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Abstract

A user interface is critical to the success of any computer-based system. Numerous studies 

have shown that interface design has a significant influence on factors such as learning time, 

performance speed, error rates, and user satisfaction. Computer-based simulation modelling is 

one of the domains that is particularly demanding in terms of user interfaces. It is also an area that 

often pioneers new technologies that are not necessarily previously researched in terms of human- 

computer interaction.

The dissertation describes research into user interfaces for discrete event simulation. Issues 

that influence the ‘usability’ of such systems are examined. Several representative systems were 

investigated in order to generate some general assumptions with respect to those characteristics of 

user interfaces employed in simulation systems. A case study was carried out to gain practical 

experience and to identify possible problems that can be encountered in user interface 

development. There is a need for simulation systems that can support the developments of 

simulation models in many domains, which are not supported by contemporary simulation 

software.

Many user interface deficiencies are discovered and reported. On the basis of findings in this 

research, proposals are made on how user interfaces for simulation systems can be enhanced to 

match better the needs specific to the domain of simulation modelling, and on how better to 

support users in simulation model developments. Such improvements in user interfaces that better 

support users in simulation model developments could achieve a reduction in the amount of time 

needed to learn simulation systems, support retention of learned concepts over time, reduce the 

number of errors during interaction, reduce the amount of time and effort needed for model 

development, and provide greater user satisfaction.

J. Kuljis User Interfaces and Discrete Event Simulation Models Page i



Acknowledgements

I would like to thank my supervisor Professor Ian O. Angell for his incomparable guidance and 

reassuring support, and for giving me a chance to pursue this research in the belief that I will get 

there in the end.

To my parents and sisters who always believed in me and always supported me in any way they 

could.

To Alistair Gardiner for helping me to capture graphics from a screen.

To the Roehampton Institute for helping me with the fees and providing me with some free time to 

finish writing this dissertation.

I cannot thank Ray enough for providing his constant support, encouragement, and advice, and 

for putting up with me throughout this period.

J. Kuljis User Interfaces and Discrete Event Simulation Models Page ii



Table of Contents

Abstract i

Acknowledgements ii

Chapter 1: Introduction 1

1.1 Introduction.............................................................................................................. 1

1.2 Simulation.................................................................................................................2

1.3 Human-Computer Interfaces................................................................................... 5

1.4 Research Objectives................................................................................................. 8

1.5 Research Methods.................................................................................................. 10

1.6 Outline of the Dissertation......................................................................................12

1.7 Summary................................................................................................................ 12

Chapter 2: User Interfaces to Discrete Event Simulation Systems 13^

2.1 Introduction............................................................................................................ 13

2.2 Basic Concepts in Human-Computer Interaction..................................................13

2.2.1 Interaction Devices..................................................................................14

2.2.2 Interaction Styles.....................................................................................17

2.2.3 User Support and Assistance.................................................................28

2.3 Simulation Systems............................................................................................... 32

2.3.1 Introduction.............................................................................................32

2.3.2 Simulation Systems Examined..............................................................37

2.3.3 XCELL+.................................................................................................38

2.3.4 Taylor n .................................................................................................. 46

2.3.5 ProModel for Windows.........................................................................54

2.3.6 Micro Saint for Windows...................................................................... 63

2.3.7 WITNESS for Windows....................................................................... 71

J. Kuljis User Interfaces and Discrete Event Simulation Models Page iii



2.3.8 Simscript II.5 for Windows.................................................................. 80

2.4 Summary................................................................................................................91

C hapter 3: A Case Study 102

3.1 Purpose of the Case Study.................................................................................. 102

3.2 Introduction to the Case Study.............................................................................102

3.3 The Problem Modelled......................................................................................... 104

3.3.1 Clinic Structure..................................................................................... 106

3.3.2 Appointment Scheduling Rules............................................................ 109

3.3.3 Queue Discipline Rules......................................................................... 109

3.3.4 Operating Practice................................................................................. I l l

3.3.5 Statistical Data.......................................................................................112

3.3.6 Simulation of a Clinic............................................................................112

3.4 Building CLINSIM............................................................................................. 114

3.4.1 Design Considerations.......................................................................... 114

3.4.2 Design and Implementation.................................................................. 119

3.5 Conclusions.......................................................................................................... 130

C hapter 4: An Analysis of the Case Study 131

4.1 Introduction.......................................................................................................... 131

4.2 Data Interface....................................................................................................... 133

4.2.1 Clinic Specification...............................................................................134

4.2.2 Simulation Set-up................................................................................. 146

4.3 Simulation.............................................................................................................147

4.3.1 Visual Simulation..................................................................................147

4.3.2 Simulation Results................................................................................ 152

4.4 Communication.................................................................................................... 156

4.5 User Support and Assistance.............................................................................. 157

J. Kulj is User Interfaces and Discrete Event S imulation Models Page iv



4.6 Usability Evaluation..............................................................................................158

4.7 Conclusions.......................................................................................................... 159

Chapter 5: HCI Relevance to Simulation Systems 161

5.1 Introduction.......................................................................................................... 161

5.2 Human Issues........................................................................................................163

5.2.1. The Human........................................................................................... 163

5.2.2 The Interaction....................................................................................... 173

5.3 Some Design Issues..............................................................................................175

5.3.1 The Process of Ensuring Usability...................................................... 175

5.3.2 Design Guidelines.................................................................................177

5.4 HCI Theories........................................................................................................193

5.4.1 The Empirical Approach........................................................................194

5.4.2 The Cognitive Approach.......................................................................195

5.4.3 The Predictive Modelling Approach.................................................... 199

5.4.4 The Anthropomorphic Approach..........................................................205

5.5 Evaluation of User Interfaces.............................................................................. 207

5.6 Conclusions.......................................................................................................... 211

Chapter 6: Proposed Enhancements 217

6.1 Introduction.......................................................................................................... 217

6.2 Simulation Environments..................................................................................... 220

6.2.1 Model Development Aid.......................................................................221

6.2.2 Colour Use Aid.....................................................................................226

6.2.3 Flexibility of Interaction.......................................................................227

6.3 Data Input/ Model Specification.......................................................................... 228

6.4 Visual Simulation..................................................................................................231

6.5 Simulation Statistics/Results................................................................................234

J. Kuljis User Interfaces and Discrete Event Simulation Models Page v



6.6 User Support and Assistance.............................................................................. 237

6.7 Summary...............................................................................................................241

C hapter 7: Sum m ary and Conclusions 2 4 3_

7.1 Summary...............................................................................................................243

7.2 Conclusions.......................................................................................................... 245

7.3 Future W ork......................................................................................................... 247

R eferences 2 5 0_

Software Manuals Referenced........................................................................................ 261

Publications Resulting from  this Research 263

J. Kuljis User Interfaces and Discrete Event Simulation Models Page vi



List of Figures and Tables

Figure 2.1 XCELL+: Environment......................................................................................... 40

Figure 2.2 XCELL+: Model design........................................................................................40

Figure 2.3 XCELL+: An element’s details.............................................................................42

Figure 2.4 XCELL+: A model run......................................................................................... 42

Figure 2.5 XCELL+: Simulation results................................................................................. 44

Figure 2.6 XCELL+: The only help screen............................................................................44

Figure 2.7 Taylor II: Environment......................................................................................... 48

Figure 2.8 Taylor II: Data entry............................................................................................... 48

Figure 2.9 Taylor II: The icon editor.......................................................................................50

Figure 2.10 Taylor II: A model run...........................................................................................50

Figure 2.11 Taylor II: Simulation results................................................................................. 52

Figure 2.12 Taylor II: On-line help........................................................................................... 52

Figure 2.13 ProModel: Specifying locations............................................................................56

Figure 2.14 ProModel: Specifying processes...........................................................................56

Figure 2.15 ProModel: A model run..........................................................................................59

Figure 2.16 ProModel: Output results for locations................................................................59

Figure 2.17 ProModel: Output results for a location................................................................61

Figure 2.18 ProModel: Context-sensitive help........................................................................61

J. Kuljis User Interfaces and Discrete Event Simulation Models Page vii



Figure 2.19 Micro Saint: Network diagram for a model......................................................... 65

Figure 2.20 Micro Saint: Data entry for a task.......................................................................... 65

Figure 2.21 Micro Saint: A model run (with symbols)............................................................67

Figure 2.22 Micro Saint: Model run (with numbers)............................................................... 67

Figure 2.23 Micro Saint: Output results....................................................................................69

Figure 2.24 Micro Saint: On-line help.......................................................................................69

Figure 2.25 WITNESS: Defining a model................................................................................72

Figure 2.26 WITNESS: Specifying the display options......................................................... 72

Figure 2.27 WITNESS: Specifying queue characteristics.......................................................74

Figure 2.28 WITNESS: A model run .......................................................................................74

Figure 2.29 WITNESS: A model output for buffers............................................................... 78

Figure 2.30 WITNESS: On-line help........................................................................................ 78

Figure 2.31 Simscript n.5: Program editor in SimLab.............................................................82

Figure 2.32 Simscript 13.5: A menu definition in SimDraw.................................................... 82

Figure 2.33 Simscript II.5: Drawing icons in SimDraw..........................................................85

Figure 2.34 Simscript n.5: A model run...................................................................................85

Figure 2.35 Simscript n.5: SimVideo facility...........................................................................88

Figure 2.36 Simscript D.5: On-line help................................................................................... 88

Table 2.1 Minimal system requirements................................................................................91

Table 2.2 Main system characteristics...................................................................................92

J. Kuljis User Interfaces and Discrete Event Simulation Models Page viii



Table 2.3 Data input/ Model specification.............................................................................93

Table 2.4 Simulation experiment...........................................................................................94

Table 2.5 Simulation results.................................................................................................. 95

Table 2.6 Printed manuals...................................................................................................... 96

Table 2.7 On-line user assistance........................................................................................... 97

Table 2.8 Support for usability..............................................................................................98

Table 2.9 Usability defects.....................................................................................................99

Table 2.10 User interface........................................................................................................100

Figure 3.1 Representation of CLINSIM model.................................................................... 107

Figure 3.2 Main CLINSIM m enu......................................................................................... 120

Figure 3.3 Data input menu................................................................................................... 121

Figure 3.4 Example of data-input form................................................................................. 125

Figure 3.5 CLINSIM data input menus................................................................................. 126

Figure 3.6 Example of Data sample entry screen..................................................................127

Figure 3.7 CLINSIM ACD.....................................................................................................128

Figure 4.1 CLINSIM: Top level menu structure................................................................... 132

Figure 4.2 Data interface top-level menu structure...............................................................134

Figure 4.3 CLINSIM Clinic specification: Hierarchical menu structure.............................135

Figure 4.4 Path to specify Actual start time for Doctor 1 ..................................................... 137

Figure 4.5 Menu invoked on selection of Doctor 1...............................................................138

J. Kuljis User Interfaces and Discrete Event Simulation Models Page ix



Figure 4.6 Alternative menu invoked on selection of Doctor 1 ...........................................138

Figure 4.7 Visual simulation initial screen.............................................................................149

Figure 4.8 Visual simulation................................................................................................. 149

Figure 4.9 Simulation results: Main menu.............................................................................153

Figure 4.10 Output result for patient waiting times................................................................ 155

Figure 4.11 Output results for queue size............................................................................... 155

Table 5.1 Graphical techniques for representing numeric data........................................... 190

Table 6.1 A desiderata framework for simulation user interfaces..................................... 242

J. Kuljis User Interfaces and Discrete Event Simulation Models Page x



Chapter 1: Introduction

1.1 Introduction

When examining the history of how computer systems have evolved over a time-span of four 

decades one has to notice that the development of new technologies follows amazing 

developments in the modes of interaction between humans and computer systems. When using 

current interactive computer systems it is almost impossible to understand what it was like to use 

the old systems with their rigid structures and rudimentary types of user interfaces. Research into 

human-computer interaction (HCI) is by no means over. We are only at the beginning of such 

research. The population of computer users is increasing in numbers and expanding to all areas of 

human activities. HCI research is driven by that expansion. At the same time as computer systems 

become more ‘usable’, that brings in more new users and new uses of computers. Therefore, 

research in HCI and expansion of the user population are inevitably linked in a feedback like 

process. Despite all the advances and improvements in today’s interactive computer systems we 

are all too well aware that there are still many deficiencies in current user interfaces. Computer 

systems now have to cater for all kinds of task domains and for all types of user populations. This 

means that user interfaces have to bridge the gap between often computer illiterate, users and 

computer systems.

Computer-based simulation modelling is one of the domains that is particularly demanding in 

terms of user interfaces. It is an area that covers aspects of user interfaces that usually span over 

several application areas. It is also an area that often pioneers new technologies that are not 

necessarily previously researched in terms of human-computer interaction. Simulation systems 

therefore are worthy of examination from the user interface point of view. So one question is, 

whether there are any obvious and relatively easily resolved deficiencies in user interfaces to 

current simulation systems? The other question is, whether user interfaces to simulation systems 

can offer new insights into human-computer interaction in general, and if this is the case what it 

can offer? Related questions are: can theories in human-computer interfaces in general help 

eliminate simulation HCI deficiencies? If it cannot what can we do about it?
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Chapter 1: Introduction

1.2 Simulation

Simulation is the process of designing a model of a real system and conducting experiments with 

this model for the purpose of either understanding the behaviour of the system or for evaluating 

various strategies for the operation of the system (Shannon, 1975). As a technique, simulation is 

one of the most widely used in operations research and management science. However, it is, and 

can be, applied in other areas like, for example, decision-support systems. Eom and Lee (1990) 

conducted a survey of the modelling techniques used in decision-support systems. They found 

that of the 20 modelling techniques surveyed, 41 out of 203 applications used simulation. 

Application areas for simulation are numerous and diverse. Law and Kelton (1991) provide a list 

of some particular kinds of problems for which simulation has been found to be a useful and 

powerful tool:

• Designing and analysing manufacturing systems.

• Evaluating hardware and software requirements for a computer system.

• Evaluating a new military weapons system or tactic.

• Determining ordering policies for an inventory system.

• Designing communications systems and message protocols for them.

• Designing and operating transportation facilities such as freeways, airports, subways, 

or ports.

• Evaluating designs for service organisations such as hospitals, post offices, or fast- 

food restaurants.

• Analysing financial or economic systems.

A distinction can be drawn between models of continuous and discrete systems. In continuous 

systems the changes through time are predominantly smooth, and are conveniently described by 

sets of difference equations. A discrete system changes at specific points in time and a model of 

such a system is concerned only with these events (Paul and Baimer, 1993). The simulations and 

models we consider in this dissertation are discrete event simulation models.
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Chapter 1: Introduction

Simulation systems are a particular kind of decision support system. Their nature is, as for 

any modelling process, to understand and structure a problem that is constantly changing to a 

varying degree, both with respect to changes in the outside world, and with respect to the 

perceptions of the problem owners (Paul, 1991). That change has to be apparent in the working 

system. Simulation always involves experimentation, usually on a computer-based model of some 

system. The simulation model can be used to compare alternative systems, or the effect of 

changing a decision variable; to predict what would happen to the state of the system at some 

future point in time; and to investigate how the system would behave and react to normal and 

abnormal stimuli (Pidd, 1992a). The model is used as a vehicle for experimentation where trial 

and error and learning methods of experimentation help support management decision making. 

Such modelling systems have the desired characteristics of interactive user input, algorithmic 

processing, and intricate and flexible output. They typically involve non-linear development, 

which is interruptable and restartable to meet changing specifications in the light of improved 

understanding during development. Because of the research nature of modelling, there is an active 

need for the users or problem owners to participate in the modelling process. Requirements and 

specification are therefore particularly subject to change as an understanding of the problem being 

modelled evolves, for both the users and the developers. This can lead to severe difficulties in 

modelling implementation because of the changing basis of the model. One aim in these situations 

might be to determine general principles concerning the flexibility of applications to meet 

specifications and specification changes, and customisability.

Simulation has for a long time been a popular technique, but until it was visualised, its 

operation was a mystery to many problem owners. There is evidence that visual simulation 

systems, especially visual interactive modelling systems (VIM) have a much greater impact than 

non-visual. The results from a survey conducted by Kirkpatrick and Bell (1989) support the 

claims that VIM has considerable managerial support in industry, is useful in providing modelling 

support for group decision making, and provides major benefits to managers in the areas of model 

validation, incorporation of qualitative dimensions into modelling, and modelling complex 

systems. It substantiated the belief that VIM leads to an improved understanding of the problem 

and the alternatives available, and in the decision maker’s greater confidence in and commitment to
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Chapter 1: Introduction

the results. However, there is a recognised danger that visual modelling can induce undue over 

confidence in modelling accuracy because the model looks ‘alright* (Paul, 1991).

Recent advances in microcomputer technology have had a major impact on simulation 

modelling and the use of graphics in particular. Visual representation in simulation modelling 

comes in a variety of forms. There are a number of ways of visually representing the logic of a 

simulation model whilst it is running. Graphical interfaces can be extremely useful in the 

development of sophisticated training and simulation environments. Users of such interfaces are 

able to obtain a much more immediate impression of what is happening to the object or system in 

question by looking at a graphical representation than by looking at a textual or symbolic 

representation of a mathematical model. As the user watches the progress of a visual simulation it 

may become obvious that performance could be improved by a small change to one of the 

variables. Interrupting the running program, modifying the appropriate variables and restarting the 

simulation from its previous state are becoming more commonly available features in commercial 

simulation packages.

Most simulation software offers graphical facilities for the representation of simulation 

statistics. Besides the standard reports for commonly occurring performance statistics (e.g., 

utilisation, queue sizes and delays, and throughput) most of the newer software allow the 

development of tailored reports. The user can choose the form of representation (e.g., textual 

output, table, representational graph, bar diagram, pie chart, histogram, time series, etc.), 

colours, labels, etc. In most of the visual interactive simulation software, partial statistical results 

can be viewed during the simulation run. Some authors question whether replacing numbers with 

multi-coloured graphics improves the usefulness of the display for decision making (Ives, 1982; 

Bell, 1991). But this is not an issue here since there is always the possibility to resort to numbers 

when the user, after exploring several scenarios, becomes satisfied with the system behaviour. 

Increasingly, discrete event computer simulations are being written on personal computers and 

workstations. Also commonly, they are written as delivered software for use by the client directly 

rather than by the analysts on the client’s behalf. This necessitates a more elaborate user interface 

that will aid clients in their decision making tasks.
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Chapter 1: Introduction

Some of the most important decisions a modeller or analyst must make in performing a 

discrete event simulation study is the choice of a language, or package, or environment. There are 

currently two major classes of simulation software: languages and simulators (Pidd, 1992a). A 

simulation language is a computer package that is general in nature but may have special features 

for certain types of applications. A simulator is a computer package that allows one to simulate a 

system, contained with a specific class of systems, with little or no programming. Perhaps the 

most important feature for a simulation package to have is modelling flexibility. If the simulation 

package does not have the necessary capabilities for a particular application then the system must 

be approximated, resulting in a model with unknown validity (Law and Kelton, 1991).

The bulk of current model development uses high level programming languages as the basis 

for bespoke design and construction (Paul, 1991). Market demand for software of this kind is 

generally insufficient to make investment in these methods worthwhile. Models are relatively 

unique developments. The type of application is likely to play a major part in determining the 

features of the software to be used to write a simulation model and to run the simulation. If the 

application being considered is entirely novel then the analyst may have no option but to write a 

program from scratch, either in a general-purpose language or in a simulation language. But in 

any event, it is becoming increasingly important to consider the anticipated end-user of the 

simulation.

13 Human-Computer Interfaces

Only a small number of computer systems today are designed to run autonomously. Most of them 

are interactive systems in which human users and computers interact through a user interface (UI). 

The success of a computer system is often dependent on how easily the user can learn to use the 

user interface. Today, the user interface is the first thing many people ask about when discussing 

a new software application. Before the 1970s there were relatively few scientific and behavioural 

studies of user interfaces. By the late 1970s and early 1980s numerous corporations were joining 

IBM and Xerox in mounting major efforts to study and improve the human factors of computing 

systems (Baecker and Buxton, 1987). Work also began on the academic front In the 70s and 80s 

there were a series of forums for technical discussion, interchange, and publications among 

members of the profession.
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Chapter 1: Introduction

To users, the interface is the system (Hix and Hartson, 1993). Computer systems often lack 

good user interfaces for a variety of reasons, including the lack of a good user interface design 

methodology and the lack of good tools to implement a user interface. An interface is often the 

single most important factor in determining the success or failure of a system (Larson, 1992). It is 

also one of the most expensive. Smith and Mosier (1984) conducted a survey of people concerned 

with information systems design who on average estimated that 30 to 35 percent of operational 

software is required to support the user interface. Bobrow et al. (1986) claim that the user 

interface often constitutes one third to one half of the code of typical knowledge-based systems. 

This claim is reinforced by Myers and Rosson (1992) who argue that anywhere from an average 

of 48% to a maximum of nearly 100% of the code for an interactive system is now used to 

support the user interface.

Human-computer interaction concerns itself with the domain of interaction between humans 

and computers, and all the issues associated with that activity: the interaction itself (as a process) 

and knowledge about that interaction. The area has been variously labelled:

• Human-Computer Interface (HCI)

• Man-Machine Interface (MMI)

• Human-Systems Interface (HSI)

• Computer-Human Interaction (CHI)

There is no agreed upon definition of the range of topics which form the area of human- 

computer interaction. The following definition is one from ACM SIGCHI (1992):

Human-computer interaction is a discipline concerned with the design, evaluation 

and implementation o f interactive computing systems for human use and with the 

study o f major phenomena surrounding them.

Benyon and Murray (1988) make an important distinction between the terms Human- 

Computer Interaction and Human-Computer Interface :

Interaction includes all aspects o f the environment such as the working practices, 

office layout, provision o f help and guidance, and so on.
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Chapter 1: Introduction

The interface is the part o f a system with which the user comes into contact 

physically, perceptually or cognitively.

There is an increasing recognition of the importance of organisational issues and the need for 

user interfaces that properly supports organisations as well as individuals (Booth and Marsden, 

1989). Traditionally, human-computer interaction has focused on how to design for data 

availability - is the available data legible and accessible? It is the domain actor’s task to use the 

available data to answer questions and detect and solve problems. The perspective of 

representation design shifts emphasis away from the display of available data as signals to be 

interpreted, towards a focus on communicating what is signified by the data (Woods and Roth, 

1988). Frequently, what data are relevant depends on the state of domain or the intentions of the 

problem solver. A second dimension along which representations can vary is whether the 

information is presented as description (i.e., linguistic or digital form) or as depiction (graphic or 

analogue form). The use of graphics in user interface displays is becoming more and more 

important. Visualisation can be a powerful aid to comprehension and conceptualisation, as will be 

shown in chapter 3 and chapter 4 on the case study, concerning the visual simulation system 

CLINSIM.

Today the discipline of HCI is well established and as such it has its gurus and prophets, and 

its more specialised fields of study. The major characteristics of the research is its inter­

disciplinary nature. Most researchers in the field agree that the study of HCI spans over the 

following disciplines: computer science, cognitive psychology, social and organisational 

psychology, ergonomics and human factors, engineering, design, sociology, linguistics, and 

artificial intelligence. Computer science provides knowledge about technology, and of software 

tools and methods for facilitating design and development. Cognitive psychology provides 

knowledge about the capabilities and limitations of users. Social psychology helps to explain the 

structure and functions of organisations. Ergonomics and human factors knowledge ensure that 

hardware and software is designed so that it does not damage users physiologically. As Terry 

Winograd, one of the HCI gurus, said (in interview in Preece et al., 1994):

Human-computer interaction is the kind o f discipline which is neither the study o f 

humans, nor the study o f technology, but rather the bridging between those two.
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Chapter 1: Introduction

So you always have to have one eye open to the question: what can the technology 

do? How can you build it? What are the possibilities? And one eye open to the 

question: what are people doing and how would this fit  in? What would they do 

with it? I f  you lose sight o f either o f those, you fail to design w ell.... I  think the 

challenge is to really keep knowledge o f both the technology and the people 

playing off against each other in order to develop new things.

Because human-computer interaction studies a human and a machine in communication, it 

draws from supporting knowledge on both the machine and the human side. On the machine side, 

techniques in computer graphics, operating systems, programming languages, and development 

environments are relevant. On the human side, communication theory, graphics and industrial 

design disciplines, linguistics, social sciences, cognitive psychology, and human performance are 

relevant. And, of course, engineering and design methods need to be considered.

It is clear that the role of HCI in system design is to enhance the quality of the interaction 

between humans and computer systems. In this dissertation we concentrate on the interface part of 

the system or more specifically on the user interface parts of simulation systems. Our goal is 

practical rather than theoretical: we want to know how to apply the theory to the problem.

1.4 Research Objectives

Research into Human-Computer Interfaces is now well established. The research spans across 

many disciplines. As a consequence the theories and methodologies developed within HCI are 

beginning to be used in a prescriptive way to develop new software products. This path resembles 

very much the path of software engineering in general, that started off as an attempt to bring some 

order to chaos and ended up as a doctrine. In this dissertation we examine the usability and 

appropriateness of such approaches when dealing with software development, particularly the 

development of modelling systems.

The aim of this dissertation is to examine user interfaces for discrete event simulation. In 

particular, to investigate issues that influence ‘usability’ of simulation systems. There is no 

generally agreed defmition of usability. A definition of usability proposed by the International

J. Kuljis User Interfaces and Discrete Event Simulation Models Page 8



Chapter 1: Introduction

Standards Organization (ISO) and listed in Booth (1989) states: “The usability of a product is the 

degree to which specific users can achieve specific goals within a particular environment; 

effectively, efficiently, comfortably, and in an acceptable manner.” This definition does not 

explicitly specify operational criteria that might lead to an understanding of what we should 

evaluate. In this dissertation we use a more operational definition which is given by Shackel 

(1991) who suggests that any system should have to pass the usability criteria of effectiveness, 

leamability, flexibility, and user attitude. Usability dimensions should be captured such that they 

can readily be translated into meaningful quantitative statements (Shackel, 1991):

• Effectiveness: the required range of tasks, completed at a specified level of

performance, within a certain time (i.e. speed, accuracy) by some required percentage

of the specified target range of users within some required proportion of the range of 

usage environments.

• Leamability: within a certain specified time, relative to the beginning of user training, 

based upon some specified amount of training and user support, within some specified 

re-leaming time each time for intermittent users.

• Flexibility: with flexibility allowing adaptation to some specified percentage variation in 

tasks and/ or environments beyond those first specified.

• Attitude: within acceptable levels of human cost in terms of tiredness, discomfort,

frustration, and personal effort so that satisfaction causes continued and enhanced usage 

of the system.

Particular attention in the research is therefore also placed on investigating issues related to 

interaction styles, interaction objects, screen layout design, navigation through interfaces, user 

support and assistance. This could result in more awareness among the simulation community of 

the importance to provide user interfaces that better match the needs specific to the domain of 

simulation modelling. This could lead to user interfaces that better support users in simulation 

model developments, and hence achieve a reduction in the amount of time needed to learn 

simulation systems, support retention of learned concepts over time, reduce the number of errors 

during interaction, reduce the amount of time and effort needed for model developments, and 

provide greater user satisfaction.
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To accomplish these objectives, we conducted an examination of several representative 

simulation system. We assessed the usability of their user interfaces using Shackel’s (1991) 

definition of usability. The usability evaluation was carried out using structured walkthrough 

(Booth, 1989), i.e. we worked through a series of tasks the user might be expected to perform 

looking for sources of potential difficulties. We have based the examination on simulation 

software for personal computers partly because the issues of interaction are not dependent on the 

computer platform and partly because the PC platform predominates among commercial 

simulation systems. Therefore, the results and findings can be generalised across the whole 

spectrum of simulation software regardless of the host system.

We furthermore carried out a case study for the Operational Research Division at the 

Department of Health. This study involves the development of a visual simulation package that 

models outpatient clinics. Visual simulation can be used to show interested parties how the clinic 

appointment and operating policy can influence patient waiting times. The experience acquired 

emphasised the importance of user interface issues, and helped identify the interaction deficiencies 

in current simulation systems.

The major objective of the research is to give a critical evaluation of the theory underlying 

existing user interfaces to simulation systems. The evaluation covers the basic features of user 

interfaces in relation to adopted HCI theories. The working hypothesis is that the HCI theories 

have evolved as a consequence of empirical experience and that this is always going to be the 

case.

1.5 Research Methods

While conducting research for this dissertation we have used several research methods. The 

methods used are classified by Galliers (1992) as: the subjective/augmentative approach, the case 

study approach, and the descriptive/interpretative approach.

We conducted a subjective evaluation study of user interface capabilities for several 

representative simulation systems. The subjective/augmentative approach (Galliers, 1992) is 

creative research based more on opinion/speculation than observation, thereby placing greater 

emphasis on the role/perspective of the researcher. It can be applied to the existing body of
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knowledge (reviews) as well as to actual/ past events/ situations. It is useful approach in building 

theory that can subsequently be tested, and for the creation of new ideas and insights. Therefore it 

contributes to cumulative knowledge. However, it is recognised that the researcher will interpret 

what is being studied in a particular way. The weaknesses of this research approach is the 

unstructured and subjective nature of the research process, and therefore the likelihood of biased 

interpretations.

We carried out a case study at the Department of Health. The study involved the development 

of a run time visual simulation package to be used by system analysts in the health service to 

model out-patient hospital clinics. Case studies are a common approach to information systems 

research in the real world. The strength of the case study approach (Galliers, 1992) is that it 

enables the capture of reality in considerably greater detail, than is possible with many other 

approaches (i.e. laboratory experiments, field experiment, surveys). Even though there are 

problems associated with making generalisations from individual case studies, single case studies 

are helpful in developing and refining generalisable concepts and frames of reference.

We conducted an extensive literature survey on HCI in general, on user interface 

characteristics of existing simulation software, and on user interfaces to simulation systems. 

Based on the literature search, the case study experience, and the study of user interface 

characteristics of simulation systems, we came to some general findings that can be applied in 

future research. This form of research is known as descriptive/interpretative (Galliers, 1992). 

Descriptive or interpretative research can be focused on the literature or on past developments, in 

addition to actual, current happenings. Significant advances in our knowledge, and our ability to 

develop theory, can be made through an in-depth review of this kind in a particular aspect of our 

subject matter. A thorough review of past research/developments may not only lead to new 

insights but also is more likely to ensure that subsequent research builds on past endeavours. The 

strengths of this form of research lie in its ability to represent reality, following an in-depth self­

validating process in which presuppositions are continually questioned and our understanding of 

the phenomena under study is refined. The approach’s weaknesses include the problems the 

reviewer faces in interpreting the results of research with which they may be unfamiliar.

J. Kuljis User Interfaces and Discrete Event Simulation Models Page 11



Chapter 1: Introduction

The research methods, then, consist of the above approaches intertwined as an interconnecting 

set of mutually reinforcing methods.

1.6 Outline of the Dissertation

In this dissertation we describe research into user interfaces in relation to discrete event simulation 

systems. We identify good practices and examine how these can be applied to improve the 

usability of simulation systems. The dissertation is structured as follows.

In Chapter 1 we introduce some basic concepts in simulation modelling and in human 

computer interaction. In Chapter 2 we expand on some of the ideas considered in Chapter 1 and 

describe some of the simulation software and their user interface characteristics. In Chapter 3 we 

present a case study which was carried out on a real problem. The case study exemplifies the 

‘classical’ approach that appears to be taken as regards visual simulation interfaces. We describe 

the problem in detail and describe the design and implementation of simulation model. In Chapter 

4 we make a critical analysis of the case study introduced in Chapter 3. We critique the case study 

development on the basis of both the development experience, and its relationship to any relevant 

HCI theory.

In Chapter 5 we give an overview of the most influential theories in HCI and their contribution 

to the design of more usable computer system, and try to put this research into the context of 

simulation systems. In Chapter 6 we make some general observations about user interface to 

simulation systems, and make some recommendations on possible improvements. Finally, in 

Chapter 7 we present the conclusions and areas for further research.

1.7 Summary

In this chapter we provide the introductory information with respect to this dissertation. We give 

the background to the research presented in this dissertation, and establish the objectives of this 

research.
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2.1 Introduction

In this chapter we consider some of the existing simulation systems in terms of human-computer 

interaction. To start with we are concerned with the technological aspects of interaction. That 

means that we are basically examining the means of interaction in terms of the hardware necessary 

to interact with a particular simulation system, and the mode of interaction, i.e., the interface 

dialogue style. The following section provides the basis for discussion and serves as a reference 

point to user interfaces. This is necessary to put into context the issues that are raised in the 

section on simulation systems that follows. It gives the basic definitions and terminology in the 

area of human-computer interaction and provides an overview of major concerns of the area in 

general.

2.2 Basic Concepts in Human-Computer Interaction
In this section we consider the nature of the interaction style of human-computer interaction. 

Throughout the history of computing new interaction devices and technologies have been 

developed. This is to be expected given the initial limited range of tools that could be used for 

input and output. Indeed, there still appears to be a need for a greater variety of devices and 

technologies for interaction. Interaction styles are very much dependent on the available 

technology. The availability or absence of a particular interaction device can enable or prevent the 

application of a particular interaction style. For example, the wide availability of pointing devices 

such as mice and pens resulted in the wide use of mouse driven interaction. This section 

demonstrates the current complexity involved in HCI, even though the history and development of 

HCI is still relatively young.
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2.2.1 Interaction Devices

In order for the user to be able to interact with the computer and its software there must be some 

aspect of hardware with which the user can interact; these form channels enabling the user to 

access the software and the system to communicate information to the user. These elements of the 

hardware include all the interactive input and output devices, and are described bellow based on 

Booth (1989).

Input devices

An input device might be simply thought of as any instrument, apparatus or mechanism that can 

be used to enter information into a computer. The purpose of HCI research into development and 

refinement of input devices is to create input devices that maximise the advantages of human 

physical and cognitive characteristics, and so promote efficient, reliable and even pleasurable input 

to a system (Booth, 1989). Input devices include keyboards, pointing devices, voice-recognition 

systems, and other input devices that have been experimentally developed and tested, but are not 

yet in wide commercial use such as: handwriting recognition devices, gesture recognition devices, 

foot-operated computer input devices, eye trackers, and data gloves.

The keyboard

The keyboard is one of the oldest forms of input devices, and for most tasks is still the most 

efficient. The primary mode of textual data entry is still the keyboard. Keyboard design issues 

include hardware operating characteristics, such as: the shape of keys, the force required to 

depress them, and key layout. Keyboard operating characteristics include: keyboard thickness, 

keyboard angle, the palm rest area, keytop size, key centre spacing, key force range, key 

displacement range, keytop surface, activation feedback, and keytop surface finish. Current 

keyboards generally permit only one keypress at a time, although dual keypresses (SHIFT plus a 

letter) are used to produce capitals and special functions (CTRL plus a letter).

Most keyboards can be thought of as containing one or more major groups of keys: alpha 

keys, cursor keys, numeric keypads, and function keys. Beyond the letters, many debates rage 

about the placement of additional keys and numbers. Telephones have 1-2-3 keys on the top row,
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but many calculators place 7-8-9 keys on the top row. Studies have shown a slight advantage for 

the telephone layout (Lutz and Chapanis, 1955; Deininger, 1960), but most computer keyboards 

use the calculator layout. Many keyboards contain a set of additional function keys for special 

functions or programmed functions. These keys are often labelled F1...F10 or PF1..PF24. Users 

must remember the functions, leam about them from the screen, or consult an attachable plastic 

template. This strategy attempts to reduce user keystrokes by replacing a command name with a 

single keystroke and therefore the association of a function with a key is vital. Consistent key use 

is also very important. Many systems confuse users with inconsistent key use. For example, the 

HELP key varies from FI to F9 to F12 on some systems. The placement of function keys is 

important if the task requires users to go from typing to using function keys.

Pointing devices

Most computer keyboards have four special cursor keys for moving the cursor up, down, left, 

and right through text, menu options, fill-in fields, or other display objects. These keys are 

typically labelled with arrows, and are sometimes called ‘arrow keys’. Traditional computer 

systems employed only cursor keys as a mechanism for locating the input area and pointing to 

desired display objects. More recently, alternative pointing devices have become popular. When a 

screen is used to display information it is often convenient to point at and thus to select an item. 

This direct manipulation approach is attractive because the users can avoid learning commands, 

reduce the chance of typographic errors on a keyboard, and keep their attention on the display. 

Pointing devices are applicable in six types of pointing tasks:

• Select: The user chooses from a set of items.

• Position: The user chooses a point in a one-, two-, three-, or higher- dimensional 

space.

• Orient. The user uses direction in a one-, two-, three-, or higher- dimensional 

space.

• Path: The user rapidly performs a series of position and orient operations.

• Quantify: The user specifies a numeric value.

• Text: The user enters, moves, and edits text in a two-dimensional space.

In the past, the keyboard was used to perform all these tasks, but novel devices have been 

created that permit users to perform these tasks more rapidly and with fewer errors. These devices
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can be grouped into those that offer direct control on the screen surface and those that offer 

indirect control away from the screen surface. Direct pointing devices are lightpens, touchscreens, 

and pens or styluses. Indirect pointing devices are mice, trackballs, joysticks, graphic tablets, and 

touchpads. When considering human factors, variables of interest in judging each pointing 

concept are speed of motion for short and long distances, accuracy of positioning, error rates, 

learning time, and user satisfaction. Other variables are cost, durability, space requirements, 

weight, left- versus right-hand use, and compatibility with other systems. The conventional 

wisdom is that pointing devices are faster than keyboard controls, such as cursor-movement keys, 

but this result depends on the task. Pointing devices are efficient for accomplishing tasks that 

require spatial manipulation. The keyboard is more efficient for sequential tasks.

Output devices

An output device might be simply thought of as any instrument, apparatus or mechanism that can 

be used to present information to the user. The purpose of the development and refinement of 

output devices is to create output devices that maximise the advantages of human physical and 

cognitive characteristics, and so to promote efficient, reliable and even pleasurable interaction 

between humans and computers (Booth, 1989). Output devices include: visual display terminal 

(VDT) or visual display unit (VDU) screens, voice-synthesis systems, and other output devices.

VDU screen

The VDU has become the primary source of feedback to the user from the computer. The 

widespread use of VDUs has led designers to develop a variety of technologies with hundreds of 

special-purpose features. International standards are beginning to appear. Health concerns such as 

visual fatigue, stress, and radiation levels are being addressed by manufacturers and government 

agencies. Screen design issues include hardware operating characteristics such as resolution, 

flicker, and glare. For many applications, monochrome displays are adequate, and even preferred, 

especially if monochrome display has a higher resolution than does the colour display. 

Monochrome displays are produced by several technologies. Each display technology has 

advantages and disadvantages with respect to: size, refresh rate, capacity to show animation, 

resolution, surface flatness, surface glare from reflected light, contrast between characters and 

background, brightness, flicker, line sharpness, character formation, and tolerance for vibration.
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Colour displays can make video games, simulation, CAD, and many other applications 

programs more attractive and effective for users, but there are real dangers of misusing colour. 

Colour images are attractive to the eye, and colour coding of screen objects can lead to rapid 

recognition and identification. The excessive or inappropriate use of colour can inhibit 

performance and confuse the user. Software for creating colour graphics images is rapidly 

becoming more effective. Dramatic progress in computer graphics has led to increasing use in 

motion pictures and television.

Printers

Although there has been a good deal of research into how best to represent information to users on 

VDUs, displaying information on a screen is still considered to be inferior in several ways to 

presenting information on paper. Paper documents can be easily copied, mailed, marked, and 

stored. There is a variety of different printer technologies: dot-matrix printers, daisy-wheel 

printers, inkjet printers, thermal printers, laser printers, impact line printers, colour printers, and 

plotters. The choice of a printer depends on many factors. Shneiderman (1992) has produced a list 

of criteria against which different types of printer might be considered: speed, print quality, cost, 

compactness, quiet operation, use of ordinary paper, character set, variety of fonts and sizes, 

highlighting techniques, support for special forms, and reliability.

2.2.2 Interaction Styles

There are a number of ways in which the user can communicate with the computer system. At one 

extreme is batch input, in which the user provides all information to the computer at once and 

leaves the machine to perform the task. This approach does involve an interaction between the 

user and a computer but does not support many tasks well. At the other extreme are highly 

interactive input devices and paradigms, such as direct manipulation and the applications of virtual 

reality. The user is constantly providing instruction and receiving feedback. The latter are the 

types of interactive system in which we are particularly interested.

Interaction can be seen as a dialogue between the computer and the user. The choice of 

interface style can have a profound effect on the nature of this dialogue. Here we discuss the most 

common interface styles and note the different effects these have on the interaction. There are a
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number of common interaction styles (dialogue styles, interface styles) including: windows, 

menus, fill-in forms and spreadsheets, boxes, command languages, and graphical interfaces. It is 

not always possible to draw clear, unambiguous borders between these dialogue styles. Most user 

interfaces employ more than one dialogue style, and each may not appear in its most pure form. 

Many of the interaction styles listed here are used in direct manipulation interfaces. In a direct 

manipulation interface, the user performs the intended actions by immediately interacting with 

interaction objects, rather than by indirectly describing the actions to perform. The central idea of 

direct manipulation is:

• the visibility of objects and actions of interest

• rapid, reversible, incremental actions

• replacement of complex command-language syntax by the direct manipulation of objects 

of interest

Because direct manipulation interfaces present tasks visually to the user, the effect of user 

input is immediately and directly visible, without the need to run a program to produce the output. 

Direct manipulation interfaces present task concepts visually, are easy to learn, are easy to retain, 

encourage exploration, allow errors to be avoided, and permit high subjective satisfaction 

(Shneiderman, 1992). However, such interfaces require more design and implementation effort

Windows

A window is a screen object that provides an arena for presentation of, and interaction with, other 

interaction objects (Hix and Hartson, 1993). All interaction between a user and the system occurs 

through a window. There are at least two kinds of windows: primary windows and secondary 

windows. The primary window is the one through which all other windows in an application are 

generated and usually the only window through which an application can be closed. A secondary 

window is generated through a primary window. When multiple windows are open on the screen 

at one time, generally only one is active - that is, it can accept user input. Multiple open windows 

allow users to move back and forth between activities without losing their place. When the user’s 

work is naturally fragmented, with many activities carried on simultaneously, windowing can help 

support this work style in a way that traditional non-windowing systems cannot (Mayhew, 1992).
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The appearance and behaviour of the windowing system is determined by a small group of 

standard components (Marcus, 1992):

• Windows are any discrete areas of the visual display that can be moved, sized, and 

rendered independently on the display screen. These display objects allow the user to 

change the view of their contents using techniques such as sizing, scrolling, or editing.

• Menus provide users with a means of command retrieval that enables them to see and 

point instead of remembering and typing.

• Controls are any visually represented window components that can be manipulated 

directly with the mouse or keyboard.

• Dialogue boxes provide a visual and functional context for presenting options from 

which the user can select. A dialogue is any interactive exchange of information 

between the user and the system that takes place in a limited spatial context. Three 

distinct classes of dialogue box are control panels, query boxes, and message boxes. 

Modeless dialogue boxes are limited in scope and do not restrict subsequent operations 

of the user. A user can continue to work without responding, if necessary, and may be 

allowed to keep the modeless dialogue on display even after a response has been made. 

Modal dialogue boxes require the user to respond before any action can be taken.

• Control panels appear at the implicit or explicit request of the user and provide 

information reflecting the current state of a number of related system parameters, any of 

which can be changed interactively while the panel remains on display.

• Query boxes appear in response to user actions, but are not requested explicitly by the 

user. Query boxes prompt the user for a single piece of information and provide a 

context in which the necessary information can be provided. Like control panels, query 

boxes allow the user to cancel the action that led to the query.

• Message boxes provide critical information, which are not requested by the user, to the 

user. The user’s response options are typically limited to a simple yes-or-no decision, 

or simple acknowledgement of the message.
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The systems use a mouse and keyboard as the primary interaction devices. The mouse 

provides an efficient means of accomplishing tasks that require spatial manipulation. The 

keyboard is more efficient for sequential tasks.

Menus

A menu is a list of options from which the user selects the desired choice. In menu-driven user 

interfaces, the primary form of interaction is a sequence in which the user is repetitively presented 

with sets of choices and asked to select one or more from among them (Mayhew, 1992). Menu 

selection is an attractive and convenient way of guiding users through a complex command 

sequence. Menu selection is especially effective when users have little training, use the system 

only sporadically, are unfamiliar with the terminology, and need help in structuring their decision 

making process (Shneiderman, 1992). Effective menu-selection systems emerge only after careful 

consideration of and testing for numerous design issues, such as: semantic organisation, menu- 

system structure, number and sequence of menu items, selection of titles, prompting format, 

graphic layout and design, phrasing of menu items, display rates, response time, shortcuts 

through the menu for knowledgeable frequent users, on-line help, and selection mechanisms 

(keyboard, pointing devices, touch screen, voice, etc.) (Norman, 1991).

Semantic organisation of items in an application requires the items to be classified into 

categories. Hierarchical decompositions are appealing because every item belongs to a single 

category. For computer menus, the categories should be comprehensible and distinctive so that the 

users are confident in making their selections. Semantic organisation can be divided into the 

following groupings: single menu, linear sequences and multiple menus, tree structured menus, 

acyclic and cyclic menu networks. Single menus may have two or more items, may require two or 

more screens, or may allow multiple selections. Single menus may pop up on the current work 

area or may be permanently available.

The most common structure for menu interfaces is hierarchical. In such a tree structure, each 

choice made determines which choices will be offered next, and the user might proceed along a 

number of different pathways. Alternatively, menus can be structured linearly. In a linear menu 

structure, alternative pathways do not exist. There is only one pathway, but at each point the user 

must still make a selection from among a set of options. Finally, menus can also be networked. A
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network menu provides an option known as menu bypass that allows the user to jump directly 

from one leaf or node in a hierarchical menu to another, without backing up along the pathway to 

one leaf and then proceeding down the pathway to another leaf, that would be necessary in a 

strictly hierarchical menu. Of the numerous possible kinds of menus Hix and Hartson (1993) 

identify the following:

• Pull-down menus are usually found across the top of a window or screen. Only the 

menu’s tide bar, which is always visible, takes up permanent screen space. A pull­

down menu appears always in the same location on the screen when the user depresses 

a mouse button over the menu title. Pull-down menus are used for access to major 

functionality of a system.

• Cascading (hierarchical) menus look and behave much like a sequence of pull-down 

menus. When the user depresses the mouse button over the title of the first menu in the 

sequence, that menu appears. The user may then move the cursor down to select a 

choice from that menu, leading to the appearance of another menu, usually to the right 

of the first one, from which the user may make another choice, and so on. While such a 

series of menus is a good way to organise a hierarchical menu structure and to provide 

further selection detail, users sometimes have trouble with eye-hand co-ordination of 

cascading menus that go more than three levels deep.

• A pop-up menu can appear in different places on the screen, determined by the current 

location of the cursor when the user depresses a specific mouse button. There is no 

visual cue to the availability of a pop-up menu. Pop-up menus are often used to select 

functions and parameters. The set of menu choices can be context dependent, based on 

the screen or window location of the cursor when the user requests the pop-up menu.

• An option menu looks like a field (e.g., in a form), with its current value visible. Other 

values appear, in a list menu, when the user depresses the mouse button over the visible 

field. The user can then move the cursor up or down to select any one choice from the 

list menu. This way the user is prevented from typing an incorrect value into a field that 

has a known set of possible valid values.
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• A toggle menu, like an option menu, looks much like a field, with its current value 

visible, but a toggle menu rotates through all possible choices, one at a time, as the user 

clicks the mouse button over the field in which a selection of the menu appears. The 

user makes a selection simply by leaving the desired value visible in the field.

• In a push-button menu, choices are distributed over physically separate buttons, and the 

buttons are typically visible at all times. Some of the more common push buttons that 

appear throughout many interfaces include ‘cancel’, ‘ok’, ‘quit’, ‘exit’, and ‘help’. On 

a given bank of push buttons, one button is generally chosen as the default and has a 

different appearance from the others (e.g., bold outline, an extra border to look as if it 

is already pressed in). The default button can usually be chosen by pressing the ‘Enter’ 

or ‘Return’ key.

• Radio-button menus offer choices that are exhaustive and mutually exclusive. The user 

makes exactly one choice from a set of two or more choices, usually by clicking with 

the mouse. The current choice is indicated by a visual cue (e.g., a small darkened circle 

or square beside the choice). Radio-button menus are often found in dialogue or 

property boxes.

• Check-button menus offer choices that are not mutually exclusive. The user can make 

one or more choices from a set of two or more possibilities, again by clicking with the 

mouse. The current choice is indicated by a visual cue. Like radio-button menus, check- 

button menus are often found in dialogue or property boxes.

• Pie menus display choices in a circular or semicircular arrangements of labelled pie 

wedges. Pie menus minimise mouse movement but are only useful for a small to 

medium-sized number of selections, otherwise there is not enough space to display 

labels for the choices in the wedge. When used for patterns or colours, for example, the 

pattern or colour itself can serve as a label.

• Palette, or iconic, menus are menus in which the choices are represented as graphical 

icons, rather than as words, on what are essentially push buttons grouped together. The 

choices are usually mutually exclusive. They are often found in graphical editors and 

are used for selecting self-labelling visual choices, such as colours, patterns, shapes, 

and so on.
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• Embedded menus are found in what are more commonly called “hypertext” or 

“hypermedia”. In a screen display of text/ or graphics, some of the objects are 

designated as selectable (e.g., by highlighting), usually with a mouse click. Upon 

selection of a highlighted word or icon, the user can navigate to a different screen. 

Sequences of these connections can be used to link related information together.

• Dynamic menus contain choices that are runtime dependent The choices vary, based on 

runtime conditions and / or values. A simple example of a dynamic menu is one in 

which currently unavailable choices are greyed out so that the user cannot select them. 

The content of the menu cannot be known until the request is processed.

With modem graphical user interfaces, menu selection by mouse clicks becomes the common 

method of working with pull-down and pop-up menus plus the dialogue boxes containing radio 

buttons, check boxes, text-entry fields, and scrollable lists of choices. The key issues are how to 

show where selection is possible, which item has been selected, whether de-selection is possible, 

and how activation is invoked. Spatial placement of items can also be helpful in showing 

relationships among items and in guiding users through a sequence of selections. Boxes around 

items, white spaces, varying font sizes, and use of colour can help organise the display. Other 

important issues related to the menu selection cover response time and display rates, moving 

through menus, menu screen design, selection mechanisms, and embedded menus. Users can 

become very proficient at menus. Menus can, however, be overused; too many menus may slow 

down frequent users, especially if the hardware cannot support very rapid menu choices. Menus 

also require a lot of screen space when they are displayed.

Fill-in forms

Fill-in form interfaces are used primarily for data entry but can also be useful in data retrieval 

applications. The user is presented with a display resembling a paper form, with slots to fill in. 

Spreadsheets are a sophisticated variation on form fill-in (Dix et al., 1993). The user can enter and 

alter values and formulae in any order and the system will maintain consistency amongst the 

values displayed, ensuring that all formulae are obeyed. The user can therefore manipulate values 

to see the effects of changing different parameters. There are several types of values for a field in a 

form (Hix and Hartson, 1993), including:
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• User typed strings can be either invalidated or validated. In an invalidated field, the user 

can type any free-form character string, and it will be accepted by the system. In a 

validated field, the user must type in a string with a specific syntax. If the user does not 

follow this prescribed format, the string will not be accepted by the system, and the 

user will need to try again. In a validated field, the designer should indicate the required 

syntax visually.

• In fields with user choices from a list, all allowable choices can be itemised. Use of an 

option or toggle menu to present the choices to the user will reduce errors due to typing 

and also remove the need for the user to remember all possible values for the field.

• Some fields have logical default values for fields. The user should never have to enter 

values in a field for which a reasonable default value can be obtained from the system.

• Required values in a form have to be filled with valid values by the user before the form 

can be processed. Optional values are those that can remain empty. On a form, required 

fields should be distinguished from optional fields by their appearance.

• Fields for dependent values in a form need to be filled in only if another field has a 

particular value entered. The system can automate and enforce these inter field 

dependencies.

Boxes

A box is a rectangular, delineated screen area that is used for messages, text entry, commands, 

selection, and user control. Many kinds of boxes appear as a result of user actions (e.g., list 

boxes), while others (e.g., message boxes) are displayed by the system, to inform the user about 

a current situation. There are several kinds of boxes, including (Hix and Hartson, 1993):

• List boxes can be used when the choice list is quite long and /or variable in length. The 

content of a list box is usually dynamic; the system can add choices to the list, based on 

runtime actions and results. A list box usually has a vertical and often a horizontal scroll 

bar, so that the user can navigate in all directions within the box. The user makes a 

selection by clicking the mouse over the desired choice.
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• Entry boxes allow users to enter text; they usually have basic text-editing functions built 

in. An entry box can be a single line or a multiple-line area. It can be both vertically and 

horizontally scrollable.

• Message boxes are typically used for presenting information to the user, showing 

progress, asking the user a question, giving the user a warning, or requesting some 

action by the user. Message boxes are effective in focusing the user on a situation 

needing attention before a task can continue. Modal (pre-emptive) message boxes are 

often used to force this kind of user attention.

• Dialogue boxes are used to group functions for several related user tasks, as opposed to 

a menu which allows a user to perform only one function at a time. A dialogue box is a 

composite interaction object that can contain other interaction objects, such as lists, 

buttons, boxes, text-entry fields, valuators, and so on. A dialogue box is typically 

displayed as part of a task sequence, often in a response to a choice from a pull-down 

menu or an accelerator-key action. Dialogue boxes are often movable by a user but are 

rarely resizable.

Typed-command languages

The command line interface was the first interactive dialogue style to be commonly used and, in 

spite of the availability of menu-driven interfaces, it is still widely used. It provides a means of 

expressing instructions to the computer directly, using function keys, single characters, 

abbreviations or whole word commands. In some systems the command line is the only way of 

communicating with the system; more commonly today it is supplementary to menu-based 

interfaces providing accelerated access to the system’s functionality for experienced users (Dix et 

al., 1993). Command languages, which originated with operating-systems commands, are 

distinguished by their immediacy and by their impact on devices or information. Users issue a 

command and watch what happens. If the result is correct, the next command is issued; if not, 

some other strategy is adopted. Command languages are distinguished from menu-selection 

systems in that their users must recall notation and initiate action. Command-language users are 

often called to accomplish remarkable feats of memorisation and typing. Users have to learn the 

semantics and syntax, but they can initiate rather than respond, rapidly specifying actions 

involving several objects and options. Command languages can be attractive when frequent use of
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a system is anticipated, users are knowledgeable about the task domain and computer concepts, 

screen space is at a premium, response time and display rates are slow, and numerous functions 

that can be combined in many ways are supported (Shneiderman, 1992).

Graphical interfaces

Any user interaction that has windows, buttons, boxes, icons, and so on, is commonly called a 

graphical user interface, or GUI. They have also been called “WIMP” (windows, icons, menus, 

and pointers) and “NERD” (navigation, evaluation, refinement, and demonstration interfaces). All 

the interaction styles that we have covered so far, with the exception of typed-command 

languages, could be classified as GUIs. The trend in current computer applications is toward 

asynchronous, multi-threaded dialogue (event-based dialogue) where many tasks (threads) are 

available to the end-user at one time, and the sequencing of each thread is independent of the 

others (Hartson and Hix, 1989). This trend is one of the most significant phenomena in the field 

today and is exemplified by the Apple Macintosh personal computer and the success of Microsoft 

Windows and Windows applications. This trend is followed by many simulation systems as well. 

The trend in using graphical user interfaces is definitely upwards. A survey conducted and 

reported on by a firm of independent research analysts in the U.S. claims that productivity of GUI 

users does increase (Wright, 1991). Klinger (1991) argues that visual interfaces upgrade a 

human’s ability to deal with computer data, but argues that information access is less free due to 

the complexity inherent in dealing with computer interfaces and that the gain in facility or learning 

they offer occurs at a significant increase in user interaction time. At the same time, developers’ 

tools are following this trend as well. More and more tools use visual languages for human- 

computer interaction. The benefits of such systems are widely agreed (Shneiderman, 1983; 

Tanimoto and Glinert, 1986; Potosnak, 1988).

Graphical interfaces can be extremely useful in the development of sophisticated training and 

simulation environments. Users of such interfaces are able to obtain a much more immediate 

impression of what is happening to the object or system in question by looking at a graphical 

representation than by looking at a textual or symbolic representation of a mathematical model. 

There is a broader use of graphics in user interfaces and that is the use of visual representation, 

rather than textual or numeric representations, to communicate with a user. Graphics are important
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in user interfaces, to represent both input by a user to the application and output from the 

application to a user. Graphical objects can be, and often are, shared between the user and the 

system, and the actions of both can have an effect on those objects. Graphics promote exploration 

and the understanding of complex domains. There are many kinds of graphical interfaces. We will 

mention several that are relevant to the domain of simulation systems.

• Data and scientific visualisation, one of the earliest uses of graphics in user interfaces, 

includes graphs, charts, histograms, and various kinds of elaborate screen images. 

Numerous application areas are making heavy use of visualisation techniques (e.g., 

medical imaging of the interior of the human body, fluid flow, weather patterns, heat 

transfer).

• Visual databases facilitate techniques for navigating and browsing through a visual, 

rather than common textual, representation of a database. Digital images and/ or 

computer-generated images can be represented.

• Animation can represent the output of simulation as it changes over time. It provides an 

excellent medium for producing training simulators that can be very valuable for 

training in dangerous or inaccessible domains.

• Full-motion video, and the audio that typically accompanies it, can be combined with 

other interaction styles in an interface. Video gives the most realistic illustration of real- 

world activities and, like animation, can be used especially effectively for training.

• Multimedia and hypermedia involve the fusion of graphical, audio, and video media, 

often linked in an associative pattern. Multimedia user interfaces consist of more than 

one medium, typically video and/ or animation and other interaction styles. Hypermedia 

interfaces provide links for a user to navigate among interaction objects, such as data, 

records, help information, documents, and even idea and concepts, in a highly flexible 

fashion. This user navigation is a central concern in the design of these kinds of 

interfaces.

There is evidence that different people have different cognitive styles. It may be that 

preferences will vary by user and by tasks. Icons are often used in painting programs to represent 

the tools or actions, whereas word processors usually have textual menus for their actions. This 

difference appears to reflect the differing cognitive styles of visually and textually oriented users,
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or at least differences in the tasks. Maybe, while working on visually oriented tasks, it is helpful 

to stay visual by using icons, whereas, while working on a text document, it is helpful to stay 

textual by using textual menus. Deciding between icons and text depends not only on the users 

and the tasks, but also on the quality of the icons or the words that are proposed.

2.2.3 User Support and Assistance

User documentation is part of the user interface (Shneiderman, 1992; Mayhew, 1992; Cox and 

Walker, 1993; Dix atal., 1993; Preece et al, 1994; Lindgaard, 1994). There are various types of 

user support materials which commonly accompany software package sold in the market place. 

Often it is a user’s first encounter with a system. Users may form impressions of the usability of a 

system by reading the manual or accessing on-line help or a tutorial. The quality of the user 

documentation determines in large part both the perception of, and the actual ease of learning and 

use of the system. On the other hand, good documentation and/ or a good on-line help are no 

substitute for a poor user interface. In all kinds of user support, the importance of effectiveness is 

paramount for determining the value of the system (Lindgaard, 1994). For example, a help system 

that fails to assist users in trouble is useless as a form of user support. Similarly, user 

documentation in which the information a user needs cannot readily be located, correcdy 

interpreted, or easily applied to a given situation will prove extremely unpopular. Finally, a 

tutoring system that does not enable users to leam and transfer the product of learning into the 

environment the system is supposed to prepare the learner for, is not at all effective.

On-line help

Most contemporary user interfaces provide at least some of the following on-line information for 

user assistance (Preece et al., 1994):

• Help messages generated by selecting a desired object.

• Context-sensitive help built into application system states or dialogue boxes.

• Generic help text, usually limited in length, available through a help command, menu 

bar item, function key, or icon.
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• Extended help screens, accessible through a ‘More’ button, an Index, or Table of 

Contents. These help items can be linked together to form a hypertext.

• Extensive written documentation available on-line. This is typically authored so that it 

can be read like a book.

Advantages of on-line documentation are that, unlike hard copy, it cannot be lost or damaged, 

it does not require desk space, it is faster and cheaper to update than hard copy, and is potentially 

faster to access and navigate in (Shneiderman, 1992). In a well designed help system, the user can 

control the level of information detail, which it is not true in a manual. Disadvantages of on-line 

help when compared to hard copy manuals are that text on the screen is not as legible as printed 

material and paging is slower. When interacting with a computer system, users encounter 

problems sooner or later from which they cannot recover without assistance. One of the main 

objectives of ‘help systems’ is to assist users in trouble. In order to achieve this effectively, the 

help system designer would need to understand when, how, and why users get stuck during an 

interactive session. The more accurately user problems have been correctly identified, captured, 

and addressed by the help information, the more successful and hence effective the help facility 

should be. Typical questions expected that on-line help should tackle are (Preece et al., 1994):

• Goal exploration: What can I do with this program?

• Definition and description: What is this? What is it for?

• Task achievement: How do I do this?

• Diagnostic: How did that happen?

• State identification: Where am I?

The usability of a help system is at least related to the degree to which a user can readily 

recover from problems and thus is reflected by the extent to which system trouble spots are 

addressed. Help systems often fail to fulfil their purpose of assisting users in trouble. Problems 

with help information have been found to relate to the amount of information provided, the way it 

is presented, or the vocabulary used. Lindgaard (1994) lists the reasons that account for the failure 

of help systems to assist users into three categories:

• Problems with access to help information and/ or exit methods.
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• Problems with the actual information provided.

• Difficulties of users to recognise their problem.

Many menu systems are organised hierarchically and even when users can rely on recognition 

of terms used elsewhere in the system, and select options from menus, they do experience 

difficulties navigating through such systems. Two methods can be applied for overcoming 

navigational user problems: one is to reduce the menu hierarchy to as few levels as possible 

(increase menu breadth over depth), and the other is to show which options will be coming up at 

the next level of the menu hierarchy. In many systems, access to help information is provided by 

user issued commands. In order to obtain the right information, the user must know which terms 

are allowed, what the allowed terms refer to and what information the user needs to solve a given 

problem, access certain data, or recover from a particular error. It is unlikely that the user new to a 

given system will be familiar with a system’s commands. The full range of commands presented 

on a list of keywords together with an explanation of the function associated with each command 

should be provided.

Printed manuals

User manuals are often poorly designed. They are intimidating, full of technical jargon, hard to 

navigate in, and difficult to read (Mayhew, 1992). Writing manuals was often left to the most 

junior and inexperienced member of the project team at the end of the project (Lindgaard, 1994). 

As a result, the manuals were often poorly written, were not suited to the background of the 

users, were delayed or incomplete, and were tested inadequately (Shneiderman, 1992). 

Alternatively, different chapters in user manuals may have been written by different people who 

use a variety of expressions, differ in writing style and discuss the topics at different levels of 

depth. The resulting user manual is thus a jumble of mixed ideas and metaphors which lack 

consistency in style, emphasis, layout, and terminology between chapters (Lindgaard, 1994). The 

focus of many manuals tends to be on technical matters such as system structure, mechanics or 

idiosyncratic smart-moves in the software, and outlining the methods underlying the various 

operations rather than helping the user to complete certain user-relevant task. From the user’s 

perspective, research has shown that users often do not know how to formulate questions. One 

way to assist users in asking more precise questions is to provide them with trouble shooting tools
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that allude them to different problems that might be the cause of currently experienced difficulties 

(Lindgaard, 1994).

User manuals can be grouped into four types:

• Tutorials are meant to be read from cover to cover, and they are organised as a course 

or training program would be. Tutorials are best for true novice users who may know 

little about the semantics of the application (what the system can do) and probably 

nothing about the syntax of the human interface (how to do anything in particular on the 

system).

• Reference manuals are aimed at experts. A reference manual is organised to allow quick 

retrieval of specific syntactic information. It provides complete information on all 

system functions.

• Quick reference summarise information on a small subset of the most important or most 

frequendy used functions.

• User guides are aimed at intermediate users. Intermediate users know something about 

the semantics of the application, but not necessarily all aspects of it. They may be at 

some intermediate stage in the learning process and know the syntax for some 

functions, but not all. Thus, the user guide must simultaneously address the needs of all 

classes of users.

Tutorials

One attribute that distinguishes tutorials from other user support materials such as help systems 

and user/ reference manuals is that learners are generally expected to work through the tutoring 

systems from beginning to end. This means that tutorials should be written in order of increasing 

complexity, starting with the easiest and ending up with the most complex operations and 

procedures. Since it is not always easy to determine which are the most complex tasks, and who, 

amongst all possible users, will be likely to need knowledge of which features at what stage of 

learning it is helpful if an index is included in the tutorial package (Lindgaard, 1994). One 

advantage of on-line tutorial over a printed tutorial is the possibility of interaction with the tutorial. 

An on-line tutorial can give the user practice using the system in the process of teaching. It is
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feasible to expect learners to go through the tutorial in several sessions and return to it at times to 

refresh their minds, perhaps when the system has not been used for some time, or when they are 

tackling new tasks on the computer system.

23 Simulation Systems

2.3.1 Introduction

Almost every computer application can be simplistically described as the inputting of the data, it 

being processed, and producing some form of output. Simulation systems are not much different 

and can be viewed as consisting of three parts:

Data input 

Simulation engine 

Simulation results

This dissertation will concentrate on the user interface aspects of simulation systems. Before 

drawing any conclusions it is interesting to have a historical perspective on the modes of user 

interaction presently used with simulation systems because it gives us clues as to what was, and 

is, considered to be an aid to the user’s understanding of the system.

The first computer based simulation systems were in batch mode, followed by interactive 

computer systems. These systems were designed for the exclusive use of computer specialists. 

They conformed to a ‘black box approach’, where only the analyst was in control. The data was 

either given as a file of numerical values or was integrated in the simulation engine’s program 

code. The simulation experiment was in a “silent mode” giving no feedback to the user of what 

was happening. It was therefore hard to detect errors in the logic of the system. The systems 

created cryptic outputs that needed interpretation and explanation by the analysts.

To aid understanding of the system, visual simulation and graphical outputs were added to the 

systems, the advantages of which are discussed in Pidd (1992a). When properly designed, a 

graphical display can give a very good idea of the logical behaviour of the simulation program. 

The client may quickly gain an idea of whether the model logic is correct or not. There is less need
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for the user to take on trust that the simulation is a valid representation of the system. This logical 

clarity also makes it possible to think of developing simulation programs in co-operation with the 

client. The developing display will give the client some idea of whether the model being developed 

is sensible. The graphics are an aid to effective experimentation on the model and may help to 

reduce the potential set of feasible experiments.

Unlike many other types of computer program, the main concerns in simulation programs are 

often logical variables rather than numeric ones. That is, in a discrete event simulation the state of 

the system results from the states of the individual entities, and the important variables are the 

ones which represent and link these logical states. It is easier to recognise errors of logic when 

entities are seen to change state wrongly on a properly designed graphical display (Pidd, 1992a).

Graphical interfaces can be extremely useful in the development of sophisticated training and 

simulation environments. Users of such interfaces are able to obtain a much more immediate 

impression of what is happening to the object or system in question by looking at a graphical 

representation than by looking at a textual or symbolic representation of a mathematical model. As 

the user watches the progress of the visual simulation it may become obvious that performance 

could be improved by a small change to one of the input variables. Interrupting the running 

program, modifying the appropriate variables and restarting the simulation from its previous state 

are becoming more commonly available features in commercial simulation packages.

In the following sections of this chapter we are assessing the usability of current simulation 

systems based on the definition of usability that we adopted from Shackel (1991). Shackel’s four 

distinguishable and quantifiable dimensions: effectiveness, leamability, flexibility, and attitude are 

not mutually exclusive in the sense that measures of, for example, effectiveness can, at the same 

time, also give some indication of system leamability. Effectiveness refers to levels of user 

performance, measured in terms of speed and/ or accuracy, in terms of proportion of task(s), 

proportion of users, or probability of completion of a given task. Flexibility refers to variations in 

task completion strategies supported by a system. Leamability refers to the ease with which new 

or occasional users may accomplish certain tasks. Attitude refers to user acceptability of the 

system in question.
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There are some problems, however, in setting appropriate numerical values against usability 

goals. This, approach would be more appropriate when the usability goals are set during the design 

stage of requirements specification than as an evaluation criteria once a system is finished. 

Operational defmitions such as Shackel’s suggest how we might practically measure usability, but 

do not give any indication how we might improve the usability of system (Booth, 1989). 

Although quantitative data is required to accurately assess the usability of a system, it is qualitative 

information that informs designers how to change an unusable system. Our objectives are both to 

assess the usability of current simulation systems and to identify usability defects. We therefore 

identify general interface usability principles which are essential for supporting the usability of 

graphical user interfaces (Molich and Nielsen, 1990):

• Simple and natural dialogue: Dialogues should not contain information that is irrelevant 

or rarely needed. All information should appear in a natural and logical order. To be 

natural the structure of a dialogue has to achieve a close match with the user’s task 

organisation instead of being matched to the internal structure of the application.

• Speak the user’s language: The dialogue should be expressed clearly in words, phrases, 

and concepts familiar to the user, rather than in system-oriented terms.

• Minimise the user’s memory load: The user should not have to remember information 

from one part of the dialogue to another. Instructions for use of the system should be 

visible or easily retrievable whenever appropriate.

• Consistency: Users should not have to wonder whether different words, situations, or 

actions mean the same thing.

• Provide feedback: The system should always keep users informed about what is going 

on through appropriate feedback within a reasonable time.

• Provide clearly marked exits: Users often choose system functions by mistake and will 

need a clearly marked “emergency exit” to leave the unwanted state without having to 

go through an extended dialogue.

• Provide shortcuts: Clever shortcuts - unseen by the novice user - may often speed up 

the interaction for the expert user such that the system caters both inexperienced and 

experienced users.
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• Good error messages: They should be expressed in plain language (no codes), precisely 

indicate the problem, and constructively suggest a solution.

• Prevent errors: Even better than good error messages is a careful design that prevents a 

problem from occurring in the first place.

These usability principles support the four identified usability dimensions. Effectiveness is 

supported with the following usability principles: simple and natural dialogue, minimal memory 

load for the user, consistency, provision of feedback, provision of clearly marked exits, good 

error messages, and prevention of errors. Leamability is supported with the following usability 

principles: simple and natural dialogue, using the user’s language, consistency. Flexibility is 

supported by providing shortcuts. Positive user attitude is supported with the following usability 

principles; simple and natural dialogue, minimal memory load for the user, using the user’s 

language, provision of feedback, good error messages, and prevention of errors.

Testing the usability of products often requires task scenarios. While a task scenario sets the 

context for usability testing, the notion of a usability defect can provide the means by which the 

performance of a system can be considered. Booth (1989) defines a usability defect as anything in 

the product which prevents a target user completing a target task with reasonable effort and within 

reasonable time. Lindgaard (1994) identifies categories of typical usability defects:

• Navigation: The ease with which users move around the system, within and between 

modules - layout and understandability of menu options; An understanding of where the 

user currently is, where s/he came from and where s/he is going in a sequence of 

screens; Attention to provision of short cuts, and signals that such short cuts are 

available, and the removal of redundant screens, menu options, or steps. Error recovery 

assistance in the form of error messages, help information and hard copy 

documentation which can assist or hinder smooth navigation.

• Screen design and layout: The way information is presented on the screen. Problems 

may arise when the screen is crammed, when there are too many alignment points to 

allow easy scanning, the logical flow of different fields, legibility of characters, 

identification of fields (distinguishing between mandatory and discretionary fields), the 

nature of the information to be entered, organisation of groupings, screen ID, title, etc.
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• Terminology: Words, sentences, and abbreviations. Problems can occur when jargon is 

used inappropriately (i.e. for a population that does not know it) or not used where it 

should be, clarity of meaning of field captions, codes, prompts, commands, 

introduction of concepts (i.e. clarity and meaningfulness of vocabulary).

• Feedback: The way the system communicates with users as a result of user actions or 

about the state of the system (error or warning messages, confirmation messages, 

highlighting, regularity of response).

• Consistency: The degree to which the system performs in a predictable, well organised 

and standard fashion.

• Modality: The state of the system operation that the user selects to perform a particular 

function (how easy is it to move between modes; how many different modes must the 

user know; how easy is it to recognise where one is at any time?)

• Redundancies: Repetitions (do any unnecessary data, fields or screens get in the user’s 

way; are there any fields or screens that are never used; are there any unnecessary 

prompts or messages that have no direct relevance to the user?)

• User control: user’s feeling of being in control (does the user feel in control of the 

system; are there any actions which are initiated, controlled or paced by the system; 

how well is the user kept informed about what is happening in the background; how 

much trust or confidence does the user have in the system and what it will do/has it 

done what it has been ordered to do?)

• Match with user tasks: the degree to which the system matches tasks as carried out in 

the current environment; how well does it map and reflect what users want and the way 

they want to do it; are any details left out; is every step in each task consistent with user 

expectations; is the flow of steps -> subtasks -> tasks -> jobs logical; are links between 

related tasks established; that is, is data taken to all destinations where it is wanted when 

entered once?)

Effectiveness of the system can be hindered if there are: defects in navigation through the 

system, problems in screen design and layout, inappropriate terminology, inappropriate feedback 

or complete lack of feedback, problems with modality, inconsequential redundancies, and 

problems in matching with user tasks. Leamability can be impeded if there are: defects in
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navigation, problems in screen design and layout, inappropriate terminology, inappropriate 

feedback or complete lack of feedback, and problems in matching with user tasks. Flexibility is 

impeded if there is no user control over the system and if the system imposes the order in which 

the steps in a task are performed. The user attitude towards the system can be seriously affected 

by any of the above usability defects.

2.3.2 Simulation Systems Examined

The following sections give general information on each of the commercial simulation systems 

that are going to be analysed. Simulation software classification and modelling capabilities are not 

discussed here. These can be found in Law and Kelton (1991), in Paul (1991) and in Pidd 

(1992a). Hlupic (1993) provides a comprehensive set of criteria for the evaluation of simulation 

systems. Even though the criteria are drawn for manufacturing systems they can be used for 

evaluating more general purpose simulation software if some of the specifics related to 

manufacturing systems are ignored. She concentrates primarily on modelling capabilities, taking 

the user interface into account broadly as “user friendliness”, “user support” (documentation, 

tutorials, demonstration models), “modelling assistance” (on-line help, prompting, logic checks), 

and “visual aspects” (animation, icon editors/library). However, what basis is used exactly to 

determine “user friendliness”, for example, is not elaborated.

We have reviewed six discrete simulation systems: XCELL+, Taylor II, ProModel for 

Windows, Micro Saint for Windows, WITNESS for Windows, and Simscript II.5 for windows. 

We examine the following interaction characteristics of these systems: input-output devices 

employed, interaction styles, and use of graphics. We are also interested in: type of simulation 

system, application areas, hardware platform, operating system, and hardware requirements. For 

each simulation system we examine the user interface for the three identified modules: data 

input/model specification, simulation experiments, and presentation of output results. We are 

interested in adopted interaction styles, modes of interaction, screen design and layout, interaction 

flexibility, supported functionality, navigation styles, use of colour, and the possibility to import 

and export data. We also examine what kind of user support and assistance is provided and 

analyse how this provision is facilitated. Finally, we evaluate each system against the usability 

criteria set in the previous section. To achieve that we test each of the six listed systems on the
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task of developing a small queuing model (a bank). The test is performed by a user with a high 

computer literacy, low domain knowledge, and no knowledge of any of the six simulation 

systems. The ability to accomplish the task must be based solely on consulting the user manuals 

and help (i.e. without formal training). We try to identify which of the general usability principles 

are applied and also establish where the usability defects are in each examined system. We want to 

find out where in a system users might run into problems and what kind of problems they are 

likely to encounter. We conduct the usability testing in order to identify what changes are needed 

and where in the system the changes should occur that will improve the usability of the system.

When examining the user interface we are particularly interested in three aspects: firstly, how 

the user interface for a particular system aids the user in a model development process; secondly, 

can the user modify the existing interface to either accommodate the user’s own preferences or to 

adjust the modelling environment to the needs of a particular model; and thirdly, does the system 

facilitate user interface development.

The next six sections describe these aspects of each package in detail, with a summary in 

section 2.4.

2.3.3 XCELL+

XCELL+ is a data-driven VIM manufacturing simulation system. It is a PC/ AT based system that 

runs under MSDOS 2.1 or later and requires 640K of memory and 1MB of hard disk space. It 

requires an EGA compatible colour monitor. XCELL+ developers (Conway et al., 1990) claim 

that they built a tool that is meant to be used by the end users, reducing their dependence on 

simulation specialists. Models are built graphically with a menu-driven interface. The interaction is 

facilitated by using command keys. XCELL+ starts with a black background screen filled with 

information about the system in four very bright coloured areas: red with white text, yellow with 

black text, blue with white text, green with black text. The top of the screen contains the logo, 

release details, and the licence reminder. Across the bottom of the screen there is a row of eight 

green boxes (see Figure 2.1). These boxes describe the role that is currently assigned to each of 

the eight function keys that XCELL+ uses. These are function keys FI to F8 from left to right. 

Above them is displayed in small print that this is the main menu. In the main menu there are only 

four keys with a defined function: FI for help, F4 for creating a new factory, F6 for invoking the
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file manager, and F8 to quit. If there is a factory model in the workspace, the main menu offers 

additional choices: F2 to change the form of the display of the model, F3 to analyse the structure 

and flow potential of the model, F5 to modify the characteristics (design) of the model, and F7 to 

run the model. In other menus or screens, the FI key can have some other function.

Data input/ model specification

XCELL+ uses symbolic graphics during the construction of a model to represent the logic of the 

model. XCELL+ provides eight basic building blocks: work centres (where processes are run to 

perform work), receiving areas (where material is received from the outside world), shipping 

areas (from which finished material is shipped to the outside world), buffers (where work in 

process inventory is stored), maintenance centres (from which service teams are sent to repair or 

provide scheduled maintenance for work centres), control points (intersections of paths and traffic 

control points in an asynchronous materials handling system), auxiliary resources (sites from 

which resources are supplied to perform processes), and path segments (connecting two control 

points over which carriers can transport material). For each of these eight elements there is a 

slightly different graphical symbol.

A factory floor is represented as a uniform grid of “cells” and each element of the factory 

occupies exactly one of these cells. To construct an XCELL+ model the user has to choose 

elements and position each element in some cell of the factory floor. Graphical symbols are placed 

on the screen by pressing one of the seven function keys (for the first seven elements) in the 

‘Design menu’ screen (see Figure 2.2). The path segments are not autonomous, they exist only as 

components of a path between control points, and are created in the ‘Path’ menu. Each element is 

assigned a default name and default values for attributes associated to that element There are 

several operations that are permitted for each of these factory building blocks. The elements can 

be: named (up to 10 characters that must start with alpha characters and are automatically 

transformed into upper case), the default values of its parameters can be changed, deleted, copied, 

moved, and positioned on the screen. All these operations are performed by pressing appropriate 

function keys and thus moving into a different “menu” that allows desired changes to be made. In 

addition to the eight factory building elements, mentioned above, there are three other important 

design elements: processes (that describe the work done at a work centre), links (that describe the
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material flow to and from a process), and carriers (moving elements that carry loads over a 

materials handling network). After the factory model is specified the user can check the model 

using the “analysis” option from the ‘Design menu’. This check can detect some of the simple 

anomalies in the context of the overall model.

XCELL+ enables relatively fast model development if the user is experienced enough to 

understand how to perform a particular task. There is not much guidance available. The XCELL+ 

menu system does not provide structural guidance. Navigation through menus using function 

keys is tedious and confusing. There are too many system blips on selection of a wrong key or the 

wrong object on the screen. Values for attributes in a model are entered by first pressing an 

appropriate function keys to open a fill-in form and then typing in desired values. Formats of 

input, attributes names, and the order in which some of the values are specified cannot be 

changed. All attributes for an element can be viewed on one screen (like a report) but the values 

cannot be changed on the same screen. Values can be changed one by one with no reference point 

to other relevant attribute values on the same screen (see Figure 2.3). The screen design is 

appalling, bright colours are screaming from the screen not making the model any clearer than it 

would be if in monochrome. On the contrary, it is quite hard to make any sense of the screens’ 

content.

Simulation experiments

To run a model the user chooses ‘run’ option from the ‘Main menu’. The display screen changes 

when the run mode is chosen. The model does not start running automatically. It waits until the 

‘begin run’ option is being selected. At this point the user can choose whether to suspend, or not, 

the drawing of changes on the display screen and whether to run the model slower or faster. Even 

after that the model will not run until one of the following modes is selected: one step (user has to 

repeatedly press F4 key for next step) or automatic run (run the model automatically, at the 

specified speed and with the specified drawing mode).

At any point during the run the drawing of changes can be suspended or resumed, the speed, 

if the drawing mode is on, can be decreased (in increments of 0.25 seconds on each F5 key press) 

or increased (in increments of 0.25 seconds for each F6 press). The run mode can be changed to 

one step mode from the auto mode or vice versa, or run can be paused. If the run is paused the
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parameters for the simulation run control can be changed. The following options are available: to 

restart results (clears the results accumulators, resets the model clock to zero, but does not alter the 

state of the model); to re-start the run (the same as before, but resets the state of the model to 

empty and idle); to change the random number seed; to change the display window and change the 

scale of display; to specify the form of the run display screen; and to turn ON or OFF a variety of 

audible signals (sounds when certain conditions arise in running the model). There are three 

distinctly different types of display available during the run of a model: trace (the instantaneous 

state of each element in the current window is shown); plot (a graph of the contents of one 

particular buffer is overlaid on the trace display); and chart (a Gantt chart of the state of selected 

work centres, carriers, maintenance centres, and auxiliary resources). All the different types of 

run display are generated as events occur during the running of the model and are presented 

immediately.

Despite the flexibility provided for interactively changing modes of display and simulation run 

controls, it is very hard to follow what is actually going on (see Figure 2.4). The screens are 

overcrowded with all sorts of objects, information, menu controls, and colours. On top of all this 

animation is accompanied with horrible blips, of several different pitches (if audible signals are 

ON). There is no provision for display customisation other than making decisions about the 

display mode within the constraints already mentioned.

Presentation of simulation results

Simulation results are available from the “Run menu”. Results are accessible only if the run is in a 

pause state. The results can be displayed or printed. Both period and cumulative results are given 

for: cost summary (capital and operating costs for each type of element); throughput for each 

shipping area (units accepted and batch shipments not satisfied); work in process inventory; 

utilisation for work centres, maintenance centres, auxiliary resources, and carriers; and flow time 

for each shipping area. Simulation results are displayed in a tabular form (see Fig 2.5). The output 

can be printed or dumped into a file. There is no provision to display the results in a graphical 

form, or produce customised reports.
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Figure 2.6 XCELL+: The only help screen
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User support and assistance

There are two manuals provided: the User's Guide and Cases in Operations Management (Thomas 

et al., 1980). The User’s Guide is relatively well written, it covers all procedures and screens, and 

describes in detail how to build a model. It has an index that covers XCELL+ terminology but 

unfortunately does not include entries that non experienced XCELL+ users would try to look for 

(e.g., distribution, stochastic data, seed number, simulation time, help). Cases in Operations 

Management provide a useful set of real-world cases and problems using XCELL+.

On-line help utility is invoked by pressing FI key in the “Main menu”. It apparently consists 

of isolated text screens that are invoked from different menus in XCELL+, according to the 

XCELL+ manual (Thomas et al., 1980). However, on-line help is only available in the “Main 

menu”. Help text is displayed on the black screen in white bold serif font and is very hard to read 

(see Fig 2.6). It consists of one screen giving basic information on XCELL+. No other on-line 

help is available.

Usability evaluation

Building a small queuing model in XCELL+ proves not to be too difficult. Information supplied 

in the user manual is sufficient enough to accomplish the task. However, the system fails to 

adequately support the simulation experiment due to serious usability defects in screen design and 

layout. The screen is overcrowded with all sorts of objects and with too many bright colours. The 

provision of feedback is inadequate, especially when errors occur. Instead of informative 

feedback the system issues blips if the user selects a wrong key or the wrong object on the screen. 

There are also problems in navigating through the system. Menus do not provide structural 

guidance and it is hard to know where in the system the user is. XCELL+ does not provide any 

shortcuts. The system can be in several different modes depending on the user selection of the 

task to be performed. Even though the user is informed which mode is currendy on, it is not 

always obvious how to change to another mode.

Overall XCELL+ is effective for rudimentary and fast model development of simple models 

that do not require any sophisticated analysis. But it would fail the effectiveness test for any
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complex problems. The terminology used in the system is appropriate for manufacturing domain 

but can create problems in matching with user tasks when applied in some other domains, for 

example a queuing domain. Leamability of the system is not well supported (it fails to provide 

simple and natural dialogue, it has serious problems in screen design and provision of appropriate 

feedback, and in matching the user tasks). XCELL+ fails to provide an adequate level of 

flexibility in carrying out the tasks. Therefore, the system does not provide user satisfaction and 

fails the user attitude test on many criteria.

2.3 .4  Taylor II

Taylor II version 2.10 (1993) is a PC based data-driven VIM manufacturing simulation system.

Taylor II requires 2MB of RAM and at least 5MB hard disk space, a mouse with two buttons,

VGA monitor, at least 30386 processor, and mathematical co-processor is recommended. Some 

of the typical applications are:

• Assembly line systems.

• Conveyor systems.

• Warehouses.

• Flexible manufacturing systems.

Even though Taylor II is used primarily for modelling manufacturing systems it can be used to 

model some of the queuing problems.

Data input/ model specification

Model specification is done using a visual diagramming tools. The system starts with a main 

screen which shows a model area that occupies most of the screen, a menu area (right side of the 

screen), and an area at the bottom of the screen. This area contains a number of buttons, boxes, 

bars, and a clock that can be activated by clicking with the mouse whilst in the main menu, the 

only exception being the help function that is available at all times. The main menu consists of the 

following options: Create (to create a model - layout and routing), Detail (to determine behaviour 

of the model), Go (to run simulation), Results (to see simulation results), File (to handle model 

storage and retrieval, and to exit the program), Options (to perform all those program features that
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do not belong to any other menu like to define new Taylor Language Interface (TLI) functions and 

to change the program default settings), and Visuals (to determine visualisation of the model). The 

logic of the model is presented graphically using either predefined shapes for entities in the model 

or by creating new ones (see Figure 2.7).

The depth of the Taylor II menu system never exceeds three levels (where the main menu is 

level zero). The mouse point and click action is used to invoke a menu option. ESC key is used to 

go up one level in the menu system. Each of the leaf nodes in a menu tree (except for the Create 

option) has a fill-in form that requires some data input (see Fig 2.8). To define an element in a 

model one has to specify 19 values/ parameters that relate to that element. Of these 19 parameters 

only five are shown on the form. To see the rest of the form the user has to scroll down the form. 

The mouse use is not supported in forms, therefore, the user has to switch to using the keyboard. 

Arrow keys are used to move up and down in the forms. Key FI is used for help on the item. To 

activate a particular value field in a form we have to hit ENTER key. The value fields can be: 

switches (on/off) that are changed by pressing the SHIFT BAR or the ENTER key; fields where a 

value has to be typed in; and multiple choice fields where user chooses one of the values from the 

provided list. To exit the form ESC key is used. This kind of input form has no option for 

cancellation. All changes are automatically saved.

There are some serious problems with the fill-in forms. If the user enters an invalid value into 

a field, then on an attempt to save or exit the form the following will occur. The form will remain 

on the screen, the value field will be set to blank, and that process will cycle indefinitely. There is 

no way to find out what should be entered, except an expert knowledge of the system. Context 

sensitive help does not provide this sort of information. There is no cancellation key. The system 

will persist in expectation of a valid entry. It is unusual to have pre-emptive value fields if no 

guidance on valid values is provided. Other types of forms require confirmation, like for example 

“Current model saved?”, or provide information, like for example “Cannot continue, use 

Simulate”. These forms usually have one, two, or three buttons (e.g., OK, Cancel, Edit, 

Retrieve) and the mouse use is supported. There is no consistency in the use of interaction 

devices.
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Simulation experiments

Simulation experiment can be conducted either to run a current model or to run a batch. The batch 

is used to run a number of simulations automatically and/ or to run a presentation automatically 

(animation of one or more models, explanatory text, or illustrations). To run a batch experiment, a 

TLI program is used. Otherwise, one can run a model that is just created or that is retrieved from a 

file. Some of the options for simulation can be set (kind of animation, speed of animation, stop 

conditions, recording the history of events) or the user can keep the default setting.

As a part of the model specification is the visualisation of the model. Visualisation does not 

influence the logic of the model but can provide a better understanding on what is going on. If 

judged on the provided examples Taylor II facilitates quite a sophisticated animation. The problem 

can be, however, encountered when one tries to create the icons oneself. The instructions 

provided are rather vague how to go about it. The available tool for creating the animation 

background and user-defined icons - ‘paintbox’ - is anything but easy. Paintbox has a variety of 

painting tools but to do any precision drawings is a long and painful process (see Figure 2.9).

During the visual simulation run besides an animation of a model, in the bottom area of the 

screen the dynamic icons can be used to represent variables in a form of text, graphs, or icons (see 

Figure 2.10). Again, like with the creating icons for simulation, definition of dynamic icons and 

their placement on the screen is not well explained. Taylor II allows use of 16 colours (mostly 

shades of grey). The user can change the default set of colours through a tedious and not very 

satisfactory process. In any case, it seems that whichever colours are defined by the user the 

system sticks to its default colours for most of the screen elements (text, graphs, etc.).

Presentation of simulation results

If the history of events was recorded then the user can view simulation results. There are four 

options available: Reports, Graphs, TLI Report, and Document. ‘Reports’ offers six predefined 

reports, five of which are in a tabular form and one is a trace report. The contents of tabular 

reports can be changed by the user, if desired. A trace report contains all events or selection of 

events that took place during the last simulation (see Figure 2.11). ‘Graphs’ offers a user defined
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graph and four predefined graphs to choose from; status diagram, utilisation pie, queue graph, 

and waiting time histogram. User defined graphs are always available regardless of whether or not 

a history of the simulation was kept. ‘TLI Report’ is fully defined by the user. ‘Document’ 

provides a full description of the model.

There is not much flexibility offered when choosing colours and patterns for graph 

presentation. Textual reports are by default black characters on a white background. Graphs can 

be either in colour or in monochrome, and they can be changed easily using the colour switch. If 

the monochrome version is requested predefined patterns represent otherwise coloured areas in a 

graph. In the colour version the user has not much influence on setting colours, patterns, and 

typesets. The default is made by choosing the colour setting for the whole system. There are three 

main colours that can be set: Indicator (determines in which colour the information, like the bars in 

a graph, is displayed); Background (determines the background colour); and Warning (if the 

warning level is reached the colour of information changes into the warning colour). The 

comforting thing is that the result statistics can be exported to text files or to *.OVL, *.MVL files.

User support and assistance

Taylor II has a comparatively high standard of the provided documentation. There are five books 

that provide four manuals: Tutorial (1993), User’s Guide (1993), TLI (Taylor Language 

Interface) Syntax Guide (1993), and Examples Appendices Index (1993). The manuals are 

relatively well written, structured, and contain information on how to use them. However, the 

high confidence in manuals rapidly vanishes when one tries to build a model with the manuals and 

the on-line help as an only aid. The tutorial is not so good since it does not properly explain how 

and why some of the system functions are performed. The index is global for all five books 

therefore to find anything one has to have all the manuals available. The system comes with a 

demonstration disk that takes more than 3MB of disk space. It has a variety of examples from 

different application areas. The demonstration program does not provide a guided tour of a model 

development and does not offer much guidance of how to use it.

On-line help is constantly available by either hitting the FI key or by mouse point and click 

action on the button labelled “?” that is always available on the screen (see Figure 2.12). The 

Taylor help system contains the complete manual, including colour illustrations. To navigate
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through the help system there are the following options: Contents (displays the table of contents 

with the associated pages), Index (displays alphabetic listing of the major concepts and terms), 

GoTo (prompts for the page number that corresponds to the page number in the contents - not the 

page numbers in the written manuals), Find (prompts for a string to be searched for - it 

indiscriminately searches for the first occurrence of the entered string), Next (searches for the next 

occurrence of the find string), <- (goes to the previous page), and -> (goes to the next page). 

Context sensitive help is always available and can be invoked by pressing FI key. Then the page 

discussing the part of the program that the user is currently working on is displayed. Context 

sensitive help does not offer anything more other than what is already available in the printed 

manuals and in the on-line manuals. There is no help provided for error messages or for invalid 

input.

Usability evaluation

Taylor II does not support easy and fast model development. Even an elementary queuing 

problem takes some time to be designed with the available tools. The major obstacle is in the user 

support material. Instructions are incomplete, often vague, and not well organised. The process of 

designing the model is frustrating and does not motivate the user. The lack of flexibility and the 

unexpected problems that are encountered during the design do not create any confidence in the 

tool. Taylor II has several defects that seriously impede its usability. Effectiveness of the system 

is hindered: by the inconsistent use of interaction devices, by the use of modal dialogue boxes 

which therefore deny the possibility of cancellation, by the lack of good error messages, in screen 

design where not all relevant information is displayed and no indication is given that that is the 

case (fill-in forms). The terminology used in the system is appropriate for the manufacturing 

domain and can create problems in matching with user tasks when applied in some other domains 

like a queuing domain. Leamability of the system is not well supported. Taylor II does not 

provide comprehensive and reliable user support material (manuals and on-line help). Very often 

the user has no feeling of being in control and it appears that the system overrules the choices 

made by the user (e.g., selection of colours). This makes the flexibility of using the system rather 

restricted. All the listed deficiencies do not create user satisfaction. Therefore Taylor II fails in all 

four usability categories.
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2.3.5 ProModel for Windows

ProModel is a discrete event simulator that can run under DOS (ProModelPC), Windows 3.1 

(ProModel for Windows), and the Macintosh operating system (ProModelMac). It is intended 

primarily for modelling discrete part manufacturing systems. We are here assessing ProModel for 

Windows (1993) which is based upon ProModelPC. In this section, whenever referencing 

ProModel for Windows, we will refer to it as ProModel. ProModel focuses on issues such as 

resource utilisation, production capacity, and inventory levels. Typical applications for using 

ProModel include:

• Assembly lines

• Job Shops

• Transfer lines

• Flexible manufacturing systems

ProModel views a production system as an arrangement of processing locations, such as 

machines or work stations, through which parts (or entities) are processed according to some 

processing logic. A system may also include paths, such as aisle-ways for movement, as well as 

supporting resources, such as operators and material handling equipment to be used in the 

processing and movement of parts. ProModel is a typical Windows application and, as such, it 

provides features that are commonly present in such applications (i.e., GUI, point and click 

operations). When ProModel is started it opens its window with a main menu bar offering the 

following selections: File (contains: open new or existing models, save current models, view a 

text version of the model and print either the model text file or the graphical layout of the model), 

Edit (contains relevant selections for editing the contents of edit tables and logic windows 

depending on the origin from which the Edit menu is selected), Build (contains all of the modules 

for defining a model), Simulation (controls the execution of the model), Output (for viewing 

model output), Tools (contains various utilities), Options (contains selections for setting up the 

modelling environment), Window (contains standard Windows options), and Help (on-line help 

and tutorial).
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Data input/ model specification

ProModel gives the user flexibility to define a model in several ways. The easiest method is to use 

a graphical point and click approach to first define locations in the system (see Figure 2.13). Once 

locations have been defined, entities (parts) are defined and scheduled to arrive at locations in the 

system. Then the user has to define any optional model elements such as attributes, variables or 

arrays that will be referenced in the processing. Finally, the processing of entities at each location 

is specified in the processing logic (see Figure 2.14). Models can be built manually using the 

‘Build’ menu or using a structured environment called ‘Auto-Build’ that guides the user through 

the required and optional modelling elements. The AutoBuild feature starts automatically each time 

the user enters ProModel, unless the user has selected ‘Advanced User’ in the ‘Options’ menu.

The ‘Options’ menu enables the user to change certain model aspects such as background 

colours, to display a layout grid or not, etc. The user can also change the colour of the layout 

background, add text and basic graphical objects (i.e., lines, rectangles, circles), or import a bit 

mapped graphic and use it as the background of the simulation model under construction. The 

Graphic editor that can be invoked from the ‘Tools’ menu consists of: a graphic tool menu, 

colours menu, and a drawing window. Objects that can be drawn on the screen are text, lines, 

triangles, regular squares and rectangles, rounded squares and rectangles, raised squares and 

rectangles, circles and ellipses, polygons, and entity spots. Objects drawn on the screen can be 

resized, reshaped, repositioned, flipped or rotated, copied, and deleted. The colour and pattern of 

objects can be changed. There are 48 basic colours to choose from. In addition, the user can 

specify 16 custom colours. All of the 64 colours may be used as the fill and line colours for 

graphic primitives or for the background colour. There are eight fill patterns defined. The user can 

change only a pattern’s foreground colour. The pattern’s background colour is always the same as 

the screen background colour. There are four line styles. The user can vary the thickness of the 

line or border. Text attributes that can be defined include font type, font size, colour, alignment, 

and various options for a text frame. The Graphic editor is very simple to use, it is flexible, and 

icons that represent tools are fairly self-explanatory. Once the simulation background is drawn the 

user can start to define the model.
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During specification of the model’s elements (locations, path networks, resources, entities, 

processing, and arrivals) the model building screen changes depending on the elements being 

specified. The screen usually consists of a window for visual presentation of the model under 

construction, relevant building tools (i.e., Resource graphics), and a fill-in form where individual 

element of the same kind (i.e., resources) are entered. For example, the screen for defining 

locations consists of an empty window for a model layout, a graphic dialogue box, and the 

locations form fill-in. To define a location (counter, gauge, queue, text, status, entity spot, or 

region) the user has to click on an appropriate button (i.e., queue) and then click in the layout 

window to indicate where the location will be placed. The location default icon is then drawn in 

that place. If the user desires to use an other icon than the default one, he/she can do that by 

choosing an icon from the provided selection. All screen objects can be resized, repositioned, 

deleted, etc. As the user places an icon on the layout the default values for that location are 

automatically placed in the form. The user then has to make desired changes (i.e., location name). 

It is easy to identify entities for a location (one line with value fields). On the selection of a 

location the corresponding location icon in the layout is highlighted as well as the corresponding 

location attribute values in the form. The line belonging to the location specification, among other 

values, contains the icon that represents that location (see Figure 2.13).

There is no possibility of customising the user interface (i.e., menus, fill-in forms, graphic 

tools). However, the application windows can, like in any Windows application, be resized, 

repositioned, closed, etc. Location names, entity names, and other elements of the model can be 

named using up to 80 characters. External files may be used during the simulation to read data into 

the simulation. Files can also be used to specify such things as operation times, arrival schedules, 

and shift schedules. A file type can be a general read file (values are separated by either a space, 

comma, or end of line) or a spreadsheet formatted file (.WKS). Spreadsheet files may be used to 

specify an entity-location file and arrival time.

Simulation experiments

All of the runtime controls are accessed through the ‘Simulation’ menu. This menu contains 

options for running a model, specifying multiple replication statistics, and other extended runtime 

options. Runtime options include: the total time for which the statistics will be collected, the
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amount of time to run the simulation before collecting statistics, the total number of replications to 

make during the run, the level of operational statistics to collect in the output report (none, basic, 

detailed), and the name of the simulation output file. Run times can be expressed, and must be if 

shift schedules are defined, in terms of a calendar clock specifying dates as well as times. Shift 

schedules are defined using the ‘Shift Editor’. The Shift Editor is a graphical tool (invoked from 

the Tools menu) used to define shifts and breaks that may be assigned to locations and resources. 

Shift and break times are defined by blocking areas on a time grid for each day of the week.

The simulation of a model can be executed with or without animation. The animation that the 

user sees consists of the screen that was initially constructed as the simulation background, on 

which graphical representations of locations are displayed (located as defined by the user). When 

the simulation begins, graphical representations of resources and entities begin moving on the 

screen based on the rules for arrivals and processes, and following the specified path networks. 

Once the simulation begins, a new menu bar appears at the top of the screen with selections for 

controlling the animation and for interacting with the simulation (see Figure 2.15). The simulation 

can be paused for an indefinite amount of time, whereupon the user can begin a trace, zoom in or 

out of the animation, set up a next pause, or interact with the model in a number of other ways 

conducted in a trace model. The animation can be suspended or resumed at any time. The current 

state of all variables and arrays can be viewed. The status of a location including the current 

contents, operational state, total entries, and entity types can be viewed. The user can control the 

speed of the simulation (controlled with the speed control bar) and change the format of the 

simulation clock display (only digital formats). The user can also pan the animation screen in any 

direction.

Presentation of simulation results

ProModel’s output generator gathers statistics on each location, entity, resource, path network, 

and variable in the system. The user can turn off the reporting capability for any element that 

he/she does not wish to include. The default level of the statistics is at the summary level. Model 

output is written to several output files according to the type of data being collected. The main 

output file contains information of a summary nature such as overall location utilisation and 

number of entries at each location. Other files keep track of information such as location contents
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over time and the duration of each entity at each location. Simulation results may be presented in a 

tabular or in a graphic form. Detailed history plots can be gathered on such things as utilisation, 

queue fluctuations, and variable values. After each simulation run the user is prompted to view the 

model output. If the user chooses to see output, the statistical module is opened. The output of the 

most recent model run is then loaded automatically and the summary tabular output is displayed. 

To see the whole report the user can scroll up and down and left and right in the output text using 

the window scroll bars.

Other available reports can be viewed from the ‘View’ menu in the Statistical module. The 

available reports for the model are highlighted selections in the pull-down menu invoked from 

‘View’ menu. All reports are pre-defined and the only control the user has over output reporting is 

the selection of statistics that will be accumulated when the model runs. For example, the 

‘Location State’ report is a histogram where each location in the model is presented with a 

horizontal bar (see Figure 2.16). The bars present the percentage of time that each single capacity 

location spent in a particular state. Activity states for locations are represented in different colours: 

operation in green, set-up in sky blue, empty in dark blue, waiting in yellow, blocked in 

magenta, and down in red. Percentages for each state are not given. There is a percentage ruler 

scale above the graph. For any of the individual locations the user can view a pie chart To do that 

the user clicks anywhere on the bar graph on a desired location. A pie chart is then created 

automatically. A pie chart graph contains a title (location name), a legend (all operation names with 

associated colours, and percentages that the location was in the corresponding states), and a 

coloured pie chart (see Figure 2.17).

There is no facility to allow the user to produce customised reports. The user cannot change 

the type of graph representation, select colours to be used in graphs, change the way the text is 

displayed or change the contents, add explanations, etc. The user can change the text font type and 

size for graph titles, legends, names, scales, and for text in the tabular report. The colours used in 

graphs, including the text of the graphs legends, cannot be changed. The only changeable 

attributes are the time interval in the throughput history graph and the graph style in the content 

plots. Time intervals can be chosen according to seconds, minutes, hours, days, or weeks. 

Content plots track the contents of a location over time. The graph styles available for a content 

plot are: grid lines, bar graph, line graph, step graph, vertical line, and point shapes. History data
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can be exported to an external text or a binary file that can then, in theory be used in a spreadsheet 

program for more complex data analysis.

User support and assistance

Compared with the other examined simulation systems, ProModel looks like a professional 

product Manuals are separated into Getting Started (1993), User Manual (1993), and Reference 

Manual (1993). The manuals are carefully organised and well written using a not too technical 

language. Every manual contains an index of discussed topics. Finding a topic in the index is not 

easy if the user does not know the terminology used. For example, the index in the User’s Guide 

has no entry for icons. The manual uses the term graphics for icons as well for other graphic 

concepts like, for example, output graphs. ProModel comes with a demonstration disk that is 

done professionally. The user can use the demonstration program at his/her own pace. All major 

components of the systems are covered and the user can choose the topic to be introduced to. The 

demonstration program provides some animated examples and gives the feel of the system prior to 

using it.

An on-line help system is provided throughout a ProModel session. The help structure and 

navigation is the standard Windows type of help. It is in the form of hypertext and the user can 

navigate through it using link nodes. Help has standard facilities for printing, editing, bookmarks, 

and help on using help. In any of the help windows the user can see the help contents, search for 

a particular topic, go back to the previous help window, and view the help viewing history. Every 

ProModel module has a Help option in the main menu. Help can be obtained by choosing the 

Help menu and then making one of the following selections: index, context, and tutorial. Index 

contains about a dozen major topics. Topics are sorted based on the order of their use in a model 

development cycle rather than alphabetically (i.e., ProModel Overview, Building a Model, 

Running a Model, etc.). One of the topics is a Glossary that provides a short alphabetic listing of 

ProModel concepts. All topics listed in the index and in the glossary are link nodes to relevant 

help screens. Context provides context-sensitive help for a particular ProModel module (e.g. if the 

user is building locations, context will provide help on the Location Editor). Context-sensitive 

help can also be invoked by pressing the FI key at any point in model building, running, and 

viewing simulation output, or using built-in tools. Context-sensitive help gives a concise
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description of the current module, or of the current dialogue box (see Figure 2.18). The user can 

then explore in more detail instructions/ descriptions of the desired features/ topics using the link 

nodes in the text.

Tutorial provides: the system overview (lessons on the Windows environment, on building 

models, running models, and on output reports), getting started (a step by step tutorial for 

building a simple model), and how to ...(an interactive lesson on how to use the system’s major 

modules like, for example, creating background graphics). Tutorial also provides instructions on 

how to use the tutorial. The tutorial is an easy to use effective tool to get familiarised with the 

ProModel modelling environment and its basic concepts.

Usability evaluation

ProModel provides an easy to use environment that supports model building well. Development 

of our small queuing problem was not too difficult. The available user documentation, extensive 

on-line help, and demonstration programs provide all the necessary material to accomplish the 

task. The system provides consistent and structured dialogue that matches the user task. The 

screen design and dialogue do not require the user to memorise information from previous 

screens. Instructions for use of the system are visible and always available. ProModel always 

provides feedback on where in the system the user is, what actions are being performed, and 

which objects are affected. Error messages are well explained and there are always clearly marked 

exits. Leamability is therefore also well supported. Flexibility is supported quite well. There is a 

facility for guiding an inexperienced user through the necessary steps of model development. 

Experienced users can choose the order in which to perform the steps of tasks. All the above 

system characteristics promote a high user satisfaction and willingness to use the system again. 

However, since the used terminology is from the manufacturing domain it can create some 

problems when dealing with problems from other domains (e.g., queuing problems).

2.3 .6  Micro Saint for Windows

Micro Saint is “a network simulation software package for building models to simulate real-life 

processes”. It runs on the Macintosh, MS-Windows, and Unix. Micro Saint for Windows (1992) 

is a PC based system that runs under Microsoft Windows 3.0 (or later). It requires at least 3MB
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disk space, a colour monitor (EGA or VGA), and a mouse (sometimes the mouse actions can be 

substituted with a combination of keys). Some common application areas for Micro Saint include:

• modelling manufacturing processes to examine issues such as resource utilisation, 

efficiency, and cost

• modelling transportation systems to examine issues such as scheduling and resource 

requirements

• modelling human services systems to optimise procedures, staffing, and other logistical 

considerations

• modelling training systems and their effectiveness over time

• modelling human operator performance and interaction under changing conditions

Micro Saint is a general purpose system that supports modelling of any process that can be 

represented in a flow chart type diagram as a network of tasks. Network diagrams show the 

general sequence of tasks in a network representing an activity or process (see Figure 2.19). 

Nodes in the diagram represent tasks in the process or activity. Arrows connecting nodes 

represent potential paths through the network.

Data input/ model specification

The logic of a model is represented graphically using “the network diagram”. The system provides 

a tool palette to draw a network. The tools facilitate the placing of the tasks on the screen, drawing 

paths between them, and placing the queues. Micro Saint has a predefined shape - an oval - for 

tasks. To place a task on the diagram the user has to click on the tool button ‘Task’ and then place 

the task shape by dropping it (click the mouse button). The tasks are numbered automatically in a 

sequential order starting with 1. The path between tasks is drawn by choosing the ‘Path’ button 

and then dragging the cursor from the starting task to the designation task. To place a queue for a 

task the user has to choose the ‘Queue’ button and then click on the task. The process of drawing 

the diagram is quite simple if one knows the logic of a model. The difficult part of the model 

specification is the process of defining tasks, decision nodes (when there is more than one path 

coming out of the task), and queues. The information is entered in the standard fill-in forms 

provided (see Fig 2.20). There is no data validation provision. Even though there is a help option

J. Kuljis User Interfaces and Discrete Event Simulation Models Page 64



Chapter 2: User Interfaces to Discrete Event Simulation Systems

M kro Salat
Elle Edit D isp lay  Egecute Help

Network: 0 PATIENT

Q ueue

P ith

Zoom  In

(zoom  B ickl

\__V3 ^ >A V^jvVs
-^ g e n e ra te  cqM y  aide/ecyiipment ^ \m o v e to u rw  7\tran»(er pot^rtt Y ^ y m o v o  aids/Vquipmertl

~7> V-4T5 vJ
7\g a tie r»  s a i v y a 7\find  ad e /e^ o ip m e n

J

/ \re tum  trip cy n p li

Figure 2.19 Micro Saint: Network diagram for a model

Elle Edit g i g T a lk  D escription
-L d 't— Help.

Poin ter

T ask  N um ber 

Nam eT aak

T a lk  Tim ing Inform ationQ ueue
NormalTime D istribution 

S tandard  Deviation:M ean Time:Path

Undo Path m ove aido/oquipm ent

" R e le a se  C ondition and  Task Execution EHecti 
R e le a s e  Condition: B eginning  E ltec t_____________

loc : -  trorn|lng|. EQUIPMENT; 
If fndequlpftag] == 0 then  loc :■ 
lo |la g |.  EQUIPMENT;________

|n u m a id e s |f r o m |l a g | |  > 0 | 
n u m iid e s |to ( tag ]l > 0 | n u m ald es |0 | 
> 0 | I  |n u m e q u ip |t r o m |ta g ||  > 0 |

Launch Effect: Ending E ffect

rekimtnp

Cancel

Figure 2.20 Micro Saint: Data entry for a task

J. Kuljis User Interfaces and Discrete Event Simulation Models Page 65



Chapter 2: User Interfaces to Discrete Event Simulation Systems

provided on each of the forms, the help provided is for the whole system and not for the current 

form. There is no possibility to customise forms. Once created, a model can be saved using the 

standard DOS conventions for file names. To save multiple versions of the same model one has to 

invent a consistent naming under constraints of 8 characters for a file name.

Simulation experiments

Simulation experiments are conducted by first providing the ‘execution settings’. This includes 

defining the random number seed, selecting variables whose values are going to be stored, 

number of the model runs, etc. After the user is satisfied with the setting he/she can then execute 

the model and watch either a symbolic animation (see Figure 2.21 and Figure 2.22) or an “action 

view” animation. In a symbolic animation the screen shows the entities that appear as small 

geometric shapes that travel through the network of tasks, causing each task to change colour 

(black active, white inactive) as it processes an entity. The user can choose the speed of model 

execution (fast or slow) and whether to watch a continuous execution or for the execution to 

proceed one step at a time. The execution can be paused and resumed, or halted all together. An 

‘action view’ animation apparently provides an iconic animation. If one can judge by the 

demonstration examples provided by Micro Saint, and one could assume that it is the best they 

could offer, there is not much to be seen. Whatever the speed of execution, the animation does not 

offer much and certainly does not provide any better understanding of the problem. Micro Saint 

does not provide tools for creating icons. Instead, it lets the user import drawings from other 

Windows graphics applications (like Paintbrush).

Presentation of simulation results

After model execution the simulation results are available for those variables that were specified in 

the execution setting. The results are stored in separate files that can then be viewed by choosing 

the ‘Open Results’ option from the ‘File’ menu. To view results the user has to know where to 

look exactly and then chose the appropriate file from the list. The results are displayed in a table 

within a window. The window like any window in a Windows applications has a main bar menu 

with pull-down options. In addition it has a tool bar that consists of axes tools for defining 

graphs. There is an option in the ‘Analyze’ menu to see the statistics. The statistics provided for
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each of the variables consists of minimal and maximal values, mean, and standard deviation. The 

printing option is available only for the statistics. To obtain any graphical representation of the 

results the user has to specify a variable on an X-axis and a variable on a Y-axis (only two- 

dimensional graphs are available) (see Figure 2.23). Other parameters that have to be provided 

are: graph scale, graph titles, and a graph type (scatter plot, step graph, line graph, or bar chart). 

A graph representing a frequency distribution is available for a single variable. There is no option 

for graph customisation like, for example, choosing colours, patterns, or labels. There is no help 

facility to guide the user in analyses of the results.

User support and assistance

Micro Saint comes with two manuals: ‘Getting Started with Micro Saint’ (1992) and ‘Micro Saint 

Tutorial’ (1992). The first manual provides instructions on system installation, on using the on­

line users’ guide, guidance on model building, explanation of sample models, and an index. The 

manual is relatively well structured. The language used is not too technical. The approach to 

explaining the system is better suited to a ‘cookbook’ than a software manual. Explanations on 

building models are given in the form of a series of instructions and steps that the user has to 

follow. Very often it is hard to understand why and/or how some of the instructions should and 

can be used. The manual treats elementary and complex tasks with the same level of detail. When 

one tries to create a graph or an icon following given instructions, it becomes particularly obvious 

that the given guidance is ambiguous and not sufficient to complete the task without lengthy 

explorations. An index provided with the manual is rather short and lacks many important entries. 

For example, there is no mention of ‘colour’ in the index. The Tutorial consists of assembled 

parts of text from the Getting started manual. It does not have a table of contents nor does it have 

an index.

On-line help in Micro Saint is provided in the main window in the form of an on-line manual. 

The same help is offered in all modules of the system. It has a structure similar to the majority of 

Windows based applications. It is a limited hypertext application where the ‘cards’ containing a 

complete chunk of information may have buttons that lead to further information (see Figure 

2.24). Available options are: Using Help (basically explaining how to navigate through the 

interconnected pieces of information); Menus (explaining in some detail all the options on the main
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menu and the options on the related pull-down menus); How to (explains how to perform the 

basic operations on the model, like for example, drawing a diagram); Expressions (explains the 

available expressions and their syntax, for example, function); Functions (lists built-in functions 

and explains how to develop custom functions); Distributions (lists of probability distributions 

available and instructions on how to use some advanced statistical distribution or how to create 

custom distributions); Glossary (provides a search facility on an entered word - curiously it 

searches through the whole text indiscriminately); Index (an alphabetic list of all relevant terms - 

there is a two stage method to display the text related to an index entry); and Map (provides a cut- 

down structure of the whole help utility - it does not allow viewing in much depth). There is no 

tutorial help.

Overall the help provided is very tedious to use and very very slow. Even though there are 

connections between different parts of help options (they are shown on the screen) it is not always 

obvious what to look for. There is no provision to go back to the starting page (card) other than 

by choosing a related option from the map in the on-line help (see Figure 2.24). The navigation 

backwards does not seem to go smoothly, either. It does not backtrack previously visited pages. 

The text within the help window is not always clear and fully visible. There is no provision of 

context sensitive help. The user has to know exactly what to look for to be able to obtain 

information from the help. It is questionable how much the help utility is really a help in designing 

a model.

Usability evaluation

The Micro Saint environment enables a relatively fast start in model development. However, the 

user would discover fairly quickly that it is rather difficult to complete the model definition. The 

user is required to enter programming code into fill-in forms that describe the model behaviour. 

Our task to model a small queuing problem suddenly became a complex one, that requires a long 

painful learning process which is not supported adequately by the user manual and with on-line 

help. Help on error messages is not provided. There is not much flexibility provided in the use of 

the system. Micro Saint fails on all four usability criteria. Its effectiveness is impeded with defects 

in terminology (the user is required to use programming commands), and in inadequate and 

irregular feedback provision. Leamability is seriously affected by the lack of good error
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messages, inadequate support material, and incompatibility in matching with the user task. 

Flexibility is hindered with lack of control over the system. As a consequence the user is often 

frustrated and that does not promote a positive attitude towards the system.

2.3.7 WITNESS for Windows

WITNESS is a PC based data-driven VIM manufacturing simulation system that can run under 

DOS, Windows, or OS/2. We are here assessing Witness for Windows version 307 (1991). 

WITNESS requires at least 4MB of RAM and 6MB hard disk space, Windows 3.0 or later, 

30386 based PC, EGA or higher display adapter, a mouse, and a mathematical co-processor is 

recommended. The concepts of Witness do not only apply to manufacturing problems, it can be 

applied to many areas of business and commerce. Like any typical Windows application 

WITNESS is invoked by clicking on its icon in the Main window. On invoking, it takes some 

time to load the application, which as a first step displays a modal box containing text stating that 

the user is in WITNESS and a button, ‘OK’. To start WITNESS the user has to press ‘Enter’ or 

click with the mouse on the ‘OK’ button. This is an unnecessary and pointless additional step. 

The main WITNESS screen consists of three windows: ‘Window 1’ (one of the four main 

WITNESS windows used to view a virtual WITNESS screen or its part), ‘Interact Box’ (it is the 

medium by which transient information may be passed between WITNESS and the user during a 

simulation run), and ‘Time’ (used to display simulation time). All WITNESS windows, except 

‘Clock’, have a black background.

The main bar menu consists of five pull-down menu choices: File (to open a new or an 

existing model, or to save a model and/or its status, or the code, or icons), Edit (to define model 

elements, logic, variables, and how the model and its elements are displayed), Windows (for 

opening four main WITNESS windows or to toggle the windows ‘Interact Box’, ‘Clock’, and 

‘Time’), Info (to open Help, view lists of the current model elements, display reports of the 

statistics obtained for simulation elements or their current status, and inspect the WITNESS 

internal data concerning the execution of simulation), and Run (to control how the simulation is 

run or to interrupt a run).
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Figure 2.25 WITNESS: Defining a model

Figure 2.26 Witness: Specifying the display options
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Data input/ model specification

There are two kinds of modelling elements: physical elements, which represent tangible entities in 

the real-life situation under study, and logical elements, which represent the conceptual aspects of 

the model. The physical elements available in WITNESS are: Parts (represent physical 

components that flow through the model), Fluids (flow through Pipes, Tanks, and Processors), 

Buffers (where Parts are held, like people in a queue or motors on a shelf), Tanks (continuous 

processing elements in which Fluids may be held or stored), Machines (represent anything that 

takes Parts from somewhere, process them, and sends them on their next destination), Processors 

(equivalent of Machines for Fluids), Conveyers (used to move Parts from one fixed point in the 

model to another over time), Pipes (elements used to connect Processors and Tanks), Vehicles 

(devices whose purpose is to transport Parts around a factory floor), Tracks (paths that Vehicles 

follow when transporting Parts, or points where Vehicles load, unload, or park), and Labour (a 

resource which may be required by other elements as they perform their own respective 

operations).

All entities in the model are specified using pre-defined WITNESS dialogue boxes that present 

combination of entry fields and buttons (see Figure 2.25). Some entry fields are also buttons that 

on activation display relevant entry boxes. The user cannot customise the interaction. There are 

three steps required to build a model. These three steps are followed using the first three options 

from the ‘Edit’ menu of WITNESS: Define, Display, and Detail. First, the user has to define 

elements to be used in building the model (names and quantities). Second the user has to specify 

how elements will be displayed on the screen (see Figure 2.26). Third, the logic which determines 

how each element will operate and how mobile elements will flow through the model has to be 

supplied (see Figure 2.27). A model is identified by an eight character long name (for a DOS file), 

but can also have a full length model name and author’s name. The ‘Define Menu’ is a button 

menu that consists of buttons for all physical and logical elements, and a ‘Cancel’ button. Clicking 

with the mouse on one of the elements buttons will open a dialogue box with entry fields and the 

buttons ‘Cancel’ and ‘Enter’.

For example, on clicking the ‘Machine’ button a box ‘Define machine’ will pop-up, on the top 

of the ‘Define Menu’, that contains fields for Name (of machine), and Quantity with a default
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value of 1. Name can be up to eight character long (starting with a letter, no spaces). If the user 

types in a syntactically unacceptable string, i.e. “A 1”, an error message box will be displayed 

with the warning: “Name ‘A 1’ is not a valid WITNESS name: select another”. There is no 

guidance on what would be an acceptable name, there is no help for that item, either. The user has 

to click on button the ‘Continue’ to bring back the dialogue box. After an acceptable name is typed 

in (all names are automatically converted into upper case letters), and the quantity value changed, 

if necessary, the user has to click on the ‘Enter’ button. After that the dialogue box with an empty 

value field for the name will continue to be displayed on the screen. This is a fairly confusing 

situation. If the user presses ‘Enter’ when the ‘Name’ field is empty the dialogue box will be 

closed. However, if the user clicks on ‘Cancel’ while there is an entry in the Name field the action 

will be cancelled, and the dialogue box closed. To continue entering all Machines, the user has to 

provide one Machine at a time pressing ‘Enter’ after each entry. When all Machines are entered, 

the user has to press the ‘Cancel’ button. This button does not cancel any of the entries already 

made, it merely closes the dialogue box and returns control to the ‘Define menu’. If the user had 

made a mistake, the mistake cannot be rectified at this stage. When all elements in the model are 

defined the user has to click the ‘Cancel’ button in the ‘Define Menu’. Yet again, this will not 

cancel any of the definitions made for elements. It will only close the menu. WITNESS is fairly 

consistent in using ambiguous ‘Cancel’ buttons.

Simulation experiments

WITNESS offers a set of default values for displaying elements. Each type of element is 

represented on the screen in a different way. Parts and Labour can be displayed as icons, filled 

rectangles (one character high by one to four characters wide), or as a simple count of parts. 

Fluids as shown as blocks of colour within Pipes, Tanks, and Processors. Buffers are shown as a 

row or column of parts, or as a number indicating how many Parts the Buffer contains, or a 

Buffer can be represented as an icon. Machines are represented by icons. Processors and Tanks 

are represented by rectangles, or icons, or both. Conveyors appear as a row or column and/or an 

icon. Pipes are shown as four lines representing the size of the pipe. Tracks are shown as a row 

or column. Vehicles are displayed by tracks or other elements they are on. Changing the defaults 

on how the elements will be displayed is not as simple or as flexible as it should be. States of 

Machines, Vehicles, Conveyors, Buffers, Processors, Tanks, and Pipes can be represented by
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default colours. For example Machines have nine states each of which has a colour associated 

with it. The user can specify a fixed colour for the Machine icon. However, the user cannot 

choose just to indicate a particular state/s of an element by colour. There is no possibility to 

change the default colour codes for state changes, either.

A model is represented graphically using predefined physical elements. Icons can be changed 

by selecting a new one from the pool of icons. Icons are rigid geometrical shapes of fixed size. 

Size can be changed using one of the five predefined sizes. Icon orientation can also be changed 

(rotate and/or reflect). The user has to toggle through the list of icons sequentially, each having a 

number associated with it. It can be tedious to select a desired icon since bringing the icon up by 

referencing the icon number is not allowed. After an icon for an element is selected it can be 

positioned on the screen using the mouse. The user can also choose what to display for that icon 

(i.e., name, queue count) and how (i.e., colour, display size). All text in WITNESS has a 

predefined font type (Sans Serif bold), and a predefined font size (the choice is usually limited to 

standard or large). The maximum number of colours that the user can choose from is 16, and 10 

patterns. This choice is not available for all elements. After the initial screen has been defined the 

user can reposition objects on the screen, add new objects (lines, boxes, ellipses, or text). Icons 

can be stretched or moved. There is a possibility to change existing icons, or to draw new icons 

using the ‘Icon Editor’. However, there are limited drawing possibilities. The icon can consist of 

8, 16, 24, or 32 square pixels. The colours used to draw an icon will be changed once the icon is 

drawn in the WITNESS window and it almost impossible to predict what will be the appearance 

of the drawn icon. If multicoloured icon is used to represent an element of the simulation, the 

change of state would not change the colour.

The model can be run interactively, viewing the animation of the model, or in batch mode, 

with no animation. The animation can run at three speeds: walk, run, and step by step. An 

interactive simulation run can be stopped at any point and restarted or continued. The simulation 

screen can be customised on what to show using WITNESS windows. Animation is not very 

realistic and, if the status colour codes are shown, can be very confusing (see Figure 2.28).
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Presentation of simulation results

Statistical information is automatically collected as the model runs, and the reports can be viewed 

at any time as required. To see the reports the user has to pull down the ‘Info’ menu and click on 

‘Reports’ which will display the ‘Reports’ dialogue box. The dialogue box consists of a value 

field for the name of element to report on, a scrollable value list displaying all simulation elements, 

and several buttons that control what to include in a report and where the output is going to be sent 

to. Reports can be created for all elements of the same type (i.e., all machines) or for all individual 

elements. A report for an individual element can be obtained by typing the element name into the 

‘Name’ value field, or by clicking on an element from the elements value list and then clicking 

‘Enter’, or by pointing and then clicking with the mouse on an element on the screen. Reports are 

in a predefined tabular form and their contents are dependent on the type of element they are 

reporting on (see Figure 2.29). There is no possibility to customise reports. However, there is a 

facility to save data in a Data Interchange File (DIF) format that can be then used by some other 

software packages (e.g. Excel).

There is a limited facility to present simulation results graphically. Time series and histograms 

can be defined using the ‘Define’, ‘Display’, and ‘Detail’ options in the ‘Edit’ menu. Similarly, 

like other interface objects, graphics can be customised to a limited extent. The user can specify 

what is going to be presented, the minimum and maximum values, and the colours. There is no 

facility to specify line width, line type, grid, intersection markers, etc. for the time series. 

Similarly, for histograms, the user cannot determine what sort of bars to use, to choose different 

patterns, use grids, etc. Like everything else in WITNESS, defming output graphics is not 

straightforward, requires several steps, and can be ambiguous.

User support and assistance

WITNESS documentation consists of one manual - the ‘User Manual’ (1991). This manual 

covers system requirements and installation, a description of the WITNESS environment and how 

to use it, a reference section, a glossary of WITNESS terms, and an index. The manual is quite 

comprehensive and relatively easy to follow. Some of the system’s features (e.g. interaction 

objects) are not explained in detail and it can be time consuming to learn all the intricacies of using
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them. For example, explanation on how to use the ‘Icon editor’ to create icons is ambiguous and 

often not detailed enough. To learn the system the user is expected to cover the whole manual 

because the explanation related to one topic can be scattered through several sections. The index 

provides coverage of all material and reference to the relevant page number for a topic of interest. 

Sometimes it is hard to find under which term the topic is listed. For example, if the user wants to 

find out about simulation results under ‘Simulation’ there is an entry “Presenting results o f ’. But 

this is just a page long advice on the importance of a demonstration and what to show to an 

audience. There is no mention of output data from the simulation. There is no entry for “Output 

data”, “Simulation output”, “Results”, etc. Anything related to output results is listed under 

“Reports”. The manual has an example on how to build a simple model, but it does not provide a 

complete walk through tutorial. The user can easily be lost after several steps in the model 

development

WITNESS help facilities are in the ‘Info’ menu, and can be invoked by either pulling down 

the menu and clicking on ‘Help’ or pressing the ‘F I’ key. Help is offered in the form of a 

dialogue box that contains an alphabetic list of WITNESS terms (‘Index’). The user can scroll 

through the list and select a topic or type in a topic name in a value field provided on the dialogue 

box. The chosen topic is displayed in a dialogue box that consists of a text box displaying a part 

of the text on the topic, and a reference to the relevant chapter in the manual. To see the rest of the 

text the user has to scroll through it. The dialogue box also provides buttons that lead to available 

cross references, and buttons that will close the dialogue box (‘Cancel’) or return back to the 

‘Help’ dialogue box (‘Index’). Choosing one of the cross reference buttons can display a dialogue 

box with text and a button to return to the previous dialogue box, or it will provide more cross 

references (see Figure 2.30). This cross referencing can go to some depth (1 to a dozen or more). 

All dialogue boxes have buttons to quit, or return to the index. However, not all dialogue boxes 

have options to return to the previous one. Even if a dialogue box has that option, it is not always 

the obvious one because it is not labelled as “Previous”, “Back”, “<=“, etc. It is labelled with the 

topic that was the content of the previous box or the initial index term. This can create difficulties 

in navigation, since the user does not always recall what was the term that invoked the current 

dialogue box. There is no provision for context-sensitive help. Even though help can be invoked 

at any point during model specification (key FI), the provided help is always the same list of
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topics. WITNESS comes with a good range of examples that would be more useful if descriptions 

of the models were provided either in the manual or within the help utility.

Usability evaluation

Developing our model in WITNESS is not a task that can be done quickly or easily. Even though 

the user manual gives a comprehensive coverage of system features, it is hard to match the task to 

the system objects. On-line help does not provide adequate support on error messages. There are 

problems in defining the problem using objects and terminology that are tailored for the 

manufacturing domain. There are problems in screen design and layout. The screen is often 

overcrowded, an extensive use of colour hinders understanding of what is going on. Identification 

of the entry fields in the fill-in forms is not always clear, nor is the nature of the information to be 

entered. Use of modal dialogue boxes is quite common. No on-line help is provided on what is 

expected. There is no consistency in using some of the most common words (i.e., Cancel, Enter). 

There is only limited feedback on user actions and system states. Since there are problems in 

understanding where the user currently is in the system lack of appropriate feedback makes 

navigation around the system particularly hard. The user can rarely feel in control of the system. 

Therefore, WITNESS does not fully pass any of the four usability criteria.

2.3.8 Simscript II.5 for Windows

Simscript II.5 is a general purpose discrete event simulation language that can run under DOS, 

OS/2, Unix, and DEC VAX/VMS. Simscript II.5 for Windows release 1.8.1 (1993) is a 

simulation programming environment. It includes the complete Simscript II.5 programming 

language, utilities for editing and managing Simscript II.5 programs, the Simgraphics II graphical 

interface and utilities, and Windows SimLab, the interactive development environment for 

Simscript II.5 for Windows. System requirements are: processor 80386 or greater, a math co­

processor, minimum of 8MB RAM (16MB is recommended), minimum of 16MB of disk space, 

Microsoft Windows 3.1 or later, and Microsoft C 7.0 or Visual C/C++ (1993). Visual C/C++ 

requires at least 7MB of disk space or if fully installed 45MB of disk space. Simscript II.5 is a 

language based on Fortran. The C compiler is used in the Windows version to recompile a 

Simscript H.5 program into a C program before the execution of a model.
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Simscript II.5 is a powerful language with almost endless possibilities. To provide such 

flexibility some trade-offs have to be made. Unfortunately this is not the easiest language to 

master and use. Compensation comes from its powerful graphical capabilities. It supports 

building forms for interacting with the user, animated graphics, and presentation graphics. The 

main SimLab window consists, as do all Windows application, of the application screen on top of 

which are pull-down menu options. The available options on the menu are: Routine (for dealing 

with files and windows, and to exit SimLab); Edit (standard Windows editing commands); Project 

(contains commands pertaining to a whole project - model); Tools (to start Simscript/ Simgraphics 

II tools); Options menu (to change options for SimLab); Window (standard Windows window 

commands); and Help (on-line help).

Data input/ model specification

To specify a model one has to write a set of Simscript II.5 programs which contain the complete 

logic of the model, definitions of all its variables, entities, resources, input and output 

specifications, etc. A model can have fixed parameter values already built into the program. 

Programs can read ASCII text files or binary files which contain all data input values, or it can 

interactively accept values from data input forms built in Simgraphics n. The SimLab environment 

facilitates writing programs in a window for file editing (see Figure 2.31). The only available aids 

to editing Simscript II.5 programs are offered under the Edit menu in the main menu and consists 

of undo, cut, copy, paste, find, and goto line. There is no syntax checking or context sensitive 

help. The development of a data input interface is facilitated using the SimDraw tools. SimDraw 

creates Simgraphics II graphics, which is an upgrade of the older Simgraphics I. Simgraphics I 

type graphics can still be used in Simscript n.5 for Windows. Old Simgraphics I graphics can be 

modified or new ones can be created using the SimLab tool SimEdit.

The main user interface objects are forms. A form is composed of a group of fields. There are 

two principle types of forms: pull-down menus, and dialogue boxes that may contain value boxes, 

text boxes, list boxes, and buttons. A dialogue box is a container for controls which accept 

various types of input. A component of a dialogue box can be: button (it can receive simple input, 

it can automatically erase the dialogue box, it can verify the contents of value boxes), text box 

(used to receive string input), value box (used to receive numeric input), list box (used to accept
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Figure 2. 31 Simscript II.5:Program editor in SimLab
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input from a list which may vary in length; multiple selections are allowed from the list), radio box 

(accepts input from a fixed list of alternatives), check box (used to receive yes/no input), 

label(used to place explanatory text or tides in a dialogue box), and combo box (like a text box, 

but it displays a drop down list of items that can be selected).

The SimDraw window is divided into three windows: the palette window, the canvas 

window, and the tag window. The palette window is an icons menu that contains options for 

colours, fill styles, line widths, and modes for constructing objects. It also contains the menu bar 

that allows access to additional operations. The canvas window contains objects under 

construction. Images, graphs, and forms are built and displayed in the canvas window. The tag 

window holds tags which represent groups of objects. Image groups, graphs, menu bars, and 

dialogue boxes are represented by tags. The default background colour for the canvas is black. 

Even though it can be changed to any other colour (there are 64 colours to choose from) the 

default for a project (model) cannot be changed in the SimDraw environment. The basic colour 

settings for a model are changed in Simgraphics I using SimEdit from the SimLab tools menu.

Sometimes the three SimDraw windows behave as three completely separate applications. 

This becomes apparent if the user uses ‘switch’ (a standard Windows feature) option. The list of 

open applications contains, among other open Windows applications, SimLab, Palette, Tags, and 

Canvas. If the user then switches to some other Windows application then only one of the three 

SimDraw windows can be opened (e.g. Palette). On an attempt to activate another SimDraw 

window (e.g. Canvas) using a switch option not belonging an open SimDraw window (Palette), 

the requested window will be opened (Canvas) and the previously opened one (Palette) will be 

closed. To activate all three SimDraw windows the user has to switch to any of the four Simscript 

‘applications’ and then, using that window switch option, switch to each individual SimDraw 

window. That way all three windows can be made active. This procedure is not explained 

anywhere in the Simgraphics II manual nor is it in the on-line help. The only way to discover this 

peculiarity is by the ‘trial and error’ method.

Forms can be created and modified by SimDraw. Whilst creating a form by specifying the 

values for its attributes the visual representation of the form is displayed in the Canvas window. If 

the form is a dialogue box some visual aspects, like placement of the form, and spacing in 

between its components, can be altered. A menu is always displayed as a horizontal bar at the top
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of the window (see Figure 2.32). Visual representation is actually visible only if the user changes 

the background colour from black to some other colour since all text that goes on the form is black 

by default (to change the default, Simgraphics I must be used). When the user starts entering the 

attributes’ values, part of the labels on the right side of the entered values disappear from the 

screen as if covered by spaces. These labels remain hidden from the user for the duration of the 

form creation. It makes entering other values rather difficult unless the user knows by heart what 

input is required. There is no help available for form creation. If the user tries to select ‘Help’ at 

the top of the screen (a menu in SimLab), control will go back to the Windows Program Manager. 

To retrieve the form back on screen the user should Switch back to Tags. In any case, to see what 

is being done so far, the Canvas window has to be opened as well. After the form is closed a 

generic icon representing the form together with its name will be placed in the Tags window. The 

form can then be modified using Detail from the Edit menu in the Palette window. This will 

display the selected form dialogue box on the screen and the user can change the form attributes.

The SimDraw environment for creating Simgraphics II looks at first to be a big improvement 

on the Simgraphics I editors. However, it very soon becomes obvious that all is not well. To start 

with, the Simgraphics II manual is very poorly written. There are too many things taken for 

granted. Most of the attributes presented on the menu or on the form definition screen are not 

explained anywhere. Again the user is left to make his/hers own judgement as to what sort of 

input would be suitable. A typical example is the ‘Id’ parameter that is present for both types of 

screens. Is it referenced later on in the model, and if it is how and where? Again there is no 

mention of ‘Id’ in the manual index and in on-line help. After careful reading of the Simgraphics 

II manual it can be found under ‘Editing Detail’ where it says that the user should not modify ‘Id’ 

value box. So, why is it then present on the form definition screen, and why is modification 

allowed? There are too many similar examples to list them all. It seems that the Simscript II.5 

developers were more interested in developing the software than in documenting it.

Simulation experiments

Simulation experiments can be performed with or without animation. Creating detailed graphic 

shapes for animation is facilitated through SimDraw. Both static and dynamic (moving) icons can 

be created using Simgraphics n. These icons are screen images of Simscript II.5 program entities,
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Figure 2.33 Simscript n.5: Drawing icons in SimDraw
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and changes in their position or appearance correspond to changes in the model being simulated. 

Further, static or dynamic icons can change colour or shape to indicate a change in status. There 

are two ways to create icons: by drawing them on the screen with a mouse using the Icon 

environment within SimDraw, or by specifying the co-ordinates as a set of points which are then 

connected, filled, and coloured by library routines. The icons are drawn within SimDraw using 

the mouse, and drawing tools such as freehand drawing, polyline for drawing jagged lines, 

straight line, circle, sector, arc, freehand area, and box (see Figure 2.33). Line width, line style, 

pattern, and colour can be selected for each of the drawing objects. There are eight line widths, 

eight line styles, eight patterns, and 64 colours to choose from. The background colour for all 

patterns is the same as it is the current model’s background, and cannot be changed.

A selected object can be moved, painted, resized, or its priority can be changed (bring forward 

or back if there is more than one object in the same area) by using corresponding buttons 

displayed on the comers of the selected object area. If an operation cannot be performed, the 

corresponding button will be missing. If the selected object is an area or line, then individual 

points, marked by squares, can be moved, cut, or added. Selected objects can be removed and 

duplicated using cut, copy, and paste from the Edit menu. All objects in the canvas and tag 

windows can be removed by picking ‘CLEAR’ from the Canvas menu. A grid and co-ordinates 

can be displayed on the Canvas to aid positioning and sizing of images. Images can be grouped 

into hierarchies. This grouping can be used to animate parts of the image independently of the rest 

of the image. Drawing tools are relatively simple to use and do not provide less functionality than 

do most of the simple drawing packages. If the user requires some more sophisticated graphics, it 

can be done using some other Windows drawing application. SimDraw supports importing 

bitmapped images from other sources, like for example Windows Paintbrush. Imported images 

can be positioned, resized, or grouped, and their priority can be changed, but cannot be modified 

otherwise.

The objects are displayed during the simulation run only if referenced in the program. 

Simscript II.5 is potentially a powerful language for visual simulation. The visual simulation 

background can be created to a quite high graphical standard. Icons can be made to look realistic, 

if desired. The colour palette is sufficient enough to create a pleasing colour schema, and dynamic 

statistics can be displayed whilst the simulation run is in progress (see Figure 2.34). There is also 

the possibility to facilitate asynchronous input which allows the user to alter the scenarios as it
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runs. Simscript II.5 supports multiple windows with various sizes, positions, titles, and mapping 

styles. Selecting which window will display a set of the project’s icons, graphs, and forms is 

accomplished by associating the window with one or more viewing transforms. The user can 

interrupt the simulation run, change the speed, change the duration of simulation, change what 

and how to display, and change other parameters like capacity, mean times, etc. Problems can 

arise if the user requests the animation window to be minimised, or to switch to another 

application or another window during the simulation run. There is no possibility of returning to 

the animation window on the screen. At an attempt to restart the animation (execute), the SimLab 

environment issues a message that the second instance of the .exe program cannot be loaded. It 

does not help to close the current project and open it again or to exit SimLab and restart it again. 

The attempt to execute will result in the same outcome. The only option is to exit Windows and 

start again.

Presentation of simulation results

Simulation results can be presented either during the simulation run and/or after the run has 

finished. The results can be presented in a numeric form or in a graphical form. Icons such as 

clocks (analogue and digital), dials (used to display scalar values), and meters (used to display 

scalar values) allow the user to view changes in speed, altitude, or queue size as the simulation 

runs. Both static and dynamic graphs are supported. Data structures can be defined to represent 

either the immediate state of variables or to generate dynamic displays that automatically change 

over simulation run time, as the program modifies the variables being observed. Graph types 

include: histograms, grouped histograms, dynamic bar charts, pie charts, X-Y plots, and trace 

plots exhibiting variables traced over time.

Presentational graphic objects, like all other graphic objects, are created using SimDraw tools. 

Clicking on the ‘graph’ icon SimDraw prompts for the type of graph to be created, and on 

selection opens an appropriate dialogue box where the user specifies attributes for the chosen 

graph type. Most of the attributes’ labels are relatively easy to interpret. However, there are 

several fields that remain a mystery. Again, as when defining forms, the right handside of the 

dialogue box becomes erased after the first values are entered. The erased part constitutes parts of 

labels for the fields displayed in the right handside of the dialogue box. When the user specifies all
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Figure 2.36 Simscript II.2: On-line help
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attributes and closes the dialogue box there is still the possibility to customise the graph further. It 

can be repositioned, resized, its priority can be changed, and colour can be changed for all objects 

within the graph including the graph background colour. The number of time series, texts of 

labels and legends, X and Y intervals, and graph type can be modified using the Detail command 

from the Edit menu. The font type can be changed into one of the eight types provided. Text 

positioning and font size are predefined and can be changed only if the graph is resized.

The SimLab environment provides a tool for recording animation whilst the simulation is 

being executed. On request the whole simulation run is recorded in a video file. The video file can 

then be used to play back the simulation run using the SimVideo utility (see Figure 2.35). The 

user can then edit the video file and save an edited version in another file. Unwanted portions can 

be cut out, and portions from different videos can be spliced together. Graphics created in 

SimDraw can be added to the video to make a presentation. The SimVideo utility can also be used 

to convert libraries and screens to PostScript, and to dump the contents of a library to a file. This 

can be a convenient way to present runs of a model using a different set of input data and then to 

compare the consequences of changed input on model performance and output statistics.

User support and assistance

Simscript II.5 for Windows comes with four user manuals and several release notes that explain 

changes, enhancements, and installation procedures for new versions of Simscript. The set of 

manuals comprises: Programming Language (1987), Reference Handbook (1985), Simgraphics 

II: User Manual for Simscript II.5 (1993), and Windows Simscript II.5 User’s Manual (1993). 

Language and Reference manuals have not been changed from DOS versions of Simscript II. 5, 

since the language has remained the same. The differences that relate to the Windows version are 

described in the last two manuals. All four manuals share something in common. They are badly 

written, hard to follow, too technical, and the provided indices are incomplete. Even though there 

are several examples listed in the manuals, they are not explained thoroughly enough and do not 

cover all of the important language and graphic concepts necessary to learn the language.

On-line help is provided in the SimLab environment under Help (see Figure 2.36). It is a 

typical Windows hypertext kind of document that consists of selections for: SimLab (how to use 

the SimLab environment), Simdebug (how to use debugging options), and Simscript II.5 (about
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the language). The help is available only in the main SimLab window. There is no on-line help 

provision for SimDraw and SimVideo tools. An attempt to start help whilst in either, will close the 

current application window and display help window. On closing help, control will return to the 

main SimLab window. There is no context-sensitive help provision. There is no guided tutorial. It 

is not likely that the user will try to use on-line help more than a couple of times because it soon 

becomes very obvious that the “help” provided is not of much help. However, if a user has any 

problems there is a hot-line provided by CACI in the UK. If the problems cannot be sorted out by 

them, then the CACI main office in La Jolla, USA is informed and they provide additional help.

Usability evaluation

Developing any model in Simscript II.5 is almost impossible to achieve in any reasonable length 

of time. The user has to learn how to program in Simscript II.5. Since learning is based solely on 

user manuals and on-line help it is a long term project partially because the language is not easy to 

learn (it is an extended version of Fortran) and to a great extent because the support material is of 

very little use. We have not succeeded in building a model within the set up framework. 

Therefore, we will ignore the programming part of the model building for a moment and 

concentrate on a usability evaluation of the Simscript II.5 environment. General usability 

principles that we have identified are not followed at all. Usability defects are present in navigation 

through the system (e.g., separate Simscript modules behave like separate Windows applications 

and moving between them is tedious and not explained). There are problems in screen design 

particularly apparent in dialogue boxes. Mandatory and discretionary fields are not distinguished, 

the nature of information to be entered is often unknown, parts of field labels are obscured, etc. 

The terminology is too technical and more application oriented than task oriented. The feedback 

provision is rudimentary and non existent for error messages. The system lacks an acceptable 

level of consistency, especially across its modules. There are also problems with modality. It is 

not always obvious how to change from one mode to another (e.g., designing a fill-in form and 

modifying it). The user often feels that s/he is not in control of the system and that the system 

does not match with user tasks. Therefore, Simscript II.5 does not support any of our four 

usability criteria. It actually fails badly on all fronts. It does not promote a positive user attitude. 

What is particularly frustrating for the user is the awareness of tremendous modelling potential 

that cannot be put to use.
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2.4 Summary

We have reviewed several simulation systems in terms of user interfaces. In the previous sections 

we have described in some detail user interface characteristics of all examined software. Now we 

can summarise the findings. Table 2.1 gives details on the minimal computer system requirements 

for each software. It is interesting to notice that the requirements of the least demanding one 

(XCELL+) and the most demanding one (Simscript n.5 for Windows) differ substantially. As we 

will see in the tables that follow these two software systems also substantially differ in 

functionality that they offer both in terms of modelling capabilities and in terms of user interface.

Table 2.1 Minimal system requirements

XCELL+ Taylor II ProModel Micro Saint Witness Simscript II.5

Operating

System

DOS 2.1 or 

later
DOS 5.0 or 

later
Windows 3.1 Windows 3.0 Windows 3.0 Windows 3.1

Harddisk 1MB 5 MB 12 MB 3 MB 6 MB 16 MB 
+ 7 MB (for 

C compiler)

RAM 640 K 2 MB 6 MB 2 MB 4 MB 8 MB

Graphics EGA VGA VGA EGA
VGA

recommended

EGA EGA
VGA

recommended

Function keys Yes Yes Yes Yes Yes No

Mouse No Yes Yes Yes Yes Yes

Processor 80286 80386 80386 80286 80386 80386

Mathematical

co-processor

No Recommended No No Recommended Yes

Hardware key Yes Yes Yes Yes Yes No

Table 2.2 provides a summary of the main characteristics of each system examined and general 

user interface features for each of the reviewed systems.
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Table 2.2 Main system characteristics

XCELL+ Taylor II ProModel Micro Saint Witness Simscript II.5

Application area Manufacturing Mainly

manufacturing
Mainly
manufacturing

General

purpose

Mainly

manufacturing

General

purpose

Type Data-driven

simulator

Data-driven

simulator
Data-driven

simulator

Data-driven

simulator

Data-driven

simulator

Language

Interaction style Menus and 

fill-in forms

Menus and 

fill-in forms
Windows GUI Windows GUI Windows GUI Windows GUI

Interaction

devices

Keyboard Keyboard and 

mouse

Keyboard and 

mouse

Keyboard and 

mouse

Keyboard and 

mouse

Keyboard and 

mouse

Navigation 

facilitated using

Function keys Mouse, arrow 

keys, and 
function keys

Mouse, arrow 

keys, and FI

Mouse, arrow 

keys, and 
function keys

Mouse, arrow 

keys, and FI

Mouse, arrow 

keys, and FI

Terminology Manufacturing Manufacturing Manufacturing No specific 

domain

Manufacturing No specific 

domain

Screen layout Overcrowded 
Against all 

guidelines

Good Good Good Poor Good

No. of colours 12 16 64 16 16 64

Use of colours Hideous 
Against all 

guidelines

Good Good Good Too extensive 

Against all 

guidelines

Good

Many recent simulation products can be classified as data-driven systems in which a graphical 

user interface is a fundamental part of their operation. However, these systems handle a limited 

class of problems generally restricted to some aspects of manufacturing. Some of the systems use 

special diagramming methods to represent graphically the logic of the models on the computer 

screen with occasional textual inputs. Some of these systems also provide menu-driven 

environments in which the graphical construction of the model logic can sometimes be one of the 

options.
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Table 2.3 Data input/Model specification

XCELL+ Taylor II ProModel Micro Saint Witness Simscript II.5

Model logic 

representation

Diagramming

tools

Diagramming

tools

Diagramming

tools

Diagramming

tools

Diagramming

tools

Program

Graphic

elements

Pie-defined 

cannot be 

changed

Pie-defined 

can be 

changed

Default or 

user selected

Pre-defined 

cannot be 

changed

Pre-defined 

can be 

changed

Not provided

Model elements Pie-defined Pre-defined Pre-defined Pre-defined Pre-defined User defined

Element names Up to 10 

characters

Up to 8 

characters

Up to 80 

characters

Up to 20 

characters

Up to 8 

characters

User defined

Attribute names Pie-defined 

cannot be 
changed

Pre-defined 

cannot be 

changed

Pre-defined 

cannot be 

changed

Pre-defined 

cannot be 

changed

Pre-defined 

cannot be 

changed

User defined

Default values 
provided

Yes Yes Yes No Yes Can be 

programmed

Fill-in forms 

design
Not applicable Good Good Well balanced Poor and often 

confusing
Not applicable

Importing files 

supported

No Yes Yes No Yes Yes

Data validation 

supported
No Yes Yes No No Can be 

programmed

Model validation 

supported

Partially No No No No Can be 

programmed

Table 2.3 summarise user interfaces for data input/model specification for the systems 

examined. Most of the systems keep data in text files that can be accessed and modified from other 

environments. None of the examined systems provides database facilities. Simulation languages, 

like SIMSCRIPT II.5 for example, can provide most of the data input features (menu-driven 

system, data-input forms, on-line help, data validation, etc.) but at the expense of an extensive
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time-consuming programming effort. Some of the systems provide limited input error checking 

and model verification facilities.

Most of the current simulation systems have some form of visual animation of a simulation 

run. Table 2.4 provides a summary of some of the user interface features that are relevant for the 

design of simulation experiments.

Table 2.4 Simulation experiment

XCELL+ Taylor II ProModel Micro Saint Witness Simscript II.5

Background 

drawing tool

No Yes Yes No No Yes

Icon editor No Yes Yes No Yes

(limited

capabilities)

Yes

Importing
graphics

supported

No No Yes Yes No Yes

Zooming

supported

No No Yes No Using virtual 

windows

No

Panning

supported

No Limited 

with arrow 

keys

Yes No Limited No

Interactive speed 

change

Yes Yes Yes Yes Limited to 3 

speeds

Yes if 

programmed

Interactive time 

change

Yes Yes Yes No No Yes if 

programmed

Interactive 

change of other 

simulation 

parameters

Yes Yes Yes No No Yes if 

programmed
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Table 2.5 Simulation results

XCELL+ Taylor II ProModel Micro Saint Witness Simscript II.5

Control of

statistics

collection

System System 

User partially

System 

User can only 

reduce the set

User System Modeller

Default statistics 

provided

Yes Yes Yes Yes Yes NA

Graphics

supported

No Yes Yes Yes Yes Yes

Graph types NA Histogram, 

Pie chart Bar, 
Line, Scatter, 

Gantt, Area 

graph

Pie chart, 

Plot,

Histogram, 

Bar, Line, 
Vertical line, 

and Step 

graph

Bar, Line, 

Scatter, and 

Step graph

Histogram 

Time series

Histogram, 

Pie chart, 
Line graphs, 

Dynamic bar 

graphs, Trace 

and X-Y plots 

Dials, Meters

User defined 

presentation

No Partially No Partially Partially Yes

Flexibility of 

presentation

None Small Small Small Small Great

Tabular form 

statistics

Yes Yes Yes Yes Yes Yes

Exporting files 

supported

Yes Yes Yes Yes Yes Yes

Printing 

statistics tables

Yes No Yes Yes Yes Yes

Printing graphs NA No Yes Yes No No

Table 2.5 gives a summary of presentation capabilities of the reviewed software. Most 

simulation software offers graphical facilities for the representation of simulation statistics. 

Besides the standard reports for commonly occurring performance statistics (e.g. utilisation,
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queue sizes and delays, and throughput) some of the newer software allows the development of 

tailored reports. The user can choose the form of representation (e.g. textual output, table, 

representational graph, bar diagram, pie chart, histogram, time series), colours, labels, etc. In 

most of the VIS software, partial statistical results can be viewed during the simulation run. 

Graphs are updated dynamically during the simulation run. Some of the software has facilities to 

save the statistics into files that can then be printed. Rarely is there a facility to print the whole 

screen at any point of a simulation run or when the statistics are displayed/presented on the screen.

Table 2.6 Printed manuals

XCELL+ Taylor II ProModel Micro Saint Witness Simscript II.5

Tutorial Not provided Yes

Not thorough 

enough

No Yes Not provided 

Partially 

covered in the 
only manual.

No

Getting started Part of the 

User Guide

Not provided Yes Yes Not provided No

User guide Yes Yes Yes Yes Yes Yes

Reference
manual

Not provided Not provided 

TLI reference 

manual 
provided

Yes Not provided Not provided Yes

Index No

Only XCELL4 

glossary

Yes

Global for all 

manuals

Yes

System

concepts

Yes

System

concepts

Yes

System

concepts

Yes

System

concepts

Terminology Manufacturing Manufacturing,

Technical

Manufacturing General

simulation

Manufacturing General

simulation.

Technical

Standards of user documentation are improving but there are still many problems that have to 

be encountered. Table 2.6 gives a summary of provision in examined simulation systems. On-line 

help facilities, if at all available, provide a limited help to the model builders as can be seen in 

Table 2.7.
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Table 2.7 On-line user assistance

XCELL+ Taylor II ProModel Micro Saint Witness Simscript II.5

Model examples 

provided

Yes Yes Yes Yes Yes Yes

Help type One text 

screen

Isolated text 

screens

Hypertext Limited

hypertext

Isolated text 

screens

Hypertext

Navigation 

through help 

facilitated using

Not applicable Mouse and 

arrow keys

Mouse point 

and click on 

link nodes.

Mouse point 

and click on 

link nodes.

Mouse point 

and click on 

cross reference 

buttons

Mouse point 

and click on 

link nodes.

Help text Short
information 

on system

Complete 
version of 

printed 

material

Differs from

printed

manuals

Differs from

printed

manuals

Differs 

slightly from 

printed 

manuals

Differs from

printed

manuals

Index of topics Not applicable Yes Yes Yes Yes Yes

Search facility 

within help

Not applicable Yes

Searches for a 

first

occurrence of 

a given string

Yes Yes
Searches for a 

first
occurrence of 
a given string

Not provided Yes

Tutorial Not provided Not provided Provided

Interactive
lessons

Not provided Not provided Not provided

Context- 

sensitive help

Not supported Yes

Only relevant 

page

Yes Not provided Not provided Not provided

Help on help Not provided No Yes

extensive

Yes

limited

Not provided Yes

Printing help 

text supported

No No Yes Yes No Yes

Demonstration

disk

Not provided Yes

Elementary
Yes

Professional

Yes Not provided Not provided
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Table 2.8 gives a summary of the usability evaluation of the simulation systems examined. 

The evaluation identifies which of the usability principles that support the usability of graphical 

user interfaces are applied. It is obvious that only Pro Model for Windows provides an adequate 

level of support.

Table 2.8 Support for usability

XCELL+ Taylor II ProModel Micro Saint Witness Simscript II.5

Good user manuals Yes Yes Yes

Good on-line help Yes

Natural dialogue Yes

Terminology

Minimised memory 
load

Yes

Consistency Yes

Feedback Yes

Clearly marked exits 

provided
Yes

Shortcuts provided Yes

Good error messages Yes

Error prevention

Table 2.9 gives a summary of the usability defects that were identified in examined simulation 

systems. Again only ProModel for Windows has few problems. The only serious obstacles 

present in ProModel are its terminology and visual objects that are appropriate solely for the 

manufacturing domain. Therefore, in other domains there can be a problem in analogical mapping 

of the problem to an unsuitable domain. That would cause problems in matching the user tasks.
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Table 2.9 Usability defects

XCELL+ Taylor II ProModel Micro Saint Witness Simscript II.5

Navigation Yes Yes Yes

Screen layout 
and design

Yes Yes Yes Yes

Terminology Inappropriate 

for problem 

domains other 

than
manufacturing

Inappropriate 

for problem 

domains other 
than

manufacturing

Inappropriate 

for problem 

domains other 
than

manufacturing

Programming

commands

Inappropriate 

for problem 

domains other 

than

manufacturing

Programming

commands

Feedback Inadequate Inadequate Inadequate Inadequate Inadequate

Consistency Use of 
function keys

Use of
interaction

devices

Yes Across system 

modules

Modality Yes Yes Yes Yes

Redundancies Yes

User control Yes Yes Yes Yes Yes

Matching the 

user tasks

Yes Yes if not
manufacturing

domain

Yes Yes Yes

It seems that the idea of adaptive user interfaces has not yet reached simulation software 

developers. There is no provision, or if there is it is marginal, for user interface customisation. 

However, there is the possibility to create new simulation systems for limited domains with a 

custom made interface appropriate for the model domain. These capabilities are currently limited to 

bespoke programming that requires a substantial development effort. Sometimes user interface 

development can be facilitated using an object-oriented approach that reduces development time. 

An example is Simscript n.5 that provides ready-made user interface object templates like menus, 

forms, etc. supplied in the C language library. Table 2.8 provides a disappointing picture on user 

interface development capabilities in the examined systems.
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Table 2.10 User interface

XCELL+ Taylor II ProModel Micro Saint Witness Simscript II.5

Customisation 

of modelling 

environment

No No Minimal No No Not possible

User interface 

development for 

a particular 

model

No No No No No Yes

Very versatile

After we had examined user interfaces to those simulation software we are in a position to 

make some general observations. First of all it has to be stressed that all simulation systems are 

designed for a limited specialist community and for the presumed needs of that user population. 

This narrow targeting seems to justify an appalling lack of regard for the potential customers. As a 

rule documentation is highly erratic, written in a technical jargon and rarely organised in any 

structured manner. If it contains an index (this is not always the case) it usually requires the user 

to know the exact terminology used to be able to find the topic of interest. Similarly, the 

installation procedures are generally badly documented and off-putting (“Insert next disk” - Yes? 

Which is the next disk if they are not numbered?). All of the systems examined, except Simscript 

n.5, require a security device to be plugged either in a serial or a parallel computer port (it varies 

from system to system). Considering the high cost of simulation software it makes some 

economic sense from the vendors point of view. However, from the customers point of view it 

shows a basic mistrust in customers’ honesty and adds to the general unfriendliness of the 

simulation systems.

Whilst some can argue that documentation and installation are not major factors that influence 

the success or failure of a simulation software it is hard to believe that the simulation community 

will ever bring in more people while this attitude persists. Simulation can be useful in many areas 

that require some kind of decision support. But until the perception of simulation software 

builders about the software requirements is changed, use of simulation will remain within the 

small community of devotees. Who would ever have anticipated that spreadsheet modelling would

J. Kuljis User Interfaces and Discrete Event Simulation Models Page 100



Chapter 2: User Interfaces to Discrete Event Simulation Systems

be used by almost every PC user? When the software became easy and pleasurable to use, the 

application areas for spreadsheets suddenly started emerging. The major requirement for the wide 

acceptance of any software (simulation software is no exception) is a substantial effort put into 

user interfaces and, as a part of that, provision of usable documentation written in a language that 

people can understand.
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3.1 Purpose of the Case Study

In this chapter we introduce the case study used as part of the dissertation research. The case 

study exemplifies the ‘classical’ approach that appears to be taken as regards visual simulation 

interfaces. In the subsequent chapter we shall critique the case study development on the basis of 

both the development experience, and its relationship to any relevant HCI theory. In the next 

chapter we also put the case study in context with trends in practical HCI developments, and with 

hypotheses drawn from the development itself.

3.2 Introduction to the Case Study

It has long been recognised that patient waiting times in outpatient clinics are infamously long. In 

the United Kingdom this has been evident since the birth of the National Health Service in 1947, 

although it was undoubtedly a problem long before that. It is probably true to say that patient 

waiting time in clinics is a world-wide problem, with perhaps one or two exceptions. The 

National Health Service in the United Kingdom recognises this as a recurring problem which has 

many political undertones (Thakar and Malin, 1989). It is the sort of problem that is likely to 

generate questions by Members of Parliament in the House of Commons.

An Institute of Health Services Management booklet (1985) claimed that in 1984 there were 37 

million out-patient attendances. The same document quotes a (then) recent survey which found 

that 44% of patients waited more than half an hour to be seen by the doctor and 16% waited more 

than an hour. The accepted targets are that clinics should aim to see 75% of patients within half an 

hour and that no more than 3% of patients should wait more than an hour, but very few clinics 

meet this standard (Institute of Health Services Management, 1985). Waiting time is one of the 

most common complaints about out-patient clinics. The problem had become so acute that it has 

been addressed by the Government as a matter of concern that has to be resolved. In 1985 the 

DHSS Operational Research Service published its so-called green booklet (1985, also included as 

an appendix in Thakar and Malin, 1989). In the booklet it is suggested that:
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in most clinics, staff just do not realise how long their patients have to wait; 

there is rarely any means for monitoring or recording waiting times.. ”

“.. the existing published solutions are by no means easy to implement; they need 

special data collection exercises which are demanding o f staff time, and they 

require expertise to interpret the results and produce from them a revised 

appointment scheme. ”

It is curious that this problem should have had existed for so long, given that firstly there have 

been many attempts at trying to solve it, and secondly, a fairly well known theory exists as to how 

the problem can be solved. The attempts that have been made to solve this problem consist of 

queuing theory, simulation modelling of a blackbox type, statistical analysis, and there have been 

many investigative studies of a general nature which by and large have led to the same 

conclusions. The conclusions which can be generated by these mathematical techniques or by 

common-sense are that if one assumes that doctors’ time is more important than patient waiting 

times, then clinics will be loaded with patients to make sure that doctors do not wait. Goitein 

(1990) states:

“It is hard to avoid the suspicion that physicians and hospital administrators value a 

physician’s time far more than that o f patients and establish schedules ensuring that 

physicians will have only a very small chance o f being idle - with the consequence 

that their patients are likely to experience substantial delays”..

Using Monte Carlo simulation his analysis shows that a physician needs to pay a rather small 

price in terms of idle time to make patients’ waiting times quite acceptable. The analysis also 

makes it clear that if the physician overbooks the schedule even quite slightly to ensure that the 

idle time will be small, patients will experience very long waits. The second confounding factor is 

the assumption made in making these appointment schedules, that doctors will arrive on time in 

the clinic. However, historically this has not been proved to be true.

The Operational Research Division of the Department of Health (DOH) have made many 

attempts to solve the problem of out-patient waiting times. If one thinks about the structure of a
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hospital out-patient clinic it is in fact, in queuing or flow terms, fairly simple. Patients arrive, they 

check in with the receptionist, they may have some pre-consultation tests, they wait for a doctor, 

they have a consultation, they check out again to book their next appointment time, and then they 

leave. This does not appear at first sight to be a very difficult problem and therefore the DHSS 

gave the problem as a student project to an MSc student at one of the London Colleges. According 

to the DHSS, the student discovered that the project was much more complicated than had been 

imagined.

In the second attempt at this project the initial specification for the package, to be called 

CLINSIM, was drawn up and a contract let to a small software company. The company, who 

were Pascal experts and who had some previous experience in writing simulation software, 

constructed a model in that language. During the development of CLINSIM, a number of 

amendments were made to the specification based on the experience and better understanding 

gained during the development. The revised specification is described by Thakar (1990). This 

attempt failed again because, whilst it may appear that the problem to be modelled is relatively 

straightforward, the complexity of trying to build a general purpose structure inevitably meant that 

the development of the model by this company could not handle the changes of understanding that 

took place during model development. So several years after the project inception, a third attempt 

was made to build this model, and it is this attempt which we describe here. The development of 

the new CLINSIM was contracted to RJP Research Associates. Some details of the system design 

can be found in Kuljis et al. (1990), Kuljis and Paul (1991), Kuljis (1994), and in Kuljis and Paul 

(1994). The contributions to the CLINSIM package that are part of this research are in the design 

and implementation of the data input module of the system, and in the design and implementation 

of all the user interfaces of the system (i.e. all interaction objects, fill-in forms, menus, icons, and 

output graphs). The author of this research was not involved in the development of the simulation 

engine for CLINSIM.

33 The Problem Modelled

The model CLINSIM described here is yet another attempt at solving a classical problem to which 

to some extent the solution is already known. Because we know the solution, this attempt is based 

around a general purpose Visual Simulation Model. The idea behind this approach is that such a
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model could be used to show consultants and administrators why they have problems with 

waiting times, and how these problems might be resolved. In order to make this simulation model 

general purpose, so that it can be distributed and shown to as many people in the National Health 

Service in the UK as possible, the specification required firstly that the model will run on any 

IBM compatible (AT standard) PC, because this was the machine that is most likely to be 

available. Secondly, the visual representation was to be an iconic representation, so that non 

computer specialists could understand what the simulation modelling is trying to do. Thirdly, the 

model should be of a general purpose, data driven construction, so that in theory any hospital 

clinic could be modelled by this general purpose model.

It should allow users to explore the consequences of changing the various factors connected 

with clinic organisation and doctor/patient behaviour or patient waiting times. The users of the 

system will be analysts working in conjunction with administrative and medical personnel in the 

health service. Hence the package is not required to be as robust as would be necessary if it were 

intended for use by the ‘customer’ on his own, nor does it need to have a high level of self­

explanation. It was agreed that CLINSIM will consist of three integral parts:

• An explanatory introduction, including a fixed demonstration

• The data capture module

• The simulation and results module

The data capture module must allow for a complex specification of an outpatient clinic 

structure to be input. The simulation and results module requires that the simulation should be 

visible so that the customer and the analyst can see that the model is working correctly, and that 

the waiting effects caused by the clinic appointments system appears dynamically rather than just 

as an output statistic. This visual representation is felt to be more convincing to the customer than 

a collection of statistical results.

Before going into details about of the system requirements, the problem specification is given. 

The following section covers the description of the clinic model. A ‘model’ is a simplified 

representation of reality. A good model will retain the essential features of the real system, and so 

behaves like it, whilst remaining clear and manageable. Because outpatient clinics can vary greatly 

between specialities and hospitals, the model will not fit all clinics. The entities within a clinic in
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the model are a ‘firm’ of doctors, patients, receptionists and test rooms. A ‘firm’ is a group of 

doctors seeing patients in a given speciality. Doctors within a firm ‘share’ patients from a common 

appointment list. One of the features of this model is to ‘simulate’ an appointment time (which is 

the time when the doctor is expected to see the patient) for each patient on the list and then 

simulate the patient’s ‘actual’ arrival time using parameters specified by the user.

3.3.1 Clinic Structure

Each clinic contains a number of the following, (the actual number of each being specified by the 

user):

• Doctors from a firm (i.e. a team of doctors in a given speciality who see patients from 

a shared appointment list). The number of doctors that can be specified in the model is 

1. . 6 .

• Patien ts, who may be new patients to the clinic or reattenders. Some patients may 

arrive at the clinic without an appointment - these are called ‘extras’. Patients with an 

appointment may arrive either by hospital transport (HT patient) or by non-hospital 

transport (NHT patient).

• R eceptionists, who book patients in and out of the clinic. The number of 

receptionists in the model is 1 or 2.

• T estroom s, where any pre-consultation tests are carried out. A ‘testroom’ does not 

just mean the room itself, but includes all nursing and other staff needed to carry out the 

tests and any equipment that they require. The number of testrooms in the model is

0..3.

The constraints on the number of entities in the system was determined and imposed by the 

OR Department of the DOH. Based on the data on DOH clinics they felt that the specified number 

of entities will be sufficient to model most of the outpatient clinics. Their decision was also 

governed by the consideration of screen space if more permanent entities (doctors, receptionists, 

and testrooms) in the system will be allowed. A simplified representation of the model is given in 

Figure 3.1.
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All of the patients, except the extras, are given an ‘appointment time’ (when they are expected 

to start their consultation with a doctor) and a ‘presentation time’ (which may be some fixed time 

before the appointment, when the patient is told to arrive at the clinic - i.e., the time on their 

appointment card). The appointment schedule for the clinic is set by the user answering a series of 

questions. The user can generate and view the schedule before running the simulation if they 

wish. The patient’s actual ‘arrival time’ is determined from their presentation time and some 

random variation about it. The ‘variation’ is specified by the user as a statistical expression.

RECEPTIONIST 1 IFMCN
RECEPTIONIST 2

A

DOCTOR 1 DOCTOR 2 DOCTOR 3

TESTROOM1

TESTROOM2

Figure 3.1 Representation of CLINSIM model

Each clinic session has: an ‘official clinic start time’, when patients are scheduled to enter the 

system (clinic doors open); an ‘official end time’, when the clinic is planned to finish; and a ‘cut­

off point’, after which no patients are allowed to enter the clinic (clinic doors shut). These times 

are all user specified. Extra patients have a randomly generated arrival time between the ‘official 

clinic start time’ and the ‘cut-off time’. Patients who join the queue for the doctors after their 

appointment time are classed as ‘late’.

The flow of activities in a CLINSIM clinic is as follows:

J. Kuljis User Interfaces and Discrete Event Simulation Models Page 107



Chapter 3: A Case Study

1. On arriving at the clinic each patient must queue to book in with ‘receptionist 1*. As an 

option, a second receptionist - ‘receptionist 2’ can be introduced to deal specifically with 

those patients with missing case notes (MCN patients) - after seeing the first receptionist, 

MCN patients must then queue to book in with the second receptionist. Patients queue 

separately for receptionist 1 and receptionist 2 (in two separate queues), and are seen on a 

first come first served basis by both. The decision that the ‘Receptionist 2’ is specialised in 

dealing only with the MCN patients was decided by the OR Department of the DOH. It 

certainly does not accurately reflect reality where there is no specialisation of that kind, or 

if there is it is very rare.

2. When they have booked in, patients queue for pre-consultation tests (if appropriate for the 

clinic). All pre-consultation tests (such as blood tests, urine tests, and X-rays) are treated 

as a single activity. Thus the length of a pre-consultation will reflect the total duration of all 

tests and the time a patient would spend waiting between tests. Patients queuing for the 

testrooms are seen on a first come first served basis. Again, the OR Department of the 

DOH made the decision that there is no need for separate queues for each testroom and that 

all patients should join a single queue.

3. Having completed any pre-consultation tests, patients join the consultation queue. The 

order in which patients are seen by the doctors is determined by the operating rules 

selected. The user may, for example, specify that patients are seen on a first come first 

served basis and are seen by any available doctor. Alternatively, patients may be seen 

strictly in appointment order, where all new patients are seen by a given doctor. The order 

in which the patients are seen may depend on whether they have arrived by hospital 

transport or not, or whether they are late or on time, and on whether they have an 

appointment.

4. After their consultation, patients join the end of the queue for receptionist 1. When 

receptionist 1 becomes available, the patient books out, and leaves the clinic. The 

simulation continues until the last patient has left the clinic.

The flow of activities in the clinic is determined by the appointment scheduling rules, queues’ 

discipline rules, and operating practice rules.
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3.3 .2  Appointment Scheduling Rules

The user makes a series of choices to determine the nature of the rules for generating the 

appointment schedules. The appointment schedules are created for the firm of doctors, since they 

share patients from a common appointment schedule. The appointment schedule determines the 

times that the patients should turn up at the clinic. The appointment schedule is created separately 

for the new patients and for the reattenders.

When generating the appointment schedule, patients are selected from a ‘patient pool’ which 

contains all the patients to be given appointments for a given session. The number of patients in 

the pool is determined by user specified parameter for the list size. The user gives the constant 

numbers of new patients, reattenders and extra patients. These determine the number of patients

who are booked into the clinic. For the new patients and the reattenders the user can specify

distribution parts - statistical expressions to allow for variation in the number of booked patients. 

Each patient selected from the patient pool is ‘randomly’ given the attribute of being either a HT or 

NHT patient (according to the user specified values for % HT and % NHT). Patients are then 

assigned an initial time slot using rules and parameters such as:

• the earliest appointment time

• the end of booking period

• whether all patients are booked at earliest appointment time

• whether to distinguish between HT and NHT patients

• whether to book patients evenly throughout booking period

• whether initial part of booking period is treated as being special

• whether latter part of booking period is treated as being special

• what is the recommended number of patients to be booked per hour

3.3.3 Queue Discipline Rules

There are four queues in the model. The rules on how the patients are placed in each of the queues 

are given below:
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1 . Queue fo r  receptionist 1

The patients join this queue either on arriving at the clinic or after seeing a doctor. Patients are 

seen on a first come first served basis. Depending on whether a patient is just booking-in, or has 

been seen by a doctor and is booking-out, the time that receptionist 1 deals with the patient may 

vary. It can be some constant value or a stochastic value chosen from seven possible statistical 

distributions (the list is given in section 3.3.5).

2 .  Queue fo r  receptionist 2

Patients whose case notes are missing (this is discovered after queuing and being seen by 

receptionist 1) must join the queue for receptionist 2. Patients are seen on a first come first serve 

basis. The time that receptionist 2 deals with the patients can be some constant time or a stochastic 

value chosen from the same seven possible statistical distributions.

3 . Queue fo r  testrooms

If the clinic administers pre-consultation tests then there is just one queue for the testrooms (1 ,2  

or 3). The patients join the end of the queue and the tests are performed on a first come first 

served basis. Each of the testrooms has its opening times and the time necessary to perform the 

tests. The testing times can be constant or stochastic (again, there is a choice of the same seven 

statistical distributions).

4 . Queue fo r  doctors

There is a set of options to determine the order in which patients are placed in the consultation 

queue. Different queue disciplines are used for the following categories of patients:

i. ‘On-time’ patients - the order in which those patients who arrive at or before their 

appointments time are seen. The possible options are:

• first come first served

• appointment order

ii. ‘Late’ patients - the order in which patients who arrive after their appointments time are 

seen. The possible options are:
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• nearest to appointment time

• at end of current queue

• at end of session

• at end of clearance interval

iii. ‘Extras’ - the order in which patients who arrive without an appointment are seen. The

options are:

• at end of current queue

• at end of session

• at end of clearance interval

The clearance interval (in minutes) for HT patients, NHT patients, and extras is the same. The 

purpose of this is to provide a mechanism for clearing back-logs. For example, suppose the 

official start time is 9.00am, and the clearance interval is 1 hour. Each patient joining the queue 

after, say 10.00am and before 11.00am, who is classed as ‘late’, is now considered to have a 

‘pseudo’ appointment time of 11.00am and is placed in the queue according to his/her new 

(pseudo) appointment time.

3.3 .4  Operating Practice

Operating practice rules determine in which order the patients in the consultation queue are seen by 

the doctors. The rules are based on the order of the patients in the queue and the patients’ type - 

new or reattender (HT and NHT patients are not distinguished here). For each doctor the user 

decides on the types of patient a doctor is going to see (patient types being new only, reattenders 

only, or both new and reattenders). If the doctor was allocated a new patient type then the user 

provides a percentage of new patients to be seen by the doctor.

When a doctor becomes available, a patient is selected from the consultation queue according 

to the operating practice rules. An actual number of the new patients are assigned to each doctor. 

Each doctor sees his/her quota of new patients. If the doctor has already seen his or her quota of 

new patients, or is only required to see reattenders, then he or she is allocated the first reattender 

from the queue. If the doctor has not yet seen his or her quota of new patients, then the queue is
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scanned. The first x patients are checked (x is the ‘depth factor’ provided by the user) and the 

doctor is allocated the first new patient in that group. If all the first x patients are reattenders then 

the doctor is allocated the first reattender in the queue (unless the doctor is specified as one seeing 

only new patients). The user provides the depth factor that determines how far the consultation 

queue is scanned, giving priority to new patients over reattenders within the depth factor.

3.3 .5  Statistical Data

In the clinic set-up data there are 20 statistical expressions that are specified as statistical 

distributions. For each of these 20 data items a user can choose one of the following seven 

distributions:

• Constant

• Erlang

• Negative Exponential

• Normal

• Poisson

• Uniform

• Data sample

Each distribution, except the Data sample, has either one or two parameters. For the distribution 

variables a user may also supply truncation values, i.e. a minimum and a maximum value, in 

order to keep it within realistic bounds. If a user chooses ‘Data sample’ then up to 20 pairs of 

observations and cumulative frequencies must be supplied. Typically this will be data collected 

from survey work.

3.3 .6  Simulation of a Clinic

The simulation of a clinic is based on the given clinic structure and a set of rules for appointments, 

queue discipline, and operating practice. The activity flow for a clinic is as follows:
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• Patients arrive in the clinic randomly. Their sampling is based on the chosen 

distribution of actual arrival times for each of four patient types (new, reattenders, HT 

new, and HT reattenders) following the appointment scheduling rules for each of these 

four patient types. The number of patients generated is influenced by the given numbers 

of patients who do not attend their appointments. These numbers are statistical 

variances (chosen from the seven distribution types) for each of the four patient types. 

Extra patients are generated based on a statistical variance for the number of patients that 

arrive at the clinic without having appointments. Random number generation is based 

on the seed number provided as a part of the clinic data required for simulation. The 

seed number changes for each of the seven distribution types and for each patient type.

• When patients arrive they are seen by receptionist 1 on a first come first served (FIFO) 

order. The time spent on each patient by the receptionist 1, ‘booking-in time’, is based 

on a value from a statistical distribution. Based on a specified percentage, patients with 

‘missing case notes’ are randomly sent to be seen by receptionist 2 who handles only 

these cases. The patients are seen by receptionist 2 in a FIFO order. The time spent on 

each patient by receptionist 2 is based on a value from a statistical distribution.

• After a patient has been ‘booked in’ the patient joins a queue for test rooms. Depending 

on the number of test rooms and their individual start times the patients are seen by 

nurses and the tests are performed following a FIFO order. The first patient in the test 

rooms queue will go in the first idle test room. The times allocated for tests are 

stochastic and can be different for each test room.

• After the tests are performed a patient joins a queue for doctors. The patients are seen 

by the doctors following a complex set of ‘operating practice’ rules. How long a patient 

has to wait depends on the patient type (new or reattender), the patient’s keeping the 

appointment time or coming without an appointment, an availability of a doctor seeing 

that type of patient (new or reattender), and the consultation time for each patient. The 

consultation time is stochastic and can be different for new patients than for reattenders. 

The waiting time is also influenced by the doctors actual start time, a time that is 

stochastically determined and can be different from the official start time.
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• After being seen by a doctor the patient joins the end of the receptionist 1 queue to 

‘check-out’. The receptionist 1 queue may consist of patients who just came into the 

clinic and the patients that were already seen by the doctors. The time for a patient to 

‘check-out’ can be stochastic and different from the time to ‘check-in’.

• After checking out a patient leaves the clinic.

The simulation of a clinic runs as long as there are patients in the clinic regardless of the clinic 

closing time ( ‘cut-off time). Once the last patient has left and the time for closing the clinic is 

reached, the simulation stops. The simulation of a clinic can be performed as a single experiment 

(‘single run’), or as a series of experiments (‘multiple run’). In the case of multiple runs the 

sampling is based on a different starting seed number for each run.

3.4 Building CLINSIM

3.4.1 Design Considerations

There are three evident, almost entirely independent parts of the model. These are:

• Data input

• Simulation

• Simulation results

Therefore, the obvious design approach was to preserve this independence in the design of the 

system. If the data is kept separately from the actual simulation running, any change in the way 

the data handling is done would not influence the simulation engine. If the results of the 

simulation run/s (statistical results) are kept separately then the way these data are approached and 

displayed is completely independent of the actual simulation. The simulation results can be 

viewed, therefore, in a number of different ways and different orders and, if necessary, the 

interface to that module can be modified without affecting the simulation process itself or the way 

the data input is handled. The design of the whole system can be cut down into three seemingly 

independent modules. This reduces the overall complexity of the system and allows for a much

J. Kuljis User Interfaces and Discrete Event Simulation Models Page 114



Chapter 3: A Case Study

cleaner design. Of course, consideration must be given to the compatibility of these modules 

allowing for clear and simple integration of the modules into the system.

Serious consideration was given as to how the user will interact with the system. Ideally, the 

user of the system should be completely unaware of the software tools used. This interface 

requirement applies to the overall system. To accommodate this, CLINSIM needs to provide a 

flexible user interface that would hide the real system from the user. Every software project today 

has to accommodate new commercially established standards for user interfaces. CLINSIM had to 

accommodate these standard to a certain extent.

Before starting the design of the system, a survey of the possible software tools was made. A 

system that would fulfil all the requirements was not found. On the other hand, because of the 

nature of the modelling process, bespoke programming was not considered as the feasible choice. 

The CLINSIM requirement was for a general purpose data driven system, with complex data 

specification capabilities, and extensive output statistics represented in a variety of numerical and 

graphical forms. As already discussed in Chapter 2, this requirement cannot easily be met by 

many available simulation systems. Most general purpose simulation systems are either simulation 

languages that require extensive programming, or data driven simulators which have a very rigid 

form and do not allow the customisation of user interfaces for a particular domain. Simulation 

systems in general do not support complex data structures and database storage facilities. 

Therefore the decision was to use two software packages, one for data input, and the other for 

both the visual simulation and the simulation results.

Data module

The requirement was to provide a utility for keeping information on an arbitrary number of 

different clinic set-ups, so that the user can simulate a clinic of his or her choice. The complexity 

and the volume of data required highly structured data capabilities. The data structure that can 

provide for it would be extremely hard to define in an ordinary programming language, e.g. 

Pascal. Another problem in defining a rigid data structure is that any change in the model data 

requires a change in the data structures as well.
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Taking these constraints into consideration, the obvious pathway is to use a database system 

to store the data. Database systems have the advantages of preserving data integrity, providing 

data independence, easy data manipulation and maintenance. There is always a price to be paid. 

The disadvantage is that even a database system cannot provide an elegant solution for a complex 

data structure, but that disadvantage is less problematic than designing a database manager from 

scratch.

During a survey of the available software, several packages were examined. For building the 

data module interface, software and database management systems were looked a t The possibility 

of developing a Windows application was considered because of the attractive user interface and 

the claim that any application can be run from Microsoft Windows 3.0. At that time (1990) there 

was no proper Windows application builder. There was no Windows simulation software, either. 

There were problems in running some DOS applications from Windows 3.0, particularly in 

running graphics. The requirement was specifically against using a mouse in the system. The 

reason given by the ORD of the DOH was that personal computers with mice are a rare 

commodity in NHS hospitals. So, that option was abandoned, which with the benefit of the 

hindsight was a wrong decision.

Interface development software examined included the C-scape Interface Management System 

(1989) with Look and Feel Screen Designer (1989), and Metawindows (1986). Look and Feel is 

a visually oriented screen designer and code generator in the C language. C-scape is a tool for 

controlling the user interface of C programs. However, the data module would have to be 

assembled by writing C code to combine a number of screens built within Look and Feel. 

Metawindows is a library of Pascal graphics drawing routines to which an additional library 

graphic-Menu (1989), containing a library of menu building functions, can be added. Data Entry 

Module (1989) is further library of data entry forms that can be used to build the complete system 

in Pascal using extensive library calls. Whilst the combination of these libraries might make the 

data module development relatively straight forward, it still requires substantial programming. In 

the light of the constantly changing system requirements it was not clear that this would lead to a 

clean programming solution. Microsoft abandoned Metawindows development very soon after 

this survey was conducted.
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Database packages examined were Borland Paradox and Ashton Tate dBase IV (1988). 

Paradox (1989) offers most of the capabilities required. It has a database manager for handling the 

data and an interface builder for making a customised application. The disadvantage is that the 

interface that can be built using Paradox tools was of a poor visual appearance and that it provides 

restrictive capabilities of data manipulation. dBase IV has an easy to use data entry form designer, 

a report designer and an Application Generator. The Application Generator is an interface builder 

in the form of visual programming where a programmer can directly manipulate visual objects on 

the screen. Once created, objects can be then transformed into program code using the dBase IV 

program generator. The whole data module (menus, forms, reports, etc.) can then be integrated in 

runtime code. The attraction of this approach was very fast development, a capability for 

prototyping, and relatively little programming. Another plus of opting for dBase was its 

widespread use - it was the market leader PC database package. The assumption was that the 

user’s support offered by Ashton Tate was at an adequate level. A major considerations was that 

any system developed would have a free runtime licence, which dBase provided.

Simulation module

Simulation in general, as already mentioned, consists of two or three basic functional parts: the 

simulation engine that handles the algorithmic modelling part of the system; the visual graphic 

screen depicting the logic of the simulation model whilst running; and the output results. Some of 

the older simulation packages, like GPSS, had only the simulation engine and the output results. 

Visual simulation is available in the newer, technically more advanced software products. The 

same can be said about graphical presentation of the output results. The older systems provide 

only statistics that are very hard to interpret and completely alien to non specialists. The newer 

systems provide for graphical representation of the numerical data making it much more acceptable 

to the ordinary user.

Since the decision was to keep the data and the processing as separate and as independent as 

possible, the presentation of the simulation results appears to be isolated as a separate module. 

The simulation engine and the visual representation of the ongoing simulation process cannot be 

separated. So, the simulation module contains both.

J. Kuljis User Interfaces and Discrete Event Simulation Models Page 117



Chapter 3: A Case Study

The important part of the CLINSIM requirement is the visual simulation. This is the simplest 

way of observing the behaviour of the model. Based on these observations the user can identify 

the obvious anomalies in the model and find ways of improving its performance. The requirement 

was to create iconic representations of the clinic entities (patients, nurses, receptionists, and 

doctors). The requirement was not for graphical animation. The patients’ icons should move on 

the screen, jumping from one state to the next state when the change of state occurs.

Before the decision about the most adequate package for simulation development was made, a 

survey of the available software was made. Considerable experience has already been obtained in 

the development of the eLSE Pascal simulation system (Crookes et al., 1986) which had been 

used to develop several real applications (Holder and Gittins, 1989; and Williams et al., 1989). 

However, the visual side of these and subsequent systems was not considered adequate. As 

summarised in Chapter 2, of the six examined simulation systems, there is none that can fully 

fulfil all the necessary requirements. The most crucial problem is the need to develop a problem 

specific user interface, that avoids and hides the intricacies of system procedures and jargon from 

the intended user. This is a rare commodity in simulation systems. Of the six systems examined in 

Chapter 2, only SIMSCRIPT II.5 facilitates user interface development. However, the final 

decision was also based on the negotiation of a free run-time licence. Such considerations were 

met by SIMSCRIPT II.5 (1989).

Simulation results module

The requirement was that all output results should be represented both in graphical and numerical 

form. There are many graphical system that can provide both. Some of them are independent and 

some of them work within the software framework for which they were initially developed. 

However, since SIMSCRIPT II.5 also provided excellent output options, it was decided to build 

this part in SIMSCRIPT II.5 as well. The CLINSIM system was to provide about 80 different 

types of graphs, time series and tables, and have the capability of choosing between them through 

a set of menus.
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3.4.2  Design and Implementation

For the data entry module we have chosen dBase IV version 1.1. We used this database package 

in a novel way - not only to store and maintain data using the database organisation provided, but 

to create an interface to the process of data manipulation. The interface builder was a dBase 

program generator in the form of visual programming where a programmer can directly 

manipulate visual objects on the screen (dBase IV Developer’s Edition, 1990). The pitfall was the 

rigid organisation of dBase, with its old-fashioned concepts and memory-hungry programs. The 

resulting application consisted of the original generated code plus almost the same amount of 

hacked-in code to provide for flexibility and usability of the system. Within the dBase code, 

Pascal routines were called to handle non-dBase features. The interface part visible to the user 

consists of a series of stacked menus and data-input forms. The major problem is that the program 

uses almost all available DOS memory (almost 500K) whilst running, even though its run-time 

program takes only about 330K of memory.

We have developed the visual simulation and graphical presentation of simulation results, 

together with menus for output selection, using SIMSCRIPT II.5. The environment provides an 

excellent visual programming tool for drawing icons, and for creating the graphs. The available 

selection of colours is practically unlimited, but once the palette has been chosen it is limited to 16 

colours for an application. The simulation results are available after the simulation run through a 

series of menus. Each graph or table can be selected in a menu and presented on the screen as 

many times as desired and in any order one wishes. This part of the application was again kept 

separate from the processing, i.e. simulation. The interaction between dBase and SIMSCRIPT 

H.5 is in the form of a text file exported from the dBase files for the specified clinic.

When using two such disparate packages as SIMSCRIPT II.5, which is basically a graphical 

program, and dBase IV which appears to use graphical screens that are really text, smooth 

integration is impossible. The above two modules of CLINSIM were linked together using 

Automenu, which is another text based menu system that allows for the execution of applications 

from its menu screens. The variations in colours and text fonts used in the three packages is 

obvious and unacceptable to discerning users. Even so, CLINSIM behaves as one application.
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The main CLINSIM menu, produced with Automenu, is presented in Figure 3.2. The diagram is 

schematic, as are all of the diagrams in this chapter.

C L I N S I M

^  1. Introduction

2. Data interface

3. Simulation

4. Define printer

5. Quit

An example of a simulation run

May 20, 1993 4:53:58 pm Memory: 550 K

___________________________ Press H for Help_______________________________

F ig u re  3.2 Main CLINSIM menu

Data module

The data input module, developed using dBase IV, was designed to be in the form of a main bar 

menu from which a set of pull-down menus can be invoked. The data is stored in six dBase files. 

The menu can be one of the following:

• Horizontal bar menu: an example is the horizontal top menu in Figure 3.3.

• Pull-down menu: an example is the menu for ‘Data input’ in the Figure 3.3.

• Pop-up menu: examples of these type of menu are shown in the Figure 3.5.
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• Value lists: A value list contains values for a specific field of the currently assigned 

database file or view. An example of such list is a list of all clinics that pops-up on 

selection of ‘Select a clinic’ from the ‘Data input’ menu shown in the Figure 3.3.

QuitSimulation setup

Select a clinic

Data for the selected clinic

Open a new clinic

Delete a clinic

Copy a clinic

Data input

Position Select Help F1

Figure 3.3 Data input menu

Although each menu can be designed using either visual tools in the application generator or 

writing dBase code, in the end all CLINSIM menus were initially designed using visual tools. A 

menu was drawn on the screen in the form of a rectangle that could be painted using a limited 

selection of colours, could have defined a border, a colour and font of the text for the menu 

selection, and a colour for highlighting a selection in the menu. The background colour can be 

defined for the whole application. The menus have a hierarchical structure, where items on a main 

bar menu represent tree roots for all pull-down menus. Each pull-down menu has a list of items 

from which a user chooses an action to be performed. In CLINSIM these actions are:

• Open another menu

J. Kuljis User Interfaces and Discrete Event Simulation Models Page 121



Chapter 3: A Case Study

• Open a data-input form

• Display a pick-up list

• Run a dBase program

• Run a Pascal program

• Produce a report

• Display a report

• Print a report

• Exit from the data input module

As already mentioned, the data input module was created using the Application Generator in Base 

IV. The visual tools in the Application Generator support creation of menus and definition of their 

attributes (size, colours, borders, menu items and their attributes), and their placement on the 

screen. CLINSIM has the following set-up:

• Menus are placed on the blue background

• Each menu is in cyan with a double black border

• Each menu option is in grey unless disabled or is the active one

• All disabled menu options are in black

• The active menu option is highlighted - white text on a red background

Each menu and each item on a menu can have associated actions performed on the selection of a 

menu or an action on the menu. On selection of a pull-down menu the following actions can be 

performed:

• Change assigned database view

• Attach pull-down menu

• Display messages

On selection of an item in a pull-down menu one of the following actions can be invoked:
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• Open a menu: This action opens a pre-defined sub-menu of a current one creating a 

hierarchical structure of menus. The navigation through the menus is tree traversal 

starting at the root. This order can be disturbed by introducing cyclic calls to the menus 

higher up in the hierarchy. The CLINSIM system has no such jumps because of 

memory problems with the dBase if additional program code was introduced. The other 

reason is that it may confuse the user of the system and distract him or her from 

providing all the necessary data for a clinic.

• Open a list: This action provides a pick-up list to choose from. For example when a 

user chooses the ‘Select a clinic’ option in the ‘Data input’ sub-menu (see Figure 3.3) 

the user is presented with a list of all ‘clinics’ defined so far. On selection of one clinic 

from the list, that clinic becomes ‘active’ - i.e. it is the current clinic on which the user 

can then browse and/or edit. The selection of an item from the list will return the user 

back to the menu that invoked that action.

• Open an edit form: This action opens a pre-defined edit data input form. The data can be 

either inserted (for a new clinic) or modified (from an existing clinic). After the editing 

is done and the form closed (either by saving the changes or abandoning them) the 

action returns back to the calling menu.

• Display or print: This action prints or displays information, such as pre-defined reports. 

After the action is finished, control goes back to the calling menu.

• Perform file operation: The operations that can be performed are file copy, import a file 

into the database, export a file from the database in the pre-defined format. The 

exporting of the files is done, for example, when creating an appointment schedule. The 

necessary data is exported from the database files in the form of ASCII text file that is 

then used by a Pascal program to create an appointment schedule file. That file was then 

imported in a database file. After a chosen action is performed, control returns to the 

calling menu.

• Run a program: This action runs programs, including dBase or DOS programs, batch 

processes etc. CLINSIM uses this type of action to run, for example, the Pascal 

program that creates an appointment schedule. After the action is performed the control 

returns back to the calling menu.

J. Kuljis User Interfaces and Discrete Event Simulation Models Page 123



Chapter 3: A Case Study

• Quit: This action allows users to quit the application and return to the operating system 

or the calling program. CLINSIM uses this action to return back to the main menu 

(Figure 3.2).

Before and after each of the above action there is the possibility to customise further an 

application. Various operations can be executed either before or after (or before and after) an item 

action is performed at run time. This is achieved by either inserting a short sequence of dBase 

code (embedded code) or by referencing a procedure by name (from a procedure file) in 

operations related to the item in question. If the code is too long (more than a dozen lines) a call of 

a dBase program can be inserted. The program will execute at run time. These programs are 

usually collected in a procedure file. The volume of the dBase programs needed to make up the 

complexity of the CLINSIM data input and its interface is such that, in addition to the code that 

was generated using the Application Generator and the embedded code inserted in it as part of the 

Application Generator facilities (before and after action options), three procedure files were 

needed. Initially there was only one procedure file, but that had to be split to prevent the system 

crashing due to memory problems.

Before and after each menu, or an item in a menu, a decision can be made to open a particular 

dBase file, to sort the file in a particular order, or to locate a particular record on which action will 

be performed (for example editing a record using an edit data form). An item can be bypassed by 

specifying a condition on which a current item should be skipped at run time. This facility is used, 

for example to prevent invoking options to edit data for doctors in the clinic. If a clinic is defined 

as having three doctors, access is denied to doctor 4, doctor 5, and doctor 6.

All edit data forms are created from the main dBase menu and then integrated into CLINSIM 

by referencing these forms during the implementation of the CLINSIM menu system in the 

Application Generator. The following elements can be placed on a dBase IV data edit form:

• Fields from an underlying database file or view

• Newly calculated fields not already in the database file or view

• Lines and boxes

• Text
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There is a limited set of available colours that can be used for background, foreground, and 

elements of data-input forms. CLINSIM uses the following set-up:

• Each data-input form has a blue background with a single white border

• All text items are in white

• All edit fields are in cyan

ST.MARY'S - UROLOGY

Clinic structure

Official clinic start time I foo~l
Official clinicend time fT2~|: |00~|

Number of doctors (up to 6, minimum 1) m
Number of receptionists (1 or 2) 0
Number of testroom s (0 ,1 , 2 or 3) GO
Cut-off point n2~l:f30~l

Figure 3.4 Example of data-input form

In CLINSIM each edit field has a default value, a permitted range of values against which an 

input is checked, and a message indicating the permitted range which is displayed if non valid data 

is entered. Sometimes a field is displayed for information purposes only and cannot be edited. An 

example of an data input form is given in Figure 3.4. Note that a box is used to separate the form 

visually from the rest of the screen. A line is drawn to separate the informative part of the form 

(i.e. the clinic name “ST. MARY’S UROLOGY”) and the data input form identification (‘Clinic 

structure’) from the data input itself. The data input part of the form is separated into the text part 

on the left-hand describing the content of the fields, and the edit fields which are in boxes on the 

right-hand side of the form.
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Database reports are created using the main dBase menu. They are used either to display 

selected data on the screen or to print the data. In CLINSIM reports are used to display and print 

appointment schedules for new patients and separately for reattenders in a clinic. The design of the 

report screens follows the same standard as the edit data forms. There are standard report features 

like page header, report summary, and page footer. A dBase IV report can have the following 

design elements:

• Fields from the current database file or view

• Special fields created for the report

• Text

• Boxes and lines

Data input Sim ulation se tu p Q uit

Select a clinic

Data for th e  s e le c te d  clinic

Clinic struc tu re

Clinics

D octors

Doctor 1

Doctor 2

Doctor 3 
Doctor 4 
D octor 5 
D octor 6

C urrent d istribution 

D istribution param eters  

Sam pled data

Planned start time

Actual start time

C onsultation tim es for new patien ts 

C onsultation tim es for rea tten d ers

P osition  —► ^  S elect Help F1

Figure 3.5 CLINSIM data input menus

All edit data forms and reports are integrated in the CLINSIM environment initially created 

with the Application Generator. The CLINSIM data input module consists of an introductory
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screen, one bar-menu, 25 pull-down or pop-up menus, 46 data edit forms, 2 reports, 50 dBase 

programs (split into three procedure files), and 4 Pascal programs. There are 6 dBase files for 

storing clinics data.

ST. MARY’S - UROLOGY

Sampled data: SAMPLE 1

Observations
Cumulative
Frequencies Observations

Cumulative
frequencies

1 -10.00 0 2 -5.00 11

3 0.00 15 4 5.00 22

5 10.00 29 6 15.00 35

7 20.00 43 8 25.00 52

9 30.00 61 10 35.00 67

11 40.00 72 12 45.00 100

13 0.00 0 14 0.00 0

15 0.00 0 16 0.00 0

17 0.00 0 18 0.00 0

19 0.00 0 20 0.00 0

Figure 3.6 Example of Data sample entry screen

The statistical parameters, like for example the ‘Actual start time’ for doctors as in the Figure 

3.5, can be one of seven distribution types. A distinction is made if the chosen distribution is 

‘Sampled data’. In that case a user can choose an existing file or create a new one. In the case of a 

new sample, or modification of an existing one, the user is presented with the edit form like the 

one in Figure 3.6.

Simulation module

The visual simulation was developed using SIMSCRIPT II.5 under DOS, a simulation language 

based on the Fortran language. This means that the whole simulation experiment must be 

programmed. SIMSCRIPT II.5 programs are built and run within the SIMLAB environment.
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Hence, when the visual simulation part of CLINSIM is run, the SIMLAB environment is 

installed, and the model is run. SIMLAB is the environment within which all model building, 

editing, compiling and linking is performed, as well as running. The header and footer banners 

for SIMLAB (in lurid green) are on display at all times, except in graphics mode. It was 

unfortunately impossible to avoid this because the internal SIMLAB code cannot be changed. The 

hope was that CLINSIM appears to be an environment of its own, and that there are no visible 

jumps from one application used to another.

R2JDLER1JDLE

Receptionist 1 Receptionist 2

MCNJNPATIENTARRIVAL CHECKJN P_MCN_Q

P CHECK

TestroomsVDoctors

P_CONSUL
TATION_Q,

TJDLECONSULTATIONDJDLE TESTS

Figure 3.7 CLINSIM ACD

The model has been built as far as possible using the principles of the Three Phase Approach 

or Method (described in Pidd, 1992a). A fundamental difference between the Three Phase Method 

and the CLINSIM implementation is that an activity is not represented by C-events and B-events,
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but by C-event condition routines, and by processes. So, for example, the activity CHECK_IN in 

the ACD (see Figure 3.7) is represented by the routine CHK.R1_IDLE, which looks to see if the 

conditions for starting the activity (i.e. that receptionist 1 and a patient are both in the preceding 

queues, waiting to start the activity), and by the process CHECK_IN. The routine 

CHK.R1_IDLE, if the conditions are satisfied, activates the process CHECK_IN. The process 

then establishes the identity of the activity participants, carries out any necessary housekeeping for 

results purposes, and then goes into passive mode whilst the activity is in progress. When the 

activity duration has elapsed, the process is reactivated, and the participants are moved on to their 

next queues in the ACD.

Hence the ‘process’ in SIMSCRIPT II.5 is used to emulate the active part of the C-event, plus 

all of its constituent B-events. Every activity (rectangle) in the ACD has an equivalent process in 

the SIMSCRIPT II.5 code, as well as a routine that checks whether the conditions for starting the 

activity/process are true.

The interaction between dBase IV and SIMSCRIPT II.5 is in the form of a text file that is 

exported from the dBase IV files for a specified clinic. On a request from the main CLINSIM 

menu to run the simulation, the SIMLAB environment appears on the screen. From there onwards 

that screens disappears and the simulation of the selected clinic starts.

To simulate a particular clinic a clinic is selected from the ‘Data input’ part of CLINSIM. Then 

a request is made from the ‘Simulation set-up’ of the ‘Data input’ main menu (see Figure 3.5) to 

‘Prepare for simulation’. When such a request is issued all the necessary files are exported from 

dBase and then processed by Pascal programs. One Pascal program produces a text file with all 

clinic data for the use of the program. Another Pascal program creates patients appointment 

schedule files which are used in the program to generate patients at the appropriate times.

Simulation results module

The simulation results are available after the simulation run, through a series of menus. Each 

graph or table can be selected in a menu and presented on the screen as many times as desired and 

in any order we wish. The presentation of the simulation results was again kept separate from the 

processing, i.e. the simulation. Even though the user can view about 80 different outputs in any
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desired ordered, the user has to make sense of it himself or herself. There is no explanation 

facility for the meaning of the results in their particular context. There is also no inter-connectivity 

of the various statistics and therefore they cannot be interpreted easily.

Integration

When using two such disparate packages as SIMSCRIPT II.5, which is basically a graphical 

program, and dBase IV which appears to use graphical screens that are really text, smooth 

integration is impossible. The above two modules of CLINSIM were linked together using 

Automenu, which is another text based menu system that allows for the execution of applications 

from its menu screens. The variations in colours and text fonts used in the three packages are 

discernible. Even so, CLINSIM behaves as one application.

3.5 Conclusions

In this chapter we have described the CLINSIM case study, its motivation, design and 

implementation. CLINSIM was built within a number of severe constraints, such as target 

machine, cost, free run-time licensing, software availability and constraints, Department of Health 

requirements, and limitations of the expertise of the developers. In the next chapters, we critique 

the case study from a ‘utopian’ perspective of the world, having examined the practical pragmatic 

perspective. This research postulates that such a compromise might lead to better building tools 

and hence better modelling interfaces.
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4.1 Introduction

The case study is an appropriate one to use as it is as representative as any model of the problems 

to which simulation is applied. A discrete event simulation is one which employs a next-event 

technique to control the behaviour of the model. Many applications of discrete event simulation 

involve queuing systems of one kind or another (Pidd, 1992a; Law and Kelton, 1991). The whole 

reason for building a simulation model is to carry out some experiments on it. CLINSIM is a 

stochastic system (i.e. one whose behaviour cannot be entirely predicted) and requires 

implementation that supports a complex experiment in which samples from various distributions 

are combined as the model runs. In chapter 3 we have given a detailed description of the case 

study. It shows that the problem can be reduced to a typical queuing problem as shown in Figure 

3.7.

The model is generic in the sense that any clinic, within the design constraints, can be 

specified. The data input part makes the model generic. As real material, the case study is 

sufficient to enhance the understanding of general model problems, but is not sufficient to 

generalise the findings. In this chapter we shall look at the case study from the user interface 

perspective and draw conclusions on strengths and weaknesses of the CLINSIM user interface 

with regard to a generic simulation model. In order to make more general conclusions and an 

acceptable paradigm about the appropriate user interface characteristics/ features, in the next 

chapter the dissertation will expand the examination to include materials and findings from the 

literature.

CLINSIM has a custom-made user interface. We will evaluate the usability of the CLINSIM 

user interface using the same usability criteria as we have used throughout chapter 2 to evaluate 

the usability of several simulation systems. Even when a system is built with no pre-set usability 

goals, nevertheless the system’s usability will eventually be evaluated by its users using common 

sense. Its success will to a great extent depend on user satisfaction in performing the required task 

using the system. CLINSIM was designed and built with no generally agreed usability goals
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beforehand. The notion that the system has to offer more than just functionality (i.e. what tasks 

and sub tasks must be carried out) is a relatively new one. It was agreed that CLINSIM will have 

a “user friendly” interface, but the details of what was meant by that rather vague notion were 

never elaborated. Instead, throughout the process of system development there was some sort of 

usability testing. The system was tested incrementally not by the end users but by the same 

Department of Health OR analysts who wrote the system specification. As a result of performed 

tests, requests were made for the following user interface changes: various text changes on the 

CLINSIM screens, change of placement of screen objects within a screen, change of colour 

schemes, and change of icon shapes. The requested modifications were not based on any design 

guidelines nor did they result from studies on similar problem areas. The judgement was the 

purely subjective one of the people involved in the project. Therefore a proper evaluation of 

CLINSIM’s usefulness could not have been performed during system development and testing. A 

kind of usability testing was carried out by a consultant company contracted by the Department of 

Health. The objectives of that study were firstly to get CLINSIM used in at least three hospitals, 

and secondly to carry out an evaluation of the appropriateness of CLINSIM for use in the NHS 

(Hall, 1993). One of the objectives of the study was to determine the problems of using the 

software. Their findings will be cited where appropriate in this chapter.

CLINSIM

i j j i i
Introduction Data interface Simulation Define printer Exit

F igure 4.1 CLINSIM: Top level menu structure

In this chapter we examine to what extent these goals were fulfilled. The failure to achieve all the 

set goals will be analysed and obstacles and constraints will be identified. Figure 4.1 shows the
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main CLINSIM menu options and from that we can identify the following integral parts: Data 

interface, Simulation and Introduction, and Communication.

4.2 Data Interface

The data input part of CLINSIM is completely independent of the simulation processing. Any 

change to the data interface has no influence on the other parts of the system (unless the problem 

changes). The interface part visible to the user consists of a series of stacked menus and fill-in 

forms. The decision on interaction style was fairly restricted once the software was chosen. 

Windowing systems and their asynchronous usage are very attractive but not possible in dBase IV 

at the time the system was built. The most sophisticated option available in dBase IV was a menu 

system.

Menu selection, as an interaction style in general, can be an attractive and a convenient way of 

guiding the users through a complex command sequence. A system that has well-designed menus 

where both the semantics and the syntax of the system are explicit can be easy to learn. That is, 

menus make clear both what can be done (semantics) and how to do it (syntax). A menu interface 

always presents all valid options at any one time. Clear menu choice labels and good instructions 

on how to select from the menu mean that at any time the user knows everything necessary to take 

the next step in the dialogue. Because a menu system is potentially self-explanatory, it is not 

necessary to memorise and retain semantic or syntactic knowledge. Menus rely on recognition 

memory rather than recall memory (Mayhew, 1992).

However, the choice of using a menu system in an application does not guarantee that the 

system will be appealing and easy to use. Effective menu-selection systems emerge only after 

careful consideration of and testing for numerous design issues, such as semantic organisation, 

menu-system structure, number and sequence of menu items, selection of titles, prompting 

format, graphic layout and design, phrasing of menu items, display rates, response time, 

shortcuts through the menu for knowledgeable frequent users, on-line help, and selection 

mechanisms (Shneiderman, 1992).

The primary goal for menu designers is to create a sensible, comprehensible, memorable, and 

convenient semantic organisation relevant to the user’s tasks. Semantic organisation of items in an
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application requires the items to be classified into categories. Hierarchical decompositions arc 

appealing because every item belongs to a single category. Unfortunately, in some applications, 

an item may be difficult to classify as belonging to one category. When designing CLINSIM data 

input the highest consideration was given to semantic organisation. The organisation partially 

follows the classification already present in the CLINSIM requirement document. The first 

decomposition is based on the clinic specification and the simulation set-up as shown in Figure 

4.2.

Data interface

Data input Simulation Quit

F igure 4.2 Data interface top-level menu structure

4.2.1  Clinic Specification

The clinic specification, titled as ‘Data input’, covers all actions related to creating a new clinic, 

deleting an existing clinic, or updating an existing clinic. A new clinic initially can consist of 

default values (if the option ‘Open a new clinic’ is used) or of copy of data from an existing one 

(if the option ‘Copy a clinic’ is used). Creating a new clinic and updating an existing clinic follow 

the same structure. The initial menu deals with copying, deleting, creating a new clinic, and 

selecting a clinic for update or just look-up. All other menus that follow deal with clinic data are 

shown in Figure 4.3.

Menu structure

The menus are hierarchically organised in a tree like structure where ‘Data input’ in the main data 

interface menu serves as the root. The hierarchical organisation of menus guides the user to
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perform a particular task. When a menu is selected it is drawn over existing menus invoked during 

traversal of a particular branch of the tree. This gives a user an indication of which part of the data 

input is being accessed. The database data cannot be updated in menus. Whenever a user wants to 

update data he/she has to traverse the tree until reaching the leaf nodes, that themselves are data- 

input forms. When a leaf node is selected the menu screen is erased, displaying only the data- 

input form. The data can at that point be either viewed or changed. There are different commands 

for an existing data-input form depending on whether a user wants to save the changes made or 

not. When the data-input form is closed the screen is re-drawn to the same state it was in before 

the selection of the data-input form.

Clinic Doctors Testrooms

Copy a 
clinic

Delete a 
clinic

Operating
practice

Booking
practice

Open a 
new clinic

Receptionists

Select a 
clinic

Clinic
stucture

Data for the 
selected clinic

Patient
characteristics

Data input

Figure 4.3 CLINSIM Clinic specification: Hierarchical menu structure

An important issue regarding menu design is known as the depth-breadth trade-off (Miller, 

1981). One design alternative is to have only a few choices on any individual menu screen and, 

therefore, many or at least more levels in the menu hierarchy (depth). The other alternative would
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be to have more choices on an individual menu screen, thereby reducing the number of levels in 

the hierarchy. The question is which alternative is optimal in terms of user performance when 

navigating through a menu system to a target item at the lowest level. The additional factor that can 

influence depth/breadth trade-off is how well a designed set of target items lends itself to different 

categorisations corresponding to different possible menu structures.

The depth of the ‘Data input’ fully drawn tree reaches up to eight levels. This is obviously not 

very practical especially if a user wants to update only one data item that is, for example, at level 

eight It requires traversing the whole length of the tree, only to reach that particular data. If a user 

is only an occasional user of CLINSIM he/she might not be so familiar with the structure. To 

reach the desired data may require several exploratory traversals. Even if the user manages to 

select the appropriate branches in a first trial, traversing to such a depth just to do a minor change 

can be very frustrating. Ideally, the tree depth should not extend to more than three levels (Miller, 

1981; Shneiderman, 1992). Another confusing factor can be a screen packed with open menus.

The reason that the CLINSIM hierarchical menu structure reached a depth of eight levels lays 

in constraints imposed by dBase. The biggest drawbacks are that menu items cannot be data and 

that data-input items cannot be menus. To elaborate this claim let us consider stochastic data. 

Depending on the distribution type, a different number of parameters and parameter types is 

necessary. Every stochastic data item to be specified has to follow the same pattern:

1. Choose a distribution type (one of seven) for that data entity.

2. For the chosen distribution, except for ‘Data Sample’, specify depending on the 

distribution type either one, or three, or four parameters.

If the distribution is a ‘Data sample’ then the user can choose one of some already existing 

files with the sampled data, create a new file, delete an existing one, or edit a selected file.

Even if the user wants only to check what is the distribution type and its parameters, he/she 

has to traverse the whole path. To explain how CLINSIM handles stochastic data we will consider 

the specification of ‘Actual start time’ for Doctor 1. Figure 4.4 gives all nodes that have to be 

traversed to reach the specification of values. Once the data-input form ‘Current distribution’ is 

reached the user can either check the distribution values, or change a distribution type. To change
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Doctors

Doctor 1

Select a file Delete a file

Data input

Sampled data

Create a new file

Select a clinic

Clinic structure

Actual start time

Current distribution

Edit the selected file

Distribution parameters

Data for the selected clinic

Figure 4.4 Path to specify Actual start time for Doctor 1

the distribution type the user can toggle in between seven distribution types or type in the first 

letter of the desired distribution. Since the data input form does not permit variable entries (i.e. 

prompts for the appropriate distribution parameters) the user has to go back and now choose 

‘distribution parameters’. The appropriate data-input form (i.e. the one with the parameters for the 

just selected distribution type) will pop up on the screen. If the distribution was of a ‘Data sample’ 

type, the user must go through a more lengthy process specifying the file, as already mentioned 

above.
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Planned start time and patient type 

Actual start time

Consultation times for new patients 

Consulatation times for reattenders

Figure 4.5 Menu invoked on selection of Doctor 1

The facility to mix data-input with the menu items and variable format for data values, in this 

particular case, would reduce the problem by between one to three levels. When Doctor 1 is 

selected in the invoked menu (Figure 4.5), instead of just having an option to select ‘Actual start 

time’, the facility to display next to that menu choice the value for that data entity (for example, 

Constant (15) ) would eliminate the necessity to search further to find out the current value as 

shown in Figure 4.6.

Planned start time: 9:00

Patient type: Both

Actual start time: Data Sample (Docl)

Consultation times for new patient: Constant (20)

.
Consulatation times for reattenders: Constant (15)

Figure 4.6 Alternative menu invoked on selection of Doctor 1
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If the user wants to change the values the following alternatives can reduce the tree depth. 

Firstly, the facility to change the distribution type from Constant to Normal by allowing the user 

to toggle for different distribution types in the menu that displays it until the desired one is 

reached. After a new distribution type is selected the pop-up menu or fill-in form can be invoked 

prompting the input of appropriate parameters for the chosen distribution. Secondly, the selection 

of ‘Actual start time’ could invoke a data-input form that would allow both the specification of 

distribution type, and depending on the new distribution type, handle the specification of the 

appropriate distribution parameters. The same principles can be applied throughout the data input 

interface reducing the menu tree depth to a manageable number. Unfortunately, mixing menus and 

data input is not supported by dBase IV and thus the depth of the menu tree could not be reduced 

if the semantic organisation of items was to be preserved.

Choice ordering

Once a menu hierarchy or structure has been decided on and the choice items that will actually 

appear on each menu screen have been determined, then one is faced with the question of how to 

order those items. The ordering can be based on: some common conventional order, expected 

frequency of use, expected sequence of use, semantic categories, and alphabetical order. If no 

other ordering scheme lends itself well to the menu choices, then alphabetic is better than arbitrary 

ordering. In CLINSIM the choice ordering is not consistent. It is generally dependent on the 

semantic categories. Often the specification of parameters that are dependent on some other data 

would be meaningless prior to the definition of that data. For example the choice ‘Patient 

characteristics’ appears in a menu before the choice ‘Booking practice’. The reason for that is that 

selection of ‘Patient characteristics’ leads to a data-input form in which the specification of values 

for patient types, characteristics of each patient type, etc. are carried out. These values should be 

defined prior to the ‘Booking practice’ choice, which leads to specification of criteria for creating 

appointment schedules for each patient type in a clinic. Where the data is independent of the other 

input the menu choices are listed alphabetically.

Choice selection

Generally there can be a variety of selection mechanisms available, like single letter or number 

selection codes, cursor control keys, or a pointing device pointing directly at the screen. The Data
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Input part of CLINSIM is constrained by dBase IV, and thus uses cursor control keys for 

selection. In the later version 2.0 of dBase IV (Borland, 1993) mouse pointing is made available. 

A menu without a pointing device selection mechanism should come up with a default selection to 

save keystrokes according to most of the design guidelines (Shneiderman, 1992; Mayhew, 1992). 

Defaults might be the last item selected from the menu or the most frequently used item, if these 

are appropriate. Since in CLINSIM no logical default can be determined, the first choice in the list 

is set to be the default.

All menus present mutually exclusive choices, and the user can only select one at a time. 

Visual feedback is provided indicating which options are selectable, which option the cursor is 

currently pointing to, and which options are currently selected. In CLINSIM these are achieved 

using different colours for background and for the text of menu items depending on their status. If 

an item is selectable its text is grey on a normal menu colour background (cyan). If an item is not 

selectable, that is if it is disabled, its text will appear as black on a normal menu background. In 

the case of an attempt to point to an unselectable item, the cursor key will skip the item and will 

point to the next selectable option if available, otherwise it will remain at the last selectable item. If 

an item is selected then it will be highlighted, changing the background colour of the selected item 

to red with the text of the menu item changing to white.

Menu invocation

In most menu systems, the user is always presented with a menu at the appropriate time, or the 

top-level menu is permanently visible in some reserved area of the screen. In the ‘permanent’ 

menu system, the top-level menu is permanently displayed across the top of the screen. The 

second-level pull-down menu only appears when a selection from the top-level menu is made. In 

the CLINSIM data interface the top-level menu is always displayed on the top of the screen. It 

disappears only if and when a data-input form is invoked but is re-drawn again after the data-input 

form is closed. The second level is a pull-down menu that appears after selection from the top- 

level menu is made. All consequent menus are pull-down menus that appear on selection from a 

menu one level above. In CLINSIM all open menus in the menu hierarchy are displayed on the 

screen and each of the open menus keeps the selected item highlighted. CLINSIM has no facility 

for user-invoked menus, where the normal state of affairs is the display screen with no menus
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visible, and where the user must press a key on the keyboard or alternative input device to bring 

up the top-level menu that is appropriate given the current state of the dialogue. Given that menus 

are intended to support novice and casual users in the first place, it should be kept in mind that 

user-invoked menus detract from the potential benefit of menus of making semantics and syntax 

obvious in the interface. Thus it is recommended that user-invoked menus should be used only 

when screen space is at a premium and when most users can be expected to use the system fairly 

frequently.

Navigation

Navigating through a menu system can be facilitated by a number of design considerations, 

including good screen layout and design, the presence of context information to remind the users 

where they are, menu bypass, and an efficient selection mechanism. Generally, it is a good idea to 

design and document a set of screen design standards, guidelines, and conventions and then apply 

them to all screens for a given system. The CLINSIM data interface applies a uniform design 

standards to all menus. These standards include menu choice selection, menu invocation, and 

colour schemes. Within-application consistency is always important because it will facilitate 

learning and also result in an easier to use system. When menu systems are very deep and 

complex, novice and casual users can easily get lost and have difficulty remembering how to get 

somewhere from their current location, or what they have and have not already done. One way to 

assist users in navigating complex menu systems is to provide plenty of context information on 

each screen, including clear titles and reminders of choices made in previous menus. High- 

frequency, expert users will become frustrated by tedious navigation through complex menu 

hierarchies. Even though it is desirable to provide a menu bypass for these users, CLINSIM does 

not offer this facility due to the restrictions on memory in dBase IV.

Data input forms

As already mentioned, the CLINSIM data interface consists of menus and data input forms. Menu 

selection is effective for choosing an item from a list, but some tasks are cumbersome with menus 

and also impossible to implement in dBase IV. All leaf nodes in the CLINSIM menu tree on 

selection will invoke a data input form. In general, when many fields of data are necessary the
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appropriate interaction style might be a fill-in form (or data input form, or data entry form). Fill-in 

fields can be particularly effective when input is required from the user that may take on any of a 

large number of values. The form fill-in approach is attractive because the full complement of 

information is visible, giving the user the feeling of being in control of the dialogue 

(Shneiderman, 1992). Few instructions are necessary, since this approach resembles familiar 

paper forms. Because there are usually several or many fill-in fields on a single screen, users can 

get broader context information than they would on a menu, or question and answer interface. 

CLINSIM data input forms usually have a small number of fields that generally would not justify 

this approach and they would not exploit the possible advantages of context information. Again, 

the restriction on the number of fields is a consequence of constraints imposed by the chosen 

software. dBase IV allows any data input form length (even using more than one screen) and in 

theory the system could make do with a substantially fewer number of input forms. But in practice 

many data fields have mutually dependent values. If the data fields are part of the same data input 

form, then the entered values are not acknowledged until the form is closed and the data saved. It 

means that during the data entry process on an entry form, the checks for values of its fields 

cannot be performed.

As compared with a menu system, fill-in forms make efficient use of space on the screen. 

Well-designed fill-in forms make a system relatively easy to learn because they make both the 

semantics and syntax of the system explicit. For the same reason, fill-in forms are also easy to 

remember. Fill-in forms rely mostly on recognition memory rather than recall memory. 

Recognition memory is faster and more accurate than recall memory, and fill-in forms exploit that 

fact (Mayhew, 1992).

There are serious trade-offs, however. Although good labels (captions) and simple brief 

prompts help users to know what type of input is required and how to format it, for many fields 

users may not know what the valid inputs are. To make up for this disadvantage, an on-line help 

system can, and often should, provide menus of valid input options. Most fill-in forms make it 

difficult to fill in fields in any order other than the order in which the fields appear. The other 

disadvantage can be the need for typing skill. Users with low typing skill, low computer literacy, 

and/or low semantic knowledge of the problem domain will be slowed down on a fill-in form 

interface relative to a menu or question and answer interface. Because fill-in forms are a relatively
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rigid, structured dialogue style, they are best suited to tasks that are themselves highly structured, 

that is, tasks in which a set sequence of steps is always or usually followed (Mayhew, 1992). 

There is not a great deal of empirical work on form fill-in, but a number of design guidelines have 

emerged from practitioners. Many companies offer form fill-in creation tools, one of which was 

Ashton Tate’s dBase IV. Software tools simplify design, help to ensure consistency, ease 

maintenance, and speed implementation.

Organisation and layout

It is always important to consider the way a user will be using an on-line fill-in form. The form 

should be designed and organised to support the task. Semantically related items should be 

organised into groups by sequence of use, by frequency of use, by common patterns, and/or by 

relative importance. According to Tullis (1988) the search time to find a single data item on a 

computer screen is affected by the number of groups and their size, so they should be kept to a 

minimum. Many authors (Tullis, 1988; Shneiderman, 1992; Mayhew, 1992) agree that the logical 

groups should be separated by spaces, colour, or other visual cues. In the CLINSIM data 

interface all data input forms are designed using a limited number of visual cues. The number of 

items on any form is relatively small and the number of logical groups never exceeds three. The 

distinction between logical groups is achieved with spacing and horizontal lines.

Labels and fie ld  design

There are several design guidelines concerning labels and fields of input forms. To start with a 

form should have a meaningful title that identifies the topic. Each CLINSIM data input form has a 

title that indicates which clinic is being edited and a reminder as to which logical part of the system 

the form refers. Other design guidelines are about placement, alignment, and visual appearance of 

labels and data fields. Usually labels are left justified unless they vary too much in length, when 

they may be right justified. Alphanumeric fields should be left justified and numeric fields right 

justified with decimal alignment when appropriate. Leading zeros should be avoided. Labels and 

fields should not be too far apart. Labels and fields should be distinguished using a visual cue. 

Labels should be brief, familiar, and distinctive. The number of character spaces available in a 

field should be somehow indicated. Disabled fields should be made apparent and distinctive. Most 

of these guidelines are followed in CLINSIM. Labels are always placed on the left hand side and
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value fields on the right hand size. Labels are left justified and the fields are mostly vertically 

aligned (unless the labels are exceptionally long) and placed on the right hand side in the same line 

with the corresponding label. The background colour of the form is blue, the text of the labels is 

white on the form background. All data value fields are black on a cyan background. The cyan 

background indicates the maximal length of fields. If a field is disabled it is displayed in the same 

colours as the labels (white on a blue background).

Format

When use is casual, users are inexperienced, the number of valid inputs is large, and/or inputs are 

difficult to spell or remember, the provision of pop-up or pull-down menus within fields can be a 

convenient way to present entry options. The CLINSIM alternative to the presentation of valid 

data inputs is in the form of a toggle field where a user pressing the space bar can have a view of 

all possible inputs. It is recommended that complex rules for entering data in the various fields of 

a form should be avoided (for example, entry in some fields depends on values entered in other 

fields). This is not possible in dBase input forms anyway even though, as mentioned in the 

pervious section, this sort of facility would reduce the menu depth and the necessity for numerous 

short data input forms. Long input formats should be broken up into meaningful and commonly 

used groupings (for example, telephone numbers split into area code and the number). This 

recommendation is generally followed. Whenever there is a most likely or most commonly entered 

value for an input field, this value should be used to prefill the field as the default. Every newly 

created clinic in CLINSIM has default values prefilled where appropriate and where such values 

would not misguide the user. The input data should be short if possible. Abbreviated input can be 

used when it can be unambiguously interpreted. Frequent shifts between upper and lower case 

characters should be avoided, and when possible, the system should not be case sensitive. Very 

often CLINSIM has field values presented to the user in terms that are understandable for the 

specific task and not their internal representation. Also data input is not case sensitive since all 

alphanumeric fields have conversion to upper case.

Prompts and instructions

The users, especially non frequent ones, benefit from unambiguous prompts instructing them and 

reminding them of the proper input syntax and, when appropriate and possible, of ranges of
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possible values. CLINSIM offers a prompt for valid input only if the user inputs a value out of 

range. Some fields have an explanation as to what the input should be. It is desirable that every 

fill-in form includes a minimal set of general instructions on how to navigate between fields, 

cancel out of the screen, and accept the filled in screen. In CLINSIM these instructions are given 

for some types of input fields. There is no consistency of such prompts and instructions for the 

solely pragmatic reason of restriction of memory available (dBase IV version 1.1 could use only 

the memory remaining from 640K after DOS is loaded). All graphics are very heavy on memory. 

For the same reason HELP is not provided even though it is possible.

N avigation

Mechanisms must be designed on fill-in forms to allow users to move from field to field, to accept 

a filled screen, to cancel a screen, and to move forward and backward between screens. 

CLINSIM provides for accepting a filled screen and cancelling a screen but not for moving 

backwards between screens. This deficiency is not a serious one since there are only two data 

entry forms that consist of more than one screen. When a form is first entered, the cursor is 

positioned in the most likely default position - the first field on a form. The field groups are 

arranged consistently with default cursor movement that is vertical from top down. When cursor 

movement by fields can be programmed by default to movement up and down, it is preferable to 

do so and to arrange groups accordingly, as there is some evidence that vertical groups are easier 

to search than horizontal groups (Tullis, 1988).

Three aspects of group orientation must be consistent: the default direction of cursor 

movement (left and right or up and down), the logical order of fields within groups (left and right 

or up and down), and the spatial arrangement of groups (as rows or columns). Any inconsistency 

among these factors will confuse users and slow them down. In keyboard-driven fill-in forms, 

users should be allowed to move the cursor forward and backward within each field by character 

to facilitate editing. Users should also be able to move both forward and backward by fields. 

CLINSIM allows such cursor movement either using TAB key, arrow keys, or ENTER key. No 

keys on the keyboard should move the cursor into non editable areas. In the CLINSIM data entry 

forms in the case of non editable fields, the cursor is automatically placed on the first editable field 

when the form is opened, or on attempt to move the cursor to that field skips the field, or if it was
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the last field on a form, the form closes. Entering a value in the last field in a form will not close 

the form (auto tab). The form will be closed correctly using either keys for saving or cancelling 

the input, and wrongly (since it is constant source of possible mistakes) using any of the possible 

navigation keys beyond the last field.

Error handling

When users make simple typing errors, they are able to edit character by character, rather than 

having to erase and retype the entire field. The system should provide semantic and syntactic 

information in error messages depending on user knowledge. CLINSIM has no semantic nor 

syntactic information about error messages which are generated by dBase. If fields are unrelated 

to one another, that is, if correct input to one does not depend on the input in another, then the 

user should control when error checking will occur. CLINSIM has no facility for such error 

checking. The recurring problem in CLINSIM is the limited inter-connectivity of the data, and a 

lack of information to the user of what the consequences to the validity of the system are of 

entering or changing the data (Hall, 1993). Data validation is limited to validation of a single input 

against a permitted range of values. There is no provision for validation of the overall consistency 

of the data and the logic of the system. All these features could have been supported but at a 

considerable cost. The development time and the memory needed for such additions to the system 

were not available.

4.2.2 Simulation Set-up

In the CLINSIM data interface, the ‘Simulation set-up’ menu item leads to defining the parameters 

directly related to the simulation of a clinic. It consists of pull-down menus, data input forms, 

reports, and in the background the running of non-dBase programs. The menus and the forms 

follow the same design standards as do the other parts of the CLINSIM data interface. Reports are 

generated on request from files created by Pascal programs that run prior to the creation of the 

reports. Once created, a report can be either displayed or printed. A displayed report has a similar 

appearance to a data input form. The report text is displayed in white on a blue background. Since 

a report can be longer than one screen, the user can view it screen by screen by pressing the 

SPACE bar.
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4.3 Simulation

The simulation part of CLINSIM consists of a visual simulation, if the request in the data input 

was for a single run, and of the presentation of the simulation results. The visual simulation 

graphics display is in ‘bit-mapped’ graphics and the simulation results part is a combination of a 

“character'’ graphic menu system and textual screens, and ‘bit-mapped’ graphs. The simulation 

starts by displaying a standard SIMLAB screen, thus revealing the application software used. This 

particularly ugly sudden change of screen colours from some relatively pleasing colours to a black 

background with white text and bright green borders cannot be avoided due to the SIMLAB 

internal structure. This display remains for some time on the screen while the simulation program 

loads all files necessary to run the visual simulation or to perform multiple simulation runs. 

Similarly, whenever a ‘textual screen’ is displayed, the identification of the SIMLAB environment 

is displayed at the top and the bottom of the screen. These are the only situations in the whole 

CLINSIM system that the disclosure of the software used occurs. After the files are processed 

there are two possible scenarios. In the case of a single simulation run, the graphical 

representation of the model is drawn on the screen and the visual simulation starts. After the visual 

simulation has finished, the user can activate a menu with simulation results to appear. In the case 

of a multiple run the visual simulation of a clinic is omitted. The simulation processing is 

performed in a ‘silent’ mode, collecting the statistics into files to be used for presenting simulation 

results. Immediately after the processing has finished a menu with simulation results will appear 

offering a variety of simulation results.

4.3.1 Visual Simulation

The design of the visual interface to computer systems has perhaps received more attention in 

human-computer interaction guidelines than any other aspect of the interface. While there have 

been quite a few relevant studies, many screen design issues remain to be addressed empirically, 

especially those related to visual interfaces with bit-mapped graphics. Tullis (1988) gives a set of 

guidelines that emerged from his study of numerous sources on design guidelines and empirical 

evidence. All studies suggest that human performance tends to deteriorate with increasing display 

density. The optimum amount of information to present is to include only information essential to 

decision making and to include all information essential to decision making. Knowing how much
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information users will need requires an understanding of both what the user will do with the 

information and how much the user understands about the information. Given a set of data items 

to display, there are many ways in which the elements can be visually grouped on the screen. Eye- 

tracking studies indicate that an obvious starting point should be provided in the upper-left comer 

of the screen because the initial visual scanning starts there and will permit a left-to-right, top-to- 

bottom reading as is common to the Western cultures.

The visual simulation screen in CLINSIM is divided into two logical groups that are also 

visually separated. One group represents ongoing statistics of a running simulation for a clinic and 

the other is a visual simulation representing that clinic. The screen is split horizontally into an 

approximately 1:4 ratio. The statistical group is located in the upper part of the screen and consists 

of a bar graph, a textual part, and a clock. The graph is located on the left-hand side and 

represents patient waiting times. It is updated whenever there is a change and, if necessary, 

rescales automatically. The textual group is a vertical listing of four queues in the system together 

with the constantly updated number of patients in each of the queues. An analogue clock is 

situated in the right hand comer together with a digital clock positioned under it. The time changes 

each time a state has changed. The other part of the screen is reserved for a visual representation 

of a clinic (see Figure 4.7).

The static objects on that part of the screen are icons representing the actual number of 

receptionists (one or two), testroom (zero, one, two, or three), and doctors (minimum one, 

maximum six) specified for the clinic. The icons representing these entities are displayed on the 

screen at the time that the entities enter the system. For example, a doctor who should start 

working at 9:00am but, due to the statistical variance, starts working at 9:20am will be placed on 

the screen at 9:20am. The dynamic objects on the screen are patients that are displayed at the time 

that they enter the system, and will disappear from the screen when they exit the system. The 

order of where a patient is displayed follows the ACD. A patient will remain in a queue for as long 

as it takes to reach the queue front. After that the patient will be displayed where an activity occurs 

(in front of a receptionist, or in a testroom, or in front of a doctor) for the statistically calculated 

length of the activity, after which the patient will be displayed in a queue of the next activity 

assigned to that patient.
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The spatial organisation of icons accommodates a clockwise direction starting at the top left- 

hand side of the visual simulation screen. The patients entering the system will be displayed first 

at the end of the receptionist 1 queue placed in the top of the left-hand side and will exit the system 

at the same place (see Figure 4.8). The number of patients on the screen does not always represent 

the actual number of patients in the system. If the length of a patients’ queue exceeds five then 

only the front five patients of the queue will be displayed. That is one of the reasons why lengths 

of all queues are given on the top part of the screen. The other reason is that is easier to check all 

numbers grouped together than count the patients in queues that are constantly changing.

Colour can be a powerful information tool. Used properly, it can enhance the effectiveness of 

graphics-terminal displays tremendously. However, improper use can also seriously impair 

information displays. The lens of the human eye is not colour corrected. This causes 

chromostereopsis, an effect that causes pure colours at the same distance to appear to be at 

different distances. For most people, reds appear closer and blues more distant. Colours are also 

subject to contextual effects, in which adjacent colours influence one another. For example, a 

colour on a dark background appears lighter and brighter than the same colour on a light 

background. The size of a coloured area also influences its perceptual properties. In general, small 

areas become desaturated and can show a shift in hue. Also, small areas of colour can mix; red 

and green in smaller and smaller areas are eventually integrated by the visual system into yellow. 

The colour perception changes over time. We adapt to colour with prolonged viewing which 

results in an apparent softening of colours (Murch, 1987).

Basically, effective colour usage depends upon matching the psychological, perceptual, and 

cognitive aspects of the human visual systems. There is a great deal of variation in colour 

sensitivities between individuals. About 9% of the population has the colour deficiencies 

characterised as “colour blindness” (Marcus, 1992). Each of us has our own perceptual 

idiosyncrasies that affect how we use colour on display.

There are generally agreed guidelines for colour usage (Murch, 1987; Shneiderman, 1992; 

Mayhew, 1992). These are the following: colour should be used conservatively, i.e., the number 

and amount of colours should be limited; the power of colour to speed or slow tasks should be 

recognised; colour coding should support the task; colour coding should appear with minimal user
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effort; colour coding should be placed under user control; design should be made for monochrome 

first; colour should be used to help in formatting; there should be consistency in colour coding; 

common expectations about colour codes should be obeyed; colour changes should indicate status 

changes; colour should be used in graphic displays for greater information density; symbol and 

background colour combinations should be chosen carefully; to express contrast or difference, 

high-contrast colours should be used; to express similarity, low-contrast colours should be used. 

Marcus (1992) in his ‘Ten Commandments” for colour use recommends use of a maximum of 

five plus or minus two colours where central and peripheral colours are appropriately applied.

The colours used for the CLINSIM visual simulation screen are mostly in pastel tones for 

static objects and background, and in the brighter colours for the dynamic objects, i.e. patients. A 

similar pattern is applied for the statistical part of the screen. It is visually distinguished from the 

visual simulation part of the screen by having a different background colour. It has a white 

background whereas the visual representation of the clinic has a light greyish-blue background. 

Graph legends are in dark purple text on the same background colour as is the background of the 

visual representation. The labels are presented in neutral colours and all changeable values in red. 

The graph bars have red angled stripes within red borders. Information on queue lengths has the 

same background as the graph legends, with text displayed in black whereas the changing values 

of each queue is displayed in red. Both clocks are in the same colour as the background of the 

graph legends. The analogue clock has black hands, the digital clock has time displayed in red.

The graphical representation of constructs for different applications should give definite 

information about the type of model component it represents, such as waiting queues, customers 

or servers in queuing systems. To provide a flexible application, problem oriented icons should be 

substituted by application oriented ones (Kamper, 1993). Icons communicate by virtue of their 

inherent physical characteristics that make them look like the objects to which they refer (Marcus, 

1993). It is less easy to recognise icons if the degree of abstraction increases. All entities in 

CLINSIM are represented by corresponding icons that resemble actors in a real clinic. A 

receptionist is represented by an icon of a person sitting at the desk in front of a computer. The 

colours are non obstructive - greyish brown desk, grey computer, the person wears a blue top and 

has a black seat. A testroom is represented by an icon of a box with a nurse in a white coat in it. A 

doctor is represented by an icon of a person in a white coat sitting behind a grey desk. A patient is
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represented by an icon of a standing androgynous person. The colours chosen for patients give 

explicit information of a patient type. All patients wear some sort of baggy blue trousers and a 

baggy top. A new patient has a yellow top, a reattender has a red top, and the patients who arrived 

by hospital transport (HT patients) have walking sticks. The design of the icons’ shapes and the 

choice of colours were often made in collaboration with the DOH project team.

4.3 .2  Simulation Results

When the visual simulation ends, the screen remains with all of its entities displayed in the state 

after the last activity has ended. Usually that state is reached when the last patient has left the 

clinic. There are several reasons for leaving that scene on the screen. Firstly, the user may not be 

vigilant all of the time whilst the simulation is running. If the display changes automatically to 

some other display it might escape him/her at what time the clinic activity actually ended. 

Secondly, in a poorly specified clinic it might happen that some of the patients remain in the clinic 

even though all activities had ended. This situation will occur, for example, if the clinic was 

specified to admit and have both new patients and reattenders in attendance, but none of the 

doctors was specified as seeing new patients. In that case all new patients will remain waiting in 

the consultation queue indefinitely, the queue size for doctors will indicate the number of patients 

still waiting, but the clock will stop at the time when the last reattender had left the clinic. This 

situation would not be so apparent if the visual simulation screen is replaced automatically with the 

simulation results menu after the run has finished. Therefore to invoke the main simulation results 

menu the user must press the ENTER key. However, there are some drawbacks to this design 

decision. The user is not presented with any prompt or message on what to do, but is expected to 

know how to invoke the menu.

Whether created by a single or by a multiple simulation run, the resulting statistical data is 

collected during the simulation run and stored in ASCII text files to be viewed in a desired order 

or repetitively as long as the user remains in that part of the system. To aid such flexible viewing 

the user is presented with an initial menu which offers the statistics for different CLINSIM entities 

as shown in Figure 4.9. Typing in a desired group identifier (1, 2, 3, or V) will display an 

appropriate next level menu. Selection of E will cause exit from the simulation part of CLINSIM 

and the return back to the Main CLINSIM application menu. The depth of the simulation results
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menu system is one, so there are only five menus that guide through the selection of simulation 

statistics for the clinic that has been simulated. In these five menus there are 20 possible 

selections. A selection of an item in the first level menu leads to the display of either textual screen 

with statistics (usually consisting of average value, variance, and standard deviation for activities) 

or of a graph followed by the statistics.

OUTPUT RESULTS

1 - Group A: patient related output

2 - Group B: doctor related output

3 - Group C: clinic related output 

E -E xit CLINSIM

V - Group D: validation output

Enter your choice =>

Figure 4.9: Simulation results: Main menu

The menu layout does not follow the same design standards as the data interface menus. 

Instead, a menu in this CLINSIM module appears to be more like a data entry form in the data 

interface module. The menus text is white on a blue background and is visually distinguished and 

separated into logical groups using boxes and lines. Menu structure is based on semantic 

categories, i.e. main actors in the system. Menu choice ordering again follows semantic ordering 

and grouping rather than alphabetic ones. The selection mechanism employed here is through 

typing a single selection code. The rationale is that textual screens in SIMSCRIPT II.5, which are 

used for menus implementation, do not support cursor keys. Proper menus could have been built 

using graphics, but it was decided that the effort was not necessary for so few menus.
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These menus lack some of the other features present in the data interface part like, for 

example, highlighting of a selected item in a menu or disabling a non feasible/existing option. The 

highlighting is not always necessary since immediately after selection the menu will disappear 

from the screen and will be replaced with a new screen (a menu, statistics, or a graph). But 

sometimes after viewing a desired choice it would be convenient to be reminded which item on a 

menu triggered the selection. In the case of non existing actors in the system, the menus will still 

have the options available and selectable for viewing graphs and the statistics belonging to it. For 

example if receptionist 2 was not specified in a clinic, the output result for it will still be available. 

After selection of ‘Patient queuing times for receptionist 2’, the corresponding empty graph will 

be displayed, followed by the numerical statistical screen filled with zeros. Navigation through the 

menu system is not an issue here since there is just one level in a menu tree structure and every 

menu on the first-level has a choice provided for returning back to the top level menu.

Representational graphics are commonly used to depict the end of a simulation run in the form 

of graphs, bar diagrams, pie charts, histograms, and time series. In order for graphical 

representations to work, we must relate data to graphics (Morse and Reynolds, 1993). As the 

number of data and graphical elements increases, the possible relationships increase as the product 

of the number of elements. The primary function of graphical representation is to make clearer 

these relationships. The CLINSIM choice of representational charts are in the form of histograms, 

stack bars, and time series.

Histograms are used to represent waiting times (see Figure 4.10) whereas time series are used 

to represent queues sizes (see Figure 4.11). Again all design consideration mentioned earlier about 

use of screen space, colour schemes, legends, and messages are applied to the graphs as well. All 

charts have the same pastel background as does the visual simulation display. The choice of 

colours and patterns used for the bars in histograms was guided more by the consideration of how 

these histograms would look like when printed on a black and white printer than by its screen 

appearance. The requirement that all charts are equally presentable displayed and printed, means 

that some sacrifices are made for both representations to work. Chart presentations do not use the 

full potential of colour to present data and consistency very often. All charts have legends that 

indicate which patterns are used for each entity bar in a chart. Chart titles that indicate what is 

presented were chosen by the DOH analysts. Often the titles are not informative enough, not for
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the lack of trying, but because of the constraint on title length imposed by the software. Texts and 

the increment sizes on axes in histograms are decided based on a model default case and possible 

margins. Time series are rescaled and redrawn automatically during their presentation.

Textual screens representing statistics of particular entity/entities in the system are invoked 

either directly from a menu or after a chart is displayed. To display a textual screen the user has to 

press the ENTER key. Yet again there is no message telling the user what to do. All textual 

screens have the same design as do the menus. Text is in a white on blue background enclosed in 

a white box. The layout of the text is in the form of a table with labels in each row and column. 

There is no help or explanation facility provided. To return to the calling menu the user has to 

press the ENTER key.

4.4 Communication

The decision on which CLINSIM module (Data Interface or Simulation) to run is handled in the 

main application menu (see Figure 3.2). As explained in section 3.4.2 this menu that integrates all 

CLINSIM modules is built using Automenu. Inevitably therefore the menu appearance, navigation 

through it, and selection of menu items differs from other parts of the system. When the 

application starts the main menu is displayed occupying the whole screen. The colours used are 

different from those in the Data Interface part and in the Simulation part The menu background is 

in a greyish-blue colour framed in a yellow box. Under the box there is a message ‘Press H for 

Help’. The help provided is not help for CLINSIM but help for Automenu. It can be useful 

though, since it gives information on how to navigate through the menu and how to select a menu 

item. Yellow lines split the menu horizontally into three parts. The top part is just the application 

name, i.e. “CLINSIM”, displayed in black on a turquoise background. The bottom part gives 

information on date, time, and the memory size available for the application. This text is discretely 

displayed in white on the menu background. The middle part occupies the majority of the screen 

space and lists the menu options. The menu items are numbered 1 to 5. All menu items, except the 

selected one, are displayed in white. The selected item is highlighted by changing text colour into 

yellow and with a yellow arrow pointing to it. The first item in the menu is highlighted as the 

default option. At the bottom of this part of the screen a message is displayed with an explanation 

of what the selected item will perform. For example if item 3 (‘Simulation’) is selected the
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message “Run simulation with the data from Data Interface” will be displayed in yellow on a 

turquoise background. To move through the menu items the arrow keys are used. The selection of 

an item is achieved either selecting an item using the arrow keys and then pressing the ENTER 

key or by typing in a desired item’s number (1..5).

The menu items ordering is functional, i.e. the first item is ‘Introduction’, followed by ‘Data 

Interface’, followed by ‘Simulation’, followed by ‘Define printer’, follow by ‘Quit’. It is felt that 

an introduction to the system should be listed first for an inexperienced user to see an example of a 

visual simulation run. This is not very useful for a user who uses the system more often. There is 

only one time that one would like to run this part of the system, and yet this is a default choice 

when the system starts. The next option in which the user specifies a clinic is a more natural 

choice for a default choice. The ‘Data interface’ part has as the first screen, information on what 

CLINSIM is, which software was used to develop it, and who are the responsible parties. That 

information would be much more appropriate in the ‘Introduction’ part. After a system module 

has finished, the Main CLINSIM menu appears on the screen. The user is expected to know that 

after a clinic specification, selection of ‘Simulation’ in the menu would start the simulation of the 

specified clinic.

4.5 User Support and Assistance

CLINSIM was built to be used by system analysts in hospitals. Therefore, the support provided 

was based on that assumption. The package is distributed on four double-density disks allowing 

for any type of disk drive. There are three installation disks and a system disk. In order to fit 

4.5Mb on these three disks all CLINSIM files are compressed. There is no integrated installation 

program where the user would only have to type one command for installation and from there 

onwards be guided by the program. Instead, each installation disk has an installation program (i.e. 

a:installl, a:install2, and a:install3). These three installation programs create necessary directories 

and copy relevant files in them through the process of decompression. The system disk is used for 

two purposes. Firstly, to ran CLINSIM the user has to boot the computer using the CLINSIM 

system disk. The reason for this is to make sure that CONFIG.SYS and AUTOEXEC.BAT have 

all the necessary commands so that the user does not have to alter anything in the configuration on 

the computer. Secondly, the system disk has a program to deinstall CLINSIM, so that the user
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does not have to explore which directories and subdirectories are part of the package for 

him/herself to do this..

There is only one document that supports the user, the CLINSIM User Guide (1992). The 

document explains what CLINSIM is used for, gives a system overview, gives instructions on 

how to install and deinstall the system, and provides detailed instructions on how to use the 

system. It gives a complete list of all data for specifying a clinic, a description of the main 

algorithms (e.g., appointment scheduling, patient allocation), a list and explanation of error 

messages, data for an example clinic, and a glossary of terms used in the system. CLINSIM does 

not provide on-line help information. The only exception is in the case when invalid data is 

entered in a fill-in form. Then the system provides informative feedback as to what the acceptable 

value would be.

4.6 Usability Evaluation

Let us now examine to what extent the system as a whole has managed to support usability. The 

user manual provides most of the information needed to use the system. However, Hall (1993) 

identifies several problems with the manual. Firstly, inclusion of a case study could provide users 

with a better understanding of what is required by the system. Secondly, provision of an index. 

Hall (1993) advocates that there is a need to give an explanation of statistical concepts used. The 

reason for this requirement is the fact that CLINSIM is currently being used by different user 

population than it was built for. Below examine whether the general interface usability principles 

identified in chapter 2 (section 2.3.1) were followed and where there are major usability defects in 

the system. The information does not always appear in a natural and logical order. This is most 

apparent in the ‘Data Interface’ part of the system where the dialogue follows a highly structured 

menu system and the user can be easily lost as to where in the system he/she is and whether all 

necessary data is specified. Therefore, CLINSIM has a serious usability defect in navigation. The 

dialogue is expressed in words, phrases, and concepts familiar to the user. Since the system was 

built in co-operation with DOH OR analysts as users, and there were no end users to verify design 

decisions, it is hard to substantiate this claim. There is some evidence that has emerged from the 

Hall report (1993) that the statistical concepts and the terminology used require some explanation.
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However, this problem is because the end users differ from the user population for which the 

system is built (analysts).

Minimising the user’s memory load is not achieved to a satisfactory level in the Data Interface 

part of the system. The user is required to remember a substantial amount of information that is 

already provided to the system to successfully specify all the data necessary for a clinic 

simulation. An example is provided earlier in the chapter of a situation where some of the patients 

remain in the clinic after the clinic activity has ended. That situation would not occur if the user 

was provided with information on already supplied parameters (both new patients and reattenders 

will be seen in the clinic) which will influence the data to be entered (type of patients to be seen by 

each doctor). Instructions for use of the system are rarely and not consistently provided. There is 

an inadequate feedback provision. The system does not always keep users informed about what is 

going on. For example if a user does not provide all the data required for a simulation run, it may 

happen that during the preparation of data for a simulation run (a Pascal program creating a text 

file from data) the system can issue an error message with a code indicating that an attempt was 

made to divide by zero. That message can be interpreted only by a programmer who would not 

know which data caused the error. If an error occurs in the system there is usually no clear 

indication on how to resolve it. Some of the errors in CLINSIM are prevented from happening, 

but since there is no facility that checks the validity of entered data, there are errors that cannot be 

prevented from happening.

There is a consistent use of the terminology throughout the system. The consistency of 

situations and actions is applied within each system module but not across the system as a whole. 

A good example is the difference of selection mechanism in the menus in the Data Interface and in 

the Simulation. There is not much flexibility in navigating through the system. CLINSIM does not 

provide any shortcuts for an experienced user.

4.7 Conclusions

In this chapter an analysis of the user interface to modules in the CLINSIM system was 

performed. The chapter examines the interaction styles used, design standards applied for each of 

the styles, and the consistency of the approach. What becomes apparent is that even though each
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of the system modules has consistent design standards applied across each of the interaction styles 

used for the module, overall application consistency was not achieved. The reason for this is 

because of the discrepancies between the different software used to implement two of the system 

modules and their integration.

It is clear that CLINSIM has many usability deficiencies. It is not easy to use, it is out-dated 

(especially against Windows interfaces), and it is not helpful to the user. Set against this is the fact 

that the development had to be achieved using the paucity of tools available, a lack of guidelines 

and expertise on how to do it, and the uncertainty endemic in such a development as to what was 

actually required. In the next chapter, we look more closely at handling deficiencies in current 

interfaces before proposing a way ahead in Chapter 6.

J. Kuljis User Interfaces and Discrete Event Simulation Models Page 160



Chapter 5: HCI Relevance to Simulation Systems

5.1 Introduction

In the previous chapters we have reviewed interactions employed in current discrete event 

simulation systems. We have identified major features of user interfaces and the flexibility of 

interaction that they provide to their users. Furthermore, in a case study we have examined what 

are the possibilities and obstacles for bespoke development of user interfaces for models in new 

domains. We have made an analysis of user interfaces based on some of the recommendations 

from the HCI literature. However, we have not yet examined whether HCI research can help to 

develop better simulation systems, and if so how. Reviewing the HCI literature shows that the 

research spans in many directions and across many disciplines. The most common areas of 

concern are:

1) Human aspects: Most research until now focused on the cognitive aspects of HCI. The 

reason is that the dominant framework in HCI has been based on the needs of a single 

user interacting with a single interface. Recent developments in system and software 

design, however, have begun to provide much more scope for supporting group 

working and multitasking. HCI research has since widened to cover these concerns by 

looking at social and organisational aspects.

2) Technology aspects: Cover input and output computer devices, interaction styles, and 

user support and assistance.

3) User interface design: Deals with both software and hardware issues. Many authors 

consider issues in designing interface objects (i.e. menus), screen layout, and design of 

graphics. Some authors adapt software engineering approaches to interactive system 

development. They put more emphasis on the elaboration of a life cycle that seriously 

considers user interface design within the overall system design framework.

4) Support for designers: Covers stand alone software tools (i.e. graphics tools, modelling 

and diagramming tools, visualisation tools, user interface toolkits) which provide
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general support and integrated environments (i.e. user interface management tools, 

computer-aided software engineering tools).

5) Evaluation: Covers common methods and tools for evaluation and the role of evaluation 

in the system life cycle.

The above issues are interlinked and the HCI researchers often discuss them under headings 

different from these. The human aspects and technology aspects provide the basic knowledge that 

is needed for interaction design (i.e. design methods, design support, and evaluation).

Researchers in HCI disagree how the field should develop. Proponents of theory-driven 

approaches (Card et al., 1983; Poison and Lewis, 1990) aim to model users, tasks, the 

knowledge required for users to complete their tasks, their task performance, or the understanding 

the users might have of their tasks and of the system with which they interact. Theoretical models, 

it is hoped, will eventually have powerful predictive and analytic capabilities which ideally should 

enable designers to compare different systems or possible solutions before a particular design path 

is taken. This may well be so ambitious as to prove an unattainable ideal. The very best current 

theoretical models provide only a first, rough approximation of what will be needed to accomplish 

the level of understanding required to fulfil theoreticians’ ambitions. Other researchers argue that 

HCI is far too complex for any theory to be helpful, that scientific theory is largely irrelevant to 

progress (Carroll et al., 1991), or that progress comes from case studies based on observations of 

what users actually do (Holtzblatt and Jones, 1992). The researchers also disagree with respect to 

what should be studied, how it should be studied, and how HCI might contribute to producing 

better computer systems. Regardless of all disagreements, Lindgaard (1994) argues that HCI can 

contribute to improved computer systems in two important ways: first it can guide a systematic, 

careful analysis of what information, tools and capabilities people need to achieve their goals, and 

second, it can provide tools and techniques with which to evaluate usability in an effort to remove 

flaws that hinder smooth interaction between people and computers.

In this chapter we give an overview of the major concerns in HCI research. We have already 

discussed technological aspects of HCI in section 2.2. In this research we are mainly interested in 

designing better user interfaces for simulation systems. The actual methods in achieving this 

concentrate on design and the development life cycle and the methods that can be adopted in
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interactive system design together with support for designers. Software engineering methods are 

too broad an area to be discussed here. We examine the characteristics of the major participants in 

human-computer interaction and the characteristics of the interaction itself. The major participant is 

the human, the user, the one whom computer systems are designed to assist. We will restrict our 

study to those aspects of human capabilities and behaviour which are relevant to HCI. We then 

discuss the user interface design issues for ensuring the system’s usability. After that we give an 

overview of the most influential theories in HCI and their contribution to the design of more 

usable computer systems. A section on user interface evaluation follows. Evaluation is crucial in 

identifying flaws in interaction design and in determining the usability of a computer system. We 

conclude this chapter with a discussion on the relevance of HCI research to the design of more 

usable simulation systems. In the chapter that follows we try to see how the accumulated 

knowledge and theories in HCI, together with the experience we have gained through the case 

study, and the analyses of the user interface characteristics of some simulation software, can help 

in our particular problem - the design of user interfaces to discrete event simulation systems.

5.2 Human Issues

Reisner (1987) justly points out that the area of study in the field of human-computer interaction is 

not the interaction of humans and computers; the name is misleading. The principle object of study 

is human. But the object of practical interest is the computer. We already know what the computer 

will do. It will do whatever it has been programmed to do. The behaviour of the human is our 

chief concern. A major emphasis in this field is, according to Reisner (1987), the focus on 

cognition as an important factor in the ease of use of the human-computer interface. To do so will 

require knowledge not only of human weaknesses but also of human abilities, and of human 

behaviour, in using computers.

5.2 .1 . The Human

We will simplify the study of the human to the aspects relevant to the study of human-computer 

interaction by considering the user of the computer system as an information processing system 

himself/herself. The notion of information processing has played a fundamental role in HCI by 

providing a theoretical basis for cognitive models of users (it is described in more detail in the
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section on the Cognitive approach in 5.4.2). In general, cognition refers to the processes by 

which we become acquainted with things or, in other words, how we gain knowledge. These 

include understanding, remembering, reasoning, attending, being aware, acquiring skills, and 

creating new ideas. The main objective in HCI has been to understand and represent how humans 

interact with computers in terms of how knowledge is transmitted between the two (Preece et al., 

1994). The theoretical grounding for this approach stems from cognitive psychology: it is to 

explain how human beings achieve the goals they set. Such goal-oriented activity is comprised of 

performing cognitive tasks that involve processing information. Information comes in, is stored 

and processed, and information is passed-out. We will therefore discuss three components of this 

system: input-output, memory, and processing.

Input-output

A person’s interaction with the outside world occurs through information being received and sent: 

input and output. In an interaction with a computer the user receives information that is output by 

the computer, and responds by providing input to the computer - the user’s output becomes the 

computer’s input and vice versa. Input in the human occurs mainly through senses and output is 

through the motor control of the effectors. There are five major senses: sight, hearing, touch, 

taste, and smell. Of these, the first three are the most important to HCI (Dix et al., 1993). 

Similarly there are a number of effectors, including the limbs, fingers, eyes, head, and vocal 

system. In the interaction with the computer, the fingers play the primary role, through typing or 

mouse control, with lesser use of speech, and eye and head positions. In the interaction with the 

computer systems we receive information primarily by sight, from what appears on the screen. 

However, we may also receive information by ear. Touch plays a part in that we feel a key 

depressing or the orientation of the mouse, which provides vital feedback about what we have 

done. Most of the research on perception and interface design has been in terms of what we can 

see at the interface. With the emergence of multimedia and virtual reality the notion of the interface 

as a screen is beginning to change. Other perceptual modalities of sound and touch are being 

incorporated into the newly emerging technologies.

Perception is fundamental to interacting with computers. To be able to use a computer, we 

need to perceive the information that is presented at and through the interface. Human vision is a
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highly complex activity with a range of physical and perceptual limitations, yet it is a primary 

source of information for the average person. Visual perception can roughly be divided into two 

stages: the physical reception of the stimulus from the outside world, and the processing and 

interpretation of that stimulus. The physical properties of the eye and the visual system mean that 

there are certain things that cannot be seen by the human, yet the interpretative capabilities of 

visual processing allow images to be constructed from incomplete information. We need to 

understand both physical and processing capabilities and limitations which both influence and 

affect the way that we design computer systems. There are several theories that have attempted to 

explain the way we see. Preece et al. (1994) categorise them into two classes: constructivist and 

ecological approaches. Both ecological and constructivist approaches argue that we are active 

perceivers. The constructivists suggest that we actively perceive in the sense of embellishing and 

elaborating retinal images. The ecologists propose that we actively explore the objects in our 

environments (by seeing, smelling, listening to, tasting, and touching).

Constructivist theorists believe that the process of seeing is an active one in which our view of 

the world is constructed both from information in the environment and from previously stored 

knowledge. The main assumption behind the constructivist approach is that perception involves 

the intervention of representations and memories. What we see is not a replica or copy of the 

world such as the image that a camera would produce. Instead the visual system constructs a 

model of the world by transforming, enhancing, distorting, and discarding information. Similarly, 

our ability to perceive objects on a screen (e.g., text, graphics, two-dimensional or three- 

dimensional representations) is a result of our prior knowledge and expectations as to what should 

appear and the images that fall on our retinas. When presented with ambiguous stimuli, our prior 

knowledge of the world helps us to make sense of it. The same is true of ambiguous information 

displayed on computer screens. Another aspect of the constructive process involves decomposing 

or partitioning images into separate entities that are readily recognisable. The object (the figure) is 

distinguished from the rest of the information (the background). Psychologists, who believed that 

our ability to interpret the meaning of scenes and objects was based on us having innate laws of 

organisation, were first to identify a number of general principles that underlie this process. The 

organising principles which enable us to perceive the patterns of stimuli as meaningful wholes are 

defined as: proximity (similar close objects appear as groups rather than a random cluster of
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elements); similarity (there is a tendency for elements of the same shape or colour to be seen as 

belonging together); closure (missing parts of a figure are filled in to complete it); continuity; and 

symmetry (regions bounded by symmetrical borders tend to be perceived as coherent figures).

Ecological theorists believe that perception involves the process of ‘picking up* information 

from the environment and does not require any processes of construction and elaboration. Rather 

than trying to understand how we can make sense of a scene or how we recognise an object, the 

ecological approach is concerned with how we deal with continuous events over time. It asks 

what we need to know about our environment to carry out our activities (for example, finding a 

file in a cluttered screen of windows) and how it might be known. Users will actively engage in 

activities that provide the necessary information. What we see as the behaviour of a system, 

object, or event is that which is afforded or permitted by the system, object, or event When the 

affordances of an object are perceptually obvious, it is easy for us to know how to interact with it. 

Conversely, when the affordances are less obvious or ambiguous, it is easy for us to make 

mistakes when trying to interact with the object. The ecological approach has been highly 

influential in developing theoretical accounts of interface design.

The sense of hearing is viewed as secondary to that of sight. The auditory system has a 

tremendous capacity for conveying information about our environment. The human ear can hear 

frequencies from about 20 Hz to 15 kHz. It can distinguish frequency changes of less than 1.5 Hz 

at low frequencies but is less accurate at high frequencies. The auditory system performs some 

filtering of the sounds received, allowing us to ignore background noise and concentrate on 

important information. The ear can differentiate quite subtle sound changes and can recognise 

familiar sounds without concentrating attention on the sound source. However, sound is rarely 

used to its potential in interface design, usually being confined to alerting and feedback purposes. 

Until recently few computers could generate deliberately designed sounds other than beeps. 

Different kinds of sound, each of which can be either synthesised or sampled, include speech, 

musical sound, and natural sound. Some researchers have suggested that sound can be used in 

more information-rich ways to show what is happening in a system. In particular, it can be used 

as a coding method for augmenting graphical representations. Sound is of particular value when 

the eyes are engaged in some other task, or where a complete situation of interest cannot be 

visually scanned at one time.
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The third sense which is important in interface design is touch or haptic perception. Touch is 

an important means of feedback, and this is no less so in using computer systems. An important 

part of the task of pressing the button is the feeling of the button being depressed. Also, we 

should be aware that, although for the average person haptic perception is a secondary source of 

information, for those whose other senses are impaired it may be vitally important (for such users, 

interfaces such as Braille may be the primary source of information in the interaction). Speed and 

accuracy of movement are important considerations in the design of interactive systems, primarily 

in terms of the time taken to move to a particular target on a screen. The target may be a button, a 

menu item, or an icon, for example. The time taken to hit a target is a function of the size of the 

target and the distance that has to be moved. Since users will find it difficult to manipulate small 

objects, targets should generally be as large as possible and the distance to be moved as small as 

possible (Dix et al., 1993). This has led to suggestions that pie chart shaped menus are preferable 

to lists since all options are equidistant. However, if lists are used, the most frequently used 

options can be placed closest to the user’s start point (for example, at the top of the menu).

Memory

It is generally agreed that there are three types of human memory or memory functions: sensory 

buffers, short-term memory or working memory, and long-term memory. There is some 

disagreement as whether there are three separate systems or different functions of the same 

system, but for our purposes it is sufficient to note the three separate types of memory. These 

memories interact with information being processed and passed between memory stores. The 

sensory memories act as buffers for stimuli received through the senses. A sensory memory exists 

for each sensory channel: iconic memory for visual stimuli, echoic memory for aural stimuli, and 

haptic memory for touch. These memories are constantly overwritten by new information coming 

in on these channels. Information remains in iconic memory very briefly, of the order of 0.5 

seconds. Sound information is received at different times, so we must store the stimulus in the 

mean time. Echoic memory allows brief ‘play-back’ of information.

Short-term memory or working memory acts as a ‘scratch-pad’ for the temporary recall of 

information. It is the working area in which information is held temporarily for another processing 

activity such as handling inputs, selecting, retrieving, storing, planning, and preparing outputs.
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Two main characteristics of working memory are that its capacity to hold information is limited in 

amount and time. At most, the number of items or ‘chunks’ we can remember at any one time, be 

they digits, names, letters, or any type of complex concept for which we have a label of any kind 

is about seven. This phenomenon, now classically known as ‘the magic number 7 ± 2’, was 

identified by Miller (1956).

Information is passed from sensory memory into short-term memory by attention, thereby 

filtering the stimuli to only those which are of interest at a given time. Attention is the 

concentration of the mind on one out of a number of competing stimuli or thoughts. It is clear that 

we are able to focus our attention selectively, choosing to attend to one thing rather than another. 

This is due to the limited capacity of our sensory and mental processes. Information received by 

sensory memories is quickly passed into a more permanent memory store, or overwritten and lost. 

The manner in which we deploy our attention has a tremendous bearing on how effectively we can 

interact with a system.

The understanding of attentional phenomena is significant for interface design in a number of 

issues such as: how to get people’s attention again on the task they were performing if they are 

distracted; how to focus people’s attention on what they need to be looking at or listening to for 

any given stage of a task; and how to guide their attention to the relevant information on a display. 

One way in which interfaces can be designed to help users find the information is to structure the 

interface so that it is easy to navigate through. This requires presenting not too much and not too 

little information on a screen in an organised and meaningfully structured way (e.g., grouping, 

ordering). Other techniques for presenting information at the interface to guide attention include 

use of: spatial and temporal cues; colour; and alerting techniques such as flashing, reverse video, 

and auditory warnings. Ideally, systems should be designed to provide information systematically 

about the status of an activity in terms of what has been done and what currently needs to be 

carried out. If users are distracted from the activity at hand, the system should then be able to 

inform them of where they were in that activity when they return to it. In addition, routine 

background tasks that are prone to being forgotten, especially when users are distracted, such as 

saving files, should be brought to the user’s attention by displaying reminder prompts at the 

interface.

J. Kuljis User Interfaces and Discrete Event Simulation Models Page 168



Chapter 5: HCI Relevance to Simulation Systems

Long-term memory stores factual information, experimental knowledge, procedural rules of 

behaviour, and everything we ‘know’. It differs from short-term memory in a number of 

significant ways. It has a huge, if not unlimited, capacity. It has a relatively slow access time of 

approximately a tenth of a second. Forgetting occurs more slowly in long-term memory, if at all. 

Long-term memory is intended for the long-term storage of information. Information is placed 

there from working memory after a few seconds. There are two types of long-term memory: 

episodic and semantic memory. Episodic memory represents our memory of events and 

experiences in a serial form. It is from this memory that we can reconstruct the actual events that 

took place at a given point in our lives. Semantic memory, on the other hand, is a structured 

record of facts, concepts, and skills that we have acquired. The information in semantic memory 

is derived from that in our episodic memory, such that we can learn new facts or concepts from 

our experiences. Semantic memory is structured in some way to allow access of information, 

representation of relationships between pieces of information, and inference.

There are three main activities related to long-term memory: storage or remembering of 

information, forgetting, and information retrieval. Information from short-term memory is stored 

in long-term memory by rehearsal. However, repetition is not enough to learn information well. If 

information is not meaningful it is more difficult to remember. If information is meaningful and 

familiar, it can be related to existing structures and more easily incorporated into memory. There 

are two main theories of forgetting: decay and interference (Dix et al., 1993). The first theory 

suggests that the information held in long-term memory may eventually be forgotten. The second 

theory is that information is lost from memory through interference - if we acquire new 

information it causes the loss of old information. It is debatable whether we ever actually forget 

anything or whether it becomes increasingly difficult to access certain items from memory. There 

are two types of information retrieval: recall, and recognition. In recall the information is 

reproduced from the memory. Recall can be assisted by the provision of retrieval cues which 

enable the subject to quickly access the information in memory. In recognition, the presentation of 

the information provides the knowledge that the information has been seen before.

Unlike working memory there is little decay: long-term recall after minutes is the same as that 

after hours or days. Human memory, however, is by no means infallible. It seems we find some 

things relatively easy to remember, while others are very difficult to remember. When we interact
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with a computer system we find some operations are straightforward and take minimal effort to 

memorise, while others take forever to learn and often are forgotten soon after they have been 

used. The extent to which new material can be remembered depends on its meaningfulness. 

Within psychological research a number of factors have been found to contribute towards the 

meaningfulness of a stimulus such as the familiarity of an item and its associated imagery (the 

ability with which the stimulus can elicit images in one’s mind).

The fact that certain items are more meaningful than others and thus more memorable has 

obvious implications for interface design. Interface design should comply with this notion, with 

the goal of making the interface as meaningful as possible. There are some problems, however. 

For example, how do we determine what is a meaningful name or icon, or how to use familiar and 

meaningful items in a less familiar computing domain. There are many recommendations and 

guidelines on how we can select meaningful command names or icons. A general guideline for the 

selection of command names is to consider the contextual, cultural, and user characteristics. The 

meaningfulness of icons is determined by the context in which the icon is being used, the task for 

which it is being used, the surface form of representation, and the nature of the underlying 

concept that is being represented (Preece et al., 1994).

One of the most well-established findings in memory research is that we can recognise 

material far more easily than we can recall it from memory. This phenomenon has been employed 

in designing user interfaces during the last decade. There has been a shift towards designing 

interfaces where the amount of information users are required to recall has been reduced in favour 

of requiring them to recognise the information that is needed to perform a task. The use of 

graphical interfaces has resulted in a substantial reduction in the amount of mental effort that is 

required to interact with systems (Preece et al., 1994). In many situations the intuitive direct feel 

of the interface means that users do not have to think about what they are doing or remember 

sequences of commands. Instead users need primarily to learn how to interact with the simulated 

world of objects. Much of the information of the system’s structure and functionality is available 

at the interface, meaning that the users do not have to remember much. Instead they can let the 

interface do the remembering for them.
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Processing

Humans are able to use information to reason and solve problems, and indeed do these activities 

when the information is partial or unavailable. We are able to think about things of which we have 

no experience, and solve problems which we have never seen before. We can distinguish two 

categories of thinking: reasoning and problem-solving. In practice these are not distinct since the 

activity of solving a problem may well involve reasoning and vice versa. Reasoning is the process 

by which we use knowledge we have to draw conclusions or infer something new about the 

domain of interest There are a number of different types of reasoning that we use in everyday life: 

deductive, inductive, and abductive. Deductive reasoning derives the logically necessary 

conclusion from the given premises. Induction is generalising from cases we have seen, to infer 

information about cases we have not seen. In spite of its unreliability, induction is a useful 

process, which we use constantly in learning about our environment. Abduction reasons from a 

fact to the action or state that might have caused it. This is the method we use to derive 

explanations for the events we observe. In spite of its unreliability, it is clear that people do infer 

explanations in this way, and hold onto them until they have evidence to support an alternative 

theory or explanation. This can lead to problems in using interactive systems (Dix et al., 1993). If 

an event always follows an action, the user will infer that the event is caused by the action unless 

evidence to the contrary is made available. If, in fact, the event and the action are unrelated, 

confusion and even error often results.

If reasoning is the means of inferring new information from what is already known, problem­

solving is the process of finding a solution to an unfamiliar task, using the knowledge we have. 

Human problem-solving is characterised by the ability to adapt the information we have to deal 

with new situations. There are two main theories of how people solve problems. The earliest one 

is the Gestalt view that problem solving is both productive and reproductive. Reproductive 

problem-solving draws on previous experience whereas productive problem-solving involves 

insight and restructuring of the problem. A second major theory, proposed by Newell and Simon 

(1972), was problem space theory, which takes the view that the mind is a limited information 

processor. The problem space comprises problem states, and problem-solving involves generating 

these states using legal state transition operators. The problem has an initial state and a goal state 

and people use the operators to move from the former to the latter. However, such problem spaces
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may be huge, and so heuristics are employed to select appropriate operators to reach the goal. One 

such heuristic is means-ends analysis where the initial state is compared to the goal state and an 

operator chosen to reduce the difference between the two. An important feature of Newell and 

Simon’s model is that it operates within the constraints of the human processing system, and so 

searching the problem space is limited by the capacity of short-term memory, and the speed at 

which information can be retrieved (Dix et al., 1993). A third theory is the consideration of 

analogy in problem-solving. Novel problems are solved by mapping knowledge relating to a 

similar known domain to the new problem - called analogical mapping. Similarities between the 

known domain and the new one are noted and operators from the known domain are transferred to 

the new one. However, it seems that people often miss analogous information, unless it is 

semantically close to the problem domain.

Not all problem solving deals with unfamiliar problems. Much of the time the problems that 

we face are not completely new, instead we gradually acquire skill in a particular domain area. 

One model of skill acquisition is Anderson’s (1983) ACT (Architecture Cognition Theory) model 

which identifies three levels of skill:

1. The learner uses general-purpose rules which interpret facts about a problem.

2. The learner develops rules specific to the task.

3. The rules are tuned to speed up performance.

The first stage uses knowledge extensively. The second stage relies upon known procedures. 

The third stage represents skilled behaviour, that may in fact become automatic and as such be 

difficult to explain. Such skilled behaviour is efficient but may cause errors when the context of 

the activity changes. If a pattern of behaviour has become automatic and we change some aspect 

of it, the more familiar pattern may break through and cause an error.

The psychological principles and properties that we have discussed in this section apply to the 

majority of people. However, we should be aware that, although we share processes in common, 

humans, and therefore users, are not the same and that we have to account for these individual 

differences as far as possible within our interface design. These differences may be long term, 

such as sex, physical capabilities, and intellectual capabilities, or short term such as effect of
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stress or fatigue on the user. Interface design should be designed for the target group who will be 

adversely affected by our decision.

5.2.2  The Interaction

Human-computer interaction tasks have often been described as problem-solving tasks. Possibly 

the most influential model of interaction is Norman’s execution-evaluation cycle. The user 

formulates a plan of action which is then executed at the computer interface. When the plan, or 

part of the plan, has been executed, the user observes the computer interface to evaluate the result 

of the executed plan, and to determine further actions. Norman (1986) identifies the following 

seven stages through which the user would pass in order to solve the problem (say, some word 

processing of a memo) posed by a human-computer interaction task (the stages are not necessarily 

performed sequentially):

• Establishing the goal (to reorder the paragraphs in the memo to make it more readable).

• Forming the intention (the user may intend to move paragraph 1 behind paragraph 3).

• Specifying the action sequence (e.g., highlight paragraph 1, use a menu to ‘cut’ the 

paragraph, move the cursor behind paragraph 3, and use the menu to ‘paste’ paragraph 

1).

• Executing the action sequence (execute the above steps).

• Perceiving the system state (user perceives the changes shown on the screen).

• Interpreting the state (the user determines the consequences of changes).

• Evaluating the system state with respect to the goals and intentions (the user evaluates 

whether the recorded memo makes it more readable).

In contrast, Suchman (1987) holds the view that however planned, purposeful actions are 

inevitably “situated actions” (actions taken in the context of particular, concrete circumstances). 

She argues that our actions, while systematic, are never planned in the strong sense and that plans 

are best viewed as a weak resource for what is primarily ad hoc activity. It is only when we are 

pressed to account for the rationality of our actions, given the biases of European culture, that we 

invoke the guidance of a plan. Stated in advance, plans are necessarily vague, insofar as they must
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accommodate the unforeseeable contingencies of particular situations. Reconstructed in retrospect, 

plans systematically filter out precisely the particularity of detail that characterised situated actions, 

in favour of those aspects of the actions that can be seen to accord with the plan. However, 

Norman makes a contribution by placing his stages in the context of ‘cycles of action’ and 

‘evaluation’. The seven-stages model leads naturally to identification of the mismatch between the 

user’s intention and allowable actions, and the mismatch between the system’s representation and 

the user’s expectations (Shneiderman, 1992).

The seven-stages model leads Norman (1986) to suggest four principles of good design. 

First, the state and the action alternatives should be visible. Second, there should be a good 

conceptual model with a consistent system image. Third, the interface should include good 

mappings that reveal the relationships between stages. Fourth, the user should receive continuous 

feedback. Norman places heavy emphases on studying errors. He describes how errors often 

occur in moving from goals to intentions to actions and to execution. Norman’s model is a useful 

means of understanding the interaction, in a way which is clear and intuitive. It considers the 

system as far as the interface and concentrates wholly on the user’s view of the interaction, 

ignoring how to deal with the system’s communication through the interface.

This problem is addressed by Abowd and Beale (1991) in their interaction framework. The 

interaction framework describes the interaction in terms of its four main components: the system, 

the user, the input, and the output. Each component has its own language. As the interface sits 

between the user and the system, there are four steps in the interactive cycle, each corresponding 

to a translation from one component to another. The user begins the interactive cycle with the 

formulation of a goal and task to achieve that goal. The only way the user can manipulate the 

machine is through the input, and so the task must be articulated within the input language. The 

input language is translated into the system’s core language as operations to be performed by the 

system. The system then transforms itself as described by the operation translated from the input; 

the execution phase of the cycle is complete and the evaluation phase now begins. The system is 

in a new state, which must now be communicated to the user. The current values of system 

attributes are rendered as concepts or features of the output. It is then up to the user to observe the 

output and assess the results of the interaction relative to the original goal, ending the evaluation 

phase and, hence, the interactive cycle. There are four main translations involved in the
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interaction: articulation, performance, presentation, and observation. The interaction framework is 

presented as a means to judge the overall usability of an entire interactive system. In reality, all of 

the analysis that is suggested by the framework is dependent on the current task (or set of tasks) in 

which the user is engaged.

S 3  Some Design Issues

The prevailing concern of HCI researchers is to ensure the usability of interactive computer 

systems. All design issues basically deal with system usability. Like software engineers, many 

HCI authors think that we shall get it ‘right’ if we follow some prescribed set of procedures or 

rules. Consequently a large volume of HCI literature is dedicated to design guidelines. Therefore, 

in this section we first examine which processes for ensuring usability are proposed by HCI. 

After that follows some discussion on design guidelines.

5.3.1 The Process of Ensuring Usability

The primary objective of an interactive system is to allow the user to achieve particular goals in 

some application domain. This means that the interactive system must be usable. In this section 

we therefore concentrate on how design practice addresses this critical feature of an interactive 

system from the human perspective. According to Dix et al. (1993) the designer of an interactive 

system is posed with two open questions:

• How can an interactive system be developed to ensure its usability?

• How can the usability of an interactive system be demonstrated or measured?

and argue that there are two approaches to answering these questions. The first is by means of 

example, in which successful interactive systems are commonly believed to enhance usability and, 

therefore, serve as paradigms for the development of future products. The second approach is 

more theoretically driven, deriving abstract principles for effective interaction from knowledge of 

the psychological, computational, and sociological aspects of the problem domains. In order to 

promote the usability of interactive systems Dix et al. (1993) identify the following groupings of 

general principles which can be applied to the design of an interactive system:
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• Leamability: the ease with which new users can begin effective interaction and achieve 

maximal performance. The specific principles which support leamability are: 

predictability (the user’s knowledge of the interaction history is sufficient to determine 

the result of his future interaction with the system); synthesisability (the ability of the 

user to assess the effect of past operations on the current state); familiarity (the extent to 

which a user’s knowledge and experience in other real-world or computer-based 

domains can be applied when interacting with a new system); generalisibility (the 

support for the user to extend knowledge of specific interaction within and across 

applications to other similar situations); and consistency (likeness in input/output 

behaviour arising from similar situations to other similar situations).

• Flexibility: the multiplicity of ways the user and system exchange information. The 

following principles contribute to the flexibility of interaction: dialogue initiative 

(allowing the user freedom from artificial constraints on the input dialogue imposed by 

the system); multi-threading (ability of the system to support user interaction pertaining 

to more than one task at a time); task migratibility (the ability to transfer control for 

execution of tasks between system and user); substitutivity (allowing equivalent values 

of input and output to be arbitrarily substituted for each other); and customisability 

(allowing the user or the system to modify the user interface).

• Robustness: the level of support provided to the user in determining successful 

achievement and assessment goals. The following principles support robustness of 

interaction: observability (allowing the user to evaluate the internal state of the system 

by means of its perceivable representation at the interface); recoverability (ability of the 

user to take corrective action once an error has been recognised); responsiveness (how 

the user perceives the rate of communication with the system); and task conformance 

(the degree to which the system services support all of the tasks the user wishes to 

perform and in the way that the user understands them).

Bearing in mind that interactive systems have to be usable the question that arises is, then, 

what design approach the systems designers should adopt to ensure usability? Producing a usable 

interface is an extremely complex and difficult task. It is usually filled with conflicts, trade-offs, 

and situational interpretations. Over the years several kinds of user interaction design guidance
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have evolved. Guidelines and rules for interaction design can be found in some of the more recent 

books (Shneiderman, 1992; Marcus, 1992; Mayhew, 1992; Apple Computer, 1992; Cox and 

Walker, 1993; Lindgaard, 1994). Hix and Hartson (1993) claim that knowing the guidelines or 

having a style guide is not sufficient and that a poor understanding of the user interface 

development process accounts for many of the usability problems found in interactive systems. 

They justly emphasise that ensuring usability in an interface requires attention to two main 

components: the product and the process. In this context the product is the user interface itself: its 

content, plus human factors issues, design guidelines, and interaction styles represented in the 

content. The process involves the life cycle, methods, techniques, and tools that are used in 

developing a user interface. In this research we are interested mainly in the product. The idea 

behind this is that we first have to establish what kind of interaction paradigms may provide 

simulation model developers with more affective and efficient simulation modelling environments. 

The process of the system development deals with issues often studied in software engineering 

with a special emphasis on ensuring system usability through its user interface. Therefore, the 

design of interface interaction is placed within the existing life cycles or new ‘more appropriate’ 

ones are proposed. Expanding our research in that direction would require much more time and 

effort than is available and would distract us from our main research goal.

5.3 .2  Design Guidelines

At least four kinds of information related to human factors heavily influence the product (Hix and 

Hartson, 1993): standards, design guidelines, commercial style guides, and customised style 

guides. In this context standards are official, publicly available documents that give requirements 

for user interaction design. Standards must be very general and simple to offer effective guidance 

and, therefore, require much interpretation and tailoring to be useful in user interaction design. 

Standards must be followed when designing the user interaction, as they are enforceable by 

contract or by law.

Guidelines, often called the common sense part of user interaction design, are published in 

books, reports, and articles that are publicly available. Guidelines are general in their applicability 

and require a fair amount of interpretation to be useful. Their main advantage is to offer flexible
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guidance and to help establish design goals and decisions, but they must be tailored in order to 

produce specific design goals (Hix and Hartson, 1993).

Commercial style guides are documents that are typically produced by one organisation or 

vendor and are made commercially available. A style guide typically includes the following: a 

description of a specific style or object, including its “look” (appearance) and “feel” (behaviour), 

and guidance on when and how to use a particular interaction style or object. A style guide can 

provide the basic conventions for a specific product or for a family of products (e.g. Apple 

Computer, Inc. “Macintosh human interface guidelines”, 1992). Commercial style guides are very 

specific and if well written will not require too much interpretation. Their main advantage is to 

improve consistency of the user interaction design.

A customised style guide is very specific to a particular application or set of applications 

within an organisation or group. Its main advantage is providing consistent, explicit, 

unambiguous information for design, but it lacks the general broad applicability that can be needed 

to deal with contingencies where specific design rules may cause conflicts. Some customised style 

guides are beginning to be primarily graphic design standards that provide a corporate look while 

maintaining a generic feel (Hix and Hartson, 1993).

Hardware design standards are both widespread and useful in the sense that they give a clear 

indication of design requirements and constraints to be met, either via contracts or through 

legislation. Hardware standards tend to be related to human physiology (e.g. optimal size of 

characters on the screen is determined by the limits to human vision). By contrast, software 

standards relate almost exclusively to psychology. Much more is known about physiology than 

about psychology, where it is very hard to translate what we know into something useful. Also, 

little is known about the limitations or boundaries of existing knowledge. This makes it very 

difficult to generate good, reliable standards for the design of software (Lindgaard, 1994). 

Consequently, hardware design standards are clear and specific whereas software standards are 

vague and general.

Design guidelines are generally stated recommendations with examples, added explanations, 

and other commentary selected and perhaps modified, for any particular system application, and 

adopted by agreement among people concerned with interface design. Like principles, guidelines
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must be translated in the process of describing specific design rules, which would then be 

reviewed and approved to constitute detailed design specifications for a particular application. It is 

still better to rely on the informed judgement contained in guidelines, incomplete, vague, and often 

contradictory as they are, than on the less informed intuition of individual designers for achieving 

good usable computer systems. Even though guidelines are general in nature, they cover many 

different facets that must be taken into consideration when designing user interaction. Developing 

and/ or using a style guide, with specific rules, is not sufficient to ensure usability in an interface. 

The process by which that information is used, and the way in which the resulting interfaces are 

evaluated, constitutes a major portion of the effort involved in ensuring usability in an interface.

Shneiderman’s (1992) ‘eight golden rules’ of dialogue design are a good starting point for any 

user interface design, including simulation systems: strive for consistency; enable frequent users 

to use shortcuts; offer informative feedback; design dialogues that yield closure; offer simple error 

handling; permit easy reversal of actions; support internal locus of control; and reduce short term 

memory load. These underlying principles of interface design that are applicable to most systems, 

including simulation systems, must be interpreted, refined, and extended for each environment. 

Other similar general interface principles provided by Molich and Nielsen (1990) were discussed 

in chapter 4 in the context of the case study. If we analyse current simulation systems we can find 

that many of these rules are not obeyed, particularly user interface consistency, informative 

feedback provision, easy reversal of actions, and keeping the short memory load to a minimum. 

Other rules can help software designers in screen layout design, on-line help design, form fill-in 

design, use of colour, use of interaction devices, navigation through the interface, provision of 

feedback, error messages, and so on. Most of the issues were already discussed in the previous 

chapters and were placed into the context of user interface design in chapter 4.

User interaction guidelines are not enforceable in a user interface but serve more as common- 

sense suggestions on how to produce a good interface. The most influential compilation of 

guidelines was given by Smith and Mosier (1986). It is organised around several major headings, 

such as Data Entry, Data Display, Sequence Control, User Guidance, Data Transmission, and 

Data Protection. These guidelines are quite thorough but most of them are strongly oriented 

toward non windowed, alphanumeric terminal interaction, without much attention given to 

graphical windowing interfaces. Since the publication of their guidelines, windowed systems and
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graphical interfaces have become more or less standard in most interactive computer systems. 

Today, most of the books agree that guidelines must emphasise the following: practice of user- 

centred design; developing a good system model; need for consistency and simplicity; taking into 

account human memory issues and cognitive issues; provision of system feedback; usable system 

messages; modality; provision of reversible actions; methods for getting the user’s attention; 

display issues; and individual user differences. These are discussed in more detail in turn below.

User-centred design

User-centred design (Norman and Draper, 1986) is a design of the interaction from the view of 

the user, rather than the view of the system. Producing effective user interaction requires focusing 

on what is best for the user, rather than what is quickest and easiest to implement. Unfortunately, 

what is best for the user is rarely easiest for the interaction designer to design or for the 

programmer to implement. Therefore, the design should be tailored to facilitate the use that a user 

will make of the system. To accomplish user-centred design the first and most important condition 

is to “know the user” (Shneiderman, 1992). It means to know and understand the characteristics 

of the classes of users that will be using a particular interface. To achieve this there are such 

techniques as user analysis, task analysis, information flow analysis, etc.

It is now widely recognised that involving the user in interaction development (“participatory 

design”) is a key to improved usability of the interface (Galer et al., 1992; Shneiderman, 1992; 

Hix and Hartson, 1993). Users can help designers understand the nature of the tasks they perform 

and give opinions and suggestions on the proposed interaction design. An important issue in user- 

centred design is the prevention of user errors. The design should be made to anticipate potential 

problem areas and help the user avoid mistakes. Many graphical user interfaces help the user 

avoid errors by making erroneous choices unavailable (e.g., greying out menu choices or buttons 

when they are not available). The design should help the user to optimise required operations in 

achieving a task. This often means more flexible interaction design that makes provisions for new 

as well as for sophisticated users. Another important guideline in user-centred design is the 

provision of help for users to start the system, and keeping the locus of control with the user.
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System model

A user interface has to give the user a mental model of the system, based on user tasks. A system 

model sets the architectural framework for a system. It typically is device-, data-, and operation- 

oriented and represents flow of data and operations performed on those data (Hix and Hartson, 

1993). This maps into a conceptual model, which is the view of the typical sequencing and 

functionality being offered to a user by a system. This, in turn, translates into a user’s mental 

model, which is how a user perceives a system. The mental model governs how a user 

understands a system and interacts with it. A consistent user mental model, based on the tasks a 

user performs, will guide a user in accomplishing tasks in a general way. Visual cues can be 

especially effective in helping a user understand the system model and thereby formulate a mental 

model. Eberts (1994) suggests that the use of graphics for representing physical systems can be 

placed into the context of stimulus-central processing-response (S-C-R) compatibility.

S-C-R compatibility theory emphasises the role of cognitive mediators, between the stimulus 

and response, in human information processing. An important part of the S-C-R theory is that 

different tasks have different representation codes associated with them. The theory has shown 

that the code of representation of a task is important for theoretical explanations of human 

performance in complex situations. If the system being represented on an interface has a simple 

physical reference, as would occur for any physical system such as a manufacturing facility or an 

outpatient hospital clinic, then the central processing code is spatial. For the stimulus, or the 

display representation, to be compatible with central processing, the display must use graphics or 

an analogue picture. To continue the compatibility to the response stage, the response must be a 

manual response (Eberts, 1994). The best kind of response would be to point to the graphical 

object on the display with a pointing device such as a mouse. If text is used for spatial 

information, the S-C-R compatibility theory shows that this can cause problems because the 

stimulus will be incompatible with the central processing (Eberts, 1994). Correcting this 

incompatibility is then left to the user who would have to perform mental transformations on the 

data to get it into a form which is compatible with central processing. Mental transformation can 

be a source of errors if the transformation is performed incorrectly. S-C-R compatibility theory 

can be directly applied to most simulation systems that represent physical systems and therefore 

require spatial representations.
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Consistency

It is agreed by many researchers (Shneiderman, 1992; Hix and Hartson, 1993; Dix et al., 1993; 

Eberts, 1994) that consistency is one of the most significant factors affecting usability. Users 

expect certain aspects of an interface to behave in certain ways, and when that does not happen, it 

can be very confusing. For similar semantics in an interface, similar syntax should be used, and 

vice versa. Consistency can have many different interpretations. Consistency by one criterion can 

conflict with consistency by another. Some of the newer simulation software that are developed 

for Windows or Macintosh environments have to follow conventions and guidelines imposed by 

the host environment. This usually means some sort of consistency within an application. 

Standard features like windows and menu systems comply with these standards. That is not 

always the case when it comes to fill-in forms, feedback, error messages, and on-line help 

provision. However, it has to be recognised that across application consistency is not always 

possible or even desirable.

Grudin (1989) distinguishes three types of consistency: the internal consistency of design with 

itself; the external consistency of a design with other interface designs familiar to a user; and an 

external analogic or metaphoric correspondence of design to features in the world beyond the 

computer domain. He argues that interface objects must be designed and placed in accordance 

with user’s tasks. When a user interface becomes our primary concern, our attention is directed 

away from its proper focus: users and their work. Grudin (1989) thinks that focusing on 

consistency may encourage the false hope that good design can be found in properties of the 

interface. We also think that the famous maxim “strive for consistency” (Shneiderman, 1992) 

should be used as a guideline when and if appropriate, but that it should not be forced on the 

designers. There is little doubt that some form of consistency has to be enforced like, for example, 

consistent use of terminology, abbreviations, consistent use of function keys or mouse buttons, 

consistent use of buttons for CANCEL, ENTER, HELP etc. These guidelines are not often 

followed in current simulation systems as was demonstrated by the example of the use of 

CANCEL in WITNESS (section 2.3.7).
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Capacity of short-term memory

The capacity and duration of a human’s short-term or working memory must be taken into account 

when designing user interaction (Olson, 1987; Shneiderman, 1992). An interaction design should 

limit the number of items a user has to deal with at any particular moment. Information on screens 

should be organised so that a user does not have to buffer information from one screen to the next 

by remembering it or writing it down. An important consideration in interaction design should be 

given to how humans should handle interruptions while they are performing a task. Large tasks 

should be decomposed into smaller tasks for the user. Short linear sequences of actions by the 

user will facilitate task closures and should not require a user to mentally transfer much 

information from one sequence to another. A good design can guide the user through tasks with 

mileposts (e.g., short messages) indicating closure while maintaining status and presenting what 

may be done next (Hix and Hartson, 1993). Human memory limitations can also be overcome in 

interaction design by using recognition, rather than recall.

Cognitive directness involves minimising mental transformations that a user must make. 

Minimisation of mental transformations by a user can be accomplished by the use of appropriate 

mnemonics, or memory aids. Appropriate visual cues, such as the layout of arrow keys and 

carefully designed graphical icons, also contribute to cognitive directness. By using situations, 

words, pictures, and metaphors that are natural and known to most users, a user’s expectations 

about an interface are supported, and cognitive directness is increased. In the case of simulation 

systems this recommendation implies that the visual representation of the ‘real’ system being 

modelled should as much as possible mimic reality, i.e. icons should be recognisable objects from 

the real world and the model layout should preserve real world spatial relationships.

Feedback

Effective feedback is a part of the interaction that has a significant impact on the user. When users 

perform actions, they want to know what happened. Barfield (1993) categorises feedback 

supplied by an interactive system according to its relationship in time to:
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• Future feedback: this is feedback about an interaction that is supplied to the user before 

the interaction is carried out. Basically it tells the user what will happen if they do a 

particular thing.

• Present feedback: This is feedback about an interaction supplied during the interaction. 

This tells the user what is happening.

• Past feedback. Past feedback is supplied after the interaction and it gives the user 

information about what has happened; how the system has changed or is changing as a 

result of this interaction.

These three types of feedback are useful in all sorts of situations. There are strong links 

between the presentation of information, user models, and feedback. The user builds up mental 

models based upon the presentation of information. Presentation of information relating to the 

behaviour of the system is the feedback, and it is the feedback part of the presentation that helps 

the user build up a good user model. Hix and Hartson (1993) point out that a user often needs 

both articulatory feedback and semantic feedback. Articulatory feedback tells users that their hands 

worked correctly, while semantic feedback tells them that their heads worked correctly. Visual 

cues, either textual or graphical, are most commonly used for feedback. Mayhew (1992) points 

out that the system should also provide appropriate status indicators. Whenever the system is 

performing a potentially lengthy process, a user should be given feedback that the system is 

working, especially if the user cannot interact with the system while a system process is in 

progress. The status indicator should disappear automatically, on completion of the process. 

When displaying system messages user-centred wording should be used. Shneiderman (1992) 

forewarns that users should be protected from system-related jargon, especially information 

presented in a way that is confusing or threatening. The communication with the user should be in 

terms of their task and in words that are familiar to them. Error messages should use positive, non 

threatening wording and be as specific as possible. Error messages should give to the user 

constructive, helpful messages, but be brief and concise. They should not make users feel guilty. 

Instead, the system should take the blame for errors.
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Modality

A mode is an interface state in which a user action has a different meaning (and result) than it has 

in some other state (Cox and Walker, 1993). Modality is virtually impossible to avoid in 

interaction designs. When it is used, the designer should be careful to distinguish different 

interaction modes for the user, so that the user clearly knows at all times which mode is active. 

Visual cues are often a good approach to distinguish such modes. For example, in a modal 

graphical editor, the shape of the cursor might change to indicate whether the editor is in the mode 

for creating circles or lines. A pre-emptive mode is one in which a user must complete one task 

before going to another. There are modal (pre-emptive) and modeless dialogue boxes, for 

example. Most of the time, pre-emptive modes are to be avoided, except when a user must commit 

to a response before a task can proceed. This guideline is the one that is often violated in 

simulation systems. The examples include fill-in forms in WITNESS and in Taylor n.

Reversible actions

User actions should be made easily reversible. This could be ‘undo’ commands, usually available 

in direct manipulation interfaces. Such ‘undo’ commands allow users to reverse undesirable or 

accidental actions they may make. Reversibility also applies to actions for navigating through the 

system. Users should be able to return to at least the previous screen they came from, to cancel a 

task without having to complete it, or exit or quit from the application from any point in the 

system. Such mechanisms for allowing users easily to reverse actions will encourage exploration 

of a system.

Methods for getting the user’s attention

Guidelines for getting the user’s attention advocate applying a sensible judgement. There are many 

ways to get a user’s attention while working with an interface. These techniques are among the 

easiest to overuse and misuse. For text, the general rule is to use only two levels of intensity on a 

single screen and to use underlining, bold, inverse video, and other forms of marking sparingly. 

For predominantly text screens, generally no more than three different fonts should be used on a
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single screen, and no more than four different font sizes on a single screen. Upper and lower case 

letters should be used as in a normal sentence (Mayhew, 1992). All uppercase letters slow down 

reading speed by more than 10% (Hix and Hartson, 1993). Blinking should be used sparingly 

and only for very important items. Audio can be used as a cue for important events and is often 

effective as a redundant output channel when one channel might not be enough, as when the user 

might not see an important message that appears on a rather busy screen.

Colour is perhaps the single most overused feature in user interaction designs. It is often a 

good idea to design for monochrome screens first (Cox and Walker, 1993). The point is that the 

layout and content of the user interaction should make sense independently of colour. Generally, 

no more than four different colours should be used on a single screen, especially if it is mostly 

text, and no more than seven different colours throughout a single application (Cox and Walker, 

1993). Colour can be used effectively as a coding technique, but it should be used conservatively. 

Colour will also effectively call attention to important or changing information. A familiar colour 

conventions coding should be considered. If colour has not been used significantly in the design, 

then it is usually acceptable to give users control over their own colour choices. Most of the above 

colour guidelines are broken by most simulation systems!

Display issues

General guidelines on designing information at the interface are given in Preece et al. (1994):

• important information which needs immediate attention should always be displayed in a 

prominent place to catch the user’s eye (e.g. alarm and warning messages);

• less urgent information should be allocated to less prominent but specific areas of the 

screen so that the user will know where to look when this information is required (e.g. 

reports and reference material);

• information that is not needed very often (e.g. help facilities) should not be displayed 

but should be made available on request.

A good interaction design changes as little as possible from one screen to the next (Mayhew,

1992). Static objects such as buttons, words, and icons that appear on many screens should
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always appear in exactly the same location on all screens, for consistency. Display inertia is 

important primarily in location, shape, and size of objects, but not necessarily in the labels, default 

indicators, and so on. Elimination of unnecessary information can greatly simplify a screen 

design. Using concise wording of instructions, messages, and other text, or easy-to-recognise 

icons can help with this. Minimising the overall density of the screen, especially for text, is 

important, as is minimising the local density in subareas of the screen. A balanced layout of the 

display should avoid having too much information at the top or bottom, left or right of the screen. 

Plenty of white (empty) space should be used, especially around blocks of text (Tullis, 1988). 

Related information should be grouped logically on the screen, using wording and icons that are 

familiar to the user. Organisation and layout of a screen display can have a dramatic affect on user 

performance.

Use o f animation

Computer animation has been an important topic of study in the computer graphics field for over 

20 years. The application of animation to user interfaces, however, is just now receiving attention 

by researchers and developers. Baecker and Small (1990) detail the motivation for using 

animation in interfaces, listing eight significant uses of animation:

• Identification. Animation can help focus attention on an item of interest or help identify

what an application does.

• Transition. Animation can help orient users to state changes within an application or 

system.

• Choice. Animation can be used to cycle through and enumerate a set of actions or 

options within an application.

• Demonstration. Animation can help illustrate the actions and results of dynamic 

operations in a more direct manner than a static depiction.

• Explanation. Animation can be used to build dynamic tutorials that depict sequencing

scenarios within user interfaces.

• Feedback. Animation can help convey the changing status of an activity within an 

application.
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• History. Animation can be used to present the sequence of steps or operations that were 

carried out to arrive at the current condition.

• Guidance. Animation can be used to illustrate the series of actions necessary to achieve 

the user’s goal within an interface.

Relatively little research on assessing the effectiveness and appropriateness of animation in 

interfaces has been conducted. It is still unknown what types of processes, tasks, states, etc., can 

be well represented using animation, and exacdy which styles of animation best convey the 

pertinent information. Stasko (1993) claims that, based on his research experience and intuition, 

animation is best applied when portraying or illustrating the state of time-varying processes. That 

is exactly how animation is used in visual simulation systems. Animation in the HCI literature is 

often defined in different terms than in computer graphics and in simulation. For example, scroll 

bars that move, dialogue boxes that pop up, and menus that pull-down have been characterised as 

the presence of animation in interfaces. More rigorous definitions include examples such as an 

analogue clock with a second hand that continually moves, or opening an application or a window 

in window-based interface systems. When a new application is opened, it does not 

instantaneously appear. Rather, a series of rectangular window outlines grow out of the chosen 

application to the eventual target window destination. Deciding precisely when an interface 

transforms from a static display into animation is debatable. Some people will only consider a 

long sequence of gradually changing scenes to be animation. Others will deem a few appropriate 

colour changes or cursor flashes to be animation. In any case, animation at its essence involves 

smoothly changing positions or attributes of objects so that a viewer can observe the relationship 

between time t and time t + At (Stasko, 1993).

In order to make an animation effectively convey the information intended, the animation must 

be developed with certain key design principles in mind. Like any interface design, be it static or 

dynamic, it must pay close attention to layout, use of colour and fonts, ease-of-use, naturalness 

and so on. The dynamic nature of animation requires a new set of design principles. The 

animation should provide a sense of context, locality, and the relationship between before and 

after states. Stasko (1993) has identified four design principles for animation in user interfaces: 

appropriateness, smoothness, duration/control, and moderation. The end users of the interface 

will have their own mental model of the application and the operations involved. The objects
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involved in an animation should depict application entities, and the animation actions should 

appropriately represent the user’s mental model. This principle of appropriateness is directly 

applicable to simulation models. When designing the model layout and the simulation entities one 

should as much as possible use representations of the ‘real world’ problem being modelled. To 

avoid the danger of forcing a software developer mental model, the user should have a facility to 

exercise their own choice of icons and to design the model layout.

For an animation to be effective, a viewer must be able to perceive its actions and motions in a 

clear manner. Smooth, continuous animation scenarios that preserve the context of the animation 

as its motion occurs are easiest to follow. The principle of smoothness is more appropriate for 

continuous simulation than it is for discrete event simulation. Different animation purposes dictate 

the design of different animation duration and control models. For principles concerning duration 

and control Stasko (1993) advocates that the user can set the animation’s speed, can pause the 

animation when desired, and can even replay important sequences of the animation to reinforce the 

material being conveyed. These principles are applicable to simulation and have been implemented 

for some time in many simulation systems and are an integral part of any VIS. However, a replay 

facility is not so widely available.

Use o f Data Graphics

Data graphics visually display measured quantities by means of the combined use of points, lines, 

a co-ordinate system, numbers, symbols, words, shading, and colour. Modem data graphics can 

do much more than simply substitute for small statistical tables. At their best, graphics are 

instruments for reasoning about quantitative information (Tufte, 1983). Of all methods for 

analysing and communicating statistical information, well designed data graphics are usually the 

simplest and at the same time the most powerful. The use of graphics to represent quantitative 

information is becoming increasingly popular. Some of the popular graphical techniques for 

representing numeric data are: Scatter Plots; Line Graphs or Curves; Area, Band, Strata, or 

Surface Charts; Bar Graphs, Column Charts, or Histograms; Stacked or Segmented Bar or 

Columns; Pie Charts; Simulated Meters; and Start, Circular, or Pattern Charts. Tullis (1988) gives 

a good overview of situations in which these techniques are commonly used (see Table 5.1).
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Table 5.1 Graphical techniques for representing numeric data (adopted from Tullis, 1988)

Graphic Example Usage Notes

Scatter
Plots

Show two continuous variables correlated (or not), or shows the distribution 
of points in 2-dimensional space. Lines or curves may be superimposed to 
indicate trends.

Line
Graphs or 
Curves

Show two continuous variables related to each other, especially changes in 
one variable over time. Time is typically plotted on the horizontal axis. A 
third, discrete, variable can be included using line-type or colour coding. 
Some designers recommend at most four lines (curves) per graph. Multiple 
lines should have an adjacent labels.

Area, Band, 
Strata, or 
Surface 
Charts

Graph that can be used when several line graphs represent all the portions of 
a whole. The standard areas stacked on top of each other represent each 
category’s contribution to the whole. Least variable curves should be on the 
bottom to prevent “propagation” of irregularities throughout stacked curves. 
Categories should be labelled within the shaded areas.

Bar
Graphs, 
Column 
Charts, or 
Histograms

hi
Show values of a single continuous variable for multiple separate entities, or 
for a variable sampled at discrete intervals. Consistent orientation (horizontal 
or vertical) should be adopted for related graphs. Spacing between adjacent 
bars should be less than the bar width to facilitate comparisons between bars.

Stacked Or 
Segmented 
Bar or 
Columns

Special type of bar or column graph that can be used when several bars 
represent all the portions of a whole. The same order and coding method for 
segments across all bars in a graph should be maintained. Least variable 
categories should be on the bottom.

Pie Charts 42% 25% Show the relative distribution of data among parts that make up a whole. 
However, a bar or column chart will usually permit more accurate 
interpretation. If pie charts are used, some designers recommended using no 
more than five segments. The segments should be labelled discretely.

Simulated
Meters

Show one value of one continuous variable. When showing multiple values, 
it is probably more effective to use other techniques, such as bar or column 
charts to show values for separate entities, or line graphs to show values 
changing over time.

Start,
Circular, or
Pattern
Charts

Show values of a continuous variable for multiple related entities. Values are 
displayed along spokes emanating from the origin. Different continuous 
variables may be represented if they are indexed so that the normal values for 
each variable can be connected to form an easy recognised polygon. Useful 
for detecting patterns.

However, the variety of graphic techniques does not guarantee their appropriate application. There 

is a lot of confusion and bad practice even in the scientific communities.
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Excellence in statistical graphics consists of complex ideas communicated with clarity, 

precision, and efficiency and therefore graphical display should (Tufte, 1983): show the data; 

induce the viewer to think about the substance rather than about methodology and graphic design; 

avoid distorting what the data have to say; present many numbers in a small space; make large sets 

coherent; encourage the eye to compare different pieces of data; reveal the data at several levels of 

detail, from a broad overview to the fine structure; serve a reasonably clear purpose of 

description, exploration, tabulation, or decoration; be closely integrated with the statistical and 

verbal descriptions of a data set. Tufte (1983) also stresses the importance of graphical integrity 

that in his view will be achieved if the following principles are followed: the representation of 

numbers should be directly proportional to the numerical quantities represented; clear, detailed, 

and thorough labelling should be used to defeat graphical distortion and ambiguity; data variations 

should be shown, not design variation; the number of information-carrying (variable) dimensions 

depicted should not exceed the number of dimensions in the data; graphics must not quote data out 

of context.

Confusion and clutter are failures of design, not attributes of information. And so the point is 

to find design strategies that reveal detail and complexity rather than to fault the data for an excess 

of complication. Among the most powerful devices for reducing noise and enriching the content 

of displays is the technique of layering and separation, visually stratifying various aspects of data 

(Tufte, 1990). Effective layering of information has to address the design issue, that the various 

elements collected together on a flat surface interact, creating non-information patterns and texture 

simply through their combined presence. Albers (1969) describes this visual effect as ‘7 + 1 = 3 

or more ”, when two elements show themselves along with assorted incidental by-products of their 

partnership. Such patterns are dynamically obtrusive on computer screens. What matters is the 

proper relationship among information layers. These visual relationships must be in relevant 

proportion and in harmony to the substance of ideas, evidence, and data conveyed. Usually this 

involves creating a hierarchy of visual effects, possibly matching an ordering of information 

content.

Simplicity, clarity, and consistency are important for chart design (Marcus, 1992). Extraneous 

text should be kept to a minimum, titles should be brief and informative. Texture, colour, and 

spatial qualities of the lines, bars, and circles often overwhelm the eye in computer charts. These
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qualities can sometimes actually mislead viewers studying the data values. A chart made for a high 

resolution colour screen can find its way, inappropriately, into a black and white reproduction in a 

report or into a lower resolution display. Therefore, the proportions of the format, the typographic 

sizes, the amount of labelling, and especially the texture and colour relationships need to be 

considered carefully. Tables are preferable to graphics for many small data sets (Ehrenberg, 

1977). A table is nearly always better than a pie chart; the only worse design than a pie chart is 

several of them. Given their low data-density and failure to order numbers along a visual 

dimension, pie charts should never be used (Bertin, 1981).

The use of graphical techniques to represent numerical data is very common in current 

simulation systems. Graphs are used to present a simulation output during the simulation run 

(usually dynamic graphs) or after a simulation has finished. However, many of the 

recommendations for designing graphs on the screen mentioned above are not observed. Bad 

examples include moird effects, grid lines that clutter up the graphic and generate graphic activity 

unrelated to data information, or other ‘decorative’ forms that take over the display rather than 

quantitative information. The use of different shades of grey rather than a variety of patterns will 

communicate much more effectively the statistical information. The grid should usually be muted 

or completely suppressed so that its presence is only implicit - lest it compete with the data (Tufte, 

1983). Graphics do not become attractive and interesting through the addition of ornamental 

hatching and extensive use of colours. These recommendations, together with screen layout 

guidelines (which were elaborated in Chapter 4) and guidelines for the use of colour on a 

computer display, should be applied to simulation systems.

Individual user differences

Studies have shown (Egan, 1988) that user differences account for much more variability in task 

performance than either system design or training procedures. Much of this variability comes from 

making and recovering from errors. Factors that determine differences in computer-based skills 

include user experience, particular technical aptitude, age, and domain- (problem area) specific 

skills and knowledge (Hix and Hartson, 1993). Technical aptitudes that are good predictors of 

user performance include a spatial visualisation ability, vocabulary, and logical reasoning ability. 

Age makes a substantial contribution to the prediction of errors in information searching, the
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ability to learn complex systems, and the generation of syntactically complicated commands. Most 

computer systems have to accommodate a broad and varied class of users. One way in which 

interaction designers can accommodate user differences is to allow users to make decisions about 

the interface based on their own preferences. User preferences are part of the larger concept of 

user customisability, which allows users to make extensive changes in their interaction design. 

Users have to do less learning if they can make new interactive systems look like the interactive 

systems they already know.

There are at least three levels of user experience that have to be addressed in many interaction 

designs (Shneiderman, 1992). Novice users have no syntactic knowledge of the system and only 

a little semantic knowledge. In the interface, they need clarity and simplicity, a small number of 

meaningful functions, lucid error messages, and informative feedback. An intermittent user 

maintains semantic knowledge of the system over time but loses syntactic knowledge. In the 

interface, such users prefer simple consistent commands, meaningful sequencing of steps, easy to 

remember functions and tasks, on-line assistance and help, and concise manuals. A frequent user 

has both semantic and syntactic knowledge about the system. These users want fast interaction, 

powerful commands, reduced keystrokes, brief error messages with access to detail at their own 

request, concise feedback, and customisation of their own interface. The challenge for the 

interaction designer is to meet all these different user needs in one design. The guidelines to keep 

interaction simple are hard to achieve in today’s interactive systems, which are inherently 

complex, resulting in a user interface that is also complex. Simple tasks can be kept simple by 

using actions, words, icons, and other interaction objects that are natural to the user. Complex 

tasks should be made possible by breaking them into simpler sub tasks, using objects that are 

natural to the user.

5.4 HCI Theories

Advances in technology are too fast to base any design approach on current technology. Eberts 

(1994), therefore, advocates that the emphasis should be on theories and approaches to HCI 

which do not change as rapidly as the technology. He identifies four general approaches: the 

empirical approach, the cognitive approach, the predictive modelling approach, and the
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anthropomorphic approach. These four approaches provide a structure on how to approach the 

problem of designing a user interface.

5.4.1 The Empirical Approach

In the empirical approach the various potential interactive methods are evaluated by testing them. 

First, the items to be tested are identified. Next, a task which corresponds closely to the real- 

world task but is controllable in a laboratory situation is identified. Finally, the experiment is 

carried out in a well controlled environment so that factors other than the independent variable do 

not vary from condition to condition. The results are then analysed to determine the statistical 

significance of the results. Under the empirical approach, the interface designer would be required 

to design, implement, and analyse the results from empirical studies. As an experimenter, the 

designer must ensure that the experimental variables are not confounded and that the results can be 

interpreted and generalisations applied to other situations.

The experimental techniques used in interface design are varied and can range from very 

rigorous technique to informal techniques. Academic research is often focused on rigorous 

techniques using the experimental method in controlled environments. This method is good 

because cause-and-effect relationships between features of the interface design and usability can 

be determined (Eberts, 1994). On the other hand, informal techniques (e.g., questionnaires, 

transcripts, videotapes) can provide important observational and descriptive information about the 

interface design, but the results may be unstable and not generalisable to other users and 

environments. The advantage of this approach is that it offers an alternative to intuition in 

determining the best design, even though intuition was many times confirmed through empirical 

studies. The disadvantages are the danger of improperly designed experiments, generalising the 

findings based on insufficient evidence, and the lack of theoretical guidance.

Several components are involved in designing an experiment. The experimenter must 

formulate a research question, design the experiment so that the results are interpretable, choose 

the independent variables, and choose the dependent variables. The process of formulating a 

research question, choosing an experimental design, and interpreting the results are more difficult 

issues requiring decisions based upon prior knowledge, experience, and research. The analysis of
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results plays a central role in this whole process. The research question should be addressed, and 

the experimental design should be chosen, to facilitate the analysis of results. Finally, the 

experimenter must be able to interpret the results correctly and generalise the results to the correct 

situations. Only through a clear conceptualisation of the result analysis process, and through an 

understanding of the underlying statistics, can experimenters interpret the results correctly.

5.4.2 The Cognitive Approach

In the cognitive approach to human-computer interaction, theories in cognitive science and

cognitive psychology are applied to the human-computer interface to make the processing of 

information by the human easier and more efficient. Interacting with a computer through the 

interface is a cognitive activity on the part of the user. The user must remember many things and 

then be able to implement and execute the appropriate commands. The user must also know how 

to interact with computer systems in general by having a cognitive model of how computers 

behave, and knowing how to decompose a task into workable units cognitively.

Shneiderman (1992) makes distinctions between syntactic knowledge about device-dependent 

details, and semantic knowledge about concepts. This syntactic-semantic object-action (SSOA) 

model of user behaviour was originated to describe programming (Shneiderman, 1980). When 

using a computer system, a user must maintain a profusion of device dependent details in their 

human memory (e.g., the knowledge of which action erases a character). Syntactic knowledge is

arbitrary, system dependent, and ill structured. It must be acquired by rote memorisation and

repetition. Unless it is used regularly it fades from memory. Semantic knowledge has a 

hierarchical structure ranging from low-level actions to middle-level strategies to high-level goals 

(Shneiderman, 1980; Card, Moran, and Newell, 1983). This representation enhances the earlier 

SSOA model and other models by decoupling computer concepts from task concepts. Computer 

concepts include objects and actions at high and low levels. According to the SSOA model, users 

must acquire semantic knowledge about computer concepts. These concepts are organised 

hierarchically, are acquired by meaningful learning or analogy, are independent of the syntactic 

details, should be transferable across different computer systems, and are relatively stable in 

memory.
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The model that the user forms of how the computer system or program works and which 

guides the user in structuring the interaction task is called the mental model (Norman, 1986, later 

referred to this as the User Model). Predictions and expectations will be based upon the model. 

Therefore, in designing an interactive system, a great deal of care and work should go into making 

the user model as clear and obvious as possible to the user. The mental model is built up through 

interactions with the display representation which provides the user, along with off-line 

documentation, the only view of the conceptual model. The conceptual model is a design model 

maintained by the designer of the computer system or the interactive program, in engineering or 

programming terms, so that it is accurate, consistent, and complete (Norman, 1986, later referred 

to this as the Design Model). The goal of an interface designer is to try to choose the information 

to represent on the display so that the mental model can, like the conceptual model, be accurate, 

consistent, and complete. A test of the success of an interface is a comparison of the user’s mental 

model with the conceptual model. A general rule is that the more specialised the application, the 

better the conceptual model. Software such as spreadsheets, some database programs, and 

drawing programs are relatively easy to convey to the user if the design is considered carefully. 

The mental model formation is the key to understanding methods that can be used to design 

effective interfaces for computer users.

Norman (1987) points out that in the consideration of mental models we need really consider 

four things: the target system, the conceptual model of that target system, the user’s mental model 

of the target system, and the scientist’s conceptualisation of that mental model. The system that the 

person is learning or using is, by definition, the target system. A conceptual model is invented to 

provide an appropriate representation of the target system, appropriate in the sense of being 

accurate, consistent and complete. Conceptual models are invented by teachers, designers, 

scientists, and engineers. Mental models are naturally evolving models. That is, through 

interaction with a target system, people formulate mental models of that system. These models 

need not be technically accurate (and usually are not), but they must be functional. A person, 

through interaction with the system, will continue to modify the mental model in order to get to a 

workable result. Mental models will be constrained by such things as the user’s technical 

background, previous experience with similar systems, and the structure of the human 

information processing system. In an ideal world, when a system is constructed, the design will
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be based around a conceptual model. This conceptual model should govern the entire human 

interface with the system, so that the image of that system seen by the user is consistent, cohesive, 

and intelligible. Norman (1987) calls this image “the system image” to distinguish it from the 

conceptual model upon which it is based, and the mental model one hopes that the user will form 

of the system. The instruction manuals and all operation and teaching of the system should then be 

consistent with this system image. Thus, the instructors of the system would teach the underlying 

conceptual model to the user and, if the system image is consistent with that model, the user’s 

mental model will also be consistent For this to happen, the conceptual model that is taught to the 

user must fulfil three criteria (Norman, 1987): learnability, functionality, and usability.

Eberts (1994) finds the mental model important to human-computer interaction in two ways. 

First, methods have been researched to enhance the development of an accurate mental model of 

the computer system. Second, determining the form of mental model can be important in interface 

design. Techniques have been developed to acquire knowledge from people about their mental 

models of the task. If knowledge acquisition is performed on experts, then interfaces can be 

designed that are compatible with these mental models. When novices use the interface, then they 

should develop mental models similar to those of the experts. The methods to enhance the 

development of accurate mental models through the proper display of information include: 

designing the interface so that users can interact actively with it; using metaphors and analogies to 

explain concepts; and using spatial relationships so that users can develop capabilities for mental 

simulations. Many of the most effective and accurate mental models seem to be spatial in nature 

(Eberts, 1994). Through the acknowledgement of the existence of visualisation, the mental picture 

in the mental model, the implication is that an accurate mental model can be developed if novices 

use an interface incorporating graphics. Another related method to help develop an accurate mental 

model is to show clearly the cause and effect relationships between the input and the output.

Active control of the system is important so that computer users can hypothesise and test those 

hypotheses on how the system works. The interface should be designed to enhance this activity. 

In particular, the interface should be designed so that the user can explore how the system works 

and to encourage him/her to explore other possible ways to perform a task. Another method for 

developing an accurate mental model is to provide the subjects with an analogy or metaphor about 

how the system works. The general approach taken is to specify how knowledge of a familiar
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situation can be applied to a new situation. To those familiar with the Apple Macintosh user 

interface and its many look alikes, the best example of the use of a familiar metaphor as a 

conceptual model is the desktop-office metaphor. The screen looks like an office or desktop, with 

familiar objects such as folders, documents, an in-box and out-box for mail, a trash can, a clock, 

an appointment book, and so on. These familiar objects also behave in familiar ways. Documents 

can be stacked and shuffled, objects can be deposited in and retrieved from the trash can, 

documents can be stored in and retrieved from folders, and the “pages” in the appointment book 

are laid out just as in a hard copy appointment book. The use of the mouse and other pointing 

devices also draws on an already familiar model: the manipulation of physical objects in space. To 

move an object from one location to another, we simply “pick up” the object with the pointer and 

literally “drag” it to the desired location.

There are, of course, new things to learn, such as how to scroll a document in its window and 

how exactly to use the mouse to select and drag objects. But much is analogous to a world that is 

already familiar to the user. By presenting already familiar objects, relationships between objects, 

and operations on objects, we greatly facilitate the process of learning to use the system because 

we exploit a mental model and a set of expectations that the user already has (Mayhew, 1992). 

The user only has to add some refinements and perhaps some new actions to learn to use the 

system. It is always easier to build on current models than to develop totally new models. The use 

of metaphors and analogies has been a very important method for helping computer users develop 

an accurate mental model of the system. The long-term usefulness of metaphors is not known. 

The main use of the metaphor seems to be to get novices used to the system so that they can use it, 

interact with it, and leam more about how it works along the way (Eberts, 1994). When 

exploiting mental models from the manual world Mayhew (1992) recognises two potential 

problems: under utilisation of the potential computer power, and incomplete metaphors that 

mislead the user.

In the cognitive approach the interaction with the computer should be designed so that it 

assists human problem-solving instead of impeding it. Theories in cognitive science and cognitive 

psychology are applied to the human-computer interface to make the processing of information by 

both the human and the computer easier and more efficient. The cognitive theories state how 

humans perceive, store, and retrieve information from short- and long-term memory, manipulate
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that information to make decisions and solve problems, and carry out responses. The cognitive 

approach views the human as being adaptive, flexible, and actively involved in interacting with the 

environment to try to solve problems or make decisions. This approach has been concerned with 

applying specific theories to the human-computer interaction. Theories which have been applied 

include those on analogical reasoning and metaphors, spatial reasoning, problem solving, 

attentional models, and connectionist or neural network models. The success of the cognitive 

approach has been realised in the interface for the Xerox Star, which was the predecessor of the 

popular Apple Macintosh.

5.4.3 The Predictive Modelling Approach

The purpose of the predictive modelling approach is to try to predict the performance of humans 

interacting with computers. In the predictive modelling approach, tools must be developed to 

predict which of the interactive methods will be best before they are prototyped and developed. 

There are four general classes of predictive modelling techniques (Eberts, 1994): information 

processing models, GOMS and NGOMSL models, rule-based production systems, and 

grammars. Different researchers may analyse the task differendy, resulting in a different 

parametrisation of the same task. The assumptions, such as the skill level of the operators, are 

very important considerations which also may result in a very different analysis.

Information Processing Models

The Model Human Processor, developed by Card, Moran, and Newell (1983), was designed to 

parametrise aspects of human information processing theories. It consists of a set of memories 

and processors together with a set of principles, called the “principles of operation”. The Model 

Human Processor is divided into three interacting systems: the perceptual system, the motor 

system, and the cognitive system, each with its own memories and processors. The perceptual 

system consists of sensors and associated buffer memories, the most important buffer memories 

being a Visual Image Store and an Auditory Image Store to hold the output of the sensory system 

while it is being symbolically coded. The cognitive system receives symbolically coded 

information from the stores of sensory image in its Working memory and uses previously stored
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information in Long-Term Memory to make decisions about how to respond. The motor system 

carries out the response.

The user of this model must accept the assumptions that processing occurs in stages, that 

processing in a stage is completed before information is passed to the next stage, and that 

information flows in a sequential manner from one stage to the next. If these assumptions are 

accepted, then the model can be used. In particular, if we know the stages that the information 

must pass through and we know the timing characteristics of these individual stages, then we can 

add together the timing values to determine an estimate for the total task time. One of the important 

parameters for determining the timing characteristics of a task is the cycle time for the three 

systems. This is the time taken for the information to be processed through the stages. While a 

stage is processing the information, it cannot process any other information. The other parameters 

of the Model Human Processor are those associated with the memories of the perceptual and 

cognitive systems.

The Model Human Processor is very accurate at making estimates, especially for simple tasks. 

The model is good at determining the qualitative relationships (which one is better than the other), 

even though the actual quantitative time predictions may not be totally accurate.

GOMS and NGOMSL

An important determinant of the success of any particular design is the procedural knowledge 

possessed by users - their how-to-do-it knowledge (Preece et al, 1994). The best known 

representation of this knowledge is the GOMS model (which stands for goals, operators, 

methods, and selection rules) developed by Card, Moran, and Newell in 1983. In the GOMS 

model the user’s cognitive structure consists of four components (Card, Moran, and Newell, 

1983):

(1) a set of Goals,

(2) a set of Operators,

(3) a set of Methods for achieving the goals,

(4) a set of Selection rules for choosing among competing methods for goals
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Goals are representation of a user’s intention to perform a task, a sub component of a task, or 

a single cognitive or physical operation (e.g., edit manuscript, locate next edit, delete word). The 

dynamic function of a goal is to provide a memory point to which the system can return on failure 

or error and from which information can be obtained about what is desired, what methods are 

available, and what has been already tried. Operations are a user’s representation of elementary 

physical actions (e.g., pressing a single key or typing a string of characters) and various cognitive 

operations (e.g., storing the name of a file in working memory). A GOMS model does not deal 

with any fine structure of concurrent operators. Behaviour is assumed to consist of the serial 

execution of operators. An operator is defined by a specific effect (output) and by a specific 

duration. The operator may take inputs, and its outputs and the duration may be a function of its 

inputs.

A method describes a procedure for accomplishing a goal. It is one of the ways in which a 

user represents his/her knowledge of a task. In a GOMS model a method is a conditional sequence 

of goals and operators, with conditional tests on the contents of the user’s immediate memory and 

on the state of the task environment. Methods are learned procedures that the user already has at 

performance time; they are not plans that are created during a task performance. The particular 

methods that the user builds up from prior experience, analysis, and instruction reflect the detailed 

structure of the task environment. When a goal is attempted, there may be more than one method 

available to the user to accomplish the goal. The selection of which method is to be used need not 

be an extended decision process, for it may be that task environment features dictate that only one 

method is appropriate. On the other hand a genuine decision may be required. The essence of 

skilled behaviour is that these selections proceed smoothly and quickly, without the eruption and 

puzzlement and search that characterises problem-solving behaviour.

In a GOMS model, method selection is handled by a set of selection rules. Each selection rule 

is in the form “if such-and-such is true in the current task situation, then use method M”. Such 

rules allows us to predict from knowledge of the task environment which of several possible 

methods will be selected by the user in a particular instance. GOMS has been applied extensively 

to the use of text-editors. For instance, a model of manuscript editing with the line-oriented POET 

editor would be (Card, Moran, and Newell, 1983):
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Goal: Edit manuscript
. Goal: Edit-unit-task repeat until no more unit tasks

. . Goal: Acquire-unit-task

. . . Get-next-page if end of manuscript page

. . . Get-next-task 

. . Goal: Execute-unit-task 

. . . Goal: Locate-line 

. . . .  [select: Use-QS-method 
Use-LF-method]

. . . Goal: Modify-text 

. . . . [select: Use-S-command 
Use-M-method]

The dots are used to indicate the hierarchical level o f goals

For error-free behaviour, a GOMS model provides a complete dynamic description of 

behaviour, measured at the level of goals, methods, and operators. Given a specific task (i.e. a 

specific instruction on a specific manuscript and a specific text-editor), this description can be 

instantiated into a sequence of operators (operator occurrences). By associating times with each 

operator, such a model will make total time predictions. Quantitative measurements defined on this 

explicit representation of the user’s knowledge can predict important aspects of usability, that are 

associated with the complexity of the knowledge required to operate the system, such as the time 

to learn the system, amount of transfer from previous systems, and execution time. The 

predictions are obtained from a computer simulation model of the user’s procedural knowledge 

that can actually execute the same tasks as the user. But, without augmentation, the GOMS model 

is not appropriate if errors occur.

A more ‘natural’ method of expressing the GOMS model is NGOMSL (Kieras, 1988). 

NGOMSL, which stands for “Natural GOMS Language”, is an attempt to define a language that 

will allow GOMS models to be written down with a high degree of precision, but without the 

syntactic burden of ordinary formal languages. To analyse a task using the NGOMSL procedure, 

the interaction of the user with a computer is described in a computer programming-like language. 

The activities of the user are described in terms similar to the subroutines of computer 

programming languages. Just like GOMS, NGOMSL decomposes a task into goals, operators, 

methods, and selection rules. In performing a GOMS task analysis, the analyst is repeatedly
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making decisions about how users view the task in terms of their natural goals and how they 

decompose the task into sub tasks, and what the natural steps are in the user’s methods. The 

technique should be applied top-down by first describing the top-level goals. The top-level goal is 

accomplished by a method which will include a series of steps of high-level operators (these could 

be goals themselves). Each step, or operator, in the high-level goal needs a method by which to 

accomplish it. The method for accomplishing each step or operator is then specified. The process 

is continued in this manner until the operators are composed of primitives. A primitive is usually 

some elementary process such as a keystroke or a cognitive process. The primitive level can 

change depending on the needs for the task analysis.

NGOMSL goes beyond the GOMS analysis by combining several of the GOMS models into 

one integrated model. It places a significance on the cycles needed to complete a task, using these 

cycles as a part of the time estimation equation. NGOMSL has a clear mechanism, through the 

time estimate of the cycles, to determine exact estimates for the M (mental) operator. The 

experimentation associated with the NGOMSL analysis allows many different kinds of 

estimations not easily possible with the GOMS models. In particular, using NGOMSL one can 

determine estimates for learning time and gains due to consistency. Another difference between 

the two is that GOMS is only applicable to expert users, while NGOMSL has some techniques to 

specify different models for expert users and novice users. A problem with these models is that 

different task analysers may develop different task analyses for the same task.

Production systems

Production systems (also known as rule-based systems) have been used to describe how people 

process and store information. The purpose of production systems was to determine how people 

solve problems and to specify these steps in a system resembling computer programming 

languages. If the steps could be specified enough, then only a short jump is needed to specify the 

steps for machine problem solving. The rule-based systems paradigm is the one that is most 

popular in knowledge engineering, the part of Artificial Intelligence specialised for building expert 

systems. Some rule-based expert systems do synthesis. XCON (McDermott, 1982) configures 

computers, for example. Other rule-based expert systems do analysis. MYCIN (Buchanan and 

Shortliffe, 1984) diagnoses infectious diseases. Rule-based systems use collections of rules to
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solve problems. The rules consist of condition and action parts or antecedent and consequent parts 

(Winston, 1984). Several computer languages, such as LISP, have been developed to simplify the 

programming tasks of production systems. A production system contains declarative knowledge 

(the facts) and procedural knowledge (how to process the facts). The declarative knowledge is 

contained in the production rules which have the form of

IF <condition> THEN <action>

Recently, production systems have been used to model how humans interact with a computer 

system. Kieras and Poison (1985) developed a production system model for human-computer 

interaction tasks. This was based upon the GOMS model and was a predecessor to Kieras’ 

NGOMSL model. The basic structure of a rule in their model is

<name> IF <condition> THEN <action>

The name is not functional and is used to assist the programmer in reading the code. The condition 

is a list of clauses that must all be matched for the rule to be true. The actions are sequences of 

operators similar to that for the NGOMSL model. Since NGOMSL and production systems 

provide equivalent representations of a task, in slightly different terms, then the same estimations 

and predictions can be used for production systems. Eberts (1994) identifies two advantages of 

the production system approach over the NGOMSL approach. The production system approach 

has a good theoretical basis and could easily be used in a computerised simulation. The production 

system is a computer program that could be run easily in a simulation to obtain measurements and 

to test the completeness of the analysis.

Grammars

Grammars were one of the earliest methods used to model human-computer interaction languages, 

often borrowing their concepts from linguistics. Since the user’s interaction with a computer is 

often viewed in terms of a language, it is not surprising that several modelling formalisms have 

developed centred around this concept. Representative of the “linguistic approach” (Dix et al., 

1993) is Reisner’s (1981) use of Backus-Naur Form (BNF) rules to describe the dialogue 

grammar. This views the dialogue at a purely syntactic level, ignoring the semantics of the 

language. BNF has been used widely to specify the syntax of computer programming languages,
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and many system dialogues can be described easily using BNF rules. Reisner has developed 

extensions to the basic BNF’s descriptions which attempt to deal with this by adding ‘information 

seeking actions’ to the grammar. She used her formal grammar, named ‘action grammar’, for the 

interaction language to test two interactive drawing programs to predict which one would be easier 

to use. This grammar has been used specifically to determine the consistency of the design. 

Empirical studies on the two alternative drawing programs showed that the predictions of the 

model were accurate; the users found it easier to select the correct actions for the program 

predicted to be simpler, and the users found it easier to learn and remember the program which 

was predicted to be consistent.

Payne and Green (1986) expanded Reisner’s work by addressing the multiple levels of 

consistency (lexical, syntactic, and semantic) through a notational structure they call Task-Action 

grammar (TAG). They also address some aspects of completeness of a language by trying to 

characterise a complete set of tasks. The most important aspect of TAG is that it can determine 

well defined categories of tasks. The tasks with the categories that are well defined are those with 

the most structural consistency. Arbitrary collections of tasks have poorly defined categories. 

Grammars have many characteristics of the production systems. They may be useful for analysing 

the usability of programs before the programs are prototyped.

5.4.4 The Anthropomorphic Approach

In the anthropomorphic approach ways must be found to make computers as easy to interact with 

as humans. The designer uses the process of human-human communication as a model for 

human-computer interaction. The belief is that if the computer is provided with the right human­

like qualities, the interaction can be more effective. Several qualities can be applied to the 

computer: natural language, voice communication, help messages, tutoring, and friendliness. 

User-friendliness is attributed to so many computer products that it has lost much of its meaning. 

In the context of the anthropomorphic approach, the term means that the computer will interact 

with the user in much the same way as one human would interact with another human. In 

particular, the interaction will be easy, communication will occur naturally, mistakes and errors 

will be accepted and mutually fixed, and assistance will be given when the user is in trouble. The 

importance of these characteristics can be demonstrated by examples of systems which failed to
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incorporate them. A system is user-unfriendly if it requires responses or utilises commands that 

are unusual in normal human communication (Eberts, 1994).

Human-computer interaction can be enhanced by analysing the mismatches between human- 

human communication and interacting with the computer. Voice recognition, hand gestures, and 

facial expressions, for example, are important modes of communication for people. Technology is 

advancing to the point where these could be important modes when communicating with 

computers. These modes can be used as inputs or they can be used to augment communication. 

The computer interface can also be made more natural by attributing the computer with some 

cognitive abilities which we assume will be present when communicating with another human. 

The computer should be able to have some communication skills. The computer has information 

which can be conveyed to the user, about how to use and communicate with the computer, and the 

computer should be able to provide some intelligent assistance with the task. The computer should 

also be able to adapt to the user by understanding what the user needs or knows in order to fulfil 

those needs. One important aspect of researching into making interfaces more natural and user- 

friendly is the search for methods to make the computer more “intelligent” which has been the goal 

of Artificial Intelligence for a long time.

The full application of the human-human communication analogy to human-computer 

interaction is impossible at this time, if ever. Many of the important human-human interaction cues 

cannot be perceived by computers. The computer only “knows” what it receives from the user 

through input devices; it has very limited perceptual properties if it has any at all. The 

anthropomorphic approach is overly dependent on technology advances. Some advances in 

natural language processing and voice recognition have been made, but these features are difficult 

to implement in most computer systems. Another problem is that natural and friendly may not 

always be the best design. The experimental evidence has not always been supportive of 

naturalness in computer systems. The anthropomorphic approach is most often used in the task 

analysis stage to determine the important communication stumbling blocks. These specifications 

can then be used in the design of the system.
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5.5 Evaluation of User Interfaces

Designs of software products must be validated through prototyping, usability, and acceptance 

tests, which can also provide a finer understanding of user performance and capabilities. Many 

systems have been developed that are considered to be functionally excellent, but perform badly in 

the real world. It was noted by many researchers in the field that angry and frustrated users are the 

norm rather than the exception. Bertino (1985) points out that “Users o f advanced hardware 

machines are often disappointed by the cumbersome data entry procedures, obscure error 

messages, intolerant error handling arid confusing sequences o f clustering screens’*. Booth (1989) 

lists examples of what sometimes provides difficulties:

• Designers do not properly understand the user, the user’s needs and the user’s working 

environment.

• Computer systems require users to remember too much information.

• Computer systems are intolerant of minor errors.

• Interaction techniques are sometimes used for inappropriate tasks.

As a result a variety of undesirable effects are produced:

• Computer systems often do not provide the information that is needed, or produce

information in a form which is undesirable as far as the user is concerned.

Alternatively, systems may provide information that is not required.

• Computer systems sometimes do not provide all of the functions the user requires, and 

more often provide functions that the user does not need.

• Computer systems force users to perform tasks in undesirable ways.

• Computer systems can cause unacceptable changes in the structure and practices of 

organisations, creating dissatisfaction and conflict.

• Computer systems can seem confusing to new users.

Setting explicit goals helps designers to achieve them. In getting beyond the vague quest for 

user-friendly systems, managers and designers can focus on specific goals that include well-
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defined system-engineering issues and measurable human-factor issues. The most common form 

of analysis of user’s activities is called task analysis. Task analysis is the process of analysing the 

functional requirements of a system to ascertain and describe the tasks that people perform. It 

focuses both on how the system fits within the global task the user is trying to perform and what 

the user has to do to use the system.

Once a determination has been made of the user community and of the benchmark set of tasks, 

then the human-factors goals can be examined. For each user and each task, precise measurable 

objectives guide the designer, evaluator, purchaser, or manager. These five measurable human 

factors are central to evaluation (Shneiderman, 1992):

1. Time to learn: How long does it take for typical members of the user community to 

learn how to use the commands relevant to a set of tasks?

2. Speed o f performance: How long does it take to carry out the benchmark set of tasks?

3. Rate o f errors by users: How many and what kinds of errors are made in carrying out 

the benchmark set of tasks?

4. Retention over time: How well do users maintain their knowledge after an hour, a day, 

or a week?

5. Subjective satisfaction: How much did users like using various aspects of the system?

How do we measure these factors? Human behaviour is observable; human performance is 

measurable. Measuring the performance of humans, using an interactive system, for example, 

requires empirical testing. This involves several phases, including the formation of a hypothesis, 

the design of a study with appropriate human participants, the collection of performance data 

based on observations of those participants performing tasks, analysis of data (usually via 

statistical methods), and finally, confirmation or refutation of the hypothesis (Hix and Hartson,

1993). Usability is a combination of the following user-oriented characteristics: ease of learning, 

high speed of user task performance, low user error rate, subjective user satisfaction, and user 

retention over time. That is, usability is related to the effectiveness and efficiency of the user 

interface and to the user’s reaction to that interface. It is not always possible to succeed in every 

category. There are often forced trade-offs that usually depend on the nature of a particular 

application. Project managers and designers must be aware of the trade-offs, and must make their
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choices explicit and public. There is a growing awareness among user interface designers that the 

user should not have to adapt to the interface, but rather that the interface should be designed so 

that it is intuitive and natural for the user to learn and to use.

So, what is user interface evaluation and how do we evaluate user interfaces? In Preece et al. 

(1994) evaluation is concerned with the gathering of data about usability of a design or a product 

by a specialised group of users for a particular activity within a specified environment or work 

context. Evaluation has three main goals according to Dix et al. (1993): to assess the extent of the 

system’s functionality, to assess the effect of the interface on the user, and to identify any specific 

problems with the system. The system’s functionality is important in that it must accord with the 

user’s task requirements. In other words, the design of the system should enable the user to 

perform the required task more easily. Evaluation at this level may include measuring the user’s 

performance with the system, to assess the effectiveness of the system in supporting the task. It is 

important to be able to measure the impact of the design on the user. This includes considering 

aspects such as how easy the system is to learn, its usability and the user’s attitude to it. In 

addition, it is important to identify areas of the design which overload the user in some way, 

perhaps by requiring an excessive amount of information to be remembered, for example. The 

final goal of evaluation is to identify specific problems with the design. These may be aspects of 

the design which, when used in their intended context, cause unexpected results, or confusion 

amongst users. This is of course related to both the functionality and usability of the design.

There are basically two kinds of evaluation of an interaction design. These are formative 

evaluation and summative evaluation (Hix and Hartson, 1993). The former is evaluation of the 

interaction design as it is being developed, early and continually throughout the interface 

development process. The later is evaluation of the interaction design after it is complete, or nearly 

so. Summative evaluation is often used during field or beta testing, or to compare one product to 

another. In practice, summative evaluation is rarely used for usability testing. It is usually 

performed only once, near the end of the user interface development process. Formative 

evaluation is begun as early in the development cycle as possible, in order to discover usability 

problems while there is still plenty of time for modifications to be made to the design. Formative 

evaluation is performed several times throughout the process. The distinction between formative 

and summative evaluation is in the goal of each approach.
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There is almost a consensus among HCI researchers that evaluation should not be thought of 

as a single phase in the design process (still less as an activity tacked on the end of the process, if 

time permits). Ideally, they agree, evaluation should occur throughout the design life cycle, with 

the results of the evaluation feeding back into modifications to the design. According to Preece et 

al. (1994) evaluation during the early design stages tends to be done in order to: predict the 

usability of the product or an aspect of it; check the design team’s understanding of users’ 

requirements by seeing how an already existing system is being used in the field; and test out 

ideas quickly and informally (as part of envisioning a possible design). Later in the design process 

the focus shifts to (Preece et al., 1994): identifying user difficulties so that the product can be 

more finely tuned to meet their needs; and improving an upgrade of the product. As a general rule, 

any kind of user testing is better than none. One can learn something valuable from even the most 

informal evaluation.

Most kinds of evaluations can be described as one of the following (Preece et al., 1994): 

observing and monitoring users’ interactions, collecting users’ opinions, experiments or 

benchmark tests, interpreting naturally-occurring interactions, or predicting the usability of a 

product. Several different kinds of evaluation depend on some form of monitoring of the way that 

users interact with a product or prototype. Observation or monitoring may take place informally in 

the field or in a laboratory as part of more formal usability testing. There are a number of 

techniques for collecting and analysing data. Data may be collected using direct observation, with 

the observer making notes or using some other form of recording such as video. Keystroke 

logging and interaction logging can also be done and often they are synchronised with video 

recording.

As well as examining users’ performance, it is important to find out what they think about 

using the technology. Surveys using questionnaires and interviews provide ways of collecting 

users’ attitudes to the system. Experiments are used to test hypotheses. All but the variables of 

interest need to be controlled. A knowledge of statistics is also necessary to validate results. 

Controlling all of the variables in complex interactions involving humans can be difficult and its 

value is often debatable. Consequently, HCI has developed an engineering approach to testing in 

which benchmark tests are given to users in semi-scientific conditions. The experimental set-up 

and procedure roughly follows the scientific paradigm in that the experimenter attempts to control
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certain variables while examining others. Although some of the same techniques are used to 

collect data (e.g., video recording, audio recording, keystroke logging and interaction logging), as 

when just observing or monitoring usage the evaluation is usually more rigorously controlled 

because the data that is collected will be analysed qualitatively to produce metrics to guide the 

design.

The purpose of interpretative evaluation is to enable designers to understand better how users 

use systems in their natural environments and how the use of these systems integrates with other 

activities. The data is collected in informal and naturalistic ways, with the aim of causing as little 

disturbance to users as possible. Furthermore, some form of user participation in collecting, 

analysing and interpreting the data is quite common. The aim of predictive evaluation is to predict 

the kind of problems that users will encounter when using a system without actually testing the 

system with the users. As the term suggests, some kind of prediction is involved. This may be 

made by employing a psychological modelling technique such as keystroke analysis, or by getting 

experts to review the design to predict the problems that typical users of the system would be 

likely to experience.

Selecting appropriate methods and planning evaluation are not trivial. Many factors need to be 

taken into account. Some are concerned with the stage of system development at which feedback 

is required, the purpose of evaluation and the kind of information that is needed; others are 

concerned with the practicalities of doing the actual evaluation such as time, the availability and 

involvement of users, specialist equipment, the expertise of the evaluators and so on.

5.6 Conclusions

In this chapter we have given an overview of HCI research that deals with user interaction. We 

were mainly interested in those issues that relate to the design of better user interfaces. In section 

5.2 we examined the characteristics of the major participants in human-computer interaction and 

the characteristics of the interaction itself. In section 5.3 we discussed the user interface design 

issues for ensuring the system’s usability. System life cycle and methods that can be adopted in 

the interactive system design together with the support for designers were not discussed. In 

section 5.4 we gave an overview of the most influential theories in HCI and their contribution to
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the design of more usable computer systems. In section 5.5 we discussed the role of evaluation in 

ensuring the usability of computer system.

We have described the human and what we know about human capabilities and limitations that 

can influence human-computer interaction. We have discussed mental models that are believed to 

guide behaviour at the interface, helping people to predict and explain system behaviour from 

what they observe, from what they know or think they have learned. Mental models are 

apparendy simpler than the entities they represent, and because they are incomplete, they tend to 

change over time as people’s understanding of the entities evolves. The term mental model is used 

interchangeably with conceptual model and user model in the literature, and opinions differ as to 

what exactly these terms mean. The most common use of the notion of user model covers the 

designer’s model of the user, the user’s model of the task, the user’s model of the system, and the 

system’s model of the user. User modelling can be useful in HCI in matching system features to 

user needs, suggesting metaphors to improve user learning, guiding design decisions and making 

system assumptions and choices explicit, providing predictive evaluation of proposed designs, 

identifying different user populations, and guiding the design of experiments and the interpretation 

of the results.

We have also examined some of the most influential techniques which have been used to 

represent the interaction. Modelling techniques provide means for quantifying certain aspects of 

HCI. Some models are performance oriented, others seek to map the functionality of user 

interfaces to assess the form of formal grammars for describing user tasks at the interface, in the 

sense that they describe the interface using symbols, rules and conventions characteristic of a 

grammar. The number of rules needed to describe a given interactive task is taken to reflect the 

cognitive complexity associated with completing the task. The aim of HCI is both to develop 

interaction techniques and to suggest where and in what situations these technologies and 

techniques might be put to best use. It is concerned with providing theories and tools for 

modelling the knowledge a user possesses and brings to bear on a task. Its purpose is to enable 

designers to build more usable systems by making explicit the user’s model of the task and 

system. At a task level the concerns are with the means by which the user’s needs and a system’s 

functions and information provision might be matched. The purpose of HCI is to develop 

methods for determining users’ needs, thus ensuring that systems provide users with the
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functions they need and the information they require (in the form they desire) without excessive 

effort on their part.

There are problems related to the way in which the presumed benefits of HCI are 

communicated to designers. On the one hand designers are being told to follow a set of general 

procedures and prescriptions of ‘good practice’, which although they may be based on occasion 

upon empirical evidence, in practice are expensive to use and are little different from what many 

designers think they do anyway. At the same time designers are being presented with a range of 

theories and methods at a level of formal complexity that works against the very principles they 

are promoting, i.e. usability (Forrester and Reason, 1990). In other words, the process of theory 

building and the practice of verification (of HCI models) becomes hopelessly intertwined with 

prescriptions for design practice. The gap between theoretical orientation and daily practice is 

considerable and designers may simply not see how or why it might be of use. Forrester and 

Reason (1990) argue that part of the problem is that using computers is a form of activity that 

offers new ways to carry out previously paper oriented activities, and at the same time offers 

opportunities for what appears to be a new context and new forms of behaviour.

The current prevalent HCI conception is that the interface is the representational ‘window’ 

through which the user addresses, manipulates, and is informed about a software system. 

Forrester and Reason (1990) argue that this is inadequate in that it decouples the user and the 

system, giving each a spurious autonomy and therefore advocate the following definition as a first 

step towards an “improved” concept of an interface.

An interface is a dynamic relationship between a user, an interest, (e.g., problem 

specification, task solution, browsing activity), and an ensemble o f representations 

(via screen, notepad, user's memory, and so on) and tools (e.g., software 

manipulation, pencil, user tactics and techniques).

A representation always presupposes and orients a user towards some interest and not others, 

some knowledge and not others. Representations provide the scenario and implicit parameters 

within which users conceive and act, and therefore, they impose constraints. Tools are designed 

for explicit uses on specific objects with known ends in view, although tools may be used in ways
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which were not intended by their inventors. Representations are always problematic to the degree 

that they must ‘stand for’ something else, and the direct mapping between what is being indicated 

and what is ‘meant’ by the indicating representation cannot be easily guaranteed. Dynamic user- 

interface solutions are essentially concerned with, and based upon, a history of use (which treats 

as significant certain memorable tasks, and forgets others); sets of expectations about procedures 

and task possibilities based upon both the current system being used and other systems; and the 

distinctiveness of use arising out of perceived predictions or projectability of actions and system 

responses which can both constrain and enhance use (Forrester and Reason, 1990). The software 

design practice is much more of a “hands-on” dynamic activity than is generally recognised in 

HCI (Bellotti, 1988).

It is noticeably easier to see the direct relevance and applicability of design guidelines to 

simulation than HCI theories. The problem is maybe more to do with HCI theories and their 

general applicability to the design of interaction systems, than it is in a particular relevance to 

simulation systems. The other possible problem is that simulation systems are not as simple as, 

for example, text editors. Nevertheless, the importance of HCI theories lies in the raising of some 

very important issues when designing user interfaces. An empirical approach to design of user 

interfaces stresses the importance of evaluation of user interfaces. A cognitive approach promotes 

the importance of designing effective interfaces which help users to create the accurate, consistent, 

and complete mental models. A cognitive approach also identifies the use of metaphors and 

analogies at the interface to explain concepts. A predictive modelling approach stresses the 

importance of quantitative time predictions to accomplish a task. The major contribution of an 

anthropomorphic approach is stressing the importance of assistance to users, particularly when 

errors occur. Therefore, examining a complex task domain may require entirely different 

approaches. The current simulation systems are typically visual interactive simulation systems that 

provide an integrated simulation environment. This type of environment includes a collection of 

tools for designing, implementing, and validating models; verifying the implementation; preparing 

the input data; analysing the output results; designing experiments; and interacting with the 

simulation as it runs. Such systems are inherendy complex and inevitably employ a broad 

selection of interaction styles and often use technology in a novel way. It is pity that HCI 

researchers have not yet recognised this goldmine of empirical research and development, and
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tried to research into the special needs and methods of these kinds of interactive computer 

systems.

To summarise, the following issues discussed in this chapter are relevant to simulation 

systems and if methods to apply them can be found, may increase the usability of simulation 

systems:

• Recognising the limitation of short-term memory, and designing simulation systems 

with that in mind. This especially applies to: design of on-line help that keeps users 

informed whereabouts in the help system they currently are; a continuous feedback 

provision (especially on errors); methods for getting a users’ attention onto the task 

being performed.

• Exploiting the knowledge that we can recognise material far easier than recall it. 

Methods that can be used in simulation systems can be: making analogical mapping 

more explicit by choosing visual objects on the screen that are familiar objects from the 

problem domain and therefore enable users to use their prior knowledge and 

expectations; making interaction objects perceptually obvious; making available much of 

the information of system structure and functionality.

• Promoting a good conceptual model that will ensure a good and consistent user mental 

model. A representation of a physical system in simulation models should have a spatial 

representation. Simulation systems should also keep a consistent analogic or metaphoric 

correspondence to features in the problem domain.

• Providing flexibile interaction. Simulation systems should provide users with freedom 

to choose how to interact with the system and give them control over interaction. 

Systems should also be designed so that they cater for new inexperienced users as well 

as expert and experienced users.

• Providing robust systems. Reversible actions are rarely employed in simulation 

systems. Good on-line help systems are another rare commodity in simulation systems. 

Recovering from errors is rarely supported by simulation systems.
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• Applying guidelines on display design. These guidelines are common sense that are not 

specific to simulation, but relate to simulation as well as to any other interactive 

computer system. In particular colour, screen clutter, message positioning, and font 

varieties and sizes are of obvious direct relevance.

• Recognising the importance of evaluation as stressed in an empirical approach. 

Interaction employed in simulation systems appears to be rarely evaluated, and both 

rigorous and informal evaluation techniques should be applied more often to give 

credibility to often unsubstantiated claims on the presumed benefits of visual 

simulation.

• Providing assistance for users. A good on-line help system, on-line tutorial, 

demonstration programs, and user documentation are fairly rare practices in simulation 

systems, and should be promoted.
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6.1 Introduction

The process of designing and constructing user interfaces is critical to building systems that 

satisfy customers’ needs, both current and future. This process includes the original design of the 

interface, implementation of the system, and modifications of the operational system. The user 

interface mediates between two main participants: the operator of the interactive system (a human 

being) and the computer hardware and software that implement the interactive system. Each 

participant imposes requirements on the final product. The operator is the judge of usability and 

appropriateness of the interface; the computer hardware and software are the tools with which the 

interface is constructed. Consequently, an interface that is useful and appropriate to the operator 

must be constructed with the hardware and software tools available.

There is very little published material on usability of simulation systems or models. It seems 

that the simulation community is not particularly interested in evaluating user interfaces of 

simulation systems, and to examine what changes would enhance the usability of such systems 

and thus widen the user group. That is rather strange since simulation systems probably include a 

much wider scope for interaction paradigms than most other computer software. Advances in 

computer technology, especially in computer graphics, are much more readily incorporated into 

simulation systems than in others. It is not a surprise that, for example, the simulation community 

was the first to introduce object-oriented programming (in the Simula language), or that the 

simulation community uses animation in a novel and unique way, opening a horizon to the wider 

community of what can be achieved.

Whilst conducting research on the case study we gained experience in the practicalities of 

simulation model development using bespoke programming. We have made some general 

conclusions in chapter 4 on the success of the case study user interface. A summary of the 

findings is that it is still fairly hard to develop user interface using bespoke programming, because 

of the lack of appropriate user interface development tools and tools for software integration. 

Since the case study was conducted the situation has improved. User interface development tools
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are becoming more sophisticated and more widely available. The tools are predominately oriented 

for Windows GUI interface development (e.g. Visual Basic). However, these tools do not save 

the developer from programming. And there is still a question of integration when more than one 

software application is used. In the case of simulation model developments it is more than 

apparent. There is evidently a need for more general development tools for building user interfaces 

to broad application areas. Hartson and Hix (1989) suggest some desirable requirements for 

interface development tools which apply to simulation too. These are:

• Functionality: the ability to produce a complex interface;

• Usability;

• Completeness;

• Extendibility: since the specific tools cannot address every need, the tools can be easily 

modified or the interface representation produced by the tools can be easily modified;

• Escapability: it should be possible to escape from the tool and use ordinary 

programming to produce an interface feature;

• Direct manipulation: visual programming - the dialogue developer works directly with a 

visual representation of the end-user’s task-oriented objects and the results are 

immediately visible and easily reversible;

• Integration: a set of tools should have a single integrated interface for accessing all the 

tools and a uniform interface style across all tools;

• Locality of definition: the ability to give localised definitions that apply to large parts, or 

all, of an interface - using shells or object-oriented implementation environments;

• Structured guidance: help from the tools in organising the interface development 

process - built-in tutorials, computer-aided instruction, on-line help.

The extra requirements for simulation relate to the complexity of the problem being modelled, 

so that the interfaces have to handle this complexity in what is typically a unique application.

We have analysed user interfaces employed in several simulation systems and summarised the 

findings. We have recognised good practice and also identified areas where improvements would
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be beneficial. We have conducted a literature search in HCI and tried to identify findings that can 

be applicable to simulation systems. The objective of this chapter is to combine the practical 

experience gained in conjunction with relevant HCI frameworks. In this chapter we try to make 

some general observations about user interfaces to simulation systems and make some 

recommendations on possible improvements. The proposed improvements are meant to improve 

usability and not the modelling capabilities of these systems. There is no doubt that the proposed 

enhancements are based on subjective argumentation even though they are set against the available 

HCI theory. There is also no doubt that these recommendations have evolved mostly from 

empirical evidence. We argue here that most current software development, including simulation, 

has always been based on empirical evidence. Theory often follows practice in order to attempt to 

generalise the accumulated practical experience, or to make ‘rational* explanations as to why the 

implemented solutions are good or bad. Nevertheless, new developments are still practice driven, 

and not theory driven. The evidence is present everywhere. The most obvious ones are the 

Windows and Macintosh based interfaces that were influenced by Xerox Star, where computer 

graphics programmers have emphasised the multiwindowed desktop spatial metaphor as a basis 

for appearance and interaction. More than ten years on, the same metaphor is still a dominant one 

regardless of the variety of application domains and the inappropriateness of the desktop metaphor 

in many of these domains.

It is certainly easier to use well known, established interface conventions than to invent and 

develop new ones. Most of the user interface guidelines as we know now are based on a GUI 

kind of interface. HCI theory can help us analyse the usefulness of an interface, it can help us to 

design better screens, but it is doubtful whether it can help to start a completely new framework. It 

is not our intention to dive into muddy waters either. Instead, we will, like most practitioners, 

start from what we already have and try to see where can we got from there. In other words, we 

are looking at possible enhancements of user interfaces for simulation systems, and therefore 

attempting to improve the usability of such systems. We will not attempt to examine user interface 

tools. This would take this research in an entirely different direction. It can be left as a future 

research project. We examine simulation environments, data input/model specification, simulation 

experiments, simulation results, and user support and assistance. We treat them in isolation even 

though we are aware that these aspects of simulation systems are highly intertwined, and that
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changes in one part of a system inevitably mean change in another part/s. Where appropriate, 

connecting material will be outlined.

6.2 Simulation Environments

Simulation systems provide unusually rich environments that support many diverse tools. Visual 

programming tools are standard features in all VIS systems, and drawing tools are very common. 

Dynamic icons and animation are supported by most visual simulation systems. The interactive 

change of the simulation parameters and of the speed of animation whilst the simulation is being 

executed, are also often provided. Panning and zooming is another quite common facility. 

Regardless of whether the simulation systems are data-driven simulators or simulation languages, 

it is becoming common to provide some sort of integrated model building environment. The 

provision of completely self-sufficient simulation environments is important for the following 

reasons:

• it reduces the development time,

• it supports application consistency,

• it can aid the developers throughout the development cycle,

• it can support model completeness,

• it can provide checks of model validation.

The users of simulation software are often experts in special application fields. Kamper (1993) 

points out that these users, being laymen in information science, should be supported as much as 

possible by the simulation tool. The areas of concern are: validation, the development of simple 

models, and the development of complex models which contain, for example, non-typical 

phenomena in a special problem class. She advocates that the simulation tools should support the 

model builder in the first phases of becoming familiar with the tool, and in further work to model 

more complex phenomena without being forced to learn new concepts of model building. She 

sees the development of task specific user interfaces which relate to the respective knowledge as 

an aid to modelling. Bright and Johnston (1991) point out the necessity of ‘ease of use’ of 

simulation software. They see ‘ease of use’ as a combination of structural guidance in the model

J. Kuljis User Interfaces and Discrete Event Simulation Models Page 220



Chapter 6: Proposed Enhancements

development process, error prevention, help provision, and the rate at which familiarity with the 

software is gained. However, they are concerned that the provision of these requirements in visual 

interactive modelling software will hinder generality and reduce its power.

In this section we make some suggestions as to how simulation environments in existing 

simulation systems can be adapted to provide more usable development environments. We see 

room for improvement in the following: model development aid, colour use aid, and flexibility of 

interaction.

6.2.1 Model Development Aid

The experience we have gained during this research convinced us that the model development 

process is generally not well supported. To substantiate this claim we shall use data gathered on 

six simulation systems, that was reported in chapter 2. Five of these simulation systems are data- 

driven simulators (XCELL+, Taylor II, ProModel for Windows, Micro Saint, and Witness for 

Windows) that use some sort of diagramming tools for representation of model logic, and one is a 

simulation language (Simscript II.5 for Windows). All six systems provide modelling 

environments. Two systems are general purpose (Micro Saint, Simscript II.5) whereas the other 

four are manufacturing or mainly manufacturing. Graphic elements for the representation of the 

model logic are pre-defmed for all simulators, and cannot be changed for two of them (XCELL+ 

and Micro Saint). Names of model elements (i.e. machines, parts) are pre-defmed and cannot be 

changed for any of the simulators, although the user can provide labels for individual instances of 

elements to describe better the domain related elements (i.e. an element machine can be labelled 

‘clerk’ or ‘bank teller’ in a bank model using Taylor II). Similarly, all examined simulators use 

fixed, pre-defined, and unmodifiable attribute names (fields). Data entry is usually facilitated 

through pre-defined, unmodifiable fill-in forms which use the system’s own element names, 

attribute names (fields), which usually have default values provided. Data validation is not a 

common facility (only in Taylor II and ProModel for Windows).

These attributes support mainly modelling in manufacturing domain. However, if the problem 

modelled is from a different domain manufacturing than the modeller has to map the entities of the 

domain modelled into the manufacturing domain. The analogical mapping that the modeller has to
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perform throughout the modelling process can cause many problems. Firstly, a heavy demand on 

the user’s memory is required in order to perform constant translation of used objects to what 

these objects actually represent. Secondly, the concepts that have to be used have no close and 

natural association with the tackled problem. Thirdly, the tasks that have to be performed during 

the modelling process may not at all be related to the problem at hand. The effectiveness and 

leamability will therefore be seriously hindered. This will not promote the user’s positive attitude 

towards the system.

Background drawing tools are rarely facilitated (Taylor II, ProModel for Windows, Simscript 

II.5 for Windows), as is importing graphics from other applications (ProModel for Windows, 

Micro Saint, Simscript II.5 for Windows). Icon editors are more common (not provided in 

XCELL+ and Micro Saint), even though the majority of them only provide elementary drawing 

capabilities. The user is rarely allowed to control statistics collection (only in Micro Saint and 

Simscript II.5) and the way the statistics is displayed (only Simscript II.5 gives complete 

freedom). Report customisation is rarely allowed. If this facility is provided, only a limited set of 

options can be exercised. On-line help, if available, usually does not extend to anything more than 

an overview of basic system concepts. Context sensitive help is scarce and good context-sensitive 

help is almost non-existent (the exception is ProModel for Windows). On-line help for error 

messages is not available on the examined systems. The customisation of the modelling 

environment is virtually an unknown commodity. A limited customisation is offered only in 

ProModel for Windows. The development of separable user interfaces for particular simulation 

problems is possible only in Simscript II.5 for Windows, which facilitates user interface 

development by providing templates for menus, fill-in forms, and several types of graphs that can 

be then tailored to suit the problem.

An essential aid in model development can be facilitated by selecting model components which 

are relevant to the model builder’s modelling requirements. Pidd (1992b) points out that the 

graphics components must be directly linked into the simulator itself, so to avoid displays which 

are not a direct result of state changes in the simulation and that the model builders should be 

given the freedom to lay out the screen display by use of interaction devices, choosing how to 

represent the entities as the simulation proceeds from a provided set of icons. Our proposal is that 

simulation environment should provide model developers with the following:
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1) Several pre-defined problem domains.

2) A facility to create new problem domains.

3) A facility to design and/or choose graphical representations for elements in a problem 

domain.

4) A facility to set default values for a problem domain.

5) A facility to set defaults for statistical data collection.

6) A facility to set defaults for the graphical presentation of simulation results.

Provision o f the most common problem domains

Let us first define what we mean by ‘problem domain’. In the case of data-driven simulators, all 

modelling elements provided by the simulator are available to the model designer to enable the 

design of any particular problem. Let us assume that we want to model a bank using Witness for 

Windows (example used in Witness manual). The bank model consists of customers entering a 

bank, joining the queue for a clerk, and a clerk who serves one customer at a time. In Witness the 

following physical elements are available: parts, fluids, buffers, tanks, machines, processors, 

conveyers, pipes, vehicles, tracks, and labour. The bank example will have to make use of three 

modelling elements: machine for a clerk, part for a customer, and buffer for a queue. This means 

that the other eight elements are obsolete in this domain. Therefore the system fails in matching 

with the user task and in the terminology.

Our proposed ‘ideal’ simulation system would come with some of the most common problem 

domains already supplied, at least those the vendor claims that the system is intended to model. 

Model elements in any particular problem domain would have names relevant to the problem 

domain. Therefore, the above example ‘bank domain’ would already be supplied in a system and 

available for the user to choose from a list of problem domains. Element names in the ‘bank 

domain’ would be customer, queue, and clerk. Once the domain was chosen the user would be 

able to develop a model of a particular bank without having the burden of obsolete modelling 

entities and inappropriate entity names. The graphical representations of modelling elements 

should be domain specific and appropriate for the problem domain (i.e. a customer will be an icon 

representing a human, a queue will consist of several customers, and a clerk will be represented as
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a human sitting at a desk). The proposed provision would support the user in matching the 

modelling elements with the task and by providing the terminology that is appropriate for the task 

carried out and thus better support the effectiveness and leamability of the system.

A facility to create new problem domains

It is anticipated that the vendor for our ‘ideal’ simulation system cannot supply all problem 

domains that modellers will tackle, so therefore the system should have a facility to create new 

problem domains. A new problem domain can be created either from an existing problem domain 

(a subset of it) or from a system’s generic domain that provides a full set of all available 

modelling entities under generic names. As the user selects a modelling entity for the domain 

under construction, he/she should be prompted to provide an appropriate name. After all 

modelling entities are defined and acknowledged, the system will automatically modify all 

references to corresponding entities and substitute for all new domain entity names (generic or 

names in a parent domain). References will be substituted in menus, fill-in forms, reports, on-line 

help, etc. The system will also erase all references to unused entities in all menus, forms, reports, 

on-line help etc. The user will be prompted to supply default values relevant to the new domain. 

The user will be given guidance to choose or to create graphical representations of modelling 

entities for the new problem domain. Once a new problem domain is created the user will be given 

an opportunity to save it in a list of existing problem domains so that it can be made available for 

future use. This provision would enable the modeller to better match the concepts and tasks to the 

problem domain of interest. Consequently, the effectiveness and leamability of the system will be 

better supported

A facility to design graphical representations o f modelling elements

During the definition of a new problem domain the user will be given the opportunity to select 

graphical representations of the domain entities from a library of icons supplied by the vendor. If 

the user cannot find suitable icons a facility should be provided to either modify existing icons or 

to draw new icons. This facility would normally be an icon editor with a good drawing 

capabilities. Provision should be also made to import an icon from some other drawing package or 

from icon libraries. This provision would enable the user to choose either a more ‘realistic’ or 

preferred graphical representation of the model’s entities and therefore, promote a positive attitude
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on his/her part. If the familiar graphical representations are used to model a problem the user’s 

memory load would be reduced.

A facility to provide default values to problem domains

All system supplied problem domains would come with default values relevant to respective 

problem domains. When the user creates a new problem domain there should be a facility that 

enables the specifying of default values for the new domain. A valid data range or set, where 

appropriate, can be supplied as well to facilitate data validation during the model development 

process. This facility should prompt the user during the process of creation of a new domain. It 

should be also made available for the user to make changes of default values in any other problem 

domain in the list. This provision would reduce the time and effort necessary to specify 

subsequent models in the same domain. It will also reduce the possibility of making errors by 

either preventing the user to enter non-valid values or by preventing the user omitting any data 

necessary to carry out the model execution.

A facility to set defaults fo r  statistical data collection and graphical presentation

Similarly, the user will have a facility available to choose which statistical data will be collected as 

a default for a problem domain. The domain can be either a new one or an already existing one. 

Presentation preferences can also be made as default values for a problem domain. This provision 

would facilitate the flexibility of the modelling environment to better suit the needs of a particular 

problem being modelled.

The above provision would make model specification a much easier and faster process. The 

users will not have to use names and visual representations that are awkward for a chosen domain 

(i.e. machine for a clerk), and make mental transformations to create correspondence between 

model names and their visual representation of the entities they represent. They will be given 

flexibility to tailor these aspects of the simulation environment to their own preferences. Hence all 

four usability dimensions will be better supported. Dialogue independence should be facilitated for 

all user interface components in order to make the above recommendations possible.
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6.2.2 Colour Use Aid

There are a number of reasons why it is difficult to design with colour. The appearance of colour 

depends on the colours in the environment that surrounds it. Any colour is influenced by its 

location, its placement, and the size and shape of the area it fills. We therefore cannot choose 

colours in isolation; they must be chosen in context. Our colour compositions may need 

refinement and alteration with the addition of every colour. Computer colour design has a unique 

problem. How should colours be selected for dynamically changing displays? Ambient lighting 

also affects the appearances of colours. Further more, computer monitors vary in their calibration. 

There is no guarantee that a particular colour combination on one screen will look exactly the same 

or have the same effect on another screen. There are other important factors that make colour 

interface design even more complex. Users are diverse in their colour perception capabilities, and 

have cultural differences that affect meanings associated with colours. Salomon (1990) raises 

some interesting issues regarding the use of colour in a display design. She distinguishes between 

two interfaces issues regarding colour. Firstly, how to design interfaces that use colour to impart 

information to the user. That is, to create interfaces where colour either provides the user with 

information not available otherwise, or where colour redundantly reinforces information imparted 

through another medium, such as text or shape. Secondly, how to design interfaces that allow 

users to choose colours for their own devices.

Factual information can be imparted through colour coding. For example, a map uses colour 

coding to indicate climatic zones by showing deserts in yellow and tropical rain forests in green. 

Colour can also create an environment for the user on the screen. Skilled colour designers should 

be involved throughout the design process. People often make mistakes and overuse colour to the 

point that visual clarity is degraded. There are some quite horrific examples of abuse of colour use 

in simulation systems (e.g., XCELL+, WITNESS) that seriously decrease their usability.

Interfaces that allow users to choose colours take the form of various colour selection tools, 

and can take the form of simple ‘pick one colour out of ten* tools to intelligent advisors that help 

users select entire palettes of colours. Finding a suitable coding scheme can be difficult Often, 

our instincts can lead to good codes. Providing a legend, as many maps do, may be a good 

alternative when less intuitive codes are used. Additionally, codes can be learned over time.
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Through cultural conditioning we have developed quite a few strong colour associations. Colour 

can be used to give a user intimation of reality. It can improve a user’s understanding of the 

situation and support immediate comprehension. When presented in conjunction with certain 

shapes and locations, colour can create strong associations and therefore aid recognition and recall 

(Salomon, 1990). These factors have a direct implication to visual simulation where a visual 

representation of a ‘real world’ problem should be made as realistic as possible. Symbolic 

representations hinder recognition and require much more mental effort on the part of the user.

Salomon (1990) proposes several ways that the users can be helped in selecting colours for 

interface displays. She proposes that the users should be given a facility for choosing a colour by 

mixing colours that are not based on a standard colour mixture using red, green, and blue colour 

parameters, which are often represented as number parameters which are difficult to use and do 

not correspond with peoples’ everyday experience in mixing colours. If users have to select more 

than a single colour at a time, they should be supported by a tool that helps the selection of a set of 

colours that work together. Non expert colour users could benefit from a program that would 

provide a dynamic, interactive way to examine numerous colour combinations. Programs that 

provide assistance to the user in colour related tasks could be tailored to various application 

domains. Simulation systems where use of graphic and colour is a standard should therefore be 

very good candidates for such assistance. The assistance should be provided as an integral part of 

the icon editor and as an environmental adviser when all graphical objects are put into context 

(background, icons, graphs, text, etc.). This provision would promote faster development of 

graphic objects, improve the clarity and legibility of screen objects, and thus promote 

effectiveness and leamability of the system.

6.2.3 Flexibility of Interaction

The structural context in the model should be expressed clearly, so that the graphical 

representation makes visible the relations in the model like the dependency or non dependency of 

activities or events. Kamper (1993) argues that the sequence in which the model components are 

combined, with the possibility to change between the task of combining elements and selecting 

constructs from the library, should be decided by the model builder. This sort of flexibility is
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present in all examined simulation systems. What we advocate as flexibility of interaction goes 

beyond the freedom to choose sequence in which the tasks are performed.

Flexibility of interaction should include changing the system environment to suit the 

developer’s preferences and saving the preferred environment for future use. Changes in 

environment can include elementary changes like, for example, background colour, placement of 

application tool bars and menus, placement and size of application windows and dialogue boxes, 

text font types, etc. More advanced changes can include changes in the main application menu 

like, for example, changing selection names, selection order, adding selections to the menu, etc. 

In addition, users should be supported to tailor fill-in forms by changing form layout, colour, or 

by including additional labels. The user should be given the opportunity to choose a preferred 

navigation technique, or to design navigation shortcuts setting his/her own commands for such 

shortcuts. If the user is given the freedom to tailor the environment to carry out tasks in a desired 

or in a familiar way the effectiveness with which the tasks are performed will increase. This 

flexibility will also promote a positive attitude towards the system.

63 Data Input/ Model Specification

The least effort in existing simulation systems has been invested into data input facilities. It is 

apparent that this part of the system is considered as less important than, for example, the visual 

simulation part. Most of the papers on simulation systems only briefly mention the data input 

capabilities of systems, if at all. However, there is room for a great deal of improvement in the 

domain of data input and/or model specification that would improve existing simulation systems. 

We have already mentioned that data validation is supported in only two of the six examined 

simulation systems. None of the systems offers database capabilities for keeping multiple 

variations of a model. Data input forms, if available, are generally poorly designed. There is no 

help provision for individual data fields. Importing data files is supported in four of the examined 

systems. The format of imported data is usually an ordinary ASCII text file. Therefore, there is 

much to be improved in the way the simulation data is communicated to the systems. The 

following list represents features that every simulation would benefit from, some of which are 

already reported on in Kuljis (1994): data independence, modeless dialogue, facilities for
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representation of complex data structures, data validation facilities, on-line help facility, and 

facilities to accept data from some of the major database and spreadsheet software.

Dialogue independence

As already mentioned earlier, it is important that each part of the system preserves the 

independence of the interface part from the processing part. This requirement is particularly 

important for the data input or model specification. The metaphor for internal data representation 

should not determine the metaphor on how the data is presented to the user. The data should be 

presented to emphasise the user task and the task domain as far as possible. The screen design for 

data input should be independent of the data, so that changes in the display design do not affect 

the data. Data independence is essential if flexibility of interaction is to be provided.

M odeless dialogue

When providing interaction through which data input is provided to the system it is important to 

let the user escape an endless loop if he/ she wants to abandon the current operation/ procedure. 

Modal dialogue boxes can be quite off-putting and, if used in a system, they have to be supported 

by adequate guidance as to how to respond to a request.

Facilities fo r  representation o f complex data structures

Simulation models can have complicated logic with complex interactions among their entities that 

is not always supported by the data input facilities of the existing simulation systems, especially 

for new problem domains. The large volume of data, data complexity and provisions for keeping 

the definition for more that one model configuration, calls for sophisticated data storing facilities, 

possibly a database management system, which in addition supports data integrity. Mathewson 

(1989) recognises the value of database facilities to enable the user to carry over some of the 

experiences and benefits of previous models. The proposed provision would promote the 

effectiveness of the system enabling the user to relatively easily handle the data required to specify 

a model.
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Data validation facilities

Data validation has several aspects: validation of a single input against a permitted range of values; 

validation of the overall consistency of data; and validation of the logic of the system. Validation 

of a single input is simple and if not already provided in the system can easily be added. The valid 

data range or set that was supplied by the user, or the vendor, can be used. The problem can be 

how to check the overall data consistency. If the data is kept using a database system some of the 

inconsistency can be resolved by the inherent database facilities. Of course, the consistency of 

data that influences the logic of the model cannot be checked. If a system has data validation 

facilities, errors related to data being out of a valid range can often be prevented. This provision 

increases user confidence in the system and the effectiveness of the system.

On-line help facilities

The end user can be aided in using the system if the system provides help facilities. These 

facilities can be implemented in the different levels of the system. At the lowest level help can be 

provided for each individual input and for general usage of the system. Examples of valid values 

can be provided at least for the fields which are not provided with default values (it is not always 

obvious which default values will be appropriate, and if inappropriate default values are supplied 

they can confuse the user). At a higher level, help can be provided to explain the consequences of 

a particular action or set of actions, explanation of error messages, and explanation of some more 

specialised concepts, e.g. the statistical concepts used. On-line help can be invaluable if pre­

emptive (modal) dialogue is used in a system. A good on-line help provision is important in 

promoting effectiveness, leamability, and a user’s positive attitude towards the system.

Facilities to accept data from some o f the major database and spreadsheet 

softw are

Companies that keep most of their data on microcomputers use either a database or a spreadsheet. 

It would be convenient to use the data in that format for the simulation model specification rather 

than inputting it again in some other format required for some particular simulation software. File 

compatibility with the market leader databases and spreadsheets would therefore be a very 

desirable facility. If the user already has data, required for the modelling, stored in some other
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application, the proposed provision would enable a fast data transfer and therefore increase 

effectiveness and promote user willingness to use the system.

6.4 Visual Simulation

Many authors argue that the advantages of VIS include better validation, increased credibility (and 

hence model acceptance), better communication between modeller and client, incorporation of the 

decision maker into the model via interaction, and learning via playing with the VIS. However, 

there is little published empirical evidence to substantiate these claims. Computer animation is one 

of many techniques used in the process of simulation model validation and verification. Through 

computer animation a “model’s behaviour is displayed graphically as the model moves through 

time” (Sargent, 1991). In addition, animation can be used to enhance a model’s credibility and, 

according to Law and Kelton (1991), it is the main reason for animation’s expanding use. Swider 

et al. (1994) feel that animation can provide convincing evidence that model behaviour is 

representative of the system under study. Cyr (1992) see advantage of using animation in its 

ability to demonstrate problems with the model itself which would otherwise be difficult to detect. 

Kalski and Davis (1991) point out that summary statistics sometimes do not show the active 

interactions of processes in a system, and they advocate the use of animation as an aid to the 

analyst in identifying the system status under which, for example, bottlenecks occur. There are 

many animation proponents in the simulation community, especially the software vendors, 

claiming the benefits of animation. However, there is very little published empirical evidence 

which would suggest how to design effective animation. As we have already discussed in chapter 

2, there are many problems in clearly depicting the model behaviour through an animation display.

The problem is recognised by O’Keefe and Pitt (1991) who find that the acquisition of more 

formal evidence will provide a better scientific basis for research and development in VIS, and 

more importantly, it will aid the provision of guidelines on pragmatic issues such as animation 

design, display preference, and required interaction style. They conducted an experiment where 

25 subjects were asked to solve a set problem using a VIS model. The use of the model was 

monitored by the simulation program. The aim was to determine what sort of display (an 

animation, a listing, and dynamically changing icons) was preferred and how the choice of a 

display type influences the performance. They found that subjects have a strong preference for
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either the animation or the graphics. No subject made use of the listing. The other important 

finding is that there is no observable pattern of usage that directly affects performance. The 

authors therefore advocate that VIS should be made more flexible and less constraining. 

Flexibility in interactions and different types of displays should allow the VIS to be usable 

irrespective of the users cognitive style, as long as each type using the VIS can have access to 

their preferred display. Carpenter et al. (1993) conducted an experiment with 47 subjects to 

examine how well the animation communicated the operation of the simulation model. They 

considered combinations of three aspects of animation - movement, detail of icons, and colour. 

The results suggested that movement of icons is more important than their detail or colour in 

communicating the behaviour of a simulation model with moving entities. The subjects identified 

problems more accurately in less time when viewing animation with movements than without 

movements. Another experiment examined the role of animation in communicating invalid model 

behaviour. Swider et al. (1994) used 54 subjects to obtain objective and subjective measures in 

determining which combinations of animation presentation and speed were best for displaying 

violations of model assumptions. The objective results indicated that the slower presentation speed 

was superior to the faster speed and that animation with moving icons was superior to animation 

with bar graphs. A slower presentation speed resulted in significantly shorter response times with 

the same or better problem identification accuracy. Based on the results of this study, Swider at el. 

(1994) recommend: the use of pictorial display with moving icons for simulation models with 

moving entities; the facility to set the presentation speed to make discrete differences visible; and 

to avoid overloading the user with too much visual information.

The results of the above two studies are not surprising and they match our intuition and 

common-sense. However, their importance is in substantiating our intuitive judgement with some 

mote concrete evidence. Animations with moving icons are often used in current simulation 

systems even though presentation of animation is not often well thought about. Ideally, it may 

seem desirable to present information on the screen that has characteristics similar to the objects 

we perceive in the environment. The visual system could then use the same processes that it uses 

when perceiving objects in the environment. Graphical means of description must be given 

preference over written ones because they present information in a more compact manner. Factors 

that contribute towards the meaningfulness of a stimulus are the familiarity of an item and its
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associated imagery. The graphical representation of constructs for different applications should 

give definite information about the type of model component it represents, such as waiting 

queues, customers or servers in queuing systems or stores, or suppliers in store keeping systems 

(Kamper, 1993). Designing manufacturing applications, as suggested by Preece et al. (1994), 

might benefit from the use of realistic images in helping the users design and create objects. 

However, they anticipate that there might be a problem in the high-cost of real-time image 

generation and that for the actual needs of an application, such a degree of realism is often 

unnecessary. Nevertheless, we believe that it can help if some approximations of real life objects 

are used, Stasko’s (1993) animation design recommendations reported in chapter 5 should be 

observed. These recommendations state that animation should provide a sense of context, locality, 

and the relationship between and after states. Furthermore that the objects involved in an 

animation should depict application entities and that the animation actions should appropriately 

represent the user’s mental model. If these recommendations were followed, the effectiveness, 

leamability, and the enthusiasm of a wider user population to use simulation systems might 

increase.

Animation speed in simulation systems is commonly made adjustable by their users. There are 

some problems with the animation speed that are not envisaged by the software developers. 

Simulation software is built for a particular hardware configuration and therefore for a particular 

processing speed (in MHz). The speed of animation (moving icons) is dependent on the computer 

processor speed. Hardware developments are much faster than software developments and by the 

time simulation software, based on a particular configuration, has reached the market it may well 

happen that the market has already adopted much faster computers. The user will probably install 

software on a much faster computer than it was intended for. Even though the user may have a 

facility to change animation speed, the slowest available speed may still be too fast for an 

animation observer. We have experienced that problem ourselves whilst examining simulation 

software reported in chapter 2. Therefore, simulation software developers have to pay attention to 

that aspect and provide a facility that can cope with speed irrespective of the processing speed. 

This will enable the user to understand what is happening in the model and hence promote the 

overall usability of the system.
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The eye-catching, appealing nature of animation can tempt designers to apply too many facets 

to an interface. Animation is, however, another attribute in which the often quoted design 

principle “less is more” does apply. Nevertheless, if the screen design is kept clean, simple, and 

well organised some redundant information can be quite useful to the user. This is exemplified in 

the case study CLINSIM where the animation screen is divided into two areas - realistic animation 

with moving icons representing the model’s entities, and the information part that keeps the user 

informed on queue sizes, time, and patients’ waiting times. The moderation principle is something 

that many simulation system developers should learn about. User interfaces that have screens 

crowded with too many objects, large numbers of offensive colours and incompatible colour 

schemes is more of a rule than an exception. To enable ‘good’ design for animation, the tools that 

facilitate graphics design should be made sophisticated enough to support such developments. 

Therefore tools should: provide greater number of drawing object templates; provide an extensive 

colour palette (at least 64 colours) and colour aiding facility; support modification of graphic 

objects (erasing parts of graphics, filling whole or parts of graphic objects with colours or 

patterns, resizing, rotating, flipping, etc.); provide on-line help; combining several graphical 

objects into one; and so on.

6.5 Simulation Statistics/Results

In each model, special components are necessary to carry out statistical computations. The model 

builder should have the choice to combine such statistical components, dependent upon his/her 

computational requirements, with those representing the real system. In order to make plain the 

difference between these “artificial’ objects and those representing the real system, the artificial 

objects should be represented by an icon which clarifies the character of such objects (Kamper, 

1993). A simulation is a computer-based statistical sampling experiment Thus, if the results of a 

simulation study are to have any meaning, appropriate statistical techniques must be used to 

design and analyse the simulation experiment Law (1983) points out that the output processes of 

virtually all simulations are non stationary (the distributions of the successive observations change 

over time) and auto correlated (the observations in the process are correlated with each other). 

Thus, classical statistical techniques based on independent identically distributed observations are 

not directly applicable.
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Graphical coding can provide a powerful way of displaying quantitative data. In particular, 

graphs are able to abstract important relational information from quantitative data. The main 

advantages of using graphical representations (Preece et al., 1994) are that it can be easier to 

perceive:

• the relationships between multidimensional data,

• the trends in data that are constantly changing,

• the defects in patterns of real-time data.

Considerable effort has been invested in the presentation of simulation results. Often this 

effort lacks proper insight into the particular needs of simulation systems. Pidd (1992b) argues 

that there is no need for special facilities for representing simulation results and performing 

statistical analysis since the data can be imported into a standard analysis program. This 

dissertation argues that, even though much has already been done in graphical representation of 

simulation results, there are still issues that need to be tackled to improve the usability of 

simulation systems, some of which are already reported by Kuljis (1994): inter-connectivity of the 

results, explanation facilities, representation of results independent of the processing (i.e. interface 

independence), a facility to modify graphs, facilities to save results in files compatible with the 

major database and spreadsheet packages, and a facility to print tables and graphs.

Inter-connectivity o f  the results

Summary statistics sometimes do not show the active interactions of processes of a system. There 

is a need for some logical connection of the isolated statistical results. Such a facility should 

provide insight in the reasons for the particular behaviour of the simulation experiment. An 

Activity Cycle Diagram (ACD) might provide the logical inter-connectivity to underpin type 

structures using similar links to those used in hypertext systems for presenting output analysis, a 

navigation system and the inter-relationships. Some preliminary research has already been done to 

see how machine learning techniques can supply the links among dependent variables (Mladenic et 

al., 1993). The proposed facility would benefit the users with a better understanding of the model 

behaviour and therefore promote the effectiveness of the system. The effectiveness of any 

decision-support system, like for example a simulation system, is determined mostly by the extent 

to which it actually aids its users in the decision process.
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Explanation facilities

In the case where a simulation system is developed for an end-user, there is a need to provide an 

explanation of the simulation results. Regardless of how attractively these results are presented, 

end-users often lack the mathematical background necessary for understanding the simulation 

results. As Bell (1991) points out, “...replacing numbers with multi-coloured graphics does not 

necessarily improve the usefulness of the display for decision making”. It is questionable which 

method would be best suited for this purpose, since every interpretation depends on the model 

specification. For example, O’Keefe (1986) considered expert systems as a possibility for taking 

the role of explaining model results to the user. Mathewson (1989) recognises the need to aid the 

user in the interpretation of results which are stochastic, and proposes a knowledge-based system 

to take this role. Mladenic et al. (1993) see role of machine learning as an aid the interpretation of 

simulation results. The proposed provision would greatly improve leamability and therefore the 

effectiveness of simulation systems.

Representation o f results independent o f the processing (i.e. interface 

independence)

Every simulation system, especially one developed for the end-user, should enable the display of 

simulation results independently from the processing. This means that the results can be examined 

after or during the simulation run. The sequencing of the results display should be left to the user 

hence providing the user with greater flexibility in using the system.

A facility to modify graphs

While viewing the graphical representation of simulation output, the modeller often finds that the 

graph representing the data is not appropriate to communicate accurately a particular simulation 

outcome. Even though the modeller may have had a chance to set the graph type and scaling 

whilst specifying simulation output prior to the simulation experiment, he/she cannot predict what 

the output data will be. Therefore, the modeller should have a facility after the simulation 

experiment, or if dynamic graphs are used during the simulation experiment, to modify the graph 

type and scaling to an appropriate form for the actual data. This would provide the user with more 

flexibility in using the system and enable him/her to present information in a form that better suits 

his/her preferences or that improves the understanding of the results.
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Facilities to save results in files compatible with the major database and 

spreadsheet packages

Very often the results of a simulation experiment can give an insight into the company’s operating 

practices and serve as a decision support tool. Statistical results can be incorporated in company 

documents and reports. This is not always easily or elegantly done with existing simulation 

software. It would be convenient to have files containing the simulation results exported into a 

company standard spreadsheet, so that an adequate graphical presentation can be undertaken, and 

the results can be incorporated into documents using a company standard word processing 

package. It would probably be useful to have a facility to export the statistical data into the most 

popular databases. The proposed provision would help the user to use the output data in a way 

that is convenient and familiar to him/her and therefore promote a positive attitude towards the 

system.

A facility to print tables and graphs

Printing graphs is still not a common facility in simulation systems whereas printing tables is 

usually supported. However, it is often useful to have printouts of simulation output. Many 

modellers resort to printing the screen which is awkward, or to grabbing screen images. The latter 

is achieved using either Windows clipboards, or DOS screen capture software, or other similar 

facilities. This provision would help the user to have the results of a simulation available for later 

use. It can make it possible to conduct comparative analyses of several model scenarios. 

Therefore, this facility would promote effectiveness. Like the previous facility, this provision 

would also promote a user’s willingness to use the system.

6.6 User Support and Assistance

User manuals for simulation systems are usually poorly written and need a lot of improvements. 

Of the six simulation systems we have examined only two provide Tutorial (Taylor II and Micro 

Saint), three provide Getting Started (XCELL+, ProModel for Windows, and Micro Saint), two 

provide Reference manuals (Pro Model for Windows and Simscript II.5). An index is provided in 

all of them except XCELL+, but it usually lists only system concepts using a particular simulation 

system’s terminology. Generally, terminology used in the user manual is too technical. Examples,
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if provided, are not followed throughout the development process and are therefore of not much 

use. On-line help very rarely provides help for all facilities and tools in the simulation 

environment. Context-sensitive help is a rare commodity (it is only provided in Taylor II and 

ProModel for Windows) and is almost unheard of for system messages (i.e. error messages). An 

on-line tutorial is provided only in ProModel for Windows. Demonstration disks are provided for 

three of the examined systems Taylor II, ProModel for Windows, and Micro Saint, and of these 

three only ProModel provides a professional and carefully thought out product. Some of the 

recognised problems with user support and assistance were already mentioned in chapter 4 

together with suggestions on how to improve them. In this section we will, therefore, make only 

suggestions on other ways of providing more appropriate user support such as extensive use of 

interactive on-line tutorial help, customisation of user interfaces to suit a particular class of users, 

adaptive user interfaces, and intelligent help.

Interactive tutorial help

On-line help is usually in the form of text screens which are descriptive or prescriptive in their 

nature. They concentrates on what and how. Rarely do they tackle the question as to why some 

action could be appropriate or beneficial, or what would be the consequences of a particular 

action. If interactive on-line tutorials are available as an option within help screens, much 

ambiguity and many answers to what-if questions would be resolved. It is easy to integrate 

animation in these tutorials as well and, thus, provide full power that tutorials can offer. A good 

interactive tutorial help can greatly improve system leamability, and therefore also its 

effectiveness.

Customisation o f user interfaces

End users have unique habits, preferences, idiosyncrasies, and working styles. Attempts to force 

end users to change these styles usually results in end user frustration and decreased productivity. 

Larson (1992) advocates that all end users of an application system should not be forced to use the 

same user interface; user interface designers can customise the user interface to the habits and 

styles of user classes, rather than force the user to tailor his or her working style to the user 

interface. Users vary in their age, gender, physical abilities, education, cultural or ethnic 

background, training, motivation, goals, and personality. People learn, think, and solve problems
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in very different ways. Therefore, often cited “Know the user'’ recommendations for user 

interface design seem quite obvious. Usually, these recommendations mainly relates to users’ 

tasks and computer skills, where users are classified into novice, intermittent, and expert frequent 

users. Multiple styles of user interfaces can be supported by careful design of an application’s 

functional operations and by customising the user interface to the needs of end users in each class. 

The ability to customise the user interface by the user promotes usability by providing more 

flexibility in using the system, and by providing a more effective environment for its user.

When multiple usage classes must be accommodated in one system, one strategy is to permit a 

structured approach to learning; another one might be to permit user control of the density of 

information feedback that the system provides (Shneiderman, 1992). Novices want more 

informative feedback to confirm their actions, whereas frequent users want less distracting 

feedback. Trumbly et al. (1994) observe the following: gathered empirical evidence suggests that 

user performance is improved when the interface characteristics match the user skill level; the fact 

that user skill levels are not stagnant but rather dynamic and ever changing, hence it is proposed 

that the interface characteristics must also change, thereby necessitating some kind of adaptive 

user interface.

Adaptive user interfaces

The concept of an adaptive user interface involves changes based on some characteristics of the 

user. The successful creation of an interface that adjusts to the skill level of the user suggests a 

design that captures the best of both worlds (i.e. structure when needed and flexibility as 

required). There have been limited attempts to develop a form of adaptive interface in the past, and 

many top-selling microcomputer software products include limited adaptive user interfaces (i.e. 

methods of activating commands). These adaptations are most often presented as user selectable 

options. The user must have some confidence in making the choice among several pre-defined 

options and there is no assurance that the user will make the most appropriate choice. However, it 

is possible that optimal adaptation can be achieved for the majority of users when the software 

assists the user in choosing the appropriate interface. To test this proposition Trumbly et al. 

(1994) conducted an experiment in which a diverse class of users, in terms of computer skills and 

knowledge, executed multiple trials of a manufacturing simulation game with different interfaces.
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Since the experiment was conducted using a simulation game, and because it gives some 

interesting ideas on possible adaptive user interfaces in the domain of simulation, we will describe 

it in more detail.

Throughout the trials, a select group of users which demonstrated sufficient expertise was 

automatically promoted to a different user interface. The experiment examined users’ profit and 

interface performance with a “computer simulated outer space manufacturing facility”. The outer 

space manufacturing facility simulation was unknown to the subject, thus avoiding any effect 

from the specific task knowledge. Three different versions of the simulation game were 

developed: a novice version, an experienced version, and an adaptive version. All three simulation 

games executed with the same input and produced the same output. These three user interface 

versions follow certain principles recommended in human factors literature. The novice version 

includes the use of the menu dialogue style, completely descriptive error messages, on-line help, 

automatic transfer from error conditions to help function, extensive use of default values, and 

colour. The experienced version employs a command dialogue style, short messages, a simple 

user selectable help function, and the absence of both default values and colour. Additionally, the 

experienced version does not automatically transfer to the help function for error conditions. 

Consolidation of the features of these two versions and the addition of the triggering software 

produces an adaptive interface version. The adaptive version begins with the characteristics of the 

novice version and ends with the characteristics of the experienced version. Once the user 

completes a simulated production run without errors, this results in an interface change. The 

absence of errors during a simulated production run is interpreted as adequate proficiency with the 

current interface level.

The adaptive user interface demonstrated an impact on both the average profit and the error 

ratio of the subjects participating in the manufacturing simulation game. Subjects who were 

assigned to the adaptive user interface experienced a decrease in error ratio as their level of 

computer knowledge moved from low to moderate then to high. In fact, the lowest error ratio for 

high knowledge computer users was achieved with the adaptive user interface. The profit for 

users of the adaptive user interface is higher for the users with low computer knowledge, dips 

slightly for moderate computer knowledge, and rises again when computer knowledge is high. 

For low computer knowledge users, the profit is essentially the same regardless of whether the
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adaptive or novice interface is used. But, when high level computer knowledge users employ the 

adaptive interface, error rations are lower and profits are higher. The adaptive user interface has 

been shown to improve the user’s performance in task learning and interface learning and hence to 

promote system usability.

Intelligent help

Some authors see that artificial intelligence can be applied to develop intelligent help facilities. 

O’Keefe (1986) proposes that, used within simulation systems, the expert system can aid model 

construction, run selection, or results analysis. Hurrion (1991) goes along with these 

observations. He claims that VIM is a passive technique which is most effectively used by 

experienced personnel, and although a VIM allows the user to initiate an interaction with a model, 

the interactions from a model to the user are passive and are only possible as pre-programmed 

conditions. He sees the way forward in developing Intelligent Visual Interactive Modelling 

methods by the application of expert systems techniques. The aim of an intelligent simulation 

environment is that the user, via a suitable interface, may get expert assistance with a simulation 

project and therefore increase the understanding of the problem and the process promoting the 

overall usability of the system. This help may take the form of determining boundary conditions 

for a particular problem, and then letting the expert simulation system infer a solution from its 

knowledge base. Expert simulation should also be able to explain its current reasoning at any 

stage of a consultation.

6.7 Summary

In this chapter we examine what sort of changes in simulation systems will be beneficial in 

improving their usability. These are summarised in Table 6.1. We identified five areas: the 

simulation environment, data input, simulation experiments, presentation of output results, and 

user support and assistance. We are aware that the listed suggestions resemble very much a small 

child’s Christmas present wish list and that one can argue that it is a kitchen sink approach. We 

recognise that some of the suggestions are too expensive to implement or premature for the current 

state of research. Nevertheless, the list can serve as a source of ideas and a basis for further 

research in this area. Given the current state of research in the area, this chapter presents a
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cohesive set of subjectively argued desiderata for simulation model interfaces. Consideration of 

such desiderata should enhance the ability of simulation software developers to take an HCI 

perspective of their software, to the benefit of their customers’ usability of the software, and the 

profits of the developers.

Table 6.1 A desiderata framework for simulation user interfaces

“ Area” Enhancem ents

Simulation environments A model development aid which provides:
The most common problem domains 
A facility to create new problem domains
A facility to design graphical representations of modelling elements 
A facility to provide default values to problem domains 
A facility to set defaults for statistical data collection and graphical 
representation

Colour use aid which provides:
Tools that provide dynamic, interactive examination of colours that work 
together
Tools for ‘natural’ colour mixing

Flexibility of interaction that supports:
Choosing a navigation technique 
Short-cut commands designed by the user 
Flexibility of task sequencing

Data input/ Model 
specification

Dialogue independence 
Modeless dialogue
Facilities for representation of complex data structures 
Data validation facilities 
On-line help facilities
Facilities to accept data from some of the major database and spreadsheet software

Visual simulation Use of ‘realistic’ representations 
Adjustable animation speed 
Graphic design tools

Simulation statistics/ Results Inter-connectivity of the results 
Explanation facilities
Representation of results independent of the processing 
A facility to modify graphs
Facilities to export results into database and spreadsheet packages 
A facility to print tables and graphs

User support and assistance Interactive tutorial help 
Customisation of user interfaces 
Adaptive user interfaces 
Intelligent help
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In this chapter we provide a summary of the results and findings in this dissertation. We draw out 

the major conclusions of the research described in this dissertation. Finally, we suggest some 

ideas for future research.

7.1 Summary

A user interface is Critical to the success of any system. Numerous studies have shown that 

interface design has a significant influence on factors such as learning time, performance speed, 

error rates and user satisfaction (Jones, 1988). The efficiency of man-machine systems as a whole 

is determined to a large extent by the efficiency of man-machine interaction, and hence by the 

quality of the man-machine interface. The aim is to develop interfaces which accurately fulfil the 

user’s requirements and which answer the user’s cognitive needs, accurately supporting his or her 

natural cognitive processes and structures. Although some amount of training must always be 

expected in order for a user to become maximally proficient with a given system, it is, in general, 

easier to modify the characteristics of a computer system than those of the users.

In Chapter 1 we introduced the basic issues related to research presented in this dissertation. It 

provides essential information regarding simulation modelling and human-computer interfaces. 

We identify research methods we have applied whilst conducting this research and finally, 

establish the objectives of the research.

In Chapter 2 we provide an overview of some basic concepts in human-computer interaction. 

We introduce interaction in the context of simulation modelling and provide an examination of 

several simulation software packages in terms of user interfaces. An interface can be in the form 

of a sequential dialogue, which includes request-response interactions, typed command strings, 

navigation through networks of menus, and data entry; or in the form of a model world (direct 

manipulation) where the end-user is shown what to do by ‘grabbing’ and manipulating (e.g., with 

a mouse) visual representations of objects. We try to evaluate the usability of each simulation 

system examined against established usability criteria identifying how the usability is supported 

and what are the major usability defects.
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In Chapter 3 we describe the CLINSIM case study, its motivation, design and 

implementation. CLINSIM was built within a number of severe constraints, such as target 

machine, cost, free run-time licensing, software availability and constraints, Department of Health 

requirements, and limitations of the expertise of the developers.

In Chapter 4 we critique the case study in terms of user interfaces. CLINSIM has a custom- 

made user interface that can be evaluated in terms of its usability. Against the established usability 

criteria we identify deficiencies in the case study and a good practice, where appropriate.

In Chapter 5 we examine the relevance of HCI research to simulation systems. We examine 

the characteristics of major participants in the human-computer interaction and the characteristics 

of the interaction itself. The major participant is the human, the user, the one whom computer 

systems are designed to assist. We give an overview of the most influential theories in HCI and 

their contribution to the design of more usable computer systems. We try to see how the 

accumulated knowledge and theories in HCI can help in our particular problem - the design of 

user interfaces to discrete simulation systems. It is noticeably easier to see the direct relevance and 

applicability of design guidelines than HCI theories. The problem is maybe more in HCI theories 

and their general applicability to the design of interaction systems, than it is in its particular 

relevance to simulation systems.

In Chapter 6 we provide a proposed contribution to this field of research. We consider user 

interfaces to simulation systems and analyse how they can be enhanced to provide better usability 

and support for their users. User interfaces to simulation are no less deficient than for other 

application domains. Existing simulation systems have a relatively high standard of graphical 

capabilities, especially when it comes to animation. These standards are not matched in data input 

facilities, in the presentation of simulation results, and in the user support and assistance 

provided. Effort needs to be concentrated on making these aspects of simulation systems more 

appropriate for the particular needs of such a highly specialised domain. Although the discussion 

in the dissertation concentrates on discrete event simulation, most of the conclusions have some 

wider applicability to simulation systems in general, including continuous simulation. The 

development of simulation software that has the ability of flexible modelling and all the features 

listed in the previous chapter is a considerable, albeit desirable, task.
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7.2 Conclusions

Mandelkem (1993) argues that the typical GUI represents the structure of the interface as the 

“virtual office” on the computer screen, that is appropriate for those applications that are 

representative of the actual work that takes place within the traditional office environment. 

However, this metaphor becomes less useful as the computing environment is adapted to less 

similar environments. In such cases it is desirable to provide a user interface metaphor that is more 

representative of the physical paradigm with which the user is familiar. Nielsen (1993) argues that 

one of the defining characteristics of next-generation user interfaces may be that they abandon the 

principle of conforming to a canonical interface style and instead become more radically tailored to 

the requirements of the individual task.

We agree with the last statement, and in this dissertation argue that in order to enhance the 

usability and more general acceptance of simulation systems we should only apply findings from 

HCI research where appropriate. It obviously requires that we should not blindly follow common 

user interface structures. Applying guidelines and metaphors that are appropriate for one 

environment can be inappropriate, or even disastrous, for completely different problem domains. 

Nevertheless, even this selective approach requires us to be well informed about developments in 

HCI. Simulation modelling is an unusually rich domain, and therefore a worthy one to be 

researched into by the HCI community. Maybe it is up to simulation community to give a 

necessary impetus in this direction. In this research we have proposed some steps in hope that 

others will follow.

The research that we have conducted and that we describe in this dissertation has led to the 

derivation of many findings. These findings are summarised below:

1. We established that simulation modelling provides an unusually complex domain that requires 

user interfaces which should provide modelling environments to support their users. We have 

examined the user interface characteristics of simulation systems. We evaluated their usability 

against the established usability criteria. We have identified some of the good practices that 

support usability and also have pointed out where there are usability defects and a need for 

improvements.
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2. The experience obtained from the case study revealed that there is still inadequate support to 

model some classes of problems. This experience also stressed the need for user interface 

tools to supplement model developments for those problems. There is also a need for tools 

that would facilitate better integration of various model components to ensure model 

consistency.

3. Based on the literature, case study material, and investigations of six popular and often quoted 

simulation systems, we have made several proposals on how the usability of simulation 

systems can be improved. Specifically we have proposed what sort of modelling environment 

would be appropriate to support modellers in the model development process. The major 

recommendations are:

i) Integrated simulation environments with the following characteristics:

A model development aid that provides:

The most common problem domains 

A facility to create new problem domains

A facility to design graphical representations of modelling elements 

A facility to provide default values for problem domains 

A facility to set defaults for statistical data collection and graphical representation

Colour use aid which provides:

Tools that provide dynamic, interactive examination of colours that work together 

Tools for ‘natural’ colour mixing

Flexibility of interaction such as:

Choosing the navigation technique 

Short-cut commands designed by the user 

Flexibility of task sequencing

ii) Data input/Model specification with the following features:

Dialogue independence 

Modeless dialogue

Facilities for representation of complex data structures 

Data validation facilities
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On-line help facilities

Facilities to accept data from some of the major database and spreadsheet software

iii) Visual simulation that provides:

Use of ‘realistic’ representations

Adjustable animation speed independent of processing speed 

Graphic design tools

iv) Simulation statistics/Results with the following features:

Inter-connectivity of the results 

Explanation facilities

Representation of results independent of the processing 

A facility to modify graphs

Facilities to export results into database and spreadsheet packages 

A facility to print tables and graphs

v) User support and assistance with the following features:

Interactive tutorial help 

Customisation of user interfaces 

Adaptive user interfaces 

Intelligent help

73 Future Work

There are almost endless possibilities for future research. This is partially due to the complex 

nature of simulation systems of which many aspects involve relatively new developments, and 

hence are not much researched into. Partially it is due to the comparably new research area of 

human-computer interaction. Therefore our proposal for future research is just a small subset of 

the possible research directions in this area.

It would be particularly interesting to conduct an evaluation of the usability of existing 

simulation systems and a comparable analysis of the results. These comparable results may 

indicate what are the important factors that determine the usability of such systems. We should not
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assume that the factors used for the general usability criteria and often cited in the HCI literature 

apply equally to the domain of simulation modelling. Another interesting study can be an 

examination of how symbolic versus ‘realistic’ animation influences modelling performance, i.e. 

how it affects the decision making of the modeller. We have mentioned that the majority of 

simulation systems often use graphics to represent the results of a simulation experiment. 

However, the basis for using a particular graphical technique to depict the numerical results is 

often questionable. It would be valuable to evaluate how the different graphical techniques 

influence an analysis of simulation output, and how this is manifested in the conclusions that the 

modeller or the decision maker infers from the output provided. Another related and interesting 

research topic can be the evaluation of the role that the dynamic icons/graphs play in model 

verification, and their suitability for use in measuring the performance of particular models.

Many simulation systems use some sort of diagramming technique to represent the logic of the 

problems being modelled. However, it is unknown whether the technique chosen in a system has 

any influence on the final model validity. An evaluation of different diagramming techniques in 

usability terms is another area that might provide better insight into the relationship between model 

representation, its validity, and the specification of the model that evolves in the process. An 

evaluation of different simulation screen layout options (e.g., what should be on the screen and 

where, and the maximal number of objects on the screen) might provide knowledge about the 

importance and relevance of displaying particular simulation objects on the screen.

The above research proposals deal mostly with the evaluation of simulation systems that are 

already available. These studies would undoubtfuly be valuable for providing some sort of criteria 

and guidelines for future developments. However, more exciting research lies in the development 

of new paradigms and new technologies. We proposed some enhancements of simulation 

modelling environments. Many of these proposals would require further research to be practical. 

This particularly applies to the development of aids for output analysis that would also provide 

some analysis of the inter-dependence of simulation output results. Related to that is the 

development of suitable graphics that can support representations for multi-dimensional data.

Another area that can be researched into is the development of better modelling environments 

that would support more general problem domains. Some recommendations on what such
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environments should facilitate are given in Chapter 6. This can include, among others, the 

development of drawing tools that support the creation of simulation objects. Of special interest 

would be the development of a facility to aid in the choice of colours, particularly in the dynamic 

environment of animation. Probably the most challenging area is research into the development of 

flexible user interfaces for simulation systems. This might be some sort of ‘meta user interface’ 

that can be used, both to create user interfaces for particular problem domains, and to modify itself 

for the particular needs or style of its users. It should also facilitate the development of customised 

user support facilities.

The above proposals are just a few possible research directions. The domain of visual 

simulation modelling is so rich that is impossible to envisage how it might develop in the future, 

since developments so far were very much dependent on developments in the new technologies. 

However, that makes the research even more exciting and fascinating.
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