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Abstract

Estimation of stochastic volatility (SV) models is a formidable task because the 

presence o f the latent variable makes the likelihood function difficult to construct. The 

model can be transformed to a linear state space with non-Gaussian disturbances. 

Durbin and Koopman (1997) have shown that the likelihood function o f the general 

non-Gaussian state space model can be approximated arbitrarily accurately by 

decomposing it into a Gaussian part (constructed by the Kalman filter) and a remainder 

function (whose expectation is evaluated by simulation). This general methodology is 

specialised to the estimation of SV models. A finite sample simulation experiment 

illustrates that the resulting Monte Carlo likelihood estimator achieves full efficiency 

with minimal computational effort. Accurate values of the likelihood function allow 

inference within the model to be performed by means o f likelihood ratio tests. This 

enables tests for the presence of a unit root in the volatility process to be constructed 

which are shown to be more powerful than the conventional unit root tests.

The second part o f the thesis consists of two empirical applications o f the SV model. 

First, the informational content o f implied volatility is examined. It is shown that the in- 

sample evolution of DEM/USD exchange rate volatility can be accurately captured by 

implied volatility o f options. However, better forecasts o f ex post volatility can be 

constructed from the basic SV model. This suggests that options implied volatility may 

not be market’s best forecast of the future asset volatility, as is often assumed. Second, 

the regulatory claim o f a destabilising effect of futures market trading on stock market 

volatility is critically assessed. It is shown how volume-volatility relationships can be 

accurately modelled in the SV framework. The variables which approximate the 

activity in the FT 100 index futures market are found to have no influence on the 

volatility of the underlying stock market index.
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Chapter 1: M odelling financial tim e series

1.1. Introduction

Understanding the dynamics of stock market returns and other financial time series has 

been of a considerable interest in the finance literature for a long time. Bachelier 

(1900) initiated the idea of the stochastic nature of stock returns by first noting, that 

the geometric Brownian motion may be a reasonable approximation. The body of 

knowledge has grown immensely since then and some stylised facts have been 

established.

The evidence suggests that the empirical distribution of most financial time series differs 

substantially from distributions obtained from sampling independent homoscedastic 

Gaussian variables. Unconditional density functions exhibit leptokurtosis and 

skewness; time series of asset returns show evidence of volatility clustering whereas 

little or no serial dependence can be detected in the return process itself (Fama, 1970, 

1991, Lo and MacKinlay, 1988; Pagan, 1996).

As an illustrative example, consider the daily time series of the FTSE100 UK stock market 

index over the 27/10/86-14/12/95 period. In what follows the first difference of log-prices, 

R,=ln(Pr P,.i), will be conventionally referred to as the ‘return4 series.
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Figure 1.1: FTSE100: returns, r,; density; correlogram of rt\ correlogram of r 2.

The picture which emerges is typical of most financial data. First, as the time plot Figure 

1.1 fa) reveals, intervals of large price movements are followed by more quiet periods. This 

time varying volatility behaviour became known as the “volatility clustering” phenomenon. 

Secondly, Figure 1.1 (b) allows us to compare the estimate of the unconditional density of 

returns with the corresponding normal density (which is calibrated by equating the first two 

unconditional moments). The empirical density has fatter tails, and a much higher peak 

around zero than the corresponding normal distribution. While it may be difficult to detect 

the fatter tails from the picture above, note that the range was chosen so as to correspond 

to the minimum and maximum of the observed values, events whose probability of 

occurrence under the Gaussian assumption would be zero. This indicates that there are 

many more small and large returns than predicted by the Gaussian approximation. Weak 

evidence of serial dependence in the mean is provided by Figure 1.1 (c) which documents 

the correlogram of Rt for lags up to 10 together with the corresponding ±2T '°'5 bounds. 

And finally, very strong serial dependence in the squares of the process is documented in 

Figure 1.1(d). Taken together, these empirical regularities rule out the geometric Brownian 

motion as a feasible model for asset returns

What can be done if the Brownian paradigm is rejected? The econometric literature can be 

seen as being divided into two categories. Models in the first category assume that returns 

are driven by a process with some fixed, time homogenous distribution. More recently,
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there has been an emphasis on intertemporally dependent models. The special feature of 

models in the latter category is the dependence of the distribution on previous realisations 

of the process. In particular, the volatility parameter is made to follow an evolution of its 

own, thus shifting the whole conditional distribution. Since models of latter category form 

the core of the study, the description o f the time-homogenous models will be brief and is 

included here for the sake of completeness.

The unifying framework which provides the rationale for modelling asset returns by 

means o f time homogenous as well as intertemporally dependent models is provided by 

the Mixture of Distributions Hypothesis (MDH). Here, the central idea is formed by the 

assertion that the rate information arrival is non-constant over time, and possibly 

stochastic. As will be seen in the next Section, most o f the time series models for asset 

returns can be regarded as special cases of MDH. Since the MDH forms the raison 

d'etre for the time series models employed in our empirical work, a brief exposition is 

required before we can proceed any further.

1.2. Information arrival and Subordinated Stochastic Processes

The Mixture o f Distributions Hypothesis (MDH) appears several times in various 

disguises in the literature. Rather than following the development o f MDH in 

chronological order, the exposition here will commence with the most recent treatment 

of the model by Andersen (1996) and provide connections to earlier work, whenever 

necessary. This is largely due to the fact that this particular derivation is well justified 

by microeconomic arguments and does not have the ad hoc character o f previous 

approaches.

Andersen’s model is a version of Glosten and Milgrom (1985) microstructure model in 

which a single asset with a random liquidation value is traded between three types of
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risk-neutral agents: a market maker, and two groups o f informed and uninformed 

investors. During the trading process informed investors obtain private signals as to the 

value o f the asset. The crucial property o f the equilibrium is that a sequence o f trades 

fully reveals the content o f all available private information leading to a (temporary)

dynamic learning process starts anew. Thus the market moves from one temporary 

equilibrium to the next in response to a large number o f information arrivals during 

each trading period.

To fix ideas, denote by PitU the transaction price recorded during the y-th temporary 

equilibrium o f the trading period t (e.g. day). Let furthermore, the random variable 

symbolising the total number o f information arrivals during each trading period be 

denoted as Jt. Then the return over the full trading period can be decomposed as:

If, Q)jj are independent of Jt then an appropriate generalisation of the standard central limit 

theorem (Clark, 1973) delivers the desired result:

which shows that the returns are conditionally normal but have variances that reflect the 

intensity of information arrival. In some trading periods little news is released and trading is 

slow, with incremental price movements. When new, possibly lumpy, information arrives, 

trading is fast and prices fluctuate strongly until a new equilibrium is attained.

Notice, that the argument above delivers almost instantly the justification for the time 

varying volatility models which are discussed in Section 1.4. In particular, if is a dynamic 

stochastic process - e.g. a mean reverting Omsten-Uhlenbeck process (Karlin and Taylor,

equilibrium price. This price prevails until new private information arrives and the

R,\J, ~ N(0,alJt) ( 1.1)
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1981) - one obtains directly the stochastic volatility model. However, time homogenous 

models can be equally obtained from the MDH by observing that that Jt does not have to be 

a dynamic variable and can be assumed to be drawn form a particular time invariant 

distribution.

An interesting alternative point of view can be obtained by regarding (1.1) as a paricular 

example of a subordinated stochastic process. Denote by {Xt}t̂ o a Wiener process and 

M}u>o some other stochastic process. Then the process {i?r=Ay,]}u>o is called the 

subordinated and {,Jt}tao the directing process (Feller, 1971, Chapter 17). Let the 

conditional variance of the subordinated process, given the filtration (information 

structure) 3m, be denoted by Var[Rt\3t-i\=cSi. If  the directing process is

constant over time, the return process {^r}t>o is itself a Brownian Motion with drift. Its 

variance only depends on the length of the time interval over which the return is 

measured, i.e. Var[R(At) \3i\=c?At. However, if the directing process is non-constant, 

possibly stochastic then the variance o f Rt will depend upon the number and 

importance of events occurring within the time interval: Var[R(At)\ J(At), 3i\=c?J(At).

The essence of subordinated stochastic processes can be best understood in terms of a 

model of uncertainty. If the ‘state of nature’ is a complete description of the economy up to 

time t, J(At) may be regarded as a stochastic change in state over the interval [/, t+At]. This 

is due to the change in the stock of information available to the market participants. In the 

classical theory of consumption under uncertainty knowledge of the state is sufficient for 

the knowledge of the state dependent variable. Here, only the distribution of the state 

dependent variable R(At) is known.1

1 This argument leads to the idea of time deformation (Stock, 1988) where the process is regarded as 
being driven by the event time scale and not the calendar time scale. An interesting application can be 
found in e.g. Ghysels and Jasiak (1996).



Thus, non-constant, possibly stochastic information arrival forms the core of the 

justification for the usage of models which transcend the Brownian terrain. If the latent 

variable is drawn from a particular time homogenous distribution a number of interesting 

models for the evolution of asset returns can be obtained. On the other hand, if the latent 

variable is assumed to follow a dynamic process, intertemporally dependent time series 

models immediately follow.

1.3. Early approaches: time homogenous models

Fama (1965) and Mandelbrot (1963, 1967) considered a class of so-called Stable Paretian 

distributions as a potential model describing asset returns. The model has two interesting 

features: it captures the fat tails property o f the unconditional densities and comprises the 

normal distribution as a special case. Mandelbrot and Taylor (1967) show that if the 

directing process J(At) follows a strictly positive stable distribution then the subordinated 

process R(At) will follow a symmetric stable distribution. The model has been fitted to data 

and was found to describe data reasonably well (Fama and Roll, 1971). In general, 

however, its density function is unknown and the variance is infinite thus rendering the 

model rather unappealing.

A more promising approach was suggested by Blattberg and Godenes (1974) who consider 

a model for stock returns where the variance parameter of a normal density is drawn from 

an inverted Gamma distribution, i.e. {c?J(At)}'x~Gamma. The resulting conditional 

distribution of the return process {Rt} is no longer normal but Student-t. The evidence 

indicates that this process is a better description of returns dynamics than the Stable 

Paretian model (Blattberg and Godenes, 1974). In particular, the fat tail property of the 

unconditional density can be addressed by adjusting the number of degrees of freedom. 

Alternatively, the variance to be drawn directly from the Gamma distribution (Madan and

14



Seneta, 1990). An analytical representation of the conditional density o f the return process 

could not be found in this case but the empirical analysis suggested that this model is a 

better fit than the lognormal distribution.

Another interesting model has been proposed by Kon (1984). Here the return process is 

described by a mixture of normal distributions such that each period return is drawn 

independently from one of a finite number o f independent normal distributions. Kon (1984) 

argues that this specification is a better description o f stock returns than either the Student-t 

model or the Stable Paretian model.

Finally, Press (1967), Merton (1976), and Ball and Torous (1983), among others 

investigate the applicability of mixed jump-difiiision model: dP = /iPdt + odW + Pdq , 

where W is the standardised Wiener, q a Poisson process with intensity K and the 

distribution of the size of the jump is normal J~N(fjj, c?j). In an empirical study of exchange 

rate futures Tucker, Madura and Marshall (1994) find that this specification dominates the 

mixture-of-normals model which in turn dominates the Stable Paretian specification. 

However, they disregard the issues of parsimony and compare models on the basis of the 

likelihood function value only. Using the Schwarz criterion, which corrects for the presence 

of additional parameters, Kim and Kon (1994) in an analysis of stock returns, find that the 

Student-/ model dominates both, the mixed jump-difiiision and the mixture-of-normals 

models.

Whatever the relative merits of individual time homogenous models one important 

empirical characteristic of asset returns cannot be captured by any o f the models presented 

above: the phenomenon termed “volatility clustering”. As indicated in the introduction one 

of the most salient features of financial time series is the fact that intervals of large price 

movements (i.e. high volatility) are often followed by more quiet periods, with small price 

fluctuations. This can be interpreted as direct evidence that the latent information flow



variable Jt follows a process whose evolution is time-varying thus giving rise to ARCH and 

stochastic volatility models described in the following Section.

1.4. Time dependent models: ARCH vs. stochastic volatility

Intertemporally dependent models recognise that conditional mean and variance o f asset 

returns, RHn(P/Pt.i) may change over time:

Rt = p t + a t vt , vt ~IID{ 0 ,1) (1.2)

where the evolution of ik and at depend on the previous realisations of the process. Models 

in this category can be divided into two groups: those imposing a strict functional 

relationship on the variance evolution (ARCH models) and those treating the variance as an 

unobserved component following some stochastic process (stochastic volatility, or SV 

models).

Despite large differences in the set-up, the two approaches can be conceptually reconciled. 

Notice, that framework of subordinated processes encompasses both, the ARCH and the 

S V models. Since little is known about the rate o f information arrival apart from its time 

dependence, it is natural to assume that the process is stochastic, possibly mean-reverting. 

This yields immediately the SV model. Specific assumptions about the information arrival 

process give the ARCH model (Gallant, Hsieh and Tauchen, 1991). Thus, one resolution 

to the question about model adequacy is to regard SV models as generalisations of ARCH. 

Alternatively, one can regard ARCH models as discrete time approximations to a difiiision 

process followed by latent, unobserved volatility, while the SV models are simple 

discretisations of this difiiision. It can be shown (Nelson, 1990a) that the Exponential 

GARCH model converges to a continuous time SV model as the distance between the 

observations becomes smaller. By implication, ARCH models can be used to estimate 

parameters of a continuous time stochastic volatility model (Engle and Lee, 1994; Nelson



and Foster, 1994). Dassios (1992), however, shows that even though both discrete time SV 

and EGARCH models will converge to the same continuous time limit, the rate o f 

convergence of the S V model is faster.

While ARCH models dominated the finance literature in the past decade, insights into the 

properties and estimation of SV models were made very recently. In fact, empirical 

applications considered in this Thesis illustrate that the SV models offer an interesting 

alternative to GARCH models routinely used in applied empirical research. The empirical 

question of superior descriptive ability remains unresolved. The prime difficulty with direct 

comparison is the fact that the models are non-nested so that the standard likelihood ratio 

tests are inapplicable (Non-nested likelihood ratio tests were examined by Kim, 

Shephard and Chib, 1996). In addition the conclusions remain largely data dependent. 

Overall, the evidence seems to suggest that both model specifications perform equally well 

when fitted to data (Andersen, 1994a; Taylor, 1994; Kim, Shephard and Chib, 1996).

An altogether different approach is to regard the volatility process as being generated by a 

discrete state Markov chain (Kim, 1993; Naik, 1993; Rockinger, 1994; Billio and 

Monfort, 1995). Unlike difiiision models, where the variable is allowed to take a continuum 

of values, here the volatility variable is assumed to be in one of the discrete states, say cjl 

and gh- The motivation is provided by the idea that major events may have drastic (but 

temporary) effects on asset’s risk characteristics, thus periodically shifting the volatility 

level.2 While models of this kind might be conceptually appealing they have a number of 

drawbacks. First, mere two volatility levels are likely to be inadequate. When more states 

are included the analytical tractability of the framework is lost. On the other hand, it is 

conceivable that the model converges to the continuous state space SV model as the 

number of admissible states increases. The analytical tractability is also lost when bivariate
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asset return processes are considered or the regression effects of explanatory variables are 

to be investigated (Rockinger, 1994). Whatever the merits of volatility switching models, 

the present research is focused on the empirical validity of continuous state space time 

varying volatility models mentioned above, the statistical properties of which are reviewed 

below.

1.4.1. Statistical aspects of ARCH models

ARCH (AutoRegressive Conditional Heteroscedasticity) models were first introduced by 

Engle (1982) and achieved widespread popularity over the last decade. Generalisations of 

the original specification gave rise to GARCH, EGARCH, IGARCH, FIGARCH, ARCH- 

M, and many others. It is not the aim o f this survey to compare and discuss all formulations 

proposed in the literature since several extensive surveys are available (Bollerslev, Chow 

and Kroner, 1992; Bera and Higgins, 1993; Bollerslev, Engle and Nelson, 1994). Instead 

we concentrate on some selected examples of ARCH models which have either proved to 

be more descriptive or provide for a comparison to the stochastic volatility models 

discussed in the next section.

(i) Definition.

The ARCH(p) model (Engle, 1982) imposes a fixed functional form on the specification of 

the variance parameter c?t in ( 1.2 ) making it dependent on past squared residuals of the 

mean equation:

p

a; = “o + rli ■ r, = R,-A (13)
» = 1

2 This is different from the model proposed by Hamilton and Susmel (1994) where the parameters of 
an ARCH process come from different regimes.
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Since many lags are required to describe persistence in conditional variance Bollerslev 

(1986) and Taylor (1986) proposed a more parsimonious representation, the GARCH(p,q) 

model:3

=°k, + rL  + H A  <*l, 0  4)
1=1 1=1

In an attempt to accommodate the negative correlation between returns and return volatility 

(Black, 1976; Christie, 1982) into the ARCH framework Nelson (1991) proposed the 

Exponential GARCH model:

In o f = Oo + 'Z a, s ( r,-,) + X A  lnCT<-; 0 5)
»=1 j =1

where g(j is some asymmetric function of rt. Further interesting extensions have been 

suggested by Engle, Lilien and Robbins (1987) who propose to model the time varying risk 

premium by including the standard deviation as an explanatory variable in the mean 

equation:

^=<&rf +<7f vf , v, ~AT(0,1) (1.2')

with (jt following some ARCH parameterisation. Finally, it is well known that the 

assumption of conditional normality of the error term is often not sufficient to account for 

the leptokurtosis of the unconditional density observed in real data (Engle and Bollerslev, 

1986; Baillie and Bollerslev, 1989; Teraswirta, 1996). Instead, the GARCH-/ model 

(Bollerslev, 1987) may be more appropriate:

R , = H + a , v , ,  v , ~ t y (1.2")

Here, the mean equation errors are drawn from a Student-/ distribution with v degrees of 

freedom. Clearly, the conditionally Gaussian model is obtained in the limit, as v«-»oo.

3 Mirroring the relationship between MA(oo) and ARMA(p,q) model (1.4) can be represented as
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Using the law of iterated expectations the unconditional moments of a GARCH process can 

be derived. Any GARCH model produces serially independent observations with mean 

zero. If the sum of the coefficients a, and f t  is less than unity then the unconditional 

distribution has fat tails (leptokurtosis) and finite variance. Finally, the model has been 

artificially constructed so as to mimic the volatility clustering, producing serially correlated 

squared observations. Thus, almost all o f the above mentioned stylised facts can be 

simulated in the ARCH framework.

Numerous extensions have been proposed accommodating more and more empirical 

regularities, extending the taxonomy of the ARCH literature and making the framework 

increasingly popular. The framework owns its popularity to primarily two factors. First, the 

models allow for tractable specification of the exact functional form of the conditional 

variance function. Secondly, ARCH models are designed to formulate explicitly the 

likelihood function as well as analytic scores.

(ii) Schwert models.

Another ARCH-type model (in the sense that the variance equation is described in 

terms o f some function o f lagged residuals) has been proposed by Schwert (1990). 

Here two regression equations are formulated which describe the evolution of the 

mean and the volatility of the process in terms of lagged endogenous variables:

i  j

R , = C  +  Y ,< P i R , - i  +

‘t  ( 1.6 )
a , = a  + Y t pm a,_m + £<5, u,_, + e,

m=1 /=1

where Rt represents the return on the asset, at is the instantaneous standard deviation 

of the residuals uu and circumflexes indicate fitted values from a previous iteration. 

The residuals from one regression are used as observations in the other, and the system

ARCH(oo).
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is re-estimated until convergence is achieved. Despite simple estimation possibilities, 

model ( 1 .6 ) is highly unparsimonious (Engle, 1990) and enjoyed limited popularity 

(Bessembinder, 1994; Bessembinder and Seguin, 1992, 1993).

(iii) Estimation.

We now turn briefly to the estimation of GARCH models. Let *F=(\i/m y/v)  denote the set 

of unknown mean, y/m (in (1.2 ), ( 1.2 '), or ( 1.2 "), above) and variance equation 

parameters, y/v (in either of (1.3), (1.4), or (1.5) above). Then the likelihood function of 

the model can be written down explicitly since, conditional on the past, the density of 

the observations is Gaussian with a known volatility parameter. Thus the full likelihood 

function is given by the product of conditionally Gaussian densities, PgOX with means, 

mt, and variances, cr,2:

One of the crucial features of the model is the asymptotic independence of the mean and 

variance equation parameters. In other words the information matrix is block diagonal with 

respect to the two parameter sets. The OLS in the mean equation is thus consistent. The 

residuals are then used to obtain the estimates of the variance equation parameters by 

optimising the likelihood function by means of the BHHH algorithm (Bemdt, Hall, Hall 

and Haussman, 1974).

Analytical scores can be obtained by conditioning on initial values oo=0 and rg=0. 

Assuming the boundedness of conditional fourth moments, E(r,4|3 t-i) the maximum 

likelihood estimator y/ is asymptotically normal and consistent (Weiss, 1986). Even if 

the data are not conditionally normal, maximum likelihood, now called quasi maximum 

likelihood, is still an efficient procedure. Lee and Hansen (1994) showed that in fact 

weaker restrictions are sufficient for such estimators to be consistent.

T
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(iv) Explanatory variables.

As will be seen in due course, one attractive feature o f GARCH (as well as SV models) is 

the possibility of examining the impact of explanatory variables on the evolution of 

volatility. Here, in addition to the lagged values o f rt2 the functional form of the conditional 

variance of an ARCH model can be made dependent on a set o f exogenous variables 

Zf={zit,... jktf. For instance, the GARCH(p,q) model can be amended as:

ct,2 = < % + £ “»'■.-/ + £ A ° / - ,  + z , 'r  (1.7)
»=i j =1

where y is a (&xl) vector of unknown parameters. Such parameterisation has been 

advocated by numerous researchers, e.g. Lamoureux and Lastrapes (1990, 1993), with a 

single notable exception: Baillie and Bollerslev (1989) who estimate the model (1.9) 

discussed below.

Specification (1.7) imposes a very rigid structure in which the explanatory variables are 

allowed to affect volatility. In particular the effect o f Z, on the variance o f the process 

is geometrically declining. To see this effect, let £ = r ,2 - o f  =crf2(v/2 - 1) be the

‘innovation’ in the conditional variance process. For illustrative purposes the 

discussion below will focus on the GARCH(1,1) case. Extensions to GARCH(p,q) and 

EGARCH(p,q) are straightforward. Equation (1.7) can be reformulated as:

( l -<pL)rt2 = a0 + Z, 'r+  0  - /? ,£ )£

where L is the backshift operator, Lxt=xt i and ^=a/+/?/. Since the conditional 

expectation of is zero by construction, in fact, is white noise, taking expectations 

repeatedly we obtain the expression for the unconditional variance o f rt:



Thus, Z, in model (1.7) is no longer an estimate o f the variance o f the process at any 

time. Instead, the variance is influenced by an exponentially weighted average o f past 

values o f explanatory variables. This is an important drawback since, as will become 

evident later, we will be interested in modelling the instantaneous impact o f the 

explanatory variables Z on the evolution o f volatility.

In order to avoid this feed-back effect, (1.8) indicates that it is necessary to re- 

parameterise the model; in the GARCH(1,1) case:

0 7  = a0 + a, r,l, + $  a,I, + (l -  <pL)Zt'y  (1.9)

which is the model estimated by Baillie and Bollerslev (1989).4

(v) Multivariate extensions.

Some difficulties with the ARCH specification arise when the transition from the univariate 

to multivariate case is made. Even though exact likelihood function can be obtained, the 

proliferation of parameters poses a serious restriction on the applicability of the models. In 

addition, elaborate restrictions need to be imposed on parameter values to ensure that the 

(NxN) matrix of volatilities, ZJ is positive definite for all time (Engle and Kroner, 1995).

The general parameterisation of the conditional variance L, = Var(rt\3,^)  of an N-

dimensional GARCH(1,1) model is:

vech(L,) = vech(A0) + A vech(rf_,/*,_,')+ Bvech(I,_,) (110)

where vech() denotes the column stacking operator of the lower portion of a symmetric 

matrix, r, is (Nx\), Ao is (NxN), while A and B are (N(N+ 1 )HxN(N+ 1 )!2) matrices. This 

formulation involves the estimation of 21 (s/c!) parameters if the case of a bivariate model, 

N=2. A more parsimonious specification is:

4 However. (1.9) makes the gradients highly non-linear in the parameters creating difficulties in 
estimation.



I ,  = A 0 + Cr,_1r,_1'C + £> '!,_,D (1.11)

where r, is (AM), while Ao, C and D are all (NxN) matrices. Provided A0 is positive definite 

specification (1.11) ensures that Z  is p.d.. The number o f unknown parameters can thus be 

reduced to 12 for the case of N=2.

Assuming that the matrix of correlations between individual elements of the return vector, rt 

is constant over time, Bollerslev (1990) developed a more tractable and empirically viable 

(Baillie and Bollerslev, 1990) specification:

E, = diag(iJZu t , . . . , t )RdiagQ'LUtJ..., Ĵ'LNNt) (112)

where R is an (NxN) correlation matrix and the individual variances, 2), are standard 

GARCH(p,q) processes. This model involves the estimation of mere 7 parameters in the 

GARCH(1,1) case and N=2. Finally, factor ARCH models were proposed by Engle, Ng 

and Rothschild (1990) and are discussed in Lin (1992) and Shephard (1996).

Summing up, the generalisation to multivariate ARCH models is not obvious: the models 

proposed are either highly constrained or not parsimonious. As will be shown in the next 

section, SV models generalise to the multivariate case much more naturally.

1.4.2. Statistical aspects of stochastic volatility models

An alternative way of modelling changes in conditional variance is to allow it to evolve 

stochastically over time. Rather than imposing a prespecified functional form on the 

variance function, o r in ( 1.2 ) is assumed to be driven by some unobserved, latent factor. 

Unlike ARCH models, knowledge of the parameters and past realisations of the process is 

not sufficient to determine with certainty the value of o f  at any one time: the variance is 

now an unobserved component. The exposition below will focus on some selected aspects
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of stochastic volatility (SV) modelling since, again several surveys are available (Taylor, 

1994; Ghysels, Harvey and Renault, 1996; Shephard, 1996).

(i) Definition.

The most widely used SV model is the lognormal. The statistical model in discrete time 

is defined by the mean equation ( 1 .2 ), whence the variance equation is given by:

lncr2 = a  + (/>\na2_] + 77, , 77, ~ Ar(o,<r2) , Corr(vn rjt) = p  (1.13)

This specification highlights the similarity to the EGARCH(1,1) model (1.5) but instead of 

some function of lagged values o f ru the evolution of the variance is now driven by an 

additional disturbance, 77,. It is often convenient to re-parameterise (1.13) as:

[ In g 2 = In a 2 + ht< (\ 13 ')
[ h( = <j> V i  +rjt 77, ~ A^O,©-2) , Corr(vt,r]t) = p

The equivalence is established by noting that the constants capturing the long run 

(log)variance levels are mapped via In a 2 = a(  1 -  (f) 1.

Other definitions have been proposed in the context of option pricing. Various authors have 

examined SV models formulated in continuous time, taking the general form:

J dlnS = p^dt + odŴ  . .
{ df(a)  = p(<j)dt + v{(j)aadW2 ’ d W \'Wi) ~ P

where dW  denotes a standard Wiener process and the specifications of the functions f(o), 

p(a), and 0(0) are summarised in:

volatility process Study

M l d a  = X ( k  -  & )d t  + o adW 1 Scott (1987) 

Stein and Stein (1987)

M2 d G 2 =  X { k  -  G 2)d t  Jt G a ^ G 2dW 2 Heston (1993)
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M3
— ■ = M t + <JadW2 
g  a 2

Hull and White (1987) 

Johnson and Shanno (1987)

M4 d\nG = X(k -  \na)dt + GadW 2 Scott (1987) 

Chesney and Scott (1989) 

Wiggins (1987)

All these specifications postulate a Markovian structure on the volatility process and ensure 

the intuitive condition - that the volatility process {o?}u>o be positive almost surely - is 

satisfied. While these various definitions are admissible, the time series literature focuses 

almost exclusively on the statistical aspects of the parameterisation (1.13) which is the 

discrete time analogue of Model A44. The correspondence is established by defining 

<f> = e~ ^ , the speed of mean reversion, In a 2 = 2k , the long run volatility level, and

cr2 = A_1cr2(l - e ~2AAt) , the variance parameter (Gourieroux and Monfort, 1996, p. 125;

Renault and Touzi, 1996). The predominance of (1.13) is due to the fact that the model can 

be estimated by various methods (Chapter 2) and captures most of the regularities found in 

financial data.

The statistical properties of the SV model are valid even if v, and rjt are contemporaneously 

correlated. First, if (f) is less than unity in absolute value the return process, rh will be 

stationary with the even moments being given by:

j \  _ j ' - e x y j i M  + \ j 2"h)
M rr /  ~  I / j \  ’

2#
a

m, =

while the odd moments are zero. It follows that the variance and the kurtosis are:



As can be seen from (1.14) the kurtosis is larger than that of the normal density, even if 

(fr=0. When p=0 the model implies further that the squares of the process are autocorrelated 

in accordance with:

E{r? = exp(2m, + m^exp^jHj)-1)

which translates into an exponentially decaying autocorrelation function (ACF). More 

general results concerning the ACF of |r,|c for arbitrary constants c and extensions to t- 

distributed mean equation errors - as in (1.2") - can be found in Ghysels, Harvey and 

Renault (1996).

Similarly to GARCH models the SV model can be extended in a number of directions likely 

to be of importance in applied empirical research. Thus, the leverage effect (Black, 1976; 

Christie, 1982) is captured automatically by a non-zero correlation coefficient between the 

two disturbances, vt and 77,. Furthermore, the time varying risk premium can be modelled by 

including the volatility as an explanatory variable in the variance equation (1.2'). Finally, 

additional leptokurtosis may be incorporated in the basic SV model by allowing the mean 

equation residuals to follow a Student tv distribution as in ( 1.2").

(ii) Estimation.

The main drawback of SV models has been the difficulty associated with parameter 

estimation. Likelihood-based estimation requires the latent volatility process, cr, to be 

integrated out of the joint density of the observed returns, ru and latent volatilities, cr,. This 

fundamental difficulty has preserved the widespread popularity enjoyed by GARCH 

models.

Chapter 2 is entirely devoted to SV estimation methodology where a new estimation 

technique is proposed. It should be noted here, however, that if the parameter vector V'is 

partitioned into mean, y/m, and variance equation parameters, y/v, and the volatility process



is strictly stationary, OLS in the mean equation is inefficient but consistent. Thus, the mean 

equation parameters, y/m, can be estimated by OLS but their variance-covariance matrix 

needs to be adjusted for the effect o f heteroscedasticity. Suppose the mean equation takes 

the form:

Rt = xt'0  + crt vt , vt ~ (0,1) (12™)

where xt is a (Axl) vector of explanatory variables, possibly including lagged values of Rh 

and p  (i.e. y/m in the previous notation) is a (Ax 1) vector o f unknown coefficients. Harvey 

and Shephard (1993) show that the variance of the feasible GLS estimator is given by:

—1 r -A 2
Var{p)= 'E x tx,'e~h,'r ^ x txt 'e~2h,{r[Rt - x t'p ) ‘

_/=i J t=\ t=i

-l

(1.15)

where ht = In o f and the notation htlT symbolises the smoothed estimate of ht. Therefore,

the estimation of the SV model proceeds in tree steps. First, OLS is applied to the mean 

equation to obtain the mean adjusted returns, rt. Secondly, the parameters o f the stochastic 

volatility process are estimated, for instance by means of the method proposed in Chapter

2. And finally, the covariance matrix o f mean equation coefficients is obtained via (1.15).

(in) Explanatory variables.

Similarly to GARCH models, the basic SV model (1.12) can be extended so as to allow for 

regression effects in the variance equation. However, unlike GARCH models the SV model 

is formulated in terms of a time varying deterministic mean which is approximated by a 

weighted average of explanatory variables zVs and an autoregressive component:

lnoy = Z , ' /  + ht

K = <t> K \  + v, , n ,~  N {°<a l )  (116)

where Zf=(zu,... ,2$  and /  is a (Ax 1) vector. In fact, model (1.13') is obtained as a special 

case by setting A=l, z /= 1, V/. The statistical properties are not difficult to derive. In
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particular, the unconditional variance o f the process is given by:

r - > 2 r->_2 j - ' /  _ 2 \ __________ rr i . .  , *fir,2 = fi£,2 fi(o-2) = exp^Z, (1.17)

Thus, instantaneous variance is described by the information contained in the

explanatory variables at that moment in time, rather than some weighted average of 

past values. Clearly, if this information is irrelevant the coefficients jk will be 

insignificant. On the other hand, if the autoregressive coefficient, </> is insignificant the 

explanatory variables capture accurately the dynamics o f conditional variance. In this 

case the model reduces to the multiplicative heteroscedasticity model (Harvey, 1976) 

with noise: Ina2-Z t'y+ rjt, rjrN{0,<j^2). I f  neither hypothesis can be rejected, we are 

left with a mean reverting volatility process where the mean is approximated by the 

information encoded in / f’s.

If, for some reason, the geometric lag structure is specifically required, then the SV can 

be adjusted accordingly:

(1.18)

so that model (1.13) is obtained as a special case by setting k= 1, Z,'=1, V/. Equation

(1.18) is the SV analogue of (1.7) and the resulting unconditional variance is:

(1.19)

which - upon expansion - leads to an expression similar to (1.8).

(iv) Multivariate extensions.
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Stochastic volatility models generalise to the multivariate case by allowing the 

logarithm of variance to follow an AR(1) process. This leads to the following 

parameterisation o f the mean adjusted returns, rt:

Where ru are the individual elements o f the (Nx 1) vector /*,, a  is a (N xl) vector 

capturing the long run volatility levels, & is a (NxN) non-diagonal matrix o f mean 

reversion coefficients, and is a (NxN) covariance matrix o f innovations in the

(Nxl) log-variance vector, ht. Notice, that the vector o f mean equation disturbances is 

multivariate normal with a constant correlation matrix, Q v. Thus, similarly to

Bollerslev’s (1990) GARCH model, (1.20) is a model o f changing covariancies but 

constant correlation.

The closer & is to the identity matrix the more persistence is present in the volatility 

process, or the slower mean reversion. If the eigenvalues o f 0  are within the unit circle 

the model is strictly stationary. Differences in volatility adjustment mechanisms will 

therefore be reflected entirely in the elements of 0. The diagonal elements {<j>") give 

the degree o f persistence while the off-diagonal elements {^}  indicate cross market 

dependence.

The formulation allows for common trends in volatility by placing reduced rank 

restrictions on 'Lrj. Thus, if rank(Z^)=N<N then there are only K  components in

volatility so that

/ = AT v, ~ NID(0,n,)
( 1.20)

( 1.21)
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where <9 is an (NxK) matrix o f factor loadings and ht follows a VAR(1). When the 

volatilities are assumed to follow a multivariate random walk, i.e. <P=Ik, (1.21) is 

replaced by

ht = ®ht +h  (1.21')

where h is a vector o f constants. As we can see, despite a parsimonious 

parameterisation, multivariate SV models have a potential to be empirically viable.

1.5. Outline of the thesis

Having established the relative advantages and highlighted the similarities between the 

ARCH and SV frameworks, we will now focus our attention on estimation of SV models. 

A novel algorithm for the estimation o f SV models is proposed in Chapter 2. It is 

demonstrated that the finite sample performance of the estimator is on par with the fully 

efficient Bayesian MCMC method. The extensions of the basic SV model are addressed.

Chapter 3 discusses some aspects of hypothesis testing within the model. The likelihood 

ratio test for the presence of the unit root in the (log)variance process is considered. 

However, despite the possibility of model estimation under the null and under the 

alternative the distribution of the test statistic in unknown. Our Monte Carlo experiments 

suggest that the distribution can be well approximated by the weighted ^  density, critical 

values of which are readily available. It is also shown that the conventional unit root tests 

are unreliable in this context.

The empirical validity of the S V model is illustrated in the subsequent Chapters. It is shown 

how a number of interesting empirical questions can be addressed in this framework by 

extending the basic S V model to include a set of explanatory variables. The hypothesis that 

implied volatility o f options contain relevant information about the evolution o f the
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latent return volatility process is examined in Chapter 4. It is found that in-sample the 

implied volatility captures most o f the time series dynamics o f the conditional volatility 

o f the return process. However, the out-of-sample forecasting experiment suggests 

that the predictions from the basic SV model across all forecasting horizons are at least 

as accurate as the forecasts obtained from the implied volatility data.

In Chapter 5, the hypothesis that futures trading destabilises the corresponding spot 

market, leading to an increase in price volatility is examined. It is shown that when the 

explanatory variables are included as in (1.7) - as has been done on numerous 

occasions in the literature of volume-volatility relationship - results are potentially 

misleading. Using the SV model, no evidence for the UK in support o f the hypothesis 

(that futures trading destabilises the spot market) is found.
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Chapter 2: Estimation of stochastic volatility models

2.1. Introduction

Despite their intuitive appeal, SV models have been used less frequently than ARCH 

models in empirical applications. This is due to the difficulties associated with the 

estimation of SV models. Unlike ARCH models, where the likelihood function can be 

evaluated exactly, the likelihood function o f an SV model is hard to construct. Existing 

estimation procedures can be subdivided into two groups: (/) methods that attempt to 

build the full likelihood function, and (//') methods which rely on alternative, usually 

less efficient principles.1

Several propositions have been made as to how the likelihood function may be 

evaluated. Kim, Shephard and Chib (1996) show how the likelihood can be 

constructed when a mixture o f normals is used to approximate the density o f the 

disturbances. Jacquier, Poison and Rossi (1994) have proposed a Bayesian approach to 

the estimation o f SV models using the Markov Chain Monte Carlo (MCMC) 

technique. Fridman and Harris (1996) show how the extended Kalman filter can be 

used to perform numerical integration. Finally, Danielsson (1994a) suggested that 

accurate approximations to the likelihood function can be obtained by means of 

importance sampling.

Building on the work of Durbin and Koopman (1997a) and Shephard and Pitt (1997) - 

who have designed importance sampling methods for general state space models - this 

Chapter shows how the general concept o f importance sampling can be used efficiently 

in the context of S V model estimation. The crucial feature is the formulation o f the SV 

model in a linear state space form with ln (# 2) disturbances in the measurement

1 The Quasi-Maximum Likelihood (QML) method of Harvey, Ruiz and Shephard (1994), and GMM 
methods of Andersen and Sorensen (1996) are examples of this category.
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equation. The linear state space form allows very powerful algorithms for filtering and 

smoothing to be utilised, and more generally, to draw upon a vast body o f knowledge 

on structural time series models. The gain is also due to the fact that the Monte Carlo 

simulation is only employed to  construct that residual part o f the likelihood function, 

which is not already captured by the Gaussian likelihood (QML), which we know to be 

an inefficient but close approximation.

Apart from reducing the computational effort considerably (while attaining full finite 

sample efficiency), the algorithm has two distinct advantages. First, the sampling 

variation can be reduced, giving arbitrarily close approximations to the true likelihood 

function. Availability o f the accurate values o f the likelihood function allows for 

hypothesis testing by means o f the likelihood ratio tests. This is likely to be very useful 

since numerical standard errors o f model parameters often leave much to be desired. 

This area is further explored in Chapter 3 where the likelihood ratio test for the 

presence of the unit root in the (log)variance equation is shown to be more powerful 

than the conventional unit root tests. Second, a wide range of extensions can be 

addressed without any modifications o f the estimation procedure due to the fact that 

the state space form is retained. Thus, the variance o f the return process can be 

examined for the presence o f serial correlation, seasonal components and trends, and 

the effects o f dummy and exogenous explanatory variables may be explored in detail. 

The remaining Chapters are devoted to empirical applications. Furthermore, the method 

can be extended to multivariate models, an area, where sampling techniques like MCMC as 

well as variants of the Method of Moments become cumbersome.

This Chapter is organised as follows. Section 2.2 discusses in more detail the various 

aspects o f estimation and inference in the context o f SV models. In Section 2.3 we 

describe the new estimation algorithm while Section 2.4 compares its finite sample
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performance with existing techniques by means o f a Monte Carlo experiment. Section

2.5 illustrates how the method should be adjusted when the basic SV model is 

extended in a number o f directions. Here, the question o f how to treat zero

As before, rt is the mean adjusted return on an asset, rt = Rt -  p t . The estimation o f pt 

has been addressed in Section 1.4.2, equation (1.15), and will not be the subject o f 

interest in the present context. An attractive feature o f specification (2.1) is the 

possibility o f linearising the model. By taking logarithms o f the squared mean adjusted 

returns one obtains:

If the original mean equation disturbance, vu is standard normal, e, follows the In(xi2) 

distribution whose mean and variance are known to be -1.27 and tz2/ 2, respectively. 

Notice, that even if the mean and variance equation disturbances vt and T]t are 

correlated, the transformed disturbances, et are uncorrelated with rjt. Therefore the 

information regarding p  is lost when the transformation is taken (Harvey and Shephard 

(1996) show how it can be recovered by conditioning on the signs o f rt).

observations - which will make In(%i2) ill-defined - is also addressed. Finally, Section

2.6 extends the method into the multivariate context. Section 2.7 concludes.

2.2. Existing approaches

The univariate stochastic volatility model was introduced earlier in (1.13) and (1.13')

and is restated here for ease o f reference:

(2 .1)

e, = In v]
(2 .2)
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Harvey, Ruiz and Shephard (1994) suggested a Quasi-Maximum Likelihood (QML) 

method o f estimating the model based on the Kalman filter. Assuming joint conditional 

normality o f (st, rjt), equation (2.2) represents the measurement and transition equations 

o f the general linear state space model:

where, in general, y t is (Nx\) vector o f observations, a t is the (/wxl) state vector, and 

the covariance matrices Ht and Qt are non-singular. Appendix 2 illustrates how the 

unknown variance equation parameters ^ = ( $ 0 ^ a ) ,  henceforth y/, are placed in the 

system matrices H t , Qt , Tt , Z , . Once the model is in the state space form, the

incorporated into the variance equation, (ii) more complicated process can be assumed 

for the evolution o f the latent variable, (iii) missing or irregularly spaced observations 

can be handled, and (iv) generalisations to the multivariate case are straightforward. 

The QML estimation method involves a numerical optimisation o f the Gaussian 

(log)likelihood function over the set o f parameters \j/ details of which can be found in 

Appendix 3.

QML approximates the distribution of et by N(-\.27,7?/2), while et is far from being 

Gaussian. In fact, its density is given in:

(2.3)

advantages of this approach become evident: (i) explanatory variables can be easily

Proposition 2.1: Let the scalar variable x be standard normal. Then the density of



Proof: The univariate density with v degrees o f freedom is given by:

W =

1 i J-V~\ - Ty 1 e

2 * r(f)

Setting v=l, noting that r(y ) = , and making the change of variables z=lny gives

the desired result.□

Figure 2.1 shows in how far e, deviates from its normal approximation which implies 

that the QML estimator is likely to have poor small sample properties even though it is 

consistent.
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Figure 2.1: The In(%?) density and the Gaussian approximation N(-1.27, 7? 12).

Note the high degree of skewness and the long tail on the negative half line. Large 

negative values reflect small values of r, - termed inliers - which may arise in empirical 

applications with high frequency data.

Several other estimation techniques achieved prominent attention in the literature 

First, various method of moments (MM) estimators have been suggested by various 

authors (Taylor, 1986; Melino and Turnbull, 1990; Andersen and Sorensen, 1996).
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MM estimators avoid the problems associated with the linearisation o f the model as 

well as the evaluation of the likelihood. They are not difficult to implement and to 

generalise but the efficiency o f these estimators is known to be suboptimal to the 

likelihood-based method o f inference. It is evident in the simulation experiments o f 

Andersen (1994b) and Andersen and Sorensen (1996) that sample sizes o f less than 

T= 1,000 are insufficient for meaningful estimation by the Generalised MM (GMM). 

For the sample size o f 7=500, it has been found that the efficiency o f MM and QML 

estimators are very similar (Ruiz, 1994, Andersen and Sorensen, 1996) but both are 

strictly outperformed by the fully efficient MCMC method (Jacquier, Poison and Rossi, 

1994). The QML estimator usually dominates for values o f ^  close to unity because for 

the autocorrelations decrease slowly and are captured less well by the moments 

used in the MM procedure. This simulation evidence on finite sample performance 

suggests that the full likelihood procedure will be superior to both estimation 

techniques.

Furthermore, the method o f moments is frequently used in econometrics when some 

variables are restricted to be uncorrelated and no distributional assumptions about the 

disturbances are made. Neither o f these motivations is valid since the SV model is fully 

specified. Moreover, the estimation methodology does not provide an estimate o f the 

instantaneous volatility a,2 throughout the sample, t= 1, .., T so that an additional form 

of estimation is required. For instance, Andersen (1994a) and Ghysels and Jasiak 

(1996) use various MM techniques to estimate the parameters and the Kalman filter to 

obtain the volatility estimates.

Second, Kim, Shephard and Chib (1996) suggest to approximate the distribution o f et 

by a mixture of normals. Conditional on a particular mixture, the likelihood can be 

computed via the prediction error decomposition since the linear structure o f the model
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is essentially retained. An important drawback o f this method is that no matter how 

many mixture components are used, the mixture o f normals can never give a good 

approximation to the tail behaviour o f the In(%]2) distribution. Jacquier, Poison and 

Rossi (1994, p. 416) argue that the convergence o f the algorithm is likely to be very 

sensitive to the number and weight o f individual mixture components.

Third, Jacquier, Poison and Rossi (1994), JPR thereafter, have developed a Bayesian 

approach to the estimation o f SV models using a Markov Chain Monte Carlo 

(MCMC) technique. The likelihood function can be expressed as a mixture o f 

distributions for the observations conditional on the volatilities:

L(yW ) = J  p(y\e)p{a\ v)p{w )dv  (2.5)

where y  and cr are (7x1) vectors o f univariate observations, y u and volatilities, <Jt, 

respectively. Writing the expression in terms o f cr, rather than ht avoids the problems 

associated with the linearising transformation. The first density, p(y\ o) is determined by 

the choice o f the distribution for vu e.g. Gaussian. Second, the marginal distribution of 

model parameters, p(y/) is given by a Bayesian prior, e.g. inverse Gamma. The MCMC 

algorithm is employed to simulate draws from the augmented density p(a, y/\y) and 

obtain the marginal distribution p(o\y/) by averaging the appropriate conditional 

distributions over simulated draws.

Following this approach, Shephard and Pitt (1997) have constructed a more efficient 

block MCMC algorithm for performing Bayesian inference on general non-linear and 

non-Gaussian state space models o f which the SV model (2.1) is a special case. They 

conclude that the performance of the multi-block MCMC methods outperforms the 

single block approach of JPR in terms o f computational efficiency.
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JPR have performed extensive simulation experiments in which they have 

demonstrated that this method is superior to QML and MM estimation techniques 

across a wide range o f parameter values. Particularly in the region o f the parameter 

space where the variance of the volatility process is small, the MCMC technique was 

found to perform much better. However this is also the region o f parameter space in 

which the MCMC estimates are highly sensitive to the prior used in initialising the 

Markov Chains (Breidt and Carriquiry, 1996). Furthermore, this technique has some 

undesirable features. The procedure is quite involved, requiring a large amount of 

computer intensive simulations. In addition, the method needs to be nontrivially 

modified for the extensions like the introduction of explanatory variables, alternative 

processes for the evolution o f variance, or multivariate specifications (Jacquier, Poison 

and Rossi, 1995).

Fridman and Harris (1996) suggest that the non-Gaussianity o f the measurement 

equation disturbances can be handled by means o f a “brute force” numerical 

integration. In a Monte Carlo study - similar to the one presented here - the authors 

demonstrate how Kitagawa’s (1987) extended Kalman filter can be applied in this 

context. By retaining the state space form, Fridman and Harris’ (1996) estimation 

technique offers the same advantages as the one developed here, and indeed, may 

prove a strong competitor in applied research.

Some of the disadvantages o f this method consist o f computational inefficiencies (the 

extended Kalman filter is known to be rather slow) and the necessity to choose a 

priory a fixed grid, over which the volatility process will be integrated. This creates a 

trade-off between numerical accuracy on the one hand, and computational efficiency 

on the other. It is conceivable, that in some instances an optimal grid may not exist. 

For instance, when estimating the volatility process around the stock market Crash of
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’87 the grid selection procedure proposed by Fridman and Harris (1996) will either 

lead to a very coarse grid over the entire volatility range, or place no probability weight 

on the high volatility state during the Crash.

Finally, Danielsson (1994a) proposed to estimate the SV model by the Monte Carlo 

likelihood (MCL) estimation method. At the core o f the method is the search for 

progressively informative sampling densities so that very accurate approximations to 

the integral (2.5) can be obtained. Once a suitable importance sampling density is 

found (from which values o f the latent volatility variable can be sampled), the latent 

volatility variable can be integrated out o f the joint density o f observations and 

volatilities. This is a powerful technique whose time requirement and precision is 

similar to MCMC. However, the method is difficult to generalise and remains 

computationally expensive largely due to the failure o f the technique to exploit the 

linear structure resulting from the transformation (2.2) and the availability o f standard 

simulation algorithms (de Jong and Shephard, 1995).

Durbin and Koopman (1997a) and Shephard and Pitt (1997) have designed importance 

sampling methods for general state space models. Specialising this approach to the 

estimation of SV models the next Section demonstrates that the resulting MCL 

estimator is a viable alternative to the MCMC technique. The finite sample 

performance of our estimator is as good as MCMC, the computational requirement is 

smaller by a factor o f 10, and the method need not be modified when the basic model is 

extended in a number of interesting directions.

2.3. The Monte Carlo Likelihood (MCL) method

Taking logarithms of the squared residuals in (2.1) gives the linear state space (2.2) but 

invokes an additional difficulty: the disturbance term in the measurement equation
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becomes non-Gaussian. Let #=(#, #?, .., OtY be a (Txl) vector o f (unobserved) 

signals2 in the measurement equation o f (2.3) with individual elements Ot=Ztat. Then 

the likelihood function o f the general state space model (2.3) can be expressed as:

L O t v )  = J  PO> 8\ V)d0  = J  p(y\e , v)p(0\ v )d 6  (2.6)

T

where dO stands for . The second equality illustrates the necessity to integrate
t=i

the latent variable 0 out o f the joint density o f y  and 6. Monte Carlo integration is a 

method which attempts to perform this task. A naive Monte Carlo estimator of the 

likelihood function can be obtained by drawing a number o f independent random 

sequences i= (each of length 7) from the unconditional distribution o f 0, 

p(9\y). This estimator will be given by:

L ( y W ) = N ~ ' f , p ( y \ & \ ¥ )
i =1

While such an estimator will be unbiased, and have a variance O^N1), allowing more 

accurate approximations with larger N, it is likely to be very poor. The reason for this, 

is the fact that in the T-dimensional space of.y there will be very few draws o f 0 which 

will be close enough to the particular sample path o f y  so as to make a meaningful 

contribution.

The idea of importance sampling (Ripley, 1987) can be best appreciated by noting that 

the likelihood function (2.6) can also be expressed as:

,, , . p(y\8,v)p(6\v)
L(y\V) = -------77j------:----- (2.7)

p(Qy, v )

2 The signals. 0, correspond to the (log)variances, ln<r,2 in the previous notation.
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Now, define a random variable, sometimes called the remainder function (Danielsson, 

1994a):

( 2 .S )

where the importance density pifyy, y/) is an arbitrary conditional density o f 0  given y  

and y/. It is simple to verify that for any choice o f p{&\y,v), the expectation o f the 

remainder function X(9), taken with respect to the distribution o f 0 is precisely the 

conditional likelihood function needed for maximum likelihood estimation:

£ (x (e ) )= J  v ) d e = m y ) (2 .9 )

Danielsson (1994a) suggested applying this general idea to the estimation o f stochastic 

volatility models. His is an elaborate algorithm for determining the exact form of the 

importance sampling density p{9\y,y/), which is non-trivial. The central idea o f Durbin

and Koopman (1997a) is the observation that X(9) can be decomposed into two parts: 

the Gaussian likelihood function and a residual term. If  the disturbance term et were 

Gaussian, the likelihood function would be:

, , , . p 0 (y \^ v )p (s \¥ )  . . .
l M r ) — a m

where po(x\z) denotes a Gaussian density function for random vector, x, conditional on 

z. This is the likelihood criterion function which is maximised in the QML procedure. 

Taking the importance density p(&\y, y/) = p G {6\y, y/) and combining (2.8) and 

(2.10) one obtains:

(2 . 11)
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where the expectation is now taken with respect to the Gaussian density Pg(&W*v)- 

The first component is obtained by the Kalman filter while the second is simulated. 

Thus, the latent variable can be integrated out o f the joint density o f observations and 

volatilities by standard filtering and smoothing algorithms. Importance sampling is only 

required in the second stage to correct for the non-normality induced by applying the 

linearising transformation. Defining

p(y\Q('\v )  
Pc(yW‘'\ v )

where 0" is a particular draw from pc($i>'. V) ■ The Monte Carlo estimator o f the 

likelihood function is readily obtained as:

L(i//) = LG(y\\f/)w , w = (2.13)
»=i

As before, this estimator is unbiased. Its variance is given by

Far [Z(i//)] = N~]L2 (y/)cr2w where can be consistently estimated by the sample

variance of w(t}. Thus, the Monte Carlo technique delivers the expectation o f that 

element of the likelihood function which is not captured by the Gaussian term. 

Because o f the one-to-one correspondence between the signals and the noise, the 

quantities w0> in (2.12) can be re-expressed as:

i f  ’ '
ww = n ^ r . ■ (2 .i4)

which is a useful result. It implies that in univariate models, instead o f drawing (Txm) 

signals, 0 n from pG(0y, y), we can compute (2.12) by. drawing (7x1) disturbances, 

dl>=(£/, £2, ... £tY from po(e\y/). This operation is accomplished by means o f the 

simulation smoother o f de Jong and Shephard (1995), details of which can be found in 

Appendix 2.
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From our experience, the quantities w(0 in (2.14) are very small numbers and in 

practice - for reasons o f numerical stability - we work with lt(i)=lnwt(i). This has the 

added advantage o f reducing the number o f exponential function calculations, as may 

be seen from (2.16). Furthermore, is more convenient to work with the log-likelihood 

function, an unbiased estimate o f which is given by:

s2
In L(yr) = In Lg (Y\ ys) + \nw + (2.15)

2Nw

where w and s?w are calculated in the following manner:

1. Sample £f°=( eu e2, .., £t)\  /= 1,...N  from p G (s| y/).

2. Compute w(0 in (2.14).

3. Calculate w and s2w as the sample mean and variance o f w,.

Notice that quantity w(i) is a ratio o f the true density o f the disturbances - In{xi2) - to 

the Gaussian sampling density. Its expectation gives that part o f the likelihood surface 

which is not already captured by the Gaussian approximation. By Proposition 1, a 

closed form for w/0 is given by:

= H';2 exp|o.5|f,(,) -  e‘:" +(£,(0) 2 (2.16)

where H, is the variance of the measurement equation noise in the general state space 

form (2.3).

Durbin and Koopman (1997a) consider a number o f devices which improve the 

accuracy of the MCL function (2.15) which are now discussed.

(i) Antithetic variables.

Antithetic variables is a standard technique in importance sampling aimed in reducing 

the simulation variance. In the present context antithetic samples are constructed as:
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(2.17)

where the et ’s are obtained from a disturbance smoother (Appendix 2). Equation

variables are used (as discussed subsequently). When antithetic variables are employed 

the sample mean, w and sample variance, s2w in (2.15) are effectively taken over 2N  

draws.

(ii) Equalising density slopes.

So far the importance sampling density Pg(e\ y/) has been taken to be the Gaussian 

density with constant variance, i.e. we assumed that et ~ N(0,H t ) ,  Ht =7? /2 for /=1, 

T. However, the importance sampling density p(0\y,y) can be chosen arbitrarily in 

any way that improves the accuracy o f the simulation. In particular, one can use 

et ~ N{0,H t ) where the scalar variances Ht ’s are chosen so as to make the 

differences between the logdensities InP ^M v )  and \npG{d\y/) as constant as possible

in the neighbourhood of et = E(et \Y). Intuitively, large negative values of et would 

require high values of Ht in order for the slopes o f the densities in Figure 2.1 to be 

roughly equal.

The choice of Ht ’s is determined by equalising the derivatives of the logdensities at e 

leading to a set of vector equations:

It is simple to verify that for any choice o f £t the nominator and denominator of (2.18)

(2.17) creates equiprobable draws - since = - (^ °  -i?) - which is useful if control

have the same signs, thus ensuring that Ht is positive.
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The vector equations (2.18) can be solved for H t by iteration, starting at 2 V

t. Given a parameter vector % we iterate K  times between computing £t and H {k), 

k= 1, K, effectively running the Kalman filter and the disturbance smoother. 

Choosing the metric d(k) -  to describe successive changes in

the variance vector, H , we find that after about six to eight iterations the elements of 

the variance vector cease to fluctuate, i.e. H .k) —» H t , results of which are reported in 

Table 2.1, at the end of this Chapter. Table 2.1. shows rapid convergence across a 

range of parameter values for the simulated SV model (2.1).

The individual elements of the variance vector H  are now different across t= 1, .., T.
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Figure 2.2: Effect of equalising density slopes 

Figure 2.2 presents the histogram of H t for one realisation of the basic SV model 

with T -1,000 observations. It is the mirror image of the density of st (Figure 2.1) and 

reconfirms the intuition behind the method: Large negative, but infrequent values of et 

require high values of variance parameter Ht in order to compensate for the difference 

in density slopes in this region. The converse is represented by large probability mass 

of H t lower than 7?!2.
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Thus the likelihood construction algorithm - described below equation (2.15) - is 

modified to include K  iterations between the Kalman filter, the disturbance smoother, 

and the transformation (2.18) before N  samples are drawn in Step 1.

(Hi) Control variables.

Control variables is another variance reduction technique often used in the context of 

simulation which is based on factoring out the mean o f the random variable. In our 

experience, the contribution o f this technique above (/) and (//) is not very large but 

nevertheless deserves some attention. Expanding l(d°)=\nw(i) as a Taylor series about 

s one obtains:

where the series have been truncated at q. Conveniently, the odd r order terms cancel

to expand the Taylor series up to the fifth order term {q= 5) by considering merely the 

second and fourth derivatives o f l(et(0)\

Both, d2.t and d4.t are scalar. The contribution of the Taylor expansion terms, c(d°) to

out due to the way in which antithetic samples we constructed in (2.17). This allows us

(2 .20)
d -  — ee' 

2

1 = lnw is c = A'' ’^ c ( f (,)) whose expectation is given by:
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where the quantities Ct = E(et -  et) are obtained from the disturbance smoother. 

Thus, the expectation o f w in (2.15) may be approximated by exp(/(£) + c ) .

Numerical maximisation of the MCL likelihood (2.15) - details o f which can be found 

in Appendix 3 - gives the estimates o f the hyperparameters y/. The choice o f the 

number o f draws, N  governs the accuracy o f the approximation to the likelihood 

function: as N  increases, the approximation becomes more accurate. In the event, the 

discussion below indicates that N=5 is sufficient for most practical purposes. Observe, 

that once the SV model is formulated in the state space form (2.3) the simulation 

algorithm and the optimisation procedure are invariant to many extensions o f the basic 

SV model.

2.4. Finite sample perform ance

To assess the performance of the new method we conducted simulation experiments 

following the design o f JPR, thus facilitating direct comparison with the MCMC 

method. The range of parameter values y/=(a is selected in the following

m anner3 First, the values o f the autoregressive parameter <j> are set to 0.90, 0.95, and 

0.98. This choice is motivated by empirical studies which reported the values o f the 

autoregressive coefficient close to unity, ranging between 0.9 and 0.995. Second, for 

each value o f the values of are selected so that the coefficient o f variation:

var (h) a*

C T = w =exp

( \
- 1  (2 .22)

J

takes the values 10, 1, and 0.1. High values of the ratio o f volatility variance to its 

squared mean indicate pronounced relative strength o f the stochastic volatility process 

while low values of CV signify that the model is close to the one o f constant volatility.
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In fact, if preliminary exploratory analysis o f the data from a model with low CV was 

based only on the autocorrelation structure o f r? or lnr,2 the practitioner without a 

strong prior belief that the SV model is the correct specification will be unable to 

distinguish between the SV and a homoscedastic model. Nevertheless, the parameter 

triplets y/rif/9 are included for the sake o f completeness. The focus o f interest is thus 

centred around parameter triplets y/4-¥6 which correspond to the coefficient of 

variation close to unity. Most of the empirical studies surveyed by JPR report 

parameter estimates in this range.

Finally, the values o f long run volatility level, g  are chosen such that the expected

variance:

E[h] = a 2 exp (2.23)

is set to 0.0009. If the simulated data are regarded as daily returns, this corresponds to 

approximately 22% annualised volatility if the data are thought as being sampled at 

weekly frequency. Note, that JPR chose the parameterisation (1.13) rather than 

(1.13'), This gives the following range o f parameter triplets:

c v =  10 CV=1 CV= 0.1

¥1 ¥ 2 ¥3 ¥4 ¥s ¥6 ¥? ¥s ¥9

</> 0.9 0.95 0.98 0.9 0.95 0.98 0.9 0.95 0.98

0.675 0.484 0.308 0.363 0.260 0.166 0.135 0.096 0.061

a -0.821 -0.411 -0.164 -0.736 -0.368 -0.147 -0.706 -0.353 -0.141

For each of the nine triplets, y/h we generate samples o f length T^OO,4 estimate the 

model by various techniques and compute means and root mean squared errors o f the

3 The correlation coefficient, p  is set to zero.
4 In fact, samples of length 7’=600 are simulated and the first 100 observations deleted. This is a well 
known technique aiming at reducing the dependence on initial conditions.
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parameter estimates over A=500 simulated realisations o f the process. In all 

calculations the number of draws, Abused to take the expectation in (2.15) is set to 5.

Results from the sampling experiments are presented in Table 2.2 which is divided into 

three panels in accordance with the coefficient o f variation CV. Within each panel the 

true parameter values are displayed first. The JPR simulation results for the Bayes 

(MCMC) estimator, their Table 7, are reproduced in the first row, the Quasi-Maximum 

Likelihood estimator (QML) in the second, followed by the MCL estimator given in 

equation (2.15). The sampling standard deviations o f the parameter estimates are in 

parenthesis below. The starting parameter values for both, the QML and MCL 

optimisation routines are obtained from a two dimensional grid search procedure which 

searches for an optimum across the surface o f the Gaussian Likelihood function (2.10).

The figures presented in Table 2.2 allow several conclusions to be drawn. First, the 

experiment demonstrates that the Monte Carlo Likelihood (MCL) estimator (2.15) is 

as efficient as JPR’s MCMC estimator across all parameter values. In most cases the 

standard errors o f the MCL estimator, documented in the final row o f each panel, are 

at least as small as those reported for the MCMC estimator. In addition the bias 

exhibits a similar behaviour; the average parameter estimates obtained by MCL are as 

close to the true values as the MCMC estimates and significantly closer than the QML 

estimates.

The performance o f the MCL estimator is further illustrated by examining the sampling 

distributions o f the parameter estimates. Figures 2.3 and 2.4 present the smoothed 

densities of the estimates of (j> and <jn for two triplets ij/4 and y/5, see Appendix 1 for 

details of nonparametric kernel density estimation. The MCL estimator is shown to 

exhibit a much tighter sampling distribution then the QML estimator, a property 

already indicated by smaller standard errors of the estimates reported in Table 2.2.
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Figure 2.3: Sampling distributions of the MCL and the QML estimators; y/ 4
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Figure 2.4: Sampling distributions of the MCL and the QML estimators; y/5

Second, confirming the JPR’s results, the QML estimator (2.10) is found to be 

inefficient. Across the entire parameter space the standard errors of the QML estimator 

are at least twice the size of the fully efficient MCL estimator while the bias is non- 

negligible. The efficiency of the QML estimator increases as the strength of the SV 

process becomes more pronounced, i.e. for parameter triplets corresponding to the 

values of CV equal to ten. For instance, for the case of CV- 10 the sample standard 

error on <fr= 0.95 is 0.046 while in the case of CV- 1 the standard error on ^=0.95 is 

twice as large, 0.101.

However, although we find QML to be inefficient, its performance is nowhere as near 

as bad as reported by JPR. Same conclusion was reached by Breidt and Carriquiry 

(1996) who also re-examined the finite sample performance of the QML estimator. 

Since Figures 2.3 and 2.4 were constructed so as to correspond to JPR’s Figures 4 

and 5 respectively, direct comparison reveals dramatic differences in the performance
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of the same estimation technique. This raises the question o f possible inefficiencies in 

JPR’s QML estimation method such as poor starting values, different convergence 

criteria, or inefficient implementation o f the algorithm.

Thirdly, the performance o f all three estimators deteriorates as CV decreases. The 

standard errors on <j> increase twofold by going from CV= 10 to CV= 1 and eight times 

by going from CV= 1 to CP=0.1. Comparison o f the MCL and the MCMC estimators 

in this region reveals that the MCL estimator exhibits slightly larger standard errors but 

a considerably smaller bias.

However, as the number of draws, N, increases the expectation o f the MCL likelihood 

function in (2.15) can be taken more precisely, thus leading to increased performance. 

In principle, the approximation can be made arbitrarily close by choosing a large N, but 

the computational burden will render this strategy impractical. In our experience, a 

very small number o f draws is sufficient to produce results comparable with the 

MCMC estimator. This is illustrated in Table 2.3.

The interest is primarily focused upon two factors: the number o f draws required, and 

the benefit o f using the device o f equalising density slopes as in (2.18). First, observe 

that already a small number of draws, N=\0, and without equalising the density slopes, 

the MCL technique produces results comparable to the fully efficient MCMC 

estimator. Both in terms of bias and precision the MCL (JV=10) and MCL (N-20) 

estimators match the performance of MCMC. Second, the precision of the MCL 

estimator can be significantly improved by employing the density slope equalisation 

technique, as can be seen by examining the standard errors of the MCL*(Ar=5). For 

instance, employing this device, only 5 draws are sufficient to reduce the standard error 

on each parameter by a factor o f two, as can be seen from the line labelled
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MCL*(jV=5) in Table 2.3. Increasing N  more dramatically reduces the standard errors 

even further.

The final column o f Table 2.3 reports average time that was required to obtain 

parameter estimates, given the initial guess: for each realisation o f the process the 

initial guess was obtained from a coarse grid o f the quasi-likelihood surface. That same 

parameter vector was then used by each estimation technique as the starting value. 

Since time required for the convergence o f the algorithm is machine dependent we 

chose to report the figures in terms o f multiples o f the QML time (All calculations 

were performed on a 586, 90mhz, 8 RAM, PC. On average the QML estimation took 

0.572 seconds, thus requiring 0.572*27.67=15.8 seconds for the MCL*(A=5) 

estimator). The experiment suggests, that full efficiency can be achieved by the MCL 

with only N=5 draws if the device o f equalising density slopes is employed. This is our 

preferred estimator whose performance across the entire parameter space was already 

reported in Table 2.2.

Finally, we investigated the computational requirement for the MCL estimator across 

different sample sizes. Due to timing considerations we chose to measure the average 

time for one function evaluation the results o f which are presented below:

T QML MCL (N=10) MCL (N=20) MCL *(N=5) MCL* (N-10)
500 0.020 14.55 26.32 25.66 31.56

1,000 0.037 15.62 28.33 27.56 33.90

2,000 0.072 16.29 29.49 28.17 34.58

6,000 0.220 15.59 28.22 27.53 33.84

10,000 0.359 16.00 28.96 27.94 34.39

The column labelled QML reports average time for one function evaluation in seconds, 

which is, o f course, slowly increasing in T. The following columns give the average 

time for the different MCL estimators expressed as a multiple of the QML time within



each row. While the relative function evaluation time for the MCL*(7/=5) is less than 

twice as large (25.66 vs. 14.55) as for MCL(/V=10) estimator, the average time until 

convergence is almost identical (27.66 vs. 27.66). This indicates that the likelihood 

surface is better specified and fewer iterations are required by the MCL*(/V=5) 

estimation. Thus, despite larger function evaluation times, parameter estimates can be 

obtained within same time periods for either method.

Finally, we would like to compare the computational requirement for the MCL 

estimator with that of MCMC. Unfortunately, JPR do not report their average 

estimation times, not even as multiples o f QML, and one has to make an indirect 

comparison referring to the times reported by Danielsson (1994b).

We re-estimate the basic SV model on the same data set used by JPR and Danielsson 

(1994b). The data set consists o f daily observations on the S&P500 stock index level 

in the period 2/1/80-30/12/87. The return series are prefiltered to remove the calendar 

effects as documented in Gallant, Rossi and Tauchen (1992). The sample length is 

7=2,023 observations.

The choice o f this particular data set is convenient for two reasons. First, the 

parameters o f the process have already been estimated by MCMC arid Danielsson’s 

MCL which gives a reference point. More importantly, this is the only instance in the 

literature where the times for the MCMC estimation are reported thus allowing us to 

calibrate the relative time requirement o f our method. The results o f the estimation 

were:

a * time
MCL -0.00 0.96 0.16 1:21

MCMC -0.00 0.97 0.15 7:15

Danielsson’s MCL -0.00 0.97 0.15 10:45
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As in the simulation experiment, the device o f equalising density slopes and N= 5 draws 

were used. The parameter estimates are almost identical and the time requirement for 

the new MCL is about five times smaller than either o f the o f the methods.5

These results are very encouraging. They demonstrate that the MCL estimator 

proposed here exhibits very satisfactory small sample performance which is directly 

comparable to the fully efficient Bayesian MCMC method. The evidence also suggests 

that these results can be achieved by using a very small number o f draws.

2.5. F u rther issues

Having shown that the MCL estimator exhibits satisfactory finite sample performance 

we would now like to turn to the practical issues in SV model estimation and indicate 

some of the interesting extensions o f the basic SV model (2.1).

2.5.1. Inlier problem

Since our method, as much as QML, relies on the use o f the linear state space, taking 

the logarithms of squared mean adjusted returns becomes a problem when zero, or 

small values are encountered. In particular, if the drift in o f the asset can be assumed to 

be zero and the series to be investigated is high frequency data, or prices are recorded 

discretely then it is possible that some returns will be zero. In many practical 

applications, however, equality of prices at two successive observations in time, 

leading to zero returns, arise due to data irregularities. For instance, properly 

accounting for holidays eliminates many “zero” returns in any daily exchange rate 

series. Deleting such observations from the sample eliminates the inlier problem.

5 Direct comparison of computational requirement is obscured by the difference in computer platforms 
(SPARC superstations vs. PC), resources (size of RAM, clock speed), as well as differences in



Alternatively, the updating equations o f the Kalman Filter can be modified so as to 

handle missing values (Harvey, 1989).

If the inlier cannot be assumed to be an irregular observation there are three 

alternatives o f dealing with the problem. First, the sample mean o f the series may be 

subtracted from the observations. While the method may be feasible numerically (the 

resulting series are devoid o f entries identically equal to zero) it does not solve the 

problem conceptually. Second, Breidt and Carriquiry (1996) suggest a transformation 

o f the data which amounts to a truncation o f large negative values o f ln(r,2) thus 

shifting some probability mass towards the centre o f the distribution:

where k  is some subjectively chosen constant, e.g. 0.02. The authors demonstrate that 

this transformation improves the performance of the QML estimator and mitigates the 

inlier problem. On the other hand, this transformation alters the entire density o f the 

data, an unsatisfactory solution. Finally, one may cut off the inliers by setting the 

observation at some value k .

where I{-} is the indicator function, and k  is a small number. Invariably, the choice o f k  

is subjective but it is demonstrated below that (2.24) leads to reasonably good MCL 

estimates for very small k .

To assess the performance of the MCL and QML methods across various values o f k  

we designed the following Monte Carlo experiment. For the parameter triplet ^  we 

generated the basic SV model (2.1) as before, except that the £,‘s have now a 10%

(2.24)

programming languages (C++ vs. GAUSS).
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chance o f taking the value zero and 90% chance o f being drawn from N(0,1). It is 

rarely the case in practical applications that 10% of the sample are identically equal to 

zero but the experiment has been designed to illustrate the behaviour o f the estimators 

in extreme situations. The generated series was then transformed according to (2.24) 

with ln(AT/2) taking the values o f -20, -30, -100, and -200. The results o f the simulations 

are presented in Table 2.4 and compared to those o f the previous Section. It will be 

recalled, that in that experiment samples were generated in accordance with (2.1) while 

none of the draws £(~N(0,1) was ever identically equal to zero6. The first row o f each 

panel presents true parameter values, the second row reproduces the relevant results 

from Table 2.2 and the following rows give simulation results when about 10% o f the 

observations are set to Ki

lt is apparent that the performance o f QML leaves much to be desired. The bias and 

the standard errors are very sensitive to the choice o f k . A s  k  is decreases the 

performance deteriorates rapidly, leading to enormous biases in all three parameters. 

However, the decline in precision is not homogenous across the three model 

parameters. Interestingly, for tiny K(e.g. /c* = 3.72* 10*44) the bias in the estimate o f the 

autoregressive parameter <j> disappears, while the biases in the estimates of a  and <r7 

remain very large.

The results of the MCL estimator are considerably better. The bias and the standard 

errors on all three model parameters decrease with the cut off value k . Comparison 

with the estimation results for the full sample (Table 2.4, Panel B, row two), reveals 

that less precision can be achieved when 10% of observations are zero, the standard 

errors in this case are about twice as large. This is not surprising, and stems from the

0 Which is a property of the random number generator.
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fact that the likelihood function is ‘flatter’ in cases when many zero observations are 

present.

2.5.2. Heavy tails

The unconditional density o f many financial series exhibits larger kurtosis than can be 

captured by simply incorporating conditional heteroscedasticity into a Gaussian 

process. As has been pointed out before, the basic SV model can be generalised so as 

to allow the mean equation innovations vt to be Student-t distributed as in (1.2"). The 

density o f the transformed disturbances, £t=lnv2 is given by:

Proposition 2.2: Let the scalar variable x have a Student-t distribution with v degrees 

o f freedom. Then the density o f z=lnx2 is:

(2.25)

Proof: The density o f a variable which follows a Student-t distribution with v degrees

of freedom is given by:

Making first the change o f variable y=x2 one obtains:

Now, let z=\ny and the proposition follows. □
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The limit o f (2.25), as v—»oo, is o f course, the In(xi2) density (2.4) which can be 

verified by taking logarithms o f (2.25), and expanding ln(l+x) as a Taylor series.

Furthermore, the first, second and fourth derivatives o f (2.25), required for equalising 

density slopes in (2.18) and Taylor series expansions in (2.19) are:

Again, the Gaussian equations (2.18) are obtained in the limit, as v - w  in equation 

(2.18'). Moreover, (2.18') automatically ensures the non-negativity o f H t , which can 

be verified by observing that the signs o f the nominator and denominator are the same 

for any value of v and st .

The number of degrees of freedom, v enters the parameter vector y/, over which the 

likelihood function is maximised. This is different from the Harvey, Ruiz and

The computation o f the MCL likelihood (2.15) involves the quantities wt(i) in (2.14)

which are now constructed as:

< >  = {inH,)' 2 exp(o.5^£,(0 + (*,<i>)JffI-| ) )c i,(l + 2 (2.16')

So that the updating equations for Ht in (2.18) become:

T  " I

(2.18')

v + eCl



Shephard’s (1994) QML set-up where the variance of the measurement equation, H  

in (2.3) is treated as a parameter.

To illustrate the method, we proceed to fitting the SV-/ model to the S&P500 return 

series, which were described earlier in Section 2.4, results of which are presented in 

Table 2.5. For ease of reference the results of the basic SV are reproduced in the 

upper panel. The estimated number of degrees of freedom is 7.634, well in the range of 

empirical estimates reported by Bollerslev (1987) using the GARCH-/ model: 6.211- 

13.889. The likelihood ratio test statistic takes the value 26.6 which is significant at the 

1% level when compared to the relevant critical value of the %i2 distribution. Similarly, 

the standard error on v indicates the significance of this parameter. The introduction of 

the Student-t distributed mean equation disturbances reduces the value of the implied 

coefficient of variation, CV  from 0.389 to 0.255: intuitively, lower variance of the 

latent process is sufficient to account for the variability in the series.
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Figure 2.5: S&P500: unconditional density and the density of the SV-/ model
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Finally, Figure 2.5 demonstrates that the unconditional density o f the S&P500 returns 

is closely approximated by the unconditional density from the SV-/ model.7 By 

contrast, the unconditional density o f the basic SV model (with normal vt) does not 

capture as well the unconditional distribution o f asset’s returns. Thus the MCL 

estimator can be easily adjusted so as to incorporate heavy tailed distributions.

2.5.3. SV in the mean

SV in the mean models can be estimated by MCL by rewriting the mean equation (1.2') 

as rt = a e lh> [S + vt) and applying the logarithmic transformation to obtain the

residuals et -  ln(# + vt )2. The new measurement equation disturbances will now have

a non-central In(xi2) distribution with the non-centrality parameter X=SL. The analytic 

expression for this density is given in:

Proposition 2.3: The non-central In(xi2) distribution with the non-centrality parameter

X is:

/>b,;=(z) = exp
-  e'

(2.26)
7 = 0

where

. - A / 2

c ,(£) = - (*)'
7 + s

Proof: Starting with the non-central Xi2 density (Johnson and Kotz, 1970, p. 130) the 

change of variables z=\ny gives the result. □

7 Parameter estimates of Table 2.5 were used to draw two samples of the SV process the density of 
which is presented in the figure. The /-distributed random numbers were constructed in accordance 
with the Bailey (1994) algorithm. I am grateful to Jon Danielsson for pointing out this procedure.
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The density in (2.26) can be seen as a mixture of central lnQf„2) densities with varying 

degrees o f freedom. Clearly, when SV in the mean effects are not present (/l=0), the 

density (2.26) reduces to (2.4) because c,=o(0)=(2;r)'1/2 and cŷ (0)=0. Despite the 

infinite sum in (2.26) it is possible to calculate the derivatives o f I n ( z) , the first o f

which - required for the equalising density slopes procedure - is:

-i

d i(2) = t D  “  e‘\ + s i z’^ ' * ) = ± cM ) j e ,! \ ’L c, ( x )eJ!
L  7=0 [>=0 j

so that equation (2.18) becomes:

.  a

Ht = - ------- — / > - T t = (2.18")
1 e‘> - \ - 2  g(St iZ)

The function 1) is non-negative and increasing in st implying that in practice the 

modulus o f (2.18") needs to be taken to ensure the non-negativity o f  H t .

On the other hand it is possible to approximate (2.26) with a multiple o f a central 

\n(Xv) density by matching the first two moments:

n = in 2 + ^ ( t )  .
7 = 0

o-: = Z  M  [ ^ ' ( y + y) + M i + J )  ~ ^ ( l ) } 2
7 = 0

where yrfa) and y/'(a) are the diagamma and trigamma functions respectively (Benett, 

1955). However, it is well known (Johnston and Kotz, 1970, Chapter 28) that the 

approximation is rather poor for low values of v in case of the non-central Xv density 

which is likely to be also true in the case o f In Of/2).

The calculation of the likelihood function (2.15) requires the quantities wt(i) o f (2.16) 

which are computed as:
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where as before, et(i) are univariate draws from the simulation smoother, H t are scalar 

mean equation variances in (2.3), and the weight function c/X) is defined in (2.26). The 

truncation of the infinite sum is made at some finite value K. A guide to the choice of 

ATis the surface of the function c/X) X>0,j= \ , . .., K ,  which is presented in Figure 2.6.

j

Figure 2.6: Weight function c/X) in the non-central InOfr2) distribution.

Figure 2.6 indicates that A=4 is a reasonable cut-off value for the range of X likely to 

arise in applied empirical research. For instance, using the ARCH(p) model, Engle, 

Lilien and Robbins (1987), obtain estimates of the risk premium, S, in the range 0.505-0.8, 

thus giving values of X (0.255-0.64) well in the range of the horizontal axis in Figure 

2.6

2.5.4. Explanatory variables

As has been mentioned earlier, the basic SV model can be extended to include a set of 

regressors, Z, in the variance equation Chapters 4 and 5 are entirely devoted to the 

empirical validity of this model. It should be mentioned here, however, that since the 

explanatory variables enter the state vector, as can be seen in Appendix 2, the MCL



estimation procedure need not be adjusted in order to estimate the coefficients. 

Moreover, because only <f> and an enter the hyperparameter vector, the likelihood 

function needs to be maximised in two directions only, irrespective of the number of 

explanatory variables. This is very useful since it reduces the dimensionally o f the 

optimisation problem.

2.5.5. Smoothing

Once the model parameters have been estimated, interest might centre on obtaining 

estimates of the volatility process throughout the sample, and beyond. Unlike in the 

GARCH models, where knowledge o f the model parameters is sufficient to construct 

the volatility figures recursively, in the SV framework the latent volatility can only be 

estimated.

Several issues are relevant here. First, one may want to construct volatility estimates 

which take account o f the parameter uncertainty. This operation can only be performed 

within the fully Bayesian MCMC framework where the joint density o f latent 

volatilities and model parameters is readily available. In classical estimation - and in the 

MCL in particular - the estimated parameters are treated as fixed.

Second, even if the parameters are estimated by the fully efficient MCL, smoothed

estimates o f the state vector al]T = E(at | t )  in the general state space formulation (2.3)

need to be obtained. Conventional state smoothing algorithms do not explicitly take 

account of the non-Gaussianity in the measurement equation. One solution would be to 

consider the posterior mode o f the state vector, denoted by anT , rather than its

posterior mean atlT . The mode of a random variable is the most probable value, one at

which the p.d.f. achieves its maximum. In the present context the posterior mode a t{T

is defined as the solution to the vector equation d \np (a \Y )/da  = 0 (Durbin and
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Koopman, 1997b). The posterior mode is obtained simply by employing the device of 

equalising density slopes (2.18) and running the state smoother, described in Appendix 

2 .

The second approach consists o f estimating the posterior mean o f the signal, 

0tlT = Z{ a tir rather than o f the state vector itself This is sufficient when only the in-

sample estimates o f the volatility process are required, as can be seen in (2.28) below. 

The solution (Durbin and Koopman, 1997b) is given by:

N  W V)

Sir = - y , , / ,  = ^ = -  (2 .27)

where the d° are drawn from the simulation smoother, wt(i) are constructed from

(2.14). Intuitively, the weights,/, correct for the non-Gaussianity in the measurement 

equation.

Finally, if the posterior mean o f the state vector itself, at\r is required, the following 

procedure may be followed in the case of the basic SV model with explanatory 

variables. Once the parameters are estimated, Zty is subtracted from the observations 

and the state space model reformulated so that the state, a t , the signal, 6t , and the 

latent AR(1) process, h, become identical. Thus equation (2.27) may be applied.

The final difficulty is the fact that the estimation error, a nT -  a t (where at now

denotes the true state vector) is 0(1). Thus treating exp(a,|7) as lognormal may lead

to distortions. This lead Harvey and Shephard (1993) to consider the following 

estimate o f the volatility process. Given a smoothed estimate o f the state vector, a tlT

throughout the sample, an estimate o f the variance of mean adjusted returns, denoted

by <7,2 is:
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Equation (2.28) demonstrates that for the in-sample volatility estimation the posterior 

mean o f the signal (2.27) is sufficient. Similarly, the L-step ahead forecasts o f the 

variance will be given by:

/ = (2.29)

where Z, and Tt are system matrices in the linear state space (2.3), whereas r  is the 

final observation time (previously denoted by 7). In the univariate model with AR(1) 

dynamics and k explanatory variables, equation (2.29) is specialised to:

5 l A,= e ; e z-', '*lK" (2.30)

where Zr={z r, zkT)' now denotes a (1 xk) vector of explanatory variables - including a 

constant - at the final observation r, and ^ is a (A:xl) of vector o f coefficients.

2.6. Multivariate extensions

The multivariate form o f the basic SV model was given in (1.20). Applying the 

linearising transformation (2 .2 ) yields the linear state space:

|  y, = Ina +  h, + e, su = lnv,2, , v, ~ NID{0 ,n „ )

1 h, = <DA,_t + n, 7 r ~ A 7 £ )(o ,I ,)  }

where Yh In a  , h,, 77, and st are now (Nx 1) vectors, and A^is the number o f series in 

the model. However, having assumed the Gaussianity o f the v/s, the new residuals, et, 

will now have a multivariate ln(^y2) distribution. Harvey, Ruiz and Shephard (1994) 

show that the transformed disturbances, shh will each have a mean o f -1.27 and a



covariance matrix, 'Le whose diagonal elements are i f f2, while off-diagonal elements 

are given by:

•  2 r (yX-/ ~ / / - I  m ' i n
A t  ■ ^  5  r ( i  + ^  A.* . '.7  -  (2.32)

where p,,* are the off-diagonal elements o f the correlation matrix . Notice, that the

signs o f puk cannot be estimated since the relevant information is lost when the 

observations are squared. In QML - as in MCL - we estimate the sign o f p,.* as positive 

if more than half o f the pairs in (1.20) are positive, and vice versa.

Again, QML yields consistent, alas inefficient estimates of parameter values and full 

efficiency can be achieved by MCL. All that is required for the implementation o f the 

algorithm is the knowledge o f the true density o f the disturbances. This issue is 

addressed in the following two Sections.

2.6.1. General case

For simplicity o f exposition we focus on the bivariate case here. The analytic 

expression for the bivariate In (#2) density is given in the following proposition:

Proposition 2.4: Let X  be bivariate standard normal with the correlation coefficient p. 

Then the density of Y=\nX2 is given by:

Pta,? M  = Z  K1 (P) n  expfy* O' + °-5) -  0.5(1 -p2Y'ey'\ (2.33)
>=0 i=l ' 7

P2J
r ( j  + i ) r ( i ) j \ 2 ^ ' { \ - P 2) :

Proof: The bivariate % density with v degrees of freedom is given by:
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where /? ,(■) denotes a univariate central density with v degrees of freedom

(Johnson and Kotz, 1972). Setting v*=l and making the change of variables Z=\nY gives 

the desired result.□

As in the univariate case it is helpful to visualise the shape of the density, a graph of 

which is presented in Figure 2.7.
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Again, the approximation of this density with a bivariate Gaussian, as required by the 

QML, will be poor since the true density is highly skewed on the negative half plane 

However, the Gaussian density will provide a reasonable sampling density for the 

MCL The quantities w/ ' 1 in (2.16) are computed as:

Figure 2.7: The bivariate In (xi2) density with a correlation coefficient p= 0.9
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where / is a (2x1) unit vector, st0) is (2x1), and K  is a constant at which the infinite 

sum in (2.33) is truncated. The structure of the (2x2) mean covariance matrix Ht = 'Le 

was described in (2.32).

Again, a suitable truncation value k  needs to be chosen. Figure 2.7 below depicts the 

surface of the weight function K}{p) in (2.33) . Observe that different values of p  will 

allow for different cut-off points K. However, AT=10 appears to be a reasonable upper 

bound, after which the contribution of further In (xi2) densities in the summation (2.33) 

is negligible.

Figure 2.8: Weight function K/p) in the bivariate In {xi2) distribution.

It has been shown earlier that the computational efforts can be reduced when w,(0 in

(2.14) are subjected to Taylor series expansion. Similarly the quality of the sampling 

density pG(e\y/) is improved by equalising the slopes of the p G(e \y/) and p  A e \y )In*, V >

in the neighbourhood of e, -  E(et\y) . This amounts to equating the first derivatives of 

the \npG{e\{f/) and X n p ^ ^ e ^  and solving for the matrix Ht which becomes time 

varying.
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These techniques require analytic expressions for the first, second and fourth 

derivatives o f the logdensity, l n / ^ ^ T ) .  However, the infinite sum in (2.33) makes it

difficult to find tractable analytic expressions for the derivatives o f the logdensity. And 

estimation may therefore proceed directly by calculating (2.16"') and (2.15).

2.6.2. Uncorrelated case

Considerable simplification can be achieved when the mean equation disturbances Vi,t 

and v2,t in (1.20) are uncorrelated, i.e. Q v = I N in (2.31). In this case, the bivariate

In(%i2) density, /? 2 (Y) takes a simple form:

y,

This follows from Proposition 2.4, by setting p=0, or directly from Proposition 2.1, by 

observing that the joint density o f two independent variables is a product o f their 

individual densities. Therefore, the first, second and fourth derivatives o f the 

logdensity, ln/?^ 2(T) are:

1
1

i 1
1 V O

1

l - e - Vj
z

1
£1o

1

-e* 0 0 0

0 0 0 0

0 0 0 0

0 0 0 -e*

Equalising the density slopes, the diagonal matrices Ht are chosen so as to satisfy:

H. .=
e ^  - 1

(2.18'")
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which is an extension o f (2.18). Letting £  =et - s f i) one obtains the multivariate 

equivalents of the Taylor series expansions (2.19) and (2.20):

< { £ ) = + i t  W a ' t e t e M a ' )
r=i f=i

e c = | i > [ ( 4 ( * , ) + + i t i ’M c c y ]

where the quantities £ £ £ ' = ^ ( ^ 1 ^ )  ar® again obtained from the disturbance 

smoother. Notice, that matrix o f fourth moments, E\vec(£t£ t') vec{£tCt ’)']» neec* not be

evaluated completely since d4(Y) selects merely the first and fourth diagonal elements 

of this matrix.

Finally, the univariate quantities wt(i) in (2.14) and (2.16) can now be computed as: 

w(,° = |/ / , | ' '2 exp(o.5(»"£,(i) - i ' e ‘r  + (2.16"")

where / is a (2x1) unit vector, e!'} is (2x1), and Ht is (2x2).

2.7. Conclusion

This Chapter proposes a new method of estimating stochastic volatility models. At the 

core of the procedure is the representation o f the model in a linear state space form. 

Kalman filter can then be applied to yield the prediction error decomposition which in 

turn constitutes the Gaussian likelihood function. However, due to the log chi-square 

disturbances in the measurement equation, the Gaussian likelihood will only make up a 

part of the true likelihood function. The expectation of the remainder term is simulated. 

As the number o f simulations (N) increases, the approximation becomes more accurate. 

The final sample performance o f the MCL algorithm is examined in a simulation study.
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The results indicate full efficiency o f the estimator across a range o f possible parameter 

values even for moderate simulation sizes, N= 5.

Apart from computational efficiency, the advantage o f the approach lies in the 

formulation o f the model in state space from. This allows the basic model to be 

extended in a number o f directions likely to arise in empirical research. One such 

extension is the inclusion o f explanatory variables in the variance equation which shall 

be examined in more detail in the following Chapters. Once the model is in the state 

space form, no modifications o f the estimation procedure are required beyond 

determining the analytical form o f the true density function o f the disturbances.
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Table 2.1. Equalising density slopes: a recursive solution

¥i ¥2 ¥3 V* ¥s ¥6 ¥6 ¥» ¥9
d(l) 3.135 3.181 3.225 3.215 3.239 3.260 3.281 3.285 3.292

d(2) 1.309 1.417 1.516 1.490 1.546 1.602 1.634 1.654 1.676

d(3) 0.264 0.281 0.295 0.298 0.302 0.306 0.310 0.311 0.311

d(4) 0.144 0.131 0.110 0.125 0.107 0.0090 0.0087 0.0079 0.0070

d(5) 0.0049 0.0042 0.0031 0.0038 0.0029 0.00223 0.0021 0.0018 0.0015

d(6) 0.0023 0.0016 0.0010 0.0014 0.0009 0.0006 0.0005 0.0004 0.0003

d(7) 0.00099 0.00064 0.00034 0.00050 0.0003 0.0002 0.0001 0.0001 0.0001

d(8) 0.00048 0.00027 0.00011 0.00019 0.00009 0.00004 0.00003 0.00002 0.00001

d(9) 0.00026 0.00011 0.00004 0.00007 0.00003 0.00001 8e-6 6e-6 3 le-6

d(10) 0.00012 0.00005 0.00001 0.00003 0.00001 3e-6 2e-6 le-6 le-6

This table reports the values o f the metric d(k)  = T ~ # f(* ,}| f°r k=l,
10 iterations o f the simulated SV model with r=  1,000 and across several parameter 
triplets \f/,=(a,<t),cr tJ,. Small values o f d(k) indicate that the individual elements o f the 
variance vector H  are not changing considerably across further iterations, i.e. 
Hlk) -> H , .
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Table 2.2. Comparison between MCMC, QML and MCL estimators

CV=10 Vi W2 Vs
a 4 a 4 a 4 a*

True -0.821 0.9 0.675 -0.411 0.95 0.484 -0.164 0.98 0.308

MCMC -0.679
(0.22)

0.916
(0.026)

0.562
(0.12)

-0.464
(0.16)

0.94
(0.02)

0.46
(0.055)

-0.19
(0.08)

0.98
(0.01)

0.35
(0.06)

QML -0.945
(0.471)

0.885
(0.057)

0.703
(0.177)

-0.513
(0.376)

0.937
(0.046)

0.506
(0.138)

-0.250
(0.267)

0.969
(0.032)

0.324
(0.098)

MCL -0.662
(0.19)

0.907
(0.026)

0.621
(0.075)

-0.360
(0.139)

0.949
(0.019)

0.458
(0.062)

-0.174
(0.112)

0.975
(0.016)

0.300
(0.05)

CV=1 V4 Vs Ve
a 4 a 4 0 i a 4 0 i

True -0.736 0.9 0.363 -0.368 0.95 0.26 -0.147 0.98 0.1657

MCMC -0.87
(0.34)

0.88
(0.046)

0.35
(0.067)

-0.56
(0.34)

0.92
(0.046)

0.28
(0.065)

-0.22
(0.14)

0.97
(0.02)

0.23
(0.08)

QML -1.002
(0.91)

0.864
(0.122)

0.410
(0.228)

-0.591
(0.756)

0.920
(0.101)

0.302
(0.176)

-0.330
(0.619)

0.955
(0.083)

0.200
(0.142)

MCL -0.598
(0.274)

0.904
(0.044)

0.336
(0.076)

-0.327
(0.186)

0.947
(0.030)

0.249
(0.059)

-0.163
(0.155)

0.974
(0.025)

0.163
(0.046)

CV=0.1 V7 Vs V9

a 4 0 i a 4 0 i a 4 0 i
True -0.706 0.9 0.135 -0.353 0.95 0.0964 -0.1412 0.98 0.0614

MCMC -1.54
(1.35)

0.78
(0.19)

0.15
(0.082)

-1.12
(1.15)

0.84
(0.16)

0.12
(0.074)

-0.66
(0.83)

0.91
(0.12)

0.14
(0.099)

QML -1.007
(1.33)

0.858
(0.19)

0.165
(0.203)

-0.890
(1.40)

0.875
(0.20)

0.153
(0.19)

-0.688
(1.21)

0.903
(0.17)

0.129
(0.179)

MCL -0.884
(1.51)

0.848
(0.21)

0.102
(0.097)

-0.641
(1.34)

0.890
(0.23)

0.088
(0.079)

-0.453
(111)

0.922
(0.19)

0.067
(0.061)

This table reports the results of the simulation experiments. For each set o f parameter 
triplets if/,=(a.^,c^n)h samples of length 7=500 of the basic SV model (2.1) are 
generated A^=500 times. The model is then estimated by various techniques and the 
average estimated parameter values (and their standard deviations) are presented in 
each row. The results for the MCMC estimator are reproduced from Jacquier, Poison 
and Rossi (1994), Table 7.
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Table 2.3. Performance of the MCL estimator

CV=1 Vs
a <*n time

True -0.368 0.95 0.26

MCMC -0.56
(0.34)

0.92
(0.046)

0.28
(0.065)

-

QML -0.591
(0.756)

0.920
(0.101)

0.302
(0.176)

1

MCL (N=10) -0.388
(0.378)

0.947
(0.051)

0.234
(0.126)

27.66

MCL (N-20) -0.390
(0.378)

0.947
(0.051)

0.232
(0.109)

49.49

MCL* (N-5) -0.327
(0.186)

0.947
(0.030)

0.249
(0.059)

27.67

MCL*(N=10) -0.325
(0.180)

0.947
(0.029)

0.249
(0.059)

35.08

This table reports the results o f the simulation experiment on a single set o f parameter 
values, v<5 Samples o f length 7=500 of the basic SV model (2.1) are generated £=500 
times and estimated by MCL. Values 10, 20, and 5 in parenthesis signify the number of 
draws, N, employed by taking the expectation in (2.15). When the device o f equalising 
density slopes (Equation (2.18)) has been used, a * appears. The final column reports 
the average relative time until convergence as a multiple o f the QML speed.
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Table 2.4. Inlier problem: Sensitivity of the QML and MCL estimators 

Panel A: Sensitivity o f QML w.r.t. cut-off value k

a *
True y/ 5 -0.368 0.95 0.26

Full sample -0.591
(0.756)

0.920
(0.101)

0.302
(0.176)

K \ = 4.54*1 (T5 -1.393
(1.144)

0.836
(0.132)

0.966
(0.292)

K2 = 3.06*l(r7 -0.835
(0.877)

0.912
(0.093)

0.888
(0.121)

k3  = L93*1CT22 -0.851
(0.649)

0.948
(0.040)

0.848
(0.099)

K4  =3.72*10“ -1.360
(1.731)

0.949
(0.063)

0.849
(0.104)

Panel B: Sensitivity o f MCL w.r.t. cut-off value k

a <*7

True y/ 5 -0.368 0.95 0.26

Full sample -0.327
(0.186)

0.947
(0.030)

0.249
(0.059)

Kj = 4.54*iars -0.845
(0.698)

0.869
(0.107)

0.396
(0.142)

k :  = 3.06*1 or7 -0.854
(0.548)

0.867
(0.085)

0.411
(0.131)

k 3 = 1.93*1 or22 -0.601
(0.286)

0.906
(0.044)

0.370
(0.116)

K4 =3.72*lff44 -0.575
(0.280)

0.910
(0.043)

0.365
(0.111)

This table reports the results of the simulation experiment on a single set o f parameter 
values, y/5 . Samples of length r=500 of the basic SV model (2.1) with approximately 
10% zero values are generated A=500 times and estimated by QML and MCL. Inliers 
are cut-off at k , in accordance with (2.24) where the cut-off constants Kj -fQ were 
chosen so as to correspond to ln(*/2)= -20, -30, -100, and -200.
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Table 2.5. Estimates of the SV model with fat-tailed disturbances

* In <7 2 V cv LogLik LR

V' 0.960 0.026 -9.313 - 0.389 -4311.6 26.6
s.e.(y) (0.018) (0.009) (0.094) - - - -

V 0.984 0.007 -9.498 7.634 0.255 -4298.3 -

s.e.(y/) (0.010) (0.003) (0.122) (0.003) - - -

This table reports the estimation results o f the SV model where the mean equation 
disturbances follow a Student-t distribution with v degrees o f freedom. The standard 
errors o f (</>,Gn2, v )  are obtained from the numerical approximation to the Hessian, 
while the standard errors o f the estimate o f In o '2 are taken from the corresponding 
diagonal element o f PT. The likelihood ratio test statistic follows the %i2 distribution.
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Chapter 3: Inference in the SV model

3.1. Introduction

It was shown in Chapter 2 how efficient parameter estimates can be obtained by 

correcting the Gaussian (QML) likelihood function for the In /2 distribution. This 

difficulty arises when the original observations are transformed to give a linear state 

space. The true likelihood function is decomposed into the Gaussian part and a 

remainder term, which is computed by simulation. A finite sample simulation 

experiment suggested that the performance o f the estimator is at least as good - and 

often better - than other fully efficient estimation procedures available in the literature.

One further aspect o f the method needs more detailed attention. Apart from efficient 

parameter estimates the procedure delivers arbitrarily accurate approximations to the 

likelihood function itself. This opens the possibility o f likelihood ratio hypothesis 

testing.

In general, the object o f hypothesis testing is to derive test statistics which indicate the 

reasonableness o f some hypothesis (Ho) being true. If  the data fall into a particular 

region o f the sample space (critical region) then the test is said to reject the null 

hypothesis, otherwise the test fails to reject. Because there are only two possible 

outcomes, there are only two ways to make incorrect inferences. Type I  errors arise 

when the null hypothesis is falsely rejected. Type II errors occur when the null is 

incorrectly not rejected. Comparison and evaluation of tests is based upon the notions 

of size (the probability of rejecting the null, when it is true) and power (the probability 

of rejecting the null, when it is false). A test is preferred if it has maximum power 

among all tests with size less than or equal to some particular level.



This Chapter is organised as follows. Section 3.1.1. briefly reviews significance tests 

and suggests how confidence intervals o f model parameters can be constructed. 

Section 3.2. shows how the volatility process can be tested for the presence o f a unit 

root. The new estimation method can be used to construct likelihood ratio tests o f the 

hypothesis H0. (p=\. However, the asymptotic distribution o f the test statistic is 

unknown. We simulate this density and tabulate critical values. The power o f the test is 

compared to that o f the augmented Dickey-Fuller test. Section 3.3. illustrates how the 

AR(1) specification for the (log)variance process can be tested against higher order 

dynamics. Section 3.4 concludes.

3.1.1. Significance tests and confidence intervals

The object o f the maximum likelihood procedure is to obtain an efficient point estimate 

of the parameter vector, denoted by y /. After the estimation, the focus is usually 

centred around testing o f hypotheses concerning individual elements o f y/ . This is 

conventionally accomplished by means of /-tests:

t V' ~ ¥ '

l' ~ s e {v ')

where SE stands for the estimated standard error, the superscript, /, on y/ points to a 

particular element o f the parameter vector, and y/' is a fixed value o f that parameter, 

e.g. zero. In large samples the limiting distribution is N(0,1). For reasons that will 

become apparent in the following Section, for now, we concentrate on y/' strictly 

within the parameter space.

Thus, for instance the significance of the explanatory variables in (1.16) or (1.18) can 

be tested by dividing the parameter estimate by the standard deviation and comparing
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to the critical value o f the limiting normal distribution.1 In the general state space 

model, the standard deviation is obtained from the diagonal element o f the state 

covariance matrix, PT (Appendix 2). This is a test o f Ho. y/=0 against a two-sided

alternative H \ : y/*0.

We can also test whether <j> or take specific values, say </>< 1 or <J7>0, by the same

method. This is justified because the ML estimators </> and <Jn are normally

distributed, even though the measurement equation noise is non-Gaussian (Dunsmuir, 

1979). The standard deviations o f the hyperparameters can be obtained from the 

numerical estimate o f the information matrix. Asymptotic 100(l-f) percent confidence 

intervals for the estimates of (j) and can be constructed in accordance with:

?  ± z0itSE(y,‘) (3.1)

where z0.5e is the O.Se point o f the normal distribution. This gives a pair o f values y/ ' ' , 

y/ ' '' which are symmetrically centred around y/ ' . Notice, however, that when the 

parameter estimate is close to the boundary o f the parameter space (e.g. ^=0.98) this 

may not be desirable. First, it may well happen that one of the numerically computed 

values will be outside the parameter space (i.e. greater than unity). Second, it has been 

shown in Chapter 2 (Figures 2.3 and 2.4) that in finite samples the posterior density o f 

parameter estimates is skewed away from the boundary. One would therefore expect 

the confidence interval to be described by a pair of values which are asymmetrically 

placed around the estimated coefficient. For a given sample size T this asymmetry will 

be more pronounced, the closer the coefficient estimate is to the boundary.

1 However, because of the non-Gaussianity of the measurement equation disturbances but linear 
filtering the standard errors obtained in this fashion will be consistent but inefficient. A better test 
statistic can be constructed based on the likelihood ratio principle since the MCL delivers arbitrarily 
accurate approximations to the likelihood function value.
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During the estimation the general problem of constrained likelihood optimisation is 

translated to the unconstrained optimisation problem by transforming the parameter 

space (Hamilton, 1994, p. 146; Koopman et al, 1995, p. 209). Specifically, unrestricted 

optimisation is performed on a set of parameters 0 which are related to the true 

parameters via 6 = h~x( y ) . The vector function, /?(•) which incorporates the necessary

restrictions is given by: y/̂  = 0+ (l + 0 ^  , y/a -  exp(#CT) where 0+ and Qa denote the

elements of 0 corresponding to </> and on. More details can be found in Appendix 3.

000-

-030

-130

•200

-250-

-330

-uo
-300

001 on 021 031 051 061 071 08041

Figure 3.1: Imposition of parameter restrictions.

Figure 3.1 shows how, in the case of the basic univariate SV model, the restricted 

parameters ^ (^ ,c r7)' - on the horizontal axis - are mapped into unrestricted ones via

0 - h  ' ( ^ )  Optimisation delivers 6 and var(#), from which y/ and its covariance

matrix are constructed in accordance with:

¥ = * ¥ ) ' d0' 00

Now, instead of constructing the confidence interval on ij/ according to the equation

above, we may choose to construct a confidence interval on 6 giving a pair 6 ' ' ,  &" 

for each element of the parameter vector, /. It can be seen from Figure 3.1 that the 

non-linearity of h( ) induces the corresponding pairs y/ " , if/'" to be asymmetric
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around the point estimate y/ . The resulting confidence intervals on (f> and <jn will be 

skewed away from the respective boundaries (1 and 0). This may prove useful in 

empirical research.

This method, however, is not applicable when the true parameter is posed to be on the 

boundary o f the parameter space, e.g. <j> =1 or <7^=0, and different procedures are

required. The latter case is a test for the presence of the time varying volatility against 

a fixed level (Harvey and Streibel, 1997). The former is a test for the unit root in the 

volatility process and is addressed in the following Section.

3.2. Testing for a unit root in the volatility process

Empirical applications o f SV models document one striking regularity: the 

autoregressive parameter, (j> is often found to be close to unity. Similarly, in the 

GARCH literature the sum of the parameters on the lagged squared residuals, a,, and 

on lagged conditional variances, /?„ are often found to sum up close to unity (Engle 

and Bollerlev, 1986).2

Estimates of SV model parameters reported in previous studies are reproduced in 

Table 3.1. With empirical estimates o f ^  well above 0.9 a natural question arises as to 

the stationarity o f the volatility process. While estimation and statistical analysis o f SV 

models with (ff=\ is possible, the stationary version is more appealing on several 

grounds. First, the mean of the process can be consistently estimated by OLS. Even 

though, as has been mentioned in Chapter 1, the dynamic properties in the mean are 

less pronounced, some interest may still be focused on regression effects, as in e.g. 

equation (1.2'"). Second, a model of asset prices with infinite unconditional variance,

2 Nelson (1990b). however, showed that the long run behaviour of such models is unsatisfactory: 
depending on the value of the intercept term, the variance process tends to 0 or oo.
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which can be seen by setting </f= 1 in (1.14), poses difficulties for the framework of 

most o f the modem finance theory. In particular, the portfolio theory and the CAPM 

are based upon the existence o f unconditional second moments. And finally, there are a 

number o f empirical observations which indicate that the true volatility process is mean 

reverting. Thus, for instance, the implied volatility o f options - in as far as it can be 

regarded as an indicator o f the true volatility process - is strongly mean reverting, as 

we discuss in Chapter 4.

The non-stationarity in the mean o f the process has been studied at some length 

(Stock, 1993; Hamilton, 1994). Testing for the presence of a unit root against a 

stationary alternative usually proceeds by means o f augmented Dickey-Fuller tests. The 

discussion in Kim and Schmidt (1993) indicates that the tests are valid under quite 

general conditions regarding the distribution o f the error term. Most importantly, only 

the independence o f the disturbances - and not their Gaussianity - is required.

In principle therefore, the tests are applicable to the problem of testing for the presence 

o f the unit root in the (log)variance process. However, with the empirical estimates of 

the signal-noise ratio, q being relatively small, the reduced form o f the linearised 

stochastic volatility model (2.2) - under H0:</r= 1 - will resemble an ARIMA(0,1,1) 

model with the moving-average parameter close to the non-invertibility region. The 

isomorphism is established (Harvey, 1989, p. 68) by:

0 = 0.5 (q2+ 4 q ) ' ' - 2 - q  , q = 2 a \ j n

In such circumstances, the Dickey-Fuller tests are known to be oversized (Phillips and 

Perron, 1988; Schwert, 1989; Pantula, 1991) rendering the tests based on the tabulated 

critical values unreliable. Their performance is examined in Section 3.2.1.
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Alternative testing procedures for the presence of the unit root were proposed by 

Nyblom and Makelainen (1983) and Kwiatowski et al. (1992).3 In both cases the 

process has a unit root under the alternative hypothesis. However, under the null, the 

process is level stationary in Nyblom and Makelainen (1983), and trend stationary in 

Kwiatowski et al  (1992). Thus despite the validity o f the tests under non-Gaussianity 

o f the disturbances neither test procedure is applicable if  a test for a unit root against 

an autoregressive alternative is required.

Summing up, on the methodological level there is clearly a need for a test o f a unit root 

(Ho.<jr= 1) in the volatility process against a stationary alternative (Hj:<fr< 1). On the 

empirical level, on the other hand, estimates o f the autoregressive coefficient close to 

unity necessitate formal testing of the unit root hypothesis. Such a test can be 

constructed based on the likelihood ratio testing principle. Its empirical distribution is 

investigated in the remainder o f the Section and contrasted with the augmented 

Dickey-Fuller tests.

3.2.1. D istribution of the Dickey-Fuller tests

Dickey-Fuller tests are based on the regressions o f the form

p
y , = a +  <py,_, + £ |y ,  Ay,., + e, (3.2)

i=l

The process y t has a single unit root in the autoregressive polynomial under the null.4 

Consequently, (p will tend to be negative but close to zero. Under the null the 

distribution of is given by a Brownian Bridge (Hamilton, 1994, p. 486) and

therefore the test statistics

3 See also Tanaka (1983) and Watson and Engle (1985).
J Alternatively. v,=y,.}+£, is a random walk starting at yd=a, in which case lagged differences were 
included in an attempt to account for more general error distribution.
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will have the non-standard distributions tabulated in Fuller (1976). The tests may be 

applied to the linearised SV model (2.2) by setting yrlnr?  in (3.2), where rt is the 

mean adjusted return on the asset.

Monte Carlo evidence in Phillips and Perron (1988) and Schwert (1989) suggests that 

the tests in (3.3) exhibit non-trivial size distortions when the data generating process is 

Gaussian ARIMA(0,1,1) with the MA parameter, 0 close to the non-invertibility 

region. Intuitively, a large number o f lags will be required in the autoregression (3.2) to 

achieve a reasonable approximation to the mixed process, even if the errors were 

Gaussian. For instance, Said and Dickey (1984) advocate values o f p  o f the order Tm . 

We expect similar behaviour in the present context, possibly exacerbated by the In (# 2) 

distribution o f the error term.

The size o f the tests (3.3) in the context o f SV model is examined in a Monte Carlo 

experiment. Data samples o f variable lengths, 7’/=500 and 72=1,000, are drawn from 

the basic SV model (2.1). The choice o f the sample length, T is motivated by the trade

off between the sample sizes likely to arise in empirical applications and the 

computational constraints o f the Monte Carlo experiment. While far larger sample 

sizes are feasible in the context of augmented Dickey-Fuller tests, the likelihood ratio 

test - considered in the subsequent Section - requires the MCL estimation of the SV 

model under the null as well as under the alternative leading to a very large 

computational effort.



Since the interest is focused on the distribution o f the test statistic under the null, the 

autoregressive parameter in the (log)variance process is set to unity. The volatility 

parameter, an takes the values 0.1 and 0.3 corresponding roughly to upper and lower 

bounds o f the empirical estimates reported in Table 3.1. The values o f cr7 imply 

reduced form MA parameter values o f -0.96 and -0.87 respectively.5 Under the null the 

unconditional variance o f the return process is not defined and the value o f the long 

run volatility level, a  is undetermined. However, since a  is merely a scale parameter 

it will be irrelevant to the distribution o f the test statistic. We set <f =0.014 

corresponding to a value likely to arise in empirical applications. This choice o f 

parameters gives four cases:

a^=0.1  (<7=0 .0 0 2 ) <7 ,7=0 .3 (<7=0.018)

r=5oo
7=1000

Cl C2 
C3 C4

For each case, K= 10,000 sample paths were drawn. For each realisation o f the process, 

the Dickey-Fuller test statistics were calculated based on variable lengths o f the 

autoregressive polynomial in (3.2), p= 10 , 2 0 , 30, 40, 50. Since deterministic time 

trends in the (log)variance process do not constitute a sensible model for asset returns 

the null hypothesis is a random walk without the drift. The critical values for the 

nominal sizes of 10, 5, and 1% are given by Fuller (1976, pp. 371,373):

0.10 0.05 0.01
ADFj 7= 500 -2.57 -2.87 -3.44

7=1,000 -2.57 -2 .8 6 -3.43

ADF2 7=500 - 11.2 -14.0 -20.5

7=1,000 -11.3 -14.1 -20.7

5 The process is non-invertible with q=0 and &=-l
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The null hypothesis is rejected if the test statistic is less than the critical value and is 

not rejected otherwise. The rejection frequencies are reported in Table 3.2. Three 

conclusions can be drawn. First, the distribution o f the ADF2 test (3.3b) is more 

adversely affected than the distribution o f the ADFj test (3.3a). Irrespective o f the 

value o f (Jtj and the sample length, T the size distortions are uniformly more severe for 

the ADF2 test. This is not mitigated by higher lags o f the autoregressive polynomial. 

The same conclusion was reached by Schwert (1989). By contrast, the size distortions 

o f the ADFj test can be corrected by increasing the number o f lags, p. Second, for low 

C7rj (0.1) a large number o f lags, p  (50) is required to induce the size o f the test statistic 

to approach its nominal value. Even then the test remains slightly oversized irrespective 

o f the length o f the time series. Finally, for higher values o f (0.3), lower orders o f 

the polynomial are required (p=30), again, irrespective o f the length o f the time series. 

This is not surprising, since lower values o f imply MA models with the coefficient 

closer to the non-invertibility region.

Overall, the ADFi test (3.3a) appears to exhibit tolerable size distortions for very large 

lag lengths (p=50 for cr^O.l, and p= 30 for <j7=0.3). This is the preferred test whose 

power will be compared with the likelihood ratio test developed in the next Section.

3.2.2. D istribution of the likelihood ratio test

In general, the likelihood ratio test, is concerned with testing the validity of 

restrictions o f the form:

f { v )  = 0 (3.4)

where y/ is a (px l) vector o f model parameters, and j{ ) denotes some - possibly 

nonlinear - matrix function such that the matrix o f first derivatives, dfcydy/, has rank 

m. When the restrictions are linear, (3.4) takes the form: Ry/ - r  = 0 where R and r



are (mxp) and (m xl) matrices o f fixed values respectively (Engle, 1984; Harvey, 1989; 

p. 234; Gourieroux and Monfort, 1995, pp. 82).

Under the null hypothesis, H0, the parameter vector,^  satisfies the restriction (3.4). 

Denote the estimate o f the parameter values under the null, by y/0 and the value of the

maximised likelihood function by l(y /0). By contrast, under the alternative, Hi, the 

unrestricted parameter estimate and the corresponding likelihood function value are 

denoted by y/x and Z,(^,) respectively.

The basis o f the Likelihood Ratio test is the fact that under some regularity conditions 

(Silvey, 1975; Godfrey, 1988; Harvey, 1989), the statistic

^  = 2 ( ln Z ,(^ ,) - ln l(^ 0)) (3.5)

is asymptotically distributed as %m2 under H0. The intuition behind the LR test is that 

whenever the maximised likelihood function under Ho, L(y0) is much smaller than the

unrestricted maximised likelihood L,(y/X), there is evidence against the null hypothesis.

The construction o f the test statistic in the context o f SV models is, however, 

computationally demanding since the model needs to be estimated twice, under the null 

and under the alternative. On the other hand, the test statistic does not require the 

knowledge o f the information matrix and is based exclusively on the values of the 

likelihood function. Thus MCL estimation under the null and under the alternative is 

sufficient to construct %lr.

In the proceeding discussion it was assumed that the restricted parameter vector, y/0 

was strictly in the interior o f the parameter space. When one (or several) parameters 

are constrained to lie on the boundary of the parameter space the issue becomes more 

involved. In general, i f  the order o f differencing required to achieve stationarity is the
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same under the null and under the alternative, then the distribution o f the test statistics 

under H0 is given (Gourieroux, Holly and Monfort, 1982) by a weighted sum of 

densities:

1=0

In particular, when H0 involves a test o f a single parameter lying on the boundary, <̂lr 

is known to be distributed as:

£lr ~  T  Z o + T Z] (3*6)

The density in (3.6) has a concentration at the origin since Xo is a degenerate 

distribution with all its mass at zero.

However, when ft=\ the process is 1(1) under the null and 1(0) under the alternative 

and the standard theory does not apply. The distribution o f the test statistic is unknown 

even in the case o f Gaussian measurement equation noise. Analysis, o f the kind 

performed in e.g. Dickey and Fuller (1981), is hindered here by the fact that closed 

form expressions for the test statistic in terms o f sums and partial sums o f observations 

and disturbances are not available. In addition, the distribution of the unrestricted ML 

estimates tj/] under the null hypothesis is difficult to derive. Nevertheless, progress can 

be achieved by Monte Carlo experimentation. The density is simulated by calculating 

%lr from random samples o f the basic S V model drawn under the null hypothesis. The 

resulting critical values are tabulated for several nominal sizes.6

To achieve compatibility with the Dickey-Fuller tests examined earlier, the 

experimental design o f the previous Section is retained. The choice o f an and T is 

motivated by our incentive to determine
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(i) whether or not the asymptotic distribution o f £lr depends on cr̂ ,

(ii) how accurately can it be approximated in finite samples, and

(Hi) the extent to which it differs from the weighted chi-squared density (3.6).

Clearly, MCL estimation will be most accurate in case C4 and least precise in C l since 

the strength o f the stochastic volatility process is increasing in <Jn, and the likelihood 

function is always better specified when larger sample sizes are available. However, it 

is interesting to see whether this will be reflected in the finite sample distribution o f the 

likelihood ratio test statistic. Differences in sample densities o f <̂lr for cases C3 vs. C4 

and C l vs. C2 will shed light on the first research objective, (/). By contrast, the 

comparison o f C2/C4 and C1/C3 will provide indicative evidence regarding the 

question (//) above. And finally, difference to the density (3.6) will be highlighted by 

the size distortions o f all four cases, thus addressing (///).

Estimation was performed in the following manner. Since is the only 

hyperparameter ( a  enters the state vector as described in Appendix 2), under the null 

hypothesis a one-dimensional grid search provided the starting values. Next, parameter 

estimates were obtained by the MCL method and the value of the restricted likelihood

function, l ( ^ 0) stored. The a* obtained under H0 provides a useful starting value for

the estimation under the alternative. The starting value for the autoregressive 

parameter was set to a value close (but not equal) to unity (0.981) since under the 

alternative, ^ is constrained to be less than unity. The model was then re-estimated by

MCL giving

0 See Garbade (1977) for a similar investigation of the distribution of &r in the context of the time 
varying regression coefficient model and Kremers, Ericsson and Dolado (1992) for an example where 
the simulated critical values are used to examine the power of a test in the context of co-integration.
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Attention needs to be paid to the initial conditions with which the Kalman recursions 

are initialised. When the autoregressive parameter is constrained to be less than unity in 

absolute value the starting values for the Kalman filter may be taken as the mean and 

covariance matrix o f the unconditional distribution o f the state vector. The likelihood 

function will then be based on the prediction error decomposition with the summation 

starting at t=2 (Appendix 2, 3). However, when <fr=\ the unconditional variance o f the 

state is not defined. Usage o f the diffuse prior, where A: is a large number (105)

and lm is an (mxm) identity matrix is problematic since in this case (a) the likelihood 

will have to be based on a summation starting at t=3, and, more importantly, (b) the 

constant level is not identified. In order to overcome this problem we initialise the 

Kalman filter for the non-stationary model with the diagonal element o f Po 

corresponding to ht equal to zero. This implies that this element o f the state vector is 

fixed. The likelihood for both models is therefore based on prediction errors starting at 

t= 2.

Summary statistics of the sampling densities o f model parameters were obtained as a 

by-product o f the experiment and are reported in Table 3.3, Panel A. First, estimation 

of the scale parameter a  is equally accurate for all cases, C1-C4 and under both 

hypothesis. As expected, is more precisely estimated when larger sample sizes are 

available. This is illustrated by smaller sample standard deviations for the cases C l vs. 

C3 and C2 vs. C4. Second, the posterior density o f <j> under the alternative o f ^<1, has

a sample mean very close to unity (0.994-0.997) and a tiny sample standard deviation 

(0.008-0.003). This is encouraging and provides additional evidence for the efficiency 

of the MCL estimation technique discussed in Chapter 2.

Now turn to the main object of the investigation, the estimation o f the density o f the 

likelihood ratio test statistic. First, the following regularity was encountered: many
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values of 4lr were negative. This implied that the value of the maximised likelihood 

function was lower under the alternative than under the null hypothesis. However, 

examination of a scatter plot of (j> (vertical axis) against %lr (horizontal axis) e.g. for 

the case C3 presented in Figure 3.2 resolves the contradiction.

s■15 ■ 10 * o n Z)

Figure 3.2: Estimates of ̂  vs. values of the LR statistic

The graph documents that values of L,(y,) smaller than L,(y^) - leading to negative 

£ir - are likely to arise when the estimate of <f> is very close to unity. Of course, in these 

circumstances the estimate of <t> tends to unity, leading to the equality of the function 

values (and £zj?=0). However, under the stationary alternative, Hi.</r<\, the estimation 

is performed in such as way that the autoregressive coefficient cannot become unity 

(Appendix 3). Therefore all negative values of %lr are henceforth set to zero. The 

resulting mass at the origin is reported in the final column of Table 3.3, Panel B.

Given a set of sample values { £ lr}j, k= 1, .., l,000,y=l, .., 4 for each of the four cases, 

the densities are estimated non-parametrically, details of which can be found in 

Appendix 1. One density estimate, (x) for the case C2 - deliberately

undersmoothed, and excluding the mass at the origin is presented in Figure 3.3. For 

comparison the graph of the x *  density, /  , (x) is also drawn.X1
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Figure 3.3: Estimated density of the LR statistic and the 0.5x i2 approximation 

It is evident that the estimated density of the likelihood ratio test statistic (solid line) 

resembles the continuous part of the weighted density (3.6), (dotted line). Roughly 

half the mass is concentrated at the origin and the remainder of the density is highly 

skewed agreeing closely with /  , (x ) .Xi

This assertion is further supported by the results reported in Table 3.4, Panels B and 

C. The rejection frequencies - where the critical values were taken from (3.6) - are 

given in Panel B. The empirical sizes are very close to the nominal values, except, 

perhaps in the extreme right hand tail of the distribution. This may be explained by the 

fact the tail of the distribution may be difficult to approximate with A=1,000 draws. In 

general the %lr test based on the critical values obtained under (3.6) appears to be 

slightly undersized, i.e. rejecting less often than it should, leading to a conservative test 

statistic.

Conversely, Panel C presents the critical values obtained by numerical integration. 

Since the density estimates depend weakly on the bandwidth parameter, h, we present 

summary statistics across a range of smoothing parameters, hh /= 1, .., 10 equally 

spaced between 0.05 and 0.5. The critical values thus obtained allow several 

conclusions to be drawn. First, when the number of observations in the series is large, 

7=1,000, the difference in estimated cut-off points across values of is comparably 

small (comparing C4 vs. C3). For instance, the absolute difference in average cut-off
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values across all sizes ranges between 0.01 and 0.20, as rows 11 and 8 illustrate. This 

evidence is suggestive o f the claim that the asymptotic distribution of the likelihood 

ratio test does not depend on av. By contrast, for smaller sample sizes, 7=500 - 

comparing the entries in rows five (C2) and two (C l) - the absolute difference in the 

cut-off values across cr7 is larger, ranging between 0.04 and 0.70. Not surprisingly, the 

difference becomes larger as the size decreases. This is explained by the fact that the 

estimate o f the extreme right tail o f the distribution is based on progressively few 

observations. Sample lengths o f 7=500 observations are not sufficient to achieve 

accuracy in the tail o f the distribution as the comparison o f average cut-off values 

across the cases with the same Gn but varying 7  illustrates. For instance, the difference 

between rows 8 and 2 ranges between 0.35 and 0.75.

And finally, the simulated critical values do not differ substantially from those obtained 

under the mixture o f densities (3.6). Slightly less weight is concentrated in the 

extreme tail o f the distribution leading to lower cut-off values for the simulated 

distribution for any nominal size less than 0.05. Summing up, the distribution o f the 

likelihood ratio test statistic is resembles very closely the weighted density: roughly 

half the mass is concentrated at the origin and the continuous part o f the distribution is 

similar. Critical values o f the weighted density lead to a conservative test statistic.

3.2.3. Power of the tests

The second stage of the Monte Carlo experiment compares the power o f the test 

statistics ADFi in (3.3a) and £lr in (3.5). The process is now simulated under the 

alternative hypothesis with the autoregressive coefficient strictly less than unity. Six 

parameter triplets ^ = ( # o ^  a  ) t are constructed such that for each of the two values 

of Gtj (0.3, 0.1) there are three corresponding values of the autoregressive coefficient <j>
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(0.90, 0.95, 0.98). The long run volatility level, a  is calibrated each time so as to  yield 

23% annualised volatility. The resulting parameter values and the corresponding values 

o f the coefficient o f variation, CV are recorded in the first three rows o f Table 3.4. To 

reduce the computational burden the sample length was fixed at 7=500 but the 

rejection frequencies are based on £ = 1 ,0 0 0  replications. While the critical values o f the 

ADFi test were taken from Fuller (1976), the cut-off points for the %lr test were taken 

from (3.5), see Table 3.3, Panel C. This implies that the %lr test is a conservative test.

As expected, the power o f the Dickey-Fuller test is low. More importantly, the power 

decreases as the autoregressive parameter approaches unity. For instance, for the 

nominal size o f 0.05 and <7 ,7=0 .1 the power is 0.559 for <fr=0.9 and only 0.245 for 

<jf= 0.98. Second, the power is not a monotone function o f the coefficient o f variation, 

CV which implies that the mean reversion - captured by ^  - is the pivotal quantity and 

not the strength o f the stochastic volatility process per se. The power increases slightly 

with cjfj for a given <j> which is not surprising given that the discussion in Section 3.2.1. 

And finally, the power decreases with the nominal size which may indicate that the tail 

behaviour is approximated less accurately with finite number o f draws, K.

Turning now to the power of the likelihood ratio test statistic %lr we observe the 

following regularities. The power o f the likelihood ratio test is higher than the power 

of ADFi test at each nominal size level; except in the last two cells, (<7 ,7=0 .1, 0= 0.95) 

and (cr^O. 1, ^=0.90) which will be discussed shortly. The behaviour is similar, in as 

much as the power increases as the true value of the autoregressive coefficient 

decreases. For instance, for <7 ,7=0 .3 at the 10% level the power o f the £lr is 0.987 

when 0=0.90 and 0.765 when ^=0.98, despite the CV taking a relatively high value of 

8.71. The results o f this Section can be best summarised by a graph, comparing the
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relative powers of the two tests. In Figure 3.4. the power is plotted against the 

coefficient of variation, CV  for the nominal size of 10%.

i
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Figure 3.4: Power of %lr and ADFI at 10% nominal size.

It is interesting to observe that the strict dominance over the Dickey-Fuller test is not 

present in the two final cells. Here, however, the CV values indicate that the strength 

of the stochastic volatility process is almost negligible (CF= 0.11, CV= 0.05), making 

the likelihood “flat” over the relevant region of the parameter space. This behaviour is 

illustrated in Figure 3.5.
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Figure 3.5: Sampling distribution of ̂  and the scatter plot of ^ vs. g u t.

The sampling distribution of presented in Figure 3.5(a), exhibits a long tail 

corresponding to a non-negligible mass of ^ away from the true value of 0.9. Figure 

3.5(b) presents a scatter plot of </> (vertical axis) vs. E,lr (horizontal axis). The graph
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demonstrates three key features. First, for $  close to unity %lr may become negative; 

this phenomenon has been discussed earlier. Second, when the likelihood is well 

specified, 4> is close to the true value o f 0.9 and one obtains the intuitive behaviour:

A  A.

gm increases, as <fr falls. However, when the likelihood is “flat” <p is away from the 

true value and the likelihood function values under the null and under the alternative do 

not differ much, leading to low values of £lr.

Summing up, it has been demonstrated that testing for a unit root in the (log)variance 

process against a stationary alternative by means o f augmented Dickey-Fuller tests is 

not a reliable procedure. The tests are ether oversized (when the lag o f the 

autoregressive polynomial in (3.2) is chosen too small) or have low power (when the 

lag is chosen so as to approximate the correct size). Moreover, the power declines as 

the true value o f the autoregressive coefficient approaches unity, which is arguably the 

most interesting case from the point o f view o f applied empirical analysis. Furthermore, 

it is shown that the likelihood ratio test based upon the estimation o f the SV model by 

MCL is more powerful. The distribution o f the likelihood ratio test statistic is unknown 

but the Monte Carlo experiment presented here suggests that it can be well 

approximated by the weighted % density, critical values of which are readily available.

3.3. Testing for higher order dynamics

The likelihood ratio testing principle can be also be applied in other situations. The 

basic SV model (2.1) can be extended in a number of directions, some o f which were 

indicated in Section 1.4.2. A further generalisation might allow ht to follow a more 

complicated ARMA process, for instance an AR(2) process:
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V, = (0,1)

A = A  Kx + <h h,-2 + n, V, ~ ^ ( o ,< )
(3.7)

Model (3.7) can be easily represented in the state space form, as can be seen in 

Appendix 2. Similar models were briefly discussed by Shephard (1996) and Kim, 

Shephard and Chib (1996). GARCH counterparts were proposed by e.g. Engle and 

Lee (1992).

The hypothesis o f interest is the validity o f the restriction <j>2=0. Thus under the null, 

(log)variance is a stationary AR(1) process, Ho'.</>2=0,<f)i<\ while under the alternative, 

it is stationary AR(2), Hj\(j>^0,\^,\<\ where

MCL allows the likelihood ratio test, £lr to be easily constructed. Moreover, the

boundary o f the parameter space, <f>2 e  (-1,1).

In order to investigate the finite sample properties, and shed more light upon the 

estimation of SV models with higher order dynamics, a small scale Monte Carlo 

experiment was conducted. The process was generated under the null o f stationary 

AR(1) with the parameter values7 o  ̂ =(0.95,0.26, 0.025). The length o f the time 

series was set to 7)=500 and 7^=1,000 while the number of draws was £=1,000.

Since the process is stationary under the null and under the alternative, a proper 

stationary distribution exists and can be used to initialise the Kalman recursions

(3.8)

are the roots of the autoregressive polynomial, \-</>/L-<l>2L2=0. Again, estimation by

asymptotic distribution o f the test is %2 since the restricted parameter is not on the

This is y/s of Chapter 2.
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(Appendix 2). Furthermore, parameter estimates under the null provide good starting 

values for the estimation under the alternative, while (p2 is initialised at zero.

The results are reported in Table 3.5. Summary statistics of the posterior distribution 

of parameter estimates are reported in Panel A while the rejection frequencies of the 

likelihood ratio test are to be found in Panel B. First, parameter estimation under the 

true null is more accurate when the sample size is large. The sampling standard 

deviation on the estimates of <pi and cr̂  decreases as T  grows from 500 to 1,000. This 

is not surprising since the likelihood becomes more informative as T increases. More 

interesting are the results of the estimation under the alternative: parameter estimates 

appear to be on average nowhere near the true values. For instance the mean on (pi is 

1.478 and on <p2 is -0.502 for 7=1,000. More insightful is the posterior distribution of 

the roots of the autoregressive polynomial, Ay and X2 which is presented in Figure 3.6.
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Figure 3.6: Estimation of the AR(2) process: sampling densities of the roots A,.

As expected, the density of the first root, A; is centred around the true value of 0.95. 

By contrast, the posterior density of X2, is at best bi-modal, with some mass 

concentrated at the origin, and the remainder being close to unity. This implies that the 

information is often not sufficient to allow for a distinction between the two roots; they 

are estimated as Ay«A2. The autoregressive parameters are related to the roots via
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^ , = 4 + ^  < t > 2 = (3-9)

In consequence, roughly equal roots will induce estimates of <f>i to be around 1.8 and 

<f)2 around -0.8, which is well documented in the summary statistics of Table 3.5, Panel

A. The mean of the posterior density of <t>2 is -0.502 which is between 0 and -0.8. 

Similarly the mean of (j>i (1.4) is between 0.9 and 1.8.

Additional evidence in support of this interpretation is given in Figure 3.1(a) where a 

scatter plot of $2 (horizontal axis) vs. ^  + 4$, (vertical axis) [which - by virtue of

(3.8) - is a measure of closeness of the roots of the autoregressive polynomial] is 

presented. It illustrates that negative values of <j>i are likely to occur when the diference 

in the roots is small (i.e. a single root is found).

•08

(a). <j>2 vs. +4$, (b)\ fa vs. ^

Figure 3.7: Aspects of the posterior density of <f>i and fa in AR(2).

On the other hand, estimates of the two coeffcients are strongly related. Figure 3.1(b) 

illustrates that the relationship between $ (horizontal axis) and (f>2 (vertical axis) is 

linear. The likelihood will therefore be “flat” along the line sketched in Figure 3.1(b). 

Finally, note that while the posterior density of a n is centred around the true value 

under the null, it is shifted towards the origin under the alternative. This can be 

explained by noting that whenever higher order dynamics are present, lower values of 

the signal-noise ratio are sufficient to produce an acceptable fit to the data.
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The resulting distribution o f the likelihood ratio test is summarised in Table 3.5, Panel

B. Here the rejection frequencies o f the test are reported for several nominal sizes. The 

critical values are taken from the %i2 distribution. Two conclusions can be drawn. First, 

small sample sizes (7=500) are not sufficient to approximate the distribution o f the test 

statistic. The empirical sizes are far away from the nominal levels. Second, for 7=1,000 

the approximation is much better with the empirical sizes being reasonably close to the 

nominal levels. More importantly, the size distortions are not uniform across the 

nominal sizes which indicates that the difference may well be due to sampling variation.

Summing up, estimation of a higher order autoregressive process in (log)variance is 

feasible alas the procedure for constraining the autoregressive coefficients adopted 

here leads to parameter estimates which need to be interpreted with caution. The 

likelihood ratio test of stationary AR(1) dynamics can be constructed but appears to be 

valid for large sample sizes only.

3.4. Conclusion

This Chapter considers some aspects o f inference within the SV model. Confidence 

intervals on model hyperparameters are briefly discussed. At the centre is the 

discussion o f the test of the unit root in the (log)variance process. Two methods are 

juxtaposed: the augmented Dickey-Fuller test and the likelihood ratio test. It is shown 

that large number of lags are required in the augmented Dickey-Fuller test so that the 

distribution of the test statistic is approximated reasonably close. This leads to the loss 

of power. By contrast, the distribution o f the likelihood ratio test is unknown but is 

shown to resemble closely the 0.5%\ density. The likelihood test is shown to be more 

powerful than the augmented Dickey-Fuller test except in the unrealistic case where
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the strength o f the stochastic volatility process is so low as to make the likelihood 

surface ill-conditioned.

As we consider only particular data generating processes - and the distribution o f the 

tests may depend upon the particular parameter values chosen - the results may only be 

illustrative. Nevertheless, the results are informative and conclusive within the bounds 

o f Monte Carlo experimentation. This translates into a recommendation for applied 

empirical research: whenever the value o f the likelihood ratio test statistic is found to 

be in the region o f 2-4 the p-value can be simulated by means o f Monte Carlo methods 

similar to the ones adopted here.
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Table 3.1. Empirical estimates of SV model parameters

Study Time series f CV q

Melino&T umbull (1990) CAD/USD, 7=3,011 0.91 0.14 0.14 0.005

portfolios, T—1,540 0.93 0.32 1.07 0.02

JPR* stocks, T -1,540 0.89 0.36 0.84 0.03

exchange rates, T-2614 0.95 0.20 0.77 0.01

Danielsson (1994a) S&P500, 7=2,202 0.96 0.17 0.37 0.005

HRS* exchange rates, 7=946 0.97 0.14 0.58 0.004

Taylor (1994) DEM/USD, 7=3,283 0.94 0.22 0.50 0.01

This table reproduces the parameter estimates of the basic SV model (1) reported in 
several empirical application o f the SV model. For reasons o f brevity only average 
parameter values for Jacquier, Poison and Rossi (1994) and Harvey, Ruiz and 
Shephard (1994) are reported. The entries are denoted by JPR* and HRS* respectively. 
The coefficient o f variation,

CV = var(<T, )e [o, ] '2 = exp(cr,2 (l -  t f ) ')  -  1

is conventionally used to describe the strength o f the volatility process (Jacquier, 
Poison and Rossi, 1994) and is reported in the penultimate column. The final column 
reports the empirical estimates o f the signal-noise ratio, q -  2<j  2 j n 2 .
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Table 3.2. Distribution of the Dickey-Fuller tests

Panel A. Size o f the ADF} test

Size 0.05 0.01

P 10 20 30 40 50 10 20 30 40 50

Cl 0.909 0.453 0.196 0.103 0.070 0.786 0.233 0.069 0.028 0.014

C3 0.246 0.075 0.051 0.044 0.039 0.104 0.018 0.010 0.009 0.007

C2 0.938 0.544 0.275 0.145 0.092 0.851 0.346 0.117 0.044 0.024

C4 0.267 0.080 0.056 0.048 0.044 0.126 0.020 0.011 0.009 0.008

Panel B. Size o f the ADF2 test

Size 0.05 0.01

P 10 20 30 40 50 10 20 30 40 50

Cl 0.961 0.684 0.466 0.358 0.301 0.903 0.528 0.327 0.246 0.205

C3 0.371 0.175 0.163 0.184 0.207 0.217 0.088 0.088 0.109 0.131

C2 0.968 0.685 0.443 0.309 0.246 0.911 0.521 0.285 0.182 0.145

C4 0.355 0.139 0.112 0.115 0.132 0.196 0.051 0.042 0.050 0.062

This table reports the rejection frequencies o f the augmented Dickey-Fuller tests (3.3) 
for two nominal sizes (0.05 and 0.01). £=10,000 samples of the basic SV model (2.1) 
are drawn for each case, C1-C4, and the test statistics are computed based on p  lags in 
the autoregression (3.2).
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Table 3.3. Distribution of the likelihood ratio test against H$4f \

Panel A: Distribution of the MCL parameter estimates

<7,7= 0.1 (jr=\ G <717=0.3 <jr=\ G

Under Ho 0.093 - 0.014 0.277 - 0.014

r=5oo (0.027) - (0.008) (0.038) - (0.005)

Under Hi 0.103 0.994 0.014 0.286 0.995 0.015

(0.029) (0.008) (0.003) (0.038) (0.005) (0.006)

Under H§ 0.095 - 0.014 0.278 - 0.014

r=1000 (0.016) - (0.003) (0.027) - (0.005)

Under Hi 0.104 0.997 0.014 0.286 0.997 0.015

(0.018) (0.003) (0.003) (0.036) (0.003) (0.006)

Panel A reports sample means and standard deviations (in parentheses) o f the posterior 
densities o f the parameters. The basic SV model (2.1) is simulated £=1,000 times and 
estimated twice, under the null hypothesis, 1, and under the alternative, H ].</>< 1.

Panel B: Size o f the likelihood ratio test

Size 
critical value

0.1
[1.642]

0.05
[2.706]

0.025
[3.841]

0.01
[5.412]

Cl 0.085 0.033 0.016 0.003

C2 0.087 0.048 0.021 0.004

C3 0.125 0.059 0.022 0.003

C4 0.110 0.051 0.034 0.019

Panel B reports the rejection frequencies o f the likelihood ratio test, %lr. The nominal 
size and the critical values of the weighted ^  density (3.6) are reported in the first two 
rows.
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Panel C: Critical values of the likelihood ratio test statistic

Size 0.1 0.05 0.025 0.01 mass at 0

1 Min 1.443 2.193 2.963 4.402

Cl 2 Avg 1.500 2.263 3.030 4.421 0.448

3 Max 1.590 2.339 3.129 4.433

4 Min 1.486 2.602 3.701 4.716

C2 5 Avg 1.545 2.641 3.726 4.790 0.461

6 Max 1.644 2.688 3.763 4.860

7 Min 1.855 2.930 3.717 4.745

C3 8 Avg 1.914 2.946 3.777 4.770 0.500

9 Max 1.990 2.965 3.851 4.804

10 Min 1.689 2.431 3.504 4.759

C4 11 Avg 1.712 2.483 3.534 4.778 0.518

12 Max 1.769 2.567 3.568 4.807

i z l  +izi2 13 - 1.642 2.706 3.841 5.412 0.5

Panel C tabulates the critical values o f the £lr test. The nominal size is reported in the 
column header. Each density was estimated with 10 different bandwidth parameters, /?,, 
equally spaced between 0.05 and 0.5. Averages (Min/Max) across i are reported in 
rows 1 to 12. For comparison, the final row reports the critical values o f the weighted 
^  density (3 .6) which are taken as the 2 a  significance points o f the density for the 
size a. The final column gives the percentage o f sample values at the origin.
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Table 3.4. Power of the Dickey-Fuller and the likelihood ratio tests

Vti 0.3 0.1

* 0.98 0.95 0.9 0.98 0.95 0.9

a 0.008 0.011 0.013 0.013 0.014 0.014

CV 8.71 1.52 0.61 0.29 0.11 0.05

[0.1] 0.355 0.796 0.965 0.404 0.676 0.764

ADFj [0.05] 0.213 0.614 0.896 0.245 0.457 0.559

[0.01] 0.043 0.247 0.582 0.063 0.151 0.221

[0.1] 0.765 0.989 0.987 0.549 0.594 0.470

£lr [0.05] 0.506 0.931 0.966 0.335 0.372 0.199

[0.01] 0.130 0.618 0.806 0.063 0.097 0.05

This table tabulates the rejection frequencies o f the augmented Dickey-Fuller ADFj 
(3.3a) and the likelihood ratio test, £lr (3.5). The nominal size is given in parenthesis. 
The lag length, p  in the autoregression (3.2) is selected so that the size distortions are 
minimised. This requires p= 50 for a 7=0.1 and p= 30 for a^O .3. The basic SV model
(2.1) is simulated with the values o f the parameters reported in the first column 
K= 1,000 times. The length of the time series is 7=500.
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Table 3.5. Distribution of the likelihood ratio test against H0:fe=0

Panel A. Distribution of MCL parameter estimates

True
h

0.95
<h
0 0.95 0 0.26

a
0.025

U nder H§ 0.947 - 0.947 - 0.249 0.025

r=5oo (0.030) - (0.030) - (0.059) (0.003)

Under Hi 1.398

(0.358)

-0.426

(0.345)

0.934

(0.047)

0.464

(0.373)

0.132

(0.075)

0.025

(0.003)

U nder Ho 0.948 - 0.948 - 0.252 0.024

T= 1,000 (0.020) - (0.020) - (0.034) (0.002)

U nder Hi 1.478

(0.308)

-0.502

(0.297)

0.939

(0.031)

0.539

(0.320)

0.117

(0.064)

0.025

(0.002)

Panel A reports sample means and standard deviations (in parentheses) o f the posterior 
densities o f the parameters. The basic SV model (2.1) is simulated K= 1,000 times and 
estimated twice, under the null hypothesis, Ho.</>2=0, and under the alternative, 

1.

Panel B. Rejection frequencies of the likelihood ratio test

Size 0.1 0.05 0.025 0.01

critical value [2.706] [3.841] [5.024] [6.635]

T= 500 0.053 0.013 0 0

r= i,ooo 0.173 0.071 0.02 0.002

Panel B tabulates the rejection frequencies o f the %lr test. The nominal size and the 
corresponding critical value - taken from a xi2 distribution - are reported in the first 
two rows.
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Chapter 4: Implied volatility revisited

4.1. Introduction

GARCH and SV models attempt to explain the time series properties o f second 

conditional moments o f asset returns by taking into account the price history o f the 

process. Often additional information is available from the implied volatility o f options. 

Implied volatility is defined as that value o f the diffusion coefficient, (Jimpi which 

equates the theoretical Black and Scholes (1973) price, BS thereafter, to the market 

price o f the option. Given a price, the formula is inverted to give a value o f implied 

volatility as a function o f exercise, or strike price, E  and maturity, r.

£% ,i(r >£) = BS~'(t,E) (4.1)

This can be represented in a matrix of implied volatilities sorted by E  and z. For a fixed 

maturity, the graph o f the mapping E—ximpi is typically U-shaped: implied volatilities 

‘smile’; but sometimes this smile is more or less lopsided, or ‘skewed’. For a fixed 

strike the mapping z~^aimpi defines the term structure o f implied volatility, or the 

‘volatility curve’. Finally, each individual element of the volatility matrix, oimpiizJE) 

exhibits pronounced time series dynamics.

In principle, therefore, two sources of information are available: the time series o f the 

underlying asset and the time series o f the matrix of implied volatilities. One question 

which arises naturally in this context is that o f the information content of implied 

volatilities. Can the information contained in the volatility matrix be employed to 

further the understanding of the true dynamics o f the underlying instrument? Important 

implications for the construction o f optimal volatility forecasting rules arise if the 

answer to this question is affirmative. The present Chapter addresses this research 

objective by adding the information contained in implied volatilities as a set of
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explanatory variables to the basic SV model. It is shown that implied volatilities 

capture accurately the time series dynamics o f the latent asset volatility in that the 

autoregressive component is often rendered redundant.

The second research objective is a joint test o f market efficiency and unpriced volatility 

risk. Under these two assumptions, implied volatilities can be shown to be the options 

market’s subjective forecast o f the future volatility of the underlying asset even if the 

volatility is stochastic. In these circumstances the history of the price process should 

have no incremental explanatory power. By implication, volatility forecasts constructed 

from time series models should be less accurate than those obtained from implied 

volatilities. Our out-of-sample forecasting experiment indicates that while volatility is 

very hard to predict, forecasts obtained from the SV model are at least (and often 

more) accurate that those given by implied volatilities.

The present Chapter addresses these issues in the light o f uniquely available over-the- 

counter data. Section 4.2 contains a review o f related work and identifies the 

measurement problems associated with previous tests o f the hypothesis. Section 4.3 

introduces the data, and contains the empirical analysis of the volatility curve. The 

main results are discussed in Section 4.4, while Section 4.5 concludes.

4.2. Overview of previous work

One of the main assumptions of the BS model is that the underlying instrument follows 

a diffusion process with a constant volatility parameter. The matrix o f implied 

volatilities constructed by equating the theoretical BS prices to the market prices of 

European call options1 as in (4.1) should be flat across all maturities and strikes.

1 A call option gives the holder the right to purchase one unit of the underlying asset at a 
predetermined exercise, or strike price, E. A European (American) option can be exercised only on 
(anytime prior to) the specified expiry, or maturity date. The time remaining to the expiry date is 
called the maturity of the option, r(Hull, 1993).
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However, one of the most striking and widely documented regularities o f observed

option prices is that the matrix o f implied volatilities obtained by inverting the BS

formula is neither flat nor constant over time (Latane and Rendelman, 1976; 

Schmalensee and Trippi, 1978; Rubinstein, 1985).

This empirical observation motivated three distinct research areas. Firstly, the ‘smile’ 

effect inspired the development o f more sophisticated option pricing models.2 In these 

models (Hull and White, 1987; Johnson and Shanno, 1987; Scott, 1987; Wiggins, 1987; 

Renault and Touzi, 1996) the volatility is itself a stochastic process following a 

diffusion:

where St is the price o f the underlying asset, and the instantaneous (log)variance 

follows a mean reverting process. Hull and White (1987) show that when the volatility 

risk is unpriced and the two Wiener processes are uncorrelated, the price o f the option 

can be expressed as the expectation o f the BS price taken with respect to the 

distribution of the sample paths of the volatility process.3 By making the volatility 

parameter follow a continuous process it is possible to match the observed volatility 

skew (Hull and White, 1987; Chesney and Scott, 1989; Melino and Turnbull, 1990; 

Heynen, 1994). This research suggests the empirical validity o f stochastic volatility 

option pricing models.

: But see also models of volatility switching (Naik, 1993), mixed jump diffusions (Merton, 1976; 
Amin. 1993). and state dependent volatility models (Derman and Kani, 1994; Dupire, 1994; Rubinstein, 
1994) as well as evidence of empirical validity of such models (Dumas, Fleming and Whaley, 1995; Malz, 
1996: Bates. 1996).
3 Willard (1996) shows that this result is valid even if the volatility and spot processes are 
instantaneously correlated.

(4.2)
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Second, the term structure o f implied volatility has been tested for consistency with 

rational expectations hypothesis, according to which long term implied volatility is 

some average o f expected future short term volatilities. Stein (1989) showed how 

mean reversion in volatility and rational expectations can be combined to impose 

testable restrictions on the evolution o f the term structure o f implied volatility. In 

particular, under rational expectations, the long term implied volatility should equal 

some weighted average o f expected future short term implied volatilities. Using two 

(short and long maturity) daily time series o f S&P100 index options he found evidence 

to the contrary, interpreting it as market ‘overreaction’. Campa and Chang (1995) 

examined a richer dataset consisting o f implied volatilities o f six maturities and were 

unable to reject the expectation hypothesis.

Recognising that this is a test o f a joint hypothesis o f correct time series specification 

and a particular rational expectations model, Heynen, Kemma and Vorst (1994) re

examined the issue by considering alternative processes describing changes in asset 

price volatility. Comparison of an SV model, a GARCH, and an EGARCH 

specification showed that the joint hypothesis could be rejected in the first two cases 

but not in the latter. This research suggested that a major factor in the understanding of 

the dynamics of volatility term structure is the ability of the model to capture the time 

series dynamics and in particular, the mean level o f volatility. Xu and Taylor (1994) 

proposed an alternative model of expectation generation in which expectations are 

assumed to revert some time dependent long run average level. Their model is well 

supported by the data and no evidence of ‘overreaction’ could be found. The authors 

document significant term structure dynamics with the slope o f the volatility curve 

changing approximately once every two to three months. Thus, depending on the 

process which is assumed to govern the evolution of volatility and the model of
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expectation generation one may conjecture that implied volatility may or may not be a 

poor predictor o f future implied volatilities.

The final research avenue is the question o f whether the information encoded in 

implied volatilities is helpful in forecasting realised, ex post variance o f returns. It is 

here that this Chapter aims to make a contribution. The information content of implied 

volatilities has been investigated by several authors. Canina and Figlewski (1993) 

analyse daily data on the S&P100 stock index options for the period 1983-1986. The 

hypothesis is tested by means o f regressions o f the form:

where a u+L is the realised return volatility over some future horizon tJ+L, <7mpi,t(T,E)

is the implied volatility at t with maturity r, and strike E, and d,J+L is the predictor

obtained from the time series o f the underlying asset using data up to the time t. In a 

joint test o f market efficiency and optimality o f the implied volatility as a forecast 

variable one expects a= 0, /?;=1, and /5h=0 (Fair and Shiller, 1990; Pagan and Schwert, 

1990). Canina and Figlewski (1993) find that implied volatility is a poor predictor o f 

future ex post volatility, and better forecasts can be obtained from simple historical 

moving averages.

Day and Lewis (1992) and Lamoureux and Lastrapes (1993) approach the problem by 

adding the time series o f implied variance as an exogenous explanatory variable into 

the variance equation o f a GARCH (and an EG ARCH) model as in (1.7):

where, as before, rt is the mean adjusted return on the asset. The hypothesis, that 

contemporaneous prices of options contain information beyond of what can be

z. = a  + / to „ „ . ,( r  ,E ) + P2<JU, L + u, (4.3)

(4.4)
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obtained from the historic price series of the underlying asset is tested by examining the 

significance o f the coefficient y  Both studies report that the hypothesis o f no influence, 

y= 0 and the hypothesis o f exclusive influence, «/=/?;=0 can be simultaneously rejected. 

This evidence led the authors to conclude that implied volatility has some informational 

content but by itself, it is not sufficient to account for all time series variation if the 

conditional variance.

However, the formulation (4.4) is unduly restrictive in that the coefficient on the 

regressor does not capture the instantaneous impact o f implied volatility on 

unconditional variance. Instead, equation (1.8) shows that

a , <p = a , + (4.5)
1 V7 ;=1

Thus the unconditional variance o f returns is given by an exponentially weighted 

average o f past implied volatilities but not the current value, o ^ /X r.is ) , arguably the 

most relevant of all observations.

By contrast, Xu and Taylor (1995) who examine four exchange rate series together 

with the corresponding implied volatilities taken from exchange traded contracts 

during the period 1985-1991 find the opposite result. The evolution o f the conditional 

volatility in-sample can be best captured by the time series o f c?impi.

The comparison of the out-of-sample predictive power o f forecasts obtained from time 

series models and implied volatilities has been examined by Day and Lewis (1992), 

Lamoureux and Lastrapes (1993), Xu and Taylor (1995) and Jorion (1995). The 

results of the first two papers suggest that the time series models, which only utilise the 

information contained in the price history of the process, perform better than implied 

volatilities. By contrast, Xu and Taylor (1995) and Jorion (1995) find the opposite 

result: the forecasts constructed from GARCH models are shown to be inferior to the
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implied volatility figures. Jorion (1995) suggests that measurement problems may be 

responsible for the discrepancy. Stale, non-synchronous quotes for the underlying 

stock market index, arbitrage restrictions due to transaction costs, and bid/ask 

distortions in the recorded option prices may contribute to measurement errors, 

particularly in stock index implied volatilities. Further distortions are induced by 

attempting to invert American options on dividend paying stocks in order to obtain 

values o f implied volatilities. For instance, Canina and Figlewski (1993) report several 

cases where implied volatility calculated by their method is negative. The empirical 

analysis presented in this Chapter demonstrates that even in the case o f foreign 

currency options - which minimise the measurement problems mentioned above - 

better forecasts may be constructed from the history o f the return process.

An altogether different approach to testing the informational content o f implied

volatilities is advocated by Noh, Engle and Kane (1994). Here option trading strategies

are devised based upon the predictions derived from time series models o f the

underlying (GARCH) and compared to the predictions obtained solely from the history

of the implied volatilities. In an application to S&P500 stock index options for the

period 1985-1992 the authors find that the cumulative return generated by the trading

strategy based on GARCH forecasts is much higher than when the rules are derived

form implied volatilities. The results, however, are unconvincing; for example, Exhibit

9, pg. 27 reveals that the superiority o f the GARCH based trading rule is driven by a

single observation: during the Crash o f 1987 the GARCH portfolio generates an

abnormal profit, while the implied volatility portfolio generates an abnormal loss.

Moreover, prior to this event the cumulative return grows at a faster rate for the

implied volatility based strategy than for the GARCH portfolio. This highlights some

important limitations of the methodology. Apart from measurement problems

discussed earlier, sensitivity to outliers, execution risk, various assumptions regarding
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transaction costs, opportunity cost o f capital etc., and subjectivity o f the trading rules 

contribute to the shortcomings o f this method.

One difficulty associated with all previous studies is the unavailability o f “time 

homogenous” implied volatility data. A time series o f implied volatility, 

t= 1, .., T is called time homogenous if the maturity, r  and the moneyness, E/Ft o f the 

option are set relative to the observation date, t and are thus constant throughout the 

sample. Exchange traded options do not allow for a construction o f a time 

homogenous implied volatility data-sets because such options have a fixed calendar 

expiration date and a fixed nominal strike.

For instance, in order to construct a univariate time series o f daily implied volatility 

from exchange traded contracts, at each observation date an option with some strike 

and some maturity has to be selected. On the following date this particular strike will 

still be available but because the underlying will have moved the moneyness of the 

option will now be different. Similarly, the calendar expiry is fixed so that the maturity 

of the option is now shorter by one period. In the presence o f pronounced term 

structure dynamics o f the kind documented in this Chapter, and elsewhere (Xu and 

Taylor, 1994, 1995) this data construction procedure will induce maturity mismatch 

which may affect inference.

When the out-of-sample forecasting experiments are performed, the horizon of the 

time series model may be synchronised with the maturity of the option (Lamoureux 

and Lastrapes, 1993) at each observation date. As a consequence, however, the quality 

of the forecast from the time series model will vary throughout the sample because the 

predictive ability of time series models depends crucially on the length of the 

forecasting horizon. The /-step ahead forecast function of the GARCH(1,1) model 

(4.5) with no explanatory variables (y=0) is:
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= ffl + (ff,2 -  ®) , m=at>{\- <p)~'

For large lead periods /, the forecast will tend to the long run mean, m so that the 

analysis is reduced to the comparison o f the predictive power o f implied volatility to 

that o f the long run variance. This explains why Day and Lewis (1992) and Lamoureux 

and Lastrapes (1993) (who study lead periods between 1=64 and 7=129 trading days) 

find that a naive forecast, the sample variance, performs at least as well as the 

GARCH/EGARCH forecast.

Finally, tests based on (4.3) are invalidated by econometric difficulties. First, the 

forecasts from time series models and implied volatilities have typically a correlation 

coefficient above 0.85 potentially leading to the multicollinearity problem. More 

importantly, the volatility persistence parameter is typically well above 0.9 leading to 

highly autocorrelated volatility forecasts. The strong autocorrelation in the dependent 

and the exogenous variables will induce small sample biases in the coefficient estimates 

o f (4.3). This is a well known problem in the context tests for rationality (Mankiw and 

Shapiro, 1986).

Summing up, the evidence reported in previous studies suggests that ATM implied 

volatilities are rich in time series and term structure dynamics and have some 

informational content as to the evolution of the conditional variance of the process. 

However, the difficulties associated with the data, the measurement techniques, and 

the experimental set-up render the results open to discussion.
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4.3. Empirical study

4.3.1. Data description

One o f the major difficulties o f the empirical research in this area has been the 

unavailability o f a contemporaneously recorded prices of the underlying and a time 

homogenous implied volatility matrix. Our data set comprises daily bid and ask quotes 

for over-the-counter (OTC) foreign exchange options on the DEM/USD exchange 

rate4 together with the corresponding, contemporaneously recorded quotes o f the spot 

exchange rate.5 The sample period is April, 1, 1992 until November 10, 1996 totalling 

T— 1,169 observations.

The market convention is to quote prices for at-the-money (ATM) forward6 straddles, 

i.e. a call and a put with an identical strike equal to the current forward exchange rate. 

At each observation date we have a full term structure o f implied volatility as defined 

by the one, two, three, six, nine, and twelve months maturities, 7=1,..,6. The strike on 

these options is set relative to the instantaneous price o f the underlying, while the 

maturity is a fixed period relative to the observation date. Unlike exchange traded 

options with fixed nominal strike and a calendar maturity date, these OTC data are 

devoid o f maturity and strike mismatch encountered in previous research. For 

notational convenience the dependence of implied volatilities on the strike price is 

henceforth suppressed. Similarly, the bid/ask distortions discussed earlier are avoided 

by averaging bid and ask quotes to give the mid market observation.

4 Quoted on REUTERS Page TRDO and Telerate Page 4720. I am grateful to Banker’s Trust for 
collecting the data, and making them available for this research.
5 Similar data-set, alas devoid of the contemporaneous price of the underlying, was investigated by 
Campa and Chang (1995).
0 So that the strike, E equal to the forward price of the underlying, Ft.
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The market convention is to quote prices in terms o f BS implied volatilities (4.1) rather 

than option premia. Provided the volatility risk is unpriced, this method is justified 

even under the stochastic volatility dynamics (4.2). In this case the price o f the call 

option, Csv is given by the expectation o f the BS price over the distribution o f the 

average variance (Hull and White, 1987):

where V is the average variance until contract expiry. Furthermore, because the BS 

formula is approximately linear in volatility (Cox and Rubinstein, 1985) and roughly 

linear in variance (Lamoureux and Lastrapes, 1993) the expectation operator and the 

function in (4.6) may be interchanged, to give:

So that the BS implied volatility obtained via (4.1) is reinterpreted as the expectation 

of the average volatility over the remaining life of the option. From the practical point 

of view, (4.7) eliminates the need to filter option prices through a more sophisticated

two reasons. First, most stochastic volatility models involve costly numerical 

simulations. Semi-closed form solutions (Heston, 1993; Stein and Stein, 1991) are only 

valid for specific processes which may be mis-specified. Second, the parameters which 

govern the evolution o f the volatility process have to be estimated (Renault and Touzi, 

1996) thus inducing an additional source of error. Instead, our results are conditioned 

upon the validity of the pricing model (4.6) and thus present a joint test of model 

validity and market efficiency.

The underlying instrument is the DEM/USD exchange rate and summary statistics are 

given in Table 4.1, Panel A. The data are strongly consistent with many earlier studies

Cs v =E\BS{V)\ (4.6)

(4.7)

pricing model in order to obtain values of implied volatilities. This task is unfeasible for
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of exchange rates (Baillie and Bollerslev, 1989; Diebold and Nason, 1990) in that the 

unconditional density of rt (as characterised by the first four sample moments) is: (/') 

centred around zero (/w/=-7.0-10'5); (it) negatively skewed (/Wi=-0.13); and (Hi) 

exhibits large kurtosis (/w/=7.58). The minimum (maximum) observation is 6.88 (4.96) 

standard deviations away from the mean.

More importantly, returns appear to have little time series dynamics while their squares 

and log squares do. This is captured by the Box-Ljung (9-statistic which is barely 

significant for rt (Qid= 21.38, Q4d= 51.25), but is highly significant, both for r2, 

(0/0=64.42, 0^0=156.00) and Inr2, (0/o=209.96, 2*0=440.69) with the relevant 

and 4o 5% critical values being 18.3 and 55.8. The correlogram of /*,, (a) and Inr2,, (b) 

together with the ±2T ’°'5 bands7 is presented in Figure 4.1. The graphs are indicative 

of little autocorrelation in the return series and some time series dynamics for In r,.
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(a)
Figure 4.1: DEM/USD: Correlogram of ru and lnr,

We proceed by fitting the basic SV model:

v, ~ ^(0,1)r, = °
In o : -  In o~ + h.
h, =iphl_, + 7,

(4.8)

In large samples the autocorrelations from a white noise process are approximately uncorrelated and 
normal with mean zero and variance 7~‘ (Harvey, 1993, p.42).

121



to the entire sample period, results of which are presented in Table 4.1,Panel B 

Volatility is found to be persistent with the estimate of the autoregressive parameter 

taking the value of ^=0.911. The coefficient of variation (CF=1.5) is well within the 

region documented in earlier studies (and summarised in Table 3.1). The graph of the 

contours of the likelihood function, presented in Figure 4.2(a), suggests a unique 

maximum in the interior of the parameter space. Using the results of Chapter 3, the 

hypothesis of a unit root in the (log)variance process is rejected at the 1% level by 

comparison of the likelihood ratio test statistic, %lr=25.2 with the critical value of 

5 .412. Figure 4.2(b) shows the in-sample estimates of the volatility process (light line) 

obtained from the basic SV model (4.8). For comparison the one month implied 

volatility (heavy line) is also presented.

(a) (b)
Figure 4.2: DEM/USD: Likelihood contours and volatility estimate

The graph suggests that the implied volatility can be regarded as a slowly moving 

component around which the daily conditional volatility evolves. This motivates the 

use of implied volatility data as proxies for the time varying mean of the volatility 

process. Notice, that in our sample the implied volatility is generally above the 

volatility estimated from the price process8, the implications of which will become 

evident in Section 4.4.2. Several suggestions may be put forward as to why options 

implied volatility is above historical volatility. A premium associated with small but
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non-negligible possibility o f a market crash may lead to this phenomenon. 

Alternatively, counterparty risk premium may be priced in this OTC market leading to 

higher option premia and hence, implied volatilities.

Summary statistics o f implied volatility data are presented in Table 4.2. While the 

mean levels across maturities are equal9 implied volatilities o f shorter maturities 

fluctuate considerably more than those with longer time to expiry: the standard 

deviation is a strictly declining function of maturity. This leads to periodical inversion 

of the slope o f the term structure, a feature also captured by the fact that the minimum 

observation is lower and the maximum observation is higher the shorter the maturity. 

As can be seen in Panel C, the correlogram and partial correlogram for all maturities 

resemble closely the ACF and PACF of a first order autoregressive process: the ACF 

decreases slowly and the PACF has a peak at the first lag and is negligible otherwise. 

Thus each individual series is well described by a mean reverting process. Panel B also 

presents the correlation matrix o f implied volatilities. As expected, correlation is a 

decreasing function o f the distance in maturities: the implied volatilities of 

neighbouring maturities have higher correlation than those further apart.

4.3.2. Analysis of the volatility curve

The term structure of implied volatility is defined as a collection o f six implied 

volatilities with varying maturities, 7=1,. . , 6 . The whole data set is represented in a 

matrix, X, o f size (Txp) so that each row gives the volatility curve at time t while each 

column gives the time series o f for a given maturity, t .  It is clear from the

summary statistics of Table 4.2 that the evolution o f the entire volatility curve can be 

represented by a set of variables with dimension strictly less that six.

8 The same regularity is reported by Jackwerth and Rubinstein (1996, p. 1613).
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One way o f analysing the dynamics o f the term structure o f implied volatility is 

principal component analysis (Basilevski, 1994). This is a general technique aimed at 

determining the factors which account for most o f the co-variation in a set o f variables, 

X. The objective o f the method is to find a unique orthonormal linear decomposition 

Z=XP which is obtained by diagonalising the (pxp) sample covariance matrix, E= 

X 'X .10 The principal component analysis is performed on the covariance matrix rather 

than the correlation matrix since (/) all series are measured in same units, and (//) it 

allows us to assign meaningful interpretations to individual components (Basilevski, 

1994). The eigenvectors o f E, denoted by v, form columns o f P and are ordered in 

such a way that the first corresponds to the largest eigenvalue, A,, the second to the 

second largest etc. where A, are the diagonal elements o f L=R'X'XP.

The resulting transformation o f X to a new set of regressors, Z  is such that the 

elements o f Z are pairwise uncorrelated and o f which the first will have the maximum 

possible variance, the second the maximum possible variance among those 

uncorrelated with the first, and so forth. The columns o f Z - denoted by z, - sorted in 

order of their contribution to the covariance matrix E are called the principal 

components of X. The proportion of the variance explained by each z, is measured by 

the ratio of each A, to the total sum of the eigenvalues. The advantage of the technique 

is that a small number, q<p o f principal components, z, i=l,..>q can explain a large 

proportion of the variability in the data. On the other hand, the method does not 

deliver any information about the dynamic properties of z;.

Principal component analysis is sufficient for present purposes since the aim is to 

construct easily interpretable proxy variables for the in-sample evolution o f the

g Comparing the distribution of the test statistic in the lower diagonal part of Panel B with the critical 
value of 1.96 leads to a rejection of the hypothesis of a difference in means for all maturities.
10 The multiple (T-l)'1 may be omitted w.l.o.g.
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volatility curve. When compared to static factor analysis (Everitt, 1984; Bartholomew, 

1987) the uniqueness o f the decomposition facilitates the interpretation o f  the 

components. By contrast, dynamic factor analysis (Engle and Watson, 1981) while 

delivering a structural representation o f the implied volatility curve requires additional 

assumptions, e.g. regarding the expectation generation mechanism (Xu and Taylor,

1994).

Assuming that the observed volatility curve results from the asset price dynamics o f the 

kind (4.2), let X be a (7x6) matrix o f logarithms o f squared implied volatilities.11 The 

results o f the principal component analysis, as reported in Table 4.3 allow three 

conclusions to be drawn. First, column 3 indicates that 99.6% of the variability in the 

term structure o f implied volatility can be explained by the first two principal 

components o f which the leading one captures 97.3%. This is not surprising given the 

high degree of correlation between individual implied volatility series. Second, the first 

eigenvector, vy is strictly positive. This allows us to reinterpret the leading component 

as the level o f the term structure, since it is some average of implied volatilities o f 

different maturities with positive weights, z,=Xv;. By contrast, the second eigenvector 

\2 has negative weights on the shorter and positive weights on the longer maturities 

effectively forming differences between the short and long maturities. We interpret it as 

a measure of the slope o f the volatility curve.

11 The log transformation does not significantly alter the covariance structure of the variables, the 
composition of the eigenvectors, and relative weights. See also the discussion in Bartholomew (1987, 
pg. 40) regarding the indeterminacy with regard to the log transformation.



4.4. Informational content of implied volatility

4.4.1. In-sample explanatory power

In this Section the hypothesis that implied volatility contains relevant information as to 

the evolution o f the (log)variance of the underlying asset is examined. The richness of 

the data-set allows for a detailed investigation of the following questions:

(i) Can in-sample return volatility be exclusively captured by implied volatility?

(ii) Is information regarding the slope o f the volatility curve relevant?

(Hi) Is information encoded in the entire volatility curve relevant?

The research objectives are addressed by extending the basic SV model (4.8) to include 

a set of K  explanatory variables:

r , = c t, v , v,  ~  N ( 0 , \ )

< lnoy = Zt 'y +ht (4.9)

A  = 4 K \  + ' 7 ,  *1, ~  w ( o , a ; )

where Zr=(7, z1 u. .., r^,)' and yis a (A >lxl) vector. The first element o f Zt is unity so that 

the corresponding element of y is In a 2 . Model (4.9) collapses to (4.8) if the remaining 

elements of y are zero. In this case the explanatory variables are seen as having no 

informational content. By contrast, if ̂  is zero, the autoregressive component is redundant 

and the explanatory variables capture accurately the asset’s volatility dynamics (apart from 

an IID disturbance, 77,) .12

Formulation (4.10) is more appropriate than the GARCH counterpart (4.5) employed by 

Day and Lewis (1992) and Lamoureux and Lastrapes (1993) since the instantaneous

12 Testing for cr7'=0 is more problematic since the autoregressive parameter is not identified under the 
null hypothesis (Harvey and Streibel. 1997).
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impact of the explanatory variables is modelled, rather than some weighted average o f past 

values, as equation (4.5) demonstrates.

In order to verify the working hypothesis the following variables were selected:

IMoVol = lnc?mPi,i 1),

12MoVol =lnc?imPi,A6\

Slope = C ?impl,i\)-(?implAG),

PCI, PC2

where cfimpu(r) is the (squared) implied volatility o f maturity r, and PCI and PC2 are 

first two the principal components obtained in Section 4.3.2. The first research 

objective is addressed by comparing the explanatory power o f IMoVol and 12MoVol 

and the extent to which the autoregressive component in (4.9) remains significant after 

the introduction o f explanatory variables. The Slope variable (defined as the difference 

between implied volatilities o f short and long maturities) gives a measure o f the 

steepness of the volatility curve. Inclusion of this variable in conjunction with IMoVol 

allows inferences about the second working hypothesis to be made. And finally, 

question (iii) is addressed by examining the explanatory power o f the entire volatility 

curve, which - due to the multicollinearity issues - is approximated by the first two 

principal components.

The results o f the estimation for the entire sample of 7M ,169 observations are 

presented in Table 4.4, Panel A. For ease o f comparison the column labelled MO 

reproduces the results o f the estimation of the basic SV model, already presented in 

Table 4.1, Panel B. The general finding is that the coefficients on all explanatory 

variables are significant, which can be verified by comparing the ratio of the coefficient 

estimate to the standard deviation (reported in parenthesis below) to the limiting
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normal distribution. Similarly, the likelihood ratio tests (reported in the row labelled 

LR1) indicate the significance o f the explanatory variables when compared to the 

relevant critical values o f the %2 distribution.

The estimates o f the hyperparameters 0 and o^n change considerably depending on the 

set o f explanatory variables. For instance, estimates o f the autoregressive coefficient 

decline from 0=0.911 in the basic SV model, MO to 0=0.569 in model M3. However, 

the hypothesis H0\ 0=0 is rejected in all cases by observing that (a) the /-statistics, and 

(b) the likelihood ratio tests (reported in the row labelled LR2) are significant at 1% 

level, except for model M4 where the LR2 test is significant at 5% level. Day and 

Lewis (1992) and Lamoureux and Lastrapes (1993) also found that the estimates o f 

the components describing the evolution of conditional variance declined, but remained 

statistically significant after the introduction o f explanatory variables. This finding led 

the authors to the conclusion that implied volatilities are “insufficient statistics” (Day 

and Lewis, 1992, p. 278) for the conditional variance specification. Recall, that both o f 

these studies employ a single implied volatility measure which is not time homogenous, 

with varying maturity o f three to six months.

By contrast, our data allow a more detailed examination o f this issue, leading 

ultimately to a different interpretation. Consider the estimation results o f models M l 

and M2 and recall that in M l only the IMoVol is used as the sole explanatory variable 

while only l2MoVol is used in M2. The important observation is that the change in 

volatility persistence is not identical across the two models: the autoregressive 

coefficient is found to be lower for the model M l (0=0.578) than for M2 (0=0.892). 

The in-sample explanatory power o f implied volatility is thus related to the maturity o f 

the option: implied volatilities of shorter maturities lead to lower degrees o f volatility 

persistence.
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Notice, that the autoregressive component in (4.9) appears relevant in either model. 

However, this finding is not robust across sub-samples. Both, rolling and updating 

sample construction procedures are considered. With 500 observations reserved for the 

minimum sample size13, our sample length, T—1,169 permits 669 estimations o f each 

model. Sample means and standard deviations o f parameter estimates are reported in 

Table 4.4, Panel B. Irrespective o f the sample construction procedure the volatility 

persistence parameter in model M l declines sharply. On average, estimates o f <j> are 

centred around 0.100 (0.223) for the rolling (updating) samples. Notice, that the 

sampling standard errors indicate a large number o f sub-samples for which estimates o f 

cf) are, in fact, negative. By contrast, estimates o f $ in model M2 are centred around 

0.544 (0.817) for the rolling (updating) samples. Thus, in many sub-samples implied 

volatilities o f IMo maturity render the autoregressive component redundant, which 

cannot be achieved by 12Mo volatility figures. Xu and Taylor (1995) who also 

examined foreign currency options obtained a similar, but stronger result: in their data

set the time series of implied volatility is by itself sufficient to describe the evolution of 

conditional volatility.

The second research objective (importance o f the slope information) is addressed by 

examining the significance o f the Slope variable in model M3. First, the /-statistic 

associated with the estimated coefficient (2.88) is significant at 1% level. Second, the 

likelihood ratio test - constructed by reference to the maximised likelihood function 

values in models M3 and M l o f Table 4.4, Panel A - takes the value 7.80 which is 

significant at 1% when compared to the critical value o f x ? ■ When sub-samples are 

examined (Table 4.4, Panel B), the estimates o f the volatility persistence parameter are 

centred at -0.031 (0.230) for the rolling (updating) samples, indicating that the two

13 Chapter 2 showed that sample sizes of 500 observations are large enough to successfully estimate 
SV models. Fewer observations may lead to the likelihood function being ill-conditioned, or “flat”
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variables together capture the evolution o f the DEM/USD volatility even more 

accurately, than the level o f the implied volatility on its own.

Very similar results are obtained when the information encoded in the entire volatility 

curve (as approximated by the first two principal components, PCI and PCI) is 

inserted into the variance equation, as has been done in model M4. Since models M4 

and M3 are non-nested, likelihood ratio tests cannot be performed. Examination o f the 

hyperparameter estimates for the entire sample and across sub-samples indicates little 

difference between the two specifications. We interpret this as weak evidence against 

the hypothesis that the information encoded in the entire volatility curve is required to 

explain the in-sample evolution o f return volatility.

Summing up, the introduction o f implied volatility data into the variance equation o f 

the SV model shifts the estimate of the volatility persistence parameter, <j> towards 

zero. By implication, contrary to the claims made in previous research, most o f the 

time series dynamics of conditional volatility can be explained by implied volatilities. 

We interpret the discrepancy in the light of measurement problem associated with 

selecting the most informative volatility measure, which we find to be given by options 

of very short maturities.

4.4.2. Out-of-sample forecasting power

The preceding Section indicated that the information encoded in the term structure of 

implied volatility explains most o f the in-sample time series dynamics o f the conditional 

variance. However, the question regarding the predictive ability o f implied volatilities 

should be addressed in the context of an out-of-sample forecasting experiment. If the 

volatility risk is unpriced, equations (4.1) and (4.7) show that implied volatility is the 

expectation of the average volatility of the underlying instrument until option

over the relevant region of the parameter space.
130



expiration. In these circumstances no time series model should exhibit better 

forecasting performance than implied volatility.

The predictive power o f various models is examined in its ability to forecast the 

realised' or ex post volatility over the remaining contract life. The realised volatility is 

conventionally taken as the average o f squared returns over the remaining life o f the 

contract:

where, as before, Rs is the return on the asset. The lead period, L corresponds to the 

approximate number o f trading days in respectively one, two, three and six months 

period. Thus the forecasting horizon and the maturity o f the option are not only 

matched but also constant throughout the sample. This is important, since it warrants 

the comparison o f the forecasts across various forecast horizons.

The figure is annualised by a factor o f V260 for ease o f comparison with implied 

volatility figures, which are scaled by the same factor. The measure (4.10) is widely 

used in the context of volatility forecasting experiments (Day and Lewis, 1992; 

Lamoureux and Lastrapes, 1993; Jorion, 1995; West and Cho, 1995; Xu and Taylor,

1995). The justification of which is given by the following argument. If  the mean o f the 

return process is zero (or the mean is negligibly small as is often the case with financial 

time series) then the squared return is a proxy for the realisation o f c?t- The measure 

(4.10) will therefore give an estimate o f the average realised volatility over the time 

period, L.

Clearly, if the true volatility process is (4.2), then (4.10) can only be considered to be a 

noisy proxy for the long run average volatility level. The obvious shortcomings of this 

measure necessitate the consideration o f an alternative proxy for the ex post volatility.

L = 20,40,60,130 (4.10)
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Under the null hypothesis o f the SV model being true, an alternative measure of the ex 

post variance is given by the in-sample volatility estimate from the SV model estimated 

at a later time period:14

s Z t  + L (4.11)

The measure (4.11) will be subject to estimation error as well as model 

misspecification error. In the event, both ex post volatility measures lead to identical 

results when contrasted with the implied volatility value <JmPi f  r), and the forecasts, 

a tt+L from the basic SV model (4.8).

Again, rolling and updating samples are considered. At each consecutive time step /- 

days forecasts from the basic SV model (4.8) are generated in accordance with the 

forecast function (2.30) reproduced here for ease o f reference:

<5£,|r = a rV r W ' ,'”r , l= \,...,L  (4.12)

where the scale parameter a y  is defined in (2.28). The volatility forecast is taken as 

the average o f one-step ahead forecasts over the forecasting horizon, L, and annualised 

by the factor V260. The results of the out-of-sample forecasting experiment are 

reported in Table 4.5. Summary statistics o f the forecast errors, ut(L) = <jt mL -  a tt+L,

where the volatility proxy, a t t+L is calculated as in (4.10) are reported in Panel A and 

allow three conclusions to be drawn. First, in terms o f average errors (AVG), mean 

absolute deviation (MAD), and root mean squared error (RMSE) the forecasts 

constructed from time series models are at least a good and often more accurate than 

the forecasts given by implied volatility. This applies to all forecasting horizons. In 

general, implied volatilities are upward biased forecasts (AVG>0) o f future realised

14 The results are robust to the alternative specification: a ,  t+L = ZT1 t+lls .
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volatility, indicative evidence o f which was represented in F igure 4.2. This does not 

however, imply that the SV model forecasts are excellent predictors o f future ex post 

volatility. On the contrary, particularly over short forecasting horizons, the forecasts 

can be extremely inaccurate, as the MIN/MAX statistics indicate.

Second, forecasts constructed from updating samples are better than those constructed 

from rolling samples. This is not surprising, since larger sample sizes lead to more 

accurate parameter estimation. Hence the forecasting ability is improved.

Furthermore, all RMSEs and MADs decline as the forecasting horizon increases. This 

property is due to two facts. First, the variability in the ex post variance proxy (4.10) 

stabilises as the forecasting horizon increases. Second, the predictors from time series 

models revert to the long run mean levels. In both instances the comparison o f the 

forecasting power becomes less meaningful and reduces to the comparison o f the 

forecasting power o f the long run mean.

The results concerning the sub-optimality o f implied volatility forecasts are unaltered 

when an alternative ex post volatility measure (4.11) is considered, as can be seen from 

Panel B o f Table 4.5. Again, the forecasts obtained from the time series models are 

more accurate (in terms of A VGs, MADs and RMSEs) than implied volatility figures. 

Finally, the accuracy of all predictions across all horizons is increased when (4.11) is 

taken as the ex post volatility proxy. This is indicative o f the decreased noise 

component in the second ex post volatility measure.

This forecasting experiment lends further support to the claim that better volatility 

forecasts can be constructed based upon time series specifications o f conditional 

variance than simply upon implied volatility figures. Similar conclusion was reached by 

Day and Lewis (1992) and Lamoureux and Lastrapes (1993) who examined stock 

index options. On the other hand Xu and Taylor (1995) and Jorion (1995) show that
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opposite results can be obtained in the foreign exchange options market where 

measurement problems associated with stale prices, transaction costs and bid/ask 

bounce are absent. This Chapter demonstrates that even within the foreign exchange 

options market the question regarding the predictive ability o f implied volatility 

remains open.

4.5. Sum m ary and conclusion

This Chapter re-examined the hypothesis that implied volatility o f options contain 

relevant information about the evolution o f the latent volatility process o f asset returns. 

Contrary to the results reported in earlier studies (Day and Lewis, 1992; Lamoureux 

and Lastrapes, 1993), we find that in-sample the implied volatility captures most o f the 

time series dynamics o f the conditional volatility of the return process. The discrepancy 

is related to measurement problems encountered in previous research associated with 

selecting the most informative implied volatility measure. It is shown that the 

explanatory power o f implied volatility varies with the maturity o f the contract: implied 

volatilities o f short maturity (IM o) are more informative.

However, the out-of-sample forecasting experiment suggests that the predictions from 

the basic SV model across all forecasting horizons are at least as accurate as the 

forecasts obtained from the implied volatility data. This finding augments the 

conclusions reached in some studies (Day and Lewis, 1992; Canina and Figlewski, 

1993; Lamoureux and Lastrapes, 1993) in that implied volatility o f options may not be 

the best forecast o f the average realised volatility. The data-set employed here allows 

our experiment to be set up in such a way that the criticisms raised in response to 

earlier work by Jorion (1995) do not apply. Specifically, all measurement problems
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associated with stale prices, bid/ask quotes, and different forecast horizons are 

carefully avoided.

To conclude, the results indicate that - if the options market is efficient - the 

assumptions underlying the SV option pricing model (4.7) may not hold. In particular, 

a volatility risk premium may be required by the market. Alternatively, demand and 

supply circumstances caused by preferences of options’ market participants for 

particular risk patterns may invalidate the pricing relationship.
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Table 4.1. Preliminary analysis of DEM/USD exchange rate

Panel A: Summary statistics, time period 1/4/1992-10/10/1996, 7=1,169.

mt m2 min/m2 max/m2 m3 m4 Qio Q 4 0

r t -7.0-10'5 6.5-1 O’3 6.88 4.96 -0.13 7.58 21.38 51.25

4.2-10'5 1.1*10"4 -0.39 18.11 8.24 112.23 64.42 156.00

In r 2/ -11.65 1.93 1.73 -2.82 -0.04 2.19 209.96 440.69

Panel A reports the sample means (/wy), standard deviations (m2\  skewness ipi3), and 
kurtosis (m4\  as well as the modulus o f the minimum (and maximum) deviation from 
mt expressed as a multiple of m2 for the returns (r,), their squares (r2,), and log squares 
(Inr2,). The Box-Ljung statistic

G, = r ( r + 2 ) £ ( r - r ) p 2(r)
r=l

is evaluated at 10 and 40 lags, where p{r) is the sample autocorrelation at lag r.

Panel B: Results o f the estimation o f the basic SV model, 7=1,169.

l n a 2 q CV LogLik £ l r

0.911 0.155 -10.634 0.03 1.50 -2633.5 25.20
s . e { y ) (0.001) (0.002) (0.137) - - - -

Panel B reports the parameter estimates o f the basic SV model (4.7). The standard 
deviations o f the hyperparameters (<t>,c?v) are taken from the numerical approximation 
to the Hessian, while the standard deviation o f the estimate o f In a 2 is taken from the 
relevant diagonal element o f PT. The remaining columns give the signal-noise ratio, q 
and the coefficient o f variation, CV defined by

q ~ 2oV /  t*2 , CV = var(cr,)£[cr,] 2 = exp (a2(l -  ^ 2) ’) - l

as well as the value of the maximised likelihood (LogLik). The final column reports the 
likelihood ratio test, £lr o f ^=1, the distribution o f which was shown to be closely 
approximated by the 0.5xi2 density.
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Table 4.2. Summary statistics of the DEM/USD volatility curve

Panel A: Summary statistics, time period 1/4/1992-10/10/1996, 7=1,169.

IMo 2 Mo 3 Mo 6 Mo 9 Mo 12 Mo

ntj 12.19 12.22 12.23 12.23 12.22 12.21

m2 2.41 1.96 1.63 1.22 0.97 0.79

Min 7.80 8.65 9.05 10.00 10.35 10.53

Max 21.80 20.75 18.75 16.20 15.10 14.10

m3 1.04 0.96 0.69 0.54 0.20 0.00

m4 1.58 1.22 0.39 0.18 -0.52 -0.84

Panel A reports the sample means (mi), standard deviations (m2\  skewness (m3), and 
kurtosis (m4), as well as the minimum and maximum values for the implied volatilities 
of varying maturities.

Panel B: Correlation matrix and test o f the equality of the means, 7=1,169

t/corr IMo 2 Mo 3 Mo 6 Mo 9 Mo 12 Mo

IMo - 0.99 0.97 0.94 0.91 0.88

2 Mo -0.05 - 0.99 0.97 0.95 0.92

3 Mo -0.05 -0.03 - 0.99 0.97 0.95

6 Mo -0.04 -0.02 -0.01 - 0.99 0.97

9 Mo -0.02 0.00 0.01 0.04 - 0.99

12 Mo -0.01 0.00 0.02 0.04 0.04 -

The upper triangular part o f Panel B contains the correlation figures (p#). The lower 
triangular part - the values o f the test statistic for the difference in the mean:

A ~



Panel C: Correlogram and sample partial autocorrelations, T~ 1,169

IMo 2 Mo 3 Mo 6 Mo 9 Mo 12 Mo

ACF
1 0.97 0.98 0.98 0.98 0.98 0.98

2 0.94 0.95 0.95 0.96 0.96 0.97

3 0.91 0.93 0.93 0.94 0.94 0.95

4 0.89 0.91 0.91 0.92 0.93 0.94

5 0.87 0.89 0.90 0.90 0.91 0.92

6 0.85 0.87 0.88 0.88 0.90 0.91

7 0.83 0.85 0.86 0.87 0.88 0.89

8 0.81 0.83 0.84 0.85 0.87 0.88

9 0.80 0.82 0.83 0.84 0.86 0.87

10 0.78 0.80 0.82 0.83 0.84 0.85

PACF

1 0.97 0.98 0.98 0.98 0.98 0.98

2 -0.09 -0.08 -0.08 -0.13 -0.05 -0.04

3 0.10 0.11 0.07 0.09 0.05 0.03

4 0.07 0.01 0.04 -0.01 0.05 0.02

5 0.01 0.07 0.03 0.03 -0.01 0.04

6 -0.04 -0.04 -0.02 0.04 0.01 -0.03

7 0.03 0.00 -0.01 0.02 0.03 -0.03

8 0.00 -0.02 -0.01 -0.02 -0.02 0.01

9 0.10 0.07 0.08 0.08 0.03 0.03

10 -0.04 0.03 0.00 0.00 0.02 0.03

Panel C reports the sample autocorrelations and partial autocorrelations for the 
implied volatility series of each maturity.
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Table 4.3. Principal component analysis of the DEM/USD volatility curve

X % IMo 2 Mo 3 Mo 6 Mo 9 Mo 12 Mo

#1 0.374 97.3% 0.608 0.502 0.424 0.313 0.249 0.198

#2 0.009 2.3% -0.621 -0.082 0.221 0.401 0.444 0.449

U3 0.001 0.2% 0.447 -0.471 -0.444 -0.090 0.311 0.525

#4 0.000 0.1% 0.158 -0.357 -0.164 0.759 0.050 -0.493

#5 0.000 0.0% 0.141 -0.626 0.740 -0.181 -0.087 -0.035

U 0.000 0.0% -0.013 0.027 0.009 -0.353 0.797 -0.490

This table reports the eigenvectors and eigenvalues o f the covariance matrix o f implied 
volatilities of the DEM/USD exchange rate, 7=1,169. The column labelled “%” gives 
the proportion o f total variance explained by each individual com ponent.
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Table 4.4. Significance of the explanatory variables in the variance equation 

Panel A: Entire data set, 7=1,169.

MO M l M2 M3 M4

* 0.911 0.578 0.892 0.569 0.828

(0.001) (0.008) (0.001) (0.009) (0.003)

0.155 0.291 0.145 0.277 0.121

(0.002) (0.010) (0.002) (0.010) (0.004)

Const -10.634 -2.706 3.868 -5.515 -12.746

(0.137) (0.695) (2.614) (1.197) (2.320)

IMoVol 1.497**

(0.130)

0.965**

(0.225)

12MoVol 2.772**

(0.499)

Slope 158.940**

(55.724)

PCI 0.824**

(0.093)

PC2 3.705**

(0.584)

LogLik -2633.50 -2600.30 -2626.30 -2596.40 -2604.70

LR1 - 66.40** 14.40’* 72.20*’ 57.60”

LR2 90.80** 10.00** 40.60** 30.00** 5.60*

This panel reports the estimation results of the extended SV model (4.9) for the entire 
sample period. The models are labelled M0-M4 depending on the choice of the 
explanatory variables. The row labelled LR1 represents the likelihood ratio test against 
MO. LR1~X*k, where K - 1,2 is the number of explanatory variables in excess of MO. 
The row labelled LR2 represents the likelihood ratio test o f H0: <p=0 (so that each 
model was re-estimated with 0=0, details of which are not reported). LR2~)fi. The 
standard deviations o f the hyperparameters (0 ,0 %) are taken from numerical 
approximation to the Hessian, while the standard errors o f y are taken from the 
diagonal elements o f PT. Significance o f the coefficients at ( 1%) 5% level is denoted 
by a (double) star.
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Panel B: Hyperparameter estimates across sub-samples

rolling MO M l M2 M3 M4

* 0.792 0.100 0.544 -0.031 0.080

(0.133) (0.451) (0.300) (0.467) (0.438)

0.256 0.275 0.316 0.236 0.226

(0.212) (0.177) (0.192) (0.170) (0.169)

updating M0 M l M2 M3 M4

</> 0.907 0.223 0.817 0.230 0.252

(0.043) (0.167) (0.146) (0.139) (0.227)

0.094 0.208 0.123 0.207 0.164

(0.063) (0.071) (0.099) (0.069) (0.083)

This panel reports the averages and standard deviations o f the hyperparameters across 
rolling and updating samples. With the minimum sample size o f 500 observations the 
data permit 669 estimation o f each model M0-M4 for each sub-sample construction 
procedure. Estimates of other model parameters are not reported.
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Table 4.5. Summary statistics of the out-of-sample volatility forecasting errors

Panel A: Ex post volatility proxy (4.10)

IMPL L=20 L=40 L=60 L-130

AVG 1.99 2.03 2.08 2.11

MAD 2.82 2.33 2.31 2.33

RMSE 4.08 3.72 3.67 3.58

MAX 11.10 9.28 7.84 6.61

MIN -8.23 -8.22 -7.60 -4.26

ROLL L=20 L=40 L-60 L-130

AVG -0.57 -0.76 -0.87 -1.09

MAD 2.82 2.62 2.42 2.11

RMSE 3.70 3.29 3.14 2.75

MAX 5.63 3.84 2.82 2.78

MIN -13.25 -10.65 -10.14 -6.63

UPD L=20 L=40 L-60 L-130

AVG -0.13 -0.21 -0.27 -0.47

MAD 2.79 2.56 2.39 2.08

RMSE 3.57 3.18 3.00 2.55

MAX 6.33 4.72 3.98 3.22

MIN -12.54 -10.78 -9.64 -6.16

This table reports the summary statistics of volatility forecast errors 
ut (L) = (jt t+L -  . The ex post volatility, au+L is defined as the average of squared

returns over L trading days, corresponding to the number o f trading days in a IMo, 
2Mo, 3 Mo and 6Mo respectively. The forecast volatility, atJ+L is either the implied

volatility ampi.M  o f the relevant maturity {IMPL) or the forecast from the basic SV 
model (4.10) constructed using rolling samples {ROLL) and updating samples (UPD). 
The summary statistics are the sample average (AVG), mean absolute deviation 
{MAD), root mean squared error {RMSE), and the minimum {MIN) and maximum 
{MAX) values. The statistics in each column are based upon 649,629, 609, and 539 
observations.
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Panel B: Ex post volatility proxy (4.11)

IMPL L=20 L=40 L-60 L-130

AVG 3.11 3.33 3.45 3.64

MAD 1.85 1.71 1.73 1.80

RMSE 3.99 4.14 . 4.18 4.16

MAX 10.13 8.98 8.04 6.76

MIN -5.67 -4.92 -3.65 -0.42

ROLL L-20 L-40 L—60 L-130

AVG 0.99 1.09 1.09 1.06

MAD 1.64 1.55 1.46 1.12

RMSE 2.35 2.36 2.23 1.74

MAX 5.10 3.95 3.83 3.39

MIN -8.86 -7.48 -5.34 -2.39

UPD L-20 L=40 L=60 L-130

AVG 0.56 0.54 0.49 0.44

MAD 1.66 1.59 1.46 1.08

RMSE 2.24 2.14 1.98 1.45

MAX 5.11 4.09 3.53 3.64

MIN -8.52 -7.36 -5.39 -2.86

This table reports the summary statistics o f volatility forecast errors 
ut(L) =<tu+l - art+L. The ex post volatility, &lt+L is defined as the average o f in-

sample volatility estimates from the basic SV model (4.9) estimated at a later time, t+L. 
The forecast volatility, att+L is either the implied volatility <Jimpi,^r) o f the relevant
maturity {IMPL) or the forecast from the basic SV model constructed using rolling 
samples {ROLL) and updating samples {UPD). The summary statistics are the sample 
average {AVG), mean absolute deviation {MAD), root mean squared error {RMSE), 
and the minimum {MIN) and maximum {MAX) values. The statistics in each column are 
based upon 649,629, 609, and 539 observations.
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Chapter 5: Effect of futures market volume on spot market volatility

5.1. Introduction

The focus o f this Chapter is the behaviour of volatility in two parallel markets: the 

equity (spot or cash) market and the market for futures on an equity index. The two 

markets are linked by arbitrage since the price o f the derivative security, the future, 

depends directly on the price o f the underlying cash instrument, the market index. It 

has been found, however, that the futures returns are more volatile than the 

corresponding spot returns. For example, Board and Sutcliffe (1995) report several 

papers on this question. The general finding is o f higher volatility for the futures 

markets, sometimes up to seven times that for the spot market: and only rarely (notably 

for Japan) are spot returns found to have higher volatility than the corresponding 

futures returns. This has led to a considerable interest, both academic and regulatory, 

in the hypothesis that the higher volatility o f the futures market might have 

distortionary effects on spot market prices. For example, following the stock market 

crash of October 1987, it was claimed that index futures had increased stock market 

volatility (NYSE, 1990).

One way of testing the significance o f the futures market is to model one-off effects 

like the introduction of the futures exchange. A permanent shift in spot market 

volatility would signify such a causal link. The empirical evidence o f the existence of 

such an effect is inconclusive. Edwards (1988) documents a small but significant 

decline in cash market volatility after the introduction o f the equity futures. By 

contrast, Harris (1989) finds that the S&P equities are more volatile subsequent to the 

introduction of the futures trading.

An alternative approach - adopted here - is to model a continuous influence from

futures to the spot market volatility. The hypothesis that increases in futures market
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trading activity increase spot market price volatility is tested by constructing proxy 

variables for the relative importance o f the futures market. Among previous studies o f 

this question, Schwert (1990) mentions that, when volatility for the S&P500 index is 

high, stock market and futures volumes are also high, while Smith (1989) found that 

S&P500 futures volume had no effect on changes in the volatility o f S&P500 index 

returns. Santoni (1987) found a negative correlation between S&P500 futures volume 

and the daily spot (high-low)/close, suggesting that an increase in futures trading does 

not lead to an increase in the volatility o f the index. Darrat and Rahman (1995) 

concluded that futures volume did not affect S&P500 spot price volatility. 

Bessembinder and Seguin (1992) found that expected (i.e. informationless) S&P500 

futures trading activity was negatively related to spot market volatility when spot 

market activity variables were included in the analysis. This result supports the notion 

that futures trading improves liquidity provision and depth in spot markets, and rejects 

the hypothesis o f the destabilising effect o f the futures market.1 Brown-Hruska and 

Kuserk (1995) also found evidence for the S&P500 that an increase in futures volume, 

relative to spot volume, leads to a drop in spot volatility.

However, many o f the papers in this area, including those on the effect o f futures 

volume on futures volatility and spot volume on spot volatility, suffer from a number 

of problems both of model specification and in the construction of the activity 

variables. These problems are severe enough to bias the results o f the empirical 

investigation, and render their conclusions open to question. The remainder o f this 

Chapter is organised as follows: Section 5.2 contains an outline o f the principal 

difficulties with the approaches used in most previous tests of the hypothesis; Section

1 Bessembinder and Seguin (1992) also find that, although price volatility does increase close to the 
date of the futures contract’s expiry, it is not systematically related to the futures life cycle as a whole.
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5.3 describes the data and preliminary tests; Section 5.4 contains the results o f tests o f 

the principal hypothesis, while Section 5.5 concludes.

5.2. Overview of previous work

We begin by outlining three classes o f problem common in volatility tests o f spot and 

futures markets. The first is a problem in the interpretation o f the coefficients o f 

exogenous variables commonly added to the variance equation o f a GARCH model. 

The second is a consequence o f the simultaneity bias present in variance-volume 

models, which means that the volume o f information-based trading should not be 

included in the test as an exogenous variable. The third is a difficulty with the common 

decomposition o f aggregate volume into informationless and unpredictable 

components.

(i) Implied Lag Structures. The first difficulty associated with the conventional 

econometric framework is that it imposes a very rigid structure within which the 

explanatory variables, affects volatility. For example, Chatrath, Ranchander and 

Song (1996), Foster (1995), Lamoureux and Lastrapes (1990), Najand, and Yung 

(1991), Sultan, Hogan, and Kroner (1995), Yang and Brorsen (1993) have examined 

the effect o f volume on volatility by adding volume as an exogenous explanatory 

variable to the variance equation of the GARCH model as in (1.7):

= ^» + rl ,  + Z A  + z i>  O '7)
1 = 1  j = 1

Other studies - e.g. Bessembinder and Seguin (1992, 1993), and Brown-Hruska and 

Kuserk (1995) - have used the estimation procedure proposed by Schwert (1990). 

Here two regression equations are formulated which describe the evolution of the
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mean and the volatility o f the process in terms o f exogenous and lagged endogenous 

variables:

r , =^+2$ R,-i + 2  ° ,- i +«.
“  r' \  K (5.1)

a, = a + + 23 + 2n z‘ + e,
m=l /=! *=1

where represents the return on the asset, crf is the instantaneous standard deviation 

of the residuals uu zkt are volume related terms, and circumflexes indicate fitted values 

from a previous iteration.

While it might seem that these models capture the contemporaneous effect o f i t on <r,, 

this is not the case. In fact, as has been mentioned in Chapter 1 the effect o f / ,  on the 

variance o f the process is modelled in terms o f a geometrically declining lag structure. 

This is also true for models (5.1): the coefficient can be shown to be an exponentially 

weighted average o f past values o f the volume measure. This is an important drawback 

since the real issue is the effect o f the instantaneous volume in the futures market on 

stock market volatility.

(ii) Simultaneity Bias. In both, GARCH models and specification o f the form (5.1) the 

exogenous (volume related) variables and lagged values of volatility are included 

simultaneously. It is well known that such specifications suffer from simultaneity (or 

errors in variables) bias since volume cannot be assumed to exogenous. Instead, 

volatility and volume are jointly determined by the same unobservable variable (i.e. 

information arrival). To illustrate this point, assume that the true data generation 

process is:

<jt = a l t +£]t (5. 2.a)

zt = p i t +e2j (5.2.b)
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where at is the conditional volatility (or variance) o f the price process, zt is now 

volume and It is the (latent) information arrival variable. Re-expressing It in terms o f zt 

in (5. 2.b) and substituting into (5.2.a) gives:

which yields a system in which the regressor, zt and the error term, ut are not 

orthogonal. As a result, the estimate o f the coefficient o f interest, /, will be biased, and 

the estimates o f any other coefficients that might have been included in the regression 

equation will also be inconsistent. This observation led Lamoureux and Lastrapes 

(1994), Andersen (1996) and Liesenfeld (1996), among others, to model volume and 

volatility jointly in bivariate mixture models:

where P(*) denotes the Poisson distribution, Ft is the measure o f latent information

variance equation it needs to be separated from its information component. 

Bessembinder and Seguin (1992), for instance, undertake this separation, but 

nevertheless include the information-related component in their estimation, leading to 

the problems of bias and inconsistency described above.

(Hi) Construction o f the Activity Variables. Having selected the estimation model, 

volume is conventionally decomposed into predictable and unpredictable components 

which are related to informationless trading activity and news arrival, respectively. For 

example, Bessembinder and Seguin (1992) first remove the time trend in volume (and 

log-volume) for both markets. They then fit a 100 day moving average to the series. 

Finally they fit univariate ARIMA(10,1,0) models to the residuals and interpret the new

ra E2,t
= 7 zt +»*

p  J
& t — o Z t +  e \,t

(5.3)

which drives both volume and volatility. Therefore, if volume is to be included in the



errors as unexpected volume, while the fitted values plus the moving average term are 

regarded as expected volume. The sum o f the three series gives the original 

(detrended) volume series. This is done for the futures and the spot market volumes 

separately, and all six variables are included as exogenous explanatory variables in the 

model.

A number o f problems with this approach can be identified. First, as spot and futures 

volumes are typically highly correlated, inclusion of both futures and spot market 

volume series in the ultimate regression equation for volatility may lead to 

multicollinearity problems (resulting in difficulties in identifying the true influence of 

the underlying futures market volume). Second, because the two volume series are 

inherently interdependent - as suggested in (5.2) - the use o f univariate ARIMA models 

may lead to the omitted variables problem. Finally it is shown below that in our data 

futures and spot volume are trend-stationary, which means that both detrending and 

differencing the original data will lead to a loss o f information.

5.3. Empirical study

5.3.1. Data description

Since the real issue underlying the research is the impact o f futures trading on the 

equity market, we define the spot market volume, VSt, as the daily total value o f all 

stocks traded on the London Stock Exchange (in £10m). Similarly, the futures market 

volume, VFh is defined as the total nominal value o f all FT-SE 100 contracts traded at 

LEFFE on a particular day (also in units of £10m).2 To eliminate potential irregularities 

associated with the 1987 crash, the time period has been chosen to be 4 January 1988 

to 14 December 1995, yielding a total of 2,011 daily observations. The influence of
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dividend payments is ignored. Even if the uncertainty associated with dividend 

payments is assumed negligible, lumpy dividend payments might well affect returns. 

On ex-dividend days the price o f a share is reduced by the dividend amount. Thus, if 

the individual ex-dividend days are unevenly distributed over time and the returns are 

not corrected for the dividend payments, the returns on the index will appear to be 

more volatile. In the event, Gallant, Rossi and Tauchen (1992) found that this effect 

was negligible for the S&P500 index.

Continuously compounded daily return series is constructed from closing values o f the 

FTSE 100 index. Summary statistics o f the returns are presented in Table 5.1. The 

returns are centred around the origin (tw/=-3.710'5); are negatively skewed (w5= -1 .8 1 ); 

and exhibit large kurtosis (m*=29.94). The moments o f the unconditional density 

provide strong evidence against the hypothesis o f the returns being drawn 

independently from a Gaussian density. Some time series dynamics are present in the 

return process itself, but the autocorrelation in the squares and log squares is very 

much stronger. The Box-Ljung (^-statistic which is significant for rt (2/(7=32.29, 

040=6 6 .5 4 ), and is highly significant, both for r2, (Q/o=l 192.8, 2*0=1259.1) and lnr2, 

(0/0=185.05, 2 ^ 3 3 9 .7 1 )  with the relevant tfio  and 5% critical values being 18.3 

and 55.8.

The graphs of the two volume series as well the corresponding log-transformations are 

presented in Figure 5.1.

3 The stocks in the FT-SE 100 index account for over 70% of the total capitalisation of the London
Stock Exchange.
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Figure 5.1: FTSE100: Futures and spot market volume and log-volume series.

The graphs of the log-transformation of volume lend some support to the hypothesis of 

a constant linear growth in volume, and this transformation also stabilises the 

variability of the series. It is interesting to observe that the rates of growth in volume in 

the two markets are not identical. Futures market volume is growing more rapidly, 

signifying increasing popularity of the futures market.

It is not clear a priori whether volume or log-volume should be used. Most of the 

theoretical models (Tauchen and Pitts, 1983; Glosten and Milgrom, 1985; Easley and 

O’Hara, 1992) concentrate on volume. This consensus is not present in the applied 

work. Gallant, Rossi and Tauchen (1992) and Andersen (1996) employ the log- 

transformation, while Lamoureux and Lastrapes (1990, 1994) and Jones, Kaul and 

Lipson (1994) do not. We choose to work with log-volume.
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5.3.2. Volume and informationless trading activity

Examination of Figure 5.1 raises the question as to the nature o f the non-stationarity 

present in the volume series. Univariate tests for the presence o f a unit root in ln(VS) 

and ln(VF) are reported in Table 5.2, Panel A. With the augmented Dickey-Fuller 

statistics being highly significant, the null hypothesis of a random walk with drift is 

rejected in all cases in favour o f the alternative o f a trend-stationary process.

As an alternative test, we may assume that ln(VS) and ln(VF) are integrated and 

formulate a Vector Error Correction Model (VECM):

AY, = or + n ^ _ , + f lB JAY„J + E, , E ,~  N(0,1)
j= 1

where Vt = (ln(VSt), ln(VFt))r is a (2x1) vector and 77, f f ,  and I  are (2x2) matrices. 

The rank o f the long run impact matrix 77 is an indicator o f the nature o f non- 

stationarity o f Vt. I f  rank(TT) = 2 then each element o f V, is trend stationary; when 

rank(77) = 1, the series are cointegrated; and when rank(77) = 0, they are individually 

7(1) but not cointegrated. Monte Carlo evidence in Lee and Tse (1996) suggests that 

this test is robust under a variety of alternative assumptions about the disturbance 

process, Et.

The results o f the analysis are presented in Table 5.2,Panel B. The hypothesis of the 

reduced rank o f 77 is strongly rejected, irrespective3 o f the number of lags included in 

the autoregressive specification and the log-transformation. All statistics are highly 

significant at 1% level, in particular, the A2max statistic which rejects the null H0: 

rank(77)=l in favour of 77;: rank(77)=2. Thus, despite the fact that in general the 

distinction between unit root and trend stationary data is difficult to make (Canova,

3 It is a well known phenomenon that the eigenvalue statistics decrease as the number of lags rises.
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1997), in our data set the detrended volume appears to be stationary, rendering 

additional differencing unnecessary.

In the next stage, we follow Gallant, Rossi and Tauchen (1992) and Andersen (1996) 

and remove the trend by regressing volume in each market on a constant and a time 

trend: vt = a  + S t + st , where v, represents ln(VSJ or ln(VFt) as appropriate.4 The

residuals from these univariate regressions, st are used to construct the adjusted 

volume series v /  =a+b st where a and b are chosen so that the sample moments o f vt 

and v / are equal. This rescaling facilitates interpretation o f the results by ensuring that 

the variables are in appropriate units.

Finally, the detrended volume is decomposed into predictable and unpredictable 

components through the bivariate model:

Y ,= a + f dB’Y,_) +E, , E ,~ N ( 0,2) (5.4)
;=i

where Yt = ( v5/ f vF/y. The simultaneous estimation in (5.4) allows the calculation of 

the level o f informationless trading in each market, conditional on the observed level of 

past trading in the other market. Because of their role in price discovery futures prices 

are usually found to lead spot prices by a few minutes (Sutcliffe, 1997), but such 

effects are fast enough to be absent in daily data. However, there do not appear to 

have been any previous studies of leads and lags between spot and futures volume. 

Table 5.3 shows that there are significant cross-market effects in informationless 

volume, with a number of significant coefficients, for both spot on futures (lags 1, 2,

4 As a preliminary, following Gallant, Rossi and Tauchen (1992), we included dummy variables to 
identify any weekly deterministic seasonal components. Because none of these dummies was 
significant, the results are not presented here but are available on request.
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and 5) and futures on spot (lags 3 and 5).5 Univariate tests of Granger causality 

(Hamilton, 1994, p.304) reject the hypothesis of “no causality” with the test statistics6 

taking the values 12.58 and 36.15 both of which are significant at the 5% level when 

compared with the critical value of the Xs2 distribution of 11.07. The size and pattern 

of the coefficients suggests that, in terms of daily levels of informationless trading 

volume, the spot market leads the futures market. In addition, both markets exhibit 

significant own-market autocorrelation of first and higher orders. The presence of 

significant cross-market effects (i.e., in the off-diagonal elements of the f f  matrices) 

indicates that the use of univariate models to divide volume into information-driven 

and informationless components may be inappropriate.

The fitted values from (5.4), denoted by V*=(vst\  vft*)' are interpreted as the amount 

of informationless trading in the relevant market. Their graphs are presented in Figure

5.2.

Figure 5.2: FTSE100: Informationless spot and futures volume.

The residuals from the model, denoted by Et=(etvs, e?)' are interpreted as a measure of 

information impact. The difference between the fitted values for the futures and spot

5 It is interesting to observe that at j = 5 there are significant cross effects between the spot and futures 
markets While this is consistent with a lagged weekly cross-relationship, it does not imply a day-of- 
the-week effect.
0 The test statistics are computed as S=T(RSS0-RSS,)/RSS, where T is the number o f observations, 
RSS0 is the residual sum of squares from the 5th order autoregression of x including a constant term, 
and RSS, is the residual sum of squares from the previous model augmented by 5 lags ofy .
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markets, vf*-vs* gives a measure o f informationless futures trading activity in excess of 

informationless spot market activity.

5.4. Does the level of trading in futures influence stock market volatility?

5.4.1. Econometric specification

It has been indicated earlier that the basic SV model, extended to include a set of 

explanatory variables allows for the modelling o f the instantaneous impact of 

exogenous variables on the evolution o f (log)variance:

7, =a,v, v, ~ N(0,1)
• In  a ? = Z ,'r+ h ,  (5.5)

h ,= < t > +  7 , 7 , ~  n (o,ct*)

Thus the working hypothesis o f a contemporaneous effect o f futures trading activity on 

spot market volatility can be tested in this framework by examining the significance of 

the coefficients y

However, the declining lag structure may also be modelled in the S V framework:

r, =ct,v, v ,~N (0 ,\)
* Incr,2 = ht (5.6)

.K=z ,'r + ‘t> K +7, 7, ~ w(o,°,2)

The change is accomplished by trivially adjusting the state system matrices (see 

Appendix 2 for details) without any modifications o f the estimation procedure.

5.4.2. Estimation results

The SV model (5.5) was estimated with five alternative sets o f explanatory volume 

variables (none, vs*, vf, v f  -v s , vs -v f)  representing informationless trading, or
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differences in informationless trading7, and the parameter estimates are presented in 

Table 5.4. Column MO in shows the results of the estimation of the basic SV with no 

explanatory variables, for which the implied coefficient of variation, which measures 

the strength of the stochastic volatility process, takes the value 0.24. Volatility is found 

to be persistent, 0.965, and the implied annualised unconditional volatility is about 

13%. Figure 5.3 contrasts the plot of the SV volatility estimate (solid line) and the 30 

day rolling volatility often used as a crude measure of volatility. Both series are 

annualised by a factor V260.

2T/o-

Figure 5.3: FTSE100: SV volatility estimate and 30 day rolling volatility.

The second and third models reported in Table 5.4 - columns M l  and M2 respectively 

- show the effect of including the amount of informationless spot market and futures 

market activity In the case of M l, contemporaneous spot market volume is seen to 

have a negative, but insignificant coefficient. The sign of the coefficient is consistent 

with the hypothesis of increased liquidity provision in the presence of high predictable 

trading activity. Model M2 shows that informationless futures volume has no effect on 

spot volatility. These results suggest that spot market volatility is at best unaffected by 

informationless volume in either market. The hypothesis is verified by both, the /-ratios

In addition, dummy variables representing: closed market. Stock Exchange account and expiration 
dummies were included in the models. Neither the closed market nor expiry effects were significant. 
Although the Stock Exchange account dummy was weakly positively significant, its definition is not 
straightforward, in view o f the abandonment o f the system towards the end of the sample period.
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and the likelihood ratio test statistics being insignificant at the 5% level (with the 

relevant 5% and 1% critical values being 3.841 and 6.635 respectively).

Because it is possible that spot volatility is affected by the way in which total volume is 

split between the spot and futures markets (i.e. the relative volumes), column headed 

MS shows estimates of simultaneous effects of spot volume, vs* and excess futures 

volume, v f  -vs* on spot volatility. The coefficient o f primary interest, v f  -vs*, is 

insignificant, suggesting that excess futures volume has no effect on spot volatility. 

Similarly, in column M4 the effect o f informationless futures volume is separated from 

any effect o f excess spot market volume (measured as vs*-vf). Again, the coefficients 

are insignificant, confirming the principal result that informationless futures volume has 

no effect on spot volatility. For completeness, column M5 shows the effect o f including 

both v f  and vs* in the model. The results are unaffected. In all cases the likelihood 

ratio test statistics with MO as the null hypothesis are insignificant at the 5% level (with 

the relevant 5% and 1% critical values being 5.991 and 9.210 respectively).

We now demonstrate that the econometric pitfalls o f previous research may lead to the 

conclusions contrary to those presented here. First, we impose the exponentially 

declining lag structure on the coefficients of the explanatory variables by including 

them in the transition equation as in (5.6). This parallels the work o f many previous 

studies in the area. The results of the estimation are presented in Table 5.5. The 

models are labelled MO -M5' to signify the modification in the specification o f the 

variance equation. The estimates of the coefficients are of the same sign as before but 

are now significant. For instance, in model M 2 'the  coefficient on v f  is now significant 

at 1% level, with the likelihood ratio test being significant at the 5% level. Thus, the 

inclusion of volume, an apparently straightforward extension of the GARCH model, in
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our data would incorrectly imply that futures volume is positively associated with spot 

market volatility.

Second, we follow Bessembinder and Seguin (1992) by including the residuals, {ev\e*) 

as well as the fitted values o f (5.4) in the equation o f the conditional variance. We 

revert to the specification o f the conditional variance as in (5.5) in order to ensure that 

the effects o f the simultaneity bias and variance specification remain well separated. 

This leads to the estimation o f models M6-M8, results o f which are presented in Table 

5.6. It has been mentioned previously that such specifications suffer from the 

simultaneity bias which leads to inconsistency o f the model parameters. This point is 

clearly illustrated in Table 5.6. Both information related variables, (evs,e*) are highly 

significant. Most importantly, however, the informationless futures volume, v f  is now 

significant as well, lending support to the claim regarding the distortionary effects of 

futures market trading activity. On the other hand, informationless spot volume, v f  

remains insignificant and of the same sign.

The final issue is the robustness o f the results to the volume decomposition procedure

(5.4). To verify this hypothesis the autoregressive matrices, B  and the error covariance 

matrix Z are restricted to be diagonal which implies that (5.4) can be estimated by two 

univariate autoregressions. The fitted values are denoted by vs** and vf*. The models 

M1-M5 are reestimated and denoted by M l"- M 5" to signify the fact that alternative 

informationless volume measures are used. The results, reported in Table 5.7, verify 

the conclusions drawn earlier: futures trading does not increase stock market volatility. 

The /-ratios associated with the coefficients on all explanatory variables, and in 

particular on vf* are insignificant and the likelihood ratio test is significant in some 

cases only at the 5% level. The signs o f the coefficients remain unchanged.
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Summing up, informationless futures trading activity is found to have no effect on 

stock market volatility. This finding is robust to alternative volume decomposition 

procedures. However, the conclusion could not be reached when information related 

volume variables were included in the variance specification. Similarly, opposite results 

were obtained when the explanatory variables were included so as to mirror models 

utilised in previous research.

5.5. Sum m ary and conclusion

This Chapter has examined the hypothesis that futures trading destabilises the 

corresponding spot market, leading to an increase in price volatility. It was shown that 

the use o f the GARCH or Schwert (1990) models to test this hypothesis leads to 

results that are potentially misleading. In particular, the estimated coefficients on 

volume represent the effect o f an exponentially weighted average o f past levels of 

volume, not the instantaneous effect. In addition, there is a need to disaggregate 

volume into informed and informationless trading in a way that allows for leads and 

lags between spot and futures volume. The resulting analysis, which used the SV 

model, found no evidence for the UK to support the hypothesis that futures trading 

destabilises the spot market. There was also no evidence that spot trading destabilises 

the spot market, or that an increase in volume in one market, relative to the other, 

destabilises the spot market. Overall, the results clearly demonstrate that, contrary to 

some regulatory claims (e.g. NYSE, 1990), futures trading, after adjusting for the 

effects o f information arrival and time trends, does not destabilise the spot market.
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Table 5.1. FTSE returns: summaiy statistics

mj m2 min/m2 max/m2 m3 m4 Qio 0,40

rt -3.7-10"4 8.2-10'3 13.47 7.84 -1.81 29.94 32.29 66.54

f t 6.7-10*5 1.M0*4 -0.19 33.87 25.88 786.42 1192.8 1259.1

In r 2/ -10.68 1.75 2.01 -3.77 -0.25 2.52 185.05 339.71

This table reports the sample means (mi), standard deviations (m2), skewness (m3), and 
kurtosis (m4), as well as the modulus o f the minimum (and maximum) deviation from 
mi expressed as a multiple o f m2 for the returns (rt), their squares (rt2), and log squares 
(Inrt2). The time period is 4/1/1988-14/12/1995, 7=2,011. The Box-Ljung statistic

2 ,  =  7 t 7 - + 2 ) £ ( r - r ) p 2( r )
r=l

is evaluated at 10 and 40 lags, where p(r) is the sample autocorrelation at lag r.
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Table 5.2. Unit root tests in the stock and futures market volume 

Panel A. Augmented Dickey-Fuller tests

ln(VS) ln(VF)

i 0.453 0.655

s.e.{$) (0.020) (0.017)

a 1.104 -0.011

s. e. (a) (0.042) (0.017)

6 0.0003 0.0005

s.e.(dj (0.00002) (0.00003)

ADF3 -1099.0 -692.2

ADF, -27.5 -20.4

i 0.677 0.819

s.e.{$) (0.029) (0.020)

a 0.652 -0.002

s. e. (a) (0.059) (0.016)

6 0.0002 0.0003

(0.00002) (0.00003)

a d f 2 -338.7 -190.2

ADFj -11.2 -8.9

The top half of this panel reports the results of univariate OLS regressions of the form:

y, =<t>y,-1 +a + s i  + e,

where y t is the volume series indicated in the column heading. The second half reports 
the results from the regressions o f the form:

p

y, = <t>y,-, +a + s t  + X r ,  Av,_, + s,
»=]

where the coefficients y/i are not reported. The number o f lags, p= 5, was selected in 
accordance with the minimised value o f the Schwartz information criterion. The 
statistics ADFj, ADF2, and ADF3 are computed as:

ADF2 = ^ p ^  ADF3 = t ( 0 -  l)

1=1

and are tabulated in Fuller (1976). The 1% critical values for these statistics are, 
respectively, -3.96, -29.5, -29.5.

ADF =
M
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Panel B: Cointegration test

Ln(VS)t Ln(VF)

Statistic brace I 1^  max r 2^  max
Ho r=0 r=0 r=J

Crit Value 1 % 19.310 17.936 6.936

Crit Value 5% 15.197 14.036 3.962

L a g l 338.47 295.27 43.21

Lag 2 232.91 206.53 26.38

Lag 3 160.46 141.22 19.24

Lag 4 105.77 91.93 13.84

Lag 5 102.57 90.72 11.85

This panel reports the maximal eigenvalue and trace statistics:

1=1

where b  are the eigenvalues o f the canonical correlation matrix, see Johansen (1989). 
brace is a test o f H0:r= 0 against Hr.r=2, while Xmax is a test o f Ho'.r=i against Hj:r-i+ 1 
where r is the rank o f the long run impact matrix 77in the VECM:

hY, = a  + nY,_, + 'Z B iAY,_j +E, . E, ~ N(0,Z)
j =  1

Y, =(lnVSu lnVFt)r, and 12\ B, and Z  are (2x2) matrices. VS and VF respectively 
represent the spot and futures market volumes.
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Table 5.3. Cross effects between spot and futures volume

vsT

V \jf / s.e.(yr)
Const 0.8037 0.0750 10.7090

VSf t-l 0.3516 0.0248 14.1650

VSft.2 0.0487 0.0266 1.8299

VSft-3 0.0003 0.0267 0.0140

vsft^ 0.0668 0.0266 2.5037

VSfu5 0.2300 0.0249 9.2303

v ft -1 -0.0014 0.0088 -0.1547

v ft -2 0.0041 0.0097 0.4258

vft-3 0.0195 0.0097 1.9926

vft-4 0.0029 0.0097 0.3018

vft-s -0.0270 0.0088 -3.0580

v f

Const 0.8442 0.2148 3.9297

VSf t. 1 -0.1851 0.0710 -2.6052

VSf t.2 -0.1669 0.0762 -2.1892

VSft.3 -0.1385 0.0764 -1.811

VSft_4 0.0395 0.0764 0.5178

v / ,- 5 0.2246 0.0713 3.1493

vft-i 0.4755 0.0252 18.8550

v ft -2 0.1418 0.0279 5.0785

vft-3 0.1259 0.0280 4.4946

vft-4 0.0505 0.0279 1.8087

vft-5 0.0365 0.0252 1.4480

This table reports the estimated coefficients of two VARs o f the form: 

r, = a +  t , B X j  + E, , E, ~N (0 ,Z )
J = 1

where Yt=(ystt,v f ty  is a (2x1) vector. The symbol f  symbolises the fact that detrended 
volume figures are used. The coefficients are grouped to facilitate comparison. The 
first panel shows the equation for spot market volume, vsf while the second shows the 
equation o f futures volume, vf.
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Table 5.4. Effect of volume on spot volatility

MO M l M2 M3 M4 M5

0.965 0.961 0.965 0.959 0.959 0.959

(0.0004) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

0.015 0.017 0.015 0.017 0.017 0.017

(0.0002) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

In a 2 -9.779 -7.843 -9.850 -7.476 -7.475 -7.475

(0.084) (1.565) (0.213) (1.600) (1.600) (1.600)

vs -0.732 -0.810 -0.942

(0.590) (0.591) (0.626)

v / 0.051 -0.810 0.132

(0.137) (0.591) (0.146)

vf-vs 0.132

(0.146)

vs*-v/ -0.942

(0.626)

LogLik -4136.6 -4136.0 -4135.6 -4133.5 -4133.5 -4133.5

LR 1.28 2.08 6.15 6.15 6.15

This table reports the estimation results of the extended SV model (5.5). The
explanatory variables, z' represent informationless trading in spot and futures markets 
and are measured as the fitted values from (5.4) in the text. The models are labelled 
M0-M5 depending on the choice o f z'. The standard errors are reported below each 
parameter estimate. These are obtained from the numerical approximation to the 
Hessian for the hyperparameters (^,0 ^ )  and from the diagonal elements of the state 
covariance matrix PT for the remaining coefficients. The /-ratio is asymptotically
Gaussian and the likelihood ratio test, LR ~ where K =\,2  is the number of 
explanatory variables in excess o f MO.
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Table 5.5. Effect of the model specification on the volume-volatility relationship

MO' M l ' M 2' M 3' M 4' M 5'
0.959 0.959 0.944 0.943 0.943 0.943

(0.0005) (0.0005) (0.0009) (0.0009) (0.0009) (0.0009)

0.017 0.017 0.019 0.017 0.017 0.017

(0.0003) (0.0003) (0.0004) (0.0004) (0.0004) (0.0004)

In cr2 -9.797 0.230 -10.821 -1.050 -1.051 -1.051

(0.079) (0.177) (0.020) (0.191) (0.191) (0.191)

VS -0.155*

(0.067)

-0.165*

(0.072)

-0.213**

(0.073)

v / 0.040**

(0.014)

-0.165*

(0.072)

0.048**

(0.014)

v f  -v s* 0.048**

(0.014)

VS-vf -0.213**

(0.073)

LogLik -4136.6 -4136.2 -4134.3 -4131.2 -4131.2 -4131.2

LR 0.88 4.68* 10.75** 10.75** 10.75**

This table reports the estimation results of the extended SV model (5.6) where the 
explanatory variables enter the transition equation. The standard errors are reported 
below each parameter estimate. These are obtained from the numerical approximation 
to the Hessian for the hyperparameters (0 ,0^) and from the diagonal elements o f the 
state covariance matrix PT for the remaining coefficients. Significance o f the 
coefficients at (1%) 5% level is denoted by a (double) star. The /-ratio is 
asymptotically Gaussian and the likelihood ratio test, LR ~ j fx  where K= 1,2 is the 
number of explanatory variables in the model specification.

165



Table 5.6. Effect of the simultaneity bias on the volume-volatility relationship

M6 M7 M8
0.985 0.993 0.996

(0.0002) (0.0001) (0.0001)

0.005 0.002 0.001

(0.0001) (0.0000) (0.0000)

In a 2 -8.845 -10.765 -8.317

(1.478) (0.224) (1.459)

vs -0.368 -0.952

(0.556) (0.568)

v f 0.636** 0.698**

(0.131) (0.141)

en 2.829** 0.838**

(0.256) (0.305)

evf 1.489** 1.3,27**

(0.092) (0.109)

LogLik -4059.0 -3975.5 -3967.2

LR 155.15** 322.15** 338.70**

This table reports the estimation results of the extended SV model (5.5). The 
explanatory variables, z' are vs*, vf, evs, e* which represent informationless and 
information based trading in spot and futures markets and are measured as the fitted 
values and the residuals from (5.4) in the text. The standard errors are reported below 
each parameter estimate. These are obtained from the numerical approximation to the 
Hessian for the hyperparameters ( $ 0 ^ )  and from the diagonal elements o f the state 
covariance matrix PT for the remaining coefficients. Significance o f the coefficients at
(1%) 5% level is denoted by a (double) star. The likelihood ratio test, LR ~ where 
K=2,4 is the number of explanatory variables in the model specification.
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Table 5.7. Effect of volume decomposition on the volume-volatility relationship

M l" M 2" M 3" M 4" M S"
0.961 0.965 0.959 0.959 0.959

(0.0005) (0.0004) (0.0005) (0.0005) (0.0005)

0.017 0.015 0.017 0.017 0.017

(0.0003) (0.0002) (0.0003) (0.0003) (0.0003)

In a 2 -7.531 -9.808 -7.145 -7.144 -7.144

(1.585) (0.215) (1.640) (1.640) (1.640)

VS -0.850

(0.597)

-0.940

(0.603)

-1.061

(0.645)

v / 0.021

(0.138)

-0.940

(0.603)

0.121

(0.150)

v f  -vs* 0.121

(0.150)

VS-vf -1.061

(0.645)

LogLik -4135.7 -4135.5 -4132.9 -4132.9 -4132.9

LR 1.71 2.28 7.35* 7.35* 7.35*

This table reports the estimation results o f the extended SV model (5.5). The 
explanatory variables, z'\ vs**, y f \  y/**-vs**, vs**-y/** represent informationless trading 
in spot and futures markets and are measured as the fitted values from restricted (5.4) 
in the text. The standard errors are reported below each parameter estimate. These are 
obtained from the numerical approximation to the Hessian for the hyperparameters 

f>,crTi,) and from the diagonal elements of the state covariance matrix PT for the 
remaining coefficients. The /-ratio is asymptotically Gaussian and the likelihood ratio 
test, LR ~ where A=l,2 is the number o f explanatory variables in excess o f MO.
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Conclusion

It is widely documented that the time series dynamics o f many financial time series is 

well described by models which account for the time varying nature o f return volatility. 

While ARCH models predominated the empirical analysis in the past decade, stochastic 

volatility models have been recently proposed as an alternative way o f modelling 

volatility. Here the volatility is assumed to be driven by a stochastic process o f its own, 

rather than some function o f past realisations of the return process.

However, the estimation of S V models is a formidable task because the presence o f the 

latent volatility variable makes the likelihood function difficult to construct. In 

consequence, comparatively few empirical applications o f the SV model can be found 

in the literature.

The aim of this Thesis is therefore twofold. First a new and efficient estimation method 

is proposed. Second, the empirical validity of the SV model is verified in two 

applications, demonstrating that the model is a viable alternative to the ARCH 

methodology often used in applied empirical research.

The first part of the research agenda is covered in Chapters 2 and 3. Here, the new 

estimation method is developed. At the core of the procedure is the representation of 

the model in a linear state space form with non-Gaussian disturbances. It is well known 

that the Kalman filter can be used to construct the likelihood function but - due to the 

non-Gaussianity o f the measurement equation errors - the estimates thus obtained 

(QML) will be inefficient. Durbin and Koopman (1997) have shown that the likelihood 

function of the general non-Gaussian state space model can be approximated arbitrarily 

accurately by decomposing it into a Gaussian part (constructed by the Kalman filter)
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and a remainder function (whose expectation is evaluated by simulation). This general 

methodology is specialised here to the estimation o f SV models.

The final sample performance o f the resulting Monte Carlo Maximum Likelihood 

(MCL) estimator is examined in a simulation study. The results indicate that the 

performance o f the method is comparable to (and often better than) that o f the fully 

efficient Bayesian MCMC estimator. The MCL method owns its computational 

efficiency and flexibility to the linear state space form which allows powerful 

algorithms o f filtering and smoothing to be utilised. The gain is also due to the fact that 

the Monte Carlo simulation is only employed to construct that residual part of the 

likelihood function, which is not already captured by the QML component. In the 

event, it is shown that only five simulations (draws) are required to achieve finite 

sample efficiency.

Apart from reducing the computational effort (while attaining full finite sample 

efficiency), the algorithm has several distinct advantages. First, the sampling variation 

can be reduced giving arbitrarily close approximations to the true likelihood function. 

Second, estimation of the SV model with stationary AR(1) dynamics as well as 

estimation with a nonstationary volatility component is equally feasible. Taken 

together, the two aspects enable tests for the presence o f the unit root in the volatility 

process to be constructed. This issue is addressed in Chapter 3. It is shown that the 

augmented Dickey-Fuller (ADF) tests are unreliable. The tests are ether oversized 

(when the lag of the autoregressive polynomial in is chosen too small) or have low 

power (when the lag is chosen so as to approximate the correct size). The power 

declines as the true value o f the autoregressive coefficient approaches unity, which is, 

arguably, the most interesting case from the point o f view o f applied empirical analysis. 

It is shown that the likelihood ratio test based upon the estimation of the SV model by
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MCL is more powerful. However, the distribution o f the likelihood ratio test statistic is 

unknown. The Monte Carlo evidence presented here suggest that it can be well 

approximated by the weighted density, critical values of which are readily available.

The second part o f the Thesis, Chapters 4 and 5, consists of two empirical applications 

o f the SV model employing the new algorithm. First, the hypothesis that implied 

volatility o f options contain relevant information about the evolution o f the latent 

return volatility process is examined. A unique data-set o f contemporaneously 

recorded quotes of the DEM/USD exchange rate and a term structure o f implied 

volatility o f over-the-counter (OTC) options is used. We find that in-sample the 

implied volatility captures most o f the time series dynamics of the conditional volatility 

of the return process. In particular, implied volatility o f short maturity options are 

more informative. However, the out-of-sample forecasting experiment suggests that 

the predictions from the basic SV model across all forecasting horizons are at least as 

accurate as the forecasts obtained from the implied volatility data. This finding 

augments the conclusions reached in some studies in that implied volatility o f options 

may not be the best forecast of the average realised volatility. A possible explanation 

for this regularity is the existence of non-negligible volatility risk premia. In this case 

the inversion of the Black and Scholes formula in the presence o f stochastic volatility 

does not permit the interpretation o f implied volatility as an expectation of future 

historical volatility.

In the second empirical application, Chapter 5, the hypothesis that futures trading 

destabilises the corresponding spot market, leading to an increase in price volatility is 

critically examined. It is shown that the way in which ARCH models have been used in
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the literature o f volume-volatility relationship, leads to results that are potentially 

misleading. Using the SV model, no evidence for the UK in support o f the hypothesis 

(that futures trading destabilises the spot market) is found. Overall, the results clearly 

demonstrate that, contrary to some regulatory claims, futures trading, after adjusting 

for the effects o f information arrival and time trends, does not destabilise the spot 

market.
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Appendix 1: Nonparametric density estimation

A sample, {Xj, X„}, is drawn from a continuous univariate distribution with the

(unknown) probability density function/(x jeC . The kernel estimate is given by:

and h is the smoothing parameter, or bandwidth (Silverman, 1986). The kernel density 

estimator is thus an average over probability density functions centred at each 

observation point and converges to f(x) under suitable regularity conditions. Despite 

the availability o f alternative kernels, in this work K(t) is set to the Gaussian density. In 

our experience the estimated densities are robust with respect to the choice o f the 

kernel.

In some cases the support o f the density to be estimated is bounded on one side, e.g. 

the distribution of %lr in Chapter 3 is defined on the positive half line. Because o f the 

observations on (or close to) the boundary, b, the kernel method induces some mass to 

outside o f the region on which the "true" density is defined. This may lead to the 

density estimate not integrating to unity. In these circumstances the density is 

estimated in the following way. First, values Xj=b,j= 1, .., nb positioned exactly on the 

boundary are subtracted from the data set. The remaining observations are reflected 

giving a new data set, {Xh -X,}, i= 1, i*j, of size 2(n-nb). Finally:

(A. 1.1)

where the kernel K(t) is a symmetric, non-negative function satisfying

J K(t)dt = 1 J tK(t)dt = 0 J t 2K(t)dt = *2 *  0
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for x> b  
for x - b  
for x <b

/ « = n

0

w h e r e i s  the density estimate based on the augmented data set.

The bandwidth choice is important but nontrivial. As h  tends to zero f ( x )  becomes a 

sum of Dirac delta functions at the observations, while as h  becomes large, all detail in

the shape of the estimated density is obscured. Available cross-validation procedures 

(Bowman et al, 1984) are computationally intensive, sensitive to outliers, and 

sometimes inconsistent (Silverman, 1986). This naturally leads to a subjective choice of 

h. Whenever density estimation is performed for illustrative purposes, e.g. Chapter 2, 

this option is preferred and values o f h  are not reported.

When accurate estimates of the density are required, a reference bandwidth, hopt, is 

calculated such that the mean integrated square error is minimised (Parzen, 1962):

For the Gaussian kernel the expression is reduced, but still depends on the second 

derivative o f the “true” density:

One way obtaining hopt is by reference to a standard distribution (Silverman, 1986). For 

the likelihood ratio test, Chapter 3, it is natural to take a Xv density in which case the 

integrand in (A. 1.2) becomes:

(A. 1.2)
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. x v~H» + 4x + x 2 - 6 v -
/ . : " ( * )  =  L

16 2 l'c* r(f)

For v=2 this dramatically reduces to /  , " (x )2 = (6 4 e ') ' leading to for

«=1000. When v=\, however, the integral

f / \ 2  r (3 + 2x + X'")
| f l " (x) -dx=  | -   —j^—dx (A. 1.3)j J Z{ V  '  j  ~nTT0X V 5  v  7

diverges as z—»0, due to the discontinuity at the origin. Numerical approximations 

translate into the following values for hopt when the number o f observations is w=1000:

0 . 0 6

0 . 0 5

0 . 0 4

0 . 0 3

0 . 0 2

0 . 0 2  0 . 0 4  0 . 0 6  0 . 0 8 0 . 1

Figure A l: Bandwidth, hopl as a function of the lower bound, z in (A. 1.3).
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Appendix 2: State space form, filtering and smoothing

(i) The general multivariate state space form with N  series is:

y, = z,a, + £,
«, = T,a,_, + rj,

(A.2.1)

where.y, is an (vVxl) vector o f observations at time /, at is the (mx\) state vector, and 

the covariance matrices Ht (NxN) and Qt (mxm) are non-singular (Harvey, 1989). 

The univariate (N=\) SV model with k explanatory variables, z f  grouped into 

zt=(zit,...,Zkt)' as in (1.15) is put into the state space form by defining the matrices

V r *  v i ek%
=

Yt_
T = ’ -1/

i <*> *• 1

to n

, ek ekek \
. Z, = [l 2,-], H , = ■ £

where yt is (£xl), ek is a (£xl) vector of zeros, and I k is the (kxk) identity matrix. The 

basic SV model (1.12') is obtained a special case by setting k= 1, z /= l, V/ so that the 

constant, In a 2 becomes an element o f the state vector. When the explanatory 

variables are included in the transition equation as in (1.17) only the Tt and Z, 

matrices are modified to:

T,=
e k Ik

. 2, = [ \  v]

When AR(2) dynamics are present as in (3.7), H  is unchanged, and the remaining 

matrices are

i

*-
~ i

0 V

a, = V , , T = 1 0 ek' . Q =

oo

,Y< . 1J*'<*>1 J t  ek

, Z = [ 1 0 z,']
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Similarly, the multivariate model (1.19) with explanatory variables is implemented by 

setting

i e $ ~\ >̂7 eNeNk

s II

ii

II

% •"""I 1

,Q  =
_eNkeN eNkeNk _

where ht is now (Nx 1), yt is (Nkxl), while O and are (NxN). The ofF-diagonal

elements o f H  are given in the text, equation (2.32):

„ . 2 ^ r(lX /-i)i
Plk

where p,,t are the off-diagonal elements o f the untransformed correlation matrix 

Qv The diagonal elements remain n?!2.

(ii) The Kalman filter is given by:

v ,= y ,~  Z,a, F, = Z,P,Z,' + H,
F-' L, = Tm  -  K,Z, (A.2.2)

= Tm P,L,' + Qm

for t = 1, . T. The recursions are initialised with the unconditional distribution o f the 

state vector, a 0 = N\a0,P0f where a 0 is a zero vector and

K, = Tm P,Z,'F-' 
a , +  K , v ,

10 h

where d  is the number of elements in the state vector not related to ht. Letting T and 

0  to correspond to the state vector elements related to hh P0 is obtained from

vec(P0) = ( l2(„_d)- r ® T y  vec(Q)
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For instance, for the for the basic SV model with AR(1) dynamics and k  explanatory 

variables as in (1.15) this implies

M 2)
105A

When the explanatory variables are included as in (1.17) the filter is initialised with the 

diffuse prior, P0 = 105. Koopman’s (1997) method may used for the first d  iterations 

to make the initialisation exact.

(iii) The disturbance smoother (de Jong, 1988; Koopman, 1993) is used to construct: 

e, = E(e,\Y) = H,e, C, = Var(e,\Y) = H, -  H,D,H,

where Y is the matrix o f all observations, and the quantities et and Dt are obtained 

from the backwards recursions:

e , = F ; \ - K , ' r t 

',-1 =  Z , ' F ,~'V, + L , ' r ,

D, = F~' + k ; n ,k , 
N,_,= Z,'F l- 'Z ,+ L,'N ,Ll

(A.2.3)

for t=T, ..., 1 with rT =0 and N T =0. The prediction errors, v ,, their variances, Ft , and 

the Kalman gain matrix, Kt are outputs o f the Kalman filter (A.2.2).

(iv) The smoothed estimate o f the state vector

a*. = E(a,\Y)

is constructed by the fixed interval state smoother of de Jong (1988):

a,i7 = «, + P,r,- (A.2.4)
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for t=T, ..., 1 where a t and Pt are taken from the Kalman filter (A.2.2), and rt is 

taken from the disturbance smoother (A.2.3).

(v) A special version o f de Jong and Shephard’s (1995) simulation smoother is used to 

obtain draws of from P g ( s \ y /) \

s ?  =H ,e,+  u f  «,<0 ~ n (0, C ,)

where the quantities c, and C, are obtained from the backwards recursions:

e„ = F,-'v, -  K ,'?  A  = F;' + K,'N,K,

~ ~ ~  (A-2-5)M t = Ht (DtZt -  K ,'N t Tt+]) Ct =Ht -  HtDtHt

rt_x = Zt 'F~]vt -  M t'C~xu{p  + Lt 'rt N t_} = Zt'F~%  + M t'C ;xM t + Lt 'N tLt

for t=T, 1 with rT = 0  and NT= 0. Note that when a set of samples is required, the 

Kalman filter and the recursions for Dt,M t,Cl,N t_l need only be applied once since 

these quantities remain the same for each sample.

178



Appendix 3: Numerical implementation

(i) The Gaussian likelihood function is based on the prediction error decomposition 

obtained form the Kalman filter (A.2.2):

LogLG(tff) = - ^ 2 ( ln2;r + *4^1 + vt 'K Xv )  (A.3.1)
* t=d

The hyperparameters are placed into the system matrices Qt and Tt in (A.2.1). The 

estimates o f the hyperparameters are obtained by numerical maximisation o f (A.3.1) 

while the estimates o f the coefficients on the explanatory variables, y  are given by the 

relevant elements o f the final state vector, a T. The standard errors o f <f> and <j v are 

taken from the numerical approximation to the Hessian.. The estimated variances o f y 

are given by the relevant diagonal elements o f PT.

(ii) The likelihood function is maximised numerically by means o f a variable metric 

optimisation routine like BFGS, details o f which can be found in Press et a l (1992, 

pp.425) and Koopman et al (1995, p. 211).

(iii) Since the parameters are estimated by numerical methods, restrictions need to be 

imposed to ensure the stability o f the algorithm. This can be accomplished by either 

invoking some constrained optimisation method (Schoenberg, 1995) or transforming 

the parameters to a new parameter space so that unconstrained optimisation (ii) can be 

performed. This method is discussed in e.g. Hamilton (1994, p. 146).

Let the hyperparameters o f the basic SV model (2.1) with stationary AR(1) dynamics 

be represented by a (2x1) vector y ^= (^  W>)\ where in an obvious notation \f/f=<j> and
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y/cTGn- Let 0  be another (2x1) vector, partitioned as 0={6^6<̂.  Then the vector 

function h(-): # x i# -» ( - l , l)x$ t  ensures that the restrictions on the parameters are 

satisfied and is given by:

r ,  = « (i + * r  (A-3-28)

Vo = e x p (^ )  (A.3.2b)

Alternatively, (A.3.2a) may be replaced by: Vt = 2 ^ " 'tan(fy). The graph o f the

inverse transformation, h'!()  is presented in Figure 3.1 in the text. In the stationary 

AR(2) case the parameter vector is which may be replaced by

\f/={XuX2,Or$ where the roots of the autoregressive polynomial are related to the 

coefficients via:

$  = 4  <t>2 =

A vector function which ensures that the roots lie within the unit circle and the 

variance parameter is positive consists o f a combination o f (A.3.2a) and (A.3.2b).

Finally, a stationary VAR(l) model with N  series requires that the covariance matrix o f 

the disturbances, is positive definite, and the roots of the matrix polynomial

I N -  OZ, lie outside the unit circle. The constraints may be imposed by means o f an 

algorithm proposed by Ansley and Kohn (1986).
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