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To Her Highness the Princess Brambilla

Et je  vous dis que la vie est réellement obscurité
sauf là où il y a élan 

Et tout élan est aveugle sauf là où il y savoir  
Et tout savoir est vain sauf là où il y travail 

Et tout travail est vide sauf là où il y a amour  

( . . . )  Et qu’est-ce que travailler avec amour ? 
( . . . )  C ’est mettre en toute chose que vous façonnez

un souffle de votre esprit, 
Et savoir que tous les morts  bienheureux se tiennent

auprès de vous et veillent. 
Gibrane Khalil Gibrane, Le prophète.
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A b str a c t
The present thesis deals with some consequences of the existence 

of external effects à la Romer, i.e. positive spillovers from  the cap
ital stock onto the efficiency of labour, and is mainly considering 
problems o f discrete dynamics in the absence o f any intrinsic (i.e. 
exogenous) shock. In the first chapter, using a one-sector three- 
period OLG model with borrowing constraints, it is shown that the 
standard result stating that, in the presence o f externalities, any 
simple tax/subsidy policy undertaken to get rid o f a bubble on an in
trinsically useless asset creates an lO U  which has exactly the same 
negative effects as the bubble itself, fails i f  there are agents who must 
borrow at some moment of their life. The other three chapters are 
mainly studying the problem o f endogenous fluctuations in competi
tive equilibrium models. The second chapter looks at the possibility 
o f Hopf bifurcations in the dynamical system characterizing a two- 
sector OLG economy meeting all neo-classical assumptions from  the 
point o f view of the private sector, and its ILA analogue : it demon
strates the existence of economies with stable closed orbits, derives 
some conditions on the parameters and compares the results to the 
continuous time modelization, concluding to a non robustness with 
regard to the time structure assumption. The third chapter is consid
ering endogenous fluctuations in self-sustaining growth : using the 
same framework as previously, but under another assumption on the 
externalities, we establish that even i f  production inputs substitute 
perfectly and savings increase monotonically with the interest rate, 
cycles or even chaotic trajectories of the growth rate are possible. 
We show that this requires a strong externality in the consumption 
good sector in the absence of bubbles or sunspots, but not necessarily 
in their presence. Furthermore, we prove the existence o f economies 
where, in the absence of any intrinsic uncertainty, the only possible 
equilibria involve bubbles or sunspots. The last and very short fourth  
chapter is a critical note on a recently published paper ; its main pur
pose is to show why current mathematical knowledge does not allow 
to sustain the claim of chaos in the proposed ILA framework.
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“Überzeugungen sincl gefàhrlichere 

Feinde der Wahrheit als Lügen\"  

Friedrich Nietzsche (1878), 

Menschliches, Allzumenschîiches.

Introduction
Pure economic theory, normative economics, applied economics, ideolog

ical economics : there exist many branches of economic investigation, each 

characterized by its specific goal and methodology. Some people consider the

oretical economics as completely useless, and describe them as the frivolous 

activity of slightly degenerate minds. The critiques usually put forward are 

the utmost reductionism necessarily characterizing any mathematical mod

élisation of very complex phenomena implying human activity, the fact that 

most results of theoretical economics are apparently empirically refutated and 

that it is possible to prove anything and its contrary by the adequate choice 

of the model. Furthermore, the more and more intensive use of mathem at

ics, and especially of ‘high technology’ tools of modern mathematics scares 

or irritates many people. However, even a brief and necessarily superficial 

reflection on the nature of economics clearly establishes the fundamental role 

pure theory has to play. Our ideas about the functioning of the economic

^ C o n v ic t io n s  arc M ore  D a n g e r o u s  E n n e m ie s  oF 1 rutli t h a n  Lies.



mechanisms are the result of cultural and social a prioris and of simplifica

tions, the official discourse on economics is highly ideological ; furthermore, 

the common use of language is imprecise or abusive, and the rhetorical use 

of sophisms to persuade other people of the truth of a claim is very common.

Theoretical economics constitute a critical activity in so far as their aim  

is to investigate the validity of pre-existing conceptions. The intention is 

to go beyond the appearances, to show that certain hidden mechanisms can 

account for observable facts, and to question well established convictions 

about what seems to be obvious. The methodology is hypothetico-deductive 

in the classical sense : the economist chooses a set of assumptions to build a 

model and studies the implications of his assumptions.

Economic theory seeks logical consistency and tries to highlight the role 

of assumptions. Obvious simplifications and idealizations, the existence of 

apparently ridiculous assumptions like rationality of agents, existence of a 

representative agent, perfect competition etc., lead some people to declare 

the uselessness of theoretical economics. The existence of simplifications is, 

of course, very often the result of the problem of tractability which forces 

economists to choose specific assumptions to be able to illustrate their ideas. 

But does the lack of realism imply futility ?

T h e  answer is ‘n o ’ for different reasons. F irs t  of all, the  reflection on 

m odels , even if these seem ou trageously  simplified, can develop ou r  in tu 

ition  a b o u t  the  involved m echanism s, can help us to isolate the  fu n d am e n ta l  

d e te rm in a n ts  of certain p henom ena  and  thus enhance  our ability to under-
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stand real world events ; the use of different modelizations allows to specify 

the role of assumptions and thus develops our sense of rigour and critique. 

Leaving aside the auto-justification of all search for knowledge and internal 

consistency, we can immediately underline that idealization can give precious 

information about the implications of deviation from the idealized situation ; 

furthermore, even a very simple and unrealistic model can definitively inval

idate ideas that are deep-rooted in our minds, contribute to a revolution in 

our conceptions, and have direct practical implications : an example of this 

is the introduction of the rational expectations hypothesis. In fact, a number 

of theories are developed simply in order to gainsay other theories, and this 

activity is of absolute importance not only from the point of view of pure 

science : since political decisions are often justified by arguments relying on 

economic theories in order to give them the stamp of truth, it is fundamen

tal to know on which assumptions their recommandations are based and to 

dispose of counterarguments to open the debate.

Logical consistency is of extreme importance in all social sciences, includ

ing economics, simply because, unlike in physics for instance, theory cannot 

be sanctioned by experiments. A lot of, not to say most, physicists do not 

care about mathematical rigour, use approximative reasonings and practice 

mathematical acrobatics ; in their eyes, the really important thing is com

patibility of the conclusions of their theories with the results of experiments. 

Since experiments cannot be performed in the field of economics and experi

ence can only invalidate a theory, logical rigour is a fundamental requirement.



|) orv'itL pff

like ‘we consider families, dynas ties’ etc. : the  t ru th  is simply th a t  neither of 

these two modélisations is satisfactory®.

Furtherm ore, it is not at all clear th a t  OLG models with m any periods 

cannot exhibit fluctuations : as a  m a tte r  of fact, the  a rgum ent to claim the 

impossibility relies on Aiyagari (1988), bu t its validity is easily gainsaid since 

Aiyagari considers very specific OLG models and cannot claim any general

ity. The possibility of endogenous fluctuations, even if not on a business cycle 

scale, is in itself a fundam enta l result. In our eyes, none of the  two types 

of models can be considered as ‘more ad eq u a te ’ or ‘b e t t e r ’. In view of the  

imperfections characterising current modelization, we believe th a t  the  fact 

tha t  endogenous fluctuations can occur in both  types of models constitu tes 

itself the  most im portan t  point.

Finally, let us point ou t th a t  we always consider extremely simple m od

els : in the  economies we deal with, agents are all characterised by the  same 

tastes, and there is no intrinsic uncertainty, which means th a t  we consider 

a world not subm itted  to any exogenous shock, neither on tastes nor on 

technologies. Indeed, we consider entirely determ inistic  models where the 

fundam entals are even assumed to be s ta t ionary  (time independent) . Fur

thermore, we consider one-sector models, or two-sector models with only one

^ B la n c h a r d ’s (1 9 8 5 )  c o n t in u o u s  t im e  O L G  m o d e l  w ith  uncerta in  l ife - t im e ,  w h ich  could  

appear ,  a t  first g la n ce ,  as an im p r o v em e n t ,  is no t  m ore  sa t i s fa c to ry  s in c e  the  probab i l i ty  

o f  d e a th  is in d e p en d e n t  o f  the  a g e n t ’s  age,  and th e  a g e n ts  are n o t ,  even  after  a  million  

years ,  dead for sure. It is easy  to see  th a t  th is  m odel  is form ally  o f  th e  ILA ty p e  if we 

in troduce  insurance  through  a m utu a l  fund.
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ternalities has very important implications is well known by now. From basic 

game theory, for instance, we know that the presence of positive spillovers 

implies to non optimality of Nash equilibria and that, coupled with strategic 

complementarity, it can lead to multiplicity of symmetric Nash equilibria. 

Another standard result is that in dynamic equilibrium models, externali

ties constitute one source of non optimality of perfect competition equilibria 

which can be struggled against : for instance, in the case of an externality à 

la Romer (1986), i.e. of positive external effects operating in the production 

sectors from the aggregate capital stock onto the efficiency of labour (the 

standard interpretation is that of ‘learning by doing’), then a public policy 

which aims to increase savings can lead to a Pareto improvement.

We shall consider here exclusively such externalities à la Romer. This has 

several explanations. There is, to be honest, the extreme formal tractability 

of models with this type of externality, which constitutes a non négligeable 

argument in our eyes : we are personally more interested in problems of exis

tence than in questions of generality ; our aim and pleasure is to find simple 

models which can be used to illustrate the possibility of certain phenomena, 

and perhaps to gainsay well established ideas. Genericity within a given set 

of models, or structural stability of a given modeP, are of course important.

^Let us  br iefly  recall  th e  d e f in i t io n s .  L et  A i  b e  a  s e t  o f  m o d e l s ,  and  K  t h e  s u b s e t  

o f  m o d e l s  for w h ich  a  g iv en  p r o p e r ty  h o ld s .  G e n e r ic i ty  is o f ten  d e f in e d  by t h e  fa c t  t h a t  

K .  is d e n s e  in M .  T h e  id e a  is t h a t  i f  w e  b e l ie v e  t h a t  th e  true  m o d e l  l ies in A i ,  t h e n  th e  

p r o p e r ty  will  h o ld  w ith  h igh  p r o b a b i l i ty  if  g e n e r ic i ty  h o ld s .  W e i m m e d ia t e ly  s e e  t h a t  there  

is a  c o n fu s io n  b e tw e e n  d e n s i t y  and m e a su r e  : ra t io n a l  n u m b e r s ,  for in s t a n c e ,  are  d e n s e

11



but we made the choice not to investigate these aspects. Secondly, our aim 

here is not a, for sure highly interesting, comparison of the differing effects 

of several types of externalities^, but rather the description of several impor

tant facts due to the presence of externalities ; in this perspective, it seems 

rather natural to use only one type of externality if the models we obtain 

allow interesting conclusions.

Externalities à la Romer can cause increasing returns to scale at the ag

gregate level, and thus allow to construct models where growth does take 

place in the long run ; as we know, this is not the only possibility, since a 

standard result is that a linear production function can lead to self-sustaining 

growth in the ILA framework'^ ; this also holds in multi-sector OLG models 

where a concave production function in the investment good sector must be, 

at least asymptotically, linear in capital^, but is not true in the one-sector 

OLG model where endogenous growth requires increasing returns to scale. 

Romer type externalities can give self-sustaining growth, and even balanced 

growth (i.e. with a constant growth rate), in an easy and tractable way. We 

shall see below why this is of extreme importance.

in [0 ,1 ] ,  b u t  t h e  p r o b a b i l i ty  t h a t  a  r a n d o m ly  c h o se n  n u m b e r  o f  th i s  in terva l  is r a t io n a l  is

zero .  T h e  c o rr e c t  d e f in i t io n  m u s t  th erefo re  b e  ; i f  we  can  de f ine  a  m e a s u r e  o n  A i ,  th e n

g e n e r ic i t y  m e a n s  d e n s i t y  and  s t r i c t ly  p o s i t iv e  m e a su r e  o f  t h e  s u b s e t  AC. S tr u c t u r a l  s t a b i l i t y

m e a n s  t h a t  t h e  p r o p e r ty  h o ld s  for all m o d e l s  in t h e  v ic in i ty  o f  a  g iv e n  m o d e l .

^ A n  e x e r c i s e  o f  t h i s  t y p e  has  b e e n  p er fo rm ed  by C a z z a v i l la n  (1 9 9 4 )  in h is  P h D  th e s is ,

w h ic h  d e a ls  w i t h  t h e  s t u d y  o f  d if ferent  t y p e s  o f  e x t e r n a l i t i e s  in a  c o n t in u o u s  t im e ,  tw o -

s e c to r  IL A  f r a m e w o r k .

.See J o n e s  a n d  M a n u c l l i  (1 9 9 0 ) .

^See O ’Neil  F ish e r  (1 9 9 2 ) .
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The models we shall study are all of one or the other of the two stan

dard types of dynamic models, namely Infinitely Lived Agents (ILA) models 

and Overlapping Generations (OLG) models. Let us recall here one of the 

main differences between these two types of dynamic equilibrium models. 

Under strict neo-classical assumptions on utilities and production, thus in 

the absence of any externality, and assuming perfect markets and rational 

expectations, ILA models admit a unique perfect competition equilibrium  

which is Pareto optimal, whereas OLG models exhibit indeterminacy of per

fect foresight equilibria and can, if there exist at least three sectors, admit 

perfect competition equilibria which are not Pareto optimal. This constitutes 

indeed a major difference, and finds its explanation in the incompleteness of 

markets in the OLG context (agents cannot trade with people who are not 

yet born). Purely neo-classical ILA models thus will not exhibit certain types 

of dynamics which can be easily obtained in the OLG framework, such as 

sunspot equilibria.

Sunspots are the archetype of situations with extrinsic uncertainty. The 

terminology intrinsic/extrinsic uncertainty, has been introduced to distin

guish respectively uncertainty affecting the fundamentals of the economy 

from uncertainty having absolutely no influence on them. A sunspot is de

fined as a random phenomenon without any effect on usable technologies, 

available ressources or tastes of the economic agents. According to the ob

ject] vist conception, sunspots should not matter and have no influence on

13



economic variables. Yet Azariadis (1981), Azariadis and Guesnerie (1983), 

Chiappori and Guesnerie (1987) showed that even if agents form totally un

founded expectations, these can be self-enforcing (‘self-fulfilling prophecies’). 

If everybody believes in the sunspots’ influence on prices, then the prices will 

indeed depend on the sunspot realisation. More complex situations where, 

for instance, one part of the population believes in sunspots and the other in 

moonspots, can easily be dealt with^. These illustrations of the direct action 

of representations on the economy are quite spectacular.

Cass and Shell’s (1987) conjecture, which is a sort of ‘folk theorem’ of 

neo-classical growth theory, says that sunspots require some sort of frictions 

which violate the fundamental theorem of welfare economics, imperfection 

of financial markets or externalities, for instance. The first to note that 

an ILA economy with liquidity constraints can, in a certain sense, mimic 

an OLG model and thus admit sunspot equilibria, was Woodford (1986). 

Forward stability of perfect foresight equilibrium, a sufficient condition for 

the construction of sunspot equilibria, was obtained by Kehoe, Levine and 

Romer (1990) in an ILA model of finitely many agents with externalities 

(and indeed, distortionary taxes). Spear (1991) finally established, with a 

very special type of externality^, the possibility of sunspots in the presence 

of a continuum of agents. The existence of externalities thus not only im

plies non Pareto optimality of perfect competition equilibria, but can lead to 

indeterminacy even in the ILA framework.

®See A z a r ia d is  a n d  G u e sn e r ie  (1 9 8 3 ) .

' S p i l lo v e r  o f  th e  a v e ra g e  s a v in g s  o f  all a g e n ts . . .

14



A very classical critique addressed to the OLG modélisation concerns 

the length of the periods. Indeed, the most tractable and therefore most 

commonly used OLG framework is the two-period model à la Diamond (1965) 

where young agents work, consume and save for their old age, and old agents 

consume their savings. Imagine now that we want to build a model exhibiting 

endogenous fluctuations, probably in order to give an endogenous explanation  

to at least part of real world fluctuations. Until recently, most models of 

endogenous fluctuations were OLG models, for the reasons indicated above. 

However, the most recently presented models are mainly ILA models, simply 

because the introduction of externalities or the consideration of imperfect 

competition now allow to exhibit, relatively easily, tractable models ; the 

authors proposing these models all claim that ILA models with endogenous 

fluctuations are far more exhilarating because fluctuations do not occur on 

large time scales as in the OLG context (25-30 years in the case of a two- 

period OLG model...).

W hat is the value of their argumentation ? We are inclined to say 

‘naught’, for both types of models lack realism, and none can be said better 

than the other. In the OLG modélisation, the length of the life of each agent 

is predetermined, the different phases of life are fixed and all are the same 

for everybody. In the ILA framework, the horizon of the agents is infinite®, 

a very unappealing idea even if we try to justify it by scabrous arguments

'^Ancl th i s  im p l ie s  an e x t r e m e ly  d e m a n d in g  a s s u m p t i o n  on  t h e  a g e n t s  ra t io n a l i ty ,  

w h e r e a s  in th e  O L G  c o n t e x t  th e  fo res ig h t  is l im i te d  to  a  f in ite  n u m b e r  o f  p e r io d s . . .

15



like ‘we consider families, dynasties’ etc. : the truth is simply that neither of 

these two modélisations is satisfactory^.

Furthermore, it is not at all clear that OLG models with many periods 

cannot exhibit fluctuations : as a matter of fact, the argument to claim the 

impossibility relies on Aiyagari (1988), but its validity is easily gainsaid since 

Aiyagari considers very specific OLG models and cannot claim any general

ity. The possibility of endogenous fluctuations, even if not on a business cycle 

scale, is in itself a fundamental result. In our eyes, none of the two types 

of models can be considered as ‘more adequate’ or ‘better’. In view of the 

imperfections characterising current modélisation, we believe that the fact 

that endogenous fluctuations can occur in both types of models constitutes 

itself the most important point.

Finally, let us point out that we always consider extremely simple mod

els : in the economies we deal with, agents are all characterised by the same 

tastes, and there is no intrinsic uncertainty, which means that we consider 

a world not submitted to any exogenous shock, neither on tastes nor on 

technologies. Indeed, we consider entirely deterministic models where the 

fundamentals are even assumed to be stationary (time independent). Fur

thermore, we consider one-sector models, or two-sector models with only one

^ B la n c h a r d ’s  ( 1 9 8 5 )  c o n t in u o u s  t im e  O L G  m o d e l  w ith  u n ce r ta in  l i f e - t im e ,  w h ic h  co u ld  

a p p e a r ,  a t  first g la n c e ,  as an im p r o v e m e n t ,  is n o t  m o re  s a t i s f a c t o r y  s in c e  th e  p r o b a b i l i ty  

o f  d e a t h  is in d e p e n d e n t  o f  th e  a g e n t ’s age ,  and t h e  a g e n t s  are n o t ,  e v e n  a fter  a  m i l l io n  

y e a r s ,  d ea d  for su re .  It is e a sy  to  s e e  t h a t  th is  m o d e l  is fo r m a l ly  o f  t h e  IL A  t y p e  i f  we  

i n t r o d u c e  in su r a n c e  th r o u g h  a  m u tu a l  fund.
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type of capital. These assumptions, along with thoses on the form of utili

ties and production functions, will greatly simplify the calculus and allow to 

exhibit nice and strong results. Again, this kind of simplification can inspire 

some criticism which we shall try to argue against : quite standard results 

are that heterogeneity of agents or multiplicity of types of capital are sources 

of complexity of equilibrium dynamics ; the theory of nonlinear dynamical 

systems shows that the higher the dimension of a dynamical system, the 

larger the set of possible exotic dynamics. Furthermore, imperfect compe

tition or imperfect markets^^ also constitue potential causes of endogenous 

fluctuations. To look for the most simple possible models therefore imposes 

more constraints, and does not mean to simplify basely ones task.

2 T h e  T h e s is ’ C o n te n t

Since the abstract gives a description (a very brief one, we must admit) of 

the content of each paper, we believe that, rather than giving a linear pre

sentation of the papers, it is more interesting to talk here about the two 

big themes raised in this thesis : welfare implications  (and the possibility 

of Pareto improvement through public policies) and the possibility of en

dogenous f luctuations  generated by the presence of externalities. The first 

problem finds some answers in the first and the third paper, the second one 

is dealt with in the second, third and fourth paper.

10O f  c o u r se ,  e x t e r n a l i t i e s  can  be  in te r p r e te d  a s  m a r k e t  fa i lu res . . .
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2.1 P resen ce o f E xternalities, and W elfare

The fact that perfect competition equilibria are not Pareto optimal if exter

nalities operate in the economy has been alluded to previously, and a policy 

to improve the social welfare has been exposed in the case which we are 

interested in here, namely externalities à la Romer : policies that lead to 

an increase of savings. But saying this, we implicitly assumed that we were 

considering what is traditionally called the ‘fundamental’ equilibrium of the 

economy. What is meant by that ?

Consider the following system of linear first order difference equations :

Yt = aEt{Yt+i) +  cXt (*),

where Yt is the vector of state variables, Xt  a vector of exogenous variables, 

and where a and c are constants. If the constant a is strictly less than one, 

and if lim^^+oo a^’̂ ^E{YT+t) =  0, then the simplest solution of (*) is obviously

+00

i=0

This is the ‘fundamental’ solution. It is not the only one, since we know that 

a solution of (*) is the sum of the just exhibited particular solution of (*) 

and a solution of the associated homogenous equation. Indeed, consider a 

sequence such that Di =  aE{Bt+i) .  Yt +  Bt is obviously a solution

of (*). Bt sequences are traditionally called bubbles, the inspiration for this 

denomination coming from the finance area, where the idea is that an asset 

share’s price can be decomposed into the sum of the fundamental (reflecting
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the ‘true’ value of the asset) and the bubble component (due to self-fulfilling 

beliefs). There can exist ever-expanding bubbles, bubbles which have a cer

tain probability to explode at each instant etc. The bubble component is not 

founded on the fundamental, and results from self-fulfilling prophecies.

Let us here note an important point, concerning the possibility of bub

bles, which can be interpreted as degenerate sunspots. A still common view 

is that bubbles cannot occur in deterministic sequential market economies 

with a finite number of agents (see, for instance, Tirole (1982) still invoked in 

the latest edition of Blanchard and Fisher (1989...)). The reasoning leading 

to this assertion is incorrect : Kocherlakota (1992) showed that Tirole simply 

forgot to impose a no-Ponzi game condition, condition which is required for 

the existence of any equilibrium and which can support bubbles in an ILA 

model with a finite number of agents.

Traditional economic theory implicitly considers that, if a dynamic equi

librium model with rational expectations admits an equilibrium, than there 

exists a fundamental equilibrium (and, perhaps, some odd ‘bubble’ equilib

ria). Let us immediately criticize this attitude by using one of the results of 

chapter three : there exist economies admitting no fundamental equilibrium  

but equilibria with bubbles. This is illustrated in the context of a two-sector 

OLG model with production externalities ; a bubble in the OLG context can 

be interpreted as Hat money, for instance. The result is shown to be due the 

presence of a. non convexity at the aggregate level in the investment good
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s e c to r ^ T h e  standard terminology, stemming from the nearly exclusive fo

cus on linear or linearised models, can thus be misleading.

An interesting problem is to study and compare the welfare effect of 

bubbles in strictly neo-classical models and in models with externalities. The 

seminal papers on bubbles on intrinsically useless assets in the neo-classical 

OLG framework have been written by Jean Tirole (1982), (1985) and (1990). 

It appears that in the neo-classical world, bubbles can occur only if the 

economy is inefficient (there is over-accumulation of capital) and their effect 

on the welfare is positive (the unique stationary bubble even completely 

eliminates the inefficiency). Thus, there is no reason for the government to 

intervene.

On the other hand, Grossman and Yanagawa (1992) have shown that 

in the context of a one-sector OLG model meeting all the neo-classical as

sumptions from the point of view of the private sector, but with externalities 

à la Romer in the production sector, bubbles can appear (remember that 

here there is always itnderaccumulation of capital), and they have always a 

negative effect on the welfare since they divert capital from productive in

vestment. Thus, in this situation, there exists a reason for the government 

to attem pt to get rid of the bubble. Unfortunately, as say Grossman and 

Yanagawa, any simple tax/subsidy policy intended to reduce the number of 

shares of the useless asset in the market necessarily creates an lOU which

r e la ted  resu lt ,  in a n o t h e r  c o n t e x t ,  c o n c e r n in g  t h e  e x i s t e n c e  o f  e c o n o m ie s  w i th  o n ly  

s u n s p o t  e q u i l ib r ia  h a s  b e e n  e s t a b l i s h e d  by P ie t r a  (1 9 9 0 ) .
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has exactly the same effects as the bubble. The problem is that the authors 

conclude on a very specific model, namely a model in which no agent ever 

has to borrow.

Our first chapter shows that there can exist the possibility of simple 

tax/subsidy schemes that progressively eliminate all the shares of the bubble 

asset and improve the welfare of all agents : for this, we use a one-sector 

three-period OLG model with production externalities and borrowing con

straints, where young agents must borrow on their future income. Thus, in 

this type of world where the appearence of a bubble leads to a loss in wel

fare, the situation is not necessarily as hopeless as we would previously have 

thought : Pareto improvements through government policies can be achiev

able under some conditions.

Let us note here a strange consequence of the odd result of chapter three 

cited previously : if there exist economies with externalities where no ‘funda

m ental’ equilibrium exists, but equilibria with bubbles are possible, can we 

say that the existence of bubbles means a loss in welfare ? It would certainly 

be interesting, in such a situation, to compare the welfare loss due to the 

different possible bubbles.

Let us add some further general remarks : the research on speculation 

and bubbles has shown that prices do not necessarily reflect market funda

mentals, multiple equilibria, and therefore indeterminacy, can be observed.
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Speculation has been shown not to be necessarily stabilising^^, and cannot 

anymore be viewed as the force which brings back the price to its fundamental 

level. The following conception :

“...People who argue that speculation is generally destabiliz

ing seldom realise that this is largely equivalent to saying that 

speculators lose money, since speculation can be destabilising in 

general only if speculators on the average sell when the currency 

is low in price and buy when it is high...”

Milton Friedman (1953), Essays in Posit ive Economics

is thus invalidated. Speculative bubbles, on the other hand, are no longer 

viewed as necessarily the effects of irrationality. An important result is also 

that government intervention might lead to a Pareto improvement compared 

to the traditional laisser-faire attitude.

In the financial and monetary spheres, price formation does not reflect 

exclusively a logic of rarity, but implies dynamics of self-validation of antici

pations which are not necessarily linked to the fundamentals. To understand 

these dynamics of formation of expectations appears therefore to constitute 

a fundamental problem. Unfortunately, there exist very few papers which 

try to explain the emergence of financial bubbles, and their explosion^^, but 

the topic seems to have become more ‘en vogue’ most recently.

i^ See  H a r t  a n d  K r e p s ( 1 9 8 6 ) ,  de  L o n g  e t  alii  (1 9 8 7 ) .  

i^ A n  e a r ly  e x c e p t i o n  is H arr ison  an d  K re p s  (1 9 7 8 ) . . .

22



2.2 E ndogenous F lu ctuation s in th e  P resen ce  o f  E xter

nalities

As we indicated previously, this problem constitutes the larger part of our 

work, and three out of our four papers deal with it. Surveys of the m od

ern literature on endogenous fluctuations can be found in chapter two and 

three. We prefer to expose here the reasons of the renewal of interest in an 

area which becomes more and more fashionable if we judge by the number 

of publications on this topic in the major economic journals.

The modern literature on endogenous fluctuations tries to show that opti

mising behaviour, rational expectations and stationarity of the fundamentals 

of the economy, like tastes, technologies, institutional setup etc., do not rule 

out persistent, non explosive fluctuations. This is, of course, at the opposite 

of the classical view of the economy either converging to a nice steady state, 

or diverging on an ‘explosive’ path, in the absence of shocks. To practice 

research in the area of endogenous fluctuations does not, of course, mean to 

negate the effects of exogenous shocks on the economic path. Some inter

pret it as an attem pt to show that fluctuations can find, at least partially, 

endogenous explanations. Woodford (1990) argues that the true point of 

the endogenous cycle literature is rather the suggestion that the determi- 

nacy theses of the orthodox business cycle theory might be too restrictive. 

This is indeed the probably fundamental point, since the knowledge of the 

possible forms of equilibrium paths in the limiting case of absence of any
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intrinsic uncertainty does not necessarily give any information on the be

haviour of the economy in the case of presence of exogenous shocks. Let 

us note however that certain results have a direct implication for a theory 

of purely exogenous fluctuations, as is stressed in Guesnerie and Woodford 

(1994). Unfortunately, the mathematical difficulties encountered in nonlinear 

dynamic models do not allow, at this stage, to deal with nonlinear economies 

subject to extraneous uncertainty. Future developments in the concerned 

mathematical fields will hopefully enable economists to acquire one day an 

understanding of the properties of this kind of models.

The idea that internal mechanisms could be responsible for the observed 

variations in prices, employment, output was studied by von Hayek (1933), 

Shumpeter (1939), for instance, and endogenous cycles were obtained in Key

nesian macroeconomic models^^ by Allais (1956), Goodwin (1951), Harrod 

(1936), Hicks (1950), Kaldor (1940) and many others. Nonlinearities and 

time lags constituted the source of persistent economic fluctuations. Many 

of these early models were brilliant in conception, their authors relying on 

an intuitive understanding of the problem at hand to build them. However, 

the problematic features of theses models were manifold : endogenous cy

cle models are essentially nonlinear, and this implied technical difficulties 

given the mathematical knowledge in the area of dynamical systems several 

decades ago (some very rich models could not be conveniently exploited), and

t h r o u g h  th e  in te r a c t io n  o f  th e  c o n s u m p t io n  m u l t ip l ie r  and  se v e ra l  v e r s io n s  o f  th e  

i n v e s t m e n t  a c c e le r a to r . . .
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the type of dynamics which could then be described, namely "periodic cycles, 

were easily empirically refutated. Optimizing behaviour was not incorporated 

in these models, and stability results obtained for many simple equilibrium  

models with explicit optimizing behaviour, like the Turnpike Theorems for 

ILA models, could easily lead to think that endogenous cycles were incom

patible with optimization. Furthermore, econometric models were estimated  

that produced business cycle type data when submitted to repeated exoge

nous stochastic shocks, while converging to a steady state in the absence 

of shocks from the outside^^. This type of considerations explains why the 

comforting vision of a self-stabilising market mechanism became so popular, 

leading to the overwhelming success of the so-called Slutsky-Frish-Tinbergen 

methodology.

The empirical arguments against the endogenous fluctuations theory nowa

days appear to have lost of their strength : to-day, we know that an entirely 

deterministic system can generate erratic trajectories, qualified as chaotic, 

with autocorrelation functions and spectra which mimic those of a ‘stable’ 

linear stochastic modeP®. Furthermore, Blatt (1978) established that the lin

ear autoregression fit to the data generated by the Ilicks cycle model leads to 

conclude to a stable second order autoregressive process for output, the type 

of process which is obtained from autoregressions of actual GNP data. To 

distinguish stochastic fluctuations from data generated by a chaotic system,

^^See Adel man and A del man (1959).  

^*^Sakai and T o k n m a n i (1980).
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nonparametric tests for nonlinearity and instability are required ; some have 

been developed by Eckmann and Ruelle (1985) for the natural sciences, es

pecially physics ; Brock(1986), Brock and Sayers (1988), Brock and Dechert 

(1987), Scheinkman and LeBaron (1986), (1987) and many other papers re

fine and improve these tests. Unfortunately, it seems that results cannot be 

obtained if we do not have quite large samples at our disposal, which means 

that there is little hope to come to a conclusion by this way in the field of 

economics.

Endogenous cycles in OLG models were obtained by Gale in 1973, but the 

very first general equilibrium models establishing the possibility of chaotic 

economic dynamics were Benhabib and Day (1982) and Grandmont (1985). 

As we noted previously, the indeterminacy of rational expectations equilibria 

in the OLG framework allowed to find rather easily different types of mod

els exhibiting endogenous fluctuations : pure laisser-faire economies without 

or with production and fluctuations in fundamental or in sunspot equilibria, 

economies with government intervention^^. But economist had to realise that 

unicity of the perfect foresight competitive equilibrium in the neo-classical 

ILA framework and existence of turnpike theorems for some classes of models 

do not imply that perpétuais oscillations are excluded. This was shown by 

Boldrin and Montrucchio (1986) ; unfortunately, their constructive proof im

plies very high discount rates, and Sorger (1991) has established that purely 

neo-classical (thus strictly concave) ILA models exhibiting chaotic dynamics

’^ Farm er ( 1 9 8 6 ) .
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of logistic, tent or Henon map type as optimal equilibrium path necessarily 

imply very high discount rates (respectively 110, 100 and 80 %).

However, Sorger’s results concern very specific dynamics and the assump

tion of small discounting does not rule out endogenous fluctuations in general 

(see Benhabib and Rustichini (1989)). Nonetheless, a general characteristic of 

neo-classical OLG or ILA models giving endogenous fluctuations is that some 

non-standard hypothesis concerning utilities (for instance negative interest 

rate elasticity of saving (lES) in Grandmont-type models, very high rate of 

im patience...) or production (Leontieff production function in at least one 

sector...) always exists. One aim of research is therefore to find models with  

more acceptable assumptions. Furthermore, all known neo-classical models 

with endogenous fluctuations are models whithout ‘real’, ongoing growth, 

and describe only closed orbits of the capital stock. It is thus important to 

build models of self-sustaining growth with endogenous fluctuations, and a 

natural way to achieve this seems to be the use of externalities.

The introduction of externalities or the consideration of imperfect, mo

nopolistic competition constitute the two principal recent attempts to obtain  

richer and nicer models. For instance, we know that neo-classical ILA models 

admit a, unique perfect foresight equilibrium ; the introduction of external

ities can imply indeterminacy even in this framework, as has been shown 

by Howitt and McAfee (1988), Benhabib and Farmer (1991), Spear (1991) 

or Boldrin and Rustichini (1992, 1994). The same can occur when we intro-
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duce monopolistic competition^®. The results obtained in the ILA framework 

with the assumption of externalities (or of monopolistic competition) differ 

less from those obtained in the analogous OLG framework. Research in the 

area of equilibrium dynamics has established the possibility of multiple equi

libria, of cycles generated by flip bifurcations, closed orbits around a steady 

state generated by Hopf bifurcations and completely aperiodic, chaotic tra

jectories under laisser-faire in the fundamental equilibrium and, furthermore, 

of sunspot equilibria, in the ILA as well as in the OLG framework.

Let us briefly comment here our own findings. Chapter two is mainly 

interested in the consequence of the time structure choice, and studies the 

possibility of Hopf bifurcations in a discrete time two-sector OLG model, 

and its ILA analogue, in order to compare the results to those obtained for 

the continuous time ILA model by Cazzavillan (1992). The interesting re

sults are that the dynamics are of exactly the same type for the OLG and 

the ILA model under the assumption of a high coefficient of intertemporal 

substitution, and that the discrete time assumption leads to less demanding 

conditions on the economies parameters than the continuous time hypothe

sis. Chapter three gives the most interesting results, because it deals with 

endogenous fluctuations in the context of self-sustaining growth. In this 

chapter, using the same OLG model as in the preceding chapter, but now 

under the necessary assumption on the externality operating in the invest

ment good sector for the possibility of balanced growth, we establish the

^^See B e n h a b i b  and  Peril  ( 1 9 9 d)  or Gal i  ( 1 99 d) .
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possibility of flip-cycles^^ and of chaotic trajectories of the growth rate. This 

is a nice result because it allows to link the ideas of self-sustaining growth 

and endogenous fluctuations. Two preceding papers tried to do this, but 

both failed : Cazzavillan (1993) considered a discrete time one-sector ILA 

model with externalities onto the agents’ utilities and onto production of a 

flow of public services financed through a lump sum tax ; unfortunately, his 

results require an assumption he uses but which is, at second glance, com

pletely unacceptable : in his model, production requires public services as an 

input, but this input is financed through the current production, and logic 

would ask for a lag (public services which enter production as an externality 

are those financed through the taxes on previous period output), the intro

duction of which annihilates all the nice results. Boldrin and Rustichini^° 

(1994) propose a two-sector ILA model with an externality à la Romer in the 

consumption good sector and a linear production function in the investment 

good sector. For this model, using results exposed in a paper by Boldrin and 

Persico (1993, 1994), they claim the possibility of endogenous growth with 

a chaotic growth rate. Unfortunately, Boldrin and Persico’s paper contains 

some important errors and establishes the possibility of observable chaos in 

fact only in the case of complete depreciation of capital in each period, an

^^C ycies g e n e r a t e d  th r o u g h  flip b i fu r c a t io n s  are p e r io d ic ,  w h ic h  is n o t  n e c e s sa r i ly  th e

c a se  for t h e  c lo s e d  o r b i t s  g e n e r a te d  th r o u g h  H o p f  b i f u r c a t io n s  in c h a p t e r  tw o .  F l ip -c y c le s

are n o n e t h e l e s s  o f  in te re s t  for a p p l ie d  e c o n o m ic s  i f  th e ir  p e r io d  is h ig h ,  s in c e  t h e y  w il l

a p p e a r  a p e r io d ic  over  r e la t iv e ly  s h o r t  t im e  in terv a ls .

^ °A n  o ld  v ers io n  o f  th e ir  p a p er  c ir cu la te d  s in c e  1992  a n d  c o n c e r n e d  in d e t e r m in a c y  o f

eq u i l ib r ia ,  b u t  th e  new  1994 vers ion c la im s  th e  p o s s ib i l i ty  o f  ch a o s .
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assumption which is unacceptable since the periods are supposed to be short 

in the ILA framework. To say it shortly, Boldrin and Persico completely 

forgot that the technique of Lagrange multipliers was not invented to annoy 

people ; they have a fundamental role to play in all optimisation problems 

where some constraints are binding from time to time, which is the case in the 

problem they consider. The critique of the two mentioned papers constitutes 

chapter four.

Let us finally emphasize a nice result obtained in chapter three : the 

possibility of Hopf bifurcations generated by bubbles, positive or negative, in 

the two-sector OLG framework with utilities and production function m eet

ing all neo-classical assumptions from the point of view of the private sector. 

This result is important because Farmer (1986) proved that in one-sector 

OLG economies, only negative bubbles (which correspond to private debt 

toward the government) can generate Hopf bifurcations, and Reichlin (1986) 

exhibited a two-sector OLG model where positive bubbles could cause this 

type of bifurcation only if the lES was strictly negative.

A general remark on all the models obtained until now, including those 

presented in this thesis, is that the introduction of externalities allows to 

build models exhibiting endogenous fluctuations with very standard utilities 

(CRRA, for instance) or production functions (Cobb-Douglas, augmented 

with externalities), with more acceptable rates of time preference etc. ; never

theless, they nearly all require very important, certainly unrealistic, external 

effects. The only exception is exposed in chapter three, where it is shown
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that endogenous fluctuations require less strong externalities, in some cases 

even none at all, in the consumption good sector if bubbles are present in 

the economy. However, the disappointment about the often very unappeal

ing requirements for endogenous fluctuations in the fundamental equilibria 

remains.

Let us finally talk about the really problematic point of the theory : if 

perfect competition equilibria are indeterminate, then there exists obviously 

a problem of coordination. Agents do not have a firm basis on which to 

form their expectations, since the knowledge of the econom y’s fundamentals 

is insufficient (note that the assumption of perfect information about the 

fundamentals, even if common in the major part of economic theory, already 

makes us smile). Multiplicity of expectations-driven equilibria then poses the 

problem of knowledge of the others anticipations. This raises the question of 

the ‘implementation’ of a rational expectations equilibrium, i.e. of the pro

cess according to which the values of variables predicted by the equilibrium  

are actually reached. As a matter of fact, the problem of implementation is 

old (think about the tâtonnement process to justify the equilibrium in the 

standard general equilibrium framework), but the consideration of dynamic 

models adds the problem of formation of expectations. The claim that

“...the rational expectations hypothesis is nothing else than 

the extension of the rationality hypothesis to expectations...”

.J. Muth (1961), “Rational Expectations and the Theory of 

Price Movements” , Economr.trica 39, pp 315-333
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is clearly erroneous, and we must build a theory explaining how the rational 

expectations equilibrium is reached (and which r.e.e, is reached if there is 

multiplicity ; learning convergence can then be viewed as a selection proce

dure or a refinement device). Therefore, learning must be introduced, and 

learning processes must be modelized, specifying which information about 

current and past states of the economy is used by each agent and how fore

casts are made. The implied complexity of the description of the economy’s 

dynamics is easy to imagine, and explains the difficulties encountered in this 

area of research. We shall not give here a survey of the literature on learning, 

but restrain ourselves to the allusion to one rather spectacular result con

cerning stability under learning in the classical Grandmont (1985) model : 

Grandmont and Laroque^^ (1986) established that it may happen that the 

only equilibrium cycle that is stable under learning is unstable in the simple 

mathematical sense. This shows that we cannot conclude too quickly, for 

a given equilibrium path, from stability or instability, in the mathematical 

sense, to its economic relevance or irrelevance.

3 S o m e  F e a tu r e s  a n d  I m p lic a t io n s  o f  ^C haos’

The object of this section is to define the notion of ‘chaos’ and to expose 

some of the implications of the existence of deterministic dynamics gener

ating erratic trajectories. The discovery of deterministic dynamics yielding 

trajectories that mimic the realisations of stochastic processes has raised

21 S ee  a l so  F u c h s  (1 9 7 9 ) .

32



a passionate and violent debate among scientists and philosophers on the 

problem of determinism. We shall talk about this ‘quarrel’, and insist on the 

confusion of concepts and errors of reasoning which sometimes explain the 

divergences.

3.1 D escrip tion  o f th e Idea o f ‘C haos’

Let us note, first of all, that some very distinguished mathematicians like 

René Thom do not accept the now common terminology, and prefer to speak 

about ‘sensitivity on initial conditions’ rather than ‘chaotic behaviour’. And 

this indeed was the original denomination used by those who built the first 

models exhibiting a property which we nowadays call ‘chaos’. The denomina

tion ‘chaos’ was in fact introduced by Li and Yorke (1975) and has led to many 

misuses and misinterpretations of the mathematical ideas. This is not re

ally astonishing given the traditional analogy cosmos/chaos, order/disorder. 

Chaos is confusion, absence of structure :

. . .Ante mare et terras et, quod tegit omnia, caelum 

Vnus erat toto naturae uultus in orbe,

Quem dixere chaos, rudis indigestaque moles 

Nec quicquam nisi pondus iners congestaque eodem 

Non bene iunctarum discordia semina rerum.

Nullus adhuc mundo praebebat lumina Titan,

Nec noua crescendo reparabat cornua Phoebe,

Nec circum.fuso pen deb at in acre tel lus
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Ponderibus librata suis, nec bracchia longo 

Margine terrarum porrexerat Amphitrite.

Vtque erat et tellus illic et pontus et aer,

Sic erat instabilis tellus, innabilis unda,

Lucis egens aer : nuUi sua forma manebat 

Obstabatque aliis aliud, quia corpore in uno 

Frigida pugnabant calidis, umentia siccis,

Mollia cum duris, sine pondéré habentia pondus...

P. Ovidii Nasonis, Metamorphoseon,  Liber Primus.

Secondly, and this evolution seems significant of the great influence of the 

so-called ‘school of com plexity’ (Nicolis, Prigogine, Stengers and many oth

ers), the terminology introduced by the american school in the seventies was 

‘deterministic chaos’, but the qualificative ‘deterministic’ is usually omitted  

nowadays. Out of sheer laziness ? In general, certainly, and we ourselves 

have to plead guilty ; but it is important to remain conscious of the danger 

of semantic glide, and we leave it to the reader to judge the innocence of 

some authors fond of ‘complexity’.

We shall give now an intuitive definition of ‘chaos’ in its most common 

acceptance^L

^^There  e x i s t  tw o  o th e r  c o n c e p t s  o f  ch a o s ,  n a m e ly  t o p o l o g i c a l  a n d  e r g o d i c  c h a o s .  A ll  

th e  fo r m a l  d e f in i t io n s  can be  fo u n d  in c h a p te r  four. W e  c o n s id e r  here  w h a t  is s o m e t i m e s  

q u a l i f ied  as  ‘t u r b u le n t ’ c h a o s ,  a n d  is th e  m o s t  c o m m o n l y  c o n s id e r e d  t y p e  o f  c h a o s .
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We consider, for simplicity, discrete time models but the definitions are 

analogous for the continuous time case where we deal with differential equa

tions instead of difference equations. The set of states of a system is rep

resented in a space C called phase space. The evolution of a deterministic 

system  is defined by a map $  : C ^  C such that, if Xt  is the state at time 

/, then =  $(% (). Suppose that there exists an 0-invariant subset K  of 

C. Then the map 0  is said to be chaotic on /C if there exists sensitivity on 

initial conditions, if the map admits a dense orbit^^ and if periodic points 

are dense in /C. Sensitivity on initial conditions means that, for all initial 

conditions, any arbitrarily small perturbation leads to an orbit that diverges 

from the initial one.

The first example of sensitivity on initial conditions can be found in a pa

per written by the french mathematician Jacques Hadamard and intitled Les 

Surfaces à Courbures Opposées et leur Lignes Geodésiques (1898), where 

Hadamard shows that if we interpret the geodesics of surfaces with negative 

curvature as trajectories of points moving on these surfaces, then any per

turbation of the initial direction suffices to lead to a complete change in the 

form of the trajectory.

To say that the extreme importance of this finding was not generally 

reckognised until some decades ago constitutes a euphenism. However, some 

few people became aware earlier of the bearing of the discovery and, for in-

m o r e  g e n e ra l  d e f in i t io n  a sk s  for ‘to p o lo g ic a l  t r a n s i t i v i t y ’, w h ic h  is a  c o n s e q u e n c e  o f  

th e  e x i s t e n c e  o f  a  d e n s e  o rb it .
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stance, as soon as 1906, Duhem^'* insisted on the irreducible character of 

the distinction between mathematical determinism and physical prediction. 

Hadamard’s example remained for a long time the only tractable example of 

a model with sensitivity on initial conditions ; furthermore no link to prob

lems arising in the natural sciences was apparent, which explains why so few 

scientists took notice of it or, if they did, considered it at best as a mathe

matical curiosum.

The interest started to increase when the american meteorologist E.N. 

Lorenz (1963) showed, by using numerical integration procedures on com

puters, that a standard three dimensional system of differential equations 

describing the convection of a gas or a liquid placed between two horizontal 

isotherm plates and submitted to a vertical temperature gradient could ex

hibit sensitivity on initial conditions. Since then, and with the help of the 

mathematical theory of nonlinear differential systems^^, quite a lot of dynam

ics encountered in the areas of physics, astronomy, meteorology, chemistry, 

biology, economics have been shown to be exhibit this property.

P ie r r e  D u h e m  ( 1 9 0 6 ) ,  “E x e m p le  de  D e d u c t io n  M a t h é m a t i q u e  à  t o u t  j a m a i s  in u t i l i s 

a b le ” in  L a  T h é o r i e  P h y s i q x i e .  S o n  O b j e i  e i  s a  S t r u c i u r e .

^^The m o d e r n  t h e o r y  w a s  d e v e lo p e d ,  e s s e n t ia l ly  on th e  b a s is  o f  t h e  work o f  P o in c a r e ,

by A n d r o n o v ,  A n o s o v ,  A r n o ld ,  ITopf, K o lm o g o r o v ,  M o se r ,  SinaY, S m a l e  and  m a n y  o t h e r s .  

T h e  h i s t o r y  o f  im p r o v e m e n t  in th i s  field is a b s o lu t e ly  fa sc in a t in g .
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The following constitutes probably the simplest example^® of determin

istic chaotic dynamics : consider a circle of center O, and let A be a given 

point on the circle ; any point M on the circle can be characterised by the 

angle X  =  A O M .  We take 27t as unit. We then define the ‘angle-doubling’ 

dynamics by :

Xt+i  =  2Xt  mod (1).

This seems really trivial, but we shall see that the dynamics are complex. 

Any perturbation of the initial condition is doubled after one period. To 

be able to make an even gross estimation, say with a precision of 0.5, after 

ten iterations, we must have a precision on the initial condition of 1/1000. 

After fifty iterations, we would need a precision of 10"^®, which is practically 

excluded by any physical experiment. The system exhibits sensitivity on 

initial conditions.

Consider now the dyadic development of an initial condition%o : it is 

given by the sequence ( a i ,«2, 0 3 ,..., «n, where

+ 0 0

2'

a, =  0 or 1.

i=0

The action of the angle-doubling map is then simple to describe : 

( G 1 ,  G 2 ,  G 3 ,  • • • ,  . . . . )  I ^  ^ G 2 ,  G 3 ,  ,  ( ^ f i i  • • • • )

"^See D e v a n e y  ( 1 9 8 7 ) .  T h e  o th e r  .standard e x a m p l e ,  t h e  lo g is t ic  m a p  d e f in e d  o n  [0 ,1 ]  

by — A"t), is s im p ly  l inear ly  t o p o lo g ic a l ly  c o n j u g a t e  to  th e  here  p r e se n te d

m a p .
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It is easy to see that the set of initial conditions having a dense orbit is of 

full measure. Not all do have a dense orbit : a rational X q has a periodic (if 

its denominator is odd) or a pre-periodic (if it is even) orbit, some irrational 

initial conditions have an orbit which is dense in a Cantor set^?. Thus, the 

dynamics are chaotic in the sense defined previously.

If we introduce a very small noise :

Xt+i =  2Xi  T tt mod (1),

where Ct is chosen at random in the interval [— +1 0 “ ^̂ ], then the noise is 

unmeasurable, but the system has become intrinsically ‘non-deterministic^®’ 

in the sense of stochastic, uncertainty increasing in each period and filling 

the whole space after fifty iterations.

The ‘Pursuit’-lemma states then the following : to any trajectory (X^^)tgjv 

of the model with noise corresponds an initial condition %o such that its tra

jectory (X<)<ç/v in the deterministic dynamics verifies \X^ — Xt\  <  10“^̂ . 

This has important implications. First of all, if we cannot detect errors of 

the order of 10“^̂ , then the observation of trajectories does not allow to dif

ferentiate between the deterministic and the stochastic model. For each type 

of model, forecasts are excluded, in the stochastic case this is a tautology, 

and in the deterministic case it is due to the impossibility to obtain measures

“^A d e f in i t io n  o f  th is  n o t io n  can be  fo u n d  in c h a p te r  four.  

“* W e  .shall c o m e  back la ter  to  th is  p o in t  o f  term in o lo g y .
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with the necessary precision. Secondly, computer simulations can be used in 

the field of chaotic dynamical systems. At first glance, this seems quite amaz

ing since one could be led to think that the existence of sensitivity on initial 

conditions necessarily excludes simulations which always imply truncation of 

intermediate results at each iteration. But the Pursuit lemma guarantees 

that any orbit calculated by a computer is a proxy of a true orbit (of course, 

the value of the initial condition of the true orbit is, and will always remain, 

unaccessible).

3.2 Im plications for Econom ic T heory

Linear deterministic dynamics lead to the following types of equilibria : point 

equilibria, which are either completely stable (well), mixed (saddle-point) or 

completely unstable (source), or periodic cycles. Complex bounded orbits are 

excluded ; furthermore, the periodic solutions are structurally unstable : any 

arbitrary perturbation of the parameters of the model leads to completely 

different trajectories.

Nonlinear deterministic dynamics, on the other hand, can admit bounded, 

periodic or aperiodic, self-sustaining oscillations as solutions and can ex

hibit structural stability. The techniques used to detect the possibility of 

such trajectories are local bifurcation theory (flip, Hopf...), application of 

the Poincare-Hopf Index Theorem or global bifurcation analysis. We have 

seen that nonlinearity of the characteristic dynamical system can lead to the 

existence of highly complex, ‘chaotic’ trajectories. The spectacular feature 

of chaotic dynamics is their sensitivity on initial conditions which has many
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implications, such as the impossibility to predict the future if the initial con

dition is not known with absolute precision, the impossibility to distinguish, 

by the use of standard linear econometrics, the data they generate from those 

given by the realisations of stochastic processes.

Nevertheless, as we briefly noted previously, it is possible to determine 

whether a given set of measures is generated by a chaotic, regular or noise- 

contaminated dynamical system. Beyond manifest irregularities, chaotic dy

namics show hidden regularities. Techniques using the dimension of the at

tractor, the Kolmogorov-Sinaï entropy (Grassberger-Procaccia algorithm), or 

the Lyapounov exponents which measure the separation of trajectories with 

very close initial conditions, have been developed. Unfortunately, the con

vergence of the implied algorithms is often very slow, the techniques require 

quite large data sets and a careful attention from part of the researchers. 

This has sometimes led to wrong estimations and erroneous claims of chaos.

It is clear that in the held of natural sciences like physics, it is often easy 

to dispose of very large data sets that can be used to determine the chaotic 

or non chaotic nature of the dynamics of a given system. Unfortunately, 

this is not the true in economics where, except in the very special case of 

hnance, large data sets are not available to the researcher. We shall not give 

here any review of the literature on tests of the chaos hypotheses, and cite 

only a few papers to give a flair of the results and the difficulties encoun

tered. The search for evidence of low dimensional deterministic chaos has 

provided arguments in favour of nonlinearity in employment, unemployment,
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industrial production etc. (Brock and Sayers (1988)). An interesting point 

is that Neftçi and McNevin (1986) found some evidence of nonlinearity in 

disaggregated production series, whereas the aggregate real GNP appeared 

linear under the tests applied by Brock and Sayers. There is no evidence 

of the presence of a chaotic attractor, but the tests may reject the null hy

potheses of deterministic chaos too often when it is true. Ramsey, Sayers and 

Rothman (1990) insist on the fact that the evidence is based on data sets 

which are minuscule compared to those used in natural sciences. Sheinkman 

and LeBaron (1989) studied the question of stock returns and established  

the inadequacy of the ‘random walk’ theory^^ that states that returns are 

independently and identically distributed over time, but they underlined the 

existence of a lot of technical difficulties that had made their investigations 

difficult and sometimes untractable. Even to-day, although a lot of progress 

has been made, strong conclusions cannot apparently be obtained in the area 

of economics, and chaos can neither be rejected nor claimed for.

In one of the preceding sections, we alluded to the fact that the higher 

the dimension of a dynamical system , the larger the possibility of complex 

dynamics. This result should make us think about one of the major ideas of 

‘economic wisdom’, namely the idea that freedom of trade and suppression of 

economic barriers mean an improvement for everybody, simply because what 

is recommended is the creation of a complex economic system  obtained by 

coupling several local economies. And this, as we have seen, bears the risk

G  ranger  and  M o r g e n s te r n  (196.3),  Fa m a  (1 9 7 0 ) .
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of leading to a complicated, chaotic temporal evolution instead of a pleasant 

equilibrium.

“I shall say it in a more brutal manner. Economic text

books discuss in detail the equilibrium situations between eco

nomic agents that are capable of predicting exactly the future.

These treatises can give the impression that the role of legislators 

and responsible officials is to find and implement an equilibrium  

which is especially propitious to the community. The examples 

of chaos in physics teach us however that certain dynamic situa

tions, instead of leading to an equilibrium, give rise to a chaotic 

and unpredictible temporal evolution. Legislators and responsible 

officials are thus confronted to the possibility that their decisions, 

instead of leading to a better equilibrium, will in fact generate 

violent and unpredictible oscillations, with perhaps desastruous 

effects.”

David Ruelle (1985), Hasard et Chaos.

There is certainly some truth in that statement, but we must be very careful 

in our deductions. Existence of endogenous fluctuations does not neces

sarily imply non optimality in Pareto’s sense of the equilibrium path. Of 

course, the origin of the possibility of endogenous cycles lies quite often in 

the existence of a market failure (externalities, imperfect financial markets 

etc.) which implies non Pareto optimality of perfect competition equilib

ria. Endogenous fluctuations are thus very often encountered in situations of
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suboptimality. But there exist also many examples of models with Pareto op

timal endogenous cycles (see, for instance, Boldrin and Montrucchio (1986)). 

Furthermore, it is not clear at all that the creation of a large economy with 

endogenous fluctuations implies a loss in welfare compared to a situation with 

small, local economies in stationary equilibrium. We are thus in a situation  

where we do not know anything a priori ; Ruelle’s statement has therefore 

its importance as long as it has not been refutated, and we should be careful 

in our ‘deductions’ and claims about the effects of free trade. Unfortunately, 

the debate about freedom of trade is highly passionate and ideological ; con

scious of their utter ignorance, economists should perhaps adopt an attitude  

of modesty and humility.

3.3 T h e End o f ‘D eterm in ism ’?

. . .Noi s iam venuti al loco o v ’i t ’ho detto 

Che tu vedrai le genii dolorose 

C ’hanno perduto il hen de Vintelletto...

Dante Alleghieri, Inferno.

Chaos theory has generated a tremendous excitement and is to-day a 

fashionable topic : one can find messiahs of chaos that assert that “it is 

everywhere” , in the smoke of a cigar, the milk poured in our five o ’clock 

tea, the functioning of our brain, the evolution of our universe, and that all 

this signifies the metamorphosis of science, if not its end. There even exist 

‘chaos-clubs’ where mystics, under the cover of (pseudo-) science, celebrate
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the new religion. An approxinriated truth is often mingled with completely 

invented facts, chaos is proclaimed to exist in fields where, as a matter of 

fact, nobody has yet undertaken any serious research, the notion of chaos 

is often assimilated to hazard, theories are applied in contexts where their 

assumptions are not fulfilled, and a lot of confusion prevails.

Several years ago, meteorologists established that the atmospheric streams 

admit an attractor. From this, some simple-minded creatures immediately 

deduced the now (unbelievably) famous ‘butterfly effect’ : since the atm o

sphere’s dynamics are sensitive on initial conditions, the fluttering of the 

wings of a butterfly can completely change the weather, not of to-morrow, 

but in the future. Why did these people forget that the poor butterfly is 

a part of the whole system ? The consequence of this simple fact is that 

the problem to consider is not sensitivity on initial conditions, but rather 

structural stability, and to reassure the reader, nothing has yet indicated any 

instability. We can thus rather confindently continue and swat the mosquitos 

which sting our tender skin and suck our precious blood.

The pseudo-scientific delirium even led some people to apply the second 

principle of thermodynamics to the whole universe and predict the ineluctable 

thermic death of our world. All the blabla and nonsense which can be heard 

makes us think about the rise of irrationality which is apparently charac

teristic of human behaviour at the end of each millenary (or... century ?). 

The role of the médias, always fond of catastrophic news that make people 

quiver with horror and delight, is obvious but some men of science, perhaps 

themselves subject to mystic attacks or simply consumed by the desire of
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fame, adopted a disgraceful attitude and presented, without the care and 

rigour required by scientifc honesty, ‘spectacular’ results on chaos theory in 

‘vulgarising’ books, articles, colloquia and seminars throughout the world.

More seriously, the development of chaos theory and the empirical evi

dence of the existence of chaotic dynamics in the natural sciences has led 

to a debate on determinism. Some proclaim its death, others its survival, 

and others cannot understand why all this has led to a debate on determin

ism. Sometimes, there seems to exist a lack of precision which leads easily 

to confusions, and some actors of the debate rejoice in the use of abstruse 

sentences, mistaking hermetism and scientihcity^°.

Our purpose is not and cannot be to cite all the arguments put forward 

pro or contra determinism ; we shall rather expose the problem and show 

why, in our eyes, the use of the existence of chaotic phenomena as an argu

ment against determinism is erroneous. Note that the bibliography contains 

a list of works of interest on the topics of methodology in science, causality, 

determinism and hnalism.

The term ‘determinism’ is often used, and even by scientists, in an approx

imative and ambiguous way. Definitions with differing connotations abound.

^ °S ee ,  for in s t a n c e ,  E d g a r  M o r i n ’s a t t e m p t s  to  b e  ta k e n  for an e p i s t e m o l o g i s t  : 

L a  M é t h o d e  ( 1 9 7 7 ) ,  (1 9 8 0 ) ,  ( 1 9 8 6 ) ,  or his m ir t h - p r o v o k in g  e s sa y  in L a  Q u e r e l l e  d u  

D é t e r m i n i s m e  ( 1 9 8 4 ) .
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analytical philosophists, biologists, physicists and mathematicians have in 

general completely different concepts in mind when using the same word, 

and it is out of question to dress a list of all of them. Let us first consider 

here the simplest acceptance, shared by many, but not all mathematicians : 

they distinguish deterministic dynamical system  from stochastic ones. A 

deterministic description of the evolution of a variable A" of a phase space 

M. is then simply given by the modélisation through a system of differential 

equations :

X q given.

Determinism in this acceptance applied to a modélisation of the world is 

then ‘causalism’ in the sense of Leibniz’ doctrine of the principle of efficient 

causality, stating that everything has an antecedent, a ‘cause’ without which 

it could not exist. This doctrine thus claims that every event is ontologically 

determined. It is the doctrine most obviously inherent in the so often quoted 

passage of Laplace :

“We must therefore consider the present state of the universe 

as the effect of its former state, and as the cause of the one which 

will follow...”

Pierre Simon de Laplace (1814), Essai philosophique sur les 

probabilités.

The attem pts to reconcile the notions of freedom and causalism^^ then may

. . . l ike  t l ie  t h e o r y  o f  ‘p r e -e s ta b l is l ie d  h a r m o n y ’ o f  L e ib n iz  h im se l f . . .
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appear as intellectual acrobatics that only underline the inherent contradic

tions.

Stochastic modélisation is intended to describe ‘aleatory’ events. We 

will come back to the problem of this notion in the following. Consider 

for simplicity a discrete time dynamic model. The idea is that, given the 

value of X  at a date we ‘know’ that there exists a set, finite or infinite, 

of possible states at / -f 1, and a law of probabilities defined of this set. 

The consequence is that we cannot describe the true state at  ̂ T  1, but 

only form expectations and describe an anticipated value. The existence 

of situations that we describe by the use of probability distributions finds 

several interpretations. There are, of course, all the situations where the 

obvious complexity of the system leads us to build statistical models even if 

we know that in theory'we could write down a standard deterministic model. 

Furthermore, some people claim that ‘hazard’ exists and rules the world^^, 

others consider that stochastic modélisation often accounts for situations 

where there exist ‘hidden’ variables^^, and others share this conception and 

furthermore defend the attitude consisting in saying that stochastic models 

are simply deterministic models in higher dimensional spaces ; this is the 

position defended, amongst others, by René Thom^'*. Thom argues that 

even in classical mechanics, reality is not described in the ‘natural’ IT  ̂ space.

^ ^ P r ig o g in e  an d  S t e n g e r s  ( 1 9 7 9 ) ,  L a  N o u v e l l e  A l l i a n c e .

^■^For in s t a n c e  in q u a n t u m  p h y s ics .

34  (S e e  ( 1 9 8 0 ) ,  P a r a b o l e  e  C a i a s t r o f i .
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but in the phase space formed by the vectors (position, kinetic moments). 

Thus, to instaure determinism, the dimension of the space has been increased. 

But this is exactly what is done when we build a stochastic model. Instead of 

considering a classical deterministic system (Ad, F ), we look at a stochastic 

model where a probability distribution m{x)  has an evolution governed by 

the associated Fokker-Planck equation

F  Lie derivative.

Doing this we change the phase space, substituting the space C(Ad) of 

real smooth functions on Ad to the initial space Ad. Determinism is thus 

reinstaured and

“...on ne peut pas faire autrement.”^̂

René Thom (1984), “Halte au Hasard, silence au bruit” in 

La Querelle du Déterminisme.

In this sense, we can consider that quantum mechanics are as deterministic 

as classical mechanics, the physical reality at the quantum level being not the 

particle anymore but the wave function which follows Schrodinger’s equation, 

an equation which is certainly more complicated although of the same type 

as the equations ruling classical mechanics.

^ ^ A p p r o x im a te ly  : “we  c a n n o t  p r o c e e d  dilTerently” .
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The progress of science has shown that a same reality can admit several 

types of descriptions. In quantum physics, this could be seen in the duality 

of the respective conceptions of Heisenberg and Schrodinger. The results on 

sensitivity on initial conditions now illustrate the fact that a purely deter

ministic dynamical system as well as a stochastic model can both describe 

in a satisfactory manner an evolution for which we do not dispose of very 

large data sets. Unfortunately, imprecision and confusion has led some peo

ple to believe that chaos is then the consequence of hazard, of the existence 

of purely aleatory events in our world. This is a bad mistake.

W hat indeed is the signification of ‘aleatory’ in its strictest sense ? A 

process is aleatory if it can neither be simulated by any mechanism nor de

scribed by any formalism. This is why the theory of probabilities is not a 

theory of aleatory events in the strict sense, since we suppose that there is a 

certain regularity in the phenomenon that allows us to define a probability 

distribution and describe the evolution in a certain space. Hazard, on the 

contrary, is the unthinkable, the undescribable. To claim the existence of 

‘hazard’ is simply tantamount to adopting the anti-scientific position con

sidering that there exist natural phenomena that we will never be able to 

describe and understand. As Thom notes

“...this means to renew the position of the famous Ignora- 

himus of Du Bois-Reymond, to resuscitate the wave of irrational

ity and anti-scientism of the years 1880-1890, the one of the apos

tles of the “crisis of science” : Bout roux, Le Roy...”

René Thom (1984), ibid.
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Is the world subject to determinism or do there exist aleatory events, 

irreducible to any description ? This question is of metaphysical nature. 

For pure consistency reasons, the position of a scientist must be optim istic 

and postulate that nothing, in the field of nature, is unknowable a priori. 

The glorification and hypostasis of ‘hazard’ by a Nobel prize winner like Ilya 

Prigogine must fill us with astonishment.

Furthermore, the ‘logic’ behind reasonings invoking the existence of chaotic 

phenomena like the Belousov-Zhabotinsky reaction^® to conclude on the ‘non 

determ inistic’ character of Nature itself leaves us amazed. First of all, no sci

entist, even in the field of mathematical physics, believes anymore that a 

mathematical model is the direct expression of reality. If the model is deter

ministic and gives a good description of reality, then this does not mean that 

reality obeys to causal laws, but simply that the deterministic description is 

efficacious. Of course, the converse also holds. So we may ask : why should 

the finding of situations well described by models with sensitivity on initial 

conditions have any implication on the ‘true’ character of Nature ? Secondly, 

the only possible discussion concerns what one could call, following Popper’s 

definition, ‘scientific determinism’, that is the doctrine stating that

“...any event can be rationally predicted with any degree of 

precision as soon as we dispose of a sufficiently precise description 

of past events, as well as of all laws of nature.”

Karl Popper (1945), The Open Society and its Enemies.

F a m o u s  c h e m ic a l  rea c t io n  b e tw e e n  su lp h u r ic  ac id ,  m a lo n ic  ac id ,  n a t r iu m  b r o m a t e  a n d  

c e r iu m  su l ] )h a te .

50



To adhere to scientific determinism in this acceptance does not imply any 

pretention to give an answer to the problem of the ‘true’ character of Nature. 

But note : now we can say that chaos invalidates some notion of determin

ism : indeed, sensitivity on initial conditions exactly implies that there exist 

situations where absolute precision, of course completely excluded in prac

tice, is necessary for predictions, and that any infinitesimal error on initial 

conditions can lead to completely different evolutions. This means the death 

of the myth of scientific determinism.

We would like to emphasize again the fact that Duhem, reflecting on 

Hadamard’s results on the geodesics of surfaces with negative curvature, 

came to the conclusion :

. . .“l ’idée de conférer un sens physique à la notion, mathématiquement 

bien définie, de déduction de l’évolution à partir des conditions 

initiales est un leurre.

Pierre Duhem, op. cit.

And this was in 1906...

Some people have claimed the end of determinism and interpreted chaos 

as the manifestation of hazard in our world. We have seen that many reasons 

lead to conclude that this type of deduction lacks any logical foundation. Non 

sequitur, modus ponens, false analogies and many other types of sophisms 

abound in the pseudo-epistemological littérature which seems to care more

^ ^ A p p r o x im a te ly  : “to  co n fer  a p h y s ica l  se n s e  to  th e ,  m a t h e m a t i c a l ly  well  d e f in e d ,  n o t io n  

o f  d e d u c t i o n  o f  th e  e v o lu t io n  from  t h e  init ial c o n d i t io n s  m e a n s  to  d e lu d e  o n e - s e l f ” .
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about sales than deontology. Scientific determinism is dead, but determinism  

as a possibility survives.

Let us conclude with a last quotation from the work of Thom concerning 

the essence of scientific investigation :

“Rappelons cette trivialité : du fait même qu’elle vise à la 

constitution d’un savoir commun, la science est par essence dé

terministe. Qu’on le veuille ou non, la science est une entreprise 

dogmatique, puisqu’elle vise à susciter chez tout observateur la 

même  réaction mentale en face d’un même  donné scientifique, fait 

ou théorie. Tout modèle est “déterministe” puisqu’il vise à nous 

dire quelque chose, à spécifier, à déterminer en quelque manière 

notre connaissance^®.”

René Thom (1984), “En guise de conclusion” in La Querelle 

du Déterminisme.

^ L e t  u s  reca ll  t h i s  t r iv ia l i ty  : g iv e n  t h a t  her a im  is to  c o n s t i t u t e  a  c o m m o n  k n o w le d g e ,  

s c i e n c e  is in her  e s s e n c e  d e t e r m in i s t i c .  W h e t h e r  we w a n t  it  or n o t ,  s c ie n c e  is a  d o g m a t i c  

e n te r p r i s e ,  s in c e  s h e  a im s  a t  in sp ir in g  in e v er y  o b serv er  th e  s a m e  m e n t a l  r e a c t io n  in front  

o f  a  s a m e  s c ien t i f ic  ‘g i v e n ’, fac t  or  theory .  E v ery  m o d e l  is ‘d e t e r m i n i s t i c ’ s in c e  i t s  a im  is  

t o  te ll  u s  s o m e t h i n g ,  t o  sp ec i fy ,  to  d e te r m in e  in s o m e  s e n s e  our  k n o w le d g e .
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A b str a c t

In a three-period OLG model with endogenous growth where young 

agents m ust borrow to consume, the condition fo r  the possibility of 

bubbles does not only reflect parameters of taste and technology : 

bubbles might simply not be possible i f  markets are perfect. Con

straining borrowings has a positive effect on the rate o f growth of 

capital and can be used to improve the social welfare but, at the 

same time, increases the possibility o f bubbles. We show here that 

when a bubble appears in the economy, the government can, un

der certain conditions, reduce the expected welfare loss by relatively 

simple tax/subsidy schemes. This result is in opposition with the 

classical results obtained in Diamond-type economies where simple 

tax/subsidy policies create an 10 U which is form ally equivalent to 

the bubble.
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I n tr o d u c t io n

The interaction between productive and non productive savings in a grow

ing economy has been studied in the setting of neoclassical growth with over

lapping generations by Tirole in his well-known papers [9], [10] and [11] ; a 

recent paper by Grossman and Yanagawa [4] studies the existence and the 

dynamics of positive bubbles (‘fiat money’) in an OLG model with endoge

nous growth à la Romer [8]. The conclusions of the latter are that positive 

bubbles can exist provided they are not too large and that the rate of growth 

in the equilibrium without bubbles is larger than the rate of interest. The 

existence condition reflects parameters of taste and production technology.

In the Tirole model, positive bubbles can exist only if the economy is in

efficient, i.e. when there is overaccumulation of capital, and can improve the 

efficiency of the economy by diverting savings from productive investment. 

In the Grossman-Yanagawa framework on the contrary, such bubbles cannot 

have any positive effect for there is already under-accumulation of capital 

in the fundamental equilibrium, since agents do not internalise the positive 

externality of capital onto the efficiency of labour, and bubbles can thus only 

harm, exacerbating the existing distortion. In Grossman and Yanagawa’s 

model, there is no possibility for a simple government intervention : simple 

tax/subsidy schemes that redistribute income across generations create an 

lOU equivalent to national debt and have exactly the same effect on capital 

accumulation as the bubble they are intended to struggle against.

Indeed, in a Diamond-Romer framework, the first agents to be harmed by 

a bubble, the young of date 1, are not yet born when the bubble appears in
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the economy. As a matter of fact, their actualised income loss is larger than 

the value of the bubble ; but there is no possibility of trading with those who 

sell the unproductive asset at date 0. Therefore, anti-bubble policies have 

to use an intermediary : the government must tax young agents of date 0 in 

order to buy the shares of the unproductive asset, then tax young agents of 

date 1 to subsidize the old agents of date 1, who were the young agents of 

date 0, etc. This shows why tax/subsidy schemes have the same effect on the 

economy as the bubble itself ; the same amount of capital is diverted from 

productive investment.

The OLG model considered here is Jappelli and Pagano’s [5], who used 

it to show the effect of borrowing constraints on the rate of growth of capital 

in an economy with endogenous growth. It is a model with three periods of 

life where young agents have to borrow to consume, their borrowings being 

constrained. In this type of model, the first agents to suffer from a bubble 

appearing in the economy are the young agents of date 0 ; thus, there might 

exist tax/subsidy policies that do not create an lOU with the same effects 

on the economy as the bubble. Furthermore, since the Grossman-Yanagawa 

model showed that the condition for the possibility of bubbles is a condition 

on the rate of growth of capital in the bubbleless equilibrium and the rate 

of interest, we shall obtain results about the effects of borrowing constraints 

on the possibility of bubbles, and their dynamics. The fact that we use 

here a slightly more general assumption about the form of the agents’ utili

ties (CRRA instead of logarithmic) than Grossman-Yanagawa and Jappelli-
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Pagano does not find its roots in the desire of obtaining (slightly) more 

complex equations, but has a simple explanation : the rate of intertemporal 

substitution plays an important role since, unless assuming an agents’ pref

erence for future consumption, bubbles cannot appear in the economy with  

perfect markets, i.e. without constraints on borrowing, if this rate is smaller 

than or equal to 1.

1 T h e  E c o n o m y  w it h o u t  B u b b le s

1.1 T h e M odel

The model we shall study here is the one Jappelli and Pagano [5] used 

to show the link between liquidity constraints on the consumers’ side and 

the rate of growth in an economy with endogenous growth. There is one 

consumption good in the economy. People live for three periods ; they borrow 

when young (from a mutual fund, for instance) to finance their consumption, 

work, repay their borrowing, consume and save for their old age in the second 

period of their life and consume their savings when old. We suppose that 

young agents are constrained in their borrowings : they can only borrow a 

fraction P of the present value of their lifetime income. The population is 

assumed to be stationary and the size of each generation is normalized to 

L =  1 without loss of generality. Labour is provided inelastically. There is no 

uncertainty in the model and we assume that agents have perfect foresight.

Utilities are assumed to be identical accross agents, additively separable 

and of the following form (the agents’ discount coefficient for time preference
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is denoted hy ^ =  1/(14-/)), where p G] —1, -f oo[ is the rate of time preference.

-f (3u(Ct,t+i) +  fi^u{Ct t̂+2)^

where Ct._t+i is the consumption at time t4-i of an agent born at time t, and 

where u is given by :

u (C) =
Ln(C) ,  6 =  1.

The utility chosen is characterized by a constant coefficient of intertemporal 

substitution cr =  1 /e, thus slightly more general than in Jappelli-Pagano [5] 

for reasons that will become clear below.

The technology is a classical Romer (1986)-type one :

F ( K „ L , )  =

where denotes the capital at time Kt  the aggregate level of capital in 

the economy, Lt the labour input (here, Lt =  1), There is a spillover from 

capital on the efficiency of labour, which firms do not internalize and which 

gives, in equilibrium, increasing returns to scale at the aggregate level and 

thus endogenous growth. Firms are supposed to behave competitively, ignor

ing the externality operating in the production sector and maximising profits 

using the Cobb-Douglas function A t K t ° ' .
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The consumer’s program is :

maxVt =  '^^'u(Ct, t+i)  
1 = 0

^  , Ct,t+2
+ + <

^<+1 f^t+lf^t+2 ^t+1
t̂+1

R t+i

where Rt+i =  1 +  ^f+i, I't+i being the rate of interest on capital from t to 

f +  1, and where e^+i is real labour earnings of agents born at time t.

1.2 T he B ubbleless E conom y

Solving the program, we obtain :

1 — $

where $  =  F if F <  <p and (f otherwise,

1ip =
1 +  +1 )"-' +  / 3 ^ {R ,+ ,R t+ 2 y - '

being the fraction of actualised lifetime income a young agent would like to 

consume if there was no constraint on borrowing.

Net aggregate wealth Wt in this economy is income of middle-aged minus 

their actualised borrowings, their consumption and the borrowings of young 

people :

~ RtCt- \ , t - \  ~  ~  Ct,t
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If we write :

F ( K „ L , )  =  A cU F ( 4 ^ , 1 )  =  A , L J { k , ) ,

then the competitive behaviour of the firms implies ;

=  f ' {k t )  = aALt^~°‘ = a A  =  p,

=  /(^<) — =  (I — (y)ALt^ hi  =  (1 — a ) A Kf

In the absence of bubbles in the economy, equilibrium in the capital mar

ket implies :

— I^i+i — A (.

Accumulation of capital is therefore given by the following equation :

I<t+i = (1 -A 9t)̂ <t =  [1 4-  

a
where P' =  pY~^- Since the rate of interest is constant over time, the

expression of y  is simplified : =  I/ { I  A P' P'"̂ )-

It is obvious that is decreasing in 0  ; we have therefore the result that 

the rate of growth of capital is an increasing function of the strength of the 

borrowing constraints. The parameter F could thus be considered as a policy 

instrument : in fact, a government could choose this parameter accordingly 

to a welfare criterion ; there is a trade-off between growth of capital and
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consumption of young agents, and Pareto-improvement constraints must be 

respected. We give in appendix A, for the special case e =  1, an example 

of calculus of the optimal F according to a welfare criterion, and show that 

fixing F in such a way may lead to the possibility of bubbles in an economy 

where bubbles cannot appear if young agents are not constrained.

2 B u b b le s  in  th e  E c o n o m y

As there is only one consumption good and one productive capital good  

in this economy, the price of real capital cannot increase geometrically and 

therefore no bubble can exist on productive assets.

So let us consider an intrinsically useless asset, in the hands of old people 

at time 0, and in supply M .  Under which conditions can a bubble exist on 

this asset ? If an agent is willing to buy shares of the unproductive asset, 

he must expect to get a rate of return at least equal to that of capital. The 

no-arbitrage condition yields :

Bt+\ =  =  (1 +  p)Bt,

where Bt — pt being the price of one share of the asset as of time t.

Let us suppose that all agents share the belief that the asset yields a rate of 

return equal to the rate of interest at each period. Who will buy the shares at 

time 0 ? Young agents have to borrow to consume. W ithout the assumption 

that these agents internalize the effect of the bubble on their future wages, 

which is an assumption difficult to defend in a price-taker economy, only
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middle-aged agents will be willing to buy shares of the unproductive asset. 

The transmission mechanism of a bubble in a price-taker economy should 

therefore be : at each time t, old agents sell the asset to middle-aged agents.

2.1 D ynam ics o f  th e  Econom y w ith  B ubbles

The equilibrium of the capital market gives now :

=  ^(+1 +  Bt.

If we denote by bt the value of the bubble per unit of capital [bt =  BtfKt)^ 

which is straightforwardly related to the value of the bubble per unit of 

productivity of labor, then we can write :

(l +  $  ^ )(1 +Si) =  -  ^)(l - o i ) A  -  bt

which we rewrite under the following form :

9t) =  -  W-

Eliminating we obtain the dynamics of the reduced bubble [bt) :

u[y)x
^ [ x , y )  =

v(y)  -  X

The necessary condition for the possibility of bubbles is that a portion 

of the curve ^ lies beneath the 45 degree line, condition which we can write



here, since 'I (̂O) =  0 and ^  is stric tly  convex in x :

g(0) >  p.

This condition, which says that, for bubbles to be possible, the rate of 

increase in capital of the bubbleless economy must be greater than the rate 

of interest, is of course similar to the one in the Grossman-Yanagawa model. 

But here, we are working with a three period OLG model where young agents 

must borrow, which implies that the condition for the possibility of bubbles 

reflects not only parameters of taste and technology, but also market imper

fections through the parameter F. It is easy to see that, unless we assume 

strict preference for future consumption, bubbles cannot exist in our model 

when markets are perfect and cr, the rate of intertemporal substitution, is 

smaller than or equal to 1 : the rate of increase in capital is always to low to 

allow any bubbly belief to be consistent :

P < \  and a <  1 => <y(y) ^  g ,: ) <  Z’’

whatever are the parameters a , A  and (3. Indeed, as we have seen previ

ously, g is decreasing in 0 . Therefore, a necessary condition for the possibility 

of bubbles is :

s (0 )  >

r6]o,r[ ,  <7(r) = />.
Thus, (3 < \  and a  <  1, bubbles can only exist in constrained economies

=  F). Furthermore we see that by strengthening the constraint on bor

rowing (i.e. by reducing F), bubbles may become possible in a world where
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bubbles could not exist before (see Appendix A). The situation is a bit differ

ent if cr >  L As a matter of fact, under this condition and even when agents 

prefer future consumption, f  might be larger than y , which means that bub

bles can appear even if young agents are not constrained. In Appendix B, 

we give the formal proof of this result.

The only admissible values for bo are those which are smaller than the 

value of the stationary reduced bubble :

b*{T) = v { r ) - u { r ) .

Indeed, a belief such that bo >  b*{T) would be inconsistent because, at 

some date, Bt would exceed the capital stock of the economy. Hence, the 

possible bubbles are the stationary one and the vanishing bubbles starting 

from below the stationary value. The value of the stationary bubble is de

creasing in r  ; therefore, the more constrained the economy, the larger the 

range of possible bubbles.

In the presence of the stationary bubble, the economy’s rate of growth of 

capital is always gt =  p. If a bubble starts from below the stationary value, 

then this rate is always greater than the rate of interest, strictly increas

ing and asymptotically equal to ^(F), the rate in the bubbleless economy. 

Furthermore, the speed of convergence is decreasing in F, in the sense that 

a bubble that is admissible in two economies vanishes quicker in the more 

constrained one, since :

dT
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and

dbt / r

If r ' <  r , then the range of possible bubbles is larger in the F'-economy. 

We know that in the bubbleless equilibrium, the rate of growth of capital is 

larger in this economy. It is clear that a bubble which is admissible in the two 

economies does not alter the relation gf((F) <  yt(F') ; yet bubbles which are 

not consistent in the F-economy (6q >  b*(T)) can appear in the F'-economy. 

Such bubbles can lower the rate of increase in capital beneath #(F ), the rate 

of growth in the F-economy, for ever in the case of a stationary bubble, for a 

finite lapse of time otherwise. Thus, even if the effect of constraining young 

people is positive in the case of bubbleless equilibria, it is ambiguous if we 

admit the possibility of bubbles.

2.2 Effects on th e  W elfare

The effect of bubbles on the welfare of generations born after or at time 

0 is obviously negative. Indeed, in an economy with endogenous growth, 

there is under-accumulation of capital in the bubbleless situation ; bubbles 

divert capital from saving, and can therefore only have a negative effect. 

This point has been insisted upon by Grossman and Yanagawa [4] : whereas 

a stationary bubble has a positive effect in a Diamond economy (see Tirole 

[10], [11]) by removing the intertemporal inefficiency, the effect of bubbles in 

a Romer-OLG model is always an exacerbation of the existing distortion.

Let us suppose that a bubble of value Bq appears at time 0. The gener

ation that is old at t= 0  sales a. new asset and therefore increases its welfare.
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Middle-aged agents, which are those who buy the unproductive asset, are 

not affected because their labour income is already determined and the rate 

of interest fixed. But young agents born at time 0, and all subsequent gen

erations will suffer from the existence of the bubble, labour income being 

reduced (the growth of labour productivity being lowered by the bubble...). 

The actualised income loss of the young agents of time 0 (in fact, the result 

holds for all generations born after time 0) is large enough to compensate 

the old of time 0 for their gain from the unproductive asset (&% denotes the 

income in the bubbleless equilibrium) :

\ OL '
But, first of all, young agents are constrained in their borrowings and, 

secondly, young agents would have to internalize the negative effect of the 

bubble on their life-time income, and this constitutes an unacceptable as

sumption in a pure price-taker economy in which agents are supposed not 

to internalize the effects of their consumption choices on the level of capital, 

the rate of interest etc.

Nevertheless, we could imagine a public intervention to get rid of the 

bubble or, at least, to lower its effects. Indeed, in our framework, there 

might exist situations where tax/subsidy policies will not necessarily have 

the same effects on welfare as the bubble : in that, a three generations 

OLG model differs fundamentally from a Diamond model where the lOU 

created by a simple tax/subsidy scheme has exactly the same effects as the
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bubble, diverting the same amount of capital from productive investment as 

the bubble (see Grossman-Yanagawa [4] ).

3 G o v e r n m e n t  I n te r v e n t io n

In the preceding sections, we have studied the different equilibria of 

the economy without considering government intervention. But it is clear 

that the type of economy considered here can offer possibilities for Pareto- 

improving policies in the bubbleless equilibrium since the rate of growth of 

capital is an increasing function of the strength of the borrowing constraint 

imposed on young agents. We can imagine two simple ways of improving 

the social welfare : the government could fix P, that means regulate borrow

ings, or it could intervene indirectly through a tax/subsidy system, taxing  

young agents and increasing investment (injecting the whole amount in the 

productive capital or only a part, giving some fractions to middle-aged and 

old agents..., according to the welfare criterion the government is working 

w ith...). In Appendix A, we give an example of optimal regulation, accord

ing to a classical welfare criterion, for the special case a =  \.

As we shall see in the following part, and as is easy to understand, if 

the government already uses an optimal regulation policy, then there is no 

possibility left for Pareto-improving intervention through simple tax/subsidy  

schemes in the case of a bubble appearing in the economy : the borrowing 

constraint has then been totally exhausted in a certain sense. The same is 

true of course when there is an optimal tax/subsidy policy in place before a
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bubble appears. But if we think about government intervention, we realise 

that it is never chosen optimally according to a welfare criterion, for many 

reasons (one very simple amongst others is probably the desire of being re

elected : ref+ i(r)//? t+ i decreases with V decreasing, and the agents are sup

posed myopic...). Thus, we believe that it is not too shocking an assumption 

to suppose that the policy undertaken by the government in the bubbleless 

equilibrium is not necessarily optimal. The results which follow are obtained 

under the assumption of an already, but non optimally, constrained econ

omy. The existence of a Pareto-improving public policy obtained under this 

assumption obviously guarantees the possibility of Pareto-improvement in 

unconstrained economies.

In this section, we shall consider the possibility of government interven

tion in the Ccise of a bubble under the assumption of a policy of borrowing- 

regulation before the bubble appears. We do not treat explicitly the assump

tion of tax/subsidy schemes in the bubbleless economy because the principal 

result remains unchanged : if the policy undertaken is Pareto-improving, but 

not ‘radicaP, then there can exist possibilities for government intervention 

when a bubble appears. So let us consider now the economy with F E]0, y] 

(if there is regulation before a bubble appears, then F <  y? ; the question of 

possibilities for government intervention is trivial otherwise). We shall look 

for ‘anti-bubble’ policies that are optimal according to some criterion. This 

could give the impression of inconsistence with what we’ve said before, but 

consider that when 6q is small, then an optimal intervention seems to be
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feasable ; for ‘large’ values of 6q, if there exists an optimal policy, then there 

exist non-optimal but feasable policies.

In an economy where young agents have to borrow to consume, there 

might exist ways of lowering the effects of a bubble appearing at date 0. 

Indeed, if young agents of time 0 internalized the negative effect of the bubble 

on their income, they could try to buy some shares of the unproductive 

asset, increasing their future income by diverting part of the bubble from the 

investment market. Of course, there is a trade-off between increasing future 

income and constraining consumption when young. Young agents therefore 

would choose to buy an optimal amount of shares according to this trade

off. This would occur at each subsequent date t, and agents would solve the 

following program :

2

i=o

(1) +  ~E-----+  ~B------5 ---- ^  —5------

(2) Q,, + < r
R <+i

Since we work with the assumption of price-taking agents, young agents 

are supposed not to do this : they remain passive. But let us suppose that the 

government wants to intervene without taking strong centralised decisions as 

in the sense of a central planer who would choose the consumption paths ; the 

government is supposed to let agents choose themselves their consumption at
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each time t. The government could try to buy progressively the unproductive 

asset to make it disappear from the investment market. To finance this policy, 

the government taxes young agents and assures them to give, in the future, 

subsidies equal to the actualised amount of the taxes.

Let us formalize this : let us suppose that at time t, the government levies 

taxes Tt t̂ of value Tt t̂ =  6tBt on young agents and pays subsidies of value 

S t - 1 ,t =  (1 +  p)Tt-i , t- i  to middle-aged agents of time t (Bt =  (1 +  pYBq 

being the actualised value of the initial amount of non productive asset). We 

suppose that the sequence (#;) is chosen increasing. With the surplus, the 

government buys an amount Tt î — St-i,t =  {Ot — 6t- i)Bt  of shares of the non 

productive asset.

But how does the government make the choice of the sequence (#;) ? A 

conceptually very simple way would consist in choosing (#;) according to the 

program young agents of time t would solve if they internalized the effects of 

the bubble (and only its effects) and knew the capital /accumulation equation. 

The condition to make this possible is that the sequence (6t) thus obtained 

is increasing (taxes must finance subsidies..). If this is the case, and if the 

government chooses the sequence according to this scheme, it will obviously 

achieve a Pareto-improvement compared to non-intervention. Of course, this 

kind of behavior puts all the weight on young agents of date t, as it does 

not take into account the effects of intervention at time t on subsequent 

generations. To choose a sequence whilst considering the consequences on 

not yet born agents, the government needs a choice criterion. Such a criterion
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could be of the  following form :

A + r
max

t =  T

{P )  %(^T, ^  %(0, ...,0 ) V < g [t , A  +  r].

(0<7Z)

where % is the indirect utility function of an agent born at time t, agents 

solving the program :

i = 0

<
Pt+1 Pt+lRt+2 Pt+l

(2)c,., + r,,, < r ^ .
(+1

(P ) is the set of Pareto-improvement constraints. Taxes and subsidies 

do not appear in the budget constraint (1) since the government announces 

that subsidies received when middle-aged equal actualised taxes paid when 

young. A is a decision horizon and R  a social discount factor ; if P  =  0, then 

the government cares only about the current generations and is absolutely 

indifferent to not yet born agents : this is of course the decision criterion 

we first described. We shall see that the case P  =  0 is interesting not only 

because it gives a simple way of achieving a Pareto-improvement, but also 

because it allows us to characterize the type of dynamics of the economy in 

the case P  0, without solving formally the optimisation problem, which 

looks rather tedious if A is large. We shall see that if the tax/subsidy scheme 

allows an improvement in social welfare in the case P  =  0, then the optimal
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policy is a finite sequence in the sense of Ot equalling 1 after a finite lapse of 

time, the policy becoming a pure tax/subsidy scheme once the entire bubbly 

asset eliminated from the market, and necessarily the policy chosen with a 

R  ^  0-criterion will be finite too.

3.1 A  Sim ple T ax /S u b sid y  P olicy

We shall give here the results for the optimisation problem under the 

assumption i? =  0, i.e. a government which, at each date, cares only about 

the present generation. The solution of the problem of the choice of [9t) is 

the following ;

P r o p o s it io n  : If  ^(F) >  F, where ^ is given by :

W r ]- '  =  i +  {i3' +   ) -

a

then the optimal choice of Oq is 0, and it is easy to verify that at each 

date t, the government will choose Ot =  0, because the condition for  this is 

structural (only related to the parameters of taste and technology and not  

to the size of the bubble...).

Otherwise, since the function (f) is strictly increasing and concave in its 

variable F, there exists a value F such that :

{(i)re]o,f]} =4. 0, = 0 VL 

{(2) r e]f,r[} ^  o , > o  v/.
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Furthermore, if (2) holds, then the sequence {6t) is strict ly increasing until 

6t =  I, which always occurs after a finite lapse of time .

The proof is given in Appendix C, where we exhibit parameter values 

which show the existence of economies such that ^ ( f )  <  P. Appendixes 

A and C show us furthermore the following results for the case e =  1 : 

if we denote by P/?=o the value of F which is optimal for young agents of 

date 0 given K q, then we have an upper bound for all P ’s that are optimal 

according to classical welfare criteria. But ^>(P/?=o) >  PB=o, which implies 

that there are no possibilities for tax/subsidy schemes if P has been fixed 

optimally, whatever is the welfare-criterion the central-planner is working 

with. Another consequence of the strict inequality is that P >  P/?=o does 

not imply the possibility of Pareto-improving intervention through a policy 

of the type considered here. It is even possible to exhibit parameters such 

that P/?=o <  P <  P ; this means that there exist economies in which policies 

of the type considered here cannot be undertaken, even if the parameter P 

has not been chosen very close to Pfi=o-

We suppose now that the condition holds, which means that the govern

ment policy can achieve a Pareto-improvement by converting progressively, 

and in a finite lapse of time, the bubble into a sort of public debt forced 

onto young agents ; formally, the variables of the economy evolve as if the 

bubble, which would have been transmitted from old to middle-aged agents, 

was now progressively bought by young agents, the economy reaching, after 

a finite lapse of time, a regime with the bubble transmitted from middle-aged
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to young agents. When the government applies the (R =  0)-optimal policy, 

the capital accumulation is given by (we pose 6_i =  0) :

(l +  ^ —~—)(1 + fft) =  ^ ~  “  (1 “  + Y ^

where bt =  B t / K t .  For T* >  +  1, =  Bt and therefore we have :

( l  +  +  g j  =  ^ ( 1  -  $ ) ( i  -  „ )A  +

where St =  St- i^tlKt.  This shows us that the rate of growth of capital 

is increased, at least in the short run, by the action of the government, and 

even beyond the rate of growth of capital in the bubbleles economy. This is 

not surprising : to achieve a Pareto-superior outcome, the government uses a 

policy that is formally equivalent to an increased constraint on borrowing for 

young agents, which implies increased savings, and we know that more saving 

means increased rate of growth of capital. The effect on the growth-rate is 

asymptotically null : St vanishes to 0 as is rather obvious and nevertheless 

shown in the appendix.

The dynamics of bt and Sf, equal to bt after time +  1, are given in 

the appendix. As we have said before, we prove in appendixes A and C, 

for the case e =  1 (this is the only case which can be solved formally ; 

nonetheless, it seems quite reasonable to conjecture that the results hold in 

general), that if P has been fixed by a central planner, which internalizes 

the effect of this parameter on the rate of growth of capital, according to 

a social welfare criterion, then ^(P) >  P and there is no possibility for a
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Pareto-superior outcome by simple tax/subsidy schemes. This is easy to 

understand : a central planner chooses a T that is less or equal to the T 

that maximises the welfare of the current young generation (he chooses a 

smaller value if he cares about future generations...). If P has been fixed by 

a central planner, then the increase in future consumption resulting from the 

constraint on first period consumption and from the elimination of a part of 

the bubble does not exceed the loss in consumption of young agents. Thus, 

if r  has been fixed optimally, any attempt to struggle against a bubble using 

a tax/subsidy policy necessarily diminishes the welfare of early generations. 

Furthermore, as we have seen before, the fact that there exists a possibility 

for Pareto-improvement in the bubbleless equilibrium (P >  Pr=o) does not 

imply the possibility of tax/subsidy schemes when a bubble appears, and 

there even exist economies (cr,/9,/4,a) in which tax/subsidy policies never 

lead to a Pareto-superior outcome in the case of a bubble, whatever be the 

parameter P.

3.2 Caring about Future G eiieratious

If the government cares about future generations (R  ^  0), the policy 

described above yields a Pareto-improvement, but is not optimal in the sense 

of the choice criterion. As the problem of finding the (/?, A)-optim al policy 

is rather difficult and tedious, we shall give qualitative characterizations of 

the optimal sequence {0^’̂ ).

In the case P G]0,P], the government cannot apply the tax/subsidy  

scheme described here and achieve a Pareto-superior outcome since agents
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of early generations would incur a welfare loss, gains in lifetime income not 

counterbalancing the loss in consumption when agents are young, at least in 

the first periods.

So let us now consider the case (F G ]f ,f [ )  where Pareto-superior out

comes are possible. If i l  0, the government cares about the effect of a 

choice Ot on generations born after time t ; intuitively, this should imply 

that 0^’̂  is bigger than 0^~^ or 0^’̂  =  0^~^ =  1. The larger R  or A , the 

more the government cares about the increase in capital and the less it is 

concerned with the constrained consumption of the current young. Therefore 

0 ^ ' ^  should be increasing in R  and in A.

We give the formal proof of the result of Oq ’̂  increasing (in a large sense) 

in R.  The dependence in A can be established in a similar but, because A  

is a discrete parameter, more difficult manner. Considering the structure of 

the economy and of the choice problem, it is immediate to deduce : [Oq '  ̂

increasing in R  and A] ^  [0^’̂  increasing in R  and A Vi].

• If Oq~  ̂ =  1 (which occurs when the value of the bubble is small), then 

of course 0 ^ '^  =  1.

• If Oq~  ̂ ^  1, then there are two possibilities : either (a) Po(l )  <  Vo(0) 

or (b) Po(l) >  Vo(0)- is a strictly concave function of 6q  ̂ and under 

the assumption on F,  admits a maximum on the interval ]0,1[.  If (a) holds, 

then there is a 0^ such that Vq{0^) =  Vo(0). This is the maximum value 

the government can choose at date 0 if it tries to achieve a Pareto-superior 

outcome. If (b) holds, then I is the largest possible value for Oq.

As long as the solution of the unconstrained maximisation problem is
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smaller than the highest possible ^o-value, we have, at the optimum :

K + Ê / ' - K - '

since is independent of Of, t >  t  1. But the effect of an increase of 

Or on the welfare of generations born after or at time r +  1 is unambiguously 

strictly positive. Thus

at the optimum. This implies Oq ’ >  Oq~ .̂ But we can show more : the

function

is obviously C ° °  in its variables, and we have d g F  inversible since each 

Vr is strictly concave in Ot, t <  r. From the implicit function theorem we 

deduce :

d R  ^  ^

h  dOo^
But

>  «

as a sum of strictly positive terms. Thus we have :
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If the P (0 ) constraint is binding, then 0^’̂  =  (case (a)) or 1 (case 

(b)), which is always larger than 6^~^.

The general and rather obvious result is therefore : the more the govern

ment cares about future generations, the more shares of the unproductive 

asset it will buy at each date, but there is a limiting sequence (0 )̂ which the 

government must respect to achieve a Pareto-superior outcome. Thus, 

is decreasing in its arguments but has a Pareto-limiting lower bound T- The 

dynamics of bt and are of course of the same type as those in the case 

i? =  0 , the convergence being accelerated.

C O N C L U S I O N

In the OLG framework considered here, we have seen that there exist 

economies in which bubbles can appear only because markets are imperfect : 

for the parameters of taste and technology that characterize the economy, if 

markets are perfect and agents prefer, in a large sense, present consumption, 

then the rate of growth of capital is always too low to allow bubbly beliefs to 

be consistent. On the other hand, we have shown that there exist economies 

where young agents are not constrained in their borrowings and where bub

bles can appear. If we rule out preference for future consumption, then a 

necessary condition for this is, in our framework, that the rate of intertem

poral substitution is large (cr > 1 ). The more constrained an economy with 

given parameters of taste and technology, tlie larger the range of possible 

bubbles.
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Many of the conclusions of Grossman and Yanagawa’s model hold, of 

course, in the three-period OLG model considered here. This is not very 

astonishing, for young agents cannot internalize the effects on their welfare 

of a bubble and therefore do not have the least incentive to intervene in the 

market for the unproductive asset, which means that the transmission mech

anism of the bubble is similar to that in the Grossman-Yanagawa model : 

the bubble is sold by the old agents that live on their savings and is bought 

by the agents that save (the young in the Diamond model, the middle-aged 

in the present one). Thus, the effect of bubbles on the rate of growth of cap

ital is negative and asymptotically zero except in the case of the stationary 

bubble.

But the main object of our model was to show that although it is true in 

a Diamond model that eliminating a bubble by a simple tax/subsidy scheme 

does not yield any improvement, this might be false in a three period OLG 

model where young agents must borrow and face market imperfections, here 

in the form of a simple, linear constraint on borrowing. Indeed, the govern

ment might be able to improve the welfare of all agents by a policy, financed 

by a tax/subsidy scheme, of progressive elimination of the unproductive as

set. When total elimination of the bubbly asset is achieved, the rate of growth 

of capital is larger than it would have been in the absence of the bubble, be

cause the policy consists in restraining the consumption of young agents, thus 

increasing the savings. This effect is, of course, asymptotically zero since the 

ratios of taxes and subsidies over capital decrease to zero. Of course, the pos
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sibility for Pareto-improving policies of the type described here is given only 

if the bubbleless economy allows an improvement by stronger constraints on 

borrowing (see Appendixes A and C). This means that in an economy where, 

in the absence of bubbles, P has been fixed optimally by a central planner or 

where the central planner uses an optimal tax/subsidy scheme to maximise 

the social welfare, the Pareto-improvement possibilities by increased borrow

ing constraints have been totally exhausted : in such an economy, when a 

bubble appears, no tax/subsidy scheme of the type described above can lead 

to a Pareto-superior equilibrium. Yet, though non-optimality of the policy 

undertaken by the government before a bubble appears is a necessary con

dition for the possibility of tax/subsidy schemes in the case of a bubble, it 

is not sufficient. There exist economies in which borrowing constraints are 

rather far from being ’optimally’ exploited and where, nevertheless, no policy 

of the form considered here can achieve a Pareto-superior outcome.

A P P E N D I X  A  :
O p tim a l  C o n s tr a in in g

The object of this appendix is to show that if, for social welfare reasons 

holding in the bubbleless economy, the government fixes F, then it can happen 

that it chooses a value such that bubbles become possible whereas they could 

not exist in the unconstrained economy. We suppose e =  1 to enable us 

to exhibit formal solutions (this cannot be done otherwise) ; we then have
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We suppose that at date 0, the economy is characterized by 0 ,  this pa

rameter being equal to (/? if there has been no constraint on borrowing until 

date 0, and equal to some To <  otherwise. We consider the optimal choice 

of r  in an economy that is not subject to central planing (a central planner 

fixes r , but the agents choose their consumption path according to their own 

desire). We treat a formally simple case where the central planner has a 

criterion of the following classical form :

A

max Wa =  F(}[Ln{Ct,t) +  ^Ln{Ct,t+\) +
(= 0

and we make the assumption that the social discount factor R is in [0 ,1[ 

for simplicity (the result holds in the general case >  0 , the restriction is 

done here for pure calculus reasons in order to obtain nice formulas) ; the 

horizon A can be finite or infinite (we have made the asumption R <  1 ), 

As the choice of P at t= 0  does not have any effect on the welfare of people 

born before this date, we do not have to be preoccupied by them. To achieve 

an outcome that Pareto-dominates the unconstrained economy, the central 

planner must solve the following problem :

A

m a x ^ R '% (P )
<=0

( a  % ( F ) > % ( 0 )  V / G [ o , A | ,

where Vt is the indirect utility function of an agent born at time t, agents 

solving the program :
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Ct î 4-

t = 0

a

c,,, < r
^f+i Ri+\Rt+2 Rt-\-i

^t+i
R f+i

We have :

( i  +  r ^ ) ( i  +  s i)  =  Y ^ ( i  -  $ ) ( !  -
/?

and

( l  +  F—— ) ( 1  +  ^() —  ̂ ^-^(1 -  F )(l -  a)A .

Let us solve first the unconstrained problem. The objective function is 

the following :

max Wa = è  ft' [ftn(r) + (^ + ^^)Ln(l -  T)
<=0

+  ( 1  +  ^ +  ^^){tLn{V) — (t +  l)L n (l +  F——— 

Maximising this function, we get :

F«,a =
a

1 - R
a-\r (3 {I +  /? +   ̂ 1 1 y ^ J R

for A  finite and :

Q
H ,+ o o  —

a  +  /9 +  ^2 +  ( l +  ^ +  /?2)Y
R

R
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Now, if the welfare of young agents of period 0 is increased by the choice 

of r , then all subsequent generations welfare will be increased. The con

straints therefore remain unbinding as long as the solution of the uncon

strained maximisation problem is larger than the value <  P r̂ro defined 

by Vo(P°) =  Po(^) (remember that Vq is strictly concave in P, admits a max

imum at P/î=o and tends to — oo when P tends to zero ; P° =  0  of course 

if 0  <  Pr=o)- If this is not the case, then the optimal choice is of course 

P°. In all cases, Ph,a is smaller than Tr=q and decreasing in R  and A . It is 

obvious that once P optimally chosen at date 0, the central planner does not 

have to reconsider the choice at a subsequent date if its choice criterion has 

remained unchanged.

To prove that an optimal choice of P can lead to the possibility of bubbles, 

it is therefore sufficient to exhibit an example where P/?=o is strictly smaller 

than P (the upper strict bound for the possibility of bubbles in a P-economy). 

This is not difficult :

a-\- /3

j - ^ ( l  -a )A  -  ( 1 + a / l )

I + (3 a
Taking /?= !, 0 = 1 / 8  and /l= 1 2 , we get :

Pr=o =  1/17 < 1/9.
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f  =  0.1208... >  1/9,

Thus, the choice of F can lead to the possibility of bubbles in this econ

omy where bubbles cannot appear if borrowing isn’t constrained.

A P P E N D I X  B  :
C o n d it io n s  for  t h e  P o s s ib i l i t y  o f  B u b b le s

We want to show that i f { e < l ^ c r > l } ,  then bubbles might be possible 

in an unconstrained economy even if agents prefer present consumption. The 

upper bound for F allowing bubbles to appear is :

y-^^-^(l -  Of)A -  ( 1  -h OfA)

with

If / ? ( 1  +  p) >  1 , then :

lim (y) =  0 .
€-*0+̂

This proves that there exist economies such that F >  y . 

If we now suppose { e > l < = ^ c r < l } ,  then :
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1 +  S M =
l  +  /3' +  /9' 1 +

a
It is easy to see that this is smaller than I +  /9 =  \- \ -aA  under the assump

tion /? <  1 , whatever are the other parameters, because then e >  1  = > /? '<  1 . 

This means that f  is always smaller than y  if we do not assume strict pref

erence for future consumption. Thus we have the following : in an uncon

strained economy, and assuming that the rate of intertemporal substitution  

is smaller than or equal to 1 , bubbles are incompatible with the standard 

hypothesis on

A P P E N D I X  C :
A  S im p le  T a x /S u b s id y  S c h e m e  

C . l .  R e s o lu t io n  o f  t h e  c a s e  /? =  0

The Lagrangian Lt of the problem at time t is :

L, =  -  (C, ,  +  ^  ))
,=0 ^<+1 ^<+1

+ -f- Tt t̂Ÿj.

Agents do not internalize the effects of their actions on the rate of interest 

or the labour income, therefore we have :

{Ct,t)  ̂ 4 -
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Since we suppose that agents are already constrained in the bubbleless 

economy, we can write (Tt t̂ =  ^tBt) :

c ,,, =

The budget constraint gives :

Ct,t+i =   ̂ +  Y q r ^ ( i +  pW tB f

Thus, writing the equilibrium of the capital market =  5_i,o =

0-1 =  0) ;

i^t+1 +  (1 — ^i)Bt — Cf +  St-1,t — (1 +  p ) ( r -  (2 _|_

we get the following equation for capital accumulation :

( 1  +  r — - — ) ( 1  +  gt) =   ̂ ^  ^ , ( 1  -  r ) ( l  — a) A — ( 1  — 6t)ht +  ■^■Ot-\ht.

The government chooses Ot. If Ot € ]0 , 1 [, the optimality condition is :

S = “ -

1 +  p Ô0 , ^l +  p dOt 
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where

Â (r) =

1 - r A ( r )

(1 — a )A

(1 + />)(! + r  )
ex.

Writing :

we get :

c,,Ji + iP ' + /3'̂ )(i + ^)] = wr)]-' c,,< = ^
At J 1 +  /)

OtBt = n(r) et+i(̂ t = 0),

where :

n(r) = r -  (̂r)
i + />A(r)<̂ (r) + i -  r/i(r)

The conditions for consistency of the hypothesis '‘Ot g]0, 1[’ are therefore :

(1). r > ^ ( r ) ,

(2,). n ( r ) ! ! ^  <  1.

Condition (1) is purely structural, so if (1) is not true, then for all t, 

=  0 because, as is shown below, (f) is increasing in its variable. Condition 

(2t) on the contrary is not purely structural ; it is time-dependent ; if (1) 

holds and (2^) is not true, then necessarily =  1 as is shown below. 9q =  1 

can be optimal when bo is small as is easy to verify.
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C .2 . E x is t e n c e  o f  E c o n o m ie s  w it h  P a r e to - S u p e r io r  O u tc o m e s  b y

T a x /S u b s id y  s c h e m e s

We have to show that there exist economies for which condition (1) holds. 

Since we are preoccupied by existence, it is sufficient to exhibit one example. 

Nonetheless, we shall prove the existence in the two cases e >  1 and e <  1 

because of the difference of the possibility condition for bubbles (remember : 

if /) <  1 the existence of bubbles requires a rather strong constraint on 

borrowing if e >  1).

Let us therefore first take ^ =  e =  1, /I =  12 and a  =  0.125. We get :

f  =  0.1208.. >  1/9.

[^i(f ) ]- ' =  9.275 >  9.

As (j) is obviously increasing in F, we have the existence of F such that 

f  <  F, where =  f .

If e <  1, then Appendix B has shown that we can have F >  y  ; but 

^{(f) <  y), and ^ is strictly increasing and concave. □

This proves, for both cases e >  1 or <  1, the existence of economies where 

a. R  =  0-policy can achieve a Pareto-improvement by eliminating the bubbly 

asset by a tax/subsidy financed policy. If we reflect on what the policy 

considered here consists in, we realise that F must be such that it allows for 

a Pareto-improvement by stronger constraints on borrowing ; indeed, for the 

case e =  1, we verify that ^(F/?=o) >  ^R=o ■
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1 +  +  (xA[a +  +  ^2)

<  1 +  (^ +  /?^)— =  [r/2=o]
OL

since a  E ]0,1[. Furthermore, we can see that choosing F according to a 

welfare criterion does not necessarily lead to the possibility of bubbles (e =  1 

for the calculus) :

Fh=o <  f

g{^R=o) > p ( f )  

since the rate of growth of capital is decreasing in P.

1 +  S'(Fh=o) — -—, '~o " 2̂ ~  oc)A.É  
1 +  /? +  /?'

Thus, the condition ^(0) >  p does not imply 5r(P/î=o) ^  P =  ^(F). This 

enables us to ascertain that there exist parameter values such that ^(F) >  F, 

which means that there are parameters (3, a and A such that, whatever is 

the value of F, there do not exist Pareto-improving tax/subsidy policies of 

the type considered here when a bubble appears in the economy.

C.3. D ynam ics

Capital accumulation is given by (0_i =  0) :

(1 4- F—- — ~  ~  oc)AKt — (1 — Ot)Bt

+  +  p)O t-iB t-u
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Bt+1 =  (1 +  p)Bt.

Another way of writing the accumulation equation gives us, for  ̂ >  1 and 

under the assumption of 6t G]0, 1[ :

bt+̂  = ^((1 -  6t)bt, 3(F)) < (̂bt, ^(r)) < bt,

where ^  is the function relating bt+i to bt in the bubbly economy without 

government intervention. Thus, if F G]F, F[, as long as $t <  1, the sequence 

is strictly increasing : indeed, writing

OtBt =  n(r)e<+i(^i =  0),

we get

<̂+1 _  bt I — abt+i ^  ^
Ot bt^i 1 — abt

a >  0, bt =  B t lK t .  But as necessarily lirrit^+oobt =  0 (with non interven

tion, a non stationary reduced bubble is always vanishing ; the government 

policy converts progressively the bubble into an 1 0 U equivalent to public 

debt (‘forced loans’ to the government here), but Bt =  {I p Y B q whilst 

the rate of growth of capital is enhanced compared to the non-intervention 

case ; if the bubble starts with the stationary value, a consequence of the 

government’s intervention at time 0 is that B\ has a non stationary value,..), 

we see that there must exist a finite lapse of time after which the bubbly 

asset has been entirely eliminated from the investment market (i.e. Ot =  I
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for t >  T^).

P r o p o s it io n  : After a finite lapse of time, the government has bought 

the entire stock of the non-productive asset, and the policy becomes a pure 

redistribution scheme.

• For t >  T® +  1, the rate of growth of capital is given by :

9i =  S (r) +  ^

a
The mechanism works as a sort of supplementary restraint on borrowing 

of Bt for young agents at time t. Therefore savings must increase by +

/3')]Bt^i at t+ 1 .

• For t > T ^  I, the dynamics of St =  bt are given by :

st+i =  ' ^ { -  Y ^ ^ s t , r ) .

Since this function is concave and lies always beneath the 45 degree line, we 

verify that limt^+oo'St =  0.
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A b str a c t

We consider a neo-classical OLG Model with two sectors, one for 

a consumption good and one for an investment good. We show that 

the presence of externalities can enlarge the dynamical system with 

the possibility of Hopf bifurcations. Applying Bifurcation Theory, we 

establish the possibility of attractive closed orbits around the steady 

state of the economy. We derive some results on the questions of 

existence, multiplicity and stability of balanced growth paths. Fur

thermore, we show that some of the results obtained in the framework 

of Overlapping Generations also hold for the discrete-time version 

of the Infinitely Lived Agents Model ; as a consequence, we conclude 

to non robustness with regard to the time structure assumption.
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I n tr o d u c t io n

The question whether economic cycles always originate in exogenous 

shocks or can be, at least partly, explained endogenously is a fundamen

tal question of modern economics, not only from a theoretical point of view 

but also for the purpose of policy. The idea of endogenous cycles is old, since 

we can find it in the work of Hicks, Kaldor or Goodwin but, for a long time, 

the argument of irregularity of the real-world business cycles forbade serious 

consideration of such theories which were predicting periodic recessions. The 

main part of the economics profession therefore concentrated on the study  

of exogenous shock models of economic fluctuations, which have become so 

familiar that many textbooks refer only to this type of explanation. How

ever, nothing induces to believe that the so popular exogenous shock theory 

provides the only possible relevant explanation for business cycles or other 

fluctuations : the internal mechanics of a market economy might bear at 

least a part of responsability.

The fact that irregular cycles and even a certain type of chaos can have 

their roots in an entirely deterministic dynamic is well known by the math

ematicians since the foundations of bifurcation and chaos theory have been 

elaborated. Very simple dynamics like the so often used ‘tent map’ or the 

unidimensional discrete logistic map have been shown to lead to cycles and 

to different types of deterministic chaos. Furthermore, the research on multi

dimensional dynamic systems has had a considerable impact on several fields 

such as physics, biology, chemistry and ecology, spheres in which several ex

amples of chaotic behaviour originating in determinism have been found in
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recent years, and some economists have started to investigate the possibility 

of endogenous cycles and of chaos in the framework of modern economics.

Research has shown that competitive equilibrium models may, in the 

absence of any exogenous shock, generate endogenous fluctuations which are 

entirely consistent with complete markets and perfect foresight. The fact that 

the literature on endogenous fluctuations almost exclusively concentrates on 

models with no intrinsic uncertainty does not mean that its attem pt is to 

explain business cycles etc exclusively by the effects of market mechanisms ; 

to look at extreme situations in which only extrinsic uncertainty may m at

ter constitutes a methodological choice which aims at exposing the direct 

effects of the market and to avoid, at this stage of mathematical knowledge 

about non-linear dynamical systems, unextricable technical complications. 

The literature can be divided into two parts : on the one hand, there is the 

research on Optimal Growth Models, on the other, the work on Overlapping 

Generations Models. The latter constitutes the main part, fact which has 

quite simple an explanation : it is the only neo-classical model which requires 

sequential trading in the absence of market imperfections.

Endogenous equilibrium cycles in the framework of Overlapping Gener

ations Models have been, in fact, a fashionable topic since the mid-eighties, 

when Jean-Michel Grandmont, in his seminal paper [8], studied and proved 

the possibility of endogenous cycles in a pure exchange, perfectly com peti

tive economy. In his model however, endogenous cycles are possible only if 

saving is a decreasing function of the interest rate and, to be more precise, 

no cycle can exist if the lES (interest rate elasticity of saving at the Golden
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Rule stationary state) is larger than —0.5. Farmer’s paper [6] was the first to 

consider an OLG economy with production, but in his model the existence of 

cycles depends on the presence of financial debt of the private sector toward 

the government (negative outside money). The very first paper to study the 

problem in the framework of a OLG economy with production and no inter

vention of a public authority, thus in a world of “laisser-faire”, was Reichlin

[11]. In his one-sector model, production is characterised by a CES function 

with two production inputs, capital and labour, the latter being supplied 

wage-elastically. Reichlin showed that cycles are possible in his framework 

with a positive lES and a low elasticity of substitution between the factors 

(enough complementarity is required). In another paper [12], now in a two- 

sector model, Reichlin proved that cycles and chaotic dynamics with positive 

lES do not necessarily require wage-elastic labour supply. Jullien [10] exam 

ined an OLG economy with one sector, where production is made through 

a neo-classical CRS technology (capital and labour are supplementary), and 

labour supplied inelastically ; the existence of a nominal asset (a bubble) 

is required to relax the link between investment and aggregate saving and 

generate cycles through self-fulfilling expectations on returns. However, a 

drawback to his model is that again Grandmont’s condition on the saving 

function is required, and thus makes the model empirically unlikely. Further

more, the example given for the existence of cycles of order three involves a 

negative rate of time preference (agents prefer future consumption...).

A topic which appears to be very interesting is the study of endogenous 

cycles in an economy with externalities. In his paper “Dynamic Externali
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ties, Multiple Equilibria, and Growth”, Boldrin [1] considered a one-sector 

OLG model with perfect markets, neo-classical production with a dynamic 

externality of Romer [13] type, a rate of depreciation of capital equal to one 

per period and established the possibility of multiple equilibria and trapping 

regions. In the case of a time-separable utility of GRRA type with the same 

coefficient of relative risk aversion in each period, a rate of time-preference 

equal to zero and Cobb-Douglas production with externality, Boldrin showed 

that the overspill-effect has to be rather important for poverty traps to occur. 

His example proves cycles to be possible with positive TES and supplemen- 

tarity of the production inputs.

The present paper deals with the least possible level of disaggregation of 

an OLG model satisfying all the neo-classical assumptions from the point of 

view of the private sector, namely a two-sector model with one consumption 

good and one investment good, only one type of capital and one type of 

labour. We study, under the conditions insuring existence of a stationary 

state of the economy, the local dynamics around this point and conclude to 

the impossibility of Hopf bifurcations. We then consider the effects of positive 

spillovers from total capital stock onto the efficiency of labour in each sector 

and show how local dynamics are changed, allowing now Hopf bifurcations to 

occur. We establish the existence of attractive closed orbits around the steady 

state by using the Hopf Bifurcation Theorem for the discrete-time setting. 

Furthermore, we look at the existence and stability problem of balanced 

growth paths in the two-sector OLG economy and show the difference with
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regard to one-sector models. Finally, we prove that some of the results extend  

to the Infinitely Lived Agent problem in discrete-time setting and establish  

therefore the link between the results obtained by Cazzavillan [4] and the 

setting of continuous time.

1 T h e  M o d e l

We take the framework of Galor [7] augmented by spillover from the total 

capital stock onto the efficiency of labour in each sector. Tim e is discrete. At 

each date a new generation of agents is born ; the size of each generation is 

assumed to remain constant over time and will be normalised to one. Agents 

live for two periods ; in the first period of their life, they work, consume 

and save for their old age, and in the second, they consume their actualised  

savings. Bequests are not allowed. There are two goods in the economy, one 

homogeneous perishable consumption good and one homogeneous investment 

good. Both production sectors combine two factors, capital and labour, the 

latter being provided inelastically. There exists only one type of capital and 

one type of labour which can be costlessly allocated between sectors. Firms 

are owned by the old people ; the number of firms is supposed large enough 

to have perfect competition and thus profit maximisation in both sectors.

Agents are characterised by their utility, which is supposed time-separable 

and of CRRA type :

+  0L7?.(c<,<+i )
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where Q,t+i denote respectively consumption when young and when old 

of an agent of generation t, cr >  0 is the coefficient of relative risk aversion 

(equal to the inverse of the elasticity of substitution between consumption at 

any two points in time) and 0  =  1/(1 +  r), where r g] — l,+ o o ]  is the rate 

of time preference.

The production of each good is of the following type :

c ,  =  

h  =

(a ,/?) G]0, l p and (j>',i/’) G X [0,1[, Ki t̂ being the level of capital at 

time t in sector z, the aggregate level of capital at tim e t. The rate of 

depreciation per period of the capital is 6. We suppose a  ^  fS (two sectors) 

and assume full employment.

T ^ 2,t — 

L\̂ t +  T2,< = Lt.

We reformulate the model in per capita terms ; denoting < the proportion 

of the labour force allocated to sector i and the per capita capital stock 

in sector z, we get :

it =  k i i k t K f -

Since we have

+ h,t — 1

+  l2,t^2,t =  kt
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we can eliminate and obtain :

Firms behave com petitively and maximise their profits in each period, 

without taking into account the externalities. Let Ct be the com petitive 

wage rate and the competitive rate of return on capital and pt  the relative 

price of the consumption good in terms of investment good (the numeraire 

here). Profit maximisation and constancy of labour force imply :

=  (1 -  I3)k ltk t,

rt =  ptak^-^k'^ =  /3k^~^kf,

If we denote by W( the wage-interest rate ratio, we see that

ki,t — 2̂,t — )

where a =  a / { l  — a)  and 6 =  /) / ( !  — /?). Thus price, wage and interest rate 

can be expressed as functions of ujt and kt  ̂ which will be chosen as state  

variables. Notice that only kt is predetermined.

Maximisation of utility

m a x  u{ct^t,Ct^t+\) 

s .t .  ptct,t  4-  ,  —  <  et,
1 -  6 +  rt+i

yields the Euler equation :

\ i  -  - ^ 0 ( 1  -  +  n + i)c t,^ r
V i + i
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The equilibrium conditions

~  PtCt t̂ =  (1 — 6)kt +  {kt^i — (1 — S)ki),

t̂+i — (1 T Hi

give the dynamics of the economy :

kt+i =  — -— j ^ b ^ u f ~ ^ k f {1 -  S)kt, (1)
CL —  0

(jJ(3-aiJ)-v 
t + 1  ^ t + 1

1 k(+1
0  6t — kt+i

=  -  5) + (2)

If <7 =  1, equation (2) reduces to :

It is easy to see that a steady state (k^ôj) can only exist if /? +  1. If this

condition does not hold, then the economy does not admit any stationary 

state for the variables k and w, but there is a possibility for balanced growth 

to occur. We shall proceed as follows : in section 2, under the assumption 

^ +  1, we look at the existence of a stationary state and study the nature

of the local dynamics around this point, proving the possibility of attractive 

closed orbits. In section 3, we consider the case /3 tp =  I and examine the 

questions of existence, uniqueness, stability of balanced growth paths.

2 L o ca l D y n a m ic s  a ro u n d  th e  S te a d y  S ta te

Contemplating (1), (2), we realise that we are confronted to a highly com

plex system of non-linear dynamic equations which cannot be formally stud

ied in general : except for the cases a =  0 V 1, a formal and relatively
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‘useful’  ̂ expression for the steady state cannot be determined. We shall 

therefore adopt the following strategy : we consider the limit case of risk 

neutral agents (< 7 =  0) and study the behaviour of the variables in a neigh

bourhood of the steady state. All the results obtained for this extreme case 

will also hold for cr small enough. The argument we use here is continuity of 

the operators trace and determinant of a matrix and is exposed in Appendix 

A.

2.1 Steady S tate, and L inearization

Fixing <7 equal to 0 we get :

<5(1 — Ĵ ) +  r(l -  a)
w =

a (r-hS)

r + 8 r<5( l  — 4- r(l — a)
1

/3 a{r -f 8)
i-p

under the assumptions

(Co) 

(C l) r 8 > 0.

(C2 ) : <5(1 - /? )  +  r(l -  a) > 0.

Condition (Co) rules out, as we shall see below, the case where balanced 

growth may be possible. Condition (C%) imposes a restriction on agents’

^It is c lear  t h a t  t h e  e q u a t io n  g iv in g  t h e  s t e a d y  s t a t e  c a n  b e  s o lv e d  fo r m a l ly  for m o r e  

v a lu e s  o f  cr, n a m e l y  for all t h o s e  w h ic h  y ie ld  a lg eb ra ic  e q u a t i o n s  o f  f irs t ,  s e c o n d  or  th ir d  

o r d e r .  N e v e r t h e le s s ,  o n ly  t h e  c a se s  0 a n d  1 e n su r e  r e la t iv e ly  s im p le  d i s c u s s io n s  o n  lo ca l  

d y n a m ic s .

133



preference for future consumption ; thus, whenever agents are supposed to 

prefer strictly present consumption (r >  0), this condition is automatically 

met. Finally, (Cg) is automatically met whenever agents prefer, in a large 

sense, present consumption^ (r >  0) ; if this condition does not hold, then 

(C 2 ) imposes an investment good production not too much more capital 

intensive than the consumption good production. Conditions Ci and C2 can 

be summarised by : r +  6 >  maa:(0, S{P — ct) / ( l  — a )).

Since we want to study the local behaviour around the steady state, we 

linearize the system around (^, w). We write :

/C( =  k ( l  +  €t),

Lût = w ( l  +  r]t).

Thus, the jacobian of the system (1),(2) evaluated at the steady state has 

the same roots as the matrix J  defined by :

/   ̂ \  /  T T \  /  \J\2

\  J2I J22 /

€.i

\  !

e<+i 

\  ^ < + 1

which has a slightly simpler expression. We obtain : 

J ii =  1 — 6(1 — — (r +  6)
a  — /3

J\2 — 6(3 +  (r -f- 6)

[(1 +  r)(V’ -  z/) 4- [(1 +  r)u -  (1 -  6)^][1 -  6(1 - ? / ) ) -  (r +  6 ) ^ —^ ])
J 2 1 —

J22 —

[(1 +  r){(3 -  o) +  (r +  6)(1 -  /?)]

[(1 +  r)[j3 -  q) +  [(1 +  r)u -  (1 -  6)^][6^ +  (r +  6 ) ^ ^ ] ]  

[(1 +  r)(^  -  o) +  (r +  6)(1 -  (3)]

^ P re fer e n c e  for a c tu a l  c o n s u m p t io n  is o f t e n  ta k en  as an a s s u m p t i o n . . .
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if [(1 +  r){(3 — a ) +  (r +  6)(1 — /?)] ^  0. If this denominator happens to 

be equal to zero, then the system is locally degenerate and reduces, in a 

neighbourhood of the stationary state, to :

(̂+1 =

situation which is of no interest for us here since our purpose is to look at 

parameter configurations which give complex eigenvalues for the Jacobian.

For convenience, we define :

(C'a) : [ (1+ r ) ( / ? - a )  +  (r  +  (Ç)(l- / ? ) ] >  0. 

and symmetrically :

( c ; )  : [ ( l + r ) ( / 3 - a )  +  (r +  6 ) ( l - / 3 ) l < 0 .

None of these conditions does, a priori, reflect any theoretical economical 

idea. But we can notice that if 6 =  1, then (C3) reduces to (1 + r ) ( l  — a) >  0, 

which is always true. Thus, this condition imposes a restriction on the capital 

intensity of the consumption good sector compared to the one characterising 

the investment good sector if and only if capital does not depreciate in one 

period^.

For the rest of section 2, we suppose that conditions (Co), (C i) and (C 2 ) 

hold and show which results can be derived from the supplementary assump

tion (C3) or (C3).

*As a  m a t t e r  o f  fa c t ,  m o s t  O L G  m o d e l s  fix 6 =  1 ... for a  q u e s t io n  o f  tr a c ta b i l i ty .
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If we consider the slope of the locus : kt+\ — /:< =  0, we see that it is 

always positive under assumption (C2 ). We have indeed :

M l  -  ^ )  +  ( r  +  5 ) ^ 1 ^  =  W  +  ( r  +ot — p  k a  — p  uj

We have thus consistency with the theory’s prediction saying that the lower 

the interest rate for a given wage (i.e. the higher u j ) ,  the higher the demand 

for the investment good and the higher the total per capita capital stock'*. 

Furthermore, we see that the slope of the locus : — W( =  0 has a sign

depending upon the relative magnitude of the parameters of the spillover 

effects 'ip &nd u.

2.2 A bsence o f Spillovers

This corresponds to the standard neo-classical model. But caution is 

required here : saddle-point stability is not, in general, the only possibility 

under this assumption, as Galor [7] has shown. Indeed, we shall see below 

that even with our extremely nice utility and production functions, saddle- 

point stability is guaranteed only if the consumption good sector is less capital 

intensive than the investment good sector (i.e. when a < /3). If this condition 

does not hold, then the steady state can be a node, a saddle point or a source.

When z/ =  0  =  0, the dynamical system (I), (2) is of the following form :

kt+i  =  — -— T  (1 -  S)kt ,  ( ! ' )
a — 0

< T  =  - S )  +  (2')

'N o w  th e  a s s u m p t i o n  i p  G [ 0 , 1[ b e c o m e s  c learer . . .
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which means that the dynamic of W( is completely independent of kt  ̂ which 

implies a matrix J  of upper triangular form :

\  0 J22

where
Jii =  (1 — — (r + 5)

J22 =

a  —13 
( 1  + r )( /?  -  a )

( 1  +  r)(/? -  q) +  (r +  6 ) ( 1  -  /)) '
But this means that the eigenvalues of J  are always real, and the dynam 

ics are thus limited to non-spiral behaviour, and Hopf bifurcations^ cannot 

occur in the dynamical system. Condition (C 2 ) implies that J\\  is strictly  

larger than 1 if a  <  ^ and condition (C3) implies that it is strictly negative 

if /? <  a . J 2 2  is positive and strictly less than 1  if a  <  /9, and, under assump

tion (C3), strictly negative otherwise. As a matter of fact, to assume (C3)  

appears to be rather useless here since it does not rule out any possibility for 

the nature of H : it can be a sink, a saddle-point or a node, just as under 

assumption (C 3 ) (but under the latter assumption H is monotone, whereas 

it is oscillating under (C3)). Therefore, we can conclude to :

P r o p o s it io n  : In the absence of spillovers, there is no possibility for  H 

to be a spiral sink or a spiral source, and Hopf bifurcations are excluded for  

the dynamical system. Under the assumptions necessary for  existence, the 

steady state equilibrium. Q is always a saddle-point if the consumption good

 ̂A  H o p f  b i fu r c a t io n  o c c u r s  in a  d y n a m ic a l  s y s t e m  w h e n  th e  e ig e n v a lu e s  o f  t h e  J a c o b i a n  

cro s s  t h e  u n i t  c ircle  in C ~ .
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sector is less capital intensive than the investment good sector (a <  l3). If  

the reverse is true, then the steady state can be either a sink, a saddle point  

or a source.

2.3 P resence o f  sp illovers

In a discrete-time setting, complete stability is guaranteed whenever both  

roots of the characteristic polynomial of J  are strictly smaller in modulus 

than 1. This offers, of course, far more possibilities than the continuous-time 

setting where the real part of both roots must be negative to have complete 

stability. As a matter of fact, four situations can arise in our framework ;

(i) 0 <  D et{J )  <  1 and A < 0

(ii) 0 <  D et{J )  <  1 and A >  0 and 0 <  T r (J )  <  1 -f Det{J)

(iii) 0 <  D et(J )  <  1 and A >  0 and —[1 -(- Det(J) ]  <  T r (J )  <  0

(iv) —1 <  D et{J)  <  0 and |T r(J )| <  1 +  Dei(J )

where A  denotes the discriminant of the characteristic equation (A  =  —

4Z)ei( J )). The first case corresponds to two complex conjugate roots : this 

is the case which gives a spiral sink. The second case corresponds to two 

positive roots that are smaller than 1 : H is then a monotone node. The 

third case gives two negative roots larger than -1, and the fourth leads to 

one negative root larger than —1 and one positive root smaller than one, and 

convergence to the node H is oscillating in these situations.

A first consequence of the presence of spillovers is that the steady state 

Ü is no longer necessarily a saddle point when a  <  /3. It is indeed very easy 

to exhibit numerical examples showing that all four cases cited above can
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occur, and to show that the dynamical system  bears the possibility of three

types of interesting bifurcations : saddle-point, flip and Hopf bifurcations.

In the following, we shall nevertheless focus our attention on the possibility

of Hopf bifurcations.

It is (nearly) straightforward to verify that we have ;

r S  6(1 — /)) 4- r ( l  — a )
T r ( J ) = l  +  £)e/(J) +  (^ +  ^ - l )  

+ (1 - 6)

a  — /? (1 +  r){/3 -  a ) +  (r +  6)(1 — /3) 
(1 +  r ) ( l -  a )

(1 +  r){P - a )  +  (r +  6)(1 - / ? ) '

We know that if there exist values of the parameters such that D e t (J )  =  +1

and A  <  0, then there is a possibility of obtaining Hopf bifurcations. These

conditions impose :

r +  6 6(1 — /3) r ( l  — q )
- 4  < (^  +  ^ -  1)

A -  /? (1 +  r){(3 -  O') +  (r +  6)(1 -

, n _  _______ (1 +r) ( l  -  a ) _______
'  ' ( l  +  r ) ( / 3 - a )  +  ( r  +  i ) ( l - / 3 )  <  '

We see that if o  <  /9, then we need /? +  '0 >  1 to have the possibility of

Hopf bifurcations. Furthermore, Det{J)  =  +1 then implies that necessarily 

u >  Ip. If we suppose <  a,  the discussion is more complex : under 

assumption (C3), we need /? +  0  < 1, but if we suppose (C3), then there is no 

general condition on ^ +  0  ; furthermore, D et(J )  =  +1 does not impose any 

general condition on the relative magnitude of the sector specific spillovers 

under assumption (C3), but it is easy to verify that 0  has to be smaller than 

V under assumption (C3). We can summarise :

(a <  /3) A  (/? +  0  >  1) A  ( 7/ > 0 )

(/? <  O ' )  A  { [(C3 ) A  (/9 +  0  <  1)] V [(C3) A  (// >  0 )1} .
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Notice the interesting fact that in the case of a more, but not too much more, 

capital intensive consumption good sector, Hopf bifurcations can only occur 

when the externality in the investment good production is not too strong 

(/? -f <  1), a strong externality in the investment good sector enhanc

ing on the other hand the possibility of Hopf bifurcations in the situation 

where the investment good sector is the more capital intensive. Numerical 

examples given below will establish that Hopf bifurcations do indeed occur 

in both situations, and that it is possible to exhibit parameters such that 

the bifurcation is supercritical. But first, a remark : following Grandmont 

[9], we should avoid cases of large resonance, which are not well understood 

until now and correspond to the cases where, for the value of the bifurcation 

parameter t/q, the argument is of the form 27r/ç, q =  1 ,2 ,3  or 4. Thus,

we should look for Det{J )  =  -\-l and |T r(J )| < 2 and T r ( J )  ^ { —1,0}.

2 .3 .1  E x i s t e n c e  o f  S t a b l e  C lo s e d  O r b i t s  in  t h e  C a s e  ( a  <  j3)

Let us take the following values for the parameters : 6 =  r =  0.1, 

(3 =- 0.7, Oi =  0.5. We have :

D et(J )  — 1.1 +  (4.5)%/) — (4.1)//,

T r (J )  =  3.15 +  %/) — (4.1)//.

When 'Ip =  ipQ =  41/70 and // =  383/574, we have T r (J )  =  4-1 and D et{J )  =  

4-1. Therefore, the eigenvalues are =  c o s ( 7 t / 3 )  4- i .szn(7r/3) and A 2  =  A % .

®Tlie two com plex  conjugate  eigenvalues are written under the  form A =  and

A =  p(T7)e-‘®( )̂.
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Since
, d p .  l , d T r { J ) .  1 ^

the real part of the eigenvalues is not stationary with respect to the parameter 

if̂  at the point considered here and we have a Hopf bifurcation. For ^  D.

is completely stable, whereas for <  ‘0 , is completely unstable. The Hopf 

bifurcation Theorem applies : in the neighbourhood of the bifurcation value 

0 0 , there exist values such that the economy exhibits closed orbits around 

the steady state. The stability properties of these orbits depend on whether 

the bifurcation is subcritical or supercritical. If the bifurcation is supercri t

ical, then we can conclude to the existence of a whole family of parameters 

such that a stable closed orbit around the steady state exists. A subcritical 

bifurcation only gives unstable closed orbits and seems therefore a pr iori less  

interesting. We shall give here, without any justification, the methodology 

to apply to determine whether or not the bifurcation is supercritical :

P r o p o s it io n  : Suppose A =  cos(0 (0o)) +  zs in (0 (0 o )) and X are the 

eigenvalues of the jacobian at if =  0q. There always exists a basis where 

the local dynamical system can be written under the form :

V y t + i  )

cos(0 (0 o)) - s i n ( 0 (0 o))

 ̂ sin(0 (0 o)) cos(0 (0 o)) )
+

\  7

f {^ t , y t )  

\  y (xu y t )

Then the bifurcation is supercritical z/a(0o) >  0 and subcritical z/a(0o) <  0,

^For d e t a i l s  o n  th e  th e o r y  o f  b i fu r c a t io n  in d i s c r e te  t im e  s e t t i n g s  s e e ,  for in s t a n c e ,  

G r a n d m o n t  [9].

41



]V’O5 0 2 [; the orbits are aperiodic and even dense in the closed curve C-̂ p.

2 .3 .2  E x i s t e n c e  o f  c lo s e d  o r b i t s  in  t h e  c a s e  <  a)

We consider now a case where the consumption good sector is more cap

ital intensive than the investment good sector. We know from a preceding 

discussion that if a Hopf bifurcation occurs in this situation when (C 3 )  holds, 

then necessarily the parameters p  and if) satisfy the condition ^ ^  <  1 at

the bifurcation point.

Let us take a  =  0.7, /? =  0.5, 6 = 1  and r =  0.1. This choice of parameter 

values leads to saddle-point stability in the absence of externalities. We have :

D et{J )  =  (0 .3)-^[2 .15i/ -  2.35^ +  0.33],

53 1
T r ( J )  =  l +  D et{J)  +  j ( r l > - - ) .

We choose to look for a Hopf bifurcation such that 0(V ’o) =  37t/4, which 

requires D et{J )  =  - f l  and T r [J )  =  —\ /2 . This leads to the choice of :

2 9 - I 2 V 2

Wq =

106 ’ 
6497 -  2820 \/2

22790
1 ,5 3  2 . 3 5 , ^ ^

2 \  h o  2T12 0.3  ̂ ^

Again, the Hopf bifurcation theorem applies. Notice that ^ xÎ q <  1, and

Oi-\- Vq < \ .  To determine the nature of the bifurcation, we apply exactly the

same method as in the preceding example^ and thus get :

^(V’o) ~  —1274.25 <C 0.

'^For t h e  c a lc u lu s ,  se e  A p p e n d ix  B.
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Therefore, the bifurcation is subcritical and we can only proclaim the fol

lowing : there exist V’l <  '0o <  ' 0 2  and an open neighbourhood V of H such 

that :

• If î/>i <  ^ <  00? then n  is asymptotically unstable and there exists no 

invariant closed curve in V.

• If î/jq <  0  <  02, then n  is stable and there exists a unique, asymptotically 

unstable closed curve in V.

We see that closed orbits exist even if the externalities are not very strong. 

Models with externalities like Boldrin [1], Cazzavillan [4], [5]... exhibit closed 

orbits only when the spillover is strong. But as a matter of fact, the result 

is not really astonishing since Galor [7] showed that cycles are possible in 

a neo-classical two-sector model in the absence of spillovers for an adequate 

choice of the utility function characterising the agents preferences and of 

the production functions. Nonetheless, it is remarkable that, in our model, 

strong externalities are required if the investment good sector is the more 

capital intensive, but not if it is the consumption good sector which is the 

more capital intensive.

The question whether supercritical bifurcations can occur when the con

sumption good sector is the more capital intensive remains to be investigated. 

We shall now turn our attention to the problem of balanced paths in the two- 

sector economy.
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3 B a la n c e d  G r o w th  P a th s

We address here the question of existence of a balanced growth path, 

and study, under the assumption of existence, the stability of the path. It 

is sufficient to show that these questions are non trivial in the case cr =  0, 

which we shall assume in this section.

Balanced behaviour takes place whenever :

<fi±i =  b p .  =  X > 0 .
uJt kt

There is balanced growth if A >  1, Injecting the assumption of balanced 

behaviour into the dynamic equations (1) and (2), we get immediately the 

following condition :

—̂ and independent o f t  /? +  ^  =  l .
kt

Notice that, at this stage, no condition on a  +  i/ appears. If we pose =  pkt^ 

we get the following equations for the existence of a balanced path ;

A '-(“+‘') =  0 [ ( i  -  i )  +

\ ( a  - b )  =  [ail -  +  (1 -  S).

Not only is it impossible to exhibit a formal solution for this system except 

for the special case a  4- =  1, but it may well be that the system does not

have any solution at all for a  ly ^  I : then existence is guaranteed only if 

{a u <  1) A (a  >  p)  or {a ly > I) A (a  <  (3). Furthermore, even in 

the case a  ly =  1, existence of a balanced path does not necessarily imply 

growth since the condition A >  1 may not hold, and this in both cases a  <  P
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and /? <  a .

Proof  : If a  +  i/ =  1, then (r +  6) =  and A(a — b) =  [afi —

^). If the parameters of the economy verify r+^  =  /3b^~^{al(l — 

a )Ÿ ~ ^  ̂ then /z =  (1 — a ) / a  =  1 /a  and A =  (1 — S). Thus in this situation, 

which can occur in both cases a  <  /3 and a  >  /?, the only balanced path is 

the non-production path® which for sure does not correspond to growth. □

Let us suppose now that a balanced growth path does exist. Is it stable 

or unstable ? To see which situation occurs, we pose Zt =  (jOt/kt and study  

the stability of the steady state of :

i y ( 3— a

a — b

l - ( o r + i / )

= Zf“"0[(l - 6 )  +

There is no general answer to give concerning stability of the path. To 

illustrate the complexity, let us consider the very simple case ol u =  1. We 

see that, at a fixed point /z :

/ dZt+i  \   1__________
dz,  i +

p — a

We see that if a balanced growth path exists, then it is :

•  stable if a  <  ^.

•  either stable or unstable \f (3 <  a.

=  l / a  = >  /] t =  1 and  th ere  is th ere fo re  n o  in v e s t m e n t .

H 7



Thus, there exists a great difference with regard to the one-sector model 

where balanced growth is taking place for all initial conditions of the economy 

if the condition for the existence of a balanced growth path, which is simply 

u 4- V =  1 if the production is of the form F ( K , L )  =  is met.

In the framework of a two-sector model, existence is not guaranteed and 

stability or non-stability are both possible. But this is not the end of the 

story : in a forthcoming paper, we shall prove that there is the possibility 

of cycles of the growth rate around a steady state value and that the model 

considered here allows even the dynamics of to be chaotic.

4 C o n c lu s io n

We used a two-sector OLG model meeting all standard neo-classical as

sumptions from the point of view of the private sector to show the role of 

externalities in the determination of the dynamics of the economy. We estab

lished first that, in the model without externalities, the nature of the steady 

state depends on the relative magnitude of the capital intensivities in the 

different sectors of the economy, showing that saddle-point stability is guar

anteed only in the case of a more capital intensive investment good sector, 

the stationary state being either a sink, a saddle point or a source if this 

condition is not met. Spiral behaviour is excluded under our assumptions 

when externalities do not operate. But when there exist spillovers from the 

total capital stock onto the efficiency of labour in each sector, then Hopf bi

furcations can occur in the dynamical system, without any specific condition
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on the relative magnitude of the external effects. Existence of supercritical 

Hopf bifurcations, and therefore existence of attractive closed orbits around 

the steady state for whole continua of the parameters, has been proven for 

the case of a more capital intensive investment good sector. Whether su

percritical Hopf bifurcations can appear in the alternative situation remains 

to be investigated. Finally, the difference with the one-sector model with 

regard to the existence and the stability of balanced growth paths has been 

emphasized.

In Appendix C, we show that the local dynamics around the steady state  

of an ILA model in discrete-time setting are of the same nature as for the OLG 

model when the coefficient of relative risk aversion is sufficiently small. From 

this we conclude to the non-robustness of the conditions for Hopf bifurcations 

or the existence and the stability of balanced growth paths with regard to 

the specification of continuous or discrete time, for the results obtained here 

differ strongly from those found by Cazzavillan [4] in the continuous-time 

setting. For instance, in the continuous-time setting, Hopf bifurcations can 

occur only if the spillover in the investment good sector is strong +  >  1)

and if z/, the spillover in the consumption good sector, is larger than 'if). We 

have seen that in the discrete-time setting, neither of these conditions is 

necessary. We therefore have to give this sad conclusion of non-robustness.

The problem of existence of parameter configurations such that the econ

omy exhibits self-sustained growth with a cyclic, or even chaotic, growth rate 

is clearly appealing since most existing models deal with economies where no 

long run growth is possible. Until now, this type of dynamics has been ob
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tained in only two models, namely Cazzavillan [5] and Boldrin and Rustichini

[3]. Unfortunately, these two papers contain important errors which invali

date the claims of their authors. Cazzavillan’s paper studies a discrete-time 

one-sector ILA model with an externality, onto the productivity of labour in 

the production of the consumption good and onto the utilities of the agents, 

of a flow of public services which are financed through a proportional tax 

on income. The use of immediate feedback, which seems already abusive 

in a continuous-time setting à la Barro, appears to be absolutely unaccept

able when time is discrete, and the whole result of Cazzavillan relies on this 

strange assumption. Therefore we cannot accept this model. Boldrin and 

Rustichini’s model, a two-sector infinitely lived agents model with externali

ties in the production sector, leads to dynamics which cannot, except in the 

case of total capital depreciation in each period, be studied with the stan

dard mathematical tools used to detect cycles or chaos ; the authors’ claim  

of chaos relies on results ‘established’ by Boldrin and Persico [4] who, un- 

fortunaly, consider an incorrect representation of the dynamics. Thus, both  

existing models have to be rejected, and the challenge still remains.

Further research could be undertaken to study the question of what is 

called sunspots. In OLG models, the rational expectations equilibria are not 

necessarily deterministic, even in the absence of exogenous shocks. Perfect 

foresight equilibria are only one class of possible equilibria as the research 

on sunspots has shown, and the fact that fluctuations can also originate in 

self-fulfilling beliefs should not be underestimated. It could be interesting 

to look at the possibility of sunspot equilibria in our model and to estab-
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lish conditions for their existence, conditions that have to be compared to 

those necessary for deterministic cycles, which are often more constraining. 

Furthermore, the non Pareto-optimality of com petitive equilibria when ex

ternalities do operate in the economy leaves open a whole field of research 

concerning the welfare improvement through government intervention and 

the effects of public policies on the possibility of endogenous fluctuations. 

And last, but not least, there remains the problem of implementation of ra

tional expectations equilibria, i.e. a possible process according to which the 

values of variables predicted by the equilibrium are reached. The problem of 

stability under learning of perfect foresight equilibrium trajectories has been 

examined, for instance, by G rand mont and Laroque [10], in the context of 

back ward equilibrium dynamics ; in our framework, the dynamics happen 

to be forward, and the problem should be rather easy to study.

' ° T l i e  d y n a m i c s  o f  a s y s t e m  are b a ck w a rd  if  th e  e q u a t i o n s  are u n d e r  t h e  fo rm  X t  

F { x t  +  \ ) ,  w h e r e  F  is no t  h i jec t iv e .  A forward d y n a m ic  h a s  th e  form  y t + \  =  G { y t ) .
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A P P E N D IX  A : T he C ontinuity A rgum ent

From basic mathematics, we know that (<7, =  (cr, a , /), f/, r, 6) —»

J a c(F ), where F  =  (0 , ^ ), is continuous. Furthermore Det  and T r  are con

tinuous operators. By composition of continuous applications, we deduce 

continuity of the eigenvalues with respect to the parameter vector. This con

tinuity and the intermediate value theorem imply that if a Hopf bifurcation 

occurs for (0,^), then there exists a neighbourhood F  of cr =  0 such that for 

all cr G y ,  there exist such that a Hopf bifurcation occurs at the point

As a consequence of this, in a sufficiently small neighbourhood of cr =  0, 

the analysis undertaken in this paper is still valid.

A P P E N D IX  B : H o p f B ifurcation

A glance at equation (2) induces us to simplify the tedious calculus of 

partial derivatives of an implicitly defined function by assuming 6 =  1. Under 

this assumption, Ut+i is explicitly defined.

1.1.) Derivatives of F  defined by : =  F{kf>ujt).

These partial derivatives are easily determined ;

Ft =  \il>(aw -  k) -  k
a — b

F„ =
a — b

Ftt =  -  l)(aw  -  k) -  2k
a — b
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^ +  ( P -  2) ( aw -  t ) l . 
a — 0  '■

Fkuj =  - -  [a^w +  xf>{/3 -  l){au) -  A;) +  (1 -  P)k^.

[(ÿ  -  2)(ow -  A:) -  3A:).

— ~ —  ̂|2a /̂jo; +  (/? — 2){auj — k) — {P — 2)&j.

Fktw =  -  l)w  -  (0  +  1){P -  l)&j.

[3aw + {p -  3)(aw -  A:)]. 
a — 0 '■ J

1.2.) Derivatives of G defined by cjt+i =  G(A:(, w j .

To get not too boring expressions, it is preferable to write :

G =  Aw'̂ Ar̂ F",

where A — , x =  {P — o :)/(l — a ) , y =  {ip — u ) / (1 — a) and

z =  y / ( l  — a ). We obtain thus the following expressions for the partial

derivatives of G  :

Gkk =Acj""A:^+^“^[y(y -  1) +  2.yzFk +  z[z -  l )F l  +  zkF^k]-

Gww =Au;'^“^A: '̂'' ~̂ [̂.t(.t — 1)A;̂  +  2xzujkF^ +  z(z — 1)lj'^F  ̂ +  zw^A:fLw]-

Gkuj =Xuj'^~^k '̂^^~ [̂xyk +  xzkFk +  yzw fb  +  z[z — l)ujFkF^ +  zuokFku]-

Gwww =Aw''-^A;^+"-^[2'(3; -  l ) ( z  -  2)A:̂  +  3a:(T -  l)zwA;"F.

+  3zz(z  — l)uj^kF  ̂ +  3a:zw^A;^Fuw +  3z(z — l)Lû̂ kF̂ F̂ ^̂

T z ( z  — l) (z  — 2)uj^F^ +  ZLÜ k ^Lww]-
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Gkku =Au;^ — 1) +  2 yzF k  +  z { z  — l ) F ^  +  zk^Fkk]

+  z w  |^?/(y — 1)F^  +  2y{z  — l)FkFf^  +  2ykFkw  +  — 1 ) ^

X {FkkFi  ̂+  ‘̂ FkFkuj) +  (^ ~  1)(^ — 2 ) ^ ^  +  }•

=Aw-:»A;:'+-"[%/(y -  l) (y  -  2) +  3y(y -  l ) z F ,  +  3yz(z -  1)F^

+  3 y z k F k k  +  3z(z — l ) k F k F k k  +  z(z — l) ( z  — 2 ) F ^  +  zk^Fkkk]-  

Gkwuj =Aw^ — l ) k ^ [ y  +  zFk]  +  2 x z L o k [ y F ^  +  (z — l )F(^Fk]

+  z u } ^ [ x ( z  — l ) F ^  +  x F f ^ ^  +  (z — l ) (z  — 2 ) F ^ F k  

+  (z — l )k {F^^^^Fk  +  2Ff^Ff^k)  +  j -

We give now the calculus of the two numerical examples of 2.3.1 and

2.3.2, thus showing the procedure used to calculate a(^o)-

2.1.) Case a  <  P and /3 F fp >  I

Take o; =  0.5, ^  =  0.7, r =  0.1, 6 =  1, =  41/70 and u - 383/574. We

have seen that this corresponds to a Hopf bifurcation, the unit circle of 

being crossed at First, we have to find a basis in which the Jacobian

takes the desired form

/ cos(7r/3) — sin(7r/3) 1 /2  - V 5 / 2  ^

 ̂ sin(7r/3) cos(7r/3) y  ̂ V ^/2 1/2  y

This is achieved by finding an eigenvector in C  for the eigenvalue A =  

1/2  +  z \/3 /2  of the Jacobian in the old basis. If z — a +  z 6 is an eigen-
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vector corresponding to A, then (6, a) is an adequate basis.

Proof:  if we develop J{a-\-i 6) =  (u +  z u)(a +  z 6), we get : Ja  =  u a —v b, 

Jb =  V a u b. This shows that the Jacobian takes the right form in the 

basis (6, a), □

The Jacobian is :

'  J n  J M k l ü , ) 467/140 - (2 0 5 /1 0 0 ) ( l l /7 )

J 22 j  (172309/40180)(7/11) 

An eigenvector of this matrix for 1 /2  +  z \/3 /2  is :

(  1
z =

\  (2779 - ï490v 5)/3157  

and an adequate basis is therefore given by the matrix

/
P  =

0 1 

-4 9 0 ^ 3 /3 1 5 7  2779/3157

Thus, we have

- 1

G{k,ui)

■13407/5740

P  being the inverse of the matrix P  and thus equal to :

/ 2779/(490v^ ) -3 1 5 7 /(4 9 0 ^ 3 )
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The extremely tedious calculus yields

Fk =  +3.3357142857.

TL =  -3.2214285714.

Fkk =  9kk =  +0.4043340068. 

Fku, =  gtw =  -0.4320911097.

=  gww =  +0.4826744131. 

Fkkk =  9kkk =  —0.03056115. 

Fkka =  Atw =  —0.0135788512. 

Fkwuj =  gWw =  +0.0945225245. 

TLww =  gwww =  —0.9391088488.

Gkk =  +0.6633836309.

G w  =  -0.55750081862. 

Gww =  -0.51800217818. 

Gkkk =  -0.0256236692. 

Gkku, =  +0.063696038.

Gtww =  +0.2201104268. 

Gwww =  -0.5826399932.

fkk =  -1.14369308191. 

fku. =  +0.6589712779.

=  +3.5073993024. 

fkkk =  -0.0047560.525.
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fkku; =  -0.8632261326. 

Aww =  +0.0725690451. 

/www =  -0.9077230925.

We calculate now the characteristic complex numbers which determine whether 

the bifurcation is supercritical or not :

C2o = -0 .6894  - 2  0.174528. 

C n  =  0.590907 +  i 0.221752. 

Co2 =  -0 .473345 +  i 0.154943.

C 21 =  -0 .091668 +  i 0.0783174.

We get a(V’o) =  —0.03737 +  0.44723 — 0.02199 % +0.387 and conclude to a 

supercritical Hopf bifurcation.

2.2.) Case a  >  (3 and /) +  %/)< 1

Take a  =  0.7, /? =  0.5, r =  0.1, 6 =  1, ^ 0  =  (29 — 12\Æ )/106 and 

ly =  (6497 — 2820\/5)/22790. This corresponds to a Hopf bifurcation in the 

case of a more capital intensive consumption good sector, the unit circle of 

being crossed at Again, we have to find a basis in which the Jacobian

takes the desired form

 ̂ c o s ( 3 7 t / 4 )  —sin(37r/4) \   ̂—1 / \ /2  —1 /\ /2

 ̂ sin(37r/4) c o s ( 3 7 t / 4 )  j   ̂ l / v ^  —1 /\ /2
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The Jacobian in the old basis is :

- 1 . 5 3 6 5 1 4  + 3 . 1 2 3 5 8 5

- 0 . 3 8 0 3 0 6  + 0 . 1 2 2 3 0 1

An adequate basis is given by the matrix

P  =
0 1 

0 . 2 2 6 3 7 7  0 . 2 6 5 5 3 1

(
P-^  =

- 1 . 1 7 2 9 6 0  + 4 . 4 1 7 4 2 0  

1 0

The values of the partial derivatives evaluated at the steady state are
V

F k =  — 1 . 5 3 6 5 1 .

&  =  + 3 . 1 2 3 5 8 .

F kk =  9kk =  — 2 . 2 5 3 5 8 .

Fku  ̂ =  9kuj =  + 7 . 3 6 6 6 6 .

Fujtj =  Quju =  — 1 9 . 0 2 2 3 5 .  

Fkkk =  9kkk =  + 1 5 . 4 7 4 6 9 .  

Fkku, =  9kkuj =  - 0 . 9 4 9 6 6 .  

Fkujuj =  9kuuj =  - 3 7 . 4 3 2 4 1 .  

=  9 luwu =  + 2 8 2 . 0 0 9 8 1 .

G kk  =  - 0 . 1 0 8 3 6 2 .

=  + 7 . 2 9 0 2 9 9 .

G w w  =  - 1 1 . 7 9 6 9 6 1 .
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Gkkk =  -1188.320761.

Gkkw — "765.983671.

Gww =  -113.032485.

(juiwu» — —8734.614381.

fkk =  +2.096398. 

fk^ =  +23.784486.

=  -29.799625. 

fkkk =  -5267.458502. 

fkk^ =  +292.591244.

/ w  =  -455.404802. 

f ^  =  -38915.212744.

The characteristic complex numbers are now :

C 20 =  5.8286 -  i 3.8499.

C n =  -6 .9258  -  i 5.3189.

C0 2  =  2.1453 +  i 8.0422.

C 21 =  -340 .1127 +  i 2412.5415.

We get a()/>o) % —1274.25 and conclude therefore to a subcritical Hopf bifur

cation.
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A P P E N D IX  C : T h e ILA M odel

We keep all the assumptions concerning production and form of the one

period utility, assume preference for the present (r >  0), and consider the

problem of infinitely lived agents. The agents’ problem is :
4-00

max  ■; ,
0 1

s . t .  kt^i  =  (1 — 6 4- +  Cf — ptCa t̂'

If we let the coefficient of relative risk aversion cr tend to zero, we see that 

the dynamics of the ILA model are given by :

<̂4-1 — it +  (1 ~

Pt+i = P ( 0 ( ( I  — ^) +  n4-i) ,  

which can be written under the following form :

ki+i =   ̂ +  (1 -  S)kt ,  (1")

=  w f -“ i f - ‘'0 [ ( l  - S )  +  (2")

These are exactly the equations characterising the dynamics of the OLG 

model. In particular, Hopf bifurcations can occur in both situations (/? +  ?/>> 

1) and {/3 ip <  1), which is at the opposite of the results established by

Cazzavillan [4] in the continuous time setting^^. We must even see that

^^Our n u m e r ic a l  e x a m p l e s  g iv e n  for th e  O L G  M o d e l  a s s u m e d  6 =  1, w h ic h ,  o f  c o u r se ,  

d o e s  n o t  m a k e  m u c h  s e n s e  in an IL A  M o d e l  w i th  sp il lo v er  from  c a p i t a l  u n d e r  t h e  fo r m  o f  

l e a r n in g  b y  d o in g .  B u t  it  is e a sy  to  ver ify  t h a t  H o p f  b i fu r c a t io n s  are  p o s s i b l e  w i t h  6 < <  1. 

W e  t o o k  6 =  1 in order  t o  s im p l i fy  th e  c a lc u lu s  n e c e s sa r y  to  d e t e r m i n e  t h e  n a t u r e  o f  t h e  

b i f u r c a t io n . . .
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many other results (concerning for instance the problem of balanced growth 

path) are linked to the continuous-time specification and do not hold in the 

discrete-time version of the model. This is of course a sad conclusion, since 

results are not robust with regard to time specification.

A P P E N D IX  D : T he C ase a =  1

Let us look at the particular case cr =  1 where savings are independent 

of the interest rate. We know^^ that the dynamical system  (1),(2 ') collapses 

into one single equation since (2') is of the form kt+i =  w^). Indeed, we

find :

kt+i =  +  (1 -  S)k,, (1)

=  (2')

It is immediate to verify that

and we can apply the implicit function theorem to write : (1),(2 ')

= F{kt),

LOi — G( k̂i .̂

A steady state ÇI =  {k ,ü)  exists if and only if /3 ip ^  1. Under this 

assumption, we get :

<5(/? — a )  -I- (2 4- r ) a

(1 - c v ) ( 2  +  r)
k =

^^Galor [7].
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2 + ’-
S ( j 3  — q ) 4- (2 +  r)o:^ ^ /3+V--1

(1 — a ) ( 2  +  r )

There are no conditions imposed on the parameters. If we want to study

the stability of the stationary state, we linearize the dynamical system  to

obtain :

^t+i =  — k)^

. _  ^ -  (^ -f V>)(2 +  r ) a / ( g  -  /3)
 ̂ <5 +  ( l - ^ ) - ( 2  +  r ) a / ( a  -  (3)

We have^  ̂ :

• Complete stability

•  Complete unstability o f n ^ ^  +  V^>l .

Let us suppose now (3 ip =  1. Equations (1), (2) imply : 

kt^i aZf — 1
a — b 
0

(1
1 + 0

where Z< =  (^tlkf  Therefore Zt is constant^^. Thus, if the coefficient of 

intertemporal substitution is equal to one, the dynamics are of a very simple 

type and do not bear any possibility of endogenous cycles.

^^Equation (2 ' )  c lea r ly  s h o w s  t h a t ,  in t h e  n e ig h b o u r h o o d  o f  Q ,  { u > t ) t  is o f  t h e  s a m e

n a tu r e  as { k i ) i  s in c e  w e  m a d e  th e  a s s u m p t i o n  G  G [ 0 , 1[.

^ ^ E xistence  o f  a  s o lu t io n  for th e  e q u a t io n  is g u a r a n t e e d  i f  6 =  1. B u t  th is  im p l ie s

e x i s t e n c e  for all S . . .
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A b str a c t

We establish that a two-sector OLG economy where production 

inputs substitute perfectly and savings monotonically increase with 

the interest rate can exhibit endogenous growth with endogenous 

cyclic or even chaotic fluctuations in the growth rate i f  externali

ties operate in the production sectors. We show that this requires a 

strong externality in the consumption good sector in the absence of 

bubbles or sunspots, but not necessarily in their presence. We fu r

thermore prove that there exist production economies where, in the 

absence o f any intrinsic uncertainty, the only possible equilibria in

volve bubbles or sunspots, a result which makes appear questionable 

the notion of fundam enta l’ equilibrium trajectory.

Keywords : Externalities, Bubbles, Cycles and Chaos.
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I n tr o d u c t io n

Business Cycle Theory explains the fluctuations displayed by economic 

time series as deviation from trends in consequence of exogenous shocks 

originating in variations of private sector behaviour, technological changes, 

stochastic shifts in government policy etc. In the standard models of this 

theory, the equilibrium is, in the absence of shocks, defined and at least lo

cally unique (determinate and stable), and the economy converges to this 

steady state. This conception is so widespread that most textbooks refer 

only to this type of explanation of economic fluctuations. Nothing induces 

us, however, to believe in this idealized story of a world that would be nicely 

monotone in the absence of shocks from the outside. Fluctuations may well 

have, at least partly, endogenous origins. The methodology that is adopted  

by researchers interested in this area of ‘endogenous business cycles’ is gen

erally the following : they consider models without any intrinsic uncertainty 

(no exogenous shocks), and show that, under certain conditions on tastes, 

technologies and beliefs of the agents, cycles, closed orbits or even chaos can 

occur. This does not mean, of course, that these economists do not take 

seriously the importance of exogenous shocks, but is simply the result of two 

considerations : first of all it is, from a purely epistemological point of view  

and to gainsay the traditional conception, interesting to show that the stan

dard assumptions on the agents’ behaviour, on production etc. do not rule 

out fluctuations in the absence of extraneous uncertainty, and that at least a 

part of real world fluctuations may be explained endogenously ; secondly, the 

mathematical tools available nowadays simply do not allow to deal formally
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w ith  non-linear models subject to  exogenous shocks.

The question of endogenous cycles or chaos in economic models without 

any intrinsic uncertainty has now been studied for several years. This does 

not mean that the topic has been exhausted : in fact, when we consider 

the main part of the literature on endogenous fluctuations, one fact strikes 

our attention : nearly all models. Overlapping Generations Models (OLG) 

as well as Infinitely Lived Agents Models (ILA), need, in order to establish  

existence results for cycles or chaotic trajectories, and especially for the lat

ter, assumptions on the utilities of the agents or on the production functions 

(when production takes place) that are not empirically défendable. For in

stance, one often met assumption is the negative interest rate elasticity of 

savings at the Golden Rule steady state (see G rand mont [20] ; Jullien [24]...) ; 

another is that of complementarity, or not too important substitutability, of 

the production factors (see Reichlin [27], [28]). A recently published paper 

by Boldrin and Rustichini [8] tries to give an example of a two-sector ILA 

economy with externalities where, under the assumption of linear utility, en

dogenous growth with chaotic growth rate can take place ; unfortunately, the 

dynamics exhibited by the authors do not correspond to the optimal path. 

Two preceding papers have established, one in the ILA framework with con

tinuous time (Cazzavillan [9]), the other in the framework of OLG and ILA 

in discrete-time setting (v. Coester [11]), that a model meeting all standard 

neo-classical assumptions from the point of view of the private sector, but 

with externalities of the total capital stock onto the efficiency of labour in
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each productive sector of the economy, can exhibit closed orbits of the econ

om y’s state variables.

All these papers show the possibility of cycles or of chaotic, but bounded, 

trajectories of the capital stock, and therefore deal with economies where 

there is no real growth, except Boldrin and Rustichini’s model. In a critical 

note on their paper, we have shown that the authors’ claim of chaotic trajec

tories for the growth rate must be considerably attenuated since observable 

chaos cannot be established in their model unless assuming that capital de

preciates entirely in each period, an unacceptable assumption in the ILA 

framework given the period’s length. Furthermore, we proved that even cy

cles or topological chaos cannot be claimed for without the assumption of a 

very important capital depreciation per period.

We exhibit here a two-sector OLG economy with standard utility, where 

savings increase monotonically with the interest rate (positive lES), and 

where production inputs substitute perfectly, for which endogenous growth 

with endogenous fluctuations of observable chaotic type is a possible issue. 

We use again here the two-sector OLG model of v. Coester [11] under the 

assumption of an externality in the investment good sector such that bal

anced growth may take place. A question arises : why consider a two-sector 

model with externalities since we know from Galor [18] that endogenous cy

cles may occur in a neoclassical two-sector OLG model without externalities
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and from O N. Fisher^ [26] that it is not necessary to assume any externality 

to get self-sustaining growth in such a framework ? The answer to this is, 

first, that standard utility and production functions give neither cycles nor 

self-sustaining growth in a two-sector model, secondly that we wish to have 

the possibility of balanced growth paths, a property which can be obtained in 

a simple manner only by assuming externalities or an A K  investment good 

production function.

The fact that bubbles on an intrinsically useless asset can generate flip or 

Hopf bifurcations and thus cycles or closed orbits is well known by now. Most 

models show this with negative bubbles, called ‘negative outside money’, re

sulting from a ‘constant zero budget deficit’ constraint of the government 

(Benhabib and Day [3], Farmer [15]...) ; Farmer’s model is particularly inter

esting because it establishes the fact that in a one-sector OLG model with 

production and inelastic labour supply, Hopf bifurcations can be generated 

only by negative bubbles ; the examples he exhibits to show that negative 

bubbles can generate cycles all involve production with complementarity of 

inputs. Jullien [24] shows, in a very elegant manner, that cycles can be gen

erated by positive bubbles in a one-sector economy with production, where 

production inputs substitute perfectly, if the savings function is non mono-

^O’N. F isher e sta b lish es the very im p ortan t fact th a t any grow ing con vex  O L G  econ om y  

w ith  a t least tw o sectors m ust ex h ib it an in vestm en t sector  w ith  a sy m p to tica lly  linear  

tech n ology . T h a t on e-sector  convex OLG  econ om ies can n ot ex h ib it su sta in ed  grow th is a  

w ell know n fact.
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function already appeared in Grandmont’s [20] seminal paper on a pure en

dowment economy with endogenous fluctuations generated by flat money 

(positive bubble). Jullien's example of a period three cycle furthermore re

quires a preference for future consumption. Reichlin [29] shows that, in a 

two-sector model, positive bubbles can lead to closed orbits through Hopf 

bifurcations, but he needs not only a negative lES but also complementarity 

of the production inputs to get his result.

The paper “Growth, Externalities, and Sunspots” by Spear [31] analyses 

the existence problem of sunspots in an ILA model of neo-classical capital 

accumulation with production externalities. His conclusion is that, in the 

presence of the externalities, sunspots can exist, and thus cyclic trajectories 

of the state variable. Spear’s externality is really non-standard : the spillover 

comes from the anticipated average savings of all agents, i.e. from the antici

pated per capita stock of capital of the following period ; furthermore, cycles 

in Spear’s model are cycles of the capital stock, and therefore the title of his 

paper is misleading since there is no real growth taking place.

We show that, in our framework with positive lES and perfect substi

tutability between the production factors, we can have positive as well as 

negative bubbles generating Hopf bifurcations. This can lead to a situation  

where we have endogenous growth with endogenous fluctuations. In the pres

ence of bubbles, we can have self-sustaining growth with a fluctuating growth 

rate even if the externality in the consumption good sector is not very strong, 

and even in the absence of any externality in this sector in the case of neg-
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and even in the absence of any externality in this sector in the case of neg

ative bubbles. This is an important result since Boldrin and Rustichini [8] 

(if we take their model seriously and accept to take the unappealing param

eter configurations which are required to guarantee the existence of cycles or 

topological chaos in their framework) need a strong externality in the con

sumption good sector for the possibility of cycles or chaotic trajectories^. We 

also show that if the consumption good sector is more capital intensive than 

the investment good sector, then we cannot obtain endogenous fluctuations 

through Hopf bifurcations in the presence of a positive bubble. Furthermore, 

we exhibit an economy having no non-bubbly equilibrium, but equilibria with 

bubbles. This is due to the non-convexity at the aggregate level of the pro

duction function of the investment good. A similar result of economies with 

sunspot equilibria but no equilibrium without extrinsic uncertainty has been 

established by Pietra [27] in the context of a pure endowment economy with 

a finite set of agents and a finite horizon.

1 T h e  O L G  M o d e l

Tim e is discrete. At each date /, a new generation of agents is born ; 

the size of each generation is assumed to remain constant over time and will 

be normalised to one. Agents live for two periods ; in the first period of 

their life, they work, consume and save for their old age, and in the second, 

they consume their actiialised savings. Bequests are not allowed. Firms are

“In our m odel to o , a stron g  ex tern a lity  m ust op era te  in the con su m p tion  good  sector  

in th e  ab sen ce o f  bubbles.
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owned by the old people ; the number of firms is supposed large enough to 

have perfect competition and thus profit maximisation in both sectors.

Agents are characterised by their utility, which is supposed to be time- 

separable and of CRRA type :

1 — <7 1 — (7

Ln{ct,t) +  QLn{ct^t+i) 

where Ct t̂+i denote respectively consumption when young and consump

tion when old of an agent of generation t, cr >  0 is the coefficient of rela

tive risk aversion (equal to the inverse of the elasticity of substitution be

tween consumption at any two points in time) and 0  =  1/(1 - |-r ), where 

r e] — 1, -f go] is the rate of time preference.

The production of each good is of the following type :

C, = C I < l , L \ - “K^,

(a , g]0, Ip  and i/ G JR+, Ki t̂ being the level of capital at time t in sector z,

Ki  the aggregate level of capital at time t. As is easy to verify, the externality 

in the investment good sector is such that the necessary condition for the 

existence of a (not necessarily unique) balanced growth path is met. W ithout 

any loss of generality, we take C =  I ; the parameter /  will not be taken equal 

to one since endogenous growth in a context of total capital depreciation, an 

assumption which simplifies the study of the dynamics, requires /  >  1. The
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rate of depreciation per period of the capital is 6 >  0. We suppose a  ^  ^ 

(two sectors) and assume full employment.

+  1̂ 2,t =

+  ^2,t =  Lit.

We reformulate the model in per capita terms ; denoting the proportion 

of the labour force allocated to sector i and the per capita capital stock 

in sector z, we get :

ct =  ,

i. =  ■

Since we have

h,t +  h,t =  1

h,tk\ , t  +  h,tk2,t =  kt 

we can eliminate lî t and obtain :

Lf ~  k2,t
Ct =

k\,t — k2,t
k°‘ K''

it =  I
ki,t — k2,t

Firms behave competitively and maximise their profits in each period, 

without taking the externalities into account. Let be the competitive 

wage rate and the competitive rate of return on capital and pt the relative 

price of the consumption good in terms of investment good (the numeraire 

here). Profit maximisation and constancy of labour force imply :

e, =  p ,(l -  a)k l ,k^  =  (1 -  0 ] lk l ,k ]~ " ,

u  =  PiC^k-j'K =  0 ii4 j'k 'r ^
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If we denote by W( the wage-interest rate ratio, we see that

h \  i ~  ,  k2^t —

where a =  a / ( I  — a)  and 6 =  /3/{ l — /3). Thus price, wage and interest rate 

can be expressed as functions of W( and kt  ̂ which will be chosen as state  

variables. Notice that only kt is predetermined.

In the next section, we study the competitive equilibria in the absence 

of any intrinsic uncertainty (no exogenous shocks), bubbles or sunspots, the 

so-called ‘fundamental’ equilibria. We show that flip bifurcations may occur, 

and that for adequate parameter configurations, topological, ergodic or even 

turbulent chaos can exist, erratic trajectories requiring a strong externality in 

the consumption good sector >  1...). In the third section, we consider

the equilibria in the presence of bubbles and show that Hopf bifurcations may 

occur and thus generate closed orbits of the growth rate. We show that a 

strong externality z/ is no longer required to obtain endogenous growth with 

endogenous fluctuations. The last and very short fourth section is devoted to 

the problem of economies that do not exhibit any ’fundamental’ equilibrium  

but do have equilibria in the presence of bubbles, a result which shows that 

the notion of ‘fundamental’ equilibrium does not make much sense in a non

linear world.
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2 F lu c tu a t io n s  in  th e  B u b b le le s s  E c o n o m y

In the absence of any bubble, all the savings St are used for productive 

investment purposes, one part being used to buy the capital (1 — S)kt stock 

from the old generation, the rest being used to produce the investment good. 

The optimal behaviour of the agents and the equilibrium conditions imply 

the following :

Maximisation of utility

max ii(ct^t,ct,t+i)

. . Pt+\Ct,t+l
S.t. PtCt t̂ +

1 -  (5 +  rt+i < e u

yields the Euler equation :

Pi+i

The equilibrium conditions

St = ~  Pt(^t,t =  (1 —  ^)kf  +  {h+ i  —  (1 —

kt+i =  (1 — S)kt +  

give the dynamics of the economy :

.acüt — kt
kt+i — I-

a — b

1 k( + 1
0  — kt^i

( 1)

=  -  S +  ]■ (2)

If <7 =  1, equation (2) reduces to

kt+\ =
0 

1 + 0 et. (2')
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For simplicity, we consider the case of total per period depreciation of 

capital. This could seem to be a rather strange assumption to take after 

having criticised Boldrin and Rustichini by showing that it is not possible to 

establish, in their framework, existence of observable chaos unless assuming 

entire depreciation of the capital in each period. But remember ; in an ILA 

framework, periods are short, whereas in the OLG context they are long. 

Furthermore, for our model,  ̂ <  1 does not imply impossibility of prov

ing that observable chaos can occur, but simply increases the mathematical 

complexity (see Appendix A).

We rule out the case cr =  1 since we have established, in a preceding 

paper^, that logarithmic per period utility does not lead to any type of erratic 

dynamics in the absence of bubbles or extrinsic uncertainty. It is immediate 

to verify that, under the assumption of <7 ^  1, the dynamical system  in 

is equivalent to the following system, giving the dynamics of (A ,̂ 

where Â  =  kt+i/kt ,  Zt =  u>t/kt :

A, =
a — b

ry\ —a

a — b
—I t a

aZt  — (1 — A)

It is therefore sufficient to study the dynamics of Zt which give those of the 

growth rate A, — 1. Notice that the dynamics are forward. We can rewrite 

our second equation under one of the following forms :

• If O' <  /? ,

'S ee  V.  C o e s t e r  [11].
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• If a  >  /?,

Ut+̂ = Kur{Ut-lnl-cUty,

where Ut =  aZf, c =  l̂oc^

I -  ^
m  = \ —   {a  +  I/),

1 —  0:

0 1 -
_ ! _ /  1/3 \ “ + V  1 - a

6 1 -2 / U ^ - a |

1
1 — a

n
1 / I n

p = (1 - o ) ( l  -  a)'
Linear conjugacy does not, of course, affect the nature of the dynamics. The 

dynamics are defined on a subinterval of [1/c, 1] if (o  <  and of [1,1/c] 

otherwise. Since our aim is to give an example establishing our claims, we re

frain from exposing a general study of the dynamics. It can be shown that if 

n <  0 or p <  0, then a steady state always exists and is necessarily unstable, 

which is of no interest. For our purpose here, we need a hump-shaped map

ping T , which requires n >  0 and p >  0, and therefore a strong externality in 

the consumption good sector {a 1/  >  1) and a coefficient of intertemporal 

substitution larger than one (1/cr >  1).

Since our aim is to establish an existence result, we suppose now that 

a  <  /?, and choose m =  0, n =  1 and p==l  by taking :

1—0 

ly — 3(1 — o ) .
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a
3 - 2 a

a , 0  and I  remain parameters. The mapping T =  Ta,K{@j) is hump

shaped and of the simplest possible form : a well chosen restriction of it is 

linearly topologically conjugate to the standard logistic map defined by :

P r o p o s it io n  : Va g]0, 1[, >  2, there exists a closed interval  A =

[7^2,/Ffî] such that ; 7F G A 3J  C ]a /^ , 1[, 3fi G [2, J5] such that the re

strict ion to J  o /T  is a linear topological conjugate ofV^ : Ta,i</j 55^ F^.

Proof  : This is obvious. If K  is large enough, then there exist two fixed 

points, Ui <  Ü2 -, the first being always unstable, the stability of the second 

one depending on K .  The mapping Tc,jc(0,/) admits a maximum at

If we write
Ut — U\

2 ( U * - U ^ Y
then we get :

^(+1 — — Xt),

c K
fl — —

n u ' - u , y

It is easy to see that there exists A =  [772,/7jg] such that when K  increases 

from I\ 2  to K b i  increases from 2 to 7?. □
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If we consider our family of maps T, we see that for each a , we can 

choose K  such that is conjugate to /i >  2. We can thus invoke all 

the classical or less classical results about the maps F  ̂ : from fi increasing 

from 2 to 4, the family undergoes a flip bifurcation cascade. First, there 

appears a cycle of period 2 for the value ^ =  3. A two-cycle exists and is 

stable for all fi G [3,3.449499[. For fi =  3.449499, a 4-cycle appears ; at 

H =  3.549090, a cycle of period 8 emerges etc. The periods of the emerging 

cycles follow Sarkovskii’s ordering which is defined as follows : 3 5 7 >-

^ 2 * 3  2 5 ^  ••• X" 2  ̂ • 3 ^  2”̂ *5 ^  2”̂  )>- • • • ^  4 ^  2 )>- 1.

For fi comprised between two bifurcation values, the existing cycle is stable. 

Sarkovskii’s theorem says that for any continuous hump-shaped map from an 

interval [a, 6] into itself, if a cycle of order k exists, then there exists a cycle 

of period k' for every k >- k'. But for fi large enough, there exists a cycle 

of period three. From Sarkovskii’s theorem, we can thus deduce that for fi 

large enough, there exist cycles of every imaginable period. An important 

question is then stability of these cycles.

As a consequence of a theorem established by Li and Yorke^ in 1975, for 

all values of fi large enough to allow the existence a cycle of period three, the 

map T exhibits topological chaos. We know that the notion of topological 

chaos is not exhilarating because nothing prevents the set of initial conditions 

giving chaos to be of zero Lebesgue measure : this happens when there exists 

a stable cycle, for instance when fi =  3.839 where the map admits a stable

‘T h e  fa m o u s  a n d  o ften  m is in te r p r e te d  “p e r io d  3 im p l ie s  c h a o s ” ...
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cycle of period three, but where chaos as well as the infinity of cycles of other 

periods than three are simply unobservable.

Fortunately, sufficient conditions to guarantee a non zero measure of the 

set S  of initial conditions for chaos have been established, and we know that 

exhibits ergodic as well as turbulent chaos on [0,1], the set S  being even 

of full measure. Furthermore, a less standard result is that, for // >  4, 

is defined and chaotic on a Cantor set included in [0,1], the set S  being of 

full Cantor measure, and that // >  2 +  \/5 , guarantees structural stability. 

Unfortunately, these last ‘exotic’ dynamics are of no interest for economists 

since they require an assumption on the degree of calculation power of the 

agents that cannot be accepted. However, we have very nice properties for 

the dynamics in this model, since we can claim existence of parameter config

urations such that the spectrum of a trajectory a.s. resembles the spectrum  

of a random noise.

For a given /F, we can choose I  such that A, >  1 on the whole interval 

), )], where U^{K)  is such that Ta,K{U^{K)) =  Ui(A"), and then

take 0  such that / \ ( / , 0 )  =  A", which is always possible^. If we do this, 

we obtain, of course, a very unrealistic type of endogenous growth with a 

chaotic rate of growth since no recessions can take place. But using the fact 

that, in the case of the logistic map, we know the ergodic distribution, we 

can choose our parameters in order to have a positive average growth rate of 

a reasonable value and possibility of recessions.

’W e  d o  n o t  rule o u t  here p referen ce  for fu tu re  c o n s u m p t i o n . . .
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Notice that to obtain endogenous growth under the assumption of total

capital depreciation per period, we need a parameter I  larger than one :

A, =  (1 -  i )  +  / ^ ( i  -

It is immediate to realise that <  A (l/c). But then we have :

A, < ( l - A )  +  / ( l - ; 9 ) ' - ' ’( l - a f .

We see that if A >  7(1 — — a)^, then the trend is negative and the

economy collapses in the long term. This is especially true when capital de

preciation is one per period and /  <  1. □

P r o p o s it io n  : In our framework, self-sustaining growth with a chaotic, 

and in the average positive, growth rate is a possible observable issue. Thus, 

even if the neo-classical assumptions on utilities or production are met from  

the point of view of the private sector, we cannot rule out endogenous f luc

tuations in growth in the absence of exogenous shocks. In the absence of 

bubbles or sunspots, erratic dynamics require a strong externality in the con

sumption good sector and a coefficient of intertemporal substitution larger 

than one.

3 B u b b le s  as G e n e r a to r s  o f  F lu c tu a t io n s

We consider the situation where there exists an intrinsically useless asset 

in which the agents can invest. This type of asset is traditionally called a bub-
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ble. What changes compared to the situation encountered in the first section  

is that now productive capital stock of next period is no longer necessarily 

equal to actual savings : a positive bubble for instance diverts capital from 

productive investment. The traditional interpretation of a positive bubble is 

fiat money, and a negative bubble can result, for instance, from a ‘constant 

zero budget deficit’ constraint of the Government® : the private sector is then 

a net debtor. It is clear that positive bubbles are far more appealing since 

a negative bubble’s interpretation lies in a public policy, and a very specific 

one, whereas positive bubbles can exist in a pure ‘laisser-faire’ economy.

We show here that the introduction of a bubble can generate cycles in an 

economy where cycles do not occur in a bubbleless equilibrium. This idea is 

not new, as we have explained in the introduction, since it has been exploited  

by Benhabib and Day [3] and Farmer [15] etc. in the case of negative bub

bles, Grandmont [20], Jullien [24] and Reichlin [29] and others in the case of 

positive bubbles. But the latter only prove that endogenous cycles can occur 

in the presence of positive bubbles under the following assumptions : Grand

mont, in a pure endowment economy, and Jullien, in a one-sector economy 

with production, need an interest rate elasticity of savings at the Golden Rule 

state smaller than —0.5, condition needed again by Reichlin, in his two-sector 

model, in addition to his assumption of production with complementary fac

tors. Complementarity of production inputs appears also in the two examples 

given by Farmer of negative bubbles generating Hopf bifurcations in a one 

G S e e  F a rm er  [15].

185



sector economy with production.

We present here a model which not only meets all standard neo-classical 

assumptions from the point of view of the private sector and where positive 

as well as negative bubbles can generate endogenous cycles, but better : in 

our framework, cycles are cycles in the growth rate and not in the capital 

stock, and we can thus exhibit again a model of endogenous growth with a 

fluctuating rate of growth. As we shall see hereafter, the conditions for en

dogenous fluctuations generated by bubbles differ much from those required 

for cycles or chaotic trajectories to be possible ‘fundamental’ equilibria.

We consider the general case 8 g]0, 1]. We want to study the dynamics 

of com petitive equilibria with bubbles. Let Bt be the per capita value of the 

bubble at date t. The equilibrium condition ‘investment equals savings’ is :

~  PtCt,t =  (1 — 8)kt +  {kt+i — (1 — 8)kt) -f- Bt.

The no arbitrage condition concerning the useless asset which yields no div

idends (or the Government’s ‘constant zero budget deficit’ constraint in the 

case of a negative bubble) imposes :

-^<+1 =  (1  ~  8 r t ^ i )Bt .

Maximisation of utility, perfect competition and equilibrium in the markets 

imply, if we define Xt =  kt+i/kt,  Zt =  tjOtjh, and bt =  Bt/k t  {bt is the ‘re

duced’ bubble^), a dynamic system of the following form :

^ B y  p u re  la z in e ss ,  w e  sh a l l  h erea fter  u se  th e  te rm  ‘b u b b le ’ in s te a d  o f ‘r e d u c e d  b u b b l e ’.
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A, =  +  (1 -  S),
a — 0

“ t+ l    a
A,

1 - a  +  Dy>-H z^^^,
0(+i — ------------- :--------------- Ot.

A,

In the very special case of cr =  1 we must, of course, write :

A, +  6, =  Y ^ ( l  -  0 ) > ^ I Z t

These equations show clearly that is uniquely determined by Zt ; we 

can therefore substitute and study the dynamics of {Z^bt)  and characterise 

the dynamics of the whole economy.

The equations obtained here do not allow a global characterisation of the 

dynamics ; we shall therefore restrain our study to the local behaviour in the 

vicinity of a stationary point =  (%*, 6*). The technique employed is the 

following : we look at the conditions for the existence of a bubbly steady 

state ; under the assumption of existence, and if the dynamical system  is 

of dimension two, we linearise the dynamic equations in the vicinity of the 

stationary state Q* in order to study the possibility of Hopf bifurcations®. If 

the dynamical system  is degenerate of dimension one, which happens here.

^In a  t w o - s t a t e  d y n a m ic ,  a  H o p f  b i fu r c a t io n  h a p p e n s  w h e n  t h e  e ig e n v a lu e s  o f  th e  J a 

c o b i  a n  a t  t h e  s t e a d y  s t a t e  are c o m p l e x  a nd  cross th e  u n i t  c irc le .  H o p f  b i f u r c a t io n s  are  

m o r e  s a t i s f y i n g  th a n  flip b i fu r c a t io n s  s in c e  t h e y  are m o re  r o b u s t  t o  c h a n g e s  in t h e  p e r i o d ’s 

l e n g t h .
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as we shall see below, when the agents’ one-period utility is logarithmic, 

we look for the possibility of flip bifurcations^ or even try to characterise 

globally the dynamics. A very readable introduction to the mathematical 

method invoked here can be found in Grandmont [21].

3.1 C ase a =  1 \ Im possib ility  R esu lts

Let us suppose here that the agents’ per period utility is logarithmic. 

Under this assumption, we determine the bubbly steady state by writing 

Zt =  bt =  b* ^  0. We see that a stationary state with a bubble always 

exist unless the solution b* is equal to 0. We get :

A* =  (1 - 5 )  + / / 3 V ' ’ ,

0  1 - / 3
-  1

1-1-0  Oi

We see that the steady state corresponds to self-sustaining growth (A* > 1 )  

if and only if 6 < which is not met, for instance, in the case of total

capital depreciation (6 =  1) when I is too small (for instance, smaller than 

or equal to one). Furthermore, it appears clearly that positive bubbles are 

possible only if a  -f ^ <  1. The dynamic system given is degenerate and of 

order 1 : we can express A(, bt and as functions of Zt. It is therefore 

enough to study the dynamics of (Zt)t£N- We distinguish two cases :

flip b i fu r c a t io n  cor rep on els, in a  o n e - d im e n s io n a l  s y s t e m ,  t o  th e  e ig e n v a lu e  c r o s s in g  

— 1. F u r th e r m o r e ,  a  c o n d i t io n  in v o lv in g  th e  first th r e e  d e r iv a t iv e s  e v a lu a t e d  a t  th e  s t e a d y  

s t a t e  has  to  be  m e t .
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3 .1 .1  C a s e  o f  T o ta l  C a p it a l  D e p r e c ia t io n

It is easy to see that, under this assumption, it is possible to write ;

0 a
1 +  0  a  — 13 Zt+i = a — 13 '  ̂ ' I -{■ Q aZt — {1 — a)

The function H  defined by Zt+i =  H{Zt)  is therefore homographie. The 

slope at the steady state is ;

- 10 a
X

1—0 0
1 +  0  a  — (3

It is immediate to check that the steady state is always unstable with H'{Z*) >  

+  1 if {b* >  0 and o  <  /?) or (6* <  0 and o >  /)), and always stable with 

0 <  H \ Z * )  <  1 if (6* <  0 and o  <  /?) or (b* >  0 and o  >  (3). Local cycles 

are thus excluded^®. But we can even exclude global cycles by considering a 

further argument invoking the shape of the function .

3 .1 .2  C a s e  o f  P a r t ia l  C a p ita l  D e p r e c ia t io n

The case where capita] is supposed to depreciate only partially in each 

period (0 <  6 <  1) is far more difficult to deal with, and we cannot obtain  

very strong results. We can eliminate the emergence of local cycles through 

flip bifurcations, but cannot say anything about the possibility of global

A n o t h e r  a r g u m e n t  t o  ru le  o u t  c y c l e s  th r o u g h  flip b i f u r c a t io n s  c o n s i s t s  in in v o k in g  t h e

f a c t  t h a t  a  h o m o g r a p h ie  f u n c t io n  h a s  a  z er o  S c h w a rz ia n  d e r iv a t iv e .

H  is s t r i c t ly  c o n v e x  if  a  <  ( 3 ,  s t r i c t ly  c o n c a v e  i f  a  >  /? ; th i s  fa c t  im p l ie s ,  w i t h  th e

s ig n  o f  th e  d e r iv a t iv e  a t  t h e  s t e a d y  s t a t e ,  t h a t  e v en  g lo b a l  c y c le s  are im p o s s ib le .
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cycles. The analysis remains local because Zt^\ remains defined implicitly. 

We determine the slope at the steady state ; it is given by :

1 h*
J  =  1 +

where 6* is given above and :

c  = y 1 +
0

+
1

1 +  0  j5 — a

A necessary condition for the emergence of local cycles through a flip bifur

cation is that, for some parameter configurations, the slope J  is equal to —1. 

Ad absurdum : let us suppose that this is possible. It implies :

(0) i* =  -2A* +  2A' 1
1 +  0  A1 +  2(/) -  a )

Notice that the expression of b* implies h* >  —A*, whatever is the parame

ter configuration. Suppose now that the investment good sector is the more 

capital intensive (a  <  /9). Then (0) implies h* <  —2A* +  A*, which is ab

surd. Flip bifuractions are therefore excluded, for both positive and negative 

bubbles, if o  <  /?. Suppose now that a  >  Obviously, we have

0  (3'
0 < 1 -

1 + 0  a < 1

and

< 0  if l + 2 ( ^ - a ) > 0 ,
l + 2 ( ; g - a )

and thus positive as well as negative bubbles are excluded in this case, for

(0) implies b* <  —2A*. Let us consider the case 1 +  2(/? — a) <  0. Now we 

have
2(/3 -  a )

l + 2 ( ^ - A )
> 2.
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It is not possible to conclude directly ; but let us replace 6* by its formal 

expression. Noticing that 0 / ( 1  +  0 )  <  1, we obtain the following necessary 

condition :

(O') 0 <  -  1] +  (1 -  S) [ a ( 2P  -  1) -

But a  — (5 — \ is obviously negative, and 1 -f 2 (^  — a ) <  0 implies 2(3 — 1 < 0 .  

Therefore, (O') cannot be met and the assumption J  =  — I is absurd. Again, 

flip bifurcations are not possible. We can proclaim the following :

P r o p o s it io n  : In our framework, if the agents’ coefficient of in te r tem

poral substitution is equal to one, the dynamical sys tem collapses to d im en

sion one and local cycles through flip bifurcations generated by bubbles are 

excluded. Furthermore, if capital depreciates entirely in each period, even 

global cycles cannot exist.

3.2 C ase a ^  1 : E x istence R esu lts

Bubbly steady state : under the assumption Zt — Z*, bt =  b* 0, v/e 

get :

a

A* =  (1 +

. - 1 -  ‘ '
O (1 - 6 )  +  Q\/aX*(o + i .ni-a)/a J '

Hereof we deduce  th a t  th e  s teady  s ta te  (Z*, b*)  c a n n o t  co rrespond  to g ro w th  

if ^ >  I(3^a^~^ which, in p a r t icu la r ,  is m et if capital deprecia tes  en tire ly  in
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one period (^ =  1) and /  <  1. Furthermore, we see that a positive steady 

state value of the bubble cannot exist, and therefore that Hopf bifurcations 

generated by positive bubbles cannot occur in our model, \i a-[- ^ > 1 .  If the 

consumption good sector is the more capital intensive (a  >  ^), then positive 

bubbles require even ^ <  1 — ( 1 — <5)// <  1 unless 6 =  1. Notice that the 

externality operating in the consumption good sector does affect neither Z* 

nor A*, but only the stationary value of the bubble h*.

Linearization of the dynamics (Z ,̂ around the steady state (Z * ,6*) 

gives, if we write Zt =  Z*(\ +  Ut) and bt =  6*(1 +  u<), the following linear 

first order system :

/  \  /■^Ut+l

 ̂ A'ut+i +  Vt+\ J

B  C  

B'  1

with

• A  =(/? -  a ) +  (1 -  P)-
1 -  8 +

=(/? -  a )  +  (1 -  /?)( l  +  - ( «  +  »/))—  ̂+

+  +  ^  +  +

X [1 +

• C  — —
(J

1 — ( 7 a  1 — <5 +
-0

-0

T + W a ^ '
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The Jacobi an of our dynamical system has then the same eigenvalues as the 

matrix J  defined by :

<̂+1 

<̂+1 ) \  J21 J22

Ut  

\
and we have

D et{J )  =  ^  

T r {J )  =  1 +  Det(J )  +  (S' -  A!) ■

Total stability of the stationary state corresponds, for the Jacobi an of 

the dynamic system, to two eigenvalues of modulus strictly smaller than one. 

There exist several configurations, corresponding to a monotone, an oscil

lating or a spiral convergence to the steady state. It is easy to see that all 

configurations can occur in our framework. What is of real interest for us 

is the possibility of two complex (conjugate) eigenvalues of modulus one : if 

this situation is possible, and if the real part of the eigenvalues is not station

ary with respect to the chosen bifurcation parameter, then a Hopf bifurcation 

occurs in the dynamical system, and the Hopf bifurcation theorem ascertains 

the existence of closed orbits in our economy.

Let us consider now the following problem : do parameter configurations 

exist such that D et{J )  =  +1, A =  T r { j y  — 4 <  0 and T r { J )  ^ { — 1,0} ? 

The latter condition is needed to rule out cases of large resonance which can 

be very complex^

’ “S e e  G u c k e i i l ie im e r  an d  H o lm e s  [2.3].
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P r o p o s it io n  : In the framework of our model, positive as well as neg

ative bubbles can be at the origin of endogenous f luctuations in the growth 

rate. Neither a negative lE S  nor complementarity of the production inputs  

are required for  the possibility of endogenous cycles, even in the case of 

a positive bubble. There exist parameter configurations giving endogenous 

growth with endogenous fluctuations.

Proof : To establish this proposition, it is sufficient to exhibit adequate 

parameter configurations. Let us take 7 = 1 , 0  =  0.1, (3 =  0.7, a  =  0.5 and 

<5 =  0.38 ; we see that the steady state value of the growth rate (A* — 1) 

is approximately one per cent. It is easy to see that if u is large enough^^, 

then there exists 0  such that 6* >  0, D et{J )  =  -|-1 and A <  0. Thus, this 

example gives endogenous growth with endogenous fluctuations generated by 

a positive bubble (money...). But it is immediate to check that if we take u 

small but such that :

then we can obtain Hopf bifurcations with a negative bubble (to require a 

positive steady state value for the bubble means just to impose an additional 

constraint for the externality parameter i/). Taking i/ =  0.7, we can choose 

0  in order to have a configuration where the economy exhibits endogenous 

growth with endogenous fluctuations generated by a negative bubble. □

^^Existence is e s tab lish ed  by tak ing  a  +  i/ =; 3, for instance .. .
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We shall now look more precisely at the constraints imposed upon the 

parameters, for our purpose is to establish some technical lemmas and propo

sitions on general necessary conditions for Hopf bifurcations in our frame

work, on the role of the externality in the consumption good sector, or of the 

relative capital intensity in the two sectors. The first lemma concerns the 

possibility of Hopf bifurcations, without imposing any condition on A* or b*.

L e m m a  : In our framework and under the assumption a  ^  if the 

investment good sector is more capital intensive than the consumption good 

sector (a  <  j3), then Hopf bifurcations require the following : oc ^  <  1, 

0 <  cr <  1 and u >  0.5. If the consumption good sector is the more capital 

intensive, then there are no such general conditions, and endogenous f luctu

ations can be generated even in the case a  >  1, but only by negative bubbles.

The proof of this lemma is not difficult but rather long and tedious, there

fore it has been banished to Appendix B. A consequence of this lemma, and 

of numerical examples given below establishing the possibility of Hopf bi

furcations with =  0 if o  >  /?, is that increasing returns to scale at the 

aggregate level are not necessary in the consumption good sector if this sec

tor is the more capital intensive, whereas strong increasing returns to scale 

are required if the converse is true. We have exposed previously an example 

of Hopf bifurcation giving endogenous growth with endogenous fluctuations 

in the presence of a positive bubble for the case of a more capital intensive
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investment sector. What can be said if o; >  ?

P r o p o s it io n  : In our framework, if the consumption good sector is 

more capital intensive than the investment good sector, then positive bub

bles cannot generate endogenous fluctuations through Hopf bifurcations, but 

negative bubbles can give endogenous growth with endogenous fluctuations.

Proof : This is immediate. If b* >  0, then, in order to have {B'—A ')C /A  <  

0, we need cr >  1. From the formal expression of b*, we know that :

{ ( 6 * > 0 ) A ( a > , g ) }  =#>

( V l - S L .  -  >  1,

Thus, we have

(A' 1 (1 -
A  cr — I { a  — /?)(! — a) (1 — — (a  — /3)(1 — S)

a  1
^ cr — 1 (a — ( I ) [ \  — a)

But
cr 1 cr 4

> ------------   —  >  4.
a  — I {a — /3){l — a)  cr — 1 (1 —

As a consequence, A >  0 and Hopf bifurcations cannot occur. The fact that

negative bubbles can give fluctuations in the context of self-sustaining growth

is illustrated by numerical examples given below. □

We have seen above, in the technical lemma, that Hopf bifurcations al

ways imply an externality parameter // strictly larger than 0.5 in the case of
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a more capital intensive investment good sector, and that (a  >  (5) did not 

seem to imply any general condition for u. An interesting question is whether 

the additional requirement of growth (A* > 1 )  imposes stronger restrictions 

on the parameters. The answer is no :

P r o p o s it io n  : In our framework, if the investment good sector is the 

more capital intensive, then Hopf bifurcations in the context of growth re

quire, in the presence of positive as well as in the presence of negative bub

bles, increasing returns to scale at the aggregate level in the consumption  

good sector. If the consumption good sector is the more capital intensive,  

Hopf bifurcations can occur even if no spillover operates in the consumption  

good sector, and it is even possible, but only with negative bubbles, to obtain 

endogenous growth with endogenous f luctuations when constant returns to 

scale operate in the consumption good sector.

Proof:  Let us consider first the case a < /3. \f we take a =  0.01, /? =  0.95, 

6 =  0.74, (j =  0.01 and i/ =  0.7, then a  u <  1, A* >  1,6* > 0  and there 

exists a 0  such that the conditions for a Hopf bifurcation are met. Notice 

that, in this case, the initial condition resulting from the equalisation of 

D e t {J )  to one gives i/ >  0.515. The lower bound 0.5 seems therefore rather 

correct. Consider now the case a  >  /3. We want to give examples of Hopf 

bifurcations in the context of self-sustaining growth and absence of spillovers 

in the consumption good sector. Let us take I =  I, a  =  0.9, (3 =  0.1, 

8 =  0.71, (j =  5 and u =  0. Then A* > 1 and 6* <  0 and it is easy to check
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that there exist a 0  such that a Hopf bifurcation occurs. □

4 N e c e s s a r y  S e lf-F u lf il l in g  B e l ie f s

This short section deals with the following problem : can there exist a 

world with agents characterised by rational expectations, where the ratio

nally unfounded, but self-fulfilling belief in the realisation of some event is 

necessary ? In other words, can there exist an economy under rational ex

pectations with no equilibrium path in the absence of bubbles or sunspots, 

but exhibiting bubble or sunspot equilibria ? The traditional answer to this 

is “no”, since standard economic theory defines the notion of ‘fundamental’ 

equilibrium, i.e. an equilibrium in the absence of any bubble or sunspot, and 

thus implicitly defends the point of view that an economy either exhibits 

no equilibrium path or admits a fundamental equilibrium and perhaps, for 

instance in the OLG framework, some other, ‘odd’ equilibrium paths with  

bubbles or sunspots due to shocks on beliefs. But the traditional point of 

view simply results from the abusive use of linear models in the past. As a 

matter of fact, non-linearities allow far more complex situations to arise as 

we shall see here.

An interesting paper on the existence of economies with sunspot equilib

ria and no non-sunspot equilibrium has been written by T ito Pietra [27]. The 

author shows, in the context of a pure endowment economy where intertem

poral transactions and transactions across states of nature between a finite
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set of agents take place through trade in assets, that there are economies for 

which there are no equilibria if there is no extrinsic uncertainty, while there 

are sunspot equilibria. Pietra gives two examples : the first one concerns an 

economy where non-existence of equilibria in the economy without sunspots 

is due to the collapse of rank of the return matrix ; the second one is an 

economy with non-convex preferences for one consumer.

Let us consider our model : there is a large, or even not finite, set of 

agents, all identical, and production of two goods can take place. At the 

private level, the model is neo-classical, there is no externality operating on 

the utilities, but there are spillovers of Romer type at the aggregate level 

in the production of the goods. In this framework, it is possible to exhibit 

economies with no ‘fundamental’ equilibrium path but with equilibria in the 

presence of bubbles. This can occur with positive or with negative bubbles, 

depending of course on the parameters of the economy.

P r o p o s it io n  : There exist economies with production where the only 

possible equilibrium outcomes are equilibria with bubbles. The economy ex

hibited here is such that the result is due to a non-convexity, at the aggregate 

level, in the production of the investment good.

Proof : The role of the externality in the investment good sector is estab

lished by the following consideration : if no externality operates at all in the 

investment good sector, then there always exist a stationary state {k*,u>*) if

199



the investment good sector is more capital intensive (o: <  /9), and the dy

namics are therefore defined, at least in a neighbourhood of the steady state, 

in this case. Existence of a steady state is established as follows ;

^ =  0 

6k* = I

e [ i  -  < 5  +

au) - 1

a — b 
1 k

If we write Z* =  uj*/k*^ then we have :

e [ i  -<5 +
S{/S -  a )

(1 — a )  — olZ* 

Since a  <  ^, we have :

0 ( 1 — — k’

(1 — O') — aZ*
e[ { l - 6) a +  / 3 ] Z * - ( l  -  a)

1 — a
<

1 — O '

(1 — 6 )a  j3 a  

The two curves obviously intersect in the case 0 < cr <  1 . In the case 

cr >  1, existence of a solution Z* is guaranteed by the fact that cr >  1 => 

cr/(cr — 1) >  1 and lima;_+oo =  Too. Thus, Z*, and therefore k* and

LÜ* always exist in the absence of spillovers in the investment good sector.

We have to consider the dynamics of the bubbleless economy. Simply 

writing 6< =  0 in the dynamic equations of the previous section, we get the 

following degenerate system :

Cl Zf — 1
=  1

a — b
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w ith

n z )
Zff-c

(1 -  5) + ’ 

$ (Z )  = 0 1 /(1 -» ) . 2"*'

where

+  (1 _  ^ )zi-H
p — a

I0b̂ -̂ Z -  + (1 -S)Z^-A

m' =(1 — Q.)m =  (1 — a) — (1 — /?)(a +  u)

n = (1  — a)n  =  [a u) —  -------
1 — ( 7

p '  =(1  —  a ) p  =
< 7

1 — a

We want to give here an example where the equations above show that the 

economy does not exhibit any dynamic in the absence of bubbles, but does 

so if a bubble appears near enough to the steady state value determined by 

the parameters of the economy. Let us take the following numerical values 

used above to establish the possibility of endogenous growth with endoge

nous fluctuations resulting from the existence of a positive bubble : /  =  1, 

a  =  0.1, =  0.7, (7 =  0.5, 8 =  0.38 and a  -{- i/ =  b. The condition ^ > 0

implies <  (1 — a ) / »  =  9, and et — kt+\ >  0 implies Zt >  2.5877. To

obtain a Hopf bifurcation, we need 0  % 0.9201. W ith these values, we get : 

( ( ^ “ )̂ o 0)^ >  0, on the interval [%,9], and o 0 (9)  % 2.0188 <  Z_ =>

VZ E [Z, 9], ( 0 “ )̂ o 0 ( Z )  <  Z. Therefore, the dynamics are not defined in 

the absence of bubbles. □
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C o n c lu s io n

In a context of inelastic labour supply, without requiring savings to be 

non monotone in the interest rate or the production to exhibit complemen

tarity or not too much substitutability, but with standard CRRA utility and 

production with perfect substitutability between inputs, we showed that, in 

the absence of any intrinsic uncertainty, bubbles or sunspots, self-sustaining 

growth with cyclic or even chaotic trajectories of the growth rate is possible 

in the framework of overlapping generations. For this, we needed external

ities à Romer in the two production sectors, and a necessarily strong one 

in the consumption good sector. Boldrin and Rustichini [8] exhibited, in 

the framework of infinitely lived agents, an example of endogenous growth 

with chaotic growth rate in the case of a linear utility function ; they too  

required a strong externality in the consumption good sector. But we showed 

that observable chaos cannot be established in their model under the (in the 

ILA framework) standard assumption on capital depreciation, and that even 

the proof of the existence of cycles or topological chaos requires a very high 

rate of capital depreciation. Furthermore, we showed that in the presence 

of bubbles, we can have endogenous growth with a fluctuating growth rate 

with a weaker, and in the case of negative bubbles, even with a zero exter

nality in the consumption good sector. Endogenous growth with endogenous 

fluctuations generated by positive bubbles through Hopf bifurcations can be 

obtained, in our framework, only if the investment good sector is the more 

capital intensive.

202



We also established the existence of economies with no non-bubbly equi

librium but with equilibria in the presence of a bubble, a result which makes 

us reflect on the term ‘fundamental’ used traditionally to qualify equilibria 

in economies without intrinsic shocks, bubbles or sunspots. Furthermore, we 

proved in Appendix C that with the same type of utility and production func

tions the assumption of multiple sectors is crucial : in a one-sector economy 

with CRRA one-period utility and production function of Cobb-Douglas type 

with externality à la Romer [30], Hopf bifurcations can be generated by nei

ther positive nor negative bubbles. In one-sector economies, non neo-classical 

assumptions at the private level seem to be necessary to obtain endogenous 

cycles, even in the presence of bubbles. Notice also that in the one-sector 

economy with externalities à la Romer, in the absence of exogenous shocks, 

bubbles or sunspots, there always exists a unique balanced growth path on 

which the economy starts immediately, whatever is the initial capital stock, 

whereas in the case of the two-sector economy with externalities, the dynamic 

is not necessarily defined, a balanced growth path does not necessarily exist, 

is not necessarily unique, can be stable or unstable etc.

It would have been nice to characterize the stability properties of the 

closed orbits generated by the Hopf bifurcations. To achieve this, it is neces

sary to determine whether a given bifurcation is supercritical or subcritical : 

a supercritical Hopf bifurcation gives the existence of attractive, a subcritical 

only existence of unstable closed orbits. The latter seems clearly less exhil- 

erating since non-stability means zero probability to have an economy on or
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remaining close to such an orbit^'*. But studies of the problem of learning 

perfect foresight equilibria have shown (see Fuchs [16] or Grandmont and 

Laroque [22]) that the notion of stability of an equilibrium trajectory can be 

entirely reversed under learning : in Grandmont’s model, for instance, the 

only equilibrium trajectory that is stable under a certain learning process is 

an unstable equilibrium orbit. Therefore, unstability of a given orbit does 

not necessarily imply it ’s economic insignificance. This is a nice excuse for 

avoiding the utmost tedious calculus necessary to determine the nature of 

a given Hopf bifurcation. The nevertheless interested reader may find the 

methodology in Grandmont [2 1 ].

A P P E N D I X  A  :
F u n d a m e n t a l  E q u i l ib r ia ,  C a s e  S

The equations giving the dynamics of (%(, AJ in the case 0 <  6  <  1  can 

be found in section 4. We suppose here a  < (5 \ the other case is similar. 

Let us consider a parameter configuration =  (ao, cro),(Go, ^o),  ̂ =  1

such that the map has a negative Schwarzian derivative, satisfies

T|o^(0 o a n d  thus exhibits observable chaos. Arguments 

invoking the functional form and regularity insure that, at least for 8 close 

to one, the map has a negative Schwarzian derivative at every non

critical point (the parameters 0  and I  are completely neutral with regard 

to the Schwarzian derivative). The conditions it >  0 and >  0

'A  c u r v e  has  z er o  L e h e s g i ie - m e a s u r e  in IR . ...
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yield Z t  G [Z_(g, i ) , s^ Z ^ q j ) ^ s ] ,  where %(e,/),g >  1 /ac  and %(ej),g >  1 / a  are C°° 

functions of S (implicit function theorem) such that :

1 +   1 +
/jm  ^(0,/),« =  -  , £ m  Z,e,j),« =  -  •

It is ea^y to see that, by continuity, for 6 close enough to one, it is possible 

to choose ( Q s i h )  such that :

n.(os.win < zi,
where we have omissed to indicate the dependence in ( 0 ,  / )  etc.

A P P E N D I X  B  :
P r o o f  o f  t h e  L e m m a ,  a n d  E x a m p l e s

Proof  : First of all, notice that cr =  0 implies T r { J )  =  1 -f D et{J).  

Therefore, a linear utility rules out any possibility of Hopf bifurcations. Let 

us assume cr >  0. The determinant of J  is given by :

D e t [J )  —
-1

( » - . )  +  0  -  « ( . +  ^  

X ( / i  +  ( 1  -  / î ) ( l  +  ~ )  ,  _

Let us denote by R  the term
-0

S +
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We must distinguish the two cases a  <  j5 and o: >  /?.

1. Case (a  <  /?). Under this assumption, B' — A  and R  are all 

positive. If we suppose <t >  1, then A  • D et{J)  <  /3 — a ,  with A >  /3 — a,  

which implies D et{J )  <  1 and excludes the possibility of Hopf bifurcations. 

Therefore, 0 <  (7 <  1, which implies a  +  /3 <  I since to allow A  <  0, we must 

have C <  0. Notice that all this does not imply anything general for A* or 

b \

If we return to the equation '‘D e t (J )  =  1’, we see that necessarily :

which imposes, for given (a , cr), a lower bound to the externality parameter 

ly. Let us try to find the best general lower bound for u. Consider the 

following function :

1 A (3 — a

This function is strictly increasing since

do' I A P — a

Furthermore, we know that a  A /3 <  1. Therefore, if ^ <  1 — then

which implies

Ff3 {a) <  lim Fp(a) =  /?,

1 _ 1 
2-
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If ^  >  1 — /?, then

Fp{a)  <  F(j{l -  /?) =  2 -  ^

and thus

since here 0.5 <  ^ < 1 .

2. Case (a  >  /?). Let us denote

1 - / 3  
a  1 - 6  +  //3<’a>-<5

We distinguish two subcases :

2,1. 5  >  0. This implies, i f / < l  +  and therefore, as is easy to

check. A* <  1, but in the case of a large / ,  we can have A* >  1. The sign of h* 

is indeterminate, but we know from a proof given in the paper that positive 

bubbles cannot give Hopf bifurcations, therefore they are of no interest for 

us here. We have /I >  0, and therefore must have a >  I. But A >  0 implies

/ 1 \ I3^a^~^
(i + ^

and thus /? <  —(1 — a) <  0. If we now look at the equation D et{J )  =  1 

which previously yielded a lower bound for the parameter f/, we realise that
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now noth ing  general can be deduced concerning v  :

<  1
P

imposes simply <  0 ^ / ( 1 + 0 :), but we see that if  ̂=  1, a  —> 1“ and /? 0+,

then there results no constraint on u.

2.2. 5  <  0. Then 6* <  0, but nothing can be said concerning A*. As 

numerical examples will establish, we can have A >  0, which implies 0 <  

a  <  \ and /? <  0, but also A <  0, which implies a >  \ but does not give the 

sign of R.  In this latter case, the condition D et{J)  =  1 does not impose a 

general condition on f/, but in the first case (A >  0), it is easy to check that 

the externality must be strictly positive :

ly >  — ^ ------------------

i  — cr

where Fp{ct) has been defined previously. Notice that now Fp is decreasing 

in a  since a  >  (3. Thus we know that necessarily

Furthermore, the condition S' <  0 implies a  >  (1 — /3)I{1 +/?) .  Therefore, if

0 <  /? <  -  1 ,

1 - ^ x  /3̂  + 4 / 3 - 1e  I \  ^  J7 ( '■ ^  - r ‘i p  -  ^
) -  '’ ( 1  +  ^ )  ^ ( i + / 5 ) ( 3  +  ^2 ) ’

and we have

S " P  o ) =  r > (  V 2  -  1) 0.446.
]o,\/2 -U ' 1 + / 3 '/ 3 € ] 0 , \ / 2 —  1
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and if \/2  — 1 <  ^  <  1,

We conclude therefore only to z/ >  0, and u >  0.554 if /? <  \ /2  — 1 0.414. □

It is easy to verify that all the situations described here can occur, pa

rameter configurations illustrating this statement can be found in the paper 

when we prove the proposition on the role of the externality z/, two cases 

remaining to be illustrated here. To obtain 5  <  0, .4 <  0 and i? >  0, take 

/  =  1, q: =  0.9, /? — 0.1, 8 =  0.05, <7 =  1.3215 and z/ =  0. A* >  1 and b* <  0 

and an adequate 0  exists. If we want 5  <  0 and A >  0, then from what 

precedes, we know that necessarily <  0 and i/ >  1 — 0.5 =  0.5 : take 7 = 1 ,  

a  =  0.51, /3 =  0.5, 8 =  0.49 and a  =  0.1. Then A* >  1 and b* <  0. If we take 

z/ small, but larger than the lower bound (1/99 +  1/0.9 —0.51 ~  0.612), then  

the conditions for the Hopf bifurcations can be met.

A P P E N D I X  C :
T h e  O n e - S e c t o r  M o d e l .  A  N e g a t i v e  R e s u l t

We consider the standard one-sector Diamond OLG model augmented 

by an externality of Romer [29]-type in the production of the consumption 

good, and look at the problem of the possibility of Hopf bifurcations in the 

dynamic system  when a bubble exists in the economy. We keep notations 

similar to those used in our two-sector model (in particular, a  denotes the
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capital intensity in the consumption good sector^®, and u the externality pa

rameter).

The equations giving the dynamics of the economy are :

(2) g ,+ i =  [ ! - «  +

If o: +  i/ =  1, then the two-state system collapses into one characteristic 

dynamic equation :
_  ( 1 - 6 - 1 -  a)6(

Ot +  l  —
0 7 ( 1  +  0 ' ) - 6 , ’

where =  Bt/k t  is the reduced bubble and 0 '  =  0^/^[l — 6 +  The

steady state is given by :

If we write =  ^(6(), it is easy to verify that ^  is always strictly increasing 

and convex. The slope at the stationary state b* is :

^ ( ^ . )  ^  1 0 '
db 1 —6 +  0 1  +  0 '

Therefore, if the parameters of the economy are such that the steady state  

value of the bubble is positive, then '^'(6*) >  1 and the steady state is unsta

ble. If b* <  0, then ^'(6*) <  1 and the steady state is stable. In both cases, 

local cycles are excluded, and global cycles are excluded because of the shape

^ ^N otice  t h a t ,  a g a in ,  w e  can  take  ( 7 = 1  w i t h o u t  a n y  loss  o f  g e n e r a l i ty .
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of th e  m apping ip.

Let us suppose a  -{■ u ^  I in the following. Under this assumption, 

a stationary state necessarily corresponds to a constant level of capital^® 

kt =  k*. We get :
a + v—l

a-

B* =
S
a

a + iy — l 1 — Q;

[ 1 +  Q i/f a

We employ the standard technique ; linearization around the steady state  

and study of the possibility of Hopf bifurcations by looking at the 

determinant and the trace of the dynamic’s Jacobi an. If we write :

Bt = B % l  +  et) 

kt =k*{l  +  rjt). 

we get :

[ 6 0 F / ( l  +  0 F ) ] ( l ^ ) ( a  +  r/)

1 -  (a  +   ̂ -  1 ) ( 1^ )  ( l ^ ) « 2 0 i / ( i  +  0 i ) 2 ’

and

T r ( J )  =  1 +  D et (J )  — (o +  z/ — 1) —

16 . . .whereas a s tea d y  s ta te  corresponds to  a con stan t  growth rate o f  cap ita l if  a +  u =  1.
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Necessary conditions for a Hopf bifurcation are, as usual :

Det(^J) =  -|-1

and

A  =  T r { J Y  - 4 < 0 .

The first condition implies that necessarily v4 >  0, the second condition gives

0 < ( a  +  i/ — ! ) •  — < 4 .
A

Let us show now that Hopf bifurcations can occur neither with positive nor 

with negative bubbles in this one-sector model :

Notice that B* =  k* x B.  As a consequence, to obtain a Hopf bifurcation 

with {B* > 0 < = > 5 > 0 } ,  we must have a  -f i/ — 1 >  0. Suppose B* >  0. 

Then, since A >  0, we have Det(J )  >  (a  -j- p )IA >  1/A. Now, if cr is smaller 

than or equal to one, A <  1 and thus D et{J)  > 1 .  If cr is strictly larger than 

one, then we have, if we write :

60^/^ 1 — a

l d D e t { J ) { U ) \  _
C =  sign I  g j j  j  =  sign

The sign is indeterminate if B* >  0. But

C >  0 => Det{J)  > Det{J)a+i,=i =  1 +  B  > 1,

(7 1 -k
(  <  0 => Det{J) >  l im Det{J) =  -------  p------ >  1.

a - f- i /^ + o o  cr — 1 6
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Therefore, in the presence of a positive bubble, Hopf bifurcations are ex

cluded.

The case <C 0 is nearly symmetric : necessarily B  <  0 and a  u <  1. 

But then we have D et{J )  <  1 if cr <  1, and under the assumption of a  larger 

than one, we get U < I and (  )> 0, where U and (" are defined as previously. 

Indeed, the sign is clearly positive since B  <  0 and

( 7 — 1  6

^  cr 1 +  0 ' / '  ^  ■

Therefore, D et(J )  <  Det{J)a+u=i  =  1 +  B  <  1, and we can again conclude 

to the impossibility of Hopf bifurcations.

We conclude to the fact that the one-sector model with CRRA utility 

and Cobb-Douglas production function with Romer externality cannot give 

balanced growth with local or global cycles generated by bubbles (case =  

1), and cannot give local cycles of the capital stock through Hopf bifurcations 

generated by bubbles (case a  -{■ ly ^  1). □
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A C rit ica l  N o te  on  

Growth and I n d e te r m in a c y  in  

D y n a m ic  Models with E x te r n a l i t i e s ’̂

and on

Chaotic M ap A r is in g  in  
the Theory of  Endogenous G r o w th ”
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A  C R ITIC A L  N O T E  O N  

“G R O W T H  A N D  IN D E T E R M IN A C Y  IN  D Y N A M IC  

M O DELS W IT H  E X T E R N A L IT IE S ”

A N D  O N

“A  C H A O TIC  M A P  A R ISIN G  IN  T H E  

T H E O R Y  OF E N D O G E N O U S  G R O W T H ”

By Sorb as von Cœster^

A b s tr a c t

In a recently published paper, Boldrin and Rustichini present a two-sector 

infinitely lived agents model with production externalities and, invoking results 

exposed in a paper written by Boldrin and Persico, claim that their model can 

exhibit endogenous fiuctuations in the growth rate under the fo rm  o f chaotic 

trajectories. Unfortunately, Boldrin and Persico are m istaken in  their conclu

sions, fo r  the dynamics they propose do not correspond to the optimal path. We 

describe here qualitatively the possible dynamics and show why it seems difficult 

to conclude to chaos.

Keywords : Topological, ergodic and turbulent chaos.

^ F in a n c ia l s u p p o r t  in th e  fo rm  o f  a  s c h o la r sh ip  E c o le  p o ly te c h n iq u e /M R T  a n d  a  g r a n t  

fr o m  F o n d a tio n  d e  l ’E c o le  p o ly te c h n iq u e  is m o s t  g r a te fu lly  a c k n o w le d g e d . I a m  in d e b te d  

t o  C a b r ie lle  D e m a n g e , D o u g la s  G a le , K u r t  K la p p h o lz , A d s  a  R o e ll a n d  to  m y  r eferees G ille s  

C h e m la , I s a b e lle  D u a u lt ,  S u z a n n e  G a rc ia , M arc  H en ry  a n d  M a x  H o lla n d  for th e ir  h e lp fu l  

c o m m e n ts .  A n y  r e m a in in g  errors a re, o f  c o u r se , m in e .
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I n tr o d u c t io n

In section 3.2 of their paper, Boldrin and Rustichini (1994) present a 

two-sector one capital good ILA model and, refering to some research work 

undertaken by Boldrin and Persico (1993), claim for it the possibility of 

chaos. Both papers unfortunately contain several errors, some minor, others 

apparently not. We take here leave to address several critiques to the three 

authors. To enable non specialists to understand the main critique, we shall 

briefly expose, in section 1, the different notions of chaos and their most im

portant characteristics ; our argument to criticize the claim of chaos will then 

be developed in section 2. The conclusion will allude to two minor points of 

m ethodology concerning Boldrin and Rustichini’s paper and to a secondary, 

but highly incorrect statement made by Boldrin and Persico.

1. Som e D efin itions and Standard R esu lts

In the literature on erratic dynamics, we can find several notions of chaos : 

topological^ ergodic and turbulent chaos. Mathematicians do not accept the 

notion of topological chaos, for it is too weak and does not allow nice con

clusions. Chaos in the ergodic sense has several interesting implications, but 

the most important is observability oî erratic trajectories. Finally, turbulent 

chaos is chaos in its strict mathematical acceptance ; it is a very strong no

tion with rather spectacular implications. In this section, we shall present 

the definitions of these notions and briefly discuss the features of the differ
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ent types of chaos. We consider here continuous functions which map a real 

closed interval J  =  [a, b] into itself.

1 .1 .  T o p o lo g i c a l  C h a o s

Its abstract definition is :

D e f i n i t i o n  : H  : J  J  exhibits topological chaos if :

•  "iN, such that =  X] .̂

• 3 S  C J  non denumerable and >  0 such that : V(z, %/) G , x ^  y 

limsup„^+oo >  e and liminf„.^+oo ~  ^ " ( 2/ ) I =  0.

An intuitive interpretation is that the orbits of x and y become infinitely 

close an infinite number of times and again separate. Topological chaos is, in 

general, established by invoking Li and Yorke’s (1975) theorem which states 

that if a unimodal map exhibits a cycle of period three, then there exists a non 

empty set S  of initial conditions whose orbits are chaotic in the topological 

sense. A unimodal map is a continuous function H  from J  into J  for which 

there exists T* G]«, 6[ such that II is strictly increasing for x < x* and strictly 

decreasing for x > x* (i.e. H is ’hump-shaped’). Notice that the existence 

of a period three cycle has another very strong consequence : cycles of every 

imaginable period can exist. Indeed, Sarkovskii’s (1964) theorem says that 

for any continuous map from an interval J  into itself, if a cycle of order 

k exists, then there exists a cycle of period k' for every k >- k \  where the 

ordering is defined as follows : 3 x 5 > - 7 > - - ' X 2 3 x 2 5 > - - ' > - 2 " ^ 3 ) > -
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2"--5>------ )----------------------4 2 X 1.

The problem with the notion of topological chaos is that the Lebesgue- 

measure of the subset S  may well be equal to zero, and chaos therefore 

unobservable : this is the case, for instance, for the logistic map defined 

by : Xij^i =  - X ( ) ,  when $  =  3.828427 or 0  =  3.839, where almost all

initial conditions lead asymptotically to a period three cycle. The problem 

thus is to find conditions that ensure m[ S)  >  0.

1 .2 .  E r g o d ic  C h a o s

D e f i n i t i o n  : H exhibits ergodic chaos if :

• m{ S)  >  0.

•  asymptotically, the sequence approximates an ergodic and absolutely 

continuous distribution which is invariant under H and which summarises  

the limiting statistical properties of the (determinist ic)  chaotic trajectories.

This is a far more attractive notion than topological chaos. For in

stance, in the case of the logistic map F$, when 0  =  4, the set S  is of 

full measure and the absolutely continuous ergodic invariant distribution is 

f { x )  =  1 / — .t ) ) .  Ergodic chaos is observable ; if we choose at ran

dom an initial condition xq, there is a positive probability of generating a 

chaotic trajectory. To establish the existence of an invariant, ergodic and ab

solutely continuous distribution, the standard method is to invoke Singer’s 

(1978) theorem which states that the number of stable orbits of an arbitrary

map H  with negative Schwarzian derivative is bounded above by the
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number of its critical points. The Schwarzian derivative of a function H  is :

2

at a non-critical point U . The Schwarzian derivative is therefore negative 

if and only if is convex on each interval of monotonicity of / f ,  and

sufficient (but not necessary) conditions are : \ H ' \ ot log \H'\ convex on each 

of these intervals. If the Schwarzian derivative is not negative on the whole 

interval, then we cannot rule out little waves for H  or its itératives, the 

attractor is not necessarily unique and it is often very difficult, if not impos

sible, to establish strong results.

Let us now assume the following :

1. H  \s unimodal and

2. H \ x )  =  0 => ar =  X * ^

3. H{x)  >  T if a; <  æ* and H'(a) >  1 if H(a)  =  a,

4. <  0,

5. 5 / /  <  0 on the whole interval J.

Under these assumptions, the orbit of the sole critical point is fully in

formative of the dynamics defined hy H : if there exists a stable cycle, then 

it attracts the critical point ; thus, if the trajectory of the critical point is 

unstable, then there does not exist any stable cycle and the map exhibits 

ergodic chaos (see, for instance, Grandmont (1988)). In the case of the map
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r 3 .8 3 9 , for instance, there exists one stable cycle, of period three, which at

tracts very quickly the critical point, and the map thus exhibits an infinity 

of unobservable cycles ; the map P4  admits cycles of all possible periods, but 

none of them is observable since the set of initial conditions giving chaos is 

of full measure ! Ergodic chaos exists for 0  =  4 because r ^ (l/2 )  =  0 and 

the origin is an unstable fixed point, and thus the critical point 1 / 2  has an 

unstable orbit.

1 .3 . T u rb u len t C h a o s

This notion corresponds to what most mathematicians consider as the 

true chaos ; if a map exhibits turbulent chaos, not only are there erratic 

orbits but there exists strong sensitivity on initial conditions. We adopt here 

the definition given in Devaney (1987), which finds its inspiration in Guck- 

enheimer (1979). Let 7 be a set.

D e f in it io n  : 77 : 7 —> 7 said to he topologically transitive if for

any pair of open subsets U and V  of I , there exists k >  0 such that

7 7 ^ (7 /)n y  0.

Intuitively, a topologically transitive map has points which eventually 

move under iteration from one arbitrary small neighbourhood to any other. 

Therefore, the dynamical system cannot be decomposed into two disjoint 

open sets which are invariant under the map. The existence of a dense orbit 

thus implies topological transitivity.
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D e f i n i t i o n  i H  : I  I  has sensitive dependence on initial conditions 

if : 3e >  0 such that, Va: G I , VW neighbourhood of x, 3y G N  and n >  0 

such that \H'^{x) — H^{y)\  >  t.

Notice that the existence of a stable cycle is incompatible with sensitive 

dependence on initial conditions. In the case of an aperiodic, i.e. without 

any stable cycle, and sensitive map, to be able to describe, even approxi

mately, a trajectory, it is not at all sufficient to know the law of motion of 

the dynamic system and to have a proxy of the initial state ; this could lead 

to believe that computer simulations do not make any sense in an area where 

the characteristic dynamics exhibit chaos but, fortunately, the situation is 

not as desperate as one might believe at first glance^.

D e f i n i t i o n  : H exhibits turbulent chaos on the set I  if :

• H  has sensi tive dependence on initial conditions,

•  H is topologically transitive,

• periodic points are dense in I.

Unpredictability, indecomposability and an element of regularity thus 

characterise a map which is chaotic in the turbulent sense. The fact that 

periodic points are dense in /  does not, of course, imply anything on the 

measure of the subset these points constitute in I : consider Q fl [0,1], for

“W e invoke here th e  so -ca lled  ‘P u r su it’-lem m a.
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instance ; this is a dense subset of [0,1] which has a zero Lebesgue mea

sure. And indeed here, for a map exhibiting turbulent chaos, there exists a 

set of initial conditions, with positive Lebesgue measure defined on / ,  such 

that any trajectory starting from it looks ‘chaotic’ in the sense that its spec

trum closely resembles the spectrum of a random noise. Other definitions 

are possible : Ruelle (1979), for instance, has given a definition involving the 

so-called Lyapounov exponent ; he looks for maps with an absolutely invari

ant measure for which ( 1 /n )  log |D / ” | tends to a strictly positive constant 

as n —> -foo almost surely with respect to the invariant measure. For the 

logistic map P4 , /  =  J  =  [0,1] and L =  ln(2) >  0. Notice that turbulent 

chaos is implied neither by topological nor by ergodic chaos.

2. B oldrin  and R iistic liin i’s M odel

We invite the reader to consult Boldrin and Rustichini (1994). We only 

summarise here the assumptions and results exposed by these authors in 

section 3.2. of their paper. Time is discrete. The economy is composed of a 

continuum of identical infinitely lived agents, indexed by z G [0, Ij. There are 

two goods in the economy, one homogeneous perishable consumption good  

and one homogeneous investment good. Both production sectors can combine 

two factors, capital and labour, the latter being provided inelastically. There 

exists only one type of capital and one type of labour which can be costlessly 

allocated between sectors. Labour supply is normalised to one and there 

is full employment. The agents’ coefficient of time-preference is denoted by 

6 g]0, 1 [, their one-period utility is assumed to be linear and the production
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technologies of the consumption and the investment good are respectively ;

It = 6 x 2 ,

a  G]0, 1 [ and 7/ E JR+, being the level of capital at time t in sector z, kt the 

aggregate level of capital at time t (equilibrium implies kt =  Xt =  Xi t̂ +  a;2 ,t). 

Capital depreciates at rate /z >  0  (in an economy with production of an 

investment good, we must suppose // >  0 , for otherwise the capital stock 

necessarily increases at each date) per period.

W ith these assumptions, Boldrin and Rustichini come to the conclusion 

that the dynamics of Xt =  Xt+i jxt  are given by :

A,+i =  r(A,) =  0  -  (5 e ) ' /< '-“ )Af(0 -  A,), (3.10)

where 0  =  6  +  ( 1  — //) >  1 is necessary to make persistent growth possible, 

and (3 =  (a  +  T/ — 1 ) / ( 1  — a ). This is an extremely nice and rich dynamic. 

The problem is that (3.9), from which (3.10) is derived, does not corre

spond to the optimisation problem we have to consider here, for one con

straint, ( 1  — fi)xt <  Xt+i  ̂ implied by the capital accumulation equation, has 

been om itted. The correct optimisation problem, under the assumption of a 

CRRA utility with coefficient of intertemporal substitution a , is;

+ 00

m a x ^ 6 ' ( l - a )   ̂ -  axt+i)"")
<=0

(1 -  fl)Xt <  Xt+I <  Qxt
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Af+1 =  <

This is the optimisation problem considered by Boldrin and Persico (1993). 

Unfortunately, Boldrin and Persico, while writing down their first order con

dition ( EE) ,  completely forget the constraints and the use of Lagrange mul

tipliers, and thus propose a dynamic which is not the solution of the here 

considered program, unless assuming that capital depreciates entirely in each 

period, a very unappealing assumption in the ILA framework where periods 

are supposed to be short. Indeed, they propose the following first order 

difference equation (2.2) ;

’ r(A,) = e - ( 6 0 ) ' / ( ' - “<'-’>)Af'(0-A,) if r ( A , ) > ( l - ^ ) ,

(1 — fi) otherwise, 

where j3‘ =  {{a t/)(1 — a) — 1)/(1  — a ( l  — <%)). Of course =  1 — // if

^  f — and r(A() <  1 — (f, but the intuitively obvious thing is that here, 

because of the presence of the floor value (1 — //), the dynamics cannot be 

written under the classical form Â +i =  ^(A(). Indeed, let us suppose that 

(1 — l̂) is strictly smaller than A]. This implies r ( l  — ^) >  1 — /z. If we 

believed in (2.2), then we would think that (1 —/z) can be mapped onto only 

one possible point, namely t ( 1  — /^), but this would be highly surprising : 

imagine, for instance, that A< >  1 —/z and t(Aj) is very small compared to 

1 — /z ; intuitively, agents would like to disinvest actively, but here, unlike 

in standard one-sector models, investment is irreversible, therefore there can 

only exist passive disinvestment under the form of waiting until enough cap

ital has vanished through obsolescence, and thus Xt+i will remain equal to 

(1 —/z) for more than a period. When the dynamics start again, the optimal 

choice obviously must take into account the history of capital accumulation,
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in the sense that (1 — /z) will be mapped onto a point which depends on 

Xf  Therefore the dynamics cannot be written under the form 

which allows standard cycle or chaos detection. This intuition is confirmed 

by the very basic calculus exposed in the appendix.

Boldrin and Persico thus expose a very nice and thorough study of the 

case =  1, but their treatment of the more natural case 0 <  ^ <  1 is 

incorrect. In order to give a clear understanding of what can be concluded 

to, we shall proceed step by step, often invoking results which can be found 

in Boldrin and Persico (1993), but which we deem prudent to recall here. 

The fact that we take <7 =  0 is absolutely innocuous since the unconstrained 

dynamics (2.2) remain of the same type as (3.10) and it is easy to check that 

the results established in the appendix hold for every < 7  <  1.

We have to distinguish the two cases A2 <  1 — // and A2 >  1 — //. The 

first case is simpler for there cannot exist orbits lying in ]1 — /f, 0 [  (remem

ber that the fixed point Ai =  0  is always unstable under the assumption of 

existence of two fixed points, and is furthermore ruled out as an equilibrium  

by the transversality condition), and there exist only two possible types of 

trajectories. As we said previously, the results invoked here are established 

in the appendix.

Thus, let us assume A2 <  1 — fi. We then have r ( l  — fi) <  1 — fi. For 

every admissible initial condition Aq (G [1 — // ,0 [ ) ,  there exists an infinite 

sequence (fj, ij >  0, such that Xt =  1 — V/ G  ̂ T Zj], and
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\ t  G]1 — /^ ,0[ otherwise (in the very special case A2 =  1 — //, one of the ij 

may well be infinite, i.e. the ‘growth’ rate remains constant and equal to 

(1 — /i) after some finite date ; otherwise, all ij are obviously finite). As 

we said previously, there exist periods where the optimal choice leads agents 

to ‘disinvest passively’. In periods where this happens, the ‘growth’ rate is 

equal to 1 — //. When investment starts again, the optimal choice takes into 

account the capital accumulation preceding the investment stop ; the point 

onto which (1 — //) is mapped depends on the orbit described by the growth 

rate before taking the value {1 — fi). It seems hardly possible to determine 

whether cycles or erratic trajectories are possible or not.

Let us suppose now that 1 — ^ <  Ag. We know that ( 3 . 1 0 )  holds for 

Xt G [1 —//,0] such that r(A<) >  (1 —fi). Considering the map r, we see that 

there may well exist r-orbits remaining in [1 — //, 0 ], especially when (1 — fi) 

is small. From a purely theoretical point of view, we can thus have cycles and 

topological chaos. Notice however that to be able to ascertain the existence 

of cycles or of topological chaos, we need I — <  X2 and r(A*) small enough,

and for topological chaos the additional condition r(A*) > ( ! —//) must also 

hold ; all this has a bad consequence : classical parameter values do not fulfill 

all the requirements imposed by these conditions. Thus, unless assuming a 

very important capital depreciation per period, it is not even possible to de

duce the possibility of cycles or topological chaos in the true dynamics from 

their existence in the r-dynamic. Furthermore, even if we take non appeal

ing, but adequate parameter configurations, the claim of topological chaos
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is not especially exhilarating as the previous section has shown. It must be 

established that chaos can be observable, and we must therefore show that 

the set S  of initial conditions giving chaos can be of strictly positive mea

sure. Our methodology is the following : we first consider the T - dynamics 

and show under which assumptions chaos can be shown to be observable. 

The fact that 0 is then an accumulation point of every chaotic trajectory 

implies that none of these chaotic orbits can lie in [ 1  — //, 0 ], even if ( 1  — /i) 

is very small. A first consequence of this is that the existence of observable 

chaos in the r-dynamics does not imply anything for the true dynamics.

Thus let us consider first the dynamics without the constraint Xt >  ( l —fi). 

By a simple change of variables, the family of maps Tp̂ s,e can be transformed 

into the family defined by Xt+i =  where $  has the

following expression :

with /3 =  {a T])/{1 — a ) and Q =  b {I — /i). It is immediate to verify 

that for every fixed /?, the parameters of the economy can be chosen such 

that 0  describes the whole interval [0 , -f oo[. Some properties of the family 

can be derived very easily, others are more demanding. For every given 

/? >  0 , for 0  large enough, there exists a cycle of period three ; therefore 

topological chaos can occur. As we have seen in the previous section, this 

is not very satisfactory since stable cycles, perhaps of very long period and 

thus difficult to observe in a simulation, may exist and the set S  may well 

be of zero Lebesgue measure. Therefore, it is necessary to study the possi
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bility of ergodic or turbulent chaos. For the family of maps considered here, 

establishing m{ S)  >  0  requires the following conditions :

I 3 > 1  and >  1, (*)

where X*  is the point at which the map reaches its maximum. The first 

condition is necessary to guarantee a negative Schwarzian derivative on the 

whole interval of definition and existence of at most one (weakly) stable cycle. 

Notice that if this condition holds, the classical flip bifurcation cascade occurs 

as $  increases from 0 to the value where a three cycle appears. As long as 

there does not exist any period three cycle, a standard result is that the 

cycle generated by the last flip bifurcation is stable (and it is the only stable 

cycle). In the case where a period three cycle exists and r^_$(X*) <  1, 

stability of some cycle, and thus zero measure of 5 , has been established for 

some values of but nothing general could be obtained until now. If we 

assume a negative Schwarzian derivative, then the second condition is needed 

to establish that the measure of S  is not equal to zero. We can distinguish 

two cases : F(%*) =  1 and F(%*) > 1 .

The first case is relatively simple : if F^,$(%*) =  1 , then the second 

iterative is equal to 0, which is an unstable fixed point. Since the here 

considered maps are and meet all the required assumptions, we can apply 

the same reasoning as in the case of =  Fj 4 and conclude to the existence 

of ergodic chaos, which implies a strictly positive Lebesgue measure of S.  It 

is even possible to show that the map is aperiodic and sensitive and exhibits 

turbulent chaos on [0,1]. Thus, the orbit of any point in S  is dense in [0,1].
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The second case is more exotic and more difficult to deal with, for the set 

of definition of the dynamic is no longer the whole interval [0 , 1 ], but a subset 

A which is a Cantor set, i.e. a fractal. A Cantor set is a set that is closed, to 

tally disconnected (it does not contain any interval) and perfect (every point 

in it is an accumulation point). The definition set A thus has a zero Lebesgue 

measure in [0 , 1 ]. The map exhibits turbulent chaos on A, the set of initial 

conditions S  giving chaos has a strictly positive Cantor measure in A and the 

trajectory of any point in S  is dense in A. In the case of the logistic maps 

r  1 0 , we are in this situation if $  >  4, and the dynamics are even structurally 

stable at least for $  >  2-f-\/5  (see Devaney (1987)). Furthermore notice that 

(0 , 1 ) G A ,̂ which implies that these are accumulation points of any chaotic 

trajectory. The fact that the definition set is a Cantor set is rather simple 

to establish in the case of the logistic map when $ > 2 4 -  y/E and uses the 

property of expansiveness of the map ; this property cannot, obviously, be 

invoked when $  g]4, 2 -f \/^] or in the case >  1 , and the proof is much more 

elaborate (see, for instance, Boldrin and Persico (1993), relying on a theorem  

proven by Nusse (1987)). It is clear that the case of a Cantor definition set 

constitutes a mathematical curiosum, without much economic significance.

Let us turn back now to the correct dynamics. We do not treat the case 

T(A*) <  0 which is similar to the case r(A*) =  0 except for the fact that the 

optimal choice has to be done such that A< always lies in the Cantor set A. 

The results exposed here rely on those established in the appendix. Since 

I — fl <  A2 , there can exist r-cycles which lie in [ 1 —/f , 0 ], especially when
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(1 — f i )  is small, and these are possible cycles in the correct dynamics. Notice 

however that the set of initial conditions giving chaos in the unconstrained 

dynamics is of full measure, which implies that r-cycles which do not lie in 

[1 — / i ,r ( l  — f i ) ]  are unobservable. Now, if the initial condition corresponds 

to chaos (this is almost sure), then there exists a finite date to at which 

agents decide not to invest. If in the r-dynamics =  1 — fî  then for sure 

Afo =  I — f i  and Xto+i =  r ( l  — f i )  in the true dynamics. But when we have 

A^o_i >  1 — fi and r(A^g_i) <  1 — /f, then there exists a finite zq >  0 such 

that Afo =  . . .  =  A(^+,o =  1 -  f i  and Xto+io+i G]1 -  /z ,r ( l -  f i ) [  as is shown 

in the appendix. Thus, after a finite lapse of time, the trajectory a.s. lies 

in [1 — /z ,r ( l — f i ) ] .  There are two possibilities : A(Q+,Q+i can be on a r- 

orbit C  [1 — //, r ( l  — //)] or not. Remember that a random choice has a zero 

probability to be on a cycle, but Xto+io+i is predetermined and does not fall 

‘at random’ into the interval. If Afg+̂ q+i is not on a cycle C  [1 —/ / ,r ( l  — f i ) ] ,  

then necessarily there exists a finite date ti at which r(A^) hits the lower 

boundary (1 — f i ) ,  and we have again the phenomenon described previously.

We can thus conclude to the following : either there exists a finite date 

after which the orbit is a T - cycle C [1 — / / , T ( 1  — / / ) ] ,  or there exists a finite 

date after which the orbit is a cycle which is not a r-cycle (because in the 

r-dynamics there exist dates at which r(A<) <  1 — fi), or the orbit is not 

cyclical and there exists an infinite sequence {tj , i j)j£i \f  such that Xt =  I — fi, 

Vf € [ t j , i j  4- Zj], and A< e]1 — /z ,r ( l — /z)[ otherwise for t >  to zq. Thus, 

the only thing we can say is that cycles may well exist, but to establish their 

existence (or, perhaps, the impossibility of their occurence) seems difficult,
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if not impossible because of the fact we mentioned previously for the case 

A2 <  1 — and which also holds here : the point onto which (1 — is 

mapped depends on the initial condition, and therefore standard cycle and 

chaos analysis, which considers classical first order difference equations, can

not give answers to the questions we want to address here. The only thing 

we know for sure is that if we choose an initial condition at random, then  

the dynamics lie, with probability one, in [1 —// ,r { l  — ^)] after a finite lapse 

of time. □

The dynamics are thus quite different from those exhibited by Boldrin 

and Persico, and unlike for the dynamics given by (3.10) in Boldrin and Rus

tichini (1994) or (2.2) in Boldrin and Persico (1993), current mathematical 

knowledge does not seem to provide any ‘simple’ argument in favour of ob

servable chaos if 0 <  /i <  1 in the case of the optimal solution. Furthermore, 

as we mentioned earlier, we need non classical parameter values to be able 

to claim the existence of cycles or of topological chaos.

C o n c lu s io n

W hat are we to conclude on Boldrin and Rustichini’s model ? It es

tablishes the important fact that even in the framework of infinitely lived 

agents, indeterminacy of the steady state and endogenous fluctuations can

not be ruled out under the assumption of perfect markets and perfect fore

sight. Unfortunately, the authors’ claim of endogenous growth with a chaotic 

growth rate is indéfendable since the correct solution of the right optimisa
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tion program does not yield a solution allowing to characterise thoroughly 

the trajectories. The different types of possible orbits can be described qual

itatively, but it does not seem possible to establish the existence of cycles or 

of chaos (even topological) unless assuming a very high depreciation rate of 

capital. Chaos cannot be shown to be observable in Boldrin and Rustichini’s 

framework unless assuming entire capital depreciation in each period, an un

appealing assumption which we should elude in an ILA context where periods 

are short. Therefore, we deem prudent to conclude only to the possibility of 

self-sustaining growth with a, fluctuating growth rate. Two further critiques : 

first of all, there is an evident lack of consistency in taking a linear investment 

good production function since such a function does not meet assumption 2.2 

(which implies, in particular, strict concavity in X2,t) imposed in the rest of 

the paper ; secondly, the assumption of linear utility certainly simplifies the 

formal analysis but is not necessarily innocuous in the context of global anal

ysis : local analysis, like Hopf bifurcation detection, easily allows reasonings 

‘by continuity’ (see, for instance, Cazzavillan (1992) or v. Cœster (1993)), 

but this is not true in general when we practice global analysis (structural 

stability, for instance, is not automatically guaranteed). It is true that in 

Boldrin and Rustichini’s model the assumption is innocuous, but this fact 

has to be established and especially emphasized. Notice also that in certain 

models the assumption of linear utility is simply desastrous : there are cases 

where it is possible, with well known mathematical tools, to establish the 

existence of cycles or even chaos under any assumption on a finite coefficient 

of intertemporal substitution while it is impossible to characterise in a sat
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isfactory manner the orbits in the case of a linear utility, which corresponds 

to an infinite coefficient of intertemporal substitution (see, for instance, v. 

Cœster (1994)). We should therefore handle such an assumption with great 

care.

Endogenous growth with (observable) chaotic trajectories of the growth 

rate has been established in a two-sector OLG economy meeting all neo

classical assumptions from the point of view of the private sector (CRRA  

per period utility and Cobb-Douglas production functions with externalities 

à la Romer (1986)) in v. Cœster (1994). There it is shown that endogenous 

fluctuations may require strong external effects in the absence of bubbles or 

sunspots, but not necessarily in their presence. Similar results, and espe

cially the possibility of chaotic orbits of the growth rate, still remain to be 

established in the ILA framework.

Let us add some further critiques concerning Boldrin and Persico’s (1993) 

paper. Subsection 2.3., intitled ‘A More Complicated Exam ple’, claims to 

“dispel the impression that the example given above may be special...” . W ith  

assumptions that can be found in the paper, Boldrin and Persico obtain 

backward dynamics of basically the following type :

r _  /^6+l
V —

(1 +  6+1 )^’

with // >  0 and /? >  1. The authors conclude that by the same methods 

as applied in section 3. of their paper, cycles and chaos can be shown to 

exist for adequate parameter configurations. Let us say that the example
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is very badly chosen, for it is immediate to check that the map does not 

have a Schwarzian derivative that is always negative, which already implies 

that Singer’s theorem cannot be applied and unicity of attractors therefore 

appears to be questionable ; furthermore, no finite point is ever mapped onto 

the origin, and we do not understand how Boldrin and Persico can see any 

‘obvious’ analogy with the family. Maybe the family of maps obtained 

in 2.3. can exhibit ergodic chaos under the assumption // =  1, but standard 

arguments cannot be used to give an answer. Unless giving a specific proof, 

only cycles and topological chaos can be claimed for (and this even only in 

the case // =  1 unless exhibiting a proof), and thus the most interesting 

results of section 3. cannot be invoked here.

Subsection 3.2. contains the proof that the set of admissible initial condi

tions has the structure of a Cantor set in the case of maps of the P f a m i l y  

when ^ >  1 and P/?,$ >  1 ; Boldrin and Persico insist on the fact that their 

case is non standard because expansiveness does not hold on the entire defi

nition set, which implies that the method exposed in Devaney (1987) cannot 

be applied here. The proof given is quite nice, but a rather standard result 

is the fact that the definition set of Pi_$ is a Cantor set when 0  >  4, which 

includes the case 4 <  0  <  2 -f y/b where we certainly do not have expansive

ness. Even if Devaney (1987) does not give the proof, a thorough study of 

his book reveals that he nevertheless invokes several times this fact. Boldrin 

and Persico therefore have to show that their case differs fundamentally from 

the case P i $ , 4 < 0 < 2 - | -  y/E.
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Ecole ‘polytechnique and DELTA (ENS-EHESS-CNRS),  Paris, and The 

London School of Economies and Political Science, Houghton Street, Lon

don WC2A 2AE, United Kingdom.

A P P E N D I X  : T h e  O p t im iz a t io n

We suppose here cr =  0 ; it is immediate to verify that this assumption  

has no effect on the result, which holds for all <7 <  1. We assume to be in the 

case where two fixed points exist. Under this assumption, the higher steady  

state Ai =  0  is unstable and is furthermore ruled out by the transversality 

condition. Our purpose is not to solve completely the optimisation problem, 

but to give a ‘dirty’, intuitive description of the solution. The program to 

solve is :
+ 00

max
t=o

(1 -  fi)Xt <  Xt+i <  Qxt

It is easy to see that the right hand inequality is never strictly binding (in the 

sense that the r-dynamics are such that for any admissible initial condition A, 

r^(A) is strictly less than 0 ,  V/) , and therefore we can omit it. Let Bt denote 

the Lagrange multiplier corresponding to the remaining constraint. Consider 

the first order and equilibrium conditions corresponding to our program :

—  o c a S ^ k ^ { ^ X t  —  a x t + i ) ° '   ̂  ̂ A  B t

-  (1 -  f-i)Bt+i =  0 , yt 

— (1 — — 0,

k t  — Xt, VL
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Let us write

G - — 5 i _
' a5 ‘x f+ ’’-* '

Then we have

— a ( 7  — a A ^ ) "   ̂ +  7 ^ A f ^ ( 7  — a A ^ ^ i ) "   ̂ +  C t  — ( 1  — ^ Cf + i  =  0 .

Af >  1 — /Li => (7f =  0. Therefore {BR)  holds for every Â  >  1 — // such that 

r(Af) >  1—/i, but it also holds for /i), and for (1 —/Li) if r ( l —/i) >  1—/i.

Let us consider now a date such that Xto-i >  1 — /i and T(A^g_i) <  1 — /x ;

then we have CtQ-i =  0 and A<q =  1 — / x ,  and there exists a finite z’o >  0 such 

that Af =  1 — / X ,  Vt G [̂ 0 , ^ 0  +  %o] and Xto+i^+i >  1 — / x ,  the latter implying 

Cfo+to+i =  0. To determine the value of we have thus to calculate

Cto+io- We are interested here only in the sign of CtQ+io- We have :

(1 — /x)6 A^t'^  ̂ — 0 ( 7  — aAfo_i)" L

T h e  function  f { x )  — 6 7 ( 7  — — 0 ( 7  — a A t o _ i ) " “  ̂ is s tr ic t ly

increasing in x  an d  f ( r { Xt ^^i ) )  =  0 . Since, by assum ption , r(A<o_i) <  1 —/lx, 

we have thus  / ( I  — /x) >  0 an d  therefore Cto >  0. Suppose  zq >  1 ; th e  link 

betw een Ct  a n d  Q + i ,  for t  G [^o,^o +  io — 1] is given by ;

— Ax)‘̂"''’’C<+i =  Ct 7̂ ( 1  ~   ̂ — a.

If A2 >  1 —/ X ,  th en  th e  sequence (Ct )  is increasing and  therefore Cto+io >  0, 

which implies <  r ( l  — /x). Thus, under  th e  a ssum ption  A2 >  1 — ;lx,

th e  dynam ics  lie, a fter  a  finite lapse of tim e, in the  in terval [1 — /x, r ( l  — ji)]. 

As a  consequence, we have the  following possibilities :
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#(z) either Aq is on a r-cycle C [1 — 0 ],

•{i i )  or, after a finite lapse of time, A< is on a r-cycle C [1 — //, r ( l  — /i)],

• { i n)  or, after a finite lapse of time, A< is on an orbit C [1 — /z, r ( l  — fi)]

and there exists an infinite sequence such that Â  =  1 — /z, G

[t j , t j -\-i j ] and Af >  1 —/z otherwise. Notice that in the case where observable 

chaos exists in the unconstrained dynamics, there is a positive probability of 

Af G [1 — /z, r ( l  — ^)] after a finite lapse of time, and even probability one in 

the case of t { \ * )  =  0, for instance.

If, on the contrary, A2  <  1 —/z, then the sequence (C J is decreasing, which 

is rather intuitive since to start again, we need CtQ+io such that Atg+io+i >  

1 —/z >  r ( l  —/z), which requires a strictly negative Cto+io  ̂ Under our present 

assumption on A2 , the only possible type of trajectory is {Hi) but lying, of 

course, in [1 — /z, 0[. □
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