
Mathematical techniques for
shape modelling in computer graphics

A distance-based approach

Dimitrios TSOUBELIS

March 1995

Dissertation submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

at the London School of Economics,
University of London.

UMI Number: U076BB1

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U076331
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

X n jv AyysXiKT]

Abstract

This research is concerned with shape modelling in computer graphics. The dissertation

provides a review of the main research topics and developments in shape modelling and

discusses current visualisation techniques required for the display of the models produced.

In computer graphics surfaces are normally defined using analytic functions. Geometry

however, supplies many shapes without providing their analytic descriptions. These are

defined implicitly through fundamental relationships between primitive geometrical objects.

Transferring this approach in computer graphics, opens new directions in shape modelling by

enabling the definition of new objects or supplying a rigorous alternative to analytical

definitions of objects with complex analytical descriptions. We review, in this dissertation,

relevant works in the area of implicit modelling. Based on our observations on the

shortcomings of these works, we develop an implicit modelling approach which draws on a

seminal technique in this area: the distance based object definition. We investigate the

principles, potential and applications of this technique both in conceptual terms (modelling

aspects) and on technical merit (visualisation issues). This is the context of this PhD research.

The conceptual and technological frameworks developed are presented in terms of a

comprehensive investigation of an object’s constituent primitives and modelling constraints

on the one hand, and software visualisation platforms on the other. Finally, we adopt a critical

perspective of our work to discuss possible directions for further improvements and

exploitation for the modelling approach we have developed.

1

10

10

15

16

19

24

29

32

33

36

36

36

38

41

45

47

49

52

54

57

57

60

63

63

65

66

69

71

Table of contents

An introduction to computer graphics

A brief history of computer graphics . .

D efinitions..

The Euclidean space

From mathematical models to images .

The model display device......................

Image compression

The nature of light

Our installation.......................................

Modelling in computer graphics

Introduction ..

Terminology - definitions......................

Characteristics of m odelling.................

The nature of m odels.............................

Approaches to geometrical modelling .

2.5.1 Interpolation................................

2.5.2 Polygonal mesh

2.5.3 Analytic functions......................

2.5.4 Volumetric a r ra y s

2.5.5 Constructive solid geometry . . .

2.5.6 Procedurally defined surfaces . .

Discussion ...

Current visualisation techniques

Introduction ..

Polygonal m esh

3.2.1 Projection.....................................

3.2.2 Clipping.......................................

3.2.3 Hidden surface/line removal . . .

2

3.2.4 S had ing ... 73

3.2.5 Mapping .. 77

3.3 Octree .. 78

3.3.1 Projection.. 79

3.3.2 Clipping... 80

3.3.3 Hidden surface rem oval.. 81

3.3.4 S had ing ... 82

3.3.5 Mapping .. 84

3.4 Ray tracing... 86

3.4.1 The pinhole camera m o d el... 86

3.4.2 Forward ray tracing... 88

3.4.3 Backward ray tracing... 89

3.4.4 Definitions.. 91

3.4.5 Projection.. 94

3.4.6 Clipping... 94

3.4.7 Hidden surface rem oval.. 95

3.4.8 S had ing ... 99

3.4.9 Mapping .. 103

3.5 Problems with visualisation .. 103

3.6 Acceleration techniques... 110

Chapter 4 C urrent trends in implicit modelling .. 117

4.1 Origins of our research ... 117

4.2 Soft O b jec ts .. 118

4.3 S kele tons... 120

4.4 Implicit blending using displacement... 123

4.5 Distance fields in Medicine .. 124

4.6 Colour superposition .. 126

4.7 Sphere p lo t s ... 131

4.8 Convolution ... 133

4.9 Delaunay triangulations and Voronoi tessellations................................. 136

4.10 Ray representations.. 139

3

143

143

144

146

146

148

151

151

152

154

154

155

157

159

161

161

165

169

170

170

173

177

180

184

185

185

186

188

188

195

Discussion: the need for further research in m odelling.........................

4.11.1 Criticisms of current research ...

4.11.2 Requirements for an implicit modelling approach

Distance as a tool for surface definition ...

Introduction ..

The initial p ro b le m ..

Model development..

5.3.1 Phase A. The extended definition of d istan ce

5.3.2 Phase B. The generalized problem ...

Model exploration..

5.4.1 The defining parameter being a constant

5.4.2 The defining parameter being a function

5.4.3 The defining parameter being a p rocess

5.4.4 The defining parameter being another implicit definition

Discussion: mathematical and geometrical implications

5.5.1 Mathematical im plications..

5.5.2 Geometrical considerations..

5.5.3 Summary ...

Applying the modelling approach ..

5.6.1 The defining parameter being a constant

5.6.2 The defining parameter being a function

5.6.3 The defining parameter being a p ro cess

5.6.4 The defining parameter being another implicit definition

5.6.5 Discussion on the applications of the modelling approach . . .

Visualisation of implicit surfaces ...

Introduction ..

Design considerations ...

The current implementation ...

6.3.1 The implicit to octree model conversion

6.3.2 Criticisms about the assumptions ...

4

6.3.3 Visualisation issu e s .. 199

6.3.4 A comparison with the traditional o c tr e e 202

6.4 Predicting the values of the defining param eter....................................... 202

6.5 Conclusion.. 206

Chapter 7 Research considerations and d irections.. 208

7.1 Introduction ... 208

7.2 Criticism s.. 209

7.2.1 Ease of m odelling... 209

7.2.2 Precision and accuracy ... 212

7.2.3 Speed of visualisation .. 213

7.3 Four-dimensional s p a c e .. 214

7.4 Non-linear propagation.. 216

7.5 Polygonisation of surfaces .. 219

7.5.1 Surface triangulation.. 220

7.5.2 Solid tetrahedra-isation ... 221

7.6 Ray tracing implicit models .. 224

7.6.1 The ‘Heidelberg’ ray tracing m odel... 224

7.6.2 A global illumination m odel.. 227

7.7 A stochastic visualisation process ... 231

7.8 Concluding rem arks... 235

Appendix A .. 238

Appendix B .. 251

R eferen ces ... 254

5

List of figures

Figure 1.1 The two-dimensional Cartesian coordinate system 16

Figure 1.2 Using two coordinate systems .. 18

Figure 1.3 The viewport’s Cartesian system .. 19

Figure 1.4 From models to im ages... 21

Figure 1.5 Relating points to p ix e ls .. 23

Figure 1.6 Manipulation of image f ile s ... 28

Figure 2.1 The non zero winding number ru le ... 49

Figure 2.2 The even-odd rule .. 50

Figure 2.3 Various degrees of approximating a sp h e re ... 51

Figure 2.4 The outline and the extruded letter C .. 58

Figure 2.5 A teapot ... 58

Figure 2.6 The major axes of the body, neck and handle of the te a p o t..................... 59

Figure 3.1 The five stages of visualisation .. 64

Figure 3.2 The cone of v is io n .. 68

Figure 3.3 The pyramid of vision... 70

Figure 3.4 Interpolation of intensities within a fa ce t... 75

Figure 3.5 Perspective projection with the octree approach 79

Figure 3.6 The pinhole camera model and the ray tracing equivalent........................ 87

Figure 3.7 Definition of r a y s .. 91

Figure 3.8 The ray - surface intersection... 95

Figure 3.9 The ray - surface interaction ... 99

Figure 3.10 Spatial aliasing... 106

Figure 3.11 Losing objects from the scene .. 107

Figure 3.12 Regular and adaptive supersampling.. 107

Figure 4.1 A blending fu n c tio n ... 121

Figure 4.2 Blending contours .. 121

Figure 4.3 Anomalies of the contour m a p .. 121

6

Figure 4.4 Interference due to concentric circles ... 127

Figure 4.5 Interference due to overlapping radial l in e s .. 128

Figure 4.6 The field of A + B ... 129

Figure 4.7 Contour map of A+B .. 129

Figure 4.8 Determining the map addition ... 130

Figure 4.9 Field of three p o in ts .. 131

Figure 4.10 Contour map of 3 p o in ts ... 131

Figure 4.11 The M-addition of a square with a triangle ... 141

Figure 5.1 Voronoi diagram using 7 points and 5 line segments 160

Figure 5.2 Calculating the distance of a point from a finite set 162

Figure 5.3 The distance of a point from an infinite s e t .. 163

Figure 5.4 The calculation of distance d(P , A B) ... 166

Figure 5.5 The skeleton of capital letter ‘M’ ... 168

Figure 5.6 Contour maps of the capital letter ‘M’ ... 168

Figure 5.7 The conceptual schema for implicit model construction............................... 169

Figure 5.8 Iso-surface calculated along a polyline ... 171

Figure 5.9 The sum of the distance from three po in ts.. 172

Figure 5.10 X - axis symmetry of the Mandelbrot s e t .. 179

Figure 5.11 A parabola defined by an infinite l in e ... 181

Figure 5.12 A parabola as defined by a line segm ent.. 181

Figure 6.1 The inconvenience of using cubical subcubes ... 191

Figure 6.2 Speeding up the visualisation of the Mandelbrot s e t 194

Figure 6.3 Cubical and spherical subcubes ... 196

Figure 7.1 Using non-linear distance measures .. 218

Figure 7.2 A Voronoi tessellation using non-linear distances.. 219

7

List of tables

Table 2.1 Examples of the object - model classification sc h e m a 43

Table 2.2 Analytical function tests for simple geometrical o b je c ts 53

Table 5.1 The two stages for the calculation of the extended distance from p to A . 162

Table 5.2 The two stages for the calculation of the extended distance from p to B . 164

Table 5.3 Different cases for evaluating the distance of a point from a line

seg m en t.. 167

Table 6.1 Comparison between cubical and spherical octants 197

Table B.l Example execution t im e s .. 253

8

Plate 1

Plate 2

Plate 3

Plate 4

Plate 5

Plates 6 - 10

Plates 11, 12

Plates 13 - 16

Plate 17

Plates 18 - 20

Plates 21, 22

Plate 23

Plate 24

Plates 25, 26

Plates 27, 28

Plates 29, 30

Plate 31

Plate 32

Plate 33

Plate 34 - 44

Plates 45, 46

Plate 47

Plate 48

List of plates

Mechanical parts using Constructive Solid Geometry

The method of polyspheres

Constant shading

Gouraud shading

Phong shading

Contour maps using the sum of distance

The sum of distance from three points being constant

Varying the value of the defining parameter

The value of the defining parameter being a line

The defining parameter being the s in() function

Using pseudo-random number generators

Surface modulation using a pseudo-random number generator

The Mandelbrot set (inset) being rotated

A paraboloid defined by a point and a planar disk

An extruded parabola defined by a point and a line segment

A paraboloid defined by a line segment and a planar disk

A paraboloid defined by two line segments

Simple three dimensional Voronoi tessellation

Extended Voronoi tessellation determined by three line segments

Varying the weight of a nucleus

Weighted tessellations using points

Weighted tessellation using line segments

Weighted Voronoi tessellation determined by line segments and points

9

Chapter 1 An introduction to computer graphics

1.1 A brief history of computer graphics

Computer graphics is the part of Information Technology concerned with the visual

representation of data. We can identify two major categories of such data; data which is the

output of other systems and data that is constructed for the purpose of producing a particular

image.

Data from other systems is either the output of software packages like databases,

spreadsheets and other statistical and scientific applications, or from other specifically

designed input peripherals such as two or three-dimensional scanners, and other sensors. The

benefit from visualising such data sets — typically of numerical nature — is that through

the effective utilisation of shapes and colours it is much easier to present an overall ‘picture’

of this data. It is anticipated that such representation will reveal to the user potential areas

of interest in the data set under study. The most critical factors for such an application are

the accuracy of the input data, the effective use of colours and shapes (e.g. bar graphs,

scatter plots, histograms, colour coded dimensions etc.), and the adequate preparation of the

input data for visualisation purposes (e.g. isolation of the required sub-set, scaling, various

consistency checks, formatting of data and other types of preprocessing).

For many applications, however, the emphasis is not in the collection of data, but in the

construction of the necessary data to produce a required image. Such images are usually

reproductions of real life objects, and their shape is approximated at a certain level of detail

with the use of geometrical methods that may vary significantly in complexity. The input

data in such an application will usually be descriptions of the shapes and colours of the

details of all the real life objects that need to be visualised.

Recent advances in hardware technologies have played a very important role in enabling

computer graphics techniques to be used in a great range of applications. The computational

demands of computer graphics techniques have been met by innovations in computer

10

architectures including RISC processor sets (e.g. IBM’s POWER), dedicated video bus (e.g.

VL VESA bus), additional graphics processors (e.g. XGA chipset), application specific

graphics boards (e.g. IBM’s hipfmgex 3-D High Performance Graphics Processor for

polygon rendering, and z-buffers for hidden object elimination) and multiprocessor

arrangements (e.g. transputer clusters, distributed computing environments). As a result,

nowadays computer graphics applications include business graphics, computer aided design

(CAD), human - computer interaction (HCI), computer aided education (CAE), multimedia

(MM), computer animation, medical imaging, document image processing (DIP), and virtual

reality (VR). These categories of applications are classified according to the type, or types,

of data they primarily manipulate.

For example, the domain of business graphics is concerned with the graphical representation

of numerical data and relates to graphical forms such as bar graphs, line drawings and pie

charts. The visualisation of more complex sets of data geared towards the needs of a

particular problem are encompassed under the general term of scientific visualisation. Such

an application area is that of medical imaging, where data, usually scanned from the human

body, are visualised and processed to depict pathological areas accurately. Another approach

to visualisation is taken with computer aided design (CAD) which is concerned with the

design and subsequent visualisation of geometrical shapes, usually models of real-life

objects. There, the user is able to have a preview of an object yet to be manufactured.

Additional software may be used to enable a thorough testing of some of the physical

properties of the modelled objects. Usually the implementation of computer aided design

applications is complemented by suitable computer aided manufacturing (CAM) applications,

where CAD designs are being transformed into instructions for manufacturing tools in order

to facilitate efficient and accurate manufacture of the CAD models.

Another less ambitious application for computer graphics, but of great commercial interest,

is that of computer animation, where the effect of object motion is added to that of object

visualisation. This approach has been successfully introduced in the production of television

(TV) advertisements. Recently it has also entered the courts of justice where (usually) the

defence presents its case of events via computer generated animation that re-creates the

alleged crime from the viewpoint of the accused, the victim, or other witnesses involved.

11

The domain of human - computer interaction (HCI) is orientated towards the study of the

presentation of both textual and numerical information in order to facilitate efficient

interaction between computer software and users. Here important issues include the choice

of colours used depending on the importance of the information presented, the density of

characters presented on the computer screen at any given time, the character sets used, the

number, location and size of windows used, the use of pointing devices and other equipment

necessary for user interaction.

Computer aided education and document image processing are both involved with the

manipulation and sophisticated retrieval mechanisms of information in the form of pictures.

Here the emphasis is on the presentation of images that are relevant to the user’s search

queries. In computer aided education systems, the user is presented with pictorial

information, usually for the purpose of a tutorial, where context sensitive help can be

provided. In document image processing applications, the user is not only presented with

images of the documents that need to be consulted but in many cases the user is also

expected to amend them, thus progressing towards the realization of the dream of the

‘paperless office’.

Recently, a new application domain that encompasses the utilities of most of the above has

emerged. This is ‘virtual reality’, that involves the design and visualisation of models of

objects, their motion through a virtual space, and the active participation of users who are

able to ‘wander around’ this space. The potential of such an application has been appreciated

in fields where the training of new personnel necessitates realistic conditions that are too

expensive, too dangerous or impossible to control, for example for the training of pilots,

astronauts, special army personnel etc.

Despite the differences the above application domains may present, both in terms of the

nature of data used and the purpose of the images produced, they all share the common need

of data preparation, or modelling, before data visualisation. This observation illustrates the

fundamental principle that computer graphics is a two phase process that involves the

modelling and the subsequent visualisation of models of objects. Depending on the

application, the emphasis on either phase (i.e. modelling, visualisation) may vary, but both

12

phases are necessary in all applications. For each phase there exist a number of different

approaches such as polygonal mesh approximation and analytical modelling with regard to

modelling, and scan line and ray tracing with regard to visualisation, all of which will be

presented in subsequent chapters.

The linkage between modelling and visualisation approaches will determine the balance

between response time and image quality for a given application. Response time is an

objective measure that is defined by the time it takes a particular installation (hardware /

software) to produce the required image. Image quality is a rather subjective criterion for

assessing how (photo-) ‘realistic’ the produced image is. The demands of the particular

application in terms of image quality and response time will effectively dictate the hardware

platform and the combination of modelling and visualisation approaches best used.

In this dissertation, the emphasis is given to the techniques used in computer graphics and

especially in modelling, and therefore the particulars of an individual application domain

will not be thoroughly examined unless they are an essential ingredient to our approach.

More specifically, the aim of this thesis is to develop a technique that defines a new family

of geometric shapes. Our approach is to exploit the power of computer graphics in order to

achieve the visualisation and initial study of geometrical objects that are too complex, or

impossible, to be described analytically.

We define such objects as the sets of points that fulfil a number of constraints (i.e.

geometrical loci). We will use a simple but powerful constraint that emerges from

extensions to the measure of distance, as will be explained in subsequent chapters. A

formalisation of linear combinations of such an extended measure of distance will construct

a generic definition of several new types of geometrical objects. Usually these objects are

sets of surfaces but there are special cases where they degenerate into discrete points or even

empty sets. The nature of the produced objects (i.e. points, surfaces, ...) as well as their

characteristics (i.e. size, area, curvature, ...) are parameterized thus enabling the generation

of families of such objects.

13

This technique for surface generation extends contemporary methods for defining simple

geometric objects like the circle and the ellipsoid. Its power comes by enabling visualisation

and initial study of geometric objects that are impossible to be described and therefore

studied by traditional analytical means. Nevertheless, this new technique will employ

modifications of currently used computer graphics methods for both phases of modelling and

visualisation, in order to enable an initial study of this new family of geometric objects.

In this chapter, an introduction to the fundamental principles of computer graphics will be

presented. This will include an explanation of the relevant terminology, a presentation of the

necessary mathematics concerning n-dimensional Euclidean spaces, a breakdown analysis

of the comprising stages of a (typical) computer graphics application, and, finally, a

presentation of the actual hardware and software platforms we used to develop and test the

implementation of our proposed object generation technique. The next two chapters will be

devoted to the presentation and analysis of the main modelling and visualisation techniques

currently used in computer graphics applications. The presentation of these techniques will

be followed by our evaluation and criticisms concerning their suitability to the object

generation technique that this dissertation proposes.

Having presented all the necessary background information needed for establishing common

ground of understanding with the reader, in chapter four we will present recent advances in

modelling including research relevant to our proposed technique; namely implicit modelling.

Chapter five will be devoted to the definition of the proposed object generation technique.

This will include the rationalisation of an extended measure of distance and the presentation

of a generic mathematical definition out of which a number of interesting special cases will

be isolated and investigated further. In chapter six we will examine the challenges we met

during visualisation of such defined objects. There, an analysis of various alternative

visualisation techniques will be discussed and followed by the presentation of the preferred

alternatives. Finally, chapter seven will entail a demonstration of the potential of the

proposed object generation technique. There, some special cases of the proposed technique

will be used to illustrate its power and its potential with regard to the contemporary

techniques. This contrast will be analysed to show future directions for further

generalisations and expansions of the proposed approach.

14

1.2 Definitions

The aim of any computer graphics application is to produce an image (or a series of images)

on display device. Such a device could be the monitor of a computer, a television screen,

a film surface etc. [Smarte 1988]. Except for the class of direct volume display devices

(DVDD) [Clifton III and Wefer 1993], this display device is assumed to be a two-

dimensional area that for the remainder of this dissertation will be called the viewport.

As mentioned earlier, the underlying principle in all computer graphics applications is that

the process of producing an image via a computer involves two phases. In the first phase,

modelling, the description of what needs to be displayed is produced. This description is

called the model of the image or the scene. The constituent parts of the scene are also called

the objects of that scene. The model will provide information about the shape of the

component objects in the scene, their relative size and positions, and, very often, their

colours.

In most applications the shape of the modelled objects is approximated by simple

geometrical objects such as planar polygons, spheres, boxes etc. The mathematics used for

shape approximation will be presented in this chapter. Nevertheless, the model of a scene

may also contain information about processes that need to be used to determine the shape

of an object. Such processes may include the use of fractals, pseudo-random number

generators, or other geometrical or physical constraints such as the geometrical loci, gravity

or elasticity. This kind of modelling is called implicit or, procedural modelling and will be

studied in subsequent chapters.

In the second phase, visualisation, an imaginary observer is introduced, and its view of the

modelled scene is reconstructed onto the display device as a picture. To add realism into the

produced image, a number of light sources that are assumed to illuminate the scene, is also

introduced. During visualisation, optical phenomena such as light reflection, light refraction,

radiosity etc. may also need to be simulated. However, what is actually displayed on the

viewport is not a picture of a real world scene, as a photographic camera would capture, but

an image of some mathematical model describing that scene.

15

A variety of mathematical tools such as topology, metric spaces, matrix algebra, calculus,

trigonometry and numerical analysis are used in both phases of a computer graphics

application. Nevertheless, the area of mathematics that is the most fundamental in computer

graphics is coordinate geometry. This is because both the model and the displayed image

are expressed via Euclidean spaces.

1.3 The Euclidean space

It is essential, therefore, to illustrate the use of Cartesian coordinate geometry as a means

of representing the Euclidean space. Since the same principles apply in both the

representation of the model and the representation of the image on the viewport, it is

appropriate first to describe the general case of the Cartesian coordinate system of two

dimensions and then to show how it can be adjusted to represent the model and the resulting

image.

iiii

P = (x,y)i................... a

x- axis

(0.0,0.0) r ------ x
i
ii
i
i
i
i
i
i
i

Figure 1.1 The two-dimensional Cartesian coordinate system

We may imagine two-dimensional space as the plane of this page, as Figure 1.1 shows, but

extending to infinity in all directions. In order to specify the position of points uniquely, we

have to impose a Cartesian coordinate system on the plane. We start by arbitrarily choosing

a fixed point in this space, which is called the coordinate origin, or origin for short. A line

that extends to infinity in both directions is drawn through the origin - this is the x-axis.

16

The normal convention, which we follow, is to imagine that we are looking at the page so

that the x-axis appears from left to right on the page (the horizontal). Another two-way

infinite axis, the y-axis, is drawn through the origin perpendicular to the x-axis; hence

conventionally this is placed from the top to the bottom of the page (the vertical). We now

draw a scale along each axis; unit distances need not be the same on both axes or even

linearly distributed along the axes, but this is normally the case. We assume that values on

the x-axis are positive to the right of the origin and negative to the left: values on the y-axis

are positive above the origin and negative below.

We can now uniquely fix the position of point p in space with reference to this coordinate

system by specifying its coordinates. The x coordinate, x say, is that distance along the x-

axis (positive on the right-hand half-axis, and negative on the left) at which the line

perpendicular to the x-axis, that passes through p, cuts the axis. The y coordinate, y say, is

correspondingly defined by using the y-axis. These two values, called a coordinate pair or

two-dimensional point vector, are normally written in brackets thus: (x , y), the x coordinate

coming before the y coordinate. We shall usually refer to the pair as a vector - the

dimension (in this case dimension two) will be understood from the context in which we use

the term. A vector, as well as defining a point (x , y) in two-dimensional space, may also

be used to specify a direction, namely the direction that is parallel to the line joining the

origin to the point (x , y).

Having defined the two-dimensional Cartesian coordinate system, it becomes apparent how

the three-dimensional system can be determined. We can imagine a third two-way infinite

axis, the z-axis, passing through the origin and being perpendicular to both x-axis and y-axis.

Following our conventions therefore, the z-axis will be perpendicular to the plane of the

page, and its positive part will either be coming towards us thus defining the right-handed

coordinate system, or away from us {left-handed coordinate system). Assuming the unit

distances have also been defined along the z-axis, a point in space (three-dimensional) will

be determined as a three-dimensional coordinate vector, normally written as a triple of its

corresponding x, y and z coordinates: (x , y, z). The left-handed three-dimensional Cartesian

coordinate system, as defined here, will be used in the remainder of this dissertation to

describe all our three-dimensional objects of our modelled scenes.

17

It must be realized that the coordinate values of a point in space are totally dependent on

the choice of coordinate system. During our analysis of computer graphics modelling and

visualisation techniques we will be using a number of different coordinate systems to

represent the same objects in space, and so a single point in space may have a number of

different vector coordinate representations. For example, if we have two coordinate systems

with parallel axes but different origins - say separated by a distance 1 in the x direction, and

2 in the y direction - then the point (0 ,0) in one system (its origin) could be (1 , 2) in the

other: the same point in space but different vector coordinates (Figure 1.2).

?!
• S i
« i

iii
X-axis (new)

(1,2) = (0,0) (new)

X-axis
(0,0)

Figure 1.2 Using two coordinate systems

The transition from one coordinate system to another is achieved by the use of matrices. In

coordinate geometry simple affine transformations like the translation, rotation and scaling

of axes are represented by matrices. Furthermore, combinations of such transformations can

also be represented by (products of) matrices [Angell & Tsoubelis 1992]. Nevertheless,

transformations exist, not only for the substitution of coordinate systems of the same

dimension (as in the above example) but also for systems with different ones. The latter

case, is usually encountered in the transformation of a (usually) three-dimensional space

(used to describe the scene) to the two-dimensional space of the viewport. This special type

of transformation that reduces the dimension of space is called projection.

18

I><

(0,0)

Figure 1.3 The viewport’s Cartesian system

In order to use the display device, we will also introduce a very special case of a two-

dimensional Cartesian coordinate system which is assumed to have points of integer

coordinates. The reason is that the viewport is assumed to be composed of a rectangular

array of points called pixels (picture elements). As a result, points on this space will be the

pixels, and unit distances on the x-axis and y-axis are assumed to equal the horizontal and

vertical size of the constituent pixels. And therefore, according to this observation, the

coordinates of any pixel in the viewport may only be integer multiplicands of the

corresponding unit distances. We can simplify the viewport’s coordinate system by ignoring

the pixel’s unit sizes and instead, measure pixel coordinates as number of pixels from a

predetermined origin. And assuming that the origin of the system is the bottom left comer

of the viewport, as Figure 1.3 shows, the coordinates of any pixel on the viewport will be

the number of pixels to the left and below it.

1.4 From mathematical models to images

In order to clarify the relationships between different systems we ought to work with one

fixed coordinate system only. In computer graphics, however, it proves to be very

convenient to use more than one coordinate systems. Therefore, for our clarification, we will

use at least four different coordinate systems, namely the ABSOLUTE, the OBSERVER, the

P = (pixel.x,pixel.y)

X-axis

19

WINDOW, and the VIEWPORT systems. In particular cases, however, as we will see in the

next two chapters, other coordinate systems like the LIGHT systems may also be used.

The ABSOLUTE system will be used for describing our model and the OBSERVER system

for calculating the view of the scene as seen by a particular observer. The LIGHT systems

will be used to describe the scene ‘as seen’ by each particular light source. The WINDOW

coordinate system will be used to represent the resulting image onto a model output device

(realized by the viewport), while the VIEWPORT system will be used to describe the image

on the screen of a particular display device. The WINDOW system will use real numbers

for point coordinates where the VIEWPORT will use pixel units for determining pixel

coordinates (Figure 1.2).

All objects in a scene are therefore described using the ABSOLUTE system and we name

their position the ACTUAL position. For convenience, however, each individual object may

be described in a simple way usually around the origin of the ABSOLUTE system. This we

call the SETUP position for that particular object. Therefore, objects are first individually

defined with reference to their own SETUP position and then they are moved to their

ACTUAL position, thus constructing the required scene. It is implied here that both

positions are described with reference to the ABSOLUTE system and the transformation

from one position to the other is achieved by the appropriate matrices (Pt) for every object

i in the scene, as Figure 1.4 shows.

Usually, after the scene is defined, an imaginary observer is introduced and the observer’s

view of the scene is required to be reconstructed on the viewport. The observer’s position

is described with reference to the ABSOLUTE system, but since this viewpoint becomes the

most critical point during visualisation a new coordinate system is introduced. This is the

OBSERVER system that has its origin where the eye of the observer is, and its orientation

is determined by the observer’s direction o f view. It is implied here that we use a single-eye

observer! For a ‘realistic’ two-eye observer two different views (one for each eye) need to

be calculated and therefore two OBSERVER systems should be determined.

20

Figure
1.4

From
m

odels
to

im
ages

to

3-D

light
source

LIGHT
system(s)

ABSOLUTE
system

Pi

2-D PIXELS

observer

projection

orthographic
perspective
stereoscopic

/ 3"D \ f objects in '
[OBSERVED
\ position J

objects
defined
by pixel
vectors

2-D
projected
objects

mapping
functionsprojection

function

WINDOW
system

OBSERVER
system

VIEWPORT
system

I I
I I
I I

At this stage, all objects that are currently described in their ACTUAL position with

reference to the ABSOLUTE system will be transformed (matrix Q) to their OBSERVED

position with reference to the OBSERVED coordinate system. As a short-cut it is not

uncommon to avoid using the ACTUAL position of objects and instead use for every object

i in the scene, the combined transformation (given by the product matrix Rt = Q x Pt) from

the SETUP directly to the OBSERVED position.

Another addition to the model may occur at this stage. This is the introduction of light

sources that illuminate the scene. The light sources are described with reference to the

ABSOLUTE system and usually a transformation to the OBSERVED system is also needed.

However, for additional functionality such as the representation of shadows, some computer

graphics applications define for every light source, a LIGHT coordinate system. Its origin

is the light source and its orientation is appropriately chosen to ease the calculation of

shadows produced by that source. Transformations between the ABSOLUTE and each

LIGHT system are achieved by the matrices St and S j1 uniquely defined for each source.

Having described all the constituents parts of a scene, usually in three dimensions, the next

stage is the reconstruction of the observer’s view. This implies that we need to calculate the

image of the scene as this appears on the retina of the observer’s eye. We must reiterate

here that we use single-eye view. Since this view is built on the two-dimensional retina, we

need to define and use a new coordinate system of dimension two; the WINDOW system.

Very often, its origin is determined by the direction of view and its orientation is parallel

to the X-Y plane of the OBSERVER system.

The transformation from the OBSERVER to the WINDOW system involves a reduction in

dimensions, usually from three to two. Such a transformation is called projection. Depending

on the application, a variety of projections can be used. These include the orthographic, the

perspective, the stereoscopic etc. [Angell & Tsoubelis 1992]. The most ‘realistic’ type of

projection is perspective. This produces two-dimensional views in a way similar to those of

the natural eye or the photographic camera. Projections are also represented by matrices thus

enabling a homogenous approach for the complete transformation of the scene description

from the OBSERVER to the WINDOW system.

22

Once the required image is described in the WINDOW system, the final step is to depict it

on the graphics viewport. Therefore, a conversion from vector coordinates (real numbers)

to pixel coordinates (pixel counts) is necessary. The image description in terms of pixels

will be determined via the VIEWPORT system. To achieve this conversion, we first isolate

a finite rectangular area (or window) within the WINDOW system. This rectangular window

is centred around the origin of the WINDOW system and is to be identified with the

graphics viewport. Therefore, the mapping functions from the WINDOW to the VIEWPORT

systems will be determined from the window and the viewport used. We assume that such

a viewport is composed of a rectangular array of points (the pixels, or picture elements).

This matrix of points measures nxpix pixels horizontally by nypix pixels vertically, counting

from the bottom left comer of the viewport (Figure 1.5).

! (nxpix-1 ,nypix-1)

I* P = (X,y)

t
.................*

y
1 ; X-axis

(0.0,0.0) «------ x ------

p = (x,y) => (pixel.x, pixel .y)

Figure 1.5 Relating points to pixels

The mapping from real window coordinates to integer coordinates (multiples of pixel units)

is achieved by dividing the window into nxpix x nypix equal sized rectangular areas called

sub-windows, that correspond to the nxpix x nypix pixels of the viewport. Therefore, for a

given point inside the window, we determine the sub-window to which it belongs, and map

it to the corresponding pixel on the viewport. As a result, all points that belong to the same

sub-window will be mapped to the same pixel. For example, as Figure 1.5 shows, for a

window of horiz x vert size and a viewport of nxpix x nypix pixels, the coordinates of point

p = (x ,y) will be mapped onto the pixel (fx(x) ,fy(y)) = (p ixe lx , p ixely) via the functions:

23

m = 2x+koriz
. 2 nxpix . My) =

2 y+vert
. 2 nyp ix .

where [r] denotes the integer part of the expression r.

1.5 The model display device

Consequently, we can draw two-dimensional views of projected scenes on the graphics

device, by simply relating the real coordinates of points in the window with their

corresponding pixels in the viewport. For reasons of portability and flexibility, however, the

graphics device is not assumed to be the particular screen, monitor or plotter that is part of

the currently used hardware installation. Instead, a model graphics display device is

introduced. This is assumed to be a virtual viewport of an arbitrary but fixed size with the

additional capability of discriminating among 16,777,216 different colours.1

The role of such a model graphics device is to hold an as accurate an image description as

possible, given the constraints of the particular installation (e.g. memory capacity), and the

demands of the application (e.g. image resolution). This form of the image is usually held

in secondary storage. This will enable further manipulation of the image, such as archiving,

post-editing, viewing, plotting on microfilm etc. as Figure 1.6 shows. The main advantage

of using such a generic form for the produced image is therefore portability; the same image

can be viewed on a variety of different hardware viewport devices with minimal effort. In

this way the image is realized on any viewport by utilising fully the underlying hardware.

In terms of image quality, the nearest the specifications (i.e. screen resolution, number of

available colours) of the real viewport are to the model device, the better. It follows,

however, that a real viewport with specifications considerably lower than the model device’s

will result into loss of information and significant degradation of image quality. Before

1 Usually modem viewports, as we shall see in later sections, provide support for an 8-bit description for each
of the red, green and blue colour components. Consequently the total number of possible colour combinations is (28)3.

24

discussing the challenge of transferring an image from such a model display device onto a

real hardware viewport, it is essential to explain the format that our images are described.

Image description on the viewport may take one of the following two forms; vector or

raster. A vector image is the one described by a set of line segments (the vectors) of the

appropriate colours at the appropriate locations inside the viewport. In contrast to vector

images, a raster image is described in terms of the colour of the viewport’s constituent

pixels. In most of our applications we will be using raster images since this format of image

description is inherent to most of the visualisation techniques we will be using (e.g. octree,

ray tracing).

However, the use of the model graphics device as a means for representing raster images

imposes a considerable demand in storage requirements. The two main factors determining

the storage needs are the pixel and colour resolution of the model device. The pixel

resolution determines the size of the device in terms of pixels. Referring back to Figure 1.5,

the maximum allowable values for nxpix and nypix will determine the maximum size

(measured in pixels) of an image that can be represented in the model device. Therefore, for

a raster image of the maximum size, we need to keep information of the colour of all the

model device’s nxpix x nypix pixels.

An issue that is often underestimated here is the actual size of the pixel. This relates the

aspect ratio of the real viewport with that of the model device. The aspect ratio of a

viewport is the fraction of the physical dimensions of its displayable surface over those of

its pixel resolution. In other words, the aspect ratio of a viewport is the fraction of the

horizontal over the vertical physical size of a pixel. It follows that a square pixel (when

displayed on the viewport) yields an aspect ratio of 1:1. For an accurate reproduction of

shapes, these ratios must be equal; a circle will be distorted into an ellipse, lines will change

their slope etc. Fortunately, most hardware viewports use square pixels. Nevertheless, there

are common purpose machines, like the IBM personal system, that use screen modes of 6:5

aspect ratio (VGA mode 19). For reasons of convenience, we use a model graphics display

device of square pixels. This affects the actual choice of values for nxpix and nypix, since

their ratio has to equal that of the horizontal (horiz) over vertical (vert) dimensions of the

25

window used (Figure 1.5). Viewport arrangements that do not match the ratio of the

dimensions of the window, are addressed by the introduction of appropriate non-uniform

seeding functions.

The second major characteristic of the model device is that of colour resolution which

determines how many different colour values a pixel can take. In other words, it determines

the number of different colours that the model device is capable of depicting. However,

since the model device is a virtual viewport, this maximum number can be arbitrarily set

to any value. Research [Wyszecki et al. 1982] has shown that the human eye cannot

differentiate between intensities that differ by less than 1 % for a black and white image, and

so perceives them as a continuous tone. Therefore, for a high quality ‘photo-realistic’ image,

no more than 256 (= 28) shades of any particular colour will be needed2. This observation

results in technical specifications that fall well within the limits of the dynamic range of the

most common display devices used. For example, a typical video monitor that uses the

cathode ray tube technology is capable of depicting between 400 to 530 different intensity

levels, and a typical photographic film can go up to 700 [Foley et al. 1990].

Furthermore, colorimetry informs us that any visible colour can be expressed, hence

approximated, by the combination of three primary independent variables. This has resulted

in a worldwide accepted standard called the Commission Internationale de V Eclairage

(CIE) chromaticity diagram that maps the complete colour range as a linear combination of

these three primaries which have been assigned the informative names X, Y and Z. Although

the CIE diagram has been accepted as the worldwide standard for colour description, there

is no exact (i.e. analytical) description that would map any given colour spectrum into the

corresponding X, Y and Z primaries and vice versa. Nevertheless, data tables, that

approximate these functions at lnm intervals of visible light frequencies as perceived from

a 2° and a 10° field of view on the retina, have been constructed vi a laborious measurement

experiments.

2
The choice of value 256 is convenient since we can exactly use one byte (= 8 bits) of computer memory to

represent the intensity value of any colour. The choice of a smaller value, say 128 (= 27) may yield an image of
similar quality but the manipulation of seven-bit values may become a very troublesome process.

26

This inconvenience, however, has led to the construction of a number of alternative colour

models, all attempting to describe a significant subset of the complete colour space (i.e. set

of all conceivable colours) as a combination of measurable parameters like hue, saturation,

brightness, or relative colour intensities. For example, the RGB colour model is based on the

tri-stimulus theory for colour perception3 and describes colour as the combination of

intensity values of three primary pure colours; the red, the green and the blue. Other colour

models include the CMY (cyan, magenta, yellow), the CMYK (cyan, magenta, yellow, black),

the YIQ (luminance, chromaticity), the HSV (hue, saturation, value), the HLS (hue, lightness,

saturation) etc. For a complete study of the most frequently used colour models the reader

is referred to [Hall 1989; Meyer et a l 1980]. In order to retain compatibility with the CIE

standard, transformation algorithms have been devised that convert the defining parameters

between the RGB model and the CIE as well as between the RGB and the rest of the colour

models. In our applications, we will be using the RGB colour model. The rationale for our

choice is convenience since the RGB model is used in all hardware viewports we will be

using, including computer monitors, paper printers and film plotters.

However, by using full colour (totalling 24 bits of data) information for an image we cannot

always ensure its accurate realization on a hardware viewport as the technical characteristics

of viewports may vary drastically. Such characteristics include the maximum number of

colours that can be represented simultaneously on the viewport, the dynamic range of the

viewport, its gamma correction mechanism etc. These difficulties, that stem from the

differing technical specifications of the various viewport devices, may be clustered into two

broad categories:

• using a limited amount of colours to represent an image

• using the ‘right’ colours to achieve accurate visual impression of the image

The aim in the first category is to use the viewport’s available colours in order to

approximate the image. Here techniques like halftoning and random dithering are being used

mainly for paper printers [Holladay 1980; Knuth 1987], while adaptive algorithms like the

This theory is based on the hypothesis that the retina has three kinds of colour sensors called cones, with peak
sensitivity to red, green and blue light. Experiments have shown that the peak sensitivities are at 580nm, 545nm and
440nm of the visible spectrum accordingly.

27

popularity, the median-cut [Heckbert 1982] and the agglomerative clustering [Xiang & Joy

1994] are commonly used for cathode ray tube devices. The former techniques build a wide

palette of shades by combining together the device’s limited set of colours (e.g. the dot size

of a black and white laser printer). In this way, the colour gamut of the device is used to

approximate the required colours. In the latter techniques, however, the emphasis is in

determining the exact amount of appropriate colours (e.g. 256 in VGA mode 19) that will

be used to represent the image’s colour gamut. The, effectiveness of these techniques

therefore depends on knowledge of the required colour gamut before visualisation

commences.

The aim of the second category of challenges is to achieve accurate image reproduction on

a variety of different viewports. Depending on the technology used for a particular hardware

viewport, significant differences in the colours of the reproduced image may be perceived.

Attempts for device independent colour reproduction include monitor calibrating devices,

predetermined colour palettes and ANSI-standard calibration targets [McMillan 1992].

IMAGE

■

4

STORAGE J

Figure 1.6 Manipulation of image files

To recapitulate, in our computer graphics applications we will be using the concept of the

model graphics display device and all image files will (eventually) follow the raster format.

These images will either be archived in the computer’s secondary storage devices (i.e. disks,

PIXELS
VIEWPORT

system

REAL
VIEWPORT

Realization

objects

defined
by pixel
vectors

Image-" -
compression

MODEL
DEVICE

28

tapes) for further manipulation and subsequent approximation to a viewport, or immediately

realized on a hardware viewport (Figure 1.6). This model device will use the VIEWPORT

pixel coordinate system to describe raster images of up to a maximum nxpix x nypix square

pixel resolution. The colour of each pixel will follow the RGB colour model and will use

up to 256 different values for each primary colour (i.e. red, green, blue), thus using three

bytes of colour information per pixel. This results in a huge storage demand even for images

of a moderate size.

For example, a typical image of 1024 x 768 pixels and 24 bit (3 x 8) colour resolution will

need 2,359,296 bytes (= 2.25 Mbytes approximately) of memory space. For the production

of a 35mm colour slide at ISO 100 however, we will need an image of 4096 x 2730 pixels

in size and of 24 bit colour resolution that will result into a 14-fold increase in storage

demands (approximately 32 Mbytes). Furthermore, technical constraints impose the need to

convert a binary stored image into a character-based one to ensure its safe transmission to

a variety of communications links and hardware platforms4 thus resulting in doubling the

size of the image file. It is essential, therefore, that transferring such a model device raster

image onto the secondary storage should involve an extra phase of processing, namely image

compression that will be presented in the next section.

1.6 Image compression

Data compression techniques aim at reducing the size of the necessary amount of data used,

while keeping their information content intact. They establish their effectiveness on the

amount of redundancy that exist in a particular set of data. The techniques aiming at

reducing the size of data files that hold images, whatever their particular format may be, fall

into the broad category of information theory, namely data compression. Especially with

images, however, it may not even be necessary to preserve all the information of the original

4 Using all 256 possible values of a byte implies that the control characters from the relevant character set
(ASCII, EBCDIC) are also being used. However, when transmitting such an image file via computer networks some
of the non-printable characters may be incorrectly interpreted as control characters by the network circuits thus
permanently distorting the contents of the image. The safest approach to overcome this possibility is to use only
printable characters (ie. alphanumeric) thus doubling the size of the image file.

29

un-compressed image. In many applications image details may get corrupted, or lost, for the

benefit of achieving a greater reduction on the size of the original image file. The

effectiveness of such techniques can be measured with the compression ratio they achieve,

the speed of actually applying the compression and de-compression algorithms and the

similarity of the de-compressed data file when compared with the original.

The compression ratio is defined by the ratio of the original to the compressed file, while

the degree of similarity is a subjective measure of how close to the original the de

compressed image ‘looks’. More objective measures, like the exact number of bytes the

images differ, cannot be applied since the importance of the image is the information it

carries and not the exact bytes that describe it. In other words, we are interested in the

preservation of the important details of an individual image.

Fortunately, raster images offer a great proportion of redundancy. It is not uncommon that

adjacent pixels may hold exactly the same or, very similar colours. This is true especially

on the background coloured pixels. Furthermore, very often only a small proportion of the

complete colour space is needed for any particular image. Therefore, many techniques are

based on the above observations and depending on the contents of an image file, produce

astonishing compression rates ranging from one (10:1) up to four orders of magnitude

(10000:1).

Data compression techniques for raster images may be based on the actual number of

colours used by a particular image, the frequency distribution of the actual colours used, or

on the colour information of adjacent pixels (context sensitive data compression). Apart from

some Image Processing applications, where the frequency distribution of the actual colours

used for a particular image are known (or, can be calculated at real time) the rest of the

computer graphics applications use context sensitive data compression techniques. Such

techniques are based on information (or, rather redundant information) of the colour of

neighbouring pixels.

Since in our applications image quality is more significant than storage space, we adopted

an image compression technique that preserves the original image. It is a context sensitive

30

technique, called run length encoding, and works as follows: the raster image is scanned in

a pre-determined direction, say from the top left comer to the bottom right one by moving

from left to right first. Once two or more consecutive (according to this pre-determined

direction) pixels are found to be of the same colour, then replication of information is

avoided by recording the number of consecutive pixels that have same colour.

Therefore, the format of the compressed image file is a series of pairs of pixel counts

followed by their common colour value. For pixel counts up to 256 pixels, one byte may

be used, thus in the best case of 256 consecutive pixels all having the same colour only four

bytes are necessary instead of the 768 (= 256 x 3) on the original raster image. However,

in the worst case, of consecutive pixels of different colours, one extra byte is added per

pixel (for the pixel count) thus increasing the size of the image file by 33%. Yet, experience

has shown that, on average, run length encoding can achieve a compression ratio of 100:1.

Apart from preserving the original image, run length encoding was chosen because it is also

being used in the software driving all the hardware graphics viewports of our installation

(i.e. computer monitor, paper printer, and film plotter drivers).

Nevertheless, not all of them are capable of preserving the original image, when

decompressed. It is not uncommon that a compromise on the image detail (with reference

to the original un-compressed image) may take place in order to achieve a considerably

better compression ratio. One such technique is implemented by the Iterated Function

Systems (IFS) algorithm [Barnsley et al. 1988; Horn 1989; Barnsley 1989] that achieves

compression ratios of 1000:1 or higher. It is based on the collage theorem that claims to

construct an image from a union of sub-images and uses two-dimensional transformations

that contract space. The aim of the IFS technique is for a given image to derive the

necessary set of transformation matrices. Depending on the geometric regularity of the image

(i.e. well defined shapes, not ‘random patterns’) and the required degree of similarity with

the original, this method may expand the image file (‘random patterns’, exact copy) or

reduce it up to four orders of magnitude (geometrical regularity, low degree of similarity

to the original).

31

Barnsley also announced that the complete set of the IFS compression - decompression

algorithms has been embedded into microchips thus enabling a real time response. This

performance characteristic is essential when transmitting in real time images or animation

sequences (e.g. videoconferencing) via any communications channel from the local storage

bus to a Wide Area Network-ed host. Other image compression techniques that are

frequently used include CCITT huffman, LZH, LZW, PKZIP etc. For a complete account

of the various image compression schemata the reader is referred to Murray & vanRyper

[1994].

1.7 The nature of light

In order to understand the foundations of computer graphics, the definition of light is

necessary. What also needs to be defined is what a light ray consists of and what is meant

by the word colour. In computer graphics, light is assumed to consist of an infinite number

of closely packed rays {light rays) that can be represented as vectors in the three-

dimensional space. Additionally, from physics, it is assumed that a light ray consists of

‘packets of energy’ called photons. The energy (E) that the photons carry is modelled as

electromagnetic waves and relates to its frequency (/) as the following equation shows:

E = f x h , where h is the Planck’s constant that is h ~ 6.63 x 10'34 Joules x seconds.

Another way to express the frequency / i s by the wavelength X. Frequency and wavelength

are linked together with the following equation / x X = c, where c is the velocity of light in

the medium that it passes through. For example, in a vacuum it is c « 3 x 108 meters/second.

What we perceive as colour is the frequency of that electromagnetic wave when the photons

that carry it hit the receptor cells on the retina of our eyes. When a photon hits our retina

it gives off its energy. If this energy is approximately of frequency in the range of 360 - 830

THz (ITHz = 1012 cycles per second), the receptor cells are ‘tuned in’ and stimulated, thus

passing the appropriate signals (stimuli) to the human brain. In terms of wavelengths, the

range of visible photons is between 360 and 830 nanometres (lnm = 10'12 meters). Mapping

this range to the colours we actually perceive, what we see as red is near 360 THz, while

blue is at the other end of the spectrum (i.e. 830 THz).

32

Another parameter that characterizes a light ray is the intensity it carries. Intensity of light

at a given wavelength is a measure of the amount of photons of that wavelength that are

travelling along that ray. It is expressed in terms of energy E and is measured in Joules. A

plot that depicts the distribution of intensity over all visible wavelengths for a given light

ray is called frequency spectrum plot or simply spectrum of that light ray. The spectrum of

many light sources has been studied (e.g. CIE Standard Uluminant D6500 represents an

approximation of the sun’s spectrum on a cloudy day) since it acts as an indicator of the

chemical composition of that source or of the media it travels through. Between individuals,

the range of visible frequencies may vary, therefore, the limits of the visible spectrum we

mentioned are to be treated as approximations. Moreover, the above theory for explaining

the nature of light does not answer all the questions in physics, but it is still sufficient for

most of the computer graphics applications.

1.8 Our installation

The rationale behind our research is to provide a visualisation system to aid. researchers not

only in the field of computer graphics but also in mathematics, physics, biology, to name

but a few. Therefore it is essential to prove that all our methods can be implemented on a

common purpose computer system and not on a very specialized, and therefore very

expensive, graphics engine.

Our installation consists of one workstation, black & white and colour printers, a microfilm

plotter and a microfilm recorder. The workstation is a general purpose IBM Personal System

Model 95 XP with adequate memory (8 Mbytes RAM, 1.5 Gbytes disk) and a tape archiving

system for long term storage and back up purposes. It is a single processor (Intel 80486DX

33MHz) system with an accelerated video sub-system (XGA). The XGA adapter is used on

its high resolution 1024 x 768 mode and is capable of depicting up to 256 different colours

on the computer screen at any time from a choice of 216 = 65536 different colour shades,

using the RGB colour model.

33

Most of the software used in this dissertation is implemented in the Object Oriented C

language extensions (C++) and in particular it is developed in the Borland C++ environment

under the DOS operating system. Although some DOS memory extending facilities and

other operating systems are available that provide excellent memory management

functionality, great effort has been put to contain the complete code inside the 640K

memory limits of the DOS operating system. Again the rationale behind this decision is

portability along different small sized common purpose computer systems.

For the same reason, the software produces machine independent viewport commands, the

viewport primitives, that are traced and recorded by implementations of the model display

device driver. For every real hardware viewport a different model display device driver has

been implemented in order to exploit fully the particular capabilities of the hardware

involved. Specifically, there has been developed a device driver for the XGA and the VGA

modes of the computer’s monitor, one for devices that accept the Adobe Systems PostScript®

language and one for devices that accept the Hewlett Packard Graphics Language (HP-GL®)

for pen plotters. All these device drivers are interchangeable and all communicate with the

main code via the common set of device independent viewport primitives.

Image files follow the raster format and are stored compressed with the run length encoding

algorithm. Depending on the visualisation method used, and the operating system’s

limitations (DOS 640Kbytes barrier), some post-processing may be necessary. For example,

images produced with the oct-tree method need to be temporarily stored in a meta-language

format. This format is actually an encoding of the device independent graphics primitive

commands directed to the model display device implementations (i.e. device drivers for

particular hardware viewports). This meta-language file is subsequently processed in order

to produce the raster image file necessary for the rest of our manipulations.

The use of paper printers is achieved via the PostScript® device driver which is capable of

producing Encapsulated PostScript® files (EPS) holding the complete raster image in the

form of a bitmap. The EPS files are realized either on a IBM 4029 PS black & white 600dpi

(dots per inch) laser printer, or on a QMS 100 dye sublimination colour printer. Where

appropriate, the meta-language format is used to transform images from our model display

34

device language (i.e. set of device independent primitive commands) into the PostScript® or

the HP-GL ones for the inclusion of draft sketches (usually wire-frames) into word-

processed documents for further manipulation.

Furthermore, for higher quality hardcopies of our images, two film-based viewports are used,

the Dicomed and the Montage. They are both able to handle 35mm film of ISO 100

resolution which effectively gives an area of 4096 x 2730 addressable pixels. The Montage

recorder accepts raster images only. Vector graphics image formats are being rasterized at

a pre-processing stage before they are mapped on to the film area. This facility is local,

accepts among other formats Encapsulated PostScript files, and is sufficient for most of our

needs.

The Dicomed D48C, however, offers the additional advantage of vector plotting, thus

enabling us to explore the ‘additive’ behaviour of the photographic film. This equipment is

attached to a complex of three CONVEX 220 supercomputers (under a dialect of the UNIX

operating system) located at ULCC and is accessed via the X.25 network links of JANET.

Here the appropriate device driver had to be written. It was implemented in the FORTRAN

programming language in order to link to the DIMFILM library of subroutines. In order to

avoid possible corruptions of the image files while being transmitted via the network links,

and in order to achieve a file description independent of the character set differences

between the computers used (ASCII vs. EBCDIC) it was essential that image files were

converted in order to use only printable characters (i.e. alphanumeric) instead of their

original pure binary form.

Another manipulation to the image files was the arbitrary change of their pixel resolution

in order to match the particulars of a hardware viewport. This involved the use of

interpolation techniques that enabled the transfer from the (orthogonal) grid of square pixels

of the model display device to any other orthogonal grid of arbitrary density (pixel

resolution) and aspect ratio (i.e. rectangular pixels). It is anticipated that such

transformations may alter details of the original image, since a simplistic linear interpolation

model is used [Tsoubelis 1985]. Nevertheless, such a facility has proved to be convenient

while previewing a great number of archived images.

35

Chapter 2 Modelling in computer graphics

2.1 Introduction

The first phase in any computer graphics application, as mentioned in the previous chapter,

is modelling, where the description of what needs to be visualised is constructed. The model

description is then properly encoded (e.g. in a data file) in order to provide all the necessary

information for the subsequent phase of visualisation.

In this chapter we will take an overview of the most frequently used approaches to

modelling that have been implemented in the field of computer graphics. First, we will

present and discuss the constituent parts of a model in terms of both necessary and optional

characteristics. Then, we will discuss the two basic categories of model in the computer

graphics domain. Finally, we will present a number of approaches to modelling that are

considered representative in terms of their underlying philosophy, main characteristics,

application areas, strengths and weaknesses.

However, before commencing our presentation of the various issues regarding modelling,

it is essential that we give some definitions about the terminology that we will be using, in

order to establish a common understanding with the reader. This will clarify the use of terms

that, although they have been widely used in the relevant bibliography, often have been

assigned a variety of different meanings. All these terms relate to the word model and our

interpretations will be given in the following section.

2.2 Terminology - definitions

Since the aim of modelling in computer graphics is to construct the description of the

required scene, and the most prominent feature is the shape of the objects in the scene, we

will start our definitions with that of the geometrical object.

36

• Geometrical object. A primitive entity, such as a point, a line segment, a planar polygon,

a circle, an ellipsoid, a cone, a cylinder, etc., as defined and used in all common geometry

textbooks such as Euclid’s Elements [Papanickolaou 1978].

• Object. The constituent parts of a scene. An intuitive term to describe a logical entity in

the computer graphics scene (e.g. a ball, a table). With a few exceptions that will be

discussed later in this chapter, we assume that a scene consists of objects, and that any

object can be decomposed into a combination of geometrical objects that we will also call

primitives.

• Surface. The locus of points that have a common property. For example, the surface of

sphere is the set of all points in three-dimensional space that are an equal distance away

from a fixed centre point. In some cases, a surface is also considered as the boundaries

between an object and its surrounding space.

• Solid object. The volume of space that is enclosed by a ‘closed’ surface. We assume that

the surface is also part of the solid object.

• Scene model or, model. The data describing the computer graphics scene. These include

information about the geometrical properties of the constituent objects such as shape, size,

and location in the scene. Additionally, they may include information about the colour

properties of the materials that these objects are assumed to be made of, such as reflection

and refraction parameters of all object surfaces, and any other supplementary data

necessary for the visualisation algorithms.

• Colour model. The set of rules that permits the description of colour. The set of all

perceivable colours define the colour space. There are a few colour models that are

widely accepted. Depending on the colour model used a different subset of the colour

space can be described.

• Shading model. The set of rules that permits the analytical description of optical

phenomena. Optics define colour in a dual nature; electromagnetic wave, and quantum.

37

As a wave, colour is determined by a spectrum and as a quantum it is defined by a ray.

For the purpose of computer graphics we also use the concept of perception from theories

of psychology. A distillation of all these theories has resulted into a variety of shading

models that describe the interaction of colour with matter.

• Modelling. The process of determining all the data needed to construct the model of a

particular scene.

2.3 Characteristics of modelling

Using the above terminology, the purpose of modelling in computer graphics is twofold;

first, it is the process of describing the necessary primitive geometrical objects and second,

it is the description of the way these geometrical objects should be combined together in

order to construct the required scene.

The process of defining the model of an object, however, is not straightforward. There are

several types of objects that do not have a unique model. There are two important reasons;

the first is that the model may not be an exact description of the object but an

approximation to it; and the second reason is that different combinations of primitive

geometrical objects may be used to construct the same object in a scene. Consequently,

various degrees of approximation will result into different models of the same object.

Choosing therefore, a particular modelling approach entails considerations regarding the

required degree of approximation to the object, and the type of primitives that a particular

visualisation algorithm can handle. This choice of the appropriate degree of approximation

(if any), the type of primitives and the suitability of their combination can be judged against

a set of general criteria. Such criteria should not be treated as compulsory features that any

modelling approach should conform with, but as a set of properties that very often aid the

designer and improve the speed of visualisation. The following list presents some of the

most frequently used criteria:

38

• Generality. A modelling approach should be generic. As such, similar objects should

generate similar model descriptions. Similar objects are therefore described once, say in

their SETUP position, and the scene’s model is then constructed by instantiations of that

generic forms. For example, all ‘boxes’ in a scene may be described (i.e. modelled) as

parallepipeds and their description should differ only in the values of the parameters

describing the boxes’ exact dimensions and surface properties.

• Controllability. A modelling technique should offer as many degrees of freedom as

possible. Such a property will enable the designer to adjust the modelled shapes both

globally and locally [Barsky 1981; Forsey et al. 1988]. This property complements the

property of generality.

• Invariance. By applying a transformation (such as those introduced in the first chapter)

to specific points (usually possible centres of symmetry or other control points) the whole

shape should be transformed. Such a property would significantly simplify and enhance

generality and controllability and can be achieved via appropriate SETUP to ACTUAL

transformation matrices. There are transformations, however, for which this property is

not ‘always valid’, and where ‘intuitive’ adjustments are necessary. Take, for example,

the application of Minkowski operators on polygons detailed in chapter four. The M-

difference does not always produce a polygon, and a post-processing stage needs to be

followed after the M-difference operation.

• Continuity. A surface should be (at least) geometrically and/or analytically continuous

[Barsky 1984]. Although it is not essential, such a property would ease the calculations

needed for the determination of the vector perpendicular to any point on the surface (i.e.

the normal vector). Moreover, since most of the visualisation algorithms are based on the

assumption of surface continuity, discontinuous surfaces should be treated with care.

• Bounding volume information. Information about volumes bounding the modelled object

should be easy to calculate. The tighter a bounding volume (or extent, or enclosure) fits

the modelled object, the better such spatial information can be exploited [Whitted 1980].

Such an observation aims at improving the efficiency of various visualisation algorithms.

i
39

In certain implementations of such bounding volume acceleration techniques, the process

of visualisation may be improved by an order of magnitude or more. [Weghorst et al.

1984; Kay et al. 1986; Arvo et a l 1989].

• Ease o f computation. This is an all encompassing title for all the issues regarding the

difficulties encountered during the implementation of any modelling approach. Relevant

issues are the exploitation of recursiveness [Meagher 1982] and parallelism [Dippe et al.

1984; Kobayashi et al. 1987; Nishimura et al. 1983], the re-usability of pre-calculated

values and the exploitation of bounding volume information [Nemoto et al. 1986].

It can be observed that the above list only covers issues that refer to the geometry of the

models. However, in most applications, the model also contains information about the colour

properties of the surfaces of the modelled objects; such information is necessary for the

rendering algorithm during the visualisation phase.

For a typical computer graphics application, where ‘photorealism’ is a high priority, the

rendering algorithm should simulate a number of optical phenomena such as specular and

diffuse reflection, shadows, penumbra, ambient illumination, light refraction, radiosity, etc.

The set of optical phenomena that a computer graphics application will simulate constructs

a shading model that the rendering algorithm will have to implement. Depending on the

complexity of the shading model and the colour model used, a number of different

parameters will have to be defined for all the surfaces of the modelled objects.

For example, the colour of a surface may be defined by the proportion of the light this

surface reflects. In order to simplify the rendering algorithm, these proportions are not

measured in all frequencies of visible light but they are sampled in a few frequencies only,

usually the primary components of a convenient colour model. For the RGB colour model,

the proportion of reflected over incident light on a particular surface will be measured for

the pure red, green and blue light only. These proportions will normally depend on the

direction of the incident light and the viewing direction. With a few exceptions found

40

elsewhere,1 such details are roughly approximated since they put a heavy strain on the

computational demands of the computer system. Other parameters involved in the

implementation of a shading model may include the shine, gloss, degree o f transparency,

index o f refraction, colour and intensity of the ambient light etc.

2.4 The nature of models

So far we have seen that the constituent parts of a model give a static description of the

geometrical and optical properties of the modelled object. Furthermore, we implicitly made

the assumption that we know exactly the shapes and colours of the modelled objects.

However, these observations may not be true in all applications and for all the objects we

may need to model: there are objects like the sea waves, clouds or fire, that do not have a

specific form (i.e. geometrical shape) and any instantiation of their appearance may suit our

purpose. Moreover, there are objects that we cannot describe analytically, but we know a

way (i.e. the procedures) to construct them. Apart from geometry, the optical properties (e.g.

colour, reflection, transmission properties, etc.) of the surfaces of the modelled objects may

also vary, as is the case of the textured surfaces of objects like marble, wood, textiles, etc.

Therefore, a more thorough investigation of the different types of objects and models is

necessary. As a result, we will call an object deterministic or stochastic depending on the

nature of its properties that describe its shape and its optical behaviour. With regard to a

given property, an object will be called deterministic if this property’s value has to be

uniquely determined (by a formula or process) and stochastic if its exact value is not

important but an instantiation of it is sufficient for the application. With regard to models,

we will call a model static if the data describing a particular property of an object are

known to us, constrained or, constraint-based if the state of that property can be determined

by a set of given constraints (e.g. gravity, geometrical locus, etc.) or procedural if the state

of that property is not known but can be calculated via a known procedure.

1 The shading model of luminaire design software that determines the light flux distribution in three-dimensional
space takes into account the exact physical properties of the light sources and the materials used for the appropriate
reflectors [FiELD 1992; Ward 1994].

41

In order to understand this binary classification of objects and models, we will present in

this sections a few representative examples for each of the above categories. We will start

with objects with a deterministic shape and examine the different types of models we can

have. Then, we will look at stochastically shaped objects and their resulting models.

Deterministic objects

• Static model: a cube of given dimensions can be modelled as parallepiped. The only

information we must include in the model is the length of its edges. Alternatively, the

cube may be built by a set of polygonal facets and therefore information about its

constituent vertices has to be included in the model.

• Constrained model: a sphere can be modelled as the locus of all points in

three-dimensional space that are equidistant (i.e. the radius) from a given fixed point (i.e.

the centre). Another more complex example would be the shape of a table-cloth covering

an uneven surface. Here, the exact location of the table-cloth has to be calculated by the

physical properties (physically-based modelling) of the cloth (i.e. weight, density,

elasticity, etc.) and this information will be included in the model for the subsequent

phase of visualisation. It follows that such information should be determined by applying

the appropriate laws of physics (e.g. gravity). Physically-based modelling is already a

recognised research area within computer graphics and the reader is referred to

Terzopoulos’ [1989] inelastic (plasticine like) objects that get permanently deformed after

a collision, or Barr’s [1989] chains that are affected by gravity forces.

• Procedural model: a finite cylinder is produced by intersecting an infinite cylinder with

two half-spaces perpendicular to the cylinder’s axis. Here the emphasis is on the

construction of the shape of the object by using surface generation procedures like that

of extrusion, rotation, envelope, etc.

Stochastic objects

• Static model: a ‘close-up’ view of a rough surface (e.g. a wall). If we look from a

distance, a wall looks like a flat surface which could be modelled by an appropriately

shaped planar polygon. However, a ‘close-up’ view of a wall will reveal its roughness.

But ‘anomalies’ on this wall surface are not distinguishable. Consequently, the model of

such a rough surface need not be, and cannot be, an exact description of all the observed

42

‘anomalies’. A random generation of a polygonal mesh that resembles a similar degree

of roughness would therefore suffice to model this surface.

• Constrained model: a, for example, fractally produced ivy as it grew over a particular

fence structure. The constraints here come from the interaction of gravity (the flower is

unable to sustain its weight) and the geometry of the fence. Here the randomness of the

object(s) will be simulated by pseudo-random number generators, therefore some control

parameters (e.g. seed, magnitude, random proportion) have to be supplied. As a result, the

main characteristics of an object will be determined by the constraints, but the details will

be randomly chosen.

• Procedural model: the object produced by the random displacement of three-dimensional

points from a given flat polygon. Another example would be the three-dimensional object

that is produced by the rotation of the Mandelbrot Set with given parameters (i.e. initial

values, threshold value) around its imaginary axis.

The following table (Table 2.1) summarises the above examples on a 2 by 3 matrix.

Objects
Models

Deterministic Stochastic

Static box -
parallepiped

wall -
random polygonal mesh

Constraint-based sphere -
geometric locus

ivy -
controlled random growth

Procedural cylinder -
set theoretic operations

random object -
random displacement

Table 2.1 Examples of the object - model classification schema

The discrimination between constrained and procedural models of stochastic objects is

somewhat analogous because procedural models imply the use of pseudo-random number

generators that have to be controlled (i.e. constrained) by a set of defining parameters (e.g.

seeds). Another difficulty that emerges from this classification arises from the observation

that there may be more than one model for describing the same object. Consequently, the

same deterministic object may have both constrained and static models. In the following

example we will illustrate how the deterministic object ‘ring* (also called torus or,

doughnut) may have models in all three categories (i.e. static, constrained, and procedural).

43

A ring is defined by the formula (jc2 + y 2 + z 2 - (a2 + b2))2 - 4 a 2(b2 - z 2) = O.This

formula will construct a static model of the ring. However, the locus of three-dimensional

points that are equidistant from a given circle, will also define a ring. Such a model is

constrained and is described as: {p eR3 | \\p - circle || = c }. Furthermore, by revolving a circle

around a circular trajectory we also define a ring. This model of a ring is procedural and

consists of an accurate description of the construction process.

Following analogous steps, we can conceive a similar schema by examining shading models

and the way light interacts with the surfaces of objects. For example, deterministic shading

may result in static, constrained and procedural shading models.

• Static shading model: the colour of a surface is assumed to have a particular value

irrespective of any illumination sources in the scene. This assumes a trivial shading model

using fixed colours and is frequently used in applications where the number of available

colours on the viewport is extremely small (e.g. VGA mode 18 offers 16 colours only).

• Constrained model: the colour of a surface is determined by its primary colour but is

adjusted in order to simulate optical phenomena like diffuse and/or specular reflection,

transparency, etc. Shading models like the Gouraud and Phong shading belong to this

category and will be presented in detail in the next chapter.

• Procedural model: the colour of a surface is determined by the mapping of another image

(usually in the form of a bitmap) onto that surface. Another example of a procedural

model for shading is the introduction of random colour perturbation.

In an analogous way, stochastic shading describes shading models that accept as an input

parameter a (pseudo-) randomly chosen primary colour. This type of shading does not

produce ‘intuitive’ results. An example of a stochastic shading model is, in certain

circumstances, that of false colouring.

44

2.5 Approaches to geometrical modelling

In this section, we will take an overview of the existing approaches to modelling, that have

been implemented in the field of computer graphics. For each one, apart from the

description of its main characteristics, we will discuss its advantages and disadvantages, and

we will categorize it following the previously described model classification.

In geometry, there are two basic methods for describing a curve or a surface, namely

classification and enumeration. With both methods the underlying assumption is that an

object (curve, surface, etc.) is represented by the set of it constituent points, (the locus of

which describe the surface). Therefore, the task of defining a shape, is expressed as the task

of determining the set of points (in the appropriate n-dimensional space) that the particular

object consists of.

As a result, in the classification method, the object’s constituent points are determined by

an appropriate function (F(p)), that for a given point p determines whether that particular

point belongs to the desired object or not. According to Hanrahan [1989] the description of

an object is determined by a point-membership classification function (PMCF). This is either

a formula or a procedure that decides whether a certain point (input) is inside, outside or on

the surface of the required object (output) :

{< 0 inside
= 0 on
> 0 outside

However, since there are objects where the meaning of ‘inside’ and ‘outside’ is not well

defined, we would suggest a better definition: in the classification category, there exists a

mathematical test (T) — which may be either a formula or a procedure — that the locus

of the points p that evaluate the defining test function Tip) to zero, define the required

object (usually a surface if no degeneracies occur). Since a point is not known to belong to

an object unless the above test has been performed, objects generated with this method are

also called implicit. If the above test is expressed as a mathematical function, then according

to the description of the classification function T, objects can be called algebraic if T is

expressed by polynomials (of a finite degree) only, and if T is a differentiable (i.e. smooth)

function, they are called analytic.

45

For example, the perimeter of a circle of radius one unit in two-dimensional space may be

defined analytically by the classification test: (T(p) =0) = (x2 +y2 -1 = 0) , where x and y

denote the circle’s coordinates using a two-dimensional Cartesian coordinate system

imposed on the two-dimensional space. In this example the analytic function x 2 + y 2 - 1

is used to determine the test (T(p) =0) that will distinguish all points that evaluate it to zero.

The second mathematical method for object description, namely enumeration, assumes that

all the constituent points of an object can be generated by mapping to them a set of

parameters. Hence this method is also called explicit, or parametric. Such an assumption

implies that there exist both a set of input parameters with certain values (or range of

values) and an appropriate mapping function (or functions) that calculates the coordinates

of all the points of the required object. In a more precise manner, a three-dimensional

surface will take the form: (x(u,v),y(u,v),z(u,v)) where jc, y and z are independent

mapping functions of the parameters u and v. Therefore, knowledge of the mapping

function and of the ranges of the values of the input parameters is sufficient for us to

determine an object.

For example, the perimeter of a circle of radius one unit, in two-dimensional space, may

be defined explicitly by one input parameter <p and the following functions:

(jc(q>) , y(q>)) s (cos(q>) , sin(<p)) when <p e [0,2tt).

From the above example, it becomes obvious that both methods may be used to determine

the same object. However, as we will see in the next chapters, there are objects that can be

described by a test function (i.e. classification) but they may be too complex to be described

by their equivalent enumeration function. The choice of the appropriateness of each method

may be judged against the set of criteria we presented earlier, and the particular

requirements of the application.

In the next subsections, we will present the most significant modelling approaches in

computer graphics. They will be classified according to the category in which they are most

often used (i.e. enumeration, classification). We will begin with the enumeration category

and their main representative interpolation. Then, representatives of the classification

46

category will follow starting with polygonal mesh. Then, the approaches of analytic

functions and that of volumetric arrays will be presented. Finally, another pair of

approaches, namely constructive solid geometry and procedurally defined surfaces, that are

used to combine object descriptions from any other modelling approach in order to build

more complex ones, will be discussed.

2.5.1 Interpolation

Interpolation methods have been studied extensively for many purposes. Application areas

includes image processing, remote sensing, ship building, metallurgy, etc. Depending on the

requirements and the assumptions of a given problem, a great variety of interpolation

techniques exist. Apostolatos [1981] discusses the fundamental mathematical theory behind

Lagrange, Everett and Tschebychev interpolation techniques. One approach to the problem

of interpolation that is identified with computer graphics is splines. It originated in the ship

building industry, where one of the main tasks of the builders was to determine the

curvature of metal arms that would connect together the basic skeleton of a ship.

With regard to splines, a typical interpolation problem in two dimensions is expressed as

follows: given a sequence of control points (in two-dimensional space), define (a function

that produces) a curve which passes through or nearby these points. It would be desirable

for this function to have minimum curvature and be analytically continuous over the interval

where the points are defined. In three-dimensional space, the equivalent of the control point

sequence is a lattice arrangement called control grid and the required curve becomes a

smooth surface that passes through or near that grid.

With regard to modelling in computer graphics, the interpolation problem is expressed in

a slightly different manner. What is required is a shape (usually a continuous curve or

surface) that needs to be approximated. Therefore, the user will have to determine the

desired (enumeration) function that approximates the given shape. As a result, it is the user’s

responsibility to define the appropriate control points (or grid) that, when interpolated, will

determine the required function. The guessing of the appropriate control points is aided by

the following:

47

• The ability of creating surfaces by connecting together little patches (patchwork)

[Coons 1964; Coons 1967; Forrest 1972].

• The extensive control that current interpolation techniques offer. Specifically, there is

o Local control by point displacement, where shape alterations may be achieved in

small areas of the produced surface by displacing the nearest control point(s). This

is the case of most spline techniques like B-splines [Barsky 1984],

[Schoenberg 1946; Carry & Schoenberg 1947; Carry & Schoenberg 1966], Bezier

splines [Bezier 1972; 1974; 1977], non-rational B-splines [Riesenfeld 1973], etc.

o Local control by weight adjustment, where shape alterations of small areas of the

produced surface may be achieved by the weight factor of the nearest control

point(s). This is the case of rational B-splines [Versprille 1975; Tiller 1983].

o Local control by bias and tension, where local alterations of the degree of bias (or

symmetry) and the amount of symmetric tension applied on a surface may be

achieved by the adjustment of and 62 (bias, tension) of the Beta-splines [Barsky

1981; Barsky et al. 1982; Barsky et al. 1983].

• Fast algorithms for evaluating splines like, for example, the Cox-deBoor [Cox 1972;

deboor 1972] recursive algorithm.

• Customized types of splines that show specific properties. The main family of such splines

was introduced by Catmull and Rom [1974], where the control points were replaced with

(control) functions. The type of splines used, and the type of the control functions will

predicate a set of properties on the resulting surface (or curve). Barry and Goldman [1988]

showed how Lagrange interpolation polynomials can be used as control functions, and

presented a recursive algorithm for their evaluation.

• Advanced spline editors that allow real time editing of spline curves and surfaces.

With this approach, a shape is described by a (interpolation) function, or a combination of

more than one function (i.e. patchwork), together with the necessary parameters (i.e. the

arrangement of the control points, and/or their weights, bias, tension, etc.). For example, a

circle may be defined by a B-spline using as control points the comer and midpoints of the

circle’s circumscribing square. Accordingly, in three dimensions, the corresponding sphere

may be obtained by a B-spline and a control lattice as defined by the vertices and the

midpoints of the sphere’s circumscribing cube.

48

2.5.2 Polygonal mesh

Apart from functions, surfaces can be described using building blocks to construct them.

Surfaces are approximated by a ‘patchwork’ of simple planar geometric objects namely, fla t

polygons, or facets. The reason for classifying this approach under the ‘implicitly defined

shapes’ category is that it is based on the assumption that a polygon is described implicitly;

a polygon is assumed to be the locus of co-planar points that fall inside its edges.

This implies the existence of the appropriate point in polygon classification tests. Two such

tests are the non-zero winding number rule and the even-odd rule and are presented in the

[Postscript® 1987] reference manual. Both techniques assume that the vertices of the polygon

have been named in such a way that there exist an order with which all vertices can be

visited by a given algorithm. Assuming a two-dimensional space, according to the first

technique, an infinite line that passes from the given point is (conceptually) drawn with any

direction not parallel to any of the polygon’s edges. Then starting with a counter of zero,

we add one (1) if an edge crossed that line from left to right, according to our pre

determined naming convention, and subtract one for opposite direction (right to left)

intersections. If the final count is zero the given point is outside the polygon else, inside.

In we illustrate how this rule is applied for the points p and q and canonical pentagon and

a five pointed star shaped polygon with its edges intersecting each other respectively.

*
¥ \

INSIDE INSIDE

Figure 2.1 The non zero winding number rule

49

According to the second test, (the odd-even rule), an infinite line is again drawn over the

point in question. Then we count the number of times that this line intersects with the

polygon’s edges. If the total is an odd number the point lies inside the polygon else, it is

outside, illustrates how we apply this rule for the same objects as we did in the previous

example (). Note here that the simple case of the convex pentagon gives the same results,

however, the case of the five pointed star polygon does not.

k
10 \/ \

OUTSIDE

Figure 2.2 The even-odd rule

Invoking the above point-in-polygon tests on flat polygons in three-dimensional space,

however, poses an additional challenge; the transformation into the equivalent two-

dimensional problem. This entails the determination and use of a coordinate system that has

(say) its X-Y plane coincident with that of the polygon, and its origin coincident with that

of the point in question.

For our convenience, and without affecting the applicability of the polygonal mesh approach,

we found it effective to make the following two assumptions. The first regards the use of

convex planar polygons only, since the use of concave ones complicates the implementation

of the point-in-polygon test. If it is necessary to use concave ones we decompose them into

a set (patchwork) of smaller convex ones.

The second assumption regards information about the orientation (i.e. the ‘front’ and the

‘back’ face) of such a facet. Such information is embedded in the model by assuming a

consistent way of ordering the vertices of all the facets. For example, the ‘front’ (or outside)

50

face of a polygon is described by noting its edges counterclockwise. The exact ordering is

not important as long as it is consistent in all the facets of the model. This ordering will

enable the visualisation algorithms to decide whether a surface is visible or not and

consequently ease, or possibly avoid, the determination of the point-in-polygon test.

Polygonal mesh models can be visualised extremely quickly (rates of thousands of polygons

per second are common) because of the simplicity of the building primitive used (polygons).

Moreover, many intersection finding and rendering algorithms have been translated into

microcode and put into the hardware (VLSI chips) thus further increasing visualisation

speeds.

But polygonal mesh has some drawbacks as well:

• The approximation of shapes with high curvature necessitates the use of large numbers

of tiny polygons, thus considerably increasing the size of the model description and

implying the need for large databases to store them.

• Since an object is approximated by a patchwork of planar polygons, the notion of

curvature is lost. Therefore, it is the responsibility of the visualisation (rendering mainly)

process to remedy this. Algorithms like intensity interpolation shading [Gouraud 1971]

and normal vector interpolation shading [Phong 1975] reduce but do not eliminate the

problem.

• The joints of the patches (polygons) do not produce pleasing images (i.e. smooth

surfaces). As a result, a jagged polygonal silhouette appears.

Figure 2.3 Various degrees of approximating a sphere

51

Despite the above mentioned drawbacks, polygonal mesh is the most common approach used

for modelling in computer graphics because of its simplicity, its visualisation speeds and its

capability to approximate (to a certain extent) any conceivable surface.

As Figure 2.3 shows, the closer to the required surface we approximate, the more facets we

need to patch together. In Figure 2.3 we see three different approximations to a sphere using

the polygonal mesh approach. Starting from the coarser one, we used 100, 400 and 900

polygonal facets.

2.5.3 Analytic functions

The use of analytical functions as a modelling approach is the second most significant (after

the polygonal mesh) representative of the classification category. Recalling our definitions,

objects are defined with a point-membership classification test which is usually in the form T{p) =0

for a function 71(p), VpeR". Such a function T may be an algebraic function such as a

quadric, quartic, superellipsoid, superhyperboloid etc. In general, an algebraic surface in

three dimensions is represented by the following function:

TQc,yjz) = E E E am x 1 y J z k
1=0 j *0 k*0

where i , j , k e Z, V i = 0 y=0,. . . ,m, k= 0f...,n, and its degree is defined to equal to the

sum l+m+n. For this function T, we can generate a point membership classification test as

(Eq. 2.1) shows.

T(x,y,z) = 0 (Eq. 2.1)

The following table (Table 2.2) shows some examples of the function tests that describe the

most common three-dimensional geometrical objects.

52

sphere x 2 + y 2 + z2 - 1 = 0

cylinder x 2 + y 2 - 1 = 0

cone x 2 +y2 - z 2 = 0

paraboloid x 2 + y 2 + z = 0

hyperboloid x 2 + y 2 - z2 + 1 = 0

torus (x2 + y 2 + z 2 - (a2 + b2))2 - 4 a 2(b2 - z 2)

Table 2.2 Analytical function tests for simple geometrical objects

The use of function tests for the definition of an object (surface, curve, etc.) enables us to

produce families of similar objects according to the following observation. Given a function,

say / , the test that can be generated by the equation flp) =0 will define a set of points

p eR3 in (say) the three-dimensional space that will construct an object. However, it is not

necessary that the second part of this test is always set to zero (0). A more general

definition would be:

flp)= s, s e R (Eq. 2.2)

Such a test is equivalent to the f lp) -5 = 0 , SEE. Therefore, by ‘off-setting* the initial

function / we may generate an infinite number of ‘similar’ tests. Thus for every possible

value of the real parameter s a new object (i.e. set of points) is produced. As a result, the

same function / will produce a family of similar objects by adjusting the variable s as

equation (Eq. 2.2) shows. Following the notation of equation (Eq. 2.2), for the rest of this

document whenever the parameter s is not mentioned it will be implied that the defining

function / assumes that s=0 and the resulting object is created by the point-membership

classification test: o.

Algebraic surfaces that intersect each other may also be blended. Take, for example, two

surfaces defined by the functions / j , f 2 and the families that they generate =sx , f 2 =s2 for

all the possible real values of s t and s2. The blending function g that blends between the

surfaces / j and f 2 is denoted by g(fv f 2) = g(sl t s2) and is expressed as a function of the

parameters Sj and s2. Hoffman and Hopcroft [1985] suggest that a desirable blending

function should intersect both surfaces / j and f2, be a tangent to these surfaces along the

53

curve of their intersection and be smooth between these curves. Hanrahan [1989], suggests

the ellipse as an suitable blending function:

(Sj-fl)2 (s2-b)2

a 2
g(sv s2) = -----— + 1

where a ,b are the values of sv s2 when f x intersects f 2.

Another way of combining intersecting algebraic surfaces is by using homotopies like:

h(ft , f 2) = z V , + (z - l f / 2

for all the real values of z e [0 .1] .

Splines may also be seen as analytic surfaces, but since it is the control points that

determine the functions, we prefer to classify them in the enumeration definition type.

Other analytic surfaces are the superconics and the superquadrics. Blinn [1982], has used

blobs made of superimposed density distributions like:

Ax,y,z) = E b. exp~d{ - T
[=0

where b(is a weight assigned to a nucleus point i , d. is the distance of the general input

point (x ,y ,z) from the nucleus i , and T is an arbitrary threshold value assigned by the

designer in order to control the extent of the generated blob.

2.5.4 Volumetric arrays

Defining the shape of an object can also be achieved by dividing space in small units and

then describing what exists in each unit. Specifically, in three dimensions, an object is

assumed to be surrounded by a cube. This cube is subdivided into n x n x n subcubes of

equal size called voxels. Each voxel, is then assigned a number that represents the proportion

of the voxel’s space that is filled with points from the object. That number is named the

density of the space that a voxel contains or, in short, the voxel’s density.

54

Thus the description of an object becomes a three-dimensional array that represents the

object in terms of density values. In the literature, this modelling approach has been

misleadingly named by several authors as N-dimensional arrays, because of the software

programming conventions for declaring arrays (e.g. Array[n][ii][n]).

It follows that the larger the number n (or sampling rate) is, the better the approximation

to the object’s shape becomes. On the other hand, however, the higher the sampling rate,

the larger the description of the object becomes. Moreover, the process of volume

subdivision becomes significantly longer as well. This is particularly important in medical

imaging applications where a patient, injected with radioactive or other toxic substances, has

to stand still for a lengthy period of time (usually one to two hours) in order for parts of the

patient’s body to be scanned. Therefore a trade-off between the sampling rate and the quality

of the resulted image has to take place and this is usually resolved with the scanned model

being sampled at 256 x 256 x 256 voxels.

In general, volumetric arrays are treated as density functions and visualisation algorithms

are used to depict iso-surfaces. But in some cases, certain details may be hidden inside the

visualised iso-surfaces. For this reason, cross-sections at given angles of intersection should

also be produced by using interpolation techniques. In general, a set of parallel planes is

intersected (at a given orientation) with the complete volumetric array, in order to produce

another volumetric array description of the same object. In this way, different images of the

same part of the human body may be superimposed to each other in order to highlight their

differences and enable further analysis of the visualised object.

For the purpose of interpolation we must therefore examine the range of permissible values

we may use to represent densities. In the most simple case, we use two values only; the

voxel either intersects with the object, denoted by 1, or it does not and we assume a density

value of 0. In a typical medical imaging application, however, the density values may take

any real value in the continuum [0 , 1] . This variety of density values is used to identify

different matters in the human body (e.g. blood, bone, tissues, blood vessels).

55

During visualisation the necessary interpolation technique will be adjusted according to the

range of permissible density values. For example, if we use binary density values (either 1

or 0) then the density values that after interpolation are above 0.5 (> 0.5) must be changed

to 1. Similarly, density values found below 0.5 (< 0.5) are changed to 0.

Density values may also be used to effect the shading process (i.e. colour-coding). In this

way, areas of interest (denoted by a range of density values) may be rendered with a

different colour in order to enhance the contrast of the resulting image. These ranges of

similar density values are then called to act as thresholds.

In the simple case of a binary set of permissible density values, various data compression

schemata may also be used, thus allowing high sampling rates of 1024 x 1024 x 1024 to be

implemented at reasonable memory demands. The most common method for such data

compression is the octree encoding [Meagher 1982; Doctor et al. 1981]. According to this

technique, a region of space is called homogenous when it contains the same material

characterised by the unique threshold value,2 and heterogenous otherwise.

The starting assumption for this data compression algorithm is that a cubical shaped volume

of space encompasses the whole object. This cubical space is usually aligned along the axes

of an orthogonal coordinate system. If this cube is heterogenous, it is subdivided along the

axes into eight equally sized subcubes called octants. The same division process is

recursively applied to all heterogenous octants. The subdivision ends when the size of the

produced octants becomes smaller than a certain limit (i.e. the size of the voxel) or when

all octants are homogenous.

The results of these subdivisions are encoded into a data structure called octree, which is

the compressed model of the object. This is a tree where each node may have up to eight

children. Child expansion implies heterogenous octants (nodes). Therefore, the terminal

nodes (homogenous voxels) are used to hold the density value of their corresponding area.

2
Density values are coded in relation to the single threshold value (either above or below).

56

2.5.5 Constructive solid geometry

This approach is used to construct objects by performing operations from ‘set theory’ on a

collection of simple geometrical objects that are usually called primitives. The main

operators used are the union (U), intersection (PI) and complement (-) . The primitive

objects are treated as sets of points and the aim of this approach is to build the scene, using

the above operators.

For example, a hollow sphere is created by subtracting a solid sphere (i.e. taking the

intersection of the complement) from a another concentric solid sphere but with larger

radius. Another more complex example can be seen in Plate 1, where the rear suspension

of a car has been modelled using only three primitive geometrical objects; the halfspace, the

infinite cylinder and the infinite helix.

The combinations of functions required to generate an object can be represented in the form

of a binary tree since all operators are either binary (i.e. union, intersection) or unary (i.e.

complement). This building tree, therefore, has all its non terminal nodes holding set

operators and the terminal ones holding sets of points corresponding to the primitives or

their complements. This method may be used recursively, therefore primitive objects can

become objects that have also been generated using this approach, based on other simpler

primitives. The model description of an object using constructive solid geometry would

therefore consist of the building tree and the description of the primitives.

2.5.6 Procedurally defined surfaces

Another common approach to defining objects is to determine a skeleton or an outline of

them, and apply to them a procedure such as extrusion, rotation, sweeping etc. Extrusion

is the method of assigning an extra dimension to a given object. Usually, a two-dimensional

object is being used as the outline of the extruded three-dimensional one. For example,

Figure 2.4 shows the outline and the extruded object that represents the letter C. Observe

here that the outline of the object (i.e. letter C) is a concave polygon that was broken up

into 18 convex facets. An extension to extrusion is the translational sweeps where a planar

57

curve is translated along a straight axis to produce a surface. By altering the radius of the

curve while translating it, or, by using non straight axes for the sweeps a more general

method is constructed.

Figure 2.4 The outline and the extruded letter C

Another general method is the production of the generalized cylinder. Its surface is defined

by sweeping a planar curve along a trajectory in three-dimensional space. The location, size

and orientation of the curve, in relation to the trajectory need to be determined. Moreover,

by translating three-dimensional objects along a three-dimensional trajectory even more

complex surfaces are defined [Faux et al 1979].

Figure 2.5 A teapot

58

Figure 2.5 shows a teapot that was generated by rotations and translational sweeps. The

body of the teapot was produced as the body of revolution of given outline, while the neck

and the handle as translational sweeps along the two-dimensional trajectories as shown in

Figure 2.6.

Figure 2.6 The major axes of the body, neck and handle of the teapot

Surfaces (bodies) o f revolution are another type of procedurally defined surfaces. Here, a

shape is defined as the envelope produced by a curve which is rotated around an axis.

Methods like strip trees [Kajiya 1983] and stacked cones [Bier 1983] are used to manipulate

these shapes.

Wijk [1985] studied shapes that had been defined by sweeping spheres. The method of

polyspheres [Pickover 1989] has also been used extensively. According to Pickover a

polysphere is "n spherical surfaces at given centres with specified radii". Therefore, the

problem of tracing a sphere that moves along a certain trajectory may be translated into

determining the union of space defined by spheres centred along that trajectory. The spacing

of the spheres will determine the accuracy of the representation. We believe that the

polysphere method may be expanded to model surfaces produced by sweeping other

geometric objects as well. Plate 2 shows an object produced by the method of polyspheres.

59

2.6 Discussion

The classification of each modelling approach as static, constrained or procedural, was

intentionally avoided since these approaches can be used to produce more than one type of

model. For example, the approach of polyspheres may be embedded in a visualisation

algorithm and the model will become the description of a procedure that needs to be used

to construct an object (procedural model). Alternatively, the polyspheres approach may be

used as the basis of a triangulation process to generate a polygonal mesh, hence a static

model.

However, despite the above mentioned difficulty of classification, such a schema provides

us with a framework for evaluating modelling approaches in computer graphics. This will

help us understand the underlying principles behind the various modelling techniques.

For example, as we will see later, in chapter four, there exist a number of different

techniques in literature that all have the same basis, namely the generation of iso-surfaces.

All these techniques are presented in the literature as implicit, therefore, in our classification,

they are constrained-based. But there are some details which we should observe with greater

attention. These relate to the actual form of data that feed the visualisation algorithms, which

in our definitions is the model of the scene. And in many cases what is provided for

visualisation is a polygonal mesh that approximates to the required iso-surface, thence a

static modelling approach.

But also the rest of these techniques, that do not use polygonal meshes as their intermediate

stage, are still not free from false claims. A large majority of these techniques use splines

or other similar analytic functions in order to approximate to the required surfaces, thence

they are static modelling approaches.

The observation we make is very subtle but it clearly changes the perspective for assessing

and classifying modelling approaches. The most effective argument, counter to our claim,

that we can construct would be that: ‘a technique that visualises implicit surfaces should

belong to the constrained category of modelling’. In other words, where do we give

60

emphasis: to the type of the surface we intend to visualise or, in the actual form of data that

are supplied to the visualisation algorithm?

We believe that it is the structures of data for describing an object that determine the nature

of a modelling approach. This is consistent with the rest of our definitions and also agrees

with a major segment of the literature. Besides, what we will eventually visualise will be

a representation of the data structures that are supplied to the visualisation algorithm, which

would approximate to the required object. As a result, the most accurate way to classify a

modelling approach is to examine the visualisation approach that it intended to be paired

with. This will shed light onto the nature of the data that will eventually drive the

visualisation algorithm.

So, in the next chapter we will present the most commonly used visualisation techniques and

examine the type of input data each of these techniques operates on. Then, we will present

our own research which is the construction of new modelling approach that clearly belongs

to the constrained-based category of both deterministic and stochastic objects.

The approach we propose in this dissertation uses a point-membership classification test to

define objects. This test, which we will also call the defining test, will be used to determine

a surface by visualising all points that validate it. We concentrate our efforts to construct

a general test that will enable the generation of ‘families’ of implicit surfaces. To achieve

this generality we parameterise this test appropriately.

Moreover, in order to demonstrate the constrained-based nature of this modelling approach,

we will describe surfaces that are too complex or impossible to describe analytically. The

modelling approach that we propose is based on the Euclidean distance between points. We

extend the definition of the Euclidean distance in order to assign a meaning in the distance

between two geometrical objects including points, line segments, cylinders. In this way, the

models we will generate (through parameterisation of the defining test) cannot be described

analytically but, as the following chapters demonstrate, can be visualised. The visualisation

algorithms also proposed here, do not use convex polygons or similar surface descriptions,

but directly apply the defining test in order to detect and depict the necessary points.

61

This way of defining shapes is not a new one; actually it was one of the first methods ever

used in mathematics. Let us take a simple two-dimensional object, say, a circle. Its

definition, taken from a mechanical method of construction, is ‘the locus of points that are

equidistant from a given point’. Similarly, objects like ellipses, parabolas, and hyperbolas

were also defined by this distance-based approach. As more complex objects emerged from

the use of more complicated distance-based constraints, their conceptualisation became

impossible. This led to the introduction of the analytical object descriptions which is today

the main method for object definition and analysis.

Computer graphics, however, as we shall illustrate in this dissertation, offers a very powerful

way for studying geometrical objects in this ancient way. This is achieved by visualising the

object’s projection onto the plane (or three-dimensional volume) of a viewport. The

additional dimensions of the object, if any, can be conceptualised by the shades that are

produced when the object is illuminated, and by the additional animation aids that enable

the movement (rotation, translation etc.) of the object in any directions required.

62

Chapter 3 Current visualisation techniques

3.1 Introduction

In this chapter, we will present the tools that are commonly used for the transformation of

models into images. Following the notation that we introduced in the first chapter, depicted

in Figure 1.4, we assume that all the objects in a scene are described at their ACTUAL

position using the ABSOLUTE Cartesian coordinate system. Since during modelling it may

be proved more convenient to use the objects’ SETUP positions, we assume that the

appropriate transformation matrices for the SETUP to ACTUAL position of every object and

the inverse matrices are also provided. This information, together with all the data necessary

for the realisation of the chosen shading model, will become the input to the visualisation

phase of a typical computer graphics application.

In a similar fashion to modelling, there are a number of different visualisation approaches

currently in use, all of which have some advantages and disadvantages over the rest. Most

of them have been designed to match a particular modelling approach but ‘cross-

combinations’ between modelling and visualisation algorithms have also been tried.

Despite the diversity of the visualisation approaches, as the following sections will illustrate,

their underlying functionality consists of the following five stages (Figure 3.1); clipping the

scene inside the visible area, projecting it onto the two-dimensional WINDOW system,

removing the hidden lines and surfaces to determine the surfaces that are visible by the

current observer, shading the visible surfaces according to the chosen shading model and,

finally, mapping the image from the WINDOW system to the VIEWPORT system (of a real

or model viewport device). All five stages are not necessarily explicit in all the visualisation

approaches we will present. Moreover the order in which they take place in a particular

visualisation algorithm need not be strictly sequential but some stages may occur

concurrently.

63

°s
n

Hcrn>

£

P
(TP
CD
t/i

O
>-h
<
i-— •
cz>C
P

PROJECTION CLIPPING

C/3

&
Scene in Scene in

OBSERVED WINDOW►—* ■
o
3 system system

perspective
orthographic
stereoscopic

on window
viewing frustrum

HIDDEN SURFACE
REMOVAL SHADING MAPPING

Visible part
of scene

calculated

Scene’s image
mapped onto

the VIEWPORT

Optical
phenomena

simulated

Visible
surfaces

determined

hidden lines ambient rounding
hidden surfaces diffuse truncation

specular oversampling
shadows

transparency
reflections

In this chapter we will present the three the most frequently used visualisation approaches;

polygonal mesh, octree and ray tracing. The polygonal mesh, as its name reveals, is

optimized to handle objects that have been modelled with the polygonal mesh modelling

approach. The octree visualisation algorithm is mainly used in conjunction with the

analytical functions, as well as the constructive solid geometry, other procedurally defined

models, and the volumetric arrays modelling approach.

Ray tracing is mainly used with models using analytical functions but it can be adapted to

use almost any other modelling approach including the polygonal mesh, the constructive

solid geometry and the n-dimensional arrays. The distinguishing difference between all three

visualisation approaches is the manner that the five stages of visualisation (i.e. clipping,

projection, hidden surface removal, shading and mapping) are implemented. In the following

sections we will present for every visualisation approach the particular methods used in

implementing all the above five stages.

3.2 Polygonal mesh

In the polygonal mesh visualisation approach, all five stages can be isolated and studied

separately. They happen sequentially, although depending on the type of projection used,

clipping may occur before (in perspective projection) or after (in orthographic projection)

the projection stage. Therefore, we will first present the stage of projection before that of

clipping. Unless otherwise stated, we assume that the scene is modelled in the three-

dimensional space, using the ABSOLUTE coordinate system. Furthermore we assume that

an observer has been introduced in the scene, and the scene model has been eventually

transformed into the OBSERVER coordinate system. The eye of the observer is at the origin

of the OBSERVER system and the direction of view is assumed to be along the negative

z- axis. Finally we also assume that a number (one or more) of light sources have been

introduced in the scene and the transformations from their corresponding LIGHT systems

to the ABSOLUTE have also been determined.

65

3.2.1 Projection

What the eye of the observer sees when looking at a three-dimensional scene is a projection

of the vertices, lines and facets of the objects in the scene onto a view plane, which is

assumed to be perpendicular to the line of sight. A projection is defined by a set of lines

which we call the lines o f projection. The projection of a vertex onto a plane is the point

of intersection of the plane with the unique line of projection which passes through the

vertex. The projection of a line segment onto a plane is the line segment in the plane which

joins the projections of its two end-points. The projection of a facet onto a plane is the

polygon formed by the projection of each of its comer vertices joined in the same order. It

is important to note that the sequence in which vertices, lines and facets are drawn may be

critical; on some raster viewport devices such as the monitor of a computer, earlier

determined vertices, lines and facets can be obscured by later over-drawing.

In the OBSERVER system the view plane is usually defined to be of the form z= - d (for

some d > 0) - a plane parallel to the x/y plane and perpendicular to the z- axis. Vertices are

projected onto this plane by a transformation matrix that produces projected points with

coordinates of the form (xp , yp , -d), where xp and yp depend upon the type of projection

and on d , the fixed perpendicular distance of the view plane from the eye.

The obvious WINDOW system to choose has the x- and y- axes parallel to the x- and y-

axes (respectively) of the OBSERVER system, with the origin on the OBSERVER z- axis

at z = -d . Then any point vector on the view plane with the OBSERVED triplet of

coordinates (xp , yp , -d) has WINDOW coordinates (xp , yp). Of course we still have to

calculate the values of xp and yp for every vertex in the model. As yet we have neither

defined the position of the view plane (the value d), nor have we described the type of

projection of three-dimensional space onto the plane. These requirements are closely related.

In this chapter we will consider two possible projections, first the orthographic, which

sometimes called the axonometric or orthogonal projection, and then the perspective

projection.

66

The orthographic projection

A parallel projection is characterised by having parallel lines of projection, and is a

projection under which points in three-dimensional space are projected along a fixed

direction onto any plane not parallel to those lines. The orthographic projection is a special

case whereby the lines of projection are perpendicular to the plane (it is sometimes referred

to simply as the parallel projection). We can choose the view plane to be any plane with

normal vector along the line of sight (the line of projection). This means that we can take

any plane parallel to the x/y plane of the OBSERVER system, and for simplicity we choose

the plane through the origin, given by the equation z = 0. An OBSERVED vertex is thus

projected onto the view plane by the simple expedient of setting its z coordinate to zero, and

thus any two different points with OBSERVED coordinates (x , y , z) and (x , y , z) say

(where z * z) , are projected onto the same point (jc , y , 0) on the view plane, and hence onto

the point (x , y) in the WINDOW system.

The perspective projection

The orthographic projection has the property that parallel lines in three-dimensional space

are projected into parallel lines on the view plane. Although they have their uses in certain

scientific and architectural applications, such views do look odd! Human comprehension of

spatial position is based upon perspective. Hence our brains attempt to interpret orthographic

figures as if they are perspective views. In order to achieve visual realism, it is essential to

produce a projection which displays perspective phenomena - that is, parallel lines should

meet on the horizon, and an object should appear smaller as it moves away from the

observer. The drawing-board methods devised by artists over the centuries are of some value

to us, but the three-dimensional coordinate geometry introduced in chapter one furnishes us

with a relatively straightforward technique for achieving this.

What is perspective vision?

To produce a perspective view we introduce a very simple definition of what we mean by

vision. We imagine every visible point in space sending out a ray which enters the eye.

Naturally the eye cannot see all of space, it is limited to a cone of rays which fall on the

retina, the so-called cone o f vision, which is outlined by the dashed lines of Figure 3.2.

These rays are the lines of projection. The axis of the cone is called the direction o f vision

67

(or the straight-ahead ray). In what follows, we assume that all coordinates relate to the

OBSERVER right-handed coordinate system, with the eye at the origin and the straight

ahead ray identified with the negative z- axis.

p '= (x ',y ',-d)

* P=(x ,y , z)

straight ahead ray

d -----------------------------1

Figure 3.2 The cone of vision

We place the view plane (which we call the perspective plane in this special case)

perpendicular to the axis of the cone of vision at a distance d from the eye (that is, the plane

z = -d). In order to form the perspective projection we mark the points of intersection of

each ray with this plane. Since there is an infinity of such rays, this appears to be an

impossible task. Actually the problem is not that great because we need only consider the

rays which emanate from the important points in the scene, in particular the corner vertices

of polygonal facets. Once the projections of the vertices onto the perspective screen have

been determined, the problem is reduced to that of representing the perspective plane (the

view plane) on the graphics viewport. The solution to this problem is similar to that of the

orthographic projection and will be discussed in the mapping stage of visualisation.

The calculation of the projected points using perspective projection is as follows. We let the

perspective plane be a distance d from the eye. Consider a point p = (x , y , z) (with respect

to the OBSERVER system) which sends a ray into the eye. We need to calculate the point

of intersection, p ' = (x ' , y , -d), where this ray cuts the view plane (the z - - d plane), and

thus we determine the corresponding WINDOW coordinates (x' , /) • First consider the value

68

of y' by referring to Figure 3.2. By similar triangles we see that y'Id = y/\z\, that is y' = -y

x dlz (remember that points in front of the eye in the OBSERVER system have negative z

coordinates). Similarly xf = - x x dlz and hence p f = (- jc x dlz , —y x dlz , -d). Thus the

WINDOW coordinates corresponding to p are {-x x dlz , -y x dlz). The projection makes

sense only if the point has negative z coordinate (that is, it does not lie behind the eye). In

the next section we will see how with three-dimensional clipping we can ensure that we will

be using only the vertices that conform to this condition.

3.2.2 Clipping

Theoretically, objects may be positioned throughout space, even behind the eye. The

formulae derived to represent the perspective projection deal successfully only with points

that lie within the so-called pyramid o f vision. Any attempt to apply the formulae to points

outside this volume, especially those lying behind the eye, gives nonsensical results. The

scene must, therefore, be clipped so that all vertices of the new, clipped model lie within

this pyramid before the projection may be applied. The process of clipping will intersect the

scene with the pyramid of vision. In this way, the clipped model of the scene may be

different from the original non-clipped model. In this sub-section we will briefly explain

clipping in spaces of two and three dimensions.

The clipping of vertices, lines and facets in two-dimensional space is simply the task of

determining which parts lie within a rectangular window with dimensions horiz x vert (i.e.

the window). This task is interpreted mathematically by calculating the intersection of the

rectangle defined by the window, with all the objects of the two-dimensional scene. This

mechanism is also sufficient for dealing with orthographic projections of three-dimensional

scenes since the whole space can be projected onto the view plane hence, bringing the

problem in two dimensions — thus projection may occur before two-dimensional clipping.

Dealing with perspective projections is rather more complex. Once again we assume that we

have a view plane some distance from the eye along the negative z-axis of the right-handed

OBSERVER system. A rectangular {horiz x vert) window on this plane will be identified

with the graphics viewport. We may also assume that the eye is positioned in such a way

69

that each vertex has a strictly negative OBSERVED z coordinate. This ensures that every

vertex can be projected onto the view plane by our chosen perspective projection, whence

two-dimensional clipping ascertains which parts of the image lie totally within the window.

Suppose, however, that we wish to depict a scene as viewed from a position within the

model, such as a point lying in a landscape with a large ground plane. Clearly, parts of the

model will lie behind the eye and consequently cannot be projected on the viewplane. Such

problems cannot be resolved by two-dimensional clipping and so extended methods must

be developed. Three-dimensional clipping must determine which parts of a line or, facet, can

be projected, and subsequent hidden surface removal must be executed on the clipped scene.

w indow /view port

straight ahead ray ■;

60

Figure 3.3 The pyramid of vision

There are consequently two problems that need to be solved. Firstly, we must determine

which part, if any, of a facet lies in the volume of space projected onto the window, and

secondly we must incorporate this information into the data structures representing the scene.

The volume of three-dimensional space which is projected onto the window is a rectangular

pyramid with axis of infinite length. This pyramid which we call the pyramid o f vision (a

subset of the cone of vision), has its apex at the eye position (the origin of the OBSERVER

coordinate system) and four infinite edges, each passing through one corner of the window

on the view plane (Figure 3.3). It is thus bounded by four planes (the clipping planes), each

of which contains the OBSERVER origin and one edge of the rectangular window.

70

A point vector, (x , y , z), lying within the pyramid of vision is projected, by perspective

projection, onto the point (-d x x h , - d x y/z) in the window (d is the perpendicular distance

from the eye to the view plane). Each clipping plane divides space into two halves. The

half-space containing the pyramid of vision is said to be the visible side of the plane. The

four clipping planes must be represented in such a way that we may easily determine

whether a point lies on their visible side or not.

3.2.3 Hidden surface/line removal

Although a high degree of realism is achieved with regard to the geometry of the image

produced, the perspective projection is not sufficient to produce images that could be

directly mapped onto the viewport. The problem that arises becomes obvious with the

following example: consider that a cube has to be displayed. It is modelled as a set of six

square polygonal facets. When projected, all facets of the cube are visible on the screen. But

this is not true in reality, unless the cube is perfectly transparent. In reality, one can see at

most three facets of a cube simultaneously. Its other facets are hidden by the bulk of the

cube itself. To simulate this situation, a hidden surface removal algorithm has to be applied

to the projected polygons before they are mapped onto the viewport.

There is a variety of hidden surface removal algorithms in literature [Sutherland et al. 1974;

Foley et al. 1990]. Some have enormous storage overheads and need powerful computers.

In this section we will briefly present two of the most frequently used, namely the painter’s

algorithm and the Z-bujfer.

The painter’s algorithm is based on the assumption that all objects are closed (i.e. solid) and

there is a way for identifying whether a facet is viewed from inside (iinvisible), or outside

(visible) the object. After all the facets are projected, they are examined to discover whether

they overlap or not. This test is restricted to the clipped and visible facets only. If they do

overlap, there is a second test that determines which facet lies in front and which is behind.

71

After all the visible facets have been checked, they are displayed on the viewport by

drawing the furthest from the observer first, and progressively drawing the nearest in front

of the observer last. In complex scenes the topological ordering of the visible facets will

require the use of special data structures such as the directed graph, that will pose great

memory demands on the computer used.

This algorithm is based on the assumption that the type of viewport we use supports ‘over

drawing’. Therefore, when facets are displayed, those that are drawn first will be ‘over

drawn’ by the facets that will be drawn later. This approach resembles that of a painter,

hence its name.

Another, probably conceptually the simplest, approach, but one which is rather expensive

on processing power and memory, is the so-called Z-buffer algorithm. This involves a

rectangular array representing the totality of pixels on the screen. We imagine rays of light

entering the eye through each of the pixels on the screen.1 We consider these rays as axes

of a rectangular (orthographic) or pyramidal (perspective) prism leading from the eye to the

pixel, and off to minus infinity (-») . These rays naturally pass through objects in our scene

and we can note the coordinates of these points of intersection. The z value of the

intersection of the axis of this prism with each object is calculated in turn and compared

with the buffer value. The array, the Z-buffer, will hold the *z~ coordinate’ (initially minus

infinity) of the nearest point of intersection. So we build up a picture by adding new objects,

finding where the rays cut the object, and changing the array values (and the pixel colour

on the screen) whenever the latest point of intersection is nearer to the eye than the

corresponding value stored in the array, giving a simple hidden surface algorithm for each

pixel.

Another approach, the scan line algorithms, considers one scan line of a raster screen at a

time and uses information about polygonal facets in the scene, much in the same way as the

Z-buffer, to colour these scan lines correctly, giving a correct hidden surface picture. Yet

another way is to seed each facet with a single representative point. When the scene is

1 Actually, the rays are assumed to pass through the cross-points of a rectangular grid that is formed on the
window, and during the stage of mapping this lattice will correspond to the pixel organisation of the viewport.

72

transformed into OBSERVED position, the seed points are ordered in increasing distance

from the observer’s eye (i.e. the origin of the OBSERVED coordinate system). This order

is then used to ascertain which facet lies in front of which: the so-called depth-sort

algorithm. This is not a very satisfactory method because it will often give incorrect displays

of scenes which contain a wide variety of facet sizes and topologies.

3.2.4 Shading

In the combination of clipping - projecting - hidden surface removal, a shading model has

to be added in order to incorporate colour shades. Its purpose will be to determine the colour

of every pixel of the screen, by calculating the amount of light that can be seen on any point

in the scene which is visible to the observer and so would eventually be mapped onto the

viewport. For pixels that do not represent any points on any facet (i.e. the sampled points

do not belong to any facet), the background colour should be used. For the rest of the

pixels, the shading model is applied — to the points represented by pixels — to calculate

the amount of light that is reflected to the observer from each visible point in the scene.

There exist a number of different shading models that can be incorporated in the polygonal

mesh visualisation approach. As we will also see in section 3.4.8, depending on the number

of optical phenomena (i.e. specular reflection, shadows, transparency) that need to be

simulated, the complexity of the mathematical models that describe them vary. Apart from

a few very rudimentary shading models, the necessary data for their implementation are:

• the location of the observer (a vector)

• the location of all the light sources (an array of vectors)

• the intensity and colour of the light sources (depends on the colour model used)

• the material properties of all the surfaces of all the objects in the scene (absorption,

reflection, transmission coefficients depending on the colour model and the shading

model)

• a mechanism (e.g. function) to calculate the normal vector to any point on the surfaces

of all objects in the scene.

73

In this section we will briefly present some of the most frequently used shading models and

explain how reflections, transparency and shadows can be simulated. More complex shading

models are discussed in section 3.4.8. For the rest of this dissertation, we will make the

assumption that the RGB colour model, introduced in the first chapter, is being used.

Constant colour shading

The simplest and quickest way of displaying a facet using the RGB model is by constant

colour shading. We assume that the shade is constant across any facet and once the colour

of light reflected from a point on the facet is found, the facet is displayed on the window

using a simple area-fill. Although constant colour shading is reasonably sufficient for scenes

made up entirely of matt, planar surfaces, this method has a number of disadvantages. The

results obtained on models representing curved or glossy surfaces are unsatisfactory - the

polygonal facets that make up the approximation to a curved surface are clearly

distinguishable, and also the specular highlights are unconvincing since they are constrained

to be made up only of entire facets. Increasing the density of facets in the mesh helps to

some extent, but we are able to produce far more convincing images of approximated curved

surfaces by what is generally referred to as smooth shading. Here a surface is displayed by

individually shading every pixel on each projected facet of the polygonal mesh in a way that

smooths out any intensity discontinuities. We give two different interpolation methods for

smooth shading: Gouraud shading and Phong shading.

Gouraud shading

Gouraud’s method of intensity interpolation shading [Gouraud 1971] goes a long way

towards solving the problems of constant shading mentioned above. The intensity of light

reflected at each vertex of a facet is determined, taking into account ambient light, and

diffuse and specular reflection. The intensity at each internal point of a projected facet may

then be calculated by interpolation between these intensity values. The trick is in calculating

the intensity at the vertices. Suppose we have a number of facets approximating to a curved

surface. Each vertex lies in the real curved surface and is contained in the boundaries of a

number of the approximating facets. The vertex normal may be found by averaging2 of the

2
Usually we assume that all facets have approximately the same area, but a weighted average according to the

actual area of every facet may produce more convincing results.

74

surface normals of the facets containing the vertex in their boundaries. The apparent colour

(or vertex intensity) at the vertex may then be calculated. The intensity or colour at each

point within the facet is then determined, using a scan line approach, by interpolating

between the vertex intensities as shown in Figure 3.4. The intensity at point A is found by

interpolating between those at points 1 and 2, the intensity at B is found by interpolating

between 3 and 4, and finally the intensity at C is found by interpolating between A and B.

4

scan line

2

Figure 3.4 Interpolation of intensities within a facet

Phong interpolation

Some problems still remain with Gouraud shading, mainly involving facets which face

almost directly towards the light source. In Figure 3.4, for example, points A and B may

both have the same intensity and so interpolating between them results in a constant

intensity across the surface, making it appear flat. Problems also occur with the depiction

of highlights produced by specular reflection.

These problems are partially eliminated by using Phong’s normal vector interpolation

shading [Phong 1975]. This method involves the calculation of the normal vector at each

point on a surface by interpolating between the normals at the vertices, and thence

calculating the shade by applying a shading model at that point. This method produces

considerably more accurate and pleasing results, however, it is accordingly more time-

consuming to implement.

75

Plates 3, 4 and 5 illustrate the differences of the three shading models. These plates show

the same model of a teapot as it is visualised by all three shading models; constant (plate 3),

Gouraud (plate 4) and Phong (plate 5). A more detailed analysis of these shading models

is found in Angell and Tsoubelis [1992].

Shadows

A facet which obscures all or part of another facet from exposure to a light source is said

to cast a shadow onto this other facet. A shadow cast by a convex polygonal facet, say j ,

onto another convex polygonal facet, say i, is also a convex polygon which may be

considered to lie on the surface of facet i. This polygon is usually called a shadow polygon.

The criterion for finding shadows is very similar to that for finding hidden surfaces and

most hidden surface algorithms can be adapted accordingly. Usually the model is calculated

as if it was observed by an imaginary observer located at each light source. For a variety

of alternative solutions see [Crow 1977; Angell & Tsoubelis 1992].

Transparent surfaces

Many hidden surface algorithms can be adapted to allow for the inclusion in the scene of

facets made of transparent materials. This is by no means a trivial exercise and a full

simulation, taking into account specular reflection, refraction etc., is too complex to be

implemented with the polygonal mesh visualisation approach. Nevertheless, if we accept

certain limitations, then we can deal with transparent surfaces in the polygonal mesh model

using a topological depth-ordering algorithm similar to that of the hidden surface removal

algorithm. A simplified version of such an algorithm assumes that the index of refraction

of all the transparent surfaces is always unity, and no more than one transparent surfaces

may overlap if seen by the observer’s viewpoint.

Reflections

Suppose one facet in a scene is a mirror. We should be able to see the reflection of the

scene in this mirror. If we calculate the reflection of each vertex of the scene in the mirror

facet, we have the physical reflection of the scene. Note that here we are creating a new set

of points with coordinates specified in relation to the same coordinate system - the

OBSERVER system.

76

How can we relate to this physical reflection with the reflection observed in the mirror?

Imagine that the mirror facet is a window surrounded by an infinite plane. The reflection

in the mirror is precisely the part of the physical reflection which can be seen through (and

beyond) this window. Those parts of the physical reflection which lie in front of the mirror

cannot be seen in the reflection since in the real scene they lie behind the mirror. The

problem of reflection thus reduces to projecting the reflected scene onto the view plane, and

then drawing only those parts which both intersect with the projection of the mirror and lie

behind the mirror in reflected space.

There is a major drawback to any algorithm for finding reflections of scenes. If you sit in

front of a mirror with another mirror behind you, what do you see? You see a reflection of

yourself in the mirror in front of you, but you also see a reflection of the mirror behind you,

in which you see a reflection of your back and of the mirror in front of you, in which you

see a reflection of the mirror behind you, and so on! The process is infinite and there is no

way round this. We must either insist that a scene contains no mirrors that reflect each

other, or else we simply ignore infinite reflections of mirrors, allowing for only a limited

number of levels o f reflection. Usually, a limit of one level of reflection is imposed, so when

reflected in another mirror, a mirror facet is considered as an ordinary, non-reflecting facet.

3.2.5 Mapping

Once we know the coordinates and the colour of all the points on the window, we are ready

to map them onto the viewport. As Figure 1.5 of chapter one shows, for a window of horiz

x vert size and a viewport of nxpix x nypix pixels, the coordinates of point p = (x , y) will

be mapped onto the pixel with coordinates (fx(x) , fy(y)) = (pixeLx , p ixe ly) via the

following mapping functions:

nypix (2y+vert)
2 vert

where [r] denotes the integer part of the expression r.

nxpix (2x+horiz)
2 horiz

My) =

77

From the above formulae we can observe that if two points on the window have a horizontal

distance less than horiz / nxpix, and a vertical distance less than vert / nypix, it is quite

possible3 that they will be mapped onto the same pixel, hence one will ‘over-draw* the

other. This means that we use computer resources to calculate the colour of points that we

will eventually not use. To avoid this waste of resources, before attempting any calculations

regarding points belonging to the same facet, we first determine whether they will be

mapped onto different pixels on the viewport. This observation optimizes the visualisation

algorithm to match the resolution of the screen, thus improving its efficiency.

3.3 Octree

In the octree algorithm, the four out of the five stages of visualisation are implicit.

Specifically, projection, clipping, hidden surface removal and mapping are embedded in the

process or in the form of initial conditions in the octree algorithm. Therefore, before

presenting how each stage is affected by the algorithm, it is vital to present firstly the

algorithm itself.

The octree visualisation algorithm was originally used to match the volumetric arrays

modelling approach and the octree data compression technique as we presented them in

chapter two. It assumes that the scene is enclosed by an appropriately positioned supercube

that is properly aligned with the viewplane (i.e. the plane of the window). The shape of this

supercube is frequently assumed to be a geometric cube. However, as we will see in the

next section, there are cases where the shape of the supercube is a trapezoid (truncated

pyramid).

Given a list of objects in the scene, this supercube is called homogenous if it does not

intersect with any of the objects, and heterogenous if it does. When calculating intersections,

we use the solid supercube (i.e. the volume of space enclosed by the supercube) and not its

facets. Paradoxically, however, we intersect the solid supercube with the surfaces of the

2
Depending on the absolute values of their co-ordinates and the exact mapping functions (i.e. truncation,

rounding, etc...) these points will be mapped onto the same or adjacent pixels.

78

objects in the scene. As a result, the supercube that is totally contained inside an object is

assumed homogenous. The reason is that only the surfaces of the objects can contribute to

the colour of the pixels on the viewport.

If the initial supercube is characterized heterogenous, it is subdivided by eight equal-sized

subcubes. We then recursively try to characterize each of the subcubes as homogenous or

heterogenous. Whenever a heterogenous subcube is found, we further subdivide it into eight

equal-sized subcubes. This process of recursive subdivision is terminated when the size of

the subcube becomes such that it can be mapped onto exactly one pixel on the viewport. We

name this minimal-sized subcube as cubelet.

3.3.1 Projection

The type of projection used is dictated by the shape of the supercube and subsequently, the

subdivided subcubes. Specifically, if the supercube and the subcubes have a cubic shape,

then the orthographic projection is implied. However, if the initial supercube has the shape

of a pyramid, similar to the pyramid of vision (i.e. the same apex and parallel facets) then

the perspective projection is implied.

Figure 3.5 Perspective projection with the octree approach

To ease the process of subdivision, this pyramid-shaped supercube is truncated by the

viewplane, resulting in a supercube with the shape of a trapezoid (a truncated pyramid).

Subdivision would therefore produce trapezoid-shaped subcubes that are not similar to each

other, as Figure 3.5 shows. This figure shows the first level of subdivision of a supercube

79

into trapezoid-shaped subcubes, as it is determined by using the midpoints of the supercube

as the vertices of the newly generated subcubes.

Clearly, the perspective projection adds a considerable overhead of calculations, during

subcube subdivision and tests of subcube - object(s) intersection, thence for the rest of this

chapter we will assume the use of the orthographic projection and cubic-shaped supercubes

for the octree visualisation approach.

Even with the orthographic projection and the use of cubical subcubes, the characterisation

of a subcube as heterogenous or homogenous is a major overhead. Consider for example the

intersection test of a subcube with an infinitely long helix. Usually, in such cases, a more

relaxed test is implemented that replaces the subcube with a sphere that circumscribes it.

Therefore, the orientation of the subcube with regard to each surface in the model is no

longer critical. But the volume that the sphere covers is larger than that of the subcube it

replaces, and the intersection test may provide incorrect results thus falsely subdivide the

subcube and waste computer resources. However, the speed gains achieved by the use of

spheres in the intersection tests more than compensates for the misleading results.

Furthermore, errors incurred at one level of subdivision will be amended at the next level

down. Additionally, errors at the cubelet level are insignificant since they will affect at most

one pixel. At the section of shading, we will see how we can further subdivide the cubelet,

thus achieving a more accurate implementation of the octree approach.

3.3.2 Clipping

With the octree visualisation algorithm, clipping is not an issue since whatever lies outside

the initial supercube will never be processed. Therefore, the appropriate position of the

supercube will ensure clipping. Usually, the initial supercube is located in such a way that

the direction of view passes through it centre and is perpendicular to one of its sides.

Another important factor that affects clipping is the size of the supercube. If it is too small,

many pixels on the viewport will not be painted at all. On the other hand, if the size of the

supercube is too large, then we will be calculating the colour of pixels that will eventually

80

fall beyond the boundaries of the viewport. Moreover, the supercube needs to be equally

subdivided in all three dimensions thus producing a lattice of 2N x 2N x 2N cubelets. Such an

organisation maps directly onto a square viewport, but will not necessarily match the pixel

arrangement of the viewports we use.

Usually, the number of subdivision levels N is an integer between log2(nxpix) and

log2(nypix). These limits on the number of subdivision levels constrain the size of the initial

supercube to be between nxpix3 and nypix3 cubelets. Smaller values for N will generate

cubelets that correspond to more than one pixel, and larger values will produce cubelets that

may map to the same pixel.

To add to the complexity of this problem, we need to cater for the aspect ratio of the

viewport that will result into rectangular-shaped pixels, thence needing rectangular shaped

subcubes. The non unity aspect ratio can be adjusted by a transformation matrix that

appropriately transforms the axes of the ABSOLUTE coordinate system according to the

scaling constraints of the pixels’ shape.

3.3.3 Hidden surface removal

This stage of visualisation is also implicit in the octree algorithm. Consider a supercube of

size N= 10. This will result in a viewport of 210 x 210 = 1024 x 1024 pixels and a lattice of

210 x 210 x 210 = 230 cubelets. It would be too time consuming, even for a powerful computer,

to characterise all these cubelets as homogenous or heterogenous for a given scene. Besides,

only a very small proportion of them will be eventually found as heterogenous, and out of

these very much fewer will be visible by the observer and hence will have to be painted on

the viewport. Therefore, the process of subdivision becomes critical to the effectiveness and

efficiency of the algorithm.

With regard to hidden surface elimination, the octree algorithm is adjusted so that the

subcubes nearest to the observer, along the line of projection, are processed before those

furthest away. As a result, a heterogenous cubelet is detected, (i.e. a surface is found), the

corresponding pixel on the viewport can be painted. Therefore there is no need — unless

81

transparency is to be simulated — to process any cubelets that lie behind the heterogenous

ones that we have already processed because they would eventually correspond to previously

painted pixels. This observation is also true for a subcube of any size provided that the

corresponding area onto the viewport is totally painted.

Therefore the octree algorithm approximates the surfaces of objects within the supercube by

identifying and painting those cubelets that intersect with the surfaces: note that this

algorithm does not actually consider solid objects, only surfaces. Nevertheless, in order to

use the functionality of Constructive Solid Geometry (chapter two), we have developed

techniques that identify whether a subcube lies totally outside, totally inside, or intersects

with an object. In cases where the classification of inside / outside is nonsensical (i.e. open

surfaces) we only distinguish wether a subcube intersects with a surface, or not.

Determining whether a pixel has already been painted implies that there is a bi-directional

communications link between the computer and the viewport. But such a link may not

always be efficient. For example, there are installations where the viewport is connected via

uni-directional parallel links, or other proprietary setups. Moreover, when using a model

viewport device, this link may be impossible. In such a case, a copy of the viewport’s

image, that we will call memory screendump, must be stored at the immediate memory

(RAM) of the computer. For a 24 bit colour, 4096 x 3072 pixels viewport the screendump

is approximately 36 Mbytes; a major constraint for most computer installations. Fortunately,

the size of the screendump may be considerably reduced since we do not need information

about the colour but only a flag whether a pixel is painted or not. Consequently, the memory

demands for the above example will be 24 times less since we only need one bit instead of

24 bits per pixel.

3.3.4 Shading

With regard to shading, any shading model that calculates ambient light, as well as diffuse

and specular reflection may be used, provided the appropriate information is available. One

difficulty we may encounter at this stage is the choice of the point on which the shading

model will be applied. This difficulty relates to the fact that we have to sample the cubelet’s

82

continuous space and choose a representative point for the discretised viewport. But the size

of the cubelet, however small it may be, is sufficient to enclose an infinity of such candidate

points, all belonging to the modelled surface. Moreover, in some cases, points from more

than one surface may intersect with the same (heterogenous) cubelet. Therefore, it is

essential that our sampling method, as to which point is used for the application of the

shading model, must be accurate. It is very difficult to provide a universal solution, but the

following rules of thumb provide the general strategy that can be followed in order to select

such a candidate point.

If the cubelet contains points from one surface only, then the centre of the cubelet may be

used. However, that point may not belong to the surface at all, hence making the

determination of the normal to that surface problematic. In such a case, approximation

techniques may be used either to estimate the normal, or determine the point on the surface

nearest to the centre. In both cases, the error introduced depends highly on the curvature of

the surface at that location.

If the cubelet intersects with more than one surface, a choice of which is the visible surface

(i.e. the nearest to the observer) has also to be made. One method is to draw the projection

line that passes through the centre of the cubelet and then determine the nearest — to the

observer — intersection with all the surfaces that pass through that cubelet. Such a technique

will demand extra coding, but a number of alternatives that simply re-use code already

developed for the octree algorithm also exist. These alternatives use subcubelets, that are

subcubes of a size smaller than the cubelet. One such alternative extends the subdivision

process a certain number of levels (usually one or two). Then the shading model is applied

for all the visible points found, and the colour of the corresponding pixel is determined by

averaging the colours of these points. This method will not guarantee a unique intersection

of subcubelet — surface, but the process of averaging for the final colour will ensure that

the errors have been ‘smoothed’ (<anti-aliased).

Another method uses subcubelets centred around the projection line, which in turn passes

through the centre of the initial cubelet. If the nearest heterogenous subcubelet intersects

with more than one surface, the process is repeated with subcubelets of a smaller size up

83

to a certain level. This method ensures that the correct visible surface will be determined

eventually. Moreover, it is based on intersection algorithms between subcube and surfaces,

that should have already been coded in the octree algorithm.

Once the appropriate point coordinates for a heterogenous cubelet have been determined, the

shading algorithm has to be invoked. A straightforward shading model would assume that

the point is visible by the light sources and would calculate the ambient light, diffuse and

specular reflection components that this point would reflect back to the observer. However,

such a model would fail to simulate optical phenomena like transparency, shadows and

reflections.

Shadows may be simulated by the addition of a visibility test that establishes whether the

point is visible by a light source, and adjusting the diffuse and specular reflection

components accordingly. However, such a visibility test would imply the implementation

of code to achieve a line to surface intersection.

Transparency is another phenomenon that with some extra coding can be simulated. With

the restricting assumption that all the materials have a unit index of refraction, pseudo-

transparency is embedded in the hidden surface removal stage. Specifically, instead of

terminating the subcube subdivision as soon as the corresponding area on the viewport is

found painted, we now continue the subdivision until we ensure that the subcube does not

intersect with any semi-transparent surface [Doctor et al. 1981]. This extension to the basic

octree algorithm would imply that the memory screendump should be large enough to keep

the full colour of every pixel, thence transparency is simulated by the proper (proportional

to the degree of transparency) averaging of colours.

3.3.5 Mapping

The octree approach to visualisation of a three-dimensional scene assumes that drawing will

take place on a superscreen which is a 2N x 2N discrete grid of pixels that for the purposes

of our presentation we may assume N = 10. For the time being we will ignore any aspect

ratio problems and assume that each pixel is square — therefore the superscreen is defined

84

as 1024 x 1024 pixels square; our original viewport of nxpix x nypix pixels is centred in this

superscreen. Usually, we ensure that the size of the superscreen, thence the choice of N, is

such that it will fully contain all the pixels of the viewport or, we approximate N with the

formula given in the previous subsection on clipping.

We now consider each square pixel to be the front face of a small cube, or voxel (volume

pixel). By extending the superscreen back into the third dimension, denoted by the z-axis,

we can thereby create a superblock composed of 2N x 2N x 2N voxels. An individual voxel

is located within the superblock by its voxel coordinates, counting the number of voxels say,

to the right (jc) , above (y) and into the screen (z) starting from the left, bottom, front voxel

of the superblock. This apparently peculiar choice, is made so that each voxel that maps to

a particular pixel in the viewport has exactly the same jc- and y- pixel coordinates in the

VIEWPORT system. We now re-consider each pixel on the superscreen to be the front face

of just one of the 2N voxels from the column that stretches out perpendicularly behind the

superscreen. Actually, these columns are aligned with the lines of projection and the

superscreen is assumed to correspond to the pixel organisation of the viewport.

We map the superblock onto a cube in three-dimensional space, that we have already called

the supercube. The front face of the supercube is centred at the ACTUAL origin, and scaled

appropriately. The same scaling factor will map individual voxels into the small cubelets in

space, thereby mapping the superblock onto a total of 2Nx2Nx 2N cubelets. By this mapping

we can now consider the front face of the supercube as the WINDOW onto three-

dimensional space. Each column of 2N cubelets that is perpendicular to, and behind, this

WINDOW, corresponds to a column of voxels behind the superscreen.

With regard to the aspect ratio, the rectangular shaped pixels will predicate non-cubical

voxels (i.e. parallepipeds). Such difficulties as we already discussed in the subsection on

clipping, are overridden by the use of transformation matrices which alter the scaling of the

coordinate systems used.

85

3.4 Ray tracing

The last approach to visualisation that we will present in this chapter is ray tracing. It is

based on the principles of the pinhole camera model and it was primarily developed as a

global illumination model [Whitted 1980]. Compared to the rest of the visualisation

approaches, it is the most capable of simulating optical phenomena. The simplicity of the

ray tracing principles, its potential for achieving ‘realistic images’, and its adaptability to

virtually all modelling approaches, make it the most promising computer graphics

visualisation approach. However, ray tracing has not been adopted by many computer

graphics users because its implementation demands computers with enormous power and it

is best suited on parallel architectures.

In this section we will first present the pinhole camera model, followed by the two distinctly

different ray tracing approaches, the forward and the backward ray tracing. Then we will

continue to present the five stages of ray tracing that, in a manner similar to octree, are

embedded in the algorithm.

3.4.1 The pinhole camera model

To conceptualise the pinhole camera model, we imagine a box, like the one in Figure 3.6,

where in the centre of one of its facets there is a small hole (pinhole) and at the inner side

of the opposite facet there is a light sensitive surface (e.g. photographic film). This system,

in the history of photography is one of the oldest camera models, however, painters have

used the underlying principles since at least the time of Canaletto. In the pinhole camera,

light coming from outside the box (the environment) passes through the pinhole and hits the

film. If the size of the pinhole is very small, then any small region on the film can only be

affected by light coming along the direction that connects that area with the pinhole

(Figure 3.6a).

86

In computer graphics,4 the pinhole camera model is partially altered. The pinhole, is

replaced by the observer’s eye , and therefore the image plane, which plays the role of the

film, has to be placed in front of the pinhole, as Figure 3.6b shows. In this way, the image

that will be recorded on the image plane, which is the viewport, will not be inverted as is

the case on the pinhole camera.

Viewport

Pixels

Observer Image plane
Viewing

Film Pinhole

frustrum

(a) (b)

Figure 3.6 The pinhole camera model and the ray tracing equivalent

In this model, the observer is restricted to ‘see’ only through the image plane. Therefore,

the visible space is defined by the infinite pyramid which has its apex at the observer’s eye

and each infinite edge passes through one vertex of the image plane. This volume of visible

space (i.e. infinite pyramid) is called the pyramid o f vision. The above restriction is arbitrary

and in some computer graphics applications the visible volume is further reduced to a

frustum by excluding from the pyramid of vision the space between the observer’s eye and

the image plane. Therefore the pyramid of vision will be confined only in the volume which

is in front of the image plane along the direction of view. This three-dimensional volume

that can be projected on the image plane is also called the viewing frustum [Glassner 1989].

4 With ray tracing other more complex camera models have been simulated but references to them will be given
at later sections.

87

3.4.2 Forward ray tracing

In computer graphics, an image is determined by the colour of every pixel on the viewport.

Consider such a pixel on the viewport; this will correspond to a small rectangular area on

the image plane which we will call subwindow. What is visible through that subwindow has

to be represented by a single shade (the colour of the corresponding pixel) and is a problem

that "much of the work of 3D computer graphics is devoted to ..." [Glassner 1989 page 4].

With the ray tracing approach, the colour of each pixel will be determined by the averaging

of the colours of all the light rays (their photons) that hit inside the corresponding

subwindow on the image plane. Consider a computer graphics scene involving an observer,

an image plane and inside the corresponding viewing frustum, some objects illuminated by

say, a single light source. The light source will generate an infinite number of photons with

different (depending on the source) colours, travelling to all possible directions. Take, for

example, a photon coming out of the source and heading directly towards the observer’s eye

through the image plane. The observer will see light coming out of the source.

Consider now another photon coming out of the same source but heading towards an object

in the scene. This photon hits the surface of that object and after interacting (exchanging

energy) with the matter of that object’s surface is reflected back towards, say, the image

plane and the observer’s eye. This is actually the reason that the observer sees the object:

light (from a source) hits the surface of an object and is reflected towards the observer

(passing through the image plane). Another photon may follow a totally different route,

starting off from the same source, reflecting on several surfaces in the scene and then is

either too weak to be noticeable, or never meets the image plane and the observer.

The mathematics describing the interaction of a light ray (stream of photons) with a surface

may become very complex. A model simulating that interaction should be capable of

describing the direction of a reflected and possibly a refracted ray (if the surface is

transparent) and the colour (and intensity) of the light they carry. In simulating optical

phenomena such as diffuse reflection, however, we need to know the complete distribution

of reflected rays, hence considerably complicating the shading model algorithms.

88

The problem of determining the correct colour of a pixel on the viewport is transformed into

averaging the colours of the light rays that hit the corresponding window on the image

plane. One way of calculating these rays would be to start from a light source (since it is

the only place that photons are generated) and follow the route of every ray that would

eventually (after possible interactions with surfaces of objects in the scene) reach the

observer. This process of following (tracing) light rays from the point they are generated

until they hit the observer is called forward ray tracing.

Although in theory forward ray tracing produces the anticipated results, in practice it is too

inefficient to use. Consider a light source; light rays emanating from that source will go to

all possible directions. From all these rays, some will go off the scene directly, others will

miss the observer after striking onto one or more surfaces, and only a very small percentage

of initial rays will eventually reach (directly or not) the observer through the image plane.

The identity (in terms of point of origin and direction) of these latter rays is known only

after their complete route (through reflections and refractions) has been calculated.

Therefore, simulating this approach in a computer proves inefficient since most of the CPU

time will be spent in calculating the route of light rays that do not contribute anything to

the final image on the viewport since they will never reach the observer. As a result, another

approach (which resembles almost the inverse one) has been widely adopted as the correct

implementation of ray tracing.

3.4.3 Backward ray tracing

This approach to ray tracing considers only the rays that would eventually contribute to the

colouring of the pixels on the viewport. Given a pixel (on the viewport), any ray that comes

from the scene and passes through the image plane and hits the observer’s eye can be

characterised as a vector that passes through the observer’s eye and through the centre of

a subwindow that would be mapped exactly to that pixel. In fact, any point inside the

subwindow could be used, but for simplicity the subwindow’s centre is chosen. In some

sophisticated applications, where more than one point inside the subwindow are required,

a deterministic and sometimes a stochastic method is employed to select them.

89

Therefore the only ray that determines the colour of that pixel, and which from now on will

be called the eye ray, is assumed to pass through two known points: the subwindow’s centre

and the observer’s eye. What remains to be determined is the light source from which this

ray conveys light. If that ray comes directly from a light source in the scene, then we

proceed to calculate the colour and intensity of this light contribution. If, instead, that eye

ray comes from the surface of an object (i.e. intersects with that surface) then it could be

the reflection or refraction (or a combination of both) of some other ray(s) that convey light.

Consequently, these new child rays must be traced.5

For each of the child rays, therefore, the sources of the light they convey must also be

determined. This is achieved by following every child ray along its path until we identify

its origin, in a fashion similar to that of the original eye ray. In this way we construct a

recursive path-finding process.

This recursive process usually terminates when a child ray does not intersect either with a

light source or with any object in the scene and therefore is said to ‘miss’ the scene. In this

case the source of that ray is assumed to be the background of the scene where we assume

that uniformly scattered light (emanating from the background) illuminates all the surfaces

of all objects equally (<ambient light).

However, this recursive path-finding process is not guaranteed to terminate under all

circumstances. For example, a ray that reflects between two appropriately positioned mirrors

will spawn infinite generations of child rays. In such a case therefore, we have to apply

some other termination criteria. The various criteria used and their advantages will be

discussed with greater detail in the next subsection.

The process of backward tracing light rays from the observer, through the image plane, until

they reach a light source or disappear in the background, is called backward ray tracing, and

because of its improved efficiency, over the forward ray tracing, it is the one adopted by the

overwhelming majority of computer graphics users. We have also adopted this approach, and

for the rest of this dissertation ray tracing will be synonymous to backward ray tracing.

5 Optics have modelled reflection and refraction and therefore these rays can be calculated.

90

3.4.4 Definitions

From the recursive process of tracing rays, a tree data structure that depicts the complete

route of the initial eye ray may be defined. This tree is called the ray tree. The root of the

ray tree describes the vector of the eye ray and its nodes hold information about the child

rays. Moreover, the child rays may be classified into three different categories according to

the way they were generated [Glassner 1989]. Specifically, rays that carry light directly from

a light source to the surface of an object are called illumination or shadow rays.6 Similarly,

reflection rays are the ones that carry light reflected off by a surface, and transparency rays

are the ones that carry light that has been transmitted through a surface.

Figure 3.7 Definition of rays

Consider, in Figure 3.7, an eye ray which, in the backward ray tracing philosophy, emanates

from the observer towards the viewing frustum. Assume that it strikes at the point P on the

surface of an object in the scene. The light of the eye ray (that the observer perceives) will

be determined by the light that illuminates (directly or not) point P and is either reflected

off or, emitted through the surface at P towards the observer.

6 Their name depends on the individual case: consider a point on the surface of an object and a light source.
If there is a clear, visible, path connecting them directly, this defines an illumination ray. If this path is obstructed
by another object, then that point is in shadow and therefore we are talking about a shadow ray.

Light Source

E ye ray

Light Source

Illumination
ray

Transparency
ray

91

Light that comes directly at point P from the light sources specifies whether P is in shadow

cast by other objects in the scene. This is determined with a ray called shadow feeler. It is

a ray connecting P with the light sources. If the shadow feeler does not intersect with any

object before reaching the source, it is assumed to be an illumination ray illuminating point

P. Alternatively, it is a shadow ray since another object is in between P and the particular

light source.

Light striking at P can be radiated in a given direction, not necessarily unique, with four

main different mechanisms or light transport modes, two of which are the perfect specular

reflection and the perfect specular transmission. These two modes describe the effects of

reflection and transparency on a perfectly flat shiny and transparent surface. The other two

mechanisms, namely the diffuse reflection and the diffuse transmission, describe the same

phenomena but on rough, imperfect surfaces. The mathematics that model these (not

necessarily all) phenomena will compose our shading or illumination model which is also

called the rendering equation.

Therefore, in the above example, light that is reflected at P towards the eye ray direction

is also important. Similarly, light transmitted through the object’s surface at P going to the

same eye ray direction is also taken into account. As a result, the appropriate reflection (R)

and transparency (T) rays are calculated. But in order to determine the light of the eye ray

(expressed in terms of colour and intensity) the rendering equation needs information about

the light that the R and T rays carry. This means that the rendering equation should have

been applied for these reflection and transparency rays beforehand. This observation justifies

the recursive nature of the backward ray tracing algorithm. Moreover, tracing backwards,

if these rays (i.e. reflection and transparency) intersect with other surfaces, more rays are

involved in the rendering equation thus expanding the ray tree.

Although the expansion of the ray tree should only stop when no more rays are generated

(due to lack of intersections with surfaces in the scene), there are cases where the relative

location of the objects is such that infinite expansion is demanded by the rendering equation.

Whitted [1980] suggested that a fixed tree depth (i.e. a maximum level of tree expansion,

or maximum computer storage allocated for holding the ray tree) should be used to prune

92

the tree. This method is a trade-off between wrongly coloured images if the depth limit is

very small and wasted CPU time if the size of the ray tree is too large. The choice of the

‘correct’ depth is not clear. It greatly depends on the relative position of the objects in a

scene and sometimes there are areas in the image that demand great tree depths (e.g. direct

involvement of the light sources) and others that need very small tree depths (e.g. surfaces

in shadows). One way to overcome this is by using a different limit for every ray tree. Such

a technique is called adaptive tree depth control; for a given ray tree, expansion will

terminate when a child ray does not contribute a significant amount of colour to the

corresponding pixel. This threshold o f significance is arbitrarily chosen and in most

applications is taken equal to the colour resolution of the viewport.

For example, in a 24 bit frame buffer, where 8 bits are used for each primary colour of the

RGB model, the corresponding colour resolution is 2"8 of the maximum intensity used.

Consequently, intensity variations of less than 2'8 cannot be coded, thence do not contribute

to the final image. Furthermore, from psychophysics, we can deduce similar values for the

threshold of significance that have been obtained from experiments measuring the ability of

the human eye to discriminate between two contiguous colour intensities.

Although this technique produces acceptable images, in theory it can be proved that it may

be an arbitrarily incorrect approach since we do not know the intensity of the light sources

we might encounter during the ray tree expansion. In order to avoid such unexpected errors,

we have to assume that the maximum allowed intensity of any light source in a computer

graphics scene is set to an arbitrary value, which for convenience it represents the unit

intensity = 1.

Despite this assumption, when there are more than one sources in the scene, it is still

possible for certain surfaces to be illuminated by more than one source thus resulting in

intensity levels that are larger than the preset limit of 7 ^ . Furthermore, there are also certain

combinations of reflective and refractive surfaces that may converge light from a source to

a particular location in the scene, thus illuminating it with intensity larger than the preset

limit. Examples of such surfaces are appropriately positioned convex lenses and paraboloid

mirrors. In such cases, we either increase the maximum allowed intensity /^ and scale all

93

intensity values in our calculations accordingly, or we introduce attenuation of light intensity

in order to diminish the possibility of such errors, or finally we may truncate all undesired

intensity values to the maximum allowed and therefore introduce a small error in the image.

Backward ray tracing, which from now on will be simply called ray tracing, was introduced

by [Kay 1979a; 1979b; Whitted 1980] as an extension to the ray casting method for hidden

surface removal [Appel 1968; Goldstein 1971]. Ray casting is used as a method for

determining the visible parts of objects in a scene and is similar to ray tracing. Their

difference is that in ray casting the ray tree is not generated but only the initial eye ray is

used. Information about the colour of a pixel is gained from the corresponding eye ray

regardless of any possible reflection and transparency rays. The shading models used in ray

casting were therefore considered local, as opposed to the global ones introduced by ray

tracing [Whitted 1980].

3.4.5 Projection

Since the ray tracing approach is based on the pinhole camera model, the perspective

projection is implied by the algorithm; all initial eye rays emanate from the observer and

are spread inside the pyramid of vision. Actually, the eye rays may be considered as the

lines of the perspective projection.

To implement ray tracing with the orthographic projection, we would simply need to change

the definition of the lines of projection (i.e. the eye rays). Specifically, in orthographic

projection, all eye rays should be parallel with each other. Moreover, we may assume that

they all hit the image plane perpendicularly. Although orthographic projection is simple to

implement, it defeats the essence of the ray tracing approach and so is rarely used.

3.4.6 Clipping

Clipping is implicit in ray tracing since we will only encounter the eye rays that belong to

the inside of the pyramid of vision. Consequently, all objects that fall outside this pyramid

of vision will not intersect with the eye rays. However, since these implicitly clipped objects

94

are part of the scene, they should not be ignored because they may contribute to the

rendering equation because of their reflection, refraction, or shadows cast onto the surfaces

of other objects that have not been clipped.

3.4.7 Hidden surface removal

In ray tracing, the problem of eliminating hidden, invisible by the observer, surfaces is

addressed by the eye rays. Obviously when an eye ray is fired, the first surface it will hit

will be one that is visible by the observer. Therefore, determining whether a ray intersects

with any objects in the scene is very critical and the correct expansion of the ray tree

depends exclusively on it. From early experiments by Whitted [1980], the CPU time spent

for intersection related calculations was in the range of 75% - 95% of the total CPU time

needed for a ray traced image to be generated. Although these numbers depend very much

on the complexity of the scene, the actual hardware platform and the possible acceleration

techniques used, the task of ray - surface intersection still poses a major calculations

overhead.

Figure 3.8 The ray - surface intersection

Consider Figure 3.8 that shows a ray passing through a scene. In geometry, this ray is

defined as a vector V by its point of origin Vp and its direction Vd. Parametrically, it is

defined as V = Vp+X x Vd, X>0. The constraint for A, denotes that the ray extends infinitely

95

to the Vd direction only. In a typical ray tracing implementation, all the objects in the scene

will have to be checked whether they intersect with that ray V. All the points Pt of

intersection (Pt = Vp+A, x Vd) will then have to be collected and sorted and the one (say Pj)

that the ray hits first (i.e. the nearest to Vp, P f Xj = minfXj) will become the origin for the

new child rays. If the original ray V was a shadow feeler, then its direction Vd would be

defined by Vd = L -V p, where L is the position of a light source, and we would be interested

in finding points Pk that cut the path from Vp to L (i.e. Pk = Vp+Xk X v 0 0 <X* <1).

The mathematics involved in a ray - surface intersection calculation may vary considerably

in complexity and depend mainly on the modelling approach used. Since the major

geometric task of ray tracing is the intersection of objects with rays, any model may be

used. In practice we can differentiate between three different approaches to the ray - surface

intersection problem which are the algebraic, the geometric and the divide and conquer.

The algebraic approach.

The algebraic approach to intersection problem is appropriate to analytic models. The

problem of intersection of a ray vector (V = Vp+X x Vd, as Figure 3.8 shows) with an object

(an analytic function) is transformed to an equation (usually a polynomial), the roots of

which need to be calculated. This equation is usually expressed parametrically with the

vector’s parameter A, and its real roots (if any) will determine the points on the ray vector

that intersect with the surface of the object.

For example, a sphere of unit radius, centred at the point (2 , 3 , -4) of the OBSERVED

system and a ray V with Vp = (0 , 0 , 0) (eye ray) and direction Vd = (2 , 3 , -4) would

produce the following equation:

Vector ray: V= (0 , 0 , 0)+A x (2 , 3 , -4) =» Vx = 2A, Vy = 3A, Vz = -4A

Sphere: (x-2)2 + (y-3)2 + (z+4)2 = 1

Points on the vector V = {Vx , Vy , Vz), that also belong to the sphere should validate both

equations (Vx-2)2 + (V^-3)2 + (Vz+4)2 = 1 => (2A-2)2 + (3A-3)2 + (-4A+4)2 = 1

This is a second degree equation with roots: A = 1 ± ——
V®

96

For geometrical objects such as the plane, or quadrics (e.g. sphere, ellipsoid, cylinder, etc.)

the intersection with a ray vector will result in first or second degree equations, which can

be solved analytically. However, if the produced equation is of degree greater than two, the

complexity of the problem is significant and approximation techniques are used. Geometrical

objects that belong in this category include the torus and the (infinite) helix.

Numerical analysis techniques for solving equations produce approximations to their roots

by iteratively guessing a solution and improving on it. This iterative process terminates when

a suggested approximation is not far away from the actual root (i.e. their distance is less

than a distance epsilon e). The speed of convergence to a solution depends on the type of

the technique used (e.g. Newton Raphson, Regula Falsi, Bernoulli etc.) and of the initial

guess of the root.

Moreover, for such a process to converge, a set of preconditions that are not always

convenient to prove, has to be met, thus adding more to the calculation overhead. For a

complete survey of numerical methods see Apostolatos [1981]. Algebraic methods are

generic since the solutions they produce can be parameterized, thus enabling a category of

problems to be solved by assigning the appropriate values to these parameters. For example,

once the algorithm for calculating the roots of a fourth degree polynomial is determined, the

problem of intersecting a ray with any quartic is solved. But such a solution is difficult to

determine and it involves a considerable amount of calculations, thence more CPU time.

The geometrical approach

The second approach to solving the ray - surface intersection is the geometric one. With this

approach the exact conditions of each problem are exploited and the solutions (points of

intersection with a given ray) are calculated only when necessary. For any given situation,

certain conditions like space coherence and bounding volume information are the first to be

exploited. With the first condition, space coherence, the relative position of objects in a

scene is examined. For example, if a ray starts from a point Vp that lies inside the volume

defined by a sphere, then an intersection point (with that sphere) will exist irrespective of

the direction Vd of that ray. With the second condition, information about simple geometrical

objects can be used to infer results regarding more complex ones. Take, for example a torus

97

and a sphere that completely covers it. If a given ray does not intersect with that sphere it

would not intersect with the torus either. Apart from the above general conditions, others

specific to individual intersection problems can be used to avoid unnecessary calculations

if knowledge concerning lack of intersection can be gained.

To give an example, consider the problem of intersecting a ray with a sphere where Vp (the

ray’s origin) is outside the sphere. If the ray’s direction points away from the sphere then

there is no intersection. With the geometric approach, therefore, only the necessary steps

towards a possible solution are actually occurring, thus reducing the amount of CPU time

needed. But, on the other hand, geometric solutions are not as generic as their algebraic

equivalent. This means that for every type of object a separate algorithm for solving the

intersection problem has to be determined thus increasing the amount of code needed.

The ‘divide and conquer* approach

This is a combination of the algebraic and geometric approaches so that the advantages of

both may be exploited. Bounding volume information is used to determine whether a given

ray intersects with the bounding volume of an object. If such an intersection occurs, the

object is subdivided into smaller pieces, if possible, and for every piece a new bounding

volume (smaller in size) is defined. Then, the same ray is checked for intersection with all

the new bounding volumes. For every such intersection, the corresponding piece of the

object is again subdivided into smaller pieces and intersection checks are performed again.

This recursive process ends when that ray does not intersect with any of the bounding

volumes of the pieces of the object or, when the size of the intersecting bounding volume

is smaller than an arbitrarily chosen limit. In that latter case, the intersection point is

assumed to be in the centre of the bounding volume. This approach, is convenient to use

with surfaces that are modelled by a recursive function (e.g. different types of splines). A

typical example of this approach can be found in [Whitted 1980], where ray tracing is

applied on bicubic patches using a recursive evaluation algorithm proposed by Catmull and

Clark [1978].

98

3.4.8 Shading

When a ray hits the surface of an object, its direction as well as its colour will change. From

optics, the geometry of reflection and refraction have been modelled, while from quantum

mechanics explanations about the colour changes are given. In this section, the geometrical

issues will be presented first. Next an attempt to explain some of the spectral changes will

be given. Finally, an advanced shading model capable of simulating all four colour transport

modes will be briefly presented.

p-d

normal vector
reflected ray

incident ray

point of intersectionP+d-(n*d)n^ plane of surface tangent

plane of surface tangent p-d+(rfd)n
refracted ray

medium |ij

medium fi

Figure 3.9 The ray - surface interaction

Consider Figure 3.9. Suppose that an incident ray with unit direction vector d hits a surface

at point p, where the normal pointing out of the surface is unit vector n. From elementary

physics we know that the angle o f incidence, 0,, the angle made by the ray with the normal,

equals the angle o f reflection. Assuming that the surface is acting as a plane mirror at point

p (labelled O in the figure) and that the directions have the senses given in Figure 3.9, we

can see that point p -d is reflected into point p - d + 2(d • n)n, from which we can ascertain

the direction vector of the reflected ray to be d - 2(d • n)n . The function denoted by d • n

is the inner product between vectors d, n.

99

Now we emulate refraction by considering the same incident ray as it passes through the

surface. Suppose the ray passes from the incident medium with refractive index f t into the

refracting medium with refractive index ft: we call the relative refractive index from the

second to the first medium p = f t / ft. If the refracted ray makes an angle of refraction 0r

with the normal (in the opposite sense) -n , then by Snell’s Law:

sinBj pr

sin0r pf ^

Since the normal, and the incident and refracted rays all lie in the same plane, referring to

Figure 3.9, we can treat refraction as though the straight-through ray is pushed up towards

the tangent plane if ju< 1, or down away from it if ft>\. In the figure, point p+d (labelled

A), lying on the straight-through ray, is pushed up towards a typical point p+d-X(d • n)n

(labelled B) that is dependent on the value of X (= \AB\/\AC\), which in turn depends on

ju. Setting X to unity fixes a point labelled C that lies on the plane tangential to the surface

at the point of incidence. Since d (and n for that matter) are unit vectors, then:

| OA | = 1 , | OC | = sin0j = p sin0r and thus | OB | = p

Remembering that n and d are unit vectors, we can then calculate:

| AC | = |cos0j = |(rf* ii) | and

\BC\ = pcos0r = p ^ (l - s i i f 0 r)

= ^ (|i2- ji2sm20r)

= \j (ji2 - sm20()

= ^ (^ - (l - c o s 2^))

= i/(n2 + (rf-n)2- 1)

Hence A = l-*C H * C | = 1 - '* C '
M C| \AC\

= J _ V(n2+ (tf-n)2 - 1)
!(<#•«) I

100

We are of course assuming that both 0, and 0r are acute angles, (d*n)& 0, and the values

under the square root symbol are non-negative. We can now find the value of X, and hence

the refracted ray. If the values under the square root are negative then we assume total

reflection.

Apart from the above, other solutions to the light transmission problem can be found in

[Heckbert 1989]. Heckbert compares three solutions with regard to the number of primitive

calculations (i.e. additions, multiplications, divisions and square roots) needed to implement

thus providing a framework for choosing the quickest technique.

The above solutions model the geometric aspects of the optical phenomena only (i.e.

reflection and transmission). What is still needed to compose the complete rendering

equation is to simulate the reaction of light in terms of its spectral composition (i.e. intensity

on every visible wavelength). These models, should be able to explain phenomena like the

colour shift that occurs in perfect specular reflection, or the colour absorption and the reason

that we actually see objects.

When a ray strikes on the surface of an object what actually happens is that photons

interfere with the atoms of that object. From quantum mechanics, it is known that atoms

vibrate and can be characterised by the amount of energy they carry. Their energy may only

take a few specific values called energy levels or energy states. According to this theory,

an atom can take or give specific amounts of energy thus moving upwards (or downwards)

in the permissible energy states. When a photon approaches an atom, due to the

phenomenon of sympathetic resonance, some energy will be exchanged: atoms with resonant

frequency close to the photon’s frequency will be more easily excited, and absorb almost

all the photon’s energy. Accordingly, big differences in the frequencies will result in small

amounts of exchanged energy.

When a photon arrives with energy insufficient to boost an atom to the next energy level,

its energy is absorbed (by the atom) and converted into heat. But if the energy of the photon

(transferred sympathetically) is just enough to enable the atom to move to a higher energy

state then the photon will disappear (since it gave all its energy) and the atom will oscillate

101

at a higher level. The atom cannot stay at its new excited level indefinitely and after a while

returns back to its previous energy state thus emitting a new photon with energy equal to

the difference of the two energy states and with frequency similar to absorbed one.

This phenomenon if seen from a macroscopic view appears to be the reflection of light from

a surface. This is actually the reason for seeing coloured objects like, for example, a blue

ball; blue photons are reflected back while all the other colours are absorbed at the ball’s

surface and transformed into other forms of energy (mainly heat). On the other hand, from

a microscopic point of view, the following assumption is also made: the surface of an object

is composed of many tiny flat reflectors also called microfacets. The distribution of their

orientation will determine how glossy and shiny a surface is.

In a shiny flat surface, almost all the microfacets have the same orientation, while in a less

smooth surface, microfacets with any orientation have the same probability to appear. If

light comes from a direction almost tangential to the surface, it will be either blocked by

the microfacets, or reflected by the appropriately orientated microfacet following the laws

of reflection. If a light ray hits the surface with a small angle of incidence, then it will be

reflected for a while amongst the microfacets before it leaves off the surface towards the

appropriate (by the reflection laws) direction. In the latter case, the absorption of photons

of certain frequencies will become apparent since many ‘microreflections’ will have

occurred. This colour shift, that occurs in specular reflection, is expressed by the Fresnel

function F(k , 0) where X is a given wavelength of visible light and 0 is the angle of

incidence at the appropriately orientated microfacet [Foley et al. 1990].

By modelling both the geometrical and the optical reactions of light when it hits a surface,

a complete shading model emerges. In computer graphics, there exist many different shading

models that simulate the above interactions. The simple ones cater only for perfect specular

reflection, while the more sophisticated can simulate all four light transport modes (section

3.4.4). What all these models have in common is that they differentiate between light

coming directly from a light source and light coming indirectly from other surfaces through

reflections and/or transmission.

102

A typical global illumination model was first introduced by Whitted [1980]. This

illumination model for a given point of a ray - surface intersection calculates the

a m b i e n t l i g h t from the scene and the diffuse (Idmise>i) and specular (Iapuularj)

reflections of the i ^ point light source. The global illumination model is then given by the

recursive equation:

~ ^ambient + ^ ^diffuse,i + ^specular, + ^s^refl,X + ^t^tran,X
1 iiitn

Where i denotes the one of the m point light sources and ks, kt are the specular reflection

and transmission coefficients of the materials involved. The wavelength A, denotes that we

can sample this equation in the red, green and blue primaries of the RGB colour model. Hall

[1983] suggested, a more accurate equation that also accounts for Fresnel’s law.

3.4.9 Mapping

The final stage in visualisation is what we called mapping of points into pixels. This stage

is also implicit in the ray tracing algorithm. It takes place in the definition of the eye rays.

There, we assumed that a subwindow on the image plane will correspond to exactly one

pixel on the viewport. Therefore, by firing one eye ray towards the centre of each

subwindow, we can determine the coordinates of the pixel we will eventually paint.

3.5 Problems with visualisation

Apart from all the merits and disadvantages we presented for each particular visualisation

approach, they all suffer from the problem of aliasing. It is inherited by the definition of

computer graphics which represents an analogue (continuous) world with digital (discretised)

means. This problem appears as four different phenomena, namely, precision, spatial

aliasing, colour aliasing and temporal aliasing, all of which distort the resulting image. In

this section we will present all four phenomena and suggest remedies. For our convenience,

we will assume the ray tracing visualisation approach, unless we state otherwise.

103

Precision

Each computer can handle numbers (integers or reals) up to a certain degree of exactness.

With regard to integers there exist a range of permissible values beyond which we need to

use special processor commands and extended precision arithmetic. With regard to real

number representation, computers are using interval arithmetic where a range of real

numbers is represented by one number only, the representative, which is usually the centre

of the interval. The rest of the numbers in this interval cannot be represented precisely, but

are approximated with that unique representative of the interval, thus introducing precision

or rounding errors. The IEEE has produced standards for number representation and

arithmetic and the rounding error (i.e. half the length of the interval) for single precision real

number representation is in approximately 10'7. Using extended precision representation, this

error may even fall below 1011 but with considerable needs in memory space and CPU time.

When calculating the intersection of a ray with an object, it is not uncommon that tens of

multiplications, divisions or even square roots are involved, especially when iterative

approximations are used. As a result, the tiny representation errors accumulate and increase

in the intermediate stages of the calculations, thus producing (at the end) a solution of

debatable accuracy (i.e. errors in the order of 10'2 or larger). In such cases, that are very

often encountered, a point that theoretically is assumed to be on the surface of an object,

can be found far away from it (either inside or outside).

Furthermore, the use of such a misplaced point as the origin for new child rays adds to the

problem of accuracy since errors will amplify when propagated through the lower levels of

the ray tree, and an incorrect ray tree will eventually be produced. The most common

problem in ray tracing applications is that such a point is misplaced at the inside of the

surface of an object and the new rays that originate from it hit the same surface again and

again, thus deceiving the rendering equation and producing a peculiar and incorrect texture.

For the problem of precision many solutions have been suggested. Some treat the numbers

as intervals since this is the actual representation of numbers in computers. With such a

method, numbers that differ less than 8 (an arbitrarily small distance called epsilon) are

treated as being equal. This epsilon is chosen to match the computer’s precision of number

104

representation (i.e. approximately 10'5) and in many applications is assumed to be constant.

But this only partially solves the problem of precision since if application distances in the

order of 10*3 are common, a value of e = 10‘5 is relatively significant and it will still produce

problems. Adjusting e according to the order of magnitude of the numbers (i.e. scaling) used

seems to solve most of the problems but there is still no guarantee that such an epsilon will

always exist to be accurately represented by the computer (i.e. if £ = 10'10 is needed, then

a common 16 bit system cannot represent it so that 1.0 + e * 1.0).

Another approach that is partially based on the existence of e (constant or not) is the

following. After a solution (i.e. an intersection point) has been found, an iterative

approximation technique (of accuracy e or smaller) is employed to improve on that solution.

In such cases, the CPU time needed for eventually determining an intersection point

increases considerably.

Finally, another totally different approach can also be used for the precision problem. It is

based on the logical implications of what an algorithm is meant to do (e.g. to determine a

point on a surface that will be used as an origin for new rays). With this method, if an

intersection point is going to be used as the origin of a ray that travels outside the

(intersected) surface, then it is moved an arbitrary small distance outside that surface so that

the problem of hitting the same surface twice (or more) is certainly avoided. Accordingly,

points used for rays that travel inside an object are moved to the interior of that object. This

arbitrary dislocation of points, although succeeding to avoid the primary problem of wrong

intersections, produces inaccurate images. This flaw becomes obvious in cases where objects

are very near to each other, or where surfaces with high curvature are involved.

Concluding the discussion on the precision problem, we can remark that there is no unique

preferred method for avoiding precision problems. The rule of thumb is to use a mixture of

them all. The criteria for which particular to use more extensively should include the type

of objects used, the order of magnitude of the numbers involved, and the relative importance

of producing accurate images (e.g. medical/scientific versus advertisement).

105

Spatial aliasing

The use of a discrete medium such as the viewport (an array of a finite number of pixels)

to depict a continuous analogue image of a scene will result in jagged edges (looking like

staircases) or even lost objects. It is a typical problem of sampling which is called spatial

aliasing.

a b c

Figure 3.10 Spatial aliasing

To better understand spatial aliasing, let us consider Figure 3.10. In this figure, the image

of a ray traced sphere is shown on viewports of different resolutions. Assume that the

sphere’s centre is projected on the centre point of the image plane and the complete image

(the projected circle) falls inside it, as Figure 3.10a, shows. If the resolution of the viewport

is only 2 x 2 pixels, a simple ray tracer would miss the sphere if its radius was smaller than

a certain distance (Figure 3.10b). This problem is inherent in the nature of ray tracing, since

by definition7 all four (corresponding to the pixels) eye rays miss that sphere. Therefore,

in the general case, an arbitrarily large object can disappear from the viewport if it falls

inside the infinite pyramid produced by the thus produced four eye rays (Figure 3.11).

Whitted [1980], in order to avoid missing objects, suggested that for every object in the

scene at least one ray should hit it unless it is hidden by other objects. With this suggestion,

the image of Figure 3.10c, may emerge. By increasing the resolution of the viewport,

7 In the standard ray tracing, as it has already been mentioned, an eye ray is defined by the vector that emanates
from the observer and passes through the centre of the corresponding to the pixel subwindow on the image plane.

106

Figure 3.10d (4 x 4), e (10 x 10) and f (20 x 20) are produced. What is common to all these

images is the quality of the perimeter of the re-produced circle which is not smooth but

follows an approximated path determined by the regular grid of pixels of the viewport. This

appearance of unwanted jagged edges is one of the most annoying phenomena characterizing

not only ray tracing but the whole spectrum of computer graphics applications.

3.11 Losing objects from the scene

To avoid this problem of spatial aliasing (jagged silhouettes) many suggestions have been

made. But what they all have in common is that they increase the number of eye rays that

correspond to every pixel, a technique called oversampling. As a result, the colour of a pixel

is calculated by a weighted average of the colour of all the rays that correspond to that

pixel. With the simplest method, namely supersampling, between three to nine (usually 5)

eye rays are fired for every pixel. They all originate from the observer, but pass through

different points of the subwindow on the image plane. The pattern of these points is the

same for every pixel, thus producing a regular grid of density higher than the viewport’s

(Figure 3.12a).

• •

• •

• •

• •
• •

• •

• •

• •

a b

Figure 3.12 Regular and adaptive supersampling

107

However, there are two main disadvantages with this method. First, it does not eliminate the

aliasing problem but only reduces it, since the eye rays still form a regular grid on the

image plane and therefore jagged shapes may be noticeable. The second drawback is the

waste of CPU time that occurs from the firing of five or nine eye rays into areas of little

or no change in the resulting colours.

As a result, another method, namely adaptive supersampling, emerged. With this method

a minimum number of eye rays, usually five, is fired for every pixel, at fixed, relative to the

subwindow, locations (Figure 3.12b). If these rays return colours with significant differences,

the regions of the subwindow that produce these colour changes are treated as subwindows

on their own and five more eye rays are fired for each of these. As Figure 3.12b shows, the

results of two of the five rays have already been calculated at the immediately higher level

of subdivision and there is no need for them to be re-calculated.

This recursive subwindow subdivision and subsequent ray firing process stops after a

maximum level of subdivision is reached, or when the returning colours are not different.8

This method produces better results than the constant supersampling and, depending on the

scene, may also be faster since CPU time is only spent in areas of interest (i.e. where colour

changes are significant). The drawback of this method is that although being adaptive, still

aliasing effects exist since all eye rays pass through a regular grid but of a higher resolution.

Another approach, that avoids firing rays at regular grid locations, is the one called

stochastic supersampling and it is based on the Monte Carlo method [Halton 1970]. With

this method, for a given pixel, several rays (usually nine) are fired passing through randomly

selected points within the corresponding subwindow. As a result, jagged edges are not

characterized by the patterns of a regular grid but by random patterns also known as noise.9

g
The criterion of colour difference seems better compared to maximum number of subdivisions, in terms of

quality, since whenever there is significant colour difference it is implied that the rays hit near the edge of a surface,
or a highlight, and therefore a denser sampling rate is necessary. But in order to achieve faster results either the
threshold colour difference is enlarged or a combination of both criteria is used.

Q

This method conforms to the observation that although the human eye consists of a finite number of
photoreceptors [Williams 1983], they do not form a regular grid but follow a Poisson disk distribution as Yellott
[1983] suggested.

108

With the help of digital filters, stored in look-up tables or calculated in real time, the colour

of every pixel is determined [Amanatides 1987a; Cook 1989].

By extending the concept of stochastic supersampling into all types of rays (i.e. shadow,

illumination, reflection and transparency) a new category of ray tracing algorithms called

stochastic, or distributed, or probabilistic ray tracing (as opposed to the standard

deterministic one) can be defined. With distributed ray tracing, apart from eliminating the

spatial aliasing problem, a "whole range of fuzzy phenomena" [Cook 89], can be simulated:

blurry reflection, blurry transparency, penumbras, and depth o f field can be modelled by the

distribution of reflection, transparency, shadow/illumination and eye rays over a lens

configuration.

Temporal aliasing

With the distribution of eye rays over time, motion blur may also be modelled. However,

the production of frames at discrete time intervals for the creation of an animation sequence

will result in objects moving stepwise and not continuously.10 This is especially noticeable

when visualizing fast moving objects where in cinema films their silhouettes appear blurred

(;motion blur). For example, we can have the illusion that the wagon’s wheels are revolving

in the opposite direction of the wagon.

Colour aliasing

The third problem of sampling continuous events in discrete media is that of colour aliasing.

In a similar fashion to spatial and temporal aliasing, sampling also occurs when the

rendering equation must determine the colour information at a particular location. However,

such information should be in the form of intensity distribution along the range of visible

frequencies (i.e. visible spectrum). But this requirement would complicate the

implementation of a shading model immensely since it would necessitate operations on

spectra responses. Consequently, using a colour model such as the RGB, the rendering

equation approximates the interaction of colour intensity spectra by determining equivalent

colour intensities on the primary red, green and blue frequencies only. An obvious effect of

10 This phenomenon was first noticed at the early cinema films. Since then, experiments have shown that the
human brain cannot differentiate between images changing more often than 16 times a second (approx.).

109

colour aliasing is therefore that in computer graphics transparent surfaces do not exhibit the

‘rainbow effect’ of light spectral analysis due to the variation of the refractive index on

different light frequencies.

3 .6 A c c e l e r a t i o n t e c h n iq u e s

Another problem with visualisation algorithms in general but particularly with ray tracing,

is the amount of computing time needed. Ray tracing of scenes is a considerably longer

process compared with the rest of the visualisation approaches. Moreover, extensions like

stochastic ray tracing would become significantly (e.g. more than 100 times) more time

consuming than the standard deterministic ray tracing. Detailed results of timing ray tracers

have shown that the time spent in intersection-related calculations amounts for most (over

60% approximately) of the total computing time needed to render an image. As a result,

most of the research in accelerating ray tracing has been directed towards the ray - surface

intersection.

In a broad classification of ray tracing acceleration techniques we can differentiate between

two main categories that we will call intersection-related and general (or, intersection-

unrelated). Moreover, another classification schema that will divide all acceleration

techniques into hardware oriented and software oriented, may also be imposed. The

boundaries of this categorisation may not always be clear. In general, a software oriented

technique will be considered an algorithm that can be implemented on a general purpose

computer and is transportable to any other common purpose language implementation. A

hardware oriented technique will be the one that exploits the particular architecture of a

special purpose computer system. In this document, we will use the first classification and,

for each category, references concerning the second classification will be given.

Intersection-related acceleration techniques can be further divided into two sub-categories,

namely, faster and fewer intersections. Achieving faster intersections by software can occur

by fully exploiting spatial information so that only the necessary steps towards the solution

of the intersection problem are calculated. Other techniques involve the transformation of

110

either the ray or the surface (or sometimes both) to a new coordinate system so that

intersection calculations are more convenient to perform. Avoidance of expensive

calculations like divisions11 or square roots and the extensive use of look-up tables also fall

into this sub-category.

Hardware techniques for faster intersections involve the utilisation of CPU registers (for

holding variables that are constantly needed) and Programmable Array Logic (PAL) chips.

The algorithm of ray - surface intersections is written in microcode and incorporated into

a PAL chip, thus considerably reducing the execution time needed. Ullner [1983] was one

of the first people who examined theoretical hardware configurations including massive use

of custom-made VLSI circuits.

In the second sub-category, fewer intersections can be realized by both software and

hardware. One technique is the use of bounding volume hierarchies; objects that are simple

to intersect are introduced to bound the more complex actual objects of a scene. Single

objects, aggregations of objects, or even bounding volumes can be again bounded, thus

resulting into bounding hierarchies. If a ray does not intersect the bounding volume at a

certain level in the hierarchy, objects bounded by that volume need not be examined at all

for that particular ray.

Another technique aiming at fewer intersections is spatial subdivision. Here, the space of

the viewing frustum that encloses objects of the scene is subdivided to produce ‘sub-scenes’

of reduced complexity. Uniform and adaptive {non uniform) space subdivision techniques

exist. For the uniform, the scene is bounded by a rectangular parallepiped (usually a cube),

or a trapezoid with one of their facets being parallel to the image plane. This bounding

volume is then subdivided into n x n x n = n3 smaller similar volumes (parallepipeds or

trapezoids respectively) thus producing a three-dimensional grid of such subvolumes.

11 In the majority of processors, division of real numbers takes more CPU cycles than multiplication. Therefore,
if the division of many numbers by the same denominator is required, it is faster to calculate the inverse of the
denominator and multiply this to all the numbers needed.

I l l

At a preprocessing stage, for every subvolume, a list of all the objects (namely the object

list) that intersect or are completely enclosed by it, is generated. While ray tracing, the path

of subvolumes that a ray travels through is calculated [Amanatides 1987b; Fujimoto 1985;

Fujimoto 1986]. Given a ray, we first find its path along the subvolumes. Then, for every

subvolume in the path — starting from the nearest to the origin of the ray — we intersect

the ray with all the objects in the subvolume’s object list. When we detect an intersection

we no longer trace this ray along the path of subvolumes.

With this technique we considerably reduce the total number of intersections needed per ray.

The speed gains depend on the complexity of the scene and the size of the subvolumes.

Although this technique reduces the total execution time, some time delays are added at the

preprocessing stage, and the subvolume traversal (while following a given ray). Moreover,

time is wasted while visiting subvolumes with empty object lists.

As an improvement to the problem of visiting empty subvolumes, non uniform space

subdivision techniques have been introduced. Here, the initial bounding volume is always

a cube. At the preprocessing stage this bounding volume is initially12 subdivided into eight

equal subcubes. If for a given subcube the corresponding object list is not empty, this

subcube is recursively subdivided into eight equal sized subcubes thus producing a structure

similar to the octree modelling approach. This recursive subcube subdivision ends when a

subcube produces an empty object list, or its corresponding object list contains less than a

threshold number of objects, or when the subcubes reach a minimal size. With this

technique, time spent in visiting empty subcubes is reduced. Nonetheless, the algorithms

used to determine the path of a given ray through the variable size subcubes are more

complex and time consuming than in the uniform case.

With spatial subdivision, there are three problems that have to be resolved or avoided. The

first problem is concerned with precision. Although Amanatides [1987b] suggests a fast and

effective voxel traversal algorithm for the uniform spatial subdivision, he did not explain

what will happen if a ray passes through an edge or even a vertex of one of the subcubes.

12 The only time that there is no need to subdivide the initial cube is when ray tracing the empty scene (i.e. there
is no object in the scene).

112

We have adopted an amendment to Amanatides’ algorithm which comprises an extra check

to ensure that our results are always consistent with our notation (i.e. which subcube owns

the points that belong on its facets).

The second problem refers to the case of finding an intersection point that belongs to

another, neighbouring subcube. Here, the extra check that an intersection point belongs to

the subcube currently being processed, is adopted. The third problem relates to the fact that

while visiting neighbouring voxels there is danger of checking the same object with the

same ray more than once. Amaldi [1987] introduced the concept of the mailbox where

information concerning intersection results between rays (all rays are identifiable) and

objects, is kept for further use.13

Spatial subdivision has also been exploited from a hardware point of view. Specifically for

ray tracing, Kobayashi, Nakamura and Shigei [1987] suggested a parallel configuration of

intersection processors. Each such intersection processor is responsible for the ray - scene

intersections that occur within a particular volume of space which we will call subcube.

Specifically, each intersection processor is assigned one (or more) subcubes which are

determined at a preprocessing stage by an adaptive space subdivision algorithm taking into

account the spatial coherence of the scene. Then, when a ray passes through a particular

subcube, the intersection processor responsible for this subcube will test for possible

intersections. Information about which subcubes a ray passes through, is essential in order

to assign the intersection task to appropriate processors and is facilitated by the use of face-

neighbour quadtree data structures. In this way face-adjacent subcubes of identical size

could be identified quickly. This method was named adaptive division graph and the

resulting hardware configuration had the form of a six-dimensional hypercube. Dippe and

Swenson [1984] used a uniform subdivision process to allocate one subcube to each of the

n x n x n three-dimensional processor organisation. Then according to the load of each

processor, the size of the subcubes changed so that no processor was idle. Other approaches

may be found in [Nemoto 1986; Cleary 1985].

13 He introduced it in the context of Constructive Solid Geometry, but it can be used for this problem as well.

113

Additional techniques used for achieving fewer intersections are the directional techniques

like the light buffer, the ray coherence and the ray classification. These techniques use the

concept of the direction cube in order to determine a subset of all the objects that a given

ray is likely to hit. A direction cube is a cube in which the normals to all its facets coincide

with the axes of an orthogonal three-dimensional coordinate system (i.e. the OBSERVED

system). For a more detailed presentation see Arvo [1989].

The second category (intersection-unrelated) of ray tracing acceleration techniques, can be

subdivided into three sub-categories, namely, these aiming at firing fewer rays, these using

generalised rays and these exploiting parallelism (or concurrency). Here the differentiation

between hardware and software oriented issues is more clear. Apart from using standard

computer science tricks (e.g. assembly language) to write faster code, the first and second

sub-categories are software oriented. The third relates mainly to the hardware, although

parallel architectures are first simulated and tested in software on general purpose machines.

First we will examine techniques that aim at firing fewer rays. The use of adaptive tree

depth control for the expansion of the ray tree, falls into this sub-category. Another

technique is the statistical supersampling which is related to the aliasing problem. Here, for

a given pixel, a minimum number (usually three) of eye rays are initially fired at random

directions inside the corresponding subwindow as in stochastic supersampling. Then, a

statistical test is applied to determine whether more rays are needed. By adjusting the test,

fewer rays per pixel are fired without significantly reducing the quality of the image.

Another technique in this sub-category is the generic ray [Bowyer et al. 1987; 1989]. With

this technique, the ray tracing approach considers only one ray, the generic. This is a ray

with its origin and direction treated symbolically, as parameters to a generic vector

definition. The intersection problem is then solved symbolically only once for the whole

scene, using a symbolic manipulation mathematical library such as NAG. In this way, the

mathematical description of the projection of the scene on the viewplane is determined and

described analytically. Then, by assigning the appropriate values to this parameterized

symbolic solution, the complete image emerges.

114

The time needed to render an image is significantly smaller compared to the time needed

to solve the generic intersection problem. However, such a generic solution is extremely

complex to determine. Apart from this demand for enormous symbolic calculation power,

the approach of the generic ray is based on the intersection of the scene with eye rays only.

Consequently, it is a ray casting approach that is unable to implement a global illumination

model.

The second sub-category of (intersection-unrelated) ray tracing acceleration techniques is

concerned with the generalized rays. Also here the definition of a ray is changed. It is no

longer considered to be a vector, but a set of vectors. The underlying assumption is that eye

rays that are close to each other (both in origin and directions) are likely to hit the same

objects with the same sequence, thus producing ‘similar’ ray trees. As a result, information

gained from previous intersections may be exploited.

Amanatides [1984], introduced a new approach to ray tracing, called cone tracing, where

a ray is assumed to be a packet of vector rays forming a cone with its apex at their common

origin and with a circular cross section. Heckbert and Hanrahan [1984], in their beam

tracing, assume that a ray is a packet of vector rays forming a cone but, unlike cone tracing,

they assume an arbitrary polygonal cross section. Shinya, Takahashi and Naito [1987]

introduce pencil tracing, where a ray is assumed to be a set of vector rays all being in the

vicinity of a main vector ray called the axial ray. The geometrical models used with the

pencil tracing method are simple object like planes, polygonal facets and spheres.

The multicomputer LINKS-1 [Nishimura 1983], is one example of hardware architecture in

which ray tracing is exploited. It is a set of 64 node computers that are controlled by a

single root computer. The root can dynamically re-configure the connections of all the nodes

thus producing many different organisations. Goldsmith and Salmon [1985] examined

different potential implementations of ray tracing onto a hypercube configuration. Atkin,

Ghee and Packer [1987] examined the implementation of ray tracing onto different

configurations of transputers. They noticed that in configurations between 1 and 80

115

transputers the performance gain was strongly linear14 (100% - 95.5%). They also

introduced a set of procedures that could make their system fault tolerant. In this way, if a

transputer fails, the adjacent transputers will detect the fault, report it, and compensate for

the (possibly) lost data. Another example is the ray casting engine which is optimized to

visualize models that describe objects as sets of line segments, as we explain in chapter four.

In this chapter we first proposed a framework, consisting of five stages, as Figure 3.1

presents, for examining visualisation approaches in computer graphics. Then we presented

the three most popular approaches, namely the polygonal mesh, the octree and the ray

tracing. For each of these approaches we described their principles and examined their

advantages and disadvantages. Additionally for every stage of our discussion framework we

analysed different alternatives we may apply and discussed their suitability to specific

problems.

We believe that the first three chapters of this presentation have provided the reader with

the essential context within which the rest of this dissertation will evolve. In particular the

first chapter gave us the necessary background knowledge and established a ground of

understanding with the reader. Then in chapter two we presented the main issues of

modelling, while in this chapter we addressed the issue of visualisation.

Continuing this dissertation, in the next chapter we will discuss the major research trends

in the literature that address similar modelling and visualisation challenges that we intend

to tackle in our own research. In chapter five we proceed with our suggested modelling

approach, starting first by presenting the underlying theory and then by providing a wealth

of examples. Then in chapter six we discuss the visualisation approach that we believe is

suitable to match the models that we generated in chapter five. In the final chapter (chapter

seven), we discuss two different but complementary issues, criticisms and further directions.

14 The concept of linearity in the context of parallel computer architectures relates to the percentage of
performance gain when increasing the number of processing units used. A 100% linear system would double its
performance when the number of processing units is also doubled.

116

Chapter 4 Current trends in implicit modelling

4.1 Origins of our research

In this chapter we will present the research trends that have appeared in the literature and

follow tracks, similar in principle, to the one we are pursuing. In most cases the techniques

that we will present here are application-driven solutions to specific modelling challenges

and cannot be seen to represent ‘generic’ approaches for modelling in computer graphics.

These modelling techniques are presented here and not in the general review of the

modelling approaches of chapter two, for two reasons. First because they are conceptually

closer to the modelling approach developed in this dissertation, and second because they will

help us to establish — through a discussion of their inefficiencies and inadequacies — the

need for our research. For this reason, we have selected an assortment of nine different

modelling techniques that partially address the modelling problems we are also concerned

with. Where appropriate, we will compare and contrast these techniques with the modelling

approach we propose later in this dissertation.

The techniques reviewed in this chapter represent three main research trends. The first is

directly related to the use of distance as a field generator. Consequently the issue of

combining fields together, an operation called interference, or confluence, will also be

presented. This trend characterises the techniques of soft objects, skeletons, blends by

displacement, distance fields and colour superposition. The second trend refers to the

exploitation of mainly algebraic functions that modulate a simple geometrical object or set

of objects. In this category fall the techniques of sphere plots and convolution. The third

research track is concerned with the issue of constraint-based tessellations and is represented

by the technique of Voronoi tessellation and Delaunay triangulation. Finally we will also

present the technique of ray-representations. This modelling technique does not fall in any

of the three research trends but it provides us with a useful perspective for manipulating

objects as sets of line segments.

117

4.2 Soft Objects

In computer graphics, a still image of a scene is not always sufficient to depict the exact

nature and consistency of the materials of the objects. However, in computer animation,

moving objects will interact with their environment and, depending on the material of their

construction, their shape, or that of the matter they interact with, may need to be modified

according to the laws of physics (e.g. gravity, elastic collision, etc.).

The definition of soft objects came as a response to the need of modelling objects that

change their shape in order to follow the constraints of their environment, thus modelling

a more natural behaviour of matter. The term soft objects was coined by G. Wyvill, C.

McPheeters and B. Wyvill [1986a; 1986b; 1986c].

Their technique is based on the production of iso-surfaces1 determined by a set of analytical

functions. Specifically, they assume that there exist a set of independent control points. Each

such point is responsible for generating a field according to a function C(r) such as:

C(r) e [0.0,1.0], C(0.0) = 1.0, C(R) =0.0, where r denotes the distance from a control point,

and R is the maximum distance beyond which the contribution of that particular control

point to the field is null. The function C(r) is also assumed to be continuous in the interval

[o .o ,/q , and its first derivative at either side of the interval is zero. Another arbitrary

restriction to the function is that C(R/2) = 0.5.

As an example, in one of their papers [G. Wyvill et al. 1986b], they suggest the function:

C(r) = -0.444— +1.889— -2.444— +1
Rf R 4 R2

This function is similar to those used by Blinn [1982] to model fields of electron density

as produced by atoms and propagated through molecular structures. It is also the same

function that Bloomenthal and Wyvill [1990] use to generate surfaces for the modelling of

skeletons, as we shall present in the next section.

1 This term describes the locus of points that evaluate to the same value for a given property.

118

We can observe three major limitations to this modelling approach: global control of the

model is compromised by the need to use a cut-off distance R, the generation of fields is

restricted by the need to use points to define them, and there is a need to polygonise the

generated surfaces before they can be visualised which results in loss of smoothness.

Therefore, despite the authors’ claims this approach to modelling has the characteristics of

a static modelling approach and not an implicit one.

More specifically, the type of restrictions imposed for the determination of the function C(r)

imply that the modeller needs to know how effective each control point may be (i.e. the

value of R). Such a condition aims at speeding up the calculations during the visualisation

stage since the shape of the resulting soft object can only be affected locally by the fields

of the neighbouring control points. This balance between global and local control, totally

depends on the choice of the value of the cut-off distance R. If this is too large (i.e.

comparable to the dimensions of the structure composed by all the control points) then every

point on the surface of the resulting soft object will be affected by virtually all the control

points, thus considerably reducing the efficiency of the visualisation algorithm. If the value

of the cut-off distance R is too small, the continuity of the iso-surfaces will break, so the

resulting soft object will become fragmented and will consist of several surface pieces.

Consequently, we must pay great importance to the choice of the value of R which must be

large enough to ensure iso-surface continuity, but also small enough to make the

visualisation stage efficient. We would recommend that every control point should be

assigned a different cut-off distance value of R. This assignment could take place

automatically, at a pre-processing stage, once all the control points have been determined.

This pre-processing stage may also help in the determination of an interval of suitable iso

surface values that would guarantee a continuous surface of the resulting soft object.

Our research addresses the three limitations of this approach by abolishing the use of cut-off

distance R , by allowing fields to be generated through the use of any geometrical object, and

by avoiding polygonisation as a prerequisite for visualisation through the use of implicit

modelling.

119

4.3 Skeletons

This section is concerned with the introduction of the skeletons as another tool for the

modelling of computer graphics scenes. According to Bloomenthal and Wyvill [1990] and

Burtnyk [1976] a skeleton consists of points, splines and polygons. The points are

degenerate skeletons that serve as centres for simple quadrics such as spheres and ellipsoids,

or superquadrics. The splines are sets of central axes for the purpose of modelling

generalized cylinders with possibly varying radii or cross-sections. Moreover, the polygons

are regarded as a mesh of flat facets and/or splines that are used to make an offset surface

of the thus defined models.

The emphasis in this approach is in the interactiveness of such a modelling tool. The

skeletons are shapes that the designer specifies using points, splines and polygons. In this

way, we achieve an initial definition and manipulation of the skeletons. In addition to that

specification the modeller has also to define a number of parameters that control how the

skeletons will become a polygonized surface to feed the appropriate visualisation algorithms.

In this aspect of skeleton modelling (i.e. parameter adjustment) implicit functions are

determined for every skeletal part and both global and local control is exerted on the model.

The final aspect of skeleton modelling is that of blending. In this stage the skeletal elements

are weighted together in order to determine how the resulting polygonized surface should

behave when more than one skeletal elements are in proximity. A survey of blending

techniques is reported by [Woodwark 1986] but further developments in computer aided

design have extended the range of these techniques considerably.

To achieve a higher degree of interactiveness, Bloomenthal imposes cut-off points for all

skeletal elements. In this way, the weight of any skeletal element that is further than R units

of distance from any other is diminished to zero. A weight function for blending is also

allowed to become negative thus permitting the subtraction as well as the addition of

skeletal elements. A simple example used by Bloomenthal and Wyvill [1990] is defined

below: * . „
fir) = 1 - (4/9)r®+(17/9)r4 - (22/9)r2 , Os r<R

where r is the distance of a three-dimensional point from a skeletal element.

120

Figure 4.1 A blending function

This weighting function for blending skeletal elements is graphically shown in Figure 4.1.

Its effect is demonstrated on Figure 4.2 where two skeletal splines (effectively two line

segments that will become the axes of two finite cylinders of fixed circular cross-section)

intersect and their resulting surface has been calculated using two-dimensional geometry.

Figure 4.2 Blending contours Figure 4.3 Anomalies of the contour map

This method extends the soft objects method (section 4.2) by allowing the generation of

fields not only by points, but also by splines, and polygons which are the geometrical

entities that the developers have chosen. In spite of these extensions, this method has also

some limitations. The most important is that although the fields can be generated by several

geometrical objects, the measure of distance from these objects is used in an arbitrary

manner.

1 21

Moreover, our experiments depict that their proposed blending function does not generate

a family of contours of ‘similar shape’ but, as we approach an intersection of two skeletal

elements the contours become disconnected and they no longer outline this skeleton

(Figure 4.3). Another limitation is that before visualisation it is essential that several

approximations of the defining fields must be performed, and the result is a polygonised

surface description, hence a static modelling approach.

The arbitrary manner in which the measure of distance is utilised in this approach is

manifest in the conflicting treatments of this measure. In most cases, the distance of a point

from a skeletal element is assumed to be the minimum Euclidean distance of the skeleton

from that particular point. The use of this minimum distance definition from skeletal

elements is considered by Bloomenthal as a simple metrics arithmetic. In other cases,

however, distances are calculated from additional control points imposed by the designer;

in these cases Bloomenthal considers the measure of distance to fall into the category of a

compound metrics arithmetic.

Although Bloomenthal recognizes that most skeletal surfaces thus defined can be described

by analytical functions, he prefers to treat them as procedural i.e. "defined by procedures

that return a scalar value given a three-dimensional point" [Bloomenthal & Wyvill 1990].

The reason of his choice is to allow flexibility for the modelling process. Moreover, by

using implicitly defined objects, a generic approach in visualisation would be more

appropriate since is would enable visualisation of a much wider variety of possible shapes.

With respect to the visualisation of skeletal models Bloomenthal concludes in his survey that

a trade-off needs to be made between geometrical accuracy which results into image quality,

and speed of calculation which results into improved and speedier interactiveness. In his

survey Bloomenthal [1990] considered several techniques which included: space subdivision

of the skeletal elements (points, polygon, splines) using the octree display method, surface

polygonization using simple but quicker (compared to the octree) linear interpolation, and

more accurate but slower techniques such as successive binary subdivision approximation,

or regula-falsi. He also looked into adaptive visualisation processes where a more detailed

polygonal mesh was produced in the high curvature portions of the surface, or where the

122

surface was proved to be visible by the observer. The visualisation approaches that

Bloomenthal has considered result in approximations rather than an accurate representation

of the modelled surfaces.

In the implicit modelling approach that we propose, we elaborate on the measure of distance

by applying set-theory. Such a study permits us to define an extended measure of the

Euclidean distance, which in turn gives us a superior approach for defining families of

surfaces. We also utilize the octree visualisation approach directly on the generated iso

surfaces rather than simply on the skeletal elements which provides a more accurate image

of the modelled surfaces, as the following chapters demonstrate.

4.4 Implicit blending using displacement

This method is introduced as an "intuitive" approach to the implicit blending of surfaces

[Rockwood 1989], Fortunately the mathematical background and relevant theories for this

method are also presented in the same paper. This method is not of immediate relevance to

our research, however, we share several of the underlying principles.

One such common principle is the definition of implicit surfaces. The notion of the ‘inside’

and ‘outside’ of an implicitly defined object is well established. Furthermore, the use of

constructive solid geometry and the Boolean operators as modelling tools are given formal

mathematical definitions in the context of implicit models.

Another equally important issue that Rockwood discusses was the definition of the algebraic

distance and the inefficiency of blending functions to provide continuity of the distance

function. These discontinuities observed in such "pseudo-Euclidean blends" are counteracted

with the displacement of the blending functions used. The roots of the blending functions

are used to displace the blended surface in order to make the definition of the algebraic

distance continuous over the complete space of the blend.

123

In the approach we propose the same principles are also utilised. For example, the concept

of ‘inside’ is fundamental to most of the surfaces that are being generated with our proposed

implicit modelling approach. Furthermore, the use of constructive solid geometry as a

mechanism for building complex models out of simpler ones is also tightly related to our

approach. Our method differs from this on the issue of blending and the need for

polygonising the modelled surfaces before visualisation.

4.5 Distance fields in Medicine

This method is concerned with the visualisation of models of parts of the human body and

especially models of the brain, that are initially described as meshes of triangles. To smooth

out such defined models an alternative to smooth shading techniques was applied. This was

based in the generation and visualisation of iso-surfaces that were produced by distancing

away from the mesh a given distance [Payne & Toga 1992].

This distancing out procedure allowed for further manipulation of the surface produced

which covered both global and local aspects of spatial control. The main processes that

could take place in a such defined distance field surface were: averaging that entails

interpolation between surfaces or surface patches, offsets which results in a global (or local)

shifting of the complete surface (or surface patch), blending that amounts to connecting

together surface patches in a new surface of arbitrarily chosen smoothness, and blurring

which is intended for the reduction of surface details while keeping the overall shape of the

surface almost unchanged.

Specifically for blurring, out of all four functionalities (e.g. averaging, offsetting, blending

and blurring), the benefits of such a modelling approach are twofold. First is of course the

minimisation of computer storage requirements. As a consequence, such a model would

demand less computing time during visualisation. This would provide medical professionals

with a real-time workbench for viewing such surfaces. The second stream of benefits comes

from the actual minimisation of surface details which in many cases obstruct the observer’s

attention and depending on the actual viewpoint may cast shadows on more important

features of the observed surface.

124

The primitive geometrical objects of this approach are, as we have already mentioned,

triangles. These have been collected and put together by an automated data acquisition

system. The offset zero surface is therefore the mesh itself. Nevertheless, any other

manipulation (i.e. non zero offsets, blending, etc.) will demand the calculation of the

distance between the mesh and any arbitrarily chosen point in three-dimensional space. The

problem of finding the distance of a point from a mesh of triangles is split into calculating

the minimum distance of that point from all the meshes’ constituent triangles. Consequently

the problem is shifted into determining the distance of a point from a triangle in three-

dimensional space. This three-dimensional problem is then simplified into a two-dimensional

one by transforming the triangle and the point so that the triangle is parallel to the X - Y

plane of the scene’s coordinate system at the Z = 0 level.

In this way, the accordingly transformed coordinates of the point can be used to determine

its distance from the triangle. Seven cases have been identified depending on the orientation

of the point’s projection onto the triangle’s plane. This analysis is claimed to provide an

efficient method for determining the distance of any point from the mesh, however, a

number of other acceleration techniques have also been proposed. These acceleration

techniques include the use of spatial coherence information that can be inferred with cubes

that surround portions of the model’s surface. Furthermore, it was suggested that the

necessary transformation matrices for moving every triangle of the mesh onto the X - Y plane

should be computed once, at the beginning of the visualisation, and stored for further use.

Additionally, evaluation of computationally expensive functions such as square roots had to

take place only when they were absolutely necessary.

This method, although it could demonstrate its potential in the application domain of

medicine, is not appropriate as a general tool because it has been fine-tuned to process

triangles only. Nevertheless, it has a place in the broad field of computer graphics since

nowadays there are many three-dimensional scanners in use that produce models in the form

of meshes of triangles (e.g. Cyberware, post-processed CT scans, etc.).

125

The off-setting of polygonal meshes in order to produce a smoother surface is also used in

our approach where meshes of any convex planar polygons may be used rather than

triangles. Furthermore, our approach is capable of producing the same effect on any other

geometrical entity that we wish to model. Moreover, the polygonal mesh that approximates

to the modelled surface is not necessary for its visualisation, unlike the method of distance

fields presented here.

4.6 Colour superposition

Another lead to our research is provided in the work of Firby and Stone [1987] who

describe and explore the effects of superposition of families of curves. In this section we

present the method of superposition, we discuss its limitations and the way we have

overcome them in our research.

Firby and Stone examine the creation of interference patterns in optics and more specifically

in the areas of textile manufacturing, paper-printing of patterns and computer graphics. In

optics, the effects of interference are colourful patterns created when light passes through

an assembly of optical lenses. As the index of refraction of the lenses is slightly different

at different wavelengths of visible light, at the perimeter of such an optical assembly

analysis of light occurs (rainbow colours). In an assembly, each lens will produce its own

colour patterns. Furthermore, patterns produced on the first lens will also pass through the

next thus eventually producing a superposition of interference patterns.

In the textile industry, the interference patterns are produced by the optical illusion which

is created when several patterns of (usually multicoloured) yam are interweaved (i.e.

superpositioned) in order to construct the fabric. In a similar way, in computer graphics the

interference patterns become apparent as Moire patterns due to the spatial and colour

approximations imposed by the orderly arrangement of the viewport’s pixels. A simulator

of the interference colour using ray tracing and the Fresnel’s generalized formulae for its

shading model has been recently proposed by M. Dias [1994],

126

ifllSR

Figure 4.4 Interference due to concentric circles

In order to study these interference patterns, Firby and Stone used contour maps that were

imposed on top of each other. The primary contours they used were concentric circles which

produce the effect shown in Figure 4.4. In some of their experiments they have also used

radial lines (Figure 4.5). In order to demonstrate the effect of superposition, Firby and Stone

colour-coded the contours: for each set of contours, a colour was assigned and on a few

occasions its intensity was diminishing on a linear scale as individual contours were

progressing away from the centre point of the set of the concentric circles.

The results of these experiments were plotted directly on colour film. In this way, instead

of processing mathematically the effects of superposition (addition), Firby and Stone

exploited the properties of the photographic film. Photographic film demonstrates distinct

properties that differentiate it from other display media. They are described by their effects

and the additive nature of colour. In particular, if an area of the film has already been

plotted, it cannot be erased, or replaced by any succeeding plot over the same area. Any

such plot will result in the addition of colours. Take, for example, the RGB colour model.

Using the notation of the first chapter, the colours red (1 , 0 , 0) and blue (0 , 0 , 1) when

added together will produce purple (1 ,0 , 1). However, the addition of blue (0 , 0 , 1) with

blue (0 , 0 , 1) will ‘burn’ (i.e. over-expose) the film and produce saturated blue of a degree

proportional to the exposure time and the speed of the film.

127

figure 4.5 Interference due to overlapping radial lines

These properties of colour, as it is plotted on a photographic film, may be used to

demonstrate not only the effects but also the contributors (individual map centres) of the

confluencing contour map thus generated. It is therefore important to select appropriate

colours in order to illustrate confluence of colour-coded maps without burning the film as

we illustrate in Figure 4.5.

The method of superposition and its effects on colour-coded maps is based on the same

theory as the modelling approach that we propose. The main difference between

superposition and our implicit modelling approach is that while the superposition method

views the effects of confluence (fields defined with the measure of distance) as patterns of

curves, our implicit modelling approach treats the results of confluence as surfaces (iso

surfaces). Consequently, superposition restricts the visualisation of the effects of confluence

in spaces of two dimensions because of the utilisation of the photographic film, whereas our

implicit modelling approach permits a more intuitive representation of the results of

confluence to spaces of higher dimensions as well.

The limitations of the superposition method stem from the way effects of confluence are

illustrated: using differently coloured patterns imposes a number of important restrictions.

First, it is based solely on two-dimensional geometry, second it relies not on analytical

128

descriptions but on optical illusions, and thirdly its success depends on the choice of the

appropriate colour-coding schema and the particulars of the photographic film used.

The implicit modelling approach that we propose clearly provides an improved way for

examining confluence since the results are not presented as patterns with a two-dimensional

geometry but as surfaces which are being illuminated and shaded in order to provide a

comprehensive base for studying them.

To exhibit the similarities and differences between superposition and the implicit modelling

approach that we propose, let us consider the following example of interference. Let us

assume that there are two points in two-dimensional space that constitute the centres of their

respective contour maps (A, B) of concentric circles. Both maps, have been assigned shades

of the same primary colour, blue (0 , 0 , 1), which at their centres has minimal intensity (0

, 0 , 0) and the colour’s intensity is increased as we progress further from the centres up to

a maximum value of pure blue (0 , 0 , 1). This colour change is achieved by using a linear

function of the distance d from the map’s centre, say Col(d) = (0 , 0 , 0.0001 x d). The

contours of confluence of the two contributing maps will then emerge in this example as

patterns coloured with the same shade of blue. These patterns of the same shade, the iso

shade patterns, form ellipses that have their two foci at the centres of the two contributing

contour maps. The results of this superposition (Figure 4.6) are similar to those of Figure 4.7

that were produced with our implicit modelling approach (also depicted on plates 6 - 9).

Figure 4.6 The field of A+B Figure 4.7 Contour map of A+B

129

To prove the argument, let us name these circular contour maps as A and B and let us also

assume that the distances of the map centres from a randomly chosen fixed point p , are dA,

and dB accordingly. From the map A , this point should be coloured as Col(dA). Similarly

from the map B the contributing colour would be Col(dB). The addition of the maps A + B ,

namely the confluencing map, will then evaluate at this point p as Col(dA) + Col(dB) as

Figure 4.8 illustrates. This result, for a particular type of functions Col(), is also equal to

Col(dA+dB) which is the application of the function Col() using one contour map with two

sets of concentric circles (coincidental to the maps A and B respectively).

Any function that satisfies the relationship: Col(a+b) = Col(a) + Col(b) may be used. One

such function for example, is the Col(d) = (0 , 0 , 0.0001 x d) that assigns a more intense

scale of blue as we progress further away from the centre of the map. Colour values that

will result in a blue colour component greater than (0 , 0 , 1) will be truncated to (0 ,0 , 1),

in order to avoid overexposing the film. Therefore, in the above example, the locus of points

that have the same iso-colour value c will be characterised by points that the sum of the

distance from the centres of the two maps (A and B) is fixed and validates the equation:2

Col(dA+dB) = c. Such a locus of points also defines an ellipse with foci at the centres of the

confluencing maps A and B.

/o l (d B)Col/(dA) +

dB]

Figure 4.8 Determining the map addition

2 To be more specific, our claim is true for all points p in the two-dimensional space that their distance from
the map centres satisfy the inequality: dA + d B < 10000.

130

Figure 4.9 Field of three points Figure 4.10 Contour map of 3 points

Using three confluencing maps and the same linear function for assigning colours, Col(d),

we get Figure 4.9 and Figure 4.10. The illusion of the same shape can also be obtained from

Figure 4.4. However, if we extend this method in the three-dimensional space, the

inadequacies of the superposition method are obvious, but can be overcome with the implicit

modelling approach that we propose, as plate 11 illustrates.

4.7 Sphere plots

Sphere plots represent a modelling approach that creates surfaces which are defined on the

surface of a sphere. There are two difficulties with this approach: the choice of the initial

approximation to the spherical surface upon which the modelled surface will be built, and

the scaling of the modelled surface so that it will not cause degeneracies.

This method is the result of a NATO and US Energy department grant,3 aiming at analysing

the effects of the global warming phenomenon [Foley et al. 1990]. As such, the principal

object this method was the earth which was modelled as a sphere. One of the main tasks of

this project was to depict, in a colour-coded schema as well as geometrically, functions that

had been defined over a sphere. Ozone density, barometric pressure, temperature, and other

atmospheric parameters provided the functions to be plotted. Such bivariate functions were

defined along the longitude and latitude of the earth and were either described analytically,

or needed to be interpolated out of a small number of observation points.

3 NATO RG 0097/88, DE-FG02-87ER45041

131

Their plots had to be mapped around the surface of a sphere. In certain circumstances the

points to plot had to be extruded from the sphere’s surface. In general, the sphere’s surface

was replaced by a mesh of structural points and the sphere plots were based on the

elevation adjustments of certain structural points from the sphere’s centre. These structural

points were the vertices of the triangles that had been provided by the triangulation mesh

of a unit radius sphere. In order to depict the value of the sampled function, the elevation

adjustments had to be proprotional to the distance of the structural points from the sphere’s

centre.

The problems they faced stemmed from both the method of triangulation and the degree of

height adjustment. For the first problem, they abolished the longitude-latitude rectangular

grid approach and experimented with the subdivision of regular canonical solids such as the

tetrahedron and the icosahedron. In this way an adaptive solid subdivision method was

developed in order to provide enough accuracy for mapping their data but also getting a

smooth shaded image.

With regard to their second problem, a unit radius sphere although convenient for

triangulation, placed a limit on the values they could plot. It is apparent that height

adjustment of values in the range of (1,0] would ‘squeeze’ the sphere, within (0,-1] would

expose its centre, and in the range [-1,-°°) would pierce the sphere and produce nonsensical

results. The obvious remedy, of scaling down and shifting their measurements to fall within

the range of [1,2] was adopted.

Although, as we will see in the following chapters, in our method there is also the need to

scale appropriately such density measurements, we extend this modelling approach by

providing a method for plotting any such scaled function on any arbitrarily defined shape,

and not just the unit sphere. Moreover, we will show how the generated images produced

with the approach we propose, are smooth without the need for choosing the appropriate

triangulation density. This is because we do not use any such mesh, but instead we directly

map the density functions onto the pre-defined surfaces.

132

4.8 Convolution

Following research on simulations of electric fields by Blinn [1982], the soft objects of

Wyvill [et al. 1986] and the rounding of comers in solid models by Colbum [1990],

convolution comes as another technique for producing and visualising implicitly defined

surfaces [Bloomenthal & Shoemake 1991]. This technique is very similar to Blinn’s and

Wyvill’s. The only difference is the mathematical perspective under which it is discussed

and studied. Blinn and Wyvill described surface models with their geometrical properties;

iso-surfaces that had to be approximated by means of a polygonal mesh. With the technique

presented here, Bloomenthal and Shoemake describe their surfaces as convolutions of simple

functions (of distance) along skeletons of points.

The distinctive feature of this technique is the transfer of a classical digital signal processing

tool, namely convolution, in the modelling process of computer graphics. Initially

convolution was only used in computer graphics as a signal processing tool for aliasing

problems during rendering [Blinn et al. 1976; Feibush et al. 1980; Greene et al. 1986; Foley

et al. 1990; Wolberg 1994]. In the context of modelling, this tool is introduced in the

context of skeletons [Wyvill et al. 1986] and the surfaces around them that are generated

as contours of fields produced with using the measure of distance.

The skeleton is assumed to be a set of discrete points that generate a surface around

themselves. This is a uniform spherical surface at a given distance from each skeleton

member point. If the skeleton consists of more than one point then a decision has to be

made regarding the handling of the resulting surface pieces. We can either assume these

surface pieces as a union of individual patches, in which case we will use the maximum as

the operator for combining them together in a set-theoretic definition, or we can assume they

are a smoothly connected surface blend, where the constituent pieces have been added

together with the addition operator.

The first choice produces quick results that may not be analytically continuous over the

resulting surface. This is the result of the set-theoretic union of the constituent surface

patches which is implied by the use of the function of maximum. The second choice, which

133

is also the one that Bloomenthal preferred, demonstrates how individually produced surface

patches are blended together to construct a smooth surface. For this method the choice of

the appropriate blend function is important since it will affect the smoothness of the

generated surface but also the complexity of the calculations used for its determination and

therefore would affect the efficiency of the visualisation algorithms.

Bloomenthal and Shoemake [1991] define a skeleton S(p) as a function that evaluates to one

for all points p that constitute the skeleton and evaluates to zero elsewhere. Around each

point s of the skeleton, a surface patch (described below) is assumed to be constructed:

f(P) = expC'-*-^ 1)

A surface is defined as the union of these surface patches ‘around’ each skeletal point.

Depending on the nature of the skeleton we can distinguish two cases of surface union, the

discrete union where the skeleton consists of a finite set of points, and the continuous union

where there is an infinity of points that constitute the skeleton.

The discrete case of surface union would then be denoted by the sum of all surface patches.

/ K p) = E expC | s ' p l *) (Eq. 4.1)
seS 2

The case of a continuous skeleton piece such as a line segment or a polygon is treated as

an infinite sum of patches which is achieved by integration

= / e x p (d fc e f) d k (Eq. 4.2)
i 2

Using this notation, Bloomenthal and Shoemake [1991] view the exponential function in

(Eq. 4.1, Eq. 4.2) as the generator of a surface which is the "convolution of a spatially

extended skeleton". This view is based on the observation that equations (Eq. 4.1) and (Eq.

4.2) can be perceived as the convolution (denoted by the symbol ★) of a skeleton S(p) and

the Gaussian function h(p) (Eq. 4.3). In other words,/ = h ★ S (Eq. 4.4).

134

h(p)=exp (J | £) (Eq. 4.3)

flp) = (A*S)(P) = / ex p (- | s ~p |2)<fe (Eq. 4.4)
5

To make this observation useful for the development of an algorithm out of this modelling

approach, a number of approximations as well as complementary assumptions had to be

made [Bloomenthal & Shoemake 1991]. The most significant approximation is the

replacement of the Gaussian h function with a cubic spline. An additional assumption is the

imposition of limits to the extent of the skeleton’s contributions. With regard to the

assumptions made, only simple sets of skeletons can be computed efficiently. For the more

complex ones, Gaussian filters can also used but in this case the properties of these filters

need to be analyzed further.

Bloomenthal identifies two such properties, the superposition, and the component separation

which stem from the study of fast Fourier transformations. The first is best described by the

equation h'k{Sl +Sy = (h+ SJ+ ih+ SJ which effectively allows the construction of complex

structures out of simpler ones. The second allows the separation of the h function into

coordinate components. This means that one can separate a three-dimensional convolution

into a two-dimensional one and then multiply that with the third dimension component.

Furthermore, the two-dimensional convolution can be further decomposed into two one

dimensional components. This process of decomposition reduces complexity thus making

this modelling approach useful for a variety of computer graphics applications.

A variation, or rather extension, to this technique is the use of weight functions that are

attached to every skeleton member. The weight function will add a considerable degree of

flexibility to the modelling of such convoluted surfaces since it would allow local control

of the individual surface patches before they are blended together. Another extension to the

convolution modelling approach is the application of deformations which we should note,

produce different results if they are applied to the skeleton than if they are applied to the

final surface blend.

135

The benefits of this approach have not been explored fully, due to the mathematical

complexity of the calculations involved and the lack of a consistent approach for the

appropriate visualisation of the generated surfaces. Moreover, a thorough study of the effects

that h functions produce when convoluted with skeleton definitions, has not been carried out

yet. Such analysis would allow modellers to select and use convolutions depending on their

properties. In our understanding, the approach of convolution differs from ours in the way

we manipulate and subsequently visualise the modelled surfaces. The analytical nature of

the convolution function h may become too complex for integrals to be evaluated and

therefore, approximation techniques may be required for the visualisation of convolution

generated surfaces. In our approach, however, surfaces are modelled as sets of points, thence

there is minimal use of analytical tools and surface approximations are not necessary.

4.9 Delaunay triangulations and Voronoi tessellations

This section is concerned with the determination of a Voronoi tessellation [Voronoi 1908;

1909]. Delaunay triangulations [Delaunay 1933] are also presented here for reasons of

completeness since they represent the dual face of Voronoi tessellations. Our approach

addresses the problem of Voronoi tessellations and as we show in chapter five it is capable

of solving a more generalised form.

The problem of Voronoi tessellations has appeared with different names such as Dirichlet

triangulations [1850], Thiessen’s problem [1911] and has been studied by a number of

researchers from a variety of application fields such as mathematics [Angell & Moore 1986;

Green & Sibson 1978; Bowyer 1981], geophysics [Watson 1981], and aerodynamics

[Jameson et al. 1986; Vassberg and Dailey 1990; Baker 1989].

A Voronoi tessellation starts by considering a set of points in the n-dimensional space

which are usually named nuclei. Using Watson’s [1981] ‘biological’ description, the

n-dimensional case of Voronoi tessellation partitions the (n-dimensional) space into convex

polytopes that may be thought of as expanding hyperspheres centred at the nuclei. Their

surface expansion will cease when they meet with each other, thus producing the desired set

136

of convex polytopes. By assuming a common rate of hypersphere expansion, we can ensure

that the meeting points between two hyperspheres (i.e. the faces of the polytopes) are

equidistant from their respective centres (i.e. nuclei). In this way, the hyper-volume of space

which is surrounded by any convex polytope is guaranteed to be closer to the only nucleus

that lies inside this polytope, than to any other nucleus in space.

The above definition of a Voronoi tessellation is based on the fact that all hyperspheres

grow with a common rate. This restriction ensures that the meeting points between

hyperspheres (i.e. the polytopes’ faces) are equidistant between their respective centres. An

interesting extension to this tessellation stems by disregarding the above restriction; each

hypersphere is allowed to have its own growth rate. In this way, growing hyperspheres will

meet in points where the distance from their respective nuclei is proportional to their growth

rate. Consequently, the faces of the generated polytopes are no longer portions of

hyperplanes only, but portions of hyperspheres. The tessellations thus generated may not

even be connected since areas of influence by a particular nucleus may be separated by

areas of influence of other (more influential) neighbouring nuclei. These observations result

from the application of the Appolonius theorem in the n-dimensional space [Angell &

Moore 1986] and the corresponding tessellation is named weighted Voronoi tessellation.

Determining the tessellation out of a set of nuclei is not a trivial task. Angell and Moore

[1986] suggest the use of quadtrees in producing two-dimensional cross-sections of

tessellations. They first determine such a cross-section plane. Then, they define a unit sized

square window upon which the real coordinates of the hyperspace will be mapped. Then the

quadtree algorithm examines whether this appropriately sized square intersects with any

points of the tessellation’s polytopes. Usually, the initial cross-section window is positioned

in a way to ensure that there exist such an initial intersection. Once polytope’s intersection

is suspected, the square window is subdivided into four equally sized square subwindows.

For each of these subwindows the same tessellation interrogation process is applied. For

subwindows with no common points with the tessellation, the subdivision process can be

safely interrupted. However, for the intersecting subwindows, the subdivision process does

not continue endlessly, but is interrupted once the size of a subwindow may be accurately

represented by one pixel on the attached viewport.

137

This quadtree algorithm can be used for unweighted and weighted Voronoi tessellations. The

speed of the algorithm depends on the complexity of the tessellation interrogation process,

and the resolution of the viewport which dictates the total depth of the recursive

subdivisions. If a subwindow is found to belong inside the volume of a tessellation polytope,

there is no need for further subdivision. However, if a subwindow is found to intersect

partially with the tessellation, then although further subdivision is required it is not

necessarily implied that there exist tessellation points, since there may be other nuclei in the

neighbourhood. Such cases are catered for by the recursive nature of the quadtree approach.

Other researchers such as Watson [1981], approach the subject of unweighted Voronoi

tessellations from its geometrically dual angle. This is the case of the Delaunay triangulation

where the aim is to determine a set of space filling polytopes that have their vertices on a

given aggregate of nuclei (i.e. points in n-dimensional space). The requirement for the

polytopes thus defined is that the circumscribing hypersphere for any polytope does not

contain (i.e. intersect with) any other nucleus. Mathematically this problem is Voronoi’s dual

since the centres of the poly topes’ circumscribing hyperspheres may become the vertices of

the unweighted Voronoi tessellation for the same nuclei. With this observation, the required

Delaunay polytopes can be constructed from the unweighted Voronoi tessellation since any

point of the nuclei set cannot lie inside any such determined circumscribing hypersphere

because this would contradict with the definition of the Voronoi tessellation.

These techniques are representative solutions to the Voronoi tessellation and Delaunay

triangulation problems. They are all optimized to solve particular cases of the tessellation

and triangulation problems. For example, most of them provide a solution to the unweighted

problem(s) in the space of two dimensions. Furthermore, they all share a common

assumption about the nature of the nuclei; the nuclei are assumed to be points.

In the implicit modelling approach that we propose in the following chapters, we

demonstrate a more powerful technique for determining the Voronoi tessellation. Its power

is illustrated by the expansion of the definition of the Voronoi tessellation in order to make

it applicable to nuclei that are not necessarily points but also line segments, planar polygons

or even three-dimensional geometrical objects such as spheres or convex polygonal meshes.

138

4.10 Ray representations

Ray representations, or ray-reps, is a new approach to modelling [Menon et al. 1994]. The

principal idea behind this method is the visualisation process of ray casting. According to

this method, an object can be observed by all the eye rays (emanating from an observer) that

intersect with it. Following this principle, ray representations is an attempt to model

geometrical objects with sets of lines, called rays.

The modelling process starts with a set of parallel rays that are equally spaced in the three-

dimensional space in order to form a ray grid. This ray grid is assumed to cover all the

volume of three-dimensional space that surrounds the scene. This assumption will ensure

that the ‘front’ as well as the ‘back’ of the scene would intersect with the ray grid

irrespective of the position of the observer. The resulting model will consist of all the ray

segments of the ray grid that intersect with the geometrical objects of the scene.

Consequently, in order to ensure that all the objects in the scene will intersect with at least

one ray of the ray grid, the spacing between the individual rays in the ray grid is critical.

Furthermore, another issue that needs appropriate consideration is the choice of the direction

of the rays. A bad choice would result into rays tangential to some objects, thus resulting

in null or single point intersections.

The ray representations method caters for geometrical objects that can be expressed with

quadrics or similar analytical functions. In this way, the process of finding the ray segments

that intersect with the objects is a straightforward task. Nevertheless, once the ray

representations of the scene’s objects have been computed a number of transformations may

take place. The most simple transformations are those of space coordinates which Menon

[1994] called "rigid motions". Sweeps along arbitrary trajectories can then be expressed by

step-wise rigid motions that follow the trajectory given.

The importance of this modelling approach and its relevance to our research is that models

are treated as sets of line segments. Therefore, a number of set-theoretic operations can also

be applied. By allowing the intersection (fi), union (U) and complement (-) of sets of line

segments the functionality of constructive solid geometry can also be utilized. With this

139

rationale, the step-wise rigid motions approach to sweeps can be seen as a set-theoretic

union (U) of all the resulting steps of rigid motions.

This modelling approach also lends itself for the use of the boundary representations

modelling method. Once a geometrical object is described by its boundaries, the intersection

of the boundaries with an appropriately defined ray grid will produce the ray representation

model of the geometrical object. Although this translation seems a straightforward one, the

way object boundaries have been described would impose difficulties during the ray -

boundary intersections. For example, for boundaries that are represented by planar polygons

or non uniform B-spline patches (NURBS) of a small degree (usually less than four) the ray

-boundary intersection problem can be computed quickly and accurately. However, for

boundaries described by higher degree spline patches or inferred by other processes, the

intersection problem is too complex to compute (i.e. no exact analytic answer is available).

Apart from these classical set-theoretic functions, the morphology operators of Minkowski

may also be used. These operators, the M-addition, denoted by ®, and the M-difference

which is denoted by © have been interpreted intuitively [Menon et a l 1994] in order to be

used with the ray representations and produce ‘reasonable’ images. The M-addition of sets

A©Z? is defined as the union of all the translations of set B by all members of set A.

A(BB = ia+b\aEAt b e B) = U B+a = U A+ b
aeA beB

where a+b is defined as the vector addition (translation) between vectors a and b. It should

be noted here that vectors may also be seen as point coordinates, thus their addition would

result in a new point. In a similar manner, the M-difference is defined as

A Q B = P | A+b = - (-A ® B)
beB

where -A denotes the complement of the set A and A + b denotes the translation of the set

A by the vector b, i.e. A + b = (J {a+b)
aeA

Menon interprets the Minkowski operators by applying them only to the end-points of the

sets of line segments and not to all points that the line segments consist of. In this way the

calculations are accelerated. However, the M-difference is not free from problems. There are

140

cases where the result of M-difference between two sets of ray segments will produce ray

segments with coincidental end-points. This stems from the fact that this operator is not

closed within the sets of line segments. This observation has led Menon to introduce some

modifications to the M-difference operator which he has named regularised M-difference

and is denoted by e reg. The improved regularised operator is applied as a post-processing

stage to ‘clean up’ the set of line segments from all the degeneracies that may have occurred

after the application of the original ‘non-regularised’ M-difference operation.

In Figure 4.11 we illustrate how the operator M-addition works. There are two polygons;

a square, denoted by A and a triangle denoted by B. On the right side of the figure we see

the M-addition A 0 B which is denoted by the dashed-line polygon. For the purpose of

understanding, we have also included in this figure the intermediate stage of the M-addition

operation where the triangle B has been added (©) to every vertex of the square A.

A ©BB

Figure 4.11 The M-addition of a square with a triangle

This modelling approach can be seen as a two stage process. The first stage, that of

determining ray representations out of geometrical object descriptions, involves heavy and

complex calculations. The next stage is concerned with the manipulation of the sets of line

141

segments using set-theoretical operators. Although this is beneficial to modelling since the

application of transformations permits the building of complex geometrical representations

out of very simple ones, it also puts enormous demands onto the hardware.

This approach is characterised by enormous computational costs. However, the simplicity

of using line segments as the only means of describing a model will be appreciated in the

visualisation stage where parallelism and spacial coherence may be exploited. To make this

approach usable there has also been built a piece of hardware that implements all the set-

theoretic operations algorithms, as well as the constructive solid geometry manipulations in

firmware. This system is named the Ray Casting Engine [Ellis et al. 1991] and extensively

exploits parallelism.

In contrast to implicit modelling approaches ray-reps do not assume a set of constraints to

be the surface’s defining test (chapter two). Therefore, this method seemingly belongs to the

family of static modelling approaches as it assumes that the objects to be modelled have an

analytical description. However, a conversion to an implicit definition, that describes all

objects as sets of line segments (the ray-reps), is applied before visualisation, making ray-

reps an implicit modelling approach.

Similarities of this method with the modelling approach that we propose stem from the

treatment of surfaces as sets of points. In this way, we share the application of set-theoretic

operators. Moreover, the building of surfaces of revolution and those of general sweeps

along a given trajectory are also treated in an analogous way since these operations act upon

the sets of points that describe the objects and are not determined analytically.

The difference between ray-reps and our approach is that ray-reps are line segment

representations of objects that are visualised in a specialised computer system (the Ray

Casting Engine). Our approach applies set-theoretic principles not only to line segments but

to sets of points thus allowing the manipulation of a greater variety of objects.

142

4.11 Discussion: the need for further research in modelling

In the previous sections we have reviewed a number of methods that use, either implicitly

or explicitly, the measure of distance as the means for generating a surface. Distance is a

key concept in the geometry of metric spaces; it is used for descriptions and measurements

in these spaces. The study of objects in these spaces has been carried out through the use

of their analytical descriptions. It must be noted, however, that not all objects have an

analytical description. Computer graphics also make use of analytical (i.e. explicit) models

to visualise objects. The use of analytical techniques in graphics has currently reached its

full potential and has began to expose the limitations of these techniques. Computer graphics

offer the potential to manipulate and visualise implicitly defined objects also, thus creating

opportunities to study objects without the prerequisite of their analytical description.

Furthermore, implicit object definitions rely heavily on the measure of distance.

4.11.1 Criticisms of current research

The techniques reviewed in this chapter represent efforts to generate implicitly defined

objects. In all the above cases, however, implicitly defined models are then approximated

through analytical functions for visualisation purposes. Therefore, the ‘implicitness’ of the

approach is compromised in every case. In the chapters that follow, we propose an approach

which is free from any use of explicit (analytical) techniques in both modelling and

visualisation.

The utilisation of the measure of distance varies greatly in the methods we have reviewed

in this chapter. For example, in colour superposition, the measure of distance is implicit as

the perceived distance between the confluencing maps, whereas in soft objects and skeletons,

the measure of distance explicitly determines the shape of the modelled surfaces.

Furthermore, in convolutions, where there exist a mathematically neat way to extend

skeletons spatially, the measure of distance and the manner with which it is included in

mathematical expressions make it the vital ingredient for the description, generation and

visualisation of surfaces.

143

The techniques presented so far contain concepts that will also be used in defining our own

implicit modelling approach. Our approach combines concepts such as the use of the

measure of distance for the generation of fields of ‘potential’, the description of objects as

iso-surfaces, the visualisation of iso-surfaces as they are defined on a given ‘potential’ field,

the treatment of objects as sets of points (the locus of which describe the surface) and the

manipulation of objects using set-theory. We will conclude this chapter by briefly

introducing our use of the these concepts which aims to overcome the limitations of the

modelling techniques discussed so far.

4.11.2 Requirements for an implicit modelling approach

In the approach that we propose, the measure of distance is used to create a surface by

assuming that a field is propagated among the points participating in that surface. The

potential of every point in the field will be calculated as a function of the distance of this

point from a given set of objects. Such sets of objects were the kernels for the soft object

method, or the skeletons for the skeleton-based method. The locus of points that exhibit the

same potential in this field, called in our method iso-surfaces, defines the surfaces that we

develop and visualise.

The assumption that a point may generate a field in its surrounding space (a ‘potential’

field), is greatly enhanced in the fifth chapter. In particular, we provide there an analysis of

fields that originate from a variety of simple geometrical objects such as lines, planar

polygons, spheres, cylinders etc. In this way, we are able to construct several families of

new surfaces that currently are too complex or, impossible to describe otherwise. Therefore,

our modelling approach re-uses old (pre- Pythagorean) surface construction methods which

have been abandoned because of the complexity involved in their implementation. We

demonstrate extentions to one such constrution method in plates 25 -31 .

Moreover, by perceiving surfaces as the iocus of points with a certain property’ we allow

several manipulations to be performed on these surfaces. These surface manipulations can

be achieved by applying set-theory (on the sets of points describing the surfaces). For

example, the generation of a body of revolution or, the envelope of a surface along a given

144

trajectory, can be implemented as the union of sets. This approach offers significant benefits

by providing a generic way to manipulate surfaces and a means for describing them without

the need of analytical methods.

With regard to visualisation, we require that the surfaces generated with our method convey

as much information as possible to the viewport. Therefore, approximations to the functions

that define the surface and approximations to the surface with a polygonal mesh are not

desirable except for the cases where the error they introduce is insignificant when compared

to the error that the mapping of the ABSOLUTE space to the VIEWPORT space imposes.

The visualisation approach we use in this research (chapter six) strives for maximum detail

of the created images which will allow a thorough study of the models we have developed.

The following chapters provide details of the modelling approach that we have developed

to meet the requirements outlined in this section. We illustrate its potential through a series

of examples of especially interesting cases.

145

Chapter 5 Distance as a tool for surface definition

5.1 Introduction

As we have seen in chapter two, one of the major modelling approaches is that of implicit

modelling. According to this approach, a surface is implicitly defined as the locus of points

in space that satisfy a point membership classification test. In this way, the description of

a surface is not analytical, but it has the form of a set of constraints which collectively we

have called the point membership classification test. Usually, these constraints are

mathematical relationships involving point coordinates. For example, using the measure of

Euclidean distance, denoted by d , points with three-dimensional coordinates (x , y , z) that

belong to the set { (x ,y j) | x 2+y2+z2 = 1, x,yg e R } define a sphere with centre the

origin of the coordinate system (i.e. (0 , 0 , 0)) and radius of one unit.

In this chapter we will use the theory of implicit modelling to develop a modelling approach

that we will then use to describe a new family of geometrical objects. These objects will be

surfaces in general, usually in the three-dimensional space, unless some degeneracies occur.

In order to create such objects, we will use an extended definition of the Euclidean distance.

We first have to justify our preference for using the implicit modelling approach. There are

two reasons for our choice. Firstly, for analytically defined surfaces there already exist a

number of sophisticated mathematical tools that enable their study (e.g. integration, partial

differentiation). However, there are not many tools for adequately studying implicitly

defined surfaces. Secondly, we believe that the implicit modelling approach is more

powerful than the analytic. This observation stems from the fact that although any

analytically defined surfaces may also be described implicitly, the reverse is not always true.

Take for example the surface that is determined by the three functions f x, f y, f z of the two

independent variables u, v: (xty,z) = (fx(u,v) , f y(u,v), / z(w,v)) , u ,v E R.

146

With the implicit modelling approach, the same surface would be described by the following

constraints: { (x,yrf | 3 u,v e R : x =fx(u,v) A y =fy(u,v) A z =fz(u,v) }.

Such a conversion from analytical to the equivalent implicit definition may apply for any

analytical expression, thence for all object definitions that use an analytical approach. But

the conversion from an implicit surface definition to the equivalent analytical one is not

always straightforward or feasible. The process of determining the analytical function that

results from a given set of constraints may prove to be insurmountably complex. As a result,

there are surfaces that can be implicitly defined but, due to the lack of an equivalent

analytical description, they are impossible to study in a precise way. In the sections that

follow we will see many examples of such surfaces.

Effectively, what we propose is the use of computer graphics techniques as a means of

studying implicitly defined surfaces. We demonstrate the power of this approach by building

a family of implicitly defined surfaces that are too complex to be described analytically, as

is the case with the surfaces in plates 46, and 48. Then we will show how computer

graphics methods may be used to visualize these surfaces. The appropriate position of the

observer, the types of projection used and the shading models utilised will aid the

conceptualisation of such surfaces. Moreover, metrics such as the area, the volume or the

curvature of these surfaces may also be approximated.

Specifically, the method we propose is based on geometrical constraints that relate point

coordinates with the function of the Euclidean distance. In this way, a generic definition of

implicit surfaces will be formulated and analysed. In the next section we will give a precise

mathematical definition for describing a mechanistic method for constructing geometrical

objects. We will use this object generation method as a starting point for the construction

of our modelling approach and for this reason we will call this method the initial problem

definition.

Then, we will proceed to show how we can extend this initial definition and transform it

into a significant modelling approach. This transformation will take place in two phases and

is documented in sections 5.3 (phase A) and 5.4 (phase B). In the first phase (phase A), we

147

introduce a more ‘intuitive’ definition of the measure of distance; one that has been

extended appropriately to be applicable in geometrical objects (as opposed to the classic

Euclidean distance which is applicable to points only). In the second phase, we will then

apply this new measure of distance on the initial problem, thus constructing a new definition

for creating (describing) geometrical objects. The behaviour of this new modelling approach

and its potential in describing new classes of geometrical objects will then be analysed. This

exploration is achieved by assigning different interpretations to the constituent parts of our

modelling approach. The concluding sections of this chapter will then be devoted to the

application of our proposed modelling approach and the illustration of its potential using a

variety of examples.

5.2 The initial problem

The modelling approach we propose is based on a simple mechanistic way of constructing

geometrical objects. This is the method of ‘pencil and string’ and is one of the first

techniques used in geometry to construct objects. The classical example of this method is

the definition of a circle where we tie one end of a piece of string to a fixed point on a

given plane (two-dimensional space) and the other end around a pencil. Then we move the

pencil so that its tip is always on the plane and the string is always taut. This method for

defining a circle is mathematically expressed as:

{ p I p ,q e E2, d(p4)=5 }

Where d(p,q) is the Euclidean distance between the points p and q, q is the fixed point

(centre of the circle), 6 is the length of the string (the radius of the circle) and R2 denotes

the plane on which the circle lies.

If we fix the two ends of the string to the plane, and allow the pencil to move so that its tip

stays always on the plane and the string is always taut, then we construct an ellipse. The

mathematical description of this construction is denoted:

(P | p ,p teR2, d(ppt) +d(pp7)=6 >

148

where p } and p2 denote the fixed end-points of the string, the foci of the ellipse thus

generated, d(p,pt) is the Euclidean distance between points p and p t, 6 is the length of the

string and R2 denotes the plane on which the ellipse lies.

The object definition method, that we use as the starting point for our modelling approach,

is the general form of the ‘pencil and string’ method. In fact our initial problem definition

is to calculate and subsequently visualize the ‘locus of a point with the property that the sum

of its distances from k given points is constant’. In other words, we study the geometrical

objects (usually surfaces) that will result from the following implicit definition:
k

{ P I P.PjGB", 8 } (Eq. 5.1)
i= l

Where d(p,Pi) is the Euclidean distance between the points p and /?,, k is the number of

constituent points pi and 6 is a non negative real number that we will call the defining

parameter. Moreover, R" denotes the n-dimensional space used for the construction of the

objects thus defined.

For this surface definition (denoted by Eq. 5.1), analytical solutions for the simple cases of

k -1 and k -2 exist and the resulting surfaces have been extensively studied for both the two-

dimensional and the three-dimensional space. Apart from these two cases, the majority of

the geometrical objects (i.e. k> 3) generated by this object definition (Eq. 5.1) have not been

studied. The reason is that the equivalent analytical definitions are very often too complex

to calculate.

This initial problem definition — as expressed by equation (Eq. 5.1) — will form the basis

for our implicit modelling approach. We will call the function used as the point membership

classification test as the defining constraint and we will treat it as a density function. As

such, we will assume that every point in space can be characterised with a density weight

resulting from the application of the density function at this point. Then, for a given value

of the defining parameter 6 , which we will also call density value, we detect all points in

space that evaluate to the same density weight (equal to 6). The locus of points with the

same density value, which we call iso-density contour (or, surface) will then be treated as

the geometrical object that we will visualise.

149

In two dimensions, the curvature of the produced shapes (i.e. contours) becomes apparent

by the visualisation of various contours of incremental density values. In three dimensions,

however, the curvature of the (iso-)surfaces may be sensed from the illumination effects (e.g.

shading, highlights, etc.) that artificial light sources of a computer graphics visualisation

algorithm produce. The choice of the observation point and the direction of view will be

significant since in certain circumstances the front — in relation to an observer — parts of

an object will obstruct the view. Additional information about the geometrical objects thus

defined, could be gained if the researcher has the ability to alter his viewpoint freely with

regard to the surface, preferably in real time.

The observation we need to make here for the object definition of the equation (Eq. 5.1) is

that the defining constraint is expressed with the measure of the Euclidean distance. In three

dimensions it is described by the formula:

d(p,q) = <](px-qx)2 + (py- q) 2 + (pz- q f , M e ®! (Eq. 5.2)

where p = (px , p , pz), q = {qx , q , qz) are two points in the three-dimensional space.

The reason for concentrating our attention to this initial object definition described in the

equation (Eq. 5.1) is twofold. First it demonstrates the potential of computer graphics;

surfaces that are too complex to calculate and study can be (defined and) examined visually.

Second, we will use this initial problem definition to explore a simple but powerful surface

construction mechanism in order to provide ‘extensions’ to the definition of primitive

geometric objects such as the sphere or the cylinder.

For these reasons, the object definition given in equation (Eq. 5.1) will be expanded so that

we can describe numerous families of generalisations of known geometrical objects that in

three dimensions will usually result into surfaces, provided that no degeneracies occur.

The generalization of the definition (Eq. 5.1) will evolve in two phases. First, we will

expand the definition of the Euclidean distance so that we can use the distance of a point

from a set of points. Then, in the second phase, we will extend the nature of the defining

constraint so that it relates not only points but other more complex geometric objects as

well.

150

5.3 Model development

5.3.1 Phase A. The extended definition of distance

Mathematically, the Euclidean distance is defined between two points (Eq. 5.2). As the

definition of the equation (Eq. 5.2) shows, it maps a pair of points (p , q) onto a non

negative real number which we shall denote as d(p,q). In this first phase of extending the

definition of the Euclidean distance we will explore how the measure of distance can be

defined between a point and a set of points.

Let us consider A to be a set of points. We decompose the process of calculating the

distance of a point p from the set A in two stages. In the first stage we will calculate the

Euclidean distance of p from every point in the set A. The resulting values will be called

intermediate distance values, or intermediate values for short. Then, in the second stage, we

will use a function or a procedure that will combine the previously calculated intermediate

values and will (possibly uniquely) determine the distance of p from A. Such functions and

procedures could include the minimum, maximum, average, the k?h member o f a given

ordering schema etc. Let us assume, for reasons of clarity, the function of minimum. In this

way, the extended distance de(p,A) of a point p from a set of points A will be defined as

the minimum Euclidean distance of that point p from all the points of set A. Specifically,

d fp A) = min { dippt)) (Eq. 5.3)
xeA

where d(ppc) is the Euclidean distance between points p and x , and x is a member of set A.

The reason for using the function of minimum for the second stage of the calculation of the

distance of a point from a set of points was purely for our convenience since it is

straightforward to calculate and compared to the rest of the alternative functions, it is

simpler to conceptualize. This choice is by no means compulsory and as we shall see in later

sections it can be replaced by any other function or procedure. A selection of some

alternative definitions of the extended measure of distance and their analytical and

geometrical implications will be presented in sections 5.5.1 and 5.5.2.

151

5.3.2 Phase B. The generalized problem

In the previous section we briefly discussed a general technique to extend the definition of

the Euclidean distance de(p,A) in order to calculate the distance of a point p from a set of

points A. Now, going back to our initial problem definition, as it was expressed by the

equation (Eq. 5.1), we will use the extended distance definition (de) in order to achieve a

more comprehensive surface generation method. This will become the objective of the

second phase (phase B) of the construction of our modelling method, which will start by

substituting in equation (Eq. 5.1) the Euclidean distance (d) with the extended distance (de).

This will result into the following implicit surface description:
k

{ p } (Eq. 5.4)
i-1

Observe that the points p{ of equation (Eq. 5.1) must now be replaced by the k sets of points

Af, where i = 1 , . . . , k.

This new surface definition (described in equation Eq. 5.4), is sufficient to describe the

families of surfaces we are interested in. However, we will continue one step further in the

refinement of this definition (Eq. 5.4) in order to make it easier to manipulate in our

computer graphics visualisation algorithms. Specifically, instead of using sets of points (At)

we intend to use collections of primitive geometrical objects in a fashion that a computer

graphics designer is acquainted with. From the first sections of chapter 2 we have already

agreed that the term primitive geometrical object is any geometrical object that the computer

graphics designer uses as a building block to construct the required scene (e.g. a line, a line

segment, a point, a plane, a torus). Combinations of such primitives from now on will be

called collections, and will be used as building blocks for the construction of computer

graphics scenes.

The utilisation of such defined collections will form the basic building blocks for a new

computer graphics shape modelling approach. This approach will enable the user to produce

a great variety of implicitly defined surfaces, hence expanding the applicability of computer

graphics. The reason for using collections instead of primitives as primary building blocks

is that in this way we can work with an arbitrary level of abstraction with regard to

152

modelling. This means that we have the freedom, as the next section illustrates, to customise

the primary building blocks of this modelling approach according to the application needs.

As a result, what seems to be a compound object in one application, may be used as a

primary building block for another.

What follows in this section is the transformation of definition (Eq. 5.4) in order to

accommodate collections of primitives. From (Eq. 5.4) we can calculate the distance of a

point from a set. Consider now that this set is countable and finite. Such a set can then be

equivalent, at least for our purposes, to the union of its members. Specifically, we assume

that set A consists of m members:
m

A ={xltx29...xm} ~ A = U {*.}

In this way we can now replace the single-membered point sets ({xj}), with primitive

geometrical objects such as lines, planes, etc. (denoted as Bj). As a result the set A, of

definition (Eq. 5.4) will become a collection (Cf) of primitive objects (2?y).

4 - C, = U By
/" I

Bringing all these ideas together, the families of implicit surfaces that we will investigate

and visualize will be the ones formed by the definition:
k

<p | p e R \ $>(?,<:,.)=5 } (Eq. 5.5)

. ,"1Where, Ci = U Bu , and B'j represents a primitive geometric object.
l

Moreover, d(p,Cj) is the extended distance (as outlined in the previous section), and 6 is

a variable that we have already named as the defining parameter, and may be assigned a

(usually non negative) real number which we called the density value.

The definition described in equation (Eq. 5.5) forms the basis for our modelling approach.

It is a point membership classification test which we will use to define a variety of families

of surfaces. In the following sections we will show how we can interpret the object

definition of (Eq. 5.5) in order to generate families of ‘intuitive’ extensions to simple

geometric objects, thus demonstrating the potential of the modelling approach that we

propose.

153

We will examine the role of the defining parameter 6 . Specifically, we will study the

behaviour of the proposed object definition when the defining parameter 6 is a constant

number, a function, and a process.

5.4 Model exploration

5.4.1 The defining parameter being a constant

This is the typical case of the definition of iso-surfaces. The problem of defining iso

surfaces has been addressed by many researchers in various fields of study, like for example

image processing, medical imaging, engineering and has been presented in the previous

chapter. All these research streams share a heavy use of various linear or non-linear

interpolation techniques. This is necessary because their problem starts off with a grid for

values of the defining density function that is sampled at various locations within the space

of their interest. From this grid then, they produce information about the whole of the

sampled space.

Our modelling approach is also concerned with the definition of iso-surfaces, but, unlike the

approaches used in other fields of study, we do not need to approximate the modelled

surfaces. This benefit flows from knowing the defining function, hence we avoid any

approximation in creating the modelled surfaces. Therefore, our approach resorts to

approximation only when it is technically unavoidable, i.e. in visualising these surfaces

where we need to convert the continuous space used in modelling into the discrete space of

the pixel arrangement of the viewport (for a detailed discussion of sampling issues see

section 3.5).

Consider our model as defined in definition (Eq. 5.5). First, we will examine the range of

permissible values the defining parameter can have. Then, for some interesting cases we will

discuss the geometrical implications of the produced surfaces. An example of such a study

is depicted in plates 13 - 16).

154

Because we are using the Euclidean distance between points, by definition this is always a

non negative real number. Therefore, the use of the extended distance definition from sets

of points should also be a non negative number. As a result, the sum of non negative

numbers will also be a non negative one. It follows that the first part of the defining

constraint in (Eq. 5.5) will always be assigned a non negative value. Consequently, the use

of a negative value in the defining parameter 8 , will not make equation Eq. 5.5 true for any

candidate point in space. Therefore, the resulting surface will degenerate to the empty set.

But even when the defining parameter has a non negative value there are still cases where

the resulting surface is empty.

For example, let us consider a model with a single collection of primitives where we use

the definition of the minimum distance. In this example each non negative value of the

defining parameter 8 will produce a shape. In the extreme case of 8 = 0 , the resulting shape

is the (exact image of) the defining collection. This is expected because the points that are

zero-distant1 from a collection are only the constituent points of that collection. For any

positive value of 8 , the resulting surface will produce an approximated image of the

defining collection. This approximation may be both from the outside and the inside of the

collection, depending on the topology of the collection and the exact value of 8 . Further

details and examples of such surfaces will be presented in subsection 5.6.1.

5.4.2 The defining parameter being a function

The main characteristic of our surface definition (Eq. 5.5), is the use of a variable defining

parameter 8 that is determined by a function which we will call the defining function; for

every point in space, or at least in the volume of space we are interested in, the value of 8

will therefore be determined by a (defining) function which will usually accept as input (i.e.

input parameters) the point’s coordinates.

1 We assume that we use the function of minimum for the measure of distance. Other functions such as the
maximum will obviously behave differently.

Before presenting some illustrative examples, it is essential to understand how the defining

function works. According to the category of implicit modelling (chapter two), a point in

space is known to belong to the defined surface, only after it has been tested against a set

of defining constraints which form the point membership classification test. Therefore, in

the following discussion we will always assume that we are given a point p, which we will

have to test against a given set of constraints shown in the definition of (Eq. 5.5).

In order to calculate the value of the defining function, however, its input parameters will

first need to be determined. In most cases, these parameters are not the point’s coordinates

themselves, but a combination of them. This means that there exists a mapping function that

relates these coordinates to the defining parameters. Therefore, with different mapping

functions, the same defining function will produce different surfaces from the same model.

Consequently, apart from the defining function, one will also have to determine the mapping

function in order to give an accurate surface description.

It is very important to highlight the significance of the number of dimensions of the space

we use, compared to the number of input parameters of the defining and mapping functions.

This observation becomes useful during the analysis of the examples we present.

Consider a shape as defined by (Eq. 5.5). For reasons of clarity we reproduce Eq. 5.5 here.
k

{ p | p e Rn, J^d(ptCt)=& } (Eq. 5.5)
<-i

In this description, the defining test will produce a curve for every permissible value of the

parameter 6 . The complete set of these contours will produce a contour map as we shall

see in Figure 5.6. We will call this the model’s contour map.

Let us now assume that the defining function for 6 is also defined in the same space and

is calculated by using all n space coordinates as equation Eq. 5.6 shows.

8 = / (x , , * , , (E q . 5.6)

Furthermore, let us generate the contour map that is produced by all possible outcomes of

the function 6 We call this set of contours the function’s contour map.

156

Specifically, this map is constructed by first fixing the value of 5 = f (x 1,x2,...,xn) and

then depicting all the points in space that evaluate the defining function to that pre-set value.

It should now become obvious that the resulting surface will be the intersection of these two

contour maps (the model’s and the function’s). Such an intersection is defined by all the

points in space that are characterized by the same density value at both (the model’s and the

function’s) contour maps.

Another way of perceiving the same surface is by re-arranging the point membership

classification test as definition (Eq. 5.7) shows. In this way, we calculate the confluencing

iso-surface of the combined function for the defining contour value of zero (0). Specifically,
k k

{ p | p e R" , £ d(p,C) =fi.xlyx2,...,xlt)) - (/ > | peK" , £ d(p,Ci)- fix 1jc2,...,xl)=Q }

W M (Eq- 5.7)

This arrangement can be achieved because function / () is assumed to use all n coordinates

for its input parameters as the constraint function also does.

An interesting aspect of this case is that we can obtain quite complex ‘objects’ by applying

very simple functions. See, for example, plate 20 which is generated using one rectangle as

the only primitive of a model with only one collection. For this model, the defining function

is the trigonometric function of sin(). Further details about this model and other especially

interesting cases will be presented in section 5.6.2. In that section we will also study models

where the defining function does not use all n coordinates as input parameters.

5.4.3 The defining param eter being a process

So far we have investigated the case of the defining parameter 6 being a constant and the

general case of it being a function. By generalizing the nature of 6 one step further, we can

assume that its value could also be determined by a process. By process we mean any

algorithm that, given a set of input values, will produce (determine) the value of the defining

parameter 6 (i.e. output). As input values, again an obvious choice would be to use (a

mixture of) the coordinates of the point that we need to test against the model’s constraints.

157

For this reason, such an algorithm should be consistent so that for the same input values it

will always produce the same output value. With this restriction, several aspects of our

visualisation approach will become easier.

When we do not use all the space coordinates of a point as input parameters for the

determination of the defining process, we have some degree of freedom as to which

coordinates to use. As we will explain in section 5.6.2, this issue is resolved with the use

of a mapping function. In such a case, bodies of revolution as well as other types of surface

modulation of the defining process can be achieved.

We have chosen to present two processes. The first process, explained in section 5.6.3, uses

a pseudo-random number generator similar to the ones used for texture mapping, or

sometimes to ‘landscape modelling’ [Angell & Tsoubelis 1992]. We use this number

generator as a defining process that assigns a undulating surface around small collections

of simple geometrical objects. Plate 23 illustrates our claims with a model of one collection

of one primitive only.

The second process, also presented in section 5.6.3, illustrates how the definition of the

Mandelbrot set [Peitgen & Richter 1986; Gleick 1988] may be adapted for our modelling

approach. In particular, we perceive the definition of the Mandelbrot set as a bivariate

process in order to rotate it around a particular axis as we demonstrate in plate 24.

Another type of process that we are going to use extensively for determining the defining

parameter 6 is another implicitly defined iso-surface. Such defined surfaces include a

variety of simple known geometric objects like the parabola, where we determine the locus

of points that are equidistant from both a given point and a given infinite line, as well as

other more complex structures like the Voronoi tessellation. For this reason, the necessary

definitions and some further analysis of our generic surface definition (Eq. 5.5) will be

presented separately in the next subsection.

158

5.4.4 The defining parameter being another implicit definition

In this section we will make use of the definitions of the nearest and second nearest

primitives. Therefore, before presenting this model, we will first discuss the formation of

these definitions (i.e. nearest). From definition (Eq. 5.3) we saw that the distance from a

point to a set of points can be associated with the concept of the minimum distance. In other

words, with the distance of that point from the nearest point of the set. Furthermore, we also

saw in this chapter that for the calculation of the distance of a point from a collection of

primitives we may use the minimum distance from that collection. In such a case

specifically, we first calculate the minimum distance from each primitive, and then choose

the minimum of these.

This implies that an ordering amongst the primitives of each collection can occur according

to their distance from any given point. Actually, this ordering is feasible because each

collection consists of a countable, finite and therefore individually identifiable set of

primitives. Therefore the definitions of the nearest and the second nearest primitives are

attainable. The reason for utilising such an ordering schema will become obvious in the next

paragraphs, where we will need to identify points that are equidistant between two different

primitives of the same collection.

. In this section we investigate the case where the defining parameter 6 is determined by

another implicit definition (Eq. 5.5). In this way, the model for our objects becomes:
k i

{ p | p e R» , £ d(p£A)= Y , d<P>CB? } (Eq- 5-8)
i=l y-i

The surfaces that result from definition (Eq. 5.8) will consist of all the points that are

equidistant from the nearest primitives of collections CA, and CBj. In other words, the

definition of equation (Eq. 5.8) describes the intersection of iso-surfaces that are produced

by the CA and CB sets of collections. In fact this was expected, since the defining parameter

in (Eq. 5.8) is actually a process.

159

This model definition can be applied to generate known mathematical surfaces such as the

three-dimensional paraboloid (plate 25), as described in section 5.6.4. The power of our

modelling approach lies, however, in its ability to produce with no further effort

generalisations of known surface definitions thus creating families of such surfaces.

Examples of this case are the paraboloid-like shapes in plates 27, 29 and 31, also described

in section 5.6.4. There, we will also present the models that we used to build these surfaces.

Another interesting family of surfaces comes from the same definition of equation (Eq. 5.8)

with the following assumption; consider that CA consists of only one collection and that CB

consists of the same collection as CA (i.e. CA = CB). For such a definition, the resulting

surface would always be the whole space because both members of the constraint are

identical. For this reason our generic surface definition (Eq. 5.8) is adjusted to the following

{ p | p e Rn , dfo,C)=d£ptC)) (Eq. 5.9)

where dj denotes the distance from the nearest primitive in collection C and d2 the distance

from the second nearest primitive of the same collection C. If C consists of points only, the

resulting surface(s) is a Voronoi tessellation, or diagram. To recall from chapter four, the

Voronoi diagram defines for each point, or nucleus, its corresponding neighbourhood so that

any point in space is nearest to the owner of the neighbourhood it belongs to, than to any

other (Figure 5.1).

Figure 5.1 Voronoi diagram using 7 points and 5 line segments

160

But with the surface description expressed in equation (Eq. 5.9), the concept of the Voronoi

diagrams can be extended greatly. In particular, we suggest that instead of using only points

for the definition of the Voronoi nuclei, other simple geometric objects such as lines, or

polygonal facets should be used. In this way, we extend the definition of the Voronoi

tessellation making it applicable to virtually any geometrical object our modelling approach

can describe. Plate 33 demonstrates a tessellation where line segments are used as nuclei.

Moreover, using our modelling approach we can also assign weights to the nuclei of the

Voronoi tessellation, and visualise the resulting surfaces (tessellations) as plates 47 and 48

demonstrate. Thus, we can study the effects that changes to these weights produce for a

given nuclei arrangement. An example of this, is the sequence of plates 34 - 44, explained

in section 5.6.4.

5.5 Discussion: mathematical and geometrical implications

5.5.1 Mathematical implications

In this subsection we shall analyse and evaluate the options that are available to us during

the two stages of extending the definition of the measure of distance. This is useful because

it will help us understand the consequences of using a particular function to extend the

definition of the measure of distance. What is assumed to be known is a set of points A, and

a point p that may or may not belong to set A. What we intend to determine, is a way for

measuring the distance of point p from this set.

We can distinguish between two cases, regarding the nature of this set; the finite, where the

set A consists of a finite number of points, and the infinite, where the set A consists of an

infinity of points that is usually determined by the locus of a point that describes a

geometrical object such as a line segment, or a torus. Therefore, we shall present two

examples to cover both the finite and the infinite category of sets. For each such example,

we will present and evaluate the alternatives for defining the measure of distance, and we

shall justify our preferences. We start with the finite category of sets.

161

Finite category

Consider the finite set A of the following five points in two-dimensional space as Figure 5.2

shows: A = = { (1.1 , 1.3), (2.5 , 1.9), (3.4 , 1.1), (5.1 , 0 .1), (1.9 , 0.3) }.

Let us now assume that for a given point, say p = (3.6 , 0.6), we need to calculate its

extended distance de(p,A) for the set A. At the first stage of our calculations we will have

to determine the intermediate values v„ v2, v5. These values represent the Euclidean

distance of p from every point of the set A (i.e. Xj, x2, ..., xs). Then, in the second stage, we

will have to determine the minimum of these intermediate values and use that as the

extended distance de(p A).

X2

\

XI

X5

X3

\ /
\ /
 _ •.

P

X4

Figure 5.2 Calculating the distance of a point from a finite set

STAGE 1
Intermediate values

STAGE 2
Distance of p from A according to
formula:

Vj = d(p,Xj) = 2.6 Minimum del = 0.58 (v3)

v2 = d(p,X2) = 1.7 Maximum de2 = 2.6 (v7)

v3 = d(p,x3) = 0.54 Average de3 = 1.636

v4 = d(p,x4) = 1.58 2nd in incremental order de4 = 1.58 (v4)

v5 = d(p,xs) = 1.73 Weighted average de5 = Any (depends
on weight vector)

Table 5.1 The two stages for the calculation of the extended distance from p to A

162

The results of this example are summarised in Table 5.1, where we have calculated the

extended distance d jp ^4) using the minimum (deI), maximum (de2), average (de3), 2nd in

incremental order (de4) and weighted average (de5) functions. All but the last of these

alternatives can be calculated. The evaluation of the weighted average depends on the values

of the weights that must be assigned to all the members of the set A.

Infinity category

Let us now consider another set of points, say B , that unlike set A consists of an infinite

number of points that are determined by the locus of a point which describe an infinite line

(Figure 5.3). We shall try to calculate the extended distance d ip fi) by applying the same

alternatives that we used in the previous example. However, unlike the previous example,

the outcome of the first stage of calculations (i.e. that of the intermediate values) does not

produce a finite set of intermediate values (v). Instead, there is an infinity of intermediate

values and their minimum is realized for the point x 0 which is defined as the intersection

point between the perpendicular line that passes through the point p and the line represented

by the set B (Figure 5.3). Consequently, all intermediate values belong to the continuous

interval of real numbers [d(pjc^), «>), where x 0 is the nearest point of B fromp (Table 5.2).

Set B

p

Figure 5.3 The distance of a point from an infinite set

We can observe here, in the second stage of this example, that most of the extended distance

definitions d(pJS) are unsuitable for further calculations. Specifically, d,4 cannot be

calculated since the set of intermediate values is infinite and uncountable. Definitions de3 and

des can also be inappropriate because they may become too time consuming to determine,

163

since they involve the calculation2 of integrals. Consequently, from the extended distance

definitions that use the functions of minimum (deI) and maximum (de2), we have the choice

to use either.

STAGE 1 STAGE 2

v g { d(p,x) |xeZ? } =
= [d(p,X0) , o o)

where x 0 is the nearest
point in B from p.

Minimum del = d(pfx (,)

Maximum de2 = (depends on B)

Average de3 = (depends on B)

2nd in incremental order de4 - Not applicable

Weighted average de3 = Any (depends on weight vector)

Table 5.2 The two stages for the calculation of the extended distance from p to B

In most of our examples we used definition del (minimum) for the following three reasons.

Firstly, the notion of infinite distance, as the use of maximum (de2) implies, is more difficult

to conceptualize when compared with the concept of the minimum (nearest) distance.

Secondly, the measure of the infinite (°°) distance is relatively more difficult to incorporate

in calculations. Thirdly, by using the minimum function, the range of the permissible

intermediate values, in most cases can be neither negative nor infinite. This observation

stems from the mathematical definition of any ‘distance’ function that must

• produce non-negative results

• give the same outcome if its arguments are transposed

• verify the triangular inequality

Consequently, a definition for extending the measure of the Euclidean distance may be that

of del which calculates the minimum of all the intermediate values v. This conforms with

the general mathematical definition of distance and is relatively easy to conceptualize,

calculate and implement algorithmically.

2 In specific cases, there exists a formula for calculating an (infinite) integral, but in general we will need to
approximate it using numerical analysis methods.

164

We have to stress here that there are other alternatives that we may use for extending the

definition of the measure of the Euclidean distance. Such alternatives may simply be

introduced in the appropriate visualisation algorithms. For example, in chapter seven we

show the contour maps produced from the use of the weighted inverse square distance

function.

However, if one needs to use another (other than the minimum) function to extend the

definition of distance, one needs to be aware of the specific restrictions this function

imposes on its operands. For example, the distance formula d,4 (i.e. the 2nd in incremental

order) is limited to countable sets of points where an ordering schema may be imposed. This

is the only way where one can determine the kth member of that order and hence, calculate

the required distance. Furthermore, if two or more members evaluate to equal intermediate

values, the Kh member in this ordering schema may be impossible to identify uniquely. Such

inconveniences do not become unsurmountable problems, but may produce disconnected iso

surfaces. It is clear that a continuous range of intermediate values will not be suitable to

such a definition of distance.

5.5.2 Geometrical considerations

In the previous sections we were concerned with the determination of a new modelling

approach for computer graphics. These efforts started with a general concept of a problem

(Eq. 5.1) and concluded with a mathematically well defined problem description as

expressed in (Eq. 5.5). During this process, we defined and used a number of concepts that

include the extended distance, the nearest object, the primitive geometrical objects, and the

collection, which we believe are important and will prove useful to the rest of our

investigation. Here, in this subsection, we will explore the geometrical implications of the

treatment of the measure of distance, as we have defined in the previous sections. We

illustrate its significance through a series of examples. Moreover, where appropriate, we will

relate our findings to other research concerned with implicit modelling, thus producing a

more comprehensive analysis.

165

The first example considers the line segment AB in two-dimensional space, as Figure 5.4

shows. The distance of point P from A B will be the length of the line segment PO. The

length of a line segment will be determined as the Euclidean distance between its two

defining vertices (A , B).

Case i

B

I
■ J.
R

O

! O

Case ii

B

Case iii

Figure 5.4 The calculation of distance d(P , AB)

Consider now another point Q. Its distance from AB could be defined in three different

ways. The first is found in all geometry textbooks and involves the virtual extension of the

line segment AB until it intersects with the line that passes through Q and is perpendicular

to AB. For the second, we propose to prohibit the arbitrary use of virtual extensions to the

166

line segment AB, thence leaving the value of the required distance from Q to AB as

undefined. Finally, the third approach applies the extended definition of the measure of

distance, as we proposed it in equation (Eq. 5.3). Table 5.3, summarises the above

alternatives, and Figure 5.4 illustrates their geometrical implications.

Case Value

i The length of the segment QR, since this is the distance of Q from the
infinite line which extends the segment AB.

ii Undefined, since when we draw the line from Q, perpendicular to A B ,
it does not intersect with the segment AB.

iii The length of the segment QA, which is the minimum distance of Q from
the set of points that form the line segment AB (definition Eq. 5.3).

Table 5.3 Different cases for evaluating the distance of a point from a line segment

According to the three different cases of evaluating the distance of a point from a line

segment, three different contours would emerge (Figure 5.4) for any given value of the

defining parameter 6 (Eq. 5.5). It becomes apparent that the first case (i) produces a

disconnected contour of two parallel infinite lines. Similarly, in case (ii), we also get a

disconnected contour that consists of two parallel line segments. From the definition of case

(iii), however, a continuous contour emerges. This consists of two parallel line segments —

similar to the second case (ii) — but now their end-points are connected with two semi

circles. Therefore, case (iii) is the one consistent with our extended distance definition as

given in equation (Eq. 5.3).

The significance of case (iii) becomes apparent when using polygonal lines in the form of

collections. For example, consider Figure 5.5. Here, the model consists of six line segments

properly placed to form the skeleton of the capital letter ‘M’. These line segments can also

be seen as a collection (C) thus enabling the modelling and the effortless manipulation of

a complete letterset. Following the notation established in the previous sections, the shape

of Figure 5.5 will be given by the following definition:

{p| peK 2, d(p,C) = 6)

167

With the use of different values for the defining parameter 6 , a family of shapes, all

approximating to the letter *M\ can be produced. For small positive values of 6 , the

resulting shape resembles very closely the defining polyline (i.e. the collection). This method

has already been used by Bloomenthal [1990] and others under the name of ‘skeleton filling’

as we discussed in chapter four.

Figure 5.5 The skeleton of capital letter ‘M ’

Figure 5.6 Contour maps of the capital letter ‘M ’

In contrast, the use of very large values of 6 will produce distorted images of the defining

skeleton. As a rule of thumb, in most cases, the larger the value of 6 is the more the

resulting contour resembles a circle. In Figure 5.6, for example, the same model of the

capital letter ‘M ’ that was used in Figure 5.5 is visualized for values of 6 in the range of

several orders of magnitude larger compared to the size of the defining line segments, thus

producing a number of contour maps.

168

5.5.3 Summary

In presenting the implicit modelling approach we have developed, we begun by analyzing

the measure of the Euclidean distance, and we arrived at a number of alternatives for

extending it. Further analysis guided us to choose definition (Eq. 5.3) as the extended

definition for the measure of distance between a point and a set of points. In this way we

finally defined the distance between a point and a geometric object.

Our modelling approach initially considered a simple model for surface description which

is expressed with equation (Eq. 5.1). Through a series of definitions and assumptions we

derived an enhanced and significantly more ‘intuitive* mathematical description for

generating implicitly defined surfaces as equation (Eq. 5.5) expresses. This final model for

surface generation will now be evaluated through the analysis of several interesting cases.

We anticipate that with this analysis the capabilities of our modelling approach (as

determined by the model of Eq. 5.5) will be demonstrated, thus giving to the reader a more

comprehensive view of its significance. The conceptual schema of the final model we

adopted is also depicted in Figure 5.7. There, we illustrate the decisions we take in order

to construct our models and we also indicate some of the choices we preferred to follow.

CHOSE MEASURE
OF DISTANCE

DETERMINE TYPE OF
DEFINING PARAMETER

CONSTRUCT
CLUSTERS

SELECT
PRIMITIVES

point minimum sum of distances constant
line segment maximum sum of inverse distances function
cyclical disk 2nd in incremental order sum of inverse square distances process

facet average weighted sum of distances another constrained definition
weighted average polynomial

Figure 5.7 The conceptual schema for implicit model construction.

This final model is now capable of describing many simple and already known geometrical

objects. This model’s power lies in the ability to describe new objects and forms by

perceiving them as generalizations of other more simple ones. We can envisage further

enhancements for our modelling approach such as various types of surface generalisations

and other more complex constraints.

169

The types of extensions that we applied to the initial model were necessary because they

enabled us to explore a wider variety of surfaces compared to those covered by the initial

model. An important issue in this research is that throughout the process of model expansion

we have avoided the use of analytical means in order to demonstrate the potential of

combining old but very intuitive object description techniques with the capabilities of

modem computing methods in computer graphics. Such methods have been abandoned in

the pre-computer era due to the complexity involved in studying them. The first ‘wave of

efforts’ in computer graphics was focused on analytical object descriptions that definitely

present several limitations when compared to the modelling approach proposed in this

dissertation. It is only very recently that research in computer graphics has re-discovered the

power of implicit modelling (chapter four). We hope that this research contributes to this

effort, and the examples that follow will show its power.

5.6 Applying the modelling approach

The presentation of the modelling approach that we propose would not be complete unless

we provide an extensive analysis of its potential. This will be achieved with the presentation

of several examples that demonstrate how to construct a variety of different families of

geometric objects. In some examples, we will also demonstrate the power of this modelling

approach by showing its consistency in utilisation and similarity in results when compared

with other modelling approaches. We form this presentation according to the nature of the

defining parameter 6 as we also did during the initial analysis.

5.6.1 The defining parameter being a constant

Objects that are described with a single collection model are sufficient to produce a number

of known and well studied geometrical objects. Repeating a previously discussed example,

a collection that consists of one point will produce a circle in two dimensions, or a sphere

in three dimensions with centre the defining point, and radius the non negative value of the

defining parameter 6.

170

When the collection represents a circle of radius r, however, the resulting surface will then

become a set of two concentric circles in two dimensions. These circles will have a distance

of 6 from the circular collection and would reside at either side of the collection. Their

radii would be (r + 6) and (r - 6). If (r - 6) < 0 then the inner circle is degenerate. In three

dimensions, the resulting surface is a toms with a defining radius equal to r (the radius of

the collection), and its shape will develop around that circular collection with radius 6 .

Another family of objects that can be produced with such a model, of a sole collection, is

that of generalized cylinders. Generalized cylinders were first introduced by Agin and

Binford [1976]. Since then, many researchers have used them in various applications such

as object recognition, scene recognition, volume representation etc. For an overview of such

work the reader is referred to Shani and Ballard [1984]. According to them, "a generalized

cylinder is a representation of an elongated object viewed as having a main axis (spine) and

a smoothly varying cross section".

Figure 5.8 Iso-surface calculated along a polyline

In this section, our model is capable of defining generalized cylinders with spines of

arbitrary shapes, but with circular cross section of constant radius 6 only, because we

assume models with one collection and a constant defining parameter. This poses some

restrictions about the smoothness (analytical continuity) of the produced surfaces. It becomes

apparent when the spine is a polygonal line and the cross section is circular of constant

171

radius (Figure 5.8). In such a case, the produced surface will be analytically continuous (i.e.

differentiable) in all places except for the joints of the polygonal line of the spine where it

is only geometrically continuous (i.e. the surface is not segmented but it is not differentiable

either). In the next sections, we will see how arbitrary cross sections can also be modelled

in order to produce a complete family of generalized cylinders.

Figure 5.9 The sum of the distance from three points

By using object descriptions, such as those defined by equation (Eq. 5.5), with more than

one (non empty) collection, the choice for the value of the defining parameter is more

restricted. Consider, for example, an ellipsoid. This is defined by two collections each

containing one of its foci. When 6 is non negative but less than the distance between the

two collections (i.e. its two foci), the resulting surface is the empty set. In this case

therefore, 6 has to be greater or equal to that distance. In the extreme case of 6 being

equal to the distance between the two foci, the resulting surface is the line segment that

connects the two collections.

In plates 6 - 9 we depict the contour maps of models with one, two, three and four

collections, of one point each, respectively. In all four plates we used the function of the

minimum distance. However, we can use any other distance definition, like for example, the

function of the inverse distance as plate 10 demonstrates.

In Figure 5.9 we also illustrate the contour maps defined by a much simpler model. It is

model with three collections each of which contains one point as its only primitive. In three-

dimensional space the surface generated by the same model is depicted in plates 11 and 12.

172

We can imagine in plate 11 the location of the three primitives; they are the vertices of the

resulted triangular shape. One of these vertices, we may observe, is also responsible to the

lack of surface smoothness near the lower left side of the plate. This effect is attributed to

the choice of the defining parameter 6 which, for this surface, was taken to be

approximately equal to the sum of the distance of this vertex from the other two. In this way

we can assure that the thus generated surface will pass nearby this vertex. In plate 12 we

see the same surface from a different viewpoint. We positioned the observer so that he lies

in the plane defined by these three primitives, so that we can see details of the curvature of

surface that were not visible in the previous plate (plate 11).

When the collections are more complex than single points, or more collections are involved,

the minimum permissible value for 6 is more difficult to determine as the sequence of

plates 1 3 -16 illustrate. In this sequence, we used a model of polylines that constructed the

skeleton of the capital letters ‘EIIY’ and varied the value of the defining parameter 6

considerably. In this way the outline of the letters (plate 13) disappears by the ‘inflated’

surface that a high value of 6 generated (plate 16).

5.6.2 The defining param eter being a function

In the following example we will demonstrate how we can generate the ‘graphical

representation of a univariate function that is defined along a line’. Although this may seem

to be a very trivial task, the way we model the graphical representations is very important

and powerful because it enables us to generate very complex, three-dimensional graphical

representations that are defined not only on a Cartesian coordinate system, but along any

geometrical curve or surface as well. It is only for reasons of clarity that this example is

described in the two-dimensional space.

Suppose that the defining function for 6 uses only one input parameter (say, u). For every

point p = (x,y) in the two-dimensional space, in order to evaluate the defining function

(6(h)), the value of u will have to be calculated first. This is achieved by somehow

combining the point’s coordinates. A simple choice is to use the x- coordinate (i.e. u =x)

and ignore the y- coordinate. Therefore our defining function will become 8(x). Suppose

173

also that (Eq. 5.5) consists of one collection of an infinite line that coincides with the

horizontal (say x- axis) of the space’s assumed Cartesian coordinate system. In this way, the

resulting surface definition becomes:

{ p | p s (x , y) , d(p,C) = 6(u) } - { p | p * (.x ,y) , d(pX<al) = b(x) }

Geometrically, this means that the resulting shape will be the graphical representation of the

univariate defining function 6(«). Moreover, the choice of the line in the only collection of

the model should not necessarily coincide with the x- axis of the assumed Cartesian

coordinate system. It can be a line of any orientation, as long as the appropriate mapping

to the parameter u is correct. Here, however, there are two issues that need attention: first,

is the case where the defining function takes ‘prohibited’ values (e.g. becomes negative), and

second is the fact that the resulting graphical representation will be also mirrored along the

x- axis.

With regard to the first issue, there are two methods. The first and simpler method is to shift

(i.e. translate) the defining function away from the x- axis. If the function is bounded, as for

example the sine (sin()) function, an appropriate translation is sufficient. If, in contrast, the

defining function cannot be bounded (e.g. 8 (jc) =x) we either try to establish some local

boundaries and shift accordingly, or use its absolute value that is always non negative. The

alternative (second) method we may employ is to truncate and ignore all the parts of the

surface that are produced by negative values of the function 8(w).

With regard to the second issue, a symmetrical (i.e. mirrored) image along the x -axis will

always appear since the measure of distance does not exhibit a sense of orientation (i.e. it

is irrelevant from what half-plane we approach the x -axis). If the symmetrical image is not

desirable, one should modify the defining function 6(«), so that it would enable a check to

determine the half-plane from which the distance is calculated:

P s (x>y)
5W i f y z O

0 elsewhere

We can now illustrate the effects of object definitions in the space of three dimensions.

Here, there is a wider range of possibilities with regard to the number of parameters that this

174

function may have. Nevertheless, what seems to be important is the difference between the

degrees of freedom of the defining function with respect to the dimensionality of the space

in which it is defined. Therefore, in a way analogous to the two-dimensional case, when the

defining function depends on all three coordinates (x , y , z), the resulting surfaces emerge

from the intersection of the model’s and defining function’s contour maps.

However, when the defining function depends on two parameters only, say the u, v we will

need a mapping function: (x , y , z) = >(« ,v) . Let us assume that the object definition

consists of one collection, which is a plane, say the X - Y plane that passes from the origin

of the coordinate system. The shape of the resulting surface depends on the selection of the

mapping function. Suppose for example that (u, v) = (x, y) . In this way, the z coordinate

of any point will be the equal to the (Euclidean) distance of that point from the defining

collection (i.e. the X - Y plane). As a result, the produced surface will be the graphical

representation of the defining function, which now is defined along the X - Y plane. Again

here, as in the previous example, the same two issues (i.e. ‘prohibitive’ function values, and

‘mirrored’ images) have to be taken into account.

Let us now take another model that consists of one collection which is defined by one

infinite line in the three-dimensional space. Here, a mapping that provides surfaces useful

in terms of computer graphics modelling applications stems from the following procedure:

suppose that somewhere along the defining line there is fixed point that we will call the

origin. Assume also that we can impose a direction along that line. Consequently, any given

point on that line, apart from the origin,3 will define a vector starting from the origin and

ending at that point and its direction would be either the same or the opposite to the

predefined one.

In this way, one of the parameters of the defining function (say v) may be the Euclidean

distance of a point from that line. And the other, (h), may be analogous to the length of the

line segment that is defined by the origin and the projection of the given point onto the line.

By using this mapping to determine the parameters u, v the resulting surfaces will become

3 If the end point of a vector coincides with its starting point, which in our example is the origin, then it has zero
length and its direction is undefined.

175

the body o f revolution around the defining line, as plate 17 shows. The model in this plate

consists of one collection only which defines a line segment as the only primitive. Observe

in this plate how the end-points of the line segment are rounded off by semi-spheres of a

radius that is determined by the evaluation of the defining function at these end-points

respectively.

In this sense, when the defining collection is a line, this being an infinite line or a line

segment, the resulting surfaces for 6 being a function, or even a constant, are bodies of

revolution as plate 18 shows. In this plate we show how the trigonometric function of sin()

is rotated along a line segment (the primitive of a model with one collection).

Moreover, interesting shapes will also emerge when the defining collection is a polyline

which is also called a broken axis o f revolution. In this case, surfaces will be produced from

rotation along different line segments. Here, attention should be given to the choice of the

mapping function if the resulting shape is to become geometrically continuous. In plate 19

we see a model of a polyline (of one collection of one primitive) which has as defining

function the sin(). The segments of the polyline are connected to form a ‘broken axis’ and

the defining function sin() is defined along the polyline. We can observe the way the

surface behaves around the joint of the constituent line segments. Surface continuity

(geometrical) is assured by the way we calculate the defining function along the polyline.

Another interesting case is that depicted in plate 20, where, the same sin() function is

defined along the longer dimension of a rectangle. The surface of this model has been

modulated along the rectangle’s longer dimension with the sin() function which has been

extruded along the rectangle’s smaller dimension.

In a similar way we can also create a model of a surface when the defining collection

consists of one primitive of one point only. Here, this (defining) point can be used as the

origin of an alternative coordinate system, like that of mercator coordinates where any point

on the surface of a sphere is determined by its orientation along the equator, namely the

longitude, and its distance from the assumed north pole which is called the latitude. Hence,

for any given point, its mercator coordinates could be used for the parameters (h , v) of the

176

defining function b(u , v). In this way, the defining function is ‘mapped’ onto the surface

of a sphere (i.e. the one used for the corresponding calculations of the mercator coordinates).

In other words, the surface produced is the result of the ‘modulation’ of a spherical surface

by the defining function. This means that the surface that could have been produced by

using a constant value for 6 (i.e. a sphere), is now modulated in accordance with the

defining function that replaces 6 .

Consequently, research directed towards texture mapping [Heckbert 86], inverse mapping

[Haines 89], or wrapping can now be used in order to exploit surface modulations further

by using models similar to these presented here in the above examples. Another classical

application here is the mapping of environmental variables (e.g. atmospheric temperature,

ozone density) that are measured using the mercator coordinate system of the spherical-like

earth. For more details on this issue the reader is referred to the spherical plots modelling

approach presented in chapter four.

5.6.3 The defining param eter being a process

When using random numbers for the determination of 6 , two issues arise. The first has to

do with the consistency of the random numbers used, and the second with the continuity (i.e.

smoothness) of the produced surface. With regard to consistency, algorithms that produce

pseudo-random numbers [Kemighan & Ritchie 1988] can be used as long as their initial

seeds remain unchanged during the visualisation process. With regard to surface smoothness

however, some additional techniques have to be used. In order to control the continuity of

the produced surface, randomly produced values are permitted to oscillate only between

specific limits depending on the values of their neighbouring points. One way to achieve this

is by first calculating the ‘smooth’ value through interpolation of neighbouring ones, and

then by adding to that an amount of noise. Dietmar Saupe [1989] covers this subject with

more detail by presenting the midpoint displacement method as well as spectral synthesis

and functional based approaches. Additionally, methods using stochastic noise synthesis can

also be used. Other references include [Mandelbrot 1982] and [Voss 1985].

177

By utilizing such a technique, a controlled but also (pseudo) random process can be defined.

Plates 21 and 22 show the effects of such processes for two different values of the control

parameters. In plate 21 the variation (smoothness) of the pseudo-random numbers is globally

controlled, where, in plate 22 the smoothness is less apparent and more locally confined.

The pseudo-random numbers produced by these processes are colour-coded, therefore

continuity is expressed by colour adjacency with respect to the spectrum of visible light (i.e.

the rainbow spectrum).

We can use this process in order to create a pseudo-random surface around a line segment.

Plate 23 shows a model of one collection of one point only that has such a pseudo-random

process as the defining constraint. It is important to observe that the produced surface is

fragmented and consists of at least two separate pieces. This type of observation can only

be made after the visualisation of such a model, since analytically is too difficult to

determine. Once such ‘discontinuities’ are located, further studies on the model are possible.

This pseudo-random process uses all three coordinates as input. Therefore, the surfaces

produced, as explained in the previous section, are the intersection of the model’s and the

process’s contour maps.

Benoit B. Mandelbrot in the late 1970s was the first to attempt a description of the subject

of fractals [Mandelbrot 1977]. Since then the subject of fractals together with that of Chaotic

Dynamical Systems [Devaney 1989] have evolved into an individual domain of research.

The definition of the Mandelbrot set is given in relation to a process for generating

sequences of numbers [Peitgen & Richter 1986].

In our example we are going to use the following process: Assume a point p in two-

dimensional space. The nth member of the sequence (Snp) that stems from p will be:

K r slu p +P . $,,= o
This sequence either converges to zero or approaches to infinity (<»). It has been proved,

however, that this sequence does not converge to zero if the norm of at least one of its

members is larger than 2. Specifically:

i f lSn, l > 2 -

178

and the norm of a two-dimensional point is the length of the vector it defines:

iPl=^Px+Py . />eR2

The density value used for the produced contour maps is the integer number n that denotes

the order of a specific number S^p for which the above defined ‘divergence’ criterion is

satisfied. If after a number of iterations (for the calculation of S^p) the sequence has not

proved to diverge, the process for calculating members of that sequence terminates, and the

density value for the corresponding point p is assigned to be the maximum number of

iterations. This maximum number will be called the resolution of the set.

X-axis

Figure 5.10 X - axis symmetry of the Mandelbrot set

In Figure 5.10 we can see the borders of the Mandelbrot set at resolution 12. We can

observe the variations of thickness of the borders of the set which verify its fractal nature.

A simple rule to observe here is that the larger the resolution is, the more complex the

border appears. For this reason any attempt to approximate these borders with polygonal

lines will be incorrect since for a different resolution this can be arbitrarily wrong. Because

of the simplicity of its generation rules and the complexity of its resulting contour maps this

set has become popular.Let us assume now such a process to be the defining process for a

model consisting of one collection of one infinite line. The mapping function has to be

adjusted so that the resulting surface would be the rotated Mandelbrot set along the x- axis.

For this reason, the x- axis is mapped with the appropriate scaling onto the defining line thus

determining the first input parameter (m). The second input parameter (v) for this fractal

process will be determined by the distance from that line segment.

179

Let us also assume that the Mandelbrot process has a given resolution (say 12). In plate 24

we see the rotated surface thus generated. At the right top comer of the same plate we also

see the contour of the borders of this Mandelbrot set. As the previous paragraph stressed,

the fractal nature of the Mandelbrot contours amplifies the potential of our generic model

(Eq. 5.5) to define and manipulate such complex object descriptions.

The choice of the x- axis as the axis of rotation is used because of the symmetry of the

Mandelbrot set (as it was defined here) along the x- axis as Figure 5.10 shows. As a result,

any other mapping from the coordinates to the input parameters of that fractal process would

result into a distorted view.

5.6.4 The defining parameter being another implicit definition

This is a special case of the defining function being a process, but as we discussed in

section 5.4.3 it must be presented separately. This particular treatment has also allowed us

to adjust the model definition of Eq. 5.5 to that of Eq. 5.8 and the particular case of Voronoi

diagrams (Eq. 5.9), that for reasons of clarity we also present here:
k i

{ p | peRn , £ d(p,CA)=Y, d<P>CB? } (Eq- 5.8)
*-i /-i

{ p | peRn , } (Eq. 5.9)

Consider, for example, the case where CA is one only collection consisting of one primitive

which is one point ip), and CB is one collection that contains one primitive which is an

infinite line denoted by I. Let us also assume for this example that these collections do not

intersect. The definition of (Eq. 5.8), in two dimensions, will produce a parabola

(Figure 5.11). This figure, shows the line / as a dotted line for reasons of clarity.

We must note here the problem of accuracy that dominates the visualisation techniques used

for this category of models and which we intuitively call the thickness o f the surface. The

contours in Figure 5.11 are getting thicker as we trace the curves away from the defining

collections (I and p). The reason is that for a given surface thickness t, more points satisfy

180

the inequality d(q,l) - d(q,p) < t for all points q, as we move away from both I and p. If we

reduce the level t, we will loose trace of the contour in the area near the defining primitives.

Figure 5.11 A parabola defined by an infinite line

If in the example above the CB collection was a line segment instead of an infinite line, then

following case (ii) of Figure 5.4, the resulting shape would have been truncated accordingly.

When we use the minimum distance (case iii of Figure 5.4), beyond the truncation points,

the parabola shape degenerates into infinite lines (Figure 5.12). Again for reasons of clarity,

the line segment I is denoted as a dotted line.

Figure 5.12 A parabola as defined by a line segment

181

To illustrate the capabilities of our modelling approach, we will explain how we can extend

effortlessly the definition of the paraboloid in order to define a family of paraboloid-like

objects, as plates 2 5 -3 1 show. A paraboloid is defined as the locus of points that are

equidistant from a given point and a given plane that does not pass through that given point.

In plate 25 we can see a paraboloid such defined. Because the paraboloid extends to infinity

for reasons of image clarity we had to tmncate its surface when the distance of its

constituent points from the given plane (and/or given point) exceeded a predefined threshold.

As a result, we could replace the given plane with a planar disk of a large enough radius

so that it would not affect the shape of the truncated paraboloid. In this plate (plate 25) we

can see a turquoise-coloured disk and the resulting paraboloid above it. In plate 26, which

is the same (plate 25) paraboloid model but, observed from a different viewpoint, we can

see the ‘inside* (other side) of the paraboloid where the defining point (turquoise-coloured

sphere) is also visible.

Our first experiment was to generate a paraboloid-like surface by applying the two-

dimensional definition of the parabola and visualise it in the three-dimensional space. In this

way, the defining primitives, denoted with the turquoise colour, were a line segment and a

point (plate 27). The thus generated surface is also depicted in plate 28 where we can also

see that it is an extruded parabola along the direction perpendicular to the plane that passes

through the defining primitives.

The next experiment on the definition of the paraboloid was to replace the defining point

with a line segment. In this way we visualised, in plate 29, the locus of points that are

equidistant from a given plane (denoted by the turquoise planar disk) and a given line

segment (denoted as a turquoise line segment). Another view of the same object is also

shown in plate 30. Following that line of experimentation we then replaced the paraboloid’s

defining primitives with two given line segments non-intersecting and perpendicular to each

other. The thus generated surface is depicted in plate 31. For reasons of clarity the sides

(faces) of the generated surfaces have been assigned different colours and three light sources

have been used to provide the shading and highlights.

182

Another series of experiments was also conducted on the surface definition of Eq. 5.9. This

definition expresses the problem of the Voronoi tessellation, but also allow us to enhance

it considerably. One such example of the Voronoi tessellation is shown in plate 32 where

we used nine points (denoted with turquoise spheres) as nuclei. Our first enhancement was

to use as nuclei line segments instead of points. In plate 33 we show the tessellation defined

by using three line segments as nuclei. Taken in pairs, all segments are perpendicular to

each other but they do not intersect. Since some of the resulting surfaces may extend

infinitely we had to impose an upper limit threshold in a fashion similar to that of the

paraboloid examples. Moreover, in order to make the nuclei visible, at least partially, we had

to impose a lower limit threshold below which no surfaces were visualised. This lower limit

stops visualisation of all points on the visualised surface that are closer to the nearest

primitive a distance smaller than the lower limit threshold.

The second of our enhancements to the definition of the Voronoi tessellation was the

assignment of weights to all participating nuclei, these being points, lines, or any other

geometric object. To better understand the effect that weights had on the thus generated

tessellations, we constructed a series of tessellation images (plates 34 - 44) for the same

arrangement of nuclei, but with varying weights. Specifically, we used a model of four

points as nuclei which are denoted as turquoise-coloured spheres. The weights of the three

nuclei (the ones on the right, below, and left) were set to the same value 1.0, while the

weight of the top nucleus was let to vary between 0.75 (plate 34) and 1.25 (plate 44) in

steps of 0.05. As a result, eleven plates were produced.

To conclude our experiments of this category of model descriptions, we also generated

plates 45 - 48 with models of several points (4 in plate 45, 9 in plate 46) and line segments

(plates 47, 48) as nuclei, all being assigned different weight values. In these plates we used

a colour coding schema which assigns the same material properties, including colour, to all

the surfaces that face the same nucleus they are nearest to. However, because of the

definition of the Voronoi surfaces, where two nuclei are equidistant, we paint each visible

surface according to the nearest or second nearest nucleus, depending on the orientation of

the surface in relation to the observer.

183

5.6.5 Discussion on the applications of the modelling approach

In this section we have seen some examples of the models generated by the approach we

have developed and described in this dissertation. We have concentrated on interesting cases

of models for different categories of the defining parameter 8 .

In the first category, where the defining parameter is constant, we saw how the generated

shapes are affected by the exact value of 6. In the second category, we demonstrated the

use of functions as a means to modulate surfaces. In other words, we saw how we can

visualise a particular function that is defined on the surface of another object. We also

illustrated there how we can generate bodies of revolution and envelopes of shapes that are

defined along a trajectory. Then, in the third category, where the defining parameter is a

process, we showed how pseudo-random or fractal processes may also be used in order to

modulate the surface of geometrical objects.

Finally, in the last category, where the defining parameter is another implicit definition, we

demonstrated the potential of the modelling approach that we developed through two

especially interesting cases; that of surfaces that are equidistant from two implicitly defined

objects, and that of the extensions that we attached to the definition of the Voronoi

tessellation problem.

We believe that the examples we used are indicative of both the simplicity and the power

of the modelling approach that we have presented in this dissertation. In the next chapter

(six) we will turn our attention to the issue of visualisation. There, we will describe the

visualisation approach that we have adopted, which matches the requirements of our

proposed modelling approach, thus producing a complete tool for manipulating implicitly

defined surfaces. This visualisation approach, which we also used for the production of all

the plates in this dissertation, further enhances our modelling approach as it allows us to

demonstrate how we can exploit its principal capabilities: its intuitive nature in form

description, its power for generalising object definitions, and its support in refining our

conceptualisation of new geometrical objects and shapes.

184

Chapter 6 Visualisation of implicit surfaces

6.1 Introduction

In the previous chapter we saw how the measure of distance can be used to create many

families of surfaces, some of which have never been modelled before, while others are

radical generalizations of well known sets of surfaces. Specifically, starting from the

definition of the initial model described in (Eq. 5.1), we reached surface descriptions such

as the ones represented by equations (Eq. 5.5), (Eq. 5.8) and (Eq. 5.9). After defining a

surface using the above equations, the next task will be, as it has already been stated, the

use of computer graphics techniques in order to visualise it. This visualisation process we

believe should have two different but complementary targets. The first should aim at the

exploration of such models and therefore should offer the user ‘real time’ manipulation. This

means that the user should be able to vary the degree of approximation to the model’s

surface in exchange for quicker visualisation time. The second target should aim at the

production of a ‘realistic surface representation’ thus broadening the range of building

blocks (i.e. shapes) that are available to the current computer graphics user. As a result, a

visualisation method is needed that would avoid, as much as possible, the use of arbitrary

assumptions1 about the model.

Although the above targets are complementary, there are cases where both cannot be reached

at the same time. This is especially true where the highest quality picture is needed for the

study of the model’s details, thus delaying visualisation speed due to the enormous

calculation demands. There are also cases where some coarse approximations to the surface

are welcomed when visualisation speed is a necessity. In this chapter we will present the

visualisation approach that offers the highest image quality. This is based on the octree

model definition and representation method [Clark 1976; Meagher 1980; 1982; Doctor &

Torborg 1981]. Following this approach we will illustrate how we can get a very accurate

representation of the modelled surfaces. Then we will criticise our visualisation approach

and discuss the issues involved in improving its speed and accuracy.

1 In various stages of the visualisation process some assumptions about the geometry of the surface could simplify
the necessary algorithms and significantly speed up the whole process.

185

Specifically, in this chapter we will present the visualisation approach adopted, and justify

the selection. Furthermore, we will explain the adjustments we felt necessary in order to

enable the effective visualisation of implicitly defined surfaces. Finally, we will elaborate

on the problem of choosing the suitable point on the implicitly defined objects that will be

of use as the representative for the corresponding pixel in the resulting image.

The visualisation approach used is primarily based on the octree algorithm. This algorithm

was presented on the initial chapters on modelling (chapter two) and visualisation (chapter

three) and we will extensively use the terminology defined there. However, in this chapter,

we will examine the octree approach from the perspective of the programmer. As such, a

number of new issues like programming environment, data structures, number precision and

error tolerances will need consideration.

6.2 Design considerations

The programming environment we chose is that of the Object Oriented Programming

[Henderson 1993] and its specific implementation is the C++ programming language

[Borland 1992; Stroustrup 1987]. The C++ programming language was chosen because of

its adaptability as both a high but also a very low level programming tool. The C++

extensions were also preferred for the same reason since they enable programming at an

even higher level of abstraction. To be more precise, the C++ programming environment

allows the control (and direct manipulation) of individual lines of hardware ports and the

linkage of assembly language instructions, as well as the handling of complex abstract

entities (i.e. classes or objects) like the palette, the scene and the window. This environment

has proved very convenient to use, not only during the initial prototyping stages, but also

in the development of the final software application. Moreover, implementations of the C++

programming environment exist on all the common hardware and operating system

platforms. For example, there exist the shareware GNU compiler for all the major UNIX

implementations, and the Borland C++ environment for the DOS, Windows, and OS/2

platforms of Intel x86 compatible hardware. Many other manufacturers provide

implementations of the C++ programming language such as the Microsoft C/C++, the IBM

186

XLC++, the Watcom C/C++, the ZortexC++, etc., all offering the ANSI standard

implementations alongside their own proprietary libraries that are targeted at specific

application domains (i.e. mouse manager, numerical approximation algorithms, etc.).

Therefore, portability of C++ programs is not an obstacle provided only the standard

function libraries are used.

Once the choice of the programming environment was made, the next important issue was

the utilisation of the Object Oriented mechanisms. The initial design for the complete

software implementation was very critical since it would affect not only the efficiency but

also the capabilities of the resulting application. In an Object Oriented environment, the

most fundamental building block is the object. This is an instantiation of an abstract data

structure which is user-definable and is called class. A class describes data of a particular

form and a number of methods that are processes designed to manipulate on this data. One

of the most important features of a class is the inheritance. This property allows the

hierarchical definition of subclasses that stem from a parent class. As such, subclasses share

the data forms and methods of their parent class and consequently determine the data and

methods that their own subclasses will inherit.

The advantages of using the Object Oriented approach to computer programming have been

listed in many books, and can be summarized in the following key areas: modularity, ease

of testing, maintainability, reusability. However, the main disadvantage of the object

Oriented approach is rarely mentioned and refers to the choice of the appropriate class

hierarchies that would reflect accurately, and enable the effective implementation of, a

particular application domain. Fortunately (!) applications of computer graphics are the most

favourable example for Object Oriented textbooks and one can anticipate a variety of

alternative designs to appear. But the majority of the references prefer to treat points in

space as the most important class, from which the rest of the representations of simple

geometrical objects (e.g. line, circle, etc.) must inherit. The potential of this pixel-based

design approach proved to be neither appropriate to our implementation requirements, nor

powerful enough to accommodate the variety of viewports needed in a real environment.

187

However, apart from the pixel-based design approach, another three candidates were

examined. The first is based on the geometrical object which is the primitive building block

of the model and the second is the subcube or the cubelet which forms the primitive cubical

space on which the octree algorithm is based. The third alternative, and which is the one we

adopted, treats the complete modelled scene as the primitive class for our design.

6.3 The current implementation

The octree method as described in the previous chapters constructs what we will call the

traditional octree approach. This approach will also form the basis for our implementation.

Nevertheless, in order to make our implementation capable of visualising the surface

descriptions given in the previous chapter in a more effective way, we have introduced some

amendments to the traditional octree. For this reason, in this section we will present the

most important differences of our approach compared to the traditional octree. First, with

regard to modelling, we will show how our model definitions are used with the octree

method. This to a great extent is aided by the introduction of two basic assumptions. Some

criticisms about them and a presentation of other alternatives will follow. Finally, we will

present how during visualisation all the information necessary for the rendering of the

appropriate pixels (i.e. intersection point, direction of the normal, etc.) can be established.

6.3.1 The implicit to octree model conversion

The implicit surfaces defined in the previous chapter have not been described with octree

data structures. Therefore, in order to use an octree based visualisation algorithm, we will

have to somehow convert the implicit description of a surface into the equivalent octree

based one. Specifically we will need to extract information regarding the homogeneity of

cubes of space (i.e. whether a cubelet contains any points of the modelled surface). This

process of model conversion, however, exhibits some complicated elements that are

addressed and resolved through the introduction of two assumptions that we will present in

this section. The first assumption regards the shape of the octant we will use, and the second

regards the mapping of octants in three-dimensional space with pixels on the viewport. Our

188

rationale behind these assumptions, as we will see in the next paragraphs, emerges from the

lack of knowledge about the behaviour of the constraint (and the defining) function inside

a particular volume of space.

For the process of model conversion we will follow the method described in the octree

modelling subsection of chapter three; the surface is surrounded by a supercube, the

intersection test (i.e. whether a particular subcube intersects the surface) is applied and the

subcube subdivision proceeds accordingly. Each subcube corresponds to an octant and the

minimal sized subcube is called cubelet and corresponds to a voxel. Information about the

homogeneity of the cubelet will be used to determine the colour of the voxel and

subsequently the colour of the corresponding pixel onto the viewport. But the answer to the

intersection test may sometimes become a prohibitively time consuming process, especially

when we do not exploit or we do not have basic knowledge about the geometry of the

modelled surface (e.g. bounding volume information).

Because the models that we will visualise greatly involve the function of distance,

knowledge about the existence of one point on the modelled surface may help us to make

similar inferences about neighbouring points with regard to the same surface. The

exploitation of this observation will become obvious if we rephrase the intersection test

along the lines of the following argument.

As we have already mentioned, the defining constraint of an implicit definition can also be

seen as a function, namely the constraint function. This constraint function may take any

real value depending on the value of the input coordinates, thus assigning every point in

space one real number. In this way, if we allow the input coordinates to take any value

inside the volume of a subcube, the constraint function will take a variety of values. If,

additionally, the constraint function is continuous the resulting range of values will also be

continuous and form an interval, the constraint interval. Since the surface consists of all the

points that fulfil the defining constraint (i.e. make the constraint function equal to the value

of the defining parameter) the intersection test can be transformed into: whether the

constraint interval that is defined inside the volume of a particular subcube includes

the value of the defining parameter.

189

In order to illustrate the calculations involved for the determination of the constraint interval

let us assume an implicit surface definition that consists of one primitive geometrical object

only, which is a line (/) in the three-dimensional space, as equation (Eq. 6.1) specifies.

{p |peR 3, d{p ,I) = 8} (Eq. 6.1)

This primitive is denoted with I and is represented in Figure 6.1. From this definition we

can infer that the generated surface will be a cylinder of a circular cross-section with radius

equal to 6 . Let us also consider a subcube with its centre denoted by C at a particular

location so that is intersects with /. For that point C, we evaluate the constraint function.

This value, which belongs to the constraint interval, will be by definition the distance of C

from /. Let us also denote with A the point on / that this distance is calculated from.

The homogeneity of the subcube will be decided from the intersection test. The re-phrased

intersection test, as it was presented earlier in this section, examines whether the value of

the defining parameter 6 is included in the constraint interval or not. Therefore, the limits

of the constraint interval will have to be determined. In order to determine the minimum and

maximum extremes of the constraint interval we use the triangulation inequality property

of the distance function. For this reason we draw the line that connects A with C. The

nearest to A intersection point of this line with the subcube will be the one that minimizes

the constraint function. Similarly, the furthest from A intersection point with the subcube

will maximize the constraint function.

The complexity of the calculations for the nearest and furthest intersection points of the line

with the subcube depend on the orientation of the subcube in relation to that line as

Figure 6.1 shows. A simplification to this calculation overhead comes from the first of our

assumptions where instead of the cubical space that the subcube defines we use the volume

defined by the subcube’s circumscribing sphere. In this way, once the distance of C from

the surface is calculated, the minimum and the maximum extremes of the constraint interval

are calculated if we respectively add or subtract the radius of that sphere from that distance.

Therefore, we do not need to draw the AC line, nor do we need to find the intersections of

that line with the particular subcube.

190

Although this assumption simplifies the calculations involved, it is not very accurate since

sometimes it misclassifies some homogenous subcubes as heterogenous, thus resulting into

wasteful calculations. A thorough investigation about the advantages and disadvantages of

this assumption will follow in the next subsection.

• c

Figure 6.1 The inconvenience of using cubical subcubes

To analyse the effectiveness of this assumption concerning the utilisation of spherical

subcubes, let us assume that this particular subcube of Figure 6.1 has an edge length equal

to s. The constraint function for point C will be expressed as d(CJ) =d(C^i) =v and the

resulting constraint interval for the cubical space defined by the subcube will be:

[d (A ,B), d(A,D)]

while for the spherical one will be [(v -r), (v+r)], where r denotes the radius of the

\/3subcube’s circumscribing sphere and r = ŝ L—

So far, we used surfaces that are defined by a single primitive only. In a more general case,

where there is only one collection of primitives, the primitive that is nearest to the subcube’s

centre C is first identified. Then we apply the calculations we have just presented for that

primitive. Eventually, in the case where more than one collection of primitives are

191

combined, we decompose our calculations as follows. For every collection we determine the

corresponding constraint interval. Then these intervals are combined appropriately, i.e.

according to the constraint definition. Then the combined constraint interval is used for the

application of the intersection test, as we saw in the previous example.

But not all constraint functions are as simple as that in the above example. Moreover, there

are also cases where the constraint function is not continuous and therefore there is more

than one constraint interval.2 In such cases, we use the following systematic way for tracing

the surface: at every intersection test between a subcube and the surface we assume that the

test is true and therefore the corresponding octant needs to be subdivided. Eventually, when

we reach at the level of the voxel a realistic answer to the intersection test must be given.

This comes from the second of our assumptions where: we assume that a voxel corresponds

to a cubelet of space that is small enough (for the resolution of our viewport) to be treated

as a single point. This point is assumed to coincide with the cubelet’s centre. The rationale

behind this assumption is that the voxel corresponds to a single pixel on the viewport and

therefore all points inside the cubelet (that correspond to that voxel) will contribute to the

colouring of a single pixel on the viewport. It is evident that this exhaustive technique for

the generation of the octree structure demands enormous3 time to implement, therefore, is

has to be used only as the last resort.

Once the constraint interval has been determined, we need to apply the intersection test.

Actually, we have to answer whether the value of the model’s defining parameter belongs

to the constraint interval or not. But as we saw in the previous chapter, the model

descriptions of the surfaces we aim to visualise are categorised — according to the nature

of their defining parameter — in three different classes. The classes 7, 77, and 777 refer to

models where the defining parameter is constant, function, or process. From this last

category (777) we will make a discrimination to differentiate between the defining parameter

2 In the later case, all intervals are calculated and their union for the rest of our discussion will also be called
constraint interval.

For the production of a model of reasonable resolution (ie. 512 x 512 x 512) the point membership test of the
constraint of the implicit definition should be calculated a maximum of 134,217,728 times (=5123). For a high quality
model, at 2048 x 2048 x 2048 resolution, the above test needs to be applied a maximum of 8,589,934,592 times.

192

being another implicit definition, which will form a new class of models (class IV), from

it being any other process. Therefore, in the rest of this subsection we will concentrate on

how the intersection test is evaluated for each of the four model classes. We will start with

models of class I, because they are usually the simplest. Then for every other class, we will

present a way for transforming the corresponding intersection test into a class I equivalent,

thus giving a unified solution to the intersection test.

In class I models the defining parameter is described by a constant number. Therefore, the

intersection test is transformed into a point membership classification test. In other words

whether the value of the defining parameter belongs to the constraint interval. However, in

order to establish the basis of a unified approach to answering the intersection test (and cater

for the solution of the class II, III and IV models) we will assume that the value of the

defining parameter (say 6) is represented by an interval, the defining interval, which for the

sake of consistency is defined as the next equation shows : 6 = [6 ,6] .

Therefore, the intersection test is now considered to be a test of whether the constraint

interval intersects with the defining interval. For the rest of our discussion, this will be

the operational definition of the intersection test. This definition aids at the unification of

our approach since as the next paragraphs show, for the rest of the model classes all we

need to do is change the extremes of the defining interval appropriately.

In the second model class (II), for example, where the defining parameter is a function, the

extremes of the defining interval will be the minimum and maximum values the defining

parameter may take inside a particular subcube. This presupposes that we know the

behaviour of the defining function. For example, the function f fx ,y) =sin(x+y) of the two

coordinates x , y is a periodic function that can take any value between

- 1.0 £ fi(x,y) z + 1.0 .

With regard to the third model class (III), we again estimate the minimum and maximum

values of the defining parameter 6 . An interesting case emerges here when 6 is a fractal

process. The estimation of the defining interval’s extremes may be a very complex and time

consuming process. For example, if we use the Mandelbrot set, as illustrated (plate 24) in

193

the previous chapter, a rough estimation about the defining interval would be [0,max],

where max denotes the maximum number of iterations needed before terminating the

calculation of the fractal process. But the use of such a wide defining interval will result

into more frequent intersections with the constraint interval, and therefore, more wasteful

octant subdivisions. Since the Mandelbrot fractal set is time consuming to calculate this

rough estimation of the defining interval is not recommended.

Figure 6.2 Speeding up the visualisation of the Mandelbrot set

As a solution, we recommend the use of bounding volume information. There are many

choices available to us in this stage. For example, to surround the fractal set with other

simpler to calculate geometric objects. However, in our implementation we achieve a better

visualisation speed by excluding from the octree all points that lie in the ‘inside’ of our

model. In this way, we avoid costly calculations of the defining process. Specifically, we

define a set of two spheres and a torus that: if a subcube is found inside any of these three

objects, then the corresponding defining interval is empty (i.e. it concerns points far away

from the set’s border) and therefore the intersection test is negative. In Figure 6.2 we see

a cross-section of the model we have just described, on a plane that passes through the

model’s axis of symmetry (denoted by /). Here, the intersection of the torus with this plane

is two circles (denoted by dotted perimeter) since its defining axis is made to coincide with

axis I.

194

Eventually, in the fourth model class (TV), where the defining parameter is another implicit

definition, we treat the constraint functions as follows. The constraint that defines the

surface is an equation, with both parts being implicit definitions. The left hand part of the

equation is treated as the constraint function and used for the determination of the constraint

interval. The right hand part of the equation is again treated as a constraint function but now

its corresponding constraint interval will become the model’s defining interval. Once both

intervals are determined, the intersection test can be answered in a way analogous to that

of the other model classes; we have to determine whether the constraint interval intersects

with the defining interval.

So far, we saw how a surface described by an implicit definition, as this was determined in

the previous chapter, can be converted into an octree encoded form for its subsequent

visualisation. By rephrasing the question of the intersection test we saw how we can exploit

the implicit definition and achieve a model conversion effectively and efficiently.

Additionally despite the differences in the descriptions of the implicit surfaces we aim to

visualise, we showed how this model conversion can be achieved with a unified approach.

The usefulness of such a unified approach is appreciated during the implementation of the

techniques described, and relates to issues of simpler coding, code re-usability, increased

expandability, and code maintainability. Furthermore, with the adoption of two assumptions,

we made this model conversion process attainable even for complex definitions and more

rapid in its implementation. Because the choice of the assumptions is critical to the rest of

the implementation, in the next subsection we will present some alternatives to the above

assumptions, compare them, and finally draw some conclusions about their usefulness.

6.3.2 Criticisms about the assumptions

In the first assumption, we use the subcube’s circumscribing sphere instead of the subcube

(cubical shaped) itself for the calculation of the constraint interval and therefore for the

evaluation of the intersection test. This, compared to original approach of using cubical

shaped subcubes has some advantages and disadvantages. The main advantage of using

spherical subcubes is the simplification of the calculations involved. This, consequently,

results in simpler algorithms and quicker implementations. Specifically, with spherical

195

subcubes we do not need to determine the extremes of the constraint interval geometrically

by drawing the A C line, computing the intersection points, and evaluating the constraint

function, but we do it analytically by simply adding and subtracting the radius of the

circumscribing sphere. In this way, the orientation of the subcube relative to the surfaces of

the model is not important, but only its location and size.

The disadvantages of this assumption however, are not insignificant. They stem from the

fact that the volume covered by the cubical subcube is considerably less than the one

covered by its circumscribing sphere. Specifically, for a cube of size s its volume is s 3, the

radius r of its circumscribing sphere is

r=s—
2

and its corresponding volume,

—n r 3 = —n s 3(—) «2.72s3

spherical
subcubeN

surface

subcube

Figure 6.3 Cubical and spherical subcubes

Consequently, the intersection test that is answered for a large spherical volume, is used for

the octant subdivision of less bulky subcubes. Therefore, it is likely that a subcube that does

not intersect a surface of the model, may be incorrectly characterised as heterogenous if that

surface is close enough to the subcube so that it intersects its circumscribing sphere

(Figure 6.3).

196

Shape of octant Cubical Spherical

Constraint interval [d (A ,B)9 d(A , D)] [< /(C ,A)-r , d (C ,A)+ r]

Size of interval Variable,
generally smaller

Fixed, maximum of
equivalent cubical

Ease of calculation Complex, geometrical,
dependent on orientation

Straightforward, analytical,
independent of orientation

Speed of calculation Variable, dependent on
subcube orientation

Fixed, very high,
independent of orientation

Accuracy Exact Approximate, variable error

Table 6.1 Comparison between cubical and spherical octants

Analytically, this means that the width of the constraint interval, although fixed (since it is

equal to the diameter of the circumscribing sphere), is always larger than the variable-sized

interval (depending on subcube’s orientation), that results from the cubical subcube. This

erroneous classification of octants results into wasteful processing. Nevertheless, the error

introduced at one level of the octant subdivision is eliminated at a next level where the size

of the octants becomes smaller. By using the notation of the previous example, Table 6.1

summarises the differences between the cubical and spherical subcubes.

In the second assumption, we equated the cubelet (that corresponds to a voxel) with a point

in space. Effectively, this allows us to determine the ‘size of a point’ according to the size

of the surface and the size of our viewing window, i.e. image plane. The choice of the

coordinates of the voxel’s equivalent point, namely the representative point, may not always

correspond to the voxel’s centre. This mainly depends on the implementation of the

visualisation algorithm used, and the possibly additional needs for anti-aliasing.

Let us consider the following example. Assume that we have to visualise a model that

results in a very ‘large’ but also ‘thin’ surface. In such a case, it is very likely (depending

on the relative size of the image plane) that the size of the voxel (and therefore the cubelet)

is too large to be equated with a point and the choice of the coordinates of the representative

point is critical for the accurate visualisation of that surface. In plates 47 and 48 we can see

the effects of this observation. There (plates 47, 48, on the blue-coloured surface, the

197

highlights reveal Moire patterns due to the ‘thickness’ of the surface. In such a case, we

adjust the surface’s thickness by introducing a degree of accuracy £. This is achieved by

checking whether the representative point is less than £ units far away from the surface. A
S r~ Sgood estimate about £ is — £y3—, where s is the size of the cubelet. With this method
2 2

we have achieved a very ‘thin’ surface on the model of plate 45.

Another way to trace accurately a ‘thin’ surface is to use more than one representative point

for the intersection test. For example, one could use all eight vertices of the cubelet and if

they are all found to be on one side of the surface, ignore the corresponding voxel, else

proceed with rendering the corresponding pixel. The use of more than one point

representative is a very time-consuming process. Furthermore, the determination of what side

of the surface a point is in, is not always simple to implement. For these reasons, this

second alternative is not recommended.

However, the use of more than one point representative may prove useful when the

visualisation algorithm incorporates constructive solid geometry or anti-aliasing techniques.

In such cases, the problem becomes obvious when the cubelet intersects the surface at its

border therefore, some portion of the cubelet intersects with the model’s surface and the rest

either with the surrounding background or with another surface.

Although some of this discussion has been presented in the third chapter, we believe it

important to outline here three of the most popular alternatives. The first is to use several

points that are inside the cubelet but are randomly chosen. After calculating for each of them

the colour that results from their intersection test, we can statistically combine them (e.g.

average) in order to determine the colour of the corresponding pixel. The second alternative

uses points that are chosen with a specific order. The most significant points that are

selected first; these are the ones nearer to the observer. In this way the colour of the

corresponding pixel depicts the material properties of the surface nearest to the observer.

This alternative is therefore, more accurate compared to techniques that use a single

representative point. The reason is that what we see is the surface that is nearest to us (i.e.

observer). In this way we also avoid the problem of surfaces that overlap each other. The

third alternative again uses representative points that are chosen with a certain order; with

regard to their distance from the observer, the nearest is considered first. The difference of

this last alternative to the second alternative is that now the voxel is treated as an octant.

Therefore sub-voxels are generated through voxel subdivisions, up to a predetermined level.

We found the third approach simpler to apply because it makes use of the octree algorithm

that we have already implemented. When all possible intersections have been calculated, the

colour of the pixel corresponding to the voxel is determined through a statistical

combination of the sub-voxel colours.

The determination of the best alternative is not a simple task since it depends on the needs

of the application. There are also cases where more than one alternative is used

simultaneously for the same voxel or for different voxels of the same image. However, it

has to be stated here that it is not the high degree of accuracy than makes an image look

more realistic, but the way noise is blended into it [Williams & Collier 1983; Yellot 1983;

Cook 1989].

6.3.3 Visualisation issues

Once the description of a surface is encoded into the octree structure, the visualisation of

the surface is the final process we need to discuss. Again here the basis of our approach is

the traditional octree visualisation as described in previous chapters. Nonetheless, there are

two issues that need to be discussed. They originate from the implicit nature of the surfaces

we visualise, and relate to the issue of rendering the pixels of the viewport (i.e. shading).

During visualisation, in order to be able to apply a shading model, we need to know for a

given point on a surface, the direction of the normal to that surface, as chapter three

discusses. This normal is going to be a vector, denoted by a triplet in the three dimensional

space, starting from that given point, and by convention pointing to the ‘outside’ of the

surface.

Specifically, because there is no analytical definition of the surfaces involved, the

determination of the normal vector of such a surface at any point on that surface, both in

terms of measure and direction, cannot be computed by any precalculated formula and

199

therefore it has to be approximated. The problems of determining the normal vector and

resolving the ambiguities of the ‘inside’ and ‘outside’ of a surface are discussed in the next

paragraphs.

The implicit surface as it has been defined in the previous chapter, is described by a

constraint. This constraint is an equation where the left hand part is called the constraint

function and will be denoted by c/, and the right hand part is called the defining parameter

and is denoted by df. Their difference, we assume that will form the model's density

function and will be denoted by MDF = c f-d f. In this way, a point p belongs to the surface

if and only if the model’s density function evaluates to zero: MDF(p) = 0. Additionally,

the normal to that surface at any given point (on the surface) will be defined as the direction

that the MDF function shows the largest change, i.e. is perpendicular to the surface.

Therefore, for any given point, the normal N to the surface will be determined by the partial

derivatives of the MDF function along the y- and z- axes.

. r .dMDF dMDF dMDF xN = i~ar'~dT'~dr)
In our implementation, the partial derivatives will be approximated by assuming that

d x = d y= d z= 2 t , where e is a small number, approximately equal to half the size of a

cubelet. Consequently, once a voxel has been identified as a candidate pixel, information

about the location of its corresponding cubelet is passed into the shading algorithm. The

centre of this cubelet is assumed to be a point on the surface we aim to render.4 If we

denote this point with C, and its displacements of e units along the positive and negative

direction of each coordinate axis (x , y , z) as Cx+, Cx~, Cy+, Cy-, Cz + andCz-

respectively, the approximation to the normal N at that point C will be:

N « ((MDF(CX.) -MDF(CX-)) , (MDF(CY+) -MDF(CY-)) , (MDF(Cr) -MDF(CZ-)))

The choice of the magnitude of the displacement £ will have an effect on the smoothness

of the image. If, for example, e is larger than the cubelet’s size, the evaluation of the

model’s density function MDF for a given point will be affected considerably by the normal

to the surface at neighbouring points. This observation is exploited when we need to

4 If this is not true, we can use an interpolation technique like the successive binary approximation, in order to
improve the accuracy of the coordinates of that particular point, thus ensuring that it belongs to the surface.

200

visualise models that their defining parameter is not continuous. One such example is the

stepwise results that emerge from the process of the Mandelbrot set (model class III). There,

we take £ to be equal to half the size of the cubelet, and a smooth image will be achieved.

If our e proves to be too small, thus resulting in a zero-length normal vector, then we

increase the size of e and try to estimate the normal again. This rule for temporarily

increasing the value of £ will definitely terminate after a small finite number of iterations

because of the implicit assumption that the ‘potential field’ that the model generates should

change density values within space. If the field does not change its density values then the

modelled iso-surface is either the complete space or the empty set.

Once the vector of the normal has been estimated, we need to know whether its direction

is towards the ‘inside’ or the ‘outside’ of the surface. But as we have already mentioned,

not all the implicit surfaces are closed. Therefore, we need to discriminate our approach

accordingly. We have observed that most of the surfaces that belong to model class IV are

non-closed surfaces, unlike the rest of the classes. This observation is only indicative and

from the way we treat the sense of ‘inside’, one can see that it does not incur any errors on

the resulting images.

For the closed surfaces, once the normal vector is approximated, we displace the

representative point C, by a distance of e' units5 along the direction of the normal. Then,

for that displaced point, we evaluate the model’s density6 function and depending on its

sign we may invert the normal. It should also be re-iterated here that this is a convention

we impose and as long as we are consistent with our conventions we get correct results.

For the non-closed surfaces, there is no meaning of ‘inside’ or ‘outside’. In such a case,

once the vector of the normal is approximated, we adjust its direction, so that it will always

point towards the image plane. Specifically, in our implementation, where the scene is on

the positive z- axis and the observer on the negative, we invert the vector of the normal if

5 We usually assume that e' corresponds to the size of a cubelet, and the normal vector is normalized.

5 Recall th
defining Junction.

6 Recall that the density function is defined (section 6.3.3) as the difference constraintJunction-

201

its z- coordinate is positive. In this way we make sure that the parts of the surface that are

visible by the observer are properly rendered by the shading algorithm, thus producing all

the shadows that are necessary for conveying information about the surface’s curvature as

plates 2 5 - 3 1 show. In the special case of the Voronoi tessellations, the colour of each

visible surface is painted according to the identity of the nucleus that is responsible for its

creation (i.e. the nearest). We can observe this all the Voronoi plates (34 - 48).

6.3.4 A comparison with the traditional octree

Although the stages of model conversion and surface visualisation are presented in different

subsections of this chapter, in our implementation they are combined together. In this way,

once a voxel is determined during the model conversion process, information about the

location of its corresponding cubelet is passed over to the visualisation algorithm, its normal

to the surface is approximated, and finally corresponding pixel is rendered. Then the model

conversion process resumes searching for other eligible voxels.

Another deviation from the traditional octree method is that the visibility of a voxel by a

particular observer is now tested during the model conversion process. Moreover, this

visibility test does not examine voxels only, but octants of any size.

The reason for imposing these changes is twofold. First we reduce the necessary memory

requirements since we do not need to store the complete octree structure in the computer’s

main memory. Second, we accelerate the visualisation of a model since we do not waste

time for tracing invisible octants in relation to the current observer.

6 .4 P r e d i c t i n g t h e v a lu e s o f t h e d e f in in g p a r a m e t e r

This section is concerned with the exploitation of knowledge that we can infer about the

behaviour of the defining parameter for the purpose of accelerating the visualisation process.

We will mainly use the findings of this study in visualising objects of the class II category

of models (i.e. implicit models where their defining parameter is a function). What we aim

202

to gain is knowledge about the boundaries of the defining interval, as it is defined within

a given volume of space. In this way we anticipate to achieve accurate representations of

the models at a reduced calculation overhead, hence rapid response times.

During the octree visualisation, subcubes of different sizes and shapes (according to our first

assumption) are used to determine the defining interval for a given model. Additionally, In

models of class II, the defining parameter is assumed to be a function. Therefore, in order

to estimate the defining interval we will need to know the behaviour of this function within

the volume of space that specifies the given subcube. One recommendation we made during

the relevant sections, was to prefer continuous functions. But continuity is not always

sufficient to ensure the accurate computation of the defining interval.

What we propose here, is the estimation of the limits of the defining interval as they can

be calculated from the Lipschitz Condition. This is a mathematical theorem that can be

found in all textbooks of calculus. In the context of computer graphics, this condition has

been used by Kay and Kajiya [1986] and Henzen and Barr [1987] for the purposes of speed

and accuracy of particular visualisation algorithms. For reasons of clarity we will present

the Lipschitz Condition for a simple case of a univariate function f[x) defined along the

interval [0 , 1], and we will extrapolate its effect for bivariate functions.

For a continuous function j\x) over the interval [0 ,1], the Lipschitz Condition assumes that

there exist two real numbers jc7 and x2 in the interval [0 ,1], and a real non negative number

k, which is called the Lipschitz constant that make the following condition true

The inequality (Eq. 6.2) uses the Lipschitz constant k to bound the derivative (if it exists)

l/(*i) s k |x , - x 2 1 , *,,*2 e[0, l] (Eq. 6.2)

of the function,
(Eq. 6.3)

By choosing x1 = 0, x2 = 1, and x0 = [0, 1] we can write the inequality (Eq. 6.2) for the pairs

l / (* o) - / (* i= °) l * * l * o - ° l

|/ (* 2 = 1) - / (* 0) | z k \ l - x 0 \

(Eq. 6.4)

(Eq. 6.5)

The addition of (Eq. 6.4) to (Eq. 6.5) produces

| / (* b) - / (* ! = °) | + l /(* 2 = 1) ~f(Xo) I S kx0 + * (1 - * 0) = k (E q - 6 -6)

by substituting a = |/(jc0) - f (x 1 =0) | and b = |/(jt2 = l) - f (x Q) | we can bound the

value of the function /w ithin the perimeter of an ellipse that has its focal points at/(0) and

/ (l) as the revised (Eq. 6.6) shows:

a+b z k = constant

Assuming that we can map the interval [0,1] to any interval of real numbers, say [xmin, j c J ,

in order to exploit the Lipschitz Condition we need to calculate the constant k. This is

determined from inequality (Eq. 6.3) by calculating the global maximum of the derivative

of the function /.

For the bivariate function g(u , v), the Lipschitz constant will be calculated from the partial

derivatives of g
k > max d g (u ,v) + 0g(w,v)

0*K,V£l du dv

If we cannot determine the value of the bound k, we may estimate it by sampling the slope

of the defining function and using the maximum of the sampled derivatives.

To demonstrate the potential of this method and illustrate its use on the visualisation

approach we proposed, we will present the following example. Assume that we have a

model of class II in three-dimensional space where, the defining parameter is a function. We

assume also that this function is univariate and uses as input parameter the x- coordinate7

of the point we use to assess the point membership classification test that this model defines.

Such a function may be the:

6(x) = x 2 - 7 x + 6 (Eq. 6.7)

It does not damage the generalisation of this technique to assume the use of the point’s co-ordinate instead
of any other intermediate mapping as the input parameter for the defining function.

204

During visualisation of this model, we have to test whether an octant intersects with any

parts of the model’s surface. As we have already explained, this test is possible by

intersecting the relevant constraint and defining intervals. For the calculation of the

constraint interval we resorted to spherical octants. However, the calculation of the defining

interval depends on the exact function that makes the defining parameter 6 (Eq. 6.7).

Let us assume that the centre of the spherical voxel is p - (xp , yp , zp) = (4 , 5 , 8) and its

radius is r = 2. The limits of the defining interval will be determined by the use of the

Lipschitz Condition. In this way we will calculate the boundaries of the defining function 6

when its input parameter is allowed to take any value in the interval [jc/f xr] . The interval

of allowable values for the input parameter of the defining function depends on the shape

of the octant and in the case of spherical octants is assumed to be [x• - r , xp+ r].

Therefore in our example the input parameter for the defining function takes values in

[*„*,] S [2 ,6] .

To use the Lipschitz Condition, however, we must use the input interval [0 , 1]. Therefore,

the first step we have to make, is to transform the defining function of equation (Eq. 6.7)

to map the interval [2 ,6] to the required interval [0 , 1]. This mapping will be computed

by using the new variable x' of the transformed defining function 57 as:

, = * - (y r) = * -2
(xp+r)-{xp-r) 6 -2

Consequently, x = 4 x ' + 2

and the defining function will be transformed accordingly:

6'(x')= 16xa - 1 2 x '- 4

In this way when for the defining function 6(x) the variable x E [2 ,4] , the transformed

defining function S^jc7) will imply x f e [0 ,1] . Similarly, the middle-point xp will be

mapped to the middle-point 0.5 of the [0 ,1] interval (linear transformation).

We can therefore apply the Lipschitz Condition, provided that we can estimate the constant

k which is the maximum absolute value of the derivative of the transformed defining

205

function: ,*/
I— U k
d x '

The derivative of 67 is 3 2 x '- 12 and it belongs to [-12 , +20] when x' e [0 ,1]. Therefore

we can assign k = 20.

The Lipschitz Condition therefore will suggest that:

1 8 % 0 -6 'C O l s k \ x j - x ' \ , x ' e [0,1] s i* / ,* , !

By replacing the appropriate values, taking into account the mapping of the defining

function,

1 8 '0 0 - 8 'M I = l#C*p-«(*)l s k \ x j - x ' \ = Jfc|0.5 — jc7| = 2 0 x 0 .5 = 10, x 'e f l U ;

We can safely assume therefore that the defining interval for this example situation is

[8 (4)- 10, 8(4)+10] s [- 6 - 1 0 , -6+10] s [-16 ,+6]

A better refinement to this method is achieved if we split the interval [xl , xr] in two

intervals; the [xl , xp] and the [xp , xr]. For each of them, we should transform the defining

function to map the [0,1] and determine its boundaries. The required defining interval will

then be the union of these two boundaries.

6.5 Conclusion

In this chapter we discussed how we can amend the octree method in order to create a

visualisation approach that is suitable for the models we have constructed. Developing

therefore an appropriate visualisation approach was necessary to ensure that the modelling

approach we proposed in the previous chapter (five) can be used to its full potential.

Moreover, because of the implicit nature of the models we use, we found it very important

to introduce some techniques that were necessary for the acceleration of this visualisation

approach. Of them, some were aiming at altering the specifics of the original octree

approach, while others were aiming at studying the behaviour of the model, thus exploiting

the spatial coherence of the scene.

206

Our intention in the next chapter will be to provide some criticisms regarding both the

modelling and the visualisation approach that we proposed. We discuss two complementary

issues. The first is concerned with the actual application of the modelling and visualisation

approaches developed in the research described in this dissertation. The second is concerned

with further research directions aiming at enhancing the methods we developed.

In this way, our objective is to avoid confining our modelling approach to the particular

visualisation approach presented here. For this reason, in the next chapter we also outline

the necessary algorithms for using our proposed models with a number of other visualisation

techniques that are currently being used extensively in the literature. Such effort will allow

us to direct to further research in order to exploit the capabilities of the modelling approach

we have developed.

207

Chapter 7 Research considerations and directions

7.1 Introduction

In this chapter we will adopt a critical perspective from which we will assess the usefulness

of the modelling approach that we propose in this dissertation. Issues that have arisen while

using this approach will be discussed in section 7.2 where we will be concerned with the

ease of modelling particular scenes, the accuracy of the visualised surfaces, speed of our

visualisation approach, and precision problems encountered.

Our criticisms will then be constructive and we will focus our interest in presenting several

methods for improving the usability of the modelling approach we propose. These methods

reflect our considerations regarding the future of this research. We wish to continue our

research in three different directions: towards further enhancements to the modelling

approach we propose, towards alternative means for describing our models and finally

towards alternative visualisation approaches. Every method we consider in this chapter is

outlined, and where applicable references are given to particular techniques of significant

relevance. Moreover, when appropriate we demonstrate the principles of the outlined method

with some simple examples.

Specifically, we begin our presentation with criticisms regarding the utilisation of the

modelling and visualisation approaches that we propose (section 7.2). Then we review the

issue of enhancing the modelling approach that we proposed by assessing the challenges

involved in two aspects: the visualisation of implicit models in the space of four dimensions

(section 7.3) and the introduction of non-linear combinations of the measure of distance

(section 7.4). Next, in section 7.5, we focus on alternative model descriptions where we

outline two methods for determining a polygonal mesh that approximates to the surfaces we

constructed. We present both a method for calculating a triangulation as well as a mesh of

tetrahedra that approximate to the modelled surface.

208

Finally, we present two distinctly different visualisation approaches; ray tracing (section 7.6)

and what we call stochastic visualisation (section 7.7). With regard to ray tracing we discuss

a global illumination model as well as the ‘Heidelberg model’. The concluding paragraphs

(section 7.8) are concerned with the provision of a brief evaluation and summary of the

whole of this dissertation with the anticipation of having fulfilled the role we set out in the

beginning.

7.2 Criticisms

There are several issues against which a modelling approach may be contrasted. In the

second chapter we presented the most significant ones. We have already commented on

some of these issues in chapters five and six, when discussing our modelling approach.

However, we believe that a few outstanding issues still need special treatment, as they seem

to be the most frequently discussed in the literature. These are ease o f modelling, accuracy

and numerical precision of the necessary calculations, and speed o f visualisation.

7.2.1 Ease of modelling

Ease of modelling is concerned with the usability of the modelling approach in question.

Regarding our approach, it is understood that it is not possible to have feedback from users

(designers). Therefore, our criticisms have been gathered solely from our own experience

in using this approach.

Apart from our particular approach, however, we have also used several other modelling

approaches thus enabling us to provide an accurate and comparative judgement. In

particular, in our installation we also manipulate models based on the polygonal mesh and

the analytical approach. We also visualise models that are based on a variety of splines (B,

6, NURBS) and some procedural methods such as extrusion, revolution, and other pseudo

random and fractal processes. Table 7.1 summarises the most important differences of the

major modelling approaches.

209

Polygonal mesh Analytical Our modelling

Number of primitives 1 (polygon) Few (formuli) Any object

Basic building mechanism Patchwork Set union Model dependent

Other construction
mechanisms

None inherent,
need a pre
processing stage

If not in a
formula,
use blends, CSG

Inherent in the
model (rotation,
extrusion...), CSG

File sizes of model
descriptions

Huge, depending
on required
precision

Small, depending
on formuli
parameters

Small, depending
on participating
primitives

Ease of model creation If not hardware
assisted, very
tedious

Presupposes
knowledge of the
primitives

Simple,
intuitive,
generic

Alternative coding forms None Symbolic Symbolic

Table 7.1 Evaluating ease of modelling

Each of the approaches has its own merits and is particularly good for a limited variety of

objects that it can describe with minimal effort. But in spite of this, our approach has proved

capable of describing a vast variety of objects, as we have already shown in chapter five.

Moreover, it provides a direct and explicit way for specifying a model, and it allows a high

degree of uniformity for the necessary model descriptions. Take, for example, the modelling

of a body of revolution. With the polygonal mesh, we would first need to specify the

contour which will have to be rotated and the axis of rotation. Then we will have to apply

an intermediate process for the generation of the appropriate model description. With our

approach, however, we simply describe the axis of rotation as a primitive member of one

collection, and the contour that needs to be rotated as the defining function. In this respect

therefore, we would attribute merit to our own approach.

Another aspect for comparing modelling approaches (regarding ease of applying them) is

the size of the files that contain the model descriptions. Here again we believe that the

modelling approach we propose ranks very high. Consider the same example of the model

description of a body of revolution. With our approach, the resulting file consists of a few

bytes (depending on the description of the defining function contour). With the polygonal

mesh, the model description would initially be the same as ours (the axis and the contour),

210

but this description will become the input of the intermediate algorithm which would

generate a large file of several kilobytes (1Kb = 1024 bytes), depending on the number of

angular slices, of the final model description.

This difference in the model’s file size, of at least two orders of magnitude, proves critical

on models of computer graphics scenes with several such defined objects. Using the

analytical approach, model descriptions may have necessitated a much smaller file size, but

the functions that describe bodies of revolution are usually too complex to determine and

depend on the specifics of the required contour and axis of rotation of the particular object.

One challenge that our modelling approach poses is the description of analytic functions in

the model description. In class II models, for example, where the defining parameter is a

function, we need to describe it in a computer readable manner. This is actually a difficulty

that is shared with the analytic modelling approach. We can see two general methods to

tackling this issue. The first allows the designer to use a pre-determined set of functions by

simply denoting them with their appropriate identifier. The second method, which provides

an ‘intelligent’ alternative to mapping pre-specified functions, is the use of a symbol-parser,

that would allow the designer to describe any function using a pre-determined set of

symbols and a syntax. One such example is the parsing facility of the Mathematica

[Wolfram 1991] software, where the user denotes virtually any function using a pre

determined language (symbols and syntax).

The first method, which is the one that we adopted, is limited to the type of functions that

have already been incorporated in the visualisation algorithm. In this respect, it does not

allow for any flexibility but optimizations for manipulating the pre-defined functions may

speed up the whole process of visualisation considerably. The second method is very

flexible, so in most implementations it does not provide any optimizations because of the

variety of functions it allows. Despite the enormous flexibility that the second method

provides, it is very rarely implemented because of the programming effort it necessitates.

211

An approach that provides some flexibility but also permits certain optimizations, is a

combination of the above two methods, where generic parameterized categories of functions

are only permitted in the model description. Such an approach would allow for, say,

polynomials of up to the sixth degree, and the model description should only specify the

values of all seven parameters which are the coefficients of the polynomial’s variable.

For piece-wise defined functions, the task of model description is very complex and we are

inclined to impose certain restrictions on the total number of pieces that a particular function

may consist of. Nevertheless, these limits are chosen arbitrarily and serve the purpose of

coding simplicity. Additional tests regarding the geometrical continuity of the piece-wise

functions are also imposed in order to enable the application of bounding volume

information by the Lipschitz Condition [Herzen & Barr 1987].

7.2.2 Precision and accuracy

The next issue for criticisms is the accuracy and numerical precision of the calculations.

This is mainly an issue of the visualisation approach, but certain aspects of it are inherited

from the nature of the models we use. For example, in models of the IV class certain surface

areas may be totally ignored by the visualisation algorithm, because the representative points

of the relevant cubelets (or even subcubes) may fail the intersection test.

Specifically, precision errors are introduced when visualising models of any class. These

errors are introduced in the calculation of both the constraint and the defining interval. But

models of class I have a constant defining interval, and for models of class II and III the

defining interval is usually straightforward and simple to compute, thence, a small scale of

accuracy problems are encountered in the intersection test. However, models of the IV class

predicate the computation of a defining interval which has to be determined with an amount

of calculation that is comparable to those of the constraint interval. In this way, precision

errors are introduced in both the constraint and the defining interval, thus making the

intersection test inaccurate.

212

To eliminate these accuracy problems of the intersection test, we distinguish between the

application of this test on subcubes and its application on cubelets. The first case (subcubes)

is solved by the extension of the constraint and defining interval. Usually both ends of the

intervals (minimum and maximum) are extended a small proportion, say 1% of the total

length of the interval. Therefore the likelihood of missing out areas of the surface due to

incorrect intersection tests is minimized. It follows, however, that we may have to

characterise incorrectly some subcubes as heterogenous, thus wasting computer resources.

The second case, where the intersection test is applied on cubelets, is more difficult to solve

since we have reached the final level of subcube subdivision. We can see two different

techniques here for eliminating accuracy errors. The first extends the constraint and the

defining interval and permits one more level of subdivision, thus providing a unified

approach to eliminating the accuracy problem. The second technique is more strict and

through additional verification tests, where applicable, assumes that the resulting intervals

are accurate. These supplementary verification tests include geometrical confirmations, as

implied from the computed intervals, as well as approximation methods for adjusting the

detected discrepancies.

7.2.3 Speed of visualisation

The last issue that we will criticise in this section, is the speed of visualisation of the

proposed modelling approach. From results in the literature regarding other modelling and

visualisation approaches, and those we have collected from our own experiments, we can

observe that the visualisation speed of our models is not very promising. Although it is not

desirable, such poor visualisation speeds should have been expected mainly because of the

high priority that we have placed on the accuracy of the represented objects.

An additional factor for obtaining such results is the use of code that has not been optimized

to any great extent. This is a serious and time-consuming task, demanding the use of

supplementary software tools such as profilers, which we feel is not within the scope of our

experiments. Furthermore, we use common purpose computer hardware which places us in

a disadvantage when compared with customised, special purpose, expensive installations.

213

The main reason for our choice is to achieve portable code that can be executed on virtually

any hardware platform, as the first chapter clarifies.

Despite these criticisms, as we shall see in the next sections, we also suggest a number of

alternative approaches for visualisation. The most interesting simulates a global illumination

model and enables the generation of ‘photo-realistic’ images (section 7.6). At the same

section we also outline a simple version of ray tracing, called ray casting, as it is

implemented with the ‘Heidelberg model’. Moreover, we also present (section 7.7) a very

simple visualisation approach that is based on the nature of the point membership

classification test. Nonetheless, we also suggest a way (section 7.5) for constructing a

polygonal mesh out of the models we propose, thus indirectly enabling the use of the simple

but extremely efficient polygonal mesh visualisation approach.

7.3 Four-dimensional space

In this section we will discuss the means for visualising surfaces that have been defined in

four-dimensional space. This is not a new issue in computer graphics since such approaches

have already appeared in the relevant literature [Banchoff 1990; Hanson & Heng 1992]. The

challenge in the fourth, or higher, dimensions is the difficulty in conceptualising these

spaces. An excellent aid to this challenge is Banchoff s [1990] book that uses artistic as well

as computer graphics images to examine cross-sections (projections) of objects of the four

dimensional space. He also provides image sequences of the same four-dimensional object,

in order to explore the choice of the viewpoint and the projection used for its visualisation.

In order to understand better the issue of projection, let us consider the following scene

where a hyper-cube has edge size of two units and the coordinates of its vertices are

determined by the permutations of the (±1 , ±1 , ±1 , ±1), along a four-dimensional

orthogonal Cartesian coordinate system. Our aim is to establish a projection function that

would map this hyper-cube onto the window of the two-dimensional viewplane.

214

In order to achieve this mapping we have a number of different choices. The first and

simplest one is to ignore two out of the four coordinates of every four-dimensional vertex.

In this way we achieve an orthographic projection which in the case of the hyper-cube

would generate a square of size two, since it is determined by the vertices (±1 , ±1). For

more complex four-dimensional objects, the choice of which of the two coordinates we

ignore is crucial, because it will expose or hide several details of the object’s hyper-surface.

Another projection we may also use is perspective, which, as we discussed in the third

chapter, generates ‘intuitive’ results. From the four-dimensional space to the three-

dimensional, assuming applicability of the Pythagorean theorem, the perspective function

is a simple extension to the one used in chapter three. For a four-dimensional vertex p with

coordinates p = (jt,y,z,co), its projection on the perspective cube which is at a distance —d

away from the observer along the fourth dimension cu = -d , will become the vertex p = (x

x d/(d , y x dlCO , z x d!co ,-d). This vertex is the three-dimensional point (jc x d/co , y x d/co ,

z x d/co) in the perspective cube and represents the projection of the four-dimensional vertex

p onto this perspective cube.

The perspective projection presented here does not solve our mapping problem completely

because we eventually need to reach the two-dimensional space of the viewplane, and not

the three-dimensional perspective cube. Moreover, we are not familiar with the

conceptualization of the four dimensions, therefore we can experiment with different

projection sequences. For example, we may use the perspective to get from four dimensions

to three (of the perspective cube) and then use any depth sorting method such as the z-buffer

to (orthographically) project the surfaces in the perspective cube on the two-dimensional

window on the viewplane.

Another issue that we have to address is the shading model that we may use. This, as

Hanson and Heng [1992] suggest, may be derived by extending the three-dimensional

shading models. Our modelling approach gives us another way to achieve rendering because

we manipulate objects as iso-hyper-surfaces. This is the approximation of the normal to the

hyper-surfaces with the partial derivatives of the constraint and defining functions. In this

way the fourth dimension is introduced with an amazingly straightforward way. Another

215

alternative would be to project the surfaces in three dimensions first, and then illuminate

their projection using available rendering technology.

Work in visualizing the fourth dimension has been restricted because of our inability to

conceptualize the four-dimensional space. Therefore, we would recommend that initially

such four-dimensional visualisation approaches are implemented to visualize simple

geometrical objects in order to familiarize the user with the effects of projections and the

four-dimensional shading. An object very simple to conceptualise and well discussed in the

literature is the hyper-cube. It is produced by the extrusion of a cube (the envelope produced

by shifting) along a direction that is perpendicular to all the cube’s edges. This direction will

form the fourth dimension. The hyper-cube has therefore 16 vertices and 32 edges.

7.4 Non-linear propagation

So far we have assumed a linear propagation of the defining functions for all the surfaces

we have modelled. In this section we will discuss the challenges of using functions of the

measure of distance that propagate on a non-linear relationship. For example, we will use

the inverse of the measure of distance, any exponential power of it, or even trigonometric

functions of appropriately transformed distance measures.

In this section we will identify the assumptions that we have made in chapter six that are

no longer true, or need additional adjustments. Then, we will distinguish the segments of

the octree visualisation algorithm that need to be altered, as a consequence of the change

in our basic assumptions. Finally, we will provide some general directions towards achieving

these changes.

The most significant change is on the first of the two assumptions of chapter six. We

calculated the maximum and minimum values of the constraint and the defining interval by

adding or subtracting the radius of the subcube’s circumscribing sphere to the value of the

constraint and defining function evaluated at the sphere’s centre.

216

In this way we used an implicitly made assumption that both the constraint and the defining

functions are linear combinations of the measure of distance. For the defining function, we

then made this assumption explicit and we used different combinations of the distance

function as well as other pseudo-random processes.

By admitting that the measure of distance is included in non-linear relationships for the

calculation of the constraint function, we have to use the same precautions that we identified

in chapter five for the effective manipulation of the defining function. Consequently, we can

no longer use our first assumption, but we have to approach the constraint function

according to the particular combinations (of the measure of distance).

For example, when we use the sin() function for determining the measure of distance, in

the models shown in plates 18-20, we can conclude that we will only get values between

[-1,1]. By shifting this interval one unit to the positive direction of real numbers, in order

to avoid negative values, we can eventually have distance values between [0, 2]. As a result,

we can use this observation to bound our constraint interval between [0,2].

Unfortunately, although such examples may prove very effective, we cannot generalise their

applicability. There is no generic technique that would enable the accurate estimation of the

constraint interval within the bounds of a subcube or its circumscribing sphere. The most

suitable technique we can suggest is the exploitation of the Lipschitz Condition out of which

we can derive the means to bound any specific constraint function. The Lipschitz Condition

has already been presented in chapter six, where we discussed its proof but also the

difficulties of its exploitation.

A more interesting case that has great applicability in physics is the propagation of fields

that are described with the function of the inverse square of the measure of distance. The

law of Newton about attraction forces between any two real objects, and a similar law

between any two electrostatic loads that explain several phenomena in nature, are described

with the function of the inverse square.

217

Figure 7.1 Using non-linear distance measures

In Figure 7.1 we see iso-density contours of the field generated by the following model

{p | peR2 , }
where C is a collection of three points and d (p yC) denotes the weighted inverse square

Euclidean distance from point p , to the collection C of three points, for a given weight

vector w():

d(p,C) =——̂ d ' (p , C) = min(| | p - | , i (e C)
(p. Q)

The next figure (Figure 7.2), shows the Voronoi tessellation when we treat these three

points, x l f x2, x 3, as nuclei. This image was produced by the following model:

{ p | peR2 , dl(pfC)=d2(pfC) }

where C is a collection of three points and dv denote the weighted inverse square

Euclidean distance from the nearest and second nearest point in C from p for a given

weight vector w():
w . ,
d j (p ,Q =— , ^(p.C) = min(| | p - X j l . ^ e C)

(d[(p,C)f «-!.»

218

Region ARegion B

Nucleus C

Nucleus BNucleus A

Region C

Figure 7.2 A Voronoi tessellation using non-linear distances

Observe here, that since we are inverting the measure of distance, the regions of minimal

distance are the ones far away from the corresponding nuclei. Therefore, the classical

definition of the Voronoi tessellation, as we presented it in chapter four, is no longer directly

applicable. Consequently, we have to resort to our definition of (Eq. 5.9).

7.5 Polygonisation of surfaces

In general, we are against the approximation of surfaces. However, one utility they offer,

which we would advocate, is the real time manipulation of models, that can only be

achieved on polygonal meshes in conjunction with special purpose hardware.

The subject of polygonisation, and the special case of triangulation, has appeared in the

literature on numerous occasions in various computer graphics applications. This subject is

very popular since it provides methods that generate a polygonal mesh to approximate to

any given surface. More specifically, these methods convert a model description of almost

any modelling approach in a polygonal mesh model. Under this perspective, polygonisation

methods can be seen as an intermediate stage between modelling and visualisation.

219

Following the classification schema of modelling approaches, as we presented in chapter

two, we have to consider all these methods as part of the modelling process and not as part

of the visualisation. We will be concerned with two polygonisation methods here. The first,

produces a mesh of triangles and the second a mesh of tetrahedra out of which we may also

build a triangulation.

7.5.1 Surface triangulation

Triangles are the simplest form of polygons that can be used to approximate to any surface.

They are by definition planar since they are determined by three vertices only, they demand

data structures of minimal size for storing them in computer memory, and there exist several

hardware implementations of shading models especially developed to handle triangles

(Gouraud, Phong shading).

The triangulation process we prefer to present is outlined in Wallin [1991] and is especially

developed for the manipulation of volumetric data in medical computer graphics

applications. The method is divided in two stages. The first stage identifies and gathers

surface points that would become vertices, and the second stage assembles these vertices

into polygons that construct the required mesh.

In the first stage, we assume a lattice of cubes to enclose the whole scene. The faces of all

these cubes are tested for intersection with the required iso-surface. The aim is to determine

points on the cubes’ faces that belong to the iso-surface. In order to detect possible

intersections, we apply the following test. For all the faces of every cube, in the three-

dimensional lattice, we evaluate the constraint function at the comers and the centre point.

If the results of this evaluation include values larger as well as smaller than the values of

the defining function at the same points, then we can assume that the iso-surface intersects

with this particular facet. This conclusion is a consequence of the application of a theorem

from Calculus, the Bolzano theorem, which we applied on the iso-surface.

The Bolzano theorem assumes a real-valued function/(x) which is continuous on the interval

[a , b] and states that if fia) x fib) < 0 then there exists a point c e [a , b] that flc) = 0.

220

To ensure applicability of this theorem, we must assume that the iso-surface is continuous,

which is not always correct. When such discontinuities exist, we apply the theorem on the

constituent surface patches, and we apply additional intersection tests at the borders of these

patches. Once intersection has been detected, we then determine the intersection points with

an interpolation method such as the Regula-Falsi, or the successive binary approximation.

The second stage then connects ‘intelligently’ all the vertices together, in order to produce

the required mesh of polygons. The polygons produced with this method may have from 3

to 12 vertices according to Wallin’s [1991] study. All these polygons have their vertices

(and edges) on the faces of the cubes, therefore the resulting polygons may not be planar.

Consequently, a subsequent triangulation stage is necessary to ensure planarity of the

generated facets.

Triangulation occurs by decomposing the polygons into triangles, and there are several

techniques to achieve such a decomposition. Wallin chose to connect each pair of

consecutive vertices with the centre of gravity of the initial polygon. In this way he ensures

that the resulting polygons do not coincide with the faces of the cubical lattice thus avoiding

degeneracies.

Although this method generates accurate mesh representations of iso-surfaces, we must stress

that it lacks a unified mathematical background and is best suited in the domain of medical

imaging. For this reason we will present a second polygonisation approach, that is based on

the Delaunay triangulation.

7.5.2 Solid tetrahedra-isation

This method has been outlined by Baker [1989] and is especially suitable for polygonising

closed solid objects. The generated model is a mesh of tetrahedra that determine the volume

of space occupied by a closed surface. With certain assumptions, we can modify this method

to generate meshes of not necessarily closed surfaces.

221

This method is based on the problem of the Delaunay triangulation. This problem is best

expressed in the two-dimensional space where it is concerned with the determination of a

mesh of triangles out of a set of given points, the nuclei. The required triangles must be

formed in such a way that they have their vertices on the nuclei, and when we draw their

circumscribing circles they do not contain any other nuclei but only the ones used to

determine these circles.

Bowyer [1981] describes an algorithm to determine these triangulations in the two-

dimensional space. Moreover, Baker [1989], and Vassberg and Dailey [1990] describe an

extension to the Delaunay triangulation problem in three dimensions. The re-defined

Delaunay triangulation problem states that for a given set of points (nuclei) we must

determine a set of tetrahedra that have their vertices on the nuclei, and their circumscribing

spheres do not contain any other nuclei but the ones used to determine these spheres.

For our three-dimensional surfaces, we may use this re-defined Delaunay ‘tetrahedra-isation’,

the algorithm of which is outlined here. We start with six appropriately positioned tetrahedra

that are assumed to cover completely the volume of space that surrounds the surfaces we

wish to polygonise. Then, we start generating points using the octree visualisation approach,

as defined in chapter six. Every point that we determine is used as a nucleus. In this way,

the previously determined ‘tetrahedra-isation’ no longer complies with Delaunay’s constraint

(that circumscribing spheres do not cover any nuclei) and therefore we solve again the

Delaunay problem by re-arranging the vertices of neighbouring tetrahedra.

The process is repeated for every point that we find to belong to the modelled surface. We

are always certain that the introduction of a new nucleus would destroy the previously

determined ‘tetrahedra-isation’ imposed by the Delaunay constraint, because every new

nucleus is enclosed by the initial set of six tetrahedra which were assumed completely to

surround the required surfaces. Therefore it must belong to one of the circumscribing

spheres.

222

The process ends when we no longer wish to introduce new nuclei. Better defined

termination criteria are what Baker calls quality criteria on tetrahedral elements. These

introduce a metric based on the size and shape of the tetrahedra used. If some tetrahedra do

not conform with the pre-defined measures, the process of ‘tetrahedra-isation’ must continue.

The generated mesh of tetrahedra, from the process we have outlined here, covers the

volume of space that is enclosed by the surface of a closed object. Moreover, the mesh

consists of tetrahedra the vertices of which, may nor belong to the same ‘side’ of an object.

This problem was identified by Baker and he suggested the classification of the generated

tetrahedra in three categories depending whether: a tetrahedron has one or more points inside

the object, belongs totally to one piece of the object, or belonging to the interface between

two discontinued surface patches covering the object. In this way, we attain better control

over the generated mesh.

The ‘tetrahedra-isation’ algorithm presented here generates meshes that describe closed

surfaces only. However, we can adjust this process slightly in order to describe any surface.

What we have to do is to assign a certain ‘thickness’ on the surfaces that we want to

polygonise. In this way, the algorithm would generate a mesh of tetrahedra that would

construct a ‘thick’ structure between the ‘sides’ of the surface. The sides of the tetrahedra

that do not belong to the ‘inside’ of the thick surface may then be identified and collected

in order to provide a polygonised description of the surface.

The main negative concern for this algorithm is that it is extremely time consuming.

Vassberg and Dailey [1990] used information from Baker [1986] to benchmark different

versions of this algorithm which originally demanded 8 hours of CPU time on a CRAY X-

MP supercomputer. The best optimised implementation of this algorithm was presented in

their paper [1990] where they used 24 minutes on the same supercomputer. The model they

used for their benchmarks was the description of a BOEING 747-200 with 12,038 nuclei and

generated almost 58,000 tetrahedra. This amazing improvement in performance was achieved

by appropriately sorting the generated tetrahedra. The sorting was based on information

about the relative location of the tetrahedra and was implemented with an octree data

structure, similar to the one we use in our visualisation approach of chapter six.

223

With regard to polygonising surfaces we must reiterate that there exist many techniques. We

presented only two, Wallin’s and Baker’s, because we believe they are suitable for the

modelling but they also exploit the particulars of the visualisation approach we adopted.

Another approach to visualising our implicit models would stem from the introduction of

a global illumination model and the principles of ray tracing. Therefore, in the next section

we will consider the problem of intersecting a ray with an implicit surface in the context of

ray tracing. The determination of appropriate intersection points will become the main

concern of the next section.

7.6 Ray tracing implicit models

In this section we will explain how we may use the ray tracing visualisation approach on

the models we propose. We can see two distinctly different approaches here that are of

interest. The first uses the ‘Heidelberg’ ray tracing model [Meinzer et al. 1991], and the

second uses the classical ray tracing approach as presented in chapter three.

7.6.1 The ‘Heidelberg’ ray tracing model

The visualisation approach is an example of faking ray tracing but is straight-forward to

implement and produces noteworthy results. The method uses a shading model that defines

light absorption as a measure that is proportional to the density of the visualised field. In

this way, the value of the light intensity is diminished proportionally to the density of the

field it passes through. Similarly, light reflection is modelled as intensity value which is

inversely proportional to the density of the model’s field. In other words, light reflection is

more likely to occur when crossing space that exhibits a high gradient of density values.

Light transmission is also modelled as a reduction in the light intensity which is proportional

to the value of the density of field that the transmitted light passes through. Another optical

phenomenon, scattering, which is the amount of incident light scattered towards the observer

is also simulated.

224

For the purposes of this shading model the effects of the optical phenomena (transmission,

reflection, scatter) are not treated as inter-related but as totally independent. In this way,

light transmission will only calculate light that passes directly towards the observer and will

not take into account any other light that has been possibly reflected off any other surface.

The reason is to ensure quick visualisation of required model.

This shading model also assumes that there exist only two light sources, the intensity and

location of which cannot be altered by the user. One source is assumed to coincide with the

observer, and the other is located at exactly 45° to the left of the observer at the same

horizontal plane as the observer. For each light source, a subset of the optical phenomena

is implemented. In particular, for the first light source only diffuse reflection is used,

whereas for the second, scatter, specular and diffuse reflection are all simulated. These

simplifications have been introduced in order to speed up the visualisation process.

Nonetheless, the image is well illuminated, since the 45° positioned source introduces

highlights and shadows, and the source coincidental to the observer illuminates the dark

areas that the first missed out.

Because of this separation of the effects of the two light sources, the image of a model is

generated by the weighted sum (superposition) of the images produced by the independent

application of the shading model as it is determined by each of the light sources. By

adjusting the weights during the image addition, the quality (e.g. contrast) of the final image

may be controlled by the user.

The complete visualisation algorithm starts off with the assumption that we can impose a

canonical, orthogonal, three-dimensional grid of cubes that covers the required surfaces.

Each such cube may be the equivalent of the cubelets we used in the octree visualisation

approach of chapter six.

For each such cubelet, we have to determine the value of the field’s density function, which

is a combination of the values of the constraint and defining functions, evaluated at the

centre of the cubelet. This mapping from the constraint and defining functions, to the density

function, will be used to effect the shading model in two complementary ways. Firstly, it

225

will be used to determine the attenuation of the light as it passes through the cubelets.

Secondly, it will be used to detect the boundaries and the normal of the required surface.

Therefore, the combination of the defining and the constraint functions into a density

function need some consideration. Usually, the difference between the constraint and the

defining functions will make the density function on the required surface to evaluate as zero.

This was actually our initial definition of the surface:

constraintJunction = defining Junction

Knowing where the surface is, in terms of values of the density function, enables us to

define the vicinity of the surface as an interval of density values around zero1. In this way,

density values away from this interval are of no interest to the algorithm and may be safely

considered as noise and completely ignored from the calculations of the shading model. The

density value on the centre of every cubelet is then used as a representative density value

for the shading model.

Rays emanate from the observer towards the scene. Both the orthographic and the

perspective type of projection may be used. The orthographic projection is easier to

implement since it presupposes rays that are aligned with the orientation of the cubelets.

With either type of projection, a ray is assumed to penetrate the cubelets and the intensity

of light that it carries through is diminished according to the density of the cubelets. When

this ray encounters the surface (density value zero) reflection is simulated. In a similar way,

the light that illuminates the sources is also attenuated as it passes through the cubelets.

This visualisation approach is simple to implement but it does not simulate reflections of

surfaces onto other surfaces. The difficulty one may encounter is the appropriate calculations

of the density function and the subsequent calculations of the shading model. The authors

of this approach [Meinzer et al. 1991] suggest the use of linear transformations because of

their simplicity.

1 Recall (section 6.3.3) that the density function is the difference constraintJunction-defining Junction.

226

Another issue is the resolution of the grid of cubelets. We suggest that we use a high

resolution and evaluate their density function as needed. An alternative will be to use the

octree visualisation approach to characterise all cubelets that belong to the vicinity of the

surface and totally ignore the rest of the cubelets since they will have a density value

beyond the limits we imposed in the previous paragraphs.

Compared to the octree visualisation approach, this approach is equally time consuming.

However when several views of the same surface are required, it may prove to be faster

since we only need to characterise the cubelets once, and then we simply traverse the

cubelets according to the direction of a ray.

The Heidelberg ray tracing model does not offer the optical effects of a global illumination

model, but gives us a quick visualisation approach of a quality similar to the octree. The

next approach that we propose, however, will be addressing the issue of global illumination

disregarding, to a reasonable extent, the speed of the visualisation.

7.6.2 A global illumination model

This approach introduces ray tracing of implicit surfaces but unlike the Heidelberg approach,

uses a global illumination model. As we have already presented in chapter three, the

classical ray tracing assumes the eye ray which emanates from the observer and is directed

towards the scene. When this eye ray intersects with a surface of the scene, we apply the

chosen shading model and then follow the generated child rays, accounting for reflection and

refraction. Additionally, for the determination of the intensity of the incident light, we also

try to establish, with the shadow feelers, whether this intersection point is in the shadow of

some other surfaces, or it can be directly ‘seen’ by the light sources of the scene. Once the

colour contribution of this intersection point is determined we follow all the generated child

rays. Then, when these new rays intersect with surfaces in the scene, we apply the same

shading model and follow the newly generated rays recursively until we reach some

termination criteria.

227

This process, that describes the fundamental concept of ray tracing, is based on our ability

to determine the intersection between a ray2 and surfaces of objects in the scene. Using

analytical models, the intersection problem may be well defined and its solution is either

exact or approximated depending on the nature of the equations involved. The reader is

referred to chapter three for a more detailed discussion. However, with the models that we

propose, the intersection problem cannot be described analytically. Consequently we will

have to establish another method for approximating to it.

Approximation techniques like the Newton Raphson and the Regula-Falsi cannot be used.

The main reason is that we do not know the behaviour of the constraint and the defining

functions. This lack of knowledge makes us unaware of the local maxima and minima that

the constraint and defining functions may exhibit as they are evaluated along the locus of

a point that defines a line (i.e. the ray). Therefore, in the case of a ray intersecting several

times with the implicit surface, any such approximation algorithm may converge to an

unwanted intersection point, or oscillate between two intersection points without converging

to any of them. The term ‘unwanted intersections’ means that the intersection point found

is not the nearest to the origin of the ray toward the positive direction of the ray, but any

other intersection point. Therefore we can never be certain about the solutions offered by

such approximation algorithms.

The method of volume ray tracing by Kaufman, Cohen and Yagel [1993] is not suitable for

our purposes because it explicitly imposes a three-dimensional canonical orthogonal lattice

of cubes to cover the whole scene. Therefore, for a high resolution image of say, 3000 x

3000 pixels, they demand enormous computer storage capacity that would store information

about the contents of 30003 = 27 x 109 cubes. The method of volume ray tracing that we

propose, is distinctly different because it is based on sampling the values of the constraint

and defining functions at regularly spaced specific points along the ray that we want to

intersect. Firstly, for reasons of clarity, we re-introduce (from section 6.3.3) the concept of

the density function which is also used in the Heidelberg ray tracing approach. In this way,

the value of the density function at any given point is defined to be the difference of the

2
Such rays, as we have discussed in chapter three, include the eye ray, its children, and any shadow feeler.

228

value of the constraint function minus the value of the defining function at this particular

point. Consequently, the surface we have modelled will have a density value of zero.

density_value = constraint_yalue - defining_value

In order to determine the nearest intersection of a ray with an implicit surface, along the

positive direction of the ray, we start sampling the density function at regular intervals and

observe the sign of the sampled density value. When we encounter a difference in the sign

(say, from positive to negative) we can assume that an intersection point exists within the

last sampling interval. Our assumption is correct in the case of analytically continuous

surfaces (Bolzano theorem), but may not be correct for the rest of the cases. Let us assume

for the moment that we have analytically continuous surfaces and we will see how to

include discontinuous surfaces later.

Once we have encountered a change in the sign of the density value, we stop the sampling

process and try to find a better approximation to the suspected intersection point. Here we

can use the successive binary approximation method. Assuming analytical continuity of the

sampled surfaces, we may encounter two different cases with regard to the number of

intersection points. There may be exactly one such point, or more than one.

If there is only one point, the approximation method we use will converge to it. If there are

more than one, however, our method may converge to any of them, not necessarily the

nearest. In this latter case, we must consider the magnitude of the error that we may

introduce by incorrectly choosing any other intersection point but the nearest. The results

may be disastrous and greatly depend on the length of the sampling interval.

If, for example, the length of this interval is comparable with the dimensions of the window

on the viewplane, then it is very likely that portions of the surface may be missed out,

resulting to a highly inaccurate image on the viewport. If, however, the length of the interval

is smaller than the dimensions of the viewplane’s sub-windows, then the introduced error

is insignificant and may not even become apparent on the generated image because it would

affect the colour of at most one pixel on the viewport. Let us recall from chapter three, that

229

the sub-window is the rectangular area on the viewplane’s window that maps exactly to one

pixel on the viewport.

These observations, will be used to define the length of the sampling interval to be small

enough when compared with the dimensions of the viewplane’s sub-window. We estimate

that a value of half the smaller of the sub-window’s dimensions is sufficient for the purposes

of our visualisation approach.

Coming back to the non-continuous case, we will introduce some ‘intuitive’ amendments

to the intersection finding algorithm in order to enable the detection and correct

determination of intersection points. We can observe that the binary successive

approximation method may never converge to any specific value since there may not exist

any intersection point but instead there may be a discontinuity in the surface.

In such cases the approximation method is likely to converge to one end-point of the

discontinued surface or other sort of degeneracies may occur while evaluating the density

function. These signs of non-convergence should be used for the proper identification of

such problems. Once such a case has been detected, we can abandon the binary successive

approximation method, reset our sampling algorithm, and continue sampling along the ray

until another change of sign of the density value is detected.

When we find an intersection point, we apply a shading model that simulates global

illumination, as we have already discussed in chapter three. With regard to the normal to

the surface at this intersection point, we can use the same technique that we used during the

octree visualisation approach.

Although we do not impose an orthogonal lattice of cubelets on the scene, the regular

sampling that we propose implicitly introduces such a lattice. However, every time we use

this lattice we have ensured that it is aligned with the direction of the ray we want to

intersect. Furthermore, the length of the sampling interval is small enough to ensure that

whatever the orientation of the ray the sampling interval will not cause trouble in areas that

are covered with more than one sub-window.

230

This visualisation approach is unavoidably time consuming. The intersection of a ray with

the scene may take several samples until an intersection point is found. There are also rays

that they never hit any surface, thus wasting considerable time during sampling. It is

therefore essential that we bound the scene with a simple geometrical object beyond which

we never sample the density function but assume that no intersection points can be found.

Another adjustment we can make is in the number of iterations that we allow during the

binary successive approximation method. During the octree visualisation approach we

stopped the refining of the location of a surface point when the level of tolerance was

smaller than the size of the cubelet. Recalling that the size of a cubelet is such that it is

exactly mapped onto one sub-window on the viewplane, and that the sampling interval is

also smaller than the dimensions of a sub-window, we can assume that a few iterations of

the successive binary approximation method are enough to ensure an accurate definition of

the intersection point.

Finally, another issue that we must consider in order to gain significant acceleration of this

ray tracing approach is space coherence information regarding the distribution of the objects

in the scene. Consider, for example, that we know that at particular volume of space the

scene is empty from objects. Accordingly, whenever a ray passes through this region of

space, we do not need to sample the density function at all. This space coherence

information can be extracted effortlessly from the octree visualisation approach presented

in the previous chapter.

7.7 A stochastic visualisation process

This section is concerned with the use of a pseudo-random number generator for suggesting

point coordinates in order to evaluate the point membership classification test of the

definition of the implicit models that we proposed.

This approach starts with a randomly chosen point. This point is specified by randomly

choosing its coordinates. The coordinates of this point are used to evaluate the constraint and

231

the defining function. If these two function evaluate to similar values then we can assume

that this point is in the vicinity of the surface we try to visualise. If this point evaluates the

constraint and the defining function in distinctly different values, then we can safely ignore

this point as it does not belong to the surface.

This is actually the concept of the point membership classification test upon which we based

the construction of the models we proposed. Therefore, what we actually do is to test

whether a randomly chosen point validates the point membership classification test of the

model we intend to visualise.

Once we identify a candidate point as a member of the model’s surface, we need to

calculate its colour, map it on the viewplane, and paint the corresponding pixel accordingly.

At this point we can distinguish between two different cases depending whether the

corresponding pixel has already been painted or not. If it has not been painted, then we

proceed by applying the chosen shading model, determine the colour of the corresponding

pixel, and paint it. However, if it has already been painted, it means that we have already

found a point that maps to this pixel.

Therefore, we have to check whether the newly found point is behind or in front of the

previously found point, in relation to the observer. If the new point is in front, we over-paint

the pixel else, we ignore it. This process implements a hidden surface removal mechanism,

but it implies that we need to know the depth of every point that has been already painted.

After painting the corresponding pixel, or deciding to ignore the newly found point, we

restart the algorithm by choosing randomly another point (by randomly assigning its

coordinates) and proceed likewise. In this way this visualisation algorithm would continue

to examine points and would never terminate. What we should do is to devise some

termination criteria that would ensure an acceptable image on the viewport. One criterion

may be to terminate the algorithm after a predefined number of points (say, 1600) has been

found to belong to the scene. Another termination criterion would be to allow the user to

stop the algorithm whenever the user finds it appropriate.

232

From this visualisation approach there is an issue that we wish to discuss. This is the trade

off between the accuracy of the generated images against the speed of the visualisation

algorithm. We suggested that a candidate point belongs to the scene when the constraint and

defining functions evaluate to similar values. Instead, for generating accurate representations,

our attitude should have been to accept only the points that make the values between the

constraint and defining functions equal. However, such an attitude would be very

inappropriate to adopt because we would reject the vast majority of candidate points and

waste CPU time. For this reason, we introduce the concept of similarity. A precise

description of similarity would be that two numbers are similar if the absolute value of their

difference is less than e , for an arbitrary real positive value of e.

In this way, points that are near to the surfaces of the scene will be treated as if they belong

to the scene. But with this compromise we introduce an error to the image. This is a trade

off between speed of visualisation and accuracy of image and it depends on the value of e.

The smaller the value of e, the more accurate the generated image but the slower the speed

of visualisation, and vice versa.

What we propose is to avoid having a predefined universal value for e but to change it

according to the success rate of the visualisation algorithm. We define success rate to be the

proportion of the number of points we used to paint pixels on the viewport over the total

number of candidate points that we have examined so far. In order to increase the efficiency

of the algorithm, indicated by the success rate, we will have to increase the value of e.

Similarly, if the success rate is higher than a desired level, we may have to decrease the

value of e and make the visualisation algorithm more accurate. This adaptive technique for

assigning the value of e again relies on the actual values e takes, but in this way the range

of permissible values is adjusted to the specifics of the scene. The desired level of the

measure of the algorithms’s success rate may be determined from a series of trial-and-error

experiments.

Another technique that we may introduce to generate acceptable images at quicker speeds

of visualisation, is to replace, during the stages of shading and mapping (Figure 3.1), the

successful candidate points with small and simple geometric objects such as spheres or

233

cubes. Ranjan and Fournier [1994] suggested the use of spheres as a means to cover the

skeleton of implicit models. But they converted the description of their implicit models into

sets of spheres at a stage prior to visualisation. What we propose instead, is to make this

conversion during visualisation. In this way we do not need a pre-processing stage, but we

treat the successful candidate points as centre points of small spheres or cubes.

In this way we can use the exact point membership classification test, abandon the utilisation

of e and use spheres to replace the successful candidates. The radius of the spheres may be

chosen such that, when mapped to the viewport, they would paint more than one pixel.

A problem arising with this technique is how we can establish whether a sphere is in front

of another (which has been already painted), in relation to a given observer. We recommend

to avoid determining the intersection between two spheres with analytical means, but simply

record, for every pixel that we paint, the depth (distance form the observer) of its

corresponding point. In this way we use the same process as for the ‘un-accelerated’

algorithm, as presented in the beginning of this section.

Spatial coherence may also be exploited by detecting volumes of space that the scene is

empty. Using the octree visualisation approach, we can determine cubical regions of space

where we are certain that the point membership classification test fails. However, directing

the random generator to avoid these regions of space counteracts the savings offered by this

information.

This visualisation approach offers a number of benefits. It is simple to conceptualise, and

straightforward to implement. If we are not interested in the quality of the generated images,

we can produce a rough approximation to the scene very quickly, compared to other

visualisation alternatives (i.e. octree, ray tracing, polygonisation). This feature is very useful

for the designer during the phase of modelling, since the model can be previewed and

adjusted before we commit greater computer resources for a more accurately generated

image.

234

Finally, the way we have structured the algorithm, makes this approach easily implemented

for the exploitation the specialized hardware architecture of the Z-buffer: for every pixel that

we paint, we also update the Z-buffer with the depth of the coordinates of the point we used

for this colouring.

7.8 Concluding remarks

The aim of this dissertation was to explore the potential of computer graphics in its ability

to visualise and manipulate geometric surfaces that cannot be handled with analytical tools.

To achieve our aim, we felt it essential to study the domain of computer graphics both in

terms of modelling and visualisation. In this way we identified computer graphics research

that was relevant for our purpose. Additionally, we also recognized gaps in the relevant

literature that we had to bridge in order to attain our aim.

Once we established the context within which we had to relate our research, we proceeded

with describing formally (mathematically) the problem we aimed to resolve. We called this

the initial problem definition and it formed the basis for the development of a new

modelling approach. To achieve this development we went through two phases of extending

the initial problem definition. The first, aimed at determining a more ‘radical’

(unconventional) definition for the measure of distance, while the second phase aimed at

introducing a more ‘intuitive’ perspective for calculating the distance between objects.

After deriving this enhanced definition for surface description, we devoted our efforts in the

understanding of its potential. We achieved this by dividing our surface definition in four

different categories depending on the nature of a parameter that participates in the surface

definition which we named the defining parameter.

For each category of this classification we conducted an elaborate analysis through a

selection of examples. Plates 11 - 16 are associated with the Class I category. Plates 17 -2 0

demonstrate the ability of our modelling approach to encompass several surface construction

mechanisms such as bodies of revolution and extrusions (Class II models). Using Class III

235

models we built surfaces (plates 23, 24) that have been modulated with random and fractal

processes. This class of models (III) reveals yet another aspect of the modelling approach

that we have constructed; its ability to cope with implicitly defined data that cannot be

approximated otherwise. With models of Class IV we demonstrated two more extremely

significant capabilities of our modelling approach; its intuitive nature and its ability to

generalize surface construction procedures. For this class we performed two series of

experiments. The first, was to define intuitively paraboloid-like surfaces as plates 2 5 - 3 1

demonstrate. The second series of experiments extended the definition of the Voronoi

tessellation in order to accommodate several geometrical objects as nuclei which were also

assigned a weight factor. Plates 34 - 44 illustrate the effect of weights in a weighted

Voronoi tessellation. Additionally, plates 32, 33 and 45 - 48 demonstrate some examples of

weighted tessellations using points and lines as nuclei.

However, in order to complete our research and yield a useful modelling approach we also

had to provide a visualisation approach. We chose to generate accurate representations of

the surfaces we could describe and therefore we had to avoid approximations (to the

modelled surfaces) as much as possible. The visualisation approach we proposed was

adopted from the literature but was significantly adjusted in order to fulfil our specifications.

However, because of our quest for accuracy of the surface representations, the visualisation

approach we adopted was not particularly efficient. For this reason, we investigated (e.g.

bounding volume information, spherical subcubes etc.) and proposed (e.g. polygonisation,

stochastic sampling etc.) a number of different techniques that we may use to achieve

significantly better visualisation speeds.

Finally, we have provided constructive criticisms over the complete combination of

modelling and visualisation approaches that we used. These criticisms aimed at placing our

research within the wider framework of computer graphics. This was attained by discussing

our experience using the proposed modelling - visualisation combination, but also by briefly

establishing a set of new directions for further enhancing our research.

236

In the research described in this dissertation we demonstrated the significance of implicit

modelling. Moreover, the modelling approach that we developed illustrates how we can

employ modem technology in order to conceptualise and understand the principles of

implicit modelling. This was achieved through a computer graphics visualisation approach

that we assembled - an adaptation of the octree visualisation - which enabled us to visualise

the implicit definition of several families of geometrical objects. This piece of research,

embodied in the construction of a modelling as well as a visualisation approach, has

contributed to the conceptualisation, definition, manipulation and visualisation of implicitly

defined geometrical objects (i.e. surfaces). We believe that the colour plates demonstrate the

principal capabilities of the our (modelling/visualisation) approach, namely, its intuitive

nature, the ability to generalise, and the refining of conceptualisation of implicitly defined

objects.

237

Appendix A

Colour Plates

Plate 1
Plate 2
Plate 3
Plate 4
Plate 5
Plates 6 - 10
Plates 11, 12
Plates 13 - 16
Plate 17
Plates 18 - 20
Plates 21, 22
Plate 23
Plate 24
Plates 25, 26
Plates 27, 28
Plates 29, 30
Plate 31
Plate 32
Plate 33
Plate 34 - 44
Plates 45, 46
Plate 47
Plate 48

Mechanical parts using Constructive Solid Geometry
The method of polyspheres
Constant shading
Gouraud shading
Phong shading
Contour maps using the sum of distance
The sum of distance from three points being constant
Varying the value of the defining parameter
The value of the defining parameter being a line
The defining parameter being the s in() function
Using pseudo-random number generators
Surface modulation using a pseudo-random number generator
The Mandelbrot set (inset) being rotated
A paraboloid defined by a point and a planar disk
An extruded parabola defined by a point and a line segment
A paraboloid defined by a line segment and a planar disk
A paraboloid defined by two line segments
Simple three dimensional Voronoi tessellation
Extended Voronoi tessellation determined by three line segments
Varying the weight of a nucleus
Weighted tessellations using points
Weighted tessellation using line segments
Weighted Voronoi tessellation determined by line segments and points

238

239 Plate 2Plate 1

Plate 3 Plate 4

240 Plate 5 Plate 6

Plate 7 Plate 8

241 Plate 9

Plate 11 Plate 12

N>
to

Plate 13

Plate 15

Plate 14

K>■&.
LO

Plate 17

Plate 19

Plate 18

Plate 20

244 Plate 21

Plate 23 Plate 24

245

V

Plate 25

Plate 27

246 Plate 29

Plate 31

Plate 30

247 Plate 33

Plate 35 Plate 36

248 Plate 37

Plate 39

Plate 38

Plate 40

g Plate 41
VO

Plate 43

Plate 42

Plate 44

250 Plate 45

Plate 47 Plate 48

Appendix B

The purpose of this appendix is to highlight some important features of the software that we
generated using our modelling and visualisation approach. First we present a list of the most
important C++ classes that we constructed. Then, we discuss the constituent modules of the
software produced and finally, we discuss the main stages of the software execution. Some
examples of time used for achieving some of the colour plates will conclude this appendix.

C++ Objects

Analytic_object:

Cluster.

CSGlists:

CSGtree:

Fractal_Texture:

Material'.
Matrix:
Palette:

pixelvector:

ranges:
Screen_map:

Sigma_object:
Stack:
Stackinfo:
vector3:
Viewport:

The description of a scene and methods for transforming it for different
coordinate systems.
Particular subclass of the Analytic_object holding information about
polygonal meshes.
The implementation of the Constructive Solid Geometry approach,
using lists.
The implementation of the Constructive Solid Geometry approach,
using trees.
The implementation of a process that generates smooth but random
texture or surface variations using a pseudo random number generator
The materials data base.
A generic 4x4 matrix.
information about the colour capabilities of a particular computer
graphics viewport.
A generic two-dimensional vector for the VIEWPORT coordinate
system.
Information about limiting the growth of surfaces
A memory based map of the complete viewport to test for visibility of
subcubes of the octree visualisation approach.
A subclass for the implicit models proposed in this dissertation.
A generic stack structure for the octree.
Information about the octants of the octree visualisation approach.
A generic three-dimensional vector
information about the specification of the geometry of a particular
computer graphics viewport (e.g. VGA, XGA, HPGLplotter, ...).

251

Virtual_Buffer\ A memory based immediate buffer for interfacing with the virtual
viewport implementation.

Window: Controls the mapping from the continuous space of the computer
graphics scene to the discrete space of a viewport and its associated
palette.

Modules of the software used

The software implemented consists of eight modules namely, octree, model, display, sigmadis,
sigmacls, window, smap, and vrtbuf. The first two (i.e. octree and model) import or, construct
a scene and locate it according to the observer’s viewing parameters. The next module
(display) implements the octree visualisation algorithm, as well as the constructive solid
geometry mechanism for a variety of geometrical objects. Then, the next two modules
(sigmadis and sigmacls) attach to the octree visualisation algorithm in order to provide the
necessary C++ classes for the manipulation of the implicitly defined surfaces that we study.
Finally, the last three modules (display, smap and vrtbuf) are used to provide us with a real
or virtual (or both) implementations of the viewport.

These modules are compiled separately but linked together in order to make an executable
file under the DOS operating system. Information between the modules is achieved via
common header files (.h) which include C++ standard libraries as well as the simple generic
C++ objects and methods that we used. For example, methods that permit the multiplication
of a matrix with a vector as well as the scaling and normalisation of a vector are available
via the header files to all modules.

Procedural decomposition of the software

Upon invocation of the executable file, the following processes take place in order.

1. Verify existence of viewport and negotiate parameters (Window - Palette - Viewport)
2. Construct scene (Octree - Model)
3. Project scene according to viewing parameters (Model)
4. Use the octree algorithm until all pixels are painted (Display - Screen_Map)
5. Save results and exit (Display - Window)

252

Timing examples

The following table illustrates the amount of real time needed to visualise some of the high
resolution (2048 x 1536), full colour (24bit) plates.

Plate Time

Plate 11 13 mins

Plate 18 16 mins

Plate 19 20 mins

Plate 23 98 mins

Plate 24 134 mins

Plate 25 21 mins

Plate 28 17 mins

Plate 31 19 mins

Plate 44 230 mins

Plate 46 89 mins

Plate 47 160 mins

Plate 48 269 mins

Table B .l Example execution times

253

References

Agin G. and Binford T. (1976).‘Representation and description of curved objects’. IEEE
Transactions on Computers. C-25. pp. 439 - 449.

Amanatides J. (1984). ‘Ray tracing with cones’. Computer Graphics, ACM SIGGRAPH ’84.
Vol. 18, No. 3, pp. 129 - 135. July 1984.

Amanatides J. (1987a). ‘Realism in computer graphics’. Proceedings o f the conference held
at Computer Graphics 87. Online Publications, London, October 1987. pp. 1 - 26.

Amanatides J. and Woo A. (1987b). ‘A fast voxel traversal algorithm for ray tracing’.
Proceedings o f the conference held at Computer Graphics 87. Online Publications,
London, October 1987. pp. 149 - 156.

Angell I. and Brownrigg D. (1987). ‘Fractals for terrain maps & texturing’. Proceedings o f
the conference Computer Graphics 87 in Computer Animation. London, October 1987,
Online Publications, pp. 203 - 216.

Angell I. and Moore R. (1986). ‘A quad-tree algorithm for displaying a two-dimensional slice
of an n-dimensional weighted Voronoi tessellation’. Eurographics 1986, pp. 19 - 27.

Angell I. and Tsoubelis D. (1992). ‘Advanced graphics on VGA and XGA cards using
Borland C ++’. MacMillan, London.

Apostolatos N. (1981). ‘Numerical analysis’. Textbook for the School of Mathematic,
University of Athens. Two volumes written in Greek. Athens University Press.

Appel A. (1968). ‘Some techniques for Shading Machine - Renderings of Solids’. SJC C 1968.
Thomson Books, Washington D.C., pp. 37 - 45.

Arnaldi B., Priol T., Bouatouch K. (1987). ‘A new space subdivision method for ray tracing
CSG modelled scenes’. The Visual Computer., Springer-Verlag, Vol. 3, pp. 98 - 108.

254

Arvo James and Kirk D. (1989). ‘A survey of Ray Tracing Acceleration Techniques’. An
Introduction to Ray Tracing. Glassner A.S. (ed.). Academic Press. London, pp. 201 -
262.

Atkin P., Ghee S., Packer J. (1987). ‘Transputer architectures for ray tracing’. Proceedings
o f the conference held at Computer Graphics 87. Online Publications, London,
October 1987. pp. 157 - 172.

Baker T. (1989). ‘Automatic Mesh Generation for Complex Three-Dimensional Regions

Using a Constrained Delaunay Triangulation’. Engineering with Computers, Vol. 5,
pp. 161 - 175.

Banchoff T. (1990). Beyond the third dimension; geometry, computer graphics, and higher
dimensions. Scientific American Library, No. 33, 1990.

Barnsley M, Jacquin A., Malassenet F., Reuter 1. and Sloan A. (1988). ‘Harnessing Chaos for
Image Synthesis’. ACM SIGGRAPH’ 1988, pp. 131 - 140.

Barnsley M. (1989). ‘Fractals and Chaos’. BCS Conference Proceedings on Fractals and
Chaos, 6-7 December 1989, London.

Barr A. (1989). ‘Physically-Based Modeling: Past, Present, and Future’. Panel session at ACM
SIGGRAPH’ 89 Panel Proceedings. Vol. 23, No. 8, pp. 191 - 209, December 1989.

Barry Phillip J. and Goldman R.N. (1988). ’A Recursive Evaluation Algorithm for a Class
of Catmull-Rom Splines’. ACM SIGGRAPH ’88. Vol. 22, NO. 4, August 1988, pp. 199
- 204.

Barsky Brian A. (1984). ‘A Description and Evaluation of Various 3-D Models’. IEEE
Computer Graphics & Applications. Vol. 4, No.l pp. 38 -52. January 1984.

Barsky Brian A. (1981). ‘The Beta-spline: A Local Representation Based on Shape
parameters and Fundamental Geometric Measures’. PhD thesis. Univ. of Utah, Salt
Lake City. December 1981.

Barsky Brian A. and Beatty J.C. (1982). ‘Varying the Betas in Beta-splines’. Technical report
no. UCB/CSD 82/112, Computer Science Division, Electrical Engineering and

255

Computer Sciences Dept., Univ. of California, Berkeley, December 1982. Also
technical report no. CS-82-49, Dept, of Computer Science, Univ. of Waterloo,
Waterloo, Ontario, Canada.

Barsky Brian A. and Beatty J.C. (1983). ‘Local Control of Bias and Tension in Beta-splines’
Computer Graphics, SIGGRAPH ’83. Vol. 17, No. 3, July 1983, pp. 193 - 218. Also
in ACM Transactions in Computer Graphics. Vol. 2, No. 2, April 1983, pp. 109 - 134.

Bezier P.E. (1972). ‘Emploi des machines a commande numerique’. Masson et Cie. Paris,
1970. Also published in English as: ‘Numerical Control’ in Mathematics and
Applications, A.Robin Forrest and Anne F. Punkhurst, trans., John Wiley and Sons,
London, 1972.

Bezier P.E. (1974). ‘Mathematical and Practical Possibilities of UNISURF’. Computer Aided
Geometric Design, Robert E. Barnhill and Richard F. Riesenfeld eds., Academic Press,
New York, pp. 127 - 152.

Bezier P.E. (1977). ‘Essai de definition numerique des courbes et des surfaces
experimentales’. PhD thesis, l’Universite Pierre et Marie Curie, Paris, February.

Bier A. (1983). ‘Solidviews. An Interactive Three - Dimentional Illustrator’. BS & MS
Thesis. Dept, of EE & CS, MIT, May 1983.

Blinn J. and Newell M. (1976). ‘Texture and Reflection in Computer generated images’,
Communications o f the ACM , Vol. 19, No. 10, pp. 542 - 547, October 1976.

Blinn F. (1982). ‘A generalization of algebraic surface drawing’. ACM Transactions in
Computer Graphics. Vol. 1, No. 3, July, pp. 235 - 256.

Bloomenthal J., Wyvill B. (1990). ‘Interactive techniques for Implicit Modelling’. Computer
Graphics, Special issue on 1990 Symposium on interactive 3D graphics. Vol. 24, No.
2, March 1990, pp. 109 - 114.

Bloomenthal J. and Shoemake K. (1991). ‘Convolution surfaces’. ACM SIGGRAPH ’91,
Computer Graphics, Vol. 25, No 4, July 1991, pp. 251 - 256.

256

Borland (1992). Programmer’s guide. Borland International reference manual for the C++
programming language, version 3.1.

Bowyer A. (1981). ‘Computing Dirichlet tessellations’. The Computer Journal, Vol. 24, No.
2, pp. 162 - 166.

Bowyer A., Wallis A., Milne P. (1987). ‘Symbolic ray tracing’. Proceedings o f the conference
held at Computer Graphics 87. Online Publications, London, October 1987. pp. 127 -
133.

Bowyer A., Davenport J.H., Milne P., Padget J., Wallis A. (1989). ‘A geometric algebra
system’. Geometric Reasoning. J. Woodwark (ed.) Oxford Science Publications,
Clarendon Press, Oxford, 1989.

Burtnyk N. and Wein M. (1976). ‘Interactive skeleton techniques for enhancing motion
dynamics in key frame animation’. Communications o f the ACM , Vol 19, No 10,
October 1976, pp. 564 - 584.

Carry H.B. and Schoenberg I.J. (1947). ‘On spline distributions and their limits: The Polya
Distribution Functions, Abstract 380t’. Bull. American Mathematical Society. Vol. 53,
p. 1114.

Carry B. and Schoenberg I.J. (1966). ‘On Polya Frequency Functions IV: The Fundamental
Spline Functions and their Limits’. J. d ’Analyse Mathematique. Vol. 17, pp. 71 - 107.

Catmull Edwin and Rom R. (1974). ‘A class of local interpolating splines’. Computer Aided
Geometric Design. R. E. Barnhill and R. F. Riesenfeld eds. Academic Press, New
York, pp. 317 - 326.

Catmull E., Clark J. (1978). ‘Recursively generated B-spline surfaces on arbitrary topological
meshes’. Computer Aided Design. Vol. 10, No. 6, pp. 350 - 355, November 1978.

Clark J. (1976). ‘Hierarchical geometric models for visible surface algorithms’.
Communications o f the ACM. Vol. 19, No. 10, October 1976, pp ?? - ??.

Cleary J.G., Wyvill B.M., Birtwistle G.M., Vatti R. (1985). ‘Multiprocessor ray tracing’.
Computer Graphics For. Vol. 5, pp. 3 - 1 2 .

257

Clifton in T. and Wefer F. (1993) ‘Direct Volume Display Devices’. IEEE Computer
Graphics and Applications, Vol. 13, No. 4, July 1993, pp. 57 - 65.

Cook R.L. (1989). ‘Stochastic Sampling and Distributed Ray Tracing’. An introduction to ray
tracing. Glassner A.S. (ed.). Academic Press. London pp. 161 - 199.

Coons S.A. (1964). ‘Surfaces for Computer Aided Design’. Technical report, Design
Division, Dept, of Mechanical Engineering, MIT. Cambridge, Mass.

Coons S.A. (1967). ‘Surfaces for Computer-Aided Design of Space Forms’. Technical report

no. MAC-TR-41 . Project MAC, MIT, Mass., June 1967. Available as AD-663 504
from NTIS, Spriengfield.

Cox M. (1972). ‘The numerical evaluation of B-splines’. J. Inst. Maths. Applic. Vol. 10, pp.
134 - 149.

deBoor C. (1972). ‘On calculating with B-splines’. J. Approximation Theory. Vol. 6, pp. 50 -
62.

Delaunay B. (1933). ‘Sur la sphere vide’. Bull. Academia o f Sciences URSS, Classe des
Sciences mathematiques et nature lies, Vol. 6, pp. 793 - 800.

Devaney R. (1989). ‘A« introduction to Chaotic Dynamical Systems’. Second edition,
Addison-Wesley.

Dias Maria (1994). ‘Ray Tracing Interference Color: Visualizing Newton’s Rings’. IEEE
Computer Graphics and Applications, Vol. 14, No. 3, May 1994, pp. 17 - 20.

Dippe M. and Swenson J. (1984). ‘An adaptive subdivision algorithm and parallel architecture
for realistic image synthesis’. Computer Graphics, ACM SIGGRAPH ’84. Vol. 18,
No. 3, pp. 149 - 158. July 1984.

Dirichlet G. (1850). ‘Uber die Reduction der positiven quadratischen formen mit drei
unbestimmten ganzen zahlen’. J. reine angew. Math., Vol. 40, pp. 209 - 227.

Doctor, L. J. and Torborg, J. G. (1981). ‘Display Techniques for Octree-Encoded Objects.’
Computer Graphics and Applications, 1(3), pp. 29 - 38.

258

Ellis J. (1991). ‘The Ray Casting Engine and Ray Representations: A technical summary’.
International Journal o f Computational Geometry and Applications. Vol. 1, No. 4,
December 1991, pp. 347 - 380.

Faux I. and Pratt M. (1979). ‘Computational Geometry for Design and Manufacture \ Ellis
Horwood, Chichester.

Feibush E., Elliot A., Levoy M. and Cook R. (1980). ‘Synthetic Texturing Using Digital
Filters’. Computer Graphics, ACM SIGGRAPH ’80, Vol. 14, No. 3, pp. 294 - 301, July
1980.

FiELD (1992). ‘Pamphlet fo r the advrtisement o f the FiELD software’. Lighting
Technologies, Boulder, Colorado.

Firby P. and Stobne D. (1987). ‘Colour manipulation of Superposed Families of Curves’. The
Computer Journal, Vol. 30, No. 4, August 1987.

Foley J. and van Dam A. (1983). ‘Fundamentals o f Interactive Computer Graphics’. Addison
Wesley, Reading, MA, USA.

Foley J., van Dam A., Feiner S. and Hughes J. (1990). ‘Computer Graphics principles and
practice’. Addison Wesley, Reading, MA, USA, second edition 1990.

Foley T., Lane D., Nielson G. and Ramaraj R. (1990). ‘Visualizing functions over a sphere’.
IEEE Computer Graphics and Applications, Vol. 10, No. 1, January 1990, pp. 32 - 40.

Forrest R.A. (1972). ‘On Coons and Other Methods for the Representation of Curved
Surfaces’. Computer Graphics and Image Processing. Vol. 1, No. 4, December 1972,
pp. 341 - 359.

Forsey David R. and Bartels R. H. (1988). ‘Hierarchical B-Spline Refinement’. SIGGRAPH
’55. Vol. 22, No. 4, pp. 205 - 212.

Fujimoto A., Iwata K. (1985). ‘Accelerated ray tracing’. Proceedings o f Computer Graphics,
Tokyo '85. pp. 41 - 65.

259

Fujimoto A., Tanaka T., Iwata K. (1986). ‘ARTS: Accelerated Ray tracing System’. IEEE
Computer Graphics and Applications. Vol. 6, No. 4, pp. 16 - 26.

Glassner A. (1989). ‘An overview of ray tracing’. An introduction to ray tracing. Glassner
A.S. (ed.). Academic Press. London pp. 1 - 31.

Gleick J. (1988). CHAOS. Penguin Group, Richard Clay Ltd. Bungay, Suffolk.

Goldsmith J., Salmon J. (1985). ‘A ray tracing system for the hypercube’. Caltech Concurrent
Computing Project Memorandum. HM154, California Institute of Technology

Goldstein R.A., Nagel R. (1971). ‘3-D Visual Simulation’. Simulation, pp. 25 - 31. January
1971.

Gouraud, H. (1971). ‘Continuous Shading of curved surfaces.’ IEEE Transactions on
Computers, Vol C-20(6),June, pp. 623 - 628.

Green P. and Sibson R. (1978). ‘Computing Dirichlet tessellations in the plane’. The
Computer Journal, Vol. 21, pp. 168 - 173.

Greene N. and Heckbert P. (1986). ‘Creating raster omnimax images from multiple
perspective views using the elliptical weighted average filter’. IEEE Computer
Graphics and applications, Vol. 6, No. 6, pp. 21 - 27, June 1986.

Haines E. (1989). ‘Essential Ray Tracing Algorithms’. An introduction to ray tracing.
Glassner A.S. (ed.). Academic Press. London pp. 33 - 77.

Hall R.A, Geenberg D. (1983). ‘A testbed for realistic image synthesis’. ACM Transactions
in Computer Graphics. Vol. 2, No. 3, pp. 10 - 20.

Hall R.A. (1989). ‘Illumination and colour in computer generated imagery’. Springer
Verlang, New York.

Halton J.H. (1970). ‘A retrospective and prospective survey of the Monte Carlo method’.
SIAM rev.. Vol. 12, No. 1, January 1970.

260

Hanrahan P. (1989). ‘A Survey of Ray-Surface Intersection Algorithms’. An introduction to
ray tracing. Glassner A.S. (ed.). Academic Press. London pp. 79 - 119.

Hanson A. and Heng P. (1992). ‘Illuminating the fourth dimension’. IEEE Computer
Graphics and Applications, Vol. 12, No. 4, July 1992, pp. 54 - 62.

Heath T. (1956). ‘The thirteen books of Euclid’s Elements’. Dover reprints, New York.

Heckbert P. (1982). ‘Color Image Quantization for Frame Buffer Display’. ACM SIGGRAPH’
1982. pp. 297 - 307.

Heckbert P.S. (1986). ‘Survey of texture mapping’. IEEE Computer Graphics and
Applications. Vol. 6, No. 11, pp. 56 - 67.

Heckbert P.S., Hanrahan P. (1984). ‘Beam tracing polygonal objects’. Computer Graphics,
ACM SIGGRAPH ’84. Vol. 18, No. 3, pp. 119 - 127. July 1984.

Heckbert P.S. (1989). ‘Writing a Ray Tracer’. An introduction to ray tracing. Glassner A.S.
(ed.). Academic Press. London pp. 263 - 293.

Henderson P. (1993). ‘Object -oriented specification and design with C++’. McGraw Hill,
UK.

Herzen VB. and Barr A. (1987). ‘Accurate triangulations of Deformed, Intersecting surfaces’.
ACM SIGGRAPH ’87. Vol. 21, No. 4, July 1987, pp. 103 - 110.

Hoffman M. and Hopcroft E. (1985). ‘Automatic surface generation in computer-aided
design’. The Visual computer. Vol. 1, pp. 92 - 100.

Holladay T. (1980). ‘An Optimum Algorithm for Halftone Generation for Displays and Hard
Copies’. Proceedings o f the Society for Information Display, 21(2), pp. 185 - 192.

Horn A. (1989). ‘IFS and the interactive design of tiling structures’. BCS Conference
Proceedings on Fractals and Chaos, 6-7 December 1989, London.

261

Hunter G.M. and Steiglitz K. (1979). ‘Operations on images using Quad-trees’. IEEE
Transactions o f Pattern Analysis and Machine Intelligence. PAMI-1 No. 2, April
1979, pp. 145 - 153.

Jameson A., Baker T. and Weatherill N. (1986). ‘Calculation of Inviscid Transonic Flow over
a Complete Aircraft’. AIAA 24th Aerospace Sciences Meeting, AIAA-86-0103, Reno,
Nevada, January 6-9, 1986.

Kajiya T. (1983). ‘New techniques for ray tracing procedurally defined objects’. ACM
Transactions in Computer Graphics. Vol. 2, No. 3, July 1983, pp. 161 - 181.

Kaufman A., Cohen D. and Yagel R. (1993). ‘Volume Graphics’. IEEE Computer, Vol. 26,
No. 7, July 1993, pp. 51 - 64.

Kay D.S. (1979a) ‘Transparency, refraction and ray tracing for computer synthesized images’.
Master thesis. Cornell Univ., Ithaca, NY. January 1979.

Kay D.S., Greenberg D. (1979b) ‘Transparency for computer synthesized images’. ACM
SIGGRAPH ’79. Chicago, 111., pp. 158 - 164.

Kay T. L. and Kajiya J. (1986). ‘Ray Tracing Complex Scenes’. Computer Graphics ACM
SIGGRAPH ’86. Vol. 20, No. 4, August, pp. 269 - 278.

Kemighan B. and Ritchie D. (1988). The C Programming Language. Second edition based
on the Draft-Proposed ANSI C. Prentice Hall Software Series, Englewood Cliffs, New
Jersey 07632, page 46.

Knuth D. (1987). ‘Digital Halftones by Dot Diffusion’. ACM Transactions on Graphics, 6(4),
October, pp. 245 - 273.

Kobayashi H., Nakamura T., Shigei Y. (1987). ‘Parallel processing of an object space for
image synthesis using ray tracing’. The Visual Computer., Springer-Verlag, Vol. 3, No.
1, pp. 13 - 22.

KoAXiaq T. (1984). ‘Aopeq AeSopevcov’. B or|$r|pa to\) padrjpaxoq "Aopeq AeSopevcov"
o to Tprjpa HA£KTpoXoycov to\) E.M.noAmexveiot) koci g to Moci3r|pcxTiKO Tprjpa
xot) naverciOTnpio'U Aflrivaq. Afhiva, Noeppptoq 1984. (‘Data Structures’.

262

Textbook for the dept, of Electrical Engineers and dept, of Mathematics of the
University of Athens. Athens, November 1984, in Greek).

Mandelbrot B. (1977). FRACTALS. Form, Chance and Dimension. W. Freeman & Co. San
Fransisco, 1977. It is the modified second version of the :Les objects fractals: forme,
hasard et dimension. Paris & Montreal: Flammarion 1975.

Mandelbrot B. (1982). The Fractal Geometry o f Nature. W. Freeman &Co. New York, 1982.

McMillan T. (1992). ‘The promise of portable color’. Computer Graphics World, Vol. 15,
No. 9, September 1992 pp. 30 - 40.

Meagher, D. (1982). ‘Geometric Modelling using Octree encoding.’ Computer Graphics and
Image Processing, 19, pp. 129 - 147.

Meagher, D. (1980). ‘Octree Encoding: A New Technique for the Representation,
Manipulation, and Display of Arbitrary Three-Dimensional Objects by Computer’.
Technical Report no. IPL-TR-80-111, Image Processing Laboratory, Rensselaer
Polytechnic Institute, Troy, NY, October 1980.

Meagher, D. (1982). ‘Geometric Modelling using Octree encoding.’ Computer Graphics and
Image Processing, 19, pp. 129 - 147.

Menon J., Marisa R. and Zagajac J. (1994). ‘More Powerful Solid Modelling through Ray
Representations’. IEEE Computer Graphics and Applications, Vol. 14, No 3, May
1994, pp. 22 - 35.

Meyer G. and Greenberg D. (1980). ‘Perceptual Colour Spaces for Computer Graphics’. ACM
SIGGRAPH’ 1980, pp. 254 - 261.

Murray J. and vanRyper W. (1994)/Graphics file formats’. O’ reilly Associates, USA.

Nemoto K., Omachi T. (1986). ‘An adaptive subdivision by sliding boundary surfaces for fast
ray tracing’.Graphics Interface ’86. Vancouver, B.C., pp. 43 - 48. May 1986.

263

Nishimura H., Ohno H., Kawata T., Shirakawa I., Omura K. (1983). ‘LINKS-1 a parallel
pipelined multicomputer system for image creation’. Proceedings o f the 10th
symposium on Computer Architecture, SIGARCH. pp. 387 - 394.

Papanickolaou C. (1978). ‘Eucleidean Geometry’. National Textbooks Publishing
Organisation, Athens.

Payne B., Toga A. (1992). ‘Distance field manipulation of surface models’. IEEE Computer
Graphics and Applications, Vol. 12, No 1, January 1992, pp. 65 - 71.

Peitgen H.-O. and Richter P.H. (1986). The Beauty o f Fractals. Springer-Verlang, Berlin
Heidelberg, page 191.

Phong B. T. (1975). ‘Illumination for Computer Generated Pictures.’ Communications o f the
ACM , 18(6), June, pp. 311 - 317.

Pickover C. (1989). ‘A Short Recipe for Seashell Synthesis’. IEEE Computer Graphics and
Applications, Vol. 9, No. 11, November, pp. 8 - 11.

Postcript® (1987) ‘Language Reference Manual’. Adobe Systems Incorporated. 8th ed.
Addison - Wesley, pp. 70 - 71.

Ranjan V. and Fournier A. (1994). ‘Volume Models for Volumetric Data’. IEEE Computer,
Vol. 27, No. 7, July 1994, pp. 28 - 36.

Riesenfeld R. (1973). ‘Applications of B-spline approximation to geometric problems of
computer aided design’. PhD Thesis. Syracuse University, Syracuse, New York.

Rockwood A. (1989). ‘The displacement method for implicit blending surfaces in solid
models’. ACM Transactions on Graphics, Vol. 8, No. 4, pp. 279 - 297.

Schoenberg Isaac J. (1946). ‘Contributions to the Problem of Approximation of Equidistant
Data by Analytic Functions’. Quarterly Applied Math. Vol. 4, No. 1, pp. 4 5- 99 , 112
- 141.

Shani U. and Ballard D. (1984). ‘Splines as Embeddings for Generalized Cylinders’.
Computer Vision, Graphics, and Image Processing. Vol. 27, pp. 129 - 156.

264

Shinya M., Takahashi T. and Naito S. (1987). ‘Principles and applications of pencil tracing’.
Computer Graphics, ACM SIGGRAPH ’87. Vol. 21, No. 4, pp. 45 - 54. July 1987.

Sidhu G.S. and Boute R.T. (1972). ‘Property encoding: applications in binary picture
encoding and boundary following’. IEEE Transactions on Computers. Vol. C-21
No. 11, November 1972.

Smarte, G. and Baran, N. (1988). ‘Display Technology; Face to Face’. BYTE, Vol. 13, No.
9, September 1988, pp. 243 - 252.

Stroustrup B. (1987). The C++ programming language. Addison Wesley, USA, 1987.

Terzopoulos D. (1989). ‘Physically-Based Modeling: Past, Present, and Future’. Panel session
at SIGGRAPH' 89 Panel Proceedings. Vol. 23, No. 8, pp. 191 - 209, December 1989.

Thiessen A. (1911). ‘Precipitation averages for large areas’ Monthly Weather Review. Vol 39,
pp. 1082 - 1084.

Thomas S.W. (1986). ‘Dispersive refraction in ray tracing’. The Visual Computer. Vol. 2
pp. 3 - 8 .

Tiller W. (1983). ‘Rational B-splines for curve and surface representation’. IEEE Computer
Graphics and Applications. Vol. 3, No. 6, pp. 61 - 69.

Tsoubelis D. (1985). ‘Remote sensing: Interpolation and contouring manipulations o f images
taken by satellites' (in Greek). Dissertation in Astronautics. Athens School of
Mathematics, University of Athens, June 1985.

Ullner M.K. (1983). ‘Parallel machines for computer graphics’. PhD. Dissertation. California
Institute of Technology, Pasadena, CA. Reference: 5112:TR:83.

Vassberg J. and Dailey K. (1990). ‘AIRPLANE: Experiences, Benchmarks and Improvements.
American Institute o f Aeronautics and Astronautics Aerospace Sciences Meeting, Paper
AIAA-90-2998, Portland, OR, August 20-23, 1990.

Versprille K. (1975). ‘Computer Aided Design Applications of the Rational B-spline
Approximation form’. PhD thesis. Syracuse University, Syracuse, New York.

265

Voronoi G. (1908) ‘Nouvelles applications des parametres continus a la theorie des formes
quadratiques, Deuxieme Memoire, Recherches sur le paralleloedres primitifs. J. reine
angew. Math. 134, pp. 198 - 287 136, pp. 67 - 178.

Voronoi G. (1909) ‘Nouvelles applications des parametres continus a la theorie des formes
quadratiques, Deuxieme Memoire, Recherches sur le paralleloedres primitifs. J. reine
angew. Math. 136, pp. 67 - 178.

Voss R. (1985). ‘Random Fractal Forgeries’. Fundamental Algorithms fo r Computer Graphics
R.A. Eamshaw (ed.). Springer-Verlang, Berlin, pp. 805 - 835.

Wallin A (1991). ‘Constructing Iso-surfaces from CT Data’. IEEE Computer Graphics and
Applications, Vol. 11, No. 6, November 1991, pp. 28 - 33.

Ward (1994). ‘The RADIANCE Lighting Simulation and Rendering System’. ACM
SIGGRAPH ’1994. Orlando, Florida, July 24 - 29, 1994. Computer Graphics
proceedings, Annual Conference Series, pp. 459 - 472.

Watson D. (1981). ‘Computing the n-dimensional Delaunay tessellation with application to
Voronoi polytopes’. The Computer Journal, Vol. 24, No. 2, pp. 167 - 172.

Weghorst H., Hooper G. and Greenberg D. (1984). ‘Improved Computational Methods for

Ray Tracing’. ACM Transactions in Computer Graphics. Vol. 3, No. 1, January, pp.
52 - 69.

Whitted, T. (1980). ‘An Improved Illumination Model for Shaded Display.’ Communications
o f the ACM , Vol. 23, No. 6, June, pp. 343 - 349.

Wijk Van (1984). ‘Ray tracing objects defined by sweeping a sphere’. Eurographics ’84.
pp. 73 - 82, Copenhagen. Also reprinted in Computer Graphics, Vol. 3, No. 9, pp. 283
- 290.

Williams D.R., Collier R. (1983). ‘Consequences of spatial sampling by a human
photoreceptor mosaic’. Science. Issue 221, 22 July 1983, pp. 385 - 387.

Wolberg G. (1994). ‘Digital image Warping’. IEEE Computer Society Press Monograph, 3rd
edition, Los Alamitos, California.

266

Wolfram S. (1991). Mathematica: a System for Doing Mathematics by Computer. Second
edition, Addisson-Wesley, 1991.

Woodwark J.R. (1984). ‘Compressed quad-trees’. The Computer Journal. Vol. 27 No. 3,
pp 193 - 288.

Woodwark J. (1986). ‘Blends in Geometric modelling’. Proceeding o f the 2nd IMA conference
on the Mathematics o f surfaces. Cardiff, September 1986.

Wyszecki G. and Stiles W. (1982). ‘ Color Science: Concepts and Methods, Quantitative Data

and Formulae’, 2nd edition, Wiley, New York.

Wyvill G., McPheeters C., Wyvill B. (1986a). ‘Soft Objects. Advanced Computer Graphics’.
Proceedings of Computer Graphics, Tokyo. 1986, pp. 113 - 128.

Wyvill G., McPheeters C., Wyvill B. (1986b). ‘Data structures for soft objects’. The Visual
Computer, Vol 2, pp. 227 - 234. Springer Verlag, 1986.

Wyvill G., McPheeters C., Wyvill B. (1986c). ‘Animating soft objects’. The Visual Computer,
Vol 2, pp. 235 - 242. Springer Verlag, 1986.

Xiang Z. and Joy G. (1994). ‘Color Image Quantization by Agglomerative clustering’. IEEE
Computer Graphics and Applications, Vol. 14, No. 3, May 1994, pp. 4 4 - 4 8

Yellot J.I.Jr. (1983). ‘Spectral consequences of photoreceptor sampling in the Phesus retina’.
Science. Issue 221, 22 July 1983, pp. 382 - 385.

PostScript® is a trademark of Adobe Systems Inc.

267

