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Abstract

The aim of this study is to find a suitable approach to model econometrically exchange-rate 
dynamics. In the first chapter, I examine the empirical properties of four exchange rates. 
The data used are daily, weekly, monthly and quarterly exchange rates of the German 
mark, the British pound, the Swiss franc, and the Japanese yen against the U.S. dollar from 
July 1974 to December 1987.1 study the moment properties and time-series properties of 
these exchange rates and find in daily and weekly data leptokurtosis and heteroskedasticity. 
On the other hand, the hypotheses of no serial correlation, of a constant mean of zero, and 
of a symmetric distribution cannot be rejected. The fact that the daily and weekly data are 
not strictly equi-distant does not have a strong impact on these empirical regularities.

In chapter 2, static distributional models (mixture of distributions, compound Poisson 
process, Student distribution, and stable Paretian distributions) are estimated. Chi-squared 
goodness-of-fit tests reject these models. Direct inferential evidence against stable dis
tributions is found by estimating the characteristic exponent by FFT and by estimating the 
exponent of regularly varying tails.

In chapter 3, dynamic models of heteroskedasticity (ARCH and Markov-switching 
models) are introduced. Quite satisfactory results are obtained for the EGARCH model 
and the Markov-switching model whereas the ARCH, GARCH and GARCH-t models are 
in conflict with stationarity conditions for the variance.

Chapter 4 compares the static and dynamic models with respect to goodness-of-fit 
and forecasting performance. With respect to goodness-of-fit criteria, the dynamic models 
appear to be superior to the static models. Furthermore, the dynamic models outperform 
a naive model of constant variance with respect to unbiasedness but not with respect to 
precision.

Chapter 5 studies the option-price implications of the static and dynamic models. 
The spot-rate effects of static models are rather small and they disappear, as expected, 
under temporal aggregation. GARCH and EGARCH models, on the other hand, imply 
higher option prices compared to Black-Scholes option prices along the whole spectrum 
of moneyness. Only the Markov-switching model is compatible with observed smile 
effects.
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INTRODUCTION

The current state of the art in exchange-rate economics has a most puzzling feature. The 

theory of exchange-rate determination has been developed into a well-established branch 

of economic theory along the lines of the asset-market approach during the 1970’s, whereas 

empirical testing has led to a complete rejection of these models. In 1979, Mussa wrote: 

"A model that was able to explain more than 50 percent of quarter-to-quarter changes in 

exchange rates should either be rejected on the grounds that it is too good to be true or 

should be reported to the Vatican as a miracle justifying the canonization of a new saint" 

(Mussa (1979), p. 50).

The situation has not changed very much since. In a very influencial paper by Meese 

and Rogoff (1983), the random-walk model

(1) et = et_l +ut

(where et is the logarithm of the exchange rate at time t and ut is a white-noise variable)

emerged as the champion among competing empirical exchange-rate models. The 

random-walk model, however, is a champion in the sense of the one-eyed among the blind. 

In fact, the random-walk model is the confession of total ignorance. It does not relate 

exchange-rate fluctuations to fundamental determinants, nor has it any statistical structure 

which could be exploited for non-trivial exchange-rate forecasts.1 The random-walk model 

simply predicts the current exchange rate to be the most probable exchange rate for the 

whole future, from tomorrow until infinity. The disillusioning result of Meese and Rogoff 

(1983) has been confirmed by a number of authors, see Backus (1984) and Leventakis 

(1987) and Pentecost (1991).

Sometimes,the claim is made, that a random walk implies market effiency (or vice versa) 
in the sense of Fama (1970). However, a random walk is neither a necessary nor a sufficient 
condition for market efficiency, see Levich (1985).



To a large extent, this empirical failure of exchange-rate theories is explained by the 

fact that driving forces behind exchange rates are expectations about future values of 

relevant economic or political variables. It is obvious from reports about foreign-exchange 

markets in the popular press and it is incorporated into asset-market theories of 

exchange-rate determination (see e.g. Mussa (1984)) that the exchange rate is a for

ward-looking variable. However, the expectations of agents in foreign-exchange markets 

cannot be derived from published statistics. Hence the implementation of exchange-rate 

theories into econometric models is severely hampered if not impossible. In early 1988, 

the press release concerning a 9 billion dollar trade account deficit of the USA in February 

led to a sizeable appreciation of the dollar. At first sight, and in econometric models of 

exchange-rate determination, this appreciation seems to be a reaction of the wrong sign. 

It can, however, be explained by the fact that market participants expected the trade deficit 

for February 1988 to be much larger and were surprised by this positive news for the dollar.

In more formal terms, the principal difficulties of testing exchange-rate theories can 

be demonstrated with the aid of a simple reduced form of the asset-market approach to 

exchange rates (see Mussa (1984)):

(2) et = Xet ,+j + Pjc, with 0<X<  1.

In (2) et t+i is the expectation of et+l formed at t, xt is a column vector of exogenous

variables, and p is a row vector of coefficients. Stepwise forward iteration and application 

of the properties of rational expectation yields:

T

(3)

or

(4) e, = 1  X.'P*u+i.
i =  0

The change of the exchange rate is given by

(5)
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This formula shows that it is not only the present change of xt which moves the

exchange rate but also revisions in the expectation of future values of xt. These revisions 

of expectations have a geometrically declining weight, with variables far in the future 

receiving relatively small weights. Still, any news which brings about a revision of the 

whole future path of some driving forces can have strong effects on the present exchange 

rate, but these revisions are generally unobservable.

There is no obvious and easy way out of the measurement problem and hence there 

is no great hope for the econometric approach of testing exchange-rate theories. This 

dilemma directs empirical research on exchange rates to a more descriptive approach. If 

exchange-rate fluctuations cannot be explained, it is still worth exploring empirical 

properties of the data. This data-analysis approach may not seem to be directed to the 

research programme of "rerum causas cognoscere" but behind exploratory data analysis 

is the hope that the analysis will reveal unexpected properties of the phenomenon under 

investigation and will hence contribute to more knowledge about it. As the old saying goes: 

If you torture the data long enough, they will confess.

But this is not the only motivation for the study. The concept of decision making 

under uncertainty is central to the theory of finance. Therefore, the stochastic specification 

of financial models is of fundamental importance. It is common practice in finance to 

assume that rates of return and price dynamics in speculative markets follow a normal 

distribution. The assumption of normality is both convenient and natural. It is convenient 

because this assumption simplifies considerably theoretical analysis and empirical 

applications. It is also a natural assumption because the central limit theorem in probability 

theory gives a justification for the normal distribution under rather weak conditions. 

However, in the seminal papers of Mandelbrot (1963) and Fama (1965) strong evidence 

against the normal distribution was found for price dynamics in commodity markets and 

stock markets. This result was confirmed by numerous studies, see e.g. Taylor (1986).
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After the breakdown of the Bretton-Woods system of fixed exchange rates in the 

early 1970’s it soon became apparent, to the surprise of many economists, that flexible 

exchange rates of the major currencies behaved just like other speculative prices. Therefore, 

the analytic tools developed for the study of price dynamics in speculative markets can 

readily be applied to the foreign-exchange market.

Two areas of exchange-rate economics, where the stochastic specification is of great 

importance, are the testing for market effiency and the pricing of foreign-exchange options. 

First, tests for the market efficiency in the context of uncovered interest parity require the 

specification of a risk premium if the unrealistic assumption of risk neutrality is abandoned; 

see the excellent review of this literature by Hodrick (1987). Second, option pricing along 

the lines of Black and Scholes (1973) requires the specification of the stochastic process 

for the price of underlying assets. Black and Scholes assume normality and constant 

volatility and it turns out that the normal assumption is quite important for their approach 

to construct a perfect hedge portfolio which eliminates all risk considerations from the 

pricing of options. It can be shown that a perfect hedge portfolio can only be constructed 

if the price of the underlying asset follows a Wiener process or a jump-diffusion process.

It is currently a very active research area to examine the implications for option 

pricing if the assumptions of normality, of constant volatility and of deterministic interest 

rates are relaxed. This topic will be taken up in Chapter 5.

This study is organized as follows. In Chapter 1, I will present a comprehensive 

statistical analysis of exchange-rate data. It is an exploratory data analysis which aims to 

identify the main statistical properties of the data in order to guide the stochastic modelling 

of exchange-rate dynamics. On several occasions, a single hypothesis will be tested by 

more than one method. This is a consequence of the general trade-off between efficiency 

and robustness in statistical testing. If the assumption of normality can be maintained, then 

there is usually an optimal parametric test. If however, there are serious doubts about the 

normality assumption, and this is the case for the exchange rate data, then it is often best 

to apply a robust non-parametric test.
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I will apply two classes of stochastic modells to the exchange-rate data. In Chapter 

2, static models will be applied which can capture the distributional properties of the data. 

In empirical finance, the static distribution models have often been analysed in isolation 

or without any unifying framework. I will provide such a framework by showing that the 

four models to be analysed can be interpreted as scale-compounded normal distributions. 

Some additional motivations for the distribution models will also be given. In Chapter 3, 

dynamic models will be applied which allow for dependence in the data in the form of 

heteroskedasticity. The static and dynamics models are compared in Chapter 4 with respect 

to fitting the data within the sample and with respect to forecast the data out of sample.

In Chapter 5 ,1 will study the implications of the estimated exchange-rate models for 

the pricing of exchange-rate options. As mentioned above, the pricing of options along 

the lines of Black and Scholes is restricted to certain stochastic process and, therefore there 

is in general no direct solutions of the option pricing problems for the stochastic processes 

analysed in this study. It is possible, however, to determine for all stochastic processes the 

option prices in a simplified framework via Monte-Carlo simulation.
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CHAPTER 1 

STATISTICAL PROPERTIES OF EXCHANGE RATES

Due to the dominance of the random-walk model in comparison with econometric and 

time-series models of exchange-rate fluctuations, it is reasonable to take equation (1) of 

the Introduction as the starting point of the exploratory data analysis. The random-walk 

model incorporates only a few assumptions of statistical nature. It assumes that the ut are 

independent and identically distributed, i.e. ut is white noise. The following analysis takes 

a closer look at both assumptions. First, independence and time-series properties are 

examined in detail, both in the time domain and in the frequency domain. Second, the 

moments and the distributional properties of the data are studied.

1.1 DATA

The data to be analysed are the exchange rates of the dollar against the German mark, the 

British pound, the Swiss franc (sfr), and the Japanese yen. The data are on a daily basis, 

but also weekly, monthly and quarterly data are used. In these cases, end-of-period data 

were derived from the daily exchange rates. A rise in the exchange rate signifies an 

appreciation of the dollar. The data range from July 1st, 1974 to December 31st, 1987. 

Due to differences in bank holidays between countries, there are different numbers of 

observations in the daily data: 3386 for the mark, 3417 for the pound, 3392 for the sfr and 

3365 for the yen. For all currencies, the number of observations in the weekly series is 

704, in the monthly series it is 161 and in the quarterly series it is 53. Data source is the 

IMF’s International Financial Statistics, except for the sfr, whose exchange rate against 

the dollar from July 1974 to April 1980 was not published in the International Financial
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Statistics and was therefore taken from the monthly reports of the Swiss National Bank. 

These exchange rates can be regarded as the four most important exchange rates on the 

international foreign exchange markets.

The data are mainly analysed in the form of first differences in the logarithm of 

exchange rates, i.e.

(6) ut = Aet = et - e t_l = log Ef -  log E, _ {.

It is customary to analyse exchange-rate data in this form because it avoids Jensen’s 

inequality which states that the expected value of the reciprocal of a random variable is 

greater than the reciprocal of the expected value. For small exchange-rate fluctuations, 

Aet is approximately equal to the percentage changes in E„ since x ~ log(l +x) for small 

x. The variable Aet measures exchange-rate dynamics in the form of continuous growth 

rates of E,. The data Aet were multiplied by the factor of 100 to express them in units 

of percentage change. In some models it turned out that multiplying the data by 100 

increased numerical stability.

Figure 1 displays the evolution of the four daily exchange rates. Plotted are the values 

of (E, -  E0)/Su, where Su is the standard deviation of E, -  E, _ { = Ur This scaling produces 

unit variance in the innovations Ut of all four exchange rates. In addition, the lines ±2Vf” 

are drawn into the figure to give 0.95 confidence limits for a random walk whose inno

vations have unit variance and an expected value of zero. Only the sfr-dollar rate falls out 

of these bounds somewhat excessively whereas the mark-dollar rate stays within the limits 

for the whole sample period.

As can be seen from figure 1, there is quite strong co-movement between the exchange 

rates, especially between the sfr and the mark. The visual display of the data cannot, of 

course, answer the question whether a random walk is an adequate model for exchange-rate 

movements. The task to answer this question and to give insight into various statistical 

properties of the data falls on the following tests.

12



Figure 1

Four daily exchange rates (standardized): July 1974 - Dec. 1987
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1.2 INDEPENDENCE AND TIME-SERIES PROPERTIES

Under the assumption of identical distributions, ut = ut+j implies F(ut) = F(ut+j) for all

values of t and j, where F(.) denotes the distribution function. The assumption of inde

pendence of all u, can be formalized as F(u, | ut+j) = F(u t) ,  where F{ut | .) denotes the 

conditional distribution function.

If one assumes that u, has a normal distribution, the assumptions of independence

and identical distributions simplify considerably since the normal distribtuion has two 

parameters, 0 and cr2 which coincide with the mean and the variance, respectively. 

Moreover, for normal variables, correlation of zero implies independence. Thus, under the 

assumption of Gaussian white noise it suffices to examine moments up to order 2. In the
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study of time-series properties, I will follow the custom of testing for indepence only up 

to moments of order 2 but in the study of distributional properties, I will examine moments 

up to order 4 ( a justification will be given later).

If the random-walk model is written in matrix notation one gets

where Ae is a (T x l)  vector with typical element Aet = et — et_x and u is a (T x l)  

vector with typical element ut. The model of a random walk without drift assumes that

where E is the expected-value operator, 0 is the (Tx  1) null vector and I  is the (T xT )

identity matrix. Assumption (i) states that the expected values of all m,’s  are zero, and 

assumption (ii) states that the variance-covariance matrix a 2̂  of the m,’s  is a scalar 

matrix, i.e. all off-diagonal elements are zero and the diagonal elements of Q are constant.

A robust test for independence which imposes only very mild restrictions was 

introduced and recommended especially for studies of speculative prices by Dufour (1981). 

The test is directed towards an examination whether the off-diagonal elements of £2 are 

zero. Dufour’s signed-rank test for serial independence is based on the assumption of a 

symmetrical continuous distribution with a median of zero. The test is distribution-free 

and in particular it does not assume identical distributions. The test statistic is

(7) Ae = u,

(0 E(u) = 0,

and that

(ii) E(uu') = c?a = o1I,

T - k

(8) St = I  g iv ^ K ,

where g(vkt) is an indicator function defined by

(9)
1 if v*, >0 
0 otherwise

14



and Rto is the rank of a non-negative vkt = utut+k among the ranks of |vfa|. Thus, Sk is

the sum of the ranks of non-negative v*/s. This test statistic has the same form as the test 

statistic of the Wilcoxon signed-rank test of symmetry around zero and the distribution of 

Sk under the null hypothesis of independence is the same as the null distribution of the 

Wilcoxon statistic. In particular, the expected value of Sk is Tk(Tk + l)/4 and the variance 

is given by Tk{Tk + 1) (2Tk + l)/24. The distribution of Sk tends to the normal distribution 

as Tk, the number of products utut+k, goes to infinity (see e.g. Lehmann (1975), pp. 

124-132). The result from applying Dufour’s signed-rank test are summarized in table 1.

Table 1

Signed-rank test for serial independence

mark pound sfr yen signif. coeff.
day -I\I2 1/2/- -/l/l 3/2/- 4/10/13
week 1/2/3 -12/- 1/-/2 2/ 1/2 4/9/16
month -1212 -I2J2 -/2/3 -NX -/6/14
quarter -1X12 -/3/1 -1-12 -/!/- -/5/10

The test statistic was calculated for k = 1,..., 15. In order to save space, for each of

the 16 series only the numbers of significant statistics Sk are shown. The numbers reported 

refer to the number of statistics which are significant at the 1 percent, 5 percent and 10 

percent level, respectively. The numbers in the last column summarize the results for all 

four exchange rates at the given period of time. Here the numbers refer to the number of 

statistics which are significant at least at the 1 percent level, at least at the 5 percent level 

and at least at the 10 percent level, respectively. These numbers can be compared with the 

expected numbers 0.6/3/6 under the null hypothesis. Overall, there are more significant 

Sk than expected, especially in the daily and weekly series. Noteworthy are two very large 

values of Sk for the weekly yen series at lags 1 and 2. Their standardized values are 4.96 

and 4.38, respectively. All in all, there seems to be some moderate evidence against serial
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independence from the signed-rank test. It remains to be seen, however, whether this 

evidence can be attributed to dependence or to violations of the assumptions underlying 

the test, namely asymmetry or a non-zero median.

The nonparametric test of independence has the advantage of not requiring any 

specific distributional assumptions about ut. As will be seen later, the assumption of 

normality is a quite critical one for exchange-rate data. It is still interesting, however, to 

supplement Dufour’s test by parametric tests of independence. These tests can be put into 

a broad framework of time-series analysis.

A very general model for stationary time series is the autoregressive integrated 

moving-average (ARIMA) model which has been popularized by Box and Jenkins (1976). 

As a model for exchange-rate data, it can be written as

(10) 0 ( L ) ( l - L ) de, = 0(L)ur

The autoregressive (AR) component 0(L) is a polynominal of degree p in the lag

operator L, i.e. O(L) = 1 -  <J>jL - . . .  -  <j)pLp and the moving-average (MA) component 

is a polynominal of degree q in L, i.e. 0(L) = 1 -  0tL - . . .  -  QqLq. The parameter d 

is the order of differencing which is necessary to make the series et stationary, d is also 

called the order of integration. A short-hand notation for this model is ARIMA (p, d, q). 

It is readily seen that the random-walk model fits into this framework and can be written 

as a ARIMA (0, 1, 0) model.

The test of p = q = 0 is a test of independence of the w,’s. Tests for the null hypothesis

(H0)d = 1 are called "tests for unit roots". Standard testing methods are not applicable for 

this H0 since they require a stationary series. For testing d = 1 ,1 use a Lagrange multiplier 

(LM) test, i.e. a test which is based on the likelihood of the model estimated under H0. 

This test, which has been suggested by Solo (1984), is applicable to the ARIMA-frame- 

work. The test statistic is given by:

(11) i m = [ s «,4,-1 ] / | o 2s 4 2-i
V' J V *
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where the w/s are the residuals from a fitted ARIMA (p, 1, q) model, 4r-1= let- 1

and a 2 is the variance of the residuals. The asymptotic distribution of the test statistic is 

identical to that of T2 resp. given in Fuller (1976, p. 373). I chose a variant of this test 

which takes account of a non-zero mean and which leads to the statistic.2

Table 2

ARIMA models and test for unit roots

mark pound sfr yen
day MA(3)

0.002
0.12

(6.60)
MA(2)
0.002

2.60
(6.60)

MA(9)
0.002

0.72
(6.60)

AR(4,9,10)
0.006

0.79
(6.60)

week MA(19)
0.014

0.12
(6.60)

MA(7)
0.010

1.00
(6.60)

MA(4)
0.005

0.70
(6.60)

ARMA(1,19
)
0.060

0.93
(6.60)

month MA(2)
0.036

0.97
(6.62)

MA(18)
0.027

2.85
(6.62)

MA(16)
0.030

1.76
(6.62)

MA(3)
0.018

0.32
(6.62)

quarte
r

ARMA(5,19
)
0.569

4.80
(6.76)

MA(16)
0.487

1.38
(6.76)

MA(15)
0.037

1.59
(6.76)

MA(16)
0.427

3.37
(6.76)

Table 2 reports the main results from estimating and testing the ARIMA model. In 

each cell of the table, the order of ARIMA (p, 1, q) is given in the upper left hand side. 

The term MA(3), for example, denotes a moving-average polynomial of the form

2Hakkio (1986) compared four similar tests. Two of them are tests of a unit root as used 
by Meese and Singleton (1982) and Diebold (1988). The other two tests are tests for white 
noise: a standard F-Test and the Box-Pierce statistic. Hakkio tried to calculate the power 
of these tests against an empirical ARIMA (1,1,2) model by the Monte Carlo method. The 
results, however, are very confusing. No test attained approximately its nominal level 
under the null hypothesis. Since he used 1000 replications, the standard error of the esti
mated significance level a  is [a(l -a)/1000]1/2 which gives 0.0069 for a  = 0.05. The 
estimated levels, however, lay between 0.026 and 0.060. Very disturbing is the fact that 
for the Box-Pierce statistic Hakkio got an estimated level of 0.060 indicating an optimistic 
test. It is well-known that the Box-Pierce test is conservative, i.e. the estimated level is 
well below the nominal level in small samples (see e.g. Davies, Triggs and Newbold 
(1977)). In practical work, therefore, the Box-Pierce test has been replaced by the 
Ljung-Box test (see Ljung and Box (1978)) which is much closer to its nominal level than 
the former test. Hence, it is quite doubtful whether any safe conclusions can be drawn from 
Hakkio’s study.
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0(L) = 1 - 0 3L3, whereas the term AR(4, 9, 10) denotes an autoregressive polynominal 

of the form O(L) = 1 -  <J)4L4 -  <j)gL9 -  §l0L 10. The order of the ARIMA model was selected 

on the basis of the Schwarz information criterion (see e.g. Priestley (1981), pp. 372-376), 

which is given by SIC = (p + q) log T — 2L — 2T and where {p + q) is the number of AR- 

and MA-parameters estimated and L is the logarithm of the maximised likelihood. In most 

cases, the best model, i.e. the model with the lowest value of SIC is given by a simple 

MA-model. For daily, weekly and monthly data, the explanatory power of these univariate 

time-series models is very poor, as indicated by the R2 coefficient of determination given 

below the order of the ARIMA model.3 The quarterly exchange-rate dynamics of the mark, 

pound and yen against the dollar, however, are quite reasonably fitted by ARIMA models. 

In fact, the ARIMA(5,1,19) model for the quarterly mark-dollar exchange rate qualifies 

for canonisation, according to Mussa’s criterion, and the quarterly models for the pound 

and yen are on the margin for qualifying. It would be interesting to examine the structural 

stability of these three quarterly ARIMA models. Since these data sets only have 53 

observations each, it is not possible to do these tests in a meaningful way.

In table 2, the upper right hand number in each cell is the LM statistic of the unit-root 

test and below it the critical value of the statistic is given in brackets. Since H0 states that 

d = 1, it is appropriate to choose a low significance level. The reported critical values

3 Independence of exchange-rate dynamics has been examined by various authors
employing different methods and deriving at contradictory conclusions. Rogalski and 
Vinso (1978) calculated the Box-Pierce statistic Q at lag 12 for 5 weekly exchange-rates 
in the post-Bretton-Woods era. They could not reject independence. It is quite typical for 
the empirical work on exchange rates in the 1970’s that Rogalski and Vinso interpreted 
their findings in terms of market efficiency. It is now widely, but not universally, recognized 
that independence is neither a necessary nor a sufficient condition for market efficiency 
(see Levich (1985) pp. 1020-1025). Kim (1987) applied a F-test to daily, weekly and 
monthly dollar exchange rates against 7 currencies for the period from January 1973 to
June 1985. He rejected the null hypothesis of independence for all daily (with exception 
of the yen) and weekly series but only for 2 monthly series (pound and yen). Baillie and 
McMahon (1987) performed a likelihood-ratio test with respect to AR (6) models for 6 
monthly exchange rates and with respect to AR (2) models for 4 weekly exchange rates. 
The order of the AR processes was not derived from an optimal selection strategy. Baillie 
and McMahon rejected independence for the weekly series but could not reject it for any 
of the monthly series. Finally, Hsieh (1988) tested for serial independence in 5 daily 
exchange-rate series and could not reject the null hypothesis when the standard errors of 
the autocorrelation coefficient were adjusted for heteroskedasticity.
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correspond to a significance level of 0.10. As can be seen, none of the LM statistics exceed 

their critical values. However, no strong conclusions can be drawn from not rejecting a 

null hypothesis.

Meese and Singleton (1982) and Diebold (1988) performed similar tests. They 

examined weekly and monthly exchange-rate movements and tested for unit roots in AR 

representations of the data.4 Their results confirm my findings that the H0 of a unit root 

cannot be rejected even at a low level of significance.5 In addition, in both studies the 

hypothesis of two unit roots was tested, i.e. the model

(12) <D(L)(1-L)V0

was considered. It can be argued that it is superfluous to test this model because even a 

visual inspection of the series Aet and their correlograms makes it abundantly clear that 

these series are non-integrated. Figure 2 shows one such series, the monthly movements 

(of the logarithm) of the yen-dollar rate. It is not very surprising therefore, that both Meese 

and Singleton and Diebold could formally reject H0:d = 2 at very high significance levels.

Sometimes, spectral analysis of time series helps to detect hidden periodicities in the 

data which violate the assumption of independence. It is therefore useful to complement 

the foregoing analysis in the time domain with some investigations in the frequency 

domain. The basic question is whether Aet = ut can be regarded as white noise. To test 

this hypothesis in the frequency domain, I chose a cumulative periodogram test which is 

based on the Kolmogorov-Smimov statistic (see Priestley (1981), pp. 479-483).

4 Diebold justified his testing of unit roots within AR repesentations with the fact that he 
found "no evidence of a moving average component in any of the seven series" he examined 
(Diebold (1988), p. 44). In addition to the four exchange rates included in my study, he 
also analysed the weekly dynamics of the US dollar against the Canadian dollar, the French 
franc and the Italian lira. His model specification procedure was also the Schwarz infor
mation criterion (SIC). So there is an obvious conflict with my results reported in table 3. 
The fact that Diebold used a different data source (i.e. International Monetary Markets 
Yearbook) cannot explain the discrepency in our results since data quality is no issue with 
exchange-rate data. One of the series used by Diebold has been listed in Engle and Bol- 
lerslev (1986). I analysed this dollar-sfr exchange rate and found that, according to SIC, 
the best model is a MA (14) repesentation. Using the same series and applying the extended 
sample autocorrelation function for identification, Tsay (1987) suggested a MA (4) model.
5 See also Baillie and McMahon (1987) and Corbae and Ouliaris (1986).
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Figure 2

Monthly exchange-rate movements: yen-dollar
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The test statistic is

(13) C = max

where Fr is the cumulated periodogram defined by

(14) 

with

(15)

*=i *=i

T -  1
/(CO,) = c0 + 2 X cos 27EG),t.

T=1

The periodogram /( co,) is defined in (15) as the Fourier transform of the empirical

covariance function cv The periodogram is calculated at the Fourier frequencies co, = kIT 

for k = 1,2, . . . ,M  where M  is the integer part of TI2. The test statistic C is defined 

in (13) as the maximal absolute distance between the empirical cumulative periodogram 

and the theoretical cumulative periodogram. For a white-noise process, the periodogram
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has a uniform distribution and hence the cumulative periodogram is a straight line with 

slope 2IT if T is even (and approximately so if T is odd). The critical values for the 

cumulative periodogram test are given by bJ(M - \ ) m where ba is the a  -quantile of 

the Kolmogorov distribution tabulated in many statistics books. Table 3 summarizes the 

result from this test.

Table 3

Cumulative periodogram test

mark pound sfr yen
day C 0.020 0.040 *** 0.017 0.037 ***

1/co* (°°) (2.2) (23) (76.5)
week C 0.067 * 0.059 0.063 0.181 ***

1/co* (9.8) (3.7) (3.7) (16)
month C 0.114 0.097 0.091 0.126

1/co* (2.3) (81.0) (2.3) (3.8)
quarter C 0.156 0.229 0.131 0.281 **

1/co* (27.0) (27.0) (27.0) (10.8)

Significance levels: a  = 0.01 (***); a  = 0.05 (**); a  = 0.10 (*)

The cumulative periodogram test is basically a goodness-of-fit test to the uniform 

distribution under the null hypothesis of white noise. Since I am interested in rejections 

of H0 it is appropriate to select a relatively low significance level of, say, 10 percent. 

According to this level, 5 out of 16 series show significant deviations from white noise. It 

is the yen-dollar rate which shows the most marked and systematic deviations. The numbers 

in parentheses are the periods 1/ co* where the estimated spectral density functions have 

their maximal value. These periods need not be the same as the periods where the Kol- 

mogorov-Smimov statistics attain their maximum. For the yen-dollar rate, there seems to 

be a strong and consistent 16 week cycle. There is also a surprising coincidence of maximal 

spectral densities in the quarterly exchange rates of the mark, pound and Swiss franc against 

the dollar at the frequency 0.037 which corresponds to a period of 6 years and 3 quarters.
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The daily changes of the mark-dollar rate show a maximal density at frequency 0.0 which 

indicates a trend in this series. To summarize, it seems safe to conclude that there is no 

overwhelming evidence for hidden periodicities in the data with the exception of the 

yen-dollar rate.6 There is, however, no obvious economic explanation for the 16 week 

cycle in this exchange rate. In figure 3, both Fr and r/M are plotted for the weekly 

changes of the yen-dollar rate . Also drawn into the figure are the dotted 0.99 confidence 

limits as parallels to the dashed r/M line.

Figure 3

Cumulative periodogram: weekly yen-dollar rate
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6Logue and Sweeney (1977) calculated the spectrum of the daily French franc-dollar 
exchange rate for the period from January 1970 to March 1974 and concluded, without 
formal testing, that there were no marked deviations from white noise. Diebold (1988) 
applied Fisher’s periodogram test and found no significant deviations from white noise 
for 6 weekly and monthly dollar exchange rates. However, Schlittgen, Hammann and 
Lepinat (1982) found strong evidence against white noise in 5 out of 7 daily mark exchange 
rates. They used the Watson test to compare the periodogram with the uniform distribution. 
In contrast to the Kolmogorov-Smimov test, which is based on the maximum of deviations
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It has been suggested by some economists that one should distinguish between periods 

of turbulence and periods of tranquility in the history of exchange-rate fluctuations (see 

e.g. Frenkel and Levich (1977)). It has to be noted that periods of tranquility and turbulence 

cannot be identified as the Bretton-Woods era and the post-Bretton-Woods era, respectively 

since both the Bretton-Woods era had turbulent periods and the system of generalized 

floating had tranquil periods. Figure 2, which plots the monthly fluctuations in the yen- 

dollar rate, shows that there were in fact periods of reduced volatility in the exchange rate 

in 1975, 1976, 1983, and 1984. On the other hand, in periods of turbulence, the sign of 

next periods exchange-rate changes seems not to be predictable from this periods change, 

i.e. a strong appreciation will be followed by a strong appreciation or a strong depreciation 

with roughly equal probability.7

The validity of this observation can be tested in a direct and simple manner within 

the framework of a discrete Markov-chain model.8 Let the observations of the Ae/s 

(t = 1,..., T) be classified into I quantiles with £, = /(/ = 1,...,/). The empirical transition 

matrix N  can be defined as the matrix whose typical element riy gives the number of 

cases in which pairs with £, = i and £/+1 =j  occur. The theoretical transition matrix is 

derived in the following way. Let be the expected number of cases in row i and 

column j  under a specified null hypothesis and let nL and n mj be the corresponding row 

sums and column sums, respectively. Furthermore, let n L = (T — 1)// for all i. If one 

assumes that

(16) Py = P (£, +, = j | £, = 0  = 1 // for all i and j ,  

then the n ^s  are obtained from

(17) ng = ( T - i y i 2.

between the theoretical and the empirical distribtuion, the Watson test is based on the sum 
of all squared deviations.
7 Cornell and Dietrich (1978) found this property in their analysis of 6 daily spot exchange 
rates but they did not apply a formal statistical test. See also Taya (1980).
8 A description of Markov-chain models can be found in many books on stochastic pro
cesses. See e.g. Grimmett and Stirzaker (1982).

23



Equation (16) states that Pijt the conditional probability of £f+1 being in quantile

(or state) j  if e, was in i, is the reciprocal of the number of equally likely states /, i.e. 

there is a uniform probability distribution along the rows of the transition matrix. In 

statistical terminology, (16) is the null hypothesis of independence of the e/s. The well- 

known x2 goodness-of-fit test and a likelihood-ratio (LR) test are applied to test this H0 

(see Chatfield (1973)). They are defined by

(18) %2 = I  I  (ri'j -  n $  In tj and
/ = i; = l

(19) LR = 2 ( T - l)log( T - l ) - 2  X «, logn, - 2  £  «, logn,  + 2 £  £  nAogn„.
i =  1 j  =  1 i =  1 j  =  1

Both tests have v = (/ -  l )2 degrees of freedom. The test results for all exchange-rate

series are reported in table 4. For daily, weekly, and monthly series, / is equal to 5 and 

for quarterly series / is equal to 3 in order to Conform with Cochrane’s conservative rule 

of thumb that all n {] should be greater than 1 and at least 80 percent of the riy should be 

greater than 5 (see Moore (1986, pp. 70-71)). The fact that both tests are asymptotically 

equivalent is bom out by the great similarity of the test results. The upper number in each 

cell of table 4 gives the value of the %2(v) statistic and the lower number is the value of 

the LR statistic. There is strong rejection of independence for the daily and weekly data 

but only very weak evidence against independence for longer-term exchange-rate 

fluctuations. The choice of / does not seem to have an influence upon this result. Per

forming the same test with 1 = 9 for daily data and with 1=1 for weekly data resulted 

in the same rejections of H0 at very high significance levels. In fact, increasing / brought 

an increase in all test statistics. The numerical values of these tests are shown in table 5. 

Again, the upper numbers in each cell are the %2 statistics and the lower numbers are the 

LR statistics. For all series, H0 can be rejected at the 0.01 significance level.
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Table 4

Test of independence in Markov chains ( /  = 5 or 3)

mark pound sfr yen

day X2d 6 ) 128.8 *** 316.0 *** 100.6 *** 383.0 ***
LR 2̂7 i *** 303.2 *** 100.6 *** 365.8 ***

week X2d 6 ) 42.4 *** 66.9 *** 41 4 *** 90.5 ***
LR 42.6 *** 61 9 *** 41 6 *** 87.3 ***

month X2(16) 13.5 18.9 15.4 21.2
LR 13.9 20.5 16.0 23.4

quarter X2(4) 8.8 * 5.7 4.3 12.2 **
LR 8.8 * 5.3 4.4 12.1 **

Significance levels: see table 3

Table 5

Test of independence in Markov chains ( I = 9 or 7)

mark pound sfr yen

day X2(64)
LR

188.0 ***  
184.8 ***

4 5 4  1 ***  
430 .8  ***

180.6 ***  
179.0  ***

5 1 0 .6  ***  
4 8 6 .2  ***

week X20 6 )
LR

75 .6  ***  
7 9  4  ***

83.8 *** 
7 7  9  ***

6 5 .8  ***
6 5 .9  ***

1 1 0 . 8  ***  
101 7 ***

Significance levels: see table 3

Before one can start to speculate about the implication of these findings one would 

have to examine the deviations from independence in more detail. The results from tables 

4 and 5 just reject independence without qualifying the kind of dependence. To gain some 

more insight into the dependencies, a typical empirical transition matrix is displayed in 

figure 4. It shows the data of daily changes in the pound-dollar rate classified into 9 

quantiles. The height of the three-dimensional body is proportional to ntj. There are 5 

main peaks; a dominant one with n55 = 109 and 4 peaks in the comers with nn = 65, nl9 

= 66, n91 = 70 and n99 = 74. There is also a side peak with n46 = 69. For all entries, the
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expected number is n {j = 42.2. The main peaks can be interpreted in terms of periods of 

tranquility and periods of turbulence. The dominant peak n55 gives the number of cases 

where a small |Aef| is followed by a small |Aef + 1|.  Likewise, n n is the number of cases 

where a strong depreciation of the dollar was followed by another strong depreciation and 

n99 is the number of pairs of strong appreciation. On the other hand n l9 cases could be 

counted where a strong appreciation followed a strong depreciation et vice versa for n9X.

This confirms the observation that in turbulent periods there can be a strong reaction 

in the foreign-exchange market of either sign, i.e. a strong exchange-rate movement in 

period t lowers the probability of small or moderate movements in t+1 and increases the 

probabilities both for a strong depreciation and a strong appreciation.9 However, this 

phenomenon seems to vanish at longer time horizons, i.e. short term erratic exchange-rate 

movements are ironed out to some degree after a couple of weeks or months.

Figure 4

Markov transition matrix: daily pound-dollar rate

9

9Taya (1980) derived similar results for the daily mark-dollar rate.
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In more formal terms, the findings from the Markov-chain analysis imply that the 

assumption of independence along the diagonal of Q. is violated. Classifying the 

exchange-rate data into quantiles, however, wastes a lot of information. The phenomenon 

that small fluctuations tend to be followed by small fluctuations and large fluctuations by 

large ones of either sign can be measured without this loss of information by estimating 

the autocorrelation function (ACF) of squared innovations (Aet)2 = w2. It is a very useful 

diagnostic tool to detect deviations from the random-walk model. Within the framework 

of the ARCH model, introduced by Engle (1982), and the bilinear model (see Granger, 

Anderson (1978)), the autocorrelation of squared data is used in the identification stage 

of model building. As the name indicates (ARCH stands for autoregressive conditional 

heteroskedasticity), the ARCH model assumes a time-varying variance. The ARCH(p) 

model is formally given by:

(20) of = <J)0+ I  <j),.v2_f.,
; = 1

where the distribution of v, conditional on (vt_lf ...,vt_p) is normal with zero mean and

variance of. Hence, of is the variance conditional on all information available at t. In the 

bilinear model, on the other hand, deviations from a white-noise process are caused by 

non-linearities which are introduced by product terms of a white-noise input series v, and 

the output series ut The general form of bilinear models is:

(21) U , =  I  I  P.yV.Uj.y + V,.
i = 17 = 1

Both models can be embedded in the framework of ARIMA models. In the ARCH 

model, v, can represent the residuals from an ARIMA model and the bilinear model can 

be extended to a bilinear ARIMA model (B ARIMA) by adding the right-hand side of (21) 

to the right-hand side of (10). This extention to ARIMA models is quite instructive because 

it shows that ARCH effects would impinge on the conditional variance of the input series 

v, of a ARIMA model, whereas bilinear terms would affect the mean of the output series 

ut (see Weiss, 1986).
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The AFC of a squared series, be it estimated input or output, is useful because for a 

white-noise series this function is by assumption zero at all lags k ^ 1 whereas both ARCH 

and bilinear models generally have theoretical ACF’s which are positive at various lags. 

For the ARCH model, this is evident from (20), for the bilinear model, this can be dem

onstrated with a simple example. Assume the model

(22) ut = 0.5vt_lut_1 + vr

It can be shown that the ACF of e2 for k -  1,..., 4 is given by the values 0.20; 0.25; 0.05

and 0.06 respectively.

The AFC for squared data (Aet)2 = u2 can be applied without modifications because

McLeod and Li (1983) have established that under the H0 of white noise, the standard 

errors of squared-data autocorrelations are the same as for the usual ACF. Hence, also the 

Ljung-Box statistic

(23) Q(K) = T ( T - 2) £  f 2(k)/(T-k)
k  =  1

is applicable without modification. In (23), f  (k) is the estimated autocorrelation coefficient 

at lag k, i.e.

(24) r(k) = X (xt -  x) (xt+k-  x)/ X (xt -  x f .
f = i t = i

The Ljung-Box test is a portmanteau test against white noise. It follows asymptotically a 

%2 distribution with degrees of freedom (K - m ), where m is the number of estimated 

parameters.

The Ljung-Box statistic for all four exchange rates at four different time horizons 

each is reported as the upper number of each cell in table 6. Q is estimated at lag K = 15. 

It is evident that there is a strong rejection of the H0 of white noise in daily and weekly 

data only. In the daily series, the ACF for squared exchange-rate movements is significant 

at all lags up to 15 for all four exchange rates. For weekly data, the estimated autocorrelation
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coefficients exceed the conventional confidence limits of +2^7 at various lags k. The 

number of significant autocorrelations and (after the slash) partial autocorrelations is given 

below the corresponding Q statistics.

Table 6

Results from the ACF of squared data

mark pound sfr yen

day 12(15) 355.2 *** 507.3 *** 561.0 *** 432.2 ***
15/6 15/9 15/10 15/7

week 12(15) 61.5 *** 123 9 *** 98.2 *** 52.8 ***
5/4 7/7 8/3 6/3

month 12(15) 12.3 12.9 11.8 25.0 **
1/1 1/1 1/0 2/1

quarter (2(15) 12.0 7.4 12.1 5.4
0/0 0/0 0/0 0/0

Significance levels: see table 3

In order to give some impression about the numerical values of the autocorrelation 

coefficients and the pattern in the AFC, the AFC for Aet and (Ae,)2 is displayed in figure 

5 for all four weekly exchange-rates. The AFC for squared data is given by the dashed 

lines and, for comparison, the AFC for Aet is given by the dots in the correlogram. As 

indicated by the fact that almost all dots lie within the 0.95 percent confidence limits, there 

is hardly any exploitable structure in the mean of exchange-rate fluctuations. The previ

ously mentioned low R2 values of ARIMA models for these series reflect this, too (see 

table 2). However, between 5 (for the mark-dollar rate) and 8 (for the sfr-dollar rate) 

autocorrelation coefficients among the first 15 are significantly different from zero for the 

squared data. This suggests that there is some structure in the time pattern of the variance 

which is worth exploring and modelling. This pattern could have been generated by ARCH 

processes, bilinear processes or some other processes. For longer time horizons, however, 

this pattern seems to disappear. With the exception of the monthly yen-dollar series, none
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of the monthly or quarterly series has significant Q statistics for squared data. The monthly 

yen-dollar series has significant autocorrelation coefficients r(k)  for (Ae,)2 at lags k = 4 

and 5 and a Q statistic which is significant at the 0.05 level.

a) mark

Figure 5

Correlogram for Ae, and (Ae,)2 : weekly exchange-rate dynamics

b) pound
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The final investigation of time-series properties of exchange-rate data will be 

concerned with a very simple test of the arc-sine law for stochastic processes. Let, as before, 

ut be the first difference of the logarithm of exchange rates, i.e. ut = et - e t_l is the 

innovation in a exchange-rate series at time t. Further, let hx be the sum of the u, ’s up 

to time T , i.e.

and let rij be the number of positive sums hx. In other words, nf  is the number of times 

that et is above e0 for f = l ,...,7 \ Hence,

For independent u, having a symmetric continuous probability distribution with

expected value of zero and finite variance, the arc-sine law gives the following probability 

limit for T — (see Feller (1971), pp. 417-423):

The essence of this law is that it is more probable to have npT  near to zero or near 1 than

to have it near 0.5 which is a surprising result. This implies that it is quite likely for the 

stochastic process et to diverge from its starting value e0 into one direction for quite 

some time with a low rate of recurrence to e0.

Equation (28) shows that the arc-sine law can be applied directly to give an asymptotic 

non-parametric test of divergence from e0 into the directions et > e0 or et < e0. Thus, it 

can be used as a two-sided test. The test results are reported in table 7. The bottom row 

should be understood to give the probability that npT  has a value smaller then the empirical 

one, given in the second row. It suffices to test with daily data.

T

(25) hx=  X  k , t =  1
/ =  1

(26) 0 <rij<T

and

(27) 0< npT<  1.

(28) arc sin CL
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Table 7

Arc-sine-law test of divergence from e0 : daily series

mark pound sfr yen

rij 956 3277 12 654

npT 0.282 0.959 0.004 0.194

Prob(npT) 0.357 0.870 0.037 0.291

At the conventional significance level of a  = 0.05, the H0 is only rejected for the

sfr-dollar rate. Refering back to figure 1, it can be seen that the sfr tended to appreciate 

against the dollar from the beginning of the sample period (July 1974) until the late 

seventies. The following depreciation until March 1985 did not fully compensate the early 

appreciation. The starting value of Eq = 3.0050 has only been surpassed 12 times in the 

first couple of weeks but has never been reached again, since.

A rejection of the arc-sine law can be attributed to dependence, skewness, infinite 

variance, non-identical distributions of the ut's or a non-zero mean, assuming that the 

distribution is continuous. Without further information, it is impossible to deduce whether 

the rejection was caused by dependence, by violations of the assumptions about moments 

or by non-identical distributions. It is the aim of the next section to provide this kind of 

information by examining in detail the moments of the data and the distributional pro

perties.
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1.3 MOMENTS AND DISTRIBUTIONAL PROPERTIES

The simplest extension of the random walk model for exchange rates can be obtained from 

the introduction of a non-zero mean; i.e. a random walk with drift:

(29) A et = \L + ut,

where |x is the drift parameter. Economic theory suggests a phlethora of factors which

has an influence on exchange rates. The two most basic ones can be derived from purchasing 

power parity (PPP) and interest rate parity (IRP). It is often argued that PPP exerts a 

long-run influence on exchange-rate movements according to inflation differentials. A 

short-run influence would only occur under hyperinflation. If, on the other hand, nominal 

interest rates were determined by a constant real interest rate plus rational inflationary 

expectation, then IRP would boil down to an ex-ante form of the PPP mechanism. Thus, 

if a sustained inflation differential between two countries exists, the most basic theory of 

exchange-rate determination would predict a corresponding depreciation of the high-in- 

flation currency in the long run (see e.g. Mussa (1979), pp. 22-25).

I do not intend to add yet another test of PPP to the already existing numerous tests, 

but since PPP gives a most basic rationale for introducing a drift parameter into the 

random-walk model I have calculated the average depreciation rsp. appreciation (on a daily 

basis) implied by PPP for all four exchange rates. The "PPP means", derived on the basis 

of wholesale price indices, are given in the first line of table 8 for comparison with the 

empirical means reported below. This comparison shows that the appreciation of the mark, 

sfr and yen against the dollar was stronger, from July 1974 to December 1987, than pre

dicted by PPP and the pound’s depreciation was smaller than expected under PPP. Thus, 

with respect to the base period of July 1974, there was a real depreciation of the dollar 

against all four currencies.
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Table 8

Tests for mean and median of zero

mark pound sfr yen

PPP mean 
(daily basis)

-0.008 0.018 -0.016 -0.015

mean -0.014 0.007 -0.025* -0.025**
(1.20) (0.63) (1.79) (2.34)

median day -0.004 0.0 -0.009 0.0
(0.38) (0.50) (0.74) (1.09)

week -0.045 -0.006 -0.053 0.0
(0.98) (0.26) (0.76) (0.11)

month -0.237 0.046 -0.390 -0.099
(1.10) (0.16) (1.26) (0.23)

quarter -1.317 -0.311 -0.763 -0.770
(0.83) (0.55) (0.82) (0.27)

Significance levels: see table 3

Returning to equation (29), it is natural to test the H0 that p = 0. It would be

straightforward to apply the t-test for the mean 10, but experience shows that the mean 

performs quite poorly as an estimator of location in some non-normal distributions (see 

Rosenberger, Gasko (1983)). As will be shown later in this section, with exchange-rate 

data one has to take into account fat-tailed distributions. For these distributions, the median 

is superior to the mean, i.e. more efficient in the statistical sense. Since it is wise not to 

impose the assumption of normality or other distributional assumptions, a nonparametric 

test is called for. I apply the simple median sign test whose test statistic is given by (see 

Kendall, Stuart (1979), pp. 542-546):

I
<3°) z = v *  ■

2 (̂0)

10 Cornell (1977) performed this t-test for 7 monthly dollar exchange rates. He could reject 
H0 only for the pound-dollar series.



where B is the number of observations which are smaller than zero and r (0) is T minus

the number of observations which are exactly zero. The test statistic z follows asymp

totically a standard normal distribution.

Table 8 reports both the t-test for a mean of zero and the sign test for the median. 

The t-values for means of the daily data are given in brackets below the means. The mean 

daily appreciation of 0.025 percent of the sfr and the yen are significant at the 0.10 level 

and the 0.05 level, respectively. It is superfluous to report the t-statistics for longer time 

horizons, since the mean of first differences is simply (eT -  e0)IT and it is only T which 

varies. Thus, changes of the t-statistics would stem from "unusual behaviour" of the 

variances under time aggregation. Since a detailed analysis of variances follows later, it 

suffices to mention that for quarterly data the significance levels drop in the sfr series under 

the 0.10 level and in the yen series under the 0.05 level. There are no other drastic changes 

in the results for longer time horizons compared to the t-values for daily data.

Even less evidence against a centre of distribution at zero can be derived from the 

sign test for the median. None of the z-values, given in brackets below the medians, is 

significant at the 0.10 level. The yen-dollar rate has a median of exactly zero for daily and 

weekly movements. There are, however, many zero elements in the yen series of Aer On 

146 days, there was no change to the exchange rate of the previous day. This might have 

been caused by an attempt of the Japanese central bank to peg the exchange rate.

From the point of view of order statistics, the mean and median are two extremes. 

While the mean attaches equal weight to all observations, the median uses only one or two 

observations depending on whether the number of observations is odd or even. In recent 

years, a rich literature on robust estimators of location has emerged. In order to test for a 

centre of distribution at zero with a robust estimator, I chose a member from the family of 

robust estimators (in fact, it is a so-called M-estimator) which is efficient in the statistical 

sense and easy to compute on a computer (see Iglewicz (1983)). This biweight mean bm 

is defined by
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(31) bm = u+  Z (ut - u ) ( l - w ? ) 2/ Z  (1-w ,2)2
I w, |S 1 I W, IS 1

where wt is given by

(32) wt = (ut -  u)/9 • MAD

and u is the median and MAD is the median absolute deviation from the median. The 

corresponding robust biweight estimator of scale is

Using these statistics, a simple test of the hypothesis H0:\l = 0 can be performed.

The distribution of the test statistic V? b j s h is well approximated by a t-distribution with 

0.7 (T -  1) degrees of freedom. The results from this test are reported in table 9. The test 

statistics are given in brackets below the point estimates. Comparing the point estimates 

of the median with those of the biweight mean, there is a tendency for the biweight mean 

to give estimates that are further away from zero than those of the median. However, in 

only one instance is an estimated biweight mean different from zero at the 10 percent level.

Table 9

Test for biweight mean of zero

mark pound sfr yen
day -0.004 0.005 -0.012 -0.010

(-0.39) (0.56) (-0.97) (-0.11)
week -0.033 0.021 -0.078 -0.034

(-0.67) (0.44) (-1.33) (-0.81)
month -0.288 0.222 -0.531* -0.377

(-1.13) (0.90) (-1.80) (-1-48)
quarter -1.061 0.303 -1.268 -1.370

(-1.23) (0.38) (-1.26) (-1.60)

* significant at the 0.10 level
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Therefore, both from the median test and from the biweight mean test, it seems safe 

to maintain the hypothesis of a centre of location at zero, i.e. no drift in the random walk 

of exchange rates. This assumption considerably simplifies the statistical analysis and 

modelling of exchange rates in various instances.

In the previous section it was shown by analysis in the time domain and in the fre

quency domain, that there is no strong systematic variation in the mean of ut. However, 

there could still be unsystematic variation in the mean of ut in the sense that within the 

sample there are periods where the exchange rate followed a random walk with different 

parameters of drift p; . This would still be compatible with an overall drift parameter p 

of zero if some p /s  were positive and some negative. In fact, the naked eye reads some 

phases of appreciation and depreciation into plots like those given in figure l .11

The constancy of p will be tested by two fairly standard methods: the K  -sample 

version of the Brown-Mood median test and the Kruskal-Wallis test. The null hypothesis 

is: pj = P2 = .. • = M*, where k = 1,..., K is the index for the k -th subgroup of the sample. 

Without an a-priori perception of the number and size of the subgroups, it is difficult to 

test H0 in a rigorous manner. Hence, the following analysis should not be viewed as strict 

confirmatory testing but rather as exploratory data analysis. Since there is no natural 

division of observations into K  subgroups, different division will be employed. The data 

will be subdivided into sequences of equal length with lengths Tk of 20,60,120, and 240, 

respectively. This corresponds roughly to time intervals of a month, a quarter, half a year 

and a year.

The Kruskal-Wallis test imposes the restriction that the s are independent. In view 

of the results from the first section, this restriction is not too problematic. However, the

"McFarland, Pettit and Sung (1982) claimed to have found systematic day-of-the-week 
effects on the means of 7 dollar exchange rates. So (1987), however, questioned the validity 
of their results. Hsieh (1988) found mixed evidence on the day-of-the-week effect.
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Kruskal-Wallis test also assumes that the Mf’s have the same continuous distribution. Since 

the Kruskal-Wallis test is not based on the normality assumption, this test is nonparametric. 

The test statistic is based on order statistics of u, and is calculated by

(34) W = — ^ — i T l
I (i + 1)* = 1

where Rk denotes the mean rank in subsample k. A correction factor for W has been

included to take tied ranks into account (see e.g. Hollander and Wolfe (1973), pp. 115-119). 

The null distribution of W is asymptotically %2 with K -  1 degrees of freedom.

Table 10 reports the results from the Kruskal-Wallis test. The first column gives the 

approximate period length to which the size of the subsample corresponds and in brackets 

below it gives the degrees of freedom. Note that since the series of daily observations is 

slightly longer for the pound-dollar rate and slightly shorter for the yen-dollar rate, the 

degrees of freedom for subsamples of length 20 (approximately monthly) for these 

exchange rates are 169 and 167, respectively. The table gives the values of W together 

with the corresponding probabilities of the upper tail of the %2 distribution in brackets. 

As can be read from the upper-tail probabilities, there is overall a very strong rejection of 

Hq in all series. According to the Kruskal-Wallis test, the hypothesis of equal means is 

rejected in most cases at the 1 percent level of significance. The evidence against a constant 

mean seems to be strongest for the yen-dollar rate.

The Kruskal-Wallis test is a Chi-squared goodness-of-fit test based on the comparison 

of expected ranks with actual ranks within a subsample. As mentioned before, the test is 

based on the assumption that all ut have the same distribution. Since, apart from variability 

in the means of u„ there may be other distributional variability in u„ it is desirable to 

employ a test which is less restrictive in its assumptions and more robust to other dis

tributional variability. A fairly well-known test with these properties is the Brown-Mood 

median test.
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Table 10

Kruskal-Wallis test for equality of means

mark pound sfr yen
month 199.0 182.9 195.1 228.6
(168) (0.051) (0.221) (0.075) (0.001)
quarter 91.2 75.2 83.2 84.2
(55) (0.002) (0.036) (0.008) (0.007)
half year 48.4 49.6 46.2 61.6
(27) (0.007) (0.005) (0.012) (0.006)
year 29.2 26.7 28.6 32.9
(13) (0.006) (0.013) (0.007) (0.002)

Like the Kruskal-Wallis test, it is a Chi-squared goodness-of-fit test. Within each 

subsample, it compares the actual number of observations below the grand median with 

its expected number. The test statistic can be written in the form of (see e.g. Conover

(1971), pp. 167-172):

T 2 K
(35) BM = — —  S

a( l  - 7 j * . i

f  „ T \ 2 
n ak 1  k

V T> ~ T J

where n^  is the number of observations below the median in subsample k and a is the

corresponding number for the whole sample. Under H0, BM has an asymptotic ^-dis

tribution with K — 1 degrees of freedom.12

As can be seen from table 11 which reports the BM 's and the upper-tail probabilities

below the BM 's in brackets, the results from applying the Brown-Mood median test differ 

quite substantially from those derived from the Kruskal-Wallis test. According to the

12Evans (1986) has developed and applied a similar test. However, Evans (1986) controlled 
for overlapping subsamples and for picking the subsample with maximum deviations from 
H0 . Evans rejected the H0 of no speculative bubble for the dollar-pound exchange rate 
based on the fact that from 1981 - 1984 outright forward speculation would have been 
profitable ( for the strategy to be short in pounds ) in 39 months and resulted in a loss in 
9 months only.
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Brown-Mood test, there is only strong rejection of H0 for all period lengths in the yen-dollar 

rate. There is also some evidence against a constant centre of location for longer time 

periods in the mark-dollar and in the pound-dollar rate. With the exception of the yen-dollar 

rate, however, the overall evidence against a non-constant mean is much weaker than from 

the Kruskal-Wallis test.

The discrepancies in the results from applying these two tests can have various causes. 

First, since the Kruskal-Wallis test is based on ranks and the Brown-Mood test is only 

based on signs, the later is certain to have less power than the former. . On the other hand, 

the Brown-Mood test is more robust against variability of other distributional character

istics, such as heteroskedasticity, than the Kruskal-Wallis test.13 Since the properties of 

variances in the exchange-rate data will be examined next, this can give a partial answer 

to the question whether heteroskedasticity might have biased the results from the 

Kruskal-Wallis test.

Table 11 

Brown-Mood median test

mark pound sfr yen
month 152.8 175.2 155.6 232.8
(168) (0.794) (0.357) (0.745) (0.001)
quarter 69.2 68.5 54.9 92.4
(55) (0.094) (0.105) (0.477) (0.001)
half year 33.6 46.4 26.6 69.3
(27) (0.178) (0.011) (0.486) (0.000)
year 23.5 25.1 15.7 34.5
(13) (0.036) (0.022) (0.264) (0.001)

13Hsieh (1988) tested for equality of means within a regression framework employing 119 
monthly dummy variables. For 4 out of 5 dollar exchange rates, he rejected the null 
hypothesis.



It should be recalled that it was shown in the previous section how the squared values 

of Aet = ut exhibit quite strong serial correlation. As already mentioned, this phenomenon 

can be explained in terms of an autoregressive pattern of heteroskedasticity or in terms of 

bilinearity. The question is whether other remarkable properties with regards to variances 

(or more generally: with regards to dispersion or scale) can be found in the exchange-rate 

data. The variance of a random variable, defined as the second central moment, is supposed 

to measure the dispersion of a variable.

Since some economists claimed that the distributions of exchange-rate dynamics do 

not have finite variances (see the next chapter), it is instructive to compare for ut the 

variance with two other estimators of dispersion which are quite popular in exploratory 

data analysis and robust statistics, namely the so-called F-pseudovariance and the 

4.2-percent pseudovariance. Both are special forms of the more general p -  percent 

pseudovariance defined by

(36) L<& [( i - p ) - o  l(p) J

where F~l and O-1 are the inverse distribution functions of the empirical and a standard

normal variable, respectively.14 The F-pseudovariance employs a value of p = 0.25 and 

the 4.2-percent pseudovariance has, as the name indicates, a value of p = 0.042 . It is 

easily seen that under normality v(p) = a 2, i.e. the pseudo variance is equal to the variance 

for every p. In this respect, discrepancies between v(p) and o2 would indicate non

normality. The F-pseudovariance is a standardized interquartile range, i.e. a interquartile 

range divided by 1.349 . It is computed by dividing the difference between the (3T/4)-th 

and (T/4)-th order statistics of ut by O_I(0.75) -  d>_1(0.25) = 1.349. In case T/4 and 3T/4 

are not integers, the corresponding values of the inverse distribution function are deter

mined by interpolation.

14Westerfield (1977) questioned the use of the variance to measure variability of exchange 
rates and suggested to measure it by Gini’s mean difference and a statistic which is 
essentially a 0.28 pseudovariance.
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The 4.2-percent pseudovariance is a very interesting measure of dispersion because 

it stays almost constant for members of the Pearson system of frequency curves (see 

Andrews et al. (1972), pp. 166 - 168). The Pearson system of frequency curves will be 

examined in more detail in the next chapter. Here it suffices to mention that many popular 

probability functions are subsumed under this system, e.g. the normal distribution, the beta 

distribution and the t-distribution. Because of its relation to the Pearson system, it has been 

suggested to call the 4.2.-percent pseudovariance a Pearsonian pseudovariance.

Table 12 compares all three measures of dispersion for the u, -series. Several points

are noteworthy. First, the Pearsonian pseudovariance (PPV) is, with a few exceptions like 

the case of quarterly mark-dollar fluctuations, very close to the estimated variance (V). 

This can be interpreted as being an indication for the fact that the probability distribution 

of exchange-rate fluctuations falls within the Pearsonian system. Second, for shorter time 

periods, i.e. daily and weekly data, the estimated variance is much greater than the 

F-pseudovariance (FPV). This result reveals a marked divergence of the distribution of 

the ut*s from a normal distribution. Since the variance exceeds the F-pseudovariance by 

a considerable amount for short-run exchange-rate dynamics, it can be conjectured that 

either the empirical distributions have heavy tails or that there are some outliers in the 

data. A closer examination of distributional properties will follow shortly. Finally, table 

12 shows that for monthly and especially for quarterly data the F-pseudovariance is quite 

close to the variance. This suggests that discrepancies of the empirical distributions from 

the normal distribution disappear at longer time horizons of exchange-rate movements.

The apparent non-normality of short-run w,’s casts some doubt on a result derived

in the previous section. In studying the autocorrelation function of squared exchange-rate 

changes, it was found that there is some time dependence in the m,2 -series. Since the 

Ljung-Box statistic Q and the standard errors of autocorrelation coefficients assume 

normality of the ut’s, the autoregressive pattern of heteroskedasticity may just be an artefact 

of non-normality. This calls for an investigation of heteroskedasticity with more robust 

methods. Levene’s test for homogeneity of variances is such a robust method in the sense
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Table 12

Variance, F pseudovariance and Pearsonian pseudovariance

mark pound sfr yen
day V 0.46 0.44 0.67 0.38

FPV 0.28 0.20 0.35 0.19
PPV 0.45 0.43 0.62 0.38

week V 2.16 2.06 2.95 1.64
FPV 1.08 1.28 1.80 0.94
PPV 2.26 2.02 3.38 1.62

month V 11.5 10.5 15.0 11.4
FPV 8.4 9.6 11.2 7.3
PPV 12.6 10.0 13.4 11.6

quarter V 38.9 31.5 54.1 38.2
FPV 37.1 38.5 56.4 39.8
PPV 56.2 26.3 61.7 37.1

that its actual size nearly equals its nominal significance level for a variety of underlying 

distributions. In comparing 56 tests for homogeneity of variances, Conover et al. (1981) 

found that a version of Levene’s test defined by

( T -K )  X Tt(wt - w f
(37) A = ---------- kf \ --------—

( A T - 1 )  S  'L(wk, - w kf
* = 1 / = 1

was among the best 3 tests in terms of robustness and power. It is apparent from (37) that 

Levene’s test is based on a one-way analysis of variance for =| u -  uk |, where uk is 

the median of the u/s  in the k -th subsample. The null hypothesis of equal variances in 

the K subsamples, H0:d\ = ... = c^, will be rejected if A exceeds the (1 -  a) -quantile 

of the F-distribution with ( K - l )  and (T - K) degrees of freedom. The selection of sub

samples is the same, quite arbitrary, one as in the case of testing for constancy of means. 

The results are reported in table 13. The numbers in brackets below the estimated values
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of A are the numerator and denumerator degrees of freedom, respectively. Only for 

subsamples of length Tk = 20 are there small variations in these degrees of freedom due 

to slightly different overall sample sizes.

Table 13

Levene’s test for homogeneity of variance

mark pound sfr yen
month 
( Tk = 20)

5.2
(168,3211)

5.7
(169, 3230)

6.1
(168, 3211)

6.5
(167,3192)

quarter 
( Tk = 60)

11.0
(55, 3304)

13.3 10.4 13.3

half year 
(Tk =120)

15.6
(27, 3332)

19.0 14.1 22.9

year
(7 , = 240)

25.8
(13, 3356)

32.7 21.8 42.8

For all entries of table 13 the A -estimates fall far into the upper tail of the corre

sponding F-distribution.15 In fact, for all 16 A -values of this table, the empirical sig

nificance level is at least of order 10"11. However, apart from indicating that there is 

extremely strong evidence for heteroskedasticity in the data, the Levene test does not 

identify any structure of heteroskedasticity, nor does the test identify the subsamples with 

abnormal variance.16

15This confirms and extends Hsieh’s (1988) result based on monthly subperiods for 5 daily 
dollar exchange rates.
16 In an early study, Logue, Sweeney and Willet (1978) calculated variances of daily 
exchange-rate changes for 3 equal subperiods of their total sample which ranged from 
April 1973 through January 1976. For all 7 exchange rates analysed, they observed a 
decline in the variance from the first to the last subperiod. They attributed this to the fact 
that the foreign-exchange markets became deeper and more liquid. However, with a longer 
sample period (June 1973 - September 1979), Friedman and Vandersteel (1982) showed 
that there is substantial but unsystematic heteroskedasticity.
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Figure 6 provides some insight into the extent and pattern of heteroskedasticity for 

the mark-dollar exchange rate. The variance for subperiods of length 20, displayed in figure 

6a, indeed show marked variability. However, there does not appear to be a clear pattern 

for these approximately monthly periods. Periods of turbulence and periods of tranquillity 

seem to follow one another in a rather random way. Looking at the display of variances 

(solid line) and the subperiod averages of (dashed line) in figure 6b, one tends to detect 

a positive trend and cyclical variation in volatility. With only 28 observations, however, 

this probably reads too much into the data.

Figure 6

Variances in subperiods: mark-dollar

a) monthly subperiods b) half-year subperiods
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Another, but related, aspect which is interesting to investigate is the influence on the 

variance when the m,’s  are summed. Note that in the previous analysis, daily observations 

within different time intervals were compared whereas now the observations are summed 

to get exchange rate movements over longer time spans. Define the variable h ( i )  by

(38) hn(T) = ! « „ „ , .  for = 0 ,1 ,2 , . . . ,
1 =  1

then it is straightforward to show that
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(39)

or that one gets for the variance ratio

(40)

if the ut ’s are stationary, independent and homoscedastic. This means, for instance, that,

under the stated assumptions, the variance of weekly exchange-rate movements would be 

expected to have approximately five times the variance of daily data.

There are different ways to view and test (40). It can be shown ( see e.g. Cochrane

(1988)) that

where py is the autocorrelation coefficient of ut . Furthermore, VR (x)aj is equal to the

Bartlett estimator of the spectral density at frequence zero.

There has recently been a renewed interest in the statistic VR(i) in connection with

the issues of stationarity and mean reversion. Cochrane (1988), for instance, argued that 

the variance ratio with a long lag x provides a better measure of persistance of shocks 

than the application of parsimonious ARIMA models which are based on low order 

autocorrelations. It can be seen from (41) that the variance ratio is related to autocorrelations 

with linear declining weights. Under independence pj = 0 for all j  and, therefore, 

VR(t) = 1 for all x . On the other hand, positive low-order autocorrelations may be 

compensated by negative high-order autocorrelations and this would imply eventual mean 

reversion, at least in part.

As a final interpretaion of the variance-ratio statistic, it can be shown that VR(x) is 

equal to the ratio of the variance of a permanent innovation ( i.e. the variance of the random

(41) r a ( x ) = l + 2 X ^ p , .
7 =  1
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walk component) to the instantaneous variance of the series ( i.e. the variance ^  ). This 

decomposition of variances is independent of the specification of the time-series model 

(see Cochrane (1988)).

These interpretations of the VR statistic reveal that it is closely related to time-series 

properties. From the analysis of the previous section one would conclude that, first, the 

series et has one and only one unit root, second, there is only minor evidence for serial 

dependence in the series ut = et - e t_l and, third, there is strong evidence for heteroske

dasticity. Therefore, I concentrate on the assumptions of independence and homoske- 

dasticity in testing the null hypothesis V7?(x) = 1.

It is quite straightforward to derive an asymptotic distribution for VR(t) but Lo and

MacKinlay (1988) introduced some interesting modifications of the VR statistic. First, 

instead of defining VR (t) with respect to non-overlapping intervals, as in (38), they suggest 

to define VR(z) with respect to overlapping x-th differences of e, in order to extract all 

information from the series and to obtain a more efficient estimator. The variance of the 

x-th difference is, therefore, defined by

where p is the estimated mean of the series ut and n =x ( T -x  + 1)(1 -x/T). Asym

ptotically, V7?(x) has a normal distribution and the test statistic

has asymptotically a standard normal distribution.

The second modification of the VR statistic allows for heteroskedasticity under the 

null hypothesis. The corresponding test statistic is 17

(42)

(43)

(44)

where

17 Note that Lo and MacKinlay (1988, 1989) report an erroneous formula for z2(x).
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(45)

and

X (ct 6t _ i H) (6t _j €t - j - 1 M>)
t = j  + 1_____________________________________________________________________

T

(46) 5 (/) =

Equation (45) is derived from (41) and 8(/) is the estimated variance of the autocorrelation 

coefficients. Asymptotically, z2(x) has also a standard normal distribution.

extensive simulation studies, Lo and Mackinlay found that both Zj(x) and z2(x) are closest

for 1 < t < 1 0 0  one gets reliable VR statistics z,(x) and z2(x) for sample sizes of a 

magnitude similar to the ones of this study.

The function VR(t) is sometimes called the variogram. Figure 7 displays, for ease 

of interpretation, the variogram statistics Zj(x) as solid lines and z2(x) as dashed lines.

percent. The plots of the variogram statistics show that, with a few exceptions for the mark 

and sfr series, nearly all variogram statistics are positive, i.e. the variance grows faster than 

expected under time aggregation. However, none of the zt(x) or z2(x) statistics are 

significant for the mark and sfr series, although Zi( 100) = 1.95 for the mark is at the margin 

to be significant. For the pound series, ^(x) is significant, at the 5 percent level, for x > 54 

but z2(x) is not significant for any x<100. Since z2(x) is robust to heteroskedasticity, 

this indicates that for the pound, the rejections of H0 can be attributed to heteroskedasticity. 

Furthermore, z2(x) is always smaller in absolute value than Zj(x) for all four series. In 

the plots for the mark, pound and Swiss franc, there is a clear tendency for both z,(x) and 

z2(x) to increase with x . The upper limit of x = 100 was not set in order to produce a 

desired result but in order to conform with the simulation results of Lo and MacKinlay

A crucial point in the application of the variance-ratio test is the choice of x. In

to their nominal size when x is small. More specifically, their simulations showed that

Also shown is the upper critical value of 1.96 corresponding to a significance level of 5
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(1989). They showed that the size of the VR test increases substantially with x and 

surpasses the nominal level of a  = 0.05 between t  = 64 and T= 128 when T =  1024. 

Furthermore, nearly all rejections come from the upper tail when T is large relative to T.

Figure 7

Variogram statistics z ,(t) andz2(x) 

a) mark b) pound



For the yen series, Z \ ( t ) is significant for all T > 4 and z 2( t )  is significant for all

t  > 5. The deviation from the expected variance ratio in the case of the yen is probably not 

very surprising. Recall from the previous analysis that there was some evidence against 

the null hypotheses of white noise and of a constant mean for the yen.

One may conclude from the variance-ratio tests that they provide no additional 

evidence for serial dependence for the mark, pound and sfr, but confirm earlier findings 

of serial dependence in the yen series. In addition, the discrepancies between the zt(T) and 

z2(X) statistics for all four series indicate substantial heteroskedasticity in these series.18

The final investigation into the behaviour of variances will be concerned with 

sequential variances. I calculated the variances

T
(47) 4 ,= -jr—: 2  («, -  «„)2

stepwise by setting Tx — 10 and adding 10 more observations at each following step. This

gives a sequence of variances for the first 10, 20, 30, ... observations. Granger and Orr

(1972) proposed to plot this sequence of variances against Tn. If all ut come from the 

same distribution with variance c t h e n  should converge to A failure of 

convergence could be a sign that ut does not have finite variance. Since the publication 

of Mandelbrot’s seminal paper (Mandelbrot (1963)), the hypothesis of infinite variance 

has been very popular in the empirical financial-markets literature. This hypothesis has 

been put forward to explain fat tails in the frequency distributions of stock-price changes. 

As will be shown in more detail later, this fat-tail property is also typical for exchange-rate 

data. Granger and Orr noted, however, that their graphical ’converging variance test’ does 

not give a sufficient condition for the presence of infinite variance since non-convergence

18 Lin and He (1991) did a similar analysis with weekly exchange rates. They got mixed 
results but their interpretation is unclear. Furthermore, the relationship between Zi(t) and 
z2('t) seems to be implausible in their study.

50



can also be caused by non-stationarity or non-independence. Although no strong conclusion 

can be drawn from the sequential variances, it is still instructive to look at the plots within 

an exploratory data analysis. The plots are displayed in figure 8.

The sfr-dollar series and the yen-dollar series, somewhat later than the sfr-dollar rate, 

appear to have reached almost stationary values of their variances. The mark-dollar series 

and the pound-dollar series, on the other hand, show an upward tendency in the sequential 

variances. Note, too, that the sfr-dollar series of ut has the highest variance among all 

four series (cf table 12). The upward trend of variances in the mark-dollar and pound-dollar 

series could thus be interpreted as a convergence to a stationary variance which is similar 

to that of the sfr-dollar series. On the other hand, if an economic explanation is sought for 

the fact that the yen-dollar series exhibits a lower level of variance than the other three 

series, it might be the case that the Japanese authorities restricted the erratic movements 

of the exchange rate by intervention or other means. As this stage, however, all this is 

speculative.

Figure 8

Sequential variances: daily exchange rates
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c) sfr d) yen
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Turning next to third moments, the skewness of a variable measures the asymmerty 

of the underlying distribution. The most popular measure of asymmetry is Charlier’s 

skewness measure defined by

(48) -
K

where p., is the i-th central moment of the distribution. In an empirical measure of skewness,

the theoretical moments of (48) are replaced by the empirical ones, hence the empirical 

counterpart to (48) is

i— tri-i
(49) •m2

The normal distribution, like any other symmetrical distribution, has ^[^l = 0. So it

is natural to regard a test of Vp7 = 0 as a test for symmetry. Even for a large number of 

observations, the distribution of the standardized value of does not follow a standard
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normal distribution under the null hypothesis. However, there is a quite complex trans

formation available which leads approximately to the standard normal distribution (see 

Bowman, Shenton (1986)).19

The estimated values of for different time spans of Aet are reported as the

upper numbers in each cell of table 14. It is apparent from the attached stars, which indicate 

significance levels, that a test for symmetry based on Charlier’s skewness leads to strong 

rejections of H0 for daily and weekly data. With the exception of the monthly pound-dollar 

dynamics, the empirical distributions of Aet for longer time spans seem to be free of 

asymmetry.20 Furthermore, all estimates of skewness, which are significantly different 

from zero, are negative, i.e. the frequency distributions are skewed with respect to a 

depreciation of the dollar.

At this point, it is interesting to reconsider the form in which exchange rate dynamics 

are analysed. The most widely used form is that of first differences of logarithms, which 

is also adopted throughout this study, i.e.

(50) Aet = lnEf- l n E f_1 .

Some economists use percentage changes of the exchange rate, i.e.

Since Aet is simply the logarithm of rt + 1, the former variable is derived from the latter

by a concave transformation. This transformation has the effect of decreasing the coeffi

cient of skewness. Thus, it is interesting to study to what extent the significantly negative 

values of ^Jb[ are a consequence of using (50) rather than (51) as a measure of

191 apply here an approximation by Johnson curves. In large samples, the distribution
of the transformed statistic Vp ’ i is approximately normal with mean zero and variance 
6/T.
20 For similar results, but with a somewhat vague interpretation, see Boothe, Glassman 
(1987).



exchange-rate movements. In each cell of table 14, the lower number is the skewness for 

rt. As the comparision with the skewness of Aet shows, there are several series (daily 

pound and sfr, weekly sfr) in which the logarithmic transformation is responsible for 

significant negative skewness and there is only one case (monthly sfr) where the trans

formation removes a positive skewness in rt which was significant at the 0.05 level. 

However, even for the r, series, there remains strongly significant negative skewness for 

the mark-dollar and the yen-dollar dynamics at shorter time spans (day, week).

Table 14

Test of skewness of zero: Aet and rt

mark pound sfr yen

day Aet) -0 37*** -0.14*** -0.11** -0.61***
-0.30*** -0.07* -0.01 -0.55***

week V ^( Aet) -0.30*** 0.01 -0.25*** -0 99***
-0.19** 0.15 -0.15 -0 89***

month V^( Aet) -0.02 -0.55*** 0.19 -0.27
V^(r,) 0.12 -0.42** 0.38** -0.14

quarter Aet) 0.15 -0.004 -0.43 -0.46
0.30 0.14 -0.25 -0.33

Significance levels: see table 3

It is instructive to examine transformations to symmetry in more detail for the

exchange-rate data rt . The family of power transformations can be defined by:

(52) v 6rt = j (* '~ 1)'5for
( ) y?() [in* for S = 0.

Sometimes, (52) is called the Box-Cox transformation. The aim is to find a value of £

which is optimal in some sense. For the objective of obtaining symmetry, Emerson and 

Stoto (1982) proposed a simple exploratory method (see als Emerson (1983)) which is
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based on so-called letter values (see Hoaglin (1983)). Letter values, which are much used 

in exploratory data analysis, are approximately equal to the quantiles Ek = 2~k with 

k = 1 ,2 ,3 ,.... The letter values are order statistics defined by their so-called depth d 

which is recursively determined by

l + i n t ( < 4 _ , )
(53) dt =

where int(dt _,) denotes the integer part of the previous depth. The initial depth 0»

corresponding to the median (s^, is (l + r)/2 . To each depth, there corresponds a lower 

letter value xt(k) which is the dk -th order statistic and an upper letter value xu(k) which 

is the (T -  dk + 1) -th order statistic. Emerson and Soto propose to plot

xt( k ) - x u(k) _
(54)

on the ordinate against

(55)

- x

(*,(£)-x )2+ (*,,(£) -* )  
4x

~ \2

on the abscissa. On the ordinate, the difference between the midsummaries and the median 

x  is plotted. For a symmetric distribution, this difference is zero for all values of k .

a) mark

Figure 9

Transformation plots for symmetry: daily series of r,
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c) sfr d) yen
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Figure 9 shows the transformation plots for symmetry of daily exchange-rate changes 

in the form of rt. If logarithmic transformations were necessary to achieve symmetry, the 

points in the plot would be close to a straight line with slope 1. If, on the other hand, no 

transformation to symmetry was necessary, all points would lie around the abscissa. 

However, the plots suggest that lines with negative slopes would fit the points in the plot 

best, the only exception being the plot for the sfr whose highest four letter values are 

somewhat out of line. An estimate of £ can be obtained from the relation

x ,(k )-xu(k) _ (x,(k
(56)  r  * - ( 1 - 0     .

If all points in a transformation plot are close to a straight line, a good estimate of £

is given by 1 minus the slope of the line, as (56) suggests. With some outliers in the plot, 

like those in figure 9, it is best to choose a robust estimate of Since (56) can serve to 

give an estimate of £ for each value of k = 1,. . . ,K ,  the median of all K  estimates is 

a quite robust estimator of These median estimates are reported in table 15 for all 16 

series of rt. The £ estimates are highest for the yen-dollar series which also shows 

stronger skewness to the left in rt than the other series. In general, there is a quite marked 

correspondence between the £ estimates in table 15 and the skewness coefficients in table 

14. Large values of £ correspond to small values of yjbl, as it should be. Only one of
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the estimated power coefficients is near 1. The fact that all other coefficients are quite 

distinct from 1 should not be used for a recommendation to actually apply the respective 

transformations. It would certainly seem odd to work with a series of (Ef/Ef _ 1)11'7 for the 

weekly yen-dollar rate. Rather, the transformation plots and the estimation of power 

coefficients are applied here to highlight symmetry or the lack thereof.

Table 15 

Estimates of power coefficients £

mark pound sfr yen
day 5.6 -1.2 2.4 12.6
week 3.1 -1.6 4.2 11.7
month 0.3 0.8 0.5 6.4
quarter -1.0 -0.9 3.1 4.9

In order to round off the analysis of symmetry, I apply a test which is more robust 

than the skewness test and more rigorous than the transformation plots. It is more robust 

than the skewness test because it does not assume normality under H0. This test, suggested 

by Randles et al. (1980), is based on the U statistics

i f  t Y
(57) T j = :  ,  XXXsign(x(i)+x(k)-2 x (iX3 V^ J  i <j  <k

In (57), jc() is an order statistic of the variable Aet. The summation in (57) is over the

so-called kernel functions. This sum is more easily understood to be the number of right 

triples minus the number of left triples, where a right (left) triple is defined by the condition 

that the mean of the 3 order statistics x(/),jc(/),jc(jt) is greater (smaller) than their median. A 

standardized form of f\ has the standard normal distribution as a limiting distribution. 

Since the test is only based on signs, it is robust to outliers. In particular, it does not assume 

normality as the skewness test does. Furthermore, it compared favourably to the skewness
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test in terms of empirical power and empirical size in simulations (see Randles et al. (1980)). 

The estimates f\ are shown in table 16. The results of this U-test are drastically different 

from those of the skewness test. The evidence of asymmetry disappears virtually. Only in 

the daily yen-dollar series is f\ different from zero at the 0.05 level and at the 0.10 level, 

the daily pound-dollar series has an r| which is significantly different from zero. All other 

coefficients are not significantly different from zero. However, for most series is the sign 

of f\ equal to the sign of

Table 16 

U-test for symmetry

mark pound sfr yen
day -0.010 -0.031* -0.015 -0.028**
week -0.007 0.005 -0.010 -0.028
month -0.010 -0.017 -0.015 -0.039
quarter 0.015 0.011 -0.039 -0.051

For some statistical models of exchange-rate dynamics, which will be introduced in 

the next chapter, it is difficult or impossible to incorporate an asymmetric distribution. It 

is thus fortunate that the U-test provides an alibi for ignoring asymmetry.21

There is no intention to examine all moments of order up to k as k goes to infinity,

but an analysis of fourth moments, as the highest to be examined, gives some useful insight 

into distributional aspects of the data. Chapter 2 will provide a justification for analysing 

only moments up to order 4. The most popular statistic based on fourth moments is the 

kurtosis p2 defined by

21 Calderon-Rossell and Ben-Horim (1982) and Westerfield (1977) tested for symmetry 
with a sign test on the empirical mean. Westerfield found no evidence against symmetry 
in 5 weekly dollar exchange rates but Calderon-Rossell and Ben-Horim reported some 
evidence against symmetry for some of the daily exchange rates they analysed.
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(58) P2 = ̂  , .
Ml

i.e. it is the fourth central moment divided by the square of the variance. It can be shown 

that P2 ^ 1 and that for the normal distrbution p2 -  3. With respect to the kurtosis of the 

normal distribution, the excess p2 is defined as p2 =  P2 -  3 .22 Kurtosis is a location- and 

scale-free measure which increases when probability mass is shifted from the shoulders 

of the distribution into the tails and centre of the distribution, i.e. kurtosis measures both 

tail weight and peakedness (see Balanda, MacGillivray (1988)). This dual character of 

kurtosis is a consequence of the fact that any movement of mass from the shoulders to the 

centre of the distrbution must be accompanied by a simultaneous shift of mass into the 

tails (et vice versa) if the variance, by which p 2 is standardized, is to remain constant.

In the empirical measure of kurtosis (b2), the theoretical moments are replaced by

empirical ones. A test of the null hypothesis H0:$2 = 3 is, of course, a test of normality, 

but more specific it is a test for mesokurtosis with the two-sided alternatives of platykurtic 

(P2 <  3) and leptokurtic (P2 >  3) distributions, i.e. the alternatives are either strong 

shoulders or fat tails and / or peakedness. A quite complex transformation of b2 leads to 

a test statistic which has an approximate standard normal distribution under H0 (see 

D’Agostino (1986) )23.

The values of b2 are reported as the upper number in each cell of table 17 for the

series of Aet. As the table shows, there is extremely strong leptokurtosis in the daily and

22There is a considerable amount of confusion in the literature about the meaning and even 
about the definition of kurtosis. Often, kurtosis and excess are confused. Some standard 
statistical software packages (like S AS and RATS) report skewness and kurtosis statistics 
but actually do not compute them as they are defined in (49) and (58). Instead they compute 
Fisher’s k statistics which are only asymptotically equal to skewness and kurtosis, 
respectively (see D’Agostino et al. (1990)).
23 Even for large samples, the distribution of p2 is not normal under the H0 of normality. 
I apply here an approximation due to Anscome and Glynn. Sometimes the normal 
approximation with a mean of 3 and a variance of 24/T is used. However, even for samples 
with T = 1000 this is a poor approximation because, due to the lower bound of p2 at 1, 
the distribution of p2 is skewed.
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weekly series. In the monthly series, the null hypothesis of mesokurtosis can be rejected 

at the 0.05 level for 3 exchange rates, whereas no rejection of H0 is possible for any of 

the quarterly series. This means that leptokurtosis is essentially a property of short-run 

exchange-rate dynamics. It is only moderately inherent in monthly series and vanishes 

completely in quarterly data.24

Table 17

Test for mesokurtosis and octile measure of shape

mark pound sfr yen

day b2 8.32*** 8.36*** g g q * * * 8.00***
M 1.49 1.75 1.54 1.64

week b2 5.84*** 7.36*** 4.96*** 7.03***
M 1.69 1.47 1.45 1.56

month b2 3.87** 415*** 4  iq * * * 3.62
M 1.34 1.32 1.47 1.60

quarter b2 2.67 2.72 2.77 2.62
M 1.24 1.20 1.34 1.01

Significance levels: see table 3.

Due to the fact that (32 is based on the standardized fourth moment, this measure of

distributional shape is clearly outlier-prone. It would, therefore, be desirable to have a 

robust measure of shape, i.e. a measure of concentration of mass in the tails and near the 

centre of distribution which is more resistant to extreme observations. Recently Moors 

(1988) suggested such a measure based on the octiles of a distribution. The i-th octile Ot

of a random variable x  is defined by P(X < 0,) = i/8, for / = 1, ,7. Since peakedness

and heavy tails imply a reduction of mass in the shoulders of the distribution, Moors 

proposed to measure these distributional shapes by the concentration of mass around the 

2nd and 6th octile. Moors’ shape measure is defined by

24 See also Boothe and Glassman (1987).
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The approximation of the shoulders of the distribution by the distance between 0 1

and 0 3 and between 0 5 and 0 7 can probably be optimized, but it seems to capture the 

essential shape characteristics well. Moors (1988) showed that there is in general a positive 

but non-linear association between (32 and M for several families of distributions.

The normal distribution has M = 1.23 To facilitate the interpretation of the M

measure for the exchange-rate series reported in table 17, some further benchmarks are 

needed. The double exponential (or Laplace) distribution has M = 1.59 and P2 = 6 (see 

Moors (1988), p. 29). For the ^-distribution with v degrees of freedom, the kurtosis is 

given by P2(v) = 3 (v -2)/(v -4) v > 5. This yields P2 (5) = 9, P2 (7) = 5, P2 (10) = 4, P2 

(30) = 3.38, for example. On the other hand, the corresponding Moors measures of shape 

for the ^-distribution with different degrees of freedom are: M  (5) = 1.33, M  (7) = 1.30, 

M  (10) = 1.28, and M  (30) = 1.25 . Moors M  coefficients for the 16 exchange-rate series 

are reported in the bottom row of each cell in table 17. For each exchange-rate, there is a 

tendency for M  to decrease as the time interval increases. Without formal testing of M, 

which is not yet available, it is difficult to make precise statements about convergence to 

normality under time aggregation as measured by M . However, quarterly series would 

clearly be classified as showing no sign of peakedness or heavy tails, whereas the evidence 

for peakedness or heavy tails is quite strong in all daily and weekly series. For monthly 

series, M  is not quite so high but, as compared with the benchmark values from the double 

exponential and the f-distribution, there are still some marked deviations from the shape 

of a normal distribution. On the whole, the results from the outlier-resistent measure M



confirm the results derived from b2: short run exchange-rate dynamics are characterized 

by an excessive amount (compared with the normal distribution) of very small and of very 

large fluctuations.25 Under time aggregation this property disappears.

Finally, I will examine the distributional properties of exchange-rate data in more 

detail and in a more general form. If one wishes to test the empirical distribution of exchange 

rates against a specific probability distribution, one would certainly pick the normal dis

tribution for the null hypothesis first. This choice can be justified in two respects. First, 

the central limit theorem gives this distribution as the limiting distribution for a sum of 

independent and identically distributed random variables with finit mean and variance. 

The foregoing analysis has shown that the assumptions of mean-independence and finite 

mean and variance are probably unproblematic. The critical assumption, however, seems 

to be the one of identical variances. It also fits well into the asset-market theory of 

exchange-rate determination to regard exchange-rate dynamics as being caused by a large 

number of random variables, see equation (5). Second, the normal distribution plays a 

central role in statistical testing and many of the previous tests are based on the normality 

assumption. Hence, testing for normality can shed some light onto the question whether 

these tests are reliable or whether the non-parametric tests, which also have been applied, 

are more appropriate.

Based upon previous skewness and kurtosis tests, one can produce a powerful 

omnibus test of normality. The test statistic is

(60) G2 = + Zi(b2)

25 Friedman and Vandersteel (1982) found excessive mass in the tails of the distribution 
by counting the number of daily observations beyond ± 3 standard deviations. They also 
detected abnormally long tails by applying the studentized range statistic.
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where Z\ and z2 are derived from the approximations to the normal distributions discussed

above (see also D’Agostino (1986)). Under the H0 of normality, G2 has approximately 

a x2 distribution with 2 degrees of freedom26. The results are reported as the upper number 

in each cell of table 18.

Overall, the same pattern emerges as in the kurtosis test. The omnibus test rejects 

normality for all daily and weekly data at very high significance levels. On the other hand, 

there is only moderate evidence against normality in the monthly data and no evidence at 

all in the quarterly data. Interestingly, the omnibus test does not reject normality for the 

monthly mark series, although this series has significant leptokurtosis (at the 5 percent 

level). For the monthly yen series, on the other hand, the omnibus test rejects normality 

at the 10 percent level, although none of the two component tests is significant at this level.

There are two important classes of goodness-of-fit tests for normality: the moments 

based tests, to which the omnibus test belongs, and tests based on empirical distribution 

functions (EDF). Stephens (1986) recommends the Anderson-Darling test from the class 

of EDF tests. Like the popular Kolmogorov-Smimov test, the Anderson-Darling test is 

based upon the vertical difference between the empirical distribution function and the 

theoretical distribution function F, but it has more power than the former.27 The test 

statistic is given by:

(61) AD = -T -}~  £  [(2/ -  l) ln f, + (2 r+ 1 -2i')ln(l -F ,)].
T  1 = 1

26 Some standard econometric software packages like Microfit and PC-GIVE employ the 
Jarque-Bera test of normality which is also an omnibus test of normality based on the 
skewness and kurtosis statistics (see Jarque and Bera (1980)). However, the Jarque-Bera
test employs the simple normal approximation to the distribution of and b2. As 
mentioned before, this approximation is poor even for large samples with T = 1000. The 
same applies to the very similar test of Kiefer and Salmon (1983).
27 As D’Agostino (1986, p. 406) put it: "For testing for normality, the Kolmogorov-Smimov 
test is only a historical curiosity. It should never be used." Giddy and Dufey (1975) applied 
the Kolmogorov-Smimov test for 3 daily exchange-rate series of the early 1970’s. They 
rejected the H0 of normality for all series. Boothe and Glassman (1987) used a Chi-squared 
test and the Jarque-Bera test. Their results agree with mine reported below.
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In order to perform the test, the standardized observations have to be put in ascending 

order (i = \,...,T )  and the corresponding value of the cumulative normal distribution 

function has to be calculated for all observations. Note that the Anderson-Darling test does 

not assume the mean and variance to be known. For a small number of observations, there 

is a modification of the test statistic given by

(62) AD =AD
/ , 0.75 2.25 A

1 + ^ —+ '
T2\  1 J

Table 18 shows the results for all 16 series. As the asterisks, representing significance 

levels, indicate, the results from the AD statistic are quite similar to those from the omnibus 

test. Normality is overwhelmingly rejected for daily and weekly data. It is quite peculiar 

that the only monthly series for which the normality of ut is rejected is the yen-dollar 

series whereas in the omnibus test, normality could not be rejected at the 5 percent level 

for this series. This demonstrates that these tests are sensitive to different distributional 

aspects. With the exception of the monthly yen-dollar series, the normality assumption 

seems to be a good approximation for monthly and quarterly exchange-rate dynamics.

Table 18 

Tests for normality

mark pound sfr yen

day G2 470.4 *** 414.5 *** 434 9 *** 556.2 ***
AD* 24 j *** 45.5 *** 32.9 *** 43 2 ***

week G2 62.3 *** 76.6 *** 42 3 *** 115.1 ***
AD* 6.5 *** 5.6 *** ^ ^ *** g g ***

month G2 4.0 13.7 *** 7.1 ** 4.7 *
AD* 0.6 0.5 0.6 * 2.2 ***

quarter G2 0.3 0.1 1.9 2.5
AD* 0.2 0.4 0.5 0.7 *

Significance levels: see table 3
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In order to gain more insight into the distributional properties, box-plots are displayed 

in figure 10 for the four sfr-dollar series. Boxplots have become a popular graphical tool 

in exploratory data analysis. It is a display based on seven order statistics. A box is drawn 

such that its left and right ends are at the values of the first and third quartile, respectively, 

while the crossbar represents the median. Next, a line is drawn from each end of the box 

to the most remote data point which is not regarded as an outlier. This point is marked by 

a fence (sometimes also called whisker). The fences represent those data points which 

have probability 1 IT of being surpassed if the data came from a normal distribution.

Figure 10

Boxplots for sfr-dollar exchange-rates

-5% *5%
h • H
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*  4 3 *
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The parameters of the normal distribution are the empirical median and Pearsonian 

pseudovariance. The asterisks show the two extreme observations, i.e. the minimum and 

maximum. The number between an asterisk and a fence indicates the total number of 

observations beyond that fence. Finally, dashed boxes are drawn into the plots to indicate

65



the first and third quartiles which would be obtained under a normal distribution with the 

variance estimated by the Pearsonian pseudovariance. The scale above the boxplots 

indicates the magnitude of a 5 percent appreciation and a 5 percent depreciation, 

respectively.

Several features of the data can be read from the boxplots of the sfr-dollar series 

which are representative of boxplots of all series. First, there is no apparent asymmetry in 

the distributions since the median lies roughly half way between the quartiles. Second, 

since the actual first and third quartiles are, in general, somewhat nearer to the median 

than the normal quartiles, there must be some concentration of mass around the centre. 

However, peakedness cannot come out clearly from these boxplots because the quartiles 

extent right into the shoulders of a distribution. Third and most important, for short-run 

exchange-rate dynamics, especially for daily data, there is a great number of observations 

which can be classified as outliers if reference is made to the normal distribution. For 

instance, the lower and upper quantiles marked by the smallest and largest data in the daily 

sfr-dollar series have probabilities of the order 10-7, i.e. observations of this magnitude 

would be expected to occur once, on average, among 10 million observations. On the other 

hand, monthly and quarterly data do not contain many outliers. There is one extreme 

monthly depreciation of the sfr28 but there is no excessive number of observations beyond 

the fences in any of the monthly and quarterly series.

More detailed information about the shape of the empirical distributions in com

parison with a normal distribution is provided by figure 11. As in a Chi-squared test of fit, 

the normal distribution is divided into K equi-probable quantiles. A rule of thumb for the 

optimal number of quantiles is given by K = 4(2T /c (a )) , where c(a) is the upper 

a-quantile of the standard normal distribution and a  is a chosen significance level (see 

Moore (1986), pp. 69-70). For a  = 0.05 one gets approximately 100,50 and 30 quantiles

28 This depreciation by 16.7 percent occurred in November 1978. It was caused by strong 
support measures to stop the previous decline of the dollar. They were announced on 
November, 1st by the Carter administration and within a day the dollar appreciated by 5.6 
percent.
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for the daily, weekly and monthly series, respectively. In order to conform with Cochrane’s 

rule, the number of quantiles is 10 for quarterly series. For each quantile, the actual number 

of observations (solid line) is compared with the expected number under a normal dis

tribution (dashed line). To save space, only the comparisons for the four pound-dollar 

series are displayed in figure 11.

Figure 11

Empirical and normal distribution: pound-dollar
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The previous analysis showed that there is significant departure from normality in 

short-run exchange-rate dynamics, i.e. in daily and weekly series. The non-normality was 

revealed both by the kurtosis test and by the Anderson-Darling test. Leptokurtosis, 

however, can be caused by peakedness or by heavy tails. Figure 11 shows that in daily 

pound-dollar series, excessive mass can be found in the tails and at the centre of the 

distribution. In the weekly series, however, non-normality seems to be entirely due to 

peakedness. Only a mild form, if any, of peakedness can be seen in the monthly 

pound-dollar series. In the few quantiles of quarterly series, no pattern of discrepancies 

between actual and expected numbers of observations can be detected. It should be 

emphasized that the other three exchange rates show exactly the same pattern in their 

quantiles with the exception that there is no sign of peakedness in the other three monthly 

series.

1.4 PROPERTIES OF EQUIDISTANT DATA

The stylized facts produced in this chapter shall serve as guidelines for the stochastic 

modelling of the exchange-rate data. However, before this modelling is undertaken, I want 

to check whether there is a trivial explanation for heteroskedasticity and leptokurtosis in 

the data. It should be bome in mind that the observations in all series are not strictly 

equidistant in time. If one assumes that a stationary stochastic process, which is continuous 

in real time, generates the exchange-rate dynamics then gaps in the time series caused by 

weekends and holidays provide the most obvious explanation for leptokurtosis. To take 

the simplest possible case, assume that daily, or more precisely: 24 hour, exchange-rate 

dynamics are generated by an independent and stationary Gaussian process with variance 

Ĝ . Changes in the exchange-rate over the weekend would then have variance 3o^. It is
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straightforward to show that a mixture of both distributions exhibits leptokurtosis (see the 

next chapter). Hence, it should be checked whether non-normality in short-run 

exchange-rate dynamics is due to the lack of equidistance. Table 19 provides an answer.

Table 19

Statistics for equidistant daily data

mark
(2628)

pound
(2699)

sfr
(2663)

yen
(2594)

variance 0.43 0.40 0.64 0.33
implied
variance

0.33 0.31 0.48 0.24

F-Pseudo-
variance

0.25 0.18 0.33 0.17

kurtosis 7.86 *** 7 92 *** 9 04 *** g 99 ***

Anderson- 
Darling test

20.13 *** 34 92 *** 27.78 *** 30.14 ***

Significance levels: see table 3.

It reports some statistics for the 24-hour changes in the daily series. The number of 

observations, after eliminating all weekends and holidays from the daily series, is reported 

in brackets below the name of the series. The variances for the equidistant observations 

are slightly smaller than the variances for all daily observations (cf table 12), but they are 

much larger than the F-pseudovariances. As a first approximation, implied variances are 

calculated under the assumption that the data were generated by a mixture of normal 

distributions with variances and 3 and probabilities P{ = 4/5 and P2 = 1/5, 

respectively, i.e. the implied variance is 5/7 times the variance of all daily observations. 

The variances of all equidistant series are much larger than the corresponding implied 

variances, indicating that weekend and hoiliday effects do not provide a satisfactory 

explanation of the observed phenomena. This is also confirmed by the kurtosis test and 

the Anderson-Darling test: both reject on extremely high significance levels the null 

hypotheses of mesokurtosis and normality.
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1.5 SUMMARY

The aim of this chapter was to provide a comprehensive analysis of the statistical properties 

of exchange-rate dynamics. The analysis was basically exploratory in nature. Since interest 

in empirical exchange-rate modelling seems to switch from econometric models to stat

istical (probability) models, it is essential to have a clear idea about the empirical reg

ularities of exchange rates which such a model has to embody.

In his well-known survey of empirical regularities in the behaviour of exchange rates, 

Mussa (1979) stated 19 general regularities. Only one of those was concerned with a 

statistical property, namely: the natural logarithm of the spot exchange rate follows 

approximately a random walk. The analysis of this chapter provides a more detailed and 

accurate account of the statistical regularities. The results are summarised in table 20. The 

null hypotheses which were tested, sometimes by more than one method, are reported in 

the first column. A plus sign indicates that the null hypothesis cannot be rejected and a 

minus sign indicates rejection. The table is only meant to give a broad overview of the 

results and to filter out the strong properties. Note, too, that a certain number of rejections 

of null hypotheses has to be expected due to type I errors.

The evidence concerning serial mean-independence is mixed (for this reason the 

pluses have been put into brackets). Within ARIMA models, departure from serial 

mean-independence can only be found in quarterly series. On the other hand, Dufour’s 

signed-rank test reveals moderate serial mean-dependence in short-run exchange-rate 

dynamics only. Since Dufour’s test imposes very weak assumptions and is thus robust, 

more reliance should be placed on this test than on the resullts derived in the ARIMA 

framework. The hypothesis of one unit root cannot be rejected for any of the 16 series. 

This justifies the use of first differences (in the logarithm) in the time-series analysis of 

exchange-rates.
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No hidden periodicities can be found for three out of four exchange-rates. Spectral 

analysis detects significant deviations from white noise only for the yen. The observant 

reader will have noticed that for several statistical properties there is a sharp difference 

between short-run (i.e. daily and weekly) and medium-run (i.e. monthly and quarterly) 

exchange-rate dynamics. Two such properties are first order independence in distribution 

(Markov property) and serial homoskedasticity. Both properties are very strongly rejected 

for short-run dynamics. The rejections are obviously due to the fact that there is a tendency 

for large exchange-rate movements to be followed by large movements of either sign. To 

put this into economic terms: there is evidence for short-run periods of turbulence and 

tranquility.

Table 20

Summary of results on statistical properties

Null hypothesis day week month quarter remark
Mean-independence (+) (+) + (+)
Unit root + + + +
White noise + + + + rejection for yen
Markov property - - + +
Serial homoskedasticity - - + +
Arc-sine law + rejection for sfr
Zero mean + + + +
Constant mean + + + + rejection for yen
Homogeneity of variance -
Symmetry + + + +
Mesokurtosis - - - +
Normal distribution - - + +
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For short-run dynamics, there is also highly significant non-normality and excess 

kurtosis. For daily changes, this can be attributed to fat tails and peakedness but for weekly 

data, and to some extent for monthly data, this seems to be due only to peakedness.

Another very remarkable property is the heteroskedasticity which can be found in 

all exchange-rates at all time horizons. On the other hand, there is conflicting evidence 

concerning the constancy of the mean. The Kruskal-Wallis test generally rejects this null 

hypothesis but the alternative Brown-Mood test rejects it only for the yen. Since the 

Brown-Mood test is less restrictive than the Kruskal-Wallis test, in particular is does not 

assume homoskedasticity, it appears to be safer to put more weight on the results from the 

Brown-Mood test than on those from the Kruskal-Wallis test.

Conflicting results are also obtained on the symmetry of distribution. The coefficient 

shows significant negative skewness at short periods. This result is to some extent 

due to the specific form in which exchange-rate dynamics are analysed, namely the form 

of first differences in logarithms. Applying the asymptotically distribution free U-test, 

however, gives no evidence of asymmetry. Again, more reliance should be placed on the 

U-test than on the ^b[  -test because the U-test is more robust than the latter.

Finally, the convenient hypothesis of a zero mean cannot be rejected by either of the 

two robust tests applied (median test and biweight mean test). With the exception of the 

sfr-dollar rate, there is also reversion to the mean in the series which is compatible with 

the assumption that the exchange-rate dynamics follow a symmetric stochastic process 

with mean zero. The main results can be succinctly summarized in the following three 

statements:

i) All series of exchange-rate dynamics show approximate serial mean-indep

endence, no periodicities (with the exception of the yen), a constant mean at zero 

(with the exception of the yen) and symmetry in distribution.

ii) Short-run exchange-rate dynamics (i.e. daily and weekly changes) are char

acterized by serial heteroskedasticity (i.e. a time pattern in heteroskedasticity) 

as well as peakedness and fat tails in distribution.
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iii) Medium-run exchange-rate dynamics (i.e. monthly and quarterly changes) show 

no serial heteroskedasticity and have a frequency distribution which is 

approximately normal.
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CHAPTER 2

COMPOUND-DISTRIBUTION MODELS OF EXCHANGE RATES

In this chapter, I shall introduce and estimate several stochastic models of exchange-rate 

dynamics. These models are supposed to capture the main empirical regularities of 

short-run exchange-rate data. The analysis in the previous chapter has demonstrated that 

daily and weekly data show a significant amount of heteroskedasticity and leptokurtosis. 

On the other hand, monthly and quarterly exchange-rate data cannot, in general, be dis

tinguished from Gaussian white noise, i.e. there is convergence towards independence, 

stationarity and normality under time-aggregation.

The models to be analysed in the next two chapters are compatible with some or all 

of these empirical properties. The models can be classified into two groups. The first group 

(which will be analysed in this chapter) consists of four models which are all static in the 

sense that the probability distribution at time t is constant for all t. Thus, these models 

cannot capture the property of serial dependence in variances. The four models in this 

group are the finite mixture of normal distributions, the compound Poisson process, the 

generalized Student distribution and the family of stable distributions. These models have 

very different probabilistic backgrounds, but I will show that they can all be viewed as 

compound normal distributions where an independent probability distribution is attached 

to the variance of a normal variable. They are, therefore, called scale-compounded dis

tribution models. Although these models are based on the notion of stochastic variance, it 

would be wrong to say that they imply heteroskedasticity since this term is usually only 

used for cases where the variance is a function of time or some other variables. The choice 

of the normal distribution as the compounded distribution is somewhat arbitrary, of course, 

but one can always refer to the central limit theorem as a justification of this choice, whereas 

it is unclear how alternative distributions could be selected for application.
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The second group of models (which will be analysed in chapter 3) is designed to 

capture heteroskedasticity. Markov-switching models and ARCH-type models belong to 

this group. Markov-switching models are rather straightforward extensions of finite 

mixture distributions and ARCH models were introduced in the previous chapter. These 

models are not only able to capture heteroskedasticity, but it can also be shown that they 

imply leptokurtosis.

I shall test these models separately against the null hypothesis of Gaussian white 

noise but it is also essential to compare the two groups since they model different aspects 

of the data. In chapter 4, the comparisons will be made in terms of goodness-of-fit, in 

terms of likelihoods, and in terms of predictive power.

The parameters of the stochastic models will generally be estimated by maxi- 

mum-likelihood (ML) methods. The application of ML methods is often justified on the 

grounds that, under certain conditions, ML estimators are asymptotically efficient. In this 

investigation of exchange-rate dynamics it is obvious, however, that there is a substantial 

model uncertainty. Hence, I would simply refer to ML methods as a natural approach to 

estimate probability models.

In general, the estimation and test results will only be reported for daily and weekly 

data since only these data showed empirical properties that are worth exploring in a formal 

model. I estimated the models for monthly and quarterly data, too, but in many cases the 

estimates were rather poor or inconsistent with the model and, as expected, the null 

hypothesis of normality could often not be rejected.

2.1 FINITE MIXTURES OF NORMAL DISTRIBUTIONS

The model of finite mixtures of normal distributions has a long tradition. It has been 

introduced by Karl Pearson in 1894 (see Everitt and Hand (1981) or Titterington et al.
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(1985)) but economists who have applied this model to financial data (e.g. Boothe and 

Glassman (1987)) seem to have been unaware of this literature. A finite mixture of J 

normal distributions is defined by

(1) /(*|\j/)= I  p/j(x\ 0 ., Gj)
7  =  1

where

i f (jc -  e,)21
(2)

and \\f is the vector of parameters: \|/ = (/?,, ...,py,0,, ...,0y,ai, ...,Gj). The p j ’s are

assumed to be positive and to sum to 1. Hence they can be interpreted as probabilities. The 

model in (1) gives the density f(x  | \j/) as a weighted sum of normal densities fj with 

different means 0; and different variances aj. As formulated in (1), the model is, of 

course, too general to be directly applicable. In order to estimate the model, one has to 

specify J. I shall apply the principle of parsimony and set /  = 2 initially. Since the analysis 

in the previous chapter has shown that the null hypothesis of a constant mean at zero cannot 

be rejected for the exchange-rate series except the yen-dollar rate, I shall also set 0; = 0 

initially. Thus, the initial model can be written as

(3) /(* | p , a 1,a 2) = - ^ - ex p j - ^ J + - j = ^ e x p | - ^ J .

It is a scale mixture of two normal distributions and it incorporates stochastic variance in 

the simplest manner. Without loss of generality, one may assume that Gj < c 2*

It should also be examined whether this model is compatible with the major stylized 

facts of exchange-rate dynamics. Stochastic variance is directly incorporated in the model 

but heteroskedasticity does not follow from this model since all parameters are assumed 

to be invariant over time. Therefore, it does not capture the clustering of small and of large 

exchange-rate fluctuations as is evident in the Markov transition matrix (see Chapter 1,
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figure 4 and table 4-5), in the ACF of the squared data, and in the Levene test. On the other 

hand, it is straightforward to prove leptokurtosis in the more general scale mixture of J 

normal distributions.1 It is easy to show that

where |i, is the i-th central moment. Leptokurtosis is defined by the condition

the convergence to normality follows from the central limit theorem. As regards the more 

general model given in (1), in which the means 0; can vary between the components of 

the mixture, no general result concerning kurtosis can be derived. Take, for simplicity, a 

mixture of two normal distributions with a, = a 2 = 1 and jLi, = -JI2 = 1. This mixture has 

a kurtosis of 1.25, i.e. it is platykurtic.

(  J Y
( 11) M&0 =

\ j = l  y

and that

(12) m(*) = 3 i p ? )
y = l

(13)

or, equivalently, by

(14) k 4 =  |x4 -  3 p ^  >  0

where k* is the fourth cumulant. Inserting (11) and (12) into (14) yields

r j (  j y i
(15)

(16) 3Var(o2)> 0

since a 2 (which is now a stochastic parameter) is non-degenerate by assumption. Finally,

1 Gridgeman (1970) proved only the peakedness of general scale-mixtures of normal 
distributions.



When Karl Pearson introduced the model of finite mixtures of normal distributions, 

he proposed to estimate the parameters of the model by the method of moments.2 Since 

all odd central moments of the normal distribution are zero and the even central moments 

are given by

(17)
2 r\

the 3 parameters of the model in (3) can be estimated by the 3 equations

(18) pG\ + {\ - p)<5L1=m2

(19) 3pa\ + 3 ( \ - p )a i2=mi

(20) 1 5 p aJ+ 1 5 (l-p )a ‘ = m6 ,

where m, is the i-th empirical central moment. Defining

(21)

and

(22)

t  _ k*
10fc,+

kl kt
lOOfc2 3

1/2

2̂ =
kl *4 

+ —
10*1 3

1/2

where k{ is the i-th empirical cumulant3, explicit solutions for the moment estimators can

be derived (see Cohen (1967))

(23)

(24)

(25)

o?=5i +

<Z<2 +

p = - V ( 5 i - y

2Ball andTorous (1983), obviously being unaware of the literature on mixture distributions, 
introduced this model under the name "Bernoulli mixture of Gaussian densities" and 
suggested to estimate the parameters by, what they called, the "method of cumulants" but 
which is identical with the moment estimators.

3 The fourth and sixth empirical cumulants are given by k4 = m4-  3m22 and by 
k6 = m6-  15m4m2 -  10m32 + 30m23, respectively.
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Because of its desirable asymptotic properties, ML estimators of this model would be 

prefered to the moment estimators (see Everitt and Hand (1981) and Titterington et al. 

(1985)). However, the ML estimators cannot be derived in an explicit form and hence it 

is convenient to employ the moment estimators as starting values in an algorithm for the 

ML estimators. Everitt and Hand (1981) and Titterington et al. (1985) recommend the 

Newton-Ralphson algorithm4 which requires the gradient vector

dL £  fu fit(26) 3— = X — —
op 1 “ i f

(27) 7 = 1,2
dGj Jt = \ f

1 dfit xf 1
(28) with

(where L denotes the log-likelihood function; f]t is a short-hand notation for f ix , \ Cj)) 

and the Hessian matrix whose elements are

(29) ^ = -  S  — ■
dpi >-1 f t

(3°) ^ 2=Pji f , lzJ ( f , -p / j,)+f,yJ,] 7 = 1.2

(31) with v.,=— = —  — -
_<>z„ _ 1 xj_

J'~ d o t~ 2 0 f of

(32) = ~ -f*)1 J ~ 1.2ap,dOj i-i f t

£ fi,Zifi,z2l
(33>

4 Tucker and Pond (1988) applied this algorithm to the estimation of normal mixtures for 
daily exchange rates. Akgiray and Booth (1988) applied the EM algorithm for the same 
kind of data, but experience shows that the EM algorithm is inferior to the New
ton-Ralphson algorithm because the former converges very slowly (see Everitt (1984) and 
Kaehler (1988)).
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A third estimation method was suggested by Quandt and Ramsey (1978) and is based 

on the minimization of the squared distance between the empirical and the theoretical 

moment generating function. The moment generating function of a normal distribution 

with a mean of zero is given by

where E is the expected-value operator and u is an auxiliary variable. The auxiliary

variable introduces an element of arbitrariness into the analysis. Experience also showed 

that the Quandt-Ramsey method is inferior to methods based on the characteristic function

Titterington et al. (1985)). Boothe and Glassman (1987), nevertheless, applied the 

Quandt-Ramsey method to the modelling of the distribution of exchange rates.

The parameter estimates of the scale mixture of two normal distributions are reported 

in table 1. Asymptotic standard errors, obtained from the Hessian matrix at the maximum, 

are given in brackets. It is clear from the entries of the table that there are quite marked 

differences in the variances of the two components. In general, the variances and the 

probability p can be estimated with quite high precision. However, the point estimates 

of p are somewhat in conflict with the economic interpretation of the model. It was argued 

above that the second component distribution with the higher variance should be associated 

with rare shocks and hence it would be expected that p is close to the value of 1. However, 

for two series (daily pound, weekly mark) the estimated p is even below 0.5 and the 

average of the 8 estimates is 0.65. The average of the 8 moment estimates of p is 0.88 

which is more compatible with the given interpretation of the model.

Also reported in table 1 is the likelihood-ratio statistic (LR) for a test against the null 

hypothesis HQ:f(x | \j/) = f(x  | 0, a) which serves as a benchmark model. The LR statistic 

has a %2 distribution with 1 degree of freedom (either from the restriction Gj = a 2 or from 

p = 1 or p -  0). The LR test shows that for all series, the scale mixture of two normal 

distributions fits the data decisively better than a simple normal distribution. In addition,

(34)

E expO'wjc}, where i = V - 1, and to ML estimators (see Everitt and Hand (1981) and
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Table 1

Estimates of scale mixtures of two normal distributions

mark pound sfr yen

day a? 0.24 (0.02) 0.06 (0.01) 0.33 (0.02) 0.12(0.01)
1.37 (0.19) 0.76 (0.04) 2.24 (0.26) 0.87 (0.07)

P 0.80 (0.05) 0.46 (0.03) 0.82 (0.03) 0.65 (0.04)
LR 370.2*** 589.1*** 503.4*** 526.1***
X2(96) 167.8*** 233.9*** 153.0*** 645.2***

week 0.28 (0.16) 1.09 (0.22) 0.90 (0.20) 0.63 (0.16)
3.26 (0.43) 6.23 (1.96) 5.52 (0.80) 4.12(0.04)

p 0.37 (0.10) 0.81 (0.10) 0.55 (0.09) 0.71 (0.07)
LR 78.8 *** 77.2*** 67.1*** 97 j***
%2(46) 49.0 79.7*** 64.6** 64.6**

Significance levels: a  = 0.01 (***); a  = 0.05 (**); a  = 0.10(*)

I applied a standard %2 goodness-of-fit test to see whether this model achieves a satisfactory 

fit to the data. As explained in the previous chapter, a rule of thumb for the optimal number 

of equi-probable quantiles for this test gives 100 quantiles for daily data and 50 quantiles 

for weekly data.Therefore, for daily data the %2 goodness-of-fit test has 96 degrees of 

freedom and for weekly data it has 46 degrees of freedom. The %2 test rejects this model 

quite strongly. For 5 series, the hypothesis that the data follow a 2-component scale mixture 

can be rejected at the 1 percent significance level and for another 2 series, H0 can be 

rejected at the 5 percent level. Only for the weekly mark-dollar series is it not possible to 

reject H0 at conventional significance levels.

In order to gain more insight into the results of estimating this model, figure 1 displays 

the empirical and theoretical frequencies for the daily mark-dollar rate. The empirical 

frequencies are given by the dashed line, the peaked solid line gives the frequencies of the 

scale mixture and the third line gives the frequencies of a normal distribution with para-
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meters 0 = 0 and o  = s, where s is the empirical standard deviation. It is clear from 

this figure that the scale mixture is both more peaked and has fatter tails as compared with 

the simple normal distribution, i. e. the scale mixture is leptokurtic. Since the empirical 

distribution is also highly leptokurtic, the scale mixture gives a much better fit to the data 

than the normal distribution. However, the scale mixture is obviously not able to capture 

the full amount of peakedness in the data.

Figure 1

Empirical frequencies and scale mixture: daily mark-dollar rate

o

a

o

The fact that, according to the %2 goodness-of-fit test, a convincing fit to the data

cannot be achieved for 7 of the 8 series, suggests that the more general model of J mixtures 

of normal distributions with different variances and means, as given in (1), should be 

employed. I identified the dimension of the model with respect to the parameter vector \j/ 

by SIC. It turned out that in 3 cases (daily mark, weekly pound and sfr), a 2-component 

scale mixture,as estimated before, was optimal, in 3 cases (daily pound and sfr, weekly
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mark) a 3-component scale mixture was optimal. For the yen series, mixtures of normal 

distributions with different means and variances were identified as optimal. The daily 

series had 3 components and the weekly series had 2 components. The details are given 

in table 2.

Table 2

Estimates of optimal mixtures of normal distributions

mark pound sfr yen

day d\ = 0.24(0.02) 
<̂  = 1.37(0.19) 
p =  0.80(0.05)

LR = 370.2*** 
X2= 167.8***

d\ = 0.03(0.00) 
O2 = 0.43(0.02) 
a? = 2.50(0.28) 
p 1 = 0.27(0.00) 
p2 =  0.67(0.00)

LR = 710.8*** 
%2= 174.3***

0? = 0.07(0.01) 
of = 0.56(0.02) 
of = 3.69(0.41) 
p, = 0.23(0.00) 
p2 = 0.70(0.01)

LR = 563.8*** 
X1 = 95.0

0, = 0.014(0.009)
02 = 0.027(0.013)
03 =-0.239(0.064) 
of = 0.01(0.00)
0 % = 0.22(0.02) 
a?= 1.16(0.13) 
p 1 = 0.14(0.02) 
p2 = 0.68(0.03) 
LR = 664.7***
X2 = 717.6***

week a? =  0.13(0.03) 
< ^ =  1.77(0.16) 

=  7.37(1.25)
P y = 0.21(0.00) 
p2 = 0.66(0.01)
LR = 97.4*** 
%2 = 38.0

c ? =  1.09(0.22) 
0  ̂= 6.23(1.96)
p =0.81(0.10)

LR =  77.2***
=  7 9  7 ***

of =  0.90(0.20) 
of =  5.52(0.80) 
p =  0.55(0.09)

LR =  67.1*** 
X2 =  64.6**

0, =  0.103(0.053) 
02 =-0.585(0.189) 
c ?  =  0.58(0.12) 
c i  =  3.54(0.58)
p =  0.68(0.08)
LR= 107.0***
%2 =  41.6

Significance levels: See table 1

In the 3-component scale mixtures, the components are well separated, i.e. the 

variances are clearly distinct. Also, the probability of drawing from the high-variance (c^) 

component is, as expected, quite low. This probability is 6 percent for the daily pound 

series, 7 percent for the daily sfr series and 13 percent for the weekly mark series. For 3
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exchange rates (pound, sfr, yen), the dimension of the parameter vector y  is smaller for 

the weekly data than for the daily data. However, for the mark-dollar rate, the dimension 

of the parameter vector increases quite surprisingly under time aggregation. As in table 1, 

there is no apparent pattern for the probability p of drawing from the low-variance 

component in the 2-component models. For the 3-component models, however, there is 

some similarity in the results. They all have p { around 20 percent and p2 at roughly 70 

percent.

Table 2 also reports results from an application of LR tests with the H0 of white

noise. It should be noted that there are some technical problems with applications of LR 

test, and also with the application of ML methods in general, to these mixture models. 

First, the likelihood function is unbounded when a, —» 0. If both means and variances 

were allowed to vary between components, this problem of singularities would be even 

more severe (see Titterington et al. (1985), pp. 93-93). Hamilton (1991a) suggested to 

apply Bayesian methods as a remedy against this problem.

Second, the regularity conditions are violated for the application of the LR test since 

Pj is on the boundary of the parameter space under H0 However, according to Everitt 

(1981), this only leads to a downward biased size of the test statistic in multivariate cases 

and when the sample size is less than 100. Third, it is sometimes unclear how the degrees 

of freedom are to be determined. If, for instance, the alternative is a two-component 

mean-variance mixture, then one can either obtain Gaussian white noise with the restriction 

p = 1 (giving one degree of freedom) or with the restrictions l-L, = (X2 and a, = a 2 (giving 

two degrees of freedom). A pragmatic solution in this case would be to choose a conser

vative test with two degrees of freedom. Finally, there is the closely related problem of 

nuisance parameters which are not identified under H0 (an equivalent way to pose the 

problem is to say that the score is identically zero under H0). For instance, under the H0 

of a, = a 2, the value of p is not identified in a two-component scale mixture. Hansen 

(1992) discussed this problem more generally and proposed to derive bounds of the
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asymptotic distribution of the LR statistic through the covariance function of the empirical 

likelihood surface. He also applied this approach to Markov-switching models which are 

a generalization of mixture models and which will be introduced in Chapter 3.

For the applications of the LR test as reported in tables 1 and 2, these problems are 

certainly inconsequential. The lowest LR statistic in these tables is 67.1 and it would make 

no difference whether one would choose 1 or 2 degrees of freedom for the %2 distribution. 

There is also no reason to suppose that the distribution of the LR statistic is so drastically 

different from a %2 distribution as to invalidate the statistical inferences.

As regards goodness-of-fit, there is some improvement in the generalized normal 

mixtures of table 2 as compared with the scale mixtures of 2 normal distributions of table 

1. At the 10 percent significance level, the H0 that the data come from the specified 

normal mixtures cannot be rejected for 3 series (daily sfr, weekly mark and yen). However, 

the H0 must be rejected at the 1 percent significance level for 4 series and for another 

series H0 must be rejected at the 5 percent level. Therefore, the mixture of normal dis

tribution does not seem to be a very satisfactory model of exchange-rate dynamics. The 

model does capture leptokurtosis to a certain degree (see also Chapter 4) but overall the 

fit to the data is not convincing. One reason for the lack of fit may be due to the fact that 

the normal mixture is not capable of capturing more complex models of stochastic variance 

in a parsimonious way. Viewed slightly differently, the scale mixture of normal dis

tributions is a model of a random variable with a conditional normal distribution whose 

parameter a 2 has itself a probability distribution. Therefore, this model belongs to the 

family of "compound" distributions 5 and it can be written as

(35) /(*) = j f ( x \ a i)dF(o2) ,
<R+

where F{dl) has the step function

5 See Douglas (1980, pp. 21-22, 75-76) on the various, and sometimes confusing, uses of 
terminology for these kinds of models.
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(36) F(o2) =
0 for 0 < ^
p x for of < a 2 <

1 for o ^ a 2

This form of the model suggests to look for more complex but parsimonious functions 

Fid1). Note that every additional value in the domain of F^a2), i.e. every increase in the 

number of components of the mixture, increase the numbers of parameters to be estimated 

by 2. Hence, it is an obvious strategy to find suitable, but parsimonious, probability dis

tributions for a 2 in order to model stochastic variance. In the next three sections, I will 

introduce both a discrete distribution and two continuous distributions for a 2 which also 

allow to cast the models into a more general framework.

2.2 COMPOUND POISSON PROCESS AND RANDOM SUMS

There are two ways in which the compound Poisson process can be introduced as a model 

of exchange-rate dynamics. First, the compound Poisson process can be derived in the 

form of a compound distribution where a parameter of the "compounded" distribution is 

random and has itself a Poisson distribution. Second, it can be derived in a very general 

way as a model of a sum of random variables where the number of summands is random 

and has itself a Poisson distribution. Both ways of deriving the compound Poisson process 

will be described, but first it is instructive to recall from the basic theory of stochastic 

processes that the Poisson process is a very fundamental and general form of stochastic 

processes. I will briefly sketch the derivation of the Poisson process (see e.g. Cox and 

Miller (1965), pp. 146-153) because as a by-product one obtains the formula for the 

generating function of a Poisson distribution which is useful later in this section.

Let N{s,t) be the number of occurrences of a random event in the time interval 

(5,r). N(s,t) is a Poisson process if
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i) N(s,s) = 0,

ii) N(s,t) has stationary and independent increments,

iii) P [N(t, t + At) >2] = o (At),

iv) P[N(t,t + At) = 1] = AA/ + o(Ar) .

It follows from the assumption of stationary increments that one may set s = 0 without

loss of generality. Conditions (iii) and (iv) state that the probability of having more than 

one occurrence in a small interval At is negligible ( o denotes the order of magnitude) 

and that the probability of the occurrence of exactly one event is approximately AAt. 

Therefore,

(37) P[N(t, t + At) = 0] = 1 -  XAt + o(At).

In order to simplify notation, define

(38) Pn(t + At) = P [N(0t t + At) = n].

Then one gets from the assumption of independence

A solution to the above ordinary differential equation can be obtain from applying 

the probability generating function

(39) Pn(t + At) = Pn{t) (1 -  XAt) + Pn _ ̂ X A t  + o (At).

It follows from (39) that

(40)

(41) G(z,t)= 1  Pn(t)z\
n =  0

where z is an auxiliary variable, to (40) which gives

(42)

A solution to the differential equation (42) is given by

(43) G(z,t) =A(z)exp{-Af + Xtz}.
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Condition (i) is a natural assumption, given that time is a continuous variable in this model. 

This implies that P0(0) = 1 and that Pn(0) = 0 for n -  1,2,.... It follows from (41) that 

G(z,0)=1 and from (43) that A (z)= 1. Thus,

which is the familiar probability function of the Poisson distribution. The compound 

Poisson process is now given by the model

where the YJtt(j = 1,...,A0 are independent and identically distributed. Furthermore, N(t)

is random and has a Poisson distribution given in (45). Note that the domain of the random 

variable N  are the integers N > 1 since N = 0 would leave X, in (46) undefined. If, 

however, N  has a Poisson distribution, as assumed, there is a conflict in domains since 

the domain of the Poisson distribution includes the value of zero. This problem is usually 

not addressed in the literature and many authors seem not to be aware of it. Thus, I will 

digress here to discuss alternative ways to avoid the problem of conflicting domains. A 

more elaborate treatment of this issue can be found in Kaehler (1990b).

The easiest way to augment the model of the compound Poisson process is to redefine

(46) as (I shall drop the time index t in this digression in order to simplify notation):

and to let N  have the Poisson distribution given in (45). The following economic inter

pretation can be ascribed to this model. Let the foreign-exchange market be subject to 

random shocks which are independent and identically distributed. In a small time period, 

the occurrence of a shock is a rare event in the sense that the probability of more than one 

shock is negligible. Further, let the total time period for which exchange-rate movements

(44)
n  =0 n\

and

(45)

(46)
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are recorded (say, a day) be fixed. Under these assumptions, the number of shocks hitting 

the market, and causing exchange-rate movements YJt is random with a Poisson dis

tribution. It is then also natural to assume, as in (46’), that in the absence of shocks the 

exchange rate remains constant.

Next, I shall examine whether this model is compatible with leptokurtosis. It follows 

from (46’) that

(47) Var(X) = nc4

where crj denotes the common variance of the Yt in (46’). Since n is random, X  has

a compound distribution with a stochastic variance. The distribution function of the 

variance, F(o^), is now

n V

(48) F(na^) = e~ I -  with n = 0 ,1 ,2 ,....
t=oi!

Leptokurtosis of the model can be established by applying the characteristic function which 

is defined by

(49) ®x(u) = E(exp{iux})

where i = \  - l . The characteristic function is easily derived to be

(50) ®x(u) = EN(®X]N(u))

= EN(0ny(u))

oo J,n

= X
n =  o n !

= e x p { -^ [l-O y(w)]}

where is the characteristic function of Yj. Note that OJ(m) = E(e°) =1. It is now

more convenient to proceed with the log-characteristic function (also called cumu- 

lant-generating function)

(51) IogOx(w) = -^ [l -<J)y(w)].

The m -th cumulant is defined by
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(52)

From (51) and (52) one obtains

(53)

where |im(T) is the m -th moment about zero of Yj. Thus,

(54) k 4( X )  =  ^ 4( T ) > 0 ,

and according to (14), leptokurtosis obtains. This is a strong result because relatively mild 

restrictions have been put on the Yj. In addition to the assumption that the Yj are inde

pendent and identically distributed, one only has to assume that |I4(T) exists.6

Press (1967,1968) introduced a simple variant of the basic model (45) and (46). He 

simply added a normal variable to the right-hand side of (46) to get

where V follows a normal distribution with constant mean 0 and variance Press

also used the restriction F(V) = 0 but I will not need this restriction here. In addition, V 

is assumed to be independent of the Yj. The probability distribution of the random 

parameter N  is given by (45) as in the basic model. In economic terms, V represents 

background noise in the foreign-exchange market. Without any news Yj hitting the market, 

exchange-rate dynamics are determined by normal (in a double sense) fluctuations V of 

demand and supply. One would conjecture, therefore, that o j  « o$.

The stochastic variance of this variant of the basis model is obvious. The distribution 

function F(aJ) is now

6Zimmermann (1985) obtained a similar result but he had to assume that the Yj have 
moments of all orders. An alternative proof, applying conditional moments, is provided 
by Kaehler (1992). The formulae for conditional central moments, on which this proof is 
based, are derived in Kaehler (1990a).

(46” ) X = Y[ + Y2 + ... + Yn + V >2=0,1,...

(48’)
/ =  0  2 !
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Leptokurtosis can be proved via the characteristic function:

(55)

= expj -^[1 - O k(«)] + j'0h - - g^u2

Differentiating the log-characteristic function four times, one obtains at u = 0 the same 

result as in (54):

Thus, one gets the same strong result concerning leptokurtosis as in the basic model. Note 

that Press (1968) proved leptokurtosis only for the special case where the Y} follow a 

normal distribution.

The third variant of the basic model adopts the version of the random sum as given 

in (46) but assumes a "shifted" Poisson distribution for N , i.e.

The model of (46) and (45’) assumes that there is at least one realization of the Yj

variables. It is quite reasonable to assume that foreign-exchange markets are subject to 

certain recurring news which occur in every time span, say a business day. Think of it, for 

instance, as the closing price of the Tokio market when the London market opens. In 

contrast to the Press model, this model assumes that there is only one kind of news relevant 

to the market.

The stochastic variance of the variant is, again, obvious. It’s distribution function for 

the variance of X  is

(54’) k 4 = fyi4(y) > o.

(48” )

As regards kurtosis, the characteristic function of this model is
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(56)

=<Dr(u) exp{-A[ 1 - O ,,(«)} .

From the log-characteristic function one Obtains

(57) K4(X) = K,(Y) + X\ii(Y)

Thus the condition for leptokurtosis in this version is K4(Y) > If it is assumed

that the Yj have a normal distribution, as in the model by Press, then this version implies 

leptokurtosis since K4 = 0 for a normal distribution. Alternatively, if it is assumed that 

E(Yj) = 0, then it can be shown that X>2 is a sufficient condition for leptokurtosis.

From an economic point of view, the Press model is probably the most attractive of 

the three variants of the compound Poisson process because it allows to distinguish between 

random shocks and gradual movements in tranquil periods. The first variant ((45) and 

(46’)) and the third variant (the shifted Poisson distribution (45’) and (46)) are very similar 

and they differ only in the probabilities they attach to n c Y. These three variants do not, 

of course, exhaust all possible variations of the compound Poisson process. One could, 

for instance, apply the summation of random variables in (46) (for n = 1, 2...) and add a 

zero-trancated Poisson distribution for N. Similar to the model with the shifted Poisson 

distribution, this variant exhibits leptokurtosis only under certain parameter values of X 

and P2(I0 (see Kaehler (1990b) for more details).

I applied variants 1 and 2 to the exchange-rate data. It turned out that variant 2 (the 

Press model) is clearly superior to variant 1 (the basic model) in terms of goodness-of-fit. 

Hence, only the results from applying the Press model are reported. The model was esti

mated by maximizing the log-likelihood function based on the normal distribution for Yj 

and V:

(58) L = X l o g £
T
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The infinite sum in (58) is, of course, awkward and must be truncated at some point. Ball 

and Torous (1985) showed that an upper bound for the truncation error is

+ 1
(59) B (n)<( 2n<slv) ' a

(« + 1)!

Imposing the restriction that B(n) < {prec)m , where prec is the machine precision, one 

can endogenously determine the truncation point n as a function of X from

(60) X <exp|—r^ [ lo g (7i e+ l)! + logc]|

7 1/2where c = (2nCy • prec) and the machine precision on the Siemens mainframe 7570CX

was 0.22204 • 10“15. Application of this rule let to values of n* between 8 and 13 for daily 

series and values of n between 9 and 12 for weekly series at the final values of the 

estimated parameter X .

A further complication arises from the fact that one cannot explictly derive the ML 

estimators of the three parameters from (58). This requires to apply an iterative procedure 

and to supply starting values. It is not difficult to derive first and second derivatives from 

(58) for the application of gradient methods, but here I used numerical derivatives. Starting 

values can be obtained from the method of moment estimators, proposed by Press (1967, 

1968) for estimation. Equating empirical and theoretical cumulants yields

(61) k^X) =X\ +

(62) kJX) =3\o“r

(63) k6(X) =15XOy .

This system of 3 equations in 3 unknowns can be easily solved for the moment estimators

(64) X=25k3J3kl

(65) o’ =kJ5k4

(66) G2v =k2-5 k 4l3k6 .
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Press (1967) reported that in his applications of the moment estimator to stock-price data, 

some of the variance estimates turned out to be negative. Using (64)-(66) for the daily and 

weekly exchange-rate series, I only obtained a negative estimate for o f  in the weekly sfr 

series and used instead X = 1 and of  = as starting values . For all series, the

moment estimates X  were very much smaller than the ML estimates X. The values of X  
ranged between 0.042 and 0.061 for the four daily series and between 0.109 and 0.413 for 

the weekly series. As a consequence, the moment estimates of the variances, of  and of, 

are much larger than their ML counterparts. This means that from the moment estimates 

one would conclude that shocks to the foreign-exchange market are quite rare but strong 

and that the background noise has rather great variability.

The ML estimates are reported in table 3. According to the estimates of X , the mean

number of shocks is around 1 for both daily series and weekly series. The sfr-dollar rate 

seems to be subject to fewer shocks than the other three series but on the other hand, it 

seems to have higher background variance than the other series. The fact that for all 8 data 

sets, of  is much greater than of  fits very well into the economic interpretation given for 

this model. For some series, the variance of the shock variables Yj is greater than the 

variance of the background noise by more than a factor of 10 and it is at least greater by 

a factor of 3. The asymptotic standard errors of the point estimates are given in brackets. 

Only the precision of o f  in the weekly data is somewhat unsatisfactory.

Also reported in table 3 are the values of a likelihood-ratio test against the HQ of a

simple normal distribution with mean zero which serves as a benchmark for all stochastic 

models introduced in this chapter. H0 is overwhelmingly rejected for all series. Note, too, 

that the LR statistic for the compound Poisson process is higher than that for the 2-com

ponent normal mixture for all series except the weekly sfr series. Both models have 3 

parameters to be estimated.

Finally, table 3 shows the values of a %2 goodness-of-fit. For this model, it turned 

out to be much easier and computationally much cheaper to determine the quantiles for
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Table 3

Estimates of the compound Poisson process

mark pound sfr yen

day X 1.025 (0.239) 1.262 (0.103) 0.442 (0.140) 1.592 (0.111)
c£ 0.345 (0.059) 0.307 (0.025) 0.941 (0.221) 0.216(0.016)

0.093 (0.027) 0.027 (0.005) 0.236 (0.043) 0.014 (0.003)
LR 403.0*** 681.6*** 516.8*** 601.4***
x 2 129.7** 130.6*** 146.5*** 146.0***

week X 1.470 (0.217) 0.796 (0.444) 0.818(0.322) 1.212(0.404)
Oy 1.333 (0.204) 1.816(0.735) 2.728 (0.850) 1.149 (0.323)

0.143 (0.047) 0.545 (0.270) 0.731 (0.267) 0.187 (0.116)
LR 92 2*** gj q*** 64.5*** 98 3***
x 2 34.1 76.2*** 61.4* 53.2

Significance levels: see table 1

the empirical distribution first and to compare in every quantile the constant empirical 

frequencies with the corresponding theoretical frequencies. An additional complication 

was caused by the fact that the daily pound and yen series contain many values of zero 

(43 zeros in the pound series and 146 zeros in the yen series). Setting the number of quantiles 

for daily series at 100 (as in Chapter 1 and in Section 2.1), would have implied theoretical 

frequencies of zero for some quantiles. Therefore, the number of quantiles was reduced 

to 80 for the daily pound series and to 23 for the daily yen series. The degrees of freedom 

in the %2 test for these daily series are, therefore, 76 and 19. For all weekly series, 50 

quantiles were used.

The %2 goodness-of-fit test rejects the H0 that the data were generated by a compound

Poisson process quite strongly for daily data. For the mark-dollar series, H0 is rejected at 

the 5 percent level of significance and for the other three daily series, H0 is rejected at 

the 1 percent level. However, for weekly series the compound Poisson process achieves
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a much better fit than for daily series. The test only rejects the HQ for the pound-dollar 

series at the 1 percent level. The %2 -value of 61.4 for the weekly sfr series is significant 

at the 10 percent level.

Figure 2

Compound Poisson process: empirical and theoretical frequencies for daily data
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In order to better understand why the %2 test rejects the model for daily exchange-rate

data, figure 2 displays the empirical frequencies (dashed line) and theoretical frequencies 

(solid line) for the four daily series.

For the pound series and the yen series it is quite obvious from figure 2 that the 

compound Poisson process cannot capture the full amount of peakedness in the data. The 

empirical distribution of daily sfr-dollar exchange-rate fluctuations, on the other hand, 

seems to have less mass in the shoulders than predicted by the model. No clear pattern of 

discrepancies between empirical and theoretical frequencies appear in the plot for the mark 

series.

Compared with the scale mixture of two normal distributions in terms of likelihood 

ratios and in terms of goodness-of-fit, the compound Poisson process is superior to the 

former. The quite strong rejection by the goodness-of-fit test for the daily series, however, 

casts some doubts on the appropriateness of the compound Poisson process. From a 

theoretical point of view, the model is very attractive because of its generality as a random 

sum of random variables. The alternative way to view this model is to regard it as a 

compound normal distribution where the variance follows a Poisson distribution. The fact 

that this model can be viewed in these two different ways is a direct consequence of 

Gurland’s theorem. Gurland (1957) proved in a very general setting the equivalence in 

distribution between random convolutions (like the Poisson sum) and compound dis- 

tributions.In the next section, I will introduce a model which can also be derived as a 

compounded normal distribution but with a continuous distribution for the variance.

2.3 STUDENT’S DISTRIBUTION AND THE PEARSON FAMILY

The Student distribution, also called t -distribution, has been introduced by Praetz (1972)

into the modelling of financial data. He derived a (one parameter) t -distribution as a 

compound normal distribution where the variance follows an inverted gamma distribution.
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Thus, the t -distribution can be directly related to the mixture of normal distributions and 

to the compound Poisson process which can also be viewed as scale-compounded normal 

distributions. The inverted gamma distribution, however, is a continuous distribution.

There are, of course, numerous candidate distributions which could serve as a con

tinuous compounding distribution for the variance of normal distribution. Clark (1973), 

for instance, suggested a lognormal distribution for the variance to model speculative 

prices. In order to restrict arbitrariness in the choice of the compounding distribution, one 

should be able to motivate the choice in some way. For the inverted gamma distribution 

this motivation is possible along two lines. First, in Bayesian statistics the natural conjugate 

for the distribution of the variance of a normal distribution is the inverted gamma dis

tribution (and for the precision it is the gamma distribution, see e.g. Raiffa and Schlaifer 

(1961), p. 291). Second, the fact that the adoption of the inverted gamma distribution leads 

to the t -distribution allows one to put the compound distribution into a broad framework 

of an important family of distributions, namely the Pearson family of distributions.

In order to relate the t -distribution to the Pearson family, I shall slightly generalize

the model adopted by Praetz and derive a 2-parameter (or generalized) t -distribution. 

Assume, first, that the variable X  (i.e. the exchange-rate dynamics) follows a normal 

distribution conditional on h :

where h > 0 is a random factor of the variance. Assume further that h follows an inverted 

gamma distribution, i.e.

(67)

(68) with v > 0

where T(v) is the gamma function defined by

(69)
o
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The marginal distribution of X  is now given by

(70) jM x\0M )U h\v)dh
0

f  1 f X 2 } e - l/hh ~ v - 1

~ I ^ ( h a 2),aeXPI 2ha2J T(v)
d h

where

{ f i k k * ? 1 r { 2h<r 

= y n . By the change of variables h  = (1 +x1!2dt)y one gets

(
>dh

(71)
,  r (v + i

f ( x \ J , v ) =  K J U 2a 2)
nv)i(j

1 + *1 r u i  e ,
2< ? )  j  r ( v + j )

It is obvious from (68) that the integral in (71) is 1. Hence one obtains

(72) f(x  | a 2,v) = —rj—r ^ a 2)
(

1 +
2a 2

where B r,v is the beta function defined by B(p,q)  = T(p)T{q)IT(p +q).

(73)

In a slightly different parametrization of (72) one gets

1
/(* I ri.y) =

(  2 V 1’
1+ ^

where rj = v + ~ and y = ̂ 2c .  Equation (72) is the form in which the density of the Pearson

type VII distribution is given. I will come back to this distribution later in this section. The 

one-parameter t -distribution obtains if T[ = {\ +*?)!2 where the degrees-of-freedom 

parameter is given by 2r\ -  1.

From its derivation as a compound normal distribution it is evident that this model 

implies stochastic variance under the assumption that the underlying distribution is normal.
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Since the generalized t -distribution is also leptokurtic (see Elderton and Johnson (1969), 

p. 45), this model captures an important stylized facts of exchange-rate dynamics. Blattberg 

and Gonedes (1974) showed by numerical examples that the generalized t -distribution 

is more peaked than the normal distribution if both are standardized such that their variances 

are unity.

Recall from chapter 1 that the empirical values of the Pearsonian pseudovariance 

indicated that the distribution of exchange-rate dynamics might fall within the Pearson 

family of frequency curves. As stated above, the generalized t -distribution is a member 

of the Pearson family which is characterized by the differential equation for the density 

function

d (x — a) fix)(74) — f(x) =-— ±------ 2 L ± -
ax Cq + c^x + c-jX

where a ycQ,cx and c2 are constants. The equation might be criticized because of its ad

hoc nature but it is related to a continuous-time, continuous-state birth-and-death process 

and Pearson derived it with a limiting argument from a difference equation satisfied by 

the hypergeometric distribution (see Ord (1985)). This family encompasses many 

important distributions, like the normal, the gamma, the beta, the uniform, the exponential 

and the F-distribution. A great variety of distributional shapes can be found in this family 

and the distributions are divided into 7 major types according to the parameter values in 

(74). The generalized t -distribution is the so called type VII distribution and obtains for 

a -  cx = 0, c0 > 0, c2 > 0.

There is an alternative way to classify the types of distribution within this family 

according to the squared skewness (pj) and kurtosis (p2), as illustrated in figure 3. The 

roman numbers within the circles indicate the types of distribution. There are 3 main types 

(types I, IV and VI) covering areas in the pj -  p2 -diagram and 4 "transitional" types (types 

II, III, V and VII) covering line segments. The normal distribution obtains for pt = 0 and 

P2 = 3 (or c, = c2 = 0 and c0 > 0) and is a limit distribution for all 7 types.
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The identification of an appropriate type is now possible through the empirical values 

of p, and p2. In figure 3, daily series are denoted by rhombi, weekly series by squares, 

monthly series by stars and quarterly series by triangles. The tendency towards normality 

undertime aggregation for the exchange-rate series is obvious from the diagram. The daily 

and weekly series fall into the region of type IV and are near to the line segment of type 

VII with Pi = 0 and P2 > 3. As detailed in the previous chapter, the null hypothesis of 

symmetry cannot be rejected for the exchange-rate data. Hence, it is reasonable to set 

P, = 0 and to pick the type VII distribution for short-run exchange-rate dynamics since 

this is the only symmetric and leptokurtic distribution within this family.

Figure 3 
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With this additional motivation from the Pearson family of distributions, I next turn 

to the issue of estimating the generalized Student distribution7. As shown by Johnson and 

Kotz (1970, p. 115), the ML-estimators of the 2-parameter t -distribution satisfy the 

equations

(75)

(76)

I  log = T

T

I
/  =  1

/

1+ ?

2 V i

n r b - r
- i 
' - 2 /  J

^  T
= T ~ ^  2ti

where T (.) denotes the digamma function defined by T (r|) = d logr(q)/dq. For q > 2,

a very good approximation is given by T (r|) = log^q (see Johnson and Kotz (1969), 

p. 7). The approximate variances of the estimators are given by

(77)

(78)

Var{r| ) = - T}- - T  (ti) - -
T\ +  1 -1

Var(y) =
1 (r\ + 1)7*

n  (2*n ~  i)  J
q2(2q-l)

where T (.) is the trigamma function which is derived from the digamma function by

i V*differentiation. I used the approximation T (r|) = ̂ r| - -  J which is quite accurate unless 

T) is small.

I determined the parameter estimates by numerical calculation of the roots for the 

system of equations (75) and (76). The results are shown in table 4. In addition to the 

estimates of r\ and y (and their standard errors in brackets), the degrees-of-freedom 

parameter df = (2r | - l )  is reported because this parameter might be easier to interpret 

than q. For all series, q, and with it the degrees of freedom, can be estimated with rather 

great precision. The degrees of freedom range between 3.84 and 7.12 which implies that

7 It is interesting to note that the issue of estimating the generalized Student distribution 
led to a violent clash between R.A. Fisher and Karl Pearson in 1922, following a paper of 
Fisher’s where he introduced the maximum-likelihood method for estimation and showed 
that this method is superior to Pearson’s method of moments for this distribution in terms 
of efficiency.
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the distributions are strongly fat-tailed and peaked. Note, too, that the degrees of freedom 

for the daily pound series implies that the kurtosis for this series does not exist. The 

parameter y, which is a scale factor, can only be estimated with satisfactory precision for 

the weekly data. There is a clear increase of y under time aggregation but no such increase 

for rj (with the exception of the sfr).

Table 4

Estimates of the generalized Student distribution

mark pound sfr yen

day T\ 3.03 (0.06) 2.42 (0.04) 2.72 (0.05) 2.50 (0.04)
df 5.07 3.84 4.45 4.01
Y 1.16(0.74) 0.89 (0.83) 1.25 (0.64) 0.86 (0.87)
LR 416.5*** 586.0*** 541.7*** 542.2***
x2 153.6*** 308.5*** 129.8** 710.2***

week 2.79 (0.11) 3.01 (0.12) 4.06 (0.18) 2.66 (0.10)
df 4.58 5.02 7.12 4.31
Y 2.34 (0.35) 2.43 (0.35) 3.90 (0.26) 1.92 (0.41)
LR 85.4*** 50.9*** 101.3***
x1 64.6** 67.1** 79 o*** 57.6

Significance levels: see table 1

The likelihood-ratio statistics are, again, computed with regard to the benchmark 

model of the normal distribution which obtains for rj —> «>. it is clear that the LR test 

strongly rejects this restriction and thus also the normal distribution. The high values of 

the LR statistic obtained are comparable in size to those for the normal mixture and the 

compound Poisson process.

Finally, a %2 test was applied to check the goodness of fit. As for the previous two

models, the %2 test strongly rejects the generalized t -distribution for daily data. The 

rejection is very strong for the daily pound and yen. In both cases, the rejection is primarily
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due to a lack of peakedness in the model as compared with the empirical distribution. The 

fit to the weekly data is marginally better but, still, the H0 of a generalized t -distribution 

is rejected at the 5 percent level for 2 series and at the 1 percent level for the weekly sfr.

The overall rejection of the generalized /-distribution by the goodness-of-fit test 

suggests one looks further for alternatives to the scale-compounded distributions in order 

to model stochastic variance and, possibly, leptokurtosis. As mentioned above, the choice 

of the normal distribution as the compounded distribution guarantees leptokurtosis but the 

choice of the compounding distribution must also be motivated in order to avoid arbi

trariness. In the next section, I will introduce another stochastic model which can be viewed 

as a scale-compounded normal distribution, but which also describes a very general and 

important stochastic process.

2.4 STABLE DISTRIBUTIONS AND REGULARLY VARYING TAILS

The family of stable distributions was introduced into economics and finance by the 

eminent mathematician Benoit Mandelbrot in the I960’s. In a series of papers he applied 

stable distributions to the modelling of income distribution and speculative prices. In 

finance, the model soon became popular because of its generality and because it was 

consistent with leptokurtosis found in many distributions of speculative price dynamics. 

The model of stable distributions has also been the most popular stochastic model in 

exchange-rate economics and was applied to exchange-rate data by Westerfield (1977), 

Rogalski and Vinso (1978), Friedman and Vandersteel (1982), Calderon-Rossell and 

Ben-Horim (1982), McFarland, Pettit and Sung (1982), So (1987), Boothe and Glassman 

(1987), Akgiray and Booth (1988) and Tucker and Pond (1988). I will come back to these 

studies later in this section and will explain the discrepancies between their results and 

mine.
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The great popularity of the stable distributions is probably due to the fact that they 

are related to a generalization of the central limit theorem. Somewhat loosely formulated, 

the central limit theorem says that the sum of appropriately standardized, independent and 

identically distributed random variables with finite variance has a normal distribution in 

the limit as the number of summands goes to infinity. This strong result, of course, explains 

the dominant role of the normal distribution in probability theory and statistics. If one 

drops the assumption of finite variance one arrives at the family of stable distributions as 

the only limit distributions for sums of independent and identically distributed random 

variables (with appropriate standardization) and the normal distribution is just a special 

member of this family.

As explained above, a stochastic model which is based on the summation of random 

variables fits well into the broad framework of asset-market theories of the exchange rate. 

As the analysis in chapter 1 showed, the conditions of the central limit theorem are 

obviously not met by short-run exchange-rate dynamics since there are significant devi

ations from normality in these series. With respect to the central limit theorem, there are 

four different explanations for non-normality in the short-run data. First, non-normality 

might be caused by dependence in the series. In fact, some dependence of second order, 

i.e. in variances, has been found in the autocorrelation function of squared data. Also, the 

analysis of Markov chains revealed clustering of small and of large exchange-rate 

movements. Second, the assumption of identical distributions might be violated. As the 

result from the Levene test of homogeneity in variance indicate, there is in fact very strong 

evidence against homogeneity. Third, non-normality might be simply due to the fact that 

in short-run data the number of random components in the sum is too small to give a good 

approximation to the normal distribution. This explanation, however, does not seem to be 

very convincing given the steady flow of new information to the foreign-exchange market 

and continuous trading. Finally, non-normality might be caused by infinite variances of 

the random variables which determine exchange-rate fluctuation.
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The last explanation leads directly to the family of stable distributions since they are 

the only limiting distributions under infinite variance. There is another property of stable 

distributions which makes them attractive to model speculative prices. In continuous time, 

a stochastic process which is driven by Gaussian increments, the so-called Wiener process, 

is itself continuous and cannot, therefore, explain jumps in the observed series. The sample 

path of a stochastic process driven by increments from a stable distribution, on the other 

hand, is everywhere discontinuous. Most of the variation is due to non-infinitesimal jumps. 

An almost trivial reason for jumps in price series is due to the fact that prices are always 

quoted in integer multiplies of certain currency units or base points, i.e. a price variable is 

always a discrete variable. More substantially, however, it is a common property of 

short-run speculative price series that they include great jumps which are incompatible 

with a normal distribution in the sense that they would be extremely unlikely under this 

distribution. For instance, the U.S. dollar depreciated against the Deutsch mark on Monday, 

23rd September 1985 by 5.75 percent following the Plaza-Agreement at the weekend 

before to bring the dollar down. Under the normal distribution, with the population variance 

replaced by the sample variance, a depreciation of this magnitude would be expected to 

occur once in about 70,000 years. Similarly, the appreciation of the dollar against the mark 

by 4.95 percent on Thursday, 2nd November 1978 (following the announcement of strong 

support measures for the dollar by the Carter administration) would occur once in about 

2200 years. Thus, there is an obvious need to choose a model which attaches more prob

ability to extreme observations, i.e. to adopt a fat-tailed distribution. As I will show shortly, 

stable distributions are in fact fat tailed.

On the other hand, there are two reasons which appear to make stable distributions 

not very attractive for applications. First, not everybody is ready to accept the implications 

of infinite variance, since variance is a widespread concept in statistics and economics. 

One would have to rework many areas of statistic and economics to incorparate stable 

distributions. In fact, there were some attempts to formulate portfolio analysis for 

underlying stable distributions of returns by Fama and Samuelson following the apparent
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success of these distributions to fit stock-price distributions. However, stable distributions 

are rather awkward to work with analytically as will be shown shortly. Also, finite variance 

is sometimes seen to be implausible. It is true that every empirical variance must be finite, 

because every empirical support is finite, but this cannot really be advanced as an argument 

against stable distribution because they share with many other distributions the property 

of infinite support, including the normal distribution. The difference to finite-variance 

distributions is simply the increase of probability in the tails of the distributions.

As a heuristic way to examine whether infinite variance is present, Granger and Orr 

(1972) suggested to plot sequential variances. Under non-normal stable distributions, the 

sequential variances do not converge to a stationary value since the population variance 

for these distributions is infinite. Figure 8 in chapter 1 plots sequential variances for the 

four daily exchange-rates. There appears to be convergence in sequential variances for the 

sfr and yen series but not in the mark and pound series. This finding, however, may only 

be interpreted as a rough indication that infinite variances might drive the stochastic process 

in some series. As Granger and Orr already noted, shifts in sequential variances may also 

be caused by non-stationarity.

Second, stable distributions are not only awkward to work with analytically but also 

empirically because they cannot, in general, be described in closed forms of the density 

or the distribution function. Instead, they are usually described by their log-characteristic 

function

and u is an auxiliary variable.

The characteristic function is determined by four parameters which can be related to 

the first four moments. First, 5 is a location parameter (-«»< 5 < «>) which is equal to 

the expected value of X  if 1 < a  < 2. It is equal to the median or mode if p = 0. Second,

(79) logd>x(«) = idu - 1 yiu |“ [1 + /p(w/1 u |)gl>(m , oc)]

where

(80)
tan(7ca/2) if a  * 1
2 log(| u |)/tc if a  = 1
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y is a scale parameter (y > 0) which measures the spread of the distribution. If a  = 2 (the

is some other measure of spread, for instance if a  = 1 and P = 0 (the case of the Cauchy 

distribution) y is the semi-interquartile range. Third, p is a skewness parameter 

(-1 < P < 1). If p = 0, then the distribution of X  is symmetric, for P > 0 it is skewed to 

the right and for p < 0 it is skewed to the left. Together with the characteristic exponent 

a(0 < a  < 2), P determines the type of distribution. The characteristic exponent determines 

the highest order of finite moments within this family. If a  < 2, then the variance is infinite, 

i.e. the normal distribution with characteristic function

is the only member in this family with finite variance and finite moments of any (positive 

integer) order. The expected value is not finite (and a fortiori all higher moments are not 

finite) if a <  1.

The characteristic exponent is related to kurtosis in the following way. Recall that 

kurtosis measures both peakedness and tail weight. For a symmetric stable random variable 

which is standardized by x ’ = ( x -  5)/y, the density at the origin is given by (see Holt and 

Crow (1973))

(82) /(°|cx)=-i-rf i
KCL 2 j

and, obviously, this is a decreasing function in a. Hence, all symmetric non-Gaussian 

stable distributions are peaked as compared with the normal distribution.

The tail behaviour of the symmetric non-Gaussian stable distributions can be 

described by

case of the normal distribution), y=(W 2, where o is the standard deviation. For a < 2 ,y

(81)

(83) F(x) = Cjc-0 for x —» -oo

(84) 1 -F(x)  = Cx~a for x —>-h» .
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where F  denotes the distribution function and C > 0, whereas C = 0 for the normal

distribution (see Mandelbrot (1963)). This means that non-Gaussian stable distributions 

have fatter tails than normal distributions and it follows that the tail tickness is a decreasing 

function of the characteristic exponent a. The properties of (83) and (84) are quite 

important in economics and probability theory. In economics, the Pareto distribution, which 

is often applied to model income distributions, has the distribution function 

F(x) = 1 -  (k/x)a with a > 0,k > 0 and x > k and thus this distribution satisfies (84). 

This prompted Mandelbrot to introduce the name stable-Paretian distributions for the 

non-Gaussian stable distributions.

In probability theory, distribution functions which satisfy (83) and (84) are called 

distributions with regularly varying tails. They play an important role in the concept of 

the domain of attraction. The common distribution F of independent random variables 

Xj is defined to belong to the domain of attraction of a distribution G if the sum of the 

appropriately standardized Xj tends in distribution to G. The classical central limit 

theorem is based on the fact that F belongs to the domain of attraction of the normal 

distribution if F has finite variance 8. On the other hand, a distribution belongs to the 

domain of attraction of stable Paretian distributions if it satisfies (83) and (84) with 

0 < a  < 2. In more informal terms, this implies that stable Paretian distributions can only 

attract distributions which are "similar" to themselves whereas the normal distribution can 

attract distributions with widely varying shapes (see Galambos (1988), chapter 6). I will 

come back to the concept of regularly varying tails later in this section.

Stable Paretian distributions are "self-attracting" in the sense that the sum of inde

pendent and identically distributed (i.e. with the same a  and p) stable variables has also 

a stable distribution. This is easily seen from the log-characteristic function (79). Since

8 Actually, the domain of attraction of the normal distribution is a bit wider than this, i.e. 
finite variance is only a sufficient and not a necessary condition (see Galambos (1988), 
section 6.4).
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the characteristic function of a sum 5 of x independent random variables Xj is equal 

to the product of the characteristic functions of the Xj, one gets

(85) logOs(M) = i t 8m — t  | yu |a [1 +i$(u/ \ u |)co(m, cc)].

Thus, the summation affects 5 and y  but not a  and p. This stability of the shape 

parameters a  and p under addition gave rise to the name of this family of distributions. 

It follows from (85) that the standardizing factor for the scale parameter is z~lla whereas 

it is well-known that it is %m for the normal distribution. Recall from Chapter 1 that 

under time aggregation the standard deviations of all four exchange-rate series increased 

by more than expected under the 'Jr -law. This result can now be interpreted to have been 

caused by applying the wrong standardizing factor and hence as a possible indication of 

the presence of stable distributions.

Before I turn to estimators and estimates, I want to present an alternative interpretation 

of the stable Paretian distributions which permits to relate this model to the scale-com

pounded models of the previous three sections. I will show that a stable Paretian distribution 

can be obtained as a scale-compounded normal distribution (with zero mean) where the 

compounding distribution is positive stable. A distribution is said to be positive if it is 

concentrated on the non-negative real line. For a stable distribution to be positive, one 

needs to impose the additional parameter restrictions a  < 1, P = 1 and 8 > 0. Thus the 

model can be formulated as

(86) X  | h-NiO'Jia1)

where h is a random factor in the variance of the conditional distribution and H  has a 

positive stable distribution. In terms of characteristic functions the model is given by

(87) 0 X|/I =E(exp{iuX \ h}) = e x p j - i / i a V j

(88) d>ff(v) = exp{-1 yv |“ [1 + i(v /1 v |) tan(m /2)]

where v is an auxiliary variable. By the change of variable
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(89) iv = - -m 2o2 
2

one gets

(90)
( l  \

®x(U) =<&H o ' “  "V "  //

exp] - 1 - ly n W  |“ [1 + i2tan(7ta/2)]

= exp{-1 y  w |2a}

with Y  = -  tan(7ta/2)]. Therefore, one obtains a symmetric stable distribution with

5 =  0.

What makes stable Paretian distributions awkward to work with empirically, is the 

fact that, in general, closed forms for the corresponding densities are not available. Apart 

from the Cauchy distribution, which was mentioned above, the only other non-normal 

stable distributions with known closed-form densities are the Holtsmark-Levy-Smimov 

distribution with a =  1/2 and p = ±l 9 and the Mitra distributions with a  = 2~k(k = 1,2,...) 

and p = 0 (see Csorgo (1984)). Of course, the probability law of a random variable can 

be described by the distribution function, by the density function, or by the characteristic 

function, and all three ways are perfectly equivalent. Furthermore, the three functions are 

related through the operations of differentiation, integration and Fourier transform. 

However, in order to apply ML methods, one needs to compute the densities.

The lack of closed forms of the densities has led to the suggestion of numerous 

estimators for the parameters, especially for a  which is the decisive parameter 10. For 

exchange-rate data and other speculative prices, the most popular estimator of a  has been 

the one suggested by Fama and Roll (1968,1971). Their estimator is based on the matching 

of empirical and theoretical fractiles and exploits the fact that tail weight is a function of

9 With a  =1/2 and p = - l ,  one gets the reciprocal of a chi-square variable with one 
degree of freedom. This distribution belongs to type V of the Pearson family.
10 A good overview is provided by Csorgo (1984).
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a. McCulloch (1986) generalized the Fama-Roll estimator to cover non-symmetric dis

tributions and also removed the asymptotic bias in the Fama-Roll method.11 McCulloch’s 

method has been applied to exchange-rate data by So (1987) and Tucker and Pond (1988).

A method based on the empirical characteristic function has been introduced by 

Koutrouvelis (1980) and was applied to exchange-rate data by Akgiray and Booth (1988). 

This method depends crucially on the values of the auxiliary variable u chosen. Kou

trouvelis suggested to select different values of w, and to estimate a  from a regression 

of log(-log | Or(w,) |2) on log | ui |, where <JV(m,) is the empirical characteristic function 

based on T observations.12

Finally, Feuerverger and McDunnough (1981) proposed to overcome the problem 

of lacking densities by estimating the densities via the fast Fourier transform (FFT). This 

method implies some computational burden, but it is the most elegant and convincing 

method of all the ones which have been proposed and it permits to apply ML methods on 

the estimated densities. This estimator has been applied by Boothe and Glassman (1987) 

to exchange-rate data.

Following the analysis of chapter 1,1 restrict the model of stable distributions to the 

symmetric case, i.e. P = 0, with 8 = 0 and 1 < a  < 2. An estimated value of a  in the 

interval (0,1 ] would obviously put me in an unpleasant position of having to reconcile such 

a result with the finding in Chapter 1 that the H0 of a constant mean at zero cannot be 

rejected. Anyway, in the actual estimations of a  there was never a convergence to the 

value of 1. Also, in previous applications of stable distributions to exchange rates, all 

estimates of a  were above 1. Note that the restriction on a  implies that the model of 

stable distributions and the model of the generalized Student distribution have the same 

"boundary distributions" since the Student distribution with 1 degree of freedom is the

“ There is a downward bias in the Fama-Roll estimator of a.
12 Akgiray and Lamoureux (1989) compared the McCulloch estimator and the Koutrouvelis 
estimator in a Monte-Carlo study and found that the Koutrouvelis estimator performed 
better than the McCulloch estimator in terms of bias and precision for any sample size and 
values of a  and p. Both methods were quite accurate in estimating a.
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Cauchy distribution. The "upper boundary distribution" is in both cases the normal dis

tribution. The restriction (3 = 0 is imposed because the H0 of symmetry could not be 

rejected in chapter 1.

In order to understand the Feuerverger-McDunnough approach, note that a density 

function f(x) can be obtained from a characteristic function O(u) via the Fourier transform 

(see e.g. Parzen (1960), chapter 9)

If the ITT algorithm is applied to evaluate the intergral in (91) then x  takes on values on

the equi-spaced grid 0,±Ax,±2Ax,,..,±/VAx/2. For the auxiliary variable one gets 

Au = 2nl{NAx) and the algorithm is applied to the sequence 1/2, O(Am), ..., 0((/V -  1)Am). 

If the output sequence is multiplied by 2/(/VAx), one obtains /(0),/ ( Ax),...,/(/VAx/2) 

and the corresponding densities at the negative values of the Ax grid points (which do 

not contribute additional information under symmetric distributions). In order to apply this 

method, one has to choose values of N  and Ax. Following the suggestions of Feuerverger 

and McDunnough, I set N  = 1024 and Ax = 0.05.

The consequence of applying the discrete FFT approximation

of the Fourier integral is the so-called aliasing effect (see e.g. Fuller (1976) pp. 119-120). 

Feuerverger and McDunnough found that the aliasing error stays essentially constant and 

can thus be determined by the difference between the estimated density and the exact 

density at x = 0 which is given in (82). This requires to standardize the data by x,/y with 

the current estimate of y. In order to get the densities at the actual values of xt, I used 

cubic Hermite interpolation (see Hamming (1973), pp. 277-287). I applied these methods 

and checked the calculated densities with the densities tabulated by Holt and Crow (1973) 

and found complete agreement. Having obtained densities, I then used a numerical gradient 

method with local search at suspected maxima to get the ML estimates a  and y .

(91) f(x) = ̂  J  exp{-iux}<t>{u)du

(92) f{kAx)=-p=X 0(/'Aw)exp{-/27Cy7://V} k = 0 , 1 , 1  
VNj-o
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A central issue in the fitting of stable distributions to speculative prices is the stability 

of a  under time aggregation. According to this model, only y  and 8 (if non-zero) should 

change under time aggregation. In earlier applications to exchange-rate data, however, 

there was an apparent increase in the estimated a ’s under time aggregation. Table 5 gives 

an overview of the studies.13 McFarland et al. (1982) and Boothe and Glassman (1987) 

observed an "instability" of a  and interpreted it as evidence against this model. At this 

stage, however, this conclusion is not very convincing. First, an increase of a  could also 

occur in a model which is a mixture of stable distributions. That is, one does not have to 

abandon the family of stable distributions in order to reconcile rising a ’s with the model. 

Second and more importantly, those earlier studies listed in table 5 do not present any test 

statistics on which proper statistical inference could be based to test the stability of a. 

The only study which reports standard errors of a  is the one by So but he analyses only 

daily data. Therefore, the stability of a, and thus the applicability of this model, is still 

an open question.

My results from applying the Feuerverger-McDunnough Approach to the estimation 

of stable Paretian distributions are reported in table 6. Starting values for a  and y  in the 

iterations were obtained from the Koutrouvelis estimators. The estimates of a  from the 

Koutrouvelis method ranged between 1.70 and 1.78 for daily data and 1.73 and 1.80 for 

weekly data.

13 From the nine studies mentioned at the beginning of this section, three studies are not 
included in the table. In the article of Rogalski and Vinso (1978) it is unclear which data 
they used to estimate the stable distributions. Calderon-Rossell and Ben-Horim (1982) did 
not estimate the characteristic exponent. Instead, they applied a Kolmogorov-Smimov 
goodness-of-fit test to the estimated Cauchy and normal distribution and an arbitrary stable 
distribution with a =  1.5. Akgiray and Booth (1988) reported only likelihoods for the 
estimated stable distributions. However, these likelihoods are very unplausible. For other 
candidate models, the log-likelihoods are between 7944.2 and 8192.5 but for the stable 
distribution they are between -24302.5 and -17307.1. It is quite likely that they made a 
serious error in estimating the stable distributions. I will show in chapter 4 that the 
likelihoods of all stochastic models applied in this study are very similar in magnitude. 
The candidate models of Akgiray and Booth (1988) are a subset of these stochastic models.
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Table 5

Studies applying stable distributions to exchange-rate data

Authors Estimates of a Method Currencies Period

Westerfield 1.33-1.51 Fama-Roll DM, £, SFr day

Friedman and 
Vandersteel

1.11-1.45
1.30-1.50
1.33-1.63

Fama-Roll DM, £, SFr, ¥ day
week t  
month t

McFarland, 
Pettit and Sung

1.12-1.40
1.50-1.92

Fama-Roll DM, £, SFr, ¥ day
week t

So 1.10-1.16 McCulloch £ ,¥ day
Boothe and 
Glassman

1.27-1.62
1.54-1.72
1.37-2.00

Feuerverger-
McDunnough

DM, £ ,¥ day
week
month

Tucker and 
Pond

1.12-1.39
1.26-1.55

McCulloch DM, £, SFr, ¥ day 
week t

t  Quasi-weekly or quasi-monthly data obtained from sums of 5 or 20 daily data, 
respectively. Note that only those currencies are listed in column 4 which are also 
analysed in this study.

Compared with these earlier studies, my Koutrouvelis estimates of a  for daily data

are surprisingly high. I also applied the Fama-Roll method to estimate a  and got values 

between 1.41 and 1.55 for the four daily series. These estimates from the Fama-Roll method 

are more in line with earlier studies. Since the comparative simulation study by Akgiray 

and Lamoureux (1989) showed that the Koutrouvelis estimators of a  is superior to the 

one by McCulloch (and hence also to the one by Fama and Roll) in terms of bias and 

precision, one may conclude that earlier studies probably underestimated a.

As table 6 shows, the ML estimates of the Feuerverger-McDunnough approach do 

not differ very much from the Koutrouvelis estimates but the estimates of a  tend to be 

somewhat smaller. Standard errors of the parameters are reported in brackets. I also esti

mated stable Paretian distributions for monthly data because stability of a  under time 

aggregation is central to this model.
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Table 6

Estimates of stable distributions by the Feuerverger-McDunnough method

mark pound sfr yen

day a
Y
LR
x2 (97)

1.74 (0.03) 
0.40 (0.01) 
371.8 *** 
226.7 ***

1.56 (0.03) 
0.35 (0.01) 
511.1 *** 
418 4 ***

1.68 (0.03) 
0.46 (0.01) 
497 1 *** 
220.0 ***

1.60 (0.03) 
0.33 (0.01)
473.7 ***
741.7 ***

week a
Y
LR
X2 (47)

1.68 (0.07) 
0.84 (0.04) 
60.6 *** 
57.8

1.74 (0.07) 
0.84 (0.03) 
74 4 *** 
77.5 ***

1.68(0.07) 
1.00(0.05) 
38.9 *** 
67.0 **

1.65 (0.07) 
0.71 (0.03) 
81.6*** 
61.9*

month a
Y
LR
X2 (27)

1.81 (0.14) 
2.18(0.19) 
3.56 *
21.4

1.92 (0.07) 
2.16(0.13) 
0.99 
27.8

1.91 (0.08) 
2.60 (0.16) 
4.31 ** 
33.7

1.87 (0.17) 
2.26 (0.21) 
7 49 *** 
47 9 ***

Significance levels: see table 1

There are several remarkable findings. First, for short-run exchange-rate dynamics,
a

the estimates of a  are significantly below 2 and there is no obvious increase of a  in 

weekly data as compared with daily data. According to the likelihood-ratio statistic, stable 

distributions achieve a much better fit in comparison with the normal distribution. How

ever, the %2 test °f goodness-of-fit rejects all daily models at the 1 percent significance 

level and one of the weekly models at the same level. This rejection by the %2 test is very 

similar to the rejection of the previous three models (mixture of normal distributions, 

compounded Poisson distribution and generalized t -distribution) by this test. The results 

for the monthly data, however, are drastically different. None of the a ’s is significantly 

different from 2 as judged from their standard errors. Accordingly, the LR test rejects the 

H0 of normality only for the yen. Thus, there is strong evidence for convergence towards
a

normality. I also estimated the model with quarterly data and got point estimates of a  =2
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for all four series. For the quarterly mark and pound, the starting values from the Kou

trouvelis method were also equal to 2. The results from table 6 are broadly in line with 

earlier studies.

The fact that a  is significantly smaller than 2 for short-run data but not for monthly

or quarterly data indicates that the exchange rates do not follow stable Paretian distributions 

but other fat-tailed distributions. In order to examine this possibility, I come back to the 

concept of regularly varying tails. As mentioned above, only (symmetric) distributions 

whose tail probabilities follow the function Cx^, with 0 < a  < 2, belong to the domain 

of attraction of (symmetric) stable Paretian distributions. If a  > 2, then the distribution 

belongs to the domain of attraction of the normal distribution. I, therefore, extend the model 

of stable distributions to the class of distributions with regularly varying tails of which 

stable distributions are a sub-class which obtains when the tail probabilities follow Cx~“ 

with a  < 2 (recall that stable distributions are self-attracting). All other fat-tailed dis

tributions with tail probability Cx““ and a  > 2 do not belong to the family of stable 

Paretian distributions. In contrast to stable Paretian distributions they converge to the 

normal distribution under addition.

Within the class of distributions with regularly varying tails one can, therefore, 

discriminate between fat-tailed stable and non-stable distributions by estimating the 

coefficient of regular variation a. One can reject the model of stable Paretian distributions 

if a  turns out to be larger than 2. Note that a  can have two meanings in this context. 

First, it denotes the coefficient of regular variation which determines the tail behaviour of 

the distributions function and, second, it denotes in addition the characteristic exponent 

of stable distributions if a  < 2.

Analysing the family of distributions with regularly varying tails can enable us to 

reject the sub-class of stable Paretian distributions, but it does not help to identify a specific 

distribution function if a  is estimated to be greater than 2. Some distributions like Student’s 

distribution are known to have regularly varying tails with a  > 2 but one cannot associate 

a specific a  > 2 with a specific distribution function.
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Hill (1975) proposed a conditional ML method to estimate a. The estimator is given

by:

1 ± n~l
- I  log I x(7._7 + 1) | -log  I |(93) o(9 ) =

where x(i) denotes the i-th order statistic in descending order. It is called a conditional ML

estimator because it is a function of the chosen integer q. Hall (1982) established the 

asymptotic normality of a{q) and showed that the asymptotic standard errors of a(q) 

under the H0 of a  = (Xq are equal to a(q)/y[q. In the estimation of a  , the choice of q 

is crucial. Following the work of Hall (1982), Phillips and Loretan (1990) suggested to 

apply a range of values of q centred around q* = T2J3/\og(logT).

The estimator in (93) can be applied to both the lower and the upper tail of a dis

tribution but also to both tails simultaneously. In the latter case, one has to take absolute 

values first before the observations are ordered according to magnitude. For symmetric 

distributions it is preferable to apply the 2-tailed version. In the sequel, I will only report 

results from this 2-tailed version, because the results from analysing the lower and upper 

tails separately do not differ substantially from the results of the 2-tail version.14

The rule that q should be centred around q* leads to approximate values of q* of

100,40,20, and 10 for the daily, weekly, monthly and quarterly data respectively. Figure 

4 plots values of a(<?) centred around the approximate values of q * with the upper bound 

ofq equal to 2q*. Some low values of q have been truncated because a(q) is very erratic 

for these values of q . To save space, only the plots for the four yen series are shown. 

The solid lines in figure 4 show a  as a function of q and the dashed lines mark
A

95-percent confidence intervals. In all four plots, every single value of a  is above the 

critical line of a= 2. The estimated a ’s converge apparently to values significantly above 

2 in short-run data. In monthly and quarterly data, however, the confidence intervals include

14There is only a tendency in short-run data for a(p) to be somewhat lower when it is 
estimated from the lower tail than when it is estimated from the upper tail or both tails.
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Figure 4

Coefficient of regular variation as a function of q : yen-dollar series
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the value of 2. This could be attributed to a decrease in power of the test under decreasing 

sample size or to convergence to normality under time-aggregation. The decisive result 

is, however, that the H0 of a  <2  can be firmly rejected and this is very strong evidence 

against stable Paretian distributions.
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The estimates of a (q* ) , based on the 2-tailed version, for all series, together with

their standard errors, are reported in table 7. For all series, CL(q*) is above 2 and for all 

short-run data, it is significantly above 2. In most cases, the exponent of regular variation 

lies in the interval from 3 to 5.

There is another interesting aspect in the estimation of a. For a distribution which 

satisfies (83) and (84), one obtains (see Brockwell and Davies (1987), p. 479)

(94) E \ X \ b=oo if b > a

(95) E \ X \ b<oo if b<  a,

i.e. a  also determines the maximal moment exponent. If a  < 3, then the third moment

is not finite and when a  < 4 then the fourth moment is not finite. For most series, a  is 

not significantly smaller than 4 but significantly smaller than 5. This implies that the 

kurtosis is finite and gives a late justification for analysing only moments up to order 4 in 

Chapter 1.

Table 7

Estimates of the exponent of regular variation

mark pound sfr yen

day a  (100) 3.81 (0.38) 3.86 (0.39) 3.50 (0.35) 3.77 (0.38)
X208) 26.0* 19.6 21.6 1.24

week a  (40) 3.51 (0.56) 3.35 (0.53) 4.80 (0.76) 3.76 (0.59)
X2(6) 3.6 4.0 5.2 6.0

month a  (20) 3.02 (0.68) 4.34 (0.97) 5.37(1.20) 2.96 (0.66)
%2(2) 2.8 1.2 0.0 1.6

quarter a  (10) 3.46(1.09) 4.97 (1.57) 2.16(0.68) 2.80 (0.88)
X2(2) 0.8 2.0 0.4 1.2
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Also reported in table 7 is a test for goodness of fit. Hill (1975) showed that the 

variable Wq = aq \og(XiqJX{q+l)) has an exponential distribution with expectation 1 under 

the assumption of regularly varying tails. This suggests to examine the approriateness of 

the model with a %2 goodness-of-fit test for Wlt...,Wq:  The results from the %2 test in 

table 7 show that there is no evidence against this model. The only rejection of an expo

nential distribution for Wq is for the daily mark series at the 10 percent significance level.

In summary, both the estimates of the exponent of regular variation and the con

vergence of a  to the value of 2 in unrestricted ML estimation cast serious doubts on the 

applicability of stable Paretian distributions to exchange-rate dynamics. On the other hand, 

this result is good news for those who have feared that traditional statistical methods and 

concepts in financial economics are not applicable to speculative prices because they were 

thought to follow distributions with infinite variance.

2.5 SUMMARY

In this chapter, I have applied four stochastic models (mixture of normal distributions, 

compound Poisson distributions, Student’s distributions and stable Paretian distributions) 

to capture the statistical properties of exchange-rate fluctuations. These models are 

compatible with leptokurtosis. But they do not imply heteroskedasticity and in this sense 

they are static models. Furthermore, stable Paretian distributions do not converge to 

normality under time aggregation.

Distributional models of exchange-rate dynamics have also been compared by Boothe 

and Glassman (1987), Akgiray and Booth (1988), and Tucker and Pond (1988). This study 

differs from those studies in several important aspects. First, I provide a unifying framework 

for the application of the distributional models by showing that all four models can be 

derived as scale-compounded normal distributions, i.e. as models of a normal distribution 

with a stochastic variance. With this unifying framework lacking, the selection of dis
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tributional models would seem to be arbitrary. Second, the application of distributional 

models is motivated by and related to the stylized facts of the data, i.e. to the highly 

significant leptokurtosis. It is well-known that the kurtosis of Student’s distribution is 

larger than 3 and that it is infinite for stable Paretian distributions. Here I show that very 

general versions of scale-mixtures of normal distributions and of compound Poisson 

distributions also imply leptokurtosis. Third, the models have not been estimated by a 

single statistical method in those earlier models. In general, models have been estimated 

by maximum likelihood but Akgiray and Booth (1988) and Tucker and Pond (1988) did 

not estimate stable Paretian models by ML whereas Boothe and Glassman (1987) did not 

estimate normal mixtures by ML. This is important for likelihood based comparisons of 

models by likelihood ratios, AIC and SIC (as applied by these authors) since models which 

have not been estimated by ML have an obvious disadvantage in these comparisons. I will 

present comparisons, based on SIC, of these models together with the models of the next 

chapter in chapter 4.

The main results of this chapter may be summarized as follows. If one compares the 

four stochastic-variance models with the null hypothesis of Gaussian white noise by a 

likelihood-ratio statistic, the null hypothesis is very strongly rejected in all four cases. 

However, a %2 goodness-of-fit test rejects most models, especially for daily data. 

Furthermore, the model of stable Paretian distribution is rejected by direct ML estimation 

of the characteristic exponent (for monthly and quarterly data) and of the coefficient of 

regular variation. To the best of my knowledge, this is the first direct inference-based 

rejection of this model that has been reported.

A major drawback of all four stochastic-variance models is the fact that they do not 

imply heteroskedasticity which is another highly significant empirical regularity of 

exchange-rate data. The next chapter introduces two classes of models which are able to 

capture this property.
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CHAPTER 3

MODELS OF EXCHANGE-RATE HETEROSKEDASTICITY

In order to incorporate heteroskedasticity, the variance of a random variable has to be a 

function of time or of some other variables. As explained in the introduction, I will restrict 

this study to univariate analysis. Therefore, the variance of exchange-rate dynamics Aet 

will only be modelled as a function of the history of et .

The difference between the heteroskedasticity models of this chapter and the sto- 

chastic-variance models of the previous chapter lies in the fact that for the stochastic-va

riance models the conditional variance (^(Aet 11,), given information I available at time 

t , is equal to the unconditional variance Ae,), whereas this equality will not, in general,

hold for the heteroskedasticity models. In other words, the variances a^Aet) are serially 

independent and independent of Aet in the models of scale-compounded distributions, 

but not so in the heteroskedasticity models. The probability models of the stochastic-va- 

riance distributions assume that there are two independent random variables. The first 

random variable determines the variance of the normal distribution and this random 

variable has a multinomial distribution for the mixture of normal distributions, it has a 

Poisson distribution for the compound Poisson process, it has an inverted Gamma dis

tribution for the (generalized) Student distribution, and it has a positive stable Paretian 

distribution with a  < 1 for the family of stable Paretian distributions. The second random 

variable, given the drawing from the variance distribution, is determined by drawing from 

a normal distribution with the given variance. The crucial assumptions are that the two 

random variables are independent and that the first random variable is serially uncorrelated.

In order to be consistent with the clustering of large and small exchange-rate 

fluctuations (of either sign) and with the significant autocorrelation of squared data (see 

Chapter 1), the models of this chapter either dispense with the assumption that the stochastic 

variance be serially uncorrelated (as in the Markov-switching model of the next section)

123



or with the assumption that the variance variable be independent of the exchange-rate 

variable. Both assumptions are relaxed in the family of ARCH-type models (see section

3.2).

3.1 MARKOV-SWITCHING MODELS

As described above, the finite-mixture model may be decomposed analytically into two 

independent random variables where the first variable is a stochastic variance with a 

multinomial distribution (or a Bernoulli distribution if we have a two-component scale 

mixture) and the second variable has a conditional normal distribution. One may, therefore, 

regard the first variable as a state variable st which can take on values j  = 1,..., J , where 

J is the number of components in the mixture. The probability of drawing from component 

j  is pj where component j  is a normal distribution with mean 0 ; and variance o j . As 

in Section 2.1, this model may be written as

(1) /(*)=  I  Pjfji* I Qj,Vj)
7 =  1

where

(2)

The Markov-switching model is an extension of this mixture model where it is 

assumed that the state variable st follows a time-homogeneous first-order Markov process 

characterized by the transition probabilities 

(3) p(st = j \ s t_{ = i) = pu .

For a Markov-switching model with two states, one gets a 2x2 transition matrix of states 

P = {pu} , with two independent probabilities p n and p12. Of course, it follows that 

P n -  1 —Pu and that p2i = 1 ~ Pn • The Markov chain in (3) together with the mixture 

model in (1) and the specification of the normal distribution in (2) gives for J=2 a 7 

parameter model with parameter vector = {pn,p22»®i»®2»(yi»(y2»p} where p = p(sx = 1).
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One needs p, the probability of being in state 1 in time period r = 1, to start off the 

Markov chain and a natural choice is to set p equal to the stationary probability of being 

in state 1 which is given by

1 ~Pl2
p=:r-7 ;— r *2 — Pll — Pll

The basic idea of the model is due to Baum et al. (1970) who suggested to estimate 

the model with the expectation-maximization (EM) algorithm. Furthermore, they derived 

the essential properties of the EM algorithm within a general model with Markov-chain 

dependence. They showed that, under certain regularity conditions, the EM algorithm 

increases the likelihood function monotonically and that it converges to the ML estimates. 

Lindgren (1978) detailed the steps needed to implement the EM algorithm for the Mar

kov-switching model, extended the model to the case of switching regressions, and 

examined the statistical properties of the model and its ML estimators. In a series of papers, 

Hamilton recently extended the model and adapted it to the modelling of interest rates, 

exchange rates and the business cycles (see Hamilton (1988, 1989, 1990, 1991 a, b) and 

Engel and Hamilton (1990)).

If J = 2 and p u = p21 or, what is equivalent, if p l2 = p22 then the Markov-switching

model reduces to the mixture model since these equalities imply that the s, are independent, 

i.e. p(st | $,_,) = p(s,). Since the statistical analysis in chapter 1 showed that there is 

significant clustering of large and of small exchange-rate movements, one expects that 

Pn > Pi\ » that p22 > p I2, and that the variance effects are much stronger than the mean 

effects. The condition that the diagonal elements of the transition matrix be larger than the 

off-diagonal elements together with the assumption of scale mixtures (i.e. 0j = ... = 0y) , 

reflects the notion of persistence in variability (or volatility, as it is called nowadays in 

financial markets) or of periods of turbulence and tranquillity.

The economic interpretation of the model is straightforward. Assume that there are 

two kinds of "news variables" hitting the foreign exchange market and causing 

exchange-rate movements. One kind of news causes low variance movements in the
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exchange rate and is associated with tranquil periods. The second kind of news represents 

shocks to the foreign-exchange market which may be unexpected regime shifts, massive 

interventions by central banks, the outbreak of economic or political crises and the like. 

These shocks would be associated with turbulent periods and a higher variance of 

exchange-rate movements. From its very nature of shocks, it would also follow that the 

parameter p would be expected to be near the value of 1.

As a simple economic illustration of the model, take the general asset-market model 

of exchange-rate determination in the form of

(5) et = $eu  + l +axt

(see chapter 1 equations (2) -(5)) with (J) + a  = 1 and | <|> |< 1. A solution to (5) is given 

by

(6) e, = a £  <|>'x, ,+l .
i = 0

Shifting (6) forward by one unit of time and substracting (6) from it, gives the exchange-rate 

dynamics

(7) e , . , - e ,  = a [ £  <t>X*il( + l •
/ = 0  1 = 0

Assume further that the exogenous variable xt follows the stochastic process

(8) x( t l =Ar, + C0,+] 

and cof + 1 follows the first-order autoregressive process

(9) ®,+i = P<»,+v,tl ,

where 0 < p < 1 and v, + j is white noise. It is now easily seen that

(10) et + l - e t = ($t 

with £(cof) = 0 and

(11) Var(CD,) = — a; .
1 -P
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According to (8), xt is an infinite-memory process like a random walk but the persistence

of the shocks cof+, depends upon the value of p. For p = 0, the shocks are only transitory 

and the closer p is to the value of 1, the stronger is the persistence of the shocks. As a 

consequence, it can be seen from (11) that an increase in the persistence of the shocks 

increases the variance of exchange-rate movements.

In this framework, a Markov switching model can be viewed as a regime shift caused 

by a change in the parameter p. It should be stressed, however, that this simple example 

is meant to serve as an illustration only of a model which is compatible with a Markov 

switching model. There is no intention to identify or estimate the structural model.

It has to be examined whether the Markov-switching model captures not only het

eroskedasticity but also the other two major statistical properties of exchange-rate 

dynamics, namely leptokurtosis and convergence to normality. The issue of leptokurtosis 

is easily dealt with because the stationary distribution of a Markov-switching model is a 

mixture distribution if the transition matrix is not degenerate. For a 2 x 2 transition matrix, 

it is sufficient to assume that 0 < p n,p21< 1. It then follows from the stationary distribution 

that the proof of leptokurtosis for arbitrary scale mixtures of normal distributions (see 

section 2.1) may be applied without modifications.

The issue of convergence to normality under time aggregation is less straightforward. 

The central limit theorem is not directly applicable since the condition of independence is 

violated. However, Lindgren (1978) established asymptotic independence for general 

versions of the Markov-switching model.1 It then follows from generalized versions of the 

central limit theorem that convergence to normality occurs (see White (1984)).

Estimation of the Markov-switching model is quite involved since the state variable 

st is not observable. I applied the EM algorithm as suggested by Baum et al. (1970),

1 Lindgren proved asymptotic independence by showing that "mixing" conditions are 
satisfied. The use of the term "mixing" might cause some confusion in this context since 
the "mixing" conditions are not related in any way to the mixing of densities as in (1).
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Lindgren (1978), and Hamilton (1990). The principle of the EM algorithm, which has a 

wide range of applications in statistics to models with incomplete and unobservable data, 

can be described as follows. Decompose the log-likelihood function into

(12) logpOF | X) = logp ('F | S,X) -  logp(S | X) + C

where X denotes the data {Ae{, . ,.,AeT} , S denotes the unobservable states {su . . ,

and C = logp(5 |X) is independent of and may, therefore, be disregarded in the 

maximization. Equation (12) can be rewritten as

(13)logp(«F | X) = J  logpOF | S,X)p(S | V,X)dS -  J  logp(5 | V,X)p(S \ %X)dS . 

Now define

(14) e('P ,'J '') = Jj logp(v l5 ,X )p (5 |'F * ,X )^

and

(15) = J  logp(5 | y,X)p(S  | Y ,X )d S  .

One can then describe a change in the log-likelihood in an iteration from k to k + 1 as

(16) logpOF**' | X) -  logp(<F‘ | X) = QOP*t:1, ¥*) -  QOF*, '¥“) -  [#(>?* *1 ,¥*) - H (>F\ VF‘)].

The algorithm consists of an expectations step (E), in which QQ¥t *F*) is calculated, and

of a maximization step (M), in which QC¥, 'F*) is maximized with respect to 'F . Baum 

et al. (1970) showed that choosing yi,k + ] such that QC¥k + [, 'F*) > j2 (¥*»¥*) implies that 

H(xi,k + \  *F*) -  H (^k, *F*) < 0 and therefore, according to (13), the log-likelihood increases. 

As mentioned before, they also showed that under weak regularity conditions, the EM 

algorithm converges to the ML estimates.

The essence of the EM algorithm is, therefore, to replace the maximization of the 

log-likelihood function by the maximization of QQ¥, 'F*) which is a weighted conditional 

log-likelihood function where the likelihood is conditional on the unobserved state variable 

S and the weights ^(SI'F '.X ) are the conditional probabilities for S , conditional on 

the previous estimate of *F and on the data X. The weights pOSIT^X) are a useful
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by-product of the EM algorithm since they give inferences about the state variable s , , 

given the full sample X. They are called smoothed probabilites, whereas the probabilities 

p(st | jc„ . . x„ *F) are called filter probabilities.

The most time-consuming computations in this application of the EM algorithm are 

the E steps in which the smoothed probabilities are computed. Lindgren (1978) and, in a 

different but equivalent form, Hamilton (1990) described how the smoothed probabilities 

can be computed in a recursive way. For daily data, the computational burden is quite 

substantial even if only a two-component model without mean effects, i.e. with 

V  = {Pn >Pzi>G\>G2} » is estimated. A typical iteration from k to k +  1 takes about 45 

minutes and often many iterations are required to satisfy the convergence criterion. Starting 

values for the parameters of the normal densities can be obtained from estimates of mixture 

distributions.

In Table 1,1 report estimates of a two-state Markov-switching model without mean 

effects but I also estimated models with more than two states and with mean effects. As 

Kaehler and Mamet (1993) show, the mean effects are in general not significant for daily, 

weekly and monthly data, with the exception for the daily yen series. Similarly, a third 

component contributed little to the goodness of fit of these models. Engel and Hamilton 

(1990) applied a two-state Markov-switching model to quarterly exchange rates and found 

significant mean effects in two out of three series.

Table 1 shows that the estimated diagonal transition probabilities p n and p22 are

in all cases very high, i.e. they are always larger than 0.9. The expected duration of state 

j, 8j, can be calculated from 8j = (1 -  pM)~l and one finds, for instance, that the expected 

duration of state 1 is 12 weeks for the weekly mark series. For the daily data, the expected 

duration of states varies between 14.9 days (state 1 for pound) and 57.5 days (state 2 for 

mark), for weekly data S; varies between 12.0 weeks and 44.2 weeks (state 2 for pound). 

For the mark series, the 8/s are rougly consistent across time horizons since 8{ = 56.6 

for daily data with 5, = 12.0 for weekly data and also 82 = 57.5 for daily data with 

82 = 15.6 for weekly data. On the other hand, 82 = 20.8 for the daily pound but 82 = 44.2
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for the weekly pound. With this exception, however, all 8, for weekly data are smaller 

than their corresponding values of 8; for daily data (where the former is measured in 

weeks and the latter in days). In general, the estimated probabilities p n and p12 indicate 

high persistence of states. The asymptotic standard errors, reported in brackets, also show 

that the transition probabilities have been estimated with quite high precision.

Table 1

Estimates of the Markov-switching model

mark pound sfr yen

day o? 0.137 (0.007) 0.073 (0.008) 0.203 (0.010) 0.068 (0.006)

<*2 0.786 (0.034) 0.697 (0.031) 1.228 (0.055) 0.595 (0.023)

Pn 0.982 (0.004) 0.933 (0.013) 0.981 (0.004) 0.971 (0.006)

Pn 0.983 (0.004) 0.952 (0.009) 0.978 (0.005) 0.981 (0.004)
LR„ 874.0 *** 985.6 *** 954 4 *** 1046.5 ***
X2(95) 130.5 ** 220.5 *** 157.4 *** 715.2 ***
LR* 503.8 *** 396.5 *** 451.0 *** 520.4 ***
W 19359.4 *** 1934.8 *** 14249.3 *** 11836.1 ***
P2 4 60 *** 5.30 *** 4 47 *** 5.17 ***
<2(15) 55.0 *** 215.4 *** 132.6 *** 155.3 ***

week of 0.435 (0.068) 0.232 (0.066) 0.818 (0.105) 0.265 (0.053)

3.497 (0.305) 2.588 (0.183) 4.872 (0.464) 2.440 (0.189)

Pn 0.917 (0.025) 0.924 (0.035) 0.948 (0.019) 0.949 (0.026)

Pn 0.936 (0.021) 0.977 (0.011) 0.954 (0.018) 0.972 (0.014)
LR„ 151.2 *** 121.3 *** 132 4 *** 181 9 ***
f(45) 73 2 *** 73 8 *** 168.6 *** 70.4 **
LR. 72 4 *** 44 1 * * * 65.3 *** 84.8 ***
W 470.2 *** 451.7 *** 756.1 *** 612.8 ***
Pz 3.81 *** 6.23 *** 3.21 4.75 ***
2(15) 14.9 q4 9 *** 18.9 20.4

Significance levels: a  = 0.01(***); a  = 0.05(**); a  = 0.10(*)
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It is also informative to compute the stationary state probabilities p as in (4). It is

surprising that the low-variance states (this is always state 1), have in almost all cases a 

smaller stationary probability than the high-variance states. Only for the daily sfr series is 

p greater than 0.5. For daily data p varies between 0.417 and 0.539 and for weekly data 

it varies between 0.228 and 0.470. This result is in contrast to estimates of p for

2-component scales mixtures as reported in section 2.1, table 1. Those estimates were in 

general much larger than the estimates of p . One would conclude, therefore, from the 

estimates of p u and p12 that both states have roughly the same probability of occurring.

Similar to the results for the scale mixtures, the two states of the estimated Mar

kov-switching models are well separated by their variances: of is larger than by at 

least a factor of 5 and, as indicated by the standard errors reported in brackets, the variances 

can be estimated with quite high precisions. The variances are roughly in the same order 

of magnitude as those of the scale mixtures. The most noteable difference is for the weekly 

pound series where of=1.09 and = 6.23 in the scale-mixture model but d\ = 0.232 

and = 2.588 in the Markov-switching model. The fact that the variances in both states 

of the Markov-switching model are much smaller than the corresponding variances in the 

components of the scale mixture is compensated by the fact that p = 0.23#2, whereas the 

probability of component 1 is 0.81 in the mixture model.

The Markov-switching model is also tested, like all other candidate models, against 

a H0 of Gaussian white noise with a LR test. The same theoretical caveats concerning 

the applicability of the LR apply here as in the case of mixture models (see section 2.1), 

but from a practical point of view those caveats seem to be immaterial here. As table 1 

shows, the LR statistics (which are here denoted as LRn) are so high that it appears to be 

futile to worry whether 1 or 2 degrees of freedom should be applied to the %2 distribution. 

The LR tests rejects clearly a simple normal distribution in favour of the Markov-switching 

model. This rejection is not a great surprise since for all models of Chapter 2, this rejection 

occurred, too. Instead it is more interesting to test the Markov-switching model against 

the scale-mixture model of Section 2.1 since it is nested within the Markov-switching
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model. As noted above, the Markov-switching model reduces to the mixture model if 

px j = l -  p22. The LR test with the mixture model as the H0 , denoted as LR,,, in table 1, 

is therefore a test of independence of the draws from the two states. Since heteroskedasticity 

was found to be a strong property of the exchange-rate data, one expects to find strong 

rejections of the restriction p n = \ - p 22. This is indeed the case, as table 1 shows. 

Assuming that the LR statistic has asymptotically a %2( 1) distribution, independence is 

strongly rejected for all daily and weekly series.

Alternatively, one can test the restriction pu = 1 -  p22 with a Wald test. The test

statistic is

[Pn “  0  ~  Pn)]2
^  W var(pn) + var(p22) + 2 cov(pn, p22)

which has asymptotically a %2(1) distribution. The test statistics which are reported in

table 1 appear to be pathologically high but note that the standard errors of p n and p22 

are very small in table 1. Since both p u and p22 are quite close to 1 for all series, it is 

clear that independence of draws will be rejected very strongly.

As mentioned above, a useful by-product of applying the EM algorithm is the 

calculation of the smoothed probabilities p (s, | x lt.. .,xTl 'F) which are conditioned on the 

information from the full sample. Figure 1 plots the smoothed probabilities of state 2 for 

the weekly mark series together with the squared exchange-rate dynamics. It is apparent 

from this figure that state 2 is associated with turbulent periods (i.e. high-variance epi

sodes). The probability smoother identifies the period from November 1975 until 

November 1977 as the only prolonged period being associated with state 1 if the criterion 

for identifying state 1 is that p(s,= 1 | jc,, ...,*r,vF) > 0.5. The corresponding plot of 

squared data shows that this was also a period of relatively small weekly exchange-rate 

fluctuations. The only other longer periods of tranquillity are the ones from July until 

December 1974 and from February until September 1979. This seems to indicate that the 

early period of the post-Bretton-Woods era was more tranquil than the more recent one. 

It is also interesting to note that the smoother attaches a probability of 1 to p(st | .) for
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both the strongest appreciation of the mark in the sample (the 7.8 percent appreciation in 

the wake of the Plaza agreement in September 1985) and its strongest depreciation (the 

7.0 percent depreciation after the introduction of support measures for the dollar in 

November 1978).

Figure 1

Squared data and smoothed probabilities of state 2: weekly mark
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In order to examine the adequacy of the model, I performed a %2 goodness-of-fit

test for the implied stationary distribution of the Markov-switching model. As with previous 

applications of this goodness-of-fit test, the results are quite disappointing. The test rejects 

the model for all daily and weekly data at least at the 5 percent level. There is even no 

clear improvement as compared to the fit of the mixture models to the empirical frequency 

curves. Two cases are quite extreme: the daily yen and the weekly franc. As noted before, 

the distribution of the daily yen data is strongly peaked since there are 146 days within 

this sample period on which the yen-dollar rate did not change. The interval which includes 

the value of zero contributes alone 381.8 to the excessively large value of the %2 statistic.
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In the case of the weekly franc, the strong rejection of the goodness-of-fit test is largely 

due to an underestimation of the lower tail probability. The Markov-switching model 

predicts 14.1 depreciations (of the dollar) of 2.78 percent or more in this weekly data set 

but 45 depreciations of this magnitude were actually observed.

It is also possible to analyse the "residuals" of the model. The expected variance of 

each xt can be derived form the estimated smoothed probabilities according to

(18) of = p(s,= 1 \x l,. . . ,xT,'¥)a\ + p(sl = 2 |x 1,...,* r,'F)c£

and one can standardize the data xt to obtain an independent and normally distributed

series x t = x,/at with unit variance. Table 1 shows that there is still significant leptokurtosis 

in the residuals since the kurtosis P2 of x t is significantly greater than 3 for all series. 

Compared with the kurtosis of the unstandardized data xt, however, the leptokurtosis is 

strongly reduced (cf. table 17 in Section 1.3) and the excess kurtosis is more than halved 

in all cases but one.

Finally, I computed the Ljung-Box statistic 0 XI( 15) for the squared residuals in order

to examine whether the Markov-switching model captures the full amount of heteroske

dasticity in the data. Table 1 indicates that this is not the case. There is still significant 

autocorrelation in the squared residuals of the daily series although it is much smaller than 

in the unstandardized data where it varies between 355.2 and 561.0 (cf table 6, Section

2.2). In the weekly data, however, it is only the pound series which shows residual het

eroskedasticity.

To summarise, the Markov-switching model provides a reasonably good fit to the 

daily and weekly data although the fit is not completely satisfactory on all accounts, but 

the model is an improvement to the compound-distribution models of Chapter 2 since, 

contrary to those models, it captures heteroskedasticity. The next section introduces ARCH 

models which incorporate heteroskedasticity explicitly and became very popular in 

empirical finance in recent years.
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3.2ARC/7-TYPE MODELS

Engle (1982) introduced the model of autoregressive conditional heteroskedasticity 

(ARCH) which provides a direct approach to model serial dependence in variances. The 

model can be formulated in the following way. Let a random variable xt be factored into

(19) x, = £,h,[l2

where e, is white noise with unit variance and h, is a linear variance function given by

(20) ht — (Xq + OtjJf,

then this ARCH model is said to be of order s, ARCH (s) for short. In its simplest version,

it is assumed that xt does not have any structure in its mean, i.e. that xt is the residual of 

a regression or of a time-series model like the ARIMA model. One does not have to worry 

too much about the estimation of the mean equation because Engle (1982) established the 

independence of the mean equation from the variance equation given in (20) by showing 

that the Hessian matrix is block-diagonal in the parameters of the two equations. Fur

thermore, the exploratory analysis of chapter 1 has shown that there are no strong and 

persistent patterns in the mean of exchange-rate dynamics and that the H0 of a constant 

mean at zero cannot, in general, be rejected. Hence, for the purpose of this study I take xt 

to be the first difference in the logarithm of exchange rates.

Although the model assumes that there is a time pattern in variances, it does not 

introduce explanatory variables for the variance. The causes of heteroskedasticity are 

assumed to be unobserved variables which are slowly varying or, to put it differently, 

which exert persistent effects in variability. The framework of the ARCH model is very 

useful for empirical applications in financial economics when risk is measured by the 

variance of a random variable and the model has been applied for this purpose repeatedly 

(see the comprehensive survey by Bollerslev et al. (1992)). It is applicable to univariate 

models of speculative prices since the model implies that small and large fluctuations tend
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to cluster together. Empirically, this phenomenon of speculative price dynamics was 

already noticed by Mandelbrot (1963). With the Markov chain model of chapter 1,1 could 

show that this property is highly significant in short-run exchange-rate data.

A good example of turbulent periods is provided by the yen-dollar rate in August 

1981. On August 4th, the dollar appreciated by 2.21 percent (the 7th largest appreciation 

in the daily yen series) despite massive intervention by central banks. According to 

newspaper reports, the dollar appreciated because of a sharp rise in U.S. interest rates and 

because of political unrest in Poland. The next day, the dollar depreciated by 2.92 percent 

(the 6th largest depreciation in the series) following continued central bank intervention 

and a decline in U.S. interest rates but speculators were also reported to take profits.

The clustering of large fluctuations of either sign is often due to great uncertainty 

among foreign-exchange dealers but sometimes a strong appreciation follows a strong 

depreciation, or vice versa, because government authorities step in to stop an exchange-rate 

crisis. A case in point is the dollar crisis in July, 1973. On July, 4th the dollar declined by 

3.08 percent against the mark (the 8th largest depreciation in this series) in the wake of 

the Watergate affair and the imposition of wage and price controls. Following an agreement 

between central banks to raise swap facilities and the announcement of interventions, the 

dollar appreciated against the mark by 3.04 percent (the 3rd largest appreciation in this 

series) on July, 10th.

A priori, nothing can be said about the lengths of periods of turbulence and periods 

of tranquillity. With the Markov-chain model I only examined first order dependence in 

variability but the results from the empirical autocorrelation functions for squared data 

indicate that higher order dependence is present in short-run dynamics. Therfore, it is best 

to choose the lag-length in the variance function heuristically.

Before I turn to the issue of estimation, it should be mentioned that the ARCH model 

implies that xt in (19) has an unconditional leptokurtic distribution. Leptokurtosis for the 

ARCH(l) model was shown by Engle (1982) and the generalization for the ARCH(^) 

model was established by Milhoj (1985). Thus, the ARCH model seems to be ideal to be
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fitted to short-run exchange-rate dynamics since it incorporates both the properties of 

heteroskedasticity and leptokurtosis. Furthermore, Diebold (1988) showed that ARCH 

models converge to normality under temporal aggregation.

As regards the estimation of the model, Engle (1982) proposed to estimate the model 

with ML methods and derived the gradient vector and the Hessian matrix under the 

assumption that e, has a standard normal distribution. The model requires, of course, that 

h, be positive. A sufficient condition to ensure positive conditional variance is that all 

a /s  in (20) are positve. However, I found it advantageous not to impose this restriction 

because violations of it may indicate abnormalities or a lack of fit of the ARCH model to 

the data. It turned out that non-positive variance was never a problem in the application 

to exchange rates.

As regards the identification of the order s, I applied both the Akaike information

criterion (AIC), defined by AIC = 2 s -2 L \  and the Schwarz information criterion 

SIC = s \o g T -2 L \  where V  is the logarithm of the maximised likelihood. It is well- 

known that SIC tends to identify models of smaller order than AIC. This is also true in 

this case as shown in table 2.

Table 2

ARCH models: identification of order s

mark pound sfr yen
day AIC 11 20 14 24

SIC 11 20 12 11
week AIC 22 17 20 23

SIC 3 4 6 12

I estimated ARCH models up to order s =25 and identified models of quite high 

order for daily series according to both information criteria. Only for the daily yen series
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is the difference in the identified order quite substantial. For all weekly series, however, 

SIC identifies a much smaller order than AIC. According to AIC, on the other hand, 

the order increases for two series in weekly data as compared with daily data. Whatever 

information criterion is selected to identify s , the order s is quite high for both daily and 

weekly series.2 This suggests to find a more parsimonious parametrization of the model. 

There are basically two possibilities. First, one can impose a restriction on the a / s  in the 

form of linearly or geometrically declining weights (or some other functional form). This 

approach was suggested by Engle (1982) and was applied to univariate exchange-rate 

models by Diebold (1988), Hsieh (1988, 1989a) and Lastrapes (1989). Hsieh (1989a), 

however, found that the restrictions of linearly and of geometrically declining weights 

were rejected by LR tests for daily exchange-rate data.

The alternative is to find a more parsimonious parametrization similar in spirit to the 

approximation of a high order MA process by a low order ARMA process. This approach 

was worked out by Bollerslev (1986). Bollerslev’s generalized ARCH model (GARCH) 

is obtained when (20) is replaced by the GARCH(j,r) model

(21) ht = Oq + a,*,2_ J + . . .+ a ^ _ s + plht_l +. . .  + $rht_r

but (19) is retained. The idea here is to choose low orders of s and r to approximate a

high order ARCH process. Bollerslev’s presentation of the GARCH model closely follows 

the one by Engle for the ARCH model and Bollerslev established for the GARCH(1,1) 

model the leptokurtosis of xt.

The choice between the ARCH(s), where s is determined by SIC and the

GARCH(1,1) model can again be made by applying information criteria. Table 3 reports 

the comparison between ARCH and GARCH for the exchange-rate data by SIC Only in

2 Similar results were obtained by Diebold (1988) and Hsieh (1989a). Diebold estimated 
ARCH models with fixed s = 12 for seven weekly exchange-rate series and found stat
istically significant a) s up to this order. Hsieh identified for five daily series the order s
with likelihood ratios, AIC and SIC. According to the first two criteria, the optimal s was 
between 10 and 24 and according to SIC it was between 7 and 23.
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one out of 8 cases is SIC lower, and hence better, for the ARCH model than for the GARCH 

model and this result would clearly favour the GARCH model. However, if AIC is applied 

then the choice between ARCH and GARCH is less clear-cut. For weekly data, AIC favours 

GARCH but for daily data it favours ARCH in all series. On the whole, however, the 

GARCH model seems to be slightly preferable to an ARCH(s) model.3

Table 3

Comparison between ARCH(s) and GARCH(1,1) models by SIC

mark pound sfr yen
day ARCH 6097.5 6030.6 7323.9 5427.1

GARCH 6064.3 5981.2 7299.7 5430.1
week ARCH 2463.5 2454.5 2701.6 2300.3

GARCH 2442.4 2422.7 2663.0 2237.4

ML estimation of the G ARCH( 1,1) model is quite straightforward. I applied a gradient 

method based on analytical first derivatives which are given in Bollerslev (1986). The 

recursion requires values of and h0 and I followed Bollerslev’s suggestion to set both 

values equal to the mean of *r2(f = 1,..., T). The estimates are shown in table 4.

The parameters a, and pj can be estimated with quite high precision, especially

in daily data. In most cases, a, is close to 0.1 and (3, is close to 0.9. Since the mean lag 

of conditional variance effects is given by (1 -  P,)_I, the high value of p! implies that 

there is strong persistence in variances. The fact that the sum of a, and p, is close to 1 

leads to the issue of stationarity. Bollerslev (1986) proved that a GARCH(s,r) process is 

second-order stationary if and only if

3 Hsieh (1989a) obtained a similar result. For daily series, GARCH(1,1) was better than 
ARCH(s) in terms of SIC for the yen, the sfr and the Canadian dollar, whereas ARCH(s) 
was better than GARCH(1,1) for the pound. For the mark, SIC led to indifference.
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Table 4

Estimates of the GARCH(1,1) model

mark pound sfr yen

day Oo

Pi
LR
x2m
p2
<2J 15)

0.656 (0.128) 
0.169 (0.015) 
0.833 (0.013) 
970.3 ***
181 9 *** 
4.80 *** 

22.86 *

0.675 (0.109) 
0.135 (0.013) 
0.864 (0.011) 
908.5 *** 
405.9 *** 
10.58 *** 
8.43

0.856 (0.179) 
0.143 (0.013) 
0.857 (0.012)

1015.1 *** 
188.0 *** 
6.29 *** 

54.08 ***

0.766 (0.120) 
0.190 (0.021) 
0.820 (0.017) 
901.6 ***
699 9 ***
17 44 *** 
3.19

week

P.
LR
X2(46)

P2
G*(15)

1.71 (1.34) 
0.095 (0.027) 
0.906 (0.027) 
111.4 *** 
98.4 ***
4 29 *** 

29.56 ***

4.16 (1.68) 
0.114 (0.029) 
0.878 (0.025) 
103.0 *** 
73.83 ***
703 *** 

8.03

1.83 (1.22) 
0.095 (0.017) 
0.907 (0.016)
119 3 *** 
98.4 *** 
4.26 *** 

11.66

0.52 (0.38) 
0.076 (0.013) 
0.932 (0.011) 
133.8 *** 
88.2 ***
9 g j  ***
4.43

Significance levels: see table 1
Note: the values of (Xq and their standard errors are multiplied by 100.

(22) CX] +.. .  + ctj + Pj + .. .  + Pr < 1.

According to table 4, there are several series for which oq + pj > 1. This violation of the

stationarity condition, caused by high values of Plf has been observed repeatedly in 

applications of the GARCH model to financial data. This led Engle and Bollerslev (1986) 

to extend the GARCH model to the case where variances are non-stationary. This integrated 

GARCH model, IGARCH for short, obtains if the polynomial equation

(23) 1 - a ,z  - . . .  - aszs -  P,z - . . .  -  Prz r = 0

(where z is an auxiliary variable) has at least one unit root, whereas the GARCH model 

requires that all roots lie outside the unit circle of the complex plane.

I do not want to pursue the idea of integration in variance here further because the 

statistical properties of the IGARCH model are not yet fully developed (see also the dis-
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cussion of Engle and Bollerslev (1986) in volume 1 of Econometric Reviews). Furthermore, 

the analysis of sequential variances in chapter 1 seemed to indicate that, at least for the sfr 

and the yen series, the variance converges to a finite value. A GARCH model with infinite 

variance was proposed by de Vries (1991) but he did not derive estimators of the full model.

I also performed a LR test for the GARCH(1,1) model against the H0 of a (condi

tionally) stationary normal distribution, i.e. the H0 implies that s = 0 and r -  0. The LR 

test rejects Gaussian white noise very strongly against the GARCH( 1,1) model for all series 

(see table 4). The likelihood ratios for this model are also much higher than those for the 

scale mixture of two normal distributions and for the compound Poisson process although 

all three models have three parameters to be estimated. When compared with the 

four-parameter Markov-switching model, the LR statistic of the GARCH model is smaller 

for two daily series and all weekly series; see also the next chapter.

On the other hand, the %2 goodness-of-fit test strongly rejects the GARCH(1,1)

model. Here it is tested whether Et =xt/h(112 has a standard normal distribution. The test 

statistic is significant at the 1 percent level for all data sets. For the previous models there 

was also strong rejection by the goodness-of-fit test for daily data, but for weekly data, 

the fit seemed to be much better. A closer look at the discrepancies between expected and 

actual frequencies reveals that the GARCH(1,1) model underestimates both the mass in 

the tails and at the centre of the distribution. The extreme test statistic of nearly 700 for 

the daily yen series is again due to the great number of zeros in this series. For the interval 

[0.0, 0.0251), the expected frequency is 33.65 but the actual frequency is 148.

The standardized data ef are further analysed for residual leptokurtosis and heter

oskedasticity. Table 4 shows that the H0 of mesokurtosis can be rejected at very high 

significance levels for all series. Even more surprisingly, leptokurtosis increases 

substantially in ef as compared with xt for both yen series and the daily pound series (cf
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Section 2.3, table 17). For the daily yen series, kurtosis more than doubles. This surprising 

result casts doubts on the appropriateness of the assumption that the conditional distribution 

of xt is normal.

Table 4 also reports the Ljung-Box statistic Q for squared residuals at lag 15. As

compared with the same statistics for the raw data (cf Section 2.3, table 6), there is a 

dramatic drop in Q for the residuals of the GARCH(1,1) model. In all cases, the Q for 

the residuals is less than 1/10 of the Q for the raw data. Only for the daily sfr series is 

the Q of the residuals significant at the 1 percent level. One may conclude, therefore, that 

the orders s = 1 and r = 1 are sufficient to capture the serial dependence of variances.

The fact that both the goodness-of-fit test and the test for mesokurtosis reject the 

distributional assumptions of the GARCH(1,1) model suggests to replace the conditional 

normal distribution by some other distribution. Since the comparison between actual and 

expected frequencies revealed that the model underpredicts the mass in the tails and at the 

centre of the distribution, it seems appropriate to replace the normal distribution by a 

leptokurtic distribution.

Bollerslev (1987) introduced a GARCH model with a conditional Student distribution 

to model speculative prices. In the context of this study of exchange-rate dynamics, it 

seems very fitting to adopt the Student distribution because this connects the static lep

tokurtic models with the dynamic process which captures serial dependence in variances. 

Bollerslev (1987) suggested to estimate the model with an algorithm based on numerical 

derivatives. Since analytical derivatives should be used, if available, in iterative optima- 

zation, I derive them here for the GARCH(1,1) model

(24) ht = ai) + a lxf_l + a2ht_l,

where, for notational simplicity, = P,. As stated above, it is natural to start the recursion 

with

(25) /*, = OQ + a ^  + OyX2

where x 2 denotes the sample mean of x 2.
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The derivatives of (24) with respect to the 3 parameters lead to the simple recursions

dh, dht_\
(26) ^ = 1 +<X2l ^

5 h t 2 ^ f - l
( ) 3a, ~ x' - ' +ct2 9a,

dh, dh,_ i
081

for t>  2. It follows from (25) that the recursions (26) - (28) are started by

dhl
(29)

(30)

9ao 1 

3/ij dh1 —2 
- X  .

3 aL 3ot2

Applying the approximation of the digamma function introduced in Chapter 2, one 

obtains for the first derivatives of the log-likelihood at t , /„ after some arithmetic

(31)
dl, dl, dht
da.; dh, dty

1 (v+l)x,2
h, xjh, + (v -  2 )hj

dh,
dty

for i = 0, 1,2 and

dl, ( 
(32) ^  = log

v — 1
1

2(v -  2) 2
log 1 +

iy -2 )h t
v +1
v -  1 xj  + (v -  2 )h,

where v denotes the degrees-of-freedom parameter of the Student distribution. Obviously,

one has to restrict the parameter space of v by the condition v > 2.

The results from estimating this model are shown in table 5 and it is interesting to 

compare these results with the ones for the GARCH model with a conditional normal 

distribution as given in table 4. First, the estimated value of (Xq, i.e. the constant in the 

conditional variance equation, is much smaller in the GARCH-t model than in the GARCH 

model; but this does not indicate that the implied stationary variance of the GARCH-t 

models is smaller than the stationary variance of the GARCH models. In the case of
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Table 5

Estimates of the GARCH (1,1 )-* model

mark pound sfr yen

day Oo 0.004 (0.001) 3.6 - 10' 5 (4.3-10*) 0.005 (0.002) 2.2 • 10^  (2.0 -10*)
0.164 (0.017) 0.174 (0.023) 0.131 (0.017) 0.217 (0.031)

02 0.847 (0.014) 0.873 (0.012) 0.874 (0.014) 0.842 (0.017)
V 7.240 (0.828) 3.737 (0.261) 6.468 (0.664) 3.939 (0.272)
LR 1105.6 *** 1594.5 *** 1219.9 *** 1614.1 ***
X2(95) 735.0 *** 136.3 *** 922.2 *** 1192.4 ***
P2 4 74 *** 146.7 *** 6.53 *** 14.71 ***
G„( 15) 28.1 ** 0.4 59.0 *** 3.3

week Oo 0.079 (0.058) 4.0- lO"* (1.4-10-3) 0.034 (0.029) 0.004 (0.005)
OCi 0.223 (0.080) 0.430 (0.112) 0.175 (0.050) 0.105 (0.029)
02 0.792 (0.072) 0.762 (0.030) 0.847 (0.038) 0.913 (0.021)
V 4.088 (0.757) 3.188 (0.451) 4.729 (0.945) 4.183 (0.710)
LR 163.3 *** 196.0 *** 158.5 *** 236.8 ***
f(45) 40.9 362.6 *** 197 0 *** 232.6 ***
P2 4.38 *** 7 80 *** 5.06 *** 11.18 ***
<2«(15) 24.0 *** 8.1 13.5 4.8

Significance levels: see table 1

GARCH models, the stationary condition a, + p, < 1 is violated for the mark, sfr, and 

yen series, however, the stationarity condition + ctj < 1 is violated for all daily and 

weekly series in the case of the GARCH-t models. Also, the sum of and for the 

GARCH-t models is in all eight series larger than the sum of a, and p, for the GARCH 

models. The largest value obtains for the weekly pound where a , + = 1.192.

Second, in testing the GARCH-t Model against the H0 of Gaussian white noise, I

obtained remarkably large values of the LR statistics. The values are much larger than the 

corresponding values of the previous static and dynamic models.
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Third, although the LR statistic seems to indicate a very good fit, the %2

goodness-of-fit test strongly rejects the GARCH-t model for seven of the eight series. The 

test statistics are extremely large for the daily mark, the weekly pound and both sfr and 

yen series.

Fourth, the "residuals" zt = xj^h t are analysed for residual heteroskedasticity and

leptokurtosis. As regards heteroskedasticity, the results are quite similar to those obtained 

for the GARCH model. The Ljung-Box statistic QJ^S) is strongly reduced when com

pared with the corresponding values of the raw data (cf. Section 2.3, table 6) and it is only 

the daily sfr series where there is highly significant heteroskedasticity in the residual. It 

should also be noted, however, that the Ljung-Box statistic is extremely small for the daily 

pound series, but, of course, the Ljung-Box test is right-sided.

As regards residual leptokurtosis, the results for the GARCH-t model are even worse 

than the results for the GARCH model. This is somewhat surprising since the conditional 

Student distribution, as a fat-tailed distribution, was chosen to reduce this residual kurtosis. 

But, in fact, the leptokurtosis in the residuals of the GARCH-t is for five of the eight series 

model larger than the leptokurtosis of the data (cf Section 2.3, table 17). An extreme case 

is the daily pound series where the leptokurtosis of the residuals is 146.7 which is more 

than 16 times larger than the leptokurtosis of the sample data. Figure 2 explains how this 

occured.

The standardized exchange-rate fluctuations of the daily pound are plotted in the 

upper panel (with a standardization by the sample standard deviation) and the residual 

series is shown in the lower panel of figure 2. Both panels have the same vertical scale. A 

comparison of the two plots shows that the standardization by the conditional variance 

increases the fluctuations in the residual series compared to the raw data in periods of 

tranquillity, as in the period from t = 700 to t = 779 (1 April - 27 August, 1977) where the 

maximum daily exchange-rate movement was 0.087 percent. In this same period the 

average conditional variance h was 0.0026, which is substantially smaller than the average
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h of 0.5681 for the whole sample and also much smaller than the sample variance of 

0.4367. Therefore, in this period the series e, = xt/y[h, shows much larger fluctuation than 

the series e, = x , / g . At t = 780 (28 August, 1977), however, the dollar depreciated by 1.16 

percent against the pound. From the conditional variance equation in (24) it is clear that 

h, can only react with a time lag to this sudden volatility shock. In t = 780, ht was still 

0.00155 and this produced a value of = -29.48 which appears as a large outlier in the 

lower panel of figure 2. There are a few other outliers in the residual series which were 

caused in a similar way and which, together, produce the large leptokurtosis.

Figure 2

Exchange-rate dynamics and GARCH-t residuals: daily pound

a) Exchange-rate dynamics b) GARCH-t residuals
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Finally, it is interesting to compare the estimates of v with the estimated 

degrees-of-freedom paprameter (df) of the static Student distribution applied in Chapter 

2 (cf Section 2.3, table 4). Although there are some differences between these estimates, 

they are similar in range. The estimates v ’s vary between 3.2 and 7.2 whereas the df’s 

vary between 3.8 and 7.1. This implies that the conditions distributions are strongly
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fat-tailed and peaked. Note, too, that for three series v is smaller than 4 which means that 

the conditional kurtosis is not finite. As mentioned above, the stability condition is violated 

for all eight estimated GARCH-t models and, therefore, the unconditional kurtosis is 

infinite for all series.

To sum up, the results leave doubts about whether the GARCH-t model is adequate 

for the exchange-rate data. Although the large LR statistics are quite impressive and there 

is few residual heteroskedasticity, the goodness-of-fit test produces very poor results and 

some values of residual leptokurtosis are alarmingly large.

These results are similar to those obtained by Hsieh (1989b) who found that for the 

daily pound and yen series, the residuals of GARCH(l,l)-r models were "extremely ill 

behaved". In the applications of Bollerslev (1987) and Baillie and Bollerslev (1989), on 

the other hand, no such extreme results occurred. However, in both studies no 

goodness-of-fit test was applied.

Another interesting variant of the GARCH model has been introduced by Nelson 

(1991). He suggested some modifications in the functional form of the conditional variance 

equation to deal with the problems of negative variance estimates, of asymmetric variance 

effects and of non-stationary variances. Nelsons exponential GARCH model 

(EGARCH(r,s)) can be written as:

(33) ht = exp a0+ £  aiazt_y +aib{| £,_,. | -E  \ £,_,. |)+ £  &,log/i
I <=1 7=1

where £f is white noise with unit variance as in (19). I shall also assume that £, has a

normal distribution. It then follows that E | £, | , the expected value of a half-normal 

distribution, is equal to V2/rc.

There are several arguments for prefering the functional form of the EGARCH model 

to the functional form of a simple GARCH model as given in (21). First, the fact that an 

exponential form is used for the conditional variance ht guarantees that ht is always 

positive. In GARCH models, on the other hand, one has to restrict all coefficients a, and 

P; to be non-negative (and a0 to be positive) in order for h, to be positive. As a
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consequence, EGARCH models permit oscillating variance effects, i.e. an increase in ht 

may actually reduce some future ht+n. Second, instead of making ht a function of squared 

data from the underlying series x, , as in the GARCH model, the EGARCH has a standard 

normal variable ef as an argument in the conditional variance function. This is a subtlety 

to simplify the determination of the moments of ht and of stationarity conditions for 

ht .Third, £, enters into the conditional variance function in its level and as a deviation of 

the absolute value of £, from its expected value. Both components have, of course, an 

expected value of zero. The second component captures the size effect of shocks. Since 

the size effect enters in the form of an absolute value and not as a square, the volatility 

effects are dampened in comparison to GARCH models. Finally, the fact that the level of 

£, is also included in (33) allows to introduce asymmetric volatility effects. If aia is 

negative, then a decrease in £, _, will have a stronger effect on volatility than an increase. 

It has been argued that such asymmetric effects can be expected on stock markets (see 

Nelson (1991)).

However, not all of these advantages of the EGARCH model in comparison with the 

GARCH model are important for this application to the modelling of exchange-rate vol

atility. First, negative h,*s were never a problem in the ARCH, GARCH and GARCH-t 

estimates. Second, the restriction that the coefficients a, and Py be positive is only a 

serious restriction in ARCH models with long lags. In GARCH (1,1) models, which are 

usually sufficient to capture the dynamics of volatility, the problem of negative coefficients 

appears virtually never. Third, one would not expect strong asymmetric volatility effects 

in exchange-rate data since theoretical arguments for these effects are missing and since 

one cannot find strong skewness in the distribution of the data (see Chapter 1). However, 

it is probably important that in EGARCH models size effects appear in the form of absolute 

values instead of squares since the violation of stationarity conditions was the major 

drawback of GARCH and GARCH-t estimates. For the applications to the exchange-rate 

data it proved to be sufficient to apply EGARCH (1,1) models which have the stationarity 

condition Z?, < 1 . Table 6 reports the estimates.
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Table 6

Estimates of the EGARCH (1,1) model

mark pound sfr yen

day ao -0.027 (0.005) -0.038 (0.003) -0.009 (0.004) -0.055 (0.005)
1̂ a 0.005 (0.008) 0.026 (0.006) -0.022 (0.006) -0.031 (0.008)
b 0.319 (0.018) 0.300 (0.008) 0.293 (0.014) 0.322 (0.013)

bi 0.963 (0.004) 0.940 (0.002) 0.968 (0.003) 0.934 (0.004)
LR 968.6 *** 930.3 *** 1021.3 *** 978.4 ***
^(95) 158.1 *** 379 3 *** 178.8 *** 691.8 ***
P2 4 99 *** 11.10 *** 6.53 *** 13.65 ***
(2„d5) 24.10 * 8.62 67.17 *** 4.08

week <*0 0.048 (0.012) 0.050 (0.010) 0.034 (0.009) 0.014 (0.003)
^1 a 0.016 (0.016) 0.030 (0.015) -0.015 (0.012) -0.029 (0.011)
a\b 0.279 (0.035) 0.268 (0.035) 0.198 (0.020) 0.151 (0.017)
bi 0.953 (0.013) 0.945 (0.009) 0.975 (0.008) 0.988 (0.004)
LR 124.1 *** 120.9 *** 118.6 *** 149 7  ***
X"(95) 79 g * * * 75 4 * * * 72.0 *** 82.9 ***
P2 4.48 *** 6.63 *** 4 47 *** 8.73 ***
<2xxd5) 20.13 9.73 9.74 6.25

Significance levels: see Table 1

In contrast to the GARCH models, the EGARCH estimates show no violations of 

the stationarity conditions. All point estimates of b{ are below 1 and since the corre

sponding standard errors, reported in brackets, are small, one may also conclude that the 

interval estimates are below 1. This is a very reassuring result. The estimates of axb indicate 

that there are strong and highly significant scale effects in all daily and weekly series. On 

the other hand, the asymmetry effects, as given by the estimates of a]a , are much smaller 

and unsystematic. For the sfr and the yen, the estimates are negative but for the mark and 

the pound they are positive. When compared with their asymptotic standard error, one can 

conclude that some of these coefficient are in fact significant. Overall, however, the 

asymmetry effects are minor.
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The LR statistics indicate that Gaussian white noise would very strongly be rejected 

in favour of the EGARCH model. As with previous models, a %2 goodness-of-fit test 

shows that there are still large differences between the frequency distribution of the data 

and the frequency distribution implied by the EGARCH model. The standardized variable 

ef = xt!h)a should have a standard normal distribution but the %2 test rejects this assumption 

for all daily and weekly series. This rejection is mainly due to an underestimation of 

peakedness by the EGARCH models, an underestimation of tail probabilities is of sec

ondary importance.

Table 6 presents also some analysis of the residuals Ef . The most interesting question

is, of course, whether there is some residual leptokurtosis and heteroskedasticity in e ,. 

Since the %2 test rejected the distribution implied by the EGARCH model, mainly due to 

a lack of peakedness but to some extent also due to lacking fatness of tails, it is not surprising 

to find significant leptokurtosis in the "residuals" er. Even more disconcerting is the fact 

that for three series (daily pound and yen, weekly yen) the kurtosis is higher in E, than in 

xt . On the other hand, the EGARCH models capture heteroskedasticity quite well. As the 

Ljung-Box statistic (2^(15) shows, the squared residuals show no significant auto

correlation up to lag 15, with the daily sfr series being the only exception to this rule.

In order to gain more insight into the properties of the EGARCH model, figure 2 

plots the exchange-rate fluctuations x,, for the weekly pound series along with the 

corresponding "residuals" i, .According to the model, 8, should have a normal distribution. 

Figure 2 shows that the magnitude of large exchange-rate fluctuations is indeed very much 

reduced in the "residuals" as compared with exchange-rate series.

A case in point is the largest weekly depreciation of the dollar against the pound in 

this sample of -9.01 at t = 559. This is reduced to -5.92 in the residual series. Even more 

dramatic is the reduction of the largest appreciation of 7.60 at t -  564 to 2.53 in the 

residuals. However, there are also a few large residuals which are even larger than the
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Figure 3

Exchange-rate dynamics and EGARCH residuals: weekly pound

a) Exchange-rate dynamics b) EGARCH residuals
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corresponding values in the exchange-rate series. An example is at t = 88 where xt = 3.75 

but the residual is 4.84. The overall impression from figure 2 is, however, that the 

fluctuations in the residuals are more homogeneous than those in the exchange-rate series.

All in all, the EGARCH model can be regarded as a quite satisfactory model of 

exchange-rate dynamics which captures both leptokurtosis and heteroskedasticity of the 

data, although the model does not capture the full amount of peakedness. There seems to 

be two properties of the functional form of the conditional variance which give the 

EGARCH models an advantage over GARCH models by dampening the effect of very 

large exchange-rate movements on the conditional variance. First, the conditional variance
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process is driven by the standardized variable er and not by the raw data as in GARCH 

models. The fact that the EGARCH models do not violate the stationarity for the variance 

can probably be attributed to these two properties. Second, the size effect enters the 

conditional-variance function in the form of absolute values, whereas it enters the function 

in the form of squared values in GARCH models.

3.3 SUMMARY

In this chapter, four models have been applied to the modelling of exchange-rate dynamics. 

In particular, the models are designed to capture the heteroskedasticity of the data but they 

also imply a leptokurtic conditional distribution. The analysis showed that both the Mar- 

kov-switching model and all three ARCH-type models (GARCH, GARCH-t, and 

EGARCH) do indeed capture heteroskedasticity quite well. The heteroskedasticity in the 

residuals of these models is very much reduced as compared with the heteroskedasticity 

of the exchange-rate series and most of the Ljung-Box statistics for the squared residuals 

are insignificant.

Whereas the GARCH and EGARCH models provide a satisfactory fit to the data, 

the GARCH-t models imply strong violations of stability conditions and give some 

pathological values for the goodness-of-fit test and residual leptokurtosis.

Although the models imply leptokurtosis, there remains significant residual lepto

kurtosis for all models. An obvious strategy is to replace the conditional normal distribution 

by a leptokurtic conditional distribution to improve the fit but this strategy failed with an 

application of Student’s distribution.

One has to conclude from the analysis in this chapter and the previous chapter that 

none of the models is completely satisfactory on all accounts. It is especially the residual 

leptokurtosis which is disturbing. However, all models are clearly and very significantly
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superior to a model of Gaussian white noise. Even if the ideal model did not emerge from 

this analysis, it is interesting to examine which of the models is best. The next chapter will 

compare the candidate models according to different criteria.
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CHAPTER 4

COMPARISON OF MODELS AND OUTLIER ANALYSIS

In the previous two chapters eight stochastic models of exchange-rate dynamics have been 

applied. In Chapter 2 four static models, which can be subsumed under scale-compounded 

normal distributions, have been analysed and in Chapter 3 four dynamic models (the Mar- 

kov-switching model and three variants of ARCH-type models). It is probably fair to say that 

none of the models turned out to be fully satisfactory on all accounts. The static models of 

Chapter 2 lack the ability to capture heteroskedasticity, but although the dynamic models of 

Chapter 3 are compatible both with leptokurtosis and heteroskedasticity, they did not pass the 

goodness-of-fit tests very well.

Even if the analysis showed that there is not an ideal model among the eight candidate 

models, the question remains which of the models is the best. The answer to this question 

would obviously depend upon the criteria applied. In this chapter I will compare the candidate 

models with respect to two general principles: their ability to capture the characteristics of 

short-run exchange-rate dynamics, i.e. their goodness of fit, and their ability to forecast 

exchange-rate volatility.

From the eight candidate models I would suggest to dismiss the stable Paretian dis

tributions, because the analysis of distributions with regularly varying tails revealed that the 

coefficient of regular variation is not smaller than 2 for the exchange-rate series. This leaves 

us with seven candidate models: the two-component scale-mixture of normal distributions 

(mixture, for short), the compound Poisson process (Poisson, for short), the generalized 

Student distribution (Student, for short), the two-component Markov-switching model 

(Markov, for short), the GARCH (1,1) model, the GARCH-t(l,l) model, and the EGARCH 

(1,1) model.
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The point of departure for the statistical analysis in Chapter 1 was the random-walk 

model with Gaussian white noise. The random-walk is often applied in international economics 

and finance to model exchange rates. Therefore, the Gaussian random walk (Gauss, for short) 

shall serve as a benchmark model to judge the performance of the seven candidate models.

The candidate models of Chapter 2 and 3 were built around the idea to capture the main stylized 

facts of the exchange-rate data, namely leptokurtosis and heteroskedasticity. It is, therefore, 

essential to examine whether the models capture these regularities adequately. In addition, I

models according to the Schwarz information criterion (SIC).

As shown in Chapters 2 and 3, all candidate models have a leptokurtic distribution, but 

it is still interesting to examine whether the models underestimate or overestimate the 

magnitude of leptokurtosis in the data. The implied leptokurtosis of the candidate models can 

be computed from the following formulae:

4.1 GOODNESS OF FIT

will summarize the results of the %2 goodness-of-fit tests and present a comparison of the

(1) 32(mixture) = 3
p a t + ( l -p)G2 

[pa?+(i-p)<̂ ]2

(2) j52(Poisson) = 3 +

(3) j52(Student) = 3 ^ j—|

(4) fS2(Markov), as in (1) with p = 1 P22

2 — P n ~  P 22
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The formula for the kurtosis of the EGARCH model is more involved. Nelson (1991) 

derived a formula for the p-th moment in terms of parabolic cylinder functions but, due to 

computational constraints, I computed kurtosis of the EGARCH models by Monte-Carlo 

methods.

Table 1 shows the kurtosis of the exchange-rate samples (as in Chapter 1, Table 17) and 

the implied kurtosis of the candidate models. For daily data, the actual kurtosis is between 

8.00 and 8.89, and for weekly data it is between 4.96 and 7.36. The mixture model, the 

compound Poisson process, the Markov-switching model, and the EGARCH model generally 

underestimate the kurtosis of the data, the only exception being the weekly franc series where 

the implied kurtosis of the estimated compound Poisson process is larger than the kurtosis of 

the data. In general, the underestimation is stronger for daily than for weekly data.

The generalized Student distribution, the GARCH model, and the GARCH-t model lead 

to an overestimation of the kurtosis. The estimates of the GARCH model and all estimates of 

the GARCH-t model with the exception of the daily and weekly pound implied non-stationarity 

of variances. Therefore, kurtosis cannot be finite for those models. Table 1 shows that the 

GARCH models also imply non-existing kurtosis for the two pound series. For the generalized 

Student distribution, the condition for finite kurtosis is, from (3), that rj > 2.5 . This condition 

is only violated for the daily pound series were rj = 2.42. The only two series for which the 

implied kurtosis has roughly the magnitude of the actual kurtosis are the daily mark series and 

the weekly pound series.

The fact that some models imply infinite kurtosis raises the more fundamental question 

of whether the true data-generating process has a finite kurtosis. It is difficult to answer this 

question from the kurtosis of the data because every empirical kurtosis is necessarily finite. 

However, there are some reasons to conjecture that the data-generating process has finite
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Table 1

Kurtosis and implied kurtosis of candidate models

mark pound sfr yen
day sample 8.32 8.36 8.89 8.00

mixture 5.81 4.86 6.60 5.65
Poisson 4.84 5.07 5.76 4.74
Student 8.62 OO 16.41 860.14
Markov 5.28 4.49 4.72 7.28
GARCH OO oo OO OO

GARCH-t oo oo OO OO

EGARCH 5.32 4.35 5.21 4.20
week sample 5.84 7.36 4.96 7.03

mixture 4.32 5.86 4.80 5.76
Poisson 4.77 4.99 5.08 4.92
Student 13.31 8.90 9.34 22.21
Markov 3.65 3.70 4.39 3.78
GARCH OO OO OO OO

GARCH-t OO OO OO oo

EGARCH 4.16 4.03 4.19 4.63

kurtosis. A data-generating process with infinite kurtosis would produce empirical values of 

kurtosis which would vary strongly and which would tend to increase with an increase of 

observations. However, the empirical values for the daily and weekly data are all in the same 

order of magnitude. Furthermore, other empirical studies of exchange-rate data produced the 

same order of magnitude for kurtosis statistics.

As explained in Chapter 1, leptokurtosis obtains when there is excessive probability 

mass, compared to the normal distribution, either in the tails or at the centre of the distribution. 

Since the non-normality of the distribution is a strong property of short-run exchange-rate 

dynamics, it is also desirable to have a broader distributional test of the candidate model’s 

adequacy. This is provided in the form of a conventional %2 goodness-of-fit test. The results 

of these tests, which were reported in Chapters 2 and 3, are summarized in Table 2 and are
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compared with a test where the underlying model is a normal distribution with a mean of 

zero and with the sample variance (denoted as Gauss). The latter test corresponds to the 

graphical display of figure 11 in Chapter 1.

The quantiles are equiprobable under the corresponding models and there are 100 

quantiles for daily data and 50 quantiles for weekly data. The only exception to this rule is 

the compound Poisson process where it is much easier to make the quantiles equiprobable 

under the empirical distribution. For this model, the number of quantiles had to be reduced 

for the daily pound and yen series, and therefore those two numbers are not directly comparable 

to the other numbers in the table.

The degrees of freedom of the %2 test are determined by n -  r -  1, where n is the

number of quantiles and r is the number of estimated parameters. The degrees of freedom 

are reported in brackets in table 2. Since the value of r varies between models, the %2 statistics 

cannot be compared directly but the asterisks indicate significance level.

Table 2 shows again the disappointing performance of all candidate models in the %2

goodness-of-fit test. The fit is especially poor for the daily data where all models are rejected 

at least at the 5 percent level. However with the exception of the GARCH-t model, the candidate 

models perform much better than the benchmark of Gaussian white noise. The fit of the 

GARCH-t model is surprisingly poor. For six of the eight series, the %2 is even higher than 

that of the normal distribution.

For weekly data, there is a satisfactory fit for some series with static models whereas 

all dynamic models are rejected. It is certainly surprising to find the static models outper

forming the dynamic models. Among all models, the compound Poisson process seems to 

achieve the best fit. The poor performance of the dynamic models is mainly caused by an 

underestimation of peakedness. This is not in conflict with the result that the GARCH models 

overestimate leptokurtosis since leptokurtosis is either due to fat tails or to peakedness.
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Table 2

X2 goodness-of-fit tests of candidate models

mark pound sfr yen

day Gauss (98) 
mixture (96) 
Poisson (96) 
Student (97) 
Markov (95) 

GARCH (96) 
GARCH-t (95) 
EGARCH (95)

354.8 ***
167.8 *** 
129.7 ** 
153.6 *** 
130.5 **
181.9 ***
135.0 ***
158.1 ***

705.9 *** 
233 9 *** 
130^6 ***a)
308.5 ***
220.5 ***
405.9 ***
136.3 ***
379.3 ***

425.7 ***
153.0 *** 
1 4 6  6 ***
129^ ** 
157.4 ***
188.0 *** 
Q99 9 ***
178.8 ***

1042.1 ***
645.2 *** 
146.0 ***b)
710.2 ***
715.2 *** 
599 9 ***

1192.4 *** 
69L8 ***

week Gauss (48) 
mixture (46) 
Poisson (46) 
Student (47) 
Markov (45) 

GARCH (46) 
GARCH-t (45) 
EGARCH (45)

93 7 ***
49^0
34.1 
64.6 **
73.2 * * *  
684 * * *  
40.9
79.8 * * *

103.0 * * *  
79 7 * * *  

76.2 * * *  
67.1 **
73.8 * * *
73.8 * * *  

362.6 * * *
75 4 * * *

115.0 *** 
64.6 **
61.4 *
79 q  * * *  

98^6 ***
98.4 *** 

197 0 ***
72 0 * * *

19 9  7  * * *

64^6 **
53.2 
57.6 
70.4 **
88.2 *** 

232.6 ***
g2 9 * * *

Significance levels: a  = 0.01(***);a = 0.05(**);a = 0.10(*)
a) based on 80 quantiles and 76 degress of freedom
b) based on 23 quantiles and 19 degrees of freedom

Besides leptokurtosis, heteroskedasticity is the other strong empirical regularity of 

short-run exchange-rate dynamics. Of course, only the dynamic models can depict heter

oskedasticity but the question is: how much of the heteroskedasticity do these models capture? 

Table 3 summarizes the results on the residual heteroskedasticity and compares it to the 

heteroskedasticity of the data. Heteroskedasticity is here measured as the Ljung-Box statistic 

at lag 15 of the standardized data

where xt is the first difference in the logarithm of the exchange rate and h, is the estimated 

conditional variance. As table 3 shows, the dynamic models exhibit residual heteroskedasticity
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which is drastically lower than the one in the data. It is only the Markov-switching model that 

has significant residual heteroskedasticity for all daily series. The ARCH-Type models capture 

heteroskedasticity in all series very well, with the exception of the daily sfr series. One may 

conclude, therefore, that the GARCH, the GARCH-t and the EGARCH models are superior 

to the Markov-switching model in depicting heteroskedasticity.

Table 3

ACF of squared data and residual heteroskedasticity of dynamic model

mark pound sfr yen
day data

Markov
GARCH

GARCH-t
EGARCH

355.2 ***
50.0 *** 
22.9 *
28.1 ** 
24.1 *

507.3 ***
215.4 *** 

8.4
0.4
8.6

561.0 *** 
132.6 *** 
54 1 ***
<q n *** 
61.2 ***

432.2 ***
155.3 ***

3.2
3.3 
4.1

week data
Markov
GARCH

GARCH-t
EGARCH

61.5 *** 
14.9
29.6 **
24.0 *
20.1

123.9 ***
94 9 *** 

8.0 
8.1 
9.7

98 2 *** 
18̂ 9 
11.7 
13.1 
9.7

52.8 *** 
20.4 
4.4 
4.8 
6.3

Significance levels: see Table 2

As a final criterion to judge the goodness of fit of the candidate models, the Schwarz 

information criterion (SIC) will be employed. A direct comparison of models by the 

likelihood-ratio statistic is not possible because the models are not nested but the SIC, defined 

by SIC = r logT - 2 L* (where r is the number of parameters estimated, T is the number of 

observations and L* is the value of the maximised likelihood), is also based on likelihoods 

and it also corrects for the number of estimated parameters. Table 4 reports the SIC of all 

candidate models together with the SIC of Gaussian white noise as a benchmark. The ranking 

of the models according to SIC is given in brackets. Several observations may be drawn from 

table 4. First, all seven candidate models are clearly superior to the benchmark model and this 

is especially evident in the daily series. Second, the dynamic models are superior to the static

160



models for all daily and weekly series. Within the group of static models the mixture model 

has in general the highest value of SIC and hence the worst performance, whereas an overall 

ranking between the compound Poisson process and the generalized Student distribution is 

not possible. Third, within the group of dynamic models the GARCH-t model achieves by far 

the best result. It has the lowest value of SIC for all series. The second best model seems to 

be the Markov-switching model.

Table 4

• Comparison of models by SIC

mark pound sfr yen
day Gauss

mixture
Poisson
Student
Markov
GARCH

GARCH-t
EGARCH

7018.3
6664.5 (7)
6630.1 (6)
6610.0 (5)
6167.2 (4)
6064.3 (2)
5937.1 (1)
6071.6 (3)

6873.3
6300.6 (7)
6207.7 (5) 
6295.5 (6)
5911.8 (2)
5981.1 (4)
5303.3 (1)
5966.1 (3)

8298.6 
7811.5 (7) 
7794.8 (6)
7765.0 (5) 
7365.3 (4)
7299.7 (3)
7103.1 (1) 
7297.0 (2)

6315.5
5805.7 (7)
5724.9 (5) 
5781.4 (6)
5287.9 (2)
5430.1 (4)
4725.7 (1)
5355.1 (3)

week Gauss
mixture
Poisson
Student
Markov
GARCH

GARCH-t
EGARCH

2547.7
2482.0 (7)
2467.1 (5)
2476.4 (6)
2414.7 (2)
2442.4 (4)
2404.1 (1)
2439.2 (3)

2512.7
2448.6 (7)
2443.4 (6)
2433.8 (5)
2410.6 (3)
2422.7 (4)
2336.4 (1)
2408.5 (2)

2770.0 
2715.2 (3) 
2714.4 (5) 
2716.9 (7) 
2653.8 (2)
2663.0 (3)
2631.1 (1) 
2664.7 (4)

2358.1
2271.2 (7) 
2266.8 (6)
2263.3 (5) 
2189.8 (2)
2237.4 (4) 
2141.0 (1) 
2219.6 (3)

To summarize the results from the four goodness-of-fit criteria, there is no clear overall 

ranking of the models. The generalized Student distribution, the GARCH model and the 

GARCH-t model overestimate the magnitude of leptokurtosis. All models perform quite poorly 

in the %2 goodness-of-fit test but, quite surprisingly, the static models are better than the 

dynamic models on this account. On the other hand, the dynamic models dominate the static
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models with respect to the modelling of heteroskedasticity, where the static models fail 

completely, and with respect to SIC. An overall ranking within the group of dynamic models 

is not possible since the ARCH-type models capture heteroskedasticity better than the Mar

kov-switching model, but the Markov-switching models achieve on average a better SIC than 

the GARCH and EGARCH models.

4.2 FORECASTING PERFORMANCE

In this section I will compare the candidate models with respect to their ability to forecast 

volatility. There are at least two reasons why forecasting performance is important for model 

evaluation in this case. First, from an econometric point of view, poor forecasting performance 

of a model which fits well within the sample would indicate a lack of structural stability. 

Second, from an economic point of view, the financial markets are most interested in good 

forecasts. Dealers in derivative markets often say that they "trade" volatility. Of course vol

atility is not a traded asset and, more important, it is not observable. What is meant by "trading 

volatility" is the fact that dealers buy options when the implicit volatility of the option, usually 

calculated from the Black-Scholes model (see the next chapter), is smaller than the expected 

future volatility and they sell options when the implicit volatility is larger than the expected 

volatility.1

Since this study has concentrated on the modelling of variance effects and has neglected 

mean effects, the forecasting performance will only be evaluated with respect to volatility.

1 The actual strategy would be that of a straddle where one either simultaneously buys a call 
and a put option or one sells a call and a put.
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Recall, too, from the Introduction that the study of Meese and Rogoff (1983) and many 

subsequent studies have shown that structural exchange-rate models are not able to outperform 

the random-walk model in the forecasting of exchange-rate levels.

Although the following forecasting experiments are concerned with the volatility of 

exchange rates and not with their levels, the methodology of the forecasting exercises is the 

same as in Meese and Rogoff (1983). The benchmark of the forecasting performance is 

provided by a simple model which extrapolates the volatility of the past as a constant into the 

future, i.e. the "naive" volatility forecast at time x for the next k periods is given by

(8) for all k = \ , . . . ,K ,
X f  =  l

where xt is the first difference in the logarithm of the exchange rate at time t. Note that it is 

assumed throughout that the mean is zero. These naive forecasts also serve to represent vol

atility forecasts from the static models which would produce constant volatility forecasts. It 

would be possible to estimate each static model up to time x and to compute the implied 

variances from the parameter estimates; I will show, however, in the next chapter that the 

implied variances of the static models are very close to the historical variances as defined in 

(8).

Volatility forecasts from the dynamic models, on the other hand, are non-trivial. They 

can be derived along the following lines for the Markov-switching model. The volatility 

forecast at time x for the k-th period in the future is given by

(9) ot+k = o\p(sx+k= 1 | xx) + c^p (sx+k = 2 \x x)

= (a? — Gt)p (sx+k = 1 1 *t) ^2 

where d\ and are the variances in states 1 and 2, respectively, and p(sx+k = 1 | jct) is the 

probability of being in state 1 in x + k given xx. This probability may be decomposed into

2
(10) p{sx+k = 1 Ixx) = I  p(sx+k = 1 \sx = i)p(sx = i I xx)

i = 1
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where p(sx = i | xx) is the filter probability of being in state i and p(sx+k = l \ s x = i) is ak-step 

transition probability. From the Markov-Chain structure, one can compute this transition 

probability (see e.g. Chiang (1980), p. 160) to get after some arithmetic

(11) p(sx+k = 1 1 xx) = {p(sx = 1 | xx) (2 - p n -  p22) (pn +p22 -  1)”

+ (1 -  Pn) -  (1 “  Pn) (P11 +  Pn ~  1)" M 2 ~ P n ~  Pn) 

where pn and p22 are the estimated elements of the transition matrix.

The volatility forecasts of the three GARCH(1,1) variants can be derived in a simple 

recursive way. From the conditional variance equation

(12) hx = a0 + alxx_l + blhx_l

one gets the first-period forecast

(13) f i ^ ^ a o  + a ^  + b fc

which involves only observable variables. For the periods k > 2, the forecasts are

(14) &x+k ~ ao~*~a\E(xx+k-\)'*'blE(hx+k_l)

= a0 + (a]+bl)hx+k_l.

Only minor changes to the first-period forecasts are necessary in the case of the EGARCH 

model.

The forecasting experiments were conducted by estimating the dynamic models on a 

"rolling basis". For the daily data, the models were first estimated for the observations from 

x = 1 to x = 1000. Volatility forecasts were made for the next 20 days and the forecasts were 

compared with *?+*• In the next step, 100 observations were added, parameters were re-es

timated and forecasts were again compared with observations. In this way, parameters and 

forecasts were computed 23 times for each daily series.
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For weekly data, the first estimation period includes observations up to T = 220 and on

each step 20 observations were added to the previous subsample. The forecast horizon includes 

each of the next 20 weeks for every forecast experiment. This gives 24 forecast experiments 

for each of the weekly series.

The volatility forecasts of the dynamic models and of the "naive" model are compared 

with respect to mean errors and with respect to root mean square errors (RMSE). The mean 

error measures the bias of forecasts and RMSE measures the lack of precision of forecasts. 

The results are summarized in tables 5 and 6. Note that the mean errors and RMSE are averaged 

over all 20 forecast horizons.

Table 5 shows that the naive model and the Markov-switching model tend to under

estimate future volatility since the entries for all eight series in the case of the naive model 

and for seven series in the case of the Markov-switching model are negative. The GARCH 

model and the GARCH-t model, on the other hand, tend to overestimate future volatility since 

all eight entries for GARCH models and seven entries for the GARCH-t models are positive.

Table5

Volatility forecasts of dynamic models: mean error

mark pound sfr yen
day Naive

Markov
GARCH

GARCH-t
EGARCH

-0.217 (5) 
-0.086 (3) 
0.116 (4) 

-0.060 (2) 
0.002 (1)

-0.184 (4) 
-0.142 (2) 
0.165 (3) 
0.364 (5) 

-0.050 (1)

-0.005 (1) 
0.100 (3) 
0.464 (5) 
0.127 (4) 
0.046 (2)

-0.269 (4) 
-0.198 (2) 
0.144 (1) 
0.327 (5) 

-0.233 (3)
week Naive

Markov
GARCH

GARCH-t
EGARCH

-1.193 (5) 
-1.014 (4) 
0.077 (1) 
0.101 (2) 

-0.389 (3)

-1.060 (3) 
-0.957 (2) 
2.571 (4) 
6.296 (5) 

-0.453 (1)

-0.615 (3) 
-0.108 (2) 
0.985 (5) 
0.913 (4) 

-0.129 (1)

-0.765 (5) 
-0.609 (4) 
0.188 (1) 
0.257 (2) 

-0.277 (3)
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It is also interesting to compare the models with respect to the absolute mean error for 

each series. The resulting ranking is given in brackets. The EGARCH model seems to dominate 

the other models since it finishes first in four out of eight cases. If the rankings are aggregated 

over all eight series, the EGARCH model obtains the best overall ranking of 15 2, followed 

by the Markov-switching model with 22, the GARCH model with 24, the GARCH-t model 

with 29 and the naive model with 30.

Table 6 reports the results for the RMSE criterion. The ranking among models is here 

quite different. The Markov-switching model obtains the highest precision, i.e. the smallest 

RMSE, of volatility forecasts for five of the eight series and finishes twice in second place, 

whereas, quite surprisingly, the naive model is once the best model and five times the second 

best. With respect to the overall rank sums, the EGARCH model is the third best model with 

a sum of 20 followed by the GARCH model with 34 and the GARCH-t model with 37.

Table 6

Volatility forecasts of dynamic models: RMSE

mark pound sfr yen
day Naive

Markov
GARCH

GARCH-t
EGARCH

1.207 (2) 
1.191 (1) 
1.322 (5) 
1.210 (3) 
1.218 (4)

1.021 (2) 
1.025 (3) 
1.156 (4) 
1.597 (5) 
1.020 (1)

1.274 (2) 
1.268 (1) 
2.165 (5) 
1.449 (4) 
1.280 (3)

1.199 (3) 
1.183 (1) 
1.355 (4) 
1.623 (5) 
1.190 (2)

week Naive
Markov
GARCH

GARCH-t
EGARCH

4.747 (2) 
4.713 (1) 
5.088 (4) 
5.234 (5) 
5.061 (3)

4.947 (3) 
4.933 (2) 
7.633 (4) 

13.084 (5) 
4.861 (1)

5.390 (1) 
5.411 (2) 
6.079 (4) 
6.346 (5) 
5.419 (3)

3.656 (2) 
3.625 (1) 
3.872 (4) 
3.951 (5) 
3.779 (3)

2 It is four times the best model, once the second best, and finishes three times in the third 
place.
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In a way these results extend the results of Meese and Rogoff (1983) for the forecasting 

of exchange-rate means to the case of exchange-rate volatility. At least with respect to the 

ARCH-type models, tables 5 and 6 show that non-forecastability extends to volatility. On 

average, the Markov-switching model performs better than the benchmark model of static 

variance but numerically this improvement is rather small. It is also interesting to note that 

the superiority of the random-walk model over asset-market models in forecasting the mean 

is more obvious with respect to the RMSE than with respect to mean errors in the study of 

Meese and Rogoff (1983). Since tables 5 and 6 show that the same applies to the forecasting 

of exchange-rate volatility, there is another correspondence between their results and the results 

reported here.

In order to gain more insight into the forecasting performance, figure 1 plots the mean 

errors and RMSE at forecast horizons 1 to 20 for the daily Swiss franc. It is quite striking how 

similar the patterns of mean errors and RMSE are across forecast horizons. The plot of mean 

errors shows how the GARCH models tend to overestimate volatility. Recall from the previous 

chapter that the GARCH model of the daily Swiss franc implied non-stationarity of variances. 

The same is true for most subperiods and, therefore, the GARCH model tends to overestimate 

volatility, especially for longer forecast horizons. On the other hand, the naive model produces 

the smallest forecast errors for all forecast horizons and 9 of its 20 forecast errors are negative.

Figure 1 also shows that all models underestimate the volatility of 12 days in the future. 

This, however, is caused by a single outlier at t = 1113 in the second forecast experiment. On 

Monday, 20th November 1978, the Swiss franc depreciated against the dollar by 5.1 percent. 

This depreciation came quite unexpectedly and all models underestimate the value of 

Xill3 = 25.85. The historical variance at t = 1100 is 0.68, the Markov-switching model produces 

a volatility forecast of 1.40, the GARCH model predicts 10.10, the GARCH-t model predicts 

1.61, and the EGARCH model predicts 2.31. The plot of RMSE also illustrates that
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Figure 1

Forecast errors of volatility at different time horizons: daily sfr
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non-stationary GARCH model tends to give small precision of volatility forecasts but if an 

outlier occurs, the non-stationary model tends to perform better than stationary models. The 

next section provides a more detailed and systematic examination of outliers.

4.3 OUTLIER ANALYSIS

In the previous two sections, I analysed seven classes of stochastic models which were sup

posed to capture the main empirical regularities of exchange-rate dynamics. All models are 

compatible with leptokurtosis but only the dynamic models imply heteroskedasticity. The 

analysis showed that for short-run dynamics, all models achieve a much better fit to the data
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than the Gaussian white-noise model. However, the goodness-of fit test rejects the models, 

especially for daily data. It is also quite surprising that the ARCH-type models are not able 

to outperform naive forecasts of volatility. This might be attributed to a lack of stability in the 

parameters of these models.

The fact that none of the models is fully satisfactory at closer examination raises the 

more fundamental question of the adequacy of the approach taken. The basic idea of stochastic 

models relies on the assumption that there is a unique data-generating process which can be 

approximated by a simple model. As an alternative to this view, one could regard large 

exchange-rate fluctuations as being caused by unique events which cannot be subsumed under 

an all-embracing data-generating process. As an example, the dollar depreciated against the 

mark on Thursday, April 16, 1986 from 2.3317 to 2.2662 following rumors that Col. Qadhafi 

died after the bombing of Libyan targets by the U.S. It was argued that "Qadhafi’s death would 

reduce the anxiety in Europe about terrorism and provide less of an incentive to move into 

the dollar as a refuge" (Wall Street Journal Europe, April 17, 1986, p. 13). The fall in the 

exchange rate by 2.8 percent represents the 7-th largest depreciation in the daily mark series. 

Under the normal distribution, this depreciation would be regarded as an outlier. Given the 

empirical standard deviation of 0.68, the lower tail probability of the normal distribution at 

the standardized value of -4.18 is 0.14* 1 O'4. Should a stochastic model be able to emcompass 

events of this kind or is it more appropriate to regard them as outliers caused by unique 

circumstances?

At this point it is interesting to take a closer look at the extreme observations in the data 

series in order to understand better the mechanisms which caused them. Table 7 lists the 10 

largest appreciations and the 10 largest depreciations of the dollar against the pound in.the 

daily series. The explanations of the strong movements are taken from the 

foreign-exchange-market reports of the Financial Times. The table reveals that the most 

extreme currency fluctuations were caused by activities of monetary authorities. The two
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strong daily appreciations of the dollar in 1978 by 4.39 and 3.49 percent can be attributed to 

attempts to bring a dollar crisis to an end. The two strongest depreciations of the dollar against 

the pound occurred in 1985. In February 1985, massive interventions brought the dollar down 

although the dollar kept on rising for a short while in March. The Plaza agreement in September 

only served to assure that the dollar continued to depreciate.

The strong appreciations can be attributed to ’regime shifts’. As regards to an increase 

in swap arrangements, they only strengthen the ability to intervene but within the framework 

of the ’news model’, sketched in Chapter 3, it is readily understood how the creation of a 

’policy potential’ can have immediate effects. The drastic depreciations of the dollar in 1985 

can be explained as a consequence of a bursting bubble. Analysing the strong appreciation of 

the dollar in the first half of the 1980’s, Evans (1986) found strong evidence for the view that 

the dollar was on a bubble path during this period. The official interventions and agreements 

triggered the bursting of the bubble and accelerated the depreciation.

Another factor which often appears as a cause for large movements in exchange rates 

are actual or expected changes in interest rates. A rise in American interest rates is associated 

with an appreciation of the dollar. Connected to this factor is the influence of economic growth. 

Agents in foreign-exchange markets seem to relate an increase in growth rates with an increase 

in interest rates et vice versa.

There is another factor, profit taking by speculators, which is not present in this table 

but which is given repeatedly as an explanation for large fluctuations in other exchange rates. 

For instance, 3 of the 10 largest depreciations of the dollar against the yen were associated 

with the unwinding of speculative positions. These 3 large depreciations occured in December 

1978, in December 1979 and in August 1981. Again, this factor can be attributed to the bursting 

of bubbles but now it is due to market forces.

This examination of outliers shows that the forces behind the most extreme exchange-rate 

movements can in fact be related to general economic mechanisms. Thus, there is no need to
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Table 7

The largest positive and negative exchange-rate changes: daily pound

100*Ae, Date Explanation in the press

4.39 Thr 05.01.78 US Treasury and Fed announce intervention to support the 
dollar; swap arrangement with Bundesbank

3.65 Mon 25.10.76 Speculation in the press that the terms of Britain’s loan from 
the IMF will include a pound devaluation

3.49 Thr 02.11.78 Sweeping moves to halt dollar decline; Fed increases dis
count rate, announces supplementary reserve requirements, 
increases swap arrangements with Germany, Japan and 
Switzerland

3.20 Thr 04.06.81 High US interest rates; expectations of cut in price of 
Britain’s North Sea Oil

3.11 Mon 08.03.76 Speculation against pound in view of higher UK inflation 
rate
Expectation of higher inflation and interest rates in US; 
speculators cover short dollar positions

3.07 Wed 24.04.85

3.03 Fri 02.08.85 Fall in UK interest rates; expectations of lower oil price
2.93 Fri 06.09.85 Financial crisis in South Africa; recovery of economic 

growth and diminishing prospect of fall in interest rates in 
US
Expectations of higher US interest rates2.44 Tue 25.08.81

2.42 Tue 18.09.84 Speculation in favour of dollar (’market impulse’), confi
dence in strength of US economy

-2.56 Mon 29.04.85 Slow down in US growth; expectation of very large US trade 
deficit

-2.76 Mon 24.09.84 Intervention of the Bundesbank against the dollar
-2.81 Fri 13.09.85 Unexpected slow down in US industrial production and 

retail sales
-2.95 Tue 08.06.76 Standby credit to the Bank of England from G10, Switzer

land and BIS; UK miners approve pay accord
-2.95 Wed 10.07.85 Expectation of lower US interest rates due to slower econ

omic growth and of cut in US discount rate; expectation of 
high UK interest rates as long as M3 is outside its target

-3.02 Wed 27.03.85 Expectation of lower US interest rates due to concern on 
stability of US banking system; slower US economic growth

-3.07 Mon 31.10.77 UK Government stops intervention for holding pound down; 
sharp rise in official reserves in the UK

-4.03 Tue 19.03.85 Expectation of lower US interest rates due to concern on 
stability of US savings institutions; tight monetary and fiscal 
policy announced in the UK budget

-4.41 Wed 27.02.85 Massive interventions by European central banks bring an 
end to speculation in dollars

-5.60 Mon 23.09.85 Plaza agreement of G5 on concerted intervention
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regard the extreme movements as outliers which are unique in their occurrence and cannot be 

modelled in an economic or stochastic model. The analysis revealed that a successful model 

should be able to distinguish between different regimes of exchange-rate dynamics because 

there is strong evidence for periods of tranquility and periods of turbulence.

4.4 SUMMARY

In this chapter, seven candidate models have been compared with respect to their ability to 

capture the stylized facts of the data and with respect to forecast performance. Only the stable 

Paretian distributions were dismissed from these comparisons since the analysis in Chapter 2 

showed that this model can be rejected to represent the data-generating mechanism of exchange 

rates.

The three static models and the four dynamic models are clearly superior to a simple 

random-walk model of the exchange rate with Gaussian increments with respect to 

goodness-of-fit criteria. On the other hand, the dynamic models have a natural advantage over 

the static models because not only do they capture leptokurtosis but also heteroskedasticity. 

However, it is quite surprising to observe that in forecasting experiments, the dynamic models 

can only clearly outperform a naive model of constant variances with respect to mean error 

but not with respect to RMSE.
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CHAPTER 5

OPTION-PRICE EFFECTS OF VOLATILITY MODELS

As noted in the Introduction, it is common practice in finance to assume that rates of return 

and price dynamics in speculative markets follow a normal distribution. However, Mandelbrot 

(1963) and Fama (1965) produced early evidence against this assumption for price dynamics 

in commodity markets and stock markets. In the 1960’s and in the first half of the 1970’s their 

findings lead to much research on the distributional properties of stock returns and the 

implications for portfolio analysis. However, the interest into this area virtually ceased with 

the finding that daily and weekly stock returns exhibit strong non-normality but that monthly 

returns are only slightly non-normal. If one uses monthly data, it was argued, one would be 

again on safe ground (see e.g. Fama (1976), Ch. 1).

More recently, a renewed interest in distributional properties of financial data emerged. 

This renewed interest stemmed from the scrutiny of the assumptions underlying the Black- 

Scholes model of option pricing. The ubiquitous assumption of normality cannot as easily be 

maintained in option pricing as it can be in portfolio analysis because the natural time horizon 

in empirical option analysis is the short-run corresponding to the continuous-time models, i.e. 

one would typically use daily or perhaps weekly data in empirical option analysis.

Since option pricing is probably that area in finance where the distributional assumptions 

and the assumption of constant variance are most critical, in this chapter I will be studying 

the implications of the models introduced in Chapters 2 and 3 for the pricing of foreign-currency 

options. After a brief description of approaches to price foreign-currency options and of price 

biases found in analysing the currency-options market, the spot-rate effects and maturity effects 

of applying three static models of alternative distributions and three dynamic models of het- 

eroskedasticity to the pricing of options will be studied in more detail.
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5.1 PRICING OF FOREIGN-CURRENCY OPTIONS

Foreign-Currency options are among those derivative financial instruments which gained 

enormous popularity and market size during the 1980’s. Although over-the-counter options 

on foreign currencies have been written for many years, it was only in 1978 that foreign- 

currency options were first traded on an organized exchange (on the European Options 

Exchange in Amsterdam). In 1982 the first traded contracts were introduced in the USA, on 

the Philadelphia Stock Exchange. Today, the Philadelphia Stock Exchange is the most 

important exchange worldwide for the trading of foreign-currency options, both in terms of 

range and in terms of traded volume. There are not only options of the major currencies 

(German mark, British pound, Swiss franc, Japanese yen, Australian dollar, ECU, and 

Canadian dollar against the US dollar) but also recently some cross currency options (British 

pound vs. German mark; German mark vs. Japanese yen) were introduced. Although most 

traded options are American style options (options can be exercised at any time up to the 

expiration date), some European style options (options can only be exercised at the expiration 

date) are also traded (for the British pound, the German mark, the French franc, and the 

Japanese yen).

The modem theory of option pricing is based on the approach of risk-neutral valuation 

introduced in the seminal paper of Black and Scholes (1973). This approach soon became 

very popular both in the academic world and on financial markets. The academic world was 

probably most attracted by the fact that the Black-Scholes model derives closed-form option 

prices without any assumptions about investors’ preferences or demand and supply in the 

market. Practioners from financial markets, on the other hand, found this model probably so 

attractive because it produced simple option-pricing formulae which could easily be pro

grammed, even on a pocket calculator.
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The Black-Scholes model was originally formulated for the case of non-dividend-paying 

equities but the case of foreign-currency options is a simple extension of it. It is, therefore, 

instructive to start with the initial model for equities paying no dividends. The model is set 

up in continous time and the share price S is assumed to follow an Ito process in the form 

of geometric Brownian motion:

(1) dS = \iSdt + cSdz

where p and a  are parameters and dz denotes a Wiener process with

(2) dz=&Jdt

and 8 is a random variable with a standardized normal distribution. The model in (1) and (2)

says that the instantaneous rate of change in the share price (dS/S) has a normal distribution 

with a mean of \\dt and a variance of cT d t .

It follows from Ito’s lemma that In S dt  has a normal distribution with mean (\i-<y/2)dt

and variance ( f d t . It can also be shown that S follows a lognormal distribution with mean 

S explpJr} and variance 52exp{2pJr} (exp{cfdt} -  1). The geometric Brownian motion is 

the continuous-time equivalent of the discrete-time model of Gaussian white noise which 

served as the starting point and reference model in the previous chapters.

A call option gives the buyer of the option the right to buy a certain amount of the 

underlying asset at a predetermined exercise price X . If the price of the call option, c, is only 

a function of S and time t, Ito’s lemma can be applied to (1) to get

(3) dc = dc 1 d2c ->2 n 2 dt+^dS 
dS^dt 2 a s2

The crucial idea is now to form a portfolio P of the call option and the equity as in

(4) P = a XS + cuc ,
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where a, is the quantity of the equities and Oj is the quantity of the call options in the

portfolio. A change in the value of the portfolio is given by

(5) dP = a xdS +CL1dc .

Inserting (3) into (5) yields

(6) dP =a,dS +CL,
^ dc 1 d2c dc

L\
dt + z~  dS 

dSdt 2dS2

It is now possible to choose a, and a, such that the stochastic terms, which involve dS,

are eliminated from (6). This requires that

(7) oq = —0&23c
dS

holds. Condition (7) implies that the portfolio consists either of a! units in a long position

of the equity and o^dcldS units in a short position of the call or, alternatively, of ctj units 

in a short position of the equity and v^dddS units in a long position of the call. Therefore,

(6) simplifies to the deterministic equation

(8) dP = Otô  dc \d 2c -> _2̂  j rr-+-^—;<rS2 d t , 
dt 2dS2

i.e. the portfolio is instantaneously riskless. In a frictionless market, arbitrage will ensure that 

the rate of return of the portfolio P is equal to the riskless interest rate r , i.e.

(9) dP/P = r d t .

Inserting (4) and (8) into (9) and normalizing 0C2 by 0C2 = -1 yields

( 10)
dc
J t

= r dc 1 d2c 2n2 
 T (J  J  .

;  2 3 5 2C'3 5 5

This is the Black-Scholes partial differential equation which can be solved with the additional 

boundary condition

(11) c=m ax(S-X ,0) when t = T,

176



i.e. at maturity T of the option, the option value will be S - X  if the option is in the money 

and it will be zero otherwise. Solving (10) and (11) is non-trivial but the result is beautifully 

simple:

(12) c = SN(d,) -  e_,(7'’ ,)XAl(A)

with

, \n(SIX) + (r + J l 2 W - t )
( 13)  ^ ^ ----------

and

(14) d2 = d , - c H T - t .

In equation (12), N(.) denotes the standard normal distribution function.

It is also instructive to consider an alternative derivation of (12) which is useful later in 

this chapter. The Black-Scholes differential equation (10) does not include any term which 

reflects investors preference towards the trade-off between risk and return. In particular (10) 

is independent of |i , the expected return of the equity. Since a solution to the option-value 

problem can be found, which is independent of risk preferences, one may also employ a 

particular preference assumption which simplifies the solution, knowing that the resulting 

solution generalizes to any arbitrary preference assumption. This is the basic idea of the 

risk-neutral-valuation principle.

In a risk neutral world, the returns of all assets are equal. The call option price may, 

therefore, be computed as the present value of its expected value at maturity:

(15) c= e-* r - 'T " (S -X V /.(S,)<tf
Jx

where f L denotes the density of the lognormal distribution. An evaluation of the integral in 

(15) leads again to (12)-( 14).
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The valuation of an European call option is easily extended to the valuation of an 

European put option, which gives the buyer of the option the right to sell a certain amount of 

the underlying asset at a predetermined exercise price, by means of the put-call parity (see 

e.g. Hull (1993)):

The extension to American style options is less straightforward. However, if an equity 

does not pay dividends then it is never optimal to exercise a call option on this equity prior to 

maturity. Therefore, the right of early exercise is worthless and the American style and the 

European style call options will have the same price. On the other hand, early exercise can be 

optimal for all American put options and for American call options on dividend-paying 

equities. For those cases, the simple Black-Scholes formula does not apply.

: f, however, the underlying equity pays a constant continuous dividend q, one obtains

a straightforward modification of the Black-Scholes formula for European calls and puts. This 

follows from the fact that an European option on an equity with price S paying a continuous 

dividend must have the same price as an European option on a non-dividend paying equity 

with price Se~q(T~l). Therefore, a simple substitution of S by Se~(i(T~,) in (12)-(13) and (16) 

will give the European call and put option prices for the case of constant continuous dividends.

This reasoning can also be applied to options on foreign currency. An investment in 

foreign currency earns the continuous interest rate r* which is assumed to be fixed. Therefore, 

r* corresponds to the constant continuous dividend payments q in the case of equities. It 

follows that the price of an European option on foreign currency is

(16) p = c +Xe r(T ° - S  .

(17) c = e~r*{T~t)SN(dl) -  e~r{T~nXN(d2)

with

(18)
\n(S/X) + (r-r*  + <r/2)(T-t)

c r jT - t
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and

(19) d2 = d{-  ( r j T - t .

The price of an European put on foreign currency can also be determined by a simple 

modification of the put-call parity (16):

(20) p = c +Xe~ra~l)- S e ’r (r-f).

The formulae (17)-(20) for the pricing of European options on foreign currency were 

developed independently by Biger and Hull (1983), Garman and Kohlhagen (1983), and 

Grabbe (1983); but they are, as shown above, a simple corollary of Merton’s model of an 

equity with constant continuous dividend payments. It is, therefore, somewhat odd that 

(17)-(20) are often called the Garman-Kohlhagen formulae in the literature and in the markets.

Due to the constant interest receipts of an investment in foreign currency, the pricing of 

American options is more complicated. It can be shown that early exercise is optimal for 

American call and put options if the options are sufficiently far in the money (see Grabbe 

(1983)). Therefore, call and put prices of these American options on foreign currency should 

be higher than the prices of the corresponding European options but closed form formulae for 

American options are not available. Furthermore, it can be shown that the American premium 

above the European option price is a positive function of r * -  r for calls and a positive function 

of r -  r* for puts. This is easily explained by the fact that the exercise of a call leads to an 

investment in the foreign currency which yields the interest rate r* whereas the exercise of 

a put leads to an investment in the domestic currency which yields the interest rate r .

Table 1 shows option prices from the trading at the Philadelphia Stock Exchange (PHLX) 

on Friday, 13th August 1993 and is taken from the Wall Street Journal. It reports the spot rate 

(in cents) of the foreign currency in the first column, the exercise prices in the second column, 

call-option prices for the expiry months August, September, and December in columns 3-5
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and the corresponding put-option prices in columns 6-8. The letter r denotes the case that 

an option is not traded, whereas s means that the option is not offered. If not otherwise stated, 

the options are American style.

There are 22 pairs of American and European options with the same maturity and exercise 

price in the table but only in 10 cases is the American option price larger than the European 

counterpart. For instance, the European call option to buy 62.500 German marks at 57 

cents/mark in August was traded at 1.42 cents/mark whereas the corresponding American 

option cost 1.47 cents/mark. However, 10 cases violate the condition that the European option 

price should be the lower bound of the corresponding American option price. A case in point 

is the call option on the British pound with an exercise price of 1.50 dollars and maturity in 

September. The European version of this option was priced at 0.65 cents and the American 

version at 0.52.

There are three explanations for the "mispricings". The first one is trivially that some 

option prices might be misprints. It is hardly conceivable that this could explain all 12 

"mispricings" but there are some obvious candidates for misprints in the table. Take, for 

instance the American call options on the British pound for delivery in August. The option 

with an exercise price of X = 1.45 traded at c = 0.80, for X  = 1.475 it was c = 0.05 , and 

for X  = 1.50 it was c = 1.55 . This is grossly inconsistent, and inconsistent is also the option 

price of c = 1.55 for X  = 1.50 with the option price of c = 0.52 for a call option with the 

same exercise price but with delivery in September.

The second explanation would be that the option prices do not necessarily come from 

contemporaneous trades. If there are large exchange-rate changes during the day and one 

option price refers to a trade in the morning and another one to a trade in the afternoon, then 

this can explain the apparent "inconsistency" of option prices in the table.
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Thirdly, the market may not be liquid enough to accommodate large orders and, therefore, 

option prices would fluctuate strongly. In addition, one would have to assume that transaction 

costs or a lack of arbitrageurs would let option prices remain inconsistent.

A comparison of option prices in Table 1 certainly cannot provide a rigorous empirical 

test of price biases in the option market since the prices are not associated with contempor

aneous trades. Therefore, I turn to studies which address this issue more rigorously.

Table 1

Prices of Foreign-Currency Options at the Philadelphia Stock Exchange

Friday, August 13, 1993 
OPTIONS

O ption  & 
U nderly ing

PHILADELPHIA EXCHANGE

Strike
P rice C a l ls - L a s t P u t s - L a s t

Aug Sep Dec Aug Sep Dec

50.000 A u stra lian  D ollars-cents p e r unit. 
A D o llr........  66 r  r  r  r 0.25

67.68 67 r  1.02 r r r
67.68 68 0.05 r r 0.35 r
67.68 70. r  r 0.62 r r
67.68 71 r 0.05 0.37 r r

31.250 B ritish 
BPd-G M k

Pound-G erm an M ark  cross. 
250 r  2.22 r  r r

251.14 252 r  r r 2.36 2.74
251.14 254 r  0.86 r 4.42 4.00
251.14 256 r  0.44 r r r

31.250 B ritish  
B P ound

Pounds-E uropean  
150 r  0.65

Style.
r 4.20 r

145.46 137VS r  9.02 r r r
145.46 145 1.00 r r r r

31.250 B ritish  
B P ound

Pounds-cents per 
145 0.80 2.18

unit.
r 0.03 1.73 4.10

145.46 1471/2 0.05 1.14 r 1.60 3.13
145.46 150 1.55 0.52 r 3.90 4.50
145.46 152VS r  0.22 r 6.20 6.75
145.46 160 r  r r r 14.45

50.000 C anad ian  O oilars-E uropean  Style 
C O o ila r___ 77VS r  r  r 1.56 r r
50.000 C anad ian  D ollars-cents p e r unit 
C D ollr ___ 74 r  r  r r r 0-

76.19 75 r  r r r r 0-
76.19 75VS r  r r r 0- r
76.19 76 r  r r r r 0-
76.19 77 r  0.17 r 1.00 1.23 r
76.19 77VS r  r r 1.27 r r
76.19 78 r 0.05 r r 2.10 2.60

250.000 F ren ch F rancs-lO ths o t a cen t per unit.
F F r a n c ___ 16 r  r r r 0.76 r

165.18 I6V4 r  r r r 1.50 4.16
165.18 16'/* 0.16 1.68 r 0.08 2.60 r
165.18 16% r  1.02 r 2.44 4.00 r
165.18 17 r  r r 4.92 5.96 8.80.

r165.18 17VS r  0.12 r r r
165.18 IB r  1.02 r r r r
165.18 18% r  r r r 1.32

250.000 F rench  
F F r a n c ___

F ran cs-E u ro p ean  
16'/* 0.12 r

Style.
r r r r

165.18 IB'/. r  r r  17.32 r r
62.500 G erm an  
G M k-JY n

M ark -Jao an ese  Yen cross. 
61 VS r  0.27 s r r s

62.04 62 r  r 0.75 r r r
62.04 63 r  r 0.47 r r r

62.500 G erm an  
D M a r k ___

M arks-E uropean  
55'/* r  r

Style.
s r 0.06 s

58.43 56 r  r 2.56 r r r
58.43 57 1.42 1.53 r r 0.25 r
58.43 58 0.36 r r r r 1.70

s58.43 58 VS 0.06 r s 0.15 r
58.43 59 r  0.40 r 0.60 r r
58.43 60 r  r r 1.54 1.88 r
58.43 61 r  0.07 r r r r
58.43 61 VS r  0.05 s r r s

O ption & 
U nderlying

S trike
P ric e C a l ls -L a s t P u ts -L a s t

Aug Sep Dec Aug Sep Dec
62,500 G e rm a n  M arks-cen ts p e r unit.
D M ark . 54 r r 4.45 r r

58.43 55 r r r r r 0.
58.43 56 r r r r 0.10
58.43 57 1.47 r r r 0.26 1.
58.43 57VS r r s r 0.40
58.43 58 0.49 0.89 r 0.02 0.57 1.
58.43 58 VS 0.03 0.56 s 0.03 0.83
58.43 59 0.01 r 1.04 0.57 r
58.43 60 0.01 0.16 r 1.57 1.88
58.43 60 VS r r s 2.16 2.40
58.43 61 r 0.08 r 2.55 2.68

6.250,000 J a p a n e s e  Yen-lOOths o t a  cen t pe r unit.
JY e n , , 81 s 16.70 r s r

97.98 82 r 15.58 r r r
97.98 85 r r r r 0.85
97.98 88 r r r r r 0.
97.98 91 6.99 r r r r 0.
97.98 91 VS r r s r 0.10
97.98 92 5.98 r r r r
97.98 93VS r r s r 0.23
97.98 94 4.00 4.26 r r 0.32 1.
97.98 94VS r 3.65 s r 0.41
97.98 95 2.70 3.44 r r 0.56 1.
97.98 95 VS 1.90 r s 0.03 0.64
97.98 96 1.92 2.41 3.72 r r 1.
97.98 96 VS 1.21 r s r 0.88
97.98 97 0.73 1.79 3.04 0.03 1.03
97.98 97VS 0.51 r s r r
97.98 98 0.08 1.34 2.70 0.03 r 2.
97.98 99 r 0.92 r r r
97.98 100 0.01 0.73 r r r
97.98 102 r 0.31 r r r
97.98 103 s r 1.04 s r
97.98 104 s 0.13 r s r

6,250,000 Ja p a n e se  Y en-European Style.
JY en 94 3.50 r r r r 1.0

97.98 95 2.50 r r r r
97.98 96 1.62 r r r r
97.98 97 0.95 r 3.27 r r
97.98 100 r r 1.77 r r

62,500 Swiss F ra n cs-E u ro p e an  Style.
S F ra n c .. 63 2.70 r r r r

65.63 64 1.70 r r r r
65.63 65 VS r r s 0.20 r

62,500 Swiss F ra n cs-c e n ts  p er unit.
S F ra n c .. 64 >/* r r s r 0.46

65.63 65 VS 0.12 0.92 s 0.02 r
65.63 66 0.03 r r 0.42 r
65.63 66 VS r 0.55 s 0.80 1.55
65.63 67 r r r r 1.72
65.63 70 r 0.03 r r r
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5.2 PRICE BIASES OF FOREIGN-CURRENCY OPTIONS

Empirical studies on the pricing of foreign-currency options can be subsumed under three 

headings. First, there are studies which examine the potential mispricing of options according 

to the modified Black-Scholes formula (17) or the corresponding formula for American-Style 

options. Differences between model prices and market prices are analysed for systematic price 

biases and profit opportunities from investment strategies exploiting the price differences. 

These studies can shed light on the questions of whether the modified Black-Scholes model 

is appropriate for the pricing of foreign-currency options and whether the foreign-currency 

options market is efficient.

Second, several studies deal with the differences between American and European 

foreign-currency option prices. Table 1 shows that the majority of foreign-currency options 

traded at the PHLX are American style. As mentioned above, there are no closed-form price 

formulae for American-style options and, therefore, the calculation of option prices is moie 

involved for these options than for European-style options. Since prices of American-style 

options are often approximated by the European price formulae, it is interesting to ask how 

big the approximation error is.

Third, several authors investigate the consequences of replacing the assumption of 

geometric Brownian motion in (1) (resp. of Gaussian white noise for the discrete-time 

exchange-rate fluctuations) by alternative processes or distributional forms. These studies are 

motivated by the fact that there is strong empirical evidence against the assumption of Gaussian 

white noise.

Turning first to the questions of market efficiency and price biases, a straightforward 

approach is to search for unexploited arbitrage conditions. It is only with arbitrage conditions 

that market efficiency can be studied without the auxiliary hypothesis of a specific market 

model. Bodurtha and Courtadon (1986) examine two boundary conditions which are satisfied
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in an arbitrage-free market: (a) the time value of an option is non-negative and (b) the put-call 

parity holds. The time value is defined as the difference between the option price and the 

"moneyness" of the option, where moneyness measures how much the option is in-the-money.1 

For American foreign-currency options the put-call parity takes the form of inequalities (see 

Grabbe (1987)). Bodurtha and Courtadon (1986) report that only 31 option trades out of 52509 

violate the time-value condition and only 1 put-call pair out of 3998 violates the put-call 

boundary if the data on the options, the spot exchange rates and the interest rates are simul

taneous and if transaction costs are taken into account. However, many violations of the 

boundary conditions were found if closing prices were used and if transaction costs were 

neglected. Their results demonstrate that rigorous efficiency test cannot be conducted with 

data based on the table of the Wall Street Journal because spot-rate and option-price data 

would in general be non-synchronous.

The question of systematic option-price biases has mainly been analysed with data from 

the PHLX. Goodman, Ross and Schmidt (1985) use daily closing prices from the Wall Street 

Journal to compare market prices. They find that the market overprices options for all cur

rencies they analyse (mark, pound, Swiss franc, Yen, and Canadian dollar) relative to the 

theoretical model. However, they use the wrong model (European options) for the data 

(American options) and this may explain their findings to a certain extent.

Shastri and Wethyavivom (1987) also use the European pricing formula for 

American-style call options at the PHLX but they secure against approximation biases by 

excluding foreign currencies whose interest rate is higher than the domestic interest rate. The 

authors examine price biases in terms of implied volatilities, calculated from an inverted 

Black-Scholes formula, and find a U-shaped pattern of implied volatility with respect to the 

moneyness ratio S/X for short-maturity call options, i.e. the implied volatility is relatively

1 It is defined as S - X  for in-the-money call options and as X - S  for in-the-money put 
options. Otherwise it is zero.
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low for at-the-money options compared to out-of-the-money options and in-the-money 

options. This pattern of implied volatilities is sometimes called the "smile effect". Shastri and 

Wethyavivom claim that a diffusion-jump process (i.e. the compound Poisson process of 

Section 2.2) would be compatible with this implied-volatility pattern.

Tucker (1985) and Shastri and Tandon (1986a, 1987) implement trading strategies to 

exploit differences between theoretical prices and actual market prices at the PHLX. However, 

Tucker (1985) and Shastri and Tandon (1986a) apply the European option-pricing formulae 

to these American options and only Tucker (1985) and Shastri and Tandon (1987) use syn

chronized data and consider transaction costs. Whereas Shastri and Tandon (1986a) claim to 

have found abnormal profit opportunities for traders in the market if they trade at prices 

reported in the Wall Street Journal, Tucker (1985) and Shastri and Tandon (1987) show that 

excess profits disappear when transaction costs are taken into account.

The appropriate American option pricing model is used in the study of Bodurtha and 

Courtadon (1987) together with synchronized data to examine the pricing of foreign-currency 

options at the PHLX. The authors find that the model prices are on average higher than market 

prices but that out-of-the-money calls are undervalued by the American option-pricing model 

relative to the market. Furthermore, the relative pricing error decreases with maturity. Bodurtha 

and Courtadon conjecture that the pricing biases are related to leptokurtic distributions of the 

exchange-rate fluctuations or by the presence of a diffusion-jump process.

Similarly, Chesney and Louberge (1987) find for an over-the-counter options market in 

Geneva that the modified Black-Scholes formula tends to overprice European call options on 

the dollar/Swiss franc spot rate. Chesney and Louberge offer three explanations for their 

findings: (a) traders in the market systematically underestimated future volatility in the market; 

(b) the assumptions of constant interest rates and volatilities are invalid; (c) the exchange rate 

follows a diffusion-jump process.
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Turning next to studies which deal with the price differences between American and 

European options on foreign exchange, one finds quite uncontroversial results. Shastri and 

Tandon (1986b) and Adams and Wyatt (1987,1989) compare American and European option 

prices and find, not unexpectedly, that the American premium is larger for in-the-money 

options than for out-of-the-money options. Furthermore, the premium is a positive function 

of r for calls and a positive function of r for puts. Shastri and Tandon (1986b) also claim 

that the premium is larger for puts than for calls but this result is probably due to the fact that 

they use higher domestic interest rates than foreign interest rates. Similarly, Fabozzi, Hauser 

and Yaari (1990) show that the percentage premium of the American foreign-currency option 

over the European option is a positive function of maturity and a negative function of volatility.

Hilliard and Tucker (1991) analyse transactions data from the PHLX to see whether the 

price differences between American and European calls and puts are non-negative. The authors 

find that in only 25 out of 5886 cases this condition is violated if transaction costs are neglected 

but that no violation occurs if transaction costs are included. One can deduce from this result 

that the "violations" of the American-European inequalities for option prices in table 1 are 

obviously caused by the non-synchronity of the data. Hilliard and Tucker also report that the 

average market premia of American options over European options are 2.17 percent for calls 

and 1.38 percent for puts and that the correlation between market premia and model premia 

is only 0.46.

Mixed results are obtained by Fabozzi, Hauser and Yaari in their comparison of the 

American and European price formulae to fit to market prices at the PHLX. Whereas the 

American formula is superior to the European one for the pricing of in-the-money calls when 

r* > r , it is inferior to the European formula for the pricing of in-the-money puts when r > r*, 

and the later result is somewhat surprising.

Finally, there are several studies which compare option prices calculated from the 

modified Black-Scholes formulae with option prices under alternative stochastic assumptions
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for the exchange-rate fluctuations. Tucker, Peterson and Scott (1988) and Melino and Turnbull 

(1991) applied the constant-elasticity-of-variance (CEV) model to the pricing of foreign- 

currency options. The CEV model generalizes the Black-Scholes model by replacing the 

geometric Brownian motion of (1) by the process

(21) dS =\lSdt + oSsuldz .

Obviously, the geometric Brownian motion obtains when p = 2. If p > 2, there is a positive

association between exchange-rate movements dS and their volatility, whereas this 

association is negative for p < 2 . A further motivation for the CEV model is derived from 

the fact that (21) implies a leptokurtic distribution of dS/S 4

In their estimation of p , Tucker, Peterson and Scott find that p is significantly different

from 2 for 26 out of 30 cases (6 exchange rates in 5 years each) and that p is larger than 2 

for 22 cases. Melino and Turnbull, on the other hand, report values of p which are mainly 

below 2 but they do not estimate p directly. In a comparison between market prices and 

model prices, Tucker, Peterson and Scott show that the CEV model predicts option prices 

better than the Black-Scholes model for time horizons of 1 -3 days but not so for longer horizons. 

They attribute this finding for longer horizons to the fact that p appears to be intertemporally 

unstable.

In some of the studies on price biases (Shastri and Wethyavivom (1987), Bodurtha and 

Courtadon (1987), and Chesney and Louberge (1987)), it was conjectured that an option pricing 

model, which replaces the assumption of geometric Brownian motion (equation (1)) by the 

assumption of a diffusion-jump process, would fit market prices better than a modified 

Black-Scholes model as given in (17)-( 19) or a corresponding American price formula. A 

diffusion-jump process is given by:

(22) dS IS = (|I -  \v)dt + (5dz + dy
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where X is the frequency of jumps, v is the average jump size and dy is a Poisson jump

process independent of the Wiener process dz . As mention above, the discrete-time equivalent 

of this continuous-time process is the compound Poisson process which was analysed in 

Section 2.2. If it is assumed that the jump risk associated with dy is diversifiable, i.e. that it 

represents nonsystematic risk, European call option prices can be obtained from

where V  = X( 1 + v) and T = T - 1. In (23) Cj is the Black-Scholes option price for a volatility

of (cf+j t f / i )  where 52 is the variance of the normally distributed jump process. Borenzstein 

and Dooley (1987), Jorion (1988), and Tucker (1991) apply this model to the pricing of 

foreign-currency options and compare it to the modified Black-Scholes model.

Actually, Borenzstein and Dooley (1987) use a pure jump model in which \L = 0 and

(5dz = 0. Analysing option prices from the PHLX, they observe that the modified Black- 

Scholes model underprices out-of-the-money call options and that the price biases are sub

stantially reduced if option prices are calculated assuming a pure jump process. Jorion (1988) 

and Tucker (1991) show that a model of Gaussian white noise is rejected in favour of the 

compound Poisson process by a likelihood-ratio test and confirm the finding of Borenzstein 

and Dooley that a jump model gives option prices which are closer to market prices than those 

derived from the Black-Scholes formula. However, Jorion reports that only for in-the-money 

options with short maturities is the option price from the compound Poisson process signifi

cantly different from, i.e. larger than, the Black-Scholes price.

A third class of alternative models for the underlying exchange-rate process has been 

applied by Chesny and Scott(1989) and Melino and Turnbull (1990) for the pricing of 

foreign-currency options. They assume that volatility is stochastic and that it can be described 

by the Omstein-Uhlenbeck process.
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(24) d ln a  = (<t> + plnc)df + ydw

where <j),p and y are parameters and dw is a Wiener process. Equation (24) supplements 

(1) which describes the dynamics of the exchange-rate level.

With volatility a  being stochastic a complication arises in the pricing of options because 

volatility is not a traded asset. Therefore, no portfolio can be constructed which could eliminate 

the volatility risk and the principle of risk-independent valuation, which is the major 

achievement of the Black-Scholes approach, would have to be abandoned. It can be shown, 

however, that European option prices under stochastic volatility can be obtained from an 

integration of the Black-Scholes price over the distribution of the average volatility during 

the life of the option if dw and dz are uncorrelated (see Hull (1993)). Chesney and Scott 

impose this assumption but Melino and Turnbull examine the more general case where the 

risk premium on volatility is non-zero.

Melino and Turnbull motivate the application of this stochastic-variance model by the 

fact that the model of (1) and (24) implies both leptokurtosis and heteroskedasticity. However, 

they admit that the specification of the volatility as an Omstein-Uhlenbeck process is ad hoc. 

In their estimation of the model by the generalized method of moments they find strong 

evidence for the stochastic specification of volatility and a negative correlation between dz 

and dw . Melino and Turnbull report that the stochastic volatility model gives a better fit to 

actual option prices of the Canadian dollar at the PHLX than a constant-volatility model if the 

risk premium on volatility is assumed to be negative. However, Chesney and Scott find for 

European-style options of the US dollar against the Swiss franc traded in Geneva that a sto- 

chastic-volatility outperforms the Black-Scholes model only if historical estimates of volatility 

are used in the Black-Scholes model, whereas the Black-Scholes model has smaller price 

errors than the stochastic-volatility model if implied volatility estimates are used in the 

Black-Scholes formula and are revised daily
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To summarize, the empirical studies of foreign-currency option prices, mainly at the 

PHLX, have revealed that substantial and systematic differences exist between model prices 

and market prices and that these differences cannot only be attributed to the pricing of American 

options with models of European options. It seems rather that there is a systematic smile effect 

even when the options are evaluated with an American option model. According to this smile 

effect, implied volatilities of at-the-money-options, as calculated from the Black-Scholes 

model, are lower than implied volatilities of out-of-the-money and in-the-money options. In 

terms of price biases, the smile effect implies that market prices are systematically above 

Black-Scholes prices for out-of-the-money and in-the-money options whereas the opposite 

holds for at-the-money options.

5.3 SIMULATION OF OPTION PRICES

In this section I will examine the implications for the pricing of foreign-currency options 

which follow from the stochastic models of Chapter 2 and 3. As in Chapter 4 ,1 will drop the 

stable Paretian distributions from the list of candidate models because they were clearly 

rejected by the analysis in Section 2.4. In addition it was necessary to drop the GARCH-t 

model because this model produced highly erratic option prices. This was caused by the fact 

that the estimates of this model implied non-stationary variances for all exchange-rate series. 

Since the conditional Student distribution has fatter tails than a normal distribution, any draws 

from the tails will eventually lead to explosive behaviour of the simulated series. A case in 

point are the parameter estimates of a, = 0.174 and a2 = 0.873 for the daily pound series 

violating the stationary condition a, + a2 < 1. The simulation (with 20 000 repetitions) of option 

prices from these parameters for at-the-money options with a maturity of 84 days gave an
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unrealistic option price of $ 43.96 whereas the simulated Black-Scholes price was $ 0.04 and 

the simulated GARCH option price was $0.14. For longer maturities, the simulations produced 

some even more unrealistic prices.

On the other hand, the model of stochastic volatility, introduced in the previous section, 

will not be included in the analysis of this section for two reasons. First, the specification of 

the continuous-time model in (24) is ad hoc, as admitted by Melino and Turnbull (1990), and 

motivated by its simplicity rather than by a study of observed prices, as noted by Taylor (1992). 

Second, the stochastic-volatility model is very close to GARCH models in its statistical 

properties (see Taylor (1992)) and, in fact, in its discrete-time version it is compatible with 

an GARCH (0,1) model. A discrete-time version of (1) and (24) can be formulated as:

(25) AlnS, = r| + a f_1H,

(26) In a, = £ + 0(/war_, - Q  + \j/v,

where r|,^,9and\|/ are parameters and ut and v, are white-noise error terms. Note that

(27) £(lnor | / f_1) = C + 0(lnof. 1- O

where /, _, is the information set at t -  \ . Equations (25) and (27) come close to a GARCH

(0,1) model. The major difference between a stochastic-volatility model and a GARCH model 

lies in the way in which the price dynamics Aln5f impinge on the volatility process. In the 

stochastic-volatility model, A In S, is only related to a, if ut and v, are correlated, whereas 

in GARCH models lags of the squared price dynamics enter directly into the volatility equation. 

A definite advantage of ARCH-type models is the fact that they can easily accomodate a rich 

dynamic structure.

As mentioned in the previous section, a major drawback of replacing the assumption of 

Brownian motion in option-pricing models by alternative distribution models or hetero- 

skedastistic proceses is the fact that the Black-Scholes approach of constructing a perfect- 

hedge strategy and deriving pricing formulae, which are independent of investors’ preferences,
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is not feasible under these alternative assumptions. The common feature of the distribution 

models of Chapter 2 and of the heteroskedasticity models of Chapter 3 is the stochastic nature 

of variance in these models. As explained in Chapter 2, the scale-mixture of distribution, the 

compound Poisson process, the generalized Student distribution and the symmetric stable 

Paretian distributions can be viewed as scale-compounded normal distributions where the 

variance has an independent distribution. In this sense both the static models of Chapter 2 and 

the dynamic models of Chapter 3 introduce an additional source of uncertainty into the 

modelling of the price process. However, since the variance is an unobservable variable and 

cannot be traded on financial markets2, there is no way to eliminate this risk by a simple hedge 

strategy.

The fact that preferences of investors come back into option-pricing models has also 

been realized in the stochastic-volatility literature (see Wiggins (1987)). These preference 

parameters can only be eliminated with additional assumptions. Hull and White (1987) assume 

that volatility is uncorrelated with aggregate consumption, i.e. that volatility risk is not priced, 

and that volatility is uncorrelated with the price of the underlying asset. Wiggins (1987) deals 

with the more general case where volatility and price movements are correlated, but imposes 

the restrictions that in investors have logarithmic utility functions and that the partial corre

lation between the market return and the volatility of the asset is zero. It is interesting to note 

that Hull and White find a "smile effect" with their stochastic -variance model, i.e. relative to 

Black-Scholes prices, their model produces lower prices for at-the-money call options and 

higher prices for in-the-money and out-ot-the-money call options. On the other hand, Wiggins 

finds negative correlations between American stock returns and their volatilities. Wiggins’ 

stochastic-volatility model with this negative correlation implies that the Black-Scholes model

2 Actually, in the jargon of market participants some investment strategies are described as 
"trading volatility", but these strategies mean that assets whose implied volatilities appear to 
be low, are bought, and those whose implied volatilities are regarded to be high are sold.
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would overprice out-of-the-money call options and underprice in-the-money call options. 

Recall that the EGARCH model of Section 3.2 allows for correlation between price movements 

and volatility, but that no significant effect was found in the exchange-rate data.

The easiest way to avoid the analytical problems of having an additional source of risk 

which cannot be hedged, is simply to assume that investors are risk neutral and this approach 

will be adopted here. It is possible to impose alternative assumptions which would lead to the 

risk-neutral valuation principle. In particular, Duan (1991) has shown for the GARCH model 

that the risk-neutral valuation principle would also hold under the conditions that either utility 

functions imply constant relative risk aversion and changes in logarithmic aggregate con

sumption follow a GARCH process or that utility functions imply constant absolute risk 

aversion and changes in aggregate consumption follow a GARCH process.

In this section I will derive prices of European call options along the lines of (15) where 

the option price is computed as the present value of the option’s expected value at maturity. 

For simplicity, I also set the domestic and foreign interest rates equal to zero since they would 

only enter as scale factors into option prices. Of course, one cannot hope to derive analytically 

the density function of the spot exchange rate at maturity for the distributional models and 

heteroskedasticity models. Therefore, option prices are computed by simulation based on the 

expected value of the boundary condition at maturity, i.e. European call option prices were 

computed as

(25) c X max{S*-X;0}
K  k = i

where Sk is the terminal spot rate in the k-th simulation, X  is the exercise price and K=20000

is the number of repetitions in every experiment.

The main ojective is to examine whether the static models of Chapter 2 and the dynamic 

models of Chapter 3 imply any systematic differences from Black-Scholes prices. The 

Black-Scholes prices can be computed analytically but in order to reduce the impact of sample
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variation they, too, were simulated in Monte-Carlo experiments. The simulations require draws 

from a normal distribution for the mixture distribution, the compound Poisson process, the 

Markov-switching model, the GARCH model, and the EGARCH model. In addition, draws 

from a uniform distribution are required for the mixture distribution and the Markov-switching 

model. An algorithm for sampling from a Student distribution was taken from Kinderman et 

al. (1977).

The simulations are based on the parameter estimates of the daily pound series3 because 

this is the only daily series for which the condition of finite stationary variances of the GARCH 

model was not violated4. The parameter estimates along with the (stationary) variances of the 

estimated models are shown in table 2. The implied variances were computed from the fol

lowing formulae:

(29) admixture) = p of + (1 -  p)c^

(30) ^(Poisson) = Xc^ + a j

f(31) <T(Student) =
2ti- 3

P l l(32) cr(Markov): as in (29) with p -  1 -
2 —  P n  — P l l

X
(33) o2(GARCH) = 1 -  a,-pi

(34) ^(EGARCH) = expi
l - 0 i

3 Since the data were analysed in the form of lOOAlnS,, one has to rescale some parameter 
values to remove the impact of the factor 100. For most models, this is done in an obvious 
way. Note, however, that the rescaling is a ,0 = a0- (  1 ~^,)ln( 10000) in the case of the 
EGARCH model.
4 Simulations were also performed with parameter estimates from the weekly pound series. 
The results do not differ in any important way from the results of the daily series.
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Table 2 also shows the kurtosis of the models as reported in table 1 of Chapter 4. For com

parison, table 2 gives also the sample variance and the kurtosis of 3 for the normal distribution 

under the heading of Gauss.

Table 2

Parameter estimates, variance and kurtosis: daily pound

Model Parameter estimates Variance Kurtosis

Gauss a 2 = 0.437 (0.437) 3.00

Mixture p =0.460 

of = 0.061 
c^ = 0.756

0.437 4.86

Poisson X= 1.262 

a j = 0.307 
at = 0.021

0.414 5.07

Student H = 2.423 
y= 0.887

0.426 OO

Markov p u =0.933

P22 = °-952 
c] = 0.073 
a; = 0.697

0.436 4.99

GARCH cto = 0.007 
a, = 0.135 
02 = 0.864

4.299 OO

EGARCH cLq = —0.038 
a lu = 0.026 
a ]h =0.300 
b{ =0.940

0.528 4.35
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Of course, all distributional models and heteroskedasticity models are leptokurtic. It is 

noteworthy that both the generalized Student distribution and the GARCH model imply infinite 

kurtosis and that the kurtosis of the EGARCH model is the smallest among these candidate 

models.

On the other hand, the variances of the mixture distribution and the Markov-switching 

model are very close to the sample variance of 0.437 and the variances of the compound 

Poisson process and the Student distribution are somewhat smaller than the sample variance. 

Both ARCH-type models have larger variances and the variance of the GARCH model exceeds 

the sample variance by nearly a factor of 10.

For the understanding of price differences between Black-Scholes prices and simulated 

option prices of the three static and three dynamic models, it is useful to decompose the price 

effects into different components. Following Jarrow and Rudd (1982), the option price under 

an arbitrary distribution A can be approximated by a generalized Edgeworth series expansion 

as

(35) CA = CL+—̂ -^[a2( A ) - o 2(L)]fL(X)
2\e

1 dfL(X)

1 , , 2 d 2fL(X)
+ — [Ki(A)-K4(L) + X a 2(A)-<r(L))] - f —

4\e dS

+ e(X)

where CL is the Black-Scholes price (based on the log-normal distribution L ), e~n is the

discount factor (which will be neglected here), cr(A) and cT(L) are the variances of the 

alternative (true) distribution and the log-normal distribution, respectively, \l3 is the third 

central moment (which is related to the skewness (3, by fi3 = l^o3) , K4 is the 4-th cumulant.
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f L is the density of the log-normal distribution, and e(X) is the approximation error as a 

function of the exercise price X  . Note that k 4 = ji4 -  3a4 where p.4 is the 4-th central moment, 

i.e. k 4 > 0 if the distribution is leptokurtic.

With reference to (35), option price biases can be decomposed into three components. 

First, the price bias will be a weighted function of the difference between a^A) and cr(L), 

where the weights are given by the density of the log-normal distribution. Since the density 

is always positive, option prices under the true distribution will, ceteris paribus, be higher than 

Black-Scholes prices if a 2(A )>a2(L).

Second, there is a weighted skewness effect where the weights are given by the first 

derivative of the density f L with respect to the spot rates. Figure 1, which plots the density 

of the log-normal distribution along with its first and second derivative, shows that the first 

derivative changes sign. Note that in (35) the density f L is a function of the exercise price 

X  . An option is said to be at the money if the spot rate S, is equal to the discounted exercise 

price e~rxX . Since e~rxX  is the mean of the distribution, points to the right of the mean (which 

is to the right of the mode) classify as out-of-the-money, and points to the left as in-the-money.

The skewness term in (35) has a negative sign and the first-derivative weight has a 

negative (positive) sign for out-of-the-money (in-the-money) options. Therefore, out-of- 

the-money option prices under an alternative distribution would, ceteris paribus, be higher 

than Black-Scholes prices if this distribution is more skewed to the right than f L, i.e. 

ji3(A) > H3(L). This, of course, is a very intuitive result.

The third effect is related to kurtosis and has weights given by the second derivative of 

f L . The second derivative changes sign twice and is plotted in the lower panel of figure 1. The 

second derivative is positive for in-the-money and out-of-the-money options. If the kurtosis 

of A is larger than the kurtosis of L , then (ceteris paribus) CA > CL for in-the-money options 

and out-of-the-money options, whereas CA < CL for at-the-money options.
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Figure 1

Density of the log-normal distribution and its 1st and 2nd derivative
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Simulations of European call option prices, according to the boundary condition in (28), 

were performed to study both the spot-rate effects and the maturity effects of the six candidate 

models. In the study of spot-rate effects, the exercise price X  is set to 1.80 and the current 

spot rate St is varied between 1.40 and 2.20, i.e. the moneyness ratio varies between 0.7 and 

1.2 . The time to maturity is set to 20 days (roughly a month).

Figure 2 plots the spot-rate effects of biases in European call-option prices for the three 

static (distributional) models. In addition, the dashed lines show the confidence intervals of 

±2 standard errors around zero. A price bias is defined as the difference between the simulated 

option price Ck of the alternative model and the Black-Scholes price CBS» i*e. a positive bias 

indicates that the "true" option price would be higher than the Black-Scholes price. Options 

with 5, <1.75 are denoted as out-of-the-money options and options with S, >1.85 as 

in-the-money options.

Panel a of figure 2 displays the simulated price biases of the scale-mixture of normal 

distributions as a function of the current spot rate. There is no clear pattern in the price biases 

and in only 5 out of 81 cases is the bias outside the confidence interval by a small margin. 

Two of these biases are positive and three are negative. There is only a weak tendency for 

out-of-the-money options, i.e. those with a current spot rate of less than 1.75 (denoted as 75 

on the horizontal axis), to have positive biases and for at-the-money options (between 75 and 

85 on the horizontal axis) to have negative biases. In terms of the decomposition of price 

biases, according to (35), one would not expect to find variance and skewness effects because 

the variance of the mixture model is virtually identical with the sample variance and because 

a scale mixture is symmetric. Furthermore, the kurtosis effect seems to be too small to produce 

significant biases.
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Figure 2

Spot-rate effect of biases in option prices for static models

a) Mixture distribution b) Compound Poisson process
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Turning to the spot-price effects of the compound Poisson process, one finds some 

significant negative biases for spot rates around the exercise price of 1.80 (denoted as 80)5.

5 The significant positive bias at St = 2.04 can safely be attributed to sample variation.
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This can be attributed to both variance and kurtosis effects. Note that, according to table 1, 

the variance of 0.414, implied by the parameter estimates of the compound Poisson process, 

is smaller than the sample variance of 0.437. One may deduce, therefore, from (35) that the 

variance effect will be negative. In addition, leptokurtosis effects receive a negative weight 

for at-the-money options since the second derivative is negative for these options. Thus, both 

the variance and the kurtosis effect have a negative sign.

The negative effect on at-the-money options for leptokurtic distributions can be asso

ciated with peakedness. Recall that leptokurtosis can be caused by either peakedness or fat 

tails. If a distribution is more peaked than a normal distribution, i.e. there are more small-size 

price movements than expected under a normal distribution, then the probability of being 

deep-in-the-money at maturity will decrease for at-the-money options and, therefore, the 

option price should be lower. This is the economic intuition behind the negative peakedness 

effect.

The third static model is the generalized Student distribution whose price biases are 

plotted in panel c. Although the price biases are not large in comparison with the standard 

errors, there appears to be a systematic pattern for out-of-the-money options and at-the-money 

options. With one exception, all price biases between St = 1.59 and 1.69 are significantly 

positive and, with two exceptions, all biases between 1.75 and 1.85 are negative (although 

only three of them are significant). Like with Student’s distribution, negative biases would be 

caused by the variance effect and the peakedness effect. Table 2 reports that a variance of 

0.426 follows from the parameter estimates of the Student distribution and this is smaller than 

the sample variance of 0.437. As explained above, the peakedness effect is negative for 

at-the-money options.

The positive price biases for out-of-the-money options are readily explained in statistical 

and economic terms. Statistically, these biases can be described as fat-tail effects. Recall from 

figure 1 that the 2nd derivative of f L, which gives the weights of the kurtosis effect, is positive

200



in the domain of out-of-the-money options. Thus, the kurtosis effect will be positive for 

leptokurtic distributions. The economic intuition is simple: the Student distribution has fatter 

tails than a normal distribution. The fatter right tail implies that out-of-the-money options 

have a greater probability of finishing in the money than under a normal distribution and, 

therefore, the option price should be higher than the Black-Scholes price.

Since the vertical scales of panels a-c are not the same, the magnitude of price biases 

for all three static (distributional) models are compared in panel d. In general, the price effects 

are not very strong, especially for in-the-money options where the sample variation is rather 

high67.

The results for the compound Poisson process are in agreement with the study of Jorion 

(1988) who found only statistically significant (negative) price effects for at-the-money 

options. Figure 2 shows that the price effects of the Student distribution are somewhat stronger 

than those of the compound Poisson process and that the price effects of the mixture distribution 

are the weakest amongst the three statis models. It seems that these models would not be able 

to explain the differences between actual prices and Black-Scholes prices observed on 

foreign-currency option markets. In particular, the observed smile effects cannot be derived 

from these models. Only the Student distribution produces vaguely a one-sided smile effect.

6Note that the draws from the normal distribution are the same for the simulation of the mixture 
model and the compound Poisson process (and the following dynamic models) at a given spot 
rate St but that the draws vary with St .

7 In the literature, option-price biases are often displayed in percentage terms and in those 
terms the price effect for out-of-the money options is invariably the strongest. For two reasons 
it was decided to plot the price effect in money terms and not in percentage terms. First, 
high-percentage price effects can be very misleading when the option price is very low, as is 
typical for out-of-the-money options. For instance, in percentage terms the price bias for 
S, = 1.58 is 2800 for the Student distribution and this number would dominate the plot of 
percentage biases although it is not statistically significant. Secondly, the larger percentage 
biases of out-of-the-money options are also often economically misleading. In the above 
example, the price effect is only 0.000028 in money terms and this would probably also be 
economically insignificant, even without transaction costs.
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Figure 3 plots the spot-rate effects of the dynamic models. Panel a shows the simulated 

price biases for the Markov-switching model. For out-of-the-money options, the price biases 

are systematically positive and significantly so for St > 1.60, i.e. for these options are the 

option prices under a Markov-switching model higher than Black-Scholes prices. Note that 

the variance of the Markov-switching model is very close to the sample variance. Therefore, 

this price bias is only due to the fat-tail effect. For at-the-money options there is a strong and 

significant negative price bias which can be attributed to the peakedness effect. On the other 

hand, the price biases for in-the-money options is only significant at St = 1.86 and St = 1.88 . 

However, all price biases between 1.85 and 2.00 (with one exception at 1.92) are positive. 

Thus, the Markov-switching model is broadly consistently with the observed smile effects.

How can the positive price effect for in-the-money options be explained? Statistically 

it follows from the kurtosis effect which has positive weights from the second derivative. 

Economically, the left-tail effect can be explained by the fact that it enhances the insurance 

value of deep-in-the-money options by increasing the probability of finishing out of the money. 

Or, alternatively, the price effect may be explained with the put-call parity of (16). Note that 

this parity is independent of distributional assumptions. If a call option is in the money, the 

corresponding put option with the same exercise price will be out of the money. The preceding 

description of the fat-tail effect for out-of-the-money call options can be extended to out-of- 

the-money put options if both the right and left tail are fat (which is the case here because the 

stationary distribution is symmetric). A fatter left tail implies for the out-of-the-money option 

that the probability of moving into the money increases and, therefore, the option price should 

be higher. It now follows from the put-call parity that also the price of the corresponding 

in-the-money call option with the same spot rate should be higher.

The price effects of the GARCH and EGARCH models, displayed in panels b and c, 

respectively, are drastically different from the pattern of the Markov-switching model. For 

both models, the simulated option prices exceed the Black-Scholes prices for the full range
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of spot rates. The price effect is strongest for at-the-money options. At s ,  = 1.80, the 

Black-Scholes price is 0.0215, whereas it is 0.0234 for the EGARCH model and 0.0668 for 

the GARCH model. These large positive price biases are obviously related to the fact that 

both models imply stationary variances which are much larger than the sample variance of 

0.437 (see table 2). Since, according to the decomposition of price biases in (35), the variance 

effect is weighted by the density f L, the price effect is strongest at the money.

Panel d of figure 3 plots the spot-rate effects of all three dynamic models to demonstrate 

that the GARCH model produces biases which are multiples of those from the other two 

models. Although the price effects of at-the-money options are opposite in sign for the 

Markov-switching and the EGARCH model, both models display biases which are roughly 

similar in magnitude. With these enormous differences in option prices between the GARCH 

model and the other two models, the question arises, which of the models gives the most 

reliable option prices. One way to answer this question would be to compare model prices 

with market prices to find the best fit. This, however, would be beyond the scope of this study. 

Instead, one could argue that the GARCH model is likely to overestimate option prices 

seriously. The application of the GARCH model in Section 3.2 has made it clear that for the 

exchange-rate data, the condition of finite stationary variance is often violated and the 

parameter estimates are only marginally below the stationarity condition a, + Pj < 1 for the 

daily pound series.

Turning next to a study of maturity effects, the aspects of temporal aggregation is 

important. The models, as estimated from daily data, are strictly valid only for this time period 

of one day. Only stable distributions have the property of additivity. If, e.g., we model the 

distribution of daily exchange-rate fluctuation by the Student distribution and aggregate over 

time to get from daily fluctuations to monthly fluctuations, then the monthly fluctuations will 

not have a Student distribution since the sum of Student-distributed random variables does 

not have a Student distribution.. The same argument applies to the other non-stable dis-
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Figure 3
Spot-rate effect of biases in option prices for dynamic models

a) Markov-switching model
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tributions and heteroskedasticity models, too.

For the three static models it follows from the central limit theorem that they converge 

to normality under aggregation and the results of Lindgren (1978) and Diebold (1988) indicate 

that this convergence to normality holds also for Markov-switching and ARCH models. As a

0.0025 

0.0020  

0.0015 

0.0010 

0.0005 

0.0000 
-0.0005

40 45 50 55 60 65 70 75 80 85 90 95 00 05 10 15 20

204



corollary, one expects to find stronger divergence from Black-Scholes prices for short-maturity 

than for long-maturity options and for long enough maturities the option prices shouldconverge 

to Black-Scholes prices.

Maturity-effects will be studied for at-the-money options with St =X = 1.80 and the

maturity is varied between 1 day and 100 days (roughly 5 months).

Figure 4 plots the maturity effects of the static models. Panel a shows that there is indeed 

a negative bias for short maturities of up to 6 days for the mixture distribution. Since the 

mixture distribution does not have any variance or skewness effect, the negative bias can be 

attributed to the peakedness effect of at-the-money options as described above. The conver

gence to normality is obviously so fast for the mixture distribution that one cannot find 

significant price effects for longer maturities. Figure 4a is, of course, consistent with Figure 

2a where no strong biases were found for a maturity of 20 days.

The negative peakedness effect is also borne out in figures 4b and 4c. Note, however, 

that the peakedness effect of the compound Poisson process and the Student distribution is 

enhanced by a negative variance effect, since the variance of these distributions are smaller 

than the sample variance. It is also interesting to observe that quite a few price biases for long 

maturities are also significantly negative for both distributions. The convergence to normality 

seems to be relatively slow for the compound Poisson process.

Figure 4d compares the maturity effects of the three static models in percentage terms. 

In general, the biases of the compound Poisson process and of the Student distribution are 

much stronger than those of the mixture distribution and they also have only very few positive 

biases whereas the biases of the mixture distribution quickly fluctuate around zero.

Finally, the maturity effects of the heteroskedasticity models are displayed in figure 5. 

As noted above, at-the-money options have only a peakedness effect for the Markov-switching 

model. Figure 5a illustrates that the negative peakedness effect increases in size when maturity 

increases from 1 day to 10 days and the negative bias levels off rather slowly. The slow
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Figure 4

Maturity effect of biases in option prices for static models

a) Mixture distribution b) Compound Poisson process
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from the large estimates of the transition probabilities p u = 0.933 and p 2 = 0.952 . Therefore, 

the transition matrix will converge rather slowly to its stationary values.

0.002  

0.001 

0.000 

- 0.001  

- 0.002  

-0 .003
10 20 30 40 50 60 70 80 90 100

206



Figure 5

Maturity effect of biases in option prices for dynamic models

a) Markov-switching model b) GARCH model

0.0010

0.0005

0.0000

-0.0005

- 0.0010

-0.0015
90 10040 50 60 70 80

c) EGARCH model

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000
- 0 .0 0 1

10 20 30 40 50 60 70 80 100

0.125 

0.100 

0.075 

0.050 

0.025- 

0.000- 

•0.025-
10 20 30 40 50 60 70 80 90 100

250 

200 

150 

100 

50 

0- 

-5 0  J
10 20 30 40 50 60 70 80 90 100

d) All dynamic models

 M a r k o v  G A R C H  EGARCH

Whereas the Markov-switching model implies that at-the-money options are overpriced 

by the Black-Scholes model, the opposite conclusion would be drawn from the GARCH and 

EGARCH models. It was explained above that the price biases of the latter models are 

dominated by the positive variance effect. Figures 5b and 5c show that the biases in money 

terms increase both for the GARCH and EGARCH model with maturity. Since both models
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have stationary variances which exceed the sample variance, one would not obtain a 

convergence to Black-Scholes prices based on the sample variance, but to those based on the 

stationary variances when maturity increases. If, in fact, the Black-Scholes prices are calculated 

with the stationary variance <r = 4.299 of the GARCH model, one would find at a maturity 

of 10 days that the GARCH option price of 0.0475 is 12.6 percent smaller than the 

Black-Scholes price (this is the peakedness effect), whereas at a maturity of 100 days the 

GARCH option price of 0.1503 exceeds the Black-Scholes price by only 1.1 percent. Figure 

5d, however, shows that the percentage bias of the GARCH model in terms of Black-Scholes 

prices based on the sample variance is remarkably constant at around 210 percent when 

maturity is varied.

5.4 SUMMARY

Empirical studies of prices on foreign-currency option markets (mainly at the PHLX) have 

revealed that there are some systematic differences between market prices and (modified) 

Black-Scholes prices, especially for options with short maturities. In particular, smile effects 

were observed, i.e. implied volatilities of at-the-money options are systematically smaller than 

those of in-the-money options and out-of-the-money options. It was conjectured that the smile 

effects were caused by leptokurtic distributions. Some researchers applied the 

constant-elasticity-of-variance model, the compound Poisson process, and stochastic-vola- 

tility models to exchange-rate data in order to capture these effects. It was found, however, 

that these models produced only rather small option price effects which could not explain the 

large observed biases.

In this chapter, I have applied three static (distributional) models and three dynamic 

(heteroskedastic) models to simulate option prices by the Monte-Carlo method. It might appear
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to be confusing that the models produce so different price effects. The static models have only 

significant price biases for short maturities, where the models predict lower at-the-money 

option prices than the Black-Scholes model. On the other hand, both ARCH-type models 

produce very large option prices, compared to Black-Scholes prices, for all moneyness-ratios 

(when the maturity is 20 days) and all maturities (when the option is at the money). Only the 

Markov-switching model is consistent with the observed smile effects.

In order to understand the option-price effects produced by the models, it is useful to 

decompose the price biases into variance effects and kurtosis effects. It is shown that these 

effects are weighted, in a generalized Edgeworth-series expansion, by the density of the 

log-normal distribution and its second derivative, respectively. The variance effect is always 

positive when the model’s variance is larger than the sample variance, i.e. the simulated option 

prices are larger than Black-Scholes prices. The kurtosis effect can be further decomposed 

into a peakedness effect and fat-tail effects. For leptokurtic distributions, the peakedness effect 

of at-the-money options is negative (the simulated prices are smaller than Black-Scholes 

prices) whereas the fat-tail effect is positive for both out-of-the-money options and in-the- 

money options.

The Markov-switching model does not have a variance effect because its variance is 

virtually identical with the sample variance. Therefore, the smile effect is entirely caused by 

the leptokurtosis of the model. Although the static models have larger leptokurtosis than the 

Markov-switching model (see table 2), they only have strong price effects for short maturities 

since they converge quite rapidly to a normal distribution under time aggregation. On the other 

hand, the parameter estimates of the Markov-switching model imply strong persistence of 

states and, therefore, a slow convergence to the stationary distribution. As a consequence, 

significant price effects can also be obtained for relatively long maturities of up to 90 days or 

so.
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CONCLUSIONS

The aim of this study was to find a suitable approach to model econometrically the process 

of exchange-rate dynamics. Eight models have been introduced to capture the statistical 

properties of leptokurtosis and heteroskedasticity. Two of these models can be rejected. First, 

the stable Paretian distributions are not compatible with convergence to normality under 

temporal aggregation and were rejected both by direct estimation via the Fast-Fourier- 

Transform and by putting them into the broader framework of distributions with regularly 

varying tails. Second, the GARCH-t model violates strongly the stationarity condition for the 

variance and does not produce well-behaved residuals. As a matter of fact, the leptokurtosis 

of residuals is in most cases larger than the sample leptokurtosis.

The obvious question is: which of the remaining six models gives the best representation 

of the exchange-rate data. It might appear to be obvious that the dynamic heteroskedasticity 

models (Markov-switching, GARCH, and EGARCH) perform much better than the static 

distributional models (mixture distribution, compound Poisson process, and Student dis

tribution) since the latter cannot capture heteroskedasticity. However, Chapter 4 showed that 

this is not necessarily so. First, the static models gave, in general, better results in %2 

goodness-of-fit tests than the static models. Second, dynamic models had only superior 

forecasting performance of volatility with respect to the mean forecast error, but not so with 

respect to the precision of the forecasts. On the other hand, the dynamic models are clearly 

superior with respect to the adjusted likelihood criterion SIC.

Another important aspect of model comparison is the option-price effect of the models. 

The Markov-switching model is the one which can best mimic the smile effect of implied 

volatilities. GARCH and EGARCH models probably overestimate option prices because they 

have strong variance effects caused by the near violation of the stationarity condition. On the
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other hand, static models have only significant option-price effects when the maturity is very 

short (i.e. less than 10 days). Therefore, on this account, the Markov-switching model seems 

to be the most adequate model.

It is more difficult to give an overall ranking of all models because none of them was 

superior in all criteria of comparison. If forced to pick a favourite model, I would probably 

pick the Markov-switching model because it is compatible with the major stylized facts of the 

exchange-rate data and achieves satisfactory results in forecasting experiments and option- 

price simulations. It might be argued that the Markov-switching model is difficult to adapt to 

a richer dynamic structure (second or higher order Markov chain) and that generalizations to 

more than 2 or 3 states can lead to numerical problems. On the other hand, this study has 

shown that for exchange-rate data a parsimonious four-parameter model is adequate.

It is not difficult to adapt the approach of this study to other financial markets like stock 

markets and commodity markets since the price dynamics on these markets also exhibit the 

properties of heteroskedasticity and leptokurtosis. The comprehensive analysis of statistical 

properties in Chapter 1 has shown that it is sufficient to concentrate the modelling of 

exchange-rate data on the even moments, but for share prices it would presumably be necessary 

to extend the modelling to the odd moments. For most models of this study, this is not a 

difficult extension.

Chapter 5 indicated that the stochastic modelling of the dynamic and distributional 

properties of financial time series is important for option markets. For the pricing of options 

it is essential to have reliable estimates and forecasts of volatility. It is encouraging to see that 

the modelling of volatility is not only of academic interest.
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