust estimates of location and covariance. The method is theoretically 

appealing but the computational requirements are immense and so make it prohibitive as a 

quick outlier detection procedure on small computers. In comparison, the Stalactite 

analysis algorithm has the advantage of computational modesty while yielding a simple 

graphical summary.

1.4 The SURCON Analvsis

The proposed SURCON analysis algorithm is presented in Chapter three. The 

algorithm involves initial normalised Box—Cox transformations on each variable based on 

some hypothesised values for the transformation parameters, Aq, which are usually 1 (no 

transformation for all A’s). A seemingly unrelated regression analysis is then performed on 

the fit of the constructed variables centered about the means on the transformed variables 

also centered about their means. The derived transformation parameters, X are functions of 

Ao and the regression coefficient estimates of the constructed variables. When Ao is taken as 

the maximum likelihood estimate (MLE) Amie of A the fit should not be significant; if it is 

the process is repeated using an interpolated value between Ao and the new Â. The process 

is, therefore, repeated until all the regression in the model is removed.

The method is compared to the likelihood approach and although the 

transformation parameter estimates are identical there are significant savings in the 

number of iterations required to converge to the MLE’s. The output produced also includes 

confidence intervals for the estimates and other useful statistics.

1.5 The tSTAT Package

The tSTAT package described in Chapter five aims at providing a quick tool for 

implementing the algorithms and theory discussed in the thesis. The package is designed to 

serve as a quick tool and so it was designed to facilitate maximum ease of use. As Cooper
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1984] remarked about a user—friendly statistical package "...its prime aim was not only to 

’keep the user away from the operating system’ but to meet the claim that if the user knew 

what he wanted in data analysis terms the system would provide all the help and guidance 

at the computing level necessary to do it". The tSTAT package was designed in line with 

this concept of user-friendliness. The user base for statistical systems has changed with the 

advent of microcomputers and so systems have to be designed to cater for both the ’naive’ 

user and also to remove the burden of preparation of program routines for the expert user 

such that effort is shifted towards the interpretation of the results.

The main disadvantage of a statistical package is that the user is locked into the 

system he is using. This means that he is restricted to the options available in the 

particular package. Nelder [1984] suggests that the user needs the ability to move easily 

between packages using each for that step of the analysis for which it is best suited e.g. 

package A output can easily be accepted as input to package B. The tSTAT package does 

not, in general, have the ability of producing output in a suitable format which can be used 

as input in another package apart from the transformed data. However, for the purposes it 

was designed for, exploratory analysis, its output is in "final form" format. In addition, 

since it produces a logfile, which is in plain ASCII format, the results can easily be 

imported into many modern wordprocessing packages or edited using any text editor.

1.6 Notation

In general, the notation adopted in the thesis conforms to familiar conventions.
T T T TThus, for instance, x, y, x, j/,... denote column vectors and x ,y ,x ,..., row vectors; and 

X, Y, %, y,..., matrices. The data matrix is denoted by Y (and X in certain contexts). It is 

of order n by p where n is the sample size and p the number of variables. A distinction is 

made between parameters and random variables by using the familiar convention that the 

former are denoted by Greek letters and the latter by letters of the English alphabet. Most 

of the concepts and methods discussed are based on observed or sample statistics. A hat (") 

is placed over the parameter symbol for its estimate. The rest of the notation is as used in
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multivariate statistics literature eg. E for the population covariance matrix and S for its 

estimate.

Equations, figures and tables in the main text are numbered sequentially within a 

chapter and have a numerical prefix indicating the chapter. However, figures and tables 

appearing in the examples have a prefix E followed by the example number.
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CHAPTER TWO

2.0 MULTIVARIATE OUTLIER DIAGNOSTICS

2.1 Introduction

This chapter is devoted to investigating and comparing techniques for detecting 

outliers in multivariate data sets. It includes univariate screening techniques which are 

used to study the marginal characteristics of the data. These provide useful insights in the 

interpretation of the results obtained from joint screening (multivariate) techniques.

This initial section discusses the general outlier problem by first defining an outlier 

together with the associated outlier models. The models are presented in two contexts, 

namely, the single observation formulation and the general formulation. The remainder of 

the chapter is as follows. In section 2 the techniques and tests for identifying outliers are 

discussed. The multivariate outlier diagnostics theory depends strongly on the Mahalanobis 

distances and this section places specific emphasis on them. The main result in the section 

is the single case deletion formula for Mahalanobis distances. Section 3 contains the 

graphical procedures that are used. The main multivariate techniques are discussed in the 

next four sections. The Classical approach to multivariate outlier detection is section 4, the 

Hat—Matrix approach in section 5 and the Minimum Volume Ellipsoid approach in section

6. Section 7 presents the main result of the chapter which is the proposed iterative 

technique sampling technique, the Stalactite Analysis approach.

To begin, then, with the general problem of outliers. A recurring difficulty in the 

creation and maintenance of a large computerised data base is the accuracy of the 

information entering the base. If high volumes of data are involved, then the data capture 

tends to be carried out by personnel with varied levels of efficiency and accuracy, and 

verification may be unsatisfactory in part. Thus, action is required to maintain the base’s 

integrity. The fact that large volumes of machine—readable material are involved suggests 

that, as far as possible, this screening should be computerised.

The screening process (at the data processing stage) can involve several stages,
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including:

A / Verification — the cross-validation of data being transcribed from the "source 

documents" to computer magnetic media. This could be carried out by the data being 

entered twice by two different operators and comparing the two versions.

B / Validation — testing the data to ensure that all the responses lie within certain 

pre—specified or known (a priori) limits; i.e. range checks. Examples are 0<= age < 120, 

sex = 1  or 2, etc.

C / Editing — this tests for consistency between responses ie. two or more responses 

should jointly be valid. Examples are if sex = male and number of births =  2 then error.

Stages B and C require some prior knowledge of the data (responses) to be able to 

set the "rules". However, it is possible to use the data itself to provide the "rules". Here 

exploratory or initial studies are done to understand the nature of the data, to detect 

measurement errors, recording errors and "outliers".

The classical work in the field of computerised data screening related to census data 

is based on the redundancy built into the census return. This enables checks of internal 

consistency to be carried out and inconsistent records flagged for appropriate action.

On the other hand, data bases consisting of vectors of data following some (known 

or assumed) distribution can be screened using the distributional properties. In general in 

this type of data base, no deliberate redundancy is built into the records but rather the 

extent that the components are statistically related can be used for statistical checking of 

mutual consistency.

The data in these databases are multivariate in nature and so the problem of 

detecting and identifying "unusual" observations should strictly be a multivariate one. The 

term "outliers" can have several different interpretations and one choice of interpretation 

may render an observation as an outlier (or alternatively as a "good" observation) whereas 

another interpretation may yield different conclusions. As Kruskal [1960] and Gnandesikan 

[1977: p.272] have noted, an observation may be an outlier for one purpose but not for
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another.

In detecting outliers, therefore, it is necessary to have both an operational definition 

of an outlier and operational procedures for the identification of such points. Anscombe and 

Tukey [1963] considered outliers to be "observations that have large residuals, in 

comparison with most of the others, as to suggest that they ought to be treated specially." 

To propose and compare outlier procedures, one must know what information is sought for. 

Two possible aims were mentioned by David [1981: p.218]:

(a) to determine whether outliers are present in the data

(b) to determine those observations that are aberrant

Clearly, if either or both of these are the objectives, the outliers themselves are the

primary concern of the analysis. On the other hand, if fitting a model, estimating a set of

parameters, or testing a hypothesis is the main interest, outliers are a complication and 

need to be handled in an appropriate fashion. The aim there is:

(c) to modify a statistical analysis by using information regarding the presence and 

identity of outliers.

Methods suitable for one of these tasks may or may not be suitable for the 

others.The focus in this thesis is primarily on aims (a) and (b), that is examination for the 

presence of outliers and their identification.

In defining and discussing the general outlier problem the theory developed does not 

depend on any particular distribution, the data are assumed to be a random sample from a 

multivariate normal distribution. So any observation whose distribution departs from this 

model is regarded as an outlier. The multivariate normal error structure has been adopted 

for several reasons, including mathematical tractability, and even more importantly, the 

fact that many standard multivariate methods are derived under the assumption of 

normality. This makes it crucial to check for outliers, as well as other types of 

nonnormality, as their presence will strongly affect inferences made from normal—based 

procedures. For example, Layard [1974] showed that the normal theory likelihood ratio test
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for equality of covariance matrices is highly nonrobust against departures from normality, 

including contamination.

The definition of outliers adopted in this thesis is as follows:

Defiwitioit 2.1: O u tliers

O u tlie rs  are observations th a t deviate from the model suggested by the 

m ajority  of the point cloud, where the cen tra l model is  the m u ltivaria te  normal (or 

a t le a s t  a unimodal e l l ip t i c a l  d is tr ib u t io n ) . #

This definition, therefore, considers a mixture of clean data and arbitrary 

contaminants. In practice, a further refinement to the definition is required in order to 

decide what the majority of the point cloud is and, hence, which observations can be 

considered as outlying.

2.1.1 The Outlier Model

2.1.1.1 Single Observation Formulation

Let the vector x =  (zi,...,Zp)^ represent an arbitrary observation vector distributed 

as N(/f,S). Assume without loss of generality that the xi have been scaled to zero mean and 

unit variance. Also, let the input record he y = where

y =  x-\- e (2 .1)

e being a vector of data capture errors. The screening of y consists, therefore, of a test of 

the null hypothesis

H q: 6 =  0 (2.2)

One possible alternative to Hq is Hi: 6^0 ,  that is, an arbitrary vector is present. In 

practice. Hi can be specialised considerably. Suppose that with low probability q a given 

variable is entered incorrectly. In this case the majority of the data vectors will either be 

correct or contain a single error located randomly, and primary concern is with the 

alternative hypothesis

H2: 6j # 0 for some unknown j 

6i =  0 for all i  ̂ j
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and test statistics which are more powerful against H2 are required. Hawkins [1974] 

proposes five screening procedures — a "one—at—a—time" test, the standard % test, and 

three statistics derived from principal component analysis.

2.1.1.2 General Formulation

Consider a random sample from a multivariate normal distribution. The model for 

these data can be specified by the matrix

Y = e f i + U  (2.3)

where the n « p observation matrix y  has i.i.d rows Fi,...,!^, € is an n * 1 vector of I's, n 

is the unknown 1 % p mean vector, and the rows of the n * p matrix U are i.i.d. N(0,S) with 

covariance matrix E unknown. It will be assumed that n > p + 1 to ensure that p and S are 

estimable.

To reflect the possibility of outliers, the model can be embedded in a multivariate 

mean model with mean slippage [Schwager & Margolin 1982]:

y  =  cp +  à* A* +  U (2.4)

Here c, p, and U are as above, and n > p + 1. Furthermore, à* is a nonnegative scalar, and 

i4* is an arbitrary n» p matrix such that:

(Cl) l|i4*|| =  V[Eaij) =  1, unless L* =  0, in which case i4* =  0 
ij

(C2) more than half the rows of i4* are zero

In this model, the observation Yi is an outlier if the i—th row of A* is nonzero.

No outliers are present if (iff) A* =  0. Condition (C2) requires that more than half of the 

observations are drawn from the N(p,E) population. The general outlier problem, therefore 

consists of:

• Model y  =  ep +  t^*A* +  U (all terms as above)

• Hypothesis = 0 vs Hi'.à* > 0

• Action space = {Z>o,Di}, where D{ denotes the decision to act as if hypothesis 

Hi is true, i=0,l
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• State space 0  =  { ( a *, A*, n, S): S > 0, A* > 0, (C1),(C2) hold}

• Loss function L with L($y D\) = i, if A* = 0 and L(^, D\) =  1—i, if A* > 0

Schwager and Margolin [1982] discuss the problem of detecting multivariate normal

outliers using mean slippage and demonstrate that the locally best invariant test for 

outliers is based on Mardia’s [1970] multivariate sample kurtosis 6g p*

If Hi is true then Di needs to be defined. However, the key question on outliers is 

Should one or more observations from a data set he discarded simply because they appear to 

be ”inconsistent” with the rest of the set? The current thinking on the closely related topic ,

robust estimation, supports some form of truncation or modification of the data by

minimising the influence of such outliers on the fitted model. However, a closer look at an 

extreme observation is often warranted, as it may shed light on underlying structures or 

reveal something about the recording of the data and procedures directed specifically at 

deleting outliers can be useful [ Dixon, 1953; Grubbs, 1969]. For example, an observation 

may deviate sharply from a fitted hypothesised model, because the model breaks down at 

that particular point and not because the observation is spurious. It also happens not 

infrequently that only part of the data obeys a different model. A single outlier which is 

sufficiently far away can ruin, for example, a least squares analysis completely; some 

sources for gross errors such as keypunch errors or wrong decimal points do indeed easily 

change values of order of magnitude; and with the modern trend of entering masses of data 

unscreened into the computer, outliers can easily escape attention if no precautions are 

taken. So wrong measurements or wrongly recorded data in either the experimentation or 

computational stage are much more common than is generally recognised. Hampel, et al. 

[1986:, pp.25—28] cite numerous examples for the frequency of gross errors and other 

outliers in real data.

Some sources of gross errors are:

• copying errors

• interchange of two values or groups of values in a structured design
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• inadvertent observation of a member of a different population

• equipment failure

• transient effects

W ith sufficient care, gross errors can often be prevented but the necessary care 

cannot always be afforded. Moreover, with fully automatic data recording and properly 

working equipment, there may be large transient effects. An example [Hampel, et al. 1986: 

p.26] is about a quarter of a million electroencephalographic data, fully automatically 

recorded by properly working equipment; the histogram looked normal except for some 

jittering of the plotter way out in the tails, but the third and fourth moments were far too 

large. A search revealed that there was a huge spike of about two dozen data points when 

the equipment was switched on; these few transient points caused the high moments and 

jitter in the plot. Distant gross errors are one of the most dangerous deviations from the 

usual statistical assumptions; but they are also the ones which can most easily be treated. 

The number of distant gross errors which statisticians get to see is frequently decreased 

considerably below the original one because the subject matter specialists often "clean" 

their data in some informal way before consulting the statistician. Even so, the frequency 

of gross errors varies considerably. Crudely speaking, one has to distinguish between 

high-quality data with no (or virtually no) gross errors, and routine data, with about 

1—10% or more gross errors. Whenever a distant outlier occurs, some robust method is 

required, and be it just a subjective look at the data with subsequent special treatment of 

the outlier.

Another approach to dealing with outliers is to construct outlier diagnostics. These 

are quantities computed from the data with the purpose of pinpointing influential 

observations, which can then be studied and corrected or deleted, followed by an analysis 

on the remaining observations. When there is only a single outlier it may be possible to use 

methods effectively by looking at the effect of deleting one point at a time. For example, 

denote by 0(i) the estimate for a parameter 0 computed from the sample without the i—th
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case. Then the difference between & (the full sample estimate) and &(i) gives the extent to 

which the presence of the k—th case affects the corresponding estimates. These are 

so-called single case diagnostics^ which are computed for each case i.

Unfortunately, it is much more difficult to diagnose outliers when there are several 

of them. It is, of course, possible to generalise the single—case diagnostics for highlighting 

the simultaneous influence of several cases. However, it may not be obvious at all which 

cases should be deleted. It may happen that some points are jointly influential but the 

individual points are not! Moreover, the computations involved are often infeasible because 

of the large number of subsets that would be considered. For example if consideration is 

given to deletion of 4 out of 30 cases, there are 27405 possibilities. In some examples the 

sequential employment of single deletion methods leads to the detection of important sets 

of observations. In others, the importance of the observations is not evident unless several 

observations are deleted at once. In the case of multiple regression analysis, a two stage 

method for the detection of outliers and influential observations when masking is present 

can be adopted [Atkinson 1986]. The first, exploratory, stage uses least median of squares 

regression, a method which resists nearly 50% of contamination in the data [Rousseeuw, 

1984; Hampel et al., 1986: p.330]. In the second, confirmatory, stage the diagnostic 

methods of least—squares regression are used to confirm the findings of the robust method.

Robust methods and diagnostic methods have the same goal but proceed in an 

opposite order: the robust approach first fits a model that does justice to the majority of 

the data and then discovers the outliers as those points which have large residuals from the 

robust solution, whereas in the diagnostic setting, one first wants to identify the outliers 

and then fit the good data in the classical way.

To aid the search for outliers, graphical techniques can be employed to provide 

possible candidates for further investigation, followed by suitable tests of "discordancy" of 

these observations with the rest of the data. With univariate data the observations are 

readily ranked so that the largest and/or smallest observations come up for scrutiny. As
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mentioned earlier, when there are several possible outliers, we can test the extreme 

observations one at a time or as a group. Testing one at a time, however, may suffer from a 

"masking effect" in which the less extreme outliers mask the discordancy of the most 

extreme observations under investigation.

When dealing with multivariate data, the situation is even more complicated. First, 

for more than two dimensions, there is the problem of representing the data graphically so 

as to highlight the presence of any outliers. Second, there is the problem of ordering the 

dat a so that we can isolate the extremes of observations that separate themselves from the 

bulk of the data [See Barnet 1976]. Third, a multivariate outlier can distort the measures of 

orientation (correlation) as well as the measures of location and scale.

Consider the bivariate data in Figure 2.1: observation A will inflate both variances, 

but will have little effect on the correlation; observation B  will reduce the correlation and 

inflate the variance of Yi but will have little effect on the variance of Y 2; and observation 

Chas little effect on the variances but reduces the correlation. From another viewpoint, B 

and C add what could be considered as an insignificant second dimension to data that are 

essentially one dimensional, lying on a straight line. This could have serious implications in 

especially dimensional reduction techniques such as principal components. Suppose C was 

to appear very far away from the majority point cloud in the Yi space; it would lead to 

large variability in that direction and thus "flip" the principal components resulting into 

that direction becoming erroneously the first principal component.

To illustrate the last point we shall briefly state the theory of principal components 

and discuss a simple bivariate example to show the effect of outliers on principal 

components transformations.

Let Y^ =  [yi, y2,..., yp] be a p-variate sample of size n with covariance matrix S. If 

E has eigenvalues > A2 > ... > Ap > 0 and considering the linear combinations

Y = /ijyi +  ^2j72 4- ... +  ^jTp (2 .5 )

j=l,2,...,p with Var(uj) = /jE/j (2.6)
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Figure  2.1 T y p e s  o f  Out l i er s  in 2 —D i m e n s i o n s
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Cov(uj,Uk) =  ZjSîk (2.7)

j,k =  then the principal components are those "uncorrelated" (orthogonal) linear

combinations whose variances are as large as possible. So the j—th principal component is 

that linear combination which provides a solution to the following constrained optimisation 

protblem

Maximise var(uj) =  (2.8)

Subject to ij /j =  1 

Cov(/j Y, iI y ) =  0 for k < j.

In particular, if S is the covariance matrix associated with the random vector = 

[yi, 7 2 ,..., 7p] having the eigenvalue-eigenvector pairs (Ai,ei), (A2,e2),...,(Ap,Cp) where A% > 

A2 > ... > Ap > 0 the j—th principal component is given by

Uj =  Cj Y =  cTjT i + C2jy2 +  ... +  epjyp (2.9)

and

Var(uj) =  (jZcj =  Aj ,j =  1,2,...,p

Cov(uj,Uk) =  ejEck =  0 ,j ^ k

It is, therefore, evident that principal components depend entirely on the covariance 

matrix E and so are very sensitive to any observations which may affect variances and 

correlations.

E x a m p l e  2 .1  ( E f f e c t  o f  o u t l i e r  o n  p r i n d p a l  c o m p o n e n t s )

Let Y^ =  [yi, y2] be from a bivariate distribution with covariance matrix

 ̂=  [ T  i ] -
Assume a scatter plot of the observations with an extreme observation P, say, which is 

greatly displaced from the majority of the data in the yi space but well within range in the

y2 space. Its consequence is to inflate the y% variance and also reduce the correlation

between the two variables.

In carrying out a principal components transformation the eigenvalue-eigenvector 

pairs from E are
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Al =  100.16 e"i =  [0.999, -0.040]

Aj =  0.84 6 2  =  [0.040, 0.999]

So the respective principal components become

111 =  0,999yi — 0.040y2 

U2 =  0.040yi + 0 .9 9 9 y2 

We note that because of its large variance, yi completely dominates the first 

principal component determined from S. Moreover, this first principal component explains 

a proportion

=  K  =  (2 -1 0 )

of the total population. This would erroneously suggest that the principal components are 

as displayed in Figure 2.2(a). Figure 2.2(b) displays a scatter plot of the data without 

observation P. A reverse solution for the principal components transformation is indicated. 

□

A fourth problem with multivariate outliers is that an outlier can arise because of 

either a gross error in one of its components or small systematic errors in several 

components or even from a few observations coming from a completely different 

distribution from the rest of the data. This is the swamping phenomenon or "Masking". 

The situation is complex and, as emphasised by Gnanadesikan and Kettenring [1972: 

p. 109], there is no point in looking for an omnibus outlier protection procedure: Rather an 

arsenal of methods designed for specific purposes is required.

This thesis presents a proposed technique for use in detecting these outliers based on 

iterative resampling of the data. The technique is compared with some classical 

identification methods, and the Minimum volume ellipsoid method [Rousseeuw and van 

Zomeren 1990] in terms of both the capacity for detecting the outliers and for 

computational simplicity. Some diagnostic quantities are also proposed together with a 

graphical display which summarises the results. The technique is refered to as the Stalactite 

Analysis a term based on the nature of the graphical summary display which resembles
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geological stalactites.

2 .2  Identification of Outliers

2 .2 . 1  Discordancy Tests

As a first step in detecting outliers, the p univariate marginal distributions can be 

inspected and the univariate techniques applied to them [See Barnett and Lewis 1978]. The 

coefficient of kurtosis, 62, is a useful statistic for detecting outliers among normally 

distributed data. If 62 is significant, the most extreme observation is removed and bg 

retested on the remaining observations. A major weakness of this one—dimensional 

approach is that outliers like C in Figure 2 .1 , which mainly affect correlation, may not be 

detected.

In the case of bivariate data, the sample correlation r is very sensitive to outliers 

and can therefore be used for their detection. For example, when the data are bivariate 

normal, Gnanadesikan and Kettenring [1972] suggest a normal probability plot of the

Z(r-i) =  ^log 1 4- r-i
1 — r-i (2 .11)

where r-i is the sample correlation between two variables based on the data with Xi 

omitted.

Devlin et al. [1975] use the concept of the Influence Curve [Hampel 1974] and 

present two graphical methods based on the sample Influence Function of r. One of the 

methods leads to the function (n—l)[Z(r) — Z(r.i)] which, for a reasonably large sample of 

normal bivariate data, is approximately distributed as a product of two independent N(0,1) 

variables, they propose a further normalising transformation prior to probability plotting.

For higher—dimensional data we can examine the ^p(p—1) scatter plots for all the 

bivariate marginals using scatter plot matrices, say, provided that p is not too large, and
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then apply the bivariate methods for detecting outliers. However, although marginal 

distributions will detect a gross error in one of the variables, they may not show up an 

outlier with small systematic errors in all its variables. Also, there is the problem of 

outliers like B  and C in Figure 2.1, which add spurious dimensions.

Apart from B  and C the data lie almost in a one—dimensional space, the regression 

line. Going up a dimension we envisage a set of points that all lie dose to a plane except 

for one or two outliers at some distance from the plane. Generally, such outliers can be 

uncovered by working with robust principal components of the observations instead of the 

observations. One procedure is given by Campbdl, [1980] and is based on using the robust 

estimation of the covariance matrix. Gnanandesikan and Kettenring [1972: p .I ll]  note that 

the £rst few principal components are sensitive to outliers that inflate variances and 

covariances (if working with E or S) or correlations (if working with the sample correlation 

matrix R),and the last few are sensitive to outliers which add spurious dimensions.

One advantage of using prindpal components is that they are likely to be more 

normal than the original data. Particularly when p is not so large, approximate normality 

being achieved by the central limit theorem argument being applied to linear combinations. 

The multivariate kurtosis 62,p can also be used as an outlier test [Schwager and Margolin 

1982].

Plotting techniques used to assess multivariate normality can be used for detecting 

outliers. Gamma values can be "normalised" using Fisher’s transformation y =  %/̂ x or 

Wilson and Hilferty’s transformation y =  x. In particular, for a given scale parameter A 

and shape parameter rj (not too small)

(2.12)

y =  - ,  Ni

With either transformation we can apply to y a discordancy test for a sample of size
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n from a normal distribution with unknown mean and variance. Barnett and Lewis [1978: 

pp.91—92] list 17 such tests.

The quantity

d» =  (x -  E (x -  /i) -  x^(p) (2-14)

if X —» Np[/2, Ej. Hence, we can carry out one of the gamma normalising transformations on 

d2 and apply these discordancy tests. Three such tests are:

1/ T = maxj 1 ^ ,  ï I s L i j  j  (2.15)

where s  ̂=  E (yi — y)2/(n—1 ) and y[i] is the i—th ordered observation.

2 /  62 =  nE  (yi -  -  ÿ)4 '  (216)

and by Kimber [1979]

3/ Z =  max I S (2.17)
l< i <n I S 'l J

where =  —log Uj — (n—l)log| ■ ^ 2  j  , Ui =  yi/y and the yi have a gamma 

distribution.

Large values of T, 62 and Z signify the presence of a very large or a very small

observation in the sample. Significance points for 62 are given in D’Agostino and Tietjen

[1971: Table 1] and D’Agostino and Pearson [1973:Figures 1 and 2 ]. The critical values for

Z can be found in the table for a 5% and 1% discordancy test for a single gamma outlier,

Kimber [1979: Table 1 , n=5(l)20] and Barnett and Lewis [1978: Table I, r=0.5, n>20].

Also, a test for a single outlier in a sample of size n from Np[/x, E], (/z, E unknown)

can be constructed using the following test statistic

d2(n) =  max (yi -  y)^S-^(yi -  ÿ)
1 < i  < n

= max d? (2.18)
1 < i  < n

n _ T
where S =  .E^(yi — y)(yi — y) /(n—1 ). The critical values can be obtained from Barnett
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T a b le  2.1 Discordancy T ests fo r  a  Single O utlier

DATA
n P T

Discordancy Testt
3

bg Z dgiax

1 . B ivaria te  Normal data 
(without o u tlie rs )

50 2 2.601
(1.960)

3.091
(3.990)

0.131
(0.206)

4.912
(12.230)

2 . B ivaria te  Normal data 
(with 4 o u tlie rs )

50 2 2.946
(1.960)

4.124
(3.990)

0.187
(0.206)

16.542
(12.230)

3 . Belgian Phone Calls 
data

24 2 1.819
(1.960)

1.785
(4.168)

0.136
(0.343)

6.497
(9.780)

4 . Hertzsprung-Russell 
S tar data

47 2 2.196
(1.960)

2.791
(3.996)

0.091
(0.215)

10.970
(1 2 . 0 2 0 )

5. Hawkins-Bradu-Kass 
A r t i f ic ia l  data

75 3 4.343
(1.960)

6.387
(3.860)

0.348
(0.156)

41.280
(15.315)

6 . Repeat Soil Sample 
Survey data 
- XI, X2 57 2 2.088

(1.960)
2.610

(3.945)
0.081

(0.184)
8.839

(12.510)

- XI, X2, X3 57 2 3.586
(1.960)

5.272
(3.945)

0.243
(0.184)

38.736
(12.510)

- XI, X2 , X3, X4, X5 57 5 3.142
(1.960)

4.022
(3.945)

0 . 2 0 1
(0.184)

38.802
(14.495)

t The terms in  brackets ind ica te  the c r i t ic a l  values of the  discordancy 
t e s t s  a t the 57» level of sign ificance .

N otes:

1/ T is  te s te d  against the standard normal, A^[0,1].

2/ b2 is  te s te d  against the c r i t i c a l  values from D’Agostino and T ie tjen  
[1971: Table 1] fo r  the sample c o e ffic ien t of ku rto sis  from a random sample 
of s ize  n from a normal d is tr ib u tio n .

3/ Z is  te s te d  against the  c r i t i c a l  values from Kimber [1979: Table 1, 
n=5(l)20] and Barnett and Lewis [1978: Table I ,  r=0.5, n>20] fo r  5% 
discordancy te s ts  of a s ing le  o u t l ie r  in  a sample of size  n from a gamma 
d is tr ib u tio n .

4 / d^max is  te s te d  against the c r i t i c a l  values from Barnett and Lewis 
[1978: Table XXVIII] fo r 57. discordancy te s ts  of a sing le  o u t l ie r  in a 
sample of size  n from Ap[/z, E] ; fi and E are unknown.
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and Lewis [1978: Table XXVIII] for 5% and 1% tests.

An outlier tends to inflate x and S, and possible reduce df, so that it may strictly 

warrant the use of the robust version of d?, namely

d f  =  (y -  (y -  /i*) (2.19)

where /z* and S* are the robust estimators of ^ and S, [Campbell 1980].

2 .2 . 2  Mahalanobis Distance

The approaches to outlier detection depend on determining the point cloud and then 

identifying those observations which seem to lie to remotely from the majority of the data. 

It is for this reason that the quantity D? is adopted in many of the tests since it looks at 

the remoteness of the observations from the center of the point cloud together with taking 

into account its shape. This positive square root of this quantity is called the Mahalanobis 

distance.

D e f i n i t i o n : Sample Mahalanobis Distance

Consider a data set with n observations measured on p variables with data matrix

Ypxn, then the Sample Mahalanobis distance for the i—th observation is given by
1/2

di . [(yi -y)^S '‘(yi -y)] (2 .2 0 )

where i =  1,2,...,7i and

yi _ i—th observation vector ie. yi is the i—th column of Y 

y — sample mean vector 

S — sample var—covariance matrix #

If we define d as an n«l vector with elements di, i= l ,2 ,...,n then

D = / d  =  (Y -  Y)'^S-‘(Y -  7 )  (2.21)

where Y is the data matrix, Y = l.y /n  and 1 is an n*l vector with all the elements equal 

to unity

Also, let V = Y -Ÿ

then D =  VS“ ^v'‘'
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but S =   ̂ V’̂ V
n — 1

thus, D =  (n-l)V(v'^V)-«v’  ̂ (2 .2 2 )

The i—th diagonal element of D is given by

dll = d \ = (n-l)vT(v'^V)-‘Vi (2.23)

and is the square of the Mahalanobis distance from the i—th observation which could be 

regarded as a "standardised" measure of remoteness of the i—th observation from the centre 

of gravity of the data set. An observation with a large d? value is atypical and should be 

examined further.

The minimum value of d? is 0 and occurs when y  ̂=  y. Since d? behaves like a if

the parent population is normal the maximum value of d| can be compared to the expected 
2maximum . This value could be used as a test value to indicate atypical or influential 

observations. Thus, values of d? such that

d ? > E [M a x X p ] (2.24)

can be considered atypical and, hence,require further examination.

A Chi-plot can be constructed in which the pairs {^j]»Xp^([i — g]/u)}, i= l ,2 ,...,n 

are graphed where d̂ ĵ is the i—th ordered squared distance and Xp^([i — 1 / 2 ]/n) is the 

1 0 0 (i — j ) /n  percentile of the Chi—square distribution with p degrees of freedom. It 

therefore, follows that the expected maximum is given when i=n. Thus,

E [ M a x x J ] = x J [ - S 4 ^ ]  (2.25)

Another value of interest is the "total" distance within the data set together with 

the average distance.

Now, tr(D) =  (n -l)tr{  V(V’̂ V)-‘V’̂  }

=  (n -l)tr{  (V^V)-'W ^ }

=  (n-l)tr(Ip)

= (n -l)p  (2.26)

it follows that Ed? = tr(D) = (n—l)p
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and d2 =  (2.27)

2.2.2.1 Case Deletion

As mentioned earlier, it may be of interest to perform single case diagnostics, that is 

to study the behaviour of the of the quantities computed from the data when one or more 

observations (cases) are deleted. The following is a derivation of a computational procedure 

for the Mahalanobis distances when one observation is deleted from the sample.

Let the i—th squared Mahalanobis distance with the k—th observation deleted be 

d?(k), then

4 (k) =  (yi -  ÿ(k))^S-i(k)(y; -  ÿ(k)) (2.28)

but

Yi -  y(k) =  Xi -  (nÿ -  yk)

=  5 - ^ { n ( y i - y ) - ( y i - y k ) }  (2.29)

Further, excessive computation for the inverse of S(k) can be avoided by using the 

matrix identity [Bartlett 1951]

s - i ( k )  =  a S -1 +  a ^ S -» (y k  ■ y ) ( y k  ■ y ) ^ S - >  (2 .3 0 )

{ 1 -b (yk  - ÿ) S-‘(yk - y) }
where a =  (n—2 )/(n—1 ) and b = n/(n—1 )2.

So each d?(k) can be obtained by using just x, S'l and y^.

L em m a :

Let d2(k) denote the squared Mahalanobis distance of the k—th observation with 

observation k deleted from a sample of size n when computing the sample mean and 

covariance matrix, then

#
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P r o o f :

Let y =  (yi,...,yp) be a sample of size n then,

Sii =  S(yik -  ÿi.)V(^“ l) (2.32)

Sij =  s(yik -  ÿl)(yjk -  ÿ j.) /(n -l)  (2.33)

and

(n-2)sij(k) =  (n-l)sij — rikrik/(l—hk) (2.34)

where hk =  1 /n

ie. tij(k) = tij(k )-rik iik /(l-h k ) (2.35)

or T(k) =  T — ikik/ak

=  T -  ikik (2.36)

So, the squared Mahalanobis distance for the k—th observation is

dk =  (n-l)rÎT->rk (2.37)

and d^(k) =  (n—2)r^(k)T'*(k)r(k) (2.38)

The corresponding residuals are

Tk = yk —^ (2.39)

and r(k) = yk -  ^(k)

= y k - p  + 0 -  ^(k)

= Tk +  f(k) (2.40)

But -^ (k )  =  (X^X)-ixik/(l-hk)

=  - l / n  =  (2.41)

So r(k) = rk /(l—hk) = rk/ak (2.42)

Also T-i(k) = T-i +  T-ifk(I -  îkT‘irk)-irkT-i (2.43)

where f k = rk/V&k.

So îkT 'iîk  = fkT-ifk/ak =  q/a  (2.44)

From (2.43)

where c =  1—q/a.

T-i(k) =  T-i +  T-irkîkT-i/c (2.45)
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So

and

Then using (2.45)

but

so

and hence,

d2(k)/(n-2) =  r'^(k)T->(k)r(k) 

=  l^r,^T-i(k)rk

a 2d2(k )/(n -2 ) =  r^kT-‘(k)rie
.Trr.= riT-iik + ikT'irkrkT’irk/akC

= rÎT-irkiî +  :kT-iik
a ( l -q /a )

=  q +  q2/a ( l - q /a ) 2

=  q /(i-q /a )

q =  ikT’ îk =  dk/(n—l)

1 - d? n
( n - l ) ’(n - l)  

dg

1 -
nd^

dJ(k) =
(n - l) 1 -

d'k 
nd^k

(2.46)

(2.47)

(2.48)

(2.49)

2 .2 .2 . 2  Distribution of MaJanobis Distance

If y —> Np[//, E] then it can easily be shown that
m indent 9

d^ = ( y - f i )  S (y -  li) -----> X (p) (2.50)

However, if /i and E are unknown and have to be estimated by x and S respectively the 

following complications arise:

1 /  The d\ are no longer independent since each d\ involves values of y and S.

2 /  Since y and S are only estimates it implies that d\ are no longer under the 

null hypothesis of normality.

Fortunately, if n is large ( > lOp) the difference between using the true distribution 

and the % approximation is negligible, and for samples of that size the departure from
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independence of the d?’s is also insignificant.

For small samples, the following modifications are required. If y and S are from a 

sample of size n from a Np[/i, E] population and y is a further independent observation from 

this population then

(y -  ÿ f s - \ 7  -  ÿ) —  Fp,„_p (2.51)
2Hence, these F quantities must be used in place of % . Additionally, independence of 

each yi from y and S must be ensured. To do this "Jack—knifed" means and covariance 

matrices can be used instead of the single mean vector y and covariance matrix S. The 

"Jack—knifed" mean y(i) and covariance matrix S(i) for use with observation y  ̂are simply 

the mean vector and covariance matrix, respectively, of the (n—1 ) observations excluding 

observation ŷ . (See Section 2 .2 .2 .1  for computational formulae).

2.3 Graphical Technignes

Plots are important aids in all aspects of data analysis because they provide a visual 

perception of the data from which its structure (or non—structure) can be quickly assessed. 

Although it is not possible to plot simultaneously all the measurements made on several 

variables and study the configurations, plots of individual variables and plots of pairs of 

variables can still be informative. The advancement in computer hardware technology has 

made it possible to have sophisticated graphics hardware at very reasonable costs. This has 

led to a parallel development of complex and agile computer graphics software capable of 

examining data in one, two or three dimensions with relative ease. There are, therefore, 

numerous elegant and effective methods for displaying data [See Tukey 1977]. In the quest 

for detecting outliers some of the more common methods have been adopted in the thesis. 

A new plot which summarises the results from the proposed outlier detection technique. 

Stalactite Analysis, is also presented.
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2.3.1 Univariate and Bivariate Plots

— Scatter Plots

It is often important to plot pairs of variables and to visually inspect the pattern of 

association. The Scatter Plot is used for this purpose and is a plot of n points in two 

dimensions with each axis representing a variable ie. the coordinates being determined by 

the paired measurements (xi,yi),(xg,y2),...,(xg,yg).

Any unusual points from the majority point cloud can, therefore, be easily seen from 

the scatter plot although their identity may not be ascertained. This technique is useful in 

detecting all the three categories of outliers (those that affect variation and not correlation, 

variation and correlation, and correlation but not variation) in two dimensions

— Box Plots

Apart from assessing association between variables, it is useful to visually study the 

locality, spread and skewness of a data set. A Box Plot provides such a plot. It is composed 

of a box with lines protruding from either side (whiskers). The box indicates the median as 

well as the first quartile ( ç j  and the third quartile (çj)-

For a completely symmetrical distribution the box should be divided into equal 

halves and the whiskers should be of equal length. Departures from this norm indicate 

levels of skewness and spread. An intrinsic feature of the box plot is the ability to indicate 

outliers (which can either be exceptionally large or small observations). Different criteria 

according to which an outlier can be identified are available. A useful criterion is that of 

Tukey [1977] where observations larger than Çg +  t or smaller than — t, with t =  1.5(g'g — 

g j, are regarded as outliers.

The box plot furthermore offers a useful way of comparing two or more data sets 

observed in the same units with each other, with regard to locality, spread and symmetry.

2.3.2 Multivariate Plots

For more than two dimensions, there is the problem of representing the data 

graphically so as to highlight the presence of any outliers. However, the data can be
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"collapsed" into a one—dimensional statistic which still retains as much of the multivariate 

information. The Mahalanobis distance provides such a statistic, it can, therefore, be used 

in place of the original observations. It is, thus, possible to exhibit the multivariate data in 

terms of univariate (or bivariate) plots using these distances.

There are several possible plots which could be used, but for the purposes of this 

thesis only three are considered in addition to the proposed displays. These have been 

selected to display the association between variables, to provide a form of identification to 

the suspicious observations and to also portray any swamping phenomena, masking, if any. 

As mentioned in Section 2.3.1 the scatter plot in two dimensions can show any discrepant 

observations but cannot identify them, the Index Plot provides a method of identifying the 

particular observations under suspicion.

2.3.2.1 Scatter Plot Matrix

In a multiresponse data set where p variables are recorded on n observations, scatter 

plots can be made for all possible pairs of variables, provided p is not too large. The Scatter 

Plot Matrix is a generalisation of the scatter plot described above (Section 2.3.1). This is a 

plot of n points in p dimensions.

Consider the extension of the scatter plot where the p measurements [yii>y2i)” ->ypil  ̂

on the i—th observation represent the coordinates of a point in p—dimensional space. The 

coordinate axes are taken to correspond to the variables, so that the i—th point is y^j units 

along the first axis, yg  ̂ units along the second,..., yp  ̂ units along the p—th axis. The 

resulting plot with n points will in fact not only exhibit the overall pattern of the 

variability, but will show similarities (and differences) among the n observations. The plot 

appears in a form of grid and, hence, the name Scatter Plot matrix. (It is also possible to 

plot the p-points in n—dimensional space).

2 .3 .2  2 . Index Plot 

DEFINITION 2 . 3 : Index Plot

An "Index Plot" is a plot of some measurement on the observations against their
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observation number. #

In this section, the Mahalanobis Index plot (MIP) is considered ie. the Mahalanobis 

distance d  ̂ =  for each observation plotted against the observation number. This plot 

provides a quick visual display of the general pattern of the d^’s, so extreme values of d̂  

are easily spotted and identified in the data set.

2.3.2.S Probability Plots

The probability plots are empirical cumulative distribution functions (ecdf) which 

may be defined as plots of the i—th ordered observation against (i — l/2 ) /n  [Gnanadesikan 

1977: p.198]. Wilk and Gnanadesikan [1968] describe two basic types of probability plots, 

called the P—P and Q-Q  plots, respectively. A plot of points whose coordinates are the 

cumulative probabilities {p^(g), Py{q)} for different values of g is a P—P  plot, while a plot 

of the points whose coordinates are the quantities {g^(p), Çy(p)} for different values of p is 

a Q—Q plot. A usual form of comparison is one in which an ecdf for a body of univariate 

data, for x say, is compared to a specified (or theoretical) distribution function, for y say.

In particular, if an ecdf of an unstructured sample, yi,y2,.*->yn» of size n is to be 

compared with a hypothesised standardised distribution F{y;6) (where the parameters 6 

have specified values): if y(l) < y(2 ) < ... < y(n) are the ordered observations, then a plot of 

the n points {y(i), y j ,  i =  1,2,...,n, where y  ̂ is the quantile of the distribution F 

corresponding to a cumulative probability p  ̂= (i — û)/(n — 2a + 1) with a =  1/2, 1/3, or 0 

as some of the choices. So y  ̂is defined by P[y^;^) = p .̂

For the purposes of applying the outlier tests using the Mahalanobis distances two 

probability plots are used based on the distributional theory of the d? ,namely, the 

Chi-square plot and the normal plot with the d? transformed accordingly using the Wilson 

and Hilferty or Fisher’s transformations. In the normal plot F  is taken as the distribution 

function J  the standard normal distribution.

These plots should exhibit linearity if the two distributions under comparison are 

not different. It, therefore, follows that the plots can be used to indicate the presence of
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points (if any) which depart from this otherwise linear plot.

— Chi—square Probability plot (Chi—plot)
2  2  2If are the ordered squared Mahalanobis distances the Chi-plot is

obtained by plotting d^.j vs %p[(i-l/2 )/n] where Xp [ ( i - l / 2 )/n] is the 1 0 0 (i — j) /n  

percentile of the Chi-square distribution with p degrees of freedom.

— Normal Probability plot (normal plot)

If "'^[n] ordered Mahalanobis distances the normal plot is obtained

by plotting dj.j vs ^[(i—l / 2 )/n] where J[(i—l / 2 )/n] is the 1 0 0 (i — j) /n  percentile of the 

standard normal distribution.

2.3.3 Parallel Coordinate Plots (Z—Curves)

If the data are considered as p marginal (univariate) variables then "dot diagrams" 

could be constructed for each of the variables. Links between observations across the p dot 

diagrams could be made and these would present some insight into the general spread of 

the data across variables. An extreme variable would tend to cause the rest of the data to 

appear to cluster.

Due to different units of measurement across variables, it is necessary to first 

standardise observations before constructing the plots. The standardising method should 

not be sensitive to extreme observations.

Figure 2.2 Parallel Coordinates Plot (Z—Curves) for Four Variables
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Var 2 

Var 3 

Var 4
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L***_
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2.4 The ClassicaJ Approach

The classical approach to outlier detection is to compute the squared Mahalanobis 

distance for each observation based on the arithmetic mean T(X) =  (l/n)E” x, and the

unbiased covariance estimator C(X) =  (l/(n^l))S " (x^— T(X))^(x^— T(X)). Observations
2 2 with large d̂  (possibly compared to some quantile) are then considered as outliers.

However, this approach suffers from the fact that it is based on exactly those 

statistics that are most sensitive to outliers, namely, T(X) and C(X). This is particularly 

acute when there are several outliers forming a small cluster, because they will pull the 

arithmetic mean towards them and possibly even inflate the tolerance ellipsoid in their 

direction. It, thus, follows that they would not necessarily have large d. . This is known as 

the masking effect A natural consideration is to replace T(X) and C(X) by robust 

estimators.

A technique proposed by Campbell [1980] is to use M-estimators, but the low 

breakdown point of M-estimators (ie. the fraction of outliers they can tolerate) which is at 

most l / (p + l)  limits the applicability of the technique since the breakdown point goes 

down with higher dimensionality. Unfortunately it is exactly when there are more 

coordinates that there are more dimensions in which outliers can occur. Indeed in the 

modified wood gravity data (p=5) with four outliers in a sample of size 20, the limit of the 

breakdown, l /(p + l)  =  16.7%, has already been passed.

To proceed it is necessary to consider estimators of multivariate location and 

covariance with a high breakdown point. The first such estimator was proposed by Stahel 

[1981] and Donoho [1982]. Rousseeuw [1985] introduced the Minimum volume estimator 

(MVE).

2.5 The Minimum Volume Estimator (MVE) approach

In the Minimum Volume Estimator approach [Rouseeuw & van Zomeren 1990]
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T(Y) is taken as the center of the minimum volume ellipsoid covering half of the 

observations, and C(Y) is determined by the same ellipsoid.

DEFINITION 2.4: Minimum Volume Ellipsoid estimator

The Minimum Volume Ellipsoid estimator (MVE) is defined as the pair (T,C), 

where T(Y) is a p—vector and C(Y) is a positive—semidefinite p—by—p matrix such that the 

determinant of C is minimised subject to

# 0 ;  (yi -  T)C-i(yi -  T)'^ < a^} > A (2.52)

where h =  [(n +  p +  l ) / 2 ] in  which [q] is the integer part of q. The number a is a fixed

constant, which can be chosen as %p(0.50) when we expect the majority of the data to 

come from a normal distribution. #

For small sample size n a correction factor c2(n,p), which depends on n and p, is 

required. The MVE has a breakdown point of nearly 50%, which means that 71(Y) will 

remain bounded and the eigenvalues of C(Y) will stay away from zero and infinity when 

half the data is replaced by arbitrary values. The robust distances are defined relative to 

the MVE:
1 /2

RDi =  [ (yi -  T(Y))C-i(Y)(yi -  T { Y ) f  ] (2.53)

One can then compute a weighted mean,

T,(Y) =  (J Wi)-!S w^yj (2.54)

and weighted covariance matrix,

C,(Y) =  ( J  wj -  1)-JS (yi -  T(Y))C^(Y)(yi -  T(Y)) (2.55)

where the weights w  ̂=  w(RD J  depend on the robust distances.

Rousseeuw and van Zomeren [1990] consider two approximate algorithms for the 

MVE. The first is the resampling algorithm described in Rouseeuw and Leroy [1987: 

pp.258—261]. It is based on the idea of looking for a small number of good points, rather

than of k bad points, where k=l,2,3, Subsamples of size p+ 1  different observations are

drawn, indexed by J =  {i^,...,ij}, say. The mean and covariance matrix of such a
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subsample are

T j =  2 jy i/ (p + l)  (2.56)

and

Cj =  S j(y i -  T j)(yi -  T j)^ /p  (2.57)

Then the corresponding ellipsoid should be inflated or deflated to contain exactly h points, 

which amounts to computing

'" j  =  { ( y i - T j ) C j ‘( y i - T j ) \ „  (2.58)

because rrij is the right magnification factor. The squared volume of the resulting,ellipsoid 

is proportional to mjPdet(Cj), of which the smallest value is kept. For this "best" subset J 

we compute

T(Y) =  T j (2.59)

and

C(Y) =  [x^(p,0.5)]-ic2(7i,p)mjCj (2.60)

as an approximation to the MVE estimator, followed by a reweighting step as above. The 

number of subsamples J depends on a probabilistic argument, because it is required that 

enough subsamples consisting of p+ 1  good points are encountered. Rouseeuw and van 

Zomeren recommend c2(n,p) =  (l+15/(n—p))2 for the small sample correction factor.

The second algorithm is the projection algorithm which is a variant of one by Gasko 

and Donoho [1982]. For each point yi consider

Ui =  max lyiV^ -  6 ( y '? \ . '  ,yn?^)l (2.61)
V S(yiv , . . . ,ynV  )

where L and S are the MVE estimates in one dimension, which are computed as follows:

For any subset of numbers Zj < Zg <...< one can determine its shortest half by taking the

smallest differences

^h+l“  ”  ^n-h+r

If the smallest difference is Zj . Zj-h+i we put L equal to the midpoint of the corresponding 

half,
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^Zi)-»Zn) =  (zj +  Zj_i,+i)/2 (2.62)

and S as its length,

S(zi Zg) =  c(n)(Zj -  (2.63)

up to a correction factor c(n), which depends on the sample size.It is noted that u is 

exactly a one dimensional version of RD but applied to projections yiV of the yi on the 

direction v. As not all possible directions v can be tried, a selection has to be made. We 

take all V of the form y  ̂— M where I =  l,...,n and M is the coordinatewise median:

M = (median yji,..., median yjp) (2.64)
J —! , • • • , n J —! , • • • , n

In the algorithm the array Ui i= l,...,n  is updated while / loops over l,...n. The final ui are 

approximations of RDi which can be plotted or used for reweighting.

2.6 The Hat Matrix

Some quantities that occur frequently in classical diagnostics are the diagonal 

elements of the least squares (LS) projection matrix H. This matrix is known under the 

name of Hat Matrix^ because it puts a hat on the column vector y =  (yi,...,yn)^- This 

means that y = T̂y, where y is the LS prediction for y. The diagonal elements of the hat 

matrix are often used as diagnostic tools and in particular in linear regression they are used 

to detect leverage points ie. outliers in the carrier space. [See Atkinson 1985; Rousseeuw & 

Leroy 1987].

D e f in it io n  2 . 5 : Hat Matrix

Consider the 71*1 vector of responses denoted by y =  (yi, -,yn)^ ;the linear model 

states that

y =  4- e (2.65)

where X is the n*p matrix of the explanatory variables, 0 is the vector of unknown 

parameters, and e is the error vector. The Hat Matrix is defined by

fl^ = x (x ’''x )-ix '' (2 .6 6 )
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(it is assumed X^X is invertible). #

The set of p—dimensional points x that satisfy

h =  x(x'^X)"ix^ < max ha (2.67)
^ i

determine an ellipsoid [See eg. Montgomery & Peck 1982: p. 143] which contains the 

smallest convex set enclosing the n observations. One can, thus, say that the point x lies 

close to the bulk of the space formed by the variables in X if is small. The ha can be 

compared to some "cut-off" point. Most authors use a "cut-off' point of 2 p/% and so 

determine potentially influential points as those having ha > 2 p/n.

2.7 Proposed Iterative Sampling Technique — Stalactite AnaJvsis

The proposed technique, Stalactite Analysis, involves the iterative computation of 

the Mahalanobis distances based on means and covariances computed from suitably 

selected subsamples of size m( < n). Initially, a subsample of size m = p+ l observations 

(sometimes refered to as an "elemental set") is chosen at random from which the mean 

vector and covariance matrix are computed. The Mahalanobis distances for all the n 

observations are computed and a new subsample of size m =  m +k ( 1  ^  k < n—p—1 ) is 

selected based on the observations with the smallest Mahalanobis distances. The process is 

repeated until m=n. A new graphical display called the Stalactite Chart is proposed and 

used in the analysis together with some corresponding diagnostic quantities.

2.7.1 Stalactite AnaJvsis Algorithm

Consider a random sample y = (y^,yg, ... , y^) of size n (p < n), we require to 

compute the squared Mahalanobis distances based on subsamples of size m from the main 

sample.
2

If we let d. J be the squared Mahalanobis distance of the i—th observation on the
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J—th (J=0,2,...,n—p~2) iteration based on a subsample of size m j( < n) then

and y J “  sample mean based on m j observations

Sj — the sample var—covariance matrix based on m j observations 

The procedure is iterative and, hence, an initial value for mg needs to be 

determined. There are several possible choices for the initial value but a good starting point 

is when mg =  p 4- 1 , since this is the minimum number of points required to define an 

ellipsoid for the data. A subsample of size mg is selected at random and the d-g (for the 

full sample) are computed together with the mean vector, covariance matrix and other 

diagnostic quantitites. The subsample size is incremented by some quantity k ( < n—p—1 ) 

ie. m j =  m j_^ +  k (J= l,2 , ..., n—p—1) and the new subsample is selected to include those 

observations with the smallest m j Mahalanobis distances djg. The required computations 

are performed and the process is repeated until m j = n.
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A l g o r it h m  I S t a l a c t it e  A n a l y s is  A l g o r it h m

The following is a summary of the algorithm:

Step 1: [Initialise.] Set m^ =  p 4- 1 , J =  0, k (=1).

Step 2: [Select.] Initial subsample y^^j (i=l,2,...,mQ) randomly.

Step 3 : [Compute.] The mean vector, covariance matrix and Mahalanobis distances

according to the following relationships:

y j -  ^ y { i} / “ j  > (2-69)
is 1

is 1
and

= (yj -  -  7 j )  (2.71)

(i =  l , 2 ,...,n)

Step 4: [Test.] If m j =  n algorithm terminates goto Step 7

Step 5: [Increment.] The iteration number and the subsample size ie. J =  J+1 and

“ j  =  “ j - i  +  k.
Step 6 : [Select.] New subsample y^.j ( i= l,2 ,...,mj) based on the observations with

the smallest and go to Step 3.

Step 7: [Terminate.] Algorithm. #
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The proposed display for a summary of the results of the procedure is termed as the 

Stalactite Chari (the term being borrowed from Geology).

DEFINITION 2 .6 : Stalactite Chart

If y =  (yj^,y2 >--->yp)  ̂is a sample of size n and ÿ j is the sample mean vector and Sj 

the sample covariance matrix on the J—th iteration based on a subsample of size m j with

= (^i -  ÿj)^S j>(yj -  ÿ j)  (2.72)

being the squared Mahalanobis distance of the i—th observation and also let

[ 1 . d?j > 

[ 0 , d?j <
(2.73)

2 *  where a is some constant, then the Stalactite Chart is defined as the plot of I. j  on i and J

axes i=l,2,...,n  and J= 0,l,...,n—p—1. #

The quantity a is some "cut-off" point suitably chosen, for instance, using the
2distributional properties of d. ie. if y comes from a multivariate normal population then

d? x l  (2.74)
2 2 so a could be taken as %p(l—o) for some significance level a. In this study an alternative

2 2 choice for a is adopted, namely, E[Max Xp] for the following reasons:

— E[Max Xp] { =  f(n,p) } takes into account information from both the variable 

space,p, and the the observation space n and so provides a more data specific statistic, ie. 

the data suggest their own "cut-off" point, whereas Xp { =  f(p) } could be the same for

data sets with very diverse magnitudes of sample sizes.
2 2— E[Max Xp] by definition can be easily computed as Xp((^“ l/2 )/n ) and is

independent of the individual observations ,hence, robust.

— As mentioned earlier, the choice of a "cut-off" point (hence, rendering an
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observation as an outlier) is quite subjective and ,thus, as much tolerance of an observation
2

is required before it is classified as an outlier. In addition to the above reasons E[Max

provides more tolerance than a) provided n is not too small. In particular, the

following table gives limits for n in comparison to selected a levels.
2 2Table 2 . 2  Lower Bounds of Sample Size n for E[Max y^] >

1—a n

0.90 > 5
0.95 > 1 0
0.99 > 50

Using Wilson and Hilferty’s result (Cf. Section 2 .1 ) we can define

2
1 , ^dj > a^

. 0 , ^d? < a^
(2.75)

where a ^ is  the # ""^(1—a) or f “ \ ( n —l / 2 )/n).

As mentioned earlier, the selection of a "cut-off’ point is quite subjective and, thus, 

tolerance of an observation should be fairly high before it is classified as an outlier. Since, 

the proposed method is iterative it is possible to retain the "history" of an observation 

across iterations and summarise its presence (or absence) in the "bad" class into a single 

statistic. The proposed statistic here is termed as the Stalactite Score (since it is derived 

directly from the Stalactite Chart).

DEFINITION 2.7: Stalactite Score
2

If y =  (ypy2 r-,yp ) is a sample of size n with d^j being the squared Mahalanobis 

distance for the i—th observation on the J—th iteration with
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* 1 , d ? j >

0 . à \ j  < ê
(2.76)

2i= l ,2 ,..,n and a some "cut—off' point let

r. =  {2.77)
J=0

then the Stalactite Score for the i—th observation, SŜ , is defined as

SS. = •
0, r .= 0

. C, (c—l)/w  < r. < c/w
(2.78)

c =  l ,2 ,...,w where w is an arbitrary constant representing the highest score. #

An observation can be deemed for further scrutiny if it has a high Stalactite Score, 

ideally w. The choice of w is subjective. However, a low value tends to retain the influence 

of an extreme observation on the Compound Mean described below, hence, it shows the 

general direction in the p space where there may be an extreme observation (or cluster of 

observations). A high value for w reduces the influence of an extreme observation and, 

thus, makes the Compound Mean a more robust measure of location. The recommended 

values for w are 4 when interest is on the general direction of influence and 9 or 10 when 

interest is on providing a robust estimate for location.

The usual mean vector ÿ is constructed using the marginal arithmetic means of the 

variables. It is then used to measure the centre of the point cloud of the data. However, 

since its construction does not take into consideration the interrelationships between the 

variables, the centre thus obtained may not be the true one. This is especially so if a point 

cluster existed which only affected correlation and with little or no effect on both the 

location and scale on any of the dimensions.

It is, therefore, possible to exploit this fact by constructing a measure of the centre
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taking into account the interrelationships between the variables with a specific view for 

detecting these point clouds.

A proposed statistic termed as the Compound Mean is such a statistic.

D e f i ï ï i t i o h  2.8: Compound Mean

If y =  (yj^,y2 ,---,yp) is a sample of size n with Stalactite Score vector SS = 

(SSj^^SSg, ",SS^) then the Compound Mean, is defined as

n
_ S w i y i
y -------- (2.79)

sS Wi is 1

where the weights w.(SS^) =  1/(SS^+ 1). #

A weight of 1/w suggests that the observation is probably atypical and a weight of

l/(w + l)  certainly indicates an atypical observation.

If y. is the arithmetic mean computed marginally for the j—th variable and ÿ • its J CJ

compound mean then we have the following

I y. — y J  < 6 (for some small 6) — no presence of a "pull" of the centre in the J Cj
j—th direction

I yj — y^jl >>  6 (for some small 6) — presence of a "pull" of the centre in the j—th 

direction.

A "pull" refers to the tendency of an observation (or set of observations) to attract 

the center of the point cloud towards them.

If we let

1, yj < ycj

0, ÿj =  ÿcj (2 .80)

L-1, yj > ycj

yj, ycj as above, then pj is an indicator of a "pull" in the j—th direction eg. a negative value
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of Pj implies that the center of the point cloud is lower than the sample mean in the j—th 

direction. A vector of all the values of pj provides a quick summary of the directions of

pull, P  =  (pi,P2,...,Pp).

The pull can also be used as a crude measure of detection for the direction (if any) 

in which clustering appears. Figure 2.3 demonstrates the this in two dimensions.

Figuhe 2.3 Direction of Pull in Two Dimensional Space

Ï2

X2

A B
(-1,1) (1,1)

C D
(-1 ,-1) (1,-1)

Xl Xl

Each of the quadrants A,B,C and D displays the possible composition of the P 

vector and hence the direction of the "pull". In more than two dimensions a possible 

representation is displayed in Figure 2.4.

Figure 2.4 Direction of Pull in d—Dimensional Space

1 -

Pj 0

-1 -J 

Var.

I i;;i
f Ie

Xs » » « Xt

A further refinement to the displays would be to replace the pj values with the 

actual magnitudes and signs of the differences between the arithmetic mean and the 

compound mean. These provide a measure of the relative "pull" in each of the variables
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and so making it easier to identify the most outlying one. The drawback here is be that all 

the variables have to be suitably scaled and standardised for direct comparison.

It is useful to study the behaviour of the arithmetic means during the iterations. 

This behaviour is displayed in what is termed as the Means Plot 

DEFINITION 2.9: Means Plot

A Means Plot is the plot of the arithmetic mean at each iteration of the Stalactite 

Analysis against the iteration number. #

Another diagnostic statistic of interest is the proportion of "bad" observations to 

"good" ones. In this study, this proportion has been referred to as the Contamination 

Index. For completeness this index is computed at each iteration.

D e f i n i t i o n  2.10: Contamination Index
2

If X =  (x^,X2 ,...,Xp) is a sample of size n with d. j  being the squared Mahalanobis 

distance for the i—th observation on the J—th iteration then let G j and B j be the number 

of "good" observations and "bad" observations, respectively, on the J—th iteration ie.

#  {Gj: d?j < a^} (2.81)

and

#  {Bj; d?j >  a^} (2.82)
*

i=l,2,...,n , then the Contamination Index for the J—th iteration, C j, is defined as

Cj  =  B j /G j  (2.83)

#

The Contamination Index C can be compared to some tolerance level, r, say and a 

subsample of relatively "good" observations can be selected. The size of this subsample Uj 

can be determined as

{nj; C j  < r }  (2.84)

where J is the iteration number. Also, the particular observations that constitute the 

subsample can be determined by selecting those observations with the smallest Stalactite 

Scores first ie. with SS=0 then SS=1, etc until the desired size n j is reached. Conversely,
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the observations with the largest Stalactite Score can be removed from the sample until the 

desired size n j, so that the remaining observations would constitute the required 

subsample.

2.8 EXAMPLES

The approaches and tests for the detection of outliers exemplified in this chapter are 

just a few of the numerous ones. Each approach has specific circumstances within which it 

is suitable, for example the Z(r_i) (see Section 2.2.1) can only be applied to bivariate data. 

Furthermore, each test is designed to cope with and detect a specific number of outliers. 

The discordancy tests in Table 2.1 are all designed to test for the presence of a single 

outlier whereas the Classical approach (Section 2.4), the Minimum Volume Ellipsoid 

(MVE) approach (Section 2.5), the Hat—Matrix approach (Section 2.6) and the proposed 

Stalactite Analysis (Section 2.7) can detect multiple outliers.

This section presents examples of the application of the approaches discussed. Each 

data set has been chosen to portray specific characteristics which may arise in typical data. 

The first two examples are based on simulated bivariate normal data with 50 observations. 

These data are used as control data to demonstrate the expected behaviour of the 

techniques under known and predetermined conditions. The first of these data, Example 

E.l, is generated so as not to contain any obvious outliers and this is used as the null data 

set. The second, Example E.2, is a contamination of the first data set with the introduction 

of four outlying observations. These outlying observations are introduced to depict the 

three types of effects which outliers may have, as portrayed in Figure 2.1; inflating 

variances and no effect on correlations, reducing correlation and inflating the variance in 

one variable, and no effect on variances but with reduction of the correlation. The 

remaining data are well known and have been used extensively in the literature on robust 

regression and outlier diagnostics.

Example E.3 is the Belgian Telephone calls data [Rousseeuw and Leroy 1987] and is 

the number of international telephone calls (in tens of millions) in the years 1950—1973.
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There is heavy contamination from 1964 to 1969 and it turns out that another recording 

system was used, giving the total number of minutes of these calls. This data set 

demonstrates the masking effect but with one variable, the year (although a sequential 

variable) has no outlyingness and the observations causing the masking lie centrally in this 

variable.

The fourth data set. Example E.4, is the Hertzsprung—Russell diagram of the star 

cluster CYG OBI, which contains 47 stars in the direction of Cygnus. This contains the 

logarithm of the effective temperature at the surface of the star and the logarithm of its 

light intensity [Rousseeuw and Leroy 1987: p.27]. These data also exhibit masking. 

Although one of the variables does not contain obvious outliers the observations causing 

the masking lie at the extreme.

The fifth data set. Example E.5, is the Hawkins—Bradu—Kass artificial data 

[Hawkins, Bradu and Kass 1984]. These data being artificially generated offer the 

advantage that the position of the bad points is known exactly. The data set consists of 75 

observations in four dimensions (one response and three explanatory variables). For the 

purposes of this thesis, following Rousseeuw and van Zomeren [1990], only the explanatory 

variables are used. In the complete data set (with all variables) the first 10 observations 

are bad leverage points (outlyingness in the explanatory variables), and the next four are 

good leverage points (outlyingness in the explanatory variables but corresponding responses 

fit the model quite well). In all, therefore, there are 14 outliers and these form a cluster far 

away from the rest of the data and hence exhibit masking.

The initial step in the analyses is to obtain the summary statistics so as to study the 

marginal behaviour of the variables. These statistics include the M—estimators of the 

means. This is followed by graphical studies with Box plots and scatter plots for a visual 

display of the behaviour of the variables marginally and jointly, respectively. In the case of 

bivariate data, the analysis based on the correlation coefficient with case deletion is carried 

out. The results are then summarised and tested using a normal plot of the Z(r.i). The
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multivariate outlier diagnostics are then carried out. These include the Classical approach, 

the Hat—Matrix approach and the proposed Stalactite Analysis approach. In the 

Hawkins—Bradu—Kass example the results of results from the Minimum Volume Ellipsoid 

approach are included.
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E x a m p l e  E . l  Simulated Bivariate Normal Data: The data consist of two sets p=2 of 50 

(=n) computer generated standard normal deviates. These deviates are transformed 

pairwise to construct bivariate normal deviates with a given correlation between them, p. 

The following is the relationship used for the transformations.

y i i  =  x i i

y2i =  pxii 4- V(1 -  p2)x2i 

(i =  1,2,...,50), to obtain 50 samples (yn, y2i) from

N

To avoid negative values, the mean vector is shifted sufficiently away from the 

origin by adding a constant vector (ci, C2) to each of the observations. The observation 

vector is also rescaled by a matrix A such that

’ zi ' =  A yi" ’ o-iyi '
.22. .y2. . <̂ 2Y2,

where A = ai 0 
0 (72

and so the final sample is

‘ zi* Cl' ' p '
.22. .C2. p (7-2

The constants used in the analysis are Ci =  10, C2 =  20, (7i =  5 £T2 =  10 and p =  0.6.
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The three measures of location (Table E.l(b)), the mean, median and 5% trimmed 

mean for both variables are in close agreement which suggests that both variables are fairly 

marginally symmetrical. This is further confirmed by the almost zero coefficient of 

skewness values for both and the interquartile range is approximately twice the standard 

deviation. The negative values for kurtosis suggest that both variables are concentrated 

close to the respective means. There is also negligible differences between the 

M—estimators. Graphically, the box plots show close symmetry for both variables although 

with slightly longer stems to the right.

The scatter plot in Figure E.l(b) is evenly distributed around an elliptical point 

cloud with a correlation of 0.59. There are no obvious unusual points, outliers. Figure 

E .l(c) is the normal plot of the case deletion correlation coefficient function Z(r-i). Apart 

from a few straggling points in both extremes, the plot is fairly linear which means that no 

individual observation affects the correlation between the variables and hence, no outlying 

observations.

From Table 2.1 all the discordancy tests applied to these data are not significant at 

the 5% level and so this further confirms that there does not appear to be any single 

outlying observations.

The Stalactite Chart and Stalactite diagnostics are displayed in Figure E.l(d) and 

Table E.l(d) respectively. According to Figure E.l(d) the "deepest” stalactite has a 

"depth" of 80 i.e. it ceases after 80% of the closest observations to the center of the point 

cloud have been selected for the computation of the means and covariance matrix (Note: A 

depth of 100 is equivalent to the Classical approach). It further implies that there is only 

one observation at that point which is outlying (a fact which can also be observed from the 

Contamination Index CIX (ratio of bad to good observations) of 0.02 from Table E.l(d). 

The identity of this observation can be determined from the Stalactite Scores and it is 

observation 2. It lies on the edge of the bottom of the ellipsoid. Two other observations 

lying on the edge are observations 24 and 37 which again are identified by the Stalactite
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Scores. If a tolerance level r  =  0.05 for the CIX is used it leads to only one outlier in the 

data and a selection of at least 40 observations and at most 49 without observation 2 will 

ensure a "clean” data set. Although three observations are detected, by quick inspection of 

the scatter plot (Figure E.l(b)) they all lie well within range of the marginal distributions 

and hence do not affect the marginal measures of location and spread. It is worth noting 

that this is the reason that none of the discordancy tests could detect them. However, the 

effect of these observations, albeit slight, is in affecting the correlation between the 

variables.

Figures 1(e) and 1(f) display the Mahalanobis index plot (MIP) of the data at 90% 

sub—sample size and full sample size, respectively. At 90% sub—sample size the % (0.95) 

cut-off detects two possible outliers whereas the E[Max % ] does not. The labeling of an

observation as an outlier should be after it has quite clearly failed the tests and this

example shows how using a less tolerant cut-off point may condemn an observation when 

it is in fact a viable point. Using the full sample both cut-off points do not detect any

outliers as is also visible from the Stalactite Chart.

Finally, Figure E.l(g) is the Means Plot for the data. The variation of the mean for 

YI is very slight and is concentrated around the full sample mean and the compound mean. 

This is verified by noting that the three observations which were identified as outliers all 

lie well within the range of the Yi space and are fairly close to its mean. On the other 

hand, the mean for Y2 starts off large and is "pulled" down as the sub—sample size 

increases. Further, the compound mean is lower than the full sample mean. This suggests 

that the inclusion of some of the observations tends to pull the mean down and these are 

the observations with high Stalactite Scores. On inspection on the scatter plot it is noted 

that the three outlier observations are far below the central tendency in the Y2 space. 

Referring to Figure 2.3 the "pull" falls within quadrant D i.e. with a pull vector P  = (1, 

-!)•
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EdcAMPLE E .l Simulated B ivaria te  Normal Data (with no o u t l i e r s ) . Table 

E . l ( a )  d isp lays the data  from Example El where the constants used in  the 

an a ly s is  are Ci = 1 0 ,  Cg = 2 0 ,  (T\ = 5 ^2 = 10 and p = 0 .6 .

Ta b l e  E . l (a) Simulated B ivaria te  Normal Data (with no o u tlie rs )

Obs Ya Obs Yi Ya Obs Yi Ya

1 11 . 1 26. 03 18 12.13 30.83 35 16.75 27.54
2 12 . 4 10. 52 19 16.50 22.25 36 5.32 18.00
3 4 .6 10. 00 20 9.18 20.57 37 10.79 8.67
4 5 .65 18. 00 21 16.00 22.00 38 6.90 23.80
5 7 .08 14. 00 22 4.78 6.22 39 7.00 20.00
6 6 .79 12. 00 23 10.00 24.00 40 12.65 26.81
7 18 .07 33. 46 24 15.19 16.50 41 14.15 28.91
8 11 .76 20. 37 25 14.55 33.29 42 15.00 26.00
9 4 .87 12. 00 26 8.53 12.00 43 14.00 24.00

10 14 .64 18. 30 27 8.45 17.15 44 10.31 26.00
11 11 .24 13. 74 28 8.00 15.00 45 8.83 25.00
12 7 .25 20. 00 29 14.87 32.52 46 11.56 18.41
13 10 .06 15. 00 30 15.21 28.97 47 7.38 20.32
14 9 .64 27. 40 31 12.54 19.10 48 12.00 22.00
15 11 .32 29. 89 32 6.77 6.90 49 9.86 22.30
16 10 .00 12. 00 33 13.21 18.49 50 10.98 27.44
17 15 .00726. 42 34 9.57 11.74

Ta ble  E .l(b ) Summary S ta t i s t ic s  fo r  Simulated B ivaria te  Normal 
Data (with no o u tlie rs )

S ta t i s t ic Yi Ya

Location
Mean 10.81 20.44
Median 10.89 20.35
5% Trim 10.79 20.47
Std Err 0.50 1.01

Dispersion
Variance 12.37 51.02
Std Dev 3.52 7.14
Min 4.59 6.23
Max 18.07 33.47
Range 13.48 27.24
IQR 6.19 11.38

Skewness t  K urtosis
Skewness 0.05 -0.10
S E Skew 0.34 0.34
Kurtosis -0.87 -0.81
S E Kurt 0.66 0.66
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T a b l e  E . 1 ( c  ̂ M - E s t i m a t o r s

S ta t i s t i c Yi Ya

Huber (1.34)
Hampel (1 .70,3 .40,8 .50) 
Tukey (4.69)
Andrew (1.3 * p i)

10.81 20.57
10.81 20.48
10.80 20.55
10.80 20.55

F i g u r e  E .l(a^  Box P lo ts fo r  Simulated B ivaria te  Normal Data 
(with no o u tlie rs )

YI 

18.00 --

12.00 --

6.00 --

.00 --

36.00

24.00 --

12.00 --

.00 --

Symbol Key: * - Median ( ••• )  - O utliers
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F i g u r e  E . 1 ( b )  S i m u l a t e d  B i v a r i a t e  N o r m a l  D a t a  ( w i t h  n o  o u t l i e r s )
S c a t t e r  P l o t

35.0 -]

30.0 -

25.0 -

20.0 -

15.0 -

10.0 - 

5.0 -

0.0
0.0

)oy

X  X 

X X

X X

X X X

X X

X X X v X

"I--------------T "
5.0 10.0

XI

-I--------------1—
15.0

T I
20.0
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F i g u r e  E . 1 ( c )  S i m u l a t e d  B i v a r i a t e  N a r m a l  D a t a  ( ^ ^ i t h  n a  a u t l i e r s )
N o r m a l  P l o t  o f  Z ( r _ j )

0.75 -I

0.70 -

m 0.65 -

0.60 -

0.55
2.00 3.001.00-3 .0 0  -2 .0 0  -1 .0 0  0.00

E x p e c t e d
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Fi g u r e  E .l(d) Simulated Bivariate Normal Data ( v / o  o u tliers) S ta lactite  Chart

ITERATION VS OBSERVATION

SUB-SAMPLE

1
SIZE

3( 6.0
2 4( 8.0
3 5( 10.0
4 6( 12.0
5 7( 14.0
6 8( 16.0
7 9( 18.0
8 10( 20.0
9 11( 22.0

10 12( 24.0
11 13( 26.0
12 14( 28.0
13 15( 30.0
14 16( 32.0
15 17( 34.0
16 18( 36.0
17 19( 38.0
18 20 ( 40.0
19 21( 42.0
20 22 ( 44.0
21 23( 46.0
22 24( 48.0
23 25 ( 50.0
24 26( 52.0
25 27( 54.0
26 28( 56.0
27 29 ( 58.0
28 30 ( 60.0
29 31 ( 62.0
30 32 ( 64.0
31 33 ( 66.0
32 34 ( 68.0
33 35 ( 70.0
34 36 ( 72.0
35 37( 74.0
36 38 ( 76.0
37 39 ( 78.0
38 40 ( 80.0
39 41 ( 82.0
40 42 ( 84.0
41 43 ( 86.0
42 44 ( 88.0
43 45 ( 90.0
44 46 ( 92.0
45 47( 94.0
46 48 ( 96.0
47 49 ( 98.0
48 50( 100.0

1 2 3 4 5
12345678901234567890123456789012345678901234567890

*
** ** ** * ** *** * ** * ** * *
** ***** * ** *** ** ** * ** * *
** ********** ******* ** * * ******* ***
** ********** ******* ** * * ******* ***
** ********** ******* ** * ******* ***
** ********** ******* ** * ***** ***
** ********** ******* ** * ***** ***
** ********** ********** * ***** ***
** ********** ***** * ** * ***** * *
** ********** ***** * ** * ***** * *
** ******* ** ***** * ** * ** ** * *
** ******* ** ***** * ** * ** ** *
** ******* ** **** * ** * ** * *
** * ***** ** **** * ** ** * *
** * ** * ** *** * ** ** * *
** * ** * ** *** * ** ** * *
** * * * ** * * * ** ** *
** * ** * ** * * * ** ** *
** * ** * ** * * * ** ** *
** * * * ** * * ** * *
** * * * ** * * ** *
** * * * ** * * **
** * * * ** * **
** * * * ** * **
** * * ** * **
** * * ** *
** * * ** *
** * * *
** * *

* * *

04302312233022232131330413221123332142011221120211 
12345678901234567890123456789012345678901234567890 

1 2 3 4 5
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TABLE E .lfd l Simulated Bivariate Normal Data fv/o ou tliers) S ta lactite  Analysis

ITRN SUB-SAMPLE OBSERVATION

1
SIZE

3(
2 4(
3 5(
4 6(
5 7(
6 8(
7 9(
8 10(
9 11(

10 12(
11 13(
12 14(
13 15(
14 16(
15 17(
16 18(
17 19(
18 20(
19 21(
20 22 (
21 23(
22 24 (
23 25(
24 26(
25 27(
26 28(
27 29(
28 30 (
29 31 (
30 32 (
31 33 (
32 34 (
33 35 (
34 36 (
35 37(
36 38 (
37 39 (
38 40 (
39 41 (
40 42 (
41 43 (
42 44 (
43 45 (
44 46 (
45 47 (
46 48 (
47 49 (
48 50(

BAD:GOOD 
RATIO

1.63
1.94
7.33
7.33 
6.14
4.56
4.56
4.00
3.17
3.17
2.57
2.33
1.94
1.63
1.27
1.27
1.00 
1.08 
1.08 
0.67 
0.61 
0.52 
0.47 
0.47 
0.43 
0.39 
0.39 
0.28 
0.22 
0.19 
0.11 
0.11 
0.11 
0.11 
0.06 
0.06 
0.06 
0.02 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00

TOTAL SQ. 
OBS.
4.00 
0.78
8.00 

10.00 
12.00
14.00
16.00 
18.00 
20.00 
22.00
24.00
26.00 
28.00
30.00
32.00
34.00 
35.24 
36.96
40.00
42.00
44.00
46.00
48.00
50.00
52.00
54.00
56.00
58.00
60.00 
61.80
64.00 
65.90 
67.81 
69.57
72.00
74.00
76.00 
77.47
80.00 
82.00
84.00
86.00 
88.00
90.00
92.00
94.00
96.00
98.00

DISTANCE
EXP.
4.00
6.00 
8.00

10.00
12.00
14.00
16.00 
18.00 
20.00 
22.00
24.00
26.00 
28.00
30.00
32.00
34.00
36.00
38.00
40.00
42.00
44.00
46.00
48.00
50.00
52.00
54.00
56.00
58.00
60.00 
62.00
64.00
66.00 
68.00
70.00
72.00
74.00
76.00
78.00
80.00 
82.00
84.00
86.00 
88.00
90.00
92.00
94.00
96.00
98.00
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Figure E.l(e)^^Simu,oted jiv ^ rio te^N o ^o ^ .D o to ^^M ^ (°gO* Sample)

—  Exp.Mox Chi-square 

______ Chi-square(0.95)

20
C a s e  N u m b e r

71



F i g u r e  E . 1 ( f )  S i m u l a t e d  B i v a r i a t e  N o r m a l  D a t a  ( w i t h  n p  o u t l i e r s )
I n d e x  P l o t  o f  t h e  M a h a l a n o b i s  D i s t a n c e s  ( F u l l  S a m p l e )

E x p . M a x . C h i - S q .3 . 0  - r -

C h i - S q u a r e  ( 0 . 9 5 )

2.0 -

r
cr(/)

0.0
20
C a s e  N u m b e r

30 4 0 5 0
N u m b e r

F i n i i r p  F  S i m u l a t e d  B i v a r i a t e  N o r m a l  D a t a  ( w i t h  n o  o u t l i e r s )
r i g u r e  c .  M e o n s  P l o t

2 8 . 0  -

2 4 . 0  -

20.0 -

1 6 . 0  -

12.0 -

8.0 -

4 . 0

0.0

5 0 %  S a m p l e  S i z e

. TM-f

10

S a m p l e  M e a n

20 30
I t e r a t i o n

4 0  5 0

 C o m p o u n d  M e a n

7 2



E x a m p l e  E . 2  Siimilated B ivaria te  Normal Data (with 4  o u t l i e r s ) . Table E.2(a) 

d isp lays the  data from Example E .l with four observations replaced by 

ou tly ing  ones. The four observations are 16, 28, 39 and 48.

T a b l e  E.2(a) Simulated B ivaria te  Normal Data (with 4  o u tlie rs )

Ohs ' Ï2 Obs Yi Ï2 Obs Yi Y,

1 11 .12 26.03 18 12.13 30. 83 35 16.75 27.54
2 12 .43 10.52 19 16.50 22. 25 36 5.32 18.00
3 4 .59 10.00 20 9.18 20. 57 37 10.79 8.67
4 5 .65 18.00 21 16.00 22. 00 38 6.90 23.80
5 7 .08 14.00 22 4.78 6. 22 39 2.50 30.00
6 6 .79 12.00 23 10.00 24. 00 40 12.65 26.81
7 18 .07 33.46 24 15.19 16. 50 41 14.15 28.91
8 11 .76 20.37 25 14.55 33. 29 42 15.00 26.00
9 4 .87 12.00 26 8.53 12. 00 43 14.00 24.00

10 14 .64 18.30 27 8.45 17. 15 44 10.31 26.00
11 11 .24 13.74 28 25.00 40. 00 45 8.83 25.00
12 7 .25 20.00 29 14.87 32. 52 46 11.56 18.41
13 10 .06 15.00 30 15.31 28. 97 47 7.38 20.32
14 9 .64 27.40 31 12.54 19. 10 48 30.00 20.00
15 11 .32 29.89 32 6.77 6. 90 49 9.86 22.30
16 30 .00 44.00 33 13.21 18. 49 50 10.98 27.44
17 15 .00 26.42 34 9.57 11. 74

Ta b l e  E.2(b) Summary S ta t i s t ic s  fo r  Simulated B ivaria te  Normal 
Data (with 4 o u tlie rs )

S ta t i s t i c Yi Y,

Location
Mean 11.90 21.74
Median 11.18 21.29
57. Trim 11.40 21.53
Std Err .80 1.17

D ispersion
Variance 32.29 68.18
Std Dev 5.68 8.26
Min 2.50 6.23
Max 30.00 44.00
Range 27.5
IQR 6.52 11.29

Skewness & K urtosis
Skewness 1.37 0.28
S E Skew 0.34 0.34
Kurtosis 2.86 0.05
S E Kurt 0.66 0.66
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Ta b l e  E . 2 ( c )  M - E s t i m a t o r s

S ta t i s t ic Yi Y,

Huber (1.34)
Hampel (1 .70,3 .40,8 .50) 
Tukey (4.69)
Andrew (1.34 * p i)

11.24 21.64 
11.14 21.51 
10.88 21.36 
10.86 21.35

FIGUB.E E.2 (a) Box P lo ts  fo r  Simulated B ivariate  Normal Data 
(with 4 o u tlie rs )

48.0036.00 -
(Obs. 16)

Obs. 16,8) 
Obs. 28)24.00 -- 32.00 --

12.00 -- 16.00 --

.00 -- .00 --

Symbol Key: ( . . . )  - O utliersMedian
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E xample E.2 Simulated Bivariate Normal Data (with 4 outliers) Analysis

The three measures of location (Table E.2(b)), the mean, median and 5% trimmed 

mean for both variables are in close agreement but with a larger standard error than the 

uncontaminated data. The coefficient of skewness value for Y% is also high and positive 

whereas that of Y2 is small. This means that Yi has a long tail to the right and some 

unusual observations may exist but Y2 is almost symmetric. The interquartile range for Y% 

is also not much larger than the standard deviation and that of Y2 is not too different from 

the original data. The coefficient of kurtosis for Yi is large compared to the change in that 

of Y2. There also differences between the M—estimators. Graphically, the box plots show 

close symmetry for both variables although with slightly longer stems to the right. In 

particular, three observations (16, 8 and 28) in the Yi space are detected as outliers and 

one (observation 16) in the Y2 space.

The scatter plot in Figure E.2(b) is evenly distributed around an elliptical point 

cloud with a correlation of 0.56. There are four obvious unusual points, outliers, one on 

either side of the point cloud and two within the direction of the point cloud although they 

are outlying in both the dimensions. Figure E.2(c) is the normal plot of the case deletion 

correlation coefficient function Z(r.i). There are four points which are far away from the 

otherwise linear plot. Two of these have low observed values for Z(r_i) this implies that 

deleting either of them reduces the correlation. The other two have high values and so 

deleting them increases correlation. On inspecting the Scatter Plot (Figure E.2(b)) it is 

visible that the lefttmost two outlying observations correspond to the former category and 

the rightmost two to the latter.

From Table 2.1 all the discordancy tests apart from the Z(r.i) are significant at the 

5% level and so this further confirms that there does appear to be at least one outlying 

observation.

The fact that all tests so far indicate that there is at least one outlier makes it 

useful to apply the multivariate tests for further investigation of the data together with
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obtaining the identities of these outlying observations.

The Stalactite Chart and Stalactite diagnostics are displayed in Figure E.2(d) and 

Table E.2(d) respectively. According to Figure E.2(d) there are two stalactites which have 

a depth of 100, there are also two more with a depth of 98 and 96. This implies that at full 

depth there are two observations that are outlying, the Contamination Index CIX being 

0.04 from Table E.2(d). From the Stalactite Scores these observations are identified as 

observations 16 and 48, the other two are observations 28 and 39. The pairing of these 

observations is identical to the pairing obtained in the case deletion correlation test. 

Similarly, observation 16 is detected by the box plots in both variables but in Yi even 

observation 48 is detected. These are the rightmost observations in the scatter plot and so 

their exclusion from the data would increase the correlation. If a tolerance level r =  0.05 

for the CIX is used it leads to two outliers in the data and a selection of 48 observations 

without observations 16 and 48 will ensure a "clean" data set.

Figures 2(e) and 2(f) display the Mahalanobis index plot (MIP) of the data at 90%

sub—sample size and full sample size, respectively. At 90% sub—sample size both the
2 2 2 X (0.95) cut-off and the E[Max % ] detect the four outliers. Using the full sample % (0.95)

cut-off detects upto eleven outliers whereas the E[Max % ] cut-off points detect the four

known outliers correctly.

Figure E.2(g) displays the Means Plot for the data. The mean for Yi is starts off 

relatively small in magnitude but is "pulled" up as the sample size increases. This is 

verified by noting that three of the outlying observations clearly lie far from the majority 

of the data in the Y i space and so they do affect the central tendency by pulling the mean 

towards them. On the other hand, the mean for Y2 has very slight variation about the full 

sample mean. This is expected since the outlying observations fall close to the majority of 

the data in this dimension and so do not affect the mean. Further, the compound mean is 

higher than the full sample mean in both variables indicating a positive pull for the mean 

in both dimensions. This suggests that the inclusion of some of the observations tends to
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pull the mean up and these are the observations with high Stalactite Scores. On inspection 

of the scatter plot it is noted that the three outlier observations are far above the central 

tendency in both variables. Refering to Figure 2.3 the "pull" falls within quadrant B i.e. 

with a pull vector P =  (1, 1).
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F i g u r e  E . 2 ( b )  S i m u l a t e d  B i v a r i a t e  N o r m a l  D a t a  ( w i t h  4  o u t l i e r s )
S c a t t e r  P l o t

4 5 . 0

4 0 . 0  -

3 5 . 0  ^
1

3 0 . 0  -

2 5 . 0  -

20.0  -

1 5 . 0  -

10.0  -

5 . 0  i  

0.0

X XX X

* * *xX*Xx
xX

X X X X

. — I 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1------- 1--------1--------1
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

XI

F i g u r e  E . 2 ( c )  S i m u l a t e d  B i v a r i a t e  N o r m a l  D a t a  ( w i t h  4  o u t l i e r s )
N o r m a l  P l o t  o f  Z ( r _ - )

0 . 8 0  n  

0 . 7 5  -  

0.70 -

o 0.65 4
<D
g  0.60 4

0 . 5 5  -1 

Œ 5 0 -

0 45

x>y

- 3 . 0 0  ' - 2 .0 0  ' - I . ' O O  ' 0 . 0 0  1 . 0 0  2 . 0 0  3 . 0 0
E x p e c t e d
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FiGüiLE E.2fd) Simulated Bivariate Normal Data ou tliers) S ta la ctite  Chart

ITERATION VS OBSERVATION

1 2 3 4 5
12345678901234567890123456789012345678901234567890 
** * * * * * * * * *1

SIZE
3( 6.0

2 4( 8.0
3 5( 10.0
4 6( 12.0
5 7( 14.0
6 8( 16.0
7 9( 18.0
8 10( 20.0
9 11( 22.0

10 12( 24.0
11 13( 26.0
12 14( 28.0
13 15( 30.0
14 16( 32.0
15 17( 34.0
16 18( 36.0
17 19( 38.0
18 20 ( 40.0
19 21 ( 42.0
20 22 ( 44.0
21 23 ( 46.0
22 24 ( 48.0
23 25( 50.0
24 26( 52.0
25 27( 54.0
26 28 ( 56.0
27 29( 58.0
28 30 ( 60.0
29 31 ( 62.0
30 32 ( 64.0
31 33 ( 66.0
32 34 ( 68.0
33 35 ( 70.0
34 36 ( 72.0
35 37( 74.0
36 38 ( 76.0
37 39 ( 78.0
38 40 ( 80.0
39 41 ( 82.0
40 42 ( 84.0
41 43 ( 86.0
42 44 ( 88.0
43 45 ( 90.0
44 46 ( 92.0
45 47 ( 94.0
46 48 ( 96.0
47 49 ( 98.0
48 50( 100.0
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table E.2(d) Simulated Bivariate Normal Data (v/4 ou tliers) S ta lactite  Analysis

ITRN SUB-SAMPLE OBSERVATION BAD:GOOD
RATIO

TOTAL SQ. 
OBS. 
4.00 
0.40 
7.48 

10.00 
12.00
14.00
16.00
24.00
26.00 
28.00
30.00
32.00
34.00
36.00
38.00
40.00
42.00
44.00 
44.95 
47.36
50.00 
53.59
56.00 
57.68 
59.43
62.00
64.00
66.00 
68.00
70.00
72.00
74.00
76.00
78.00
80.00 
82.00
84.00
86.00 
87.97
90.00
92.00
94.00
96.00
98.00

DISTANCE
EXP.
4.00
6.00 
8.00

10.00
12.00
14.00
22.00
24.00
26.00 
28.00
30.00
32.00
34.00
36.00
38.00
40.00
42.00
44.00
46.00
48.00
50.00
54.00
56.00
58.00
60.00 
62.00
64.00
66.00 
68.00
70.00
72.00
74.00
76.00
78.00
80.00 
82.00
84.00
86.00 
88.00
90.00
92.00
94.00
96.00
98.00
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F i g u r e  E . 2 ( e )  S i m u l a t e d  B i v a r i a t e  N o r m a l  D a t a  ( w i t h  4  o u t l i e r s )
I n d e x  P l o t  o f  t h e  M a h a l a n o b i s  D i s t a n c e s  ( 9 0 %  S a m p l e )

7 .0

6.0

5 . 0

4 . 0

  Exp.Max.Chi-Sq.

_ Chi -S qua re  ( 0 .9 5)

2.0

1.0

0.0
4 0 5010 20 300

Case  Number

F i g u r e  E . 2 ( f )  S i m u l a t e d  B i v a r i a t e  N o r m a l  D a t a  ( w i t h  4  o u t l i e r s )
I n d e x  P l o t  o f  t h e  M a h a l a n o b i s  D i s t a n c e s  ( F u l l  S a m p l e )

5 .0  -1

4 .0  -

Exp.Mox.Chi-Sq.3 .0  —

b-
2.0  -

—  Ch i - S qu cr e  ( 0 .9 5)

20 3 0
Case Number

40 5 0
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F i g u r e  E . 2 ( g )  S i m u l a t e d  B i v a r i a t e  N o r m a l  D a t a  ( w i t h  4  o u t l i e r s )
M e a n s  P l o t

oo
to

50% Sample Size

28 ^  -

2 4 ^ -

2 0 ^ -co
0)

4 .0
5020 30 400 10

Sample Mean

Iteration

 Compound Mean



EXAMPLE E.3 Belgian Phone Calls. The data consist of the total number (in 
tens of millions) of international phone calls from Belgium in the years 
1950-1973 (Yi - Year, Y2 - Number of calls).
T a b l e  E.3(a) Belgian Phone Calls

Obs Yi Y, Obs Yi Y,
1 50 0.44 13 62 1.61
2 51 0.47 14 63 2.12
3 52 0.47 15 64 11.90
4 53 0.59 16 65 12.40
5 54 0.66 17 66 14.20
6 55 0.73 18 67 15.90
7 56 0.81 19 68 18.20
8 57 0.88 20 69 21.20
9 58 1.06 21 70 4.30
10 59 1.20 22 71 2.40
11 60 1.35 23 72 2.70
12 61 1.49 24 73 2.90

Ta b l e  E.3(b) Summary Statistics for Belgian Phone Calls

Statistic Y,
Location
Mean 5.09
Median 1.49
5% Trim 4.48
Std Err 1.39
Dispersion
Variance 44.69
Std Dev 6.69
Min 0.44
Max 11.17
Range 10.73
Skewness & Kurtosis
Skewness 1.35
S E Skew 0.48
Kurtosis 0.34
S E Kurt 0.94
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T a b l e  E . 3 ( c )  M - E s t i m a t o r s

Statistic Y,
Huber (1.33)
Hampel (1.70,3.40,8.50) 
Tukey (6.69)
Andrew (1.34 * pi)

1.73
1.28
1.20
1.20

F i g u r e  E.3(a) Box Plot for Belgian Phone Calls

24.00 --
(Obs. 20)

16.00 --

8.00  - -

.00  - -

Symbol Key: * - Median (...) - Outliers
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EXAMPLE E.3 Belgian Phone Calls Analysis

In this analysis the summary statistics of Y2 only are considered (the number of 

phone calls) since Yi is just a sequential variable (year). There are marked differences in 

the three measures of location (Table E.3(b)). The mean is significantly larger than the 

median and the 5% trimmed mean is no different. This suggests that Y2 has a very long 

tail to the right. This is further confirmed by the large positive value of the coefficient of 

skewness. There is, however, negligible differences between the M-estimators and these 

compare well to the median. Graphically, the box plot shows strong asymmetry and indeed 

it does not have a left stem.

The scatter plot in Figure E.3(b) displays a linear trend apart from six observations 

which clearly stand out from the rest of the data. Figure E.3(c) is the normal plot of the 

case deletion correlation coefficient function Z(r_i). There are a few points which are far 

away from the otherwise linear plot in both extremes.

From Table 2.1 all the discordancy tests are not significant at the 5% level. This is 

explained by the fact that these tests are for detecting a single outlier but in these data the 

effect is masked by the fact that there are several observations which are jointly influential 

but have little influence if looked at individually.

The discordancy tests, therefore, show no evidence of outliers and yet the summary 

statistics and the graphical techniques clearly indicate their presence. This makes it 

necessary to conduct multivariate tests.

The Stalactite Chart and Stalactite diagnostics are displayed in Figure E.3 (d) and 

Table E.3(d) respectively. According to Figure E.3(d) there is no stalactite with a depth of 

100, there is one with a depth of 95.8, two with 91.7. All the six outlying observations are 

detected up to a depth of 83.3. The fact that at full depth there are no observations that 

are outlying implies that the Classical approach does not detect any outliers. From the 

Stalactite Scores all the six outlying observations are identified and are observations 15, 16, 

17, 18, 19 and 20. If a tolerance level r  =  0.05 for the CIX is used it leads to one outlier in
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the data and a selection of 23 observations without observations 20 will ensure a "clean" 

data set at the 5% CIX tolerance level.

Table E.3(e) is a summary of the different multivariate results from the different 

approches. These are the case deletion correlation coefficient, the Z(r_i), the diagonal 

elements of the Hat matrix, the Mahalanobis matrix and the Stalactite Scores. Apart from 

the Stalactite Scores, which identify all the six outlying observations, none of the other 

values detect these outliers
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Figure E.3(b) Belgian Phone Coils Doto 
Scatter Plot

25.0 -

20.0 -

15 .0  -

10.0 -

5 .0  -

0.0
4 0 .0 5 0 .0 6 0 .0

XI
7 0 .0 8 0 .0

Figure E.3(c) Belgion Phone Colls Doto 
Normol Plot of Z(r_,)

0 .7 3  -1

0 .7 0  -

73 0.68 - <Da<u (0
°  0 .6 5  -J
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FigüB-E E.3(d) Belgian Data S ta lactite  Chart

ITERATION VS OBSERVATION

SIZE 12345678901234567890123456789012345678901234567890
1 3( 12.5) ** **** ****
2 4( 16.7) * ** **** ****
3 5( 2 0 . 8 ) ** ****** **** ******
4 6 ( 25.0) ** ***** **** ******
5 7( 29.2) ** ** **** ******
6 8 ( 33.3) ** * **** ******
7 9( 37.5) ** * **** ******
8 1 0 ( 41.7) ** **** ******
9 1 1 ( 45.8) ** **** ******

1 0 1 2  ( 50.0) * **** ******
1 1 13( 54.2) **** ******
1 2 14( 58.3) **** *** **
13 15( 62.5) **** *** *
14 16( 66.7) **** ***
15 17( 70.8) **** ***
16 18( 75.0) ♦** ***
17 19( 79.2) *** **
18 2 0  ( 83.3) *** **
19 2 1  ( 87.5) **
2 0 2 2  ( 91.7) **
2 1 23 ( 95.8) *
2 2 24 (1 0 0 . 0 )

220011121100034444443222 
12345678901234567890123456789012345678901234567890 

1 2 3 4 5

TABLE E.3(d) Belgian Data S ta la c t i te  Analysis

ITRN

1
2
3
4
5
7
8  
9

1 0
1 1
1 2
13
14
15
16
17
18
19
2 0  
2 1  
2 2

SUB-SAMPLE 
SIZE 

3

OBSERVATION

41
5
6l
7i
9i

lOi
1 1
1 2
13l
141
15i
16i
17i
181
19i
20l 
2 1  
22 
231

12.5
16.7] 
2 0 . 8
25.0
29.2 
37.5'
41.7] 
45.8  ̂
50.0' 
54.2' 
58.3' 
62.5'
66.7]
70.8
75.0
79.2
83.3
87.5
91.7]
95.8

GOOD #(%' 
13( 54.2'

BAD #(%' 
11( 45.8'

1 2
5i
6 i
9i 

lOi 
111 
1 1  
1 2 1 
131 
141 
15l
16i
16i
171
18i 
18i 
2 1  
2 2 1 
231

50.0 
2 0 . 8
25.0
37.5
41.7 
45.8^
45.8
50.0 
54.2 
58.3]
62.5
66.7
66.7
70.8
75.0
75.0 
87.5^ 
91.7 
95.8^

24(100.0) 24(100.0

1 2 i
191
18l 
15 
141 
131 
131
1 2 i
1 1
lOl
91
81
8 i
7(
6 l
6 l
31
2
1
Ol

50.0
79.2
75.0]
62.5
58.3 
54.2' 
54.2'
50.0] 
45.8 
41.7
37.5 
33.3]
33.3 
29.2
25.0]
25.0 
12.5^
8.3]
4.2
o . o '

BAD:GOOD 
RATIO 

0.85 
1 . 0 0  
3.80
3.00 
1.67 
1.40 
1.18 
1.18
1 . 0 0  
0.85 
0.71 
0.60 
0.50 
0.50 
0.41 
0.33 
0.33 
0.14 
0.09 
0.04 
0 . 0 0

TOTAL SQ. 
OBS.
4.00 
1.87
8 . 0 0  

1 0 . 0 0
14.00
16.00 
18.00 
2 0 . 0 0  
2 2 . 0 0
24.00
26.00 
28.00
30.00
32.00
34.00
36.00
38.00
40.00
42.00
44.00
46.00

DISTANCE
EXP.
4.00
6 . 0 0  
8 . 0 0

1 0 . 0 0
14.00
16.00 
18.00 
2 0 . 0 0  
2 2 . 0 0
24.00
26.00 
28.00
30.00
32.00
34.00
36.00
38.00
40.00
42.00
44.00
46.00
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T a b l e  E.3(e) Case Deletion Correlation Coefficient. Diagonal Elements of 
the Hat Matrix. Mahalanobis Distances, and Stalactite Scores for the 
Belgian Phone Calls Data

Obs. r ( - i ) z [ r ( - i ) ] t h ii d ii SSi
i (0.167) (2.71) (4)

1 0.531 0.592 0.157 1.67 2
2 0.530 0.590 0.138 1.52 2
3 0.530 0.589 0 . 1 2 0 1.37 0
4 0.530 0.591 0.105 1 . 2 2 0
5 0.531 0.592 0.091 1.08 1
6 0.532 0.593 0.078 0.95 1
7 0.534 0.595 0.068 0.83 2
8 0.536 0.598 0.059 0.73 2
9 0.538 0.601 0.052 0.64 1

1 0 0.540 0.605 0.047 0.59 1
1 1 0.543 0.608 0.044 0.57 0
1 2 0.546 0.613 0.042 0.60 0
13 0.549 0.617 0.042 0 . 6 8 0
14 0.551 0.620 0.044 0.70 3
15 0.542 0.608 0.047 1 . 1 0 4
16 0.537 0.600 0.052 1.16 4
17 0.533 0.594 0.059 1.44 4
18 0.526 0.585 0.068 1.70 4
19 0.519 0.575 0.078 2.06 4
2 0 0.513 0.567 0.091 2.54 4
2 1 0.569 0.646 0.105 1.53 3
2 2 0.595 0 . 6 8 6 0 . 1 2 0 1.94 2
23 0.600 0.693 0.138 2.07 2
24 0.607 0.703 0.157 2 . 2 1 3

t  z [ r ( - i ) ]  = ( l / 2 ) l o g e { ( l  + r . i ) / ( l  - r . j ) }

Note: h ii > 0.167 (=2p/n), d istances d û  exceeding ’’cu toff" value
(0.975) = 2.71 and SSi = 4 are underlined.A lso, (0.950) = 2.45.
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El AMPLE E.4 Hertzspnmg-Russell Diagram of the Star Cluster CYG OBI. The 
data in Table E.5 form the Hertzsprung-Russell diagram of the star cluster 
CYG OBI, which contains 47 stars in the direction of Cygnus. Here Yi is the 
logarithm of the effective temperature at the surface of the star (Tg), and 
Y2 is the logarithm of its light intensity (Z/fo)- 
T a b l e  E.4(a) Hertzsprung-Russell Diagram of the Star Cluster CYG OBI.
Obs Yi Y, Obs Yi Y, Obs Yi Y,

1 4.37 4.23 17 4.23 3.94 33 4.45 5.22
2 4.56 5.74 18 4.42 4.18 34 3.49 6.29
3 4.26 4.93 19 4.23 3.94 35 4.23 4.34
4 4.56 5.74 20 3.49 5.89 36 4.62 5.62
5 4.30 5.19 21 4.29 4.38 37 4.53 5.10
6 4.26 5.57 24 4.49 4.85 40 4.43 5.57
9 4.57 5.27 25 4.38 5.02 41 4.38 4.62
10 4.37 5.12 26 4.42 4.66 42 4.45 5.06
11 3.49 5.73 27 4.29 4.66 43 4.50 5.34
12 4.43 5.45 28 4.38 4.90 44 4.45 5.34
13 4.48 5.42 29 4.22 4.39 45 4.55 5.54
14 4.01 4.05 30 3.48 6.05 46 4.45 4.98
15 4.29 4.26 31 4.38 4.42 47 4.42 4.50
16 4.42 4.58 32 4.56 5.10

T a b l e  E.4(b) Summary Statistics for Hertzsprung-Russell Star Data
Statistic Yi Y,
Location
Mean 4.31 4.99
Median 4.42 5.08
5% Trim 4.34 4.99
Std Err 0.04 0.09
Dispersion
Variance 0.09 0.33
Std Dev 0.29 0.58
Min 3.48 3.94
Max 4.62 6.29
Range 1.14 2.35
IQR 0.18 0.89
Skewness k Kurtosis
Skewness -2.01 0.03
S E Skew 0.35 0.35
Kurtosis 3.38 - 0.66
S E Kurt 0.69 0.69
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Ta b l e  E . 4 ( c )  M - E s t i m a t o r s

Statistic Yi Y,
Huber (1.34)
Hampel (1.70,3.40,8.50) 
Tukey (4.69)
Andrew (1.34 * pi)

4.39 5.00
4.40 4.99
4.41 5.00
4.41 5.00

F i g u r e  E.4(a) Box Plots for Hertzsprung-Russell Star Data

5.60 7.20 --

4.80 6 . 0 0  --

r n
(Obs.
(Obs.

4.00 4.80 -

(Obs 10,20,30,34)
3.20 3.60 - -

Symbol Key: * - Median (...) - Outliers
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E x a m p l e  E.4 Hertzsprung—Russell Diagram of the Star Cluster CYG OBI Analysis

In this data set the three measures of location (Table E.4(b)), the mean, median 

and 5 % trimmed mean for both variables are in close agreement and with a small standard 

error. The coefficient of skewness value for Y i  is also high and negative whereas that of Y2 

is almost zero. This means that Yi is has a long tail to the left and some unusual 

observations may exist but Y2 is almost symmetric. The coefficient of kurtosis for Y% is 

close to the expected value but that of Y2 is small and negative. There are negligible 

differences between the M-estimators. Graphically, the box plot for Yi confirms its 

asymmetry and shows a long left stem whereas Y2 exhibits close symmetry. In particular, 

six observations (13, 7, 10, 20, 30 and 34) in the Yi space are detected as outliers and none 

in the Y2 space.

The scatter plot in Figure E.4(b) is evenly distributed around an elliptical point 

cloud. There are four obvious unusual points which are distinctly far away from the point 

cloud in the Y% space with two more which are also not to near. Figure E.4(c) is the normal 

plot of the case deletion correlation coefficient function Z(r.i). There are four points which 

jump and form an independent linear cluster from the one formed by the majority of the 

points. The influence of the four outlying observations is so strong that they make the 

correlation coefficient negative which can easily be refuted by inspecting the scatter plot. 

This explains why there is a jump in the observed Z(r-i) when any of the four observations 

is deleted because the correlation then tends towards being positive.

From Table 2.1 all the discordancy tests apart from the T are not significant at the 

5% level. This is explained by the fact that T is a form of range test and these outlying 

observations are distinctly far away from the rest of the data in the Y 1 direction.

The Stalactite Chart and Stalactite diagnostics are displayed in Figure E.4(d) and 

Table E.4(d) respectively. According to Figure E.4(c) there are two stalactites which have 

a depth of 100, there also a two more with a depth of 97.9. From the Stalactite Scores the 

most extreme observations are identified as observations 30 and 34, the other two are
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observations 11 and 20. If a tolerance level t  =  0.05 for the CIX is used it leads to two 

outliers in the data and a selection of 46 observations without observations 30 and 34 will 

ensure a "clean" data set at the 5% CIX tolerance level.

Figure E.4(e) displays the Means Plot for the data. The outlying observations 

clearly lie far from the majority of the data in the Yi space and so they do affect the 

central tendency by pulling the mean towards them so as the sub—sample size increases the 

outlying observations are include in the computations thus reducing the mean in this case. 

The mean for Yg starts off high but is "pulled" down as the sample size increases until a 

sub—sample size of 50% at which point it oscillates about the full sample mean. The reason 

for this is that the data is almost symmetric and so after 50% of it is used in the 

computations the observations are selected randomly since they all have similar distances 

from the centre of the point cloud. The compound means are lower than the full sample 

means in both variables indicating a negative pull for the mean in both dimensions. This 

suggests that the inclusion of some of the observations tends to pull the mean down and 

these are the observations with high Stalactite Scores, Referring to Figure 2.3 the "pull" 

falls within quadrant B i.e. with a pull vector P =  (—1 , —1).

Table E.4(e) is a summary of the different multivariate results from the different 

approches. These are the case deletion correlation coefficient, the Z(r.i), the diagonal 

elements of the Hat matrix, the Mahalanobis matrix and the Stalactite Scores. Apart from 

the two correlation related approaches, which fail to identify outlying observations, all the 

other approaches managed to detect and identify them.
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Figure E .4(b) H ertzsprung -R ussell Star Date 
ca tte r Plot
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Figure E.4(c) Hertz sprung-Russel I Star Data 
Normal Plot of Z(r_;)
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Figure E.4fdl Hertzsprung-Russell Star Data S ta lactite  Chart
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TABLE E.4(d) Hertzsprung-Russell Star Data S ta lactite  Analysis

ITRN SUB-SAMPLE OBSERVATION BAD:GOOD
RATIO

TOTAL SQ. 
OBS.
4.00 
0.38
8 . 0 0  

1 0 . 0 0  
1 2 . 0 0
14.00
16.00 
18.00 
2 0 . 0 0  
2 2 . 0 0
24.00
26.00 
28.00
30.00
32.00
34.00
36.00
38.00
40.00
42.00
44.00 
45.93 
47.67 
49.98
52.00
54.00
56.00
58.00
60.00 
62.00
64.00
6 6 . 0 0  
6 8 . 0 0
70.00
72.00
74.00
76.00
78.00
80.00 
82.00
84.00
8 6 . 0 0  
8 8 . 0 0
90.00
92.00

DISTANCE
EXP.

4.00
6 . 0 0  
8 . 0 0

1 0 . 0 0
1 2 . 0 0
14.00
16.00 
18.00 
2 0 . 0 0  
2 2 . 0 0
24.00
26.00 
28.00
30.00
32.00
34.00
36.00
38.00
40.00
42.00
44.00
46.00
48.00
50.00
52.00
54.00
56.00
58.00
60.00 
62.00
64.00
6 6 . 0 0  
6 8 . 0 0
70.00
72.00
74.00
76.00
78.00
80.00 
82.00
84.00
8 6 . 0 0  
8 8 . 0 0
90.00
92.00
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F i g u r e  E . 4 ( e )  H e r t z s p r u n g - R u s s e l l  S t a r  D a t a
M e a n s  P l o t
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Ta b l e  E .4fel Case D eletion C orrelation  C oeffic ien t, Diagonal Elements of 
the  Hat M atrix. Mahalanobis D istances, and S ta la c t i te  Scores fo r  the  
Hertzspmng Rnssell S tar Data

Obs.
i

r ( - i ) z ( - i ) t h ii
(0.085)

d ii
(2.71)

SSi
(4)

1 - 0 . 2 1 0 -0.213 0 . 0 2 2 0.48 1
2 -0.239 -0.243 0.037 1.72 1
3 -0.208 - 0 . 2 1 1 0 . 0 2 2 0.24 2
4 -0.239 -0.243 0.037 1.72 1
5 -0.208 - 0 . 2 1 1 0 . 0 2 1 0.32 2
6 -0.219 -0.223 0.027 1.05 1
7 -0.237 -0.241 0.078 1.90 4
8 - 0 . 2 2 0 -0.223 0.038 0.98 4
9 -0.209 - 0 . 2 1 2 0 . 0 2 2 1 . 1 1 1

1 0 -0.142 -0.143 0 . 0 2 2 0.32 1
1 1 -0.217 - 0 . 2 2 0 0.195 2.93 4
1 2 -0.219 -0.223 0.025 0.97 1
13 -0.256 -0.262 0.029 1.04 0
14 -0.214 -0.217 0.044 2.18 4
15 -0.203 -0.206 0 . 0 2 1 1.34 2
16 -0.228 -0.232 0.024 0.78 2
17 -0.203 -0.206 0.023 1.97 3
18 -0.228 -0.232 0.024 1.44 3
19 - 0 . 2 0 1 -0.204 0.023 1.97 3
2 0 -0.124 -0.124 0.195 3.01 4
2 1 - 0 . 2 1 2 -0.215 0 . 0 2 1 1.13 2
2 2 -0.214 -0.218 0 . 0 2 1 1.41 2
23 - 0 . 2 0 2 -0.205 0.024 1.03 2
24 -0.205 -0.208 0.030 0.64 1
25 -0.208 - 0 . 2 1 1 0.023 0.25 0
26 -0.204 -0.207 0.024 0 . 6 6 2
27 -0.209 -0.213 0 . 0 2 1 0.63 2
28 -0.207 - 0 . 2 1 0 0.023 0.28 1
29 -0.218 - 0 . 2 2 1 0.023 1 . 2 0 3
30 -0.104 -0.104 0.196 3.14 4
31 -0.205 -0.208 0.023 1 . 0 2 2
32 -0.213 -0.216 0.037 0.93 2
33 -0.213 -0.216 0.026 0 . 6 8 0
34 -0.077 -0.077 0.195 3.31 4
35 -0.218 - 0 . 2 2 2 0.023 1.27 3
36 -0.239 -0.244 0.046 1.70 2
37 - 0 . 2 1 2 -0.216 0.034 0.83 1
38 -0.213 -0.216 0.026 0 . 6 8 0
39 -0.215 -0.218 0.034 0.89 1
40 - 0 . 2 2 0 -0.223 0.025 1.16 1
41 -0.205 -0.208 0.023 0 . 6 8 2
42 - 0 . 2 1 0 -0.213 0.026 0.52 1
43 -0.218 - 0 . 2 2 2 0.031 0.98 0
44 -0.215 -0.219 0.026 0.84 0
45 -0.229 -0.233 0.036 1.39 0
46 -0.208 - 0 . 2 1 1 0.026 0.48 1
47 -0.203 -0.206 0.024 0.90 2

t z [ r ( - i ) ]  = ( l / 2 ) l o g e { ( l  + r - i ) / ( l  - r . i ) }

Note: h ii  > 0.085 (=2 p /n ) , d istances d û  exceeding "cu toff" value
(0.975) = 2.71 and SSi = 4 are underlined.A lso, (0.950) = 2.45.
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E x a m p l e  E . 5  Havtins-Bradu-ïass A r t if ic ia l  Data. Table E.5(a) d isplays data 

generated by Hawkins, Bradu, and Kass [1984]. The a r t i f i c i a l  data consist 

of 75 observations in  four dimensions (one response and th ree  explanatory 

v a riab les) but fo r  the purposes of the analysis associated  with the th e s is  

consideration  is  re s tr ic te d  to  the explanatory v a riab le s .

T a b l e  E.5(a) Hawkins-Bradu-Kass A r t if ic ia l  Data

Obs Yi Ï2 Y, Obs Yi Ya Y, Obs Yi Ya Yj

1 1 0 . 1 19.6 28.3 26 0.9 3.3 2.5 51 2.3 1.5 0.4
2 9.5 20.5 28.9 27 3.3 2.5 2.9 52 3.3 0 . 6 1 . 2
3 10.7 2 0 . 2 31.0 28 1 . 8 0 . 8 2 . 0 53 0.3 0.4 3.3
4 9.9 21.5 31.7 29 1 . 2 0.9 0 . 8 54 1 . 1 3.0 0.3
5 10.3 2 1 . 1 31.1 30 1 . 2 0.7 3.4 55 0.5 2.4 0.9
6 1 0 . 8 20.4 29.2 31 3.1 1.4 1 . 0 56 1 . 8 3.2 0.9
7 10.5 20.9 29.1 32 0.5 2.4 0.3 57 1 . 8 0.7 0.7
8 9.9 19.6 28.8 33 1.5 3.1 1.5 58 2.4 3.4 1.5
9 9.7 20.7 31.0 34 0.4 0 . 0 0.7 59 1 . 6 2 . 1 3.0

1 0 9.3 19.7 30.3 35 3.1 2.4 3.0 60 0.3 1.5 3.3
1 1 1 1 . 0 24.0 35.0 36 1 . 1 2 . 2 2.7 61 0.4 3.4 3.0
1 2 1 2 . 0 23.0 37.0 37 0 . 1 3.0 2 . 6 62 0.9 0 . 1 0.3
13 1 2 . 0 26.0 34.0 38 1.5 1 . 2 0 . 2 63 1 . 1 2.7 0 . 2
14 1 1 . 0 34.0 34.0 39 2 . 1 0 . 0 1 . 2 64 2 . 8 3.0 2.9
15 3.4 2.9 2 . 1 40 0.5 2 . 0 1 . 2 65 2 . 0 0.7 2.7
16 3.1 2 . 2 0.3 41 3.4 1 . 6 2.9 6 6 0 . 2 1 . 8 0 . 8
17 0 . 0 1 . 6 0 . 2 42 0.3 1 . 0 2.7 67 1 . 6 2 . 0 1 . 2
18 2.3 1 . 6 2 . 0 43 0 . 1 3.3 0.9 6 8 0 . 1 0 . 0 1 . 1
19 0 . 8 2.9 1 . 6 44 1 . 8 0.5 3.2 69 2 . 0 0 . 6 0.3
2 0 3.1 3.4 2 . 2 45 1.9 0 . 1 0 . 6 70 1 . 0 2 . 2 2.9
2 1 2 . 6 2 . 2 1.9 46 1 . 8 0.5 3.0 71 2 . 2 2.5 2.3
2 2 0.4 3.2 1.9 47 3.0 0 . 1 0 . 8 72 0 . 6 2 . 0 1.5
23 2 . 0 2.3 0 . 8 48 3.1 1 . 6 3.0 73 0.3 1.7 2 . 2
24 1.3 2.3 0.5 49 3.1 2.5 1.9 74 0 . 0 2 . 2 1 . 6
25 1 . 0 0 . 0 0.4 50 2 . 1 2 . 8 2.9 75 0.3 0.4 2 . 6
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E x a m p l e  E.5 Hawkins—Bradu—Kass Data Analysis

In all the three variables medians are significantly different from the means and the 

5% trimmed means. The coefficient of skewness value for all three variables is also high and 

positive. This means that all the variables have long tails to the right and some unusual 

observations may exist. The interquartile range is far smaller than the standard deviation 

in all three cases. The coefficients of kurtosis for all the variables is small although that of 

Y2 is slightly larger. There are negligible differences between the M—estimators. 

Graphically, all the box plots have no stems to the left since there are several outlying 

observations far removed from the median. In particular, there are fourteen observations 

(1,...,14) in all the variables space that are detected as outliers. It is worth noting that 

although the same 14 observations are detected in each of the variables their degree of 

outlyingness varies across variables.

The scatter plot matrix in Figure E.5(b) displays the three possible combinations of 

bivariate scatter plots for the variables. All the plots show the fourteen observations as 

outlying but as mentioned earlier the outlyingness varies in each. Figures E.5(c) i., E.5(c) 

ii. and E.5(c) iii. are the normal plots of the case deletion correlation coefficient function 

Z(r-i) for the corresponding scatter plot matrix, namely, between Yi and Y 2 , Y i and Y 3 , Y 2 

and Y 3 respectively. In the Y% and Y2 space the normal plot is linear with a jump at a 

Z(r_i) value of 1.77 from where it continues to be linear until a further jump by a single 

observation. In this space the the 14 outlying observations correspond to the low values for 

Z(r_i). This means that deleting any of the 14 observations has the effect of reducing the 

correlation, a feature which is also visible from the scatter plot. The Yj and Y 3 space shows 

linearity with a jump at the Z(r_i) value of 1.95. Again the 14 outlying observations 

correspond to the low values for Z(r-i) and hence reduce correlation when any of them is 

deleted. The Y2 and Y3 space normal plot is very linear (with a small jump in the middle) 

apart from one extreme point. This time the 14 outlying observations do not have that 

strong an influence on the correlations when deleted as can also be verified from the scatter
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plot.

From Table 2.1 all the discordancy tests are highly significant at the 5% level and 

so this suggests that there is strong evidence that there is at least one outlying observation 

with a strong possibility of several outliers.

The fact that all tests so far indicate that there is at least one outlier makes it 

useful to apply the multivariate tests for further investigation of the data together with 

obtaining the identities of these outlying observations.

The Stalactite Chart and Stalactite diagnostics are displayed in Figure £.5(d) and 

Table E.5(d) respectively. According to Figure E.5(d) there is one stalactite which has a 

depth of 1 0 0 . The next deepest stalactite has a depth of 97.3. From the Stalactite Scores 

these observations are identified as observations 1 to 14. If a tolerance level r  =  0.05 for 

the CIX is used it leads to three outliers in the data and a selection of 69 observations 

without the most outlying observations 12, 13 and 14 will ensure a "clean" data set at 5% 

CIX tolerance.

Figures E.5(e), E.5(f) and E.5(g) display the Mahalanobis index plot (MIP) of the

data at the 50%, 90% and full sample sizes, respectively. At 50% and 90% sub—sample sizes
2  2  both the X (0.95) cut-off and the E[Max % ] detect all the fourteen outliers. Using the full

2  2  sample % (0.95) cut-off detects upto three outliers whereas the E[Max % ] cut-off points

detects one.

Figures E.5(h), E.5(i) and E.5(j) show the 50%, 90% and full sub—sample sizes 

normal plots of the Mahalanobis distances transformed using the Wilson and Hilferty result 

(Section 2 .2 .1 ), respectively. The 50% sub—sample size plot is linear with a distinct jump. 

The observations in the cluster formed after the jump are actually the fourteen outlying 

observations. This exposes the masking in the data. This feature is not well detected at the 

90% sub—sample. The full sample plot does not even suggest any possibility of masking, it 

only exposes the one most outlying observation (on identification it is observation 14). 

According to the data it appears that the observations detected as most outlying by the
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Stalactite Analysis approach (observations 11,12,13,14) are the ones that were designed to 

be good leverage points. An explanation for this is that good leverage points are actually 

outlying observations in each of the variables simultaneously which could be regarded as 

joint outlyingness. Such outliers are like point A in Figure 2 .1 ; they do not affect the 

correlations but inflate the variances of the variables simultaneaously.

Figure E.5(k) displays the Means Plot for the data. The means for all three 

variables are relatively stable until about iteration 57 when the outlying observations start 

becoming selected in the sub—sample at which point the means are "pulled" up sharply as 

the sample size increases. Also, the compound means are much higher than the full sample 

means in all the variables indicating a strong positive pull of the mean in each dimension. 

Refering to Figure 2.4 the "pull" would have all the bars above the zero line i.e. with a pull 

vector P  =  (1 , 1 , 1 ).

The Stalactite Analysis algorithm selects the initial sub—sample size m =  p + 1 

randomly. If this initial sub—sample happens to come from an outlying cluster as in this 

data set then it would mean that some of the "good" observations (which lie within the 

majority point cloud) would have large distances and so be erroneously detected as outliers. 

Fortunately, if the sample size n is large compared to p then the sub—samples selected 

would always gravitate towards the majority point cloud. The worst possible case when 

gravitation does not take place, i.e. when the method breaks down, is as the proportion of 

contamination tends to 50% of the sample size. This is the Breakdown Point of the method.

Figure E.5(l) is an example of the behaviour of the method if the initial sub—sample 

is selected from an outlying cluster. In the first iteration all the fourteen outlying points 

are used in computing the means and covariance matrix to start the algorithm off. These 

fourteen observations are not detected and all the "good" observations are detected as 

outliers. As the iterations proceed the "bad" points start being detected until the 35th 

iteration (with a sub-sample size of 50.7%) when all the "bad" points are detected and the 

"good" ones cease. Figure E.5(m) shows that at about this iteration the variations of the
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means are similar to those observed when the analysis was done with a random start. This 

example demonstrates the fact that there is no change in the Stalactite Chart after the 50% 

sub—sample whether the algorithm is initiated with a random or fixed start. There is, 

however, a change in the Stalactite Scores due to the fact that they contain the history of 

the presence/absence of the observations.

Table E.5(f) is a summary of the different multivariate results from the different

approches. These are the the diagonal elements of the Hat matrix, the Mahalanobis

distances, the Minimum Volume Ellipsoid (MVE) robust distances and the Stalactite 

Scores. The Hat matrix managed to detect three observations (1 2 , 13 and 14), the 

Mahalanobis distance detected two (12 and 14) whereas both the Minimum Volume

Estimator (MVE) robust distances and the Stalactite Scores detected all the fourteen

"bad" observations.
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T a b l e  E , 5 ( b )  Summary Statistics for Havtins. Bradu and Kass Artificial Data

Statistic Yi Y, Y,
Location
Mean 3.21 5.60 7.23
Median 1.80 2.20 2.10
57. Trim 2.92 4.72 6.07
Std Err 0.42 0.95 1.36
Dispersion
Variance 13.34 67.88 137.84
Std Dev 3.65 8.24 11.74
Min 0.00 0.00 0.20
Max 12.00 34.00 37.00
Range 12.00 34.00 36.80
IQR 2.30 2.30 2.10
Skewness b Kurtosis
Skewness 1.42 1.77 1.65
S £ Skew 0.28 0.28 0.28
Kurtosis 0.48 1.77 0.87
S E Kurt 0.55 0.55 0.55

Ta b l e  E . 5 ( c )  M - E s t i m a t o r s

Statistic YI Y2 Y3
Huber (1.34)
Hampel (1.70,3.40,8.50) 
Tukey (4.69)
Andrew (1.34 * pi)

1.95 2.23 2.09 
1.71 1.78 1.69
1.52 1.80 1.68
1.52 1.80 1.68
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F i g u r e  E.5(a) Box Plots for Hawkins. Bradu and Kass Artificial Data 
Yi

15.00 --

1 0 . 0 0  --

5.00 --

. 0 0  --

Y,
- - 48.00 -

(Obs. 12,13)
- (Obs. 1,11,14,3,5,6,7) 
(Obs. 10,2,4,8,9)

32.00 -

16.00 ■

■ (Obs.14)
(Obs. 11,13)
(Obs. 12,2,3,4,5,6,7,9) 

- (Obs. 1,10,8)

- -
*

.00 ■ L * J

Y3 r

48.00 --

32.00 --

16.00 -- 

. 0 0  --

Obs. 12)
Obs. 11,13,14)
Obs. 1,10,2,3,4,5, 

6 ,7 ,8 ,9)

Symbol Key: * - Median (...) - Outliers
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Figure E.5(b) Hawkins, Bradu and Kass Artificial Data
S c a t t e r  P l o t  M a t r i x
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Figure E .5 (t) ' Hawkins, Bradu and Kass A rtific ia l Data
Normal Plot of Z(r_,)

o
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Figure E.5(d) Hawkins. Bradu and Kass A r tific ia l Data S ta lactite  Chart

ITERATION VS OBSERVATION
ITRN SUB-SAMPLE 1 2 3 4 5

12345678901234567890123456789012345678901234567890 
************** ** * * * * * ** * *** *

*** * * * *  * * * * * * * *
***************** ************************** ****
***************** ******************** ***** ****
***************** **** **** ********** ***** ****
***************** **** ************** ***** ****
***************** **** *** **** **** ***** ****
***************** ** * *** **** **** ***** ♦***
***************** ** * *** **** **** ***** ****
***************** ** * *** *** **** ***** ****

1
SIZE

4( 5.3
2 5( 6.7
3 6 ( 8 . 0
4 7( 9.3
5 8 ( 10.7
6 9( 1 2 . 0
7 1 0 ( 13.3
8 1 1 ( 14.7
9 1 2  ( 16.0

1 0 13( 17.3

41 441[ 58.7
42 451 60.0
43 461 61.3
44 471 62.7
45 481 64.0
46 491 65.3
47 501 66.7
48 51| 6 8 . 0
49 521 69.3
50 531 70.7
51 541 72.0
52 551 73.3
53 56| 74.7
54 57( 76.0
55 58( 77.3
56 59( 78.7
57 60 ( 80.0
58 61 ( 81.3
59 62 ( 82.7
60 63 (' 84.0'
61 64 ( 85.3
62 65 (' 86.7'
63 6 6  (' 8 8 . 0 '
64 67(' 89.3'
65 6 8  (' 90.7'
6 6 69 (' 92.0'
67 70 (' 93.3'
6 8 71 (' 94.7'
69 72 (' 96.0'
70 73 (' 97.3'
71 74 (' 98.7'
72 75 ('1 0 0 . o'

(30)
* * * * * * * * * * * * * *  *  *  *  *
* * * * * * * * * * * * * *  *  *  *
* * * * * * * * * * * * * *  *  *
* * * * * * * * * * * * * *  *
* * * * * * * * * * * * * *  *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * *
* * * * * * * * * * * * * *
**************
**************
**************
**************
**************
**************
**************
**************
**************
**************
**************
**************
****** ******

* ******
* * * *

* * *
* * *
* * *

* *
**

*
*

44444444444444122011121112111311121231121323031110
1231110123311112120202223
12345678901234567890123456789012345678901234567890 

1 2 3 4 5
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TABLE E.Sfd) Eavkins. Bradu and Kass A r tific ia l Data S ta la ctite  Analysis

ITRN SUE-SAMPLE 
SIZE 

4

OBSERVATION BAD:

1
2
3
4
5
6
7
8  
g

10

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 
61 
62
63
64
65
66
67
68
69
70
71
72

5
6 l
71
8 l
91

lOi
1 1
1 2
131

441 
451 
461 
471 
481 
491 
501 
51 
521 
531 
541 
55i 
561 
571 
581 
59i 
601 
61 
621 
631 
641 
651 
661  
671 
6 8 1 
691 
701 
71 
721 
731 
741

5.3 
6.7 
8.0
9.3

10.7 
12.0 
13.3^
14.7 
16.0 
17.3

58.7;
60.0
61.3
62.7
64.0
65.3
66.7
68.0
69.3
70.7
72.0
73.3
74.7
76.0
77.3
78.7
80.0
81.3
82.7
84.0
85.3
86.7
88.0
89.3
90.7
92.0
93.3
94.7
96.0
97.3 
98.7^

GOOD #(%' 
33f 44.0

BAD #(%; 
42( 56.0'

75(100.0

461
6 i
71

111
11
15i
171
19i
19i

541 
55i 
561 
571 
571 
6 0 1 
6 0 1 
601 
601 
601 
601 
61 
61 
6 1 1 
6 1 1 
61 
61 
61 
61 
61 
61 
61 
631 
681  
71 
7 2 1 
7 2 1 
7 2 1 
7 3 1 
731 
741 
741

61.3 
8.0 
9.3

14.7
14.7 
20.0
22.7
25.3 
25.3'

72. o;
73.3
74.7
76.0
76.0
80.0 
80.0 
80.0 
80.0 
80.0 
80.0
81.3
81.3 
81.3'
81.3
81.3 
81.3'
81.3
81.3 
81.3'
81.3
81.3 
84.0' 
90.7'
94.7
96.0
96.0
96.0 
97.3'
97.3
98.7
98.7

291 
691 
681  
64 ( 
641 
601 
58i 
56i 
56l

(30)

21 
201 
191 
18l 
18l 
15 
15 
15 
15i 
15i 
15i 
141 
141 
141 
14i 
14i 
14i 
14| 
141 
14i 
14l 
14i 
12 

7i 
41 
3i 
3i 
3l 
2  
2 i 
1 
1

38.7
92.0
90.7
85.3
85.3
80.0
77.3
74.7 
74.7'

28.o;
26.7 
25.3
24.0
24.0
2 0 . 0  
2 0 . 0  
2 0 . 0  
2 0 . 0  
2 0 . 0  
2 0 . 0
18.7
18.7 
18.7' 
18.7'
18.7
18.7
18.7
18.7
18.7
18.7
18.7
16.o'
9 .3 '
5.3
4.0
4.0
4.0
2.7
2.7 
1.3' 
1.3'

GOOD
RATIO

1.27
0.63

11.50
9.71
5.82
5.82 
4.00 
3.41
2.95
2.95

0.39
0.36
0.34
0.32
0.32
0.25
0.25
0.25
0.25
0.25
0.25
0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.23
0.19
0.10
0.06
0.04
0.04
0.04
0.03
0.03
0.01
0.01

TOTAL SQ. 
OBS. 
9.00 
3.55

15.00
18.00 
21.00
24.00
27.00
30.00
33.00
36.00

129.00
132.00
135.00
138.00
141.00
144.00
147.00
150.00
153.00
156.00
159.00
162.00
165.00
168.00
171.00
174.00
177.00
180.00
183.00
186.00
189.00
192.00
195.00
198.00
201.00
204.00
207.00
210.00
213.00
216.00
219.00
222.00

DISTANCE
EXP.
9.00

12.00
15.00
18.00 
21.00
24.00
27.00
30.00
33.00
36.00

129.00
132.00
135.00
138.00
141.00
144.00
147.00
150.00
153.00
156.00
159.00
162.00
165.00
168.00
171.00
174.00
177.00
180.00
183.00
186.00
189.00
192.00
195.00
198.00
201.00
204.00
207.00
210.00
213.00
216.00
219.00
222.00
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F i g u r e  E . 5 ( e )  H a w k i n s ,  B r a d u  a n d  K a s s  A r t i f i c i a l  D a t a  ( 5 0 %  S a m p l e )
I n d e x  P l o t  o f  t h e  S q u a r e d  M a h a l a n o b i s  D i s t a n c e s  (M IP )

5 0 . 0  n

4 0 . 0  -

Q  3 0 . 0  -
x>

20.0  -

10.0  -

0.0
20 3 0 4 0

C ase  Number
5 0 6 0 7 0 8 0

F i g u r e  E . 5 ( f )  H a w k i n s ,  B r a d u  a n d  K a s s  A r t i f i c i a l  D a t a  ( 9 0 %  S a m p l e  
I n d e x  P l o t  o f  t h e  S q u a r e d  M a h a l a n o b i s  D i s t a n c e s  ( M I P

Q
■D(D
oDCT

CO

2.0

0.0

8.0

6.0

4 . 0

2.0

0.0
3 0 4 0 50 60 70 8 02 0100

C ase Number
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F i g u r e  E . 5 ( g )  H a w k i n s ,  B r a d u  a n d  K a s s  A r t i f i c i a l  D a t a  ( F u l l  S a m p l e
I n d e x  P l o t  o f  t h e  S q u a r e d  M a h a l a n o b i s  D i s t a n c e s  ( M I P

Q

o3
crc/)

0.0
0 10 20 3 0 4 0 5 0 6 0 7 0 8 0

Case Number
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F i g u r e  E . 5 ( h )  H a w k i n s ,  B r a d u  a n d  K a s s  A r t i f i c i a l  D a t a  ( 50% S a m p l e )
N o r m a l  P l o t  o f  c u b e  — r o o t ( M D  ;

4 . 0  n

3 . 0  -

■DO)
* 2.0œ
O

1.0 -

0.0 — I----------1--------- 1--------- 1--------- 1--------- 1----------1 I I I I I I I
- 4 . 0  - 3 . 0  - 2 . 0  - 1 . 0  0 . 0  1 . 0  2 . 0  3 . 0

Expected

F i g u r e  E . 5 ( i )  H a w k i n s ,  B r a d u  a n d  K a s s  A r t i f i c i a l  D a t a  ( 90%  S a m p l e )
N o r m a l  P l o t  o f  c u b e  — r o o t ( M D  )

4 . 0  -

3 . 0  -

■o*
ü^^O
V)

X Io

1.0 -

0 . 0 I I I I r

- 4 . 0  - 3 . 0  - 2 . 0
-i----- 1-----1----- 1----- 1-----1----- 1----- 1-----1
1 . 0  0 . 0  1 . 0  2 . 0  3 . 0

Expected
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F i g u r e  E . 5 ( j )  H a w k i n s ,  B r a d u  a n d  K a s s  A r t i f i c i a l  D a t a  [ F u l l  S a m p l e )
N o r m a l  P l o t  o f  c u b e  — r o o t ( M D  )

4 . 0  n

3 . 0  -

X )
0)
ü^2.0
(/)JDO

1.0 -1

0.0 —I----- 1------1----1—
- 4 . 0  - 3 . 0  - 2 . 0

n 1-----1-----r
1.0 0.0 

Expected
1 . 0

T I 
2.0 3 . 0
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F i g u r e  E . 5 ( k )  H a w k i n s ,  B r a d u  a n d  K a s s  A r t i f i c i a l  D a t a
M e a n s  P l o t

50% S a m p l e  S i z e

12.0 n

10.0  -

8.0 -

c
s  6.0 -

4 . 0  -

2.0  -

0.0
0 10 20 3 0 4 0 5 0 6 0 7 0 8 0

X X X X X X ,

* * * * * X]

I t e r a t i o n

Sample Mean  Compound Mean



Fi g u r e  E.5(1) Hawkins. Bradu and Kass A r tific ia l Data S ta lactite  Chart
(with in it ia l  subsample of 14 observations)

ITERATION VS OBSERVATION

ITRN SUB-SAMPLE 1 2 3 4 5
12345678901234567890123456789012345678901234567890 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * *  * * * * * * * * * * * * *  * * * * * * * * *

SIZE
1 14( 18.7
2 15( 2 0 . 0
3 16( 21.3
4 17( 22.7
5 18( 24.0
6 19( 25.3
7 2 0  ( 26.7
8 2 1  ( 28.0
9 2 2  ( 29.3

1 0 23 ( 30.7

31 441f 58.7
32 451 60.0
33 461 61.3
34 471 62.7
35 481 64.0
36 491 65.3
37 501 66.7
38 511 6 8 . 0
39 521 69.3
40 531 70.7
41 541 72.0
42 551 73.3
43 561 74.7
44 571 76.0
45 581 77.3
46 591 78.7
47 601 80.0
48 611 81.3
49 621 82.7
50 631 84.0
51 641 85.3
52 651 86.7
53 661 8 8 . 0 '
54 67( 89.3'
55 681' 90.7'
56 69 ' 92.0'
57 70 ' 93.3'
58 71 ' 94.7'
59 72 ' 96.0'
60 73 ’ 97.3'
61 74 ’ 98.7
62 75 1 0 0 . 0

* * * *  * * * * * * * * * * * * * * * * * *
* * * *  * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * * * *
* * * * * + * * * * * * * * * * * + * * * * * *
* * * * * * * * * *  * * * * * * * * * * * *
* * * * * * *  *  * * * * * * * * * * * *

(20)

* * *  *  *  *  * *  
* *  *
* *  

* * *  
* * * *  

* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  
* * * * * * * * * * * * * *  

* * * * * *  * * * * * *  
* *  * * * * * *  

* * * *  
* * *  
* * *  
* * *  

* *  
* *  

*  
*

22222222222444112121121112111212121221121232121111
1132221112212112121212223
12345678901234567890123456789012345678901234567890 

1 2 3 4 5
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TABLE E.5(e^ Hawkins. Bradn and Kass A r tific ia l Data S ta la ctite  Analysis

ITRN SUR-SAMPLE OBSERVATION
SIZE GOOD #(%) BAD #(%'

1 14( 18.7) 14( 18.7) 61( 81.3
2 151 20.o) 151 20.o) 601 80.0
3 16( 21.3) 35( 46.7) 40( 53.3
4 17( 22.7) 38( 50.7) 37( 49.3
5 18( 24.0) 33( 44.0) 42( 56.0
6  19( 25.3) 32( 42.7) 43( 57.3
7 201 26.7) 33( 44 .O) 421 56.0
8  21( 28.0) 36( 48 .o) 391 52.0
9 22( 29.3) 38( 50.7) 371 49.3

10 231 30.7) 37( 49.3) 381 50.7

31 44( 58.7) 69( 92.0) 6 ( 8 .0 '
32 45( 60.0) 70( 93.3) 5( 6.7
33 46( 61.3) 70( 93.3) 51 6.7
34 471 62.7) 69( 92.O) 61 8.0
35 48( 64.0) 60( 80.o) 15( 20.0
36 491 65.3) 601 80.o) 151 20.0
37 50( 66.7) 601 80.o) 15( 20.O'
38 511 68.0) 60( 80.o) 15( 20.O'
39 52( 69.3) 60( 80.o) 15( 20.O'
40 53( 70.7) 601 80.O) 15( 20.O'
41 54( 72.0) 601 80.o) 15( 20.O'
42 55( 73.3) 61( 81.3) 14( 18.7'
43 56( 74.7) 61( 81.3) 14( 18.7
44 57( 76.0) 61( 81.3) 14( 18.7
45 58( 77.3) 61( 81.3) 14( 18.7
46 59( 78.7) 61( 81.3) 14( 18.7
47 60( 80.0) 61( 81.3) 14( 18.7
48 61( 81.3) 61( 81.3) 14( 18.7
49 62( 82.7) 61( 81.3) 14( 18.7
50 63( 84.0) 61( 81.3) 14( 18.7
51 64( 85.3) 61( 81.3) 14( 18.7
52 65( 86.7) 61( 81.3) 14( 18.7
53 6 6 ( 88.0) 63( 84.o) 12( 16.0
54 671 89.3) 67( 89.3) 8 ( 10.7'
55 6 8 ( 90.7) 71( 94.7) 4( 5.3
56 69( 92.0) 72( 96 .o) 3 ( 4 .o '
57 70( 93.3) 7 2 ( 96 .o) 3( 4 .o '
58 71( 94.7) 72( 96.o) 3( 4.0
59 72 ( 96.0) 73 ( 97.3) 21 2.7
60 73( 97.3) 73( 97.3) 2( 2.7
61 74( 98.7) 74( 98.7) 1( 1.3
62 75(100.0) 741 98.7) 1( 1.3'

BAD:GOOD TOTAL Sq. DISTANCE
RATIO DBS. EXP.

4.36 42.00 39.00
4.00 44.13 42.00
1.14 41.49 45.00
0.97 44.04 48.00
1.27 51.96 51.00
1.34 55.50 54.00
1.27 57.94 57.00
1.08 62.08 60.00
0.97 65.33 63.00
1.03 68.49 6 6 . 0 0

)) • ' •

0.09 132.00 129.00
0.07 134.97 132.00
0.07 134.78 135.00
0.09 121.42 138.00
0.25 142.92 141.00
0.25 147.00 144.00
0.25 150.00 147.00
0.25 153.00 150.00
0.25 156.00 153.00
0.25 159.00 156.00
0.25 162.00 159.00
0.23 165.00 162.00
0.23 168.00 165.00
0.23 171.00 168.00
0.23 174.00 171.00
0.23 177.00 174.00
0.23 180.00 177.00
0.23 183.00 180.00
0.23 186.00 183.00
0.23 189.00 186.00
0.23 192.00 189.00
0.23 195.00 192.00
0.19 198.00 195.00
0 . 1 2 2 0 1 . 0 0 198.00
0.06 204.00 2 0 1 . 0 0
0.04 207.00 204.00
0.04 2 1 0 . 0 0 207.00
0.04 213.00 2 1 0 . 0 0
0.03 216.00 213.00
0.03 219.00 216.00
0 . 0 1 2 2 2 . 0 0 219.00
0 . 0 1 225.00 2 2 2 . 0 0
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F i g u r e  E . 5 ( m )  H a w k i n s ,  B r a d u  a n d  K a s s  A r t i f i c i a l  D a t a
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T a b le  E.5(f) Diagonal Elements of the Hat Matrix. Squared Mahalanobis 
Distances. MVE Robust Distances and Stalactite Scores for the 
Bawtins-Bradu-Kass Artificial Data

Obs.
i

hii
(0.107)

dii
(3.06)

RDi
(3.06)

SSi
(4)

1 0.063 1.92 16.20 4
2 0.060 1.86 16.62 4
3 0.086 2.31 17.65 4
4 0.081 2.23 18.18 4
5 0.073 2.10 17.82 4
6 0.076 2.15 16.80 4
7 0.068 2.01 16.82 4
8 0.063 1.92 16.44 4
9 0.080 2.22 17.71 4
10 0.087 2.33 17.21 4
11 0.094 2.45 20.23 4
12 0.144 3.11 21.14 4
13 0.109 2.66 20.16 4
14 0.564 6.38 22.38 4

Note: hii > 0.107 (=2p/n), distances dû and RDi exceeding ’’cutoff” value 
/tg(0.975) = 3.06 and S S i = 4 are underlined. Also, (0.950) = 2.80. Only
the first 14 observations listed.

118



CHAPTER THREE

3.0 TRANSFORMATIONS TO MULTIVARIATE NORMALITY

3.1 Introduction

In Chapter Two we dealt with the problem of detecting and identifying outliers in 

multivariate data sets. Having identified the outliers (if any) and appropriate corrective 

measures having been taken it is then possible to investigate the distributional properties of 

the data taking into account any deficiencies it may have. In particular, since interest is in 

the multivariate normal distribution, the conformity of the data to this distribution can 

now be tested and where necessary appropriate transformations can be carried out to 

normalise them (or at least obtain a unimodal, symmetrical distribution in the 

p-dimensional space). The aim of this chapter is to present some techniques for assessing 

the violation of the normality assumption together with providing computational methods 

for transformations to multivariate normality. The main result of the chapter is the 

presentation of the proposed computational procedure to perform transformations to 

multivariate normality. This procedure is based on "seemingly unrelated regressions" and 

"constructed variables". The technique is referred to as the Seemingly Unrelated 

Regressions/Constructed Variable {SURCON) analysis, and the estimates obtained are the 

Surcon estimates.

This section discusses the need for transformations to multivariate normality due to 

the central role of normality in the theory of multivariate analysis. It is often informative 

to study the symmetry of each variable as this provides some intuition as to how the data 

would behave jointly. In section 2, the assessment of marginal symmetry is discussed using 

graphical methods including a quick computational technique for transforming to marginal 

symmetry. Section 3 describes the likelihood approach to obtaining the joint 

transformations to multivariate normality. The main result of this chapter is the proposed 

SURCON method which is discussed in section 4 where the first two subsections describe 

the theory on which it is based, namely, that of seemingly unrelated regressions and 

constructed variables, and how these are combined to obtain it. The full computational
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algorithm is also given. Section 5 discusses ways of assessing normality in both the 

univariate and multivariate cases. The main test for multivariate normality used is based 

on Rao’s Score test [Mardia et al., 1991] so it is described in detail. Finally, section 6  

demonstrates most of the theory discussed by using examples of some well known data sets. 

Simulated data sets are also used to study the expected behaviour of the techniques under 

known and predetermined conditions.

The classical multivariate theory has been largely based on the multivariate normal 

distribution (MVN): the scarcity of alternative models for the meaningful and consistent 

analysis of multiresponse data is a well recognised problem. Further, the complexity of 

generalising many non—normal univariate distributions makes it undesirable or impossible 

to use their multivariate versions. Hence, it seems reasonable to inquire about ways of 

transforming the data so as to enable the use of more familiar statistical techniques that 

are based implicitly or explicitly on the normal distribution. On the other hand, in 

situations where the sample size is large and the techniques depend solely on the behaviour 

of the mean vector, or distances involving it, the assumption of normality for the individual 

observations is less crucial. However, to some degree, the quality of inferences made by 

these methods depends on how closely the true parent population resembles the 

multivariate normal form. It is imperative, then, that procedures exist for detecting cases 

where the data exhibit moderate to extreme departures from what is expected under 

multivariate normality and also to adapt the data to conform to the normality model.

Some of the questions to be addressed in studying departures from the normality 

assumptions are [Johnson & Wichern, 1982: p.l51]:

1/ Do the marginal distributions of the variables appear to be normal? What about 

a few linear combinations of these?

2/ Do the scatter plots of pairs of observations give the elliptical appearance 

expected from the normal population?

3/ Are there any "wild" observations (outliers) that should be checked for accuracy?

This chapter attempts to provide answers to questions one 1 and 2, whereas,
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Chapter 2 answers question 3.

In practice investigations of normality concentrate on the behaviour of the 

observations in one or two dimensions (for example, marginal distributions and scatter 

plots) since it can prove difficult to have an overall test (especially graphically) of joint 

normality in more than three dimensions because of the large number of things that can go 

wrong. However, for a complete analysis all the information within the data relating to the 

interdependencies which exist between the variables should be used. This can be achieved 

by the inclusion of the covariance matrix within the analysis. It is also generally true that 

the marginal normality of variables does not necessarily imply their joint normality. The 

plots in Figure 3.1 are from Gelman & Meng [1991] and illustrate three cases where the 

variables are conditionally normal but jointly non—normal. In Figure 3.1(a) we have a joint 

density with zero conditional means that differ from the Gaussian by having non—constant 

conditional variances. Its joint density function is of the form /  (x ,̂ Xg) « exp(— ^[xjxg + 

a^j). Figure 3.1(b) has a conditional distribution (xjxg) —* N[l/(a^ 4- 1), l/(a^ +  1)] and 

vice-versa, so the conditional mean equals the conditional variance at all points. Its joint 

density function is of the form /(x j, Xg) « exp(— ^[xjxg + x\+ Xg — 2 xj — 2xg]). Figure 3.1(c) 

is the most interesting in that the marginals are normal yet the joint density is clearly 

non—normal and is bimodal.

A transformation may be based on theoretical considerations or estimated from the 

data that are being analysed. Examples of the former are the logistic transformation of 

binary data proposed by Cox [1970, 1972] and the variance—stabilising transformations for 

the binomial, the Poisson, the correlation coefficient, etc. There are also several empirical 

indications as to whether a transformation may be useful. One indication is if the variable 

is non—negative e.g. the times until an event occurs and the measured diameters of 

particles are both non—negative and so cannot strictly follow a normal distribution. In 

these cases it is quite likely that the log of the variables will be more normally distributed
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Figure 3.1 Bivariate Densities

(a ) (b)

(c )

than the variables themselves. If all the values of the variables are far from zero and the 

scatter in the observations is relatively small, the transformation will have little  effect e.g. 

the heights of adult men in millimeters can be modelled by either a normal or by the 

lognormal distribution. If, however, the ratio of the largest observation to the smallest one 

is one or more powers of ten, so that the data covers several cycles, a transformation is 

often desirable [Atkinson, 1985]. If the data are counts then they can often be made more 

normal by taking their square roots. Table 3.1 shows some helpful transformations to near 

normality based on theoretical considerations. These are based on theoretical 

considerations on the variable under study.
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T i b l e  3.1 Helpful Transformations to Near Normality

Original Scale Transformed Scale

1 . Counts, y yfÿ

2. Proportions, p logit(p) = ^ lo g |—P— 1
l l  -  pJ

3. Correlations, r Fisher’s z(r) -  g logj

In instances where the choice of a transformation to improve the approximation to 

normality is not obvious it is convenient to let the data suggest a transformation. The 

family of transformations considered in this thesis is the Power Transformations. These are 

defined only for positive variables. However, a single constant can be added to each 

observation in the data set if some values are negative. A sequence of possible 

transformations for a variable y is

•••) y  ̂ =  logey, y i/4  = y^/^ -  ylÿ, y^ , y^, y^, •••
4------------------------ -—   --— —t 4 — —* 4— —4

Shrinks large values of y No t rans— Increases large
form ation  values of y 
re q u ire d

Techniques for developing data—based transformations of univariate observations

have been proposed by several authors. However, there is only one major technique in the

multivariate (p—variable) case by Andrews et ai [1971]. Their approach extended the power

transformations proposed by Box & Cox [1964] to the problem of estimating power

transformations of multiresponse data so as to enhance joint normality. The approach

estimates the vector of transformation parameters A by numerically maximising the

log—likelihood function. However, since there are several parameters to be estimated,

p(p+5)/2 for multivariate data without regression, the resulting maximisation is of high

dimension, even with modest values of p and sample size n. The aim of the proposed

method is to provide a complementary procedure to the log—likelihood approach which
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attempts to reduce the size of the computational requirements for obtaining the estimates 

of A. Though computational simplicity is the main factor, the statistical qualities of the 

estimates are not compromised, indeed the estimated values are numerically identical to 

those of the log—likelihood. Further, the procedure implicitly produces diagnostic statistics 

and some useful statistical quantities describing the structure of the data. The technique is 

a generalisation of the constructed variables method of obtaining quick estimates for 

transformation parameters [Atkinson, 1985]. To take into account the multiresponse nature 

of the data and, hence, joint estimates for A, a seemingly unrelated regression is carried 

out. The algorithm is iterative. However, there is considerable savings in the number of 

iterations required to converge to the maximum likelihood (MLE) estimates compared to 

those using the log—likelihood function.

To begin with, then, the next section discusses the assessment and transformations 

to marginal symmetry.

3.2 Marginal Symmetry

Means and covariances (which provide the basic summary statistics for all 

multivariate procedures) may have little meaning unless the underlying distributions are 

symmetric and not too platykurtic. Moreover, the notion of an atypical or unduly 

influential observation (gross error or outlier) only makes sense when some form of 

reference distribution is assumed. Since many of the multivariate techniques assume 

multivariate normality or at least a symmetric distribution it is appropriate to investigate 

the validity of this assumption. This section deals with both the assessment of symmetry 

using graphical techniques and selecting transformations to obtain approximate symmetry 

by considering the variables marginally.

3.2.1 Graphical Assessment of symmetry

Graphical output is very useful in studying the structure of a data set. In particular, 

a histogram or frequency polygon is a useful visual tool in assessing the symmetry of a 

variable. However, for a rigourous assessment, numerical procedures for examining 

symmetry should be adopted. One such procedure can be based on the simple idea that for
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symmetry the average of pairs of ordered observations y[i] and y[n—i+ 1 ] should remain 

constant for all i. That is
(y[i] +  ^ [ n - i + l j )  ^  (3 .1)

where y[i] is the i—th ordered observation and Kis some constant.

Gnanadesikan [1977] considers some graphical displays, of ordered observations, 

based on the procedure. The suggested plots include:

(1 ) y[i] vs y[n—i+ l], i= l ,2 ,...,[n/2 ] which for a symmetrical distribution should be linear 

with slope —1 and intercept 2 y[m], where y[m] denotes the median. [See Figure 3.2(a)]

(2 ) y[m] — y[i] vs y[n~i+l] — y[m], i= l ,2 ,...,[n/2 ] which for a symmetric distribution should

be linear with unit slope and zero intercept. [See Figure 3.2(b)]

(3 ) y[n—i+ 1] — y[i] vs y[i] +  y[n—i+ 1], i= l ,2 ,...,[n/2 ] which for a symmetric distribution 

should be horizontal with intercept 2 y[m], y[m] as above. [See Figure 3.2(c)]

The three plots shall be referred to as Type I, Type II and Type III plots, 

respectively.

For each plot, the deviations from the expected behaviour are given by

D{i) =  y[i] + y[n-i+l] -  2y[m] (3.2)

i= l ,2 ,...,[n/2 ]. To achieve closer agreement with symmetry, a transformation can be 

selected from the family of power transformations. The chosen transformation is that which 

achieves closest agreement with the expected shape of the plot under the assumption of 

symmetry for the main body of the data, specifically that which minimises

SD? = E(y[i] + y[n-i+l] -  2y[m])2 (3.3)

i=[0 .1n],[0 .1n]+l,...,[n/2 ].

Having assessed the marginal symmetry of the variables graphically it would be 

desirable to attach a numerical value to the results by obtaining a possible transformation 

to symmetry if the data required so. The next section discusses a "quick" computational 

method to provide such values.
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Fig 3.2 Test for Symmetry Plots
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3 .2 .2  T r a n s f o r m a t i o n s  t o  s v n u n e t r Y

Hinkley [1977] proposes a "quick” method of selecting a transformation for 

symmetrising based on the relationship between the mean and the median, where for a 

symmetric distribution the two values should be equal.

The general class of transformations considered is defined by

yt =  (3 4)
where y is the original response. The desired value of t is that which gives approximate 

symmetry of the distribution of y .̂

If yi, y2,.-.,yp is a homogenous random sample from a symmetric distribution with 

finite mean, then the sample will tend to reflect the identity

mean =  median (3.5)

which holds in the population. Thus, given an appropriate measure of scale, S, the degree of 

asymmetry in the sample may be measured by

(3.6)

where ÿ is the sample mean and y[m] the sample median. For arbitrary positive data yi, 

y2,...,yp a symmetrising transformation of type (3.4) is chosen so as to make the value 

of d obtained using y  ̂ as data, as small as possible. The choices of t are normally restricted 

to —1 , 0, 1 / 2 , 1 , 2  [Tukey, 1970] which are the reciprocal, log, square root, no 

transformation and square, respectively. A few values of can be used to interpolate the 

solution to =  0  if desired.

Reasonably efficient methods of estimating t so as to achieve normality or 

symmetry are heavily influenced by unduly influential observations, asymmetry is most 

apparent in the tails. The measure (3.6), while inefficient, is not so sensitive to these 

extreme observations, particularly if a robust scale is employed. Two suggestions are

si = sample standard deviation = 5  S(y -  y)2 

s2  = sample interquartile range = Q(3) — Q(l) 

where Q(i) is the i—th quartile. The latter choice is more robust and provides a quicker
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computational method. Additional robustness can be obtained by replacing the sample 

mean with the Winsorized mean [Tiao and Guttman, 1967; Guttman and Smith, 1969; 

Lorenzen, 1980].

A good property of the method is its moderate robustness relative to efficient 

methods. The method is useful for data sets which contain two or more variables where 

interest is in carrying out subsequent analysis assuming symmetric deviations from the 

mean (most simple statistical procedures make such an assumption).

The above technique does not make any probability distributional assumptions and 

cannot be easily extended to more than one variable at a time. The following sections 

provide techniques which are dependant on the normal distribution both univariate and 

multivariate.

3.3 Likelihood Approach

The Likelihood Approach is an extension by Andrews et al. [1971] of the Box & Cox 

[1964] approach to the problem of estimating a power transformation of multiresponse data 

so as to enhance normality.

If = (yi, y2,-.-,yp) denotes the set of p response variables of size n, the general 

problem may be formulated as follows:

.... to determine the vector of transformation parameters X, such that the transformed 

variables [gi(l^;X), g2 (Y^;X),..., g^(Y^;X)] are more nearly p-variate normal, N[p,Yi], than 

the original p variables. The elements of X are unknown, as are those of p and E. Provided 

that one can obtain an appropriate estimate A of A (as well as of p and E) from the data, 

the original observations can be transformed one at a time to yield new observations,
T  ̂\ / T  ̂ T ^[gi(Y ;A), g2(Y ;A),..., gp(Y ;A)], which may then be considered as conforming more to a 

p—variate normal model than the original observations.

The work of Andrews et al. [1971] is concerned with transformation functions gj, 

which are direct extensions of the power transformation of a single non—negative response 

X, to X(A), considered by Box & Cox [1964], where
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f y'* -  1 . j f o  , ,
y(A) =  ■ À (3.7)

Andrews et al. [1971] consider both marginal and joint transformations, where the 

latter is to achieve joint normality. Although marginal normality does not imply joint 

normality (See Figure 3.1 and Section 3.5.1), the choice of transformations to improve 

marginal normality may in many cases yield data more amenable to standard analyses.

The above approach leads to estimating A by maximum likelihood (ML). In the 

multivariate case the ML estimate for A is obtained by numerically maximising the joint 

log—likelihood function. Andrews et al. [1971] consider three possible cases depending on 

the objectives of the analysis requiring the need for transformations. The variables are 

transformed to achieve:

Case 1 — Marginal normality of the variables 

Case 2  — Joint normality 

Case 3 — Directional normality

For the purposes of the thesis only cases 1 and 2 are discussed.

Case 1 — Marginal Normality

If =  (yi, y 2, --,yp) denotes the set of p response variables of size n and Â  = (Ai, 

A2) A p )  the corresponding vector of transformation parameters then the following family 

of power transformations is defined as

\V i j  - (3 .8 )

where j= l ,2 ,...,p.

A sensible starting point is to choose Aj so as to improve the marginal normality of 

yj(Aj). The logarithm of the profile likelihood function (which has been initially maximised 

with respect to the unknown mean and variance for a given Aj), Lax(Aj), is maximised to 

provide the estimate Aj. If =  (yi, y 2)---,yp) denotes the n*p matrix of the original 

observations, and if the transformed observations obtained by using equation (3 .8 ) are 

Y^(A) =  [yi(Ai), y 2(A2),...,yp(Ap)] where yj(Aj) denotes the vector of n observations on the
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j—th variable, each of which is obtained by transforming according to (3.8), then

Lax(Aj) =  loggO-jj +  (Aj -  1 ) S b g ^ i j  (3.9)

where yy denotes the i—th observation on the untransformed j= th  response, and (t-jj is the 

maximum likelihood estimate of the variance of the presumed normal distribution of yj(Aj), 

ie.

<̂ jj =  5  [yj('^j) -  fj]^[yj('*j) -  (j] (310)

where (j is the maximum likelihood estimate of (j =  ^yj(Aj)]. For an unstructured sample, 

(j would be an n*! vector all of whose elements are equal to the mean of the transformed 

observations on the j—th variable, while for the more general case of a linear model 

specification, (j =  X^j, the appropriate estimate would be X&j. In addition to the second 

term on the right—hand—side of (3.9), (Tjj is also a function of Aj, and the required 

maximum likelihood estimate, Aj, is the value of Aj which maximises Lax(Aj). Since the 

maximisation is with respect to a single parameter Aj, despite the complication of (Tjj being 

a function of Aj, the computations involved are quite simple.

The value of Lax(Aj) for a sequence of values of Aj can be computed to empirically 

determine the value, Aj, for which it is a maximum. Also, for a single parameter a graph of 

Lax(Aj) can be plotted so as to study its behaviour near Aj.

An approximate confidence interval for Aj can be obtained by using asymptotic 

theory. So a 100(1—û)% confidence interval for Aj is defined by

2{Lax(Aj) — Lax(Aj)} < % (̂o) (3.11)

where %^(e) denotes the upper 1 0 0 a% point of a chi—squared distribution with v degrees of 

freedom.

Case 2  — Joint Normalitv

In Case 1 , concern is with estimating power transformations of multiresponse data 

so as to improve marginal normality. Case 2  describes a method for choosing the 

transformations of (3.8) so as to enhance joint normality. Thus the n«p matrix = [(yij)] 

i=l,2,...,n; j=l,2,...,p, is the data matrix whose rows, Y?, are the multivariate 

observations, and it is assumed that after a transformation of the form (3 .7 ) the
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transformed data Y^(A) may be statistically described by a multivariate normal density 

function with mean and covariance S.

Let 6 =  £{Y^(A)] =  1/f .̂ If =  (Ai, A2,..., Ap) is the set of transformation 

parameters yielding multivariate normality, the density function for the original data, Y, is 

f(YU,E,A) =  | S r “ /2(2 ,)-nexp[_  ltrS->[Y(A) -  B] [Y(A) (3.12)

where , J  the Jacobian of the transformation from Y to Y(A) is

fi Ô y - îi" ^  (3.13)
j * li « 1

Thus, the log—likelihood of /i, E and A is given by (apart from an additive constant)

W ,A |Y )  =  -§logg|2| -^iri:-*[Y(A) -  B] [Y(A) -  B f

+ § [(Aj —1)2 loggyijl (3.14)
j=l i=l ^

For specified Aj, j= l ,2 ,...,p, the maximum likelihood estimates of n and S are given, 

respectively, by

Â =  iv (A ) l  (3.15)

and

Ê =  1  [Y(A) -  B] [Y(A) -  (3.16)

where « =  l))’' = 1  l lV ( A ) .

If these estimates are substituted in the above log—likelihood function, the resulting 

maximised function (up to an additive constant) is

Lax(Ai; Ag,...; Ap) = — ^logg|E| 4- ^ [(Aj — 1 )S log^yijl (3.17)
j=l i=l

where yij is the i—th observation on the untransformed j—th réponse (i= l,2 ,...,n; 

j= l ,2 ,...,p).

The maximum likelihood estimates Aj ( j= l,2 ,...,p) can be obtained by numerically

maximising (3.17). However, in the general p—response case /max is a function of p variables

and thus the problem of studying and numerically maximising it is quite complex. In the

bivariate case, p= 2 , (3.17) is a function of two variables so it can easily be computed and

studied. This suggests the possibility of studying all possible pairs of responses, thus,

considering them as bivariate data and so losing the joint relationships which may exist
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across all the variables.

Using the normalised Box—Cox transformation (See Section 3.4.2.1) with covariance 

matrix (estimated by Sĵ ) leads to the alternative log—likelihood

inax(^l) I I • (3.18)

It can be easily verified that (3.17) and (3.18) are numerically identical.

If Âi, Âg,..., îp  are the values that maximise 4nax(A), an approximate confidence 

region for Ai, A2,...,Ap is defined by

2{4nax(A 1; Â2,.-, Ap) — 4nax(Ai, A2, Ap)} < %p(u) (3.19)
2

where ^^(a) is the upper 1 0 0 o% point of the chi—squared distribution with p degrees of 

freedom.

3.4 The Proposed SURCON Approach

The proposed SURCON Analysis theory is based on two ideas from linear 

regression. The first of these is the simultaneous linear regression of several models which 

are related through their error terms. These are sometimes referred to as "disturbance 

related equations" or more commonly Zellner’s "Seemingly Unrelated Regressions" 

[Zellner, 1962]. The second idea is based on "Constructed Variables" so called by Box and 

are commonly used in Regression Diagnostics. The first two subsections provide the 

background theory of these two techniques which is adapted into the SURCON (Seemingly 

Unrelated Regressions/Constructed Variables) analysis.

3.4.1 Seeming!V Unrelated Regressions (SUR)

Consider a set of p regression equations

yj == ^j/^j "b (3.20)

j=l,2,...,p where yj(nxl), Xj(n*kj), /? (kjxl), ej(nxl) and each equation obeys the classical 

regression assumptions. Assume, further, that there may be correlation between the 

random error e in different equations. In this case we have disturbance related sets of 

equations or seemingly unrelated regressions (SUR).

A convenient way to write these equations is
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yi" Xi 0

Y2 = 0 X2

.y p . . 6 0

' P i ' ■ ei '
P2 + f2

. K . . % .

(3.21)

or

where K

^npxl -  ^np»K & « l +  *np«l
P

= £ k.. (NB: If ki =  k2 =  ... =  kp =  k then K =  k.p) 
j= l  J

(3.22)

Let 6 it be the error for the t—th observation in the i—th equation then the 

assumption of disturbances being related between equations but not within equations 

implies that

0  ,0 1 herwise
or

E[eiej ] =  (Tijin

and thus the covariance matrix for the complete error vector can be written as
llln ^ 12I11 ... Ipin

(3.23)

(3.24)

E[ee^] =

where S =

^ 2 lln ^ 22ln ... ^̂ 2pln 

, CTplIn ^p2ln ... O'ppin _
^ =  E ® I

ail <^12 . . .  Ip

a2l a22 ... <T2p

(3.25)

(3.26)

api (7p2 . . .  (Tpp

When the system (3.21) is viewed as a single equation (3.22) we can estimate P and,

hence, all P̂  by the generalised least squares (GLS) procedures ie. by minimising

(3.27)

obtaining the GLS estimator

P =  (X^5 -iX)-iX'J-iy 

=  [x'^(!!-i®I)X]-'X’'(£->eI)y

T x .,

(3.28)

In detail
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■/S.- ■<r“ X iX , a ‘2 X ,X j ... criPXjXp-

k — <r!“X jX , <rJ2XjXj... TÎPXjXp

X . . (^P'XpX, (TPJXpXj ... <^PPXpXp.

S(7‘i X j i l  (3.29)

EtrîiXjjrj

. ï<^P‘Xpyi.

where the element is the (i,j)—th element of Z L

The covariance of P is

Var-cov(/?) =  (X'^J-‘X) =  [X^(E-‘ « I)X] (3.30)

This resulting estimator possesses the same properties as the estimator b, where

b =  (x ’^X)-ix'^y (3.31)

obtained by considering the equations one at a time, i.e. if is unbiased and if y is normally 

distributed it is the maximum likelihood estimator and has minimum variance within the 

class of all unbiased estimators.

However, /?j, the i—th vector P (estimator for the i—th equation using SUR) is better 

than bj, the single equation estimator for the i—th equation since

a) it allows for correlation between ê  and error vectors from the equations

b) it uses information on explanatory variables that are included in the system but 

excluded from the i—th equation.

This gain in efficiency can be shown as follows. The estimator obtained by applying 

least squares (LS) to each separate equation is

b =  (X^X)-ix'^y

= [(X"X)-»X' +  (x'^5-iX)-iX^$-i-(X'5-iX)-iX'^^|-i]y 

=  (x'^g-iX)-ix'^g-iy +  Ay 

= (x'^5-iX)-ix'^J-i(X/3 +  e) +  A(X^ +  e)

= P+  (X^5-iX)-iX'^J-ie +  AX^ +  AXe 

where A =  (X^X)-iX^ -  (x'^$'iX)-iX^g-'

So,

E[b] = 0 + A X  = p  

since AX =  (X^X)-ix'^X -  (X'^$-'X)-'X^$-IX.

Hence, b is unbiased.
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The covariance matrix is

^  = E [ ( h - 0 ) ( h - 0 f ]

=  (x'^|-‘X)-‘X'^|-iE(ee'^®-»X(X^|-‘X)-» +  AE(ee’')A 

=  (X'^^-'X)-! +  AJ-iA (3.34)
T  ^(since E(ee ) =  $) which is the variance—covariance of /? plus some other positive 

semi—definite matrix.

Consequently,

Ejj- E ô = A |A '^  (3.35)

where A^-iA is at least positive semi—definite and so P is strictly efficient unless A = 0  

and thus b =  /?

ie. 2^ > A # 0  (3.36)

In general the efficiency gain tends to be higher when the errors among different 

equations are highly correlated.

There are, however, two cases when b =  /& and thus no gain in efficiency.

Case 1 . If 2 is a diagonal matrix ie =  0  for all i  ̂ j, in otherwords, no correlation 

between the random vectors of different equations.

Case 2. If = Xg =  ... =  Xp = Xq 

This follows because in this case

X = (Ip * X o )

and therefore

[ x'’'(E-‘ ® I) X ]-i x'^(E-i « I)

=  [(I * X„)’’(E-i 8 I)(I 8 X,) ]-i(I 8 X„)^(E-i 8 1)

=  p - l 8 X ( , ) ( l 8 X o ) ] - l ( l 8 X o ) ( E - l 8 l )

=  (E->8 X ^X o)-p -i8 X /

=  (E 8 (X^Xo)-‘)(S-‘ « Xj)

=  ( l 8 ( x X ) - <

=  (x'^x)-ix'^ (3.37)

So on post—multiplying (3.37) by y the least squares estimator in (3.31) is obtained.
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This result also demonstrates that in general the gain in efficiency tends to be 

higher when the explanatory variables in different equations are not highly correlated.

The above theory is all based on the covariance matrix S being known. However, in 

many instances this may not be the case so it has to be estimated. The following section 

discusses the estimator used when S is unknown.

3 4.1.1 Estimation with unknown covariance matrix

If £ is unknown, it can be estimated by £ (or S) based on the LS residuals

êi =  y i “  Xjbi (3.38)

and has elements

^ij ”  “  n (3.39)

i,j =  1 ,2 ,...,p and the resulting estimator is

} =  [ x ’ ’( S - i  e  I) X ] - i  x ’' ( S - i  ® I)y (3.40)

Having obtained the parameter estimates it may be required to test hypothesis on 

them. A hypothesis of great interest is the significance of these estimates. The following 

section discusses hypothesis testing in the Seemingly Unrelated Regressions context in 

general and in particular the hypothesis for the equality of the coefficients.

3.4.1.2 Hvpothesis Testing

In this section we consider tests for two types of hypotheses. The first test (Section 

3.4.1.2a) deals with linear restrictions on the coefficients p. These constraints can be used 

to assert linear relationships between the /?’s e.g. in testing for their equality. The second 

test (Section 3.4.1.2b) deals with testing for a diagonal £ since the least squares estimator b 

= (X^X)'iX^y is fully efficient if this condition holds (See Case 1 . Section 3.4.1) and, 

hence, nothing is achieved by carrying out a 2SLS. Judge et al. [1985] give a thorough 

discussion on these tests and others associated with Seemingly Unrelated Regressions. 

3.4.1.2a Linear Restrictions on the Coefficient Vector 8

Here we consider testing a set of linear restrictions represented by R0  =  r, for 

example a test for the equality of all the P̂ s i.e. P\ = p2 = ••• =/?p (See Zellner [1962]). The 

relevant test statistics depends on £ and because it is unknown is replaced with £.
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Therefore, the tests now have large sample justification and secondly it is possible to test 

restrictions that relate coefficients in one equation with the coefficients in other equations.

Under the assumption that e is normally distributed and that the null hypothesis 

R/? = r is true the statistic

f = ( r  -  R|g)^(RCR^)-‘(r -  R ^J. SP ~ -±  - p (3.41)
(y -  - I * I)(y -  "P

where C =  ® I) X] and J  is the number of restrictions (ie. the number of rows in

R)

When E is replaced by t  and p is replaced by P the limiting distribution of

(r -  R^)’̂ (RCR'^)-i(r -  R^) (3.42)

with C =  [X^(E"i ® I) X]-i is The limiting distribution of

3  =  (r -  R ^^R C R ^)-»(r -  np -  k ( 3  4 3 )

(y -  X |0 ^(S - ‘ « I)(y -  X h
is (1/J) X(j).

Also, F / j  jjp _  converges in distribution to (1/ J ) x/ jn as n -i » and
2asymptotically it makes no difference whether A is used in conjunction with the F or %

2distribution or whether we simply use the % distribution.

Lemma 3.1

The test statistic 6 can be written in terms of restricted and unrestricted sums of 

squares as follows.

(y-X,3*)^(Ê->«I)(y-X^)-<y-Xy3)’'(Ê-i®I)(y-Xy8) np-k 

(y-X;3)^(Ê-‘®I)(y-X^)
^  ■ — I-  (3-44)

Proof:

In proving this Lemma it is sufficient to show that the numerators in (3.43) and 

(3.44) are identical.

Let

f  = P + CR'^(RCR’^)-i(r -  R^) (3.45)

then the LS estimator obtained by minimising
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(y -X /? f(E -i« I)(y -X ^ )  (3.46)

Subject to R/Î =  r (3.47)

then (y -  X^*)^(Ê-i®I)(y -  x f )  = (y -  X^^(Ê-%I)(y -  X0)

-  (y -  X^'^(Ê-i«I)XCR^(RCR'^)-‘(r -  RjS)

+  [XCR'^(RCR'^)-»(r -  R^)]^(S-'«I)[XCR'^(RCR'^)-‘(r -  R^)]

-  XCR'^(RCR^)-‘(r -  Rj3)(Ê->«I)(y -  XP) (3.48)

So

(y -  X^*)'^(Ê->«I)(y -  xp*) -  (y -  X^)''(Ê->«I)(y -  XP) =  -A + B -A ’'  (3.49)

Now, B =  (r -  R;S)'^(RCR'^) -iRCX’'(Ê->«I)XCR^(RCR'^) -i(r -  R ^

=  (r -  R^)'^(RCR’')-iRCR'^(RCR'^)-i(r -  R^)

=  (r -  R;S)'^(RCR^)-‘(r -  RP) (3.50)

also A =  (r -  R^)’^(RCR’')-iRCX^(Ê-i®I)(y -  X ‘p)

=  (r -  R^)^(RCR^)-iRCX''(S->«I)(I -  XCX'^(S-i«I)y

=  (r -  R^)'^(RCR'^)-‘RCX^(Ê->®I)[I -  XCX'^(S->«I)](X^ +  e)

=  (r -  R,S)''(RCR’̂ )-i{RCX’ (̂Ê->®I)X  ̂-  RCX'^(Ê-i®I)XCX^(Ê-‘®I)X^

+ RCX^(Ê-ieI)e -  RCX^(Ê-i*I)XCX'^(Ê->®I)Xe}

=  (r -  R^)^(RCR’̂ )-‘{R^ -  R^ +  RCX'^(Ê-i«I)e -  RCX'^(Ê-%I)e 

=  0 =  A^ (3.51)

Therefore, by (3.48)

(y -  X^*)’’(Ê->®I)(y -  xp*) -  (y -  X^)^(Ê-i«I)(y -  XP) =  (r -  R^)'^(RCR’ )̂-Kr -  R ^

□

If the equation is written in this way, it shows that 6 is an extension of the F 

statistic commonly used to test the significance of the increase in residual sums of squares

that result from the imposition of linear constraints. If E is replaced by E and /?, /? hy P

and P , respectively, the resulting expression is equivalent to 6.

— Estimate of E used in 6

In deriving S the question of whether to estimate E using LS residuals from the

restricted or unrestricted model arises (ie from Ho or Ha).
138



However, since we are interested in the probability distribution of 6 when

Ho: KP =  r (3.52)

is true, it could be argued that it is more logical to base 8 on an estimate of 2) that assumes 

that assumes that the null hypothesis is true, although asymptotically it makes no 

difference as to which one is adopted.

3.4.1.2b Testing for a Diagonal Covariance Matrix S

If the error terms across equations are uncorrelated (S is diagonal) then the least 

squares estimator b = (X^X)-%^y is fully efficient. It is, therefore, useful to have test 

statistics to test this hypothesis. Assuming normality, Breusch and Pagan [1980] have 

shown that the Lagrange Multiplier (LM) statistic for testing the null hypothesis of a 

diagonal S is given by

= n § S r2 (3.53)
' i = 2j =l i j  ^

where r  . =  and Jij =  (yi — Xibi)^(yj — Xjbj). Under Ho, ? has an asymptotic

^^[p(p-2 ) / 2 ] distribution.

Another test for a diagonal E can be based on the likelihood ratio test [Judge et al

1985] but for the purposes of this thesis only the LM test is used.

3.4.2 Constructed Variables

3.4.2.1 Structured sample case

If we take one equation from the system of equations defined in (3.20) then a simple

score test can be derived which is the t—test for the significance of a regression coefficient.

The model is first replaced by a model on the normalised Box—Cox transformation where

A j f  ̂ (3.54)Zj('^) —

L yjioge yj , ^  =  0

and yj = ( Hy^j)^/^ is the geometric mean of y
i = 1

It is the hope that for some A

z(A) = XP+  € (3.55)
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The value of A for which this applies is estimated. Expanding z(A) by a Taylor 

series about the known (hypothesised) value Ao yields

z(A) -  z(Ao) + (A — Ao)w(Ao) (3.56)

and the approximate linear model

z(Ao) =  X/? — (A — Ao)w(Ao) 4- t

z(Ao) =  X)9 + 7  ^<^o) +  f (3.57)

where w(Ao) =  5z(A)/5A evaluated at Ao and was called the Constructed Variable by Box

[1980] also 7  — —(A — Ao).

The least squares estimate for the regression coefficient of w(Ao) is

7 =  w^(Ao).4z(Ao)/w^(Ao).Aw(Ao) (3.58)

where A =  I — H and H =  X(X^X)” ^X^ is the Hat matrix for the model in (3.57).

For brevity, we shall write z and w in (3.58) and similar expressions, unless 

dependence on A is important.

The variance of 7  is given by Aw). To form a t test for the significance of 7  

an estimate of is required. We shall use the estimate under the null hypothesis, s . The 

purpose of the Score test is to avoid calculation of A, so that the maximum likelihood 

estimator of is not available. An approximation to this estimate is given by

(n — p — l)s 2 = z^Az — (z^Aw)2/(w Aw) (3.59)

The t test for the hypothesis 7  =  0  is the approximate Score statistic [Atkinson

1973]

T (A ) = ---------- z(Ao)'^Az( Ao)  (3 .6 O)
P 6,vT{ w(Ao) ^A4Ao) }

2
The negative sign arises because, in (3.57), 7  = — (A — Ao). Use of s  ̂ rather than s , to 

estimate 0-2 yields a test with higher power. To the extent that the linear approximation 

which leads to (3.57) is exact, 7  =  — (A — Ao). T^(A), therefore, provides an approximate 

test of the hypothesis A = Aq. This score test is an approximation to the likelihood ratio 

test (See Figure 3.3). A third test based on the likelihood function is the Wald Test as 

displayed in Figure 3.3.
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Fig 3.3 Likelihood Ratio Test, Wold Test and Score Test
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The score test can usefully be interpreted in terms of the univariate regression 

through the origin of the residual values of z(A) on the residual constructed variables.

For the power transformation (3.53) the constructed variable is given by

Wp(A) =  (l/A  +  log y) (3.61)

Usually interest is in testing hypotheses about a few special values of interest of A. 

For Ao ie. Hq: No transformation

Wp(l) =  y{ log(y/y) -  1 } +  log y +  l  (3.62)

Presence of regression on this constructed variable would, therefore, be evidence 

that a transformation is required. Similarly, for the null hypothesis of a log transformation, 

Aq =  0

t^p(O) =  y log y(log y/2 -  log y) (3.63)

Calculation of the score statistics does not require &ĵ (A) directly but rather the
*

residual constructed variable Wp(A) which is formed by

= (I -  H)Wp(A) =  AWp(A) (3.64)

where H = X(X^X)””̂ X^ is the Hat matrix for the model in (3.57) and A =  I — H.

At A the value of 7  is identically zero. An approximation to the variance of Â is 

s2/w^(Â)Aw(Â) and the corresponding 1 0 0 a% confidence interval for A accordingly has 

limits

Â * t^  j^_p_jS/,/{w'f(Â)Aa<Â)} (3.65)

NB: All the quantities are calculated at Â and ŝ  is the residual mean square estimate of

As mentioned earlier the score test can usefully be interpreted in terms of the 

univariate regression through the origin of the residual values of z(A) on the residual

constructed variable ie. if
*  *

w = (I — H)w = Aw and z =  (I — H)z =  Az

and treating these as variables rather than residuals, we have the univariate regression
*  *

Zj =  7 jWj 4- Oj (3.66)

j= l,...,p  which leads to the LS estimate 7  for 7 . This is the estimate of the slope of the
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*  *
added variable plot of zj against Wj.

To find a quick estimate for A the linearised model (3.57) can be used to give an

approximation to Â .If X denotes the quick estimate it follows that

Â — Ao =  — 7

or Â =  Aq — 7  (3.67)

3.4.2 2 Unstructured sample case

In the case of the unstructured sample the system of equations, model (3.20), 

becomes

yj =  l/^j+ (j (3.68)

j= l ,2 ,...,p where /xj would be interpreted as the population mean of yj.

All the quantities as discussed previously continue to hold except the hat matrix

now takes the form

H = i l l ”'' (3.69)

where 1 is an nxl vector with all elements equal to unity.

This leads to

and

6/j = (I — H)Wj(Ao) =  Wj(Ao) — Wj(Ao) (3.70)

zj =  (I -  H)zj(Ao) =  Zj(Ao) -  Ej(Ao) (3.71)

where ù/j(Ao), zj(Ao) are the sample means of the constructed variable and the normalised 

Box—Cox transformation for yj, respectively, evaluated at X q .

We note that the linearised model (equation) (3.57) now takes the form

Zj =  l/xj+ 7j^j +  fj (3.72)

j= l ,2 ,...,p.

The next section discusses the proposed SURCON algorithm based on the theory in 

the previous two sections (3.4.1) and (3.4.2).

3.4.3 The proposed SURCON analvsis algorithm

In general, the system of equations (3.20) considering an unstructured sample and 

no transformation is as in (3.68) where /xj is the population mean of the j—th equation
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(variable in this case). On taking into account the constructed variable and using the 

linearised model in the form of (3.72) we can write the model as

y = X/? + e (3.73)

where y is an np*! , X is an np*2p block—diagonal matrix of the form
Xi 0 ... 0

X =  '

with Xi =
1 û/j 
1 (û\

1 a

0 X2... 0

0 0 ... Xpj

(3.74)

of order n« 2  also p =  (/xi, 71 , /X2, 7 2 ,--,Ap, 7 p) and is of order 2 pxl, e is

an npxl vector of residuals across all the variables.

If we let Aij =  [ Jij . i,j =  1.2,...,P,

then

X^(S-i ® I) X =
■An A 1 2 . .Alp]

A 2 I A22- .A2p

. Âpl Ap2. •App.

(3.75)

Also,

x'^(S-i ® I) =  [J^ijyj, J^iJ4?iyj,...,J^pjyj, ^LiJù/pyj]^ (3.76) 

where S is the error covariance matrix and jiJ is the i,j—th element of its inverse

From the two expressions (3.75) and (3.76) the GLS estimate for /? can be obtained

as

p =  [X^(S-1 ® I) X]-»x’'(S-i ® I)y (3.77)

where S is as above.

However, the expression could greatly be simplified for computational purposes by 

first centering both y and d ie.replacing each with its deviation from its mean. This would 

make all terms of the form Eàfj be equal to zero. Further consequences are that the model 

(equation) can be reformulated as follows

y* =  7 j ‘'j +  6j (3.78)

j=l,2,...,p.
NB /fj disappears since we are dealing with the unstructured sample and is estimated by ÿ. 

The model as in (3.78) conforms to the one defined in (3.66) regarding the regression
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of the residual values of z(A) on the residual constructed variable, and since we are mainly 

concerned with the estimate of 7  we can adopt (3.78) as the single equation formulation of 

the problem.

Using (3.78) not only reduces the computational requirement but also provides the 

necessary values used for the diagnostic plots eg. the added variable plots.

The system of equations (3.20) can, therefore, be written as
* 11 *T *

4/p
*

_
Zi

r 11 *T *
i iJ i

*
Z2 11 *T *

• *
.Zp .

• ♦t * *
(r“ 4/p l û i .11

' 71 ' 'e T
72 62
• 4- •

. 7p. . 6 p.

(3.79)

If we substitute jiJ with the estimates then we obtain the GLS estimator 7  for 7 . 

So if i  is the vector of "quick estimates" for X and Ao is the vector of the 

hypothesised values then

Â = Ao — 7

I.e.

H l l
Â2

Aoi - 7i
Ao2 - 72

. 4 . . Aop - 7p .

(3.80)

where Aoi ( i= l,2 ,...,p) is the hypothesised A for the i—th variable. Usually Aoi =  1, V i is a 

reasonable starting point since it corresponds to no transformation required for all the 

variables.

The standard error of 71 is given by the square root of the i—th diagonal element of 

[x'^(S->»I)X]-i.

Tests for the significance of 7  (hence A) are necessary since the decisions and 

conclusions on the parameter estimates are based on it. The following section discusses 

these tests.

3.4.3.1 Hypothesis Testing (Significance of 7 )

3.4.3.1a Significance of 7

Section 3.4.1 . 2  discusses the testing of a set of linear constraints (restrictions) 

represented by Rfi = r. In the SURCON context, the hypothesis to be tested is whether
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* *
there is a presence of regression of z on the residual constructed variable a .

This can be formulated as follows:
*  *

H q: N o  r e g r e s s i o n  o f  z  o n  w  

v s

* *
Ha: Presence of regression of z on w 

Alternatively, we wish to test

H q: 7  = 0 vs Ha: 7 ^ 0  

where 7  =  (71, 7 2 , - ,  7 p) and 71 =  72 =  7 p =  0 - 

In the notation used previously we have

I.e.

R7 = 0
1 —1 0 .. . 0  o ' ’ 7i "
0 1 —1 .. . 0 0 72

6 Ô Ô " * 1 - 1 . . )p .
Under the assumption that e is normally distributed and that Ho is true 

6 =
.A *

 (R7)^(RCR^)->(%) np -  p .  p
(z’ -  ®I)(z -  7 / )  P (P> ”P-P)

where C =  [&; which is the covariance matrix for 7 .

Considering the model under H q we have 

and so by (3.44)

*
z  =  e

or

g — z » I) z -  (z - 'f(û ) (E'l » I)(z — ) np — p
(z -  ju  ® I)(z - 76/ ) ^

^ _  SS of scaled residual(under H q -  under Ha) np -  p 
“  SS of scaled residuals under Ha p

The value 6 can be tested against either an np—p) (^/p)%^^py

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

The choice of estimate for E could be either under Hq or under Ha, however, 

asymptotically there is no difference in the results obtained from either choice.

Under Hq the estimate of E would be the covariance matrix of z. It can be readily 

shown, therefore, that the first term in the numerator of (3.85), z (E‘i ® I) z , can be 

written as np2.
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3.4.3.1b Testing for the Independence of the variables

Section 3.4.2.1b discusses the test used for testing the diagonality of S. In the 

context of the SURCON algorithm this is equivalent to testing for the independence of the 

variables. If the variables are uncorrelated it implies that their transformations can be 

performed marginally i.e. by considering one variable at a time. The consequence of this is 

that the joint transformations would not necessarily enhance joint normality and it would , 

therefore, not be worthwhile to obtain them.

The actual computations are carried out by substituting the relevant values into
* * T/ * * *

(3.53). So ?ij =  (z; -  7 iWi) (zj -  7 j 4/j).

3.4.3 2 Convergence of SURCON estimates to Maximum Likelihood estimates

The theory in Section 3.4.3 so far is used to obtain "quick estimates" for the 

transformation parameters based on some hypothesised values Aoj,j=l,2,...,p. It is, 

however, desirable to obtain the maximum likelihood estimates, Âj, j=l,2,...p. This can be 

achieved by using an iterative scheme [Atkinson, 1985].

The following discussion is based on one variable being considered at a time.

The maximum likelihood estimate of A for the j—th variable is the value satisfying

Tp(Âj) =  0 (3.86)

Solving this expression numerically would yield the required estimates. The false 

position method was selected for the SURCON algorithm because of its better numerical 

properties against Newton methods.

Given two values of Aj at which the values of Tp(Aj) have opposite signs, a third 

value of Aj for which Tp(Aj) should be zero is found by linear interpolation. If the 

magnitude of Tp(Aj) at this new value of Aj is not sufficiently small, the process is repeated 

with the two values of Tp(Aj) which are smallest in magnitude and opposite in sign. The 

iteration continues until a sufficiently small absolute value of Tp(Aj) is obtained. To 

initiate the method a grid search has to be made to locate two value of Aj bracketing the 

solution to (3.86). For the sake of clarity the notation is changed slightly so the A =  Aj. A 

satisfactory starting point is with the values 1 and A. The first iteration is then given by
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X, =  Tp(Â) -  ÂTp(l) (3.87)
Tp(Â) -  Tp(l)  

and the general step in the false position method is given by

ÎTp(Âk) (3.88)
Tp(Ik) “ T p(Iit-i)

In (3.88) successive values of Jk and Jk-i are chosen to give values of Tp(l) with 

opposite signs and smallest absolute values among the three candidate points. The method 

can be considered to converge with the condition | Tp(l) | < 10% where q is some integer.

After the above iteration is performed on the j—th variable a test for the significance 

of 7  (Section 3.4.3.1) can be made. If S is significant then a new variable is selected and the 

false position method applied to it. The process continues until â ceases to be significant.

Figure 3.4 is a graphical demonstration of the algorithm with two variables. It 

displays the contours of the log—likelihood function for the simulated bivariate normal 

sample of Example E l. The x and y axes are the transformation parameters Ai and À2, 

respectively.

The lines A and A ' represent the initial values of A for Yi and Yg respectively, 

which are both 1 (no transformations) in this case. The algorithm keeps one line constant, 

A ', and searches along it for a value of Ai which has an opposite sign to the previous Ai, 

line B. This would bracket the solution for A%. It then searches along B for a value of A 2 

which has an opposite sign to the previous A2, line B '. The process continues until the 

algorithm converges. The coordinates of the points of intersection (a,b and c) of each pair 

of lines are the estimated values for A at that iteration and so the total number of 

iterations is six (3x2) in this example.

Figure 3.5 is a plot of the score statistic Tp(A) against A for XI from the same data 

as above. Provided the solution is properly bracketed this plot can easily be used to read 

off A which corresponds to Tp(A) =  0. A confidence interval can also be read off from the 

plot. The 95% confidence interval for this example is wider than the theoretical limits from 

a Student’s—t distribution with n—1 degrees of freedom but it is quite possible for the
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Fig 3.4 Loglikelihood Contours for BVN data
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Fig 3.5 Score S ta tis t ic  vs Lambda
(Bivariate Normal Data, p = 0 ,  X,)
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Fig 3.6 Loglikelihood  S u r fa ce  Plot for BVN data
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A lgorithm H . S urcoi A nalysis A lgorithm

The following is the summary of the SURCON analysis algorithm:

Step 1: [Initialise.] No.of iterations K=0, J = l ,  Aj =  Aoj =  1,

Step 2: [Compute.] The Box—Cox power transformations for all the variables

] ,X # 0
(3.89)

ÿloggY , A =  0

where y.= ( . t  j = l ,2 , . . . , p .
J 1 = 1 u

Step 3: [Compute.] The constructed variables

Wj(Aj) =  -  y |^ . ;~ - |(l/Aj +  logger) (3.90)
' ' j j

j= l , 2 ,...,p.

Step 4: [Compute.] Deviations from the means for z and w

zj(Aj) =  Zj(Aj) -  Zj(Aj) (3.91)

Wj(Aj) =  wj(Aj) -  wj(Aj) (3.92)

j= l ,2 ,...,p.

Step 5: [Fit.] The single equation models

ZjWj) =  7iWj(Aj) +  eji (3.93)

j= l ,2 ,...,p.

Step 6 : [Estimate.] The covariance matrix of the error terms, S, using the residuals

from Step 5.

t =  Cov(eii,eji) (3.94)
* * 

i,j =  l , 2 ,...,p and eji =  zj(Aj) -  TijWjOj).

Step 7: [Fit.] The SUR model

z (A) =  7 2 W (A) +  e 2 (3.95)

and obtain 72 =  [w ^(S"i®I)w ]’iw * (̂Ê"i®I)z

Step 8: [Compute.] The Score statistics Tp(Aj), j= l ,2 ,...,p.

Step 9: [Test.] For the significance of the score statistics

If Tp(Aj) > tn-i(û) then goto Step 11.
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step 10: [Test.] For overall significance of the 2SLS estimates.

If f  - < 10-q then goto Step 14.

Step 11: [Interpolate.] Compute new value for Aj using the False Position Method.

If |Tp(Aj)| < IQ-q then J= J+ 1.

Step 12: [Increment.] K=K+1.

Step 13: [Goto.] Step 2.

Step 14: [End.] Terminate algorithm.

153



observed significance to be much larger than the nominal one. (See Atkinson and 

Lawrance, [1989]).

Figure 3.6 is the surface plot of the log—likelihood function.

Algorithm II is a summary of the SURCON algorithm.

3.5 Assessing Normality

3.5.1 Probability Plots

Probability plots as discussed in Section 2.3.2.3 are useful visual tools for assessing 

the conformance of a random variable to some theoretical distribution.

In assessing multivariate normality the multivariate nature of the observations can 

be initially ignored and a study of the marginal Q—Q plots carried out. These would be 

plots of the sample quantiles versus the expected quantiles from the normal distribution. If 

the points lie very nearly along a straight line, the normality assumption would be 

reasonable. Normality is suspect if the points deviate from a straight line. A further useful 

feature of these plots is that the patterns of deviations can provide dues about the nature 

of nonnormality. Once the reasons for nonnormality have been ascertained corrective action 

is possible e.g. by removing possible extreme observations (outliers) or by carrying out 

transformations to normality.

3.5.2 Rao^s Score Test

Consider a regular exponential family JC= {M{0)\ ^G®},  where the distribution 

M(^) has probability density function

f(ar,^) = c((?)exp{ ^ \( z )  }, (3.96)

with respect to some base measure r(dz), x  ̂ Here the natural parameter 0 and the 

sufficient statistic v[x) are pxl vectors and ® denotes the natural parameter space. Let X ~ 

M(^) be a random observation from this distribution.

Mardia and Kent [1991] consider the Rao Score test for departures from M  based on

another q*l vector v{x). For example, if JC\s the normal family u[x) =  (j, x^^Ÿ  ̂ a; 6 IR̂ and

if i^x) =  then we are testing for skewness.

Under the model (3.96), define the mean vector and covariance matrix of
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v{x) = { t((l) , l<l) }
under M( 6) by

with inverse

M  = 1 , n(^)  =
fi J « )  J

(3.97)

(3.98)

0  ^(tf) = (3.99)n ““(ÿ) n “®(ÿ)’
.n™((?) n*^^)_

Next, let Xi,...fXn denote the independent identically distributed observations from 

M(^) and set ü; =  ( t? , v^Ÿ  — Note that u is sufficient for 6 and the maximum

likelihood esitimate 9 satisfiesc =  u. For brevity, we shall write fj, = fi{9)j Ù = Q{9) etc.

Since u is sufficient for $ it is natural to look for departures from M(^) using the 

conditional distribution of v given u. Further, since ( is asymptotically normal, a

natural test statistics is Rao’s Score statistic [Rao, 1948] defined by

T =  n(

Up to first-order asymptotics, is the conditional mean of v given u and

vu un UV

(3.100)

(3.101)

is the conditional variance matrix of v given u. Hence, T ~ asymptotically [Cox & 

Hinkley, 1974].

In the case of testing multivariate normality departures in a sample of 

p—dimensional vectors, the Rao Score statistic is based on the third and fourth moments.

Some notation is needed to express the results in a concise form.

Given a p—vector a: and an integer d > 1, let

®(d) ......®id- (3.102)

i[d] =  { 3)1, 1 < ij. -  , j j  < P } (3.103)

each arranged as a column vector in lexicographic order, say. Thus, is a vector of the 

distinct monomials of degree d formed of components of x. The number of elements in 

=  P(d), say.IS d+p-1 
p-1 J

On the other hand contains repeated copies of some of the elements of 

Also, Xĵ j can be thought of as the Kronecker product of x with itself d times and contains
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elements. For example if p=2, =  x =  ( xi, 22)^, whereas =  (®î» ®i®2> 4  )

and x̂ 2 j — ( x̂ , ^ 1̂ 2* ®î 2* ) *

A partition of d is a is a collection of positive integers arranged in nonincreasing 

order, L = ( /i, /k) say, such that /i+ ... +  /k =  d. Each element of x^^j can be written in

the form for some partition L and some collection of distinct indices i^,...,ik €

{!,...,p}. Say that such an element of x^^  ̂ is of type L. For fixed p and d, let m(L) denote 

the number of elements of x^^^ of type I and let the multinomial coefficient

KL) =  ^  (3.104)

denote the number of times an element of type L in x^^  ̂ is repeated in Xj ĵ. Clearly, for 

fixed p and d, S m{L) =  p(d) and E m{L)r{L) =  p^, where the sum is over partition types 

L. Table 3.2 lists the values of L, m{L) and r{L) for d=3 and d=4.

Now let X denote an observation from the multivariate normal distribution (MVN) 

N^{S, A) with mean 6 and covariance matrix A. The sufficient statistic

u{x) — (3.105)

To test for departures from multivariate normality we use v{x) = (a^gyX^^p. To 

construct Rao’s Score statistic we require the mean of v{x) and the residual covariance 

matrix of v(x} after fitting a linear regression on ti{x). Further, without loss of generality

we may calculate the moments under the assumption 6 = 0  and A =  I where I denotes
P) P

the pxp identity matrix.

Using the symmetry of the normal distribution makes the mean of v{x) easy to 

calculate. If the partition type of an element x^^̂  contains an odd power, then the mean of 

that element must be equal to 0. In particular all the elements of x^gj have mean 0. The 

remaining means can be deduced directly from the formula for even—power expectations for 

the standard normal distribution ie. if Z  A(0,1),

E(Z2k) = 1 X 3  X ... X (2k - 1 )  (k > 1) (3.106)

Thus, elements of x̂ ^̂  of partition types L = (4) and L =  (2,2) have means 3 and 1 

respectively and all other elements of x̂ ^̂  have mean 0. Let be p4—vector arranged in 

the same order as Xĵ j containing these mean values.
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Table 3.2 Types of elements in and d. degree: L partition type:

rrdjj\ number of such elements in r{L). number of times each 

element is repeated in

d L m(L) r{L)

3 (3) p 1
3 (2,1) p (p -l)  3
3 (1,1,1) P(P“ 1J(P—2)/6 6
4 (4) p 1
4 (3,1) p (p -l)  4
4 (2,2) p (p -l)/2  6
4 (2,1,1) p(p—l)(p—2)/2 12
4 (1,1,1,1) p (p -l)(p-2 l(p-3)/24  24

The residual covariance matrix of v{x) after regressing on u{x) is rather more tedious 

to evaluate but has a simple answer.

T heorem 3.1 Let x ~ N^(0 ,I^. After regressing on u(x), the elements ofv(x) are residually 

uncorrelated. Further, the residual variance of an element of v(x) of degree d and partition 

type L is d!/r(L). □

Proof: From the symmetry of the normal distribution it follows immediately that all odd

order moments are uncorrelated with all even order moments. In particular, when

evaluating the residual variance of regressing on and is the same as on

Similarly when evaluating the residual variance of x^^y regressing on x^^̂  and x̂ ĝ  is the

same as regressing on x^^y Further all the elements of x̂ ĝ  are residually uncorrelated with

all the elements of x^^y after regressing on x̂ ^̂  and x^gy

For the remaining calculations it is necessary to use brute force. Although the

answer is elegant, there does not seem to be a simple method of proof. As an example of
2 2the sort of calculation needed, we evaluate the residual covariance of x^a^ XgXg, after 

regressing on x ^ y  This quantity is given by

x\x l  ^
x]xl
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=  1 — [0, 1, 0] J = 0  (3.107)

It should be noted that this theorem does not generalise to d > 4, at least not in the 

form relevant for our purpose. If we let 4̂̂  denote the residual covariance matrix of 

after regressing on and x^gy d=3, 4 then is a p(d) * p(d) diagonal matrix with 

typical element d!/i2(L), where L is the partition type of the corresponding element of 

□

All the information required to compute Rao’s score statistic is now available. Let

{ Xj.; r =  1, ..., n }

be a sample of p—vectors with elements x^ (i=l,...,p) and d—th order powers x̂ ^̂   ̂ and 

Xjjj Transform the data to =  >/S"i(x̂  — x), where x and S are the sample mean vector 

and sample covariance matrix. Let = n'^S  ̂ and =  n-^Z Then Rao’s

score statistic takes the form

si =  n{ + (^(4) - / ‘(4))’'^(4)(Z(4) -A (4)) }

1 - T  -

= T j +  say (3.108)
2 2

Under Hq Tg - ^p(3 ) *^4 ~ ^p(4)’ ^^^ependtly of one another so T ~

The representation of T using square brackets is the simplest to write down. 

The second line follows from the first line in (P.4) because the diagonal elements of d!A^^ 

just count the number of replications of each component of x^^  ̂ in Xĵ j so that

^•^('d)^d^‘'(d) “  ®fd]®[d] (3.109)
It can be shown that

Tg =  n ) ip / 6  (3.110)

T4  =  n{ fig p — Gfig p + 3p(p +  2) }/24 (3.111)

‘2,p - 4 - V d *rr
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* i n n

with D^g =  — x)^  S (̂Zg — z) =  . The quantities 6̂  ̂^ and p the

multivariate skewness and kurtosis introduced by Mardia [1970]. These expressions are

useful in computing the valuse of Tg and T^. Also, bg p asymptotically normally

distributed with mean = p(p + 2) and variance =  8p(p +  l)/n .

Note that depends on the fourth—order moments only through the elements 
>̂P2

D ,,, the ’radial’ part of the data. Thus we might expect L  _ to be more powerful than T. rr z,p ^
in picking up departures from multivariate normality (MVN) in elliptical families. Further, 

it is possible to partition the chi—squared statistic T^ into two asymptotically independent 

pieces,

T^ = ^  + ( T ^ -  (3.112)

where Z  = (&g — i/j) 1 /̂72 h&s one degree of freedom and T^— 2^ has p(4) — 1 degrees of 

freedom.

3.6 Examples

This section gives examples of the techniques discussed in this chapter. Each of the 

data sets has been specially selected to demonstrate the behaviour and consequences of the 

techniques under a variety of attributes which typical data may have.

The first two data sets. Examples E.6 and E.7, are taken from Section 2.8 

(Examples E .l and E.2, respectively) and are used as control data to show the expected 

behaviour of the techniques under known predetermined conditions. The first of these, 

Example E.6, is simulated bivariate normal data with 50 observations and does not contain 

any obvious outliers; it is used as the null data set. The second. Example E.7, is a 

contaminated version of the first data set with the outliers introduced as described in 

Section 2.8. This data set is chosen to see how the outliers affect the need for 

transformations in general and the effects of the individual types of outliers on these
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transformations. The rest of the data sets, apart from Examples E .ll  and E.12, are well 

known and have been widely used in multivariate analysis literature.

In Example E.8 we have bivariate observations on the weights and heights of 39 

Peruvian Indians [Ryan et al., 1976]. From previous analysis it is known that one of the 

observations is an outlier. So these data are used to demonstrate the effect of outliers on 

the transformations using real data (a real data complement of Example E.7).

Example E.8 is data taken from Ryan et al. [1976] and is commonly referred to as 

the Minitab Tree Data. It contains the volumes in cubic feet and the heights in feet of 31 

black cherry trees. This data set is used to compare the results obtained from the 

multivariate transformations techniques with those from a regression approach as carried 

out by Atkinson [1985].

The data in Example 10 are the widely used Fisher’s Iris data [Anderson, 1935; 

Fisher, 1936] (See eg. Mardia et al., [1979]: pp.6—7). They consist of 50 quadrivariate 

observations of three species of iris (Iris setosa. Iris versicolor and Iris virginica). The 

variables are measurements in centimeters of the sepal length and width and of petal length 

and width. This data set is selected because of its well studied and known properties. It is 

known to be generally well behaved with no particular peculiarities although the Iris setosa 

has been found to be distinguishable from the other two species. For this reason the 

discussion on this data set is centered on this specie.

Example E .ll  is based on data from the representative soil sampling survey of 

arable and grassland fields in England and Wales between 1969 and 1973 carried out by the 

Rothamsted Experimental Research Station to study the pH nutrient status of the soils. 

This data was kindly provided by the Rothamsted Experimental Research Station and the 

orgininal data consists of samples taken from all the regions in England and Wales with 

replicates over the years. For the purposes of the thesis data from only one replicate of one 

region is used and a subset of five variables analysed. These are the pH values of water 

(HgO) and calcium chloride (CaCl2), the available Phosphorus (P), Potassium (K) and
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Ta ble  3 .3  B in k ley 's  Quick Transform ations to  M arginal Symmetry

Data n -1 0
T
0.5 1 2

1 .Simulated b iv a ria te 50 xl -0.239 - 0.116 -0.062 -0.012* 0.080
normal x2 -0.296 - 0.122 -0.053 0.008* 0.119

2 .Simulated b iv a ria te 50 xl -0.323 - 0.082 0.018* 0.116 0.337
normal (with 4 o u tlie rs ) x2 -0.340 - 0.119 -0.034* 0.042 0.179

3 .Peruvian 39 xl -0.005* 0.026 0.043 0.060 0.096
x2 0.056** 0.065 0.070 0.074 0.083

4 .Peruvian (minus obs 39) 38 xl -0.025 0.000* 0.013 0.026 0.051
x2 0.034** 0.043 0.048 0.053 0.062

5 .Minitab tre e 31 xl -0.072 0.000* 0.035 0.070 0.138
x2 -0.068 - 0.033 -0.016 0.000* 0.032

6 .F ish e r’s i r i s 50 xl -0.046 - 0.015 -0.000* 0.015 0.045
( I r i s  Setosa) x2 -0.030 0.014* 0.035 0.056 0.096

x3 -0.305 - 0.245 -0.217 -0.190 -0.138**
x4 0.126** 0.308 0.385 0.460 0.628

7 .F ish e r’s i r i s 150 xl -0.054 - 0.011* 0.011* 0.033 0.079
(All groups) x2 -0.009* 0.054 0.084 0.115 0.176

x3 -0.329 - 0.255 -0.213 -0.169 -0.073**
x4 -0.451 - 0.243 -0.154 -0.067* 0.103

8 .Repeat so il  sample 57 xl -0.095 - 0.053 -0.031 -0.010* 0.033
survey x2 -0.107 - 0.062 -0.039 -0.015* 0.034

x3 -0.250 0.073* 0.209 0.363 0.887
x4 0.066** 0.203 0.289 0.393 0.706
x5 -0.150 0.064* 0.183 0.321 0.722

* - se lec ted  value fo r transform ation parameter.
** - actual transform ation parameter is  g re a te r /le s s  than se lec ted  value.
Note; T is  the transform ation parameter in  the expression = (x^ - 1) / t th a t

gives approximate symmetry and the displayed values are d^ = (x^ - x^[m ])/s^,

where x^ is  the sample mean, x^[m] the sample median and s^ the in te r-q u a r ti l e 
range a l l  evaluated a t T.
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Tabl e  3 .4  Summary of th e  Box-Cox Transform ations to  J o in t  Normality

Data n Rao’s
T

Method
MLE

X X
SURCON

Tp(l) X

1 .Simulated b iv a ria te  
normal

50 xl
x2

6.0587
(0.7340)

0.73
0.99

0.29
0.91

1.0755
0.1519

0.73
0.99

2 .Simulated b iv a ria te  
normal (with 4 o u tlie rs )

50 xl
x2

56.1905
(0.0000)

0.35
0.78

- 0.30 
0.15

5.5704*
1.8051

0.34
0.78

3 .Peruvian 39 xl
x2

73.9785
(0.0000)

-3.21
3.99

-5.60
10.33

5.6675*
-1.0993

- 3.08 
4.09

4 .Peruvian (minus obs 39) 38 xl
x2

6.4314
(0.6961)

-1.36
5.11

-5.18
12.44

2.2197
-1.3770

-1.34
5.13

5 .Minitab tre e 31 xl
x2

11.5487
(0.2400)

-0 .16
2.31

- 0.63 
-0.82

5.8372*
3.6725*

-0.16
2.33

6 .F ish er’s i r i s  
( I r i s  Setosa)

50 xl
x2
x3
x4

25.9760
(0.4089)

0.36
1.26
0.66

-0.22
1.41
0.15

0.5435
-0.3676

0.6388

0.40
1.25
0.69

7 .F ish er’s i r i s  
( I r i s  Versicolour)

50 xl
x2
x3
x4

48.3249
(0.7257)

-0.80
2.51
2.26
0.80

-1.51
4.10
3.18
0.90

1.2005
-2.1307*
-2.1184*

0.1073

-0.65
2.53
2.36
0.81

7 .F ish er’s i r i s  
( I r i s  V irginica)

50 xl
x2
x3
x4

60.1830
(0.2937)

1.15
-0.01
-0.70

1.40

-0.04
-1.09
-2.66

1.81

0.6777
1.5402
2.5136*

-0.5343

1.08
0.01

-0.83
1.37

8 .Repeat so il sample 
survey

57 xl
x2

9.3435
(0.4062)

-0.49
-0.22

-2.84
-2.32

2.9243*
2.8398*

-0.61
-0.31

x3
x4
x5

1558.0977
(0.0000)

-0.03 
-0.81 
- 0.26

0.03
-0.43
-0.22

13.2128*
12.9889*
12.2840*

-0.03
-0.82
-0.26

xl
x2
x3
x4
x5

1783.3890
(0.0000)

-0.45 
-0.12 
-0.17 
-0.88 
- 0.23

-3.11 
-2 .54  

0.08 
-0.46 
- 0.23

3.2194*
3.1244*

12.9942*
13.7725*
12.3944*

-0.55 
-0.30 

0.02 
- 0.89 
-0.23

Notes: 1/ The "quick estim ate" Î is  obtained by taking Ao = 1, i . e .  no
transform ation.

2/ A * ind icates th a t Tp(l) is  s ig n if ic an t a t leve l a = 0.05 with 
n-1 degrees of freedom.

3/ The terms in brackets under Rao’s r  ind ica te  the o' values from 
P[T < r] = l - o ' ;  where r  -* ;t^(p[3] + p [4 ]) , p[d] = d+p-iCp_i and p is  the 
number of va riab les .
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Magnesium (Mg). The data set was selected to study the new techniques on a fresh real 

data set i.e. with unknown properties from a multivariate outliers and transformations 

perspective.

The final example, Example E.12, consists of 50 sets of computer generated 

bivariate normal deviates. Pairs of these random deviates were transformed to obtain 50 

new samples with induced correlation as in Example E2.1. A range of values for p was used 

to provide a basis for comparing the different approaches discussed for transforming 

observations and seeing how correlation affects them.

Tables 3.2 and 3.3 are the summaries of the estimates obtained from the examples 

using Hinkley’s quick transformations to marginal symmetry and the SURCON analysis, 

respectively.

Appendix C contains the listings of the data used in this chapter (excluding data 

already exhibited in Chapter Two).

E xample E.6 Simulated Bivariate Normal data.

This example is based on the data set from Example E .l in Chapter Two and 

consists of 50 two dimensional computer generated normal samples. It is used as the "null" 

data set to study and demonstrate the analysis under known, predetermined conditions. 

The summary statistics and Stalactite analysis are discussed in Example E.l.

As a first step in carrying out the analysis, Hinkley’s "quick" transformations to 

marginal symmetry are performed. The best choice for the transformation parameters in 

both cases is T=1 (See Table 3.3) indicating that no transformation is required as should 

be evident from the nature of the data. The next phase is to test for joint normality using 

Rao’s Score test (referred to as Rao’s r  in Table 3.4) which for joint normality is also not 

significant so the joint normality assumption for the two variables is viable. The 

log—likelihood method and the SURCON method suggest the same transformation 

parameters which for both variables are in the vicinity of unity. However, X\ is further
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away from 1 and this is due to the fact that Xi has less variability. The "quick" estimates 

for joint normality are not significant although they still provide some insight as to the 

possible transformations and can also be used as starting points to both the log—likelihood 

ans SURCON methods.

The three types of tests for symmetry plots for Xi are shown in Figure E.6(a) and 

they all confirm its symmetry. Those of Xg (not displayed) also yield the same conclusions.

Figure E.6(b) displays the full output from the SURCON analysis run. The lambda 

values shown are those obtained when the method converges to the maximum likelihood 

estimates (MLE). The left-hand side of the table shows the single equation (first stage 

least squares) estimates which are the marginal transformation parameter estimates. The 

right-hand part of the table shows the SURCON (two stage least squares) estimates i.e. 

the parameter estimates for joint normality. There is slight numerical difference between 

the two sets of parameters so the data are marginally and jointly normal. A test for the 

joint significance of the slopes, the gammas, is constructed using the 6 statistic (Section 

3.4.3.1a) denoted here by the F—Statistic. The output contains the p—values from the F 

distribution and the % distribution. The 95% confidence intervals for the marginal and 

joint estimates for each variable are also displayed. In this example the value 1 (no 

transformation) is firmly included in both variables. Finally, the Lagrange Multiplier (LM) 

test for independence of the variables (Section 3.4.3.1b) is included since it helps in 

ascertaining whether or not it is worthwhile to consider searching for joint estimates. The 

LM of 17.5389 is highly significant and so although the variables are marginally normal the 

fact that they are correlated makes it desirable to consider their joint estimates.

The output also displays the total number of iterations taken to converge to the 

maximum likelihood estimates for a given tolerance factor, e where | J | < c (in this and 

subsequent examples e =  lO"^). The number of iterations in this example is 6.
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Figure E.6(a) Symmetry Plots for XI in Example E.6
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FIGURE E.6rb^

SURCON ANALYSIS

ESTIMATES ÜF TRANSFORMATION PARAMETERS FOR DATA; BIVARIATE NORMAL DATA 

LAMBDA = 0.73 0.99

VAR.

SINGLE EQUATION ESTIMATES 

GAMMA S.E. T-VALUE
EST.
LAMBDA

SUR ESTIMATES 

GAMMA S.E. T-VALUE
EST.
LAMBDA

1 -0.1325 0.7910 -0.1676
(0.4338)

0.8666 -0.0024 0.6554 -0.0036 
(0.4986)

0.7364

2 0.1175 0.7026 0.1672
(0.4339)

0.8755 0.0000 0.5821 0.0000 
(0.5000)

0.9930

*** TERMS IN BRACKETS ARE p-VALUES FOR T(N-l) ***

= GP = 0*** JOINT TEST STATISTIC FOR HO: G1 = G2 = . . . .  

F-STATISTIC = 0.0000 D.O.F. = 2, 98 

p-VALUE: F-DISTRIBUTION = 1.0000 D.O.F.

CHI DISTRIBUTION/? = 0.5000 D.O.F.

= 2, 98 

=  2

*** CONFIDENCE INTERVALS

VAR

1

95.0% C .l. LS

[ -1.4588, 1.19371
( -0.4596, 2.1928)

[ -1.0605, 1.2955]
( - 0 .

95.0% C .l. 2SLS

[ -1.1011, 1.0964]
( -0.3624, 1.8351)

r -0.9760, 0.9760]
I 0.1,3025, 2.0535) ( 0.0171, 1.9690)

*** TERMS IN SQUARE BRACKETS ARE GAMMAS AND ROUND BRACKETS ARE LAMBDAS ***

*** TEST STATISTIC FOR HO: DIAGONAL COVARIANCE MATRIX 
USING THE LAGRANGE MULTIPLIER TEST (LM)

LM-STATISTIC = 17.5389 D.O.F. = 1

p-VALUE FOR CHI-SQUARE WITH 1 D.O.F. = 0.0000

TOTAL NO OF ITERATIONS TO CONVERGE = 6 WITH TOLERANCE FACTOR 10.0**(-4)* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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E xample E.7 Simulated Bivariate Normal data (with 4 outliers).

This is the contaminated form of the data in the preceeding example (See Example 

E.2) where four outliers are introduced. Two of the four are outlying in both variables 

whereas the other two outlie in the extremes of Xi only. The purpose of this example is to 

demonstrate the effects of the types of outliers on the transformations. The identities of the 

four observations are known, namely, 16, 28 (outlying in both variables), 39 and 48 

(outlying in Xi only).

The square root transformation is suggested by Hinkley’s ’’quick" transformations 

for both variables which is reasonable since it would shrink the tails to the right due to 

observations 16 and 28. Rao’s Score test is highly significant, hence, joint non—normality is 

suspected. The existance of only 4 outliers has distorted the otherwise jointly normal data 

from Example E.6. The "quick" estimate for Xi is significant whereas that of A2 is not. This 

suggests that the lack of fit to normality is due to the marginally outlying observations in 

Xl (observations 39 and 48) and these are the very observations which affect the 

correlation between the two variables. The log—likelihood and SURCON estimates for Ai 

are significantly reduced from 0.73 to 0.34 but the change in A 2 is not as dramatic. There is 

also a wider difference between the marginal estimates and the joint estimates for A% which 

indicates that in this case marginal normality would not ensure joint normality. The 95% 

confidence interval for Ai excludes no transformation and this is further exhibited by the 

marginal one which firmly excludes unity whereas both confidence intervals for A 2 include 

unity.

The LM statistic (Figure E.7(a)) is not as significant as before which again is 

influenced by the marginally outlying observations. It is also interesting to note that the 

number of iterations increased from 6 to 12 as a result of the outliers.

This example has shown the significant influence that outliers can have on the need 

for transformation. It also demonstrates the ability for jointly outlying observations being 

obscured when carrying out transformations but the influence of marginally outlying
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FIGURE E.Tfa^

SURCON ANALYSIS
ESTIMATES OF TRANSFORMATION PARAMETERS FOR DATA: SIMULATED BIVARIATE NORMAL 
DATA (WITH 4 OUTLIERS)
LAMBDA =0.34 0.78

VAR.
SINGLE EQUATION ESTIMATES 
GAMMA S.E. T-VALUE

EST.
LAMBDA

SUR ESTIMATES 
GAMMA S.E. T-VALUE

EST.
LAMBDA

1 0.3234 0.3840 0.8421 0.0166 -0.0014 0.3415 -0.0042 0.3414
(0.2019) (0.4984)

2 0.2702 0.5518 0.4897 0.5065 0.0000 0.4907 0.0000 0.7767
(0.3133) (0.5000)

*+* TERMS IN BRACKETS ARE P-VALUES FOR T(N-l) ***

*** JOINT TEST STATISTIC FOR HO: Gl = G2 = ....= GP = 0 
F-STATISTIC = 0.0000 D.O.F. = 2, 98 
p-VALUE: F DISTRIBUTION = 1.0000 D.O.F. =2, 98

CHI DISTRIBUTION/? = 0.5000 D.O.F. = 2

*** CONFIDENCE INTERVALS
VAR

1

95.07. C.l. LS
[ -0.3205, 0.9672]
( -0.6273, 0.6604)
[ -0.6549, 1.1953]
( - 0 ,

95.07, C.l. 2SLS
[ -0.5740, 0.5711]
( -0.2312, 0.9139)
[ -0.8227, 0.8227]
( - 0.1,4186, 1.4316) ( -0.0460; 1.5994)

*♦* TERMS IN SQUARE BRACKETS ARE GAMMAS AND ROUND BRACKETS ARE LAMBDAS ***

**♦ TEST STATISTIC FOR HO: DIAGONAL COVARIANCE MATRIX 
USING THE LAGRANGE MULTIPLIER TEST (LM)

LM-STATISTIC = 13.1990 D.O.F. = 1
p-VALUE FOR CHI-SQUARE WITH 1 D.O.F. = 0.0003
TOTAL NO OF ITERATIONS TO CONVERGE = 12 WITH TOLERANCE FACTOR 10.0**(-4)* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Fig u r e  E.7(bl Transformed Bivariate Normal Data (with 4 outliers) Stalactite Chart
ITERATION VS OBSERVATION
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observations can still exist. As a further display of this fact the data was transformed 

according to the SURCON estimates and a Stalactite analysis carried out. Figure E.7(b) is 

the Stalactite chart after transformation and it clearly shows observations 39 and 48 as still 

outlying but the outlyingness of observations 16 and 28 is greatly reduced. This example 

also demonstrates the ability of the Stalactite chart to highlight outliers since from 

Chapter Two the Classical approach to outlier detection (which corresponds to the final 

iteration of the Stalactite analysis) would only detect observations 39 and 48.

E xample E.8 Weights and Heights of 39 Peruvian Indians.

The data are X% the weights in kilograms and X 2 the heights in millimeters of 39 

Peruvian Indians. [Ryan et al., 1976].

This data set is included to demonstrate the effect of outliers on transformations 

using real data. A scatter plot of the data (not displayed) suggests that observation 39 is 

an outlier.

As an initial test for marginal normality the normal probability plots were made for 

the weights (Xj) and heights (X2) (See Figure E.8(a)). The probability plot for the weights 

looks S shaped suggesting a short—tailed marginal distribution for weight. The plot for 

heights, however, is reasonably linear up to a height of about 1600mm, and then there is 

discontinuity. On inspecting the scatter plot there are about seven taller Indians with lower 

than average weights in the range 61-64 kg approximately. This cluster of observations 

would have the effect of raising the probability plot for heights in the region of 0 < z < 0.5.

The inspection of joint normality of the variables was also carried out using % 

probability plots of the Mahalanobis distances of the observations (with and without 

observation 39). These plots are given in Figure E.8(b). Figure E.8(b)i. is the full sample 

version and is linear for the smaller distances but has a distinct point far removed from the 

rest. In fact the effect of such a point is to compress the remaining distances which tends to 

make them appear to be linear. To obtain a clearer picture of the shape of the plot the
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Figure E.8(a) Normal Probability Plots for the Peruvian Data
(with observation 39 omitted)
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Figure E.8(b) Mahalanobis Distances % Probability Plot for the Peruvian Data
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FIGTHtE E.8fc’>

Sm CnN ANALYSIS

ESTD U TES OF TRANSFDBliTIGN PA&ÂKETE&S FOR DATA: WEIGHT AND HEIGHT OF 3 9  
PERUVIAN INDIANS

LAMBDA = - 3 . 0 8 4 . 0 9

SINGLE EQUATION ESTIMATES SUR ESTIMATES
EST. EST.

VAR. GAMMA S . E .  T-VALUE LAMBDA GAMMA S . E .  T-VALUE LAMBDA

1 - 2 . 9 0 1 6 2 . 7 4 5 0  - 1 . 0 5 7 1 - 0 . 1 7 7 1 0 . 0 0 5 8 2 . 4 1 9 3  0 . 0 0 2 4 - 3 . 0 8 4 5
( 0 . 1 4 8 6 ) ( 0 . 4 9 9 0 )

2  - 3 . 2 1 9 6 1 1 . 5 5 8 1  - 0 . 2 7 8 6 7 . 3 0 6 5 - 0 . 0 0 0 2 1 0 . 1 8 6 9  0 . 0 0 0 0 4 . 0 8 7 1
( 0 . 3 9 1 0 ) ( 0 . 5 0 0 0 )

*** TERMS IN BRACKETS ARE P-VALUES FOR T ( N - l ) ***

* * ♦  JOINT TEST STATISTIC FOR HO: G1 = G2 = . . . . =  GP 

F-STATISTIC = 0 . 0 0 0 0  D .O .F .  = 2 ,  76  

p-VALUE: F-DISTRIBUTION = 1 . 0 0 0 0  D .O .F .  = 2 ,  76  

CHI DISTRIBUTION/P = 0 . 5 0 0 0  D .O .F .  = 2

= 0

*** CONFIDENCE INTERVALS

VAR
1

95.0%  C . I .  LS 
[ - 7 . 5 2 9 5 ,  1 .7 2 6 3 1
( - 4 . 8 0 5 0 ,  4 . 4 5 0 8 )

[ - 2 2 . 7 0 6 0 ,  1 6 . 2 6 6 8 ]  
(-12.

95.0%  C . I .  2SLS  
[ - 4 . 0 7 3 1 ,  4 . 0 8 4 7 ]
(  - 7 . 1 6 3 3 ,  0 . 9 9 4 4 )

[ - 1 7 . 1 7 4 9 ,  1 7 . 1 7 4 4 ]  
( - 1 3 .11 7 9 8 ,  2 6 . 7 9 2 9 )  ( - 1 3 . 0 8 7 5 ,  2 1 . 2 6 1 8 )

* * *  TERMS IN SQUARE BRACKETS ARE GAMMAS AND ROUND BRACKETS ARE LAMBDAS * *♦

TEST STATISTIC FOR HO: DIAGONAL COVARIANCE MATRIX 
USING THE LAGRANGE MULTIPLIER TEST (LM)

LM-STATISTIC = 9 . 5 5 7 1  D .O .F .  = 1

p-VALUE FOR CHI-SQUARE WITH 1 D .O .F .  = 0 . 0 0 2 0

TOTAL NO OF ITERATIONS TO CONVERGE = 6 WITH TOLERANCE FACTOR 10.0**(-4)
**************************************************************************

173



FIGURE E . a f d l  

SURCUN ARAIYSIS

ESTIM A TES OF TRANSFORMATION PARAMETERS FOR DATA: WEIGHT AND HEIGHT OF 39  
PERUVIAN INDIANS ( V /0  DBS 3 9 )

LAMBDA = - 1 . 3 3 5 . 1 3

VAK.

SINGLE EQUATION ESTIMATES 

GAMMA S . E .  T-VALUE
EST.
LAMBDA

SUR ESTIMATES 

GAMMA S . E .  T-VALUE
EST.
LAMBDA

1 - 2 . 2 1 4 3 3 . 7 7 5 1  - 0 . 5 8 6 6 0 . 8 7 9 9 - 0 . 0 0 0 9 3 . 0 0 9 3  - 0 . 0 0 0 3 - 1 . 3 3 3 6
( 0 . 2 8 0 5 ) ( 0 . 4 9 9 9 )

2 - 2 , 8 9 4 9 1 1 . 8 6 3 8  - 0 . 2 4 4 0 8 . 0 2 3 3 - 0 . 0 0 0 2 9 . 4 5 7 3  0 . 0 0 0 0 5 . 1 2 8 7
( 0 . 4 0 4 3 ) ( 0 . 5 0 0 0 )

* * *  TERMS IN BRACKETS ARE P-VALUES FOR T ( N - l )  * * *

= GP = 0JOINT TEST STATISTIC FOR HO: G1 = G2 = ____

F-STATISTIC = 0 . 0 0 0 0  D .O .F .  = 2 ,  7 4  

p-VALUE: F-DISTRIBUTION = 1 . 0 0 0 0  D .O .F .

CHI-DISTRIBUTION/P = 0 . 5 0 0 0  D .O .F .

= 2 ,  74  

= 2

*** CONFIDENCE INTERVALS

VAR

1

9 5 .0 7 .  C . I .  LS

[ - 8 . 5 8 3 3 ,  4 . 1 5 4 6 ]
( - 5 . 4 8 9 1 ,  7 . 2 4 8 8 )

[ - 2 2 . 9 1 0 3 ,  1 7 . 1 2 0 5 ]  
(-11.'

9 5 .0 7 .  C . I .  2SLS

[ - 5 . 0 7 7 9 ,  5 . 0 7 6 1 ]
( - 6 . 4 1 0 6 ,  3 . 7 4 3 4 )

[ - 1 5 . 9 5 5 5 ,  1 5 . 9 5 5 1 ]  
(-10.:9 9 2 1 ,  2 8 . 0 3 8 7 )  ( - 1 0 . 8 2 6 6 ,  2 1 . 0 8 4 0 )

♦♦♦  TERMS IN SQUARE BRACKETS ARE GAMMAS AND ROUND BRACKETS ARE LAMBDAS *♦+

***  TEST STATISTIC FOR HO: DIAGONAL COVARIANCE MATRIX 
USING THE LAGRANGE MULTIPLIER TEST (LM)

LM STATISTIC = 1 4 . 5 3 4 1  D .O .F .  = 1

p-VALUE FOR CHI-SQUARE WITH 1 D .O .F .  = 0 . 0 0 0 1

TOTAL NO OF ITERATIONS TO CONVERGE = 5 WITH TOLERANCE FACTOR 10.0**(-4)
**************************************************************************
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extreme observation is deleted and the plot is repeated. The new plot is shown in Figure 

E.8(b)ii. and is reasonably linear apart from a curious hump near the upper end. This is no 

doubt due to those taller Indians with lower than average weight that caused the hump in 

the normal probability plot for the heights [Figure E.8(b)i.].

The probability plots provide a graphical assessment of the characteristics of the 

data. It is now possible to carry out a formal analysis so as to attach some numerical 

quantities to the findings. When the full data set is considered the reciprocal 

transformation is suggested for both variables to achieve marginal symmetry. The 

exclusion of observation 39 alters the transformations to log for Xi but that of X2 remains 

unchanged. This is verified by the fact that observation 39 was outlying in the Xi direction. 

Rao’s Score test is highly significant for the full sample and ceases to be significant with 

the exclusion of observation 39. The suggested SURCON estimates (Figures E.8(c) and 

E.8(d)) for Ai drop from —3.08 to —1.34 for the reduced sample and there is little change in 

that of A 2. On comparing the single equation estimates with the SURCON estimates it can 

be seen that marginal normality would not imply joint normality in this case.

E x a m p l e  E .9  Minitab Tree Data (volume and heights).

The data are Xi the volumes in cubic feet and X2 the heights in feet of 31 black 

cherry trees (the original data consisted of a third variable, the girth, but for the purposes 

of this analysis it is omitted as discussed below). It is referred to as the Minitab Tree Data 

because it originates from the Minitab Student Handbook [Ryan et al. 1976] which is an 

introductory statistics textbook to complement the Minitab statistical package.

Atkinson [1985] performs an analysis for transformation of the variables based on 

regression diagnostics where the volume is taken as the response with the other two 

variables as the carriers. There is very strong correlation between the volume and the girth 

and for that reason the latter is dropped from the present analysis. On the other hand the 

plot of the volume against the height produces is megaphone shaped; so to demonstrate the
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FIGURE E . 9  

SPRCflN ANALYSIS

ESTIMATES OF TRANSFORMATION PARAMETERS FOR DATA: MINITAB TREE DATA (RESPONSE VS 
X2)

LAMBDA = - 0 . 1 6 2 . 3 3

SINGLE EQUATION ESTIMATES 

VAR. GAMMA S . E .  T-VALUE
EST.
LAMBDA

SUR ESTIMATES 

GAMMA S . E .  T-VALUE
EST.
LAMBDA

1 - 0 . 2 6 2 0  

2  - 2 . 0 1 9 6

0 . 5 9 3 8  - 0 . 4 4 1 2  
( 0 . 3 3 1 1 )  

3 . 8 8 8 5  - 0 . 5 1 9 4  
( 0 . 3 0 3 7 )

0 . 1 0 5 9

4 . 3 5 1 0

0 . 0 0 3 3

0 . 0 0 0 1

0 . 4 9 0 2  0 . 0 0 6 8  
( 0 . 4 9 7 3 )  

3 . 2 1 0 0  0 . 0 0 0 0  
( 0 . 5 0 0 0 )

- 0 . 1 5 9 4

2 . 3 3 1 3

*** TERMS IN BRACKETS ARE P-VALUES FOR T ( N - l ) ***

* * *  JOINT TEST STATISTIC FOR HO: G1 = 0 2  =  = GP = 0

F-STATISTIC = 0 . 0 0 0 0  D .O .F .  = 2 ,  6 0  

p-VALUE: F-DISTRIBUTION = 1 . 0 0 0 0  D .O .F .  = 2 ,  6 0

CHI-DISTRIBUTION/? = 0 . 5 0 0 0  D .O .F .  = 2

* * *  CONFIDENCE INTERVALS

VAR
1

9 5 .0 7 .  C . I .  LS 
[ - 1 . 2 6 9 7 ,  0 . 7 4 5 8 ]
( - 0 . 9 0 1 9 ,  1 . 1 1 3 7 )

[ - 8 . 6 1 9 4 ,  4 . 5 8 0 2 ]
( -2 .

95.0%  C . I .  2SLS  
[  - 0 . 8 2 8 6 ,  0 . 8 3 5 2 ]
( - 0 . 9 9 1 3 ,  0 . 6 7 2 5 )

[ - 5 . 4 4 8 0 ,  5 . 4 4 8 3 ]
( -3 .2 4 8 8 ,  1 0 . 9 5 0 8 )  (  - 3 . 1 1 6 8 ,  7 . 7 7 9 4 )

TERMS IN SQUARE BRACKETS ARE GAMMAS AND ROUND BRACKETS ARE LAMBDAS ♦**

♦♦♦ TEST STATISTIC FOR HO: DIAGONAL COVARIANCE MATRIX 
USING THE LAGRANGE MULTIPLIER TEST (LM)

LM-STATISTIC = 1 2 . 4 2 8 5  D .O .F .  = 1

p-VALUE FOR CHI-SQUARE WITH 1 D .O .F .  = 0 . 0 0 0 4

TOTAL NO OF ITERATIONS TO CONVERGE = 13 WITH TOLERANCE FACTOR 10.0**(-4)**************************************************************************
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SURCON technique and also compare the results thereof with those obtained from the 

regression approach, this combination of variables is more appealing.

Binkley's "quick" estimates (Table 3.3) for transformations to marginal symmetry 

suggest a log transformation for Xi and no transformation for Xg. This is reasonable 

considering that the volume is a cubic quantity and the heights would be expected to be 

symmetrical. Rao’s Score test (Table 3.4) is not significant so joint normality can be 

assumed. However, from the scatter plot, the data do not exhibit a good elliptical shape so 

estimates to achieve joint normality would be desirable. Both the "quick" estimates A i and 

J 2 are highly significant although they do not provide reasonable values. The SURCON 

estimates (Figure E.9) suggest the log for Xi and the square for Xg. These values compare 

favourably with those obtained by the regression approach especially for the volume. The 

regression approach provides a number of possible transformations for the volume 

depending on whether a first order, second order or log—log model is fitted. In our case 

although one carrier variable is missing the confidence intervals obtained include all the 

transformations derived i.e. from log to the cube—root for the volume and no 

transformation to log in the heights.

This example shows that joint transformations can be used to obtain guidelines for 

the actual transformations which would be used in fitting regression models.

E xam ple  E.IO Fisher’s Iris Data.

The data consist of 50 quadrivariate (p=4) observations of three species of iris (Iris 

setosa, Iris versicolor and Iris virginica). The variables are the sepal length and width and 

the petal length and width all in centimeters. This is a well known data set in multivariate 

literature and has been used by several authors as the basis for testing different 

classification and clustering algorithms (e.g. Friedman and Rubin, 1967). The data set is 

considered to be well behaved with no peculiarities and it has been found that Iris setosa is
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easily distinguishable from the other two species [See Fisher, 1936; Friedman and Rubin, 

1967; Gnanadesikan, 1977: pp.217-222]. It is for this reason that only the Iris setosa 

analysis will be dsicussed in detail for this example although the results for the other two 

species are displayed (See Table 3.4; Figures E.lO(d) and E.10(e)).

For the Iris setosa data Xi and X2 are the sepal lengths and widths respectively and 

X3 and X 4 the petal lengths and widths. The transformations suggested for marginal 

symmetry are square root, log, square and reciprocal for Xi to X4 respectively. On 

inspecting the data Xi and X2 have right hand tails and so these transformations would 

shrink these tails. X3 has slight variation about above unity and so to stretch it out a 

square transformation would be in order. On the other hand X4 has very slight variation 

above zero and so in order to stretch it out the reciprocal transformation would be 

required.

For subsequent analysis X4 shall be dropped because its lack of variabilty causes 

singularity in the covariance matrix. Rao’s test is not significant which means that the 

data exhibit joint normality on the reduced variable space. In particular, the joint 

estimates for multivariate normality are 0.4, 1.25 and 0.69 (Figure E. 10(a)) which are the 

square root, no transformation and square—root/no—transformation for Xi, X2 and X3 

respectively. The joint estimates are significantly different from the marginal estimates so 

marginal normality does not imply joint normality for the data. The confidence intervals 

for all the variables firmly includes unity. Considering the joint estimates is worthwhile 

since the LM statistic is highly significant. The total number of iterations required to 

converge to the maximum likelihood estimator (from lo = l for all variables) is only 9 at a 

tolerance factor of lO^L The results for the other two species is displayed in Figures 

E.lO(d) and E.lO(e).

This data set is further used to test the effect of deletion of observations on the 

transformation paramater estimates. As a first step it is necessary to study the level of 

outlyingness in the data (if any) before examining the observation (case) deletions. A
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FIGTOE E . l O f a l  

STOCON ANALYSIS

ESTIMATES OF TRAMSFGBMATION P ARAMETERS FOR DATA: FISHER’ S IR IS  DATA (SETOSA) 
(V/O PETAL WIDTH)

LAMBDA = 0 . 4 0 1 . 2 5 0 . 6 9

SINGLE EQUATION ESTIMATES SUR ESTIMATES
EST. EST.

YAK. GAMMA S . E . T-VALUE LAMBDA GAMMA S . E . T-VALUE LAMBDA

1 0 . 3 2 3 8 3 . 2 4 7 3 0 . 0 9 9 7 0 .0 7 9 8 0 .0 1 5 1 2 . 3 0 5 3 0 . 0 0 6 5 0 . 3 8 8 5
( 0 . 4 6 0 5 ) ( 0 . 4 9 7 4 )

2 0 . 7 6 0 1 1 . 5 5 5 9 0 . 4 8 8 5 0 .4 8 5 6 - 0 . 0 0 3 1 1 . 1 2 9 5 - 0 . 0 0 2 7 1 . 2 4 8 7
( 0 . 3 1 3 7 ) ( 0 . 4 9 8 9 )

3 - 0 . 4 5 5 6 1 . 4 2 6 6 - 0 . 3 1 9 4 1 . 1 4 1 8 0 . 0 0 0 0 1 . 3 9 9 9 0 . 0 0 0 0 0 . 6 8 6 2
( 0 . 3 7 5 4 ) ( 0 . 5 0 0 0 )

* * * TERMS IN BRACKETS ARE P-VALUES FOR T ( N - l ) * * *

D .O .F .  = 3

JOINT TEST STATISTIC FOR HO: G1 = G2 = ____ = GP = 0

F-STATISTIC = 0 . 0 0 2 5  D .O .F .  = 3 ,  1 4 7  

p-VALUE: F-DISTRIBUTION = 0 . 9 9 9 8  D .O .F .  = 3 ,  1 4 7

CHI-DISTRIBUTION/P = 0 . 3 3 3 3  

* * ♦  CONFIDENCE INTERVALS 

VAR 

1

2

3

9 5 .0 7 ,  C . I .  LS 95.0%  C . I . 2SLS

- 5 . 1 2 0 5 , 5 .7 6 8 1 1 [ - 3 . 8 4 9 9 , 3 . 8 8 0 0
- 5 . 3 6 4 5 , 5 . 5 2 4 1 ) ( - 3 . 4 7 6 4 , 4 . 2 5 3 5

- 1 . 8 4 8 4 , 3 .3 6 8 5 1 [ - 1 . 8 9 6 8 , 1 . 8 9 0 6
- 2 . 1 2 2 9 , 3 . 0 9 4 0 ) ( - 0 . 6 4 5 0 , 3 . 1 4 2 4

- 2 . 8 4 7 5 , 1 .9 3 6 2 1 [ - 2 . 3 4 7 0 , 2 . 3 4 7 0
- 1 . 2 5 0 0 , 3 . 5 3 3 6 ) ( - 1 . 6 6 0 8 , 3 . 0 3 3 1

* * * TERMS IN SQUARE BRACKETS ARE GAMMAS AND ROUND BRACKETS ARE LAMBDAS

♦ * *  TEST STATISTIC FOR HO: DIAGONAL COVARIANCE MATRIX 
USING THE LAGRANGE MULTIPLIER TEST (LM)

LM-STATISTIC = 3 2 . 7 4 9 5  D .O .F .  = 3

P-VALUE FOR CHI-SQUARE WITH 3  D .O .F .  = 0 . 0 0 0 0

TOTAL NO OF ITERATIONS TO CONVERGE = 9  WITH TOLERANCE FACTOR 1 0 . 0 * * ( - 4 )  
***********************************+*********+****************************
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Figure E.10(b) F isher's I r is  Data (Setosa without I i )  S ta lactite  Chart

ITERATION VS OBSERVATION

ITRN SUB- SAMPLE 
SIZE

1 4( 8.0
2 5( 10.o'
3 6( 12.0'
4 7( 14.0
5 8( 16.0
6 9( 18.0
7 10( 20.0
8 11( 22.0
9 12( 24.0

10 13( 26.0
11 14( 28.0
12 15( 30.0
13 16( 32.0
14 17( 34.0
15 18( 36.0
16 19( 38.0
17 20 ( 40.0
18 21 ( 42.0
19 22 ( 44.0
20 23( 46.0
21 24 ( 48.0
22 25( 50.0
23 26 ( 52.0
24 27( 54.0
25 28( 56.0
26 29( 58.0
27 30 ( 60.0
28 31 ( 62.0
29 32 ( 64.0
30 33 ( 66.0
31 34 ( 68.0
32 35 ( 70.0
33 36 ( 72.0
34 37( 74.0
35 38 ( 76.0
36 39 ( 78.0
37 40 ( 80.0
38 41 ( 82.0
39 42 ( 84.0
40 43 ( 86.0
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42 45 ( 90.0
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47 50( 100.0
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Figure E. 10(c) Index Plot of Estimated Lambda with Case Deletion
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FIGURE E . l O f d l  

SURCON ANALYSIS

ESTIMATES OF TRANSFORMATION PARAMETERS FOR DATA:
(VERSICGLQUR)

FISHER’ S IR IS  DATA

LAMBDA = - 0 . 6 5 2 . 5 3 2 . 3 6 0 . 8 1

SINGLE EQUATION ESTIMATES SUR ESTIMATES
EST. EST.

VAR. GAMMA S . E . T-VALUE LAMBDA GAMMA S . E . T-VALUE LAMBDA

1 - 3 . 2 7 8 5 2 . 6 5 9 7 - 1 . 2 3 2 7
( 0 . 1 1 1 8 )

2 . 6 2 6 9 0 . 0 0 0 4 1 . 9 3 7 7 0 . 0 0 0 2
( 0 . 4 9 9 9 )

- 0 . 6 5 2 0

2 1 . 0 0 9 2 2 . 1 5 5 5 0 . 4 6 8 2
( 0 . 3 2 0 9 )

1 . 5 1 7 3 0 . 0 0 0 5 1 . 6 2 9 5 0 . 0 0 0 3
( 0 . 4 9 9 9 )

2 . 5 2 6 0

3 - 2 . 1 3 7 9 2 . 0 7 7 4 - 1 . 0 2 9 1
( 0 . 1 5 4 2 )

4 . 4 9 5 9 0 . 0 0 0 2 1 . 1 9 6 8 0 . 0 0 0 2
( 0 . 4 9 9 9 )

2 . 3 5 7 7

4 - 0 . 6 5 4 5 1 . 6 1 0 4 - 0 . 4 0 6 4
( 0 . 3 4 3 1 )

1 . 4 6 0 6 0 . 0 0 0 0 0 . 9 5 2 9 0 . 0 0 0 0
( 0 . 5 0 0 0 )

0 . 8 0 6 1

*** * * *TERMS IN BRACKETS ARE P-VALUES FOR T ( N - l )

* * *  JOINT TEST STATISTIC FOR HO: 61  = G2 = . . . . =  GP = 0  

F STATISTIC = 0 . 0 0 0 1  D .O .F .  = 4 ,  1 9 6  

p-VALUE: F-DISTRIBUTION = 1 . 0 0 0 0  

CHI-DISTRIBUTION/P = 0 . 2 5 0 0  

* * *  CONFIDENCE INTERVALS

VAR

1

2

3

4

95.0%  C . I .  LS

- 7 . 7 3 7 6
- 1 . 8 3 2 2

- 2 . 6 0 4 7
- 2 . 0 9 6 5

- 5 . 6 2 0 8
1 . 0 1 3 0

- 3 . 3 5 4 5
- 1 . 2 3 9 4

1.18061
7 . 0 8 6 0 )

4 .6 2 3 0 1
5 . 1 3 1 2 )

1 .3 4 4 9 1
7 . 9 7 8 7 )

2 . 0 4 5 5 ]
4 . 1 6 0 6 )

D .O .F .  = 4 , 1 9 6

D .O .F .  = 4

95.0%  C . I .  2SLS

■ - 3 . 2 4 8 2 , 3 . 2 4 8 9
; - 3 . 9 0 0 6 , 2 . 5 9 6 6

■ - 2 . 7 3 1 4 , 2 . 7 3 2 4
; - 0 . 2 0 5 9 , 5 . 2 5 7 9

■ - 2 . 0 0 6 2 , 2 . 0 0 6 6
; 0 . 3 5 1 3 , 4 . 3 6 4 1

■ - 1 . 5 9 7 6 , 1 . 5 9 7 6
; - 0 . 7 9 1 5 , 2 . 4 0 3 6

* * * TERMS IN SQUARE BRACKETS ARE GAMMAS AND ROUND BRACKETS ARE LAMBDAS

***  TEST STATISTIC FOR HO: DIAGONAL COVARIANCE MATRIX 
USING THE LAGRANGE MULTIPLIER TEST (LM)

LM-STATISTIC = 1 1 9 . 3 4 3 2  D .O .F .  = 6

p-VALUE FOR CHI-SQUARE WITH 6 D .O .F .  = 0 . 0 0 0 0

TOTAL NO OF ITERATIONS TO CONVERGE = 33 WITH TOLERANCE FACTOR 10.0**(-4)
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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FIGPKE E . l O f f l  

SURCON ANALYSIS

ESTIMATES OF TRANSFORMATION PARAMETERS FOR DATA: FISHER’ S IR IS  DATA
(SETÜSA+VERSICÜLODR+VIRGINICA)

LAMBDA = - 0 . 2 5 0 . 8 7 0 . 7 9 0 . 5 8

SINGLE EQUATION ESTIMATES SUR ESTIMATES
EST. EST.

VAR. GAMMA S . E . T-VALUE LAMBDA GAMMA S . E . T-VALUE LAMBDA

1 - 0 . 3 7 1 1 1 . 0 4 9 5 - 0 . 3 5 3 6 0 . 1 1 7 6 - 0 . 0 2 7 1 0 . 4 8 1 1 - 0 . 0 5 6 4 - 0 . 2 2 6 4
( 0 . 3 6 2 1 ) ( 0 . 4 7 7 6 )

2  1 . 7 0 7 0 0 . 7 8 5 9 2 . 1 7 2 2 - 0 . 8 4 1 2 0 . 0 4 0 9 0 . 6 6 5 2 0 . 0 6 1 4 0 . 8 2 4 9
( 0 . 0 1 5 7 ) ( 0 . 4 7 5 6 )

3  - 0 . 8 2 5 4 0 . 4 6 4 0 - 1 . 7 7 8 8 1 . 6 1 7 9 - 0 . 0 0 2 4 0 . 1 3 9 3 - 0 . 0 1 7 2 0 . 7 9 5 0
( 0 . 0 3 8 7 ) ( 0 . 4 9 3 2 )

4  - 0 . 3 5 1 4 0 . 2 6 8 4 - 1 . 3 0 9 2 0 . 9 3 1 8 0 . 0 0 0 0 0 . 0 9 5 2 0 . 0 0 0 0 0 . 5 8 0 4
( 0 . 0 9 6 2 ) ( 0 . 5 0 0 0 )

* * *  TERMS IN BRACKETS ARE P-VALUES FOR T ( N - l )  * * *

* * *  JOINT TEST STATISTIC FOR HO: G1 = G2 = ____ = GP = 0

F-STATISTIC = 0 . 0 0 5 4  D .O .F .  = 4 ,  5 9 6

p-VALUE: F-DISTRIBUTION = 0 . 9 9 9 9  D .O .F .  = 4 ,  5 9 6

CHI-DISTRIBUTION/? = 0 . 2 5 0 0  D .O .F .  = 4

CONFIDENCE INTERVALS

VAR

1

2

3

4

95.0%  C . I .  LS

- 2 . 1 0 8 1 ,  1 .3 6 5 9 1
- 1 . 6 1 9 4 ,  1 . 8 5 4 6 )

0 . 4 0 6 3 ,  3 .0 0 7 7 1  
- 2 . 1 4 1 9 ,  0 . 4 5 9 5 )

- 1 . 5 9 3 4 ,  - 0 . 0 5 7 4 1  
0 . 8 4 9 9 ,  2 . 3 8 5 9 )

- 0 . 7 9 5 7 ,  0 .0 9 2 9 1  
0 . 4 8 7 5 ,  1 . 3 7 6 1 )

95.0%  C . I .  2SLS

- 0 . 8 2 3 4 ,  0 .7 6 9 2 1  
- 1 . 0 2 2 7 ,  0 . 5 6 9 9 )

- 1 . 0 6 0 2 ,  1 .1 4 1 9 1
- 0 . 2 7 6 1 ,  1 . 9 2 6 0 )

- 0 . 2 3 2 9 ,  0 .2 2 8 2 1
0 . 5 6 4 4 ,  1 . 0 2 5 5 )

- 0 . 1 5 7 5 ,  0 .1 5 7 5 1  
0 . 4 2 2 9 ,  0 . 7 3 7 9 )

TERMS IN SQUARE BRACKETS ARE GAMMAS AND ROUND BRACKETS ARE LAMBDAS +**

*♦*  TEST STATISTIC FOR HO: DIAGONAL COVARIANCE MATRIX 
USING THE LAGRANGE MULTIPLIER TEST (LM)

LM-STATISTIC = 3 9 4 . 0 3 5 1  D .O .F .  = 6

p VALUE FOR CHI-SQUARE WITH 6  D .O .F .  = 0 . 0 0 0 0

TOTAL NO OF ITERATIONS TO CONVERGE = 28 WITH TOLERANCE FACTOR 10.0**(-4)
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Stalactite analysis is carried out and the corresponding Stalactite chart is displayed in 

Figure E. 10(b). There appears to be five observations which tend to stand out although 

they do not appear at the full sample level. These are observations 15, 23, 25, 42 and 45. 

Figure E. 10(c) contains the Index plots of the estimated A’s with case deletions. From 

Figures E.10(c)i. and E.10(c)ii. the estimated A’s have even scatter about the respective 

maximum likelihood estimates apart from cases 15 and 42 which seem to cause significant 

fluctuations especially in Xg. These observations are part of the outlier set and from these 

plots it can be concluded that their outlyingness is in these two variables. In X 3 (Figure 

E.10(c)iii.), 23 and 25 have the greatest influence although 45 also appears so these three 

observations are outlying in only this variable. There is almost non-existant changes in the 

parameter estimates for A 4 with case deletion a fact which was already ascertained from the 

small variability in it so no individual observation has any influence on the parameter in 

this variable. Although the individual influence of the outliers has been highlighted the 

joint influence of two or more observations can not be deduced.

This effect of outliers shows how influential an observation can be on the parameter 

estimates especially if the sample size is not large. It is necessary, therefore, to ascertain 

the presence/absence of outliers and their identities using an outlier detection technique, 

like the Stalactite analyis, and then decide on what to do with these (either delete them or 

minimise their influence) before carrying out any transformations.

E xample E . l l  Repeat Soil Sample Survev Data.

The data are a sample of 57 observations (one region) from the representative soil 

sampling survey of arable and grassland fields to study the pH nutrient status of the soils 

in England and Wales between 1969 and 1973 carried out by the Rothamsted Experimental 

Station. This example consists of five varibles X% and X2 the pH values of water (H2O) and 

calcium chloride (CaCh) respectively; X3, X4 and X 5 the available Phosphorus (P), 

Pottasium (k) and Magnesium (Mg) [Church k  Skinner, 1986].
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FIGURE E .llfa> SURCON ANALYSIS

ESTIMATES OF TRANSFORMATION PARAMETERS FOR DATA: REPEAT SOIL SAMPLING SURVEY 
DATA (RSSS) ALL VARS

LAMBDA = - 0 . 5 5 - 0 . 3 0  0 . 0 2 - 0 . 8 9 - 0 . 2 3

SINGLE EQUATION ESTIMATES SUR ESTIMATES
EST. EST.

YAK. GAMMA S . E . T-VALUE LAMBDA GAMMA S . E . T-VALUE LAMBDA

1 3 . 3 0 2 5 2 . 0 6 2 3 1 . 6 0 1 3  - 3 . 8 5 5 3 0 . 1 5 0 7 1 . 4 0 3 2 0 . 1 0 7 4  - 0 . 7 0 3 5
( 0 . 0 5 7 5 ) ( 0 . 4 5 7 4 )

2 2 . 6 9 2 9 1 . 7 9 8 5 1 . 4 9 7 4  - 2 . 9 9 2 3 - 0 . 0 0 4 1 1 . 2 0 8 6 - 0 . 0 0 3 4  - 0 . 2 9 5 4
( 0 . 0 7 0 0 ) ( 0 . 4 9 8 7 )

3 0 . 0 3 9 0 0 . 2 3 5 6 0 . 1 6 5 4  - 0 . 0 2 2 4 - 0 . 0 0 7 4 0 . 2 0 9 2 - 0 . 0 3 5 2  0 . 0 2 3 9
( 0 . 4 3 4 6 ) ( 0 . 4 8 6 0 )

4 0 . 0 3 5 3 0 . 5 8 0 8 0 . 0 6 0 8  - 0 . 9 2 2 7 0 . 0 0 0 0 0 . 5 1 4 9 0 . 0 0 0 0  - 0 . 8 8 7 4
( 0 . 4 7 5 9 ) ( 0 . 5 0 0 0 )

5 0 . 1 5 3 0 0 . 3 7 8 6 0 . 4 0 4 1  - 0 . 3 8 6 3 0 . 0 0 0 0 0 . 3 5 3 4 - 0 . 0 0 0 1  - 0 . 2 3 3 2
( 0 . 3 4 3 8 ) ( 0 . 5 0 0 0 )

* ♦ *  TERMS IN BRACKETS ARE P-VALUES FOR T ( N - l )  * ♦*

JOINT TEST STATISTIC FOR HO: G1 = G2 = _____= GP = 0

F-STATISTIC = 0 . 0 0 3 4  D .O .F .  = 5 ,  2 8 0

p-VALUE: F-DISTRIBUTION = 1 . 0 0 0 0  
CHI DISTRIBUTION/P = 0 . 2 0 0 0

* * * CONFIDENCE INTERVALS

VAR 9 5 .0 7 .  C . I .  LS

1 r - 0 . 1 4 6 8 ,  6 . 7 5 1 8 ]
- 7 . 3 0 4 7 ,  - 0 . 4 0 6 0 )

2 r - 0 . 3 1 5 0 ,  5 . 7 0 0 9 ]
- 6 . 0 0 0 3 ,  0 . 0 1 5 6 )

3  r - 0 . 3 5 5 0 ,  0 . 4 3 3 0 ]
- 0 . 4 1 6 4 ,  0 . 3 7 1 6 )

4  [ - 0 . 9 3 6 1 ,  1 . 0 0 6 8 ]
- 1 . 8 9 4 2 ,  0 . 0 4 8 7 )

- 0 . 4 8 0 3 ,  0 . 7 8 6 3 ]
- 1 . 0 1 9 6 ,  0 . 2 4 7 0 )

TERMS IN SQUARE BRACKETS ARE GAMMAS

D .O .F .  = 5 ,  2 8 0  
D .O .F .  = 5

95.0%  C . I .  2SLS

- 2 . 1 9 6 2 ,  2 . 4 9 7 5 ]
- 3 . 0 5 0 4 ,  1 . 6 4 3 4 )

- 2 . 0 2 5 5 ,  2 . 0 1 7 4 ]
- 2 . 3 1 6 8 ,  1 . 7 2 6 1 )

- 0 . 3 5 7 3 ,  0 . 3 4 2 5 ]
- 0 . 3 2 6 0 ,  0 . 3 7 3 8 )

- 0 . 8 6 1 2 ,  0 . 8 6 1 2 ]
- 1 . 7 4 8 6 ,  - 0 . 0 2 6 2 )

- 0 . 5 9 1 0 ,  0 . 5 9 1 0 ]
- 0 . 8 2 4 3 ,  0 . 3 5 7 8 )

AND ROUND BRACKETS ARE LAMBDAS

***  TEST STATISTIC FOR HO: DIAGONAL COVARIANCE MATRIX 
USING THE LAGRANGE MULTIPLIER TEST (LM)

LM-STATISTIC = 8 0 . 9 8 9 2  D .O .F .  = 10  
p-VALUE FOR CHI-SQUARE WITH 1 0  D .O .F .  = 0 . 0 0 0 0

TOTAL NO OF ITERATIONS TO CONVERGE = 38 WITH TOLERANCE FACTOR 10.0**(-4)
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Figure E. 11(b) Histograms for the Repeat Soil Sample Survey Data
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The first two variables Xi and X2 are very highly correlated and similar in 

magnitude and the remaining three are also similar in magnitude except that X 5 has small 

correlation with the others.

The symmetry transformations are no transformation for Xi and X 2, the log, 

reciprocal and log transformations for Xj, X4 and X5 respectively. Rao’s score test is not 

signijQcant for the first two variables considered jointly although the "quick” parameter 

estimates are (just) significant. The SURCON estimates (Figure E .ll(a)) suggest the 

reciprocal square root transformations for bith variables. For the next three variables Rao’s 

score test is highly significant together with the "quick" estimates. The SURCON 

estimates are comparable to the marginal transformations to symmetry. When all the 

variables are considered jointly there is slight difference in the conclusions drawn. However, 

there are significant differences between the marginal and joint estimates for the first two 

variables whereas there is no noticeable difference for the remaining variables.

The 95% confidence intervals for the first two variables include unity and hence 

even with no transformation for these, the data would still exhibit overall joint normality.

The LM statistic is highly significant and hence joint estimates are worthwhile. The 

algorithm required 38 iterations to converge to the maximum likelihood estimates.

Figure E. 11(b) displays histograms of each variable based on three different scales. 

The top line of histograms is the data as measured on the original scale (without any 

transformations). The second and third lines are based on Hinkley’s quick transformations 

to symmetry and the joint transformations derived from the SURCON analysis, 

respectively.

The effect of transformations is not very significant in the first two variables apart 

from a curious peak on the left tail of Xi on the SURCON scale making it bimodal. This 

could be explained by the fact that small (and large) values of Xi tend to have large 

corresponding values of X4. The correlation between Xi and X4 is negligible but on 

inspecting the scatter plot a non-linear relationship appears to exist. A similar relationship 

exists between Xi and X5. It can, therefore, be concluded that due to the joint influence of
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X i  and X5 on the SURCON estimate for Xi it leads to its not having marginal normality. 

There is significant normalising effect on the histograms of variables, X 3 , X 4  and X 5 . In all 

the three cases the strong positive skewness in the original scale is removed after the 

transformations. Variable X 3 which has the strongest skewness responded best to the 

transformations.

E xam ple E .1 2  Simulated Bivariate Normal Data (with induced correlation^

These data consist of 50 (=n) sets of bivariate normal deviates generated on a 

computer. Pairs of these random deviates were transformed to obtain 50 samples (Xi, Xg) 

with induced correlation as in Example E2.1. A range of values for p was used to provide a 

basis for comparing the different approaches discussed for transforming observations and 

seeing how correlation affects them.

Table E . 6 displays the summary of the results. The two major approaches are the 

loglikelihood approach and the SURCON approach. In the loglikelihood approach both the 

marginal and joint estimates for X are given. For the marginal case the transformation 

parameter is constant for X% (due to the scheme used in generating the data it does not 

change with p) but X2 ranges from 0.4 to 1.11 attaining these values at p « 0.8 and p=0 

respectively. So as p increases X2 tends to reduce upto a certain value when it starts rising 

again. On considering the joint transformation parameter estimates the I ’s range between 

0.64 and 1.31 where these values are attained at around the mid—correlations with the 

actual minimum being again at p » 0 .8 .

The "quick" estimates from the SURCON analysis range between 0.33 and 1.99 and 

the SURCON maximum likelihood estimates are numerically identical to those obtained 

from the loglikelihood approach.

The points to note from this example are that if there is no correlation between the 

variables then the joint estimates will not be different from the marginal ones, hence, joint 

estimates procedures would not be worthwhile (the LM statistic is used to check for this). 

Secondly, as the correlation rises the parameter estimates for the "dependent" variable
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tends to reduce upto the point of about 0.8 correlation from where it starts rising again.

The number of iterations required for the SURCON algorithm to converge to the 

maximum likelihood estimates also rises as the correlation increases upto a point from 

which they drop.
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T a b le  E.6 Effect of Correlation on Transformations to  Joint Normality

p

log likelihood  
Marginal Jo in t

i l  ia  i l  ia

SURCON
Qnick Estim ates MLE No.of 

i l  ia  i l  ia  I tm s

0.000 1.06 1.11 1.08 1.13 1.27 1.41 1.09 1.12 6
0.100 1.06 1.02 1.13 1.08 1.39 1.26 1.13 1.08 6
0.200 1.06 0.92 1.17 1.02 1.49 1.06 1.17 1.02 5
0.300 1.06 0.80 1.22 0.96 1.57 0.86 1.20 0.95 7
0.400 1.06 0.67 1.26 0.89 1.61 0.67 1.23 0.87 7
0.500 1.06 0.55 1.28 0.82 1.61 0.51 1.24 0.80 8
0.600 1.06 0.46 1.31 0.75 1.75 0.39 1.29 0.72 13
0.700 1.06 0.40 1.31 0.69 1.43 0.33 1.29 0.67 12
0.800 1.06 0.41 1.25 0.64 1.34 0.35 1.24 0.64 13
0.900 1.06 0.57 1.13 0.65 1.99 0.44 1.11 0.65 12
0.925 1.06 0.64 1.08 0.66 1.92 0.47 1.06 0.67 12
0.950 1.06 0.72 1.01 0.69 1.84 0.52 1.00 0.69 12
0.975 1.06 0.83 0.93 0.72 0.74 0.56 0.92 0.73 13
0.990 1.06 0.91 0.86 0.75 0.65 0.58 0.87 0.75 7
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CHAPTER FOUR

4.0 The tSTAT PACKAGE

4.1 Introduction

The aim of this chapter is to discuss and present the computer package called 

tSTAT (short for Transformation Statistics) which implements the theory of the previous 

chapters. The package was developed not to serve as a comprehensive statistical package 

but as a complementary tool for data analysts in checking the validity and consistency of 

their data before embarking onto a full analysis using the well-known statistical packages 

like SPSS, GLIM, SAS, MINITAB etc. The process can be summarised as that of data 

screening. Apart from the proposed algorithms, the Stalactite Analysis and SURCON 

analysis, most of the statistical analyses included in the tSTAT package are readily 

available in many of the above packages; however, the ease of conducting the analyses 

varies. For example, one would require to write program—like modules (macros) using a 

special language syntax to obtain certain results in packages like GLIM and SAS.

The semi—programming languages allow for great flexibility in the sort of analysis 

which can be carried out but on the other hand cause inexperienced users to shy away or 

limit their analyses to only basic ones. Some packages like SPSS and MINITAB also have a 

semi—programming language syntax but it is mostly geared towards automating the 

execution of several commands than actual programming; for example programming 

constructs like DO—loops are not included. Latest micro-computer implementations of 

packages like SPSS go further to assist the inexperienced or casual user by providing a 

user-friendly menu—driven interface which greatly removes the burden of having to learn 

the language syntax and thus emphasis is on obtaining the results with the minimum of 

effort. The problem with such an environment is that the user is confined to the 

straitjacket of using only the options available and thus flexibility in the analysis is 

removed.

In designing the tSTAT package, amongst other things, consideration was given to 

the type of user—audience it would be useful for and we concluded that due to the purpose
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of the package, data screening, every data analyst whether experienced or not would 

require the facility. Secondly, since the package is only used to screen the data before a 

comprehensive analysis is done it would, therefore, be essential that the analyst does not 

spend too much time and effort in carrying out the task. It is with these points in mind 

that the package was designed with a user-friendly menu—driven interface to cater for the 

inexperienced user, by not requiring him/her to learn any language syntax, and also the 

experienced user by removing the burden of having to develop the programs (macros) to 

carry out the exercise and thus providing him/her with a quick tool.

The tSTAT package is written in the C programming language. This language was 

chosen for a number of reasons. The main reason was due to its portability so even though 

the system is written for the IBM PC (and compatibles) under the PC DOS operating 

system it can easily be transfered with little or no modification to run under any other 

environment e.g. UNIX based systems like the SUN Workstations. The second attribute 

was the speed of execution and its immense capacity to control the hardware eg. changing 

the screen attributes, buffering, keyboard and mouse control etc. Finally, there is now a 

good collection of numerical routines available for the language e.g. Numerical Recipes in 

C, [Press et. al, 1988]. These have been used extensively in the package.

The chapter begins with the system design for the package in Section 4.2. This 

describes the overall structure of the package by specifying the different modules which 

form the complete system. There are several algorithms used in the analysis; however, a 

few of them require special mention and these are discussed in Section 4.3. The algorithms 

are presented in a variety of ways. Some are discussed by showing the formulae employed, 

others include flowcharts and source code in the C language. Section 4.4 describes the 

technical specifications of the package and outlines the general usage of the package in the 

form of a reference manual. Finally, Section 4.5 presents an example of a full session of the 

package on a typical data set.
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4.2 System Design

This section describes the general structure of the package by providing an overview 

of all the modules in the package and their inter—dependencies. Figure 4.1 shows the 

System Flowchart for the package.

Each module is assigned a generic code of the form Mx.yz where x is the level one 

option number, y and z the level two and three option numbers e.g. M2.41 refers to option 

1 at level three of option 4 at level two of option 2 at level one. The modules are physically 

located in a set of ten executable program files. There is some implicit grouping of the 

modules within these files such that each program file performs a specific task and is 

capable of running independently, however, for a structured run there is a controller file 

{TSTAT.EXE) which should always be the first file to run (See Section 4.4).

Table 4.1 is the summary of the executable file to module structure. An x in a 

module code indicates all the options within that level.

T a b l e  4 .1  Executable File to Module Structure

Menu Ootion Program Modules

Data TSTAT.EXE
TEDIT.EXE

M1.20,
Ml.lO,

M1.40, M1.50, M1.60 
M1.30

Stats TSTAT.EXE
TFREQ.EXE
TSYMM.EXE
TREGR.EXE

M2.10,
M2.20
M2.30
M2.50

M2.40

Transformations TTRANS.EXE M3.XX

Plots TPLOTS.EXE

TSTALACT.EXE

M4.10,
M4.50
M4.60

M4.20, M4.30, M4.40,

Outliers TMAHALD.EXE
TSTALACT.EXE

M5.10,
M5.30

M5.20

Utilities TSTAT.EXE M6.XX

Quit TSTAT.EXE M7.XX
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F igure 1 S y s te m  F low ch art tor the tSTAT P a c k a g e
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4.3 Main Algorithms

4.3.1 Summary Statistics

In carrying out an analysis of the data it is often revealing to first obtain the 

characteristics describing each of the variables. These are the descriptive (or summary) 

statistics and can be broken down into measures of location, spread and relative shape of 

the histogram. The measures included in the tSTAT package are:

a) Location — arithmetic mean (and its standard error), 10% a—trimmed mean, median

b) Dispersion — Variance, Standard deviation, minimum, maximum and range

c) Shape — skewness, kurtosis ( and respective standard errors)

It is also necessary to study the influence of an observation on each of these 

statistics. A quick method of doing this is to delete an observation from the sample and 

observe the effect on the statistics. However, in implementing the algorithm of observation 

deletion the computational requirement can be greatly minimised by considering deletion 

formulae for the statistics. This means that having computed the full sample statistic, 6 

say, it is possible to re—compute the deletion statistic ^(k) when xk the k—th observation is 

deleted, by using the relationship between the two. So, we have

W  = /(^> Xk) (4.1)

Table 4.2 is a summary of some useful deletion statistics formulae. The formulae 

given in the table are based on a sample Xi, (i=l,2,...,n). Column (c) refers to the formula 

employed with observation k deleted and x[i] is the i—th ordered observation.

The skewness and kurtosis measures are not included in the deletion formulae. This 

is due to the fact that they are less robust than the other lower moments and so their use is 

purely for information and completeness. In fact in some texts their use is not 

recommended [Press, W.H. et al 1988, p.474]. The following are the formulae:

i= 1
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Table 4.2 DELETION SUMIARY STATISTICS

(a)
STATISTIC

(b)
STANDARD FORMULA

(c)
DELETION FORMULA

(d)
REMARKS

1/ Mean x if = 5 Sxi x(k) = n - m

= n - B

fl, obs. k deleted 
“ [0, otherwise

Jk-th observation 
“ jo , otherwise

2/ Variance s' = E(xi - *)' s'(k) {(»-!)=' - (xk - *)«}
fl) obs. k deleted 

" \0, otherwise
Jk-th observation 

“ \x , otherwise

3/ Std. Dev. SD SD = SD(k) = v^(sk(k)) —

4/ Std. Err. SE SE = SD/^ SE(k) = SD(k)/y(n-m) Jl, obs. k deleted 
|o , otherwise

5/ Min X Min X = Min xi = x[l] Min x(k) =
X[m+1], Xk = Min x 

x [l], otherwise

Requires data to be sorted, 

m as above.

6/  Max X Max X = Max xi = x[n] Max x(k) = X [n- n], Xk = Max x 

x[n] , otherwise

Requires data to be sorted, 

m as above.

7/ Range R R - Max X - Min x R(k) = Max x(k) - Min x(k) —

8/  Median x

Med X = 

t n even

‘x[n/2l + x[n/2+llt 
2

_x[(n+l)/2]tt

tt n odd

Med x(k) = 
n even

’ x[n/2+l], k = n/2 

x[n/2] , k = n/2 + 1 

(x[n/2] + x[n/2+l])/2, Î

t otherwise

Requires da1

Med x(k) = 
n odd

* k=(n+l)/2,

:a to be sorted. 
’xfnm/2] + xfnm/2+2]

x[(n+l)/2],otherwise 

nm = n-m, m as above.

CO



K u r t ( z i , =  5 X [ ^
i « l

The —3 term in (4.3) is included to make the value of the kuitosis equal to zero for a 

normal distribution. The standard errors for the skewness and kurtosis for the idealised 

case of a normal distribution are approximately V~(6/n) and ^"(24/n), respectively.

4.3.2 Stalactite Analvsis

4.3.2.1 Initial Sub-camole Selection

In the Stalactite Analysis algorithm the first sub—sample of p+1 observations is 

selected randomly from the data. The selection method has to be unbiased but at the same 

time ensuring that no observation is repeated within the chosen sub-sample. To achieve 

this the sampling of the data should be done without replacement. It is, therefore, desirable 

to use an efficient procedure for selecting the m = p+ l observations from the sample such 

that each observation has an equal probability of being chosen albeit once. The procedure 

should also ensure the efficient use of the computing facility by minimising on the storage 

required together with the speed of selection. The latter can be achieved by minimising the 

number of passes through the sample.

Several methods have been devised for this problem. The procedure adopted in the 

thesis is the Selection Sampling Technique (Algorithm S) [Knuth, D.E. 1981, pl21.]. If we 

let the sample size be n and the sub—sample size be m =p+l then the algorithm selects the 

(t+ l)st observation with probability (m — k)/(u — t) if k observations have already been 

selected. This is the appropriate probability, since of all the possible ways to choose m

items from n such that k values occur in the first t, exactly
71 — t — 1 
m — k — 1

/ n — t 
m — k ^  (4.4)

of these select the (t+ l)st element. The technique does one pass through the data and uses 

a test based on the probability of selecting the (i+ l)st observation in deciding whether or 

not to include the observation in the sub—sample. In particular, if this probability is
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Figure  4 . 2  Flowchart  f o r  I n i t i a l  Sub-sample S e l e c t i o n  
f o r  t he  S t a l a c t i t e  Ana l ys i s  Algori thm ( S e l e c t i o n  Sampling)

S t a r t

t - t h  case
no.  of  c as es  s e l e c t e d  so f a r  
c as e  number

uni form random number

i f  (a1 >= a2)

idxCi] • an a r r a y  whose e lements  
a r e  t he  s e l e c t e d  case  nos

Stop

t=t+1

j = j+1 a2 = m-k

u=rnd(0)

idxCi] = j

a1 = ( n - t ) u

t = 0 : k = 0 : i = l : j = l

k=k+1: t=t+1: i=i+1
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greater than a generated uniform random number the observation is selected. Figure 4.2 

displays a flowchart of the algorithm formulated from the procedure and Function 4.1 is 

the corresponding source code.

Function 4.1 I n i t i a l  Snb—Sample S e le c t io n

** i n i t i a l  sub—sample s e le c t io n  ** * /
input: sample s iz e  n l ,  n o .o f v a rs. ip l  * /  

output: id x [ ] ,  vector  of se le c te d  obs.nos * /  
v a r ia b le s  : * /

double: a l ,  a2 , u * /  
in t :  i ,  j ,  k , t  * /

void  t_pkobsk ( in t  n l ,  in t  i p l ,  in t  *idx)
{

double a l ,  a 2 , u;
in t  i = l ,  j = l ,  k=0, ml, t=0;

ml = ip l+ 1;  
fo r  ( ; ; )

{
u = random(0 );  
a l = (n l—t)* u ;  
a2 = m—k; 
i f  ( a l  < a2) 

id x [ i ]  = j ;  
k += 1; 
t + = l ;  
i  += 1;
i f  ( k >= n l)  break;
j += 1;
}

}

The vector of selected observations idx[] can then be used to pick the values for 

these observations from which the sub—sample mean vector and covariance matrix can be 

computed.

4 .3.2 2 Matrix Inversion

The matrix inversion algorithm adopted uses the Lower/Upper decomposition 

algorithm [Press, W.H., et al pp37-46]. The matrix is initially decomposed into a lower 

triangular (has elements only on the diagonal and below) and upper triangular (has 

elements on the diagonal and above). The inverse is then obtained by inverting the
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decomposed matrix column by column.

4.3.2.S Mahalanobis Distance

In computing the Mahalanobis distances, di (i=l,...,n) there are three main stages. 

Initially we need to compute the mean vector x and the covriance matrix S. The 

computation of these is carried out by a single function segment. The next stage is to 

compute the inverse of S. In the tSTAT package this is performed by a function using the 

algorithm described in Section 4.3.2.2. The final stage is to form the quadratic in equation

(2.20) of Section 2.

Function 4.2 is the function segment which does the computations.

Function 4.2 Mahalanobis Distance

/*  ** mahalanobis d ista n ce  ** * /
/*  input: sample s iz e  n l ,  n o .o f v a rs . ip l  * /
/*  data z [] [] , mean vector  m lQ , * /
/*  in verse  cov .m atrix  q i[ ]  [] * /
/*  output: m d[], mahalanobis d ista n ces  v ecto r  * /
/*  v a r ia b le s :  * /
/*  double : t l ,  t 2  * /
/*  in t :  i ,  j ,  k * /

void  t  m ah a ld ist( in t  n l ,  in t  i p l ,  double **z, double *ml,
double **qi)

{
double t l ,  t 2 ; 
in t  i ,  j ,  k;

fo r  ( i= 0 ; i< n l;  i++)
{
t l  = 0 . 0 ;
fo r  (j= 0 ; j< ip l;  j++)

{
t 2  = 0 ;
fo r  (k=0 ; k < ip l; k++)

t 2  = t 2  + (z [ i ]  [k] -  ml [k] ) *qi [k] [j] * (z [ i ]  [j] -  ml [j] ) ; 
t l  = t l  + t 2 ;
}

rod[i] = sq rt ( t l )  ;
}

}
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4.3.2 4 Stalactite Analvsis — The Complete Algorithm

For brevity, only flowcharts for both the Stalactite Analysis and SURCON analysis 

algorithms are displayed and not the full C source code as implemented in the tSTAT 

package. However, the use of flowcharts makes it possible to implement the algorithms in 

any desired language as opposed to having to translate them from C.

Figure 4.3 is the flowchart for the Stalactite analysis algorithm.

4.3.3 SURCON Transformations

Figure 4.4 is a flowchart of the SURCON analysis.

The next part of the thesis discusses the probability distributions used throughout 

the analyses considered and describes the algorithms adopted for them in the tSTAT 

package.

4.3.4 Probabilitv Functions

In the scope of the thesis four probability distributions are used in many different 

contexts; these are the normal. Student’s t, and F distributions. This section contains 

the algorithms adopted within the tSTAT package for the computations of the cumulative 

distribution functions and their corresponding inverse functions.

The definition of a cumulative distribution function of a random variable x with 

density function f{x)  i.e.
J

F{b) = Pr(X < 6) =  r  f{x)dx (4.5)
—00

requires the integration of a function. The direct approach is to use numerical integration 

of the density function. There are several algorithms for carrying out numerical integration 

e.g.Simpson’s Rule, Trapezoidal Rule, Romberg Integration, etc. [Press et al., 1988]. The 

idea is to obtain the integral as accurately as possible with the smallest number of function 

evaluations of the integrand. For the purposes of the tSTAT package approximations to 

the distribution functions are adequate. The following algorithms are, therefore, all based 

on approximations [See Cooke et al., 1982].

202



Figure  4 . 3  Flowchart  f o r  t he  S t a l a c t i t e  Ana l ys i s  Algori thm

S t a r t

J - I t e r a t i o n  number 
k - incremental  va lue

S e l e c t  i n i t i a l  sub-sample

Compute t he  mean v e c t o r  
& co var ianc e  mat r i x  f o r  J - t h  i t e r a t i o n

Compute t he  Mahalanobis d i s t a n c e s  
f o r  t he  f u l l  sample and i n i t i a l i s e  
t h e  S t a l a c t i t e  P l o t  e n t r i e s

Update S t a l a c t i t e  P l o t  e n t r y  
I s t a ( i ) [ J ] ,  i f  ne ce s sa r y

i f  ( d ( i ) [ J ]  > Emaxchi)

m <=

Sor t  d ( i ) [ J ]

S e l ec t  new sub-sample  based 
on obs . wi th  s m a l l e s t  d ( i ) [ J ] ' s

Stop

J=J+1

m=p+1

m=m+k

J=0:k=1

I s t a ( i ) [ J ]  = 1

x { i ) ,  <i=1,m)

XbarCJ] , Cov[J]

Input  n , p ,  d a t a ,  Emaxchi

d ( i ) [ J ] ,  I s t a ( i ) [ J ] = 0 ,  ( i =1 , n )

203



Figure  4 . 4  Flowchart  f o r  t he  SURCON Anal ys i s  Algori thm

S t a r t

K - No.of i t e r a t i o n s  
J • Cur rent  v a r i a b l e

I n i t i a l i s e  lambda's

Compute Box-Cox normal i sed  
t r an s f o r m a t i o n sz ( j )  [ L( j ) ]  = . . j =1, p

Compute Co ns t ruc te d v a r i a b l e s

Center  z - va lues

Center  w-values

F i t  LS Model

Es t ima te  e r r o r  c ovar i anc e  mat r ix

F i t  2SLS Model

Compute Score s t a t i s t i c s

Test  f o r  s i g n i f i c a n c e  of Score 
s t a t i s t i c  f o r  c u r r e n t  v a r i a b l e  
t  - S t u d e n t ' s  t ( a l p h a )  wi th n-1 d . f .

T[L(J)]  > t

Terminat ion  c o n d i t i o n  
d e l t a  = (ssHO - ssHA)/ssHA

d e l t a  < eps

I n t e r p o l a t e  f o r  L(J)

abs(T[L(J) ]  ) < eps

Stop

J=J+1

Var-Cov(e1)

I nput  n , p , d a t a

K=0:J=1:eps=1.0**(-4)

ws( j ) =w( j )  - w b a r ( j ) ,  j =1 , p

z s ( j ) = z ( j )  ■ z b a r ( j ) ,  j =1 ,p
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a) The Standard Normal Distribution N[0.1] 

The integral to be evaluated is
z

T{z) = V t { Z <z )=  f  —  e x p (-tV 2 ).d t (4.6)
J

—00

Since the integral cannot be evaluated over an infinite range using the numerical

methods use is made of the fact that the integrand is symmetrical about t=0. So
z

F(z) =  0 .5+  C —  ex p (-tV 2 ).d t (4.7)
'0 ^

Cooke et al. [1982] give an approximation of this integral which is an explicit function of z 

due to Hastings and quoted in Abramowitz and Stegun [1972]. For a non—negative z,

F(z) =  1 — 0.5(1 + a^z +  a jzH  a^z -̂k a^z^)^ +  e(z) (4.8)

where a  ̂=  0.196854, a^ =  0.115194, a  ̂ =  0.000344 and a^ =  0.019527. Function 4.3 is the 

C implementation of the algorithm.

Function 4.3 Normal Distribution Function — Approximation

/*  ** normal d is tr ib u t io n  fu n ction  — approx ** * /
/*  input: argument z * /
/*  output: pO, prob. x  < z */
/*  v a r ia b le s :  * /
/*  double: a l ,  a2 , a3 , a4, pO, w * /

double t  normdf ( double z)
{

double a l ,  a2 , aS, a4 , pO, w;

a l = 0.196854; 
a2 = 0.115194; 
a3 = 0.000344; 
a4 = 0.019527;

w = fa b s (  z) ;
pO = 1 + w*(al + w*(a2 + w*(a3 + w*a4))) ; 
pO = pow( pO, 4) ; 
pO = 1 — 0 .5 /p 0 ;  
pO = 0 .5  + (pO — 0 .5 )* sg n ( z) ;

return pO;

}
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For negative z the expression is evaluated using \z\ to get the value pO from which

the required probability can be obtained as 1 — pO. It is stated that the error of

approximation is of the order | e(z)\ < 2.5 * lO'^.

Similarly, to obtain the inverse normal integral we use the following approximation.

If we put 1 — F(z) =  1 — p =  Ç, then provided that 0 < g < 0.5 the z  corresponding to a

particular value of q is given by

z = t  ai +  e(g) (4.9)
1 +  a it +  a 2t^

where t =  21oge q ). The absolute error | c(ç)| < 3.0 * 10-3. Function 4.4 displays the 

algorithm.

Function 4.4 Inverse Normal — Approximation

** in v erse  normal fu n ction  — approx ** * /
input: p r o b a b ility  pO */  

output : standard normal value z * /  
v a r ia b le s :
— double: a l ,  a2, a3 , a4 , qO, w, w l, w2, z * /

double t  invnorm( double pO)
{

double a l ,  a2 , a3, a4 , qO, v , w l, v2, z;

a l = 2.30753; 
a2 = 0.27061; 
a3 = 0.99229; 
a4 = 0.04481;

qO = 0 .5  — f  abs (pO — 0 .5 ) ;
w = sq r(— 2 * lo g (q 0 ) ) ;
wl = a l +  a2 *w;
w2 = 1 .0  + w*(a3 + w*a4) ;
z = w — wl/w2 ;
z = z*sgn(pO — 0 .5 ) ;

return z;
}

b) The Student^s t Distribution t(

Abramowitz and Stegun [1972] provide an exact algorithm for the probability p that
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corresponds to a given value of t with k degrees of freedom. The algorithm is constructed 

from a series summation. If we let $ =  tan"i(t//~A;), then p =  -j (1 +  A), where

2^ /t ^

A = ’l ^   ̂ ^ + s i n   ̂̂ cos  ̂ *i" J  cos^  ̂ +  . . .  +  i  3  ~ cos^"^ j  (4.10)

sin  [ 1 +  ^  cosM  +  j ; 4 C0 S< $ + . . .  + .  2 ] cos’'" ’

t /; = 1, ft A: > 1 and odd, f t f& even.

The algorithm is implemented in Function 4.5.

Function 4.5 Student*s t  Distribution

** S tudent’s t  d is tr ib u t io n  fu n ctio n  — approx ** * /
input: argument tO, degrees of freedom k l * /  

output: pO, p ro b a b ility  x  < tO * /  
v a r ia b le s  :
— double: a l ,  cO, pO, sO, t ,  t l ,  w * /
— in te g e r : i ,  j l ,  j 2 , k2 , wl

ouble t_ s tu d e n ts t  ( double tO, in t  k l)

double a l ,  cO, pO, sO, t ,  t l ,  w; 
in t  i ,  j l ,  j 2 , k2 , wl;

a l  = 0.36338023; 
w = a tn ( tO /s q r (k l) ) ; 
sO = s in (w ); 
cO = c o s(w );
wl = k l — 2 * ( in t )  ( k l / 2 ) ;

i f  ( wl != 0 )
{
t l  = w; 
i f  ( k l != 1 )

{
t  = sO*cO; 
t l + = t ;  
i f  ( k l != 3)

{
j l  = 0 ; 
j 2  = l ;
k2 = (k l - 3 ) / 2 ;  
}

}
}

/*  k l odd ♦ /

/*  k l not 1  ( sp e c ia l case) * /

/*  k l not 3 (sp e c ia l case) * /
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}

e ls e
{  /*  k l even * /
t l  = sO 
i f  ( k l != 2 )

{
t  = sO; 

j 2  = 0 ;
k2 = (k l - 2 ) / 2 ;
}

}
i f  ( k l > 3)

{
fo r  ( i= l;  i<k 2 ; i++) /*  s e r ie s  summation * /  

{
j l  + = 2 ; 
j 2  += 2 ;
t  = t*cO *cO *jl/j2 ; 
t l  += t ;
}

}
i f  ( ( k l  != 1) kk ( k l != 3 )) 

t l  = t l * ( l  - a l * w l ) ;

pO = 0 .5 * (1  + t l ) ;

return pO;

The inverse distribution of t is computed by making use of a transformation 

proposed by Wallace [1959]. For a given value of t with k degrees of freedom an 

approximation to the corresponding value of z (from the standard normal distribution) is 

given by

+ ' 3  [ &log;e[ 1 4- j r ]  ] (4 -H )

It, therefore, follows that from a given z value the corresponding t can be computed. 

This is achieved by rewritting (4.11) as follows:

i{k)  = J ^ { e x p { w ^ / k ) — 1] (4.12)

where k is the degrees of freedom and w =  z{Sk 4- 3)/(8A; + 1 ) .  Function 4.4 uses this 

approximation and it calls Function 4.3 (Inverse normal — approximation). It requires as
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input the probability pO and the degrees of freedom kl. It first calculates the corresponding 

standard normal variable z  and then goes on to calculate the required t value from (4.12).

Function 4.6 Inverse Student's t  Function

** Inverse Student*s t  fu n ctio n  — approx ** * /
input: p r o b a b ility  pO, degrees o f freedom k l * /  
c a l l s :  tin v n o rm  (Function 4 .2 )  

output : to, t —value * /  
v a r ia b le s  :
— double: tO, w, 2  * /

double t  in v s tu d t( double pO, in t  k l)
{

double to, V, z;

z = t_invnorm( pO) ; /*  f in d  normal z corresponding to  pO * /

w = z * ( l  + 2 / ( 1 . 0  + 8 * k l ) ) ; 
to = kl*(exp(w *w /kl) — 1 . 0 ) ;  
to = sq r( to) ;

return tO;
}

The algorithm is not reliable for fewer than four degrees of freedom. [See Cooke et 

al., 1982].

c) The Distribution. y^( k)

The algorithm adopted for the % distribution is based on an algorithm by Lau 

[1980] for the cumulative distribution of a gamma function. The gamma distribution with 

shape parameter û and scale parameter /?, G(û, /?) has a probability density function

G {a J )  = ------------------------------------------------------(4.13)
r ( . ) / j “

0 < z < 00. The X distribution with k degrees of freedom is the gamma distribution with 

shape parameter k/2 and scale parameter 2, i.e. G(A:/2, 2). The density function involves 

the evaluation of the gamma function r(x). Using the relation between r(x) and r(x—1) 

then for a positive integer n we can write
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r(n) =  — (4.14)

where P(^) =  V” t. This function can then be evaluated as a series of products. However, it 

can quickly cause numeric overflows, especially on a small computer, and so in its 

evaluation we consider its logarithm, loge P(n), instead after which it can easily be 

reconverted. The algorithm is evaluated by Function 4.7.

2
Function 4.7 y Distribution

** Chi—squared d is tr ib u t io n  fu n ctio n  — approx ** * /
input: argument x 2 , degrees o f freedom k l * /  

output : pO, p r o b a b ility  x  < x2 * /  
v a r ia b le s  :

double: a2 , g l ,  g2 , pO, t ,  v l  
in te g e r ; k , w;

double t_ c h isq (  double x 2 , in t  k l)
{

double a2 , g l ,  g2 , pO, t ,  wl; 
in t  k , w;

wl = 0 . 5*x2 ; 
k l = 0 .5 * k l;

g l  = 0 ; /*  c a lc u la te  lo g —gamma (k l + 1 ) * /
fo r  ( ; ; )

{
w —= 1 ; /*  nb: ( 2 *w) i s  an in teg er  > 0  * /
i f  ( w > 0 )

g l  += lo g (  w) ; /*  sum logs of fa c to r s  * /
e ls e  

break;
}

i f  ( w != 0 )
g l  += 0.57236494; /*  add In gamma(0 .5 ) * /

g2  = 0  ;
a2  = ex p (k l* lo g (w l) — g l  — wl) ; 
i f  ( a 2  != 0 )

{
t  = 1 ; 
g 2  = 1 ; 
k = k l;  
do

{
t  *= w/k; 
g2  += t ;
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}
w hile  ( t /g 2  > l.O e—6 ) 

pO = g2*a2;
}

return pO;

To obtain the inverse % distribution we use the result by Wilson and Hilferty [1936] 

which states that for a with k degrees of freedom the quantity is

approximately normal with mean (1 — 2/9k) and variance (2/9/:). Hence,

-  2/9fc)
(2/9Q

from which we may obtain in terms of z:

X^{k) =  A; 1 -  

Function 4.8 uses this equation.

T
STS

(4.15)

(4 .1 6 )

Function 4.8 Inverse y Function

** In verse Chi—squared fu n ctio n  — approx ** * /
input : p r o b a b ility  pO, degrees o f freedom k l * /  
c a l l s ;  t_invnorm (Function 4 .2 )  */  

output: x2 Chi—squared value * /  
v a r ia b le s :

double: a l ,  v , x 2 , z

double t_ in v c h isq ( double pO, in t  k l)
{

double a l ,  w, x 2 , z;

z = t_invnorm( pO) ; /*  fin d  normal z corresponding to  pO * /

a l = 2 .0 /(9 * k l) ;  
w = 1 . 0  — a l  + z * sq r (a l)  ; 
x2 = kl*pow(w,3) ;

return x2 ;
}

d) The F distribution. F{ku ko)

The approximation (4.16) may be applied to derive one for F. The F distribution
2

with kl and k2 degrees of freedom is defined as the ratio of two % variables divided by their
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degrees of freedom. Thus we may write

F =  ( x V ^ m x i / k i )  (4.17)
2 2the ch—squared distributions Xi &nd having and Ag degrees of freedom. Hence,

F^/^ =  (4.18)

is the ratio of two variables which are approximately normally distributed. Geary [1930] 

showed that if v =  Z\lz2 where Z\ and Z2 are normal variables with means H2 and

variances (rj, a\ respectively then

z =  — -  (4.19)
+ a\ f )

is approximately a standard normal variable. We can substitute for v and the

appropriate values for /ii, /i2, o\ i.e. fi\ = {1 — 2/9ki) and <rl =  (2/9A;i), i= l,2  to obtain 

the corresponding z  value [Paulson, 1942]. Function 4.7, makes use of this result. It calls

the normal distribution function (Function 4.3). The algorithm is valid only for values of F

> 1. If F < 1, then F is replaced by 1/F, A^and tg are interchanged and the resulting 

probability is subtracted from 1. A correction to the z value is required in the algorithm 

when A:g < 3 in order to improve accuracy for these small values of A:g. If this correction is 

made the algorithm gives reasonably satisfactory results.

Function 4.9 F Distribution

/♦  ♦♦ F d is tr ib u t io n  fu n ction  — approx ** * /
/*  input: argument f  ( >= 1  ) 2 , degrees o f freedom k l ,  k2  */
/ *  c a l l s :  t_normdf (Function 4 .1 )  * /
/*  output : pO, p r o b a b ility  x  < f  * /
/*  v a r ia b le s :
/*  double: a l ,  a2 , w, w l, w2, z ,  pO * /

double t_ fd is tn (  double f , in t  k l ,  in t  k2 )
{

double a l ,  a2 , w, w l, w2, z ,  pO;

a l = 2 .0 / ( 9 .0 * k l) ;  
a2 = 2 .0 /(9 .0 * k 2 );  
w = pow (f, 1 .0 /3 .0 ) ;  
wl = w + a l  — w*a2  — 1 . 0  

w2  = a2 *w*w + a l  ; 
z = w l/sq r (w 2 ) ;
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i f  (k2 < 3) /*  co rrectio n  fa c to r  fo r  sm all k2 * /
z = z * (1 .0  + 0 .08*(pow (z, 4 .0 )/(p o w (k 2 , 3 .0 ) )  ; 

pO = t_normdf ( z) ; /*  f in d  pO corresponding to  z * /

return pO;
}

The relation between z and F in (4.19) ,substituted accordingly, yields a quadratic 

in when a particular value is substituted for z. One root is positive and the other 

negative, the latter being discarded. We can, therefore, obtain the inverse F distribution 

function from the result. Function 4.10 is the implementation of this algorithm.

Function 4.10 Inverse F Distribution — Approximation

/*  ** Inverse F d is tr ib u t io n  — approx ** * /
/*  input: p r o b a b ility  pO ( >= 0 .5 ) ,  degrees of freedom k l ,  k2 * /
/*  c a l l s :  t_invnorm (Function 4 .2 )  * /
/*  output : f , f —value * /
/*  v a r ia b le s :
/*  double: a l ,  a2 , f , w, w l, w2, w3, w4, z * /

double t  f d is t n (  double pO, in t  k l ,  in t  k2)
{

double a l ,  a 2 , f ,  v , w l, w2, w3, w4, z;

z = t_invnorm ( pO) ; /*  f in d  z corresponding to  pO * /

a l = 2 .0 / ( 9 .0 * k l) ;  
a2 = 2 .0 /(9 .0 * k 2 );  
w = z*z;

wl = 1 .0  + a2*(a2 — w — 2 .0 )  ; 
w2 = a l  + a2 — al*a2  — 1 .0 ;  
w3 = 1 .0  + a l* ( a l  — w — 2 .0 )  ; 
w4 = sqr(w2*w2 — wl*w3); 
f  = (w4 — w2)/w l; 
f  = pow( f , 3 .0 )  ;

return f ;
}

A substantial improvement in the algorithm, for ki < 3, can be made by replacing 

the z value obtained from the normal function with

z' =  u (1.1581 -  0.2296U -  0.0042u2 -  0.0027u3) (4.20)

where u — z/A^^.
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Having discussed the main algorithms adopted in the package it is now possible to 

describe its usage. Section 4.4 is an outline of this usage. It is presented in the form of a 

user reference manual.

4.4 User Manual

4.4.1 Using the tSTAT package

The tSTAT package consists of several modules which are combined to form the 

system. Each module is designed to perform a specific part of the analysis. Each of the 

modules can be used independently but for a systematic and structured approach there is a 

controller module called TSTAT.EXE  which contains a user-friendly interface with a 

menu system. So to start up the package type TSTAT at the DOS prompt ie.

C>TSTAT <CR>

The system will display the opening screen referred to as the "Main Screen" which 

contains the main menu options and various other items. The options in this menu call up 

all the other modules. Due to the numerous and involved sequence of parameters passed to 

each module to ensure the system’s correct functioning it is always advisable to run the 

modules from this integrated environment,

a) Main Screen

The main screen is split up into four distinct areas (See Figure 4.5) as follows:

— Header/Title Area

This area displays the title of the package together with the version number.

— Main menu Area

The main menu area displays the "top-level" menu options. Each option loosely 

corresponds to a module within the system.

— Worksheet Area

This is where all the output is displayed from the analyses. All the output within 

this area is also written to disk into a logfile which can then be used to obtain a hard copy 

of the analyses.
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— Footer Area

The Footer area indicates which keys may be pressed to select an option, obtain 

help or cancel an action.

Figure 4.5 Main Screen

In fo rm ation  a re a  
Worksheet Area 
Main menu a re a  
H e a d e r /T i t le  a re a

Prompt Box

DATA STATS TRANSFORMATIONS PLOTS OUTLIERS UTILITIES QUIT

FI-Help F 2 -S ta tu s  F3-About tSTAT Esc- Cancel

tSTAT vO.OO

[ No d a ta  ]

b) Menus

The package is operated by a series of menus which are divided into two levels (See 

Figure 4.6). These levels are the horizontal (options are aligned horizontally)) and 

dropdown (vertical alignment of the options). Some of the dropdown menu options contain 

a third level which is refered to as the side—menu. An option within any of the menu types 

is selected by moving the highlighted bar to it using the arrow keys, ‘H om e’ or ‘End’ and 

then pressing ‘Enter’. A lternatively, an option can be selected by pressing the highlighted 

letter within it.
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Figgre 4.6 lenn Stractnre
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c) Messae^es

The package displays three main types of messages. These are:

— Error Messages

If an error occurs e.g. a particular computation cannot be performed like inverting a 

singular matrix, division by zero, an incorrect data file format, etc. the system displays a 

red box in the center of the screen which informs the user of the nature of the error. The 

red box will remain on the screen for a short while and is self—clearing.

— Wait Message

This type of message appears in the prompt box at the bottom right-hand corner of 

the worksheet area. It occurs when the system is busy e.g. when performing a particularly 

long series of computations. The prompt box displays the word ‘WAIT’ which flashes on a 

cyan background and it is self—clearing when the operation is over.

— Ready Message

After each output to the worksheet the system flashes the word ‘Ready’ in the 

prompt box on a cyan background. This message suspends program execution and pressing 

any key will resume execution.

d) User Inauirv

When the system needs information a box appears on the screen. There two types of 

inquiry boxes depending on the nature of the inquiry. The first type deals with selecting 

the variables to be included in an operation and the second type with general inquiries.

— Variable selection

For variable selection, the system displays following box:

Select Variable : XI

The default variable for analysis is the first variable, XI, and the up/down arrow 

keys scroll through the variable list. The variable list includes an extra item called ’ALL’
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which is used to select all the variables. An item is selected by pressing Enter when it is 

displayed and to exit from the inquiry without selecting anything, press Esc.

— General inquiry

If the system requires information which has no preset list of responses e.g. setting 

the title for the analysis, execution of a DOS command, entering a file name, etc., a general 

inquiry box appears. This box has a title at the top which indicates the type of input 

required. The following is an example of setting the title for the analysis.

[T itle]
Analysis fo r Example 1

e) Key Summary

Key Action

Enter Selects highlighted item from a menu or confirms an action.

Esc Exits from a menu or cancels an operation.

Ins Toggles insert mode on or off.

Del Deletes the character at the cursor position.

Home Highlights the first option of a menu.

End Highlights the last option of a menu.

Arrow Move the menu highlight bar, scroll the variable list,
keys

f) Data File Structure

A tSTAT data file is a row-column array which is the data matrix as defined in 

multivariate texts (sometimes refered to as a "fiat file"), where each row is an observation 

and each column is a variable. The variables are seperated by spaces (i.e. delimited by 

spaces). The file has to be a text (ASCII) file so each line of data (observation) is 

terminated by a Carriage Return/Line Feed <CR—LF>. The data file has to be "even"
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that is with the same number of data entries on each row. The file has to be terminated by 

an end—of—file character EOF.

Since tSTAT identifies an observation on a variable as a value separated from other 

values by spaces there cannot be any blank or missing values. If these occur tSTAT will 

run out of data to read before it reaches the end—of—file and will result into an error 

message.

A valid data file is structured as follows:

Obs —> 2.0 35.0 12.0<CR-LF>

1.5 21.0 24.0

EOF

The tSTAT package has a data entry/edit facility but the data file can be prepared 

outside the package using any standard text editor e.g.Edlin, Qedit, E, etc.. Most 

wordprocessing packages also have a facility to export ASCII files and so do spreadsheets 

like Lotus 1—2—3. It is possible to use Dbase III—Plus for creating the data file by copying 

the .DBF to a delimited file. The default extension for a data file is .DAT.

g) The Data Editor

The tSTAT data editor is one of the main modules within the system. Although it is 

primarily used to enter and edit the data for subsequent analyses it has numerous other 

functions. It has a spreadsheet—like mode of use (See Figure 4.7). The main difference is in 

the naming convention. We shall refer to the array of numbers displayed on the screen as a 

datasheet. In the spreadsheet environment the columns are normally named by letters of 

the alphabet, however, to maintain the structure of a data matrix the tSTAT data editor 

names the columns as variable numbers (e.g. column 1 is Var 1) these are termed as 

variable names. For ease of reference, each column also has a letter of the alphabet 

associated with it which we shall refer to as the variable tag. The rows refer to the
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observation numbers. So a typical value within the datasheet is referenced by its variable 

tag and observation number (e.g. the first observation in the second variable is Bl).

Arithmetic operations can be performed on the rows and columns of the datasheet. 

The valid operations are +, —, /  and * for addition, subtraction, division and 

multiplication, respectively. The syntax for an arithmetic operation is:

Cell reference for 1st operand operator Cell reference for 2nd operand 

Examples: Al +  Cl, B2/A2, B10*A15.

In addition mathematical and statistical functions can be performed on the 

datasheet values. The following is a list of the available functions.

Function Syntax Examnle

Logx LOG(c.t.) L0G(B2)

V x SQRT(c.r.) SQRT(CIO)

Sin X SIN(c.r.) SIN(Al)

Cos X COS(c.r.) C0S(A2)

Tan X TAN(c.r.) TAN(Dl)

EXP(c.r.) EXP(B2)

Ex c.r.l:c.r.2 al:a20 (same column)

X MEAN(c.r.l:c.r.2) MEAN(al:a20) (same column)

Abbreviation: c.r. — cell reference.

The editor has an independent menu (See Figure 4.8) which is called up by pressing 

the FIO key.

Input/Edit Line

The Input/Edit line appears at the bottom of the editor screen and is used to type 

in the input to the datasheet together with entering the responses to certain actions.

Status Line

The Status line appears just above the Input/Edit line and shows the current status 

of the datasheet. The first two items on the status line, the observation number and
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variable name, jointly give the current position (cell reference) of the cursor in the

datasheet. The variable tag is displayed as the third item. The fourth item refers to the

data type in the current position. There are three data types value, text and formula

depending on whether the contents of the current position are numeric or alphabetic. If the

position is empty then ‘Empty’ is displayed. The fifth item is a prompt to remind the user

that if any formulae have been entered then any changes to the values included in the

formulae will be automatically reflected in the formulae results. The last item on the

Status line is the prompt for the key which invokes the editor’s menu.
Figure 4 .7  Data E dito r

Var 1 Var 2 Var 3 Var 4 Var 5 Var 6

1
2
3
4
5
6
7
8 
9 
0
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12
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45.70 
24.40 
14.00 
67.90 
35.10
84.20
90.50

4.20
2.40
1.20
3.60 
2.50 
5.00
6.40 
1.30
5.60 
4.70

150.00 
20.00

370.00
340.00
230.00
670.00
440.00
180.00 
50.00

460.00

—  Obs 1 Var 1 (A) Empty Auto
r- 2.0000

FIO- Menu

Input/E dit Line 
Status Line 
Observations 
Variables

Figure 4 .8  Data E ditor Menu S tn irtn rp

Row Col

Row Col

Decimals Width

Edit Format Goto In se rt Delete f i lL  eRase Save eXit
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The following is a brief description of the options on the data editor menu.

Option Function

Edit To edit the contents of the current cursor position.

Format The Format option is used to set the number of decimal places (the default

value is 2) for a particular variable and to also set the column widths (the default value is 

10).

Goto Positions the cursor onto the specified cell reference. You can also use the

’End’ key to move to the last observation in the last variable and the ’Home’ key to move 

to the first observation in the first variable.

Insert Inserts either a row/column before the current row/column.

Delete Deletes the current row/column.

filL Fills a column (variable) with an ascending sequence of numbers. To use it

you specify the first and last cell references together with the start, increment and stop 

values for the numbers.

eRase Clears the values in the current datasheet and places the cursor into the first

observation and first variable position.

Save This is used to save the current datasheet under a specified filename.

eXit Returns to the tSTAT main menu.

N.B. The data editor allows the entry of both numeric and alphabetic characters but for 

analysis the saved data file MUST conform to the specification of a valid data file. If the 

specification is violated tSTAT displays an error message,

h) Technical Specifications

The tSTAT package has the following specifications:

Main memory (RAM) > 640KB

Disk Space > 700KB

Operating System DOS 3.0+

Video Display Unit (VDU) Mono, CGA, EGA, VGA+

222



Number of variables < 10 (prototype version)

Number of observations < 100 (prototype version)

The following section discusses and describes the use of all the tSTAT menu 

options.

4.4.2 tSTAT Functions

This section outlines the use of each of the tSTAT functions. The layout of the 

description of each function is broken down into the following parts:

P u r p o s e  — a  b r i e f  d e s c r i p t i o n  o f  w h a t  t h e  f u n c t i o n  d o e s .

C a l c u l a t i o n s  — f o r m u l a e  f o r  t h e  c a l c u l a t i o n s  ( i f  a n y ) .

I n p u t  — d e s c r i b e s  t h e  e x p e c t e d  i n p u t  t o  t h e  f u n c t i o n .

O p e r a t i o n  — d e s c r i b e s  t h e  u s e  o f  t h e  f u n c t i o n .

O u t p u t  — shows the format of the output from the function.

Appendix B is an example of a full analysis on a typical data set and so is used as a 

reference for each of the functions.

4.4.2.1 Main menu

Figure 4.9 shows the Mainmenu which calls up all the functions.

Figure 4 .9  Mainmenu

DATA STATS TRANSFORMATIONS PLOTS OUTLIERS QUIT

The Data option deals with the data entry/load/edit facilities. It also includes some 

DOS related options namely execution of a DOS command from within tSTAT, the 

directory display and the shelling to DOS. The Stats option contains the general 

descriptive statistics and related analyses. It also includes the selection of symmetrising 

transformations using Binkley’s "quick" method and regression analysis. The 

Transformations option includes the two main approaches for transformations to
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multivariate normality namely; the likelihood approach and the proposed SURCON 

approach. It also has an option for carrying out manual (i.e. user—defined) Box—Cox 

transformations on the data. The graphical output is done by the Plots option. This 

includes the scatter plots, box and whiskers plots, Gnanadesikan’s symmetry plots, 

probability plots, index plots and the proposed Stalactite plots. The outliers option 

includes three tests for outliers; the classical Mahalanobis distance approach, the Hat 

Matrix approach and the proposed Stalactite Analysis approach. The Utilities option 

includes general housekeeping functions like setting the analysis title, printing the logfile, 

renaming/deleting files, changing directory and setting the Stalactite algorithm 

parameters. The Quit option is used to exit the package.

4 4.2.2 Data Option

Figure 4.10 Data Menu

DATA

Input
Load
E d it
eXecute
D irectory
OS Shell

P u r p o s e

C a l c u l a t i o n s

I n p u t

Inppt

Used to enter new data. 

None.

None.

O p e r a t i o n  When this option is selected the Data Editor (See Section 4.4.1) is

invoked so the data can be entered and edited. When the data entry is completed you can 

save the file using the Data Editor Save menu option.

O u t p u t  Data file by the name specified in the Data Editor Save menu option.
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Load

P u r p o s e  Loads an existing data file from disk.

C a l c u l a t i o n s  N o n e .

I n p u t  File name.

O p e r a t i o n  Selecting this option produces a box with a default setting the default

extension for data files (.DAT). You can type in the name of the file required or press 

Enter to obtain a list of all the data files in the current work directory. If the list is 

displayed move the highlighted bar to the required file and press Enter to select it. You can 

also move the highlighted bar by typing the first letter of the required file; this moves the 

bar to the first file with a match for the letter.

O u t p u t  Data from the data file. The system automatically ascertains the

number of observations and number of variables. If an error occurs in reading the data an 

error message box appears. The worksheet title is set to the data file name. The file name, 

the number of variables and number of observations is also displayed within the worksheet. 

The first five observations are also listed to allow the user to confirm that the right data is 

being used.

Edit

P u r p o s e  Edits data from the current data file.

C a l c u l a t i o n s  N o n e .

I n p u t  N o n e .

O p e r a t i o n  When this option is selected the current file i s  passed on to the Data

Editor and can then be edited.

O u t p u t  Edited version of the current data file.

eXecute

P u r p o s e  T o  execute a  DOS command from within tSTAT.

C a l c u l a t i o n s  N o n e .

I n p u t  The DOS command to be executed.
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O p e r a t i o n  Selecting this option produces an empty inquiry box. Type in the

DOS command and press Enter.

O u t p u t

P u r p o s e

C a l c u l a t i o n s

I n p u t

directory.

O p e r a t i o n

None.

Directory

To obtain a directory listing of files in the specified directory.

None.

The path for the required listing. The default is the current work 

Selecting this option produces an inquiry box with a ’wild card’ (*.*).

You can specify the required path or press Enter to use the current path.

O u t p u t

P u r p o s e

C a l c u l a t i o n s

I n p u t

O p e r a t i o n

The list of files appears in a scrolling box on the screen.

OS Shell

To suspend program execution and exit to the DOS prompt.

None.

None.

Selecting this option will pass execution to DOS. Type ’EXIT’ at the

DOS prompt to return to tSTAT. 

O u t p u t  None.

4.4.2.S. The Statistics Option

Figure 4.11 S ta t i s t ic s  Menu

Nobrief
Brief

Covariance
coRrelation

D escriptive
Frequency
Symmetry
Association
Regression

STATS
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Descriptive

P u r p o s e  Computes descriptive statistics for the current data file.

CALCULATIONS See Section 4.3.1.

I n p u t  One or more variables.

O p e r a t i o n  When this option is selected a  variable selection inquiry box

appears. You can use the up/down arrow keys to selected the required box item. 

O u t p u t  A table of descriptive statistics. The statistics computed are the

mean (and its standard error), 10%-trimmed mean, variance, standard deviation,

minimum, maximum, range, skewness and ku rto sis  (with the respective standard 

error). (See Appendix B).

Freouencv

P u r p o s e  Computes and displays a frequency table and histogram.

C a l c u l a t i o n s  Computes the maximum and minimum and groups the data into

the number of specified class intervals (default is 6).

I n p u t  One or more variables.

O p e r a t i o n  When this option is selected a Variable Selection inquiry box

appears. You can use the up/down arrow keys to selected the required box item. 

O u t p u t  A frequency table with the class frequency (count, percentage of

total frequency and cumulative percentage). A histogram based on the number of

classes is also displayed. (See Appendix B).

Svmmetrv

P u r p o s e  Derives Binkley’s "quick" transformations to approximate

symmetry.

C a l c u l a t io n s  See Section 3 .2 .2 .

I n p u t  One or more variables.

O p e r a t i o n  When this option is selected a  variable selection inquiry box

appears. You can use the up/down arrow keys to selected the required box item.
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O u t p u t  A summary of the calculations based on five transformation

parameters t= —1, 0.5, 0, 1 and 2. The output also includes a recommended transformation. 

(See Appendix B).

Association

— Covariance

P u r p o s e  Computes the covariance matrix for the current data set.

C a l c u l a t i o n s  F o r  t h e  d a t a  m a t r i x  { x }  w i t h  n  o b s e r v a t i o n s  o n  p  v a r i a b l e s  t h e  i , j - t h

e l e m e n t  o f  t h e  c o v a r i a n c e  m a t r i x  i s

I n p u t

O p e r a t i o n

O u t p u t

— Correlation

P u r p o s e

C a l c u l a t i o n s

Sij = ^ ? , ( x k i  -  X i)(x k j -  X j)

All the variables in the data file.

Highlight the option and press Enter to select it.

The covariance matrix of the data set. (See Appendix B).

(4.21)

Computes the correlation matrix for the current data set.

For the data matrix {x} with n observations on p variables the i,j—th 

element of the correlation matrix is

^ S | ( x k i ‘ - X i ) ( x k j - -  X j)
rij = T7 2

I n p u t

O p e r a t i o n

O u t p u t

P u r p o s e

{J^(xki -X i)\2 ^ (x k j-  Xj)'}

— S ij /V ~ (S i i  X Sjj)

All the variables in the data file.

Highlight the option and press Enter to select it.

The correlation matrix of the data set. (See Appendix B). 

Regression

Fits a linear regression model of the form y =  o + ^ x.

(4.22)
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C a l c u l a t i o n s  Computes a and P parameter estimates for a and P where

J (̂xi - X y

and a = ÿ — p5t wherex, ÿ are the arithmetic means of x and y, respectively.

I n p u t  The independent variable y and dependent variable x

O p e r a t i o n  When this option is selected a variable selection inquiry box appears.

You select the independent variable y and the dependent variable x from the list of 

variables in the data matrix. You cannot select the same data variable in both cases. 

O u t p u t  I f  the Brief option is used the output consists of the parameter

estimates â and P with the respective standard errors, t—statistics, the corresponding p 

values and an analysis of variance table. Using the Nobrief option additonally includes a 

listing of the fitted values y, the residuals, the standardised residuals and the diagonal

elements of the Hat matrix. The output also includes residual plots ( the residuals vs the

fitted values), a normal plot of the residuals, an index plot of the residuals and an index 

plot of the diagonal elements of the hat matrix. (See Appendix B).

4.4.2.4 Transformations

Figure 4.12 Transformations Menu

TRANSFORMATIONS

MLE Approach 
SURCON Approach 
Box-Cox (Manual)

MLE Approach

P u r p o s e  Computes the transformations to multivariate normality using the
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likelihood approach.

C a l c u l a t i o n s  See Section 3 .3 .

I n p u t  All the variables i n  the data file.

O p é r a t i o n  When this option is selected an inquiry box appears which

requests for the initial (hypothesised) values for the transformation parameters. The 

defaults for these values is 1, no transformation.

O u t p u t  The maximum likelihood estimates for the transformation

parameters.

SURCON Approach

P u r p o s e  Computes the transformations to multivariate normality using the

proposed SURCON approach.

C a l c u l a t i o n s  See Section 3.4.3.

I n p u t  All the variables in the data file.

O p e r a t i o n  When this option is selected an inquiry box appears which

requests for the initial (hypothesised) values for the transformation parameters. The 

defaults for these values is 1, no transformation.

O u t p u t  The SURCON estimates for the transformation parameters together

with the associated statitics. (See Appendix B).

Box-Cox (Manual)

P u r p o s e  T o  e n t e r  u s e r - d e f i n e d  t r a n s f o r m a t i o n  p a r a m e t e r s .

C a l c u l a t i o n s  Transforms the selected variable(s) according to the Box-Cox

transformation of Section 3.3.

I n p u t  The transformation parameter.

O p e r a t i o n  Selecting this option produces an inquiry box in which the desired

transformation parameter value can be entered.

O u t p u t  The transformed data.
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4.4.2 5. Plots

Figure 4,13 P lots Menu

PLOTS

Scatter
Box
Symmetry
Probability
Index
S talactite

Scatter

P u r p o s e  T o p r o d u c e  a  s c a t t e r  p l o t  o f  t w o  v a r i a b l e s .

C a l c u l a t i o h s  N o n e .

I n p u t  The t w o  selected variables.

O p e r a t i o n  Selecting this option produces a  variable selection inquiry box from

which the two variables can be selected.

O u t p u t  A scatter plot of the two variables.

Box

P u r p o s e  T o  p r o d u c e  a  b o x  a n d  w h i s k e r s  p l o t  f o r  a  v a r i a b l e .

C a l c u l a t i o n s  None.

I n p u t  The selected variable.

O p e r a t i o n  A variable selection inquiry box appears from which the required

variable can be selected.

O u t p u t  A box and whiskers plot for a variable. The output also consists

of values for quaitiles of the variable.

Svmmetrv

P u r p o s e  T o  produce Gnanadesikan’s symmetry plots for a selected variable.

See Section 3.2.1.1.

C a l c u l a t i o n s  N o n e .
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I n p u t  The selected variable.

O p e r a t i o n  Selecting this option produces two inquiry boxes. The first is to

select the plot type (Type I, Type II and Type III) and the second is to select 

the variable.

O u t p u t  A Gnanadesikan’s symmetry plot for the selected variable.

Probabilitv 
2To produce a (normal/% ) probability plot.

None.

The variable/statistic for which the plot is required.

Selecting this option produces two inquiry boxes. The first is to 

select the plot type (normal or % ) and the second is to select the variable or 

statistic for which the plot is required.

P u r p o s e

C a l c u l a t i o n s

I n p u t

O p e r a t i o n

O u t p u t

P u r p o s e

C a l c u l a t i o n s

I n p u t

O p e r a t i o n

A (normal/% ) probability plot of the selected variable or statistic.

Index

To produce an index plot.

None.

The transformation parameter.

Selecting this option produces an inquiry box from which the

variable or statistic for which the plot is required can be selected.

O u t p u t

P u r p o s e

C a l c u l a t i o n s

I n p u t

O p e r a t i o n

O u t p u t

An index plot of the selected variable or statistic.

Stalactite 

To produce a Stalactite plot.

See Section 2.7.

All the variables in the data file.

Highlight the option and press enter to select it. 

The Stalactite plot of the current data set.
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4.4.2 6 Outliers

Figure 4.14 O u tlie rs  Menu

OUTLIERS

Mahalanobis_D 
Hat Matrix 
S ta la c t i te

P u r p o s e

approach.

C a l c u l a t i o n s

I n p u t

O p e r a t i o n

O u t p u t

Mahalanobis D

To test for outliers using the classical Mahalanobis distance

See Section 2.4.

All the variables in the data file.

Highlight the option and press enter to select it.

A list of the Mahalanobis distances for each observation. If an

observation exceeds a given cut-off point (the default is the expected maximum %

value) it has an arrow placed next to it. The output also consists of the 

discordancy tests for a single outlier from Section 2.2.1.

Hat Matrix

To test for outliers using the Hat matrix approach.

See Section 2.5.

All the variables in the data file.

Highlight the option and press enter to select it.

A list of the diagonal elements of the Hat matrix. If an

observation exceeds a given cut-off point (the default value is the 2p/n) it has an

arrow placed next to it.

Stalactite

P u r p o s e  T o  test f o r  outliers using the Stalactite analysis approach.

C a l c u l a t i o n s  See Section 2.7.

P u r p o s e

C a l c u l a t i o n s

I n p u t

O p e r a t i o n

O u t p u t
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I f p u t  All the variables i n  the data file.

O p e r a t i o n  Highlight the option and press enter to select it.

O u t p u t  A list of the diagnostic quantities from the Stalactite analysis.

4.4 2.7. Utilities

Figure 4.15 U tili tie s  Menu

UTILITIES

S e t...
Print logfile  
Rename
Change directory 
S ta lac tite

T itle
Labels
Freq. classes

Set...

-  Title

P u r p o s e

C a l c u l a t i o n s

I n p u t

O p e r a t i o n

To set the title for the analysis.

None.

None.

Selecting this option produces an inquiry box. Type in a title of 

upto 72 characters and press Enter.

O u t p u t  The title will appear at the top of the printout in the logfile. For

clarity it is recommended that this option should be run before reading in a data 

file otherwise tSTAT will use the default title of "Untitled Analysis".

-  Labels

To provide text labels for the data variables.

None.

Text label for each variable.

An inquiry box appears. The box will scroll through the variable

P u r p o s e

C a l c u l a t i o n s

I n p u t

O p e r a t i o n

list to allow you tp type in the respective labels.
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O u t p u t  The tStat package uses XI, X2,...,Xp as the default variable

labels. Although, this option will set new labels all reference to variables will be 

based on the default ones. A list of the labels can be obtained at any time by 

pressing the Status key (F2) and is printed at the begining of the logfile.

-  Freo. classes

P u r p o s e  T o  s e t  t h e  n u m b e r  o f  c l a s s e s  ( b i n s )  u s e d  i n  t h e  f r e q u e n c y  t a b l e

option.

C a l c u l a t i o n s

I n p u t

O p e r a t i o n

press Enter.

O u t p u t

None.

The number of classes.

Type the number of required classes into the inquiry box and

P u r p o s e

C a l c u l a t i o n s

I n p u t

O p e r a t i o n

O u t p u t

None.

Print logfile

To send a copy of the current logfile to the printer.

None.

None.

Make sure the printer is on and ready then press Enter.

A hard copy of the logfile. N.B.The logfile is an ordinary text 

(ASCII) file and so can be printed outside tSTAT, this also means that it can be 

imported directly into many wordprocessing packages.

Rename 

To rename a disk file.

None.

The old and new filenames.

Type the old filename into the inquiry box (if tSTAT fails to find

P u r p o s e

C a l c u l a t i o n s

I n p u t

O p e r a t i o n

the file an error occurs) and then type in the new filename. If a file with the
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same name exists on disk you are asked whether you would like to replace it. 

Press Esc to cancel the operation.

O u t p u t  None.

Change directory

P u r p o s e  T o  set the DOS path from which all the input files are read from

and all the output is sent to.

C a l c u l a t i o n s  N o n e .

I n p u t  DOS path.

O p e r a t i o n  Type a  valid DOS path (e.g. C:\MYDATA) into the inquiry box

and press Enter. If the path does not exist an error occurs. The directory in which 

tSTAT is started from is the default path.

O u t p u t  N o n e .

Stalactite

To set the style of the Stalactite plot.

None.

The plot style.

Select the Short option to obtain a shortened version (first and 

last five iterations) of the Stalactite plot and the Long option for the full plot. 

The default value is Long.

O u t p u t  N o n e .

P u r p o s e

C a l c u l a t i o n s

I n p u t

O p e r a t i o n

4.4.2.8. Ending a tSTAT Session 

Figure 4.16 Quit Menu
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P u r p o s e  T o  exit from tSTAT.

C a l c u l a t i o n s  N o n e .

I n p u t  None.

O p e r a t i o n  Select the No option to continue with tSTAT and Yes to quit to

the DOS prompt. It is always advisable to end a tSTAT session using this option 

because this ensures that all the files are properly closed. Do not switch the 

computer off in the middle of a session.

O u t p u t  None.

4.5 Example

Appendix B shows an example of the output produced in the logfile from a

typical analysis run from the tSTAT package. The data used is from Example E.2

of Section 2.
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CHAPTER FIVE

5.0 CONCLUSIONS AND RECOMMENDATIONS

The thesis addresses the general problem of transformations of multivariate 

observations to multivariate normality. In order to carry out the transformations the data 

have to undergo a series of tests to check for conformity to the multivariate normal model. 

These tests intrinsically involve screening for any multivariate outliers; a problem which is 

not trivial, especially when there are several of them. In tackling these problems the thesis 

proposes three main tools; an outlier detection method for multivariate observations, a 

joint transformations method and a statistical computer package to perform the required 

analyses.

This chapter discusses some of the conclusions drawn from the study and proposals 

for future areas of work. Since the computer package is the combination of all the methods 

presented, it shall be discussed first.

The whole process of data screening is exploratory in nature. It is an important and 

integral part of data analysis. However, apart from experienced statistical analysts this 

phase of data analysis is seldom given enough emphasis. In most of the statistical analyses 

done by the inexperienced users effort is confined to carrying out the usual range and edit 

checks on the data. Tests for statistical consistency are hardly ever performed. There are 

several reasons for this amongst which are ignorance of how to perform the screening. Even 

with the knowledge, the computational requirements may seem prohibitive. In the absence 

of specialised software the time required to perform the screening is almost invariably 

relatively long and the process is neglected. The statistical package developed (tSTAT) 

attempts to provide solutions to these points. It is a specialised statistical consistency 

checker and transformations package which combines the complexities of the theory and 

computations with flexibility and ease of use. It is entirely user-friendly and menu—driven 

with a comprehensive online context-sensitive help system. The package, therefore, guides
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the inexperienced user in testing for the statistical consistency of the data by providing the 

requisite options. Further the experienced user is spared the chore of adapting existing 

software. The list of tests included in the package is not exhaustive but consists of an 

adequate set to carry out a convincing screening analysis before conducting the 

comprehensive data analysis using the existing well-known software packages. Future work 

on the package would involve the extension of the number of possible tests and the 

inclusion of some of the standard statistical analyses.

The detection of outliers in multivariate observations is a well recognised problem 

and is increasingly becoming addressed. The main reason for its complexity is due to the 

well-known masking and swamping phenomena. Many solutions have been proposed but 

they generally suffer from the need to include prior information that is rarely available 

[Beckman and Cook 1983]. The classical approach using Mahalanobis distances may fail to 

indicate the presence of any outliers when many are present due to the influence of these 

outliers on the estimates of the means and covariance matrix used in calculating the 

distances. Rousseeuw and van Zomeren [1990] propose an approach using distances based 

on robust estimates of location and covariance. They emphasise that the approach does not 

require prior input of tuning constants. The outliers are judged relative to the metric of the 

minimum volume ellipsoid (MVE) containing the majority of the data. However, Cook and 

Hawkins [1990] show that this procedure may indicate an over—abundance of outliers, the 

identity of which can change dramatically with small changes in the parameters of the 

algorithm for robust estimation. They commend instead backward procedures in which 

outliers are sequentially detected and deleted, starting from all n observations. The 

approach proposed in the thesis, the Stalactite analysis, considers a forward procedure 

which starts by using a small random subset of the data for estimation of the means and 

covariances required for the calculation of the Mahalanobis distances. The size of the 

subset is then increased in such a way as to exclude outliers. The procedure unambiguously
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identifies the outliers in the example studied by Cook and Hawkins [Atkinson and Muliia 

1992], the ’notorious’ wood gravity data [Rousseeuw and Leroy 1987, p.243j. It also has the 

advantage of computational modesty compared to the minimum volume elipsoid approach 

while yielding a simple graphical summary, the Stalactite plot.

The proposed method performs well even in the presence of appreciable masking. If 

the iterations were initiated from within an outlying cluster the procedure has been found 

to recover from the cluster and thus still be able to identify all the outlying observations. 

The procedure also produces a number of useful diagnostic quantities such as the stalactite 

scores which are a metric of the relative presence of an observation within the outlying set 

during the iterations and the contamination index which is the ratio of ’bad’ observations 

to ’good’ ones. In addition, a summary of the behaviour of the computed means during the 

iterations can be obtained using the means plot. In response to Cook and Hawkins general 

reactions to the MVE approach, the Stalactite analysis has some desirable properties. 

Regarding the point about tuning constants the Stalactite analysis does not require any 

such prior information. The second point is in connection with the fact that the MVE 

approach seems to find many outliers even in ’innocent’ data. The Stalactite plot, together 

with the associated index and probability plots, has been shown to provide clear 

conclusions in which the observations are not too sparse. In Atkinson and Mulira [1992] 

two such examples were used with 100 replicates of the Stalactite analysis and they both 

led to the identification of the same outliers. The need for a graphical display showing how 

the outliers are distributed relative to the rest of the data is responded to by plotting the 

elements of the pull vector which are the signum functions of the differences between the 

full sample mean and the compound mean estimates. Finally, the computational 

requirements are minimal compared to the MVE approach and so the method can easily be 

implemented on PC—type machines.

The proposed method, although efficient for multivariate observations with an 

assumed underlying multivariate normal model, can be extended to other models eg. linear
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regression models. It has been tried in this context and appears to be satisfactory.

Lastly, the problem of obtaining joint transformations to multivariate normality has 

not been accorded the same coverage. There are several techniques for data—based 

transformations for univariate observations, however, the major technique in the 

multivariate case is based on the numerical maximisation of the loglikelihood function. 

Since there are several parameters to be estimated the resulting maximisation problem is of 

high dimension and the choice of the maximisation algorithm can greatly affect the speed 

at which the results can be obtained. The proposed Surcon analysis provides a 

complementary procedure which requires far less computational time in terms of function 

evaluations. It, however, requires more calculations within an iteration, which may be seen 

as some kind of contradiction, but the results from these calculations implicitly provide 

several useful statistical quantities including confidence limits, single equation score tests 

and a test for the diagonality of the covariance matrix. The method can be extended from 

transforming only multivariate data to performing transformations on other types of data 

eg. individual residuals from linear regression and the residuals of constructed variables. A 

further extension could be to provide some graphical summaries. In this regard, analogues 

of the added variable plots can be sought eg. 3-dimensional equivalents or added variable 

plot matrices where each plot would correspond to a particular value of the transformation 

parameter.

In conclusion, the combination of the three tools developed provides yet another 

"stepping stone" on the path towards the much needed solutions to the problem of 

multivariate outlier detection and transformations to multivariate normality.
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APFENOn A(i)
2

Expected Maximum (n < 50)

n 1 2 3 4 5 6 7 8 9 10

5 2.635 4.554 6.208 7.741 9.201 10.612 11.986 13.331 14.655 15.959
6 2.919 4.915 6.622 8.197 9.693 11.135 12.539 13.912 15.260 16.588
7 3.164 5.222 6.970 8.579 10.104 11.572 13.000 14.394 15.763 17.111
8 3.379 5.488 7.271 8.908 10.457 11.947 13.394 14.807 16.193 17.557
9 3.572 5.724 7.536 9.197 10.767 12.275 13.739 15.167 16.568 17.945

10 3.746 5.935 7.773 9.454 11.042 12.567 14.045 15.487 16.900 18.289
11 4.050 6.302 8.183 9.898 11.515 13.067 14.569 16.034 17.468 18.878
13 4.186 6.464 8.362 10.092 11.722 13.285 14.798 16.272 17.716 19.133
14 4.312 6.614 8.528 10.271 11.913 13.486 15.008 16.491 17.943 19.369
15 4.430 6.753 8.683 10.438 12.090 13.673 15.204 16.695 18.154 19.587
16 4.541 6.884 8.827 10.594 12.256 13.847 15.386 16.884 18.350 19.790
17 4.646 7.007 8.963 10.740 12.411 14.010 15.556 17.062 18.534 19.980
18 4.746 7.124 9.091 10.877 12.556 14.163 15.716 17.228 18.707 20.158
19 4.840 7.234 9.212 11.007 12.694 14.308 15.867 17.385 18.870 20.326
20 4.930 7.338 9.327 11.130 12.825 14.445 16.010 17.534 19.024 20.485
21 5.016 7.438 9.436 11.247 12.948 14.575 16.146 17.675 19.170 20.636
22 5.098 7.533 9.540 11.359 13.066 14.699 16.275 17.809 19.308 20.779
23 5.177 7.624 9.639 11.465 13.179 14.817 16.399 17.937 19.441 20.915
24 5.252 7.711 9.735 11.567 13.287 14.930 16.516 18.059 19.567 21.046
25 5.325 7.795 9.826 11.665 13.390 15.038 16.629 18.176 19.688 21.171
26 5.395 7.875 9.914 11.758 13.489 15.141 16.737 18.288 19.804 21.290
27 5.463 7.953 9.998 11.848 13.584 15.241 16.841 18.396 19.915 21.405
28 5.528 8.027 10.079 11.935 13.675 15.337 16.941 18.500 20.023 21.516
29 5.591 8.100 10.158 12.019 13.764 15.429 17.037 18.600 20.126 21.622
30 5.653 8.169 10.234 12.100 13.849 15.519 17.130 18.696 20.225 21.725
31 5.712 8.237 10.307 12.178 13.931 15.605 17.220 18.789 20.321 21.824
32 5.770 8.302 10.378 12.254 14.011 15.688 17.306 18.879 20.414 21.919
33 5.826 8.366 10.447 12.327 14.088 15.769 17.390 18.966 20.504 22.012
34 5.880 8.428 10.514 12.398 14.163 15.847 17.472 19.050 20.591 22.102
35 5.933 8.488 10.579 12.467 14.236 15.923 17.551 19.132 20.676 22.189
36 5.984 8.546 10.642 12.534 14.306 15.997 17.627 19.211 20.758 22.273
37 6.035 8.602 10.703 12.599 14.375 16.069 17.702 19.289 20.837 22.355
38 6.084 8.658 10.763 12.663 14.441 16.138 17.774 19.364 20.915 22.435
39 6.131 8.711 10.821 12.724 14.506 16.206 17.845 19.437 20.990 22.512
40 6.178 8.764 10.877 12.784 14.570 16.272 17.914 19.508 21.064 22.588
41 6.224 8.815 10.933 12.843 14.631 16.336 17.980 19.577 21.135 22.661
42 6.268 8.865 10.986 12.900 14.691 16.399 18.046 19.644 21.205 22.733
43 6.312 8.914 11.039 12.956 14.750 16.460 18.109 19.710 21.273 22.803
44 6.354 8.962 11.091 13.011 14.807 16.520 18.171 19.774 21.339 22.871
45 6.396 9.008 11.141 13.064 14.863 16.579 18.232 19.837 21.404 22.938
46 6.437 9.054 11.190 13.116 14.918 16.636 18.291 19.899 21.467 23.003
47 6.477 9.099 11.238 13.167 14.972 16.692 18.349 19.959 21.529 23.067
48 6.516 9.143 11.285 13.217 15.024 16.746 18.406 20.017 21.589 23.129
49 6.555 9.186 11.332 13.266 15.075 16.800 18.462 20.075 21.649 23.190
50 6.592 9.228 11.377 13.314 15.126 16.852 18.516 20.131 21.707 23.250

2For a sample of size  n measured on p variab les the expected maximum is

E[Max xh =

Eg. n=31, p=2 , E[Max = 8.237.
‘P
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APPENDn i(ii)
o

Expected Maximum (n > 60) 

Degrees of Freedom, p
n 1 2 3 4 5 6 7 8 9 10

60 6 .935 9.608 11.785 13.746 15.578 17 .324 19 .005 20.637 22.228 23.785
70 7 .228 9.932 12.131 14.110 15.960 17 .721 19 .417 21.062 22.666 24.235
80 7 .483 10.212 12.430 14.426 16.290 18 .064 19 .772 21.428 23.043 24.623
90 7 .710 10.461 12.695 14.704 16.580 18 .366 20 .084 21.750 23.374 24.964

100 7 .915 10.684 12.931 14.953 16.840 18 .635 20 .363 22.038 23.670 25.267
110 8 .100 10.885 13.146 15.178 17.074 18 .878 20 .614 22.297 23.936 25.540
120 8 .271 11.070 13.341 15.383 17.288 19 .100 20 .843 22.533 24.179 25.789
130 8 .429 11.240 13.521 15.572 17.484 19 .304 21 .054 22.749 24.402 26.017
140 8 .575 11.398 13.688 15.746 17.666 19 .492 21 .248 22.950 24.607 26.228
150 8 .712 11.546 13.844 15.909 17.835 19 .667 21 .429 23.136 24.798 26.424
160 8 .840 11.684 13.989 16.061 17.993 19 .831 21 .598 23.309 24.977 26.607
170 8 .961 11.813 14.126 16.204 18.142 19 .984 21 .756 23.472 25.144 26.779
180 9 .076 11.936 14.255 16.338 18.282 20 .129 21 .905 23.626 25.302 26.940
190 9 .184 12.052 14.377 16.466 18.414 20 .266 22 .046 23.771 25.450 27.092
200 9 .288 12.162 14.493 16.586 18.539 20 .395 22 .180 23.908 25.591 27.237

For a sample of s ize  n measured on p variab les the expected maximum is
E [ M a x

Non tabu lated  values can be obtained by in te rp o la tio n .
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APraKDIX B
/ / / / / / / / / / / / / / / / /
/ /  tSTAT VO.OO / /
/ / / / / / / / / / / / / / / / /
/************** "tSTAT Elxairple Set. **************/

Data F ile ;  D:\TURBCX\TSTAT.DAT 

No. o f obs 50 No. o f v a rs  2 

** Data L is tin g  **

Case XL X2

1 11.12 26.04
2 12.44 10.53
3 4.59 10.00
4 5.65 18.00
5 7.08 14.00

• • •

** Summary S ta t i s t i c s  ( A ll V ariables ) **

V ariable XL X2
S ta t i s t i c
Mean 11.90 21.74
10%-Trim. Mean 12.75 23.68
S.E. ( Mean) 0.80 1.17
Variance 32.29 68.84
Std. Dev. 5.68 8.30

Minimum 2.50 6.23
Maximum 30.00 44.00
Range 27.50 37.77

Skewness 1.29 0.26
S.E.(Skewness) 0.35 0.35
K urtosis 2.24 -0.25
S.E. (Kurtosis) 0.69 0.69

** R a o 's  S c o re  T e s t  f o r  M u l t i v a r i a t e  N o rm a li ty  **

M u l t i v a r i a t e  Skew ness ( F u l l  sam p le ) = 0 .0 6 4 9  
M u l t i v a r i a t e  K u r to s i s  ( F u l l  sam p le) = 5 .3 8 1 9

ABS(Z)
2 .6 7 2 1

D e g re ss  o f  freedom  
C h i- s q u a re  p -V a lu e

T3
0 .5 4 1 0

4
0 .9694

T4
5 .5 1 7 7

5
0 .3 5 6 0

T
6 .0 5 8 7

9
0 .7 3 4 0
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** Frequency D istrib u tio n  fo r  v a riab le  XI ** 

C lass In te rv a l Frequency Histogram
Count %age Cum.

( 2.50 , 8.00] 12 ( 24.0%) 24.0% I ************
( 8.00 , 13.50] 22 ( 44.0%) 68.0% — 1*********************2
( 13.50 , 19.00] 12 ( 24.0%) 92.0% 1 ************
( 19.00 , 24.50] 1 ( 2.0%) 94.0% - 1*
( 24.50 , 30.00] 1 ( 2.0%) 96.0% 1*
( 30.00 plus) 2 ( 4.0%) 100.0% 1 **

T otal 50 (100.0%)

** Frequency D is trib u tio n  fo r  v a ria b le X2 **

Class In te rv a l Frequency Histogram
Ccunt %age Cum.

( 6.23 , 13.78] 10 ( 20.0%) 20.0% 1 **********
( 13.78 , 21.33] 15 ( 30.0%) 50.0% 1 ***************
( 21.33 , 28.88] 15 ( 30.0%) 80.0% 1 ***************
( 28.89 , 36.44] 8 ( 16.0%) 96.0% - 1 ********
( 36.44 , 43.99] 1 ( 2.0%) 98.0% - 1*
( 43.99 plus) 1 ( 2.0%) 100.0% 1*

T otal 50 (100.0%)

** H inkley 's Quick Transformations to  Symmetry fo r v a ria b le  XI **

T = -1 0 0.5 1 2
Sample Mean -0.106 2.369 6.721 11.900 86.624
Saiiple Median -0.089 2.414 6.687 11.180 62.498
s i  (Std.Dev) 0.122 2.417 6.903 13.187 126.860
s2 (IQ Range) 0.050 0.553 1.856 6.270 72.894
d t  using s i -0.132 -0.019 0.005 0.055 0.190
d t  using  s2 -0.323 -0.081 0.018 0.115 0.331

** Recxxnmended transform ation fo r  symmetry **

Square ro o t

** H inkley 's Quick Transformations to  Symmetry fo r v a ria b le  X2 **

T =  -1 0 0.5 1 2
Sample Mean -0.055 2.997 9.147 21.741 269.736
Sample Median -0.047 3.058 9.227 21.290 226.884
s i  (Std. Dev) 0.062 3.028 9.329 23.256 332.377
s2 (IQ Range) 0.023 0.489 2.271 10.600 234.472
d t using s i -0.132 -0.020 -0.009 0.019 0.129
d t  using  s2 —0.356 -0.123 -0.035 0.043 0.183

** Reccmmended transform ation fo r  symmetry ** 

Square ro o t

245



** Var-Covarianoe M atrix **

Var

XI 32.29 
X2 26.71 68.18

** C orrela tion  M atrix **

Var

XI 1.000
X2 0.569 1 .0 0 0

** Regression A nalysis **

D^)endent V ariable ; X2 Ind^Dendent v a ria b le  (s) ; XI 

Regression equation : X2 = 11.896 + 0.827 XI

P red ic to r
Constant
XI

Coeff
11.896

0.827

S td .E rr 
2.270 
0.172

t - r a t i o
5.241
4.798

p-value
0.0000
0.0000

Deviance = 2258.10 d .o .f .  = 4 8  s  = 6.86 R-Sq = 32.4% 

** A nalysis o f  Variance **

Source
Regression
E rro r

T otal

OF
1

48

49

SS
1082.838
2258.099

3340.937

MS
1082.838

47.044

F
23.018

** Residuals L is tin g  **

Case XI Cbs X2 F i t Residual Std.Res h
1 11.12 26.04 21.10 4.94 0.73 0.020
2 12.44 10.53 22.19 -11.66 -1.72 0.020
3 4.59 10.00 15.69 -5.69 -0.84 0.015
4 5.65 18.00 16.57 1.43 0.21 0.016
5 7.08 14.00 17.75 -3.75 -0.55 0.017
6 6.79 12.00 17.51 -5 .51 -0.81 0.017
7 18.07 33.47 26.85 6.62 0.98 0.024
8 11.76 20.37 21.62 -1.25 -0.18 0.020
9 4.88 12.00 15.93 -3.93 -0.58 0.016

10 14.65 18.31 24.02 -5.71 -0.84 0.022
11 11.24 13.74 21.19 -7.45 -1.10 0.020
12 7.25 20.00 17.89 2.11 0.31 0.017
13 10.07 15.00 20.23 -5.23 -0.77 0.019
14 9.64 27.41 19.87 7.54 1.11 0.019
15 11.32 29.89 21.26 8.63 1.27 0.020
16 30.00 44.00 36.71 7.29 1.08 0.031

p-value
0 .0001
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17 15.01 26.43 24.31 2.12 0.31 0.022
18 12.13 30.84 21.93 8.91 1.31 0.020
19 16.51 22.26 25.55 -3.29 -0.49 0.023
20 9.18 20.58 19.49 1.09 0.16 0.018
21 16.00 22.00 25.13 -3.13 -0.46 0.023
22 4.79 6.23 15.86 -9.63 -1 .41 0.016
23 10.00 24.00 20.17 3.83 0.56 0.019
24 15.20 16.50 24.47 -7.97 -1.18 0.022
25 14.55 33.29 23.93 9.36 1.38 0.022
26 8.53 12.00 18.95 -6.95 -1.02 0.018
27 8.45 17.15 18.89 -1.74 -0.26 0.018
28 25.00 40.00 32.58 7.42 1.10 0.028
29 14.87 32.53 24.20 8.33 1.23 0.022
30 19.22 28.98 27.80 1.18 0.17 0.025
31 12.54 19.10 22.27 -3.17 -0.47 0.020
32 6.77 6.91 17.50 -10.59 -1.56 0.017
33 13.21 18.49 22.82 -4.33 —0.64 0.021
34 9.58 11.74 19.82 —8.08 -1.19 0.019
35 16.75 27.55 25.75 1.80 0.27 0.023
36 5.20 18.00 16.20 1.80 0.26 0.016
37 10.79 8.68 20.82 -12.14 -1.79 0.019
38 6.91 23.81 17.61 6.20 0.91 0.017
39 2.50 30.00 13.96 16.04 2.35 0.014
40 12.65 26.81 22.36 4.45 0.66 0.020
41 14.16 28.91 23.61 5.30 0.78 0.021
42 15.00 26.00 24.31 1.69 0.25 0.022
43 14.00 24.00 23.48 0.52 0.08 0.021
44 10.31 26.00 20.43 5.57 0.82 0.019
45 8.84 25.00 19.21 5.79 0.85 0.018
46 11.56 18.41 21.46 -3.05 —0.45 0.020
47 7.38 20.33 18.00 2.33 0.34 0.017
48 30.00 20.00 36.71 -16.71 -2.48 0.031
49 9.87 22.30 20.06 2.24 0.33 0.019
50 10.98 27.44 20.98 6.46 0.95 0.019

** Residual P lo t (Residuals vs F it)  **

18.0

Res 0.5

* *  *
*  *  *  *

*  2 *  *  *
* *  * *  *  *  *  2  *  

*  *
*  *  *  * *  * *

*  *  *  *  *  *
*  *  *

*  *  *

-17.0 
13.0 19.2 25.5

F i t
31.8 38.0
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** Normal P lot of Residuals **

18.0

Res 0.5

*  *  *

*2****
* 2*2

22222*
* *

* 2 * 2 *
* * 2 * *

* * *
*  *  *

-17.0
- 2 . 0 -0 .8  0.5 1.8

Normal Scores
** Index P lot of Residuals **

3.0

18.0

Res 0.5

*  *  *
*  *  *  * *  *  *  

*  *  * *  * *
*  *  *  *  *  * *  * *  *  *

*  *
*  *  * *  *  *  *  

* * * * *  *
*  *  *

*  *  *

-17.0
1 14 27

Case Number
** S catter Plot (XI vs X2) **

45.0

2 *
*  *  *

*  *2  *  *  2 *
*  *  *  *

*  * *  *  * *
* *  *  * *  *  *

*  *  *
*  * *  *  *  *
*  *  *

40

X2 26.0

7.0 +
3.0

52

10.0 17.0 24.0 31.0
XI

248



** Box Plot for variable XI **
2.5 11.2 30.0

** O ia r t i le s  fo r  v a ria b le  XI **

Sample s iz e  50 
Median 11.18
Q u artiles  8.49 14.76
IQ range 6.27
Extremes 2.50 30.00

** O u tlie rs  **

CASE 16, CASE 28, CASE 48,

** Box P lo t fo r  v a ria b le  X2 **

6.2 21.3 44.0

I--------------- 1 * I------------------------- 1

** Q uartiles  fo r  v a ria b le  X2 **

Sample s iz e  50 
Median 21.29
Q uartiles  16.83 27.42
IQ range 10.60
Extremes 6.23 44.00

** O u tlie rs  **

CASE 16,

** CXitliers -  C lassica l Approach (Mahalanobis Distance) ** 

Case # d^2 Case # d^2 Case # d^2 Case # d^2
1 0.561 16 11.529<- 31 0.235 46 0.210
2 3.018 17 0.405 32 3.313 47 0.766
3 2.406 18 1.759 33 0.470 48 16.540<-
4 1.280 19 0.912 34 1.616 49 0.241
5 1.046 20 0.260 35 0.815 50 0.951
6 1.498 21 0.749 36 1.491
7 2.175 22 3.650 37 3.304
8 0.035 23 0.439 38 1.637
9 1.900 24 1.751 39 8 .486<—

10 0.960 25 2.161 40 0.456
11 1.244 26 1.429 41 0.783
12 0.782 27 0.443 42 0.367
13 0.711 28 6.643<- 43 0.145
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14
15

1.420
1.659

29
30

1.816
1.724

44
45

0.768
1.038

E>q) [Max ChiSq] = 6.592 # 's u s ' cases : 4

** Discordancy T ests fo r  a  s in g le  o u t l ie r  **

T (Range) 
b2 (Kurtosis) 
Kiniber's Z 
Dmax

3.4334 
5.4227 
0.1873 

16.5402 (Case 48)

** O i t l ie r s  -  Hat M atrix ^ p ro a c h  **

Case
1
2
3
4
5
6
7
8 
9
10
11
12
13
14
15

# h
0.031
0.046
0.004
0.025
0.007
0.006
0.042
0.016
0.007
0.034
0 .021
0.024
0 .012
0.048
0.051

Case # 
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30

h
0 . 112<-
0.027
0.050
0.038
0.018
0.035
0.003
0.028
0.047
0.049
0 .0 0 1
0.011
0.072
0.044
0.045

Case
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

h
0.019
0 .010
0.023
0.015
0.032
0.028
0.037
0.049
0.190<-
0.029
0.032
0.026
0.023
0.035
0.040

Case
46
47
48
49
50

h
0.016
0.025
0.346c-
0 .022
0.039

C ut-off (2p/n) = 0.080

** SUROCâ  Analysis (MI£) **

XI
0.34

# 's u s ' cases : 3

X2
0.78HO Lambda =

Single Equation Estim ates
E st.

Var. Gamma S.E. t-v a lu e  Lambda

SURCŒf Estim ates
E st.

Gamma s .e .  t-v a lu e  Lambda

1 0.3234 0.3840 0.8421 0.0166 | -0.0014 0.3415 -0.0042 0.3414
(0.2019) (0.4984)

2 0.2702 0.5518 0.4897 0.5065 | 0.0000 0.4907 0.0000 0.7767
(0.3133) I (0.5000)

[*** Terms in  b rackets a re  p-values fo r  t ( n - l )  ***]
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** J o in t  t e s t  s t a t i s t i c  fo r  HO: g l  = g2 = . . . . =  gP = 0 **

F - s ta t i s t i c  = 0.0000 d .o .f .  = 2, 98

p-value: F -d is tn . *= 1.0000 d .o .f .  = 2, 98
Chi-square/P d is tn . = 0.5000 d .o .f .  = 2

** Confidence In te rv a ls

VAR 95.0% C .I. IS

XI [ -0.3205, 0.9672]
( -0.6273, 0.6604)

X2 C -0.6549, 1.1953]
( -0.4186, 1.4316)

95.0% C .I. 2SIS

[ -0.5740, 0.5711]
( -0.2312, 0.9139)

[ -0.8227, 0.8227]
( -0.0460, 1.5994)

[*** Square brackets a re  gammas and round b rackest a re  lambdas ***]

** Lagrange M u ltip lie r  T est **

HO: Diagonal covariance m atrix

IM -s ta t is t ic  = 13.1990 D.O.F. = 1
p-value fo r  ch i-square  w ith 1 D.O.F. = 0.0003

** T otal no. o f  i te r a t io n s  to  converge = 12 w ith Tolerance Factor 10.0**(-4) 

** S ta la c t i te  P lo t (Shortened) **

I te ra t io n  VS Ooservation 

I t m  Sub-sample 1 2 3 4 5
s iz e 12345678901234567890123456789012345678901234567890

1 3( 6.0) ** * * * * * * * * * *
2 4( 8.0) * * *
3 5( 10.0) ************ ******** ************** * *** ***
4 6( 12.0) ************ ******* **************** *** ***
5 7( 14.0) ************ **** ** ******************** ***

44
45
46
47
48

46( 92.0) 
47( 94.0) 
48( 96.0) 
49( 98.0) 
50(100.0)

S ta la c t i te  Score 03111132132120142131310322142322223232412220021400
12345678901234567890123456789012345678901234567890
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** stalactite Analysis **
I t m  Sub-sample Observation Bad:Good Total Sq. Distance

s iz e Good #(%) Bad #(%) Ratio Obs. Exp.

1 3 6.0) 38 76.0) 12( 24.0) 0.32 4.00 4.00
2 4 8.0) 47 94.0) 3( 6.0) 0.06 0.40 6.00
3 5 10.0) 9 18.0) 41( 82.0) 4.56 7.48 8.00
4 6 12.0) 9 18.0) 41( 82.0) 4.56 10.00 10.00
5 7 14.0) 9 18.0) 41( 82.0) 4.56 12.00 12.00
6 8 16.0) 10 20.0) 40 ( 80.0) 4.00 14.00 14.00
7 9 18.0) 11 22.0) 39 ( 78.0) 3.55 16.00 16.00
8 10 20.0) 12 24.0) 38 ( 76.0) 3.17 18.00 18.00
9 11 22.0) 14 28.0) 36 ( 72.0) 2.57 20.00 20.00

10 12 24.0) 15 30.0) 35 ( 70.0) 2.33 22.00 22.00
11 13 26.0) 15 30.0) 35 ( 70.0) 2.33 24.00 24.00
12 14 28.0) 16 32.0) 34 ( 68.0) 2.13 26.00 26.00
13 15 30.0) 19 38.0) 31( 62.0) 1.63 28.00 28.00
14 16 32.0) 20 40.0) 30 ( 60.0) 1.50 30.00 30.00
15 17 34.0) 20 40.0) 30 ( 60.0) 1.50 32.00 32.00
16 18 36.0) 20 40.0) 30 ( 60.0) 1.50 34.00 34.00
17 19 38.0) 23 46.0) 27 ( 54.0) 1.17 36.00 36.00
18 20 40.0) 25 50.0) 25 ( 50.0) 1.00 38.00 38.00
19 21 42.0) 27 54.0) 23 ( 46.0) 0.85 40.00 40.00
20 22 44.0) 28 56.0) 22 ( 44.0) 0.79 42.00 42.00
21 23 46.0) 28 56.0) 22 ( 44.0) 0.79 44.00 44.00
22 24 48.0) 29 58.0) 21 ( 42.0) 0.72 44.95 46.00
23 25 50.0) 30 60.0) 20 ( 40.0) 0.67 47.36 48.00
24 26 52.0) 34 68.0) 16 ( 32.0) 0.47 50.00 50.00
25 27 54.0) 35 70.0) 15 ( 30.0) 0.43 51.98 52.00
26 28 56.0) 37 74.0) 13 ( 26.0) 0.35 53.59 54.00
27 29 58.0) 37 74.0) 13 ( 26.0) 0.35 56.00 56.00
28 30 60.0) 39 78.0) 11 ( 22.0) 0.28 57.68 58.00
29 31 62.0) 39 78.0) 11 ( 22.0) 0.28 59.43 60.00
30 32 64.0) 42 84.0) 8( 16.0) 0.19 62.00 62.00
31 33 66.0) 42 84.0) 8( 16.0) 0.19 64.00 64.00
32 34 68.0) 43 86.0) 7( 14.0) 0.16 66.00 66.00
33 35 70.0) 45 90.0) 5( 10.0) 0.11 68.00 68.00
34 36 72.0) 46 92.0) 4( 8.0) 0.09 70.00 70.00
35 37 74.0) 46 92.0) 4( 8.0) 0.09 72.00 72.00
36 38 76.0) 46 92.0) 4( 8.0) 0.09 74.00 74.00
37 39 78.0) 46 92.0) 4( 8.0) 0.09 76.00 76.00
38 40 80.0) 46 92.0) 4( 8.0) 0.09 78.00 78.00
39 41 82.0) 46 92.0) 4( 8.0) 0.09 80.00 80.00
40 42 84.0) 46 92.0) 4( 8.0) 0.09 82.00 82.00
41 43 86.0) 46 92.0) 4( 8.0) 0.09 84.00 84.00
42 44 88.0) 46 92.0) 4( 8.0) 0.09 86.00 86.00
43 45 90.0) 46 92.0) 4( 8.0) 0.09 87.97 88.00
44 46 92.0) 46 92.0) 4( 8.0) 0.09 90.00 90.00
45 47 94.0) 46 92.0) 4( 8.0) 0.09 92.00 92.00
46 48 96.0) 46 92.0) 4( 8.0) 0.09 94.00 94.00
47 49 98.0) 47 94.0) 3( 6.0) 0.06 96.00 96.00
48 50 100.0) 48 96.0) 2( 4.0) 0.04 98.00 98.00

252



** W ei^ ted  mean v ec to r **

XI X2
13.257 22.308

/*** End Run ***/
15:12:01 19 Mar 92
tSTAT VO.OO (C) ISE, 1992.
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APPENDn C

a) Peruvian Data (Example E.8)

Case XI X2 Case XI X2 Case XI X2 Case XI X2

1 71.0 1629 11 66.5 1622 21 59.5 1513 31 69.0 1625
2 56.5 1569 12 59.1 1486 22 61.0 1653 32 73.0 1615
3 56.0 1561 13 64.0 1578 23 57.0 1566 33 64.0 1640
4 61.0 1619 14 69.5 1645 24 57.5 1580 34 65.0 1610
5 65.0 1566 15 64.0 1648 25 74.0 1647 35 71.0 1572
6 62.0 1639 16 56.5 1521 26 72.0 1620 36 60.2 1534
7 53.0 1494 17 57.0 1547 27 62.5 1637 37 55.0 1536
8 53.0 1568 18 55.0 1505 28 68.0 1528 38 70.0 1630
9 65.0 1540 19 57.0 1473 29 63.4 1647 39 87.0 1542

10 57.0 1530 20 58.0 1538 30 68.0 1605

b) Minitab Tree Data (Example E.9)

Case XI Y Case XI Y Case XI Y Case XI Y

1 70 10.3 11 79 24.2 21 78 34.5 31 87 77.0
2 65 10.3 12 76 21.0 22 80 31.7
3 63 10.2 13 76 21.4 23 74 36.3
4 72 16.4 14 69 21.3 24 72 38.3
5 81 18.8 15 75 19.1 25 77 42.6
6 83 19.7 16 74 22.2 26 81 55.4
7 66 15.6 17 85 33.8 27 82 55.7
8 75 18.2 18 86 27.4 28 80 58.3
9 80 22.6 19 71 25.7 29 80 51.5

10 75 19.9 20 64 24.9 20 80 51.0
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c) Repeat Soil Sample Survey Data (Example E .l l )

Case XI X2 X3 X4 X5 Case XI X2 X3 X4 X5

1 6.3 5.8 31 88 130 31 5.9 5.3 22 80 68
2 6.6 6 40 68 76 32 5.8 5.3 23 78 79
3 6.6 6 32 93 79 33 7.6 7 50 315 370
4 6.3 5.8 40 128 106 34 7.1 6.5 16 177 686
5 6.6 5.9 22 77 61 35 6.5 6 42 207 358
6 6.9 6.3 11 77 45 36 7 6.4 29 147 348
7 5.8 5.1 22 175 91 37 6.2 5.6 8 74 150
8 5.5 5 12 221 106 38 6.2 5.5 33 315 148
9 6.2 5.7 17 77 103 39 6.3 5.6 17 102 125

10 6.2 5.6 18 114 225 40 5.5 4.8 17 105 180
11 6.6 6.1 14 86 275 41 5.6 5 14 171 144
12 6.5 6.1 30 270 245 42 5.9 5.3 22 270 239
13 7 6.5 18 72 180 43 5.8 5.2 15 74 330
14 5.8 5.1 5 136 118 44 6.3 5.9 31 350 574
15 6.5 5.7 17 86 193 45 6.8 6.2 19 136 353
16 6.3 5.7 16 134 158 46 7.2 6.7 21 147 506
17 8 7.4 21 134 109 47 6.9 6.3 18 225 551
18 7 6.3 18 77 61 48 6.2 5.9 27 142 89
19 8.3 7.7 13 102 70 49 5.5 5 14 112 110
20 8 7.5 117 61 70 50 5.5 5 14 112 110
21 5.8 5.1 13 102 165 51 6.3 5.7 16 84 77
22 6.8 6 5 69 214 52 5.8 5.1 14 81 91
23 7.2 6.4 28 82 176 53 6.9 6.2 11 76 73
24 6.8 6 3 56 138 54 6.6 6.1 32 128 46
25 6.2 5.6 10 82 275 55 7.5 6.8 70 481 88
26 6.6 6 10 197 325 56 7.1 6.4 57 334 68
27 6.6 6 12 100 308 57 6.2 5.6 13 74 62
28 5.6 4.9 14 88 224
29 6.5 5.8 23 76 138
30 6 5.5 16 187 96
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