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A bstract

This thesis applies continuous-time stochastic techniques to problems in economics 

of information and financial economics.

The first part of the thesis uses non-linear filtering and stochastic control theory 

to study a continuous-time model of optimal experimentation by a monopolist 

who faces an unknown demand curve subject to random changes. It is shown 

that different probabilities of a demand curve switch can lead to qualitatively very 

different optimal behaviour. Moreover, the dependence of the optimal policy on 

these switching probabilities is discontinuous. This suggests that a market or an 

economy embedded in a changing environment may alter its behaviour dramatically 

if the volatility of the environment passes a critical threshold.

The second part of the thesis studies continuous-time models of derivative asset 

pricing. First, a review of the so-called direct approach to debt option pricing 

emphasises the principal modelling problems of this approach and highlights the 

shortcomings of certain models proposed in the literature.

Next, the connection between martingale measures and numeraire portfolios is 

exploited in problems of option pricing with strict upper and lower bounds on the 

underlying financial variable. This leads to a new decomposition of option prices in 

terms of exercise probabilities calculated under particular martingale measures and 

allows a simple proof of certain generalisations of the Black-Scholes option price 

formula.

Finally, martingale methods are used to examine pricing formulae for general 

contingent claims, yielding a new method for inferring state prices from a given 

pricing formula. It is shown that if price processes are continuous semimartingales 

and the pricing formula is sufficiently regular, then the latter uniquely determines 

the risk-neutral law of the underlying asset price.

2



C ontents

List of Figures 6

A cknow ledgem ents 7

Introduction 9

I O ptim al E xperim entation 18

1 O ptim al Experim entation in a Changing Environm ent 19

1.1 The Model ................................................................................................. 22

1.1.1 The Value Function .....................................................................  24

1.1.2 Strategies Depending on B e lie fs ..................................................  26

1.2 The Evolution of B e lie f s ..........................................................................  27

1.3 The Bellman E q u a tio n .............................................................................  29

1.3.1 The Value Function as a Solution of the Bellman Equation 30

1.3.2 Interpretation ...............................................................................  31

1.3.3 A Verification Theorem ..................................................................  32

1.3.4 Necessary Conditions for E xperim en ta tion ..............................  34

1.3.5 Optimal Quantities .....................................................................  36

1.4 One-Sided E x p e rim en ta tio n .................................................................... 37

1.5 Two-Sided E xperim en tation ...................................................................  42

1.5.1 Analysing the Bellman Equation ............................................... 44

1.5.2 A Differential Equation for the Value F unction .........................  50

1.5.3 The Static C a s e ...............................................................................  52

3



1.5.4 The General Case ......................................................................... 55

1.6 Some Numerical R e s u l t s ..........................................................................  59

1.6.1 The Value Function and Optimal P o l i c y .................................. 62

1.6.2 Sample P a t h s ................................................................................... 68

1.7 Conclusion .................................................................................................  76

A p p e n d ix ............................................................................................................... 78

II D erivative A sset Pricing 84

2 The D irect Approach to D ebt O ption Pricing 85

2.1 Discount Bonds and European Options .............................................  88

2.2 Option Pricing by Portfolio Duplication .............................................  90

2.3 Constant Volatility: The Brownian B r id g e ..........................................  97

2.4 Time Dependent Volatility ....................................................................... 100

2.5 Correcting for Negative Yields: An Additional Boundary Condition 103

2.6 State Dependent Volatility ....................................................................... 107

2.7 Options on Coupon Bonds ....................................................................... I l l

2.8 Conclusion .....................................................................................................113

A p p e n d ix .................................................................................................................. 115

3 O ption Pricing w ith a Quadratic Diffusion Term 118

3.1 Martingale Measures and Numeraires ....................................................119

3.2 European Call Options ..............................................................................122

3.3 Models with a Quadratic Diffusion T e r m ................................................ 125

3.3.1 Characterisation ................................................................................125

3.3.2 The Option P r ic e ................................................................................127

3.4 E x a m p le s ........................................................................................................129

3.4.1 Options on Zero-Coupon B o n d s ......................................................129

3.4.2 Currency Options in a Target Zone Regime ................................ 131

3.5 Conclusion .....................................................................................................132



4 State Prices Im plicit in Valuation Formulae for D erivative A ssets 133

4.1 The Main R e s u l t .......................................................................................... 134

4.2 A Characterisation Theorem ....................................................................140

4.3 Bond Options and Implied Forward Y ie ld s .............................................. 143

4.3.1 Merton Type Option P r i c e s ...........................................................144

4.3.2 An Upper Bound on the Forward Bond Price ............................146

4.4 Conclusion .................................................................................................... 150

R eferences 151

5



List o f Figures

1.1 The two demand curves used in the s im u la tio n s ................................  61

1.2 Value function and optimal policy for r  =  0.5, A0 =  Ax =  0 ..............  64

1.3 Value function and optimal policy for r  =  0.1, Ao f Ai = 0 .............. 65

1.4 Value function and optimal policy for r =  0.1, Ao =  Ai =  0.025 . . 66

1.5 Value function and optimal policy for r  =  0.1, A0 =  A! =  0.075 . . 67

1.6 Sample paths for r = 0.5, Ao =  Ai =  0   72

1.7 Sample paths for r  =  0.1, Ao =  Ai =  0   73

1.8 Sample paths for r  =  0.1, A0 =  Xi =  0.025 ..........................................  74

1.9 Sample paths for r = 0.1, A0 = X1 =  0.075 ..........................................  75

6



A cknow ledgem ents

I could not have written this thesis without the support that I enjoyed over the 

last years, first at the University of Bonn, then at the LSE.

I am particularly indebted to Lucien Foldes, my supervisor at the LSE, for his 

advice, encouragement and help. I benefited immensely from his teaching and his 

research which gave me the tools for all my subsequent work. I would also like 

to thank him for numerous stimulating discussions on finance and economics that 

have influenced my thinking on many issues.

The LSE Financial Markets Group (FMG) offered an ideal environment, both 

for my work and for me personally. I am especially grateful to its director, David 

Webb, for the generous help he gave me wherever he could. My work benefited 

particularly from the FMG student seminar, run by Margaret Bray, which provided 

an invaluable forum for the discussion of ideas at an early stage.

I am also indebted to Urs Schweizer for encouraging me to join the European 

Doctoral Program in Quantitative Economics (EDP). During my first year in the 

program, I was based in the Department of Statistics at the University of Bonn, 

and I would like to thank its director, Dieter Sondermann, and his assistant, Klaus 

Sandmann, for introducing me to the theory of option pricing.

Chapter 1 and 2 of the thesis grew out of joint projects with Godfrey Keller (also 

from the FMG) and Klaus Sandmann, respectively. Their enthusiasm was a great 

inspiration to me, and I would like to thank them for their excellent cooperation. 

Chapter 1 of the thesis benefited greatly from comments and suggestions by Patrick 

Bolton, Margaret Bray, Phil Dybvig and John Hardman Moore. I am particularly 

grateful to Phil Dybvig for a wonderful stay at Washington University in St. Louis 

during which the work on Chapter 1 advanced considerably. Chapter 2 benefited



from the suggestions of an anonymous referee, and Chapter 3 from a conversation 

with Steve Heston. Bruce Grundy and Stanley Pliska gave helpful comments on 

Chapter 4.

Over a period of two years, I worked part-time in the Swaps and Options 

Research Team at Paribas Capital Markets, London. I would like to thank Bruno 

Dupire and his colleagues for interesting discussions and the opportunity to confront 

theoretical models with the reality of the derivatives business.

I am grateful for financial support from the Deutsche Forschungsgemeinschaft 

(Sonderforschungsbereich 303), the German Academic Exchange Service (DAAD), 

the COLONIA Studienstiftung, the LSE Financial Markets Group, and the Eco­

nomic and Social Research Council (ESRC).

I would like to thank Dirk Schoenmaker, who shared an office with me during 

four long years, for his patience, Denis Gromb for introducing me to M gX , and 

all my friends at the LSE for the good times we had.

Finally, this is the moment to thank Birgit for her wonderful understanding and 

encouragement. This thesis is dedicated to her.



Introduction

Many economic or financial activities are characterised by the need to make in­

tertemporal decisions in the presence of continuing uncertainty. A firm which plans 

to introduce a new product, for example, is typically uncertain about the demand 

curve it will face. Even after the product has been introduced, uncertainty will 

persist as the demand can vary over time due to the emergence of rival products, a 

change in tastes, and many other factors. An indvidial’s decision how much of his 

wealth to consume now, how much to save, and how to allocate his savings across 

different investment opportunities, is another example. This decision is affected 

by uncertainty about the returns that the investments will generate. On a larger 

scale, the pension fund to which the individual may contribute is confronted with 

the same uncertainty, and so are numerous other financial institutions. While ex­

amples obviously abound, it is nevertheless possible to identify certain basic types 

of intertemporal decision problems under uncertainty. Two of these problems are 

studied in this thesis.

Part I of the thesis consists of a single chapter which is concerned with optimal 

learning by experimentation in a multi-period setting, a problem which has at­

tracted considerable interest in the microeconomic literature. The experimentation 

problem arises whenever an agent who has to choose a sequence of actions is uncer­

tain about the distribution of the rewards that his actions will generate. In such a 

situation, a rational agent will take into account not only the current reward that 

an action is likely to produce, but also the potential information content of the out­

come. Some actions, for instance, might yield a relatively low expected payoff, but 

reveal relatively precise information about the underlying distribution of rewards.



This information would allow the agent to make better decisions and reap higher 

payoffs in the future. The agent might therefore want to experiment, that is, to 

choose actions which are suboptimal in terms of expected current revenue alone. 

Clearly, this involves an opportunity cost in the form of current revenue forgone. 

The problem of optimal experimentation is to find the optimal trade-off between 

this opportunity cost and the long-term benefit resulting from the information 

acquired.

The seller in the above example faces an experimentation problem. In each 

period, he puts some quantity of the good on the market and earns a profit which 

is random due to factors beyond his control. The distribution of this profit depends 

on the unknown demand curve for the good. In this situation, a myopic seller would 

just try to maximise current expected profit in each period. The truly optimal 

strategy, by contrast, may require the seller to give up some expected profit now 

in order to learn more about the demand curve and then achieve higher profits in 

the future. For the sake of concreteness, our analysis of optimal experimentation 

in Part I is cast in terms of this particular problem.

Two approaches to the problem of learning by experimentation in a single-agent 

setting have emerged in the literature. One approach is to restrict the analysis to 

a two-period framework, and then to determine in which way the ability to gather 

information in the first period (which will be useful in the second period) affects the 

agent’s behaviour. Examples of this approach can be found in Mirman, Samuelson 

and Urbano (1993) and other papers referenced in their introduction.

The second approach formulates an infinite-horizon model, in which case it is 

natural to look at the limiting behaviour of the agent. The first such model in 

the economics literature is due to Rothschild (1974), and has subsequently been 

extended in a number of different directions; see for example McLennan (1984), 

Easley and Kiefer (1988), Kiefer (1989), and Aghion, Bolton, Harris and Jullien 

(1991). A common result of these models is that the agent’s beliefs about the 

underlying distribution of rewards converge, in which case experimentation will 

cease and no further information will be gathered -  in the limit, the agent will 

learn everything that is worth knowing. The question then arises as to whether the
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beliefs converge to a one-point distribution at the true parameter value. Typically, 

the answer is that with positive probability they do not.

We take the second approach as our starting point. However, whereas the above 

papers assume there to be an unknown but fixed distribution of rewards, we follow 

Kiefer (1991) and allow this distribution to change randomly over time. Despite 

the fact that these variations are highly stylised abstract models of information 

acquisition, it does seem more realistic to allow for the possibility that new data 

continues to be pertinent. In this case, beliefs may continue to evolve, and the 

agent is not doomed to take the same action for ever more.

We depart from Kiefer’s model (and the overwhelming majority of similar mod­

els in the economics literature) by formulating the problem in continuous time.1 

This is motivated by the following considerations. The experimentation problem 

can be reformulated as a problem of optimal control with the agent’s posterior 

belief as state variable. Working in continuous time allows us to apply techniques 

from non-linear filtering theory and optimal control theory for diffusion processes. 

This leads us via the Bellman equation to an ordinary differential equation for 

the value function. Although there is little hope for closed-form solutions, solving 

the differential equation numerically proves to be easier than calculating a numer­

ical solution to the fixed point problem for the Bellman operator which arises in 

discrete-time settings.

Our main finding is that, in certain scenarios, the optimal behaviour depends 

qualitatively on the switching probabilities. More precisely, a small variation in 

the likelihood of switches of the demand curve can cause a discontinuous change 

in the optimal policy. This phenomenon is novel in the economic literature on 

exp eriment at ion.

The result is potentially of great significance for economic theory. It suggests 

that a market or an economy embedded in a changing environment will alter its 

behaviour dramatically if, in the eyes of the economic agents, the volatility of the 

environment passes a critical threshold. Thus, a slight increase in variability may

Previously, such a formulation has only been adopted by Bolton and Harris (1993) and Felli 
and Harris (1994) who study multi-agent learning problems with a fixed distribution of rewards.
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not just lead to a moderate reduction in information gathering activities -  it could 

in fact provoke a near cessation of these activities, with drastic consequences for 

the process of information aggregation.

Part II of the thesis, consisting of Chapters 2 - 4 ,  addresses an intertemporal 

decision problem that has been at the centre of modern finance: the hedging and 

pricing of derivative securities.2

The need to hedge, that is, to cover part or all of a liability by an offsetting 

asset position, arises in many financial institutions. A pension fund, for example, 

must pay out pensions at predetermined dates and will gear its portfolio towards 

meeting these obligations. Similarly, an investment bank that has sold derivative 

securities to corporate clients will try to hedge its position by building up a port­

folio of securities that produces enough cash flows to satisfy the clients’ claims. A 

perfect hedge requires that a claim be matched exactly by the payoff of the hedg­

ing portfolio. The construction of such a perfect hedge is the central problem of 

derivative assets analysis.

In fact, if the hedging problem is solved, then the problem of finding the fair 

premium for a derivative asset is solved as well. More precisely, a claim that admits 

a perfect hedge must trade at a price equal to the current value of the hedging 

portfolio. Every other price for the claim would lead to arbitrage opportunities 

which rational agents could exploit by selling the claim and buying the portfolio if 

the claim is more expensive, and vice versa. Of course, perfect hedges only exist in 

an idealised world without market frictions such as transaction costs or borrowing 

constraints. However, the perfect markets paradigm provides a useful benchmark 

in theory as well as in practical applications, and we shall maintain it throughout 

the second part of the thesis.

Another prerequisite for the hedging argument to work is that the primitive 

securities themselves do not give rise to arbitrage opportunities. An arbitrage op­

portunity is a portfolio strategy with negative initial investment, but non-negative 

value later on, thus providing a gain today without creating any liabilities to­

2A derivative security is an asset whose payoff is entirely determined by the prices or payoffs 
of some underlying securities. Options on stocks are prominent examples of derivatives.
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morrow. Together with suitable restrictions on the set of portfolio strategies that 

investors can use, the existence of a so-called martingale measure is a sufficient con­

dition for the absence of arbitrage.3 This is a new probability measure under which 

the prices of all primitive securities, expressed in units of some numeraire asset, 

are martingales. Under such a measure, the value of a hedging portfolio, measured 

in units of the numeraire, is again a martingale. In particular, the initial portfolio 

value equals the expectation of the terminal portfolio value under the martingale 

measure. Since taking expectations preserves non-negativity, a portfolio strategy 

with non-negative final value must have a non-negative initial investment. In other 

words, if there exists a martingale measure, arbitrage opportunities are precluded. 

Moreover, the value of a derivative that admits a perfect hedge can be calculated 

by taking the expectation of its discounted payoff under a martingale measure.

Starting with Black and Scholes (1973) and Merton (1973), derivative assets 

analysis has constantly relied on continuous-time models. On the one hand, these 

models have the advantage of not prescribing trading dates in advance, which 

makes them a much better approximation of real market activities than discrete­

time models. On the other hand, continuous time allows the use of mathematical 

results which do not exist, or are not as powerful, in discrete time, such as Ito’s 

change-of-variable formula, certain martingale representation theorems, and Gir- 

sanov’s theorem on changes of the probability measure. Applying these results, 

the literature on derivative securities has developed a multitude of models in which 

derivatives can be perfectly hedged and, by the above arbitrage argument, priced. 

Often the prices of the underlying securities are modelled as diffusion processes. In 

this case, the price of a derivative asset will be given by a pricing formula, that is, 

a deterministic function of the underlying security prices and time. Moreover, this 

function can be calculated as a solution to a certain partial differential equation 

of parabolic type, the so-called fundamental valuation equation. The formula of 

Black and Scholes (1973) for options on stocks is the first and foremost example of 

such a pricing formula.

3Cf. Harrison and Kreps (1979), Harrison and Pliska (1981), Dybvig and Huang (1988).
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Chapter 2 of the thesis critically reviews the so-called direct approach to debt option 

pricing which attempts to extend the Black-Scholes framework to the valuation of 

options on bonds. In fact, the valuation of these options has been approached 

from two different angles. The term structure approach regards bonds and bond 

options as interest rate dependent derivatives. Consequently, it formulates the 

pricing problem in the framework of a term structure model, that is, a model 

which describes the evolution of the term structure of interest rates over time.4 

This requires a consistent specification of the price processes of all traded zero- 

coupon bonds, usually as a function of one or more state variables such as the 

short term interest rate.5 The direct approach, by contrast, regards the bond on 

which the option is written as a primitive security in its own right, and tries to 

follow the Black-Scholes paradigm as closely as possible. In particular, the direct 

approach models only those securities which are of immediate relevance to the 

pricing problem at hand, without relating them to the term structure as a whole or 

to a system of state variables. Thus, the stock price process of the Black-Scholes 

model is just replaced by a bond price process.

Our review of the direct approach emphasises its main modelling problems: 

first, the problem of specifying bond price processes that reach par value at m atu­

rity with probability one; second, the problem of precluding negative bond yields 

and negative implied forward rates; third, the problem of ensuring the absence of 

arbitrage opportunities between the bonds.

Our analysis highlights the shortcomings of some of the models proposed in the 

literature. In fact, Biihler and Kasler (1989) construct the only model within the 

direct approach that solves the three problems mentioned above, and still provides 

closed-form expressions for option prices. Lognormal bond price models, such as 

Ball and Torous (1983) and Kemna, de Munnik and Vorst (1989), fulfil the par value 

condition and lead to option price formulae of the same type as in Merton (1973), 

but they clearly assign a positive probability to the occurrence of negative interest 

rates. In view of this, Schobel (1986) proposes a method of modifying Merton

4Cf. Vasicek (1977), Cox, Ingersoll and Ross (1985), Heath, Jarrow and Morton (1992).
5See Duffie and Kan (1992), El Karoui, Myneni and Viswanathan (1992), Cheyette (1994).
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type option price formulae by imposing an additional boundary condition which 

is necessary for non-negative interest rates.6 We show that his derivation of the 

modified formulae is unduly complicated. A more serious flaw of his method is that 

he does not develop an underlying bond price model in which the proposed option 

prices could indeed be derived by the standard hedging argument. As a first step 

towards identifying such a model, we follow Breeden and Litzenberger (1978) and 

calculate the Arrow-Debreu or state prices implicit in these option prices. We find 

a positive Arrow-Debreu price for the event that a certain interest rate vanishes at 

the expiry date of the option. Economic intuition suggests that this event ought to 

have probability zero. This indicates that Schobel, while “correcting” for negative 

interest rates on the level of option prices, implicitly accepts a highly implausible 

behaviour of bond prices. Further analysis in Chapter 4 will support this view.

Chapter 3 investigates the valuation of options when the underlying financial vari­

able has the following two characteristics: (i) the process has natural upper and 

lower boundaries; (ii) its diffusion coefficient is quadratic in the current value of 

the variable. The bond price model of Biihler and Kasler (1989) falls into this 

category, and so does an exchange rate model which Ingersoll (1989a, b) develops 

to price currency options in a perfectly credible target zone regime. This type of 

model can be regarded as a generalisation of the Black-Scholes model; in fact, the 

latter is obtained by choosing 0 and +oo as the lower and upper boundaries for 

the underlying variable.

It is remarkable that this generalisation preserves one of the most attractive 

features of the Black-Scholes model, namely the existence of closed-form expressions 

for the prices of European call and put options. Ingersoll (1989a, b) and Biihler 

and Kasler (1989) compute these expressions by applying a change of variable 

to the corresponding fundamental valuation equation. Our solution to the pricing 

problem, by contrast, relies on a probabilistic change-of-numeraire technique which 

goes back to El Karoui and Rochet (1989).

The first result of the chapter is a new decomposition of call and put prices

6See also Briys, Crouhy and Schobel (1991).
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that holds whenever the underlying variable has strict upper and lower bounds. In 

fact, these option prices can be decomposed in terms of two particular numeraire 

portfolios (whose definition reflects the presence of the bounds) and the martingale 

measures associated with these numeraires. The second contribution is a new proof 

of the pricing formulae for standard options in models with a quadratic diffusion 

term.

Derivative assets analysis usually takes a model of the underlying price processes as 

given and attempts to value derivatives relative to that model. Chapter 4 addresses 

the converse question: given some set of derivatives prices, what can we say about 

the price processes of the underlying securities? More precisely, we suppose that 

we have information about the price of a derivative asset in the form of a pricing 

formula, and investigate the restrictions such a formula imposes on the underlying 

price dynamics.

Assuming that asset prices are continuous semimartingales, we consider pricing 

formulae that satisfy a variant of the fundamental valuation equation. We show 

that such a formula implies a complete characterisation of the behaviour of the 

underlying asset price under a martingale measure. This characterisation takes the 

form of a stochastic differential equation. The law of the underlying price process 

under a martingale measure is completely determined by the pricing formula, and 

is the same for all martingale measures. Consequently, all claims contingent on the 

price path of the underlying security can be perfectly hedged and hence priced by 

arbitrage. In particular, the pricing formula implies a unique set of Arrow-Debreu 

prices for events that can be defined in terms of the underlying asset price.

While similar in spirit to Breeden and Litzenberger’s (1978) calculation of state 

prices implicit in option prices, our approach uses rather different mathematical 

tools, based mainly on semimartingale calculus. The main result follows directly 

from a characterisation theorem for continuous local martingales which extends 

work by McGill, Rajeev and Rao (1988) on Brownian motion.

As an application of our result, we return to the analysis of pricing formulae 

for debt options. We show that the pricing formulae of Schobel (1986) and Briys,
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Crouhy and Schobel (1991) imply a positive probability for a certain forward rate 

process to be absorbed at its lower bound 0 during the life of the option. Thus, 

the event that this interest rate vanishes at the expiry date of the option indeed 

has positive probability, hence a positive Arrow-Debreu price. This explains the 

findings of Chapter 2.
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Part I

O ptim al E xperim entation
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C hapter 1 

O ptim al E xperim entation  in a 
Changing Environm ent

In this chapter, we study a situation in which an economic agent can learn by 

experimenting. Experimentation typically entails an opportunity cost, which is 

weighed against the long-term benefit resulting from the information acquired. 

Specifically, the agent is a monopolist facing an unknown demand curve, and an 

experiment results in a noisy observation of a point on it, leading the agent to 

revise his beliefs about the underlying demand.

The problem of optimal experimentation by a monopolist has attracted consid­

erable interest in the microeconomic literature on learning. Starting with Roth­

schild (1974), this literature focusses mainly on the limiting behaviour of the mo­

nopolist in an infinite-horizon setting with an unknown but fixed demand curve.1 

Rothschild’s analysis has been extended in a number of different directions by 

McLennan (1984), Easley and Kiefer (1988), Kiefer (1989), and Aghion, Bolton, 

Harris and Jullien (1991). A common result of these papers is that the monop­

olist’s beliefs converge, so experimentation ceases in the limit. This means that 

in the long run, the monopolist will learn everything that is worth knowing. The 

question then arises as to whether he will learn the truth, that is, whether the 

beliefs converge to a one-point distribution at the true parameter value. Typically, 

the answer is that with positive probability they do not.

In contrast to this literature, we follow Kiefer (1991) and allow the demand

1See Mirman, Samuelson and Urbano (1993) and the references therein for an analysis of 
optimal monopoly experimentation in a two-period framework.
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curve to change randomly. In our model, as in Kiefer’s, there are two states, each 

characterised by a linear expected demand curve. Transitions between these states 

are governed by a Markov process. The monopolist knows the slope and intercept of 

each expected demand curve and the transition probabilities of the Markov process. 

However, he does not know which demand curve he faces. At each moment of time, 

he chooses a quantity from a given interval of feasible quantities, and observes a 

price which is the expected price for the current state plus noise. Given this noisy 

signal of the underlying demand curve, the monopolist then updates his belief about 

the current state in a Bayesian fashion. The monopolist’s objective is to maximise 

the expected discounted value of profits over an infinite horizon. He experiments 

whenever he chooses a quantity different from the so-called myopic quantity which, 

given his current belief, would maximise expected current profit.

We depart from Kiefer’s model (and the overwhelming majority of similar mod­

els in the economics literature) by formulating the problem in continuous time.2 

Solving the model, we are ultimately lead to the problem of finding a solution 

to an ordinary differential equation. While we canot offer closed-form solutions, 

numerically solving the differential equation proves to be easier and far less time- 

consuming than calculating a numerical solution to the fixed point problem which 

arises in Kiefer’s setting.

The chapter proceeds as follows. The model is presented in Section 1.1. The 

two subsequent sections are devoted to a steady development in which some im­

portant results from the literature on non-linear filtering and stochastic control are 

spelt out. Section 1.2 deals with the stochastic process of beliefs, leading on to a 

reformulation of the agent’s decision problem as a diffusion control problem with 

the current belief as the state variable. Section 1.3 introduces the corresponding 

Bellman equation. We recall that the value function is a generalised solution of 

this equation and formulate a verification theorem. Using the Bellman equation, we 

examine two necessary conditions for experimentation: experimentation must be 

informative, and information must be useful. These are essentially the same as the

2Such a formulation has previously been adopted by Bolton and Harris (1993) and Felli and 
Harris (1994) who study multi-agent learning problems. The distribution of rewards, however, is 
f ixed  in their models.
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conditions found in Mirman et al. (1993), despite the differences in the approach 

taken. Finally, we use the Bellman equation to solve for the optimal quantities as 

a function of the current belief and the second derivative of the value function.

In Section 1.4, we discuss scenarios in which there is one-sided experimenta­

tion, meaning that the monopolist either produces always more than the myopic 

quantity, or always less. One-sided experimentation arises if the expected demand 

curves do not intersect at a quantity inside the range of the myopic policy func­

tion, which is a closed interval spanned by the quantities that maximise one-period 

profit for each of the two expected demand curves. Again our findings are com­

parable with those in Mirman et a/., namely, the monopolist deviates from the 

myopic action by moving in the direction of wider spreads between the demand 

curves, thereby making the observations more informative. Experimentation re­

mains moderate in the sense that the optimal quantity always lies inside the range 

of the myopic policy function. Moreover, experimentation is qualitatively the same 

for all parameter values. We obtain a full characterisation of the value function 

as a solution to a two-point boundary value problem. Even without a closed-form 

solution, we are still able to derive analytical results for the comparative statics of 

the monopolist’s behaviour with respect to some of the model parameters.

In Section 1.5, we then look at situations that give rise to two-sided experimen­

tation: for some beliefs, the monopolist produces more than the myopic quantity, 

for others, less. This happens whenever the expected demand curves intersect in 

the interior of the range of the myopic policy function. Then there is exactly one 

belief at which a myopic agent would choose the so-called confounding quantity, 

that is, the quantity which leads to the same expected price in either state and thus 

to a completely uninformative price signal. For sufficiently high discount rate, noise 

intensity and switching probabilities, even a fully optimizing monopolist chooses 

the confounding quantity at this particular belief. In this case, the optimal policy 

function is continuous, and experimentation is again moderate in the sense defined 

above. For brevity, we therefore call this a scenario of moderate experimentation. 

For sufficiently low discount rate, noise intensity and switching probabilities, on 

the other hand, we find extreme experimentation in the sense that the optimal
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quantity as a function of the belief exhibits a jump from one boundary of the inter­

val of feasible quantities to the other. Thus, the monopolist’s behaviour depends 

qualitatively on the parameters describing his environment.

Due to mathematical complications, our analytical results for the two-sided case 

are somewhat weaker than those obtained in the one-sided case. We therefore have 

to rely to a larger extent on numerical results. Some of these are presented in Sec­

tion 1.6. The advantage of working in continuous time becomes evident, allowing 

far simpler numerical computations than the discrete-time approach predominant 

in the literature. These numerical results, whilst not being a substitute for analyt­

ical arguments, can be used as evidence for conjectures about the way in which the 

value function and the optimal policy vary with the discount rate, the signal-to- 

noise ratio, and the likelihood of changes of the demand curve. In particular, they 

indicate a discontinuous switch from extreme to moderate experimentation as the 

likelihood of a demand curve change increases through some critical level.

A summary and concluding remarks are given in Section 1.7. Some technical 

results relating to the case of one-sided experimentation (Section 1.4) can be found 

in an appendix.

1.1 The M odel

The time parameter is continuous. There are two states indexed by k , k £ {0,1}. 

The state changes according to the transition probabilities

P r(kt+At =  0 | kt = 0) =  1 — AoAt -f- o(At),

Pr(&<+At =  1 | kt = 0) =  A0A t +  o(At),

Pr(fcf+At == 0 | kt = 1) =  AiAt +  o(At),

P r ( k t+At  =  1 | kt = 1) =  1 — AiAt +  o(At)

with Ai >  0 for i = 0,1. In particular,

Pr (ks = i Vs £ [t, t -f At] | kt = i) = exp(—A;At); 

see Karlin and Taylor (1981, p .146).
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In state k, the expected demand curve (price as a function of quantity) is given

by

P  =  o t k -  P k q

where the a k,fik are fixed, known and strictly positive. The realised price is the 

expected price plus some noise term.

Most of the time, we shall assume that the slopes of the two demand curves are 

different, that is, f t  ^  f t .  In this case, let (q,p) be the point in the (q,p)~plane 

where the two expected demand curves intersect. This point is easily seen to have 

the co-ordinates
A a  A a 0f t  -  a i f t

q ~  A/3’ P ~  A/?
where A a = a\ — and A (3 =  f t  — f t .  The location of this intersection will turn

out to be crucial. Of course, only if q > 0 and p > 0 can they be interpreted as a

quantity and a price, respectively.

At each moment of time, the monopolist chooses a quantity qt from an interval

Q — femim <7max] of feasible quantities, and observes a price which is a noisy signal of

whether kt =  0 or 1. The monopolist’s subjective probability at time t that kt =  1

is denoted by 7T*, and he updates this belief in a Bayesian fashion.

We assume that there is no cost to production, hence revenue equals profit.

Working in continuous time, we model the revenue flow as

dRt = qt [(ajbt -  PktQt) dt +  adZt]

where Z  is a standard Wiener process independent of the process ft and < j > 0, fixed 

and known. Alternatively, we can write this as dRt = qt dPt with the cumulative 

price process P  given by

dPt = (akt -  pktqt) dt +  <rdZt .

This is the process which the agent observes.

Consequently, the belief 7rt is the conditional probability that ft =  1 given 

the history of the process P. In the same way, admissible strategies q  =  {<ft} 

for the monopolist are such that the action taken at time t depends only on the 

price history up to that time. To make these ideas more precise, assume that
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the Brownian motion Z  and the Markov process k are given on some complete 

probability space and are both adapted to the filtration {P*}. Let Qo denote the set 

of all processes q =  {^} which take values in Q , the interval of feasible quantities, 

and are adapted to the aforementioned filtration. Each q  G Qo gives rise to a unique 

cumulative price process P q. The information contained in prices is summarised by 

{pj1}, the filtration generated by P q. A process q  G Qo is an admissible strategy 

for the monopolist if qt is adapted to the filtration {P^1}. The set of admissible 

strategies will be denoted by Q. If the monopolist follows the strategy q  G Q, the 

posterior probability at time t that kt =  1 is 7Tt =  Pr(fct =  1 | = E [kt \ P j1].

Given the initial belief 7r0 =  7r, the agent’s objective is to choose a strategy 

q  G Q so as to maximise

uq(7r) = E , re~TtdRt

= En ^  re~r t qt [(ak t - / 3 ktqt)dt +  adZt]

where r  >  0 is the discount rate, fixed and known. Up to the multiplication by r, 

which expresses the payoff in per period terms, uq(7r) is the expected present value 

of the revenue flow from strategy q. Note that we can also write

uq(7r) =  [y* re  rt qt [akt -  f)ktqt\ dt

since the stochastic integral with respect to the Wiener process Z  has zero expec­

tation.

1.1.1 T he Value Function

As usual, the value function for the monopolist’s decision problem is defined as

u(7r) =  sup uq(7r) (1.1)
q 6Q

for 7r G [0,1]. A strategy q G Q is optimal for initial belief 7r if it attains the 

supremum in (1.1). Given e > 0, a strategy q G Q is called e-optimal for initial 

belief tt if uq(7r) > u(7r) — e.

The value function is clearly bounded. Moreover:
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P ro p o s itio n  1.1.1 The value function u is continuous and convex, and possesses 

one-sided derivatives D -u  and D+u which are bounded.

PROOF: For fixed q E Q, uq is affine in 7r. Indeed,

u q (7r) =  7T E ko=1
" p oo

/  re~rt qt [akt -  (3ktqt]dt 
Jo

- f  ( 1  — 71") E k o = o

poo

/  r e~Tt qt [akt -  (3ktqt\ dt
Jo

For 7r =  q 7Ti +  ( 1  — 7 7 )  7T2 with 0 < r) < 1 ,  we therefore have

u q ( 7 r )  =  77 rxq (7T1 )  +  ( 1  — 7 7 )  u q (7T2 )

< »/w (t t i ) + (1 -  ^ )w (t t2)

by the definition of the value function. Taking the supremum on the left hand side 

proves convexity. A convex function is continuous on the interior of its domain, 

so we only have to show continuity at n =  0 and tt = 1. Suppose for example 

that the value function is not continuous at t t  = 0. Due to convexity, this can 

only mean u(0) > u(0-f). By definition of the value function, there exists a policy 

q E Q such that uq(0) > u(0+). But then uq(7r) > u(7r) for small 7r > 0, which 

is a contradiction. The right boundary t t  = 1 is dealt with in the same way. Now, 

convexity implies the existence of a left-hand derivative D -u  on ]0 ,1] and a right- 

hand derivative D+u on [0,1[, both being non-decreasing functions, the former left- 

continuous, the latter right-continuous, with <  D+u on their common domain. 

We want to show that they are bounded. From the above representation of the 

payoff function uq we see that there is a constant K  > 0 such that |(Mqy(7r)| < K  

for all q E Q and all ir. Now, suppose that (D_u)(7r1) < —K  for some belief 

TT\ > 0. Then there is a 7r2 < tv-l such that 1/(711) — ^(^ 2 ) < (^i — ft2 )> i-e.,

^(^ 2 ) > u(7Ti) +  K  (7Ti — 7r2). By definition of the value function, we can find a 

strategy q E Q with u(7r2) >  uq(7r2) > u(7Ti)-|-if (tti — 7t2 ) .  But then the linearity of 

uq implies uq(7T!) > uq(7r2) — K  (7T! — 7r2) > u(7r!), which is a contradiction. Using a 

similar argument for the right-hand derivative, we obtain —K  <  D-U < D+u < K  

on ]0,1[. Due to left and right continuity, respectively, this also proves that both 

(D_u)( 1) and (D+u)(0) are bounded in absolute value by K .  ■
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The convexity of u expresses the fact that information is valuable to the agent.3 

If the prior belief is 7Ti with probability 77 and 7T2 with probability 1 — 77, then the 

agent can only gain from being told which before choosing a strategy.

On a purely mathematical level, convexity implies further regularity properties 

of the value function which will be of use later on.4

1.1.2 Strategies D epending on Beliefs

Consider a strategy q  E Q and the associated processes of cumulative prices Pt 

and beliefs irt . By the law of iterated expectations, we have

u q ( 7 r )  =

/»oo

/  r  e~rt Ev[qt (akt -  j3ktqt) \ F?] dt 
Jo

Note that E^fe (akt -  (3ktqt) | T^] is the expected revenue, given the observed price 

history, for quantity qt . By definition of Trt and the ^^-m easurability of qt , this 

expected revenue equals qt [(1 — 7rt)a0 -f 7rtai — ((1 — 7Tt)/?0 +  ^tA)?*]* T° simplify 

the notation, we introduce the functions

a ( w )  =  ( 1  — 7 r ) a 0  +  T r a i ,

(3(ir) = (1 -  tc)Po +  7rA

which describe the expected intercept and slope parameter of the demand curve 

given the belief ir. The expected revenue from setting quantity q is then

Thus,

(1.2)
poo

uq(7r) = Eir /  r e~rt R(nt, qt) dt
.Jo j

This expression for uq(7r) does not involve the stochastic variable kt any more; 

instead, the payoff relevant quantities are described as functions of 7rt alone.

This suggests looking at strategies based exclusively on the information con­

tained in beliefs. To make this precise, let be the filtration generated by the 

process of beliefs corresponding to q £ Q. By construction, G*t ^  The set of

3That is, unless the value function is linear.
4See the proof of Corollary 1.3.1.
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all admissible strategies q which are adapted to the filtration {QJ1} will be denoted 

by Q. Strategies in this class depend merely on the history of beliefs.

Finally, one can consider strategies that depend only on the current belief. A 

strategy q G Q is a (stationary) Markov strategy if there exists a policy function 

q : [0,1] —> Q such that qt = q(rrt). The strategies calculated in subsequent sections 

will be of this type.

1.2 The Evolution o f Beliefs

It follows from Liptser and Shiryayev (1977, Chapters 8 and 9) that given a choice of 

quantities q E Q, the beliefs evolve according to the stochastic differential equation

dirt = A(7rt) dt +  <J_17rt(l -  7rt)(A a -  A/3 qt) dZtq (1.3)

where

A ( 7 t)  =  ( 1  — 7t) A 0 —  7T A j

and

(
dZ? = a ' 1 {akt -  Pkt<h) dt +  (rdZt -  [akt -  (3ktqt \ F?] dt

"V-
\  realised  price ex p ec ted  price

Note that E n[ockt— (3ktqt \ is the expected price, given the observed price history,

for quantity qt . By definition of Trt and the ^^-measurability of qt , this expected 

price equals a(7Tt) — ^(^t) qt , hence

dZ? = <t-1 (akt -  fiktqt -  [a{Kt) -  P(Ft)qt]) dt +  dZt . (1.4)

Liptser and Shiryayev show that the process Zq is a Wiener process with respect 

to the filtration {F J1}. This result, together with (1.3), is the key fact on which we 

can base the mathematical analysis of our model.

Equation (1.3) emphasises the two separate forces which drive the updating. 

The drift term A(7rt) dt takes account of the possibility that the state may change 

over the next infinitesimal period of time. If A0 +  Xi ^  0, the linear function A is 

downward sloping and vanishes at



We can write

A(tt) =  —(A0 + Ai )(tt -  if)

which shows that, via the drift term in (1.3), state switches introduce mean rever­

sion into the evolution of beliefs.

The diffusion term cr-17Tt(l — 7Tt)(Ao — A/? qt) dZ^, on the other hand, captures 

the influence of the observed price signal on the evolution of beliefs. Z q being a 

Wiener process, this part of the updating is completely unpredictable. Intuitively, 

this expresses the fact that the current belief already incorporates everything that 

there is to know, so any change must come as a surprise. The lower <7, and the 

greater the spread A a  — A/9 qt between the two demand curves, the more infor­

mative is the price signal, and the more pronounced is the change of beliefs after 

the signal is observed. This holds of course only if the agent is not subjectively 

certain of the current state. For t t =  0 or 1, the agent rules out any possibility 

of learning from the price signal, so the diffusion term vanishes no m atter which 

action is taken.

To get some insights into the boundary behaviour of the stochastic process of 

beliefs, let us consider Markov strategies. The results obtained will apply to the 

policies which we shall encounter in subsequent sections.

P ro p o sitio n  1.2.1 Let q  £ Q be a Markov strategy with the policy function q : 

[0,1] —»■ Q. Suppose that q is continuous at t t  = 0 and t t  = 1 with g(0) ^  q ^  <?(1). 

Then (1.3) defines a diffusion process with the following boundary behaviour:

(a) The boundaries t t  = 0 and 7r =  1 are both unattainable, that is, they cannot 

be reached infinite time from the interior of the interval of possible beliefs.

(b) For Ao =  0 (Ai =  0), the process of beliefs, if started at the boundary tt  = 0 

(7r =  1), remains there forever.

(c) For A0 > 0 (Ai >  0), the process of beliefs, if started at the boundary t t  = 0 

(7r =  1), moves immediately into the interior of the interval of possible beliefs.

In other words, tt  = i {i = 0,1) is a natural boundary if  A; =  0, and an entrance 

boundary if  Xi > 0.
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PROOF: To prove the proposition, one has to verify certain integral criteria which 

can be found for example in Karlin and Taylor (1981, Chapter 15). This is a 

straightforward but rather tedious exercise, and therefore omitted. H

For a Markov strategy q 6 Q with policy function q : [0,1] —> Q, it can be 

shown5 that the payoff function uq solves the backward equation

— 7r2(l — ^ [ A a  — A(3 q(7r)]2 X('7r)u,(7r) — r u(ir) + r R (tt, q(Tr)) = 0 (1.5)
2cr2

corresponding to (1.3) at every point 7r E]0,1[ such that (i) the “demand spread” 

quadratic 7r i—► [Aa — Aflqfa)]2 is continuous and non-zero at 7r; (ii) the expected 

revenue function 7r t—> R (7r, q(7r)) is continuous at ir. Moreover, the payoff function 

uq has a continuous first derivative on every interval where A a  — A/3 q(7r) ^  0. 

Finally, discontinuities of the above quadratic functions are “absorbed” by the 

second derivative of uq.

1.3 The Bellm an Equation

The representation (1.2) for the payoff uq(7r), the stochastic differential equation 

(1.3) for the evolution of beliefs and the fact that Zq is a Wiener process allow us 

to consider the monopolist’s decision problem as a problem of optimal control of a 

diffusion process, the diffusion in question being the process of beliefs.6

The present section deals with the associated Bellman equation. We shall first 

quote a result from Krylov (1980) stating that the value function is a generalised 

solution of the Bellman equation. After interpreting the economics behind this 

equation, we shall then present a so-called verification theorem, that is, sufficient 

conditions for a given function of beliefs to be the value function. Next, necessary 

conditions for experimentation to occur at the optimum will be given along the lines 

of Mirman, Samuelson and Urbano (1993). Finally, we shall derive the quantities 

that solve the maximisation problem in the Bellman equation.

5See for example Morton (1971).
6Standard references on controlled diffusions are Fleming and Rishel (1975) and Krylov (1980).
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1.3.1 T he Value Function as a Solution o f th e  
B ellm an Equation

To state the following result, we need to introduce the concept of a generalised 

derivative. Functions u \ ,u 2 :]0,1[—> M are called generalised first and second 

derivatives of a given function u if

I <̂ (7r) u f f n )  dir =  — I </)'(w)  u ( t t )  dir 
Jo Jo

and

I (j>{ir) u 2(ir) dir =  I (j>"(it) u(ir) dw 
Jo Jo

for all functions 4> that are infinitely differentiable and of compact support in ]0,1[. 

Generalised derivatives are defined only up to changes on null sets. Moreover, if a 

function is once or twice differentiable in the classic sense, then the true derivatives 

are also generalised derivatives.

P ro p o s itio n  1.3.1 In the interior] 0,1 [ of the set of beliefs, the value function u 

has two generalised derivatives, Ui and u2, which are locally bounded. With these 

generalised derivatives, the value function u satisfies the Bellman equation

sup I  —t-7t2(1 — 7r)2(Aa! — A(3 q)2 u2(ir) +  A(7r) U\(ir) — r u{ir) +  r  R(ir, q) 1 =  0
12(7 J

(1 .6)

almost everywhere on ]0,1[.

PROOF: This follows directly from Theorem 6, p.289, of Krylov (1980). H

Using the convexity of u,  we can strengthen this result as follows.

C o ro lla ry  1.3.1 The value function u is continuously differentiable on [0,1] and 

has a generalised second derivative u2 >  0 on ]0,1[ such that
/»7T2

u'(ir2) — u ' f a )  =  /  u2(ir) dir (1.7)
J 7T i

for all 7T! and ir2 in the open unit interval. Moreover, 

sup |  —^-tt2(1 — 7t)2(Aq; — A(3 q)2 u2(ir) +  A(7t) u (tt) — r u(ir) +  r  R (tt, q) > =  0
g€Q I 2(7 J

(1.8)

almost everywhere on ]0,1[.
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PROOF: u is convex by Proposition 1.1.1. As its left-hand derivative D_u  is left- 

continuous and non-decreasing, one can define a measure // on ]0,1[ via /̂ [7Ti, 7r2 [ =  

(D_u)(7t2) — (D - u)(7Ti ). This measure represents the second derivative of u in the 

sense of a distribution:

I u(tt) dir — I <̂ (7r) dfi(tt)
Jo Jo

for every function (j) that is infinitely differentiable and of compact support in ]0,1[. 

Moreover, this property characterises fi uniquely.7 Comparing it with the definition 

of the generalised second derivative u2, we conclude that dfj, = u2dTr. In particular,

/♦7T2

(jD_u)(tt2) -  (jD_u)(tt1) =  / u 2 (7 r )  dir,
J  7T1

so D_u  is continuous, and u is continuously differentiable on the open unit inter­

val. By Proposition 1.1.1, u'(7r) has a continuous extension on the whole of [0,1], 

Finally, we can replace u\ by u' in the Bellman equation. I

1.3.2 Interpretation

Some economic insights can be gained from rewriting the Bellman equation as8

/ \ ^(^0 // \
U { 7 T )  =   U  (7T)

r
value o f s ta te  changes 

1
+  S U p  i

2rcr2
t t  (1 — 7r) (A a  — A/3q) u'(ir) +  R(ir,q) >, (1.9)

value o f in form ation  m yopic p a y o ff ,

showing the trade-off between information gathering and myopic profit maximisa­

tion.

Indeed, the discussion after equation (1.3) above shows that <t_27t2(1—7t)2(Aq'— 

A/? q)2 provides a measure for the informativeness of the price signal obtained 

from setting the quantity q. This informativeness is valued with the shadow price 

if"(7r)/2r.

7Cf. Krylov (1980, p.49).
8In this subsection, we shall use the standard notation for derivatives despite the fact that the 

theory so far only guarantees the existence of generalised  second derivative.
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The term “myopic payoff’ needs some explanation. We refer here to a strong 

form of myopia which assumes that the current belief will persist forever. If this 

were correct, setting the quantity q  forever would indeed yield

/•OO

/  r e ~ Ti  R(tt, q ) d t  =  R(7r, q ) .
Jo

Alternatively, we can think of this as the expected payoff for r  — oo. As r  tends to 

infinity, the distribution on M +  with density r e ~ r t  degenerates to a point mass at 

t = 0, and the agent becomes myopic in so far as he does not care for the future 

any more: for r  =  oo, uq(7r) =  R(TT,qo).

According to (1.3), A(7r) indicates the direction in which the belief is likely to 

move due to possible state changes. This piece of information has the shadow 

price u ' ( 7 r ) / r .  The contribution to the value function which we called “value of 

state changes” is positive if the mean reversion force works in the direction of value 

increases.

Finally, note that the optimisation in (1.9) is formally the same with or with­

out state switches. However, the value function will of course be affected by the 

possibility of change.

1.3.3 A  Verification Theorem

The following proposition provides a sufficient condition for a solution of the Bell­

man equation to be the value function, and for a Markov strategy to be e-optimal. 

In the literature on stochastic control, a result of this type is usually called a 

verification theorem.

P ro p o s itio n  1.3.2 L e t  u  b e  a  c o n t i n u o u s l y  d i f f e r e n t i a b l e  f u n c t i o n  o n  [0,1] w i t h  a  

g e n e r a l i s e d  s e c o n d  d e r i v a t i v e  u 2 > 0 o n  ]0,1[ s u c h  t h a t  (1.7) h o l d s  f o r  a l l  ir1 a n d  

i r2 , a n d  7r2 (1 — 7r)2 u 2 ( tt) —> 0 a s  tt —> 0 a n d  tt —► 1, r e s p e c t i v e l y .  I f  u  s o l v e s  t h e  

B e l l m a n  e q u a t i o n  (1.8) o n  [0,1], t h e n :

( a )  u ( 7r) >  uq(7r) f o r  a l l  q €  Q .
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(b) Let e > 0. / /q G  Q is c Markov strategy with policy function q : [0,1] —» Q 

such that for any 7r

7t2(1 — 7r)2[Aa — A/3 <z(tt)]2 u 2 ( t t )  +  u'(7r) — u ( t t )  +  R ( 7 r , </(7r)) >  — e ,
2rcr2

£/&en uq(7r) > u(7r) — e for all t t . In particular, q  is e-optimal (in Q).

(c) I f  there is a Markov strategy as in (b) for any e > 0, then u is the value 

function: u{n) =  supqGQ u q ( 7 r ) .

(d) I f  q* e  Q is a Markov strategy with policy function q* : [0,1] —* Q such that 

for every t t ,  the supremum in (1.8) is attained at q*(n), then q* is optimal: 

u ( 7 r )  =  m a x q e g u q (7 r)  =  u q * ( 7 r ) .

Note that under (c) or (d), it is enough to consider belief-dependent Markov strate­

gies, as indicated at the beginning of this section.

PROOF: Let the initial belief be 7r0 =  t t . For an arbitrary policy q  G Q consider 

the stochastic process M q given by

Mjt =  f  re~rt R(irt,qt)dt +  e~rT 
Jo

By a generalisation of Ito’s lemma,9

T

M«  =  M0q + J  e -r t{ ^ ( l ~ w t)2( A a - A I 3 qt)2u2^ t)

+  A(7Tt) u'(7Tt) -  ru(7Tt) +  r R f a , qt) |  dt

+  O’-1 f  e~rt7Tt(l -  nt) (A a  -  A/3qt) dZ?.
Jo

(1.8) imphes that the expression under the first integral is non-positive, so M q is 

a supermartingale. In other words, EV\M^\ < K  or

•T

> E j ^ y  re  rt R(irt ,qt)dt -I- e r E7r[u(7rT)].

Letting T  go to infinity, we see that the first term on the right hand side becomes 

u q ( 7 r ) ,  while the second term tends to zero. This proves part (a). Now let e  > 0.

*Cf. Lemma IV.45.9, p .105, of Rogers and Williams (1987).
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If q  is a Markov strategy such that

r 7 r 2 ( l  — 7 r )2 [ A a  — A ( 3  q ( n ) ] 2 u 2 { ' k )  +  A (7 t)  u ' ( t t )  — r  u ( i r )  +  r  R ( 7r, <?(7r)) >  — r e
2a

for all 7r, then

E t t I M j ]  >  M 0q  -  e  f  r  e ~ Tt  d t .
Jo

Letting T  —► oo yields uq(7r) >  u(7r) — e. Parts (b) - (d) follow immediately. I

1.3.4 N ecessary Conditions for E xperim entation

The agent is said to e x p e r i m e n t  if he deviates from the action that maximises 

expected current reward. That is, given the belief 7r, the monopolist experiments 

if he sets a quantity different from the myopic quantity

r W  =  a rg m ax fl(x ,9) =  ^ f .

Experimentation entails an opportunity cost in the form of a loss in current payoff. 

In fact, while the myopic optimum (or maximum expected revenue) is

=  ngx #(*•,«) =  R ( n , q m ( n ) )  =  >

the expected revenue from setting an arbitrary quantity q  is

# ( 7 T, q )  =  m ( t t )  -  / ? ( t t ) [ q  -  q m ( t t ) ] 2 ,

which decreases strictly as the distance between q  and q m ( tt)  increases.

In a two-period framework, Mirman, Samuelson and Urbano (1993) identify 

two necessary conditions for experimentation to occur at the optimum:

• Experimentation must be informative.

• Information must be valuable.

Guided by their analysis, we now study two special cases of our model where one 

of the above conditions is violated.

T h e  case of u n in fo rm ativ e  ex p e rim en ta tio n . Assume that the two de­

mand curves have the same slope parameter, /30 =  Thus, the monopolist faces
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a n  u n k n o w n  a n d  p o s s i b l y  c h a n g i n g  i n t e r c e p t . 10  A s  t h e  d e m a n d  c u r v e s  a r e  p a r a l ­

l e l ,  a  c h a n g e  i n  o u t p u t  d o e s  n o t  a f f e c t  t h e  s p r e a d  b e t w e e n  t h e  t w o  p o s s i b l e  p r i c e  

d i s t r i b u t i o n s .  T h u s ,  t h e  c h o i c e  o f  a  q u a n t i t y  h a s  n o  i m p a c t  o n  t h e  i n f o r m a t i v e n e s s  

o f  t h e  p r i c e  s i g n a l .  T h i s  r e n d e r s  e x p e r i m e n t a t i o n  u n i n f o r m a t i v e ,  a n d  t h e  m y o p i c  

q u a n t i t y  i s  o p t i m a l .  I n d e e d ,  f o r  A / 3  =  0 ,  e q u a t i o n  ( 1 . 9 )  r e d u c e s  t o

u ( tt)  = u'(7r) +  r7r2(l -  7r)2 u"(tt) +  sup R(tt, q ) ,
r 2rcrz q

i m p l y i n g  t h e  o p t i m a l  q u a n t i t y  <7* (? r )  =  q m ( tt)  f o r  a l l  tt.

The case of worthless inform ation. S u p p o s e  t h a t  t h e  t w o  d e m a n d  c u r v e s  

i n t e r s e c t  e x a c t l y  o n  t h e  q u a n t i t y  a x i s ,  t h a t  i s ,  p =  0  o r

Oi0 _  Oil
f t  f t

T h e n ,  o n e  a n d  t h e  s a m e  q u a n t i t y  i s  o p t i m a l  u n d e r  e i t h e r  d e m a n d  c u r v e :  <?m ( 0 )  =  

q m (  1 ) ,  w h i c h  w e  d e n o t e  b y  q o .  I n  t h i s  s i t u a t i o n ,  i n f o r m a t i o n  i s  c l e a r l y  w o r t h l e s s ,  a n d  

w e  e x p e c t  t h e  c o n s t a n t  p o l i c y  <7* ( t t )  =  q 0 t o  b e  o p t i m a l .  I n d e e d ,  i t  i s  s t r a i g h t f o r w a r d  

t o  v e r i f y  t h a t  t h e  c o r r e s p o n d i n g  l i n e a r  p a y o f f  f u n c t i o n  uqo(7r )  s o l v e s  t h e  B e l l m a n  

e q u a t i o n .

F o r  t h e  r e s t  o f  t h e  p a p e r ,  w e  r u l e  o u t  t h e s e  t w o  c a s e s  b y  m a k i n g  t h e  f o l l o w i n g

A ssum ption The abovementioned necessary conditions for experimentation are 

satisfied, that is,

•  Experimentation is informative: A (3 ^  0

•  Information is valuable: p ^  0

More precisely, we assume without loss of generality that the demand curve in state 

1  is steeper than the demand curve in state 0 :  f t  > f t ,  that is, A/3 >  0 .

F o r  l a t e r  r e f e r e n c e ,  w e  n o t e  t h a t  t h i s  a s s u m p t i o n  i m p l i e s  s t r i c t  m o n o t o n i c i t y  o f  t h e  

m y o p i c  p o l i c y  f u n c t i o n  q m . I n d e e d ,

/ mw \ a iA> “  «oft A (3p
{ q }  w  =  2 =  ’

10Of course, we assume c*o <*i to avoid trivialities.
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hence qm is strictly increasing if p  < 0, and strictly decreasing if p  > 0.

Due to strict monotonicity, the image of the myopic policy function qm is a 

closed interval, denoted by Q m , with boundaries ^m(0) and qm ( l ) .11 Moreover, 

there are exactly two cases. Either q 0  Qm, or there is a unique belief 7T such that 

qm (7t) =  q. We shall see that these two scenarios lead to very different outcomes.

1.3.5 O ptim al Q uantities

The Bellman equation can be used to determine the optimal quantity as a func­

tion of 7r and U2(7r), the generalised second derivative of the value function. We 

introduce the notation

A d 2
V ^  =  2ro ^ ’r^ 1 ~

and rewrite (1.8) as

u ( tt) — tf'(7r) — m ( 7r) =  sup 4>[V(7r), 7r, q]
r geQ

( 1 .10)

with the function

$[V, * ,q ]  =  V [ q - q ]  -  /?(tt) [q -  qm (ir)] .

Now, fix a belief 7r and a value of V ( i r), and write $(<?) for $[V(7r), 7r, <?]. The 

optimal quantities are determined as follows.

Strictly  concave case: V ( i r )  < In this case, the first order condition

determines the unique optimal quantity

9  =  ?m i

if ® '( q inax) >  0 ;

(1.11)

 £M am( \ ____ YM   a eise
k 0 ( i r ) - V ( v )  *  V7* / 0 ( v ) - V ( i r )  *

11 We assume of course that the these two myopic quantities are admissible, hence Q m C Q .
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Linear case: V(k)  =  /?(7r). In this case, $'(5) =  2f3(7r)(qm(ir) — q), and the 

optimal quantities are

?max if &(q) > 0, i.e. qm(tt) > q\

argm ax^(^) =  < 
q£Q if $'(<?) < 0 , i.e. qm(tt) < q\ ( 1 .12)

kmin,9max] if $ '(?) =  0 , i.e. qm(7r) =

Note that 3>(<?) =  0 in the third sub-case. 12

Strictly  convex case: V(n) > P{n)> Here, we necessarily have corner solu­

tions. The question as to which corner produces the higher value can be decided 

by looking at $ ;(9 C) where

9c =
9max T 9r

is the centre point of the interval of admissible quantities:

9max if ^  (<7c) bj

argmax$(<7) =  < 9min if * '(9c) <  0 ; (1.13)

{̂ min? 9max} if ^  (9c) b.

The sign of ^'(^c) indicates where the symmetry axis of the graph of $ ( 9 ), a 

parabola, lies relative to the midpoint of the interval Q = [9^ ,  9max]- A positive 

sign, for instance, means that the symmetry axis lies to the left of gc, which implies 

that the value at the right corner is higher than the value at the left corner.

Inserting the optimal quantities into the Bellman equation, one can derive an 

ordinary differential equation for the value function. This is the starting point for 

the analysis presented in the following two sections.

1.4 One-Sided E xperim entation

In this section, we study scenarios where the two demand curves do not intersect 

in Qm, that is, q ^  Qm. These cases allow a simple characterisation of the value

12Of course, this can only occur if q E Q m in the first place.
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function and the optimal policy.

In particular, it will turn out that the value function is twice differentiable and 

that the optimal quantity is always an inner solution. As indicated at the end of 

the previous section, we can find an ODE for the value function by substituting 

the optimal quantity into the Bellman equation. In the case of an inner solution, 

V ( t c )  < /?(?r) and

P M  - m t - \  i
1 W  =   J7TT 9 W  -( 3 ( 7 r )  — V ( tt) / 3  ( t t  ) — V  { t t  )

is optimal. Using (1.10) and simplifying, we obtain

u ( k )  — -  —  m(ir) =  — q ] 2 ~  /^(7r)k*(7r) — q m {'K ) ?

-  V ( tt)

N o t e  t h a t  P ( ^ ) [ q m ( ^ )  — q ] 2 =  m ( 7r) — m  w h e r e  m  =  p q  =  R ( tt, q ) . 13 T h u s ,

“ M  -  ^  “ 'M  -  y ^ j M * )  -

w h i c h ,  f o r  u ( tt) — \ ( i r ) u ' ( tt) /  r  — m  >  0 , i s  e q u i v a l e n t  t o  t h e  o r d i n a r y  d i f f e r e n t i a l  

e q u a t i o n

-  *)» u »  -  =  0 , (1.14)
2 r c r 2 u (  7r )  — \ ( i r ) u ' ( f t )  /  r  — m

T h e  v a l u e  f u n c t i o n  f o r  q  ^  Q m  c a n  b e  f u l l y  c h a r a c t e r i s e d  a s  t h e  u n i q u e  s o l u t i o n  t o  

( 1 . 1 4 )  w i t h  v a l u e s  b o u n d e d  b e l o w  b y  t h e  m y o p i c  p a y o f f  f u n c t i o n  m  a n d  b o u n d e d  

a b o v e  b y  t h e  s t r a i g h t  l i n e  j o i n i n g  t h e  m y o p i c  p a y o f f s  m ( 0 )  a n d  m ( l ) .  T h i s  l i n e  h a s  

t h e  e q u a t i o n

m (  f t )  =  (1 — 7r)m(0) +  7 rm (l) .

B y  s t r i c t  c o n v e x i t y  o f  t h e  f u n c t i o n  m ,  w e  h a v e  m  <  m  o n  ] 0 , 1 [ .

Theorem  1.4.1 T h e  v a l u e  f u n c t i o n  u ( f t )  i s  s t r i c t l y  c o n v e x ,  o n c e  c o n t i n u o u s l y  d i f ­

f e r e n t i a b l e  o n  [ 0 , 1 ] ,  a n d  a n a l y t i c  o n  ] 0 , 1 [ .  I t  i s  t h e  u n i q u e  s o l u t i o n  o / ( 1 . 1 4 )  s u c h  

t h a t

m ( f t )  <  u ( tt)  ^-1/ ( 71-) <  r n ( f t )

13If q >  0 and p  >  0, m can be interpreted a s  the expected revenue, given any belief t t , from 
choosing the quantity q. Moreover, if q E Q m , then m =  m ( i r ) .
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o n  ] 0 , 1 [ .  I n  p a r t i c u l a r ,

u ( 0 )  — u ' ( 0 )  =  m ( 0 ) ,
r

U ( 1 ) _ M „ ' ( 1 )  =  m ( l ) .
r

T h e  o p t i m a l  p o l i c y  t a k e s  v a l u e s  i n  Q m  a n d  i s  g i v e n  b y

, w  =  +  v ( * ) - \ W ( * ) l r - m W  _  _
m ( 7 r  j  — m

P R O O F :  I t  i s  s h o w n  i n  t h e  a p p e n d i x  t o  t h i s  c h a p t e r  t h a t  t h e r e  e x i s t s  a  s o l u t i o n  

u  o f  ( 1 . 1 4 )  w i t h  t h e  d e s i r e d  p r o p e r t i e s .  L e t  u s  v e r i f y  t h a t  a n y  s u c h  u  s a t i s f i e s  

t h e  B e l l m a n  e q u a t i o n .  F r o m  ( 1 . 1 4 ) ,  w e  s e e  i m m e d i a t e l y  t h a t  t h e  c o r r e s p o n d i n g  

f u n c t i o n  V  s a t i s f i e s  V ( tt) <  / ? ( t t ) ,  s o  w e  a r e  i n  t h e  c a s e  w h e r e  t h e  m a x i m a n d  

4 > [ V ( 7 r ) ,  7r, q]  a s  d e f i n e d  e a r l i e r  i s  s t r i c t l y  c o n c a v e  i n  q .  W e  f i x  a  b e l i e f  7r  i n  ] 0 , 1 [  

a n d  w r i t e  $ ( 5 )  f o r  4 > [ V ( 7r ) ,  7r ,  q ] .  F o r  t h e  s a k e  o f  c o n c r e t e n e s s ,  a s s u m e  t h a t  q  l i e s  t o  

t h e  l e f t  o f  Q m . T h e n  $>/ ( q m (' jr))  =  2 V ( 7 r )  [qm { i r )  — q]  >  0, s o  t h e  o p t i m a l  q u a n t i t y  

s a t i s f i e s  q * ( tt)  >  q m ( tt) .  N e x t ,  q  <  Q m  i m p l i e s  t h a t  t h e  m y o p i c  p o l i c y  f u n c t i o n  

q m  i s  s t r i c t l y  d e c r e a s i n g ,  t h u s  g m ( 0 )  i s  t h e  m a x i m u m  o f  Q m . W e  s h a l l  p r o v e  t h a t  

$ ' ( g m ( 0 ) )  <  0 ,  h e n c e  q * ( 7r )  <  ? m ( 0 ) .  U s i n g  ( 1 . 1 4 ) ,  w e  s e e  t h a t  ^ ' ( ^ ( O ) )  <  0  i f  

a n d  o n l y  i f

[ u ( 7 r ) --------—  u ( 7 r )  —  m ( 7r)]  [qm ( i r )  — q]  <  [<?m ( 0 )  — q m { i r ) \  [ m ( 7 r )  — m ] .
r

A s  m ( 7 r )  — m  —  / 3 ( 7 r ) [ q m (7r )  — q ] 2 a n d  m ( 7 r )  =  R ( tt, q m ( 0 ) )  +  ( 3 ( i r ) [ q m ( 0 )  — q m ( i r ) ] 2 , 

t h i s  i n e q u a l i t y  i s  e q u i v a l e n t  t o

u ( tt)  -  <  R ( 7 r , q m ( 0 ) )  +  ^ ( 7 r ) [ g m ( 0 )  -  ^ ( ^ r ) ] [ ^ ( 0 )  -  q \ .

B u t  u ( tt) — A ( 7r ) u / ( 7r ) / r  <  m ( 7r ) ,  s o  a  s u f f i c i e n t  c o n d i t i o n  f o r  q m ( i r )  <  ^ m ( 0 )  i s

m(Tr) < R(w, <T(0)) +  P(*){<lm(0) -  «“ (»)][«“ (0) -  g}.

T h i s  c o n d i t i o n  h o l d s  f o r  a l l  tt >  0 .  I n  f a c t ,  b o t h  s i d e s  o f  t h e  i n e q u a l i t y  a r e  l i n e a r  

i n  7r . 14  T h e y  c o i n c i d e  a t  tt =  0 ,  s o  i t  i s  e n o u g h  t o  s h o w  t h a t  t h e  i n e q u a l i t y  h o l d s  a t

14Note that 0 ( tt) ?m(7r) =  a(7r)/2.
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7r =  1, which is straightforward. This proves that the optimal quantity is an inner 

solution, given by the third line of (1.11). As we have seen before, this implies that 

the Bellman equation reduces to the differential equation (1.14), so the solution u 

satisfies the Bellman equation. Moreover, we can use (1.14) to replace V  in (1.11), 

which yields the policy function q* as stated in the theorem. The case where the 

demand curves intersect to the right of Qm can be dealt with in exactly the same 

way.

Next, we want to show that u is the value function. It follows from an extension 

to the standard existence theorems that the stochastic differential equation

dirt = |  A(7Tt)

+  ^  i 1 ~  7r*) ~  ?(**)] ( a kt -  Pktq*(vt) -  [a(irt) -  /?(7Tt)g*(7Tt)]) } dt

+  — 7T*(1 -  7Tt)[q-q*(7Tt)\dZt (1.15).................<J .................................................................................... ......................................

which is obtained from combining (1.3) and (1.4) has a solution 7r* for any given 

starting value 7r0 £ [0, l].15 Now, define the strategy q* by q* = q*(ir*) and consider 

the associated price process dP* =  ( — (dkt Qt) ^  + &dZ. Section 1.2 implies that 

the corresponding process of beliefs t t * *  =  E [ k t  | ] also solves (1.15) with initial

value 7To. By the uniqueness result in Theorem 9.2 of Liptser and Shiryayev (1977),

the processes 7r* and 7r** coincide, so 7r* is indeed the process of beliefs associated

with the strategy q*. The latter is therefore a Markov policy in Q with policy 

function q* : [0,1] —* Q such that, for every 7r, the supremum in the Bellman

equation is attained at <?*(7r). Thus, u is the value function by Proposition 1.3.2. 

In particular, the solution u must be unique. ■

Let

/ x  \  ni(ir) —  m ( 7 r )  . m /  .
q(ir =  qm{ir) +  ^  [qm tt -  q].

m{7r) — m

This defines a function with the same monotonicity properties as <?m, that is, strictly

15Cf. Liptser and Shiryayev (1977, p.330). This is in fact a strong  solution. A weak  solution 
would be enough for our purposes.
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increasing for p  <  0 , and strictly decreasing for p  >  0 . 16  Note that q  and q*  coincide 

at either end of the unit interval, so the range of q equals Qm.

Corollary 1.4.1 I f  q <  Qm, t h e n  q m {pr )  <  q * ( n )  <  q { n )  o n  ] 0 , 1 [ .  In p a r t i c u l a r , 

t h e  a g e n t  e x p e r i m e n t s  b y  i n c r e a s i n g  q u a n t i t y .  On t h e  o t h e r  h a n d ,  i f  q  >  Qm, t h e n  

q ( 7 r )  <  q * ( 7r) <  q m ( 7r) o n  ] 0 , 1 [ ,  s o  t h e  a g e n t  e x p e r i m e n t s  b y  r e d u c i n g  q u a n t i t y .

The intuition behind quantity expansion or reduction is straightforward. The mo­

nopolist deviates from the myopic quantity by moving in the direction of wider 

spreads between the two possible demand curves, thus making price observations 

more informative. It is less obvious, though, that experimentation should always 

be moderate in the sense that the optimal quantity lies inside the interval of myopic 

quantities.

Next, we turn to the comparative statics of the monopolist’s behaviour.

Proposition  1.4.1 Experimentation decreases with a rise in the discount rate. 

More precisely, |<Z*(7r )  — <7m ( 7r ) |  is strictly decreasing in r for all it E  ] 0 , 1 [ .

P R O O F :  We show in the appendix that u ( t t )  — ( t t ) / r  is strictly decreasing

in r  for all 7r  E  ] 0 , 1 [ .  The proposition follows therefore from the representation of 

q * ( 7r )  given in Theorem 1.4.1. ■

The intuition behind this result is again clear. As the discount rate increases, 

the future becomes less important to the agent. The value of information falls,17 

and with it the agent’s willingness to sacrifice current revenue for potential future 

gains from experimentation.

We expect (and our simulations strongly suggest) a similar decrease in experi­

mentation for an increase, c e t e r i s  p a r i b u s , in the noise parameter a  or the transition

16The derivative of q is

t?m(0) -  q] [qm( 1) -  q] A0 p  [q™(0) -  q] [q™( 1) -  q]
« (T)- — 2 « , ) > b » w - a >  t r w - a >  {q ) W ’

as q ^ Q m , this is well defined and of the same sign as the derivative of qm .
17In fact, (1.14) shows that a decrease in u ( t t )  — A(7r)u/(7r)/r is tantamount to a decrease in 

V^tt) and hence in the value of information.
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intensities A0 and Xi .18 A higher level of noise renders the price signal less informa­

tive, while a higher probability of state switches increases the risk of information 

becoming obsolescent. Both are bound to reduce the monopolist’s incentive to 

experiment.

C onjecture 1.4.1 \q*(n) — q m (7r) \  i s  s t r i c t l y  d e c r e a s i n g  i n  a  f o r  a l l  ir £ ]0,1[. S o  

e x p e r i m e n t a t i o n  d e c r e a s e s  w i t h  a n  i n c r e a s e  i n  t h e  n o i s e  p a r a m e t e r .

C onjecture 1.4.2 H o l d i n g  t t  f i x e d , \ q * ( t t )  — q m ( w ) \  i s  s t r i c t l y  d e c r e a s i n g  i n  Ao +  Ai 

f o r  a l l  7r £ ]0,1[. H e n c e  e x p e r i m e n t a t i o n  d e c r e a s e s  a s  t h e  t r a n s i t i o n  i n t e n s i t i e s  

i n c r e a s e .

We have not been able so far to prove these conjectures in full generality. One 

particular case, however, allows for an analytic proof similar to the one given for 

Proposition 1.4.1: we show in the appendix that Conjecture 1.4.1 holds in the 

absence of state switches, that is, for A0 =  Xi = 0.

1.5 Two-Sided Experim entation

Assume now that q > 0 lies in the interior of Qm, i.e., that it separates the optimal 

quantities corresponding to demand curves 0 and l .19 Given our standing assump­

tion about Aft, this means qm( 1) < q < qm(0) and the existence of a unique belief 

7r such that qm(7r) =  q. Calculation reveals that

* _  a o 0  f to  

r ~ A a  A/3'

This is the belief which would lead the agent to choose quantity q if he were to place 

no value on information. It is easily seen that m(7r) =  pq =  m is the minimum 

over all ir of the myopic payoff function m.

This scenario is more complicated than the previous ones. First of all, the quan­

tity q  is special in so far as the expected price for this quantity equals p  regardless

18Ceteris  paribus  means here in particular that tt is held fixed. In other words, Ao and Ai are 
increased by the same factor.

19We have not studied the border-line cases q =  gm(0) and q =  qm ( 1). We expect the results 
of the previous section to remain valid, with quantity expansion in the first case, and quantity 
reduction in the second.
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of the state of demand. Choosing q therefore leads to a completely uninformative 

price signal.20 As this constitutes a confounding action in the sense of Easley and 

Kiefer (1988), we shall refer to q as the confounding quantity. Lacking a better 

name, we shall sometimes call 7r the confounding belief. In a static environment 

(A0 =  Ai =  0), the existence of a confounding quantity opens up the possibility of 

a cessation of learning. Indeed, if the monopolist finds it optimal to set quantity q 

at some stage,21 his belief will not change over the next instant, so the confounding 

quantity will again be optimal. This pattern will repeat itself forever, and no more 

information is gathered.

A second complication arises from the fact that there is no longer an unambigu­

ous direction of increasing informativeness of the price signal. Assume for example 

that the current belief is slightly higher than 7r,  s o  the myopically optimal quantity 

is slightly below q. The true optimum will usually involve some deviation from 

the myopic quantity, motivated by the desire to render observed prices more infor­

mative. Following the logic of the one-sided experimentation encountered in the 

previous section, the monopolist might wish to reduce quantity. However, it could 

also make sense to increase quantity beyond q and thus achieve a wider spread 

between the two possible price distributions.

For beliefs close to the boundaries of the unit interval, on the other hand, we 

naturally expect the same experimentation behaviour with respect to the myopic 

quantity as in the one-sided scenarios of the previous section, that is, increasing 

quantity for beliefs 7r close to 0, and decreasing quantity for beliefs 7r close to 1. 

The optimal policy as a function of beliefs will then have to move downward past 

q as 7r increases. This raises the following question: does the optimal quantity 

change continuously, or is there a jump?

In either case, we can no longer expect the ODE (1.14) to characterise the value 

function on the entire unit interval. We therefore have to go back to the Bellman 

equation and the description of the optimal policy obtained earlier. We know from

20Note that the diffusion coefficient in (1.3) vanishes for q =  q.
21 We shall see below that this can only happen at belief w.
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S e c t i o n  1 . 3 .5  t h a t  w i t h  t h e  n o t a t i o n  

a n d

v(k) =  u( 7 r ) ------— — v! (it),
r

w e  h a v e  t h e  B e l l m a n  e q u a t i o n

v ( tt)  =  m ( 7r )  +  s u p  $ [ V ( 7r ) ,  7r ,  q] 
q € Q

w h e r e

$[V, ir,q] = V [ q -  q]2 -  /?(tt) [g -  tfm(7r)]2.

T h e  c a l c u l a t i o n  o f  t h e  o p t i m a l  q u a n t i t y  f o r  a  g i v e n  b e l i e f  d e p e n d s  o n  w h e t h e r  $  a s  

a  f u n c t i o n  o f  q i s  l i n e a r ,  c o n v e x  o r  c o n c a v e .

1.5.1 A nalysing th e Bellm an Equation

W e  f i r s t  c o n v i n c e  o u r s e l v e s  t h a t  t h e  c o n f o u n d i n g  q u a n t i t y  c a n  b e  o p t i m a l  o n l y  f o r  

t h e  b e l i e f  i r .

L em m a 1.5.1 The confounding quantity q is strictly suboptimal at any belief 

7r ^  7r where the value function u satisfies the Bellman equation.

P R O O F :  $ (< ? )  <  0  <  $ ( ^ m ( 7r ) ) ,  s o  q i s  s t r i c t l y  d o m i n a t e d .  M

T h u s ,  i f  t h e  o p t i m a l  p o l i c y  f u n c t i o n  q* i s  c o n t i n u o u s ,  i t  w i l l  s a t i s f y  q*(it) =  q 

a n d  q*(7r )  ^  q e l s e .  M o r e o v e r ,  t h e  B e l l m a n  e q u a t i o n  t h e n  s u g g e s t s  t h e  i n t e r i o r  

b o u n d a r y  c o n d i t i o n  t? (7r )  =  m . 22  C o n v e r s e l y ,  a  v a l u e  f u n c t i o n  w i t h  v ( tt) >  m 

i n d i c a t e s  a n  o p t i m a l  p o l i c y  f u n c t i o n  t h a t  j u m p s  p a s t  t h e  c o n f o u n d i n g  q u a n t i t y  

w i t h o u t  e v e r  a s s u m i n g  i t .

T o  s t u d y  t h i s  p o s s i b i l i t y  i n  m o r e  d e t a i l ,  c o n s i d e r  n o w  t h e  o p e n  s t r i p  ] 0 , l [ x i R  

w i t h  g e n e r i c  e l e m e n t  ( 7r , n ) .  W e  a r e  c o n c e r n e d  w i t h  t h e  a r e a  A  s t r i c t l y  a b o v e  t h e  

c u r v e  v =  m ( 7 r ) :

A  — { ( 7r , v) E ]0 ,1 [ x M  : v > m ( 7r ) } .

22In the static case (A0 =  Ai =  0), this condition follows independently of the Bellman equation. 
If q * ( 7r) =  q, then u(^) =  J0°° r e ~ Ti R { i t } q)  d t  =  R ( T t , q )  =  m  as the belief i t and the quantity q 
will prevail forever.



We shall show that this area can be divided into three regions, each with two sub- 

regions, by rays emanating from the point (7r, m), which is the lowest point on the 

curve v =  m(7r).

The two major rays correspond to the linear case V(7r) =  one for 7r to the

left of 7r and one for 7r to the right of 7r. The region between these major rays is 

associated with the convex case V(ir) > r), in which the maximisation problem

has a corner solution, and it can be further sub-divided by another ray, the two 

sub-regions being associated with the optimal quantities q* =  t/max and q* = qmm. 

The other two regions are both associated with the concave case V(7r) < /9(7t) and 

they can also be further sub-divided by minor rays.

In each case one sub-region is associated with the problem having an interior 

solution, and the other with the problem having a corner solution.

To summarise, moving clockwise from the left, we shall have

• $  concave: o interior solution

o corner solution qmax

• $  convex: o corner solution qmax

0  corner solution q^n

• $  concave: o corner solution Vm;™

o interior solution.

For the derivations which follow, it is more convenient to work with the function 

4/ instead of $ , where m + 4/[V, 7r, q] =  m(7r) +  4>[V, 7r, q]. Simple algebra involving 

the relationships m(7r) =  m +  /?(7r) [qm{n) — q]2 and qm(n) — q = — \  Aa(7r — 7r)//?(7r) 

leads to the following expressions for ^  and its derivative as a function of q:

V[V,ir,q] =  {V - P { n ) ) [ q - q ] 2 ~  A a  [q -  q\ (ir -  ft),

^ '(q) = 2(V — (3(n)) [q — q] — A a  (n — 7r).
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Note that ^'(q) = $'(q) by construction. The Bellman equation (1.10) now be­

comes

t?(7r) =  m +  sup ^[y(?r), 7r, q].

We know from Section 1.3.5 that the optimal quantity and hence the value of v(ir) 

are found by evaluating ^ '(g) for various values of q.

Let us first determine the regions in A  where \I/(q) is strictly concave, linear, or 

strictly convex.

L em m a 1.5.2 Let ir be a belief at which u satisfies the Bellman equation with 

v(ir) > m(7r). Then:

(i) Strictly concave case:

V(7r) < /9(7r)

(ii) Linear case:

(in) Strictly convex case:

7r < 7r and v(ir) < r h  — A a [<7max — q](ft — 7r);  

7r > 7r and v(ir) < m  +  A a  [q — ^mij ~  %)•

7T < 7r and v(ir) = m — A a  [qmSLX — q] ( t t  — 7r);

7r > 7r and v(7r) =  rh  +  A a [g — <7̂ ]  (7r — 7r).

7r <  7r  and v(ir) > rh  — A a [̂ max — q] ( 7r  — 7 r ) ;

7r  >  7r and u ( tt)  >  m +  A a [<J — (7r  — 7 r ) .

PROOF: We first prove the implications ' starting with (ii). If V ( i r )  =  /?(7r), 

then ^ ( q )  = —A a [q  —  q]  ( t t  — 7r). Suppose 7r =  7r. Then =  0 and u(7r) =  m, 

which is excluded by our requirement that u(7r) > m(7r). So we necessarily have 7r ^  

7r. When 7T < fi-, ^(<?) is maximised at ftnax, hence u(7r) =  rh — A a  [<?max — <7] ( t t  — 7r). 

On the other hand, when 7r > 7r, 4/(<7) is maximised at ^min, so v{it) =  m +  A a  [5  — 

qmin] (7T—7r). Moving on to (i), we see that the case 7r =  it is again excluded. Indeed,
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for 7r =  7r, ty(q) =  (V — f i(it)) [q — q]2 is maximised at q with ^f(q) =  0 and hence 

u(7r) =  m .  Now, if tt < it, then W(q) < — A a [q — q] (ir — ir) < —A a  [qma.x — q] — it) 

for all admissible q. The first inequality is strict for q ^  q, the second for q ^  ax, 

so v( i r) < rh — A a  [̂ max — q] — tt)* If, on the other hand, tt > it, then q) < 

A a [q -  q] (tt -  it) <  A a  [q -  ^ n ]  (tt -  it) and v(7r) < rh  +  A a [q -  (ir -  7r) 

by the same argument. As for (iii), one obviously has snpq^(q)  >  ^(qm&x) > 

- A a  [?max -  q] ( tt -  it) and supg W(q) > V(qmin) > A a [ q -  ^ n ]  ( tt — tt) .  This yields 

two strict lower bounds for v(ir). Note that the second bound is redundant for 

7r <  7r, the first for 7r >  it. This completes the proof of the sufficiency part. The 

implications “<=” now follow from the fact that the conditions to the left and to 

the right of the equivalence sign fully exhaust the set of possible values of V(ir) 

and the area A , respectively. ■

Thus, the two major rays that separate the region of convexity from the regions 

of concavity are

v = r h -  A a  -  q] ( tt -  tt) ,  

going up and to the left from (7r,m), and

v = rh +  A a [q -  q ^ ]  (7r -  it),

going up and to the right.

Next, we sub-divide the regions where ty(q) is strictly concave.

L em m a 1.5.3 Let 7t be a belief at which u satisfies the Bellman equation with 

v(ir) > m(7r). Assume that V (7r) < fi{ir). Then the optimal policy can be charac­

terised as follows.

(i) Corner solution qma,x:

q* =  <Zmax <=> 7r <  71 and v(ir) >  m  — |  A a [<?max — q] {n — %)•

(ii) Interior solutions:

7r <  7r and v ( t t )  <  m —  |  A a — q] (7r — 7r);

q  £  ]? m im  (?max[

7r > 7t and v(ir) < rh -fi |  A a  [q — (tt — ir).
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(in) Corner solution qmm:

<f = <7min <=^ 7T > 7T and v(tt) > 171 +  |  A a  [q — ^min] (TT ~  7r).

P R O O F :  A s  i n  t h e  l a s t  p r o o f ,  i t  i s  e n o u g h  t o  s h o w  t h e  i m p l i c a t i o n s  “ =£>” , a s  w e  h a v e  

a g a i n  e x h a u s t i v e  s e t s  o f  c o n d i t i o n s  o n  e i t h e r  s i d e  o f  t h e  e q u i v a l e n c e  s i g n .  W e  f i r s t  

d e a l  w i t h  ( i )  a n d  ( i i i ) .  A c c o r d i n g  t o  (1.11), ( jW x  i s  o p t i m a l  o n l y  i f  ^ ( ^ m a x )  >  0. 

T h i s  i s  e q u i v a l e n t  t o  V ( i r )  — / ? ( t t )  >  |  A a (tt — i ) / [ ^ m a x — <?], a n d  n o w  P ( ? r )  <  / ? ( tt) 

c o n f i r m s  7r <  i t .  S u b s t i t u t i n g  t h e  i n e q u a l i t y  f o r  V ( i r )  — r )  i n t o  t h e  e x p r e s s i o n  f o r  

^ ( ^ m a x )  l e a d s  t o  v ( i r )  >  m  — |  A a — q]  (7r — 7 r) .  O n  t h e  o t h e r  h a n d ,  t h e  c o r n e r  

s o l u t i o n  q m in o c c u r s  o n l y  i f  ^ '( ( f r n i n )  <  0, t h a t  i s ,  V ( 7 r )  — /3(tt) >  — \  A a (7r — i t ) / [ q  — 

^ tn m ] . I n  t h i s  c a s e ,  V ( T r )  <  ( 3 ( i r )  c o n f i r m s  t h a t  7r >  7r .  S u b s t i t u t i n g  t h e  i n e q u a l i t y  f o r  

P ( 7 r )  — /? (7 r )  i n t o  y i e l d s  t h e  b o u n d  u ( 7 r )  >  m  +  1  A a [<? — ^m in] ( t t  — 7 r) . A s  f o r

t h e  r e m a i n i n g  s u b - c a s e  ( i i ) ,  a n  i n n e r  s o l u t i o n  r e q u i r e s  ^ ' ( ^ m a x )  <  0 a n d  ^ ' ( q m i n )  >  

0. W e  o n l y  h a v e  t o  c o n s i d e r  b e l i e f s  w  ^  i r .  I f  7r <  7r, t h e  s e c o n d  i n e q u a l i t y  i s  

r e d u n d a n t ,  w h i l e  t h e  f i r s t  o n e  i m p l i e s  V ( t t )  — ( d( i r )  <  |  A a ( t t  — 7r)/[<Zm ax — 4]  a n d

y ( q )  <  1  ^  [q -  q ] 2 -  A a ( tt -  tt)  [q -  q].
[<7max Q\

This inequality is strict unless q  =  q .  Its right hand side has a strict maximum in 

#max, so W(q ) < — |  A a [̂ max — q]  (tt — ir) which leads to the desired inequality for 

u(7r). A similar argument can be given for tt > 7r. I

Thus, the two minor rays that sub-divide the regions of concavity are

v =  rh -  \  A a [qmgLX -  q] ( tt -  tt) ,

corresponding to the condition ^(tfcnax) — 0, and

v =  rh  +  \  A a [q  -  q^ n ] ( tt -  tt) ,

corresponding to the condition \fr'(gmin) =  0. Both leave from (ir, ra) with half the 

slope of their respective major rays. Alternatively, we can write

v =  m ( 7 r ) - \ r ^ ( 7 r ) [ q i a a x - q Tn( T ) \ [ q m ( 7 r ) - q ]
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for the first minor ray and

v = m(7r) +  /?(7r)[^m( 7 r ) - g min] [ g - g m(7r)]

for the second. W ith the equations in this form it is easily seen that the rays 

intersect the axis 7r =  0 above m(0), and the line 7r =  1 above m (l).

Finally, the region where \&(q) is strictly convex consists also of two sub-regions, 

defined by the optimality of g™™ or ^max, respectively. Recall that qc = \  (q™™ + 

^max) defines the centre of the interval [<7min> <Zmax]-

L em m a  1 .5 .4  Let ir be a belief at which u satisfies the Bellman equation with 

v(jr) >  m(7r). Assume that V(n)  > /?(7r). Then the optimal quantities can be 

characterised as follows.

w  <*• * <  * +  i s  ( "W  ~  ;

{ « m i n , 9 m . x }  *  =  It +  ^  ( " M  _  m ) ;

< W  X >  * +  £  ( „ ( , )  -  rh) .

PROOF: From (1.13), a necessary condition for both extreme quantities to be op­

timal is that V (q c) =  0 or 2 (V(7r) — /5(7r)) [qc — q] — Act (tt — 7r) =  0. Combining 

this with the fact that v(pr) =  m  +  ^(^max)? one obtains

w ~  ^  r------- r^ -----------T M 71") ~  •A a  [gmax - q \ [ q -  9min]

The stated inequalities for 7r when only one extreme quantity is optimal follow

immediately. This proves the implications The same argument as in the

previous proofs yields the implications “4=”. ■

Our third minor ray is therefore parameterised by

* , 2 qc - q  ( ^7T =  7T +      ---------------     (V — m) .
A a [c?max ~ q \[q -  qw ]

For qc ^  <J, this can also be written as



The ray goes up and to the right if qc > q, and up and to the left if qc < q. For 

qc = q, the ray is simply the vertical line 7r =  it. In any case, ^max is optimal 

to the left of the ray, qm;n is optimal to the right, and along the ray itself, either 

extreme quantity is optimal. If there are jumps in the optimal policy, we expect 

them to occur at beliefs 7r such that the corresponding point (7r,u(7r)) lies on the 

third minor ray. Moreover, we expect jumps to occur to the right of 7r if qc > q, 

and to the left of it if qc < q. Only if qc = q should we expect jumps at exactly 7r.

1.5.2 A Differential Equation for th e Value Function

The last three lemmata show how to construct the optimal policy corresponding 

to a solution u of the Bellman equation. Inserting the optimal quantities into the 

Bellman equation, we obtain an equation linking the generalised second derivative 

tt2('7r)'to 7T and n(7r). We find the ODE (1.14) again as long as the point ('7r,u(7r)) 

lies below the first or the second minor ray. For (7r, u(7r)) above these two rays, 

we have versions of the backward equation (1.5) for constant quantity qmSLX or 

respectively. More precisely, if the value function satisfies the Bellman equation at 

a belief 7r with v(ir) > m(7r), then

u 2 ( t t )  = G(7r,v(7r)) (1-16)

where the function G is defined as follows:

Gw.t{n, v) if m(7r) < v < m  -  \  A a  -  q\ (tt -  it) 

or m(7r) < v < m  +  \  A a [q -  (tt -  7r) ;

G ( 7 t , v ) =  <
G?max(7r, v) if v > rh — \  A a  [ q r m a x  -  q ] ( tt -  it)

and tt < » +  £  bm , x _ y _ gmlnl ( v - m ) ;

Gmin(v, V) if V > m +  \  A a  [q -  q ^ ]  ( tt -  it)

and 7r > 7r +  -r-----------  t (v — m)— Aa [qfmax-g] [g-7minj V ’
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with

2ra2 v ~  m(7r)
A(32 7 r 2 ( 1  —  7r ) 2  v — m  ’

2r<72 1 V -  i?(7T, ffmax)
A/?2 7T2(1 -  7r)2 -  £]2

2 ra2 1 v -  R{7t, g^n)
A/?2 t t 2 ( 1  -  t t ) 2  [q -  qmi n ] 2

Using the different representations of the three minor rays, it is straightforward to

check that the values of the functions Gmt, Ĝ max and Gmm match along the relevant 

rays, so G is continuous oh A .23 By Corollary 1.3.1 the right-hand side of (1.16) 

is therefore continuous at least on ]0,1[ — {7r}, and on the whole open unit interval 

if v(7r) ^  m. As (1.16) holds almost everywhere, this means that the generalised 

derivative U2 has a version which is continuous at any 7r such that u(7r) > m(7r). By 

Corollary 1.3.1 again, this implies that u is in fact twice continuously differentiable 

whenever u(7r) > m(7r). We thus have

Proposition  1.5.1 The value function solves the ordinary differential equation

u"{ 7r) =  G ( 7 r ,  u ( 7 t ) )  ( 1 - 1 7 )

on the open set {7r G ]0,1[: u(7r) > m(7r)}. In particular, the value function is twice

continuously differentiable on this set.

We expect of course the same boundary conditions for the value function as in the 

previous section. Indeed:

23As for differentiability of G ,  the partial derivatives of Gjnt and G max with respect to 7r and 
v  coincide along the first minor ray, and the same is true for Gint and G mm along the second 
minor ray. Along the central minor ray, however, the partial derivatives of Gmax and Gmin do not 
match, so G is not differentiable there. (The derivatives with respect to v  match if qc =  q. The 
derivatives with respect to 7r are always different.) Everywhere else, by contrast, G is continuously 
differentiable.

Gint(v,v)
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Corollary 1.5.1 The value function satisfies the boundary conditions t>(0) =  m(0) 

and u (l) — m( 1).

PROOF: Suppose for example that v(0) > ra(0). Using the continuity of v and 

(1.17), we can find K  > 0 and e > 0 such that u"(7r) > K tt~2 for 0 < tt < e. Then

w/(tt) =  u'(e) -  f  u"(() d£ < u \e) -  K  f  =  u'(e) -
J 7T J 7T S

as 7r —> 0. This, however, contradicts the boundedness of u'. H

1.5.3 T he Static Case

As a benchmark for subsequent results, we first examine the case without state 

switching, i.e., A0 =  Xi =  0. Our results are essentially the same as those obtained 

in the discrete-time learning literature. More specifically, our model with unknown 

but fixed expected demand curve provides a continuous-time version of the model 

in Kiefer (1989).

In order to state the main result for this case, we define

  /• v 7r 7r / r \ \  7r amo{7r) = — —̂  m(0) +  — m  
7r 7r

for 0 < 7r <  ir, and

mi(7r) =  ^ +  y— 7- m (l)
1 — 7T 1 — 7T

for 7r < 7r < 1. These functions describe the rays joining (7r,m) with (0, m(0)) and 

( l,m (l) ) , respectively. By strict convexity of the function m, we have m < m 0 on 

]0,7r[, and m < m 1 on ]7r, 1[.

Proposition  1.5.2 Let Ao =  Ai =  0. The value function is continuously differen­

tiable on [0,1] and strictly convex. There are two cases, depending on the value of 

u at 7r;

I f  u(7r) =  m, then the value function solves the ordinary differential equation

u"(7r) =  Grint(7r,u(7r)) (1.18)

with

m(7r) < u(tt) < m0(7r)
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on ]0,7r[ and

m(7r) < u(tt) < m i(7r)

on ]7r, 1 [. The optimal policy function is continuous and assumes the value q at it. 

I f  u(fk) > rh, then u solves

u"(7r) =  G(tt, (1-19)

with

m (tt) < u(tt) < m(7r)

on ]0,1[. In this case, the optimal policy jumps from  ^  to as u crosses the 

third minor ray, and q is never optimal.

The exact form of the optimal policy function is easily obtained from the partition 

of the set A.

PROOF: We first convince ourselves that u > m  on ]0,T[ —{7r}. Fix an initial 

belief 7r0 in this set; without loss of generality, tt0 < it. Consider the Markov 

strategy q generated by the following policy function: q(7 r) =  qm(tt) for 7r <  7To, 

and q(tt) =  qm(7r0 )  for 7r >  7r0 . 24 Obviously, / 2(7t, q r (7 r ) )  > R(7r, qm(tto)), and this 

inequality is strict for 7r < 7T0. Moreover, there is a non-zero probability that the 

associated belief process reaches the interval [0,7r0[. Thus, using the martingale 

property of the belief process and the linearity of R (tt, qm(no)) in ir,

uq(7To) > E no [ J  r e~rt R(7Ct,qm(Tr0))d t
fOO

=  /  r e~rt R{'KQ,qm('K0)) dt =  R(ir0, qm(no)) =  m(7r0).
Jo

This imphes u(7To) > m (7To). As 7To was arbitrary, we have the desired strict lower 

bound. By Proposition 1.5.1, this implies that u solves (1.19) on ]0 , 7r[ and ]7r, 1 [. 

In particular, ulf(7r) > 0 on these two subintervals, hence strict convexity. The 

statement for the case u(7r) > rh follows now immediately. If u(7r) = m, strict 

convexity imphes u(7r) < mo(7r) on ]0,7r[ and u(tt) < m i(7r) on ]tt, 1[. But the rays 

joining (7r,m ) with (0 , m (0 )) and (1 , m (l)) lie below the first and second minor ray, 

respectively. So we are in the case of an inner solution, hence the ODE (1.18). I

24This is indeed a well-defined strategy (cf. the proof of Theorem 1.4.1).
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It is straightforward to prove verification theorems for the two cases, i.e., state­

ments that a solution u to the ODE (1.19) with regularity properties and bounds 

as in Proposition 1.5.2 is the value function . 25

The learning literature suggests that the case u(tt) = m  arises for high discount 

rates . 26

Proposition  1.5.3 Let A0 =  Xi = 0. For given parameters a 0, a \ ,  f t , f t  and a, 

there is a unique discount rate r* such that the value function satisfies u(7r) =  m 

if r > r*, and u(it) > m  if r < r*.

PROOF: Let u[r] denote the value function for discount rate r, and define S  = {r > 

0  : u[r](7r) > m}. It can be shown that u[r] converges to m as r  —> 0 , so S  is 

non-empty. Using the same technique as in the one-sided case, 27 one easily shows 

that if r £ S  and r' < r, then rf E S. Therefore, r* = sup S  has the property that 

tt[r](it) >  rh if r < r*, and u[r](it) = rh if r  > r*. Moreover, it can be shown that 

u[r] converges to m as r  —> oo, so r* is a finite number. ■

Thus the optimal policy depends qualitatively on the discount rate r. For 

r  < r*, there is extreme experimentation over a certain range of beliefs. The value 

of information at it is so large that it pays the monopolist to avoid the confounding 

quantity q and choose one of the extreme quantities qmjn or qm3iX instead. For r  > r*, 

by contrast, a scenario of moderate experimentation arises, with optimal quantities 

that lie always inside the range of the myopic policy function. In particular, the 

value of information at it is so small that it is not worth while experimenting at 

all: the loss of current revenue outweighs the potential gains from the information 

acquired. So the monopolist chooses the (myopically optimal) confounding quantity 

q at it. But this implies that he ceases to experiment and learn: choosing q makes 

the diffusion term in (1.3) vanish, so the belief will not change any more, and the 

monopolist is caught in a trap. It can be shown that the belief process tt converges 

with positive probability to it. Thus there is a positive probability of incomplete 

learning even in the long run.

25Cf. the corresponding results for the general case presented in the following section.
26See for instance Easley and Kiefer (1988).
27Cf. the appendix.
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This incomplete learning scenario has been extensively described in the discrete- 

time learning literature . 28 While our model reproduces this result for a static 

environment, we are mainly interested in the effect of state switching on the mo­

nopolist’s optimal behaviour.

1.5.4 T he General Case

Our results on one-sided experimentation (Theorem 1.4.1) suggest the following 

“invariance principle” for the introduction of state switching:

“Results valid for the case without state switching (A0 =  Ai =  0 ) carry 

over to the general case if, in all expressions, we formally replace u(tt) 

by v(ir) =  u(tt) — A(7r)t/(7r)/r , and leave the rest unchanged.”

In particular, we would expect Proposition 1.5.2 to generalise in this way.

We have, however, not been able to prove such a generalisation so. far.. The 

missing links are spelt out in the following two conjectures. Both are supported by 

our numerical results.

C o n jec tu re  1.5.1 v > m  on ]0,1[ — {fr}.

C o n jec tu re  1.5.2 v is strictly convex.

If these conjectures are true, then the generalisation of Proposition 1.5.2 follows 

directly from Proposition 1.5.1.

Lacking a proof of these conjectures, we now formulate verification theorems 

giving sufficient conditions for the two scenarios we expect: a scenario of moderate 

experimentation where v ( tt) = m, which should occur for high switching intensities; 

and a scenario of extreme experimentation with v {tt) > m that should arise for low 

switching probabilities (provided, of course, that r < r*).

We turn to the case v(7r) =  m first.

L em m a 1.5.5 There is a function u continuous on [0,1] and once continuously 

differentiable on [0,1] — {fr} which solves (1.14) on ]0 ,1[—{7r} with

m (7r) < u(n ) — < m 0 (7r)
r

28Cf. Easley and Kiefer (1988), Aghion et  al. (1991) and the references given in these papers.
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on ]0,7r[ and

m ( t t ) <  u ( 7 r ) ------- — -  v !  { tt) <  m i ( 7 r )
r

on ]7T, 1 [ . 29

PROOF: Repeat the steps described in the appendix on the subintervals [0,7r] and 

[ir, l ] . One shows in particular that m 0 and mi are strict supersolutions on the 

respective open subinterval. I

For u as in the lemma, we introduce the following policy function q*:

' +  u W -X W W r - ,nW [?ro(7r) _  for ^ ^  .

9 *(tt) =  <

q for i t  = t t .

This is a candidate for the optimal policy.

Proposition  1.5.4 Let u be as in the previous lemma. Suppose in addition that 

u is once continuously differentiable on the whole of [0,1]. I f  the corresponding 

function q* is continuous and possesses (finite)  one-sided derivatives at t t ,  then u 

is the value function and q* defines an optimal policy.

In particular, there is at most one such function u.

PROOF: For TT 7  ̂ i t ,  (1.14) implies that we are in the strictly concave case V ( t t )  <  

( 3 ( t t ) .  A s  the graphs of mo and mi lie below the first and second minor ray, 

respectively, the optimal quantity is an inner solution, given by the above function 

q*, and u satisfies the Bellman equation. Moreover, the difference q*(t t )  — q for 

7r / i  can be written as

* / \  - P i ? )  r m t  \  -I A a  TT -  TT
« m  - « =  o, r  . / /  % [« w  -  9 ] =( 3 ( tt) — V ( tt)  2 /9(7r) — V { tt)

By assumption, the one-sided limits l i n v ^ i  b * ^ ) - ?]/(7r — exist, so V  has one­

sided limits V (£±) < (3{tr), and the one-sided limits ^"(Trdi) exist as well. One can 

use u ” { t t - \ - )  or u " { t t — ) to define the value U 2 ( t t )  of a generalised second derivative. 

As the corresponding function V  satisfies V ( t t )  <  ( 3 { t t ), the confounding quantity

29In particular, u { t t )  — A(7r) u , { /j r ) / r  coincides with m(7r) at t t  =  0, t t  and 1.
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is optimal at 7r, and the Bellman equation reduces to the condition u(7r) =  rh. 

Thus, the given function u satisfies the Bellman equation at it as well. The same 

arguments as in the proof of Theorem 1.4.1 now yield the result.30 ■

We expect functions u as in the proposition to exist for sufficiently high switch­

ing probabilities .31

Whenever the proposition applies, we have a scenario of moderate experimen­

tation with quantity expansion for beliefs t t  < it and quantity reduction for 7r > it, 

looking just like a combination of two one-sided scenarios. As in the static case for 

r  > r*, the value of information at 7r is too small to warrant any experimentation 

at all. Unless we are in the knife-edge case it =  it, however, experimentation will 

not cease at it, since the possibility of a state switch still leads the agent to update 

his belief.

The lower the switching intensities, the more experimentation we expect. It is 

therefore unlikely that q remains optimal at it for low A0 and A^ For this case, we 

predict v > m  throughout the open unit interval. Moreover, the optimal policy is 

expected to jump from ^max to as v crosses the third minor ray.

We now formulate a sufficient condition for this case, involving a solution of the 

ODE (1.17) with u(7r) >  rh.

Proposition  1.5.5 Let u be a solution of (1.17) with v > m on ]0,1[. Then it is 

the value function.

Again, there can be at most one such solution.

PROOF: Using the partition of A  and the corresponding lemmata, one easily verifies 

that the given function u solves the Bellman equation. Let q* be an optimal policy

30The existence of finite one-sided derivatives of q* at % implies Lipschitz-continuity which is 
a prerequisite for the existence result in Liptser and Shiryayev (1977, chapter 9). If u  is as in the 
proposition, but the corresponding policy function q* has one-sided slope —oo at #, the existence 
of a strong solution to the stochastic differential equation (1.15) is no longer guaranteed. Nor can 
we use Theorem 2.6.1 in Krylov (1980) to establish existence of a weak solution since q*( i t )  =  q 
imphes a violation of Krylov’s non-degeneracy condition for the diffusion term. However, if we 
were able to find for any e >  0 an e-optimal Markov strategy given by a Lipschitz-continuous 
policy function, then the above proposition would hold without restrictions on the slope of q* at
TT.

31 One might be able to prove this using the implicit function theorem on a suitable Banach 
space.
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function .32 To show that u is indeed the value function, we follow the logic of 

the proof of Theorem 1.4.1 and use the stochastic differential equation (1.15) to 

construct the process of beliefs for the Markov strategy determined by q*. Given 

any initial value 7r0, Theorem 2.6.1 in Krylov (1980) implies that the stochastic 

differential equation

dirt =  A(trt) +  —  tt* ( 1  -  7Tt) [q -  g*(7rt)] dZt (1.20)
a

has a weak solution (7r*, Z°) with Z° a Wiener process. We extend the correspond­

ing filtered probability space in such a way that it supports an independent Markov 

process {Art} taking values in {0,1} with transition probabilities as in Section 1 .1 . 

Consider the bounded process

It =  ~  Pktq*(n*) ~  K O  ~  /?(< )?*(< )])•

By Girsanov’s theorem ,33 there is a new measure under which

Zt = Z° -  f  11, ds 
Jo

is a Wiener process. In other words, (7r*, Z) is a weak solution to the stochastic 

differential equation (1.15). To complete the proof, we now use the same arguments 

as in the proof of Theorem 1.4.1. ■

We expect functions u as in the proposition to exist for sufficiently low switching 

probabilities. 34

More precisely, we expect that there is a critical value of the switching prob­

abilities at which the optimal behaviour changes discontinuously from extreme to 

moderate experimentation.

C onjecture 1.5.3 Let parameters a 0, aq, (Jo, (3i, cr and r <  r* be given. Fix t t  

and consider all pairs o f switching intensities (A0, Ax) such that A0/(A0 +  Ai) =  t t .  

There is a unique Aq > 0 such that Proposition 1.5.4 applies for  A0 > Aq and 

Proposition 1.5.5 applies for  Aq < AJ.

320ne has to make a choice between <jfmax and gmin whenever both are optimal quantities in 
the Bellman equation.

33Cf. Revuz and Yor (1991).
34Again, it may be possible to prove this using the implicit function theorem on a suitable 

Banach space.
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The numerical results presented in the next section support this conjecture.

1.6 Som e N um erical R esults

We report some numerical results for the two-sided case. They were obtained by 

calculating an approximate solution to the two-point boundary value problem in 

question, namely the ODE (1.17) subject to the boundary conditions v(0) =  m(0) 

and u(l) =  m (l). By Propositions 1.5.2, 1.5.4 and 1.5.5, these numerical solutions 

are approximations of the value function.

The graphs illustrate the impact, ceteris paribus, of changes in the discount rate 

or the probability of state switches on the monopolist’s behaviour:

• The monopolist experiments more as the discount rate decreases.

• The monopolist experiments more as the probability of state switches 

decreases.35

The graphs also show the discontinuous change in the optimal policy as the discount 

rate or the switching probabilities cross their critical levels.

We used the following demand curve parameters:

• a 0 = 40, fa = 2/3;

• ai = 60, Pi = 3/2.

They imply <?m(0) =  30, qm( 1) =  20, q = 24 and i  =  0.4.

We further set the range of feasible quantities

•  ^m in =  1 3 ^ ?  ?m ax =  4 0 .

The values for qmm and qm&x are derived from the points where the demand curves

cross the axes. As shown in Figure 1 .1 , ^max is the smaller of the two values where

the demand curves cross the quantity axis -  a quantity larger than this generates 

a negative expected price in state 1 (where the demand curve is steeper); is 

the expected price corresponding to ^max in state 0. Similarly, pmax is the lower of

35Here, in particular, ceteris paribus  means that 7r is held fixed.

59



the two values where the demand curves cross the price axis -  a price higher than 

this generates a negative expected quantity in state 0  (where the demand curve is 

flatter); is the expected quantity corresponding to pmax in state 1 .

Finally, we chose the noise parameter

• cr =  5.
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Figure 1 .1 : The two demand curves used in the simulations
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1.6.1 T he Value Function and O ptim al Policy

We first consider cases without state switching.

N o state sw itching, m oderate experim entation. Figure 1.2 shows that 

the relatively high discount rate r = 0.5 implies moderate experimentation . 36 We 

have u { k )  =  m and the optimal policy function is very close to the myopic policy, 

going continuously through q .  If we reduce the discount rate (not shown), the 

incentive to experiment increases, and both the differences u  —  m  and q*  — q m  

grow. This change is gradual until we reach the critical discount rate r* where 

optimal behaviour switches suddenly from moderate to extreme experimentation.

N o state sw itching, extrem e experim entation. The discount rate in Fig­

ure 1.3, r  =  0.1, is already some way below the critical level.37 The value function 

has lifted off rh at 7r, and the optimal policy function jumps from qia&x to q^n  just 

after 7r. (It is after it because qc, the midpoint of the interval of feasible quantities, 

lies above q.) A further reduction of the discount rate (not shown) increases the 

distance between u  and m. At the same time, the extreme quantities ^ m a x  and q m in 

become optimal over a larger range of beliefs: as u  goes up, its intersection with 

the left minor ray moves to the left and its intersection with the right minor ray 

moves to the right. Also, its intersection with the central minor ray moves to the 

right, so the jump occurs further to the right of ir =  0.4.

Introducing state switches and increasing the switching probabilities has an 

adverse effect on experimentation. This is seen in the next results where r = 0.1 

and it = 0.5 are held fixed while A0 =  \ \  assume different non-zero values.

Slow state sw itching, extrem e experim entation. W ith A0 =  Ax =  0.025, 

we still have a case of extreme experimentation, with v  > m  on the open unit 

interval as shown in Figure 1.4. 38 The range where one of the extreme quantities is 

optimal has shrunk compared to the case without state switches. Note also that u

36The bold line in the upper panel is the graph of the function v  (also u  in case Ao =  Ai =  0), 
the thin line that of the myopic payoff function m. In the lower panel, the bold line is the optimal 
policy function q * , while the thin line is the myopic policy qm .

37The upper panel now also shows the three minor rays introduced in the previous section, and 
the lower panel has an enlarged vertical axis to accommodate extreme quantities. It can be seen 
that as v  crosses each ray in turn, q* first reaches gmax, then jumps, and finally leaves gmin-

38We now show v  and u  separately in the top figure, u  being plotted as a bold dashed line.
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has become flatter, which illustrates the lower value of information. An increase in 

the switching intensities to A =  0.05 reduces experimentation further (not shown). 

While v is still above m, it has moved down, and the extreme quantities are optimal 

only in a very small region around the confounding belief.

Fast state  sw itching, m oderate experim entation. A further increase in 

the switching intensities to 0.075 leads to Figure 1.5. Now v touches m  at tr: we 

have moderate experimentation with quantity expansion for t t  <  i t  and quantity 

reduction for t v  >  i t .  With switching intensities yet higher, we get a further re­

duction in the distance between v and m, and in particular, the policy function q* 

becomes less steep around i t .

Note that our numerical results support the conjectures stated in Section 1.5.4. 

The numerically calculated functions v seem to satisfy v(tv) > m (tv) on the subin­

tervals ]0,7r[ and and they appear to be strictly concave. Moreover, the

results suggest a critical level for A0 =  \ \  just above 0.05 at which the optimal 

behaviour changes discontinuously from extreme to moderate experimentation.

Technical notes

The numerical results were obtained by using the method of r e l a x a t i o n . 39 Beliefs were discretised 

with a step size 10- 3 , decreasing to 10-5 around the critical values where the optimal policy 

takes extreme values and jumps. The iterative procedure was deemed to have converged when 

the maximum pointwise difference between successive approximations to the value function and its 

first derivative were less than 0.0001%. Convergence was quite rapid, varying from 5 iterations for 

the high discount rate without switching (e.g. Figure 1.2), through 8 iterations for the low discount 

rate without switching (Figure 1.3) and the low discount rate with high switching intensity (e.g. 

Figure 1.5), to 18 iterations for the low discount rate with an intermediate switching intensity 

close to the critical level (not shown).

The procedure was implemented on a VAX minicomputer under VMS v5.4 ( n o t  a supercom­

puter) and as each iteration took approximately 19 seconds of CPU time, the numerical solutions 

each took between only 1.5 and 6 minutes to calculate. This further highlights the advantage of 

our approach.

39See Press et  al. (1988), Chapter 16.
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1.6.2 Sam ple Paths

The next set of results are examples of sample paths of beliefs and associated 

quantities. First we choose an initial state and an initial belief. One iteration 

then consists of: (a) calculate the optimal quantity given the current belief (using 

the above numerical results); (b) introduce a shock; (c) update the belief using a 

slightly different formulation of equation (1.3) in its discrete form, namely

6 i r t  =  A ( i r t )  6t +  a~27rt(l -  7rt)(kt -  7rt)(A a  -  A fl qt)2 6t 

+  <7 _1 7rt (l -7 r t) ( A a -  A(3qt)6Z t;

(d) update the state if required (depending on the transition probabilities A0 and 

Ax). These four steps are then repeated to generate a succession of beliefs and 

quantities.

It is worthwhile noting the circumstances which make the various terms in the 

above equation either 0 (or arbitrarily small) or unambiguously non-zero. First, 

when there is no state switching, the first term vanishes because A(7r<) =  0 , but 

when there is state switching this term becomes a mean reversion force to 7f (which 

equals 0.5 when A0 =  \ i ) .  Secondly, when there is only moderate experimentation, 

q*(ir) = q so that for beliefs close to ir the last two terms become arbitrarily small; 

but in cases of extreme experimentation, q*(7r) =  qmax or so that when beliefs 

are close to 7r these last two terms are quite large. Third, the factor kt — ttt in the 

middle term  means that the agent’s belief is pulled towards the truth; and when 

the belief is close to the truth, the middle term becomes small. Finally, the last 

two terms are small whenever the belief is close to 0  or 1 .

We begin with cases without state switching, first with a high discount rate, im­

plying moderate experimentation, then with a low discount rate, implying extreme 

exp er i ment at ion . 40

N o state sw itching, m oderate experim entation. As Sw becomes vanish­

ingly small at 7r in this case, i r t  cannot cross i t .  If the initial belief is between the

40The upper panel shows the evolution of the agent’s belief; the lower panel shows the associated 
quantity. In regions of moderate experimentation, the graphs of beliefs and of quantities are 
almost mirror images of each other. When extreme quantities are seen, we enlarge the scale of 
the vertical axis in the lower panel. Note that in these cases there are large quantity swings 
whenever the belief is close to the confounding belief.
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tru th  and 7r, it can converge either to the tru th  or to 7r; but if the initial belief 

is on the “wrong” side of t t  compared with the true state, it will converge to 7r. 

These possibilities are shown in Figure 1.6, where the true state is k =  0. In one 

sample when 7r0 =  0.25, the agent’s belief is drawn towards the tru th  -  after about 

t = 20 there appears to be little adjustment. (However, if the vertical axes were 

magnified, we would see that updating has not in fact ceased.) In a second sample 

path with 7T0 =  0.25, we use the same shocks but apply them with the opposite 

sign. Now, the noise drives the agent’s belief towards 7r where it becomes trapped, 

and again there appears to be little movement after about t = 20. In the third 

sample, starting with 7r0 =  0.75, the belief is pulled towards the truth, but is stuck 

on the “wrong” side of the boundary 7r, and there is negligible movement soon after 

about t = 25.

N o state sw itching, extrem e experim entation. In contrast with the above 

case, Sir is quite large at 7r, s o  irt can move smoothly through ir . Figure 1.7 uses the 

same true state, k = 0 , the same initial beliefs, and the same shocks as above, to aid 

comparison. In the first sample when 7r0 =  0.25, the agent’s belief approaches the 

tru th  more rapidly -  after only about t = 1 0  there seems to be little adjustment. 

In the second sample when 7r0 =  0.25 (with less benign shocks, when the agent’s 

belief became trapped near 7 r ) , the noise now simply has the effect that convergence 

towards the tru th  is slightly retarded. In the third sample, when ir0 = 0.75, ir is 

no longer a boundary, and the agent’s belief moves through ir to the “right” side, 

and, after being driven away again by the noise, settles down and is very close to 

the tru th  by about t = 25.

When we introduce state switching, beliefs will never settle down close to the 

tru th  (or indeed 7r) because there is always a pull towards ir =  0.5. Nevertheless, 

with low switching intensity, there is still a strong incentive to experiment, and 

the state might be unchanged for sufficiently long to exert a significant attraction 

on the agent’s belief. For high switching intensities, on the other hand, both the 

incentive to experiment and the average length of time between two switches are 

small, so we cannot expect the belief to track the true state. This is what we see 

in the final two graphs, where the discount rate is low, the initial state is 0 , and
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the initial belief is 0.25.41

Slow state sw itching, extrem e experim entation. For A0 =  Ai =  0.025, 

Figure 1.8 shows that, by the time of the first state change, the agent’s belief has 

predominantly been between 0 and 0.2. After the state change, the mean reversion 

force and the attraction to the new true state are initially in the same direction, 

and as this is a case of high experimentation (which is extreme around it) the 

agent learns about the change. This pattern is repeated after each occasion the 

state switches, and the true state is tracked quite well.

Fast state  sw itching, m oderate experim entation. W ith A0 =  Ai =  0.075, 

we find moderate experimentation. At if, only the mean reversion force is operative, 

and so, once the agent’s belief has moved through 7r in the direction of 7r, it is stuck 

on that side (see Figure 1.9). We see very little evidence of the true state being 

tracked, though a generous viewer may conclude that when the state is 0  the agent’s 

belief is usually between the barrier it = 0.4 and it =  0.5, whereas when the state 

is 1 the agent’s belief is more often between it = 0.5 and the truth.

Note the dramatic qualitative change in sample paths. First, with no state 

switching and a high discount rate, there is a positive probability that the agent 

will not learn the true state, even when the initial belief is broadly correct. As the 

discount rate falls through its critical value, extreme experimentation kicks in, and 

it is generic for the agent’s belief to converge to the truth. The introduction of a 

low rate of state switching imphes that the gathering of information does not cease: 

we see large quantity differences shortly after a change of state, because the agent 

finds that it is worthwhile to track the true state fairly closely. However, when the 

switching intensity is increased beyond the critical level (for the prevailing discount 

rate), experimentation falls away and the path followed by the agent’s belief is by 

and large confined to a narrow band around the long-term mean.

41With state switching, we show just one sample path on each panel, the bold dashed line 
representing the true state. Again the quantity axis is appropriately scaled. Also, the time axis 
is now extended so that the number of state switches we show is “reasonable” for the parameter 
values under consideration.
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T echnical no tes

State switching was implemented by repeatedly drawing a number from the uniform distribution 

on the unit interval. Let A =  Ao =  Ai denote the common switching intensity. If the number 

drawn is less than 1 — exp (—A), then the state remains unchanged, else it switches. Over a time 

interval of 100, we expect to see 10 switches for A =  0.1. For other values of A, the time interval 

is “stretched” accordingly, so for A =  0.025, for example, we expect these 10 switches to occur by 

the time t  =  400.

The shocks were generated by repeated draws from the standard normal distribution.42 For 

given time increment 6t ,  the shock 8 Z  was taken to be y/ frt times the draw from the standard 

normal distribution.

In order to maintain a reasonable approximation to the continuous case that we are modelling, 

we must ensure that each Sn  is not so large that the agent’s belief can jump to (or past) 0, 1, or ir. 

To achieve this, the time variable was incremented by 0.05 in each discrete period, i.e. 8t  =  0.05. 

(This means that in the graphs illustrating the cases without state switching there are several 

hundred iterations, and in those with state switching there are a few thousand.)

42The full support of the normal distribution brings with it the usual problem of the possibility 
of observing a negative price. With the parameters we have been using, the particular danger 
area is when a quantity near to gmax is optimal in state 1, in which case the expected price is close 
to 0. The fact that we noted only one such price in the several thousand iterations performed is 
evidence for the notion that the probability of such an occurrence is extremely small.
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1.7 Conclusion

We have studied the behaviour of a monopolist facing a demand curve which 

switches at random, and who receives noisy signals by choosing a stream of quan­

tities and observing the prices they generate. This causes him to update his beliefs 

about the current demand, and given that the environment is changing, the agent 

continues to experiment even in the long run.

We formulate the problem in continuous time, which leads us via the Bellman 

equation to an ordinary differential equation for the value function. The advantages 

of this approach are two-fold: (a) even though a closed-form solution is generally not 

obtainable, certain properties of the value function can be established analytically 

(e.g. convexity and differentiability); furthermore, some comparative statics results 

can be obtained, even without an explicit solution, allowing us to demonstrate how 

the value function and optimal policy vary with, say, the discount rate; (b) using 

numerical methods, it is a far easier task to solve the ODE than it is to determine 

the fixed point of the Bellman operator which arises in a discrete-time setting.

After discussing the evolution of beliefs and the Bellman equation for our prob­

lem, we consider two broad cases. In the case of one-sided experimentation, the 

agent deviates from myopic behaviour by experimenting towards wider spreads 

between the demand curves, where the price observations are more informative. 

This experimentation remains, however, moderate in a well-defined sense and is 

qualitatively the same for all parameter values.

In the two-sided case (where the demand curves intersect at a feasible quantity 

and price) there is a confounding quantity q and a confounding belief 7r, and the 

monopolist’s behaviour depends qualitatively on the discount rate r  and the prob­

ability of a change of demand. For high discount rates, the value function touches 

its myopic counterpart at the confounding belief. The optimal policy moves con­

tinuously through the confounding quantity at 7r -  there is no experimentation at 

the confounding belief. Moreover, experimentation remains moderate overall. For 

low discount rates and low probabilities of a demand curve switch, on the other 

hand, the value function is higher than its myopic counterpart everywhere, and the
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optimal policy involves extreme experimentation around 7r, exhibiting a jump from 

9 max to qm̂  in this region. Notably, this discontinuity is “absorbed” by the value 

function, which is still smooth . 43

We have some numerical solutions which demonstrate graphically the salient 

differences in the above scenarios, with regard to the value function and optimal 

policy. In particular, they show the discontinuous change in the optimal behaviour 

as the discount rate or the switching intensities cross their critical levels. The 

numerical solutions were then used to construct a variety of sample paths for beliefs 

and corresponding optimal quantities in order to illustrate how these vary with high 

and low discount rates and with fast and slow switching between demand curves.

Our main finding, the discontinuous change in the optimal behaviour, is a novel 

phenomenon in the economic literature on experimentation. It suggests that agents 

in a changing environment might reduce their information gathering activities dra­

matically if the rate of change passed a critical threshold. Thus, a slight increase in 

the variability of the environment could cause a dramatic change in the behaviour 

of a market or an economy.

43Contrast this with the results in Kiefer (1989, 1991) where the value function has a kink for 
parameter values corresponding to a low discount rate.
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A ppendix

E xistence o f a Solution in th e  O ne-Sided Case

We first prove the existence of a solution to the differential equation (1.14) as in 

Theorem 1.4.1. The technique used will also lead to a proof of Proposition 1.4.1 

and the special case of Conjecture 1.4.1.

We fix a discount rate r, a noise parameter <j, and transition intensities A0 and 

Ai. For any function u which is differentiable on the interval ]0,1[, we define

v(ir )  =  u(tt) -------- —
r

Using this substitution, we can write the differential equation (1.14) as u"(tt) = 

G(tt1v (7t)) with the function

C(ir V\ =  V ~  m (X)
V ’ ’  A/32 7T2 (1  - 7 r)2 V  -  m  '

Differentiating v{ir) twice, each time substituting G(7r, i?(7r)) for u"(7r), we obtain 

the ODE

v"{n) = ( l  +  2  * £ ± * 1 ^ G(7T, v(ir)) -  u(7r))- (A-1)\  r  J  r  a i

Thus, if u solves (1.14), then v solves (A.l). Conversely, we shall show that any

solution v of (A .l) leads to a solution u of (1.14). This is of course trivial for

+  Ai =  0. Therefore, assume A0 +  Ai > 0, and let

r
r  Ao +  Ax’

that is, p- 1  =  — A,(7r)/r .

P ro p o s itio n  A .l  Let v be continuous on [0,1] and solve (A.l) on ]0,1[. Then

u ( t t )  =  P  |7T — 7 r |- p  s ig n ( 7 T  — 7 f)  I  |£  —  7 T \ P _ 1  )  C?£
J  7r

defines a continuously differentiable function on [0 , 1 ] such that

u ( t t )   ̂u'(7r) =  v(ir).
r

On ]0,1[, u is analytic and solves (1.14).
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P R O O F :  Note first that v  is analytic on ] 0 , 1 [  by the Cauchy-Kowalewski theorem. 

In particular, as p — 1 > —1, the integral f~ |£ — 7f |p_1 n(f) d£  exists and defines a 

continuously differentiable function of 7r on [ 0 , 1 ]  — {7if}. It is now straightforward 

to check that u satisfies the linear differential equation

i \ ^ ( ^ 0  t( \ i \U y K J---------U (7TJ = v{ i r)
r

on [0,1] — {7r}. Applying the Cauchy-Kowalewski theorem once more, we see 

that u  is analytic on ]0,1[—{tt}. Next, we can use the analyticity of v  to show 

that u  is also well defined and analytic at 7r with u ( 7r) =  v (tt) and derivatives 

7r) = p v ^ ( 7 r ) / ( p  + k) .  In particular, u  solves the above linear ODE on the 

whole of [0, l ] . 44 Differentiating twice, we obtain

(1 + 2 p-1)   ̂u " \  7r) = v ''(ft)
r

on ]0,1[. Combining this with the fact that v  solves (A .l), we see that tn(7r) =  

u " {7r) — G(7r,n (7r)) with G as before is an analytic solution on ]0 , 1 [ of the homo­

geneous linear differential equation

(1 + 2p ~ l ) w (tt)  U- =  0.
r

But the only regular solution of this ODE is w = 0, so u solves (1.14). I

Our problem is therefore reduced to finding a solution of (A .l) with m  < v  < m  

on the interior of the unit interval. We shall apply an existence theorem which can 

be found in Bernfeld and Lakshmikantham (1974). To this end, we first show that 

m  and m are a subsolution and a supersolution45 of (A .l), respectively.

L em m a A .l  The myopic payoff function m  is a strict subsolution of (A .l) on 

]0 , 1[.

44In fact, u  is the only such solution. The standard method of variation of constants shows that 
the general solution of this ODE on either of the subintervals [0, #[ or ] tt, 1] is u(7r) +  C|7r — 7r|-  ̂
for some constant C .  Boundedness as 7r tends to ir requires C  =  0. Of course, it was by this 
method that we obtained the representation of u  in the first place.

45For our purposes, these concepts can be defined as follows. Consider an ordinary second-order 
differential equation y "  =  f ( x , y , y ' ) .  A s u b s o l u t i o n  ( s u p e r s o l u t i o n )  of this ODE is a function 
y  of class C 2 such that y "  >  f ( x , y , y ' )  (y " <  f ( x , y , y >) ) .  We speak of a s t r i c t  subsolution 
(supersolution) if y "  > f ( x , y , y ‘) (y " <  /(ar, y, j/))-
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PROOF: We have (j( 7r, m(7r)) =  0 on ]0,1[. On the other hand, m"  > 0 . I

L em m a A . 2  The linear function m  is a strict supersolution of (A .l) on ]0,1[.

PROOF: m" =  0, so we have to show that the right hand side of (A .l) with v

replaced by m  is positive. It will be convenient to rewrite the ODE (A.l) in a more

explicit form. To this end, set

TT. v —  m( 7 r )  m(  7 r )  —  m
^  =  1  — .

v — m  v — m

Note that G(ir,v) = 2ra2 ft(Tr) H(tt, v ) / ( A ( 3 2 7r2 (1 — 7r)2). We make this substitu­

tion in (A .l) and differentiate. Collecting terms in r, A0 and A1? and simplifying,

we can finally rewrite (A.l) as 

2a2 1

A /? 2 7r2 ( l  — 7r ) 2

+  Aq ( 1  — 71")

r ft(7r)H(ir, v (7r)) 

fto +  f t W
H ( tt , v (7t ) )  -  r )  t t ) )

7r 07T

+  A i  7T
A  +  /^(tt) +  u(tt))

1 — 7T a7T
• (A.2)

When we replace n(7r) by m (7r) =  ( 1  — 7r)m (0 )-)-7rm (l) on the right hand side of this 

equation, the coefficient of r  is clearly always positive on ]0,1[. The expressions 

in square brackets associated with A0 and Ai simplify to / 0 (7r)/(m (7r) — m ) 2 and 

/ i ( 7r) / ( ^ ( 7r) — ^ ) 2 respectively, where / 0 and f i  are quadratics in 7r:

/o(tt) =  K  m (l) — m +  [m(0) — m(l)] (1 — 7r)2

/i(7t) =  K  m(0) — m +  [m(l) — m(0)] 7r2

with K  = (Af tp)2/ (4/?0 /3i). Thus, / o(0) =  ^ (0 ) =  K  [m(0) -  m] and / 0 (1) =

/ i ( l )  =  K  [m( 1 ) — m], hence /o and / i  are both non-negative at each end of the

unit interval. As the two quadratics are strictly monotonic on [0,1 ], they are both 

non-negative over the entire unit interval. H

The existence theorem we want to apply relies on an a priori bound for the 

right hand side of the ODE (A.l). The following lemma provides this bound. To 

state the result in the most convenient way, we write (A.l) as

1

'"00  = 7r2 (1 — 7r)2
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The function F  can be obtained directly from (A .2):

2 a 2
F[TTjUcUi] =  -x-02  ̂ r^(ir)H(ir,v0)

with

+  Ao ( 1  — 7r) Po +  P M
7r

+  Ai 7r Pi +  P M
1  —  7T

H { i r , v Q) +  /0(7r)£fi[7T,UO,Ul]

rr m(7r) -  m m'(7r)
/Zi[7r,u 0 ,ui] =  t  —  v1 -

(u0 -  ™>)J Vo — m

Lemma A .3 Let J  C ]0,1[ be a closed interval. Then there is a constant Cj  

depending only on J  such that \F[ir, Vo, vi]| < C j ( l  +  |i>i|) for all 7r £ J ,  m ( 7r) < 

v0 < m (7r) and Vi £ -K-

PROOF: All terms involving H  are clearly bounded on J .  The terms involving H\, 

on the other hand, are bounded in absolute value by Cq +  Ci|ui| for some constants 

Cq and C\. I

Proposition A .2 There exists a solution v of (A .l) on ]0,1[ with m  < v < m.

PROOF: We shall apply Theorem 1.7.2 of Bernfeld and Lakshmikantham (1974) 

which is formulated for problems on the real line 1R rather than on a finite interval. 

We therefore make the change of variables

1
t = log

7r
1  —  7T

or 7r =
1 +  e-t

and set x(t) = v(ir). Then

hence

t/(7r) =

dt
dir

d2t
dir2

1

1
7T ( 1  —  7r) ’

2ir -  1 
ir2 (1 — 7r)2 ’

x \ t )  ,
7T (1 — 7r)

= - , / , 1 *"(*) +  L a  *'(<) •7r2 (1 — ir)2 IT2 (1 — 7r)2
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Noting that

and

1
7T (1 — 7r)

=  (1  +  e  ) (1 +  e  )

2 t t - 1  =
1 — e 
1 +  e

-t
-t

we see that (A.3) transforms into

»"(*) =  r r r ?  * '(*) +  F1 +  ec

1
— , x(t) , ( l  +  e ) ( l  +  e  )x'(t)„ _ , , _ _ (A..4)

1 +  e 1

Of course, m and m transform into a subsolution x and a supersolution x of (A.4), 

respectively. Now consider any interval [—a,a]. Using the last lemma above, we 

can find a constant Ca depending only on a such that

1 - e *  
1 +  e*

xi +  F
1

— , x0 , ( 1  +  e ) ( 1  +  e )a?i <  Ca (1 +  |^i |)
1 -f e~f

for all t £ [—a, a], x(t) < x0 < x(t) and X\ £ JR. By Bernfeld and Lakshmikantham 

(1974, Theorem 1.7.2, p.45), we can now conclude that (A.4) possesses a solution 

x defined on the entire real line with x < x <  x. Changing variables back from 

t to 7r, we obtain the existence of a solution v to (A .l) on ]0,1[ satisfying the 

weak inequalities m < v < m. To show that these inequalities hold actually 

in the strict sense, we use the fact that m  and m are a strict subsolution and 

supersolution, respectively. Assume for example that there is a belief 7f £ ]0,1[ 

such that v{if )  =  m (7r). Then the function v — m  has a local minimum at 7r, s o  

v'(pr) =  m '(7r) and v"(k) > Yet

1 1
F[tt, u(^), = F[tt, m(7r), m^Tr)] <

TT2  ( 1  — 7f ) 2 ’ 7T2 ( 1  — 7T)2

— a contradiction. The strict inequality v < m  can be shown in the same way. H

We can finally state the result which was the starting point in the proof of 

Theorem 1.4.1.

P ro p o sitio n  A .3 There exists a function u on [0,1] with the following properties: 

u is strictly convex and once continuously differentiable on [0 , 1 ]; on ]0 , 1[, u is 

analytic and solves (1.14) with

m(7r) <  u ( tt)
^(^") // \  / \
 u (7r) < m(7r).
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PROOF: The function v of Proposition A.2 can obviously be extended to a contin­

uous function on the closed unit interval. By Proposition A .l, there is a solution 

u of (1.14) with the stated regularity properties. Finally, v > m  implies u” > 0 by

(1.14), so u is strictly convex. I

Using the same techniques, it is now relatively easy to prove the result under­

lying Proposition 1.4.1.

Proposition A .4 Fix cr, Ao and Ai, and consider two interest rates r\ < r2. Let 

tt[ri] and u[r2] be the corresponding value functions, and define the respective func­

tions V[r'x] and v[r2\ as above. Then ufrj] > v[r2] on ]0,1[.

PROOF: The representations (A.2) or (A.3) of our ODE (A .l) show that the coef­

ficient of r  on the right hand side is positive whenever v(ir) > m (7r). The function 

u[ri], which solves (A.l) for the interest rate r i, is therefore a strict supersolution 

on ]0,1[ of the corresponding ODE for r 2. Proceeding as in the proof of Proposition 

A.2 , we obtain a solution v of the ODE for r 2 such that m  < v < v[ri] on the open 

unit interval. Now, the uniqueness part of Theorem 1 .4 .1  implies v = u[r2]. I

Along these lines, we can also verify Conjecture 1.4.1 for the case without state 

transitions.

Proposition A .5 Let r be given, and assume Ao =  Xi = 0. Consider two noise 

parameters <Ti < cr2 and the corresponding value functions u[cr\] and u[<r2]. Then 

u[cri] > u[a2] on ]0 , 1 [.

P R O O F :  T h e  v a l u e  f u n c t i o n  w h i c h  s o l v e s  ( 1 . 1 4 )  f o r  c r j ,  i s  a  s t r i c t  s u p e r s o l u t i o n  

o n  ] 0 , 1 [  o f  t h e  c o r r e s p o n d i n g  ODE f o r  <r2. I

Finally, let us mention sufficient conditions under which Conjectures 1.4.1 and

1.4.2 would hold in full generality. If the solution v from Proposition A.2 is strictly 

convex, one can prove the result regarding a change in a in the same way as we 

proved the comparative statics for r. Moreover, if v" > u" on ]0,1[, then the result 

for a change in A0 +  Xi follows by the same technique .46

46This last condition is satisfied in all the numerical examples that we have computed. We do 
not show graphs for the one-sided case here, but v "  obviously exceeds u"  in our figures for the 
two-sided case.
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Part II 

D erivative A sset Pricing
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C hapter 2 

T he D irect A pproach to  D ebt 
O ption P ricing1

The valuation of debt options has occupied a central place in the literature on 

contingent claim pricing and the term structure of interest rates. While most 

commonly traded debt options are written on coupon bonds, there has also been 

considerable interest in the valuation of European options on zero-coupon bonds. 

On the one hand, this is motivated by the fact that discount bond options provide 

simple building blocks for other more complex interest rate dependent claims. 2 

On the other hand, zero-coupon bonds very closely resemble stocks which pay no 

dividends; the fact that the bond price has to reach par value eventually will only 

have an impact close to maturity. This makes the valuation of options on discount 

bonds one of the few areas in derivative assets analysis where one can expect closed- 

form solutions that are as tractable and elegant as the famous Black and Scholes 

(1973) formula for stock options.

In this chapter, we review the continuous-time literature on the so-called direct 

approach to debt option pricing. Trying to follow the Black-Scholes framework as 

closely as possible, this approach specifies bond prices directly, without relating 

them to the term  structure as a whole or to state variables such as the short term

xThe material in this chapter has been published in the R e v i e w  o f  F u tu re s  M a r k e t s ; see Rady 
and Sandmann (1994).

2It is well known, for instance, that FRAs (forward rate agreements) can be re-interpreted as 
options on zero-coupon bonds, and caps and floors as strings of such options; see for instance 
Sandmann (1991) or Briys, Crouhy and Schobel (1991). In some circumstances, it is possible to 
write an option on a coupon bond as a sum of options on discount bonds; cf. Jamshidian (1987, 
1989) and El Karoui and Rochet (1989).

85



interest rate. This literature starts with Ball and Torous (1983) where the stock 

option pricing model of Merton (1973), an extension of Black and Scholes’ work 

to stochastic interest rates, is adapted to debt options. The main contribution 

of Ball and Torous consists in replacing the Brownian motion which drives the 

Black-Scholes and Merton stock price model by a Brownian bridge process. Thus, 

they succeed in modelling the main difference between stocks and bonds: under 

absence of default risk, bonds reach a predetermined face value at their maturity 

whereas stocks have no such target value. However, the constant volatility3 of bond 

prices in the Ball-Torous model turns out to imply a highly implausible bond yield 

behaviour. By introducing bond price processes with time dependent volatility into 

the Merton framework, Kemna, de Munnik and Vorst (1989) are able to avoid this 

problem.

The two models mentioned so far both specify bond prices as lognormal vari­

ables. While this leads to closed-form option price formulae of the same type as 

in Merton (1973), it also means that negative bond yields and negative forward 

yields occur with positive probability. This problem has been addressed by Schobel 

(1986). He derives boundary conditions for discount bond options under the as­

sumption that yields do not become negative. He then proposes a method to modify 

option price formulae like that of Ball and Torous (1983) in accordance with these 

boundary conditions. Yet Schobel does not develop a bond price model in which 

yields would indeed remain non-negative. Buhler and Kasler (1989) are the first 

to achieve this within the direct approach. With a very ingenious formulation of 

bond prices, their model guarantees positive bond yields as well as positive forward 

yields, and still has the advantage of providing analytic solutions for option prices.

While the above papers deal exclusively with discount bonds, Schaefer and 

Schwartz (1987) and Buhler (1988) use the direct approach to price options on 

coupon bonds. Both papers let the volatility of the underlying bond depend on the 

bond’s duration. In such a setting, bond option prices must be calculated numeri­

cally. Unfortunately, both papers have to make extremely restrictive assumptions

3Practitioners as well as academic researchers have used the term “volatility” to denote various 
quantities that measure the riskiness of an asset. We adopt the following convention: “volatility” 
is synonymous with “instantaneous standard deviation of returns” .

86



in order to keep the numerical complexity of the valuation problem at a reasonable 

level.

The preceding paragraphs have already mentioned two of the main modelling 

problems encountered by the direct approach: first, the problem of specifying bond 

price processes that reach par value at maturity with probability one; second, the 

problem of modelling bond prices in a way that precludes negative yields. A third 

problem has to do with the internal consistency of models: bond price processes 

must be specified such that no arbitrage opportunities between the bonds arise. 

Under suitable restrictions on the trading strategies that investors can use, the 

existence of a so-called martingale measure is a sufficient condition for the absence 

of arbitrage opportunities .4  Cheng (1991) shows that there is no such measure for 

the Ball-Torous model. Reacting to Cheng’s work, de Munnik (1990) proves the 

existence of a martingale measure for the model of Kemna, de Munnik and Vorst 

(1989). Buhler and Kasler (1989) provide the most elegant solution. While de 

Munnik’s arguments are technically rather intricate, Buhler and Kasler are able 

to invoke a general result that immediately implies the existence of a martingale 

measure for their model.

The aim of this chapter is to emphasise the above modelling problems and to 

discuss in detail the different solutions proposed in the literature. It is organised as 

follows. Section 2.1 gives a short introduction to the principal features of discount 

bonds and discount bond options. Section 2 . 2  presents the portfolio duplication 

argument that underpins derivative asset pricing and sets out the general framework 

of the direct approach. Sections 2.3 and 2.4 discuss the lognormal models of Ball 

and Torous (1983) and Kemna, de Munnik and Vorst (1989), respectively. In 

Section 2.5, we analyse the modified pricing formulae proposed by Schobel (1986). 

The model of Buhler and Kasler (1989) is presented in Section 2.6. In Section 2.7, 

we briefly discuss the valuation models for options on coupon bonds by Schaefer 

and Schwartz (1987) and Buhler (1988). Section 2.8 contains concluding remarks. 

Some technical details are given in an appendix.

4See for example Harrison and Pliska (1981) or Muller (1985).
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2.1 D iscount Bonds and European Options

A zero-coupon or discount bond is a nominal security that pays its owner a prede­

termined amount of money, the face value, at a predetermined maturity date. We 

consider only bonds without any default risk, such as treasury bills. Moreover, face 

values are normalised to 1 without loss of generality. Writing B t^  for the time t 

price of a zero-coupon bond which matures at T > £, we thus have the terminal 

value condition

B t ,t  =  1 (2 .1)

for all maturities T.

Bond price models can be classified according to whether they generate negative 

interest rates or not . 5 By definition, the yield to maturity Yt^  satisfies

B ttT = exp(—(T -  t) YttT)

for t < T.  In other words, YtfT is the continuously compounded interest rate at

time t for a loan repayable at T. The forward yield Y ^ t Xit 2 is defined by

| ^  =  exp(-(T 2 - T 1 )Yt,r„T2)

for t <  T\ < T2 . It is the interest rate as seen at time t for a loan starting at T\ 

and repayable at T2.

Suppose that investors can hold cash. 6 If they are rational and prefer more to 

less, they will not accept to lend (or lend forward) at a negative interest rate, so 

bond prices must satisfy

Bt,r < 1 for all t < T  (2-2)

and

B ttTi <  B t>Tl for all t < < T2 . (2.3)

In the following, a model that violates (2.2) or (2.3) with positive probability will 

be said to generate negative yields.

5We use the terms “negative” and “positive” in the strict sense, meaning “< 0” and “> 0”, 
respectively. A quantity satisfying the weak inequality “> 0”is called “non-negative”, etc.

6This is certainly a reasonable assumption in most practical applications.



A European call option on a zero-coupon bond of maturity T  is the right to buy 

the bond at some specified date r  < T  for some predetermined amount K.  If the 

price of the bond at the exercise date r  is higher than the exercise price K , the net 

cash flow of the call will be the difference B t>t — K,  otherwise the net cash flow is 

zero. Therefore, the call is worth

[ B t ,t  -  K ] +

at t .7 A European put option is the right to sell a bond for some predetermined 

amount K.  Its net cash flow at the exercise date is

[K -  Bt,t ]+.

Obviously, the final payoffs of these two options are related via

[K -  Bt,t ]+ =  [Bt ,t  -  K}+ -  Bt ,t  +  K.

By a simple arbitrage argument, this implies the so-called put-call parity between 

time t prices of European call and put options with common exercise price K  and 

common exercise date r :8

Pi =  Ct -  Bt,T +  K B t,r .

As the value of a put option is always non-negative, put-call parity yields the 

following lower bound on the call price:

Ct > [ B t,T - K B t'T}+ . (2.4)

An upper bound for the price of a call is

Ct < BilT (2.5)

since the call cannot be worth more than the underlying security itself. 9

An additional upper bound holds when there are no negative yields. In this

case only exercise prices K  between 0 and 1 are of interest, and the maximal payoff

7By definition, [x]+ =  max{a:, 0} for x  E IR-
8See for example Stoll (1968).
9Conditions (2.4) and (2.5) were derived by Merton (1973). For the role of condition (2.5) in 

option pricing see also Gleit (1978).
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of a call is 1 — K.  The call price is therefore bounded from above by the present 

value of 1 — K:

Ct < (1 -  K )  B tiT. (2.6)

Combining (2.4) and (2.6), Schobel (1986) obtains the following condition:

Ct =  (1 — K) B t}T whenever B tiT = B tfT. (2.7)

Put-call parity leads to a similar result for put options.

So far, no assumptions have been made on the stochastic behaviour of bond 

prices. But it is already obvious that the price of an option will not only depend 

on its underlying bond, but also on the price of a zero-coupon bond whose maturity 

coincides with the exercise date of the option. The direct approach to bond option 

pricing studies models in which these two bonds suffice to “span” the option and 

hence to determine its price.

2.2 O ption Pricing by Portfolio D uplication

This section presents the standard portfolio duplication argument which is the 

basis of derivative asset pricing. We shall focus on the case of a European call 

option written on a discount bond with face value 1 and maturity T. The option 

is assumed to have exercise date r  < T  and strike price K.  For 0 <  t < T, let Bt 

denote the time t price of the bond on which the option is written (the “underlying 

bond”). The price of the “reference bond”, a zero-coupon bond of maturity r , is 

denoted by 0 <  t < r . The value of the option will depend on the properties of 

the stochastic processes B  and R. For the moment, we only assume that they are 

continuous Ito processes. 10 The main idea is to construct a dynamically adjusted 

portfolio in the two bonds that yields the same final cash flow as the option. To 

make this more precise, we need some definitions:11

10An introduction to the theory of such processes and their use in financial models can be 
found in Duffie (1992). For the sake of simplicity, technical requirements such as integrability 
conditions will not be made explicit here.

n In this chapter, we shall not give a precise definition of a space of admissible portfolio strate­
gies. However, the strategies we shall deal with can be checked to have the relevant properties; 
see Duffie (1992).
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A portfolio strategy is a two-dimensional predictable stochastic process 9 = 

(9°,91) on the time interval [0 , r] such that the stochastic integrals J  9° dR and 

J  91 dB  exist. Think of 9® and 9] as the number of reference and underlying bonds 

held at time t. Predictability means that the decision how many bonds to hold at t 

is based only on information available before t. The stochastic integrals above can 

be interpreted as the gains or losses from bond trade according to the strategy 9. 

The value process V 9 of a strategy 9 is given by

v* =  e°t R t +  9]Bt.

A strategy 9 is called self-financing if V 9 has the stochastic differential

d V 9 = 9°t dRt + 9]dBt .

This means that after the initial investment Vq is made, the adjustment of the 

portfolio is financed without injecting or withdrawing any funds. Changes in the 

portfolio value are exclusively due to gains or losses from bond trade.

We say a self-financing strategy generates the option if the terminal portfolio 

value equals the cash flow of the option, i.e.,

Vre =  [Bt -  K}+,

and V 9 respects at any time the lower and upper bounds derived in Section 2 .1 , 

that is, either

[ B t - K R ^  < V ?  < B t (2.8)

or, if the bond price model precludes negative yields,

[Bt - K R t f  < V* <  min{B t, (1 -  K)Rt} .  (2.9)

To rule out arbitrage opportunities , 12 the option price must then coincide with the 

portfolio value, i.e.,

^  =  V*

12Formally, an arbitrage opportunity can be defined as a self-financing portfolio strategy with 
negative initial investment, but non-negative final value; see for instance Duffie (1992). Thus, 
an arbitrage opportunity is a trading strategy that provides a gain today without creating any 
liabilities in the future.
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for all t < r. This determines the arbitrage price of the option.

The construction of a generating strategy can be simplified in the following way. 

Instead of the bond price process (R, B ), we consider the normalised process (1, f?) 

where
B+

Bt = Rl
(we assume that R _1 is also an Ito process). In the same way, we obtain the 

normalised value process V 9 of a strategy 9:

V f  =  %  =  e? +  e \ B t .
Bt

These definitions may seem purely formal, but they are easily interpreted in eco­

nomic terms, (R, B)  is a model of the spot markets, so a portfolio strategy 6 

describes spot trading with corresponding portfolio value V 9. Suppose now that 

investors can also trade on forward markets. Then B t is just the time t forward 

price of the underlying bond for delivery at r  (obviously, the corresponding forward 

price of the reference bond is always 1). Moreover, if the strategy 6 is implemented 

on the forward markets, the resulting forward value process is just V 9.

We call $ self-financing on the forward markets if

d V 9 =  9] dBu

and we say such a self-financing strategy 9 generates the option on the forward 

markets if

V T* =  [ B r  -  K } +

and Vt9 respects the bounds resulting from division of (2.8) and (2.9) by The 

strategy 9 then determines the arbitrage forward price of the option:

Ct =  Vt

for t < r .

Intuitively, the renormalisation of prices should have no economic effects. The 

following lemma confirms this intuition.

L em m a 2 .2 . 1  A portfolio strategy is self-financing on the spot markets i f  and only 

i f  it is self-financing on the forward markets. Furthermore, a strategy generates the
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option on the spot markets i f  and only if it generates the option on the forward 

markets.

PROOF: The proof of the first part consists essentially in an application of Ito’s 

formula and is given in Muller (1985) for a more general framework. The second 

part then follows trivially. H

In order to make further progress, we have to specify bond price processes more 

precisely. Aiming to construct a generating strategy on the forward markets, we 

shall in fact start from an explicit description of the forward price process B.  We 

assume that this process satisfies

dBt = OLt Bt dt +  i/(£, Bt) B t dWt (2 .1 0 )

where a  is some stochastic process, i/(t,x) a continuous function and W  a standard 

Wiener process. We call a  the drift rate process and v the volatility function of 

the forward bond price, interpreting them as the instantaneous expectation and 

standard deviation, respectively, of the infinitesimal rate of return d B /B .  Thus, 

(2 .1 0 ) restricts the volatility of the forward bond to be a deterministic function of 

the current forward bond price and time. This restriction, which rules out more 

complicated dependence of the forward bond volatility on current or past bond 

prices, will enable us to determine the arbitrage forward price of the option as a 

deterministic function of t and B t 13

Our second lemma shows how to construct generating strategies. Let the in­

terval I  denote the state space of the forward price process j§, and I  its closure. 

We assume that either I  =]0, oo[ or I  = ]0,1 [ . 14 In view of Lemma 2.2.1, we do not 

specify the markets where the strategy is implemented.

L em m a 2 .2 . 2  Let u ( t , x ) be continuous on [0, r] x I  and a solution of the partial 

differential equation

ut + \ v 2 x 2 uxx = 0  (2 -ll)

13See Jamshidian (1990) for a formulation of this result in a term structure model.
14This covers all the models we shall deal with except Schobel (1986).
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on [ 0 ,t [x /.  Then the strategy 0 defined by

0] = ux(t, B t), 01 = u(t , B t) -  ux(t , Bt) Bt (2 .1 2 )

is self-financing.

Moreover, suppose that u has the terminal value u ( t , x )  =  [ x  — K]+ and satisfies 

[ x  — K]+ < u(t , x)  <  x  if I  =]0, oo[

or
1+[x — K ] <  u(t, x) < min{:r, 1 — K } if  I  =]0,1[ .

Then 0 generates the call option.

PROOF: (2.12) implies Vf  =  u( t ,B t). By Ito’s lemma and (2.10),

dVt = ut(t, B t) +  \  v2{t, B t) B \  uxx(t, Bt) dt +  ux(t, B t) dBt .

By (2.11) and (2.12), this reduces to dVf = 0] dBt , so 0 is self-financing. The rest 

is easy to check. I

A generating strategy as in Lemma 2.2.2 yields the arbitrage forward price

Ct =  u(t , Bt)

and the arbitrage spot price

Ct = Rt Ct — Rt Bt)

for the European call. In accordance with Merton’s (1973) theory of rational option 

pricing, the spot price is homogeneous of degree one in B t and R t.

Note that only the volatility function v appears in the partial differential equa­

tion (2.11). The drift rate a  in (2.10) has therefore no effect on the functional 

relationship between the arbitrage price of the option and the bond prices B  and R.

It would, however, be wrong to conclude that the drift is completely irrelevant 

for option pricing. When deriving the above option price, we simply postulated ab­

sence of arbitrage opportunities between traded securities. The drift of the forward 

bond price emerges as an important factor when we start to look for conditions
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that guarantee the internal consistency of the bond price model (R , B).15 Together 

with suitable restrictions on admissible portfolio strategies, the existence of a so- 

called martingale measure for the forward bond price is a sufficient condition for 

the absence of arbitrage opportunities. This is a new probability measure that has 

the same null sets as the original measure and makes the forward price a m artin­

gale, which means that the current forward price is an unbiased forecast of future 

forward prices. Under such a measure, the forward value process of a self-financing 

portfolio strategy is again a martingale. In particular, the initial investment re­

quired to set up a self-financing portfolio strategy equals the expectation of the 

strategy’s terminal value under the martingale measure. As taking expectations 

preserves non-negativity, a trading strategy with non-negative final value must 

have a non-negative initial investment. In other words, if there exists a martingale 

measure, arbitrage opportunities are precluded.

In the setting described by equation (2.10), a martingale measure exists if and 

only if the quotient of the drift and the volatility of B ,

Qit
u ( t ,B t)

satisfies certain integrability conditions. 16 Thus, the internal consistency of a bond 

price model depends indeed on both the drift and the volatility of the forward bond 

price.

There is a second important reason why the drift term matters in option pric­

ing. When applying an option pricing model, we need estimates for the volatility 

parameters which enter the valuation formula. It is in general impossible to esti­

mate these parameters from historical price data without taking into account the 

drift . 17

Let us conclude this section with an example of how the above lemmata are

15In the following, we try to convey only the main ideas. For a thorough discussion including 
technical details, see for instance Duffie (1992).

16See Harrison and Kreps (1979), Harrison and Pliska (1981) and Muller (1985).
17A treatment of this estimation problem is beyond the scope of this survey. We therefore 

refer the reader to Lo (1986, 1988) and references given there. De Munnik (1992) applies Lo’s 
methodology to the model of Kemna, de Munnik and Vorst (1989). Practitioners often use an 
“implied volatility approach” to avoid the estimation problem altogether; inverting the option 
price formula, they calculate volatility parameters from observed option prices.
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applied. Consider bond price processes that have the stochastic differentials

dBt = a ?  Bt dt +  crB(t) Bt d W f , 

dRt = a f  R t dt +  aR(t) R t d W R

(2.13)

(2.14)

with stochastic drift rate processes a B, a R, and volatility functions cr#, aR whicht 

depend only on t. W B and W R are assumed to be Wiener processes having in­

finitesimal correlation

d(W B, W R)t = pdt

with constant p E [—1 , 1 ] . 18 After applying Ito’s formula to calculate dBt , it is 

easy to verify that there exists a Brownian motion W  such that (2.10) holds with 

volatility function v : [0 , r] —> M+ given by

v(t) = y /aB2(t) -  2paB{t)(TR(t) +  vR2(t).

In fact, W  can be defined by

dWt =
u(t) i/ ( f )

The state space is I  =]0, oo[. The unique solution of (2.11) satisfying the terminal 

value condition and the bounds specified in Lemma 2 .2 . 2  is well known:19

u ( t , x )  =  X
1

s / W )

1 x s (t)
logz + -^ l0 S K ~ T

(2.15)

where $  denotes the standard normal distribution function and

s W  = J t u2( 0 dZ-

This yields the familiar formula for the arbitrage price of a call:

Ct = Bt $ ( d i ) - K R t $(d~) (2.16)

18This is the framework common to Ball and Torous (1983) and Kemna, de Munnik and Vorst 
(1989). The models that Black and Scholes (1973) and Merton (1973) used for stock option 
pricing can also be seen as special cases of (2.13) - (2.14). The correlation coefficient p  could of 
course be made time dependent as well.

19The growth condition 0 <  u ( t ,  x )  <  x  guarantees uniqueness of the solution; see Gleit (1978).
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with

(2.17)

It is easy to verify that a generating strategy for the option is

*? =  * ( # ) ,  =

The arbitrage price of a European put option can be determined by put-call 

parity:

Pt = - B t $ ( - d t )  + K R t $ ( - d ; ) .  (2.18)

The strategy

«j =  - * ( - d + ) ,  «? =  * * ( - < )

generates the put option.

As Merton (1973) was first to derive option price formulae of this type for a 

stochastic reference bond, we shall call (2.16) and (2.18) the Merton call and put 

price formula, respectively, for volatility function v?°

2.3 Constant Volatility: The Brownian Bridge

The first paper using the direct approach to price call and put options on zero- 

coupon bonds is Ball and Torous (1983). Their analysis starts from the following 

observation. The Black and Scholes (1973) model of stock price movements, a 

geometric Brownian motion

St = S0 exp ([p -  a 2/2]t +  <rWt) (2.19)

with constants p and cr, cannot be reinterpreted as a model of bond prices since 

this process specification is incompatible with a terminal value condition of the 

form (2.1). In fact, the variance of the process is strictly increasing with time.

20Formulae of this type also hold in so-called linear Gaussian models of the term structure 
of interest rates. Examples are Vasicek (1977) and its extension by Hull and White (1990). 
A systematic analysis of Gaussian models, as well as derivations of the pricing formulae we 
are considering here, can be found in El Karoui and Rochet (1989), El Karoui, Myneni and 
Viswanathan (1992), and Jamshidian (1991). The deterministic volatility examples in Heath, 
J arrow and Morton (1992) belong also to this category.

= K R f
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Ball and Torous incorporate the terminal value condition by replacing the 

Wiener process in (2.19) with a standard Brownian bridge, i.e., a continuous Gaus­

sian process rft,T (0 <  t <  T) with 7/0 ,t  =  i]T,T — 0? zero mean, and covariance 

function E[r/tiT t js , t ]  = t ( T  — s ) /T  for t < s. This bridge process can be con­

structed as the solution of the stochastic differential equation

dvt,T =  ~ f ^ d t  +  d W t (2 .20)

where W  is a Wiener process. Note how the drift pulls the process back to zero. 

The pull-back force, — 1 / (T  — <), becomes stronger as time goes by and eventually 

pulls the process towards its fixed endpoint.21

More precisely, Ball and Torous model the price process of the underlying bond 

as the lognormal variable

B t = B0 exp(fiBt +  aBrjt,T) (2.21)

with constant aB >  0, and choose

log B 0
Vb =  jT~  = T0)r

in order to fulfil the terminal value condition (2.1). The bond price process consists 

of two parts: the price path that would occur if there were no uncertainty,

Bo exp(fxBt) = B0T ,

and a stochastic term driven by r}t,T that characterises the random fluctuations 

around the deterministic path. As the distribution of rjtfT is symmetric around 0, 

the deterministic path describes the median bond price.

For option pricing, a reference bond with maturity r  equal to the exercise date 

of the option is needed. Ball and Torous suppose that the price process of the

reference bond is of type (2.21) as well. This leads to the following model:

T - t

B t =  B 0T exp(a5 7/t)T),

T  —  t

Rt =  R 0T exp(<7i?77*iT)

21See Karlin and Taylor (1981) for a detailed treatment of the Brownian bridge.
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with

d V t ,T  =  - i f ^ d t  +  d W f ,  

dvt,r =  - - ^ 7 dt +  d w *
T  — t

The instantaneous correlation coefficient between the Wiener processess W B and 

W R is assumed to be a constant p. The forward price B  — B / R  has the form

B t =  B 0 exp([pB -  pR]t +  aBrit,T ~  <W t,r).

Being the quotient of two lognormally distributed variables, it is itself lognormal. 

Therefore, negative forward yields also occur with positive probability.

By Ito’s lemma,

dBt =  ( ~ ~  -  ) B , d t  + <rBB t dWtD,B

d R t = ( ^ - l̂ T i ) R td t  +  ° R R td W ? -

This is an example of the general specification (2.13)-(2.14). We can apply the 

results of Section 2.2 with a constant forward price volatility equal to

y /aB2 -  2paBaR +  aR2

which we shall denote by a. Substituting this into (2.16) gives the arbitrage price 

of a European call in the Ball-Torous setting:

Ct = Bt $ ( d t ) - K R t $(d; )  (2.22)

where

d f =  1
cry/r — t

This call price formula has exactly the same structure as the Black-Scholes 

formula.22 This may be surprising at first sight: after all, within the common 

framework of (2.13)-(2.14), the above bond price model differs considerably from

22Formally, the Black-Scholes call price formula is obtained from (2.22) by setting <rR =  0, i.e., 
by assuming the reference bond to have a constant yield, and by replacing B t with the stock 
price.
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the model of Black and Scholes (1973). Yet we have seen that only the volatility of 

the forward price of the underlying asset enters the option price formula. As both 

models assume this volatility to be constant, the similarity of the resulting pricing 

relationships is easily explained.

Despite this similarity, the formulae (2.22) and the Black-Scholes formula have a 

very different theoretical status. While the Black-Scholes model possesses a m artin­

gale measure23 and hence satisfies sufficient conditions for the absence of arbitrage 

opportunities, the Ball-Torous model admits no martingale measure. Cheng (1991) 

shows that the drift term of the Brownian bridge which forces the process towards 

a fixed endpoint is incompatible with the requirements for the existence of a mar­

tingale measure. However, this does not necessarily imply that there are arbitrage 

opportunities in the Ball-Torous model: the existence of a martingale measure is 

sufficient, but in general not necessary for the absence of arbitrage.24 To stress the 

difference between the two models, we might say that pricing in the Black-Scholes 

model proceeds safely from sufficient conditions for no arbitrage, whereas pricing 

in the Ball-Torous setting is merely based on necessary conditions for no arbitrage: 

all we have shown is that if the Ball-Torous model is arbitrage-free, then the price 

of a call option must be given by equation (2.22).

On a less theoretical level, one can criticise the Ball-Torous bond price model 

for the unrealistic yield behaviour that it implies. This problem, together with a 

possible solution, will be addressed in the following section.

2.4 T im e D ependent Volatility

Using a Brownian bridge, Ball and Torous succeed in specifying a bond price process 

that reaches par value at maturity. It is instructive to examine the resulting yield

23See for example Muller (1985).
24Existence of a martingale measure and absence of arbitrage are equivalent if the number of 

trading dates is finite; see for example Harrison and Pliska (1981). While the sufficiency part 
still goes through in models with an infinite number of trading dates, the necessity part breaks 
down. In fact, Back and Pliska (1991) construct an example of a securities market which is 
arbitrage-free, but has no martingale measure.
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process. (2.21) implies

Yt,T =  Vb T - t Vt,T

which is normally distributed with mean fiB and variance aB2t / ( T  — t)T.  Note that 

the latter increases without bounds as t increases. We can analyse this further by 

looking at yield changes over infinitesimal time periods. The stochastic differential 

of YtiT is

dYt,T = 0B
T - t

dw;B

by Ito’s lemma and (2.20). Thus, the diffusion coefficient (instantaneous standard 

deviation) of the yield process explodes as t tends to T.  Kemna, de Munnik and 

Vorst (1989) show that this causes almost every yield path to reach negative values. 

In other words, negative yields to maturity are generated with probability one!

This highlights the serious drawbacks of the Ball-Torous model. One possible 

way to avoid them is to replace the Brownian bridge r)t ,T by a process of the form

r f a  =  k ( t , T ) W *

where k( t , T), a continuously differentiable function defined for t G [0, T], is positive 

for 0 < t < T  and zero for t = T. Defining fiB as before and setting

B t =  B 0 exp(fiBt +  a B fjt ,T)  =  B 0T exp{crB f}t>T) ,  (2.23)

one obtains again a bond price model that satisfies the terminal value condition. 

The distributions of Bt and Yt r̂ are lognormal and normal, respectively. More 

precisely,
w  ° B  ~
Yt ,T  =  V-B ~  f ~ ~ t

has mean fiB and variance aB2 k2( t , T ) t / ( T  — t)2 which stays bounded as t tends 

to T  if and only if k ( t ,T ) / ( T  — t) does. This is also the condition for the diffusion 

coefficient of Ytp  to stay bounded, as we can see by applying Ito’s lemma:

dm,T =  j  %,t dt +  k( t ,T)  d w f

and

dYt,T = o~B „ ob j~
Vt,T dt -  —— - drjt^T

( T - t )
1

+
k'( t ,T)

T - t  k ( t ,T ) .

T - t

(Yt,T -  pB) dt -  dW tB.
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We have no empirical argument for a special form of the function k(t,T).  

Kemna, de Munnik and Vorst (1989) propose k( t ,T )  = (T — t ) /T .  The result­

ing yield process is simply a Brownian motion starting at pB. This model succeeds 

where the Ball-Torous model fails. First, yields to maturity have bounded vari­

ance. Second, while negative yields occur with positive probability, as is the case 

in any model with lognormal bond prices, this probability is far smaller than one 

for reasonable parameter values. Third, de Munnik (1992) shows that this model 

admits a martingale measure and hence precludes arbitrage opportunities.

Turning to the valuation of bond options when bond prices are of the form 

(2.23), we use Ito’s formula once more to calculate the stochastic differential of the 

process B.  The result is

dBt = a f  B t dt +  aB k( t , T ) B t d W f

with drift rate process

o f  =  VB +  ° b  k' {t ,  T )  W f  +  \<rB 2 k \ t ,  T ) .

Let Rf, the price of the reference bond, also be of the form (2.23), i.e.,

R t = Ro exp(pRt +  <TRfjt,T)

with fjtyT = k ( t , r )  and assume that the instantaneous correlation coefficient p 

of the Wiener processes W B and W R is constant. This is again a special case of 

(2.13)-(2.14). The volatility of the forward bond price is time dependent:

v{t) =  y / a B2 k2(t , T) -  2 p a B crR k( t , T) k( t , r )  +  a R2 k2(t , r ) .

The arbitrage price for a European call in this situation has again the familiar form 

(2.16)-(2.17) with the function s(t) now given by

s(t) =  aB2 [  &2(£, T) d£ -  2paB(7R [  k(£, T) k((, r)  df +  aR2 (  k2((, r) d(.
Jt Jt Jt

While two flaws of the Ball-Torous model, namely the exploding variance of the 

yield to maturity and the non-existence of a martingale measure, can be remedied 

by specifying bond price processes with time dependent volatility, a major problem
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remains unsolved. In all the models considered so far, yields to maturity and 

forward yields can take negative values. This in turn distorts option prices: a call 

option on a zero-coupon bond with exercise price equal to the bond’s face value 

has a positive price in these models. Schobel (1986) and Buhler and Kasler (1989) 

propose solutions to this problem. We shall analyse them in the following two 

sections.

2.5 Correcting for N egative Yields:
A n A dditional Boundary C ondition

We have seen in Section 2.1 that in a bond price model with non-negative forward 

yields, the price of a call with exercise price 0 < K  < 1 satisfies condition (2.7). In 

terms of forward prices, this says that Ct = 1 — K  whenever Bt = 1.

The pricing formulae derived in lognormal models such as Ball and Torous 

(1983) or Kemna, de Munnik and Vorst (1989) are easily seen to violate condition 

(2.7), which reflects the fact that these models do generate negative forward yields. 

More generally, call prices calculated in any model where (2.10) holds with at most 

time dependent volatility function v : [0,r] —> 1R+ will violate (2.7). In fact, the 

Merton call price formula (2.16) implies that for B t = 1,

V  /  \  )
which is different from 1 — K  in general.

In view of this, Schobel (1986) and Briys, Crouhy and Schobel (1991) propose 

to replace (2.16) with the modified call price formula

Ct = R t u { t , B t) (2.24)

where u* : [ 0 , t ] x [0,1] —» JR+ solves again the partial differential equation (2.11) 

for the given volatility function z/, but now subject to the conditions

u*(t, x ) =  [x — K]+ , 

u*(t, 0) =  0 ,

= 1 - K .
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The first equation is the usual terminal value condition. The second is a boundary 

condition derived from (2.5). The third condition is new; it imposes property (2.7).

Schobel solves this problem by transforming it into a heat conduction problem 

on the non-negative real half-axis.25 This transformation is rather complicated 

and, as it turns out, unnecessary. To see this, let u(t , x ; K ) be the Merton solution

(2.15) for arbitrary K  > 0. For all 0 < t < r , we then have

u { t , l ;K )  = J - ' B S K  + J t V A
\  V m  )  \  v m

and

u(t, 1 ;K - ' )  = * ( l̂ £ + £ l / l )  _ K -1 J l ° s K - s ( t ) / 2 \
\  V m  )  V  )

where

S^  =  I t
as usual. This implies

+  i i  ( l° s K  ~  sW / 2\
\  )  V a A W  )

=  l - K

since 4>(—z) +  $ ( 2 ) =  1. Therefore, the function u* : [0,r] x [0,1] —> M+ defined

by

u*(t, x ) =  u(t, x ; K ) — K  u(t , x ; K -1) 

for 0 < K  < 1 clearly solves (2.11) with u*(£, 0) =  0 and u*(t, 1) — 1 — K.  Moreover,

u*{t , x ) = [x — K]+ — K  [x — K ~ x] + = [x — K]+

as x <  1 < K ~ x. Computing (2.24) with this function now yields the call price 

formula

Ct =  Bt * ( 4 )  - K R t  $ ( 4 )  — K  B t * ( # )  +  Rt * ( 4 )  (2.25)

where d f  is given by (2.17) and

d f =  1 log ^ ± S(i)
R t 2

25See also Schobel (1987).
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The first two terms of (2.25) coincide of course with formula (2.16). Schobel (1986) 

writes the last two terms of (2.25) as —[K B t ${d f )  — Rt <&(dt )] and interprets the 

expression in square brackets as the Merton price of a European call with exercise 

price 1 written on a discount bond of face value K . 26 He calls this the “antioption”. 

Our derivation of the pricing formula suggests a simpler interpretation. In the case 

of constant volatility, for example, the expression in square brackets is simply the 

Merton price of K  calls with exercise price K ~ x written on the original underlying 

bond.

For the European put option, put-call parity yields

Pt = - B t  * ( - # )  + K R t  $ ( - d r )  - K B t  $ (d t )  + Rt $ ( £ ) ,  (2.26)

which is the put price (2.18) minus the same “antioption” price as in (2.25).

Neither Schobel (1986) nor Briys, Crouhy and Schobel (1991) specify a bond 

price model such that portfolio duplication would lead to formulae (2.25) and (2.26). 

As a first step towards identifying such a model, we follow Breeden and Litzenberger 

(1978) and calculate so-called Arrow-Debreu or state prices implied by the above 

option prices. Assume that time 0 bond prices are B 0 and R q with B q < Rq. 

As R r =  1, the states of the world at time r  can be identified with the possible 

realisations of Br . If there are no negative yields, we thus have the continuum of 

states ]0 ,1]. We look for a distribution function F  with F ( 0) =  0 and F(  1) =  1 

such that time 0 bond and option prices are discounted expected values of time r  

payoffs with respect to F 27 This means

B 0 = R0 f  x d F ( x ), (2.27)
Jo

and

Pq = R0 f  [K — z]+ dF(x) = R 0 (  (K  — x) dF(x)  (2.28)
Jo  Jo

where Pq denotes the initial price of the put for exercise price 0 <  K  < 1. In 

the usual way, Rq F( x ) can be interpreted as the price of the Arrow-Debreu se­

curity l{_Br<a;} paying 1 if B r < x , and 0 otherwise. (2.27) and (2.28) express

26In fact, Schobel (1986) deals only with the case of constant volatility, but his arguments 
obviously extend to the time dependent case.

27F  can be interpreted as the distribution function of B T under a martingale measure.
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the consistency of these Arrow-Debreu prices with “actual” prices of bonds and

options.

Integration by parts yields
p K  p K  p K
I  (K  — x) dF(x)  =  [(K — x) F ( x ) ] q  +  I F ( x ) d x =  I F ( x ) d x ,

Jo Jo  Jo

hence
*K

Po =  firo f  F(x)dx.
Jo

The put price Pq has derivatives of all orders with respect to K  in ]0,1[, and

F m  -  k  m F f

for 0 < K  < 1, so F  inherits differentiability on the open unit interval. To 

determine F  more precisely, we calculate the derivative28

9 p k  =  +  Ro +  Ro ^ ( - do )
d K  u K y / m  v V i(0)

fio^tffi) _  B _  B o t t d t )  
Ky/M V) y/MO)

=  f l o $ ( - d o ) - B 0 $(<i+).

Thus,

F(K )  =  * ( -< £ )  -  B 0 $(<?+). (2.29)

Note that F (K )  —> 0 for K  J, 0, so F  is continuous at 0. For K  f 1, however, 

F { K ) _  $  f j o g f i o - s W M  _ h  J  log f i p -M (0)/2 \

V  V ^ ( ° )  /  V  ^ ( 0 )  y
so F  has a jump at 1.

In other words, the Arrow-Debreu security l{Br=i} commands a positive price, 

whereas all the other securities 1{b t = x} with x <  1 have price zero. This must mean 

that due to boundary condition (2.7), the probability mass which the original bond 

price model placed on outcomes B T > 1 is now concentrated in the state B T =  1, 

so this state occurs with positive probability. In particular, a bond price model 

consistent with formulae (2.25) and (2.26) must assign positive probability to the

28Let (f> denote the standard normal density function. We use the following two facts in the 
calculation: K  R q <f){—dg ) =  Bo<f>(—d ^ )  and K  Bo<f>(dQ ) =  R q
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event that the yield YT)t becomes zero. Thus, with positive probability, there will 

be no reward for holding the underlying bond from r  to T.

Using a different approach, we shall show in Chapter 4 that in any arbitrage- 

free bond price model with non-negative forward yields that supports the option 

price formulae (2.25) and (2.26), the forward yield process Yt,T,T necessarily has an 

absorbing boundary at 0, and reaches this boundary with positive probability. In 

other words, at each time 0 < t <  r ,  there is a positive probability that B t = R t , 

and once this has happened, the bond prices coincide until r . Thus, while satisfying 

condition (2.7), the proposed valuation formulae imply a rather implausible bond 

price and forward yield behaviour. A more satisfactory model will be presented in 

the following section.

2.6 S tate D ependent Volatility

In Section 2.4, we considered models of the type

Rt = rnR(t) exp(crR(t)W tR)

B t = m B(t) exp(aB(t) W ?)

with functions m R, mg, <rR and aB being at most time dependent. 29 Such a model 

postulates that after taking the logarithm of bond prices, i.e., after applying the 

bijective mapping

we are dealing with Gaussian processes. More precisely, the image of the bond 

prices under A is equal to the image of the deterministic components plus a Wiener 

process term  with time dependent coefficients:

The main argument against this approach is that such a model generates negative 

yields. Indeed, to ensure positive yields to maturity and positive forward yields,

29In fact, we had for instance m R ( t ) =  R l  t ^T and, with a slight abuse of notation, crR ( t )  =  
a R k ( t , r ) .
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the vector of bond prices (^‘) ought to take values in the triangle

D = e  ]o ,i[ r > b
}

Given any bijective mapping : D —*• M2, we can construct a model that has 

positive yields by rewriting (2.30) with ^  rather than A, i.e., by postulating that 

bond prices satisfy

The bond prices themselves can then be recovered by means of the inverse mapping 

V - 1 :M 2 -> D.

However, which transformation ^  should one use? There is no obvious choice. 

Ideally, it would be a simple mapping that leads to a tractable bond price distribu­

tion and closed-form solutions for option pricing. In fact, these goals are achievable, 

as Biihler and Kasler (1989) prove with the very ingenuous choice of the mapping30

lQg TV
lo§ A -

: D

Its inverse is given by

V - 1 : M 2 D : 

The resulting bond prices are

W \

w2

R t.= 1 + 1 ~  m R(t) 
m R(t)

exp (~ a R(t)W tR)
- l

and

Bt. — Rt
- l

(2.31)

(2.32)

Thus the price of the underlying bond depends explicitly on the price of the refer­

ence bond. In particular, both sources of uncertainty, W B and W R, have an impact 

on the price process of the underlying bond. By contrast, the forward bond price 

has a relatively simple representation, involving only the Wiener process W B:

m R(t) -  mB(t)
B t = 1 + mB(t)

- l

30See also Kasler (1991). A one-dimensional variant of this mapping was first used by Biihler
(1988) to model the price process of a coupon bond. See below for a brief discussion of this model.

108



Finally, note that m R(t) is the median of R t , while rnB( t) /m R(t) is the median of

Bt.

Biihler and Kasler (1989) develop this model for constant aR and aB\ the gen­

eralisation to time dependent parameters presented here is trivial. They suggest 

estimating these parameters from the current term structure, but do not propose 

any method for doing so.

The model (2.31)-(2.32) fulfils all the natural requirements discussed in Section 

2 .1 : the terminal value condition (2 .1 ); equation (2 .2 ) which precludes negative 

yields to maturity; and equation (2.3) which rules out negative forward yields.

The distributions of R t and Bt and the conditional distribution of B t given Rt 

belong to a class of distributions studied already in Johnson (1946, 1949).31 It is 

easy to calculate their density functions. The bond price R t, for example, has the 

density function

1 I 1exp
x . m R(t)

log  ---------- log
1 — x 1 — m R(t)

2

\/27r t <rR(t) x ( 1  — x) y 2 tcrR2(t) 

for 0 < x < 1 . Johnson has shown that random variables with density functions of 

this type have finite moments, but there are no closed-form expressions for them. 

One can show, however, that the expected value of R t is bounded :32

1 - m R(t) (1 2 .xl"* p f Di /  fi , n _ 1

1 + 1 + ^ r e x p ( - ^ 2 w t )

A similar relationship holds for B t .

For option pricing, we need to calculate the stochastic differential of the forward 

price process B. Granted differentiability of the functions m R, rnR and aRj Ito’s 

lemma yields33

dB =
m B [mR -  m B]

+  aB B ( l - B ) d W B.

+ <tb ' W b + <tb 2 ( | - b ) |  B (1  — B) dt

31 Johnson constructs classes of distributions by applying the “method of translation” to a stan­
dard normal variable Z .  The class of lognormal distributions, for instance, is obtained by means 
of the exponential transformation Z  i—>■ exp(y +  8 Z ) .  The transformation Z  * [7  +  8 exp(0Z ) ] - 1  

defines a class which Johnson denotes by S b - This is the type of distributions we are dealing 
with in the Biihler-Kasler model.

3 2 Cf. Rady and Sandmann (1994).
33To simplify the notation, the time variable t has been omitted.
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The volatility of the forward bond price is time and state dependent:

v(t,x)  = crB(t) ( 1  -  x)

in the notation of Section 2.2. The state space of B  is ]0,1[. In view of Lemma 

2 .2 .2 , we want to solve

ut +  \  <?B2 x2 ( 1  -  x)2 uxx = 0  

subject to the terminal value condition

u (r, x) = [ x -  K] +

and the bounds

[x — K]+ < u(t , x) < min{:c, 1 — K }.

The appendix shows how to solve this problem by transforming it into a heat 

conduction problem on the real axis. 34 The solution is

u(t , x) =  ( 1  — K ) x $
1

\/« W

(i -  K ) x  s(t)
l0 g ¥ ( r ^ )  +  ^ -  ^

( 1  — K ) x s(t)
log

K (  l - x )  2

with

s W  =  J t

Consequently, the arbitrage price of the European call is

Ct = (1 -  K ) Bt *(e+) - K ( R t -  B t) $ (et“ )

(2.33)

(2.34)

with

K  (ft, — Bt) 2

This is the formula proposed by Biihler and Kasler (1989). The strategy 

9] =  ( 1  - K )  *(e+) +  K  *(*,-), fl? =  - K  *(eT)

generates the option.

34A probabilistic approach to the calculation of the option price will be presented in Chapter 3.
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The model (2.31)-(2.32) is unique within the direct approach in as much as it 

guarantees positive yields to maturity as well as positive forward yields and still 

produces a closed-form solution for the arbitrage price of a standard European 

option. Moreover, the existence of a martingale measure is easily demonstrated for 

this model.35

2.7 Options on Coupon Bonds

Prior to Biihler and Kasler (1989), bond price models with state dependent volatil­

ity have first been proposed by authors using the direct approach to price options 

on coupon bonds . 36

Schaefer and Schwartz (1987) assume that the price process of the underlying 

coupon bond satisfies

dBt = a f  B t dt +  k B^ D (t , B t) dW

where k and t  are constants and D (t , B t) is the duration of the bond .37 This 

specification of volatility reflects the fact that bond returns become less variable as 

the m aturity date approaches. The authors leave the drift rate process a B unspeci­

fied because they are mainly interested in the connection between duration and the 

variability of bond returns, and because the drift rate does not enter the valuation 

equation (2.11) anyway. Due to the complicated volatility function, there are in 

general no analytic solutions for option prices, so a numerical procedure is needed 

to solve (2 .1 1 ). Schaefer and Schwartz further assume that the reference bond has 

a constant rate of return r, that is,

dRt = r Rtdt.

35It was said in Section 2.2 that a martingale measure exists if the quotient of the drift rate and 
the volatility of B  satisfies certain integrability conditions. In the model of Biihler and Kasler
(1989), this quotient is a bounded process and hence fulfils those conditions trivially. See Section 
3.4 below for an explicit construction of a martingale measure.

36The holder of a coupon bond obtains a fixed amount F  at the maturity date T  plus a sequence 
of interest payments ct- at dates T \  <  T i  <  . . .  <  T)v < T .

37The duration of a bond is a weighted average of the dates at which its cash flows occur; see 
Cox, Ingersoll and Ross (1979) for details. The duration of a zero-coupon bond is just its time to 
maturity. Thus, if I  — 1 and the underlying bond pays no coupons, one obtains the same bond 
price volatility as in Kemna, de Munnik and Vorst (1989).
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This assumption is of course inconsistent with a stochastic price for the underlying 

bond — it merely serves to keep the numerics of the valuation problem as simple as 

possible. Neither the terminal value condition nor the question of negative yields 

are addressed in this paper.

Biihler (1988), also using duration to describe bond volatility, proposes a more 

sophisticated alternative to Schaefer and Schwartz (1987). In his model, the price 

process of the underlying coupon bond fulfils the terminal value condition, and the 

bond yield remains always positive .38 He starts from the following observation. Let 

BmSLX(t) be the par value plus the undiscounted coupon payments from t on. Then 

the yield of the bond at time t is positive if and only if B t < B ^ ^ t ) .  Biihler goes 

on to construct a bond price process with this property39 and obtains the following 

bond price dynamics:

dB, = B t dt + k B t ~  B * D (t B  ) d w
T - t  B ^ ( t )  -  1 +  S v ’ tJ

with constants k and 6. The drift term pulls the process towards the par value 

(which we have normalised to one) and away from the boundaries of the state 

space, 0 and -Bmax(£). Again, option prices must be calculated numerically. Rather 

than imposing a constant rate of return for the reference bond, Biihler simplifies 

the numerical procedure by specifying

dRt = r(B t) Rt dt

where r(B t) is the yield of the underlying bond multiplied by a time depen­

dent factor. This supposes perfect instantaneous correlation between the bond 

yields, which, though far less restrictive than the assumption made by Schaefer 

and Schwartz, is still problematic.

It may well be that by relaxing the restrictive assumptions made by Schaefer 

and Schwartz or Biihler, the direct approach could eventually provide a fully sat­

isfactory valuation model for options on coupon bonds. To judge from the Biihler

38The yield of a coupon bond is defined as that constant interest rate which makes the current 
price of the bond equal to the present discounted value of its future cash flows.

39This is the first example of the transformation method described at the beginning of Section 
2.6. Biihler uses a monotonic mapping to transform a process with values in M  in such a way 
that the resulting process has the desired features.

112



model, however, such an attem pt would necessarily involve considerable technical 

complications. The term structure approach seems therefore more appropriate for 

the pricing of coupon bond options. Describing simultaneously the discount bonds 

of all maturities, this approach can treat coupon bonds simply as linear combina­

tions of discount bonds. Thus, one encounters no particular modelling difficulties 

when moving from zero-coupon to coupon bonds . 40

2.8 Conclusion

In this chapter, we have given a detailed survey of the so-called direct approach to 

debt option pricing. This approach specifies bond price processes directly, without 

relating them to the term structure as a whole or to state variables such as the short 

term  interest rate. This approach is attractive for two reasons. First of all, it is 

parsimonious in that only those securities which are relevant to the pricing problem 

at hand have to be modelled. Moreover, modelling a small set of securities imposes 

fewer restrictions than modelling the whole term structure, say. Therefore, the 

direct approach is more flexible, for example in specifying the correlation between 

bonds.

Our presentation of the portfolio duplication technique in Section 2 . 2  stresses 

the fact that the volatility of the forward bond price is the crucial model characteris­

tic for the calculation of option prices. Therefore, the chapter has been structured 

according to the specification of volatility, moving from constant volatility (Ball 

and Torous, 1983) over time dependent volatility (Kemna, de Munnik and Vorst, 

1989) to time and state dependent volatility (Biihler and Kasler, 1989).

Focussing primarily on zero-coupon bonds, we have emphasised the main mod­

elling problems encountered by the direct approach: first, the problem of specifying 

bond prices that fulfil the terminal value condition, i.e., that reach par value at

4 0 Furthermore, there are well-known term stucture models which ensure positive yields and 
possess a martingale measure, e.g. Cox, Ingersoll and Ross (1985) or Heath, Jarrow and Morton 
(1992, Section 7). As for closed-form solutions, Jamshidian (1987, 1989) and El Karoui and 
Rochet (1989) showed that one-factor models of the term structure provide tractable formulae 
for the prices of European options on coupon bonds. In these models, the price of a coupon bond 
option can be written as the sum of the prices of discount bond options.
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maturity; second, the problem of precluding negative yields to maturity and neg­

ative forward yields; third, the problem of ensuring an arbitrage-free bond price 

model.

The model of Biihler and Kasler (1989) is the only one to solve all three prob­

lems and still allow closed-form solutions for option prices. While lognormal mod­

els such as Ball and Torous (1983) and Kemna, de Munnik and Vorst (1989) also 

lead to explicit pricing formulae, their common weakness is that negative yields 

to m aturity and negative forward yields occur with positive probability. Schobel 

(1986) and Briys, Crouhy and Schobel (1991) therefore propose modified pricing 

formulae which they obtain by imposing an additional boundary condition. Our 

analysis, which is to be completed in Chapter 4, indicates a serious flaw in Schobel’s 

method: in fact, he implicitly assumes that the forward yield process has an ab­

sorbing boundary at zero.

We have not tested the above models, nor have we dealt with the problem 

of parameter estimation. These issues are of course crucial for the choice of a 

model and its implementation. In practice, a simple model with some theoretical 

weaknesses will be preferred to a theoretically more satisfactory alternative if its 

parameters are easy to estimate and its weaknesses negligible for realistic parameter 

values. De Munnik (1992) argues along these lines when discussing the model of 

Kemna, de Munnik and Vorst (1989). He asserts that the model is easier to estimate 

than the Biihler-Kasler model, and shows that the probability of negative yields is 

small for realistic parameter values. Thus, the theoretical flaw of lognormal models 

may be irrelevant in practice. Since these models have the genuine advantage 

of providing familiar option price formulae, they will continue to play a role in 

practical applications.

As for the valuation of options on coupon bonds, we briefly discussed Schaefer 

and Schwartz (1987) and Biihler (1988). In the absence of closed-form solutions, 

these papers make very restrictive assumptions on the reference bond in order to 

simplify the numerical computation of option prices. In view of this, we concluded 

that the term structure approach is more appropriate for the pricing of options on 

coupon bonds.
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A ppendix

Solution o f th e Biihler-K asler Term inal Value Problem

Consider the terminal value problem

Ut  +  \  X 2 (1 — x ) 2 Uxx =  0, 

u ( t , x ) =  f ( x )

for general / .  This problem on [0, t]x]0, 1[ is transformed by introducing the new 

time variable

s = J t aB2( ( ) d(,

the new space variable

x 1
z = log  ------ or x =

1 — x 1 +  e~z ’

and by setting

u(t , x) =  a(z) b(s) h(s , z).

Differentiable functions a and b are to be chosen in such a way that any solution h 

of the heat conduction equation yields a solution u of the original partial differential 

equation.

One easily calculates the derivatives

1

Zrr.rr. ---

x ( l  — x) ’ 

2x -  1

x 2(l — x)2 ’ 

ux =  [azh +  ahz\ bzx ,

b
u = Uzzh  +  2  azhz +  ahzz +  (2x — 1 )[azh +  ahz]}

x 2(l — x)2 ’ 

ut = - a  [bsh +  bhs) <j b 2*

Inserting this in the above PDE, dividing through by crj and using



we get

ab ~  h }  +  (az +  ^  t a n h ^  bhz +  (a** -f y  tanh 0  b -  abs h = 0 .

In order to make the hz-term vanish, a has to solve the linear differential equation

a  ̂ z az +  -  ta n h -  =  0  .

Separation of variables leads to the solutions

a(z) =
c

ez/2 +  e~zI2 ’

we choose c =  1 .

Using the equation for a, one obtains

, z a 
azz +  az ta n h -  =  - -

Therefore, the h-term vanishes if

7; bs =  0 .

We choose the solution

b{s) = e - * / 8  .

Thus, setting
e - s / 8

“ ( * . * )  =  e »/2 +  e - » / 2  ftM ) ,

we obtain the following transformed problem on [0 , r] x M:

2^zz h — 0 ,

h ( 0 , z )  =  ( ez / 2 +  e“ * /2 ) •

The solution of this problem is

1 f°°
h(s ’z ) = * +  i y f i ) e~i2/2 ■

v  " 7 T  J —oo

We omit the corresponding formula for u(t,x).
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Valuation o f a Call O ption in th e B iihler-K asler M odel

For

h ( 0 , z )  =  ( e ^ 2 +  e~zl 2) 

the solution is given by

1 +  e-
K

+

h ( s  z ) =  1 f  4 . e -J[*+frs/5A ( ______ I  k  \  e ~Z2/ 2
h(S’Z) ^ 4 [lo6 l5 H l e + e  H l + e - ^  )

= (1 - K ) h - K I 2

with

h = -$ =  ( "  e ^ + f v 'S l e - ^ A  di =  e * /2  e>/8  $ ( "  J _ , 1 ~ K
Z g K  +

and

I  = 1 f° °  e- \ [ z + i^ e- e i 2 d£ =  e~z/2 es / 8  $ (~ j=
V ^ J ^ [ l o g * - . ]  w *

2  +  log
1 -  i f  5

i f

Therefore,

e~s/8
=  e*/2 _j_ e - z / 2 M 5**)

. £ ( 1  — if)  S
log TT" r”77 +  -=  V - K )

( 1  - x ) K  2

x( l  -  i f ) s
(1 — x ) K  2

which is (2.33).
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C hapter 3 

O ption Pricing w ith  a Q uadratic 
D iffusion Term

In the option pricing model of Black and Scholes (1973), the price of the under­

lying asset is a random variable with full support on the positive half-axis. This 

makes it difficult to apply the Black-Scholes model in situations where the under­

lying financial variable has bounded support. We have already seen an example in 

Chapter 2: if interest rates are positive, then spot and forward prices of bonds are 

clearly bounded. Biihler and Kasler (1989) therefore construct a model where the 

forward price of the underlying discount bond has a strict upper bound.

Exchange rates in a credible target zone regime also have bounded support. To 

price currency options in such an environment, Ingersoll (1989a, b) develops an 

exchange rate model with strict upper and lower stabilisation bounds.

The mathematical structure of these two models is exactly the same. In both 

cases, the underlying financial variable is assumed to be a diffusion process with the 

following characteristics: (i) the process has natural upper and lower boundaries;

(ii) its diffusion coefficient is quadratic in the current value of the variable. This 

specification is easily seen to generalise the Black-Scholes model; in fact, the latter 

is obtained by choosing 0  and +oo as the lower and upper bounds.

It is remarkable that this generalisation preserves one of the most attractive 

features of the Black-Scholes model, namely the existence of closed-form solutions 

for the prices of European call and put options. Ingersoll (1989a, b) and Biihler and 

Kasler (1989) compute these solutions by applying a judicious change of variable
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to the corresponding fundamental valuation equation . 1 The present chapter, by 

contrast, applies a probabilistic change-of-numeraire technique which goes back to 

El Karoui and Rochet (1989). This technique makes the different steps in the 

calculation of the option price more transparent and easier to interpret. Moreover, 

it elucidates the structure of the pricing formula by decomposing it in terms of two 

particular numeraire portfolios and the risk-neutral probabilities associated with 

these.

The chapter is organised as follows. Section 3.1 sets out the framework of our 

analysis and introduces the change-of-numeraire technique. Section 3.2 presents 

a general expression for the price of a call option in the presence of strict upper 

and lower bounds on the underlying relative price. Applying this result, Section 

3.3 calculates the call price in models where the underlying relative price has a 

quadratic diffusion term. Section 3.4 then shows how the general result applies 

to the models of Biihler and Kasler (1989) and Ingersoll (1989a, b). Section 3.5 

concludes the chapter.

3.1 M artingale M easures and Num eraires

Fix a finite time interval T  — [0,r], a probability space P)  and a filtration

{Jrt)t€'r satisfying the usual conditions. is assumed to be almost trivial, and 

T r = T .

Consider a financial market with continuous and frictionless trade in two primi­

tive assets, labelled 0 and 1 , which pay no dividends in T . Let their price processes 

S % (i — 0,1) be positive semimartingales on (fi,.7r, P, (Ftiter)- Relative security 

prices are given by the process X  = S 1/S°.

A probability measure Q equivalent to P  is called a martingale measure with 

respect to asset 0 if X  is a Q-martingale, i.e., if each X t is Q-integrable and

V, =  E q [XT\7t]

1In fact, there is a slight difference in the approach taken. Ingersoll transforms the fundamental 
PDE into the standard Black-Scholes PDE and then uses the Black-Scholes solution. Biihler and 
Kasler, by contrast, transform the fundamental PDE directly into the heat equation which they 
solve in the usual way; see Kasler (1991). This is also the approach adopted in the appendix to 
Chapter 2 .
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for all i £ T . Alternatively, such a measure Q is said to be risk-neutral with respect 

to asset 0 . Let JP0 denote the set of these measures.

A ssu m p tio n  (M ) iP0 is non-empty.

One element of -P0, denoted by Q0 and called the reference measure, will be held 

fixed throughout the chapter.

As in Harrison and Pliska (1983), a vector process 9 = (00,# 1) is called an 

admissible trading strategy if the following properties (i) -  (iv) hold:

(i) 0 is predictable.

This expresses the informational restriction that trades can be based only on in­

formation obtained prior to trading. To formulate the remaining two conditions, 

let

v °  = e°s? + e1t s t

denote the value process corresponding to 6.

(ii ) V 9 is non-negative.

(iii) 01 is integrable with respect to A , and the normalised value process V 6f  S° 

satisfies

*->t *->() Jo

(iv) The normalised value process V 9/ S° is a Qo-martingale.

Condition (ii) rules out negative portfolio values. Condition (iii) states that all 

changes in portfolio value are due to the assets’ performance rather than to injection 

or withdrawal of funds. In other words, admissible strategies are self-financing. 2 

Condition (iv) says that there are no expected gains from trade. It rules out 

arbitrage opportunities and certain foolish strategies that throw away money.3 The 

space of admissible strategies will be denoted by 0 .

2A straightforward integration-by-parts argument shows that (iii) implies the more intuitive 
representation

Vf = v$+ [' e? ds“ + f e \d s \
J o  J o

for the value process, provided the integrals exist.
3Note that (iv) is the only condition that might depend on the choice of reference measure.
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A positive process N  is called a numeraire if there is a trading strategy 6 £ 0  

such that N  = V 9. Extending our previous definition, we call a probability measure 

Q equivalent to P  a martingale measure for numeraire N  (or risk-neutral with 

respect to N )  if V 9 /N ,  the portfolio value expressed in units of the numeraire, is 

a Q-martingale for any strategy 9 E 0 . We shall write JP/v for the set of all such 

measures, and JP1 \ i N  = S 1.

Given the measure Q0 and a numeraire N ,  define a probability measure Qn  

equivalent to Q0 (and hence to P ) via the Radon-Nikodym derivative

d Q N = So_ML
d Q o  N o  s y  (  ’

Note that N /S °  is a Qo-martingale by definition, so the right hand side of (3.1) 

has indeed expectation equal to one under Q0. In case N  = S 1, we shall write Qi 

for the measure defined by (3.1).

Lemma 3.1.1 Let N  be a numeraire and Y  a random variable with E ^ °[ |F |/6 '°] < 

oo. Then

E Q n '  V
f t

q o
— —L  e<2o ' Y

F t
. N r N t k °

for all t £ T .

PROOF: The expectation on the left hand side is clearly well-defined and, by a 

version of Bayes’ rule,

EQl
w N -

E <IQn  Y  
dQo N r f t

E«° dQN
dQo f t

Using (3.1) and the fact that E®°[NT/ = N t/ S  ̂ completes the proof. I

Applying this lemma to Y  = V f , we see immediately that Qn  €: Pn-  We call it the 

martingale measure obtained from Q0 by change of numeraire. If Qpj and Qfj are 

obtained from Q0 by changing the numeraire to N  and N ,  respectively, then (3.1) 

implies
dQjy N0 Nr



Equations (3.1) and (3.2) are at the heart of the change-of-numeraire technique in 

derivative asset pricing which goes back to El Karoui and Rochet (1989).4

A contingent claim is a non-negative random variable T on such that

T/S® is Qo-integrable. A contingent claim is attainable if there exists a trading 

strategy 0 6  0  that replicates the claim, i.e., that satisfies V f  =  T. In this case, 

the portfolio value Vt° determines the time t arbitrage price 7rt (T) of the claim. By 

property (iv) above, this price can be calculated as

r
7rt(T) =  S® E Qo

S® J7,

that is, without reference to the replicating strategy. More generally, consider an 

arbitrary measure Q g IPo under which T/S® is integrable. Independent of whether 

r  is attainable or not,

tt?(T) = S®Eq
S2

is called the price under Q of the claim at time t.

3.2 European Call Options

Consider an option to receive at time r  one unit of asset 1 in exchange for K  > 0 

units of asset 0. This is a slight generalisation of a classical European call option. 

Indeed, the latter is just the special case where asset 0 is a default-free zero-coupon 

bond of maturity r.

The option has the following value at the exercise date:

r= [5J-AT5“] +

or, equivalently,

r = (s; -  k s °t) u

4For a more detailed examination of the relationship between numeraires and martingale 
measures see Conze and Viswanathan (1991).

5Jacka (1992) shows that a contingent claim T  is attainable if and only if it has the same initial
price 7T0 (r ) under all Q  £  JPq for which both d Q 0/ d Q  and d Q / d Q o  are bounded. Moreover, he
shows that for bounded T / S the attainability of the claim does not depend on which reference 
measure Q o was used to define the space of admissible trading strategies.
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where

£ =  {a; e  n : S lT{u) > KS°T(u>)}

is the event that the option ends “in the money” and is exercised.

It is well known that the price of a European option can be expressed in terms 

of exercise probabilities calculated under certain martingale measures. El Karoui 

and Rochet (1989) were the first to derive a variant of the following result. 6

P ro p o s itio n  3.2.1 The option price under Q0 is

,r? ° (r)  =  Si Qi ( £ \ F)  -  KS°t Qo (£\Ft)

where Qi 6  JP\ is the measure obtained from Qo by changing the numeraire to 

asset 1.

PROOF: By definition,

r ? ° ( r )  =  s°  e°°

Lemma 3.1.1 implies that

S2
=  St°E Q° ^ 1

S2 J7,

S°t E0t Ft

hence the proposition.

A different decomposition of the option price can be obtained when the relative 

price X  = S 1 / S° is bounded.

A ssu m p tio n  (B) There are constants 0 < i < u <  +oo such that

iS ? < S} < uS?

for all t G T .

Consider two portfolios, the first of which is long one unit of asset 0  and short u - 1  

units of asset 1 , while the second is long one unit of asset 1 and short I  units of 

asset 0 . 7 Let

U = S ° -  u - ' S 1

6See also Geman, El Karoui and Rochet (1991).
7Of course, u - 1  is understood to be zero if u  =  +oo.
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and

L = S 1 -  £S°

denote the corresponding value processes. Under Assumption (B), these are posi­

tive processes, hence numeraires.

P ro p o s itio n  3.2.2 Under Assumption (B), the option price under Q0 is

' <0o(r) = i - ! r  {(x _ u~lR)Lt I*-*) u< Qu(£\rt) }

where Qu G IPu and Ql € P l are the measures obtained from Q0 by changing the 

numeraire to U and L, respectively.

PROOF: It is straightforward to check that

_  ^ 0  _  (1 - u - ' K ) L T - { K - t ) U T 
T T \ - u - n

Thus,

-  (K  - 1)

[ S
, S “ £

T t

V  
S o e r t }■

Lemma 3.1.1 now implies

E°°
S2 £

and

S° Eq°
' u T

M le
= Ut EQv[le \ r t\.

This is the desired result.

We have again expressed the call price as a function of certain exercise probabilities, 

this time evaluated under martingale measures associated with the numeraires U 

and L.

The exercise event E can be characterised in terms of the random variable

Yr = L t/Ut :

E = < u> G 0  : Yt(uj) >
K  - 1

Ingersoll (1989a, b) and Biihler and Kasler (1989) propose models where the law 

of the process Y  — L /U  under both Qu and Ql is very simple, so that the above 

exercise probabilities are easy to determine.
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3.3 M odels w ith  a Quadratic Diffusion Term

The following assumption postulates that after a change of measure, relative asset 

prices follow a diffusion process with quadratic diffusion coefficient. We shall see 

later that the models of Ingersoll (1989a, b) and Buhler and Kasler (1989) are of 

this type. Let constants cr > 0 and 0 < £ < u <  -foo be given.

A ssu m p tio n  (Q) There exists a Q0-Wiener process W° such that the process of 

relative asset prices X  = S 1/S °  solves the stochastic differential equation

dX t = a { X t -  £)( 1 -  u - 'X t )  dWt°

with initial value I  < Xo < u .

Standard results from the theory of stochastic processes imply that the above 

stochastic differential equation has in fact a solution. This solution is unique both 

in the strong and weak sense, satisfies Assumption (B) and is a martingale; see for 

example Revuz and Yor (1991) and Karlin and Taylor (1981). In particular, Q0 is 

indeed risk-neutral with respect to asset 0 .

Note that the lognormal dynamics of Black and Scholes (1973) and Merton 

(1973) are obtained as the special case where t  =  0 and u = +oo.

3.3.1 Characterisation

It turns out that Assumption (Q) can be formulated equivalently in terms of the 

process Y  = L /U . Let Qu^JPu  be the measure obtained from Q0 by changing the 

numeraire to U , and define a = ( 1  — u_1^)cr.

L em m a 3.3.1 Assumption (Q) holds if  and only if  there exists a Qu-Wiener pro­

cess W u such that Y  solves

dYt = a Yt dWY

with initial value Y0 > 0.
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PROOF: Suppose Assumption (Q) holds. By Ito’s lemma and some algebra , 8

dYt = arYt { dW f  +  a (X t -  £) d t}

where a = u~xa. Define a process W u by dWY  =  dW^+cr ( X t —£) dt with Wq = 0. 

We want to show that W u is a Wiener process under Qu- By equation (3.2),

dQu S ° U T 1 -  v r 'X r  
dQ0 ~  U0 S ° ~  1 -  u- 'X .o *

On the other hand,
d\ 1 ^ -^t] _ %. ( V 0\ JTT/O

1 - I V  _  ' * ’1 -  U AAt

hence, by the formula for the martingale exponential,

1 -  u - 'X t  =  ( 1  -  u _ 1  Ao) exp ( - c  j f  (X , - I) dW° -  § d2 (A , -  i f  d s j  .

In particular,

™  =  exp ( - a  £ ( X ,  -  I) dW° -  |  a 2 J \ x ,  -  i f  ds^j .

Girsanov’s theorem now imphes that W u is indeed a Q^-Wiener process; cf. Revuz 

and Yor (1991).

Conversely, suppose we have W u as in the lemma. Ito’s lemma and some 

straightforward computations yield

d Xt = o ( X t -  £){l -  u ^ X t )  {dW Y - o ( X t -  £) dt} .

Let W°  be the process defined by dW® =  dW Y — cr (X t — i) dt with Wq = 0. As

Y  ~  “ x ?  =  - *  (x t -  t)  dWt +  (X,  -  i f  dt,
1 — u xX t

8The following facts are used in the calculations. If

x - i
y = i z r ~ »1 — u Xx

then
dy _  1 — u~1t d2y _  2u-1 (l — u~1t)
dx (1  — u~lx)2 dx2 ( 1  — u-1x)3

Moreover,
dx _  (1  — u~1x)2 d2x _ — 2u-1 (l — u-1x)3
dy 1 — u~xt  dy2 ( 1  — u-1#)2
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the formula for the martingale exponential now implies

1 -  tr xX t =  (1 -  iT 'X q) e x p f - f r  j f  (X, -  i) dWY + § a 2 j f  ( X s -  i f  d s) 

and

w * = B S S = [ { x - -  '»■*) ■

By Girsanov’s theorem, W° is a Wiener process under Qq. I

Thus, Assumption (Q) holds if and only if there is a change of measure that makes 

the process Y  a driftless geometric Brownian motion with volatility a. This is the 

key to our calculation of the option price.

3.3.2 T he O ption Price

Let (Gt)teT be the filtration generated by the process Y , and set Q = Qr . The 

following result is well known.

Proposition  3.3.1 Under Assumption (Q), any contingent claim T with Q-mea- 

surable normalised payoff Y / S® is attainable.

PROOF: The proposition is an immediate consequence of the martingale represen­

tation property of X  on (0,£/, Q0, (£/t)ter); see Revuz and Yor (1991). I

In particular, this guarantees the attainability of the option to receive one unit of 

asset 1 in exchange for K  units of asset 0, as its normalised payoff [5J — KS®]+/S® = 

[XT — K]+ is clearly measurable with respect to Q?

Proposition  3.3.2 Under Assumption (Q), the option to receive one unit of asset 

1 in exchange for K  units of asset 0 is attainable. For i  < K  < u, its time t 

arbitrage price is

' <(r) =  T ^ F h  ({1"  u~lR )  (5‘ ~ £S°] $(e<+)" {K ~  (5‘° "  “ " l5<1) $ ( e r ) )

9 Moreover, the normalised payoff of the option is bounded, so attainability does not depend 
on which reference measure was chosen to define the space of admissible trading strategies; see 
Jacka (1992).
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w h e r e

1
* <T y j r  —  t

a n d  a  =  ( 1  — u - 1 ^ ) c r .

.  , 1 a 2 ,  ^  

l0&S ? - u ^ S } - l 0gY ^ K ± ^  { T - t ]

PROOF: We want to apply Proposition 3.2.2, so let Qu and Ql be the measures 

obtained from Q0 by changing the numeraire to U and L, respectively. To calculate 

the probability of exercise under Qu , let W u be a Qu Wiener process as in Lemma 

3.3.1. By the formula for the martingale exponential,

Yt = Y0 exp(<r W ?  -  | d 2 r )  .

The properties of the Wiener process W u now imply

Qu(e\Ft) = Qu ( y t > y«)

=  Qu b o g  Yr -  log Yt > log 1 -  log r d

=  Qv  ( a  (W ? -  W f) >  log l K_ ~ _ [ k  -  log Y, + ( r  -  t ) )

= [logy‘- lo§ r ^ K ~ 2&2 (T-')])•
Next, define a process W L by dW ^  =  d W ^ — a dt with W q =  0. As

dCh _  U o  L t  _  =  (frW u _  1 - 2  \
dQu L 0 UT Y0 T 2 ) '

Girsanov’s theorem implies that W L is a Wiener process under Ql - By construc­

tion,

Yr = Y0 exp(d W j +  |<j2 t ) ,

hence

Ql (S\F,) = Ql  (Wtl -  W t)  >  log t K ~_[k  -  log Yt -  fir2 ( r  -  t ) )

log Yt -  log l f  ~ J R  +  | » 2 (r -  t)=  $
1

\ < 7  y / r  —  t

This completes the proof.
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Standard arguments10 show that the trading strategy

°° = T ^ F H i ~ {1~ u~l K ) e * {et ) ~ { K ~ e ) * (-e:‘ ) }'  

0l* =  Y 3 ^ { (1 " “ " lisr)$(e‘+) +  ( i f _ ^ “ " 1 $ ( e r ) }

is admissible and replicates the option.

For I  =  0 and u = + 0 0 , we of course obtain the option price formula of Black 

and Scholes (1973) and Merton (1973) with a = a. Setting u = + 0 0  but i  > 0 

leads to a formula proposed by Rubinstein (1983).

The result is easily extended to allow a time dependent, but deterministic, pa­

rameter function a{t) in Assumption (Q). One only has to replace a in Proposition 

3.3.2 by

( 1  — u 1l)  ̂ jf <t2(.s) ds.

The price of a generalised put option, that is, an option to give up one unit 

of asset 1 in exchange for K  units of asset 0, can be calculated in the same way. 

Alternatively, one can use a version of put-call parity.

3.4 Exam ples

This section shows how the models of Biihler and Kasler (1989) and Ingersoll 

(1989a, b) fit into the framework developed in the previous sections.

3.4.1 O ptions on Zero-Coupon Bonds

Fix dates T  > r  > 0 and let assets 0 and 1 be pure discount bonds without default 

risk, maturing at r  and T, respectively. Without loss of generality, their face values 

can be normalised to 1 , i.e., S'0 =  1 and =  1 . Consider a standard European 

call option written on bond 1 with exercise price K  and exercise date r . As 5° =  1, 

this call can be considered as an option to receive one unit of bond 1 in exchange 

for K  units of bond 0.

10See for instance Harrison and Pliska (1981).
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Biihler and Kasler (1989) propose a model where the bond prices satisfy S® < 1 

for t < r  and S} < S® for t £ T .  In particular, Assumption (B) holds with u = 1 

and £ = 0. More specifically, the relative price X t = Sl/S® has the form

1 —  m . (  1
X t =

1 +
m{t)

where m  : T  —>]0 , 1 [ is a continuously differentiable function, a a positive constant 

and W  a standard Wiener process under the measure P . 11 X t is the time t forward 

price of bond 1 for delivery at time r ,  while m(t)  is the median value of this forward 

price.

We want to show that this model satisfies Assumption (Q). Ito’s lemma yields 

dXt = <rXt ( 1 -  X t) {at dt +  dWt}

with the bounded process

  ” »'(«) , „  n  _  y  \
^ / . \ n  / . \ i  ~i~ &  ( o  *crm(t)[ 1 — m(t)\ J

Define a process W°  by

dW? = a t dt + dWt

and W j =  0, and let Qo be the measure obtained via the Radon-Nikodym derivative 

dQ 0 =  e x p j  a s dWs — |  J  a 2s ds^j .
dP

Girsanov’s theorem implies that W° is a Wiener process under Q0. By construction, 

dXt = a X t (1 — X t) dWt°, so Assumption (Q) holds. 12

By Proposition 3.3.2, the arbitrage price of the call option with exercise price 

K  between 0 and 1 is

*t(F) =  (1 — K ) S i  <D(ef+) -  K  (5? -  S]) * ( * )

n m(£) corresponds to r r i B ( t ) / m R ( t ) in Section 2.6 and is the median value of the forward price 
X t . The parameter <r here corresponds to <t b  there. As in Chapter 2, there would be no difficulty 
in allowing cr to depend on time.

12Alternatively, one could construct a measure under which the process

Y  — _  m ( t )  Wi
% 1 — X t 1 — m ( t )

is a martingale and then use Lemma 3.3.1.
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with

This is the pricing formula derived in Biihler and Kasler (1989).

3.4.2 Currency O ptions in a Target Zone R egim e

Consider an option to buy at some future date r  one unit of a foreign currency for 

K  units of the domestic currency. If asset 0  is a default-free domestic discount bond 

paying one domestic currency unit at time r , and asset 1 its foreign counterpart, 

then the currency option can be interpreted as the right to receive one unit of asset 

1 in exchange for K  units of asset 0. Note that S'1, the domestic price of asset 

1 , is the product of two factors: the spot exchange rate, s, giving the number of 

domestic currency units needed to purchase one unit of the foreign currency, and 

S'1’̂ , the price of asset 1 in foreign units. Assuming for simplicity that the domestic 

interest rate and the foreign interest rate Vj are constant, we clearly have

go  =  e - r d ( T - t ) ^  5 l , /  =  e - r / ( r - t )  ^  g l  =  ^  ( r - t ) _

By covered interest rate parity, X t = S 1 / S° is now just the time t forward rate for 

currency exchange at time r .

Ingersoll (1989a) models a perfectly credible target zone regime by imposing 

the condition

f  W < s t <  S(*)

with deterministic functions £ and E. He shows that not every pair of boundary 

functions is admissible. Given £(0) and H(0), the tightest possible bounds are in 

fact

m  =

~(i) =  E(0) e<r“- r' ) i .

For these functions, the above condition translates into

« r)S ?  < S i  <  S (r)S f,

e±  =
(Jyjr — t
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that is, Assumption (B) with I  =  £(r) and u =  ^-(t).

As for the spot rate dynamics, one of the models studied in Ingersoll (1989a)

has

dst -  fitst dt + <r [a* -  ((t)][ 1 -  st/E(t)] dWt

with an unspecified drift rate process //, a Wiener process W, and the above bound­

ary functions. By Ito’s lemma, the corresponding forward rate dynamics are

d X t = (fit +  rf  -  rd) X t dt + a [Xt -  f  (r)][l -  X t/H(r)] dWu

which, under suitable conditions on /x, implies Assumption (Q). If so, the arbitrage 

price of the currency option is given by Proposition 3.3.2 and can be written as

*.(r) = IS, -  «*)] S 1/  *(ef+) -  [1 -  */3(*)] Sf ! - f {T) / z f ) ^

with

e * =  1
1 3t - ( ( * )   ̂ K  ~ ( { T) , 1 *2 / ^
l o g ~ log i -  k / ~ ( t ) ±  ^  (T -uyjr — t

and <r =  [1 — £(r)/E(r)]cr. This is the same result as in Ingersoll (1989a).

An extension of this analysis to “futures-style” options (futures contracts on 

option payoffs) is presented in Ingersoll (1989b). Assuming a quadratic diffusion 

term for the underlying futures price, Ingersoll calculates valuation formulae similar 

to the one above. Again, the results of Sections 3.2 and 3.3 apply.

3.5 Conclusion

We have studied the pricing of an option to exchange one asset for another in the 

presence of strict upper and lower bounds on the relative price of these assets. Our 

first result shows how to decompose the option price in terms of two particular 

numeraire portfolios and the probabilities of exercise calculated under the mar­

tingale measures for these numeraires. This decomposition is particularly useful 

in models where the relative asset price has a quadratic diffusion coefficient. The 

second contribution of the chapter is a new derivation of option prices in this class 

of models.
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C hapter 4 

State  Prices Im plicit in V aluation  
Formulae for D erivative A ssets

Derivative assets analysis usually takes a model of the underlying price processes as 

given and attempts to value derivatives relative to that model. Chapters 2 and 3 are 

examples of this approach. The present chapter addresses the converse question: 

given some set of derivatives prices, what can we say about the price processes 

of the underlying securities? More precisely, we assume that we have information 

about the price of a derivative asset in the form of a pricing formula, that is, a 

deterministic function of the underlying security prices and time, and investigate 

the restrictions such a formula imposes on the underlying price dynamics.

We restrict ourselves to the simplest possible setting with a riskless cash ac­

count, one risky security, and one derivative. Assuming that asset prices are con­

tinuous semimartingales, we consider pricing formulae that satisfy a variant of the 

fundamental valuation equation which is familiar from derivative asset pricing in a 

diffusion setting . 1 We show that such a pricing formula uniquely determines the law 

of the underlying asset price under a martingale measure, thus implying a unique 

system of state prices for payoffs contingent on the price path of the underlying 

security.

While similar in spirit to Breeden and Litzenberger’s (1978) calculation of state 

prices implicit in option prices, our approach uses rather different mathematical 

tools, based mainly on semimartingale calculus. The main result follows directly 

from a characterisation theorem for continuous local martingales which extends

1Equation (2.11) is in fact a special case of this PDE.
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work by McGill, Rajeev and Rao (1988) on Brownian motion.

To illustrate our approach, we return to the analysis of pricing formulae for 

options on zero-coupon bonds which we began in Chapter 2. A direct application of 

our result confirms that Merton type formulae are inconsistent with non-negative 

interest rates. We then show that the pricing formulae of Schobel (1986) and 

Briys, Crouhy and Schobel (1991) imply a positive probability for the forward 

yield process to hit the lower bound 0 during the life of the option. Moreover, 

this lower bound is shown to be an absorbing barrier for the forward yield. This 

explains our finding in Section 2.5 -  a positive price for the Arrow-Debreu security 

that pays one unit if and only if the forward yield at the exercise date is zero.

The rest of the chapter is organised as follows. After introducing our setup, 

Section 4.1 states and interprets the main result. The mathematical theorem which 

underlies this result is presented in Section 4.2. Section 4.3 applies our approach 

to pricing formulae for options on zero-coupon bonds. Section 4.4 concludes the 

chapter.

4.1 The M ain R esult

We fix a finite time interval T  =  [0, r], a probability space (0, T , P) and a filtration 

( P t ) t £ T  satisfying the usual conditions. T q is assumed to be almost trivial, and 

T r  =  f .

Consider three securities, labelled 0, 1 and 2 . We make the following assump­

tions:

• Trade in these securities is continuous and frictionless.

• The securities pay no dividends.

• Security 0 has a constant price X ° =  1 .

• The price processes of securities 1 and 2, denoted by X 1 and X 2, are positive 

continuous semimartingales.

Security 0 can be thought of as a riskless cash account with zero interest. Alter­
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natively, we can interpret ( X ^ X ^ X 2) as a normalised price system, expressed in 

units of some numeraire asset.

Note that we do not assume that the filtration is generated by the price

processes of assets 0, 1 and 2. We allow the filtration to contain more information 

than just past prices of these three assets. This additional information could be 

the price history of other securities or, more generally, non-price information about 

arbitrary economic variables. For later use, let (Ql)t£T be the completion of the 

filtration generated by X \  and write Qx =  Qlr .

A martingale measure for the price system ( X ^ X ^ X 2) is defined as a prob­

ability measure Q equivalent to P  such that both processes X 1 (z =  1,2) are 

Q-martingales. As seen in Section 3.1, the existence of a martingale measure en­

sures absence of arbitrage opportunities in a suitably chosen space of admissible 

trading strategies. Such a measure, if it exists, is in general not unique . 2

We say that the price of asset 2 is given by a pricing formula if there is some 

function u(t, x ) such that

X t  = u(t,X })

for all t G T . The literature on the valuation of derivative assets has calculated 

pricing formulae for a variety of securities. Adopting for a moment the perspective 

of derivative assets analysis, think of assets 0  and 1 as primitive securities, and of 

asset 2  as a derivative with payoff depending on the price of asset 1 at the terminal 

date. Given the price processes of the primitive assets, the task is to determine the 

fair price of asset 2. Typically, this involves the following steps . 3 First, one estab­

lishes the existence of a martingale measure for the system ( X ^ X 1) of primitive 

asset prices. Next, one proves that the derivative claim is attainable, i.e., that it 

can be replicated by a dynamically adjusted self-financing trading strategy in the 

primitive assets. The price of the derivative asset must then be equal to the value 

of the replicating portfolio; any deviation would lead to arbitrage opportunities. 

Moreover, the price of the derivative is again a martingale under the given mar­

2Uniqueness of the martingale measure corresponds to completeness of the securities market. 
See Harrison and Pliska (1983) or Muller (1985).

3We have in fact gone through these steps in Chapter 3 already.
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tingale measure, so it can be calculated without reference to a replicating strategy, 

just by taking expectations of the final payoff under the martingale measure. Fi­

nally, if the primitive asset prices have the Markov property, then the solution of 

the valuation problem indeed takes the form of a pricing formula.

Assume for example that (X°, X 1) has a martingale measure Q such that X 1 

solves the stochastic differential equation

dX] =<j(t,X])dW t (SDE)

with cr(t ,x )  sufficiently regular and W  a Wiener process under Q. Then one has 

the following well-known result.4 Asset 2 is attainable, and its price process is 

of the form X f  = u ( t ,X ] )  with u(t,x)  being a solution of the partial differential 

equation

ut +  \  (T2uxx = 0. (PDE)

Thus, if X 1 has a martingale measure under which it is a diffusion satisfying (SDE), 

we get pricing formulae for derivatives involving solutions to the valuation equation 

(PDE). Our aim is to prove a converse to this statement.

Returning to the general setup, let us assume that (X ° , X 1, X 2) has a mar­

tingale measure, and let the price of asset 2  be given by a pricing formula X 2 = 

u(t , X*)  where u is once continuously differentiable with respect to t and twice with 

respect to x. Fix a time t and a realisation x of the random variable X ]. Suppose 

that uxx(t,x)  > 0 , say, so u is strictly convex in its second argument around (t,x). 

By Jensen’s inequality, the holder of asset 2 can therefore expect a gain from the 

random movements of X 1 over a short time interval. The existence of a martingale 

measure, however, precludes such a gain. To balance the Jensen effect, the passing 

of time must therefore have a tendency to reduce the value of asset 2 , in other 

words, ut( t , x ) < 0. By the same argument, uxx(t,x)  <  0 implies ut{t,x) > 0 . 5

4Lemma 2.2.2 is a special case of this result.
5A mathematically precise argument runs as follows. For T > t, Ito’s lemma implies 

X %  -  X ?  -  r  u , ( s , X } )  d X \  =  £  U , ( S, X } )  ds +  I U l , ( s t X \ ) d ( X l ) , .

Under a martingale measure, the left hand side is a continuous local martingale while the right 
hand side is of finite variation, so both must vanish identically. This requires U t { t , X } )  and 
Uxx{ t ,  X j )  to be of opposite sign whenever the latter expression is non-zero.
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Provided uxx(t,x)  ^  0, we can now define

( 4  \  [<T[t , x)  =  \ f  ;----^
y uxx(t,x)

and thereby satisfy (PDE) at the given point (t,x).  In this sense, (PDE) is just 

a consequence of a simple “no expected gain” argument, and does not impose 

restrictions on the underlying process X 1. In the theorem below, we shall therefore 

make the additional assumption that the above function a ( t , x) which we defined 

point by point on a subset of the domain of u has in fact a continuous extension 

to the whole of that domain.

For a similar reason, we shall also stipulate that u be sufficiently non-linear, 

i.e., that uxx does not vanish too often. Clearly, a linear pricing formula will not 

restrict the underlying process at all -  a statement like “two shares cost twice the 

price of one share” will not tell us anything about the underlying stock price model. 

We are now ready to formulate the main result of this chapter.

T h e o rem  4.1.1 Let the price system (X 0, ^ 1, ^ 2) on (D, IF, P, (Ft)ter) satisfy

x ;  =  u ( t , x f i

where u{t,x) is a solution o/(PD E) with a continuous function cr(t,x). Assume that 

{t £ T  : a ( t ,X j )  = 0} has Lebesgue measure zero almost surely.6 In addition, 

suppose that at least one of the following two conditions holds:

uxx{t,X])  t^ 0 for a l l t £ T  almost surely,

or

{t G T  : uxx( t ,X I )  = 0} is almost surely a Lebesgue null set 

and u(t , x) is analytic.

Finally, let Q be a martingale measure for this price system. Then there is a Wiener 

process W  under Q such that the price process X 1 satisfies (SDE).

6This assumption is inessential. See Remark 4.2.5 below.

137



PROOF: The theorem is a direct consequence of Theorem 4.2.1 below, a somewhat 

more general mathematical result which we will prove in the following section. I

According to Theorem 4.1.1, a pricing formula satisfying (PDE) under the 

stated conditions completely characterises the behaviour of the price of asset 1 

under the martingale measure Q.7 Indeed, (SDE) together with the fact that W  

is a Wiener process completely determine the law of X 1 under Q. As a first con­

sequence, note that the pricing formula implies the Markov property for X 1 under 

Q 8 (PDE) is then just the associated backward equation.

More important, the law of X 1 is the same under all martingale measures. In 

other words, all martingale measures coincide on Q1. By a theorem of Jacka (1992), 

this implies that all ^-m easurable contingent claims are attainable, hence priced 

by arbitrage .9 This holds in particular for the Arrow-Debreu security with time 

r  payolf 1 ^ where A  E Q1. The pricing formula thus implies a unique system of 

Arrow-Debreu or state prices for events in Q1. As usual, these prices are obtained 

by taking the expectation of the corresponding Arrow-Debreu payoffs under any 

martingale measure.

The idea of extracting state prices from derivative prices goes back at least to 

Breeden and Litzenberger (1978).10 In the present setting, their argument can be 

rendered as follows. 11 Assume that we have a securities market with assets 0 and 

1 as before but, instead of asset 2, European call options written on asset 1 for 

any strike price and exercise date. Let Cq'K denote today’s call price for exercise 

date r  and strike price K .  Assume that there exists a martingale measure for this 

securities market, and let FT be the corresponding distribution function for the 

random variable X \ .  Call prices must satisfy
OO

(x -  K ) dFr(x)

7We assume in the following that a  satisfies the regularity conditions for uniqueness of weak 
solutions of (SDE). See for example Karatzas and Shreve (1988).

8Recall that we merely assumed this price to be a continuous semimartingale.
9Alternatively, this result follows from the martingale representation property of X 1 with 

respect to the smaller filtration (Q } ) t e T cf. Revuz and Yor (1991).
10See also Ross (1976).
n We went through a variant of this argument in Section 2.5 where we started from put rather 

than call prices.
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by definition of a martingale measure. Integration by parts yields

oo
(1 — Fr (x)) dx 

and hence

Fr(K) = 1 +

Thus the distribution function Fr is uniquely determined by the given option 

prices. 12

Dupire (1994) takes this analysis one step further. He assumes the existence of 

a martingale measure under which X 1 is a diffusion process satisfying (SDE) for 

some unknown function a(t,x).  Using the forward equation associated with such 

a diffusion, he shows that given the call price Cq'K for all r  and K , it is possible, 

under certain regularity conditions, to back out the function cr from the distribution 

functions Fr . Therefore, the law of the process is completely determined by these 

call prices, and we have again a unique set of Arrow-Debreu prices for events in Q1} 3 

Our approach, as summarised in Theorem 4.1.1, and Dupire’s approach can be 

regarded as “dual” to each other. This feature appears most clearly in the analysis 

of call option prices. Suppose that time t call prices are given by some function 

u(t , x ; r, K )  where x  is the concurrent price of the underlying asset, r  the exercise 

date, and K  the exercise price. Dupire’s result means that a unique set of state 

prices can be extracted from the values u(0 , £0; r, K ) where the initial price of the 

underlying asset is fixed, while r  and K  are variable. Theorem 4.1.1, on the other 

hand, determines state prices on the basis of the values u ( t ,x ;r ,  K )  for fixed option 

characteristics, but variable t and x.14 Thus, Dupire’s result and Theorem 4.1.1 

are “dual” in the sense that the former varies the “forward variables” (r, K),  and 

the latter the “backward variables” (t,x).

12The value F T( K ) is the price of the Arrow-Debreu claim 1 x \ < K '  Differentiating once more,
where possible, we get the s t a t e  p r i c e  d e n s i t y  f T( K ) =  ^ 2 C q , K . This is Breeden and Litzen- 
berger’s original result.

13Dupire’s work is one of the first contributions to a recent literature on “implied trees”; see 
Rubinstein (1994) and the references therein. This literature tries to construct models which, in 
contrast to the Black-Scholes model, are consistent with the market prices of standard European 
options. These models are then used to hedge and price “exotic” over-the-counter derivatives.

14The choice of r  and K  is irrelevant, of course, since Theorem 4.1.1 does not depend on the 
particular form of the derivative’s terminal value.
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4.2 A Characterisation Theorem

In this section, we state and prove the mathematical result which underlies Theorem 

4.1.1. We extend the work of McGill, Rajeev and Rao (1988) on Brownian motion 

to a larger class of continuous local martingales . 15 Throughout the section, we 

consider a finite time interval T  as before and a filtered probability space satisfying 

the usual conditions.

Theorem  4.2.1 Let X t be a continuous local martingale which fulfils the following 

condition.

(A) There exist a continuous function a (t,x)  and a solution u(t,x)  of

ut +  \cr2uxx =  0 (PDE)

such that

(Al) the process u ( t ,X t) is a local martingale;

(A2 ) {t £ T  : a ( t ,X t) = 0} is almost surely a Lebesgue null set;

(A3) uxx(t, X t) 7  ̂ 0 for a llt(E .T  almost surely.

Then there exists a Wiener process W  such that

X t = X 0 + f  a { s ,X s)dW s. (4.1)
Jo

Moreover, this continues to hold if  (A3) is replaced with the two conditions

(A4) {t £ T  : uxx( t ,X t) = 0} is almost surely a Lebesgue null set;

(A5) u(t, x) is analytic.

Rem ark 4.2.1 Note that if (PDE) holds, conditions (A2) and (A4) together are 

equivalent to the condition that {t £ T  : ut( t ,X t) =  0 } is almost surely a Lebesgue 

null set. This is the condition used in McGill, Rajeev and Rao (1988).

Rem ark 4.2.2 McGill, Rajeev and Rao (1988) study the case cr(t,x) =  1 with 

infinite time horizon, i.e., T  =  jR+. In this case, (PDE) is just the heat equation,

15I am grateful to Lucien Foldes for having drawn my attention to McGill, Rajeev and Rao 
(1988) after I had obtained a weaker version of Theorem 4.2.1 independently.
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(A5 ) is automatic, and a continuous local martingale satisfying condition (A) or 

its variant is a Brownian motion in accordance with (4.1). Levy’s characterisation 

of Brownian motion is recovered as the special case where the solution of the heat 

equation is taken to be u(t , x) = x 2 — t.

Rem ark 4.2.3 To obtain Theorem 4.1.1, let Q be a martingale measure for the 

price system (X°, X 1, X 2) and apply Theorem 4.2.1 to the martingales X 1 and

u ( t , x } )  =  x 2 on (n,^,g,(^)teT).

Rem ark 4.2 .4  Obviously, Theorem 4.1.1 holds as well for the larger set of local 

martingale measures, that is, for measures Q equivalent to P  such that the price 

processes X % are local martingales. Such measures have been studied for example 

by Schweizer (1992) and Babbs and Selby (1993).

The proof of Theorem 4.2.1 is given in a sequence of lemmata.

Lem m a 4.2.1 Let X t be a continuous local martingale with quadratic variation 

process

(X ) t = f  a 2(s ,X ,)d s .  (4.2)
Jo

Assume that (A2) holds. Then there exists a Wiener process W  satisfying (4.1). 

PROOF: If (4.2) holds, we can define a process W  by setting

Wt = f f a d X s  
Jo

where <f>s = a(s, A"s ) _ 1  if <t(s,Xs) ^  0, and <j)s = 0 otherwise. W  satisfies (4.1) and

has quadratic variation (W )t = l{cr(s,xs)^o} ds. (A2 ) implies (W )t = t, and the

assertion follows from Levy’s characterisation theorem. ■

R em ark 4.2.5 If (A2) is not satisfied, i.e., if {t £ T  : cr(t,Xt) = 0} is not a null 

set, (4.2) still implies the representation (4.1). However, W  is then no longer a 

Wiener process on the original filtered probability space, but on an extension of it. 

See Ikeda and Watanabe (1989, Theorem 7.1' on page 90) for details.

Lem m a 4.2.2 Let X t  be a continuous local martingale. I f  there exist a continu­

ous function a (t,x )  and a solution u(t,x)  of (PDE) such that (A l) and (A3) are 

fulfilled, then X t has quadratic variation given by (4.2).
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PROOF: Ito’s rule, (PDE) and (Al) imply

[  uxx( s ,X s)(d{X)s -  a 2(s, X a) ds) = 0.
Jo

(4.2) follows by (A3). H

This completes the proof of Theorem 4.2.1 for condition (A). The case where 

we replace (A3) by (A4) and (A5) is covered in the following lemma. Its proof 

builds on the arguments in McGill, Rajeev and Rao (1988).

L em m a 4.2.3 Let X t be a continuous local martingale. I f  there exist functions 

cr(t,x) and u ( t ,x ) such that (PDE), (A l), (A4) and (A5) are fulfilled, then the 

quadratic variation process of X t satisfies (4.2).

PROOF: We start from the obvious equation

{.X ) t = f  <T2(s,X„)ds  
Jo

T  I  i{Ua;i(s,Xs)^0 } [ J { X )  S  ® (^ A s )^ 5]
J o

T j  l{tta:j;(s,Xs)=o} \d{X)s (J («s, As) ds].
Jo

As in the proof of the previous lemma, one obtains

[  uxx(s, X s) [d(A)s -  <r2 (s, X s) ds] = 0 
Jo

and hence

[  l{uari(s,Xs)#0} M(A)S — cr (s, A s) ds] =  0 .
Jo

On the other hand, (A4) imphes

/  1 { ^ ( 5,x4)=o> <r2( s ,X s)ds  =  0.
Jo

Thus

(X ) t = f  cr2( s ,X s) ds +  f  l{iiM(a,xa)=o} d(X)s,
Jo Jo

and (4.2) holds if

/  1 {u»,(«>x.)=o} d{X)a = 0 . (4.3)
Jo
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Consider a new time variable £ >  0 and set t£ =  inf {t (E T  : (X ) t > £} if this set 

is not empty, and t(. = r  otherwise. Then, after extending the filtered probability 

space, there is a Brownian motion (B )̂^>o such that X t = B(x)t ; see Ikeda and 

W atanabe (1989, Theorem 7.2' on page 91). Write £ =  (^ )r-  (4-3) is equivalent 

to {£ <  £ : uxx( t^B ^)  = 0} being a Lebesgue null set. Consider now the stopped 

continuous semimartingale =  uxx( t^ B ^ Aj). As a direct consequence of the occu­

pation density formula for semimartingale local time, we have J  l{y{=0} d{Y)^ = 0  

and hence

I =  0
Jo

which means

{£ <  £ : uxx(U, B t ) = 0} C  {£ < £ : uxxx( t^  B J  = 0}

up to a Lebesgue null set. Assuming that (4.3) does not hold and arguing induc­

tively, one shows that there exists at least one point (£0, ^o) where uxx and all its 

space derivatives vanish. Next, using (PDE) and another induction argument, one 

can easily show that all partial derivatives of uxx vanish at (2o>^o)- But then, due 

to the analyticity of uxx postulated in (A5), condition (A4) is violated. Thus (4.3) 

must hold. ■

4.3 Bond Options and Im plied Forward Y ields

In this section, we use our results to analyse pricing formulae for European options. 

As in Chapter 2 , we study the case of options on zero-coupon bonds.

We fix an interval T  =  [0, r] and a filtered probability space (O,^7, P, (F^ter)  

as in Section 4.1. Let S° be the price process of a default-free discount bond 

maturing at r ,  i.e., satisfying =  1 almost surely. This bond, which we call 

the reference bond, will serve as numeraire. Consider a second bond, called the 

underlying bond, that matures at a time T > r . Let S 1 be its price process up 

to time r . The third security is a European call option written on the underlying 

bond with exercise date r  and strike price K.  Its price process is denoted by S 2. 

By definition, the terminal value of the option is = [5J — K]+- We make the 

following assumptions:
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Trade in the bonds and the option is continuous and frictionless.

• The price processes of the bonds and the option are positive continuous semi- 

martingales.

In order to obtain the setting studied in Section 4.1, we define the processes

*  =  J  (i =  °. 1. 2)

which describe asset prices in units of the reference bond. In less abstract terms, 

X ]  and X f2 are just the time t forward prices of the underlying bond and the option 

for delivery at r . These processes are again positive continuous semimartingales.

Recall from Section 2.1 that the forward yield Yt)TlT implied by the bond prices 

5° and S j  is
v  _  log .S',1 -  log 5° log Vi

t.r.T T  — r  T  -  T '

This is the continuously compounded interest rate as seen at time t for a loan which

starts at r  and is repaid at T. We shall write Yt for Tj)T,T* The bond price model

(S'0, S 1) is said to generate negative forward yields if

P  ({a; G : 3t G P  Yt{uf) < 0}) >  0;

otherwise, the bond price model satisfies

P ({ w G f i :  Vt G T  Yt(u) >  0}) =  1

and is said to have non-negative forward yields. Finally, we say that the bond price 

model has positive forward yields if

P ({ w G f i :  y t  G T  Yt (u) > 0}) =  1.

4.3.1 M erton T ype O ption Prices

This section deals with the type of valuation formulae going back to Black and 

Scholes (1973) and Merton (1973). Let a positive continuous function 1/ : T  —> 1R++ 

be given. Extending the terminology used in Chapter 2, we say that the price
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system (S'0, S'1, S2) satisfies the Merton call price formula for volatility function v 

if

S} = S °u ( t ,X } )

or, equivalently,

with u  defined by equation (2.15):

1

X* = u (t,X })

u ( t , x )  =  X  $
i  x  s ( t )

logZ + -T - K $ log
X

K
: ( t )

where

' ^  =  J t

Several authors have obtained pricing relationships of this type for options on 

zero-coupon bonds, either in the context of a term structure model that specifies the 

evolution of bond prices for a continuum of m aturities , 16 or in the “minimalist” 

framework of Chapter 2  where only the prices of the underlying bond and the 

reference bond are modelled.

The common feature of all these models is that they allow for negative interest 

rates. A direct application of Theorem 4.1.1 confirms that option price formulae 

of the Merton type are indeed inconsistent with non-negative interest rates.

P ro p o s itio n  4.3.1 Assume that the price system (S ° , S'1, S'2) on (fi, T , P, (^ t)ter) 

satisfies the Merton call price formula for volatility function v. Let Q be a martin­

gale measure for this price system. Then the forward price of the underlying bond 

solves the stochastic differential equation

dX] = v { t ) X ] d W t

where W  is a Wiener process under the measure Q.

( 4 . 4 )

P R O O F :  Recall from Section 2 . 2  that u  solves ( P D E )  with a ( t , x )  =  v ( t ) x .  More­

over, u  is strictly convex in x  for all t  < r . So Theorem 4.1.1 applies. ■

16See the references in the footnote at the end of Section 2.2.
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By the formula for the martingale exponential, (4.4) is equivalent to 

= X q exp v(s) dWs —

Thus, up to the time change

1 1—► f  v2(s) ds ,
Jo

the forward price process X 1 is a driftless geometric Brownian motion under any 

martingale measure Q, and the forward yield Y  is simply a Brownian motion with 

drift. This implies in particular that Q and, by equivalence of measures, P  assign 

a positive probability to the event {a; : 3t Yt(w) < 0}. Thus, we obtain the well- 

known

R esu lt 4.3.1 A bond price model in which an option formula of the Merton type 

holds necessarily generates negative forward yields.

4.3.2 A n U pper Bound on th e Forward Bond Price

Next consider a price system (S'0, S'1, S'2) where forward yields remain non-negative, 

i.e., Yt > 0 and X }  < 1 for all t. Assume that the strike price of the call option 

satisfies 0 < K  < 1 ; as S* = X * < 1, only these exercise prices are of interest. 

Schobel’s (1986) condition (2.7) now reads as follows:

S 2 = ( 1  — K ) S® whenever =  5°,

that is,

X ^  =  1 — K  whenever X ] = 1.

Thus, the forward call price assumes the deterministic value 1 — K  when the forward 

yield Yt is at its lower bound 0 .

We know that Merton call prices violate this condition. Schobel proposes the 

modified pricing formula

X 2 = u '{ t ,X l )

with

u*{t, x ; K ) = u(t, x\ K )  — K  u(t, x\ K -1)

146

(4.5)



where u(t , x ; K )  denotes the Merton call price function for strike price K } 7

Briys, Crouhy and Schobel (1991) use a formula of this type to value interest rate 

caps and floors. They see the second term in u* as a price correction which ensures 

consistency of bond option prices with non-negative interest rates. Moreover, they 

interpret the additional boundary condition as the effect of an absorbing barrier, 

but do not clarify the nature of the absorption phenomenon.

Following a different approach, Sondermann (1988) obtains an option price 

formula of the same type. Starting with the discrete-time binomial approximation 

to the Black-Scholes model, he imposes an upper bound (which may be any positive 

number) on the forward price of the underlying asset. He shows the existence 

and uniqueness of a martingale measure for the bounded process and calculates 

the corresponding option price. On letting the grid size go to zero, Sondermann 

obtains essentially the above pricing formula for constant volatility and an arbitrary 

upper bound. He notes that in his discrete-time approximations, the martingale 

measure makes the upper bound an absorbing barrier for the forward price process. 

Interested mainly in the limit of the valuation formula as the grid size tends to zero, 

he does not study the limit forward price process itself. It seems obvious, though, 

that this limit should be the Black-Scholes forward price process with an absorbing 

boundary.

We shall use the method developed in the previous section to confirm this 

intuition. Focussing on bond options, we present only the case of an upper bound 

equal to 1, but the results carry over to the setting of Sondermann (1988). Before 

applying the technique underlying Theorems 4.1.1 and 4.2.1, let us first point 

out that absorption of the forward price and the forward yield at their respective 

boundaries is indeed the only behaviour consistent with the absence of arbitrage.

L em m a 4.3.1 Let (S'0, S 1) be a bond price model on (fi, T ,  P, with a mar­

tingale measure Q. Assume that the model has non-negative forward yields and 

consider the hitting time x  =  inf{£ E T  : X } = 1}. Then X } =  1 on [x>r ] almost 

surely under either measure.

17See Section 2.5.
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PROOF: Apply Theorem 4.16 of Elliott (1982) to the Q-martingale 1 — X 1. I

There is a simple intuition behind Lemma 4.3.1. Assume that in a world of non­

negative forward yields, the underlying bond and the reference bond have the same 

price at some time t0. A portfolio short one underlying bond and long one reference 

bond costs nothing at t0. After to, the portfolio value cannot fall below zero since 

the underlying bond will never cost more than the reference bond. On the other 

hand, the portfolio cannot rise in value either, otherwise it would certainly trade at 

a positive price now. Therefore, the two bond prices must coincide for ever, that is, 

until the shorter lived bond expires. By the same token, forward bond prices and 

forward yields are absorbed at their upper and lower bound, respectively. Any other 

boundary behaviour, for example reflection, would lead to arbitrage opportunities.

As a corollary, we get the following simple classification.

P ro p o s itio n  4.3.2 Let (S °, S'1) be a bond price model admitting a martingale mea­

sure. Then exactly one of the following statements holds true:

(i) The model generates negative forward yields.

(ii) The model has non-negative forward yields, the probability that the forward 

yield reaches its lower bound 0 is positive, and 0 is an absorbing barrier for 

the forward yield.

(iii) The model has positive forward yields.

We have seen that bond price models consistent with a Merton type formula 

belong to category (i). As for models with non-negative yields in which an option 

formula of the Schobel type holds, we have to establish which of the two properties 

(ii) and (iii) is satisfied, that is, whether the bound is reached with positive prob­

ability or not. The following proposition does more than that: it gives a complete 

description of the behaviour of the forward bond price under a martingale measure.

P ro p o s itio n  4.3.3 Assume that the price system (S'0, S'1, S'2) on P, (J7t)t€T) 

has non-negative forward yields and satisfies the Schobel call price formula for 

volatility function v. Let Q be a martingale measure for this price system. Then
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there is a Wiener process W  on an extension (0, T ,  Q , (Jrt)t£r) of (fi, T ,  Q, (iFt)teT) 

such that the forward price of the underlying bond satisfies

dX} = l {t<x } is( t)X }d W t (4.6)

with x  = inf{t E T  : X } =  1}.

PROOF: Note the following properties of the Schobel call price function: u* solves 

(PDE) with a(t,x )  = v(t) x , is strictly convex in x for x < 1 and satisfies u*(t, 1) =  

u*x(t, 1) =  0 for all t. Using these properties and Lemma 4.3.1, one shows as in 

the proof of Lemma 4.2.2 that

(X1)t = f \ {s<x}v \ s ) ( X l f d S. 
Jo

The proposition now follows directly from Ikeda and Watanabe (1989, Theorem 

7.1' on page 90). The process W  is constructed as

where W '  is a Wiener process on some filtered probability space (fl', F ’', Q',

The extension (fi, T ,  Q, (Jrt)teT) is obtained by taking the products =  O x 

Q =  Q  ® Q ' and T t = T [ . ■

Let Q and W  be as in the proposition. By the formula for the martingale 

exponential, (4.6) implies that X 1 is the stopped process

X ] = X tAx

with

X t = Xq exp ( /  i/(s) d W s -  \  J  v2(s)ds^  .

Thus, the forward bond price process implied by Schobel’s option price formula is 

obtained by imposing an absorbing barrier at 1 on X ,  a forward price process of 

the Merton type. Q assigns positive probability to the event that X t = 1 for some 

t E T .  Under both Q and P , the forward bond price therefore reaches its upper 

boundary with positive probability.
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R esu lt 4 .3 . 2  A bond price model with non-negative forward yields which satisfies 

an option price formula of the Schobel type assigns positive probability to the event 

that the forward yield reaches its lower bound 0, where it is absorbed.

In particular, the Arrow-Debreu security paying one unit if and only if this yield 

is zero at the expiry date of the option commands a positive price.

4.4 Conclusion

The validity of a pricing formula for a derivative asset has strong implications for 

the risk-neutral behaviour of the underlying asset prices. In a simple setting with 

continuous asset price processes, we have studied valuation formulae that depend 

on only one underlying price and satisfy a certain partial differential equation. We 

have shown that such a formula implies a complete characterisation of the behaviour 

of the underlying asset price under a martingale measure. This characterisation 

takes the form of a stochastic differential equation. The law of the underlying 

price process under a martingale measure is completely determined by the pricing 

formula, and is the same for all martingale measures. Consequently, all claims 

contingent on the price path of the underlying asset are attainable and hence 

priced by arbitrage. In particular, the pricing formula implies a unique set of 

Arrow-Debreu prices for events which are determined by the price path of the 

underlying asset.

As an illustration of our main result, we have analysed certain pricing formulae 

for European options on discount bonds. This analysis has shown that the modified 

valuation formulae proposed by Schobel (1986) and Briys, Crouhy and Schobel 

(1991) imply an implausible behaviour of the forward yield, involving absorption 

of this yield at zero.
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Errata

P age 9 , line  6 : The new sentence should start with ‘An individual’s decision as 

to how much . . .

P age  11, line 9: Replace ‘ever more’ by ‘evermore’.

P age 31, fo o tn o te  8 : Insert ‘a’ after ‘the existence of’.

P age 36, fo o tn o te  11: Delete ‘the’.

Page 54: Replace the proof of Proposition 1.5.3 by:

PROOF: Let u [ r ]  denote the value function for discount rate r, and define S  =

{r > 0 : u[r](7r) >  m}. Using the same technique as in the one-sided case (cf. the

appendix to Chapter 1), one easily shows that if r  G S' and r ' < r, then r '  £ S'.

Therefore, r *  = sup S' has the property that u[r](7r) >  m if r  < r*, and u [ r ] ( 7r) =  m

if r  > r*. It remains to be shown that r *  is a finite positive number.

It is straightforward to show that for

A (32 7r2 (1 — 7r) 2 m"(7r)r < r =  — ---------------      —-
~ 2 cr2 tt)

the myopic payoff function m  is a strict subsolution of the Bellman equation on 

the open unit interval, i.e.,

sup < — 7t2 ( 1  — 7r)2(A a — A/? q) 2 m"(7r) — r  m(7r) +  r  R (7r, q) 1 > 0
qeQ l 2<7 J

for 7r G]0,1[. Similarly, one shows that for

_ 2 A /? 2 7r2 ( 1  — 7r) 2 m"{7r)
r  >  r  — ----------------------------------------------

— <72 /^(^)

with
w _  A)
^ “  A  +  A  ’

the function m =  2m — m  is a supersolution of the Bellman equation, that is,

sup {  - ^ t - 7 T 2 (1  — 7r)2(A a — A ( 3 q) 2 m f,( i r )  — r  m (tt)  +  r R ( 7r, g )  1 <  0
gGQ J



for all 7r. Now, results presented in Fleming and Soner (1993, Chapters IV and V) 

imply that u > m  on ]0,1[ if r  < r, and u < rh if r  >  r . Thus r <  r* <  r. ■

Page 56, line 6: Replace ‘subinterval’ by ‘subintervals’.

Page 87, line 12: The correct reference is de Munnik (1992).

Page 88 , line -7: Replace ‘accept’ by ‘agree’.

Page 91, line 4: Insert ‘as to’ after ‘decision’.

Page 96: The last word in the line after equation (2.14) should be ‘which’.

Page 108, line 12: The fifth word from the end of the line should be ‘ingenious’. 

Page 137: In the statement of Theorem 4.1.1, the condition

{t G T  : uxx( t ,X l )  = 0} is almost surely a Lebesgue null set 

and u(t,x)  is analytic

must be replaced by

{t G T  : uxx( t ,X l )  =  0} is almost surely a Lebesgue null set, 

u(t,x)  is analytic, and a 2(trx) has partial derivatives of all orders.

Page 140: In the statement of Theorem 4.2.1, condition (A5) should read 

(A5) u(t,x)  is analytic, and cr2(t,x)  has partial derivatives of all orders.

Page 153: Add the following entry to the list of references:

FLEMING, W .H ., and H.M . S o n e r  (1993): Controlled Markov Processes and Vis­

cosity Solutions. New York: Springer Verlag.


