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ABSTRACT
The thesis deals with the analysis of dynamic econometric models 

which includes Time-Series methods. Conditional modelling and the 

General to Specific approach combined with Destructive testing. The 

modelling strategy used is dependent on the requirements of the 

modeller, whether he needs to Forecast, to derive policy or to produce 

results to support or deny a particular theory.

Expectations introduce dynamics into econometric specifications 

and rational or consistent expectations models in particular have number 

of representations, which depend on the form of the inter-temporal 

optimisation problem and the method of solving for the expectations. 

Here we use the Vector AutoRegressiveCVAR) form to estimate predictions 

of variables which are exogenous, an Errors-in-Variables method to

produce initial estimates of structural parameters and a recursive 

systems approach to estimate the backward-forward representation.

Vector autoregressive models of manufacturing wages, output

prices, manufacturing inventory accumulation and vacancies are estimated 

using a general modelling strategy to derive predictions and one step 

ahead forecasts. These results are then fed into a structural model of 

output and employment which is estimated using a recursive estimation 

technique that solves out the endogenous expectations and then replaces 

the exogenous ones using the Wiener-Kolmogorov prediction formula.

Finally we discuss generalisations of the first order rational

expectations model to produce first order euler conditions which bear a 

closer correspondence to estimated error correction models with which 

they are related. The inter-temporal optimisation problem is extended to 

deal with lags and leads on exogenous variables, non-separabilities and 

lags on adjustment costs. Local and Global Identification conditions are 

presented for all of the models in the study.
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INTRODUCTION

In this study we are interested in applications of the 

methodology of rational expectations to the labour market. At the 

macro level people have looked either at models of prices, 

generally based on the Phillips curve or at quantities which are 

either factor demand equations or employment functions. In 

Phillips (1950) he describes wage changes as being dependent on 

excess demand in the labour market, the study is not like any of 

the time series models which followed, because it was estimated 

on four class intervals for data computed from the period 1861- 

1913 using a graphical non-linear least squares method. The 

averaging procedure removed cyclical fluctuations and the results 

where used by Phillips to determine demand pull inflation over 

three very different sub-periods of the data 1861-1957. Numerous 

wage models followed Phillips discovery, notably one by 

Sargan(1964) which has spawned much research, due to its 

attention to dynamics and simultaneity. Subsequently wage models 

of the U.K. have usually been variants of the two relationships 

cited above; for details of some of the early models see Henry, 

Sawyer and Smith(1976). The first application of such models to 

include rational expectations was given by Minford and 

Brech(1980) and has subsequently been updated in various versions 

of the Liverpool Macroeconomic model of the U.K. economy. Henry 

and Ormerod(1979) have also presented alternative rational 

expectations models based on the NIESR model and Wallis et 

al(1984) and (1985) present results of varying detail for the 

main U.K. macro models which all now involve some form of
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expectations.

In the late 70's Sargent(1978) and Kennan(1979) presented labour 

demand models that incorporated rational expectations. The models 

were derive by solving an intertemporal optimisation problem with 

costs of adjustment in which future values were replaced by 

rational expectations. Muellbauer and Winter(1980),

Nickell(1984) and Muellbauer and Mendis(1983) have estimated 

similar employment relationships for the UK. The Muellbauer and 

Winter paper models Employment, Exports and Unemployment using a 

variant of the errors in variable technique in which the 

distributed lag on the endogenous expectations is shifted to the 

left hand side (Ihs) of the equation. The employment equation is 

estimated directly using ordinary least squares(OLS) by imposing 

plausible coefficients on the past and future values of 

employment. Nickell(1984) uses the substitution method of Sargent 

which replaces the actual values of output in the employment 

equation by the relationship defining them and then the two 

equations are estimated simultaneously. It is usual to assume a 

single lag in the dependent variable, but Nickell includes two 

explaining the second lag using aggregation over two labour 

markets. Muellbauer and Mendis use two methods to estimate their 

model of employment; firstly they derive an auxiliary model to 

derive future output expectations at each period and substitute 

these values back into the employment equation and secondly they 

follow the Muellbauer and Winter method augmented by an 

adjustment for serial correlation which is supposed to take 

account of the moving average error associated wiyh replacement 

of the expectations in the euler equation by actual values. The 

National Institute of Economic and Social Research(NIESR) have
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spent a considerable amount of time estimating employment 

equations with rational expectations, they have used a variant of 

the substitution method in which they curtail the future 

expectations on the exogenous variables to four or five leads and 

then they replace them by consistent predictions. The NIESR 

modelling team and many of the other groups have always found it 

necessary to include two lags on the dependent variable. The most 

recent NIESR model uses the Kalman Filter to solve for the future 

values, while a stochastic trend proxies productivity, see 

Harvey, Henry, Peters and Wren-Lewis(1985). Engle and 

Watson(198S) and Burmeister et al(1982) and (1985) have also used 

the Kalman Filter to estimate simple rational expectations 

models, but in more general models the State vector can become 

prohibitively large. The methods described here extend the method 

described in Sargan(1982), the expectations are replaced by 

actual values and then an efficient recursive procedure is 

devised to estimate the model. The Sargan method is extended to 

take account of some asymmetries, further lags in the endogenous 

and exogenous variables and different period expectations.

In practical terms estimation of rational expectations is not 

trivial as it is difficult to know what should be used to replace 

the expectations and what form the model should or can take. In 

principle their are two methods that have a number of different 

variants; those are the substitution method due to Sargent(1978) 

and the errors in variables method of McCallum(1976) and 

Wickens(1982). The substitution method replaces the expectations 

by the Vector Moving Average(VMA), Vector AutoRegressive(VAR) or 

Vector AutoRegressive Moving Average(VARMA) process which are 

believed to generate them, this requires the definition of the
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process and then substitution back into the model. The resultant 

form is of a VARMA, VMA or VAR form when information is dated at 

t-1 which requires the rational expectations restrictions to be 

imposed on the parameters for the method to be efficient. The 

method suggested by Sargan (1982) is to substitute out the 

expectations assuming they have a VMA representation and then to 

estimate the resultant restricted quasi reduced form. The above 

method is a two stage maximum likelihood method, but there are 

other variants of these methods which include the instrumental 

variables techniques of Hayashi (1982) and Hanson and Sargent 

(1980), the Generalised Method of Moments method of Hanson and 

Sargent (1982) and the Jordan Canonical decomposition method due 

to Kollintzas (1985). Chow (1980) and (1983) present the solution 

to the model in state space form and Whitman (1982) uses the 

Fourier transform to derive the solution of the rational 

expectations model. Burmeister et al (1985), Engle and Watson 

(1985) and Fair and Taylor(1980) describe other techniques.

The errors in variable method does not solve the model, but it 

directly replaces the expectations in the model by their actual 

values which produces an error in variables. The resultant model 

is estimated consistently by replacing the future endogenous 

variables by fitted values. In Chapter 4 we discuss the relative 

merits of the two principle methods, but it is fair to say that 

the substitution method is to be preferred if the modeller truly 

believes in rational expectations. Sargan(1982) and Nickell(1985) 

explain the key limitations associated with the errors in 

variables approach, though Broze et al(1984) and Wickens(1986) 

improve the technique to account for some of the inefficiencies. 

The advantage of the errors in variables approach is a bi-product
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of its' inefficiency, because it does not impose a particular 

solution it might more naturally be used to detect irregularity. 

Sargan(1984) covers alternative solutions in a highly generalised 

framework and he suggests different estimation techniques which 

may be appropriate for estimating rational expectations models 

which exhibit both regular(unique saddle point or symmetric 

backward forward solutions) and irregular solutions(non- 

symmetric solutions). Irregularity can be detected by a Wald test 

when the errors-in-variables method is used and by a Lagrange 

Multiplier test when the regular solution is imposed. Preference 

for a method on estimation grounds will depend both on the

tractability of the solution and the efficiency of the estimation 

technique while the power of the test will depend on the

efficiency of the method and in finite samples on the small 

sample behaviour of the test statistic.

In Chapter one we will look at the theoretical considerations 

associated with macro models which include expectations. We will 

show that we are indebted to Keynes who developed the notion of 

expectations as the basis of a Macroeconomic theory in which

uncertainty about the future was critical. Hicks contribution to

the theories of general equilibrium, expectations and 

macroeconomics are discussed and related to the notion of 

adaptive expectations and non-market clearing. We then discuss 

rational expectations which have been used in the context of 

macro models to justify classical and monetarist perspectives. We 

show that the classical conclusions of many models depend on the 

structure of the model rather than the nature of the 

expectations. A macro model of output and employment is then 

developed which has Keynesian origins, but it assumes that
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expectations are rational or consistent. The question of the 

natural rate is discussed and it is shown that the model 

developed is a generalisation of the extreme Classical and 

Keynesian formulations.

Chapter two discusses the general problem of estimating dynamic 

econometric models; this will include time series models, error 

correction models and dynamic models based on economic theory. We 

will look at modelling methodology and the way in which 

econometric models should be set up and the criterion which it is 

reasonable for them to meet. The different models will be 

reviewed to see the extent to which they satisfy such 

conditions.

In Chapter three we look at different time series representation 

of rational expectations models and we relate them to different 

forms of the cointegration model The results in Granger and 

Engle(1987) are presented as they transform models with 

cointegration into error correction forms, the Yoo(1986) form is 

presented as it allows a non-stationary VMA to be transformed 

into the VAR from often used in estimating rational expectations 

models. We then look at an alternative factorisation which allows 

the cointegrating vector to be estimated directly and we relate 

this to the methods suggested in Breusch and Wickens(1988). 

Logarithmic models of output prices, wages, vacancies and 

inventory accumulation are estimated using the VAR approach and 

the best of these models are used to produce one step ahead 

forecast errors and future predictions. The predictions are then 

used in the following chapter to derive estimates of an output 

employment system.
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Chapter four presents results for our output employment model and 

the derivation of the estimation method first mentioned in 

Sargan(1982). The method is associated with the solution of an 

intertemporal problem and the resulting euler conditions are 

found to be equivalent to the macro econometric model developed 

in chapter one. The first order case is given a number of 

different forms and these are related to cointegration and it can 

also be shown that it is still possible to derive a solution 

under cointegration. The results in the first section are used to 

specify an output employment model which can either be treated as 

a macro relationship that depends on future and past values of 

the endogenous variables as well as wages, output prices, 

vacancies and inventory accumulation or as a result of the 

control model covered in the first section. Estimates of the 

system are derived by Maximising the Likelihood using a Recursive 

Technique which considerably reduces the data set. A number of 

estimates are presented including initial estimates derived by 

the errors in variables approach and systems estimates with trend 

variables, innovations and with the exogenous variables replaced 

by predictions. The solved form of the model nests within it a 

number of specifications that include the restricted form of the 

rational expectations model, the partial adjustment model, the 

static model, a VAR(l) in the exogenous variables and a bivariate 

random walk. The rational expectations model can then be compared 

with these restricted models using a likelihood ratio test and 

that test can also be used to test the restrictions associated 

with rational expectations. If innovations do appear to be 

significant in their own right this can be due to quasi rational 

expectations or innovations appearing directly in either the 

objective function or the structural form. We can also determine
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whether the current information set, the lagged information set 

or a combination of the two is relevant. The models are also 

tested for higher order serial correlation and predictions, 

equilibrium values and roots are computed.

In section four we relate rational expectations, error correction 

and cointegration. The section explains the disparity between 

initial estimates based on the errors in variables method and the 

results derived using the substitution method and then deals with 

the problems in estimating models using the errors in variables 

approach. The disparity relates to the unit root mentioned in 

chapter three which depends on whether the variables in the 

system can be given an error correction, a differenced stationary 

or a cointegration representation. The solution to a rational 

expectations system is then related to the Granger representation 

of the cointegrated system and the advantages of the Sargan 

approach are explained when the exogenous variables are 

cointegrated. In the final section we discuss aggregation and 

derive a number of estimates in which an adjustment has been made 

for serial correlation. The model due to Sargent(1979) includes 

an adjustment for serial correlation which is either explained by 

aggregation or the inclusion of stochastic terms in the loss 

function (see Nickell(1985)).

The fifth chapter looks at the limitations of the first order 

rational expectations or first order costs of adjustment model 

and presents some generalisations of those formulations. The 

structure of the models seems highly restrictive as they only 

usually allow current exogenous variables to appear, but in this 

section we allow future and lagged values to enter into the model
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specification. The loss function can also be adjusted to allow 

further lags, so that costs are spread over more than one period, 

but this complicates matters considerably. We show for quite 

general symmetric models that recursive solutions can be extended 

and we reveal two extensions which are in keeping with the 

structure of the first order model. Finally we discuss Global and 

Local conditions for Identification in the case of a model with 

interaction costs, these results are then related to the first 

order model in chapter four, a first order model with lags and 

future values of the exogenous variables and for the simple 

extension of the general model that includes a lagged cost to 

disequilibrium. The final chapter presents some conclusions and 

discusses some of the questions raised in the main text.
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CHAPTER 1 
Macroeconomics and Expectations

In a world in which we do not have certainty or in which actions 

undertaken today impose a cost or restrict our ability to react 

in the future, current action will be dependent on our 

perceptions of the future. Expectations are important in 

economics when we experience change which is often imperceptible, 

that is, we are dealing with dynamic economies and the models and 

econometric practices associated with them. The interest in the 

role of expectations became stimulated by the situation which 

beset most countries during the 1930's, when economists began to 

discern the great disparity between the way in which economies 

were supposed to respond and the way in which they actually did; 

in particular the great dislocation of labour experienced during 

this period. The problem as perceived by Keynes(1936) was due to 

the lack of coordination in plans that occurs in economies in 

which people do not have perfect information about the future. 

Pessimistic future expectation aligned with less than infinite 

price adjustment in a money economy may prevent a return to full 

equilibrium of the system. The sticky nature of price adjustment 

and uncertainty about the future are inter-linked, slow price 

adjustment is due to uncertainty about the future and the future 

costs of mistaken actions.

The traditional representations of the Keynesian model elucidates 

the problems of price stickiness and the associated deflationary 

process implied by it, but is criticised from both Keynesian and 

Classical perspectives for its sparse treatment of expectations.

18



It was Hicks(1937) who first presented the ISLM model much used 

in standard texts, but his emphasis in developing such a 

structure related to his own work on General Equilibrium Theory 

as compared with Marshallian partial equilibrium analysis, so 

that he saw the role of expectations as secondary to the 

interrelatedness of markets. It is clear by the considerable room 

given to expectations in both the General Theory and Keynes 

(1937) article, that he considered them to be critical in the 

operation of a decentralised money economy in the aggregate. In 

fact Keynes fundamental criticism of "Mr Hicks" formulation was 

the omission of expectations (see Keynes(1974)). The Keynesian 

insight in relation to expectations is that monetary economies 

operate differently to barter economies under uncertainty and 

such uncertainty, aligned with costs in decision making in 

decentralised economies, negates and even subverts the natural 

adjustment to equilibrium due to the price mechanism. As 

Leijonhuvud(1968) explains, the price mechanism needs to provide 

more than one type of signal, which means that prices do not 

contain sufficient information to clear the system. Market prices 

are expected to clear individual markets and to determine the 

overall price level which then sets the correct level of activity 

for the economy as a whole. The co-ordination of markets by one 

set of statistics seems barely credible within the context of an 

atemporal economy with product uncertainty, but in the context of 

an economy over time in which there are other forms of 

uncertainty it seems preposterous. If the whole stream of future 

prices where known in advance, then continuous market clearing of 

the Debreu(1960) type would occur, but not in an economy driven 

by expectations which are never perfectly validated, coordinated 

or imposed.
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1.1 Theories of Expectations:

The notion of expectations clearly exists in the works of 

Marshall, Wicksell and an appreciation of the problems of 

uncertainty is clearly understood by Walras, but no author prior 

to Keynes gave such a central role to such variables. In the

General Theory Keynes defines two periods over which expectations

are made: the short-run and the long-run. Short-run expectations 

are not seen as being critical in the context of Keynes short 

period model.

"But it will often be safe to omit express reference to short

term expectations, in view of the fact that in practice the

process of revision ... is a gradual and continuous one 

carried on largely in the light of realised results"

J.M.Keynes (1936), p50-51.

This explanation clearly bares a strong resemblance to the ideas 

embodied in both rational and adaptive expectations which has led 

Begg(1982) to suggest that the short-run expectational theory 

embodied in Keynes(1936) is the rational one, and although this 

is possible the importance of such a suggestion is questionable; 

we will discuss this idea again in the next section. Linked to 

the distinction between long and short-run expectations there are 

at least three notions of expectation: exogenous, pessimistic and 

inelastic. Long-run expectations are seen as being fixed or 

exogenous for the period of analysis, so that shifts in such 

expectations are quite often the cause of déstabilisation and the 

reason why the economy is not able to shift out of a depression. 

Hence, such expectations are usually related to interest rates 

especially the long-rate and described as pessimistic. It is such
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expectations which cause investment to be less than what it 

should be and it is that short fall which does not permit the 

economy to return to full employment. Inelastic expectations 

usually relate to prices which are not supposed to react one to 

one with actual values. The liquidity preference schedule is 

supposed to epitomise the idea of inelastic expectations and in 

the view of Hines(1971) all market price responses should be 

characterised in this way. Keynes clearly sees that there is a 

problem in an uncertain world in determining a set of equilibria 

over time and uses expectations with period analysis to determine 

such dynamic equilibria in a static framework.

To reiterate, short-run expectations are determinate to the point 

of being ignored. They are crystalised by past decisions and 

because of that they influence the future directly via the past. 

Long-run expectations are taken as given, they cannot be easily 

derived and in essence they encapsulate Knights principle of 

exogenous uncertainty(1921). Such values are inherently 

subjective and equally likely to be based on opinion as to 

rational decision making. The stock market being the market in 

which long assets are held involves such decisions which leads 

Keynes to equate the process of long expectations formation with 

a Beauty contest in which the decision is to select not the most 

beautiful, but the one which the judges believe the public would 

select as the most beautiful. We can glean from this the idea 

that in certain markets expectations are disparate, due to the 

nature of the market and the nature of the information upon which 

they are based. Long-term expectations are then 'Animal Spirits' 

which are more likely to be the result of tastes or gut feelings, 

than rationality.
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Following Keynes development of Macroeconomics and his emphasis 

on the distinguishing role of expectations, Hicks(1939) 

elaborated and explained the economy in terms of his extension of 

the General Equilibrium system devised by Walras. In "Value and 

Capital" Hicks explains the workings of a dynamic economy using 

the concepts of equilibrium over time and temporary equilibrium. 

The issue of uncertainty is side stepped by the assumption of 

"Definite Expectations" which implies that individuals hold 

single valued expectations which they act on as if they were 

certain. This yields an elegant model of the economic behaviour 

of an economy through time which moves from period to period by 

the artifice of temporary equilibrium. At each period planned 

quantities are dependent upon past expectations and current 

values :

" It will be past expectations right or wrong which mainly 

govern current output; the actual current price has a 

relatively small influence ", Hicks(1939), p.117.

The caveat in relations to expectations is supported by the 

Marshallian assumption that price movements are small and hence, 

income effects are also small, otherwise the expectational 

hypothesis would not lead to equilibrium over time.

Expectations had became embedded in the literature even though 

they were not initially formalised either theoretically or in an 

empirically usable way. In macroeconomics the concept of adaptive 

expectations was introduced by Cagan(1956) to explain hyper 

inflations, this was closely followed by Nerlove's (1958) paper 

which includes such behaviour in Hog Cycle models. The Adaptive 

expectations method is easily applied as it is purely dependent
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on a distributed lag of actual past values of the expectational 

variable :

(1.1) p® = 6p^ (l-ô)p^

(l-6L)p^ = (l-6)p^ (where L is the lag operator)

p® = (1-6L)~^(l-6)p^

The idea of adaptive expectations is inherent in Hicks view, in

the sense that they are point expectations, based on observations

of the past which are presumed to be known with certainty. Though

interesting in the sense that they yield tractable models the

approach has its limitations. Adaptive methods may prove useful

as rules of thumb for unsophisticated agents when the world or

the markets they operate in are not subject to severe changes,

but they imply a backward looking, limited information strategy.

Such expectations would not be suggested by enlightened

econometric practice or by the existence of such phenomena as

on-line databases, insider trading, market research companies and

other information retrieval and protection practices. Due to its

ease of application and the non-existence of operational

alternatives adaptive expectations was the principal method of

modelling expectations during the 60's and early 70's.

Expectations were used in theory to discredit the simple Phillips

curve analysis of inflation and to give support to monetarist

theories of policy ineffectiveness. Friedman(1968) and

Phelps(1968) use expectations to show how the effects of active

demand policies will be limited if they are perceived as being

inflationary. Further work by Laidler and Parkin and others of

the Manchester School introduce adaptive expectations into

Phillips style wage equation models, though their methods were
23



later criticised by Godfrey(1974) and Wallis(1971) (also see 

Desai(1976) and (1984)).

The notion of rational expectations is due to Muth(1961). In the 

(1961) paper Muth deals with the problem of Farmers operating in 

a market in which the dynamic adjustment path is described by a 

Hog-cycle model. Muth shows that agents who know the structure of 

the model can take advantage of such information to derive 

optimal predictions and then use the predictions to move directly 

to the new equilibrium. The solution based on rational 

expectations will both be different from and superior to the 

usual solution in which agents simply react to market conditions. 

It took some time for the new concept to gain acceptance, partly 

because Muths' article was an obscure application of a powerfull 

general principal set in a microeconomic framework and in 

practice because it set the almost intractible conceptual problem 

of how to compute the unobserved expectational variables. Further 

more, Wallis(1980) has shown that the advantages of rational as 

compared with adaptive expectations are not clearly brought out 

by the example chosen by Muth, because the rational expectations 

solution to the Hog-Cycle model can be made to look very similar 

to an adaptive model.

Lucas(1972) and Sargent and Wallace(1973) used rational 

expectations to produce macroeconomic supply relationships which 

when introduced into standard macro models where to produce 

strong classical results. The Classical supply hypothesis 

transfers Wicksells notion of a natural price to a quantity such 

as output, while rational expectations implies that variations 

from the natural rate are only due to misperceptions in price
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expectations.

(1.2) y® - y^= a(p^- p®) +

where y^ is aggregate supply, y the natural rate and p® the 

expected price level and G^ a white noise innovation.

The concept of the natural rate follows from Friedman's inversion 

of Wicksells notion of a natural price to a natural quantity. It

is the structure of the Supply relationship and not the Rational

Expectations Hypothesis which produces the strong classical 

results. The Strong Rational Expectations Hypothesis(SREH) is 

highly restrictive, as it implies that all agents are prior to 

the same information which they use in the same way. Agents are 

not expected to be equally efficient in information retrieval, 

but such distributional effects are meant to cancel out either 

across agents or across time. Deterministic elements will be 

learnt by individual agents or arbitraged away by markets. The 

SREH assumes that there is a true model which agents use to plan 

efficiently and New Classical Economists add to that assumption 

the idea that the true model satisfies the Classical assumptions 

in the short-run. Agents using false models are presumed to

consistently make mistakes and so discover that they are using

the wrong model and on the basis of that observation they are 

supposed to learn the true model. The implication of such a 

strong expectational hypothesis embedded within a classical model 

with strong informational assumptions is that the economy

operates in a classical manner over time. We can see this by

imposing the following equilibrium price relationship:

(1.3) p^ = pp* + (1 - p)z^

where = x^- y^- G^ and x is income, then if we assume that
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x^= \\i  ̂ and + a^t we can show that

deviations from the natural rate are purely random.

(1.4) - p^ = (1 - p)(x^ - v|/x̂  ̂) - (1 - p)E^

= (1 - p)(e^ - )

Equation(1.3) and (1.4) in combination imply that disequilibria 

are due to defficiencies in information collection and mistakes. 

An economy based on such a model may never attain the optimal 

path, but it will achieve the best attainable alternative path in 

the best of possible worlds. In the context of the Lucas supply 

equation, rational expectations implies that the error terms 

associated with (1.4) are non-deterministic which means that 

there is no direct role for counter-cyclical government policies. 

The result above does not depend on the rational expectations 

assumption, but on the structure of the Lucas supply hypothesis. 

The limitations of the model are due firstly to the assumption 

that the natural rate is an attractor from which supply cannot 

escape and secondly to disequilibria only being dependent on 

deviations of prices from their expectations. If either of the 

above assumptions break down then so does the ineffectiveness 

result. A similar point is made in Begg(1982) and (1982a)

In practice, it is likely that (1.2) would not be well specified 

which suggests that (1.2) may be the long-run equilibrium to 

which an econometric model adjusts in the short-run and that 

means that a far richer explanation of the data is possible. If 

the more complex dynamic were correct, then the Classical model 

would only hold in the long-run, so that government policy could 

be effective in the short-run. The effectiveness of government
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intervention would then depend on the period of adjustment.

It seems better then to deal with a more general structure which 

do not impose market clearing or the strong rational expectations 

hypothesis. One is not necessarily rejecting rational 

expectations, though one might want to modify the assumption. 

Nerlove (1972) talks of quasi rational expectations in which the 

restrictions are not imposed or one can talk of consistent 

expectations in models which use forecasts to replace actual 

values. The limitations of rational expectations are discussed in 

Buiter(1980) and Begg(1982) provides a general discussion of the 

informational difficulties associated with rationality.

Recently a lot of interest has been generated in the way that 

expectations are formed, the role of differential information and 

the use of different expectations. Blume and Easley(1982) show 

that in a learning environment, with imperfect information agents 

may only by chance come across the right model. Hence, 

information problems will differentiate agents and limit 

convergence to rational expectations. Townsend in the paper 

entitled " Forecasting the Forecasts of others " (1983) discusses 

such problems in similar terms to Keynes in his Beauty contest 

example. Implicit in such discussions is the notion that other 

agents expectations are then crucial in determining the rational 

expectations equilibrium. At a simpler level it is possible to 

proxy learning behaviour by recursive modelling methods, an 

example of this is presented in Pesaran and Pesaran(1987). It is 

also possible to include different or alternative types of 

expectations in such models. Pesaran(1987) looks at many of these 

issues, especially the informational problems associated with
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rational expectations and the role of survey data in validating 

the expectational hypothesis. Expectations are clearly important, 

but how one models them is the problem. Rational Expectations 

when the informatioal assumptions are not taken too seriously 

provides a methodology which it is possible to implement and the 

methods can be broadened out to deal with some of the problems 

mentioned above. This does not answer the question of the 

validity of the "as if" assumption which may not always be good 

enough. In general, the results of rational expectations models 

depend on the assumptions about information, costs of adjustment, 

the distinction between expectations expected and acted upon and 

the computational capabilities of agents; these all relate to the 

type of model you embed your expectations in. The solutions of 

linear rational expectations models is dealt with clearly in 

Blanchard and Kahn(1980), Begg(1982) and Pesaran(1987) and we

cover some of the solutions in chapters 4 and 5.

1.2 The nature of expectations in Keynesian models

Before discussing the type of model within which expectations are 

placed I would like to discuss the use of rational expectations 

in the context of a Keynesian model. Begg (1982) and (1982a) 

shows that rational expectations can be embedded in a Keynesian 

model and he suggests that Keynes only makes sense in the context 

of rational expectations. It is clear that Keynes discussion of 

short-term expectations fits nicely into such a framework, 

because they can be viewed as modellable point expectations which 

are subject to constant revision. Rational expectations can be 

seen as one of a number of rules of thumb used by agents for 

short-term decision making, but they only explain long-term

28



expectation if Keynes mixed up expectation revision with

expectation formation(see Begg (1982)). Begg also states that 

long-term expectations may be exogenous, a view which seems far 

more consistent with the tenet of Keynes(1937) and which is 

supported by Lawson(1981) and Ozga(1965).

Beggs' reason for introducing rational expectations into

Keynes(1936) is to makes his consumption model more consistent 

with the permanent income or life cycle models(see Precious(1987) 

for similar synthesis of Investment models). If consumption is 

based on current income with long-term expectations given, then 

the model can then be related to any type of long-term decision

making behaviour. So if we let rational expectations of income

determine current consumption then;

c.= a + b E(x.IQ.) t t t

(1.5) c^= a + bx^

where a depends on long-term expectations.

Keynes short-run consumption model (1.5) seems to be far closer 

to the income constrained approach of Glower(1967), than the 

permanent income hypothesis (PIH) of Friedman(1957). Although, 

the rational expectations model and the absolute income model are 

observationally equivalent, there is evidence to show that the 

consumption function that Keynes had in mind was different from 

either of the above formulations. Firstly short-term expectations 

are conditional on long-term expectations (x(r®)), so that:

E(x^ I Q^, x(r® ) ) =x-(- .

where x(r®) may depend on subjective factors or gut feelings
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and such expectations are not likely to determine a whole 

stream of future values.

Secondly short-term expectations are different from long-term 

expectations which depend mainly on long-assets values^. Thirdly 

permanent income proxies wealth which is presumed to have a

direct effect on consumption while in the General Theory agents 

do not spend their wealth directly. In Keynes(1936) wealth enters 

the consumption function purely through its' effect on income and 

interest rates. Income depends on the return on wealth and

windfall capital gains and interest rates are a proxy for the 

rate of time preference and they indirectly affect consumption 

through income. In the short-term theoretical model such factors 

were either collapsed into the constant term or considered as 

non-deterministic(see chapter eight and nine of Keynes(1936)). 

Windfall capital gains are viewed as being irregular and 'changes

in expectations of the relation between the present and future

level of income' can be seen as innovations. The short period 

theoretical model has no need of such variables, but many of them 

can be related to innovations or shocks which could certainly be 

used to enhance an econometric model. In the longer term 

demographic factors and tastes enter the model which means that 

the contradiction found by Kuznets between long-time series

 ̂Keynes borrowed Marshalls period analysis, so that the 

short-term is a period in which capital and the expectations 

about long-period assets are fixed. Current capital employed is 

based on the previous vintages of long-term expectations and 

current capital expenditure is based on current long-term 

expectations.
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results and cross section results can be explained by shifts in 

the intercept term. The Keynesian model can then be viewed in 

terms of the relative income hypothesis(RIH) of Dusenberry(1949). 

Hines(1980) has favoured the dynamic approach associated with the 

RIH on sociological and economic grounds and it is one of the few 

models that is consistent with the general aggregation results of 

Hildenbrand(1983).

It is often argued that Keynes expectations are adaptive, but 

although that could be a rule of thumb for short-term 

expectations, Lawson(1981) shows that the notion does not work in 

the context of long-term expectations. In fact the forward 

looking nature of Keynes perspective would suggest that the idea 

of rational expectations is more appropriate, than adaptive 

expectations as a short-term rule of thumb. Beggs view that long­

term expectations are rational makes sense in terms of jump 

behaviour or if Keynes had mixed up expectations with 

innovations. The Turnpike Theorem has fed quite naturally into 

rational expectations theory, as jumps can occur in markets where 

some prices can be seen as moving quickly relative to other 

prices and quantities. Such behaviour is often associated with 

overshooting and markets in which price movements are not always 

smooth and as Keynes states:

" and it is of the nature of long-term expectations that they 

cannot be checked at short intervals. ..., they are liable to 

sudden revision. Thus the factor of current long-term 

expectations cannot even approximately be eliminated or 

replaced by realised results" J.M.Keynes (1936), p51.

Long-term expectations do look similar to jump variables, but
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purely because jumps are effectively exogenous in comparison to 

the usual solution paths of rational expectations models. 

Pesaran(1987) dismisses Begg as simply assuming that short-term 

expectations are rational. Finally, it seems likely that at the 

very least long-term expectations in the General Theory are not 

single valued or modellable in some deterministic manner which 

puts considerable doubt on the view that Keynes long-term 

expectations theory was rational.

Ozga (1965) has a clear explanation of Keynes ideas which he 

places in the context of Hicks and Shackles theory as well as the 

subjective nature of expectations. Hicks-Lange expectations are 

perceived as being sure thing equivalents to which agents give a 

particular response, so that there is an elasticity of 

expectation. Expectations are then single valued functions of the 

stream of future prices, so that:

This is why Hicks assumes that a price rise today induces an 

equivalent price rise across all future periods so that when the 

response is elastic future prices change to a greater degree. 

The higher than expected future prices cause consumption or 

production to be brought forward and so induces a destabilising 

response of current prices to market conditions. Prices rising 

today cause current demand to rise, because an elastic 

expectational response causes future prices to rise to a greater 

degree. Hence, inelastic expectations reinforce the usual stable 

response to excess demands and elastic expectations are neutral. 

The discussion of stability is circular, because the response to
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the expectation is predicated by the state of nature.

"To be able to say that expectations are inelastic we would 

need to be able to reduce them to their sure-prospect 

equivalents ; and to reduce them to this form we would have to 

know whether businessmen behave so as to render the system 

stable. Even therefore, if we could discover what prospects 

arise in what circumstances, we would not be able to reduce 

these prospects to a sure-prospect form if we did not already 

know the conclusion." S.Ozga (1965), plSl.

Keynes cuts through this problem via the short-term long-term 

distinction which implies that sure thing equivalents are used as 

if they were the multi-prospect outcomes. Hence, short-term and 

long-term expectations follow a rule of thumb which accepts the 

notion that actual values encapsulate the expectations. The 

distinction between the long and the short-term is used to 

separate production decisions from investment decisions, as there 

is little uncertainty in the first instance and an awful lot in 

the second. If the convention breaks down, then the Keynesian 

model gives a reason and a policy response, but no treatment of 

the way in which either short-term or long-term expectations are 

determined. So that expectations are exogenous in the long-run 

and equivalenced to actual values in the short-run.

Expectations are not simply single valued, they depend on the 

present, future and past. In Part this relates to the 

irreversibility of past decisions which then determines future 

decision making, so that such factors are encapsulated in long- 

assets. Rational expectations provide a single valued measure of 

expectations that can be used in the short-term and as such it
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approximates some of the ideas in the General Theory and provides 

a reasonable rule of thumb. Long-term expectations involve the 

subjective element so that they are much more dependent on fad 

and fashion, but rational expectations may provide a reasonable 

proxy for considerable periods of time. As true short-term 

expectations are determined by long-term values, rational 

expectations may diverge considerably from them when long-term 

conditions change. Modelling expectations using consistent 

methods allows us to include different period expectations which 

may either be important in their own right or as a sign of the 

existence of agents with differential information or different 

subjective viewpoints.

1.3 A Keynesian model of Output and Employment with expectations 
and Inventories.

Let us use the causal structure of output determination 

associated with Keynes General Theory, so that output demand 

determines the level of output in the short-run and then the 

level of output will determine the level of employment.

The joint determination of these variables seems obvious at the 

macro level, due to the circular flow of income and the quantity 

adjustment process associated with the multiplier(see 

Leijonhufud( 1968) and Hines(197D). In fact a one dimensional 

representation of the Keynesian cross diagram can be formulated 

in output employment space(see Portes and Muellbauer(1978)). We 

will assume that all variables are in logarithms and that a 

simplified model of output and employment can be specified in the
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following way;

X = x(l, w) (income)

= q^(x) (output demand)

(1.6) o^ = q^ + Ai^ (market demand) 

s do - o = i^ (goods market flow condition)

(1.7) o^ = q^ + i (market supply)

q^ = q^(q^) (output supply)

1^ = l^(q^) (employment demand)

1 = 1^ - V (employment equation)

Initially we will assume that prices and wages are determined 

outside the model, that does not necessarily mean that they are 

strictly exogenous, but that relationships can be found in which 

they do not directly depend on output and employment; that is 

much easier to do when there are inventories in the model. The 

assumption of exogeneity does not mean that prices are fixed, 

though it does suggest that the real wage is determined by the 

level of demand when vacancies and inventories do not exist. In 

Chapter 20 and 21 of the General Theory, the assumption that 

wages and prices are fixed is clearly discarded and in Chapter 2 

it is suggested that price and wage flexibility may be counter 

productive. The questions posed relate to the extent to which 

bargaining is for real rather than money wages, acceptability of 

real wage changes and the ability of labour to determine their 

real wage and so equate it with the marginal disutility of 

labour.
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■ Since there is imperfect mobility of labour, and wages do 

not tend to exact equality of net advantage in different 

occupations any individual or group of individuals who 

consent a reduction . . . will suffer a relative reduction 

in real wages which is justification enough for them to 

resist it ■ Keynes (1936), pl4.

Hahn(1982) explains this problem in terms of an externality 

associated with peer group pressure in the labour market which 

implies that wages enter the utility function and which manifests 

itself in terms of the benefit to be gained from high relative 

wages and the approbation associated with stepping out of line. 

Begg(1982) attributes the inability of labour to set a real wage 

to contractual obligations which then binds part of the labour 

force into real wages which are too high. The group whose wages 

are flexible then find that it is sub-optimal for them to shift 

their wage to the value which will clear the market as a whole. 

The incentive set by price is not sufficient to induce one group 

to maximise the net benefit of the other by determining the 

global market clearing wage.

The two theories presented above still suggest that wage 

inflexibility is at the root of the problem, but we would prefer 

to suggest that it is due to the relative speeds of adjustment of 

prices and quantities under uncertainty. Infinite price 

adjustment is necessary for trading at false prices to be limited 

or quantity adjustment needs to be limited during the period 

within which prices are changing. Infinite price adjustment is 

limited to a number of asset and exchange rate markets, and only 

in auctions are quantities limited to adjust after price or allow
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recontracting to occur. If trading occurs at false prices and

recontract is not possible, then we have the possibility of

disequilibrium trades. Prices are allowed to change, but usually 

at a slower rate than quantities. Disequilibrium trading has an 

income effect which reinforces the initial contraction(see

Leijonhufvud(1969)), price movements which may counteract such 

effects are either too slow or dominated by the quantity changes. 

Initial quantity movements usually relate to national income 

changes which are likely to be large relative to price movements 

in individual markets. In that event it is not surprising that 

quantity effects dominate price movements, especially as agent

effects change market prices rather than the general price level.

The situation is compounded by the types of problem mentioned by

Hahn(1982) and Begg(1982), and the fact that prices and wages

move in line.

If market prices and wages are flexible, then a theoretically 

neutral assumption would imply that they move in step. Let there 

be i =1, . . . 1  industries and weights kt which sum to one,

then :

t I
p, = k.w. and p = 1/1 2 p. = 2 k.w,i i i  i"i i i"i i i

t I
p =  2 k.w + 2k.(w. - w)i » 1 i i " 1 i i

I I
If 2 k. = 1 and 2 k.(w,- w) = 0(1/1) where I is large,i«ii i « i i i
then p 2 w.

Aggregate wages and prices are simply appropriately weighted sums 

or integrals of individual market prices and wages, so when 

individual prices move then so do their aggregates. Individual 

price movements will adjust to clear micro markets, but they do
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not then alter the aggregate level of activity in a deterministic 

manner. Hence, activity in micro markets depends firstly on the 

overall level of activity and secondly on wages and prices in 

those markets. Excess demand functions are then dependent on the 

overall level of activity and individual market prices, given 

prices in other markets;

(1.8) 'i = (excess demand equation for goods)

(1.9) S^(w.lp®,q) (excess demand equation for labour)

We are using the Keynesian convention that contracts are set in 

money terms, but such values are then conditional on price 

expectations in the case of (1.9) and wage expectations for

(1.8). In addition (1.9) may depend on the user cost of capital, 

though that is also likely to depend on the level of activity.

Let us assume that it is possible to derive well ordered 

aggregate excess demand functions by summing (1.8) and (1.9), so 

that :

= 2 0.E?(p lw^,x) = 
i=l 1 1 1 1

= %9(p lw^,x)

= Ç^(ç,W®,x(l,W ))

(1.10) = C *p,w®,l(q®))

and

= E^(w Ip®,q^ )

= E^Xw lp®,q®(D)

= Ê (w I ,q^(1̂ - V))
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(1.11) = ç*(w,g®,l^,v)

where w' = (wi,W2 , — /Wj) and g' = (pi,P2 ,  ,Pi)

We now have a system in which excess demands are not determinate, 

as the level of goods supply also appears on the right hand side

(1.10) and the level of employment also appears on the right hand 

side of (1.11). If we compare this with the classical case we 

find that:

(1.12) = ç^(p,w®)

(1.13) = ç^(w,g®)

Equations (1.12) and (1.13) are only equivalent to (1.10) and

(1.11) when quantities do not change, which either means that 

quantities are fixed or that price adjustment is infinite 

relative to quantity adjustment. Hicks and Marshall used a 

combination of infinite price adjustment and quantity changes 

being small to take care of false trading. Once no false trading 

is accepted it is easy to presume that the set of prices which 

determine equilibrium in micro markets are sufficient to set the 

level of over all activity. If we can derive an appropriate price 

and wage index, we have the more usual macroeconomic definition 

of excess demand which only depends on the real wage or prices in 

wage units:

(1.14) = ç^(p,w®)

(1.15) = ç^(w,p®)
Excess demands now depend on the level of real wages, so that 

prices drive the system rather than quantities. Unemployment is 

due to an excess supply of labour which is due to real wages 

being too high. As (1.14) and (1.15) are derived from micro
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excess demand functions we find that price flexibility in 

individual markets is sufficient to clear all markets. Such a 

micro foundation allows the wage level and price level to be 

derived from individual price and wage series and these aggregate 

series, then determine the over all level of activity. The system 

works from the bottom upwards, rather than the top down which 

seems to contradict recent developments in aggregation theory and 

our observation of reality.

Hildenbrand(1983) shows that very strict conditions on the 

distribution of income needs to be satisfied for an aggregate 

demand relationship to mirror the micro relationships. In fact we 

require the shape of the distribution to remain unchanged over 

time which suggests that new cohorts of consumers simply replace 

the previous cohorts in a way which is reminiscent of the 

relative income hypothesis of Duesenberrys' (1949). Kirman (1989) 

rejects the notion of micro foundations, as he does not believe 

that sensible aggregation conditions exist that produce unique 

excess demand functions.

"Thus demand and expenditure functions that are to be set 

against reality must be defined at some reasonably high level 

of aggregation. The idea that we should start at the level of

the isolated individual is one that we may well have to

abandon" A.P. Kirman, The Economic Journal pl38 (1989).

He seems to be suggesting that market wide and economy wide

theories should be constructed at the aggregate level. The 

aggregation results in themselves do not deny that micro 

variables are important, but they do imply that the structure of 

the macro model cannot be directly discerned from micro
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phenomena. Hence, we may still have macro excess demand functions 

of the form of equations (1.12) and (1.13), but they are not 

based on micro foundations and as such they do not automatically 

satisfy micro principles. Hildenbrand(1983) finds that consistent 

aggregation may lead to macro demand relationships which are 

upward sloping in price quantity space. So that even if the 

excess demand relationships associated with the classical 

framework are correct, there is no guarantee that they satisfy 

classical assumptions in the aggregate and then the models no 

longer have the support of consistent aggregation from micro 

principles as a justification.

The more general excess demand relationships (1.10) and (1.11), 

give a role both to prices and the level of demand and at the 

aggregate level they confirm the econometricians suspicion that 

aggregate phenomena are equally likely to depend on individual 

prices as they are on aggregate variables (these issues will be 

covered in more detail at the end of chapter 4). The Nickell and 

Layard(1985) model supports the notion that both prices and 

quantities are important in determining macro variables, and the 

point seems to be supported in practice by the observation of 

price insensitivity and contractual arrangements in many markets. 

Leijonhuvud (1968) seems to suggest that the process by which 

dynamic adjustment occurs is highly complex and that means that a 

broader information set than wages and prices is required for the 

determination of a set of excess demand functions. Prices do not 

provide sufficient information to clear markets.

41



"At one extreme of a spectrum of possibilities are traditional 

full employment models where the whole brunt of adjustment is 

borne by prices; at the other extreme are the "pure Keynesian" 

models where prices are essentially given and income moves. In 

between lies the complications of the real world ...."

A.Leijonhuvud (1968), p58-59

In the light of the discussion above we see that the Lucas supply 

hypothesis fails, when output supply is not tied to the natural 

rate and excess demands depend on more than the difference 

between actual and expected prices. Equations (1.10) and (1.11) 

imply, that except under special conditions, one set of price 

information can only determine demand and supply levels in 

individual markets conditional on the overall level of activity 

in the economy as a whole. The level of demand as was stated 

above determines output, demand then determines the price level 

and the real wage is then the ratio of the two. Once activity 

levels are determined, the activity levels in different markets 

are due to individual market prices. The price mechanism does 

what it is good at which is efficiently allocating a given level 

of resource by setting prices to clear individual markets, given 

the level of activity.

Clearly our aggregate demand function (1.10) and (1.11) show that 

individual prices do have some role to play in determining excess 

demands and so the overall level of demand, but we have suggested 

that individual price effects will usually be of second order 

importance when compared with the income reductions associated 

with the multiplier. Relative price shifts are likely to be 

associated with redistributions which then change the production
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frontier and the structure of aggregate demand. Hence, we will be 

facing a new full employment equilibrium and a new full 

employment real wage whenever relative prices change. The process 

will be further complicated by resistance to relative wage

changes that are likely to be as seen as unfair, because they 

change the prestige and esteem of workers in a way that has more 

to do with the vagaries of chance, than market efficiency. In the 

extreme such changes could lead to bankruptcy and the 

disappearance of certain types of products, as depression and the 

associated disequilibrium adjustment causes the risk of failure 

to increase substantially and as Dixit(1977) shows in imperfectly 

competitive markets with entry barriers market failure is stacked 

against goods with price inelastic demand curves.

If we can uniquely define aggregate price and wage levels and

(1.10) and (1.11) are not significantly affected by relative 

price movements, then we can derive a macro analogue of these 

equations to compare with (1.14) and (1.15):

(1.16) = Z (p,w^,q^)

(1.17) Z^ = Ç^(w,p®,l^,v)
The analysis above excludes the possibility of inventories and it 

suggests that the influence of aggregate price effects, will 

depend on the level of demand. The real balance, Pigou effect and 

Keynes effects are seen as alternative adjustment processes 

through which an equilibrium may be attained, but these Keynesian 

procedures are not likely to work when unemployment has a 

classical cause. Real balance effects influence the level of 

demand rather than supply conditions, so that they are a back 

door means to alleviate demand deficient unemployment. When
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unemployment is caused by wages being too high, the real balance 

effect will only raise demand without reducing real wages which 

means that unemployment will not fall.

The real balance effect works through the existence of outside 

money whose value increases with deflation, but such an effect 

can be attacked from both a Keynesian and New Classical 

perspective. McCallum(1982) puts forward a Ricardian critique of 

such effects, as hyper rational agents will balance such 

increases against the governments increased borrowing cost. 

Agents discount such increases by the likelihood of higher future 

tax levels, so that increases in money income do not induce 

higher levels of expenditure. A more serious criticism relates to 

the nature of the adjustment process that is being observed. Even 

in the context of disequilibrium models both prices and 

quantities change as the multiplier works to attain a new 

equilibrium. Changes in real balances are then associated with 

disequilibrium price movements in markets in which demand is 

collapsing and so by implication the real balance effect is 

either swamped by such quantity changes or the price changes are 

endogenised so that a new lower level activity is found after 

both price and quantity adjustment. As such movements occur and 

prices fall expenditures may be cut, as agents perceive the 

benefits of putting off spending decision. So that elastic price 

expectations(see section two) support Neary and Stiglitz(1981) 

view that future quantity expectations bring forward the 

deflationary process. We are observing the effect of the 

speculative motive on the demand for goods which reflects the 

view of Hines(1971) that the liquidity preference schedule should 

be mirrored in all goods. Hence, people become increasingly keen
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to hold money rather than to spend it which means that some 

investment and durable consumption decisions are curtailed. It is 

in these circumstances that we observe the liquidity trap which 

directly counteracts the effect of real balances and is 

associated with a willingness to hold money when lower prices are 

expected. When prices stop falling demand does not bounce back, 

because long-term expectations have changed, labour and producer 

incomes have fallen, quantity expectations are pessimistic and 

bankruptcies have destroyed both physical and financial wealth. 

In a severe recession the production possibility curve may even 

shift inwards. As Keynes puts it real balance effects are a 

slender reed on which to base a recovery, it is equivalent to 

encouraging the unions to determine monetary policy through 

moderation wage claims. Finally, price reductions will lead to a 

higher debt burden for companies which is likely to counteract 

the short term benefits of lower capital prices, because debt is 

denoted in nominal terms and interest rates are bounded at zero 

while price changes are not. When prices fall the real cost of 

borrowing can remain high, as the cost of servicing a nominal 

debt rises relative to income.

The liquidity trap and the type of depression dynamics associated 

with it have not been experienced in recent years as prices have 

generally risen. Hence, it seems likely that output and 

employment will be responsive to price, but the order of 

magnitude of such response is likely to be small. Real balance 

and distributional effects may be important when adjustments are 

small or when the level of demand is high which is why we follow 

Nickell and Layard(1985) in giving a role to quantity as well as 

price.
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d d, q = q ( X , p )
>0 <0

1^= 1^( q , w ) 
>0 <0

It is also likely that there may be spill over affects from 

different markets, although there is a problem with dealing with 

that directly at the aggregate level. The only thing to do here 

is to include excess demand variables directly in the models, so 

that :

(1.17) q^= q^( X , p , V , AI ) 
>0 <0 >0 <0

(1.18) 1^= 1^( q , w , V , AI ) 
>0 <0 >0 ?

When there is a stable u-v, then

u = f(V ,AI, p, w).
<0 >0 <0 >0

If we solve out the above system we can derive temporary 

equilibrium relationships which take account of vacancies and

inventory holding. Especially when we assume that the principle 

role of stocks is as a buffer and that there is a rationing 

regime under which inventory demand is satisfied last( the

customer always comes first).

s d o - o = 1^

substituting for o® and o^ using (1.6) and (1.7) above gives:

d s . . dq + i - q - Ai = 1 . o 1

s d ..d ..q = q + Ai + Ai

then substituting out for q^ using (1.17) above implies that:
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(1.19) = q^(x , p , AI , v) + Ai^ + Ai

Now inventories are in logarithms and we have made an 

additional assumption that when demand is high inventory 

investment takes a second place which means that demand for 

inventories should reflect excess demand. We will assume that 

Ai^ + Ai = f( AI , v), so that (1.19) becomes:

q® = q^(x , p , AI , v) - f( AI , v )

Substituting out for income using labour income implies that:

(1.20) q^ = q (1 , w , p , AI , v)
>0 >0 <0 ? >0

So that we have a flow relationship in which equilibrium supply 

is demand determined when we take account of inventories. We now 

have a relationship in which output depends on employment, prices 

in wage units, inventory accumulation and vacancies. The same can 

be done for employment as:

1^ = 1 - V

If we use (1.18) to replace 1^ in the relationship above, that 

gives the following equilibrium relationship for employment:

1 = l^(q^ , w , AI, v) - V

(1.21) 1 = l^(q® , w , AI, V)
>0 <0 ? <0

Equations (1.20) and (1.21) represent the temporary equilibrium 

relationships for output and employment. So far our models do not 

include expectations and they assume perfect adjustment which 

means that we need to embed them within a dynamic model.

Production goods are clearly storable and they are likely to be

durable as well which suggests that the demand model should take

account of that. We have a degree of inertia associated with
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costs of adjustment and partial adjustment which suggests that 

output will depend on past values of output and employment, also 

Future quantity and price expectations are also likely to be 

relevant in determining output and employment. We can place 

(1.30) and (1.31) into the following structural form which can 

also be derived from agents minimising or maximising an 

appropriate objective function:

^li^t * ^i2^t 

where is defined by (1.20) and 1^ by (1.21).

^2l\  ̂ ^22 ̂t

In an economy over time in which there is forward looking 

behaviour, adjustment costs and contractual obligation, then 

current values will depend on the past and on expectations of the 

future. We can implement the model by solving out for the 

endogenous variable expectations and we can replace the 

expectations of current values of wages, prices, inventory 

accumulation and vacancies by actual values when information is 

dated at time t, but when this is not the case we will have to 

use predictions or forecasts. The discussion of consumption in 

section two suggests that innovations may be important and this 

could also be the case for employment and income.

1.4 The determination of Excess demands, prices and wages

If we assume that prices depend on excess demands, and that 

vacancies and inventory accumulation have similar relationships
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to the market excess demand functions (1.16) and (1.17), then it 

may be possible to specify these equationSin such a way that they 

do not depend on output or employment. So that:

= Ç (p,w®,q^)

Now if we substitute out for 1^ using (1.18) and q® using (1.20) 

we have the following relationship in terms of actual variables:

(1.22) = C*(p,w®,v,AI,l)

(1.23) = Ç*(w,p^,V,AI,q)

We will discover in Chapter 3 that we can transform (1.20) and

(1.21) into the following backward looking representations:

F(L)[q^,l^) = B(L)[p^,w^,v^,Ai^]'

This bivariate system can be transformed into a reduced form

in which output and employment only depend on a lag polynomial in 
the vector [p ,w ,v ,Ai ]', so that;

It = b|(L)[p̂ ,ŵ ,v̂ ,ûî l'
When these values are put back into the excess demand equations

(1.22) and (1.23), that produces the following reduced forms:

= E^(L)(p^,«^,v^,Ai^)

By analogy with the above results it should be possible to

produce similar marginalisations or reparameterisations for

prices, wages, inventory accumulation and vacancies to those for
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the excess demand equations. Therefore;

B(L)

■  ^ t ' ^It '

Vt ^2t
Pt ^3t

_ « t . - ^4t -

where the stand for innovations in the variables 

chosen as exogenous to the system and B(L) is the 

associated matrix polynomial.

We estimate VAR models of the exogenous variables in Chapter 3, 

the models are then tested for misspecification to determine 

whether the reparameterisations have been successful. We will 

discover in chapter 2 that a successful reformulation depends on 

stable parameters and this is partly dependent on whether 

employment and output determine output prices, wages, vacancies 

and inventory accumulation. The evidence turns out to be somewhat 

inconclusive, though their is some suspicion that we cannot 

substitute perfectly for output and employment. The theory 

presented here would not totally disagree with the notion that 

inventories, prices, wages and vacancies do not depend on current 

output and employment, but it would be difficult to deny all 

causal links. The problem is then to find any variables without 

some sort of link that can then be modelled separately or to 

derive a procedure which would allow the system as a whole to be 

estimated.

In Chapter 4 we use the results of Chapter 3 to derive models of

output and employment which take account of the model structure

above. A relatively efficient method is derived which only

require one step ahead forecast errors and future predictions of
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the variables treated as exogenous. The model presented above is 

also consistent with an alternative theoretical representation, 

but it is felt that the current explanation may be internally 

more consistent. It is likely that there are some 

misspecifications induced by not taking account of openness of 

the economy and not modelling investment or other factors of 

production. It seems excessive to rely on Keynes assumption that 

capital is fixed in the short-term, though other authors such as 

Sargent(1978), Kennan(1979) and Muellbauer and Winter(1980) have 

made the same assumption. The models derived in this chapter also 

form a super set of many of the models estimated in the 

literature, for example the employment models of Muellbauer and 

Mendis(1982) only depends on output.

It has been traditional from the inception of macroeconomics to 

treat the subject as large micro and this conceptual approach has 

not been effectively extended by any appeal to micro-foundations. 

The essential dichotomy between agent behaviour in aggregate and 

the aggregate behaviour of individuals has not really been 

solved. The heroic macro assumptions of Keynes are subtly 

elaborated in the General Theory by a detailed analysis of macro 

responses to differentiated sectoral activity and this may be the 

best that we can do with aggregate time-series data. Kirman(1989) 

suggests that the usual equilibrium concepts require group 

behaviour or some law of large numbers to determine unique 

equilibria. Hence, micro foundations are only the basis of macro 

phenomena when strict aggregation conditions are met or when the 

form of the basic relationship is highly simplistic, otherwise 

aggregate micro relationships are no better than any other 

hypothesis at explaining macro behaviour.
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CHAPTER 2 

Dynamic Econometric Modelling

By its very nature time series data is dynamic, that implies 

econometric models must either be based on a dynamic economic 

theory or represent adjustment to some underlying static theory. 

If we are dealing with static models then dynamic data imply that 

economic phenomena take time to occur, hence, we are dealing with 

models which incorporate lags. Economics provides many reasons 

why models should reveal lagged processes: costly adjustment, 

durability, expectations, habituation and aggregation over 

economic agents with different response times. In constructing 

econometric models we also need to address the problems of time 

aggregation, the relationship between the timing of the data 

process and the theoretical one, and the choice of a particular 

functional form.

The Classical Statistical method associated with regression 

analysis assumes the axiom of correct specification to qualify 

the results, that implies either new data to experiment with or 

the correct specification of the original model. In reality we 

cannot replicate macro-economic data in a meaningful way which 

means that we need to derive a procedure for efficiently using 

the data available without violating the properties of randomness 

which underlie diagnostic testing . The traditional text book 

approach to econometrics expounded in Johnstons' 'Econometric 

Methods ' (McGraw Hill (1984)) assumes knowledge of the true
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model and suggests by its structure that Econometric technique 

provides a set of recipes which can be followed if the model does 

not meet our initial criteria. The approach does not mention 

analysis of the data which must be a pre-condition of model 

specification or the difficulties of re-specification and search. 

It has been traditional for applied modellers to either search 

the data until they find a model which satisfies their criterion 

or to simply ignore diagnostics if the results seem to support 

their prejudice. Unbridled search techniques invalidate the 

Neyman- Pearson Lemma that underlies statistical testing and 

ignoring diagnostics can produce nonsense regressions.

In this Chapter we look at Keynes reply to Tinbergen which points 

out the difficulties with modelling economic time series and 

provides a taxonomy of potential misspecification, and we discuss 

three approaches to data search, deal with the important problem 

of non-observation and look at the extent to which dynamic theory 

can satisfy the problems of model specification. Keynes(1939) 

synthesised the concerns of a number of statisticians and 

economists of the day over the problems involved in applying 

statistical techniques to economic data. Pesaran and Smith(1985) 

point out, that since Udny Yule(1923) developed the notion of 

time series modelling and noticed the potential for spurious 

correlation the analysis of data in economics became circumspect. 

Pesaran and Smith in support of Keynes, quote Haavelmo(1943)(see 

Lawson and Pesaran,pl38) who picks out many of the recognised 

difficulties in analysing time series data. Of particular 

importance to Keynes was the fact, that Tinbergens method took 

little account of the conceptual difficulties in linking
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theoretical models to the actual observed data, the latent 

variable or non-observability problem. In that light, the results 

become little more than the products of some children's game, 

with the data artificially massaged to produce parameters and 

diagnostics which satisfy the modellers point of view.

Tinbergens work needs to be viewed as a pioneering study which 

attempts to utilise statistical methods to produce results, but 

the warnings which reverberate through Keynes can now be seen as 

justified by much of the applied work which has not satisfied 

Keynes and Haavelmo's criticisms or answered the conundrum set by 

Yule. It is hardly surprising that recently Econometrics has 

undergone a period of soul searching, as many of its leading 

exponents have worried less about the direction in which the 

discipline was heading and more about technique. A crisis point 

was reached following the poor performance of the major macro 

models after the first Oil Crisis in 1973 and the poor relative 

performance of many macro-models vis-a-vis simple time series 

formulations. Lucas(1976) developed a scathing critique of 

traditional Macro-econometric modelling based on rational 

expectations which suggested that model parameters would be 

inherently instable, because the models did not incorporate 

intelligent agents reaction to policies. The critique does not 

invalidate model building, but it complicates it as standard 

parameterisations need to be re-formulated to take account of the 

deep agent responses. David Hendry and Graham Mizon have 

approached this problem by looking for dynamic time-series forms 

which represent the data and satisfy theory in the long-run. The 

approach has been fairly successful in the case of the
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consumption function of Davidson et al(1978) and the demand for 

money study of Hendry and Mizon(1978).

The problem of breakdown has again focused attention on the 

problem of knowing the true model which has suggested three major 

methods of data search being adopted. Edward Learner(1978) 

produced a novel book which has much affected econometric 

methodology, though his suggested technique has not been widely 

taken up in practice. The Search procedure and the Search program 

emphasise robustness of results through analysis of Extreme 

Bounds(EBA) and they suggest a Bayesian approach which marries 

modellers a priori beliefs to the observed results. Cooley and 

LeRoy(1981) and Leamer(1983) have used such techniques, but they 

have not fed into the mainstream, because the problem of 

misspecification has not been addressed and EBA can be more 

conveniently reformulated into a classical test procedure (see 

Pagan et al(1985)). The search method is an interesting concept, 

because the specification of priors emphasises the models 

prejudice and the formulation can be set up, so that the role of 

the final model and the data can be clearly determined. We will 

not deal with the Learner approach, but we feel that it deserves 

mention with reservations over the implementation of particular 

applications and the fact that the approach only distinguishes 

between models on the basis of robustness, so that no additional 

methods are suggested to validate results. Selection of a 

sensible theoretical model and the extension of EBA to deal with 

the sign of derivatives and other forms of restriction may 

provide a semi-parametric approach to model selection.
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Sims(1980) and Hendry and Richard((1982) and (1983)) have 

developed more effective modelling strategies to produce 

econometric specifications which satisfy theoretical principles. 

The Vector Auto-Regressive(VAR) approach to econometric modelling 

is a particularisation of standard time series modelling. Time 

Series models can be viewed as reduced form representations of 

fully formulated Econometric models and VARS can be derived by 

substituting out exogenous variable expectations from rational 

expectations models solved for their future endogenous variables. 

The data are first differenced to stationarity, then the 

variables in the system are given a VAR representation to 

simplify the procedure of identifying the time series structure 

and to simplify the method of estimation; Vector Moving- 

Average (VMA) models introduce into the estimation procedure 

complex non-linearities. The selection of a VAR as the forcing 

process for the exogenous variables insures that the solved form 

of the rational expectations model will also produce a VAR in the 

endogenous variables after substitution. In the next Chapter we 

use a hybrid of the VAR methodology and the general modelling 

strategy of Hendry and Mizon(1978) to derive models of the 

exogenous processes, but the endogenous variables are modelled 

using the method of Sargan(1982) which allows the deep parameters 

to be estimated. We will see in this and the next chapter, that 

there are many parameterisations of the types of general models 

suggested by Hendry and Mizon(1978) and Hendry and Richard(1983). 

In Chapters 3 and 4 we will see some of the limitations of the 

VAR approach and deal with it in relation to cointegration.
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Hendry and Richard(1983) synthesises a body of work which 

commenced with the general modelling and destructive testing 

approach suggested in Hendry and Mizon(1978) and Davidson et 

al(1978) and added to that the notion of encompassing developed 

in Mizon(1984) and Mizon and Richard(1986) and the concepts of 

endogeneity suggested in Engle, Hendry and Richard(1983). The 

methodology is aimed at deriving a good model which satisfies the 

data, dominates other models, has stable parameters within and 

outside the estimation period and which has a theoretical 

interpretation in the long-run. The formulation of a general 

model does not impose strong theoretical restrictions on data in 

the short-run and in combination with the procedure of downward 

testing it should satisfy the notion of the true model, because 

the final representation should be consistent with the general 

specification and it should satisfy a number of tests which will 

validate correct specification. A well specified model will be 

considered to be good if it outperforms competing explanations of 

the data and yields theoretically consistent parameter estimates; 

it should also be a parsimonious representation of the data. If 

all of the criterion are satisfied and the results are invariant 

to policy changes, then the single equation or sub-system of 

equations which satisfy them will correctly formulated re­

parameterisations of a more general system. Though we accept the 

importance of formulating general models and agree with the need 

to validate them, we also feel that econometric models should 

where possible have a short-run interpretation and that many of 

the testing procedures should be more closely linked to economic 

theory.
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A valid modelling strategy should eliminate bad models and allow 

us to select between competing representations of the data.

There are a number of models which we would clearly wish to 

reject; nonsense regressions, estimated models with unbounded 

variance and models whose results are not coherent. Granger and 

Newbold(1974) show that it is easy to discover time series which 

exhibit a strong correspondence amongst the data and this is 

especially true if the data are close to random walks, but such 

relationships should be viewed with deep suspicion. Dickey and 

Fuller(1978) and Sargan and Barghava(1984) show how to test for 

models with unit roots in the error term and models which do not 

satisfy such tests should be rejected, because the variance is 

not bounded which means that the relationship disappears as the 

sample evolves. The model could then be said not to exist or to 

be purely spurious, the problem first explained by Yule(1923). 

Although unit roots are a problem, the literature on 

Cointegration shows that groups of non-stationary variables may 

move together to produce a new series which is stationary; static 

regressions relating such variables together should then reject 

the unit root tests, even though the univariate time-series are 

only stationary in differences.

Econometric models are built for a purpose: prediction, policy 

analysis and the testing of theory. The choice of method and 

selection of a model may depend on the purpose for which it was 

built. Ron Smith(1984) suggests, that a models performance will 

reflect the reason why it was built, so there will be a trade-off 

between such reasons and how well the model works. That a models 

construction depends on the modellers requirements does not mean
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that misspecified models will be acceptable, but suggests that 

the criterion for selection may be predicated by such modelling 

decisions.

2.1 The Extreme Keynesian View

Keynes view of econometrics anticipated the lack of clear 

criterion for the validation of models, but it was his fear of 

the possible abuses of such methods which made him skeptical of 

the use of "Multiple Correlation analysis" in relation to 

economic data.

"In plain terms, it is evident that if what is really the same 

factor appearing in several places under various disguises, a 

free choice of regression coefficients can lead to strange 

results. It becomes like those puzzles for children where you 

write down your age, multiply, add this and that and end up 

with the number of the beast in Revelation." Keynes(1973),p310

Keynes attacks Tinbergens use of least squares for the estimation 

of investment models, because he considered that the Economic 

processes driving the variables was prone to change and that 

expectations of interest rates and profit were not observable.

The criticism holds for any method of estimation which does not 

take account of this problem or of variations in the process 

driving the data. If taken to its logical conclusion Keynes 

prognosis is excessively pessimistic and in principal 

irrefutable, as it implies that the observed data is formulated 

as part of an errors in variables system whose parameters are
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changing discretely over time. Hence, we have a large 

multivariate system, with a joint distribution spanning all time 

periods. Such a system can be defined as having the following 

joint density, if the variables are identically distributed.

(2.11) D ( v i , V 2 ,  . . .  v«j>l Vq/Q) ~ D(p,n)

where v^'=C w ^ ' , y ^ ' a n d  Vq is the matrix of initial 

conditions 0 is a vector of unknown parameters and p and Q are 

the mean and variances of the multivariate density.

The covariance structure implies intertemporal as well as 

contemporaneous correlation between variables. This states 

nothing about the distribution, whose exact form is likely to 

depend on the variables as well as the individual observations.

In general, it will not be possible to identify the parameters we 

are interested in as the model will be over parameterised and it 

may not even be possible to estimate it, as the number of 

parameters may far exceed the data. In order to analyse such 

observational data we need to impose some structure on the means 

and covariances of the system, and make assumptions about the 

distribution of the variables. If we are to estimate any economic 

relationships we must discover an appropriate way to partition 

the model so we can at least derive conditional results. If this 

is possible we will be interested in a subset of variables which 

will be related to a re-parameterisation y^f(8) of the original 

specification. Modelling is then the process by which we choose 

the conditional form, such an approach may not be futile, but 

care must be taken in model construction to verify and validate
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the results.

As Pesaran and Smith explain Keynes article deals with the 

principle difficulties with modelling time series: omission of 

variables. Latency, the Non-experimental nature of economic data 

and the quality of such data, spurious correlation, simultaneity, 

multicollinearity, linearity, dynamic specification and parameter 

instability. The methodology of Hendry and Richard pays attention 

to many of the above issues and we will deal in the next two 

sections with the problems of model specification, but the 

problems of latency and the non-experimental nature of the data 

we use emphasise the nature of model building and the problems 

which it involves. The first complicates the structure of models 

and the second invalidates the simple use of standard 

statistical techniques. Keynes was not against modelling as such, 

but he was afraid that many economic relationships would be prone 

to such criticism, so that econometric modelling would be fraught 

with problems, especially the simplistic use of least squares. 

Similar skepticism is re-iterated by David Hendry:

"Econometricians have found their Philosophers' Stone; it is 

called regression and it is used for transforming data into 

significant results" David Hendry(1980b)

In practice modellers operate on the basis that such problems are 

not relevant especially for the variables they are interested in 

and the existence of observed relationships which are stable 

questions the extreme case and makes it difficult to refute 

models. It is very difficult to disprove any relationships
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validity, as either by chance or through the strong dependence 

associated with cointegration poor techniques may still reveal 

true parameter values. Even so, such relationships will not yield 

appropriate inferences and the chosen model may not have a 

sensible interpretation in the context of its misspecification( 

in the case of cointegration the estimated parameters only have a 

long-run interpretation). In general one would expect poorly 

specified models to break down, especially if the results are due 

to chance, or to be dominated by better models which can explain 

the nature of the misspecification.

It seems likely that there do exist sensible partitions of the 

data as the view of general instability does not appear to be 

consistent with the observation of processes which have shown a 

remarkable degree of stability. Phillips original (1958) article 

reveals a model estimated over the period 1861 to 1913 which 

seems to hold good up until 1958 and David Hendry has discovered 

many dynamic models which appear to have been stable for 

relatively long periods of time. So that models of change which 

give a role to adjustment will better approximate reality than 

simple static forms which are more prone to Keynes criticism. 

Whether the extreme view is correct depends on the nature of the 

instability.

2.2 A General Specification of Econometric Models

The generalised errors in variables model (2.11) cannot be 

estimated without the imposition of more structure, this either 

entails simplification of the model or the making of a number of
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auxiliary assumptions. Even if such assumptions or 

simplifications are not made clear, they are implicit in the 

model and when they do not hold an arbitrary parameterisation is 

imposed on the model so that the validity of any restrictions 

should be tested. A method of model selection should simplify a 

general model and validate the simplification, such a method is 

proposed by Hendry and Richard(1983).

The modelling process represented by (2.11) can be made less 

complicated by using the sequential nature of economic models to 

justify a similar factorisation:

1 T(2.21) D(VilV ,8) = n D(v^lV^ ,,8)T o t=l t t-1

where V'= (W',Y',Z'), V' = (V :V^)', V^'= (v ,...,v ) 

and the w's are nuisance variables, the y's endogenous 

variables in the theoretical system and the z's exogenous.

Equation (2.21) is based on the assumption that the economic 

phenomena and the data operate in a sequential manner. A sensible 

econometric model may require reformulation of the data, 

but simple data transformations may not alleviate the latent 

variables problem. In the case of a switching regression model 

which is truly dynamic the likelihood will not be conformable 

with (2.21). We will discuss this more fully in section 2.4, but 

we note that the assumption is made by most applied and 

theoretical econometricians. In the sequential form the model is 

still over-parameterised, to reveal a tractable model we need to 

reduce the number of variables in the data matrix V and discover 

a structure for the variance-covariance matrix which will allow 

us to estimate \|/. The v|/'s will then be a function of the original
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parameters 0; the exact form will depend on the re- 

parameterisation and conditioning of (2.21). It is more usual for 

the modeller, conditional on theory to presume that he has the 

correct information set, but any such formulation is simply a 

reformulation of the more general structure (2.21). Models should 

be set up in a general way and then compared with other data and 

alternative specifications.

The modeller needs to discover an appropriate method to 

partition the data, to allow him to eliminate variables which may 

be considered to be of marginal significance or whose effect is 

not relevant for the purposes of the analysis. Let us describe 

such nuisance variables as w^, then the correct marginalisation 

of (2.21) needed to derive a relationships only in the ys and the 

zs is given below;

(2.22) D(v^lV^_j,e> =

where v^ = (w^,y^,z^) and w^ are the omitted variables and

in general 0^ = 0^(8) and 0^ "

If the ws are not to affect the parameters of interest then ly 

should depend in a fixed way on 02 alone and the marginal density 

of the ys should not depend on current or past values of the ws. 

The first condition implies that the parameters associated with 

W.J. do not affect those of the marginal density of 

®t =(yt'Zf)' so changes in 0% will not affect the relation 

between and 0£ and the parameters determining 02 should not be 

linked by restrictions on 0 to 0^; the re-parameterisation 

represents a sequential cut, as described by Florens and 

Mouchart(1980). The second condition means that s^ should not be
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Granger caused by ( see Granger(1969) and (1980) or 

Harvey(1981)). The parameters in the marginal density will be 

constant when both the factorisation and the re-parameterisation 

are correct. We are then left with a system which can be 

analysed, given a small enough set of y's and z's. To ease the 

specification we can condition (2.12) on the exogenous variables:

(2.23) D(s^lS^_^, 0^) = D(y^lz^,S^_^, X^) D(z^lS^_^, X^)

where = (Y^,Z^) and s^ = (y^,z^)

and X^ and X^ are vectors of independent parameters 

Notice, that for any V matrix there are as many factorisations as 

there are variables of interest, so that a viable specification 

will relate different models of the theoretical exogenous 

variables to the endogenous variables and the nature of such a 

partition will depend on the system. Different relationships with 

respect to the same variable are not valid except as evidence of 

data specifications or in relation to specifically designed 

separate models. Such formulations will represent different 

parameterisations of the data which will require alternative 

methods of estimation. The factorisation and method used will 

depend on the requirements of the modeller, so a more structured 

model will be necessary for policy analysis and tests of 

theories, while prediction models can have less structure.

The method so described is quite general, it implies or suggests 

that correct marginalisations will be associated with parameter 

constancy, as the observation of instability of the parameters 

will be a sign of an inappropriate re-parameterisation. Although 

parameter constancy is a sensible criterion for a model to
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satisfy, care should be taken in constructing tests and analysing 

the results. This is because the simple, sample splitting tests 

have their limitations and the form of misspecification 

associated with failure may not be due to the marginalisation or 

if it is, the effect may be small. Tests are utilised in an 

environment in which the correct specification is not known, so 

tests of parameter constancy are an element in the search for a 

good model, as such they must be correctly applied to give valid 

inference. The test may be invalidated by repeatedly using the 

statistic to select a model during data search, by ordering or 

combining specification tests wrongly or through failure of the 

distributional assumptions. Leamer(1978) shows that the 

probability level of the t-statistic is biased towards acceptance 

when it is used as a model selection criterion in a data search; 

this will be true of any test used in this manner. Kiviet(1985) 

observes that specification tests when grouped must be ordered in 

a particular way and that some tests cannot be used in concert 

(also see Breusch(1979). All tests are dependent on the validity 

of the distributional assumptions made, the test may suggest 

incorrect rejection regions or have low power if the assumptions 

do not hold or they offer poor approximations. The general model

(2.31) is likely to be over-parameterised relative to the data, 

that means that there are a range of potential starting points 

for search linked to as many final solutions, so that selection 

of an economically informative model is likely to be difficult.

"In practice one may be willing to suffer some loss of 

efficiency to achieve a tractable model when 0^ and 

02 are not variation free..." Hendry and Richard(1983),pll8
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Even if the tests of specification are correctly implemented and 

the model fails at the parameter constancy stage, we may not wish 

to reject the basic structure, especially if failure is due to 

truly varying parameters, incorrectly handled endogenous 

variables or simple structural breaks. Alternatively, we would 

like to reject models which are poorly specified, suffer from 

regime shifts or represent none sensible re-parameterisations of 

the data. In order to distinguish between the forms of 

misspecification we need to do more than reject models on the 

basis of a simple Chow test of sample splitting or predictive 

failure. We should look at the reasons for model break down and 

adjust the model on the basis of that or re-think the methodology 

we are using, especially if it is a single equation technique. As 

far as predictive failure is concerned the criterion is even 

weaker, as the model may still be appropriate for within period 

analysis or it may be wrongly rejected outside the period, 

because of a small number of new data points available for 

testing.

The standard Chow test(see Johnston(1984)) separates the sample 

into two sub-periods and compares the parameter estimates to see 

if they have changed; this is conditional on constant variance. 

Let us take the standard linear model for the ith endogenous 

variable ;

(2.24) and ~ N(0,o*I)

so that 0^ = (z;  ẑ )"\ ï.^ and ï'^= 'Vii'yiz........ ^it’

and Y. = Z + U 6.= (6 ,B ,...,S .) and U « N(0,o*I)IS s 2 s j Ij 2j kj s
so that 02 = (Z; Z g j ' V  ï.^and Y'^= «Zit^'^'lt-Z.......^it^
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where 8 is the OLS estimator and the hypothesis to be tested is

"o : = «2

The test will be rejected if Hq is false or the variance is not 

constant. In the standard text book view of econometrics Hq will 

fail when we have time-varying parameters, if the model is 

inconsistently estimated or if their are regime shifts which 

alter the structure of the model. The Chow test gives us no idea 

about the validity of the structure or informs us how the model 

should be changed. As Newbold suggests in his criticism of H and 

R(1983) there may be no reason to believe that model parameters 

are stable, but they may follow a stable process. If the w's 

cannot be modelled we may not be able to improve on the method 

used and if the coefficients move in a regular way it may be 

preferable to use a varying parameters method. The structure of

(2.24) has not changed, but the method of estimation will be 

inappropriate. Hence, we might wish to use the error 

decomposition to estimate such a model or the Kalman filter(see 

Maddala(1977).

where WN(0,o*); a white noise innovation

Variation in the parameters may be caused by inconsistency, as

certain variables may have been wrongly assumed exogenous. This

relates to strict exogeneity, as defined by Engle et al (1982),

so some of the RHS variables in (2.24) are not independent of the

equation error. The form of the equation is correct, but it needs

to be set within the context of a broader model; we could choose
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an instrumental variables estimator;

-1(K^ Z^) Y^^where K^= (k^, k ^ , ,., is the matrix of
instruments

The observation of regime shifts causes greater complication, as 

it implies that variables have been directly omitted from the 

structure of the model or that the original structure is not 

valid for the whole period, if at all. At the simplest level this 

may just require the introduction of dummies to account for 

institutional changes of which we have no details or it may imply 

that the model is appropriate for sub-sets of the data and an 

alternative model should be constructed following the changes. 

This type of change is exemplified by entry to the Common Market 

or floating exchange rates or other discrete shifts. In forward 

looking models the effects of dummies may be small, because of 

anticipation. It has been shown that a tax dummy in a stock model 

can change into a simple policy on/off dummy when expectations 

are rational. In this instance the change in structure may be 

limited to the adjustments in the constant suggested by dummies 

or through the development of a different model. If Z^g is the 

data matrix for the second period which may be in part or wholly 

different from Zg the OLS estimator for &2 is given below:

K  -

This is a simple case of switching regimes where we know when the 

structural break occurs, but in general this will not be the 

case. In a disequilibrium framework the economy may appear to 

shift randomly between models, this may be indistinguishable from 

an arbitrary movement. Such discrete shifts either have to be 

handled by a dynamic model or through the discrete choice methods
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of disequilibrium econometrics. The Kalman Filter can provide a 

method of estimating models in which the parameters shift in a 

deterministic way.

* s d= B^_^+ S(z^- and ~ WN(0 ,F )

Finally such variation in parameters may be due to the conditions 

of partition not being satisfied, in fact the problem of 

endogeneity suggested above could be a signal of this more 

general problem, or parameter shifts may be due to cross 

equation restrictions which have not been accounted for properly 

in the original marginalisation of (2,21). This will occur if we 

have omitted variables which are informative about vj/ or violated 

the conditions of weak exogeneity.

Parameter non-constancy is due to a number of causes, not 

distinguished by the Chow and predictive failure tests. They are 

not set up to determine whether the partition is valid, but they 

are indicators of model misspecification; which in the example 

above suggest that OLS estimation of (2.36) may not be 

appropriate. As this simple model shows the form of (2.36) does 

not always change when the parameters change, though the standard 

OLS specification has to be augmented to allow the parameters to 

be correctly estimated. Hence, tests of parameter constancy need 

to be supported by other information before an equation is 

rejected. The cases given above suggest that (2.36) should be 

placed within a more general framework to determine the way in 

which it should be reformulated. The standard model can be placed 

in a time varying parameters form to see if the re-specification 

is valid( see Brown Durbin and Evans(1975)) or made part of a
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larger system in the case of endogeneity; either of the above 

ideas could be used in the case of switching regressions to 

decide whether breakdown is arbitrary or the original form still 

useful. If we cannot find such a general framework which gives 

sensible results, then we may wish to start again.

Hendry and Richard(1982 and 1983) see tests of parameter 

constancy as part of a strategy to eliminate models which are 

invalid reformulations of the data, they are augmented by tests 

of serial correlation, heteroscedasticity, and normality, as well 

as the requirement that the model is theory consistent, data 

admissable and encompasses other models. This process of weeding 

out poor models is meant to reveal a Tentatively Acceptable 

Conditional Data Characterisation (TACDC), but destructive 

testing may not be the best way to select a good model. The tests 

presented above provide information about model failure, but they 

are only informative in particular cases of the way in which the 

model should be changed. In general, such methods can only illude 

to the true model, as this really needs to be derived from the 

detailed comparison of alternative theoretical or well structured 

specifications. Although we agree with the general form presented 

by H and R(1983) and believe that it is important to test models, 

we feel that specifications should yield more structure and tests 

should be based on a more constructive approach to modelling.

The treatment of (2.23) will depend on the exact factorisation 

and the purpose for which we wish to use the model. If we wish to 

analyse the marginal density of the ys taking the zs as weakly
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exogenous the parameters of interest should depend on alone 

and should not be affected by changes in X2 ; inference will be 

valid under such circumstances. Valid estimates can be derived 

with the standard condition that the z's are independent of the 

stochastic component of the y's, but that does not imply 

invariance as there may be cross equation restrictions; that is 

especially true of models which use rational or consistent 

expectations. Weak exogeneity is the appropriate concept for 

meaningful estimation and appropriate inference, though the 

search for an invariant structure must be undertaken carefully 

with attention paid to the purposes of modelling and the nature 

of the misspecification.

2.3 Data Determined Dynamics

A variant of the general method can be used to justify the 

estimation of economic phenomena using single equations, see 

Hendry and Ericsson(1983). The papers by Davidson et al(1978), 

Hendry and Mizon(1978) and Hendry and Ericsson(1985) can be 

qualified in this way, though they also explain particular 

problems in determining statistically meaningful econometric 

models. The approach used utilises single equation methods to 

select by testing a TACDC from a general model. Theory enters 

this process through selection of the data set to be utilised and 

by providing the long-run relationship to which the data adjusts; 

under certain circumstances the adjustment process has an 

economic rationale. If the model is to be interpreted it must 

mean that the significant element of the dynamics stem from such 

adjustment and that the adjustment is uniform across time. The
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exact lag specification is determined by the data(the Data 

Generation Process), so simplistic theory based propositions are 

not wrongly imposed. The chosen model should satisfy the usual 

classical criterion, have stable parameters and perform well 

outside the sample. The method has pointed out the need for 

dynamic models when the data is trended and the limitations of 

the traditional way of selecting models:

"Such an approach requires the 'Axiom of Correct Specification' 

(Leamer, 1978, p.4) that all assumptions of the model are 

valid and leads to a model-building methodology in which 

violated assumptions are viewed as 'problems' to be 

'corrected'", Hendry and Richard(1983), pi17

For Example, Hendry and Mizon in their (1978) paper explained why 

serial correlation cannot be corrected in the usual way if it is 

due to more general dynamic misspecification. Even though this 

work has been informative and has led applied modellers to think 

more about specification, it can be criticised for spawning 

models which are difficult to interpret, placing too much 

emphasis on single equation estimation and allowing destructive 

testing the major role in deciding the structure of econometric 

models.

If we start from a general economic model with k endogenous and 1 

exogenous variables, where a * superscript means that we are 

dealing with a theoretical variable then:
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(2.31) (I-B(0*))y* = A(0*)z*

when the economic model is dynamic B(8 ) and A (0 ) will be 

functions of lags (L) and leads (L"l)

It is usual when modelling to analyse a block of equations or one 

equation from (2.31); we will follow the literature and take a 

single linear relationship;

(2.32) y*^= V z f '  * »l=lt

Equation (2.32) is the long-run solution to a system which is 

both static and linear and certain of the variables may be 

omitted from it restricting the long-run parameters a and b.

The General econometric model is not assumed to be static, so 

this short-run model incorporates the dynamic factors. The 

selection of a lag length J depends on the number of 

observations, the order of seasonality, other modellers 

experience with similar data and the nature of the series being 

modelled. A simple rule of thumb which generally works is 

J = Jg+1 or J = Jg+2, where Jg is the order of seasonality. The 

general model with J lags in all variables which has (3.32) as 

its long-run solution is given below.

where 8. = (6 .,6,...,8 ) and a. = (a .,a , — a .)
J -*-1 ^3 ^3 3 ■̂ 3 ^3 -*-1

A parsimonious form of (2.33) is derived by testing down using an

F statistic or Likelihood ratio criteria to determine whether the

restrictions associated with the final specific form are
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significant. If the specific model is consistent with the general 

model, then the procedure is validated by testing to see whether 

the results satisfy the assumptions of the method of estimation. 

In the case of Ordinary Least Squares(OLS) the errors should be 

serially independent, the equation variance homoscedastic, there 

should be no problem with simultaneity and for valid inference we 

need normality or a large sample. If we estimate (2.33) directly 

using a single equation method the model can be interpreted 

directly in terms of the theoretical parameters:

(2.34) b^ "j = l®jk ^ ^̂ j = l ®ji^ ^l"j=o®jl^ ^̂ j = l ®ji^

In addition to being a parsimonious representation of (2.33), the 

chosen form should be a sensible partition of (2.21) the general 

errors in variables system. A sensible partition will be an 

invariant model which has an economic interpretation and which 

explains other formulations of the data, also Hendry and 

Richard(1983) assume that the error e^ is a white noise 

innovation; these are necessary conditions for a TACDC. In terms 

of the single equation form it must satisfy a range of tests 

which validate the method of estimation, usually OLS and show 

that it is consistent with the statistical principals of the 

general method. In addition to the criterion mentioned above 

a TACDC should satisfy tests of parameter constancy and 

predictive failure, also it should be theory consistent, data 

admissible and encompass other models. A form which satisfies 

these conditions is considered to be a sensible marginalisation 

of the original model. If the relationship is invariant the RHS 

variables should be weakly exogenous with respect to this reduced 

parameter set, that is necessary for the method of estimation to
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be valid. If the model is to be used for prediction the RHS 

variables should be monocausal; they should not depend on Yif

The reasons for the above tests are obvious in terms of standard 

text book theory they are direct checks on the relevance of the 

estimation method. Parameter constancy would normally be expected 

of an invariant model, so violation of that principal suggests 

the model may be misspecified and the estimation method 

inconsistent. In the previous section we were critical of the 

use of tests of parameter constancy in model selection, because 

the prediction and Chow tests available are weak tests of 

misspecification and not direct tests of invariance which would 

determine the validity of a marginalisation. They do not show 

that the model is invalid for sub-periods of the data and they 

give no idea of the way in which it should be reformulated. They 

are an indicator of either a poor model or an incomplete 

specification. This distinguishes between the rejection of the 

model which should be based on more than tests of parameter 

stability and rejection of the structure. In the single equation 

framework the problem is more acute, as the models generally have 

less structure. Hence, it is easier to discover by chance a 

constant model which is not a true invariant

Discovery of a model which satisfies all of the above criterion 

would give strong support to the view that a good approximation 

of the true model had been found, though care must be taken in 

interpretation of such results in this way. There are additional 

requirements which economic theory might require of a model, 

these Hendry and Ericsson(1983) call "Theory Consistency", and
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"Encompassing", a model should at worst variance-dominate other 

models and at best explain their results. Theory consistency 

suggests a model's parameters should be in line with economic 

theory and in addition to that certain restrictions implied by 

theory should also be testable; as Spanos(1981) mentions fitted 

values should satisfy theoretical identities and the model 

constructed so that theory based restrictions are testable. The 

literature on systems of demand equations shows how models can be 

constructed to allow theory to be tested; flexible functional 

forms do not impose homogeneity, symmetry and negativity on 

demand systems( see Deaton and Muellbauer(1980)). In terms of

(2.33), theoretical propositions are imposed on the long-run 

solution, these parameters should have the correct signs and 

satisfy the constraints of theory.

The error correction form of (2.33) provides a structure which 

more easily allows the analysis of theory, because the parameters 

of the long-run model automatically drop out and the short-run 

dynamics can have a theoretical interpretation. Salmon(1982), 

Hendry and Spanos(1981) and Nickell(1985) present the adjustment 

process of the ECM as the solution to an optimal control problem, 

the dynamic process of a disequilibrium model and the solved form 

of a rational expectations model, in which the exogenous 

variables are generated by a first order autoregressive process. 

The error correction form of (2.33) is:

<2-35) Ay.̂ = V( (ŷ .̂-
where 8. .= 0 and t,= ( 0 0 .  . . %. . 0 . . .0)

Oj J iJ

The parameters of (2.33) and (2.35) are related in the following
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way, where is given by (2.32) the equilibrium model, so

that:

B q  = (0 0 . . .  -1 0 . . .  0)

^j-1*

(2.36) «Q = a*

“a ' "j - *j-i- "ij*  ̂ "

where a = (a^ ^ 2 ' ’ ’ ^1^ ^ " ^^1^2***

Substituting out 6 , x and a in (2.35) with some reformulation 

will give (2.32).

The Error Correction Model(ECM) is preferred, because it has a 

theoretical basis, but the single equation ECM has been 

criticised, because it does not allow interaction or spill-over 

of adjustment and the estimates of the dynamic model are often 

unstable. In testing down from the general form (2.35) is likely 

to maintain more structure than (2.33), as the variables have the 

interpretation of growth or adjustment parameters, while the same 

exercise on (2.33) may leave an arbitrary form associated with a 

number of specifications.

The ECM is given in single equation form here, but it also has a

systems representation(see Davidson(1985)). Muellbauer(1982)

shows in the demand case that the error correction form (2.35)

sets all the spill-overs or cross corrections to zero, so that

Tpj = 0 for r  ̂ i. In reality there is no reason why this will

hold, so that the xjs should be unconstrained vectors of

parameters; Anderson and Blundell (1985) estimate such a model.
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If cross corrections are important longer adjustment is induced 

in the single equation form, as (2.35) will only be correctly 

specified when the cross correction are captured by further 

lagged variables. If this criticism is correct the structural 

interpretation given to the estimated parameters using (2.34) 

will not be valid, as the results are conditional on the omission 

of the cross market corrections. The long-run static and steady 

state parameters will be affected, as the cross equation 

responses are taken to be own adjustments and growth parameters.

The parameters given by (2.34) are the long-run static solution
+ +

to (2.33) and (2.35), given y^ = 7t-l “ Vt z-j- = z^-i = z%; 

where the time subscripts in the static formulation are 

superfluous. The static parameters come directly from (2.35), 

when Ay^=0, but the model also has a dynamic representation in 

which Ay =̂T( the rate of growth when the model is in logarithmic 

form. In steady state all variables grow at the same rate and

(2.35) has the following solution:

(2.37) y^^- (6*+ a* )n

where Az = ti = n = n = Ay in steady state and z y
y K J J y L J J

B = ( 2 2 6, .- 1)/ 2 T. . and a = ( 2 2 a, .)/ 2 x. .
k=l j=0 kj j=l iJ 1=1 j=0 j=l iJ

Currie(1981) has criticised the ECM on the basis of such dynamic 

results, noting that even when the static solution is stable the 

dynamic parameters are invariably not, suggesting unrealistically 

explosive growth paths and suggesting that the period of the data 

is too short to pick up such long-run effects. In section 4.4 we 

will show that such instability may be due to the transformation 

of a model with forward looking expectations into error
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correction form. In some cases the models will have a theoretical 

interpretation, but such hypotheses should be tested and compared 

with other formulations before a model is accepted.

We would expect a model to suggest why an other formulation 

revealed a particular result, this is encompassing which implies 

that a model should be so constructed so that the parameters of 

model can explain the results of less general models (it needs to 

be possible to make such distinctions). In general such tests may 

only be feasible over a limited range of alternatives which means 

that models may be chosen on the basis of their comparative 

ability to explain incidents in the data, so more general model 

should fit and perform better.

"For a single equation estimated by least squares, a necessary

condition for encompassing is variance dominance ......  It

seems natural that a poorly fitting equation cannot account 

for why a well fitting equation fits well" Hendry and

Ericsson(1983).

Encompassing in this framework is a general criterion which we 

would like valid models to meet, but in this general sense it is 

difficult to apply a rigorous test, as nothing is stated about 

the structure of the alternative. The fit of the single equation 

model should not be used as a criterion for such a test, as the 

model specification will depend on the purpose for which it was 

constructed, if it suggests a valid partition of our unobserved 

general model then the relative performance on the basis of fit 

or prediction is irrelevant. In order to properly analyse
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comparative performance or preference on the grounds of variance 

dominance, the model should be compared at the level of the sub­

system from which they are derived and even so, such preference 

is still based on too narrow criterion if all we are looking at 

is fit or prediction. True encompassing tests should deal with 

the model structure and so analyse omission in terms of the model 

parameters; such tests will be the same as those for omitted 

variables in simple cases or when individual parameters cannot be 

identified. The proper analysis of model specification should be 

carried out at the level of the intelligible sub-system so that a 

structure should not be rejected on the basis of the comparative 

fit of single equations. In addition to that, the preferred model 

should have a theoretical explanation if it is to be used for 

policy, otherwise the best fit model will be acceptable.

Hendry and Richard(1983) provides a justification of the single 

equation method in terms of their methodology, so that the 

discovery of a correct partition is based on destructive testing 

Single equation methods are accepted for their simplicity, but 

such a philosophy has its costs. The data available is limited 

which means that we cannot be certain that the chosen model is a 

valid characterisation of the data or that it is the only single 

equation to be a valid marginalisation of (2.11). This is because 

destructive testing aims to dispose of statistically poor models, 

but does not determine what is a good model. The alternative is 

never specified, so models compete with the idealised data 

generation process without having a specific model which 

characterises that. The need to choose models on the basis of 

tests which are likely to be poorly determined limits the 

efficiency of the strategy. Models need to be tested, but the

81



methods currently used may be of dubious value, because the tests 

are prone to problems of biased selection and inappropriate 

inference by virtue of iteration over selection criterion and 

limited inferential power, due to the form and number of the 

tests.

Single equation methods are generally less efficient, so they are 

likely to be less informative which means they may be difficult 

to interpret, and prove hard to use for analysis and testing of 

policy and theory. The relationship between the parameters of

(2.33) and (2.32) described in (2.34) only holds good on the 

premise that the dynamics of (2.33) are due to adjustment over 

time, if they depend on expectations, durability or aggregation 

they could be given a different explanation. If the process 

describing the data is due to such dynamic factors or the static 

phenomena of omission of variables or non-linearity, then the 

long and short run variables are not good estimates of the 

parameters of interest. The model may be a valid representation 

of the data generation process, but it is not being interpreted 

in the right way. Reduction of (2.33) to a parsimonious form may 

reveal a model without a clear short-run theoretical explanation, 

because of the ad-hoc nature of the lag structure( see

Hendry(1980b)); we cannot then validate the short-run form. The 

ECM is obviously more appealing when using such methods and as a 

general principal is easier to interpret than reductions from

(2.33). Keynes(1973) seems to sum up the problem of lag choice 

when he discusses Tinbergens' method:

".. he fidgets about until he finds the time lag which does not
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fit too badly with the theory and the general presuppositions 

of his method. ... But there is another passage(p.39) where 

Professor Tinbergen seems to agree that time lags must be 

given a priori", Keynes(1939,1973), p314.

On the basis of correct inference, utilising and validating the 

equations by using Hendry and Richard(1983) we may uncover a 

statistically sensible marginalisation of the likelihood of our 

general problem (2.11), but there is no guarantee that such a 

relationship will reveal results which are economically 

meaningful and it is easy to find strange partitions or 

parameterisations which are hard to give meaning to. This is not 

to say that the method always reveals nonsensical results or 

results which are not useful, but to insist that there are 

limitations to this method and the purposes to which it can be 

put. In general it will not be possible to test theories using 

such methods or to derive more detailed models for economic 

policy analysis and reveal from that sensible multipliers or 

elasticities. This is because (2.33) has not been linked to the 

correct structure, so that the limited single equation form may 

over parameterise the model or limit the possible detail. Hence 

we may not be able to analyse what is of interest or determine 

the validity of theories;

"As regards disproving such a theory, he cannot show that they 

are not verae causae, and the most he may be able to show is 

that, if they are verae causae, either the factors are not 

independent, or the correlations involved are not linear, or 

the environment is not homogeneous over a period of time
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,perhaps because non-statistical factors are relevant"

Keynes(1939,1973), p308.

The inability to disprove a theoretical proposition is not 

negated by the use of a more general model, as the dynamics may 

indicate a re-parameterisation which invalidates our explanation 

of both the short and long run model. The Lucas critique of 

policy effectiveness would be relevant here, as the parameters of 

the single equation model would be composed of the theoretical 

parameters and the policy response. In periods of relative 

stability in which changes where small or weighted by small 

parameter values the single equation model may exhibit parameter 

stability. This will be the case when the estimates are 

relatively inefficient, allowing larger than expected variation 

in the parameters, so that the hypothesis of parameter stability 

is not easily rejected. The model has stable parameters, but in 

the simple reduced form specification it does not accept the 

theoretical restrictions, though a final form which specified the 

reaction function and the theoretical relationship would do.

If general models are constructed in a sensible form, so that 

theoretical considerations can be tested, this may also yield 

tests of encompassing as a bi-product, rather than general 

appeals to superior fit of the data. In specifying encompassing 

in terms of tests of model parameters, where possible we are 

negating the possibility of alternative marginalisations 

explaining different elements of the data or suggesting that such 

distinctions related to fit will not be important for models 

which purport to explain the same thing or are very closely
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related if not involving different parameterisations of the same 

variables. In addition to the points stressed above we may also 

find that such tests of structure can be linked to the type of 

invariance associated with parameter stability. Whether a model 

is rejected in response to tests depends on the reason for its 

construction and the cause of the instability. A heavily 

parameterised model used for policy analysis may not predict too 

well, as its predictive power will depend on the processes for 

the exogenous variables and the validity of the conditioning over 

different periods and states of the world. Econometric 

specifications do have limitations to their use and 

applicability, due to the changing nature of the world, hence 

models are bound to break down over time, that is not a problem, 

it is why they break down which is important.

2.4 The Latent Variables Approach to Econometrics

The econometric model can be developed in three stages; 

specification of the economic model, choice of the latent mapping 

and the formulation of the econometric specification. A well 

developed model should be based on a theoretical principal 

derived from the literature or from an aligned discipline, by 

the observation of institutional reality or the observation of a 

simple data relationships. Model reformulation should not be 

based on data search, but the failed econometric specification 

should be completely re-specified and the modelling process 

started again. Such an approach yields a scientific way of 

specifying results and revealing economic information from the 

data. The method used will depend on the rationale behind the
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model construct, so that forecast models may not require as 

strong criterion for analysis as structural representations.

The Economic model will normally be derived from a theoretical 

proposition which we would like to assess for data acceptability. 

Equation (2.31) of the previous section represents such a general 

structure, but it is not automatically amenable to estimation, 

because we do not know the link between the model and the data 

or the stochastic structure; without these components we will not 

be able to decide the appropriate estimation method. The theory 

model holds exactly, as such relationship are set up to satisfy 

some equilibrium concept or are arranged so that accounting 

identities hold exactly. Spanos(1981) suggests that the data 

will not satisfy most theoretical propositions exactly and the 

parametric structure of equations will be affected by the 

imposition of such identities on the data.

Smith and Hunter (1985) show for exchange rate models, that the 

imposition of arbitrage constraints will alter the specification 

of cross exchange rate models for all but a limited range of 

theoretical formulations. We assume that the theoretical model 

is static, but in the next section we will introduce dynamic 

economic specifications.

In choosing such a formulation the modeller has to select a 

functional form, the level of aggregation, the exogenous 

endogenous split and in some cases the stochastic structure. The 

literature on systems of demand equations has paid attention to 

the problem of functional form, because certain utility
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functions, such as the Linear Expenditure System impose strong 

restrictions on the model and limit the degree of 

substitutability (see Deaton and Muellbauer (1980). The 

difficulty is remedied by choosing flexible functional forms, 

such as the Almost Ideal Demand System developed by Deaton and 

Muellbauer(1980a) which allows the restrictions of theory to be 

tested and provides a local approximation to any demand equation. 

The aggregate structure of the model, the endogeneity of 

variables and the stochastic structure all depend on the data and 

although the theoretical model may be suggestive of them they 

cannot be imposed, because this may re-parameterise the model in 

a strange way or invalidate estimation. This implies that there 

will be a filter between the data and the theoretical model. 

Therefore :

(2.41)

fe : 9 - >  e

is the function which maps the theoretical variables or 

parameters on to their data equivalents. Usually this process is 

incorporated into the construction of the data model, so that the 

conditional model (2.23) represents the transformed version of 

the general theoretical model (2.31). Similarly, the parameters 

of (2.32) are mapped via (2.34) onto the econometric model

(2.33). Equation (2.41) is not usually specified, but it is 

inherent in any econometric specification.

Most modellers make the trivial assumption that the data 

corresponds exactly to the theoretical analogue. Observation of
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the data would suggest that this is rarely true, because economic 

data is non-experimental, subject to political and governmental 

bias in collection and usually does not satisfy directly the 

requirements of the theory model. In the natural sciences data 

can be replicated under controlled conditions, in economics such 

experiments are not possible for all macro and a wide range of 

the micro problems which interest us, because the sector or unit 

to be analysed cannot be isolated from the economy or replicated 

exactly. The majority of economic data is collected by the 

agencies of government, so it is not value free, because the 

collection process reflects a statistical or economic perspective 

and the published series are pre-processed using filters. The 

data is also subject to updating, change in the base year and 

redefinition, all of which complicates model building. The 

trivial assumption would be more acceptable if the modeller 

collected his own data, by interview or design experiments, this 

would reveal information not contaminated by the factors 

described above.

The current approach is modelling rather than experiment 

intensive which implies the general mapping (2.41), but many 

modellers choose the trivial mapping;

(2.42) y^ = y^+ s.t. ~ WN(0,o=)t t t t y
and

= z^+ u^ s.t. u^ ~ WN(0,o^)

In the case of the exogenous variables z it is more usual to 

assume an exact equivalence, so u would be zero. If the trivial 

assumption is correct modelling is much simplified, but in many
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cases we would not wish to make such an assumption; in particular 

if data series followed random walks or if the theory appears 

totally uninformative of the data. A mapping may not exist when 

theory is not useful in constructing the econometric model or 

when the theoretical parameters are not identified. In the 

extreme this may be true for all models and then theory would 

play no part in econometric modelling. Therefore;

(2.43) a g : y* — > z*
Proposition (2.43) would be true if the trivial mapping holds and

the data are represented by random walks which is the case for

time series data when they are smooth and trended, in such

circumstances static theoretical models will exhibit strong

serial correlation. Granger and Newbold(1974) observed that much

empirical work regressed contemporaneous variables on each other

in a static economic framework without taking account of strong

signs of autocorrelation:

(2.44) Y^= Z^A +

where Yj. = ,7%) and ,z^)

and = (u^/U^/.. /U^) and A is the matrix of parameters

If the Z and Y variables are trended it is likely that (2.42) 

will provide a reasonable fit of the data with high R* and 

reasonable fit of the parameters, but in many cases such models 

exhibited strong serial correlation as measured by a low Durbin 

statistic. Serial correlation is a sign of a moving average 

error, pure error autocorrelation or of more general dynamic 

misspecification( the distinction is clearly made in Hendry and 

Mizon(1978)). All three of the above possibilities shed doubt on
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inference and in the case in which we have more general 

misspecification the parameters may not be well specified. As was 

stated before time-series data are highly smoothed, in the 

extreme this suggests that Y and X follow random walks:

(2.45) and

where = (e^,e2/-- /e^) 6^ ,e^)

If this is the true model and the errors are independent, then as 

Granger and Newbold(1974) show the results observed in (2.45) 

will be spurious and it will suffer from serial correlation. The 

error contains everything which is omitted from the model :

"t " ?t-i-

lagging (2.45) and using it to substitute out for  ̂above:

"t = * \ - r  \

(2.46) = ^

where E^t” ^t^ and from (2.45) and 6^ are 

innovations in Y^ and respectively.

It is then obvious from (2.46) that the omission of lagged Y will 

cause first order serial correlation. Under the trivial 

correspondence the economic relationship is of no importance to 

the data generation process; the model is not informative about 

the data. This is the extreme case which implies for a given 

economic model, here the static one, that there is no mapping 

between the data and the latent variables. A test of the random
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walk hypothesis will be a test of the existence of the postulated 

economic relationship; independent of the mapping. The results 

presented above show that (2.44) has an error which follows a 

random walk which means that the error variance is unbounded. As 

the sample evolves the standard errors will increase without 

limit and the parameters becomes less well specified. 

Asymptotically the parameters of (2.44) will be perfectly 

consistent with any parameterisation, suggesting that the OLS 

estimates of A become unidentified(see Sargan (1988)), but If we 

look at the direction of the bias of the OLS standard errors in 

finite samples we will find that it is indeterminate so that the 

estimated parameters may appear to be significant. If the trend 

component of the two series is similar, then we will also observe 

a high R*. This is why Granger and Newbold select high R* 

relative to durbin watson statistic as a sign of spurious 

correlation.

It is usual to find that a particular model or representation of 

the data does not to exist, so that:

for a given g : y^ >

either the mapping does not exist, so that the random walk 

hypothesis is true or the model parameters are not identified. 

The first is strong evidence against the model, the second only 

states that for the present representation the data are not 

informative of the model, in general the latter proposition will 

be observed.
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Time series will often be close to random walks, but many models 

exist which out perform such simple models and have an economic 

interpretation. An example of such a model would be the error 

correction model, specified by Hendry and Mizon(1978):

(2.47) = b,AZ+ + b_(Y - AZ)^ + E _t I t  2 t-1 It

As was observed in section 2.3 this form has a number of 

interpretations associated with a dynamic theoretical models, 

they imply the trivial latent mapping and a dynamic econometric 

model. The paper by Hendry and Mizon suggests a dynamic latent 

mapping linked to a static theory. In the general ECM (2.35) the 

latent mapping across the parameters is given by the long-run 

solution (2.34).

If it is correct to represent 2 and Y by (2.45), then the 

relationship (2.44) will be spurious, except when the exogenous 

and endogenous variables are cointegrated. We will deal with 

cointegration in more detail in the next chapter, but in this 

instance it implies that the OLS estimates of A will be 

consistent when there is one dependence between the Zs and Ys and

(2.47) is then an alternative time series representation of the 

random walk model.

The methodology does not answer the problem of modelling, but it 

does provide a framework within which the assumptions of the 

modeller are clearly stated and the models analysed. In most 

cases it will not be possible to choose between models on these 

grounds, because different mapping and theory combinations may be 

observationally equivalent or the same mapping may be associated
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with a number of models. Therefore:

e 0

s.t fg^: 0 --> 0^ for all i = 1,2, ...,n

where n > 1

Choice of the model will then be based on subjective factors such 

as the nature of the latent mapping, the signs and dimensions of 

variables, comparative model performance and the satisfaction of 

theoretical conditions or correspondences between the data. It 

may be too strong a condition to expect the data to satisfy 

theoretical restrictions, but the means of variables or long-run 

solutions at least should satisfy such conditions. In addition to 

this the form of the latent mapping may not appear sensible for 

some models, for example parsimonious forms of (2.33) may not 

have an interpretation if the trivial mapping is chosen. In 

conclusion we can re-state the initial proposition of the chapter 

in terms of latent variables: dynamic data either requires static 

theory associated with a dynamic latent mapping or a static 

mapping with dynamic theory.

2.5 Theory Based Econometric Specifications

The methods suggested here are based on the principals of the 

second section noticing the criticisms linked to the simple 

theoretical models of the fourth section. Hence, we set up models 

which following Hendry and Richard(1983) provide a statistically 

valid partition of the data matrix and, as they are based on 

theory, should reveal economically meaningful results. The
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methods used follow the rational or consistent expectations 

methodology, but do not restrict models to the dynamics of the 

simplest formulations of the strong rational expectations school. 

The methods make no assumptions about market clearing or impose 

strong informational assumptions, where ever possible we test 

such hypotheses and try to provide a general modelling framework 

which encompasses associated specifications. The methodology 

follows current literature in suggesting general models, testing 

model specification, checking for coherency of models, 

emphasising dynamics and trying to explain alternative results.

It does not suggest single equation methods, except for 

determining prediction models and it does not place strong 

reliance on parameter stability and encompassing as model 

selection criterion. This does not imply that models should 

perform badly in relation to data based models, but we argue that 

models specified for analysis, may be allowed to meet weaker 

statistical criterion, as they are more amenable to direct tests 

of theoretical principles.

If we start with (2.23) above which partitions the original data 

into that which is of interest and that which can be omitted:

(2.51)

where s^= Cy^#z^] and S^= IY^,Z^] and z^, y^, Z^, and are as 

defined before in sections 2.2 and 2.3

The theoretical model associated with the y's can either be 

based on the minimisation of a quadratic loss function or the 

solution of a model with future expectations. If we solve the 

most general loss function we will derive a model with a number
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of future exogenous and endogenous variables in it:

(2.52) 0(L*,L)yG = G*(L*,L)z^

+ + +where Q(L ,L) and G (L ,L) are matrix polynomials in the lag 

operator L and the forward operator L and s® is an expectation

In this work we will deal with the first order symmetric case and 

extend that to include general lags and leads in the exogenous 

variables, certain forms of non symmetry and strict forms of 

disaggregation. The first order conditions of the optimisation 

problem give a rationale to models with future expectations in 

them, though they do not have to be based on that. If such models 

are solved for the future values, then the following model will 

result.

(2.53) y®= F y^ G*(L^)z®

where L is the forward operator which does not alter the time 

subscript associated with the expectations.

The expectations of the exogenous variables are assumed to be 

generated by the available information which is characterised by 

St and to maintain the structure of (2.53) we require Y^-i not to 

Granger cause z^, so that:

(2.54) z® = B*(L)z+ , t 1 t-1

This model may be related to the data via a mapping between the 

data and the theoretical model. The trivial mapping will be 

presumed here, though for this to be a sensible assumption the 

variables should be manipulated to link them as closely as 

possible to the theory. In particular the forms of G* and B* will
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reflect that. The latent mapping is presented below:

(2.55) y^= y®* and z® *

where and are the true expectations of z and y.

We can now construct a general model based on the theoretical 

propositions implied by the latent mapping (2.55) and the 

theoretical relationship (2.53) and (2.54). Therefore:

(2.56) y^= F y^ G*(L*)B*(L)z^ u^^

(2.57) z = B*(L)z. + u_. and fi =t t-1 2t ^11^12

^21^22

As Hendry and Richard (1983) point out, it is usual in this 

literature to conflate the notion of an economic and a 

mathematical expectation which implies firstly that z® = zP and 

secondly that the forcing processes of the two series are the 

same. In general, this will not be the case so that different 

models for the ys will be observed than those hypothesised by 

rational expectations. If the two processes are the same 

and (2.56) includes current values of the zs, then strict 

exogeneity is not enough for (2.56) to produce efficient 

estimates. The zs are not weakly exogenous, as and X2 in 

(2.51) will depend on the same deep parameters. If the zs are 

weakly exogenous, then the parameters of (2.56) are invariant to 

changes in B*(L) which means that it can be efficiently estimated 

on its own. In these circumstances the strict rational 

expectations hypothesis does not hold. The rational expectations 

hypothesis is imposed when the optimal predictor is the same as 

the true expectation, but if that is not the case then the error 

term will include the difference between the theoretical
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expectation and the prediction. Therefore:

(2.58) y^= F G*(L*)z^ + u*^

and u* = UL.+ G*(L*)(B*(L)-B(L))z^ ,it it t-1

where z^ = B(L)z^ .t t-1

The imposition of rationality may effect the consistency and 

efficiency of the estimates, as the zPs may be correlated with 

the error term.

==> pliro((u*^z^>/N ) i 0 

as G*(L )(z^- z^)

This will be a problem if there are considerable differences 

between the processes driving the expectations and the zs, such 

as would be the case if the B* and B polynomials involved sparse 

matrices with different zero restrictions. In general one would 

believe that the parameter differences involved would be small 

relative to U]̂ ,̂ so that the degree of inconsistency would be 

small. Alternatively consistency would be satisfied in large 

samples if the predictors or the expectations tended to 

rationality:

Lim z^ --> z^ 
t— >«

as Lim u * — > u 
t— ^

Hence, expectations model with the z^ replaced by z^ will be 

consistently estimated using (2.58) when the sample is large. The 

more information we acquire the better informed we are, so over 

time we learn the process driving the true expectations. If such 

an assertion is correct, the process needs to be stable to yield
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a net gain from new information. The alternative to this view 

would be that the model of expectations depends on subjective 

factors, so that we can never capture them perfectly. Hence, the 

model including predictions will be the best that can be achieved 

in the short-run:

(2.59) y^= F y^ G*(L*)z^ + uIt

Equation (2.59) would be the true model, in the sense that it is 

as close as can be got to the true expectations driven model. In 

this form estimation would be consistent if the subjective and 

non-modellable elements of expectations were orthogonal to the 

exogenous variables. Direct estimation of (2.59) would be fully 

efficient when it is a legitimate marginalisation of the more 

general structure (2.22) and the zs are weakly exogenous. If the 

zs are not weakly exogenous, then we need to take account of the 

effect of the z process on the parameters in (2.59). We will now 

outline a method which takes account of such a dependence by 

replacing the expectations in (2.59) by their actual values; 

the procedure is illuded to by Sargan(1982) and developed further 

in chapters four and five.

(2.510) y^= F G*(l")z^- “it
* * where D is a complex function of G (.) and B(.)

This is a hybrid of the other two main methods used in the 

estimation of rational expectations models, that is the errors in 

variables method of Wickens(19B2) and the substitution method due 

to Sargent(1978). The errors in variables method estimates (2.52) 

consistently by initially replacing the expectations with their
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actual values and then instrumenting these future variables to 

take account of the endogeneity induced by a forward looking 

moving average error. The substitution method transforms the 

solved form (2.53) into an estimable model by replacing the 

expectations using the process driving the exogenous variables. 

That is roughly the method described by (2.56), except that we 

use B(L) rather than B*(L). The Sargan approach uses the solved 

form of (2.52) and is in that way linked to the substitution 

method, but it then replaces the expectations by their actual 

values which links it to the errors in variables approach. The 

method should be relatively efficient, as it can take account of 

any invariance by restricting D* using the exogenous variable 

parameters.

There are a number of variants of these techniques which have 

been suggested, in particular the method used by Muellbauer and 

Winter(1980) and the method of Broze et al(1985). The Muellbauer 

approach uses the solved model, but eliminates the future 

expectations in the exogenous variable using a Koyck lead, that 

can then be estimated by instrumental variables. The Broze 

technique leaves a relationship similar to the Muellbauer and 

errors in variables form, but it also takes account of the moving 

average error term. The Wickens method and the Muellbauer method 

are convenient in that they use instrumental variables, but they 

are not efficient, because they do not take account of the moving 

average error term. The methods of Sargan, Sargent and Broze et 

al which solve the model are more complex, but they are more 

efficient. Fully efficient methods either require, simultaneous 

estimation of the process driving y and z or the weak exogeneity
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of the zs.

The Sargan form allows comparison amongst a number of different 

theoretical models and reveals alternatives which remove the 

strong restrictions implied by the rational expectations 

approach. In line with the other techniques the underlying model 

can encompass a range of equilibrium concepts and may be 

compared with error correction forms. We will show in chapter 

four that the most parsimonious form of the error correction 

model may be unstable when the symmetric rational expectations 

model is the correct model generating the data, as the error 

correction form may only be correctly specified when the solution 

to the expectations model is the stable one.

Theory based data generating models firstly have an 

interpretation which may not be true of data based approaches and 

secondly allow the data generation process to be tested using 

theory. A poor model will quite clearly be rejected, as it will 

either yield poor predictions, meaningless equilibria, or latent 

roots and parameter estimates which are not consistent with 

theory. This provides a set of natural criteria to assess the 

models in addition to testing theoretical restrictions, such as 

those imposed by rational expectations, homogeneity, durability, 

habituation or market clearing.
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Chapter three 
Modelling Expectations in the Labour Market

The reduced form of an econometric model can be given a time 

series representation and in the case in which series are 

stationary this time series form can be re-parameterised into a 

VAR, Vector Moving Average (VMA) and Vector Auto-Regressive 

Moving Average (VARMA). If the series are stationary in levels 

the VAR, VMA and VARMA can then be reformulated into an error- 

correction form which is related to Granger-Engle cointegration 

when series are non-stationary (this will be discussed in the 

next section). Series which are not stationary do not have the 

same correspondence. The VMA exists in terms of the non- 

stationary series, but the structure is only invertible when the 

series are cointegrated if the unit roots can be factored out. 

Yoo(1986) and Engle(1987) explain how this can be done and 

provide conditions under which simple cointegration structures 

can be derived from polynomial cointegrated structures. Wickens 

and Breusch (1988) present an alternative to the cointegration 

representation which uses the Bewley transformation to directly 

estimate the long-run parameters of a model. If the series are 

not stationary this form may still produce consistent estimates 

of the long- and short-run parameters, but simple attempts to 

invert the VAR will produce an unstable VMA form.

The quasi reduced form of rational expectations models quite 

naturally has a VAR form and this result has been used by Sims 

(1980) to support the multivariate time-series approach to
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econometric modelling. The problem with the VAR approach is that 

it does not reveal the structure of the model and because of that 

it may be inefficient in estimating the parameters of interest.

We use a VAR technique augmented by the Hendry and Mizon (1978) 

general to specific methodology. We attempt to produce models 

which are congruent in the sense that they satisfy the range of 

tests consistent with the estimation method and which satisfy the 

usual parameter stability and prediction criteria. Congruent 

models should be valid re-parameterisations or marginalisations 

of the relevant equations of interest solved from the full 

systems representation of the data generation process. The 

downward testing approach is supported by the evidence of Granger 

and Engle (1987) which suggests that in dynamic forms which are 

close to non-stationarity any reasonable restriction may be 

preferred to non. The Wickens and Breusch(1988) approach produces 

a model in levels and differences where the levels parameters are 

the long-run ones. As the levels term is an order of magnitude 

different from the parameters on the differences this suggests 

that a valid downward testing procedure only needs to produce 

long-run parameters which are not significantly different from 

those of the general model. If after testing down the long-run 

parameters are materially different, then the parsimonious 

representation of the general model has been misspecified and the 

procedure of eliminating variables should be revised. If the 

series are stationary correct specification of the dynamics is 

crucially important, but if they are not then parsimony may be 

preferred to over-parameterisation. In either case the usual 

diagnostic tests appear to be valid and the parameters 

asymptotically normally distributed( see Gourieroux et al(1987)
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or Wickens and Breusch(1988)).

The technique suggested above is used to produce sub-systems of 

exogenous variables which are then fed into a model of the 

endogenous variables estimated using an extension of the method 

suggested in Sargan (1982). In this chapter we deal with the 

estimates of the exogenous variable processes and test them to 

see whether they are correctly formulated. The models are then 

used to derive parameters of the associated moving average 

representation, future predictions and one step ahead prediction 

errors. The models are subjected to a range of tests associated 

with correct specification which includes tests of serial 

correlation, heteroscedasticity, Auto-Regressive Conditional 

Heteroscedasticity (ARCH), functional form, predictive failure, 

normality and parameter stability. Parameter stability is 

checked for by Chow-tests and the analysis of the models 

recursive residuals. We test for Granger-Causality to check 

whether past output and employment affect the exogenous variable 

process; the test will indicate whether our marginalisation is 

correct. The long-run parameters of the specific model are 

compared with the general model to see if they are consistent 

with each other and the short-run parameter restrictions are 

tested using an F-criterion.

We present models of output prices, vacancies, wages and 

inventory accumulation which are fed into an output employment 

system. The models are set up as VARs in levels which are then 

estimated equation by equation using OLS. A general equation is 

formulated for each variable which is then reduced and further
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marginalised to produce a parsimonious form which imposes zero 

and difference restrictions. The final representation is then 

validated using the tests mentioned above. While the commonly 

used tests for serial correlation, heteroscedasticity, normality 

and functional form are generally satisfied at both the 5% and 1% 

level, the tests of parameter constancy and predictive failure 

are only satisfied coherently at the 1% level. The predictive 

failure tests are run over the period 1980ql to 1980q4, but in 

1980q4 there was an enormous de-stocking of inventories which was 

not repeated in subsequent years. Hence, the predictive failure 

test is heavily influenced by that event which may explain the 

poor performance of the inventory model outside the period when 

compared with the period of estimation. The price and wage models 

satisfy most of the test, except for the CUSUMSQ test which fails 

at the 5% level, but recent evidence by Kramer, Plogberger and 

Alt (1988) suggests that in the case of dynamic regression the 

CUSUM test has reasonable power and is to be preferred to 

alternative dynamic tests. A further problem arises when we try 

to invert the VAR parameters into those for the equivalent VMA 

representation, as the inversion leads to increasing VMA 

parameters. The problem of inversion and the fact that 

predictions grow over time is evidence of non-stationarity, 

though the predictions do not increase explosively. In 

estimating the endogenous variables we deal with the non- 

stationarity by truncating the MA parameters, by not imposing the 

restriction associated with those parameters and also some 

efficiency gains could be made by inverting the model into a 

quasi VARMA which then includes elements in non-inverted auto­

regressive difference terms. The cointegration approach is
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discussed here, as the non-invertibility may indicate that some 

of the variables grouped in the sub-models may be stationary in 

combination. The VAR procedure may not impose the correct 

restrictions or in finite sample there may be sufficient bias to 

produce estimates which do not invert to a stable VMA. Yoo(1906) 

and Engle(1987) discuss the decomposition of singular matrices 

and they show that a model with a cointegration form may be given 

a VAR representation. The non-explosive nature of the wage and 

price series is not inconsistent with cointegration, but the 

method of estimation may not be able to select precisely the 

appropriate parameters which can be used to invert the VAR into a 

stationary VMA under cointegration.

At the end of the chapter we discuss the cointegration technique 

which is well suited to the Sargan procedure, but we feel that we 

do not have adequate selection criteria to determine whether the 

series are cointegrated or not and which forms are correct. First 

step models of the variables used in this chapter seem to satisfy 

the Sargan Bhargava and Dickey Fuller tests, but the second step 

estimates do not have significant correction terms and the first 

step estimates do not seem to satisfy the super-consistency 

results of Stock(1987). If super-consistency is satisfied, then 

you would expect the recursive residuals and the recursive 

parameters of such models to indicate stability. If the series 

are cointegrated then the OLS residuals of the first step 

estimates will not be normal, but one would suspect that the 

absolute values of statistics such as the CUSUM and CUSUMSQ would 

indicate a high degree of stability when the super-consistency 

result holds.
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3.1 Cointegration and Rational Expectations Systems.

Rational Expectations models have a number of equivalent time- 

series representation of which the error correction model is one. 

In this section we will see that it is always possible to specify 

the system in the form of a vector moving average(VMA), an error 

correction and a vector autoregressive moving average(VARMA), but 

a stationary vector autoregression (VAR) can only be derived 

using the Yoo(1986) procedure to invert polynomials with unit 

roots. If the system in levels is cointegrated, then the VAR in 

differences will be misspecified.

We can represent the joint process driving the endogenous and 

exogenous variables, as a VARMA model:

(3.11) A*(L)s^= D(L)e^

where s^=Cy^: x^], e^=Cu^: e^3 and^e WN(0 , 2 )

If the roots of A*(L) lie outside the unit circle, then (3.11) 

can be inverted to derive a Wold moving average representation, 

alternatively if the roots of D(L) are outside the unit circle 

then we can transform the model into a Vector AutoRegressive(VAR) 

form. Sargent(1978) and Kollintzas(1985) deal with the solution 

to quasi-symmetric rational expectations models( (in the next 

Chapter we cover the regular solution to the first order 

condition). The regular solution has a pair of symmetric roots, 

the stable one is fed back and the unstable one forwards to 

reveal the forward solution to a rational expectations model:

(3.12) F_ (L) y^ = E(F,_(L ^)x^lft ,) + ui t 12 t t-1 t
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Where and are everything left out of the model

The substitution method solves out for the future expectations 

using a variant of the Wiener-Kolmogorov prediction formula 

solved for future predictions: prediction formula:

Substituting out for the expectations in (3.12) using this 

formula implies that:

where Fi2t0] + + F^2[2]L + . .

The system can then be represented as a VAR which will be stable 

if the factorisation holds and if F2 2 L̂) has all it's roots 

inside the unit circle:

(3.13) F (L)s^ = e^

where F (L) Fii(L) ; F^^(L)

0 ; ^22‘">

The VAR technique relates directly back to the original rational

expectations solution presented in Muth(1961) where the

prediction formula is used to provide an optimal solution to the

hog-cycle model. In the literature different solutions have been

generated by the different time series representations of the
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exogenous variables; Sims(1980) emphasises the use of the VAR 

technique for modelling macro variables with expectations. 

Estimation of the VAR representation has been favoured, because 

of the difficulty of statistically identifying multivariate time 

series models with a moving average component and the ease with 

which it can be estimated in large samples by the direct 

application of standard regression techniques. Ordinary least 

squares is not efficient, because it does not take account of 

cross equation restrictions or the effect of the lagged 

endogenous variables on the likelihood, but it is easy to 

implement and it should produce consistent estimates. If (3.11) 

is the true model, then a finite VAR form will only be well 

specified when F*(L) = D(L)'^A(L) and F*(L) has a VARMA form.

Identification in the time series context relates to the 

selection of the structure of the model and the degree of 

differencing required to make the process stationary (see Granger 

and Newbold(1986) for an explanation of these issues). Granger 

and Newbold(1974) have presented evidence that most economic time 

series are close to random walks which suggests that s^ will be 

1(1) (integrated of order one), so that the data should be 

differenced once to produce a stationary formulation of (3.13) 

above. Therefore:

(3.14) A^(L)Ast = Et

where A*(L) = (A*(0) + A*(1)L + A*(2)L ... ) has all it's 

roots outside the unit circle.

Although (3.14) may be statistically valid in economic terms it
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is rather limited. In their Demand for Money Study, Hendry and 

Mizon(1978) show that such differenced series do not produce the 

usual static equilibrium representation of the transactions 

demand for money and that implies that desired equilibrium may be 

changed by an infinite amount. Differenced models are 

problematic, because the growth model suggested by differencing 

is consistent with a number of theoretical forms and the 

difference operator may impose restrictions which are not 

appropriate for the data. Kollintzas(1985) interprets differences 

in stock variables, as flow movements which may be reasonable in 

terms of quantities, but does not seem sensible for price series. 

Certainly the degree of variability in most differenced series 

seems to be excessive for a pure flow interpretation and models 

which incorporate prices and quantities will not have a pure 

static equilibrium solution.

Granger(1983), Granger and Weiss(1983) and Engle and 

Granger(1987) have suggested an alternative to this approach 

which satisfies the above oriticisms. Cointegration generalises 

the error correction model of Davidson et al(1978) and Hendry and 

Mizon(1978) to include higher order correction and different 

forms of dependency. Cointegration implies that a vector of 

non-stationary or 1(1) variables may become stationary in 

combination, though each individually would have a univariate 

moving average and autoregressive representation in first 

differences. The procedure has the advantage of providing a 

dynamic model which has a long-run solution related to economic 

theory. If the data are Cointegrated and (3.12) is the true 

model, then D(L) will not be directly invertible which means that

109



the VAR in levels will at best be explosive or may not exist and 

the VAR in differences will have some unit roots in the error 

term due to over-differencing. Here, we will show that the VMA 

form is to be preferred for deriving the solution to the system, 

because the moving average form always exists, but it is not 

directly invertible when we have cointegration:

(3.15) C(L)

where C(z) has all its roots on or outside the unit 

circle, C(0)=I, C(L)= (C ( 1) + ( l-DC* (L), rk(C(l))=g-r with 

0 < r < g and is a zero mean white noise innovation.

If we follow Granger and Engle(1987) then (3.15) may be re- 

parameterised into a VARMA form by inverting the stable part of 

C(L) which is non-singular. That involves first factoring out the 

determinant of C(L) which includes r unit roots and then 

multiplying each side by the adjoint:

(3.16) A*(L)st = d(L)€t

where Adj(C(D) = (1-L)^~^A*(L) and det(C(L)) = (l-L)^d(L) 

d(L) is a scaler polynomial and A*(0) = I

The singularity of C(l) is the cointegration assumption, as if 

that matrix is of full rank then (3.12) can be inverted into a 

VAR in first differences. We can use the rest of the Granger 

representation theorem to transform (3.16) into error correction 

form, given the partition of the polynomial A*(L) = A*(1)L + 

(l-L)A(L).

(3.17) A(L)Ast = A*(l)st_i + d(L)6t
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A vector of cointegrating variables will exist when there are 

left and right side annihilators of C(l) 6 and a' both of rank r 

and a' produces the vector of cointegrated variables = a's^.

If A*(l) = 6a' then the error correction can be written in 

cointegrating form:

(3.18) A(L)Ast = ônt-1 + d(L)6t

Notice that the s^ series will be 1(0) when A*(l) is of full

rank, as the rank of C(l) is zero, so that the unit root can be 

eliminated. The cointegration form is to be preferred for 

modelling, because it encompasses both the simple error

correction and the VAR. When d(L)=I in equation (3.18) all the

roots of C(l) are zero, the data are stationary and both the 

simple error correction form and the VAR representation are 

equivalent to the cointegration form. If in addition to the 

previous condition A*(l) = 0, then C(l) is of full rank and the 

levels term disappears from the error correction and the VAR in 

differences is equivalent to equation (3.18). If C(l) and A*(l) 

are of less than full rank, then the cointegration form produces 

a stationary time-series representation of the data and the error 

correction and VAR forms are misspecified. In those circumstances 

the error correction model assumes that d(L) = I which means that 

techniques which do not take account of the moving average error 

term may be inconsistent as well as inefficient. The VAR in 

differences will over difference, because it does not take 

account of the singularity.

When the individual series are non-stationary the Granger-Engle 

representation theorem either requires equation (3.18) to be
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estimated with the moving average error or by a consistent method 

which accounts for the endogeneity introduced by such an error 

term. The Granger-Engle representation is a final form which is 

over-parameterised relative to the VMA representation (3.15), as 

A*(L) clearly has many more parameters, than C(L).

In the simple case in which r=l the Engle-Granger two step method 

can be used, but it is not always valid with r>l. At this point 

it is worthwhile looking at the solution proposed by Yoo<1986) 

which entails factoring (3.15) using the Smith-Mcmillan form:

(3.19) C(L) = J(L)M(L)V(L)

M(L) = g-r 0
AX

and all the roots of J(L)

and V(L) lie outside the unit circle.

It is easy to see that we can invert V(L) and J(L), but M(L) when 

inverted introduces an infinite lag with unit roots. Rewriting

(3.15) using the result above and inverting J(L) we produce the 

following VARMA:

(3.20) J(L)~^As^ = M(L)V(L)G^

At this point Yoo explains how a non-invertible VMA can be 

inverted using the common factor (1-L) on the Ihs and rhs of

(3.20). Hence (3.20) becomes:

(3.21) M*(L)J(L) ^s^ = V(L)€^

M (L)
AIg-r 
0 I
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We now have a VAR in levels and differences and when V(L) 

is block diagonal this will be partitioned in such a way that the 

first g-r elements are stationary equations in differences and 

the final r elements are stationary equations in levels. In this 

form the first equations are VARMA forms in differences and the 

second group of equations, VARMAs in levels. We can now re­

formulate (3.21) into a VAR form, as V(L) can be inverted:

(3.22) B(L)s^=

Where B(L) = V(L)"^ M*(L) J(L) ^

Notice, that (3.22) can only be partitioned into equations in 

differences and levels when V(L) is block diagonal. We can now 

derive a stable error correction representations when we set 

M*(L) = Ù L  + M*(L), so that:

(3.23) V(L)'^J(L) ^As^+ V(L)"^M*(DJ(L)"^s^= 6^

where
0 0

M*(L)
0 LI

Partitioning V(L)“  ̂into [Vj^(L)~^: x(L)] and J(L)"^ into 

[Jl(L)"l: a(L)'] appropriately dimensioned submatrices we can 

produce an error correction representation of (3.22):

(3.24) B*(L)As^= -x(L)a(L)'s^+ G^ 

where B*(L) = R(L)’^J(L)"^

Equation (3.24) produces a model with a polynomial in the error

correction term which is only equivalent to the simple error
*  *  *  ' correction form (3.18) when B(L) = (1-L)(B (L) + x (D a  (L) ) +
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T(l)a(l)'. When the Yoo form of polynomial cointegration is 

correct, the imposition of (3.18) on the data may cause B(L) to 

have roots inside the unit circle, this will not affect the 

results when t(l)a(l)' is enough to stabilise the model. Engle 

and Granger(1987) show for a simple bivariate case that the Smith 

Mcmillan form does produce the usual error correction 

representation without the scaler polynomial d(L) on the error.

The disadvantage of the Yoo form is that a simple error 

correction does not always take account of the non-stationarity, 

when the roots B*(L) are all outside the unit circle we may have 

the less common case of polynomial cointegration. An alternative 

form can be derived which takes account of the non-stationarity, 

guarantees the existence of the simple error correction form and 

represents the long-run parameters directly; this depends on the 

decomposition of a model similar to (3.20) above. If we assume 

that R(L) = J(L)"1 and D(L) = M(L)V(L) are finite matrix 

polynomials of degree p and q, where D(L) has r unit roots and 

D(l) is of rank g-r(though rk(D(D) will usually be greater than 

g-r). Then the spectral decomposition of D(L) can be inverted in 

the following way;

D*(z) = z9D(l/z)

The companion form of D*(.) can then be written with associated 

canonical form (see Sargan(1983)):

0 I . . .  0 I . . .  0
+0 0 I . . 0 P = 0 I . . 0

* * *Do D^ . . .  Dq-i 0 . . . Dq
— -

P V
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V = where all the roots of are within 

the unit circle

Let us extract a factor from the matrix D(L) which corresponds to 

the factor with the r unit roots and g-r zero roots. Therefore:

(3.25) Dq (z ) = H-1 (z-l)I 0r
0 zlg-r

As was stated above the restriction that D(l) is of rank g-r may 

be too strong, so that in practice we will be dealing with two 

possibilities. When D*(L) has g-r zero roots we will find that 

D*(z) = Dq (z )D]̂ (z ) and D^Cz) is of degree q-1. But when we do 

not have enough zero roots, then we have to add g extra zero 

roots to the polynomial. We can do this by considering zD*(z), 

because lzD*(z)l = z9lD*(z)l and that introduces the g null 

roots. We now have that D*(z) = Dq (z )D]̂ (z ) with D^fz) of degree q 

and Dq (z ) is defined in (3.25) above. We can now use this to 

factorise D(L):

(3.26) R(L)As^ = D*(L)Di(L)G^

where Di(L) = ^Di(L ^) in the first instance,

in the second (L) = L^Di(L ^) and Dq (L) = LDq (L ^)

If we now use the Yoo method of transforming non-stationary 

models (3.26) becomes:

D^lL)"^R(L)As. = DÎ(L)€,
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(3.27) H-1

g-r

H RCDAs^ = Di(L)G^

If we use the transformation associated with Yoo, then we get a 

VARMA representation in differences and levels:

(3.28) H-1 I 0 r
0 AIg-r

(3.29) r
0 AIg-r

H R(L)s^ = Di(L)E^

H R(L)s^ = HDi(L)E^

The advantage of this model is that the polynomial matrixes are 

of the same dimension as those in the original representation. 

Equations (3.28) or (3.29) also can be given an error correction 

representation which can be transformed to produce the long-run 

parameters directly. Firstly, we will re-define the matrix 

polynomial as HiR(L) = G(L) and then the vector of r cointegrated 

variables associated with the original r unit roots will be G(l) 

as Ht = G(l)st. We can now re-write (3.29) in the following way 

by partitioning H' = [Hi': H2 '], so that we clearly have a model 

in differences and levels:

G ( L ) s t  = H i D i ( L ) € t

H 2 R ( L ) A s t  = H 2 D i ( L ) 6 t

Now if we use the usual factorisation and the cointegration form 

we can represent the first relationship in terms of cointegrated 

variables :

(3.30)

((1-L)G*(L) + LG(l))st = Hi Di(L)

G (L)Ast + Ht-1 = Hi Di(L)
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In general we have cointegrated systems in which r > 1, which 

means that the two step method is not valid and that it is 

unlikely that we will find a version of equation (3.24) for which 

t(L)a(L)' = xa'. In such circumstances, it is not clear if there 

is any advantage in using the Yoo approach or any sense in using 

the two step method of Granger and Engle. On these terms Equation

(3.30) has the advantage of producing the long-run parameters in 

one step and of having the same order lag structure as the VARMA 

representation. Obviously the method is more complex, due to the 

VMA error, but that is not likely to be much more difficult than 

estimating equation (3.16) directly. In terms of the usual time- 

series data sets it seems likely that cointegration effects, if 

they exist, are likely to be complex and as a result of this 

efficient methods are likely to need to take account of the 

error structure. Finite sample experiments by Hendry et al(1988) 

seems to suggest that the super consistency result of Stock is 

not operative on typical sample sizes, which implies that the 

accuracy of long-run parameter estimates will be significantly 

improved by efficiently estimating the short-run dynamics.

Equation (3.30) is similar to the Bewley representation of the 

error correction model in Wickens and Breusch(1988) which is 

related to the cointegration representation of Engle and 

Granger(1987) and Yoo(1986). Wickens and Breusch(1988) 

reformulate the standard error correction form in differences and 

levels into a model in levels and differences using similar 

arguments to those which support the notion of cointegration. The 

advantage of this method which uses the Bewley transformation is 

that the long-run parameters are computed directly and that the
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method does not require the super-consistency result to produce 

efficient estimates. If we take the cointegration model in VAR 

form then:

(3.31) B(L)s^=t t

Where B(L) = A*(L) when the s^ series are stationary 

in levels, otherwise (3.31) is the same as (3.22)

In principle, Wickens and Breusch deal with the trivial 

cointegration case in which the s variables are stationary and 

r = n. Let there exist:

r# = [y. .] ij

where y^^ = 1 for all i = j and y^^ are long-run parameters 

when i f j.

Then :

r# = V#B(1)

where B(l) = I + B[13 + BC2] ... + BCj] and 

V# = (Diag(B(l))-l.

Then we can re-write the VAR form in error correction form using 

the usual factorisation using B*(L) = CB(1)L + (1 - L)B*(L)), so 

that :

B'"(L)As^ + B(l)s^ , = G^ t t-1 t

Pre-multiplying each side by V* gives

V#B+(L)As_ + r#s^ + g J t t-1 t
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As^ + (V* - I)As^+ r#8^ + B+C13ASI + B+[2]As_ ^... = GJt t t-1 t-1 t-2 t

S + (V# - I)As^+ r*s^ + B+[1]AS^ + B+[2]AS^ ^... = g Jt t t-1 t-1 t-2 t

where G^ = V*G^ and F* = (F* - I)

The long-run parameters of the model may be directly estimated

from F* using instrumental variables. When the data are

stationary in levels the model is a re-parameterisation of an

error correction model and as the form is linear it allows all of

the parameters to be estimated directly in one step. If the data

are Cointegrated of order 1, then a problem may arise as the

stationary representation can have a VMA error or polynomial

terms in the cointegrating variables. The models dealt with so

far would suggest, that the Wickens Breusch form may only be

efficiently estimated when the data satisfy the super consistency

result. Otherwise, the non-trivial cointegration case involves

%(L)a(L)'^ ta' which firstly suggests that B*(L) may have roots

on or inside the unit circle and secondly that the long-run

parameters are likely not to be accurately estimated. The non-

stationary form can be estimated consistently and it seems likely

to produce Gaussian errors though the estimates may be

inefficient, because of the difficulty in determining the lag

length. The model is a re-parameterisation of the Yoo form which

has a longer and more complex lag structure than an equivalent

parameterisation of equation (3.30). Secondly, as the lag

structure is not known a priori it is easy to either produce

biased estimates by under parameterising it or inefficient

estimates by over parameterising it. It is clear that the

techniques which do not impose the cointegration constraints are

at best likely to be inefficient, while the efficient methods are
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likely to be difficult to implement. In addition to this it has 

been the Authors experience that the two step method and the VAR 

approach are unsatisfactory in the context of quarterly aggregate 

time-series data. In practice the VAR method has been used as 

simple alternatives do not exist, but our analysis has been 

limited by the difficulty of finding appropriate estimates and 

non-explosive predictions.

Sims Stock and Watson(1986) show that the VAR is asymptotically 

efficient and we have seen that VARs can be given a number of 

different representations. The forms that the VAR takes depend on 

the degree of integration and cointegration of the series, but 

independent of such considerations the VAR in levels can always 

be estimated. In finite samples such estimates may be 

inefficient, as they do not impose the appropriate restrictions 

and they may tend towards any asymptotic limits more slowly than 

equivalent formulations derived using FIML or the two step method 

of Engle and Granger(1987). We have used a general 

parameterisation to formulate our models, but that has led to 

models which are not stable in levels. As can be seen from the 

structure of equation (3.22), that may be due to our inability to 

impose the restrictions due to cointegration. In terms of 

estimation there is no problem with estimating such models and 

Wickens and Breusch(1988) present strong reasons why the usual 

asymptotic normality result will hold for the parameters which 

suggests that inference is not affected by the non-stationarity.
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3.2 VAR Estimates of models of Inventory accumulation. Vacancies, 

Output Prices and Manufacturing Wages.

The system has been partitioned into exogenous and endogenous 

variables. In this section the exogenous variables are modelled 

using the vector autoregressive representation (3.19) in levels 

for wages, prices, vacancies and inventory accumulation.

Initially a general model is estimated with nine lags on wages, 

prices and inventories, five lags on vacancies and four seasonals 

including the constant. The downward testing or general to 

specific methodology is then followed to produce a parsimonious 

representation of the data. The models are then validated using 

the range of tests advocated by Hendry and Richard(1983) and 

others to determine whether these single equations models are 

well specified. The problem of endogeneity is addressed by 

firstly determining whether the partition is acceptable using a 

variant of the Granger causality test and then we check for 

invariance by looking at the stability of both the equation 

variance and the parameters over the sample.

The relationships are re-parameterisations of the original 

structure which implies that they do not necessarily satisfy 

theoretical restrictions. If the strong convergence result 

implicit in the dependence between cointegrated variables is 

imposed on the model, then the long-run parameters should be 

theory consistent even if the short-run ones do not satisfy 

theory. If the series are 1(0) or differenced to stationarity, 

then the long-run parameters may not satisfy theory, due to the 

re-parameterisation. The evidence in Breusch and Wickens would
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suggest that the parameters in levels are more influential, 

because of the difference in the order of magnitude of the 

series. If the level and difference form is estimated, then the 

long-run results are computed directly from the levels terms 

which may or may not satisfy theory automatically.

TABLE 3.1 Ordinary Least Squares Estimates of the 
Inventory Accumulation Equation using 81 observations 
for the period from 5904 to 7904

Regressor Coefficient Standard Error T-Ratio

c 9.4280 .5843 16.1356

SI .0901 .0261 3.4563

S2 .1164 .0248 4.6907

S3 .0551 .0294 1.8760

Ai(-3) -.2290 .0764 -2.9963

A2A A K - 5 ) .1900 .0482 3.9381

Av4p(-1) .5136 .0557 9.2277

Ap(-l) 1.4194 .6085 2.3326

AAp(-6) -3.0529 .9946 -3 .0696

A2W (-1) -1.4297 .3982 -3.5909

A2AW(-6) 2.2876 .5124

Standard Diagnostics

4.4643

R-Squared .7448 F-statistic FdO, 70) 20.4293

R-Bar-Squared .7083 S.E. of Regression .0712

R.S.S.l .3553 Mean of Ai 7.6935

®Ai

DW-statistic

.1319

2.1198

Log- likelihood 104.9536

 ̂ Residual Sum of Squares
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The inventory model either has a steady state inventory 

accumulation or a disequilibrium interpretation^. The results 

reveal an inventory accumulation model in first differences which 

means that the static equilibrium solution does not exist. If we 

treat inventory accumulation as a disequilibrium phenomena, then 

this would imply a long-run state in which the goods market does 

not clear, otherwise we have a fixed level of inventory 

accumulation. A long-run inventory demand relationship is not 

indicated by the results which is not surprising given that the 

tax and interest rate effects relevant for such a levels 

relationship are not included. The steady state relationship is 

derived by setting Ax^ = n for real variables, Ap^ = (1+p) for 

nominal variables and if we interpret the dependent variable in 

terms of excess demand then:

(qS - q<̂ ) = 7.671 + seas - ti - 1.1716(l + w)

In the main, the non-smooth nature of the data seems to be more 

consistent with a disequilibrium story, than the inventory 

accumulation one. In theory in the long-run such disequilibria 

should disappear, but in the medium term the economy may attain a 

stable adjustment path or traverse as Hicks(1974) calls it. The 

actual data may be more strongly related to the traverse path, 

than the full steady state growth path. In terms of such a medium 

term interpretation the excess demand relationship is positively 

affected by growth and positively affected by wage inflation.

If such an interpretation is not valid, then we could say that 

the relationship explains desired inventory investment which 

depends negatively on growth and negatively on wage inflation. If 

the inflation effect is dissected it is found that the demand for
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inventories are positively affected by price inflation and 

negatively affected by wage inflation. The positive price effect 

can be seen to be related to the capital gain due to stock 

holding and the negative effect of wages is due to the cost of 

holding stocks. The cost element seems to dominate or there is a 

non-homogeneity in terms of the real wage inflation effect which 

is not surprising. Hendry and Ericsson(1984) explain that the 

short-run price relationship may not be of the same form as the 

variable with which you associate it, that means that the 

imposition of a real effect in the short-run is not valid. The 

long-run results are consistent with the results of many studies 

in which the relationship is not real in the short-run.

TABLE 3.2: Additional Diagnostic Tests^

Test Statistics LM Version F Version

ArSerial Correlation CHI-SQ( 4) = 2.1336 F( 4, 66)= .4464

rSerial Correlation CHI-SQ( 8) = 4.7344 F( 8, 62)= .4811

B:Functional Form CHI-SQ( 1) = .5586 F( 1, 69)= .4792

C : Normality CHI-SQ( 2) = 2.6128 Not applicable

D :Heteroscedasticity CHI-SQ( 1) = .6754 F( 1, 79)= .6643

ErPredictive Failure CHI-SQ( 5) = 66.8621 F( 5, 70)= 13.3724

FrPredictive Failure CHI-SQ( 5) = 82.3233 Not applicable

G:A.R.C.H. CHI-SQ( 8) = 7.6027 Not applicable

HrTest of RestrictionsCHI-SÛ( 24) = 18.3596 F( 24, 44)= .4667

In statistical terms the model performs well within period, it

satisfies all of the specification tests at the 5% level except

124



for the predictive failure test which it does not come close to 

satisfying. The results for the prediction period are strongly 

affected by the shake out of stocks in the fourth quarter of 

1980. In part this may be seen as an aberration, due to factors 

particular to the time. Alternatively, the results may be 

particular to the small sub-sample used for the prediction 

period, the test which is the second one described by Chow(1960) 

also compares the models using overlapping periods rather than 

the usual Chow test which splits the sample in two (see Pesaran 

and Pesaran(1987)). It is possible that 1980q4 is an outlier 

which cannot be modelled and that idea is consistent with the 

results of the multiple Chow tests presented later. The general 

to specific methodology used to produce the parsimonious results 

presented in table 3.1 is validated by the final test H which 

determines whether the zero and difference restriction are 

satisfied. The general model contained four seasonal dummies 

including the constant, nine lags on inventories, prices and 

wages and five lags on vacancies. The parsimonious from if we 

exclude the dummies includes eight parameters which implies 

twenty four restrictions in testing down to the relationship 

presented in table 3.1.

Table 3.3 below is based on a variable addition test which 

determines whether output and employment are relevant to the 

inventory accumulation model. The test is not significant, but 

the 4th and 9th lags on income were individually significant. The 

test is constructed in the spirit of a Granger Causality test if 

the lags omitted from the stock model are truly insignificant.
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TABLE 3.3 Granger Causality Test and Prediction of 
Inventory Model

Variable deletion test for the omission of output and employment 

from the inventory accumulation equation.

Lagrange Multiplier test statistic CHI-SQ(18)= 21.3043 

Likelihood Ratio test statistic CHI-SQ(18)= 24.7203

F statistic F(18, 52) = 1.0310

Dynamic Forecasts

Observation Actual Prediction Error

80Q1 7.4146 7.5235 -.1089

8002 7.6756 7.6541 .0214

8003 7.4639 7.4897 -.0258

8004 6.7867 7.3658 -.5791

8101 7.1470 7.4390 -.2650

Summary statistics for static forecasts

Based on 4 observations from 8001 to 8004

Mean Prediction Errors -.1915 Mean Sum Abs Pred Errors .2000 

Sum Squares Pred Errors .0837 Root Mean Sumsq Pred Errors .0110

Multi-period chow-tests and variances are presented below and 

CUSUM and CUSUMSQ tests based on recursive residuals are given on 

the next page:
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Figure 3.1 Diagnostic Graphs for Inventory Accumulation Equation
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End Period Chow Test Standard

Error

6403 CHI-SO( 11)= 7.2873 F( 11,59)= .6625 .0582

6702 CHI-SO( 11)= 8.8016 F( 11,59)= .8001 .0621

7002 CHI-SO( 11)= 5.7552 F( 11,59)= .5232 .0615

7201 CHI-SO( 11)= 7.0567 F( 11,59)= .6415 .0591

7303 CHI-SO( 11)=11.1303 F( 11,59)=1.0118 .0613

7601 CHI-SO( 11)=13.5883 F( 11,59)=1.2353 .0693

The cumulative sum of squares and cumulative sum of squares 

squared test support the regression standard error estimates and 

the repeated Chow-tests which seem to imply that the regression 

is invariant. If this is true, then the model represents a 

sequential cut of the parameter space. This implies that the 

partition of the parameter space associated with the elimination 

of all other variables is not invalid and the result supports the 

pseudo Granger causality test specified above. Outside the 

estimation period the predictive failure test provides evidence 

against this proposition, but the shake out in 1980 can be viewed 

in two ways: either as an effect which no model could predict or 

as a true indication of a structural break following the change 

in Government policy.

In moving from a general specification in levels, it has been 

appropriate to transform the vacancies model into a parsimonious 

form in differences and levels. The relationship is fairly well 

specified with levels terms which are significant so that the 

model has long-run static and dynamic steady state solutions.
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TABLE 3.4 Ordinary Least Squares Estimates of the 
Total Vacancies Equation using 81 observations
for the period from 5904 to 7904

Regressor Coefficient Standard Error T-Ratio

C 3.4102 .8999 3.7894

SI .0525 .0226 2.3248

S2 .0689 .0257 2.6852

S3 .0120 .0238 .5050

(l+L2)Ai(-l) -.0977 .0485 -2.0155

AAi(-4) - .1304 .0618 -2.1099

Ai(-7) -.1687 .0679 -2.4853

Av(-l) .6047 .0947 6.3847

Av(-2) .2276 .1055 2.1582

(l+L4)Aw(-l) -.8007 .2715 -2.9497

Aw ( - 8 ) -1.0687 .5086 -2.1013

(v-w+p)(-1) -.1064 .0292 -3.6399

R-Squared .7218 F

Standard Diagnostics 

-statistic F(12, 68) 16.2433

R-Bar-Squared .6776 S.E. of Regression .0599

R . S . S . .2480 Mean of Av .0038242

®Av .1056 Log-likelihood 119.5184

DW-statistic 2.0485

If we set = Xt-i = x, = 0 and Ai = (q® - qd), then the

long-run static equilibrium solution is given below:

V = 32.051 + seas + 3.422(qd - q®) + w-p
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The static relationship states that vacancies or excess demand in 

the labour market depends on excess demand for goods and real 

wages. The positive link between vacancies and real wages does 

not make sense if vacancies are explained in terms of excess 

demand, but it does seem more reasonable if we are looking at 

desired vacancies. As firms labour demand grows we observe a 

higher level of real wages associated with a shift of the demand 

curve along a relatively fixed long-run supply curve. In the 

long-run a given real wage will be associated with a rise in 

vacancies, but in the short-run the model shows that nominal wage 

growth reduces vacancies. The link between wages and vacancies 

may be spuriously caused by wages and vacancies rising together, 

but this seems less likely as the levels effects are truly 

significant(see Granger and Newbold(1974) and (1986) for 

discussion of spurious correlation). Engle and Granger(1987) have 

evidence based on monte carlo simulation, that the power of the 

t-test for unit roots using an un-restricted regression in 

differences and levels is low. Hence, significant levels effects 

may not be enough to reject the hypothesis that a relationship is 

spurious. It was also found that the term (v+w-p)^ could be 

included without greatly affecting any of the tests or the 

predictive power of the model. The results are not presented 

here, but they do indicate a more conventional negative long-run 

response of vacancies to wages.

In the steady state real variables grow at a fixed rate n and 

nominal variables grow at a different rate (1+p). The steady 

state solution to the model is given below:
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V = 32.051 + seas + 3.422(qd - qS) + w-p

+ 4.4n - 25.094(1 + w)

In the steady state vacancies still depend on the level of wages, 

they are positively affected by excess demand for goods and the 

growth rate, but negatively affected by wage inflation. The 

results allow inventory accumulation to be partly explained by 

investment in stock holding and this places a break on the effect 

that growth has on the process of vacancies when such an effect 

is not included the growth effect becomes even stronger.

TABLE 3.5: Additional Diagnostic Tests
Test Statistics LM Version F Version

A:Serial Correlation CHI-SO( 4) = 4.2433 FC 4, 64)= .8983

: Serial Correlation CHI-SQC 8) = 9.2386 FC 8, 61)= .9816

B:Functional Form CHI-SQC 1 ) = 1.1064 FC 1, 67)= .9417

C ; Normality CHI-SQ( 2) = 2.7211 Not applicable

D :Heteroscedasticity CHI-SQ( 1) = 1.3060 FC 1. 79)= 1.2946

E:Predictive Failure CHI-SQ( 5) = 3.9251 FC 5, 69)= .7850

FrPredictive Failure CHI-SQC 5) = 21.9355 Not applicable

G : A . R . C . H . CHI-SQC 8) = 3.7538 Not applicable

HrTest of RestrictionsCHI-SQ( 25) = 23.2532 FC 24, 43)= .5501

In statistical terms the vacancies model performs well within 

period, because it fits the data well and it satisfies all the 

diagnostic tests at the 5% level. The restrictions associated 

with the specific model presented in table 3.4 are quite easily 

satisfied with the F test being close to zero. Outside the 

estimation period the model performs equally well satisfying the
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Chow test, though it does not satisfy the Hendry predictive 

failure test.

TABLE 3.6 Granger Causality Test and Prediction of the 

Total Vacancies Model

Variable deletion test for the omission of output and employment 

from the Total Vacancies equation:

Lagrange Multiplier test statistic CHI-SQ(18)= 17.8891

Likelihood Ratio 

F statistic

test statistic 

Dynamic Forecasts

CHI-S0(18)= 20.2141 

F(18, 50) = .8031

Observation Actual Prediction Error

8001 -.1710 -.1355 -.0356

8002 -.2001 -.0885 -.1116

8003 -.2835 -.1238 -.1596

8004 -.2044 -.0457 -.1587

8101 .0204 .1452 -.1248

Summary statistics for dynamic forecasts 

Based on 5 observations from 8001 to 8101 

Mean Prediction Errors -.1181 Mean Sum Abs Pred Errors .1181

Sum Squares Pred Errors .0160 V Mean Sumsq Pred Errors .1265

A check on parameter Invariance is given by looking at 

multi-period chow-tests, variances and recursive residuals.

CUSUM and CUSUMSO tests are given on the next two pages.
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Figure 3.2 Diagnostic Graphs for Vacancies Equation
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End Period Chow Test Standard

Deviation

6403 CHI-SO( 12)= 11.5668 F( 12,57) = .9639 .0312

6702 CHI-SO( 12)= 20.9632 F( 12,57) =1.7469 .0413

7002 CHI-SO( 12)= 16.5490 F( 12,57) =1.3791 .0517

7201 CHI-SO( 12)= 18.5336 F( 12,57) =1.5445 .0544

7303 CHI-SO( 12)= 23.3352 F( 12,57) =1.9446 .0527

7601 CHI-SO( 12)= 6.8157 F( 12,57) = .5680 .0624

The tests in table 3.7 give an indication of whether the 

partition of the parameter space is correct and in particular 

whether an invariant representation has been found. The inclusion 

of output and employment does not affect the results with these 

variables not being significant either jointly or individually. 

Hence/ it seems likely that vacancies are not Granger caused by 

output and employment. There is some indication that the variance 

is rising over the period, but whether this is significant given 

the small initial sample period is questionable. The Lagrange- 

Multiplier test for Heteroscedasticity gives counter factual 

evidence against such an hypothesis. The model appears to be 

relatively robust over the period, except for 1973q4 for which 

the Chow test is significant at the 5% level(x^(12) = 21.026), 

but it is not significant at the 1% level(x^(12) = 26.217). The 

CUSUMSQ plot also gives some evidence of structural change, but 

the shift does not cause the statistic to move outside of the 5% 

band. The parsimonious form of the output price model is well 

specified and it seems to fit the data well. The General 

specification is again simplified to a model in differences and
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TABLE 3.8 Ordinary Least Squares Estimates of the 

Industrial Output Price Equation using 81 observations 
for the period from 5904 to 7904

Regressor Coefficient Standard Error T-Ratio

C -.2138 .0658 -3.2491

SI .0101 .0022962 4.4060

82 .0060937 .0026806 2.2733

S3 .0026490 .0026251 1.0091

Ai(-2) .0197 .0088738 2.2229

AAi(-B) -.0360 .0065766 -5.4780

AqvC-l) -.0202 .0054450 -3.7086

Av(-2) .0576 .0174 3.3129

Ap(-l) .7165 .0625 11.4697

Ap(-7) -.4535 .1805 -2.5124

Agp( -6 ) .2028 .0647 3.1365

p-w-v(-1) -.0120 .0033281 -3.6197

Standard Diagnostics

R-Squared .877 F-statistic F(10, 70) 44.7129

R-Bar-Squared .8574 S.E. of Regression .0067226

R.S.S. .0031183 Mean of Ap .0192

^Ap .0178 Log- likelihood 296.7447

DW-statistic 1.8645

levels where the correction term is well within the usual

significance limits. The long-run static solution is derived in 

the usual way giving the equilibrium model presented below with 

Ai given an investment interpretation.

p = 17.8166 + seas + 1.6417A1 + v + w
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The long-run relationship seems quite reasonable if stock 

accumulation is due to the desire to hoard and vacancies can 

either have an excess demand interpretation or a desired vacancy 

interpretation; the wage coefficient has the correct sign and it 

implies that we have a wage weighted price model . If the 

inventory affect was not due to an investment motive, then we 

could eliminate it in the long-run by setting demand equal to 

supply.

In the long-run steady state, growth rates are equalised and the 

inflation rate set at a non-accelerating rate. The resulting 

model is presented below;

p = 17.8166 + seas - 10.71666(1 + p) - 3.4285n + v + w

or

p = 17.8166 + seas - 10.71666(1 + p) + 1.6417A1 + v + w

Growth as would be expected has a negative effect on prices and 

surprisingly inflation has the same effect, though this can be 

seen to be an expectational adjustment to an underlying trend.

The rest of the relationship stays the same except for the 

coefficients on inventory accumulation which is accounted for 

with planned vacancies as a real effect. Inventories can 

otherwise be viewed as disequilibrium phenomena, though they have 

the wrong sign or as investment in stock which appropriately adds 

to demand and raises prices. Vacancies can also be given a 

disequilibrium interpretation which means that the change in the 

long-run should not be important.

136



Table 3.9 Additional Diagnostic Tests 1

Test Statistics LM Version F Version

A:Serial Correlation CHI-SQ( 4) = 1.7351 F( 4, 63)= .3557

: Serial Correlation CHI-SQ( 8) = 5.1471 F( 8, 59)= .5174

B:Functional Form CHI-SQ( 1) = 6.2152 F( 1, 66)= 5.6513

C : Normality CHI-SQ( 2) = .2844 Not applicable

D ;Heteroscedasticity CHI-SQ( 1) = 2.8401 F( 1, 79)= 2.8706

FrPredictive Failure CHI-SQ( 5) = 14.3151 F( 5, 67)= 2.8706

FrPredictive Failure CHI-SQ( S) = 9.935 Not applicable

GrA.R.C.H. CHI-SQ( 8) = 12.819 Not applicable

HrTest of RestrictionsCHI-SQ( 28) = 26.7522 F( 28, 41)= .5178

In statistical terms the output price relationship does not 

perform as well as the others. The functional form test clearly 

fails at both the 5% level and the Chow predictive failure test 

is also not satisfied, though it does lie within the IX band 

(X 2(5) = 15.086). The Hendry test contradicts the Chow test, as 

it is clearly satisfied and the plot of the predictions seem to 

agree with that. Failure of the Chow test may be due to the size 

of the sample; the other Chow tests seem to agree with this 

prognosis, though the evidence is far from clear. The 

parsimonious model is clearly accepted so that the restrictions 

imposed in moving from the general to specific do not affect the 

performance of the model. The variable addition test seems to 

imply that it is reasonable to exclude output and employment from 

the output price relationship and that is supported by the fact 

that individual terms in output and employment are not 

significant. The Granger Causality test determines whether the 

dependent variables are important in modelling the exogenous
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TABLE 3.10 Granger Causality Test and Prediction of the 
Industrial Output Prices Model

Variable deletion test for the omission of output and employment

from the Industrial Output Price equation.

Lagrange Multiplier test statistic CHI-S0(18)= 15.3084

Likelihood Ratio test statistic CHI-S0(18)= 16.9677

F statistic F(18, 49) = .6603

Dynamic Forecasts

Observation Actual Prediction Error

8001 .0515 .0448 0066783

8002 .0389 .0351 0038339

8003 .0229 .0270 0041168

8004 .0122 .0256 -.0134

8101 .0296 .0157 .0139

Summary statistics for dynamic forecasts

Based on 5 observations from 8001 to 8101

Mean Prediction Errors 0013812 Mean Sum Abs Pred Errors .00839

Sum Squares Pred Errors .0000898 / Mean Sumsq Pred Errors .00948

End Period Chow Test Standard

Deviation

6403 CHI-SO( 12)= 9.0745 F( 12,57)= .7562 .00382

6702 CHI-SO( 12)=24.4703 F( 12,57)=2.0392 .00356

7002 CHI-SO( 12)=19.9107 F< 12,57)=1.6592 .00411

7201 CHI-SO( 12)=14.0917 F( 12,57)=!.1743 .00514

7303 CHI-SO( 12)=16.5065 F( 12,57)=!.3755 .00592

7601 CHI-SO( 12)=15.326 F( 12,57)=!.2772 .00661
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Figure 3.3 Diagnostic Graphs for the Output Price Equation
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variable which is important for the efficiency of the estimates 

and the predictions. All the forms of this test are clearly 

satisfied. As we have seen, in the models dealt with so far there 

is no direct test of Exogeneity.

A check on parameter Invariance is given by looking at the 

multi-period chow-tests and variances given above, and this 

information is further supported by the CUSUM and CUSUMSQ tests 

presented on the previous page.

Weak exogeneity require invariance for the model of the 

endogenous variable to be stable, but the evidence seems to be 

indeterminate. The variance terms do vary over the period, though 

the model does not seem to suffer from heteroscedasticity and the 

Chow tests do not seem to indicate large variations in the 

parameters of the model, though the version for the sample 

split in 67q2 is significant at the 5% level(x^(12) = 21.026).

The predictive failure test presented with the main results 

provides some evidence to support this, as does the cusumsq test, 

which suggests a break between 64q4 and 73q3. The model is not 

completely satisfactory, though the problems are not great enough 

to totally reject it at this stage; especially given the number 

of tests and the likelihood that the rejection region has become 

large relative to the nominal confidence regions.

The model of wages is re-parameterised into a form in differences 

and levels which has a strong correction term which produces a 

real wage effect. Again much of the result hangs on the 

interpretation of the inventories effect without which we get a
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TABLE 3.11 Ordinary Least Squares Estimates of the 
Manufacturing Wage Equation using 81 observations 
for the period from 5904 to 7904

Regressor Coefficient Standard Error T-Ratio

C -.5768 .1511 -3.8185

81 .0021039 .0040582 0.5184

S2 -.0093918 .0039974 -2.3494

S3 -.0167 .00036286 -4.6046

Time .0003674 .0000626 5.8673

Aw ( - 2 ) + AAn w ( -4) .2261 .0434 5.2130

Ai ( -1 ) .0524 .0127 4.1196

AAi(-3) -.0292 .0122 -2.3983

Ai (-7) .0309 .0125 2.4782

AAp(-1) .4013 .1697 2.3643

AgAp(- 3) .5969 .0930 6.4180

(p-w-v)(-2) .0121 .0058197 

Standard Diagnostics

2.0743

R-Squared .7227 F-statistic F(10, 70) 16.3479

R-Bar-Squared .6785 S.E. of Regression .0109

R.S.S. .0081414 Mean of Aw .0260

^Aw .0192 Log-likelihood 257.8785 DW-statistic 2.2090

real wage model which is constant in the long-run or depends on 

growth factors in the steady state. If we set = x^-i =x and 

Ax^ = 0 then the long-run equilibrium solution is given by:

w - p = -47.889 + seas + .0304t - 6.874(q^ - qs) - v

Real wages are constant in the long-run except for the negative 

effect of excess demand in the goods market and a negative
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response of wages to vacancies. If we take the dynamic solution 

wages are allowed to adjust in response to growth and wage 

inflation relative to price inflation. In steady state real 

factors grow at the same rate n and nominal elements grow at the 

rate (1+p).

w - p = -47.889 + seas + .0304t + 6.874A1 + 18.69(l+w) + v

Real wages in the steady state depend positively on wage 

inflation, negatively on vacancies and positively on inventory 

accumulation. If the inventory term relates to the growth rate, 

then wages would rise with the growth rate.

In statistical terms the model performs well apart from the Chow 

test for predictive failure which is clearly not satisfied at the 

1% level (%2(4) = 13.277). The test of the restrictions 

associated with the General model are easily satisfied. The

TABLE 3.12 Additional Diagnostic Tests

Test Statistics LM Version F Version

A;Serial Correlation CHI-SQC 4) = 1.7611 FC 4, 65)= .3612

iSerial Correlation CHI-SQC 8) = 3.1976 FC 8, 61)= .3875

B:Functional Form CHI-SQC 1) = .047400 FC 1, 67)= .039800

C : Normality CHI-SQC 2) = 1.5549 Not applicable

D ;Heteroscedasticity CHI-SQC 1) = .057500 FC 1, 79)= .056100

E:Predictive Failure CHI-SQC 4) = 16.1756 FC 4, 69)= 4.0439

FrPredictive Failure CHI-SQC 4) = 19.2766 Not applicable

GrA.R.C.H. CHI-SQC 8) = 3.2976 Not applicable

HrTest of RestrictionsCHI-SQ( 26) = 14.9204 FC 26, 44)= .3424
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Granger causality test is satisfied, excepting the Likelihood 

ratio form of the test at the 5% level(%2(18) =28.869) and the 

1st and 2nd lags on output are individually significant at the SX 

level, though when they are included on their own they are not 

significant.

TABLE 3.13 Granger Causality Test and Prediction of the 
Manufacturing Wage Model

Variable deletion test for the omission of output and employment 

from the manufacturing wage equation.

Lagrange Multiplier test statistic CHI-SQ(18)= 26.3867

Likelihood Ratio 

F statistic

test statistic 

Static Forecasts

CHI-S0(18)= 31.9279 

F(18, 52) = 1.3689

Observation Actual Prediction Error

8001 .0543 .0495 .0048015

8002 .0729 .0560 .0169

8003 .0441 .0468 .0026684

8004 .0267 .0710 -.0443

Summary statistics for static forecasts 

Based on 4 observations from 8001 to 8004 

Mean Prediction Errors .0069191 Mean Sum Abs Pred Errors 

Sum Squares Pred Errors .0005753 / Mean Sumsq Pred Errors

.0224

.0240

A check on parameter Invariance is given by the multi-period Chow
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Figure 3.4 Diagnostic Graphs for Manufacturing Wage Equation
23.6240

11.8120

. 8888

-11.8120

-23.6240
59Q4 69Q4 79Q4

CUSUMwith 5% confidence bands

1. 2104

. 6052

. 0000 
1052 

-.2104
74Q4 79Q464Q4

CUSUMSQ with 5% confidence bands

. 0729

. 0505

. 0281

7BQ1 78Q4 79Q3 80Q2 80Q4
Forecasts for four periods ahead

144



End Period Chow Test Standard

Deviation

64Q3 CHI-SQ( 12)=13.7250 F( 12,57)=1.1437 .0037970

67Q2 CHI-SQ( 12)=14.3358 F( 12,57)=1.1946 .00936

70Q2 CHI-SQ( 12)= 7.7976 F( 12,57)= .6498 .0105

72Q1 CHI-SQ( 12)=13.0757 F( 12,57)=1.1413 .0103

73Q3 CHI-SQ( 12)=14.9401 F( 12,57)=1.2450 .0102

76Q1 CHI-SQ( 12)=12.0862 F( 12,57)=1.0072 .0108

-tests, variances and recursive residuals. CUSUM and CUSUMSQ 

tests are given on the previous page and the other tests above. 

The models appear to be invariant in terms of the CUSUM,

CUSUMSQ statistics and the repeated Chow tests. Apart from the 

first period estimates the standard deviation is fairly stable 

around .01.

The models in this section are related to the cointegration 

theory specified in the first section in the sense that they are 

models in differences and levels. The models are relatively 

sensible, though they all suggest long adjustment times and imply 

long lags on price variables in particular. In period the models 

perform well in statistical terms and they mainly satisfy the 

standard tests at the 1% level. In the case of inventories the 

events of one quarter in particular seem to be important which 

suggests that failure is due to this one outlier.

The assumption of exogeneity is important when we use these 

models as forecasts in the models of output and employment in the
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next section. It is difficult to test for exogeneity, but 

Davidson et al(1978), Engle et al(1983) and Hendry and 

Richard(1983) suggest ways in which this may be done. Strict 

exogeneity implies that variables included in a regression are 

not correlated with the error, but this definition as we saw in 

Chapter 2 is not consistent with the reformulations which are 

undertaken when we derive an econometric model. Weak exogeneity 

is the appropriate condition, but that requires a model which is 

parameter invariant. We suggest that the models presented come 

close to such a definition, given the limits of classical testing 

procedures in analysing such problems. If the variables are not 

weakly exogenous, then it seems likely that they are not caused 

by the endogenous variables under the current parameterisation. 

Finally the models do not produce stable predictions which is not 

surprising, but if the series are non-stationary the prediction 

do not seem to be explosive. The parameters need to be inverted 

into an MA form, but in this instance that is not possible 

because of the non-stationarity. In practice we do invert and 

then truncate the moving average parameters.

3.3 Conclusion

The models presented here perform reasonably well in terms of the 

standard test procedures suggested in the literature and 

associated with the correct implementation of ordinary least 

squares. The wage and price models have long-run solutions which 

do not reject the notion of real relationships being important in 

the long-run, though the models are close to rejecting the 

hypothesis that they have a long-run solution. The standard time
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series approach adopted by Sims would suggest that we deal with 

variables in differences rather than levels. The procedure would 

eliminate the difficulty with inverting the parameters, but as we 

will see in the next section such a difference model does not 

seem to be supported by the data. The forecasts of the series 

seem to increase over time, but in a non-accelerating way which 

seems to give some credence to the cointegration hypothesis. If 

the series are cointegrated, then the VAR parameters do suggest a 

simple way in which we can reverse the Yoo procedure to 

transform the results into those associated with the VMA form in 

cointegrating variables. If we had such a technique it would be 

possible to invert any autoregressive form what ever the order of 

integration or cointegration into the moving average 

representation required here.

When the vector series are all stationary in differences or 

levels it is possible to invert the system into a VMA form, but 

when the series are cointegrated the process is more complicated. 

In the first section we showed that it was possible to use the 

prediction formula to eliminate the expectations in (3.12), but 

use of the VAR representation of the exogenous variables does not 

produce the type of rational expectations system suggested at the 

end of the last chapter. It can be shown that the cointegration 

representation can always be transformed into a VMA. If we re­

write (3.15) in the following way:

(3.32) Ast = (C(l)L + (l-L)C*(L))6t

Aa'st = a'(C(l)L + (l-L)C*(L))€t 

Ant = (a'C(l)L + (l-L)a'C*(L))€t
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Ant = (l-L)a'C*(L))6t

(3.33) Ht = C+(L)6t

It is possible to partition the vector of cointegrated variable 

into those associated with the endogenous variable process n^t 

and those linked to the exogenous variable process n2t' The 

partition of the exogenous variables in Equation(3.33) produces 

the following prediction formula (see Hunter(1988)):

(3.34) E(n^^^lft^) = C^2^h)^et

where = C^^Ci) + C22CÎ+13L + C^^Ci+ZiL:

Substituting out for the expectations in (3.12) produces a very 

specific VARMA system and when we also partition the xs out

(3.12) becomes:

(3.35) F*(L)s^ = D*(L)e^

F (L)

D (L)

d(L)

where

and = F^^Cj] C'^CL).

In the next section we will use a method which uses such VMA 

processes and can take account of cointegration in the endogenous 

variables; that is the recursive method of Hunter(1984) and 

Sargan(1982). The method requires stable forecasts, one step

148



ahead prediction errors and the moving average parameters of the 

exogenous processes. The cointegration approach to modelling the 

exogenous variables naturally feeds into this procedure, because 

the VMA representation always exists and when the exogenous 

variables are cointegrated the predictions are highly efficient 

(see Granger and Engle(1987)). Substitution using the VMA 

produces a computationally efficient method of estimating the 

quasi-reduced form which allows one to estimate the deep 

parameters of the model.

l.In practice the actual data is likely to incorporate the two 

effects, in the short-run the nature of the data would suggest 

that the disequilibrium one would dominate while in the long-run 

disequilibria should disappear or become small and then the 

investment effect should dominate.

2.A:Lagrange multiplier test of residual serial correlation; see 

Pesaran and Pesaran(1987) or Harvey(1981)

B:Ramsey's RESET test using the square of the fitted values; 

see Pesaran and Pesaran(1987) or Harvey(1981)

C:Based on a test of skewness and kurtosis of residuals, due to 

Jarque and Bera(1981) also see Pesaran and Pesaran(1987)

D:Based on the regression of squared residuals on squared

fitted values see Pesaran and Pesaran(1987) or Harvey(1981)

E : A test of adequacy of predictions (Chow's second test) see 

Pesaran and Pesaran(1987) or Chow(1960)

F : Predictive Failure test in Hendry(1979)

G : Autoregressive Conditional Heteroscedasticity Test of 

Residuals(ARCH), see Pesaran and Pesaran(1987) or Engle(1982)
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H:F and Likelihood Ratio tests of restriction in relation to 

general model 3.21 see Pesaran and Pesaran(1987) or Harvey(1981)
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Chapter four
Dynamic models of output and employment estimated using the 

solved form of a rational expectations model.

In this chapter we look at first order rational expectations 

models of output and employment. The methods used here follow the 

optimal control approach suggested by Chow (1975), (1983) and 

(1980) which views the economy as minimising the distance of 

actual values from a target. The target can be seen as an 

equilibrium for the agent or the economy and this can be related 

either to a notional relationship or equilibrium point. Here, we 

extend and use the techniques presented in Sargan (1982) which 

assume an optimal control framework. Though that paper deals with 

cost minimisation, the usual duality between cost minimising and 

the maximisation of an objective function still holds. When the 

target and the revenue functions are equivalent, then the cost 

minimising approach produces the same first order conditions as 

that associated with agents maximising profit subject to costs of 

adjustment.

In the first section the model presented in Sargan(1982) is used 

to produce a forward representation of the usual first order 

rational expectations model in which the expectations are 

replaced by actual values using the Wiener-Kolmogorov prediction 

formula. We then deal with the different representations of the 

rational expectations model and relate them to cointegration.

In the second section we derive the target or equilibrium model 

associated with cost minimising approach; this is equivalent to
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selecting a revenue or cost function in the profit or utility

maximising case. In section three we specify the results of an

output employment model and present the Muellbauer form of the 

first order condition which is used to produce initial estimates. 

In section four we discuss the different representations 

associated with the first order condition and compare them with 

the full method. In the final section we discuss aggregation and 

use that to rationalise the model with serially correlated 

errors. We also produce additional results which introduce the 

theoretical extensions dealt with in the final chapter.

4.1 Cointegration and First Order Rational Expectations Systems

In the literature it is usual for a rational expectations model 

to be the solution of a quadratic optimisation problem. 

Sargan(1982) deals with a control problem in which agents

minimise a loss function subject to cost of adjustment matrix K 

and disequilibrium cost matrix H, where H and K are usually

assumed to be positive definite. Sargent(1979) and Sargent and 

Hansen(1980) have dealt with agents maximising an objective

function subject to cost of adjustment; the necessary conditions

for a maximum are satisfied if the coefficient matrices H on the 

stock and K on the flow are negative definite. Kollintzas(1985) 

derives weaker conditions for a cross product model similar to 

the one presented in the chapter 5. Here, we will look at a 

quadratic objective function, though similar results may be

derived for more general models:

T t(4.10) r\ = E{ Z 6 (Ay'K Ay^ + (y^ - z, )'H(y^ - z^> }
t  “̂ 3 0  "t "C t V t
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where 0 is a discount factor an gxl vector of exogenous 

variables and an gxl vector of target variables.

The first order condition related to this first order rational 

expectations model is well known in the literature, see 

Sargent(1979), Sargan(1982) and Hunter(1984) and (1985). It can 

be simply derived by differentiating (4.10) with respect to y% 

which gives us:

(4.11a) Lim E(H(y'p - zT ) + K(y^ ~ VT-1^ 10-̂ ) 0
T œ

where Û = H + (1+6)K and 0_= K = O' which is the o 1 1
definition in Sargan(1982) and H and K are normally 

positive-definite when we are dealing with a minimum.

This form of the first order condition will be covered in more 

detail in section four where we will discuss the problems with 

estimating the model using such conditions and look at the 

different representations of (4.11) associated with endogenous 

variables which are stationary in levels, differences and 

conjointly. Here we are interested in solving the stochastic 

difference equation and then using that solution to reveal a 

variant of the forward solution which allows us to estimate the 

deep parameters and which only depends on one step ahead forecast 

errors and a small subset of exogenous variable predictions. 

Equation (4.11a) is the transversality condition which also has 

to be satisfied if we wish to derive a full solution to the 

rational expectations problem.

The solution and the derivation of tractable identification
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conditions is often assumed to hang on the auxiliary assumption 

that the xs and ys are at least weakly stationary. Time series 

data are then transformed into first differences or de-trended 

before the model is specified, but as we shall see in section 

four that is not always appropriate. If the endogenous variables 

are cointegrated, then the g levels terms in the loss function 

will exhibit a dependence relationship n^^ =a'yt where n^t is a 

sub-vector of r variables which are linear combinations of the 

original ys. H is then rank deficient and that singularity forces 

us to transform the model to remove any zero roots, but the 

transformed model can then be reformulated to produce the usual 

first order condition (4.11) (see Appendix A1 for details). When 

the ys are cointegrated we just have a special case of the 

standard result in which the parameters have to satisfy 

additional restrictions, but all of the results for the usual 

case in which r=g also go through under cointegration.

The standard solution to the difference equation (4.11) is 

covered in Appendix A2, so that we have what Sargan(1984) calls 

regular or saddle point solution in which there are equal numbers 

of stable and unstable roots. Hence, equation (4.11) can be 

replaced by equation (x) in Appendix A2 when H is positive-semi- 

definite and K positive definite (Kollintzas(1985) proves this 

result for the cross product model dealt with in chapter 5):

E((6F + F"l)yt - 6yt+i - yt-1 = Bo^t '̂ t̂̂

where B = ( 0 F + F ^ - ( 1 +3 )I )  and F = PMP~^. o

We can confirm Kollintzas result as the singularity associated 

with cointegration implies that H either has a g-r zero roots or
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r positive ones, but as we will see below this does not affect 

the form of the forward solution. We can pre-multiply the 

equation above by F to reveal a form of the first order condition 

which can then be easily transformed into a forward looking 

model :

E((BF= + I)yt - 6Fyt + i - Fyt-i = FB^z^ \Çl^)

Where Bq = (6F + F"1 - (1+0)1)

Re-writing this in a more appropriate from we have:

(4.12) E((I - BFL-1)(I - FL)yt = FB^z^ 10%)

In equation (4.12) F may have a number of unit roots as the 

effect of cointegration is to remove g-r levels terms from the 

system, but that does not preclude us from inverting (I - 6FL“ )̂ 

so that a forward representation exists even with cointegration:

(4.13) - F y^ = 2 (0F)®FB E(z^ 10̂ ) + u^t 't-1 3 =0 o t+s t t

Equation (4.13) is exactly the same open loop solution, as that 

presented in Nickell(1987) as the forward solution associated 

with a system of factor demand equations derived by maximising an 

intertemporal profits function. In that instance z% depends on 

the structure of the revenue function, so that the solved form is 

no different when the target is the same as the revenue function

associated with no costs of adjustment. A unit root in the

forward convolution does not affect the forward solution, as the 

unstable roots in F are in the null space of Bq . If we look at

canonical form of the forward convolution we have that:

®FB = 6®P M^*^P-1(6F + f "^- (1+0)1)(0F) FBo
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where F = PMP 1, PP 1 = I and M =diag(pi,p2 ••• Pg) and 

Pi = 1 for i = g-r, ... ,g then:

0®P M^*^P-1P(6M + M (1+6)I)P-1

= 6®P 0
0 BI

0
0 I

-(1+B) I 0 r

B®P
-1(BML+ M, - (1 + B) I ) 01 1  r

0 I 

)P-1

B®P Mf^(BM + (1 + B) I ) 01 1 1  r
0 0

)P-1

When there is cointegration the forward solution only depends on 

the r stable roots of the system. Usually we would use the

substitution method to replace the forward expectations using a 

finite order Vector Auto-Regressive(VAR) representation. Hence, 

when = Ax-̂  (A may or may not be of full rank) we may have the 

stable VAR representation of the exogenous variables given below:

(4.14) x^ = f B.x^ . + and E(x^ 10! ) = E B.E(x^ . 10" )t 1 t-i t t+s t 1 t+s-i t

when the xs are also cointegrated B(l)= and some of

the exogenous variables then may appear in differences 

and others in levels (we do not deal with this here).

Given that it is always possible either to derive a VMA

representations in difference or in levels we can re-write (4.13)

as a generalised Wold moving average form:

^t ^ ^r ^t+s s=o
and E (X. 10! ) = Z C e.t+s t p=g r t+s-r

where is a Martingale difference or white noise 

innovation.

The Wold Moving Average form is convenient to use, as cross
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period expectations! differences simply depend on the innovation 

or news. If we compare the t period expectation with the t+1 

period expectation then we have the following result which can be 

used to substitute for future expectations of the exogenous 

variables. Therefore;

(4.15a)

(4.15b) E(x^^^l!)^.^) - E(x^^^in^) =

If we pre-multiply the left and right hand side of equation

(4.13) by (I - GiL'l) where = 6F and = Ax^, then:

(4.16) (I - GiL"l)(y^- Fy_ - u^)= 2 (6F)®FB AE(x^ 10! ) - ̂t 't-1 t g=o O t+s t
® sBF 2 (BF) FB AE(x^ I fi , ) s=0 o t+s t+1

® s= FBAx_ + 2 (BF) FB A(E(x^ Ifi ) t g=i o t+s t

If information is truly dated at time t, then we can use (4.15a) 

to replace the differential in expectations in (4.16) above, so 

that we replace the future expectations by a term in the one step 

ahead forecast error:

(4.17) (I - GiL'l)(y^ - F y^ -u )= FB Ax^ + FB 2 (G.)~AC .^t 't-1 O t Og=l 1 S-1 t+1

We can now reverse the transformation to produce a model which 

involves the one-step ahead forecast error and actual values of 

the xs.

yt-F)'t-r“t= (I-GiL-l)-l(G; x^- G3 Et+i*
* ® iwhere G = FB A , G_= FB D and D = 2 G AC ,o o 3 o j = i 1 j-1

This obviously has a representation which is equivalent to
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(4.13), but we can re-write this in a recursive form which 

clearly indicates the benefits of this approach:

(4.18) yt - Fyt -i - = h^

(4.19) ^

Equation (4.19) represents the infinite lead which we can 

truncate by arbitrarily selecting a point T such that 

h^+i = 0 and then we can replace h^ in (4.18) using the series 

derived by the repeated application of (4.19). For a large enough 

post sample period the terminal conditions do not seem to matter, 

as the influence of the future convolution seems to decay quite 

quickly. This technique should be relatively efficient and in 

comparison with (4.13) it involves a considerable saving as one 

step forecast errors are required rather than T-N future 

expectations at each period. In section three we will use this 

representation to estimate a model of output and employment, but 

first we deal with the other solutions and discuss the impact of 

cointegration.

The backward solution which is attributed to Sargent(1978) can be 

derived by repeatedly replacing the exogenous variable 

expectations in (4.13) using the formula for x in (4.14).

p-1 +(4.110) F(L)y = 2 G X. + u t s=o s t-s t

where F(L) = I - FL has all of its roots on or outside 

the unit circle.

A stable backward solution can be derived as long as the xs grow 

at a rate less than or equal too l/6(see Sargent 1978). Hence,
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the derivation of a solution which imposes the rational

expectations restrictions does not necessitate stable processes 

for the exogenous variables. Obviously, it would be sufficient 

for these series to be jointly stationarity as occurs with 

cointegration, but that is not necessary.

It is usual to give rational expectations and cointegration 

models different time series representations and the case in 

which the endogenous variables are cointegrated is not an

exception. When we have cointegration amongst the endogenous 

variables there are g-r unit roots in the polynomial associated 

with the endogenous variables. The unit roots imply that the

autoregressive parameters cannot be directly inverted to produce 

a stable Vector Moving-Average with exogenous variables(VMAX)

representation in levels, but we have a result due to Yoo(1986) 

which allows us to invert such polynomials. If we let F(L) = V(L) 

M*(L) U(L), then we can re-write (4.110) above in the following 

way :

(4.111) V(L)M*(L)U(L)y^ = Z G x^ + u^t s=o s t-s t

where V(L) = P(L) and U(L) = P”  ̂ are non-singular matrixes

and M (L) =
I 0 I - M L 0r P(L) = P 1
0 ^ ^g-r 0 Ig-r

— •- — — —

We can now invert this form of the model to produce the VMAX or 

VMA error form of the rational expectations model, taking care to 

introduce a first difference at the appropriate point:
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(4.112) Ay. = G (L)x  ̂ +C(L)u,t t-s t

where G*[i]=U(L)‘^M‘̂ ( L ) V ( L ) a n d  C(L) =U(L)"^M* (L)V(L)^

and M (L)
AI 0r

Ig-r

The Smith-Mcmillan form can also be used to give the 

autoregressive parameters an error-correction representation when 

we have a dependence between the exogenous variables . Here, the 

correction term associated with cointegration of the endogenous 

variables is separate from the correction term in the loss 

function which relates to a cost to disequilibrium. We can 

directly reformulate F(L) using the following factorisation F(L) 

= (d-FL) - (1-L)F*(D) and F*(L) = I. Therefore:

Ay^ + (I - F)y^  ̂ = G (L)x^ + u^

When we have non-trivial cointegration I - F = and

(I - F) has g-r zero roots so that rk(I - F) = rk(t^) = 

rk(a^) = r .

We can also factor G*(L) in a similar way using G (L) = (G*(1)L + 

(1-L)G*(L)) and if G*(l) = (I - F)A then we have a stable error

correction representation which produces the same long-run

parameters as the rational expectations system.

(4.113) Ay^ = (I - F)(Ax^_^~ y^ ^) + G*(L)Ax^ + u^

where (I - F) is singular.

Due to the disequilibrium structure of the model the endogenous 

and exogenous variables are either jointly cointegrated or error
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correcting between the target and the actual value. When the 

endogenous variables are cointegrated it may be possible to 

derive the long-run parameters of the rational expectations model 

from an error correction representation like (4.113), but such a 

representation is likely to be inefficient unless the rational 

expectations restrictions can be imposed. We will also find in 

section four that a more natural error correction from exists 

which allows the parameters of the system to be estimated more 

efficiently.

The error correction model is a specialisation of the backward 

solution which has often been used to estimate rational 

expectations models, for example see the employment model in 

Nickell and Layard(1985). In general, such estimates of the 

backward solution do not usually reveal the deep parameters, the 

method due to Kollintzas(1985) is a notable exception. In this 

light, equation (4.18) and (4.19) provide an approach to the 

problem which is efficient and which allows all of the parameters 

of interest to be estimated. In the next section we will use such 

results to rationalise a model of output and employment and that 

model will then be estimated in section three.

3.2 Definition of the equilibrium model of output and employment

The cost minimising approach presented in the previous section 

can be seen as one of three possible ways to derive the first 

order condition equation (4.11) for an output employment system. 

The other two methods involve either maximising an intertemporal 

profits function or the use of the simple artefact of assuming a
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dynamic macro relationship which is the same as the other two 

solutions.

Given acceptance of the loss function in the previous section or 

the model from chapter 1 we will start from the first order 

condition (4.11) which in the case of the output employment 

equation becomes:

(4.21) E(Q "t - BQ’ '’t.l - V i = H *

> ^t-1

in )

where and 1^ stand for the log of actual output and 

employment, the * denotes target or equilibrium values 

and the matrices and H are two by two.

Equation (4.21) is in logs which means that it does not have a 

direct analogue based on profit maximisation, but it does have 

two possible interpretations. The first assumes that (4.21) is a 

structural form of unknown origin which corresponds to the 

solution of the loss function and that is the model derived in 

Chapter 1 the second relates to the cost minimising model of the 

previous section. The problem with that method is that we require 

a model for the target variables, as our cost matrices relate to 

adjustment cost and disequilibrium cost or cost of false trading 

to mirror the results of Chapter 1.

The models in the previous section give some credence to the 

ideas that wages and prices are jointly determined with 

inventories and vacancies. In turn output and employment 

decisions are then conditional on such values. Output is chosen 

in the context of quarterly data as being a variable over which
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plans are made because firstly it is costly to adjust and 

secondly it is a relatively free variable when price is set and 

inventories are used as a buffer stock. Inventory investment 

decisions are then seen to involve a longer time profile, while 

in the short-run inventory adjustment is assumed to take up the 

slack. Employment has long been considered as a slow adjusting 

variable, the only question is whether employment decisions are 

independent of other factor demand decisions. Partialing out 

other factor demands either implies that they adjust 

instantaneously or that they are separable from other such 

decision. Separability may be relevant for the majority of 

investment decisions, as labour costs at the inception of large 

projects are of second order importance and when the project has 

been implemented the investment cost has been met so that then 

there may be no substitutability between labour and capital. 

Decisions are of the putty clay type which means that labour 

costs may only impinge on the decision making for a small period 

of time. Even when a project is running short-term investment 

decisions may be more dependent on the initial capital decision 

than on labour costs.

So far in this section we have dealt with standard relationship 

in which agents make choices conditional on a vector of exogenous 

variables which are given. In the second instance it is assumed 

that agents attempt to minimise a loss function subject to costs 

of adjustment and costs of being away from equilibrium. Implicit 

in this is the notion of a two stage problem in which agents know 

the true equilibrium relationship or their notional response 

function, but due to costs of adjustment or price stickiness
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they are not able to attain that equilibrium immediately. The 

observed model represents the adjustment process to equilibrium 

which is based on the feedback responses generated by solution of 

the control problem. The equilibrium which is being chased is 

dependent on the concept of equilibrium we wish to select, it is 

obviously an attainable point in price quantity space, but what 

determines that point depends on the period at hand, the speed of 

adjustment and the perspective of the agent. A standard neo­

classical framework would suggest that the agent is attempting to 

attain the full equilibrium of the system, but that seems a 

strong assumption to make and it would appear to be inconsistent 

with the idea that the agent only knows his own notional reaction 

function or such relationships in the market in which he is

operating. If we do not attain full equilibrium we may still

observe the agent attaining points on his function which are 

consistent with free unconstrained action, but once full market 

clearing is denied as a useful equilibrium concept we need to 

assume that the agent needs to take account of the fact that it 

may not be possible to attain a point on a notional curve. If the 

data used are of a relatively short period relative to the known 

period of adjustment of the market or a particular contract holds

for a given market then it is quite feasible that the min

condition is the appropriate condition to choose.

If there is inertia in the system, so that prices do not adjust 

to clear markets, then the non-forced trading condition holds and 

trades occur at the minimum of supply and demand curves. 

Malinvaud(1977) and Barro and Grossman(1974) deal with such 

disequilibrium models in which agents are constrained in the
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short-period by the order of price and quantity adjustment being 

reversed. If quantities adjust to clear markets first, then 

trading occurs at false prices and if agents cannot be forced to 

purchase more than they wish the short side of the market 

dominates. The multiple contractions produced by such quantity 

adjustment lead to sequence of rationed equilibria which are 

generally not consistent with full equilibrium of the system. In 

addition to this, the effect of non attainment of equilibrium in 

other markets will spill over into the market of interest. If the 

min condition is to be of use then we must concede either price 

or quantity adjustment in the market concerned leads to at least 

one notional curve being attained. Otherwise we are left with 

any point in the wedge to the left of the min condition being a 

valid equilibrium point. In principle that is not a problem as 

spillovers or fixed prices could lead to that being the case, but 

in practice any point being an equilibrium seems only to be 

consistent with total inertia. The min condition is then accepted 

as the long-run or medium-run or temporary equilibrium to which 

agents adjust.

Maddala(1983) revues the methods used to estimate models of 

disequilibrium, which includes switching regressions, continuous 

switching and the latent variables approach of Hendry and 

Spanos(1980). The min condition implies a discrete switching 

model which complicates our analysis considerably, because in our 

case the error term which helps to identify the appropriate curve 

is a theoretical error related to the equilibrium condition and 

not the equation error which is estimated. The min condition is 

also not appropriate, because the data to be used are aggregate
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time-series data which relate not just to a single market, but to 

a sequence of markets in different states of equilibrium. In the 

aggregate, if their is orderly trading, then Muellbauer(1979) has 

shown that the discontinuous function defined by the min 

condition is replaced by a continuous non-linear function bounded 

to the right by the min condition(see fig 3.1 below).

P

q

FIG 4.1 A Model of 
Continuous Switching

The min condition is defined by the v shaped curve abc which is 

the minimum of supply and demand with respect to quantity and the 

equilibrium relationship defined by continuous switching is given 

by the dd curve. The continuous switching model has recently been 

applied to models of the labour market by Muellbauer and 

Winter(1980) and Nickell and Andrews(1983). Muellbauer assumes a 

distribution of firms and households experiencing different 

degrees of rationing which in the aggregate produces a continuous 

shift between markets in excess demand and those in excess 

supply. Hence we observe the continuous line dd rather than a 

discrete shift in the aggregate. The model is also consistent
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with the notion of a natural quantity for a good or natural rate 

of unemployment in the labour market, as we never attain a full 

equilibrium in which all markets clear.

The simplest employment model is derived by assuming a uniform 

distribution of firms, otherwise an excess demand term appears as 

a function of the density and distribution function selected. 

Nickell and Andrews deal with the case in which the firms are 

distributed normally, but here we follow Muellbauer(1979) and 

assume a uniform distribution. Muellbauer and Winter show that 

the following relationship exists between employment(l), labour 

demand(l^) and vacancies(v):

(4.21) d _

For a given labour demand function we can derive the actual 

employment relationship. Therefore:

= zdAo +
2

Where describes the unexplained element of demand.

Taking all variables to be in logarithms labour is chosen

initially to depend on wages(w), prices(p), vacancies and the 

change in inventories(Ai). Vacancies are included to take account 

of spillovers from other labour markets and inventories to take 

account of similar factors from the goods market. Substituting 

out for the demand curve in (4.21) gives the static employment 

equation associated with the model.

(4.22) 1 = - a^^Ai ♦ (a,,- l)v * a^jP * a^^w *6^
(-) (.) (-) (♦)

and in a real employment equation «123“ ”^24
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The demand relationship is similar to that described in 

Muellbauer and Portes(1978) (which is reproduced in 

Branson(1979)) in which employment depends on real wages initial 

endowments and a number of expectational variables 

related to the state of markets.

The goods market can be treated in a similar way if we assume 

that stocks act as a buffer and if the extent of the market is 

limited in the sense of Arrow(1959). Hence, we observe the demand 

function and firms have downward sloping demand curves. In the 

short-run prices do not adjust, because any slack is taken up by 

stock holding. Such behaviour is quite consistent with the 

observation that most firms do not continuously change prices 

and the possibility that firms target the market to satisfy 

demand. Such a story is quite compatible with firms facing costs 

in adjusting output and a reputation cost when they do not meet 

demand. It may be possible for customers not to be able to find a 

particular brand, but it is unusual for them to be completely 

rationed in a good, because of the existance of substitutes. 

Individuals may make second best decisions or delay purchase, but 

that will rarely effect employment or produce a strong spillover 

into other markets, because the consumer will either buy another 

brand or order the good they wish to buy. Consumption is usually 

delayed rather than not undertaken. If speculation in goods is 

small or inventory accumulation fairly constant then the non­

constant/non-trend component of the inventory series mainly takes 

account of disequilibria. If o^ and o® are the demand and supply 

of goods and q® and q^ are the demand and supply of output then:

s s o = q > Iq
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d d o = q
s d s . do - o = q + i Q - q  =1^
s dq - q = Al

The analysis assumes that hording is either expensive, constant 

or that inventory investment can be modelled by a trend, but in 

reality such assumptions are likely to be affected by the 

governments tax position and interest rates. In this section we

will assume that such factors are not important, but later on we

will deal with them. Using the disequilibrium argument for stock 

building we can derive a similar expression for output to that 

derived for the employment equation:

(4.23) q = q^ + Ai

Given a particular output demand equation we have assumed in the

goods market that the analogue of dd is the notional demand 

function. It is assumed that demand is either met out of output 

or stocks which implies an aggregate relationship slightly to the 

left of the true demand curve.

qd = z^A + G 
1 1 q

where €q is the unexplained component of output demand

Taking all variables in logarithms output demand is assumed to 

depend on real wages, inventory accumulation and vacancies. Where 

vacancies determine spillovers from the labour market and 

inventory accumulation spillovers from other goods markets. 

Otherwise they can be thought of as taking account of the state
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of these markets. Substitution of a logarithmic demand function 

produces the following model of output:

9 " «10* ‘«11* * «12'' * «I3P * «14" * S
( - ) ( + ) (-) ( + )

In selecting targets of this type we do not presume market 

clearing, but in the same way as the min condition presumes 

that we are either on the demand or the supply curve the 

equilibrium or notional relationships assume that the 

observations are consistent with that equilibrium concept. Hence, 

consumers are not forced to consume more of a good than they 

desire or firms to take more labour than they would wish. In the 

case of manufacturing output this seems to be reasonable, as 

consumers usualy have no control over merit goods or goods 

centrally provided. Hendry and Spanos(1980) deal with this 

problem, as they use the notion suggested by Frisch which does 

not limit our observed model to lie on the wedge given by the min 

condition or the continuous line given by dd. The Hendry and 

Spanos approach treats the disequilibrium phenomena as a latent 

variable, the resultant model is an error correction model. The 

approach presented here is similar, as the first order form of 

the rational expectations model has an error correction 

representation and the short-run model does not constrain the 

results to satisfy the min condition. Hence, actual output may 

lie anywhere in output-price space, but in the long-run agents 

are constrained to attempt to hit the demand curve for output. 

The short-run model of output and employment is based on the

^In practice (aig+l) will be a composite which partly 

depends on the fact that the actual series used is not the 

logarithmic difference, but the log of the difference in levels.
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solved rational expectations form (4.18) and (4.19) which then 

embeds the long-run relationship within it:

(4.24)
^t - F St-1 - "it = hit

> ^t-1 "2t

(4.25) hit = F Bq ^ 0  *ll+ ^12 ®13 ®14

h2t ^20 ^21 *2&" ^23 ^24

lt-1

2t-l
+ 6F lt-1

2t-l

1
Ai

Next we will deal with the estimation of the model associated 

with equations (4.24) and (4.25)

4.3 A Rational Expectations model of output and Employment.

In this section we deal with the Muellbauer form of the first 

order condition which we use to produce initial estimates of our 

output employment model by instrumental variables, then the 

system is estimated efficiently by maximising the concentrated 

Likelihood function associated with (4.17) and (4.18) above. The 

results are then analysed, a test for serial correlation 

presented and the models re-estimated using an approximate 

adjustment for serial correlation.

Initial estimates are derived using a transform of the first- 

order condition by the errors in variables method due to
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Wickens(1982) which is the approach used by Muellbauer and 

Winter(1980). If we work the expectations operator through (4.17) 

in section one, then:

-1If we then pre-multiply each side by F and re-arrange the terms 

in y:

(BF + F )y - (y  ̂ + By  ̂ ) = B Ax r B Dg . + F *u . - But t-1 t+1

then by subtracting (1+B)y^ from the first and second term on the 

rhs of the equation above we have that:

(BF + f '^- (l+B)I)y^- (y^ + 6y_ - (1+B)y^) =t 't-1 't+1 't

where B = (BF + F (1+B)I) o

(4.31) y^ = B ^(BAy. - Ay^) + Ax^ + I.' t o 't+1 ' t t t

where Z = - D g . + F ^B ^u^ - BB û.t t+1 o t o t+1

In the context of the output employment equation, (4.31) is in

the errors in variables form associated with Wickens (1982). The

original expectations have been replaced by actual values which

creates an error in variables, but the structural parameters can

be estimated consistently by applying the generalised

instrumental variables estimator to (4.31)(see Harvey(1981) or

Sargan(1988) for an explanation of GIVE). The method can be much
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simplified by setting 6 = 1, so that the first term on the Ihs of

(4.31) becomes an acceleration in y. This is similar to the 

method used by Muellbauer and Winter(1980)  ̂ except that they 

impose the coefficients on the acceleration term in an employment 

equation using cross section results. The instrument set we use 

involves six lags on output and employment and the current values 

plus four lags on wages, prices, vacancies and inventory 

accumulation.

The GIVE results of our output employment model are presented in 

the first column of table 1. The deep parameters seem to accord 

reasonably well with theory, except for a positive coefficient on 

price in the employment equation. The Bq matrix which is directly 

related to F has negative roots which is incorrect when the model 

is based on agent optimisation and the model is not well

specified. We will see in the next section that their are two

possible reasons for such a result; firstly unit roots and 

secondly benefits associated with bringing forward production or 

consumption (see Kollintzas(1985) for an explanation). The two 

equations suffer from serial correlation which is predicted by 

the exclusion of any adjustment for the VMA error in (4.31), 

although the forward looking nature of the error structure should 

guarantee consistency when we estimate the model using

instrumental variables. There is no guarantee that the VMA error 

is the sole cause of the serial correlation and additional tests 

would suggest that the model is not well specified. In

particular, the output model fails the Sargan(1964) test for 

instrument validity at the IX level(x(26) = 52.34) and the

employment equation at the 5%(%(26)=41.23). In the light of
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serial correlation this is not surprising, as the test is a 

general test of misspecification. Hence, rejection of the 

instrument set is only valid when the other specification tests 

are satisfied.

The errors in variables approach should consistent, but 

inefficient parameter estimates when the model is correctly 

specified. To produce estimates which are fully efficient we need 

to take account of the moving average error term implicit in

(4.31), but there are two problems with using such methods. 

Firstly the moving average term has roots inside the unit circle 

which can only be dealt with when an exact maximum likelihood 

method is used (see Pesaran (1978)). Secondly a difficult non­

linear procedure is further complicated by imposition of the 

rational expectations restriction which require F and Bq to be 

inverted at each step. At this point we would suggest that 

equally efficient estimates can be derived by iterating over 

equations (4.24) and (4.25) above. If the errors are normal or 

tend asymptotically to normality, then we have the following 

likelihood function:

_lN
(4.32) Log(L) = -NG Log(2n) - %N LoglOl - % tr(0 2 u u')

t=l ^ t

where u^ = yt “ FVt -1 ' and h^= G*x^- ® l \  + l

We can simplify the problem by concentrating out 0 and then 

replacing it by a consistent estimator or we can use a consistent 

estimator to produce a quasi likelihood function which should be 

optimal in large samples( see White(1982) or Heijmans and 

Magnus(1986)).

Logdfn) = C - Log in I
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Hence the objective function that we are going to minimise using 

the Quasi Newton Method suggested by Gill Murray and Pitfield( 

see Wolf(1978) or Sargan(1988)) is minus the concentrated 

likelihood divided by an adjustment factor § which scales the 

problem to lie between zero and one( these are limits which are

optimal for the Nag routine E04JBF).

Log L = %N (log I S l)/@

N
where S = l/N(^Z,u_u') is a consistent estimator of 2 t=l t t

The method chosen has the advantage of not requiring first 

derivatives which are difficult to compute given the infinite 

lead and the complexity of the non-linearities. Quasi-Newton 

methods use the steepest descent approach and when we have a

quadratic objective function the method selects an optimal 

conjugate direction (they are H conjugate, so that the search

directions form a basis of the parameter space). Variable metric 

methods are a special case of the steepest descent approach which

adjust for non-singularities of the Hessian or second derivative

matrix. The method of Gill Murray Pitfield method uses a rank one 

update to compute a new estimate of the inverse of the Hessian 

based on the Cholesky decomposition. The update approximates the 

inverse by selecting the diagonal factors in such a way that it 

is guaranteed to be non-singular and it converges to the true 

matrix in a neighbourhood of the optimum. The inverse of the

Hessian can be used to produce an estimate of the variance-

covariance matrix of the parameters.

H e s  > lA s.t. Hes =  ̂Log(L )
N ”>œ 68^60
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then :

(Hes)"l = V(0) s.t. Hes* = Hes/9

/N(8 - 8) ~ N(0, V(8)) and t = ~
Vavar(Q^)

The estimates of the variance are computed directly and 

indirectly using the Hessian and an estimate of the Hessian 

computed using a local approximation to the second derivative 

matrix in a neighbourhood of the optimum. The standard errors can 

only be expected to be approximate, due to the bias associated 

with the generated expectational variables and the associated 

parameters of the moving average processes of the exogenous 

variables( see Pagan(1984) for discussion of this problem). 

Sargan and Marwaha(1986) have produced some simulation evidence 

for the single equation case which shows that the bias may be 

small when either the roots of the exogenous variable processes 

or those of the rational expectations system are close to the 

unit circle, but the evidence is not strong enough to suggest 

that the problem can be ignored. Unfortunately the second 

derivative matrix cannot be computed directly and estimation of 

the appropriate second derivatives is somewhat cumbersome as it 

also requires alternative estimates of the innovations. I believe 

that the standard errors are likely to be under estimates, 

although the effect on the likelihood of dropping certain 

variables would suggest that they are not too far from the truth.

In table 1 below the column 2 and 3 are estimates of equation 

(4.24) and (4.25), that have been derived recursively using a 

zero terminal condition and 51 future predictions. In terms of
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Table 4.1 Output and Employment Models
MODEL 1 2 3 4 5

MANUFACTURING

OUTPUT

Fll 0.69384
(0.04066)

0.67837
(0.07006)

0.41628
(0.07370)

0.70097
(0.06460)

F12 ZERO -0.17758
(0.16557)

-0.28047
(0.13886)

-0.21779
(0.06779)

Boll -0.1685
(0.1538)

0.28394 0.27333 0.92612 0.16832

Bo 12 -1.6546
(1.3531)

0.00000 0.20126 0.55754 0.15781

Dll 0.05438 -0.06221 -0.07471 -0.31898
(0.23396)

Di2 0.06613 0.05159 -0.00831 -0.43366 
(0.43751)

Di3 0.40608 0.44822 0.08451 -2.86588
(2.98395)

Di4 0.63728 0.67737 0.18038 1.56476 
(1.72885)

ail 0.0942 0.36652 
(0.0286)(0.07464)

0.12668
(0.13184)

-0.03334
(0.05669)

-0.15150
(0.21619)

ai2 0.0542
(0.0135)

ZERO 0.02608
(0.02265)

0.03259
(0.00931)

-0.05181
(0.05279)

ai3 -0.6337 -0.66542 
(0.0385)(0.05292)

-0.73457
(0.06699)

-0.38821
(0.02632)

-0.74501
(0.06118)

ai4 0.6542 0.66542 
(0.0316)(0.05292)

0.73687
(0.05756)

0.16712
(0.03270)

0.75353
(0.05204)

SEASONALS 3.6538 1.18157 
(0.1992)(0.11982)

1.55309
(0.24026)

1.25334
(0.08084)

2.14862
(0.38673)

0.0401 -0.61439 
(0.0261)(0.12002)

-0.43460
(0.13245)

-0.12165
0.05117

-0.22657
(0.34692)

0.0185 0.20450 
(0.0254)(0.05266)

0.03424
(0.09858)

-0.07015
(0.04919)

-0.33856
(0.23002)

-0.0225 -0.12755 
(0.0402)(0.04153)

-0.07370
(0.04806)

0.00265
(0.01705)

0.00542
(0.13094)

TREND 1.04665
(0.06907)
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MANUFACTURING
EMPLOYMENT

F2 I

F22

0.05909 0.06092 0.07984 0.05763
(0.00794) (0.01278) (0.01726) (0.01125)

0.87168 0.86433 0.88205 0.93407
(0.02647) (0.03218) (0.03057) (0.00145)

Bo21 0.0282
(0.0714)

-0.06734 -0.06904 -0.15872

Bq 22 -2.9240
(0.6293)

0.08127 0.06257 0.00025

^21 0.18214 0.11912 0.13605

D22 0.06764 0.10025 0.06985

^23 0.09376 0.20897 -0.01244

D24 0.07389 0.12993 -0.19486

^21 -0.0216
(0.0133)

0.40957
(0.13444)

0.26715
(0.11934)

0.24843
(0.11015)

&22 0.0212
(0.0063)

0.03009
(0.01209)

0.05125
(0.01997)

0.05658
(0.02034)

&23 -0.0556 
(0.0179)

0.01308
(0.04906)

-0.03339
(0.05079)

0.04444
(0.05739)

&24 -0.0593
(0.0147)

-0.14031
(0.04680)

-0.09260
(0.04380)

-0.20552
(0.07918)

SEASONALS 8.6911
(0.0926)

0.21595
(0.21499)

0.44072
(0.21726)

0.35539
(0.20118)

0.0367
(0.0121)

-0.35894
(0.13927)

-0.28708
(0.13662)

-0.21317
(0.11044)

0.0448
(0.0118)

0.31469
(0.09922)

0.22410
(0.08706)

0.22892
(0.08744)

0.0170
(0.0187)

-0.11189
(0.04979)

-0.09476
(0.05075)

-0.07444
(0.03946)

TREND 0.17660
(0.14971)

B 1.0000 0.51406
(0.07826)

0.54126
(0.07729)
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0.57907
(0.06834)

-0.04176

-0.47911
(0.27702)

1.12376
(0.40736)

8.01957
(3.25270)

-3.90276
(2.21590)

0.62823
(0.20030)

0.13846
(0.05070)

-0.03512
(0.09880)

-0.09572
(0.08357)

-0.10157
(0.41160)

-1.08948
(0.34043)

0.37968
(0.17001)

-0.39942
(0.13785)

0.77397
(0.05059)



LOG-
LIKELIHOOD 408.04865 408.79339 424.33395 417.77141

VARIANCE-
COVARIANCES 0.00054 0.00027 0.00027 0.00020 0.00027

xlO-4 0.00000 0.17507 0.16789 0.20652 0.19503

xlO-4 1.176 0.07259 0.07114 0.07225 0.06020

LM(1) 14.67957 13.45434 11.69369 8.26012

LM(2) 17.97791 16.33301 15.08973 11.31238

LM(4)2 37.4882 29.19508 21.76417 23.88619 20.79480

LM(4)2 21.2257

LM(5) 32.05677 23.52046 26.41067 22.12342

regression variance there do seem to be benefits from using the 

system method and such gains may be further advanced by the 

inclusion of extra exogenous variables. The results do not appear 

to be sensitive to the terminal conditions, as reasonable 

perturbations in them do not greatly affect either the estimates 

or the likelihood function. This may in part be due to the large 

value of the discount factor in these models. The maximum 

interval estimate of the discount factor in column 3 is .696 

which implies an quarterly discount rate of 47%. There are three 

possible explanations of this: firstly a huge risk premium,

secondly that the future or estimates of the future are highly 

discounted and thirdly that the discount rate is overcoming some 

non-stationarity. All three may be relevant, especially non- 

stationarity which can either relate to unit roots in the system

 ̂Separate tests of serial correlation are presented for 

each equation in the IV case.
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or to non-stationarity in the exogenous variable processes. We 

already know that their is some non-stationarity in the exogenous 

variable processes which is compounded by our inability to invert 

the AR parameters and in the next section we will see that 

cointegration in the endogenous variables may also be a problem.

In terms of the output equation the results in column (2) and (3) 

seem to be theory consistent when they are compared with the 

models in both chapter 1 and this chapter, but such conclusions 

must treated with care as the model suffers from serial 

correlation. The smoothing procedure associated with the forward 

lead in h^ seems to remove the higher order serial correlation, 

but it does not get rid of first order effects (the test for 

first order serial correlation is so that the statistic at

the 5X/1X level should be compared with 9.49/13.3); the test is 

explained in appendix B of this chapter. Unfortunately serial 

correlation causes the parameter estimates to be inconsistent, 

because there is a lagged dependent variable. Consistency is a 

minimal requirement for any model which means that we cannot be 

confident about the results in column (2) and (3), though they 

should not be ignored as it is always possible for a poorly 

formulated estimator to produce useful results. This possibility 

would be supported by the cointegration results presented in the 

previous chapter and the view expressed recently by Sir Karl 

Popper that we are observing long-run propensities which may not 

depend on classical statistical foundations. The results 

presented may have some validity for comparison or when the 

degree of the inconsistency is small. For this reason, it is 

difficult to accept the conclusion that employment does not
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affect output, especially when we compare these results with 

those in column (4) and (5). The price homogeneity restriction on 

the output equation is satisfied and this result does not change 

when we introduce the £t+l® without restriction.

In the case of the employment equation some of the parameters are 

not theory consistent, as the price and inventory coefficients 

have the wrong sign. The price coefficient should mirror the 

coefficient on wages when we have a real model of labour demand 

in the long-run, otherwise agents suffer from money illusion. In 

this instance the price coefficient is insignificant and such 

non-heterogeneities are compatible with certain strong Keynesian 

theories, but more realistically these results may be due to 

excluded cost or relative price variables. While homogeneity is 

critical in the context of a factor demand model, the influence 

of inventories is less clear. The positive sign on inventory 

accumulation may be due to investment in inventories or 

speculation. Such investment or speculation would lead to a 

higher demand for output and so higher levels of employment.

A further check on model performance is given by looking at the 

equilibrium values and the roots of the system which need to be 

both real and positive. In general, the equilibrium values for 

the output and employment equations are quite reasonable, they 

suggest in the output case that demand has always been met during 

the estimation period. The roots to the system associated with 

Column(S) are ~ .771345 ± .04298i so that they are almost the 

same for output and employment, except for a small imaginary term 

which either suggests that the cost matrixes are not positive
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definite or that the equation needs to be transformed to take 

account of further asymmetries.

The deep parameters presented in columns (2), (3) and to a lesser 

extent (4) and (5) are consistent with the target real demand 

equation suggested in section two, as it depends positively on 

inventories and vacancies and negatively on prices in terms of 

wage units. The introduction of a time trend causes a large jump 

in the likelihood which is clearly significant. The trend appears 

to be especially important for the output equation as its 

inclusion reduces the test statistic for first order serial 

correlation so that it is below the 1% critical value and the 

discount rate falls slightly to 40%. The roots of the system are 

Pi = .649165 ± .178445 which is consistent with the optimisation

story, as they are both real and less than unity. The inclusion 

of the time trend assists in stabilising the model and it reduces 

serial correlation slightly, but the output equation does not 

satisfy the homogeneity constraint and the coefficient on 

inventories becomes negative which indicates that the buffer 

stock effect is dominated by spillovers. The coefficients of the 

employment equation appear slightly more plausible as homogeneity 

would be satisfied if the standard errors on wages could be used 

to determine the test. In terras of fit the model with the time 

trend is to be preferred, but the test for serial correlation is 

not convincing.

We can reformulate our original model to test the proposition 

that the appropriate information set is being used. In its most 

general form the test is a test of specification, as it
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determines whether including the contemporaneous predictions has 

an effect on the model structure. Take the usual model:

Vt = Fyt -1 + ht + ut

then h^ determines the nature of the test. If we need a general 

test of misspecification, then we can compute the following 

relationship:

(4.33) h^= G^x^- FBDc^+i- FBD^e ^/6 . G^h^+i

If D and Dj are estimated unconstrainedly in (4.33), then we 

would have a general test of misspecification which depends on 

the validity of the rational expectations restrictions, the 

appropriateness of the conditioning and the period over which the 

expectations are taken. When = 0 we are dealing with the model 

presented in column 5, so that a Likelihood ratio test between 3 

and 5 determines whether the restrictions are relevant or not. 

The test statistic is 17.1 which fails when the test is set at 

the 5% level, but is easily satisfied when compared with a x=(8) 

value at the IX level(20.09). The unrestricted model is better 

formulated, as it satisfies all the tests for serial correlation 

at the 5X level and the discount factor is more reasonable with 

an upper interval estimate of around .87 which implies a rate of 

return of 15%. In the long-run the Output equation is compatible 

with a demand equation which has an own price elasticity of .75 

which is similar to the model in column (3) and price homogeneity 

is also satisfied. The inventory and vacancies terms have 

negative coefficients which is contrary to the theoretical 

assumptions, as it suggests that inventory investment is 

competing with and vacancies reducing output demand. The 

vacancies and inventory accumulation coefficients are not
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FIGURE 4.2 Plots of Equilibrium, Fitted and Actual values 

for Output and Employment models in column 5 of Table 4.1 

that include innovation parameters estimated unrestrictedly

4.8998

V

4.6941

4.4884

4.2827
73Q2 78Q2

actual output fitted equilibrium

9.4163

9.2042

8.9921

0.7800
73Q26392 6892

actual employment fitted equilibrium
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significant and when this is combined with the large standard 

errors on the innovations it suggests that it may be better to 

impose the rational expectations restrictions on this model. The 

long-run employment equation seems to gives an important role to 

unexpected events, the innovations appear to be significant and 

they suggest the unanticipated increases in the real wage and 

inventories reduce employment demand and unanticipated increases 

in vacancies increase employment demand. Anticipated inventory 

accumulation which is due to investment, then raises demand the 

vacancies term takes account of supply and spillover effects and 

anticipated wage and price effects are not significant. We can 

see from Figure 4.2, that the models produce a reasonable fit and 

in this instance the equilibrium value appears to make some 

sense. In the case of the output equation demand always exceeds 

the level of output which is what we would expect when stocks are 

taking up the slack. The employment equation is less believable 

as it suggests excess demand for labour through out most of the 

period, but the innovations have not been included in the 

computation of the equilibrium model.

If we look at the roots of the system, then we find that

= .83189 ± .169377 so that we have one stable root and one 

unit root. Unit roots cause problems, because they imply a zero

root in the Bq matrix, but in this case that cancels out the non-

stationary path, so that the exogenous variable parameters are 

identified. It must be noted, that an alternative maximum was 

discovered with a likelihood value of 416 and a strong 

correspondence, suggestive of cointegration between the long-run

coefficients of the two equations. The Bq matrix coefficients
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suggest that the unit root is associated with the employment 

equation and the negative employment feedback in the output 

equation also makes sense in the context of cointegration.

Table 4.2 Alte&rnative dynamics for Employment models

Sargent = .957

(1978) P2 = .409

Meese Pi “ .967

(1980) P2 = 0

(static expectations)

Mendis and = .819

Muellbauer P2 = .786

(1982)

Un-adjusted data for U.S. employees on 

private agricultural payrolls

Seasonally adjusted data for U.S. 

production workers on private non- 

agricultural payrolls.

Un-adjusted data for British 

Manufacturing employment (in logs)

Nickell p = .85(cos(8) Un-adjusted data for U.K.

(1984) ± isin(9)). Manufacturing employment

0 = 23.5®

ColumnO) p^i = 0.772554(cos(8)

± isin(8)) 8 = 3.19®

Pi2 “ 0.0

Column(4) p n  = 0.82761 Model with time trend

Pll = 0.0

Column(5) p n  = 1.00126 Model with innovations in the

Pl2 = 0.0 exogenous variables

we use the same data as Nickell(1984)
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For columnO) the solution implies a stable model with highly 

damped cycles, in the trend model both equations are stable and 

in the innovation case we have the unit root. As Nickell (1987) 

states, the dynamic results in Table 4.3 seem to accord with 

theory, though the effects are somewhat large in the case of 

Sargent (1978) and Mendis and Muellbauer(1982) and the model in 

column(5). The Bq matrix above indicates for the models here, 

that the larger roots are associated with the employment

equations, so that adjustment is slower and in the innovation 

model infinite. Such large roots may be a sign of cointegration 

which suggests that the system should be re-specified in terms of 

the output employment ratio and the difference in employment. 

Large roots may indicate model reformulation rather than the 

negation of the theory; we will deal with this in the next

section. Nickell suggests that large roots are due to aggregation 

which would explain the stability of Meese results which are 

based on industry data and which only require one lag on

employment. The models due to Sargent(1978), Mendis and

Muellbauer(1982) and Nickell(1984) include a second order lag in 

employment, so that the regular solution requires two stable 

roots. Nickell justifies this on the grounds of aggregation, 

Sargent and Muellbauer and Mendis on omitted serially correlated 

effects and we present similar results in section 5.

It is only possible to use the coefficient restrictions on the D 

matrix as a test of the rational expectations restrictions when 

the objective function or structural equations do not depend 

directly on the innovations. In reality the test of the rational 

expectations hypothesis is far more complex than is suggested by
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the restrictions on D, as it involves a number of assumptions 

about model conditioning, the period of expectation, aggregation 

across agents and the regularity of the model. The structure 

assumes a regular solution and endogeneity is bound up with the 

period of the expectation. When expectations are determined at 

t-1 we should either replace current xs by their predictions or 

replace Ct+1 with . The first suggestion produces a model which 

is not nested, the latter presumes that t-1 is the period of the 

expectation as D is set to zero. When we estimate (4.33) with D 

restricted and Dj freely estimated, then we find that the 

coefficients on the contemporaneous innovations are individually 

insignificant and that the likelihood only increases to 411. The 

test can be seen as Hausman style test of strict exogeneity, 

while the test of the rational expectations restrictions can be 

thought of as a test of weak exogeneity when the models 

parameters are stable. The test statistic for endogeneity, 

conditional on the rational expectation hypothesis is 4.8 which 

is clearly not significant when compared with the usual critical 

values for a %^(8) random variable. This in combination with the 

insignificance of individual innovations seems to indicate at 

least strict exogeneity and if the model in column (5) is 

preferred we may even have weak exogeneity; the invariance of the 

paramters in the y equation to changes in the parameters of the x 

process. The two conditions together can imply strong exogeneity 

which can be tested by estimating the model with D and in

(4.33) unconstrained. For strong exogeneity we also require 

Granger non-causality of xs by the ys. The endogeneity test 

formulated above is not a powerful test of the period of 

expectations which suggests an alternative test under the
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rationality assumption. If we impose the same restriction on D 

and Di, then (4.33) becomes;

(4.33) h^= G x^- oFBDe^ - (l-0)FBDe^/6 + GJh_ ,t o t t+1 t 1 t + 1

where 0 = 0  implies that expectations are formed at t-1
and 0 = 1  implies that they are set at period t.

If we estimate this model we find that 0 = .56 and the likelihood 

ratio test is highly significant at 5.88 which suggests either 

that the period of the expectation lies between t and t-1 or that 

there is differential information. When innovations are included 

separately as the model in column (5) shows, the results are only 

altered marginaly and the individual parameters are not 

significant.

The trend model certainly produces a better fit, but it still 

suffers from serial correlation which leads to the question of 

whether their may not be an alternative specification which 

performs better. The information set is a super set of some 

output and employment models, but it is too narrow to produce 

well formulated demand relationships and the results are also not 

fully consistent with the Keynesian macro model of the first 

chapter. In addition to extending the infromation set and 

possibly determining better models of the exogenous variables, 

there are three possible extensions which may improve the 

results: firstly to transform the model into a true cointegration 

form, secondly to adjust for serial correlation and thirdly to 

extend the loss function model to include more lags on endogenous 

and exogenous variables. The first issue is discussed in some 

detail in the next section, results for the autoregressive model 

are presented in the final section and the both the loss function
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and the equilibrium condition are extended in chapter 5.

4.4 Rational Expectations models in Error Correction Form

The first order condition for the Sargan(1982) model is given in 

a similar form to that presented in Kollintzas(1985). Therefore:

(4.41) E(Q y^- BQ'y^ JO*.) = E(Hz^lfi^)o' t l't+1 l't-1 t t t

where Û = H + (1+B)K and Q = K = O' and K must be o 1 1
positive definite and H positive semi definite for a 

minimum(see appendix A4.1)
VT

(4.42) Lira 6 IE(y 10 )l ^ 0 
T -» m

(4.43) Lim E(H(y'p - z*j> ) + K(y*p - yj_2 )IO^) 0
T “>■ Œ

where (4.43) is the usual transversality condition which 

is satisfied if (4.42) holds.

If the information set is dated at time t with respect to the

exogenous variables and we do not know u^, then equation(4.41)

will have a moving average error when we solve out for 

expectations. Therefore:

(4.44) Q^y^-

Reformulating (4.44) and lagging it provides the error correction 

form, where the equilibrium or target condition is given by

Zt=Axt and the form of D depends on the process driving the

exogenous variables.
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(4.45) Q^Ay^- H(y^-z^) « 6Q' Q^u^-GQ'De^^^

-1Lagging (4.45) and multiplying through by 1/3Q^ gives us the 

more usual error correction model which also has a moving average 

error. Therefore:

(4.46) Ay = 1/BAy - H (y .-z .)+ u - 1/6(H +(1+0)1)u -  DeL w X  L, X U X U U X L .

where H = l/BQ^^H = ( F + 1/BF (1 + 1/B)I) and 

F=PMP"1. M is a matrix of stable roots associated with the

solution to the second order difference equation(i) and P

the associated eigen vectors(see Appendix A4.1)

In section 1 we saw that the symmetric form of the loss function 

reveals a saddle point solution which produces the usual backward 

forward rational expectations model; Sargan(1984) calls such 

symmetric results regular solutions. Sargent(1978) explains that 

the forward solution to the problem which satisfies both the 

transversality condition and the euler condition can be derived 

by feeding the unstable roots forward and the stable ones 

backward. The roots associated with that solution are linked to 

the roots of the matrix of coefficients on the correction term 

and the moving average error. Therefore:

H* = (F +1/BF’^- (1+1/B)I)

= (PMP-1 + 1/BPM‘^P"1 - (1 + l/B)PP-l)

for the appropriate choice of P

Diagonalising H* using P~^ and P reveals the roots 0-̂  of H* 

which are related to the roots of the second order difference 

equation(4.41). Therefore :

(4.47) P'1h *P = $ = M + 1/B (1+1/B)I
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If we look at a single root 0^ from H* we can derive conditions 

under which the error correction system is related to the 

rational expectations model and the vector of endogenous 

variables is cointegrated.

(4.48) 0.= (p. - 1) + l/B(l/u.- 1)1 1

where 0̂ -> ® as 0 and p̂ ->

and 0 . = 0 if p . = 1 1 1

The error correction term disappears when all the roots of

the second order difference equation(4.41) are unity which leaves

a vector ARMA(1,1) model:

(4.49) Ay. = l/BAy^ , + u^- (0/(6 + l))u. - De^ ,t 't-1 t t-1 t+1

where we have used the observational equivalence of an 

MA(1) error with roots inside the unit circle to a model 

with roots outside the unit circle.

Equation (4.49) is not consistent with the usual agent 

optimisation problem in which all costs are positive, as the 

regular solution negates the possibility of unit roots and with g 

unit roots the levels term in the objective function disappears. 

If (4.49) is poorly specified, then by differencing the ys to 

stationarity, the rational expectations objective function can be 

reformulated, but if it is well specified, then (4.49) is not 

based on an objective function in differences and second 

differences. In differenced form the first order condition would 

be the same as (4.41) and any number of unit roots could be 

handled in this way without affecting the nature of the solution 

to the rational expectations model. If we partition y into a g^
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vector of variables which are stationary in levels and a g2 

vector of variables y£ which are stationary in first differences, 

then the loss function could be redefined in terms of the new 

variables and the error correction form of the first order 

condition would become:

(4.410) Ay* = l/6Ay* - H*(y*_ -z*_ )+ u*- 1/6(H* + (1 + B) Du*

-  ° "t.i

*' * ' *  * *
where y^ = [yj^ : y^^]' Y2^^ ^^2t' \ + l  innovations

in ys and : z * ' ] ,  z * ^ =  û z ^ ^ ,  and

innovations in the zs.

Equation (4.410) can be thought of as a model in terms of either 

flow effects which do not depend on the stock or growth and 

levels variables which can be controlled independently by the 

agent.

Reducing the order of H* would eliminate the endogenous variables 

associated with a unit root, but that would only be reasonable if 

the system was triangular or the omitted series independent of 

the other endogenous variables. If the loss function involves 

cointegrated variables, then the associated singularity implies 

that the rk(H*) = r where r < g-1 and AAy^ terms do not appear in 

the loss function. Equation(4.41) is then the appropriate first 

order condition(see appendix A4.2), otherwise equation (4.49) is 

the first order condition and H* has full rank.

The roots of the system can be used to determine the structure or
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test whether the model is consistent with rational expectations 

theory. Unit roots are one indication of model misspecification 

and imaginary roots are not consistent with H* being of full 

rank. The assumption that we are dealing with a cost minimising 

problem or a maximising one relates to all the roots of the 

system being greater than zero; otherwise there are benefits 

to bringing actions forward. The ability to detect such 

differences in the structure or consistency in formulation will 

depend on the efficiency and appropriateness of the method of 

estimation. Here, we will show that there are a number of 

limitations associated with estimating the first order condition.

The errors in variables method of Wickens(1982) has been used to 

estimate the first order condition, but that method does not take 

account of the moving average error and the innovation in the 

exogenous variables. A number of adjustments have been made to 

the errors-in-variables method to take account of these 

deficiencies, but the technique is limited in this context, 

because it does not satisfy all of the conditions associated with 

the optimisation problem. Nickell(1985) points out that (4.41) 

does not always satisfy the objective function, as the technique 

does not automatically select the roots associated with the 

optimal plan. The Lagrange-Euler first order condition is 

necessary, but not sufficient, as we also require the 

transversality condition (4.42) to be met.

If we look at stable roots Pi < 1, then H* is guaranteed to be 

positive definite as the symmetric solution usually keeps the 

model away from that singularity, but the first order condition
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method does not impose such restrictions. If the roots lie in 

the interval [1,1/6] for 0 < 6 <1, then they are not consistent 

with cost minimisation, as this implies that the roots of H* are 

negative. Hence, some of the roots of H* may appear to be 

negative when the reverse is true and this problem is further 

compounded when the method is inefficient and the roots are near 

the unit circle.

In practice such problems are likely to occur, because as 

Pagan(1984) explains both standard errors and t-statistics will 

be biased when innovations and expectations are introduced into 

single equation regressions or limited information models. Power 

and Ullah(1987) using Monte Carlo experiments show that such bias 

can be quite considerable and as a result of that, parameter 

estimates of the first order conditions are more likely to be 

linked with changes in sign( the parameters differ noticeably 

from their true values for a range of constructed models). In the 

previous section we found that the roots of the bivariate 

rational expectations model of output and employment where 

negative when the errors-in-variables method was used and 

positive when the system was estimated by a full solution method.

The above arguments relate to estimates of the rational 

expectations model, but they follow through with error correction 

models. Estimates of the simple error correction system will be 

inefficient when the data are cointegrated (see section 1 of 

chapter 3 and section 1 of this chapter for discussion of such 

issues) and the rational expectations solution needs to be 

considered when we interpret the coefficients of the correction
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term. Traditionally error correction models are presented as 

disequilibrium adjustment to a long-run equilibrium or steady 

state growth model; the consumption function of Davidson et 

al(1978) and the money demand model of Hendry and Mizon(1978) are 

interpreted in this way. In the long-run s^ = s^-i = s* where the 

* denotes an equilibrium value and in the static solution As^=0 

so the long-run static equilibrium of equation(4.46) will be;

Y *  = z *  = Ax*

The long-run static solution to the rational expectations model 

is the same as this. In the dynamic steady state As^ = n, so that 

(iv) becomes:

(4.411) y* = Ax* + (1 + l/8)(H*)-ln

where n is a gxl vector of growth rates.

As Currie(1981) explains the static equilibrium is not effected 

by the stability of the process driving the model, but the 

dynamic solution will be. Currie notes that the dynamic solution 

of the original Davidson and Hendry consumption function is not 

stable and he specifies restrictions on the lag process which 

will impose stability. Drobny and Hall(1987) use such procedures 

to restrict their cointegrated model of wages. The Currie thesis 

may be valid, but it may not be relevant in the case of a 

correction form estimated from the first order conditions of a 

rational expectations model. If we assume that H* is positive 

definite which is consistent with a cost minimising model then we 

require the coefficient on the growth term in (4.411) to be 

stable. The condition needed for dynamic stability depends on the 

roots of the matrix of coefficients (1 + 1/B)(H*)“ .̂ Therefore:
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1/0  ̂ < 3/(1 + 3) or 0i > (3 + l)/3 for all i =1,... ,g

where 3 is a discount factor which should lie in the range 

[0,1] and the lower bound of 0̂  is 2.

We require the correction term to have explosive roots greatly in 

excess of 1 if we are to have a stable steady state solution to 

equation (4.46).The problems presented above can be graphically 

illustrated by mapping out equation(4.48) for a particular value 

of 3.

Figure 4.3 Relationship between 0 and p

1

1

= 1

If we look at the diagram above which selects 3=1, then p=.382 is 

associated with a unit root in 0 which means that values of p 

less than that are linked with explosive roots in the correction 

term. Imposing the restriction that the steady state solution to 

the error correction model is stable implies that the pair of
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symmetric roots associated with the regular solution are bounded 

from above in the case of < .268 and from below in the case of 

its reciprocal l/p^ > 3.639. Obviously the upper and lower bounds 

change with 6, as does the relationship in the roots. The stable 

steady state solution to (4.411) restricts the upper bound of the 

roots to lie in the range [.5,.268] for 0 in the open interval 

(0,1).

Discovery of a correction term with roots outside the unit circle 

may not be a sign of an unstable model, but an indication that it 

may be appropriate to interpret the error correction form as a 

reparameterisation of a symmetric rational expectations model.

The observation of an unstable long-run steady state solution may 

also be an indication of forward looking behaviour and not a sign 

of instability.

Aggregation and Distributed lags in the equilibrium condition

In the light of the aggregation problem there are four possible 

strategies which one might follow, firstly to ignore it, secondly 

to include a set of extra exogenous variables which characterise 

the industry level information, thirdly to use general functional 

form or conditions that allow for perfect aggregation or finally 

to assume a functional form to account for the misspecification 

associated with it.

In section three of this chapter we assumed the problem away or 

rather we suggested that the problem was not relevant for 

macroeconomic analysis. Ignoring the aggregation problem either
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pre-supposes a method for perfect aggregation, such as the AIDS 

of Deaton and Muellbauer (1980a) or suggests that micro effects 

cancel out. We would like to presume that the later is correct 

and that would be consistent with Keynes (1936) discussion of the 

influence of individual income and wealth effects on the

consumption function. In fact much of the discussion of

aggregation in demand studies has depended heavily on 

distributional assumptions. In his study of the Demand for food 

Tobin (1950) discussed this issue and he suggested that perfect 

aggregation for a standard log linear model of food demand 

depends on constant income and population distributions. 

Kildenbrand (1983) has used a more sophisticated approach to 

analyse the problem, though his conclusions imply that a 

distributional assumption akin to the relative income hypothesis 

is required for the aggregation of demand systems. If we are to

aggregate perfectly we require the income distribution to stay

the same shape which means that income cohorts should maintain 

the same relative position or new cohorts or agents entering a 

new cohort should replace the dying or misplaced agents. The 

condition is less stringent than the constancy assumption of 

Tobin.

The integral conditions associated with the distributional 

assumptions imply particular weights when series are summed, as 

does the more traditional approach, due to Theil(19S4). Our 

discussion of such issues will use certain conditions on the 

parameters of the cross product matrixes which will lead to 

approximate results. The aggregate model is squeezed into the 

same structure as in section 1, except for a VAR(l) error. An
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alternative explanation of such models is given by Nickell(1984)

who suggests that the structure may involve a more complex

stochastic process. If we take the micro system, so that industry 

or agent specific variables are defined thus:

Vt = tVit’- ‘’t ' "t ' '“it’

then our system can be defined by (4.18) above, where we are now 

looking at a micro relationship:

Yt = F Yt-1 + ht + ut

If we now have a set of aggregate variables y* and their residual 

y^, then:

y* = V^y^ and V = is a square non-singular matrix

then :

(4.51) r y* 1 = VFV'l y* + V h + 9 u^t-1 t t
. .

- ^t - - ^t-1-

where VFV  ̂ = F and F = F]̂  ̂ ^12

^21 ^22

The system (4.51) determines two equations one in terms of the 

aggregate variables and the other in terms of the residual, they 

can be solved to produce a relationship purely in terms of the 

aggregate variables and the equation errors which hopefully can 

be treated as a determinate random process.

(4-52) Vt = FllLyl * ’’l a K  ‘ ' “t ’

(4.53) y; = r^jLy; » r^^Ly; * * u^)

Hence we can use (4.53) to derive a relationship for y^ and then 

replace that in (4.52) which leaves with the following model
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purely in terms of the y*, h and u.

(4.54) (I - r^^Dy; = ' "t''

' \  * “t'

If we look at one series, it may be possible that the parameters 

in individual markets are not too different so that F = yl +AF 

which suggests that:

(I - r L)-l = [(1 - y D l  - AF L]-l

= (1 - yL)~^I + (1 - 

+ (1 - yL)"^(AF22>

If we substitute out for (I - F L)"l in (5.44) above,then:

(4.55) (I - F^^L)y* = - yL)'^l + (1 - yL> ^ ^ 2 2 ^

+ (1 - YL)"^(AF22))(r2iLy* + ^^(h^ + u^)) 

+ (h^ + u^>

We can considerably simplify the above relationship, by firstly 

eliminating terms of order less than o(AF*) and then multiplying 

through by (l-yL), so that:

(1 -yLXI - r^^Dy; = [^^r^iLy;

* ((1 - yL,?i» (FizV,. . u^)

We now have a moving average error term linked to a more complex 

dynamic than the model in section 1, but this can be simplified 

when the o(Fj^2^22^2^ < o(AF^) and F2^2^21 ^12^22 &re

relatively small. Therefore our model becomes:

(4.56) (I - r^^Dy* = (V^+ (1 - Y^) “ ^^t  ̂ "t^
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This relationship has an autoregressive error associated with the 

infinite order moving average term (1 - yL)"lut. We can show that 

such equations exist for all g aggregate variable when the system 

can be diagonalised, so that (4.51) becomes:

t-1
#
t-lJ

+ 9 (h^ + u^)

where PFP 1 = F* and F* = PlfllPF PlPl2P2^' 

PiPi i pF  PiPi2P2^

If we take a system in which each y^^ is stacked on top of the 

the y s, then we will end up with g equations of the form (4.56)

If we now stack such equations we can produce a system in 

terms of the diagonalised aggregate variables:

(4.56) (I - F*^L)y* = (V*+ (1 - > (h^ + )

Inverting the diagonalisation we now have the multivariate 

analogue of (4.56):

- 1,(4.56) (I - F^^L)y^ = (V^+ (I - F^L)

If we let u^ = ^12^^2^t ' then:

(I - F L) ^u* = e^ o t t

so that e = F e + u is an autoregressive error where: t o t t

= <i - PiiL'y; - 

Serial correlation can be eliminated using the quasi­

differenced form of the Generalised Least Squares Estimator
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(see Harvey(1981)):

= (I - r^)(i - r ^ j L X y ^  - u^)) *

It is likely that we can eliminate r22^2^t when the roots of the 

system are not far from the unit circle and cross product terms 

are relatively small, because the elements of h^ are all 

multiplied by ri2^^FBo' where FBq = (I-6F)(I-F). If we then bring 

together terms in the error we see that the transformation has 

introduced a moving average error, so that:

0̂̂ 1 Vl= - r;><I - r,,L)(y; - 7̂ ĥ )

The problem associated with this error structure may be 

ameliorated when is large relative to FqV]̂  or when

FgVi is small relative to the other parameters. We may then be 

able to re-write our relationship as a straight forward 

autoregressive model:

u* = (I - r )(I - r t)(y* - h*)t o 11 t t

Alternatively may find that the errors are considerably 

smaller than e^ which means that the moving average term may turn 

out to be negligible in terras of the data, but even so when the 

aggregation story is believed it is important to test such a 

model for first order serial correlation. The same result can 

also be derived by solving out for the moving average in (4.56) 

and then assuming that terms o(r^F;j^2̂ 2̂  are negligible. We then 

have a VMA(l) model which may be approximated by a VAR(l) error 

when Fq is relatively small.

Now we need to look at the effect on the structure of aggregation
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over the exogenous variables. We have from section one that:

(4.57)

where G = FB A = FB D, G = BF and D = 2 (G,) AC , o o 3 o 1 3 = 0 1 s-1

We also know from chapter 3 that has a Wold autoregressive 

form, which can be formulated as a system in terms of both micro 

and macro exogenous variables, so that:

and

B ( L) x^ =

B*(L) X Et t
+ +

X E- t - - t -

and B*(L) = EB(L)C ^

where I =
■ S B#(L) = -B»i(L) B»2<L) •

- '2. _B«i(L) -

We can now eliminate x"̂  from the relationship for x* using the 

following equation:

Hence, we have a relationship which takes account of the effects 

of exogenous variable aggregation by extending the lag structure 

of the model by using the relationship above to eliminate the x*s 

from the equation for the x*s:

B* (L)x* = B#_(L)B*_(L) ^(B!,(L)x * - C_E.) + C.E11 t 12 22 21 t 2 t I t

(BJ^(L) - B*2(L)B*^(L)'^B*^(L))x* = ^2^ ̂ t

If we invert the terms on the right hand side we can derive the 

VMA form for the aggregate variables:

X* = (B*.(L) - B*^^)B#_(L)"^B#.(L))"1(C. - B*\(L)B#.(L)"^C_)E11 12 22 21 1 12 22 
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(4.59) X* = D#(L)

and by analogy a similar form exists for x^:

(4.510) x+ = D#(L) E^

We can now use these results to derive the aggregate form of

(4.57) above:

(4.511) . cT^x; - G^h^^^

where G .= FB AC., G..= FB D ., G., = BF and oi o 1 3i o i l
D. = 2 (G,)®A57D* ,
1 s=0 1 1 is-1

Now if we replace x^ in (4.511) above using (4.58) we produce the 

recursive relationship below.

\  - < 1 <  - G%2B32(L''''B*i(L)x; -

S l \  + 1 G^2^t+1* ^ l \  + l

(4.512) = cT^x; - G;2 ((8i ' 8, . ...)xj - B*2 (L)-'l2 ^^>

^31^t+l ^32^t+l" ^l^t+1

It seems likely that higher order terms in FBgAS'B* (L)"l
1 22

are likely to be small, so that it might be possible to ignore

them and by analogy we might be able to discard the extra error

terms which should also be small. If we also can let

ETD* . + C7D* : (E7 + C76_)D* . , where the of terms comes 1 ls-1 2 2s-l 1 2 1 ls-1 1
from a VMA representation of x*, then we can give (4.512) the 

more familiar form:

(4.513) = (G;^ - G;^8^)x; - G«c*^^ .

where G .= FB ACT, G* = FB D , G = BF and oi o 1 3 o 1
D = Z (G,)®A(C: + C:8 ,)D* .s=0 1 1 2 1 is-1
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Clearly there are a number of assumptions here which may or may 

not do justice to the truth, but when the model is based on the 

aggregation procedure suggested above it does seem important to 

determine whether innovations of the disaggregated series are 

significant. If we find no role for such information, then we can 

be more certain of the validity of the aggregate model. The 

problem would be simplified by assuming that industry specific 

models only depend on aggregate variables and such an assumption 

would produce a relationship observationally equivalent to

(4.513). The assumption above seems to be too strong and testing 

the proposition is complicated by the need to build sectoral 

models which leaves us with the approach we have here.

Having taken care of the aggregation effects of the endogenous 

variables we can see how endogenous variable aggregation affects 

the recursive form of the forward convolution:

rB#(VA(c; - ^:e )x* -"z (r )^VA(c; - ,)o 1 2 1 t s=o 1 2 1 ls-1 t+1

+ er

TB# _
I ^12^2-2>

^22^21'-'1-9^21 8(^22- ^21^12>^  ̂ -'l'B'r22

Let us look at the relationship for h*, so that:

BFiih; .

where = A(E^ -
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We have already assumed that ri2r21 ^12^22 ^^e relatively

small and it was suggested in deriving the autoregressive form of 

the model that r^2^2^t would be small when the roots of the 

system are close to unity, because all the terms in h^ are then 

multiplied by Now if we combine the conditions

above with the possibility that (6(riiri2+ ^12^22^ - d  + B)ri2^ is 

small, because it is an off diagonal term in the dissaggregated 

variables which is then mulitplied by ^2 , then we end up with:

(4.514) h* = (6(r:^+ I +(l+6)r^^)(VA^x* - D^E#+^) +

or h*  ̂ (where D = 7 D)11 t+1 1 1

As (4.514) stands we would not expect to impose the usual

restrictions on unless additional condition could be imposed.

As cross product terms are small or appear to be relatively

small, then it may be possible that the following approximation

holds :

ps = (AT®)

° "!2J
If we let A. = V.A* and use the result above, then:1 1

(4.515) D

If we combine (4.514) with our autoregressive form for y* we have 

a system that is exactly the same as that derived in section 1 

except for a VAR(l) error which has a rationale based on 

aggregation, this is a slightly more general model to the one 

used by Nickell(1983):

(4.516) (I - r )(I - r\,L)(y^ - h^) = u^o 11 t t t
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We will use the same recursive maximum likelihood procedure 

explained in section 3, except that the error is defined by

(4.516) above, the standard errors are based on the estimate of 

the Hessian produced by the Gill Murrey Pitfield procedure. The 

lagrange multiplier test for serial correlation should be treated 

with some caution, because it is more like a multivariate Box- 

Pierce statistic, as the program was not adjusted to take account 

of the implicit inclusion of second and first order lags on y* 

introduced by the autoregressive error. The small size of the 

absolute value of the test suggests that serial correlation is 

not a problem and if their is some bias this is likely to be 

small given the size of the parameters.

The output employment systems presented in table 4.2 are 

estimated for the period 1962q4 to 1979q4 and the program 

generates predictions for the period 1980ql to 1992q3. Column (1) 

in the table below reports the results not adjusted for serial 

correlation, column (2) the results with adjustment and Column 

(3) the model with VAR(l) error and time trend. Column (4) 

presents similar results for a model which includes past values 

of the exogenous variables, but does not have the autoregressive 

error, the method of estimation for this model is dealt with in 

more detail in the next chapter. The final model is used as a 

link with the next chapter, but it also provides a check on the 

validity of the GLS adjustment. If the model including lagged 

exogenous variables significantly outperforms the autoregressive 

model, then the common factor restriction cannot hold (a test for 

a common factor restriction was considered to be outside the 

scope of the current work). A quick check on the validity of the
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TABLE 4.3 Autoregressive Models of Output and Employment

4 continued1 2 3 4

Manufacturing
Output

Fll 0.67383
(0.05799)

0.76620
(0.06605)

0.52583
(0.08904)

0.68353
(0.08438)

Fi2 -0.19262
(0.16868)

-0.34526
(0.15132)

-0.36251
(0.10438)

0.28691
(0.10345)

Boll 0.27905 0.15659 0.46705 0.42980

Bo 12 0.22083 0.40726 0.52570 -0.39878

Dll -0.06644 -0.04545 -0.09179 0.36087

D1 2 0.04509 0.03208 -0.03985 2.48207

Di3 0.42374 0.36147 0.07360 3.83789

D i4 0.64973 0.63303 0.20467 -2.75992

11

^11 0.11045 0.13604 -0.03097 0.73827 0.14252
(0.13482) (0.08628) (0.04146) (0.30716) (0.30716)

ai2 0.02197 0.00559 0.02478 2.48207 -2.25515
(0.02202) (0.02457) (0.01001) (0.26385) (0.29819)

*13 -0.71390 -0.71694 -0.39675 3.83789 -3.94297
(0.06495) (0.06365) (0.03411) (0.64088) (0.69435)

&14 0.71846 0.71797 0.17668 -2.75992 2.77408
(0.05745) (0.05415) (0.05164) (0.19480) (0.22959)

SEASONALS

TREND

1.16229 1.60195 1.26615 -1.30350
(0.32369) (0.16665) (0.08731) (0.30716)

0.44790 -0.59481 -0.11904 2.25515
(0.19920) (0.18256) (0.08225) (0.29819)

0.34931 0.09196 -0.08408 0.55286
(0.08216) (0.07912) (0.04594) (0.98262)

0.41812 -0.10890 0.00834 0.98262
(0.11637) (0.06365) (0.02584)

1.03402
(0.09714)
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Employment
Equation

F21 0.06061
(0.00925)

0.05216
(0.01037)

0.09728
(0.03033)

0.05022
(0.00901)

F22 0.86319
(0.03250)

0.76789
(0.06174)

0.85003
(0.04306)

0.93464
(0.01132)

&o21 -0.06061 -0.06153 -0.14107 -0.06980

Bo22 0.06196 0.15459 -0.00310 0.08079

^21 0.11410 0.02475 0.08534 0.37645

^22 0.09125 0.04661 0.10690 0.43980

^23 0.18464 0.13065 0.20184 -0.24364

D24 0.10473 0.06814 -0.03846 -0.83717
&12

&21 0.25596 
(0.11669)

0.09159
(0.04276)

0.16928
(0.08412)

0.72583
(0.10713)

0.16160
(0.34144)

*22 + 1 0.04840
(0.01975)

0.04447
(0.01470)

0.05093
(0.01825)

2.33369
(0.17488)

-2.11819
(0.20524)

*23 -0.02275
(0.04823)

-0.06414
(0.04397)

-0.02221
(0.04479)

4.55343
(1.18231)

-4.01380
(1.16126)

&24 -0.10208
(0.04311)

-0.06098
(0.03784)

-0.12429
(0.06742)

-2.99614
(0.27645)

2.23457
(0.29454)

SEASONALS 0.18522
(0.27492)

0.74011
(0.08178)

0.57977
(0.14279)

-1.84511
(0.35035)

0.49405
(0.15190)

-0.15896
(0.07670)

-0.28643
(0.16745)

1.93701
(0.29150)

0.18379
(0.05419)

0.11221
(0.03503)

0.17724
(0.07063)

0.29150
(0.13760)

0.27426
(0.08181)

-0.05190
(0.02841)

-0.09930
(0.05847)

0.70247
(0.12008)

TREND 0.09784
(0.13717)

6 0.53900
(0.07560)

0.46979
(0.13542)

0.62370
(0.08029)

0.21153
(0.07433)
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AR(1)MATRIX

^oll -0.32377
(0.12944)

-0.42020
(0.13045)

To 12 0.99696
(0.81122)

2.21388
(0.17882)

To21 -0.03136
(0.02292)

-0.07760
(0.03892)

To22 0.65825
(0.16067)

0.55730
(0.11187)

LIKELIHOOD 403.0279 413.3694 425.6767 408.506

VARIANCE 0.00026 0.00024 0.00018 0.00024

xlO-4 0.16808 0.14801 0.15225 0.13111

xlO-4 0.07228 0.05809 0.05881 0.06522

LM(1) 15.85196 1.93617 1.25152 11.77907

LM(2) 19.04442 2.40925 4.69223 15.40356

LM(4) 24.95076 10.64854 15.33008 29.13100

LM(5) 26.52296 14.83810 20.48444 33.65383

N 68 68 68 68

adjustment can be given by comparing the estimates in column(l) 

and column(2), when the common factor restriction holds then 

their should be little difference between the two sets of 

parameters which in this instance is the case. The four 

restrictions associated with setting Fq = 0 are clearly not 

satisfied which implies that it is necessary to adjust for serial 

correlation. If such an adjustment is due to either aggregation 

or a more complex error process associated with the endogenous 

variables, then the roots of the system are stable, but not real, 

as Pi = .767 ± .134261. The roots here suggest dampened 

oscillations linked to a process which converges after one and a 

half to two years. The rate of convergence is similar to that of
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Figure 4.4 Plots of Equilibrium, Fitted and Actual values 

of Output and Employment for the VAR(1) error model with 

trend from column 3 of Table 4.4

4.7321

4.5832

4.4344

82W473Q26392 6892
actual output f1 tted equilibrium

9.1394

9.0196

8.8998

0.7000
829473926892
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the Nickell(1984), though these results are slightly more stable. 

Roots which are not real suggest that one of the cost matrices is 

not positive definite or that the system has an alternative 

structure which is less symmetric (such models are dealt with in 

the next chapter). If we solve out for the autoregressive error, 

then we introduce second order lags which would be related to the 

solution of a higher order loss function. The solution to the 

roots of the system in columnO) are = .3045, P2 " -.1926 and 

P3 ,P4 = .57894(cos(0) ± isin(8)) where 0 = 30.8°, but the 

negative root is incompatible with the dynamic being caused by a 

higher order system as it implies benefits to either adjustment 

or disequilibrium. If such a root is associated with Fq, then we 

a stable first order system in which the extra dynamic can be 

attributed to aggregation.

In terms of fit the model in column(3) seems to dominate, the 

other models, but the model without produces an output demand 

equation in the long-run which satisfies price homogeneity. The 

results for the trend models have price coefficients that have 

the right sign and the employment equation is closer to 

satisfying homogeneity at the cost of it not being satisfied by 

the output equation. The discount factor is higher at .624(upper 

interval estimate .784), but not as large as in the innovation 

model and when the restriction that B = .9 is imposed it is 

rejected(Log-Likelihood of 421.145 versus 425.676). Figure 4.3 

suggests that the fit for the output and employment equations is 

good and the equilibrium values for the output equation seem to 

be reasonable. The equilibrium values for the employment equation 

relate to the demand for labour, so that we may be suspicious of
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their accuracy given the failure of homogeneity and question the 

imposition of that restriction. The difference between the actual 

values and demand is a measure of excess supply of goods in the 

case of output and vacancies in the case of the employment which 

suggests in the latter case that the actual value and the 

equilibrium value should be roughly in line after 1974.

The final model does not dominate the VAR(l) error model and the 

restrictions do seem to be warranted, when column (1) and (4) are 

compared. The model also has a very small discount factor and the 

long-run parameters of the employment and the output equation are 

not totally independent, they are roughly proportional to each 

other. Again we have an indication of a relationship between 

employment and output of the type suggested by cointegration, 

though one of the roots given by = .809085 ± .1737026 is close 

to the unit circle it is not as close as that in column(S) of 

table 4.1. Alternative reasons for the link between parameters 

would be a lack of identification, as there are signs of ill- 

conditioning and the coefficients of FBq are roughly 

proportional. When 6=0 the future values of the Xs are not 

important and the model collapses to a partial adjustment form. 

Here, the size of the A coefficients seems to contradict this as 

it appears that the estimates are being compensated for the 

effect of small 6 on future xs and the small Bq coefficients on 

the target variables in the employment equation. The employment 

coefficients, then dominate the smaller effects in the output 

equation. The small value of B seems to emphasise this so that 

the output and employment coefficients in the long-run are 

similar and this is linked to cointegration under which one might
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expect that = a'Ax^. Although a long-run model in differences 

and levels does produce price effects compatible with long-run 

demand models of output and employment, only the wage coefficient 

in the employment equation looks to be significant. This wage 

term is the only thing which differentiates between the 

employment and output equations in the long-run. The model is not 

appealing, because of the large long-run parameters, the poorly 

determined equilibrium relationship and the suggestion that first 

order serial correlation is still a problem.

Conclusion

In this chapter we have discussed what are called first order 

rational expectations models in chapter 5. An efficient method of 

estimation has been developed whose form can be attributed to 

Sargan (1982). The approach uses the Muellbauer and Winter(1980) 

transformation to remove future expectations and when that is 

reversed the forward convolution in the exogenous variables and 

one step ahead forecast errors has the recursive representation 

first derived in Hunter(1984).

In section one we derive the estimator and relate it to the 

backward looking representation of the model which is shown to 

have an error correction and cointegration form. It is shown 

that the forward representation still exists when we have unit 

roots and it is postulated that it may even be possible to derive 

estimates of the deep parameters, because the unit root is in the 

null-space of Bg. In section two we specify the long-run form of 

the particular output employment model that is to be estimated
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and this is related to the optimising theory of section 1 and 

specific models of the long-run or deep parameters. The model 

suggests that we should observe demand equations for output and 

employment in the long-run and this turns out to be roughly 

consistent with the results. The long-run models can either be 

thought of as targets for a cost minimising control approach or 

as being derived from appropriate revenue or utility functions in 

the choice theoretic or profit maximising framework. Under such 

an optimising framework we would normally expect the coefficients 

on the difference and levels terms to satisfy conditions 

associated with the underlying criterion. In this case we would 

expect cost matrices to be positive definite or at the least 

positive-semi-definite, such conditions are related to the 

existence of unit roots/cointegration and as we shall see in the 

next chapter conditions for identification.

In section 3 we specify the Muellbauer form of the model which is 

used to derive initial estimates, these models suffer from serial 

correlation, but under the rational expectations assumption the 

instrumental variables method of Wickens(1982) produces 

consistent estimates. The IV estimates of the deep parameters are 

roughly consistent with theory, though the estimates of Bq are 

not. The problem may be attributed to cointegration, as unit 

roots can lead to negative estimates of the cost parameters, this 

idea is partially supported by the discovery of a unit root and 

the possibility that output and employment are cointegrated. The 

Maximum Likelihood method appears to produce more efficient 

estimates, than the IV approach and the estimates of F are quite 

consistent with some form of optimisation story. Unfortunately
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this method does not seem to be able to remove first order serial 

correlation and the model suggests a discount factor which is 

unrealistic. The deep parameters are mainly consistent with 

theory, excepting that employment depends on nominal wages and 

anticipated inventory changes appear to represent investment or 

speculative rather than disequilibrium effects. In terms of 

explicability, the model in which the innovations are included 

directly seems to be preferred, and though it still suggests a 

nominal employment model, it does not suffer from serial 

correlation. The model prduces a more reasonable discount factor 

and it suggests that unanticipated factors do influence 

employment in the way expected by theory. The model with a trend 

has deep parameters with signs which can be given a theoretical 

justification, but neither of the long-run demand equations 

satisfies homogeneity and the test for first order serial 

correlation is marginal at the 1% level. The model produces deep 

parameters which can be used to derive equilibrium values and on 

inspection such value are not totally unreasonable, obviously 

better formulated long-run models would produce more accurate 

equilibria.

Further experimentation with the first order model shows that the 

question of period of expectation is not straight forward and 

their is evidence, that either the model combines agent 

expectation for period t and t-1 or that the true period lies 

between these two values. The question of the period of 

expectation is complicated, because it is bound up with the test 

of the rational expectations restrictions, the nature of 

exogeneity and the role of innovations in the model. It appears
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from the estimates derived that the xs are strictly exogenous 

when a Hausman(1978) test is acceptable, but whether we have weak 

exogeneity as well depends on the invariance of the parameters 

and the test of restrictions on the one step ahead forecast 

errors.

The discovery of a unit root, suggests cointegration and the 

errors-in-variables approach which estimates the first-order 

condition has an error correction form in which the endogenous 

variables are cointegrated when the matrix H* on the correction 

term is singular. The cointegration form in this guise is 

unstable which suggests that error correction models with 

unstable dynamic effects or explosive coefficients on the 

correction matrix are reparameterisations of the first order 

rational expectations model. The results of section 4 suggest 

that it is more appropriate to estimate the model using a method 

which imposes the rational expectations restrictions, than the 

un-restricted first order condition. This is especially true when 

we have cointegration, as the form of the first order condition 

may produce estimates which are not compatible with agent 

optimisation of a loss or profit function.

We have assumed that the aggregate models are representative or 

that simplistic transformations are sufficient to eliminate the 

problem. Nickell(1984) deals with aggregation by assuming dual 

labour markets which produces a model with two lags on the 

dependent variable. We use an autoregressive model that imposes 

the rational expectations restrictions, the results for this 

system are similar to those of section 3 which suggests that the
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transformation is appropriate. As to whether the serial 

correlation is due to aggregation or to the omission of variables 

is more difficult to ascertain. To answer such a question it is 

necessary to have comparable disaggregate data and sufficient 

observations to estimate the most general specification or to be 

able to generate individual industry innovations and to include 

individual market expectations and their lags in models.

The adjustment for serial correlation eliminates first order 

effects and produces a model which is compatible with the pure 

error autocorrelation. If there is a common factor, then the 

parameter with and without the common factor restriction should 

be the same. The trend model seems to be preferred in this case, 

even though the output equation dose not satisfy homogeneity the 

system has a higher likelihood and the discount rate is more 

reasonable. The undeniable conclusion that has to be made is that 

their are variables missing and when individual errors are 

regressed on other variables it has been found that hours, the 

exchange rate and the retail price index have a significant 

effect. It is clearly the case that a properly formulated factor 

demand system would require additional price terras and the 

capital stock as well as hours as endogenous variables. In the 

context of a macro model it is likely that other factors may be 

relevant: an alternative structural form or the inclusion of 

additional variables to capture excess demands, the openness of 

the economy or the effect of the monetary and financial sectors 

on output and employment.
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Appendix 4A.1 Solutions to rational expectations models with 
cointegrated endogenous variables.

If we take the Sargan Loss function:

T t(i) r\ = E( Z B (Ay'K Ay^ + (y^ - z_)'H(y^ - z. )in^}t“0 C *t *C t t L L

where rk(H) = r and 0 < r < g, then the endogenous 

variables are cointegrated. If we factor H = E'E, then the 

rk(E) = r and we can so define N that [E': N'l is a 

non-singular square matrix.

Then we can redefine (i) above in terms of new variables:

(ii) r T _t= E { S B  ( Ay K Ay + ( y - z ) H ( y - z ) I )L. t~0 u L. L u

where y* = E y^ and K = [ E' : N' ]"^K E

?2t N N

-1

with z^ defined in the same way as y^.

(iii) = E(J^6^(Ay*^K*^ûy;^* <y‘^- (y*^-

If we reformulate (iii) above in terms of new variables which are
+ * + * + 

stationary then y^^= y^^ , ^2t~ ^^2t assumed that z^^

and AAy^^ are null vectors and that a similar transformation

holds for the zs where appropriate.

Civ) r. E(J^e’'(Ayî KiiAyî » (y,,- z,.) (y,.-It It It It

Differentiating (iv) with respect to y^^ we get:
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<v) E( 6 \  (y^^- z[^) *

cancelling out 2 and with respect to

(vl) EoSK^^Ay;^ * °

Equation (vi) does not immediately look like the usual form of 

the first order condition, but we can easily re-write (vi) by 

subtracting it from itself lead forward one period. In terms of * 

variable (vi) becomes:

(vii) E( K*^(AyJ^- 0Ayj\,^) * K'^CAy^^- = 0

We can now return to a more familiar form of the first order 
condition if we put (v) and (vii) together with (v) in terms of 
(*) variables:

E{ K*(Ay* - BAy*^^) + ■ I : 0 

0 : 0
(y^ - z^) I n^) = 0

The first order condition is simply equation (4.11 ) in section

4.1 when we reverse the original transformation:

E{ K ( Ay^ - 6Ay^^^) + H (y^ - z^) I 0^} = 0

The formula is the same, as that in the case in which the 

variables are not cointegrated.

Appendix 4A.2 Symmetric Solution to Quadratic Difference 

Equations

1 The first order condition to the standard multivariate costs 

of adjustment model is given by
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E(ûo - 6Qiyt+i- OiYt-i =

if we let = 8^^y^ and Q* = ^*Q. for i = 0, 1
* i4't‘where û^= ((1 + B)K + H), Q^= K and = 6 z^, then

(viii) E(Q; y; - o;y;.i- ojy^.^ = b -* Hz ; iO^)

E((û‘)-iQ;y; - y;+i- y;_i =

where B = (Q*) o 1

This is a difference equation which has a standard solution 

for the homogeneous case given by the associated

characteristic function is given below.

(ix) ((Q^) - 1) = 0

I(0*)”^Q* p - p: - II = 0  1 o

I H*- 6l I = 0 

Where H = (Q^) and 0 = (p + 1/p), hence the

characteristic equation has a solution which is composed of pairs 

of roots associated with each root to the system v. If we select 

the stable solution we can stack the characteristic equations 

given by (ix) with their associated eigen values to derive the 

factorisation associated with the saddle point solution.

Therefore :

(H PM - PM= - P) = 0

where M o p2 • • • , so post multiplying by

P 1 and setting PMP G with G* = PM^P  ̂ and PP 1 = I gives 

us the form that has been factored, G also satisfies the
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characteristic equation. Therefore:

H G - G ^ - I = 0

+ -1 where H = G + G ,

Alternatively the quadratic above has the following 

factorisation :

(G'p - I)W(G - pi) = (G'WG + W)p - G'Wp: - WG

so that:

Q = G'WG + W , Q, = G'W and 0, = WGo 1 1

Q* = Q*G + W and Q*G = Q*G= + WG = 0*(G: + I) o 1 o 1 1
* * “1 + * "1 * — 1 Q = 0, (G + G ) and H = (Q, ) Q = G + G o 1 1 o

Which is the same formula for H as that derived above,
* + * so that when we replace by y^ and H by H we get:

H = 0F + where F = B ^G

* * " * using H to replace (0^) in (viii) above gives:

(x) E((6F + F-l)yt - 6yt+l ' Vt-1 = ^o^t '^t^

where B = 6o o
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Appendix 4B A Lagrange Multiplier Test for Serial Correlation
Let us specify a general non-linear system of which the model in 
section 1 is a special case:

Yt = PCGl] \

where 0 ' = [8 1 :8 2 ] and x* the vector of all the pre-determined

Then the concentrated likelihood function, associated with

being white-noise (the null hypothesis for which E(V'V) = fty and
N

E(v) = 0) is given as

Ly = - N log IV'V 
2 N

and V = Y - X*P[8i]'

The alternative hypothesis which assumes that we have first order 

serial correlation, then v^ = Rv^-i + e^, where e^ is a white 

noise error and (E Ee^e^] = fi) and the concentrated likelihood 

function associated with the alternative is:

(ib) Le = -N logi E^E I 
2 N

and E = V - V^R'

We can now determine a multivariate representation of Lagrange 

Multiplier (LM) test for serial correlation associated with 

Godfrey (1978). The test imposes the restriction that 

82 = vec(R) = 0, so that

Hq : 82 = 0

Hi : 89 = 0

is the null

Harvey (1981) derives the LM test and Sargan (1988) presents the 

multivariate analogue which is the score test:

LM = 1 6L V SL

N 6 8 ^ 22 58^2 2
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where Vi i = plim -1 6*L Vx1 Vx a

n 60 60
2 2 Vax Va a

is the score

and it can be shown using Cramers' linear transformation 

theorem, that:

LM X:.

where 9t is a g* x 1 vector of constrained parameters.

Hence, to derive the test we need to produce first and second 

order derivatives of (ib) with respect to 0^ and vec(R) under the 

null (R = 0). If we totally differentiate (ib) (see Magnus and 

Neudecher [1988]) we find that:

dLo = -tr (Q'^E'dE)

* - 1  - 1
where 0 = (E'E ) the total derivatives of E w.r.t. 0 are

dE = -Vi dR'

dE' = dV' (under the null) and

dV' = -dPX '

Then taking first derivatives w.r.t. 0i and R we have that:

6Lc = (E*V,)]
6R ® 1

(iib) (V'V)l (V'V^)
n n

(under the null)

this is a multivariate form of the Durbin-Watson statistic:
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(iiib) 5Le =tr a ^ E'z 6p(8 )'

5Le = tr
a*ii

(V V)'^(V X*) 6P(0^)
N 60.

(under the null)

Now let us derive the second derivative by taking the total 

differential again, so that:

1 d 
N 6R

= -ft (dft)ft-1 E V. + 1 ft ^dE'v.

when R = 0, then plim " E'V^ = plim " V'V^
N N

= 0

= > 6L
dR

= 1 ft ^ dE'v.

1 ft  ̂ dRV'v, 
N  ̂ 1

when we are considering changes in R above and we are looking at 

changes in 0^^ then we obtain:

1 d 
N dR

-ft ^dP(0^)(X*'V^> 
N

( ivb) =  -  ft
-1 6P(0^)

*®ii

ex*’Vj3de^.

The pliroCX V^/N ) is not zero, as we have a lagged endogenous 

variable. Now if we take the total derivative of (iiib) (see 

Magnus and Neudecher [1988]).

d ■ 6L = -tr ft dft fte
60, .li

6P(0^)
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+ tr r^-1 X*) d 6P(0.) ■
n

[ - - u -  1

+ 1. tr
n

n'^dE’2 6P(0 )

4*11

Under the null plim(E'X‘/n) = 0 which means that the first two 

terms are likely to be negligible, that leaves us with;

(vb) 1 d 
n

z -tr 6P(8^)(X' ' X* ) 6P(0^)’ 
n60li 60li

60li

as dE' = -dP(0^)X*' 6P(0^)X*'60^^
60li

z o

so that when we stack the 0iis into a vector we have the 

following matrix form;

(vib) -(Hes) 11 6vecP(0^)'(n"l@(X* X'))6 vec P
60. 60

and (ivb) becomes

-(Hes)12 V^Z
n

6vec(P(0^)) 
60i]

(Hes )22 (V'V)

so from the formula for the partitioned inverse (see Dhryraes 

[1984]) we have that;

n 7^2 = [(Hes)22 (Hes)^2  ̂ ^

= ( H e s 2 2 ) " ^ +  ( H e s 2 2 ) ’ ^ ( H e s ) 2 ^ V ^ ^ ( H e s ) ^ 2 ^ “ ® ® 2 2 ^ ' ^

where = [(Hes)^^- (Hes)^2 ^^®® 22^ ^
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Now we have that:

(6L) H 
60^

-1
22 68,

= N = tr (V'V) ^v'v^ (V^V^/N)
N N N

which is asymptotically equivalent to:

N=tr (fi“  ̂ v'v, v'v )V ___ 1 V 1
N N

which is a multivariate Durbin-Watson statistic, and

[(&L) (Hes )'J(Hes) ] = N 
602

vec(V V^) (fi ^0(vjv^)V^X*)6vecCP(0^)3
N N 60.

so that the test statistic is:

(viib) LM^(g:) = N tr (fi~̂  v'v^
N N

vec(V ) (ft‘^0(vjv^)vjx*)6vec[P(0^)] 6vec[P(0^)]
N N N 60^

r(n"l@(X*'v,)V'V,)vec(V'v,)1 21 1 1  1 
N N N

The above test can be generalised to take account of any order of 

serial correlation by replacing with V a n d  when such tests 

are independent we can derive a portmanteau test:

LM (ig:) = 2 LM (g:) « x , - , 
1 j=i J (ig:

We can simplify (viib) when we believe that the lagged endogenous 
variables are the cause of bias in the Box-Pierce or multivariate 
Durbin Watson test, because they enter the model linearly. Let us 
partition P to separate out the lagged endogenous variables :
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Yt= P^xlt " ^2 ‘®o* *2t " \

where are linear in parameters and are lagged endogenous 

variables, then taking the last term we have:

(viiib) N v e c ( V ' v ^ ) ( f i " ^ 0 ( V ' v ^ ) V ' x * ) 6 v e c C P ( 0 ^ ) ] 6 v e c C P ( 0 ^ ) ]

N
.

N N 60^

■(«'■ ^ « ( X * ' V ^ ) V ' v ^ ) v e c ( V ' v ^ ) ‘

N N N
- .

now we have 0' = [vec(P_)': 0'] and 6vec(P_)/60, = [ I : 0 ] 1 1 o 1 1
and when we partition V11 ''ss ''34

^43 ^44 ^

we can re-write (viiib) as

vecCV V^) V33
N N

(fi'^0(X*'v^)V'v^)vec(V'v^) 
~N N ~N

and when we only have yt-i then we can replace by a g x N 

matrix of observations on the first order lags on y. Godfrey and 

Wickens (1982) show that the first order test given above does 

not distinguish between a VAR(l) error and a VMA(l), because of 

the approximations used to derive the score test.
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Chapter Five
Dynamic Extensions to Models of Adjustment Based on 

Quadratic Loss Functions

In the previous Chapter we saw that econometric models which 

incorporate rational expectations can be presented as the 

solution to an optimal control problem. The usual quadratic 

optimisation problem restricts the parameters of the rational 

expectations model and it confines the resulting dynamic model. 

There are two primary methods of estimating such models: the 

first is based on the spectral decomposition of the lag 

polynomial produced by minimising the loss function in the 

control problem, the second uses the state space form to derive 

an estimable model based on iterating over the matrix ricatti 

equations; Chow (1983) explains the relationship between these 

methods. Here, we follow Sargent (1978) and Sargent and Hansen 

(1981) in using the explicit solution method, because it gives a 

more explicit treatment of the economic problem. Kollintzas(1985) 

has derived an equivalent method which diagonalises the problem 

to simplify the algebra of the solution, but it only works for 

the symmetric case. We extend the Sargan approach of the previous 

chapter, because we feel that it has computational advantages 

over the other methods. In particular, the state space method 

quickly produces large state space vectors and fixed parameter 

matrices even for quite small models.

A number of the results presented here are similar to those of 

Kollintzas (1985) and Kollintzas and Geerts (1984), though we
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deal with a forward solution rather than a backward one and we 

show that the recursive approach can be generalised to any order 

of quadratic loss function. The method uses the actual future 

values and allows the restrictions implied by rational 

expectations to be imposed.

The Chapter is split in to four sections: the first deals with 

the introduction of lags and leads in the equilibrium condition 

and the second extends the loss function to allow adjustment 

costs to be spread over a number of periods and the final 

sections cover global and local identification of the non- 

symraetric model. The purpose of this exercise is to derive 

econometric specifications which are more closely related to 

observed dynamic models. Wallis (1980) suggests, that rational 

expectations models should be compared with unrestricted 

distributed lag models as a tests of their validity. If such 

comparisons are to be successful, then the lag structure implied 

by the rational expectations model should have some relation to 

the data generation process. If we take the money and 

consumption models of Hendry and Mizon (1978) and Davidson et al 

(1978) as examples of modelling time series data, then clearly 

the simple first order rational expectations model is not easily 

related to such models.

In the previous chapter we saw that the Lagrange-Euler condition 

for a rational expectations model is similar to a simple error 

correction, except that the correction term can be explosive if 

the rational expectations model has a regular saddle point 

solution. Error correction models which have been observed as
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representing the data are very different to the type of euler 

condition produced by the solution of first order objective 

functions. Comparison of single equations is problematic, 

especially in the light of cointegration, because it does not 

capture the inter-action between dependent variables. It is only 

be relevant in the multivariate case, when the series are 

independent. However, it provides some measure of the possible 

distortions which may occur when too a simple dynamic is imposed 

on the data.

The solution offered in this chapter is to derive more general 

models based on the principal of rational expectations or 

consistent prediction which nest the simple models within them. 

The strong rational expectations hypothesis aligned with a 

restrictive dynamic is not then imposed on the data.

5.1 Dynamic extensions to the Econometric Specification via the 
equilibrium condition.

Sargent and Hansen (1981) and Sargan (1982) specify methods of 

estimation and solutions to the multivariate costs of adjustment 

rational expectations models derived from the optimisation of 

quadratic objective functions. Sargent and Hansen deal with 

agents maximising a profit or utility function subject to 

symmetric costs of adjustment. The econometric model is derived 

by finding the optimal solution to the agent problem, eliminating 

the endogenous variable expectations using the forward solution 

method and substituting out for the exogenous variable 

expectations by the Wiener-Kolmogorov prediction formula. The
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approach is limited, because it assumes that the observed data 

correspond exactly to the model derived from the solution of the 

agent problem and it does not reveal the deep parameters of the 

model. Here, we follow Sargan (1982) in assuming that the agent 

problem needs to account for a cost of disequilibrium, and in 

specifying a method which solves the model forward to reveal the 

deep parameters. The Sargan approach is explained in detail in 

the context of an econometric specifications which allows for 

lagged variables and which does not impose the usual strong 

rational expectations restrictions on the forward evolution of 

the exogenous variables.

The agent or social planner determines his optimal plans 

conditional on the current information set 0^ which is a super­

set of the available data. The plans are derived by minimising a 

quadratic loss function with two elements: an adjustment cost K 

and a cost of being away from the target or equilibrium H. The 

expected loss is given by:

T t(5.1) E(C in ) = E( 2 6 (Ay'K Ay + (y - z )'H(y - z ) in )

where E(xj+g iny) is the expectation of xj+g conditional on 

the information available at period j and K and H are 

positive definite matrixes of costs; this final condition is 

necessary for a unique local minimum and it implies that the 

cost function is convex.

The conditions on the cost matrixes of the Hansen and Sargent 

(1981) model are the mirror image of those presented here, 

because that method involves the maximisation of an objective 

function which means that the cost matrixes need to be negative
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definite. Such models would also require symmetry to be imposed, 

because of the theoretical model underlying the maximisation 

problem. If (5.1) represents the maximisation of utility subject 

to costs of adjustment, then the zs would be prices or demand 

shocks and the condition on the Hessian of cross price 

derivatives would require symmetric cost matrixes to satisfy the 

axioms of choice. As Deaton (1975) explains, symmetry in the 

cross Hessian of compensated price coefficients is necessary so 

that agents make consistent choices, otherwise they would be 

confused by the monetary evaluations due to a change in the good 

of account. In our case such theoretical restrictions do not 

affect the parameters of the cost function, but they may 

influence the coefficients of the static equilibrium condition 

below :

(5.2) z^ = Ax^ + Et

where A is a matrix of fixed parameters, x^ a vector of

observables and the unobservable or stochastic part of

Z f

The loss function attenuates adjustment to a target value z^ 

which can be viewed as an equilibrium or optimal point on an 

agent or economy specific response function. The target is a 

notional point to which the economy adjusts in the short-run.

The implication of this approach is that agents have desires 

which they would like to achieve and which are based on the 

solution to an idealised problem, but the desires are notional in 

the sense that they cannot be achieved automatically. This leads 

to the subsidiary problem of selecting a course of action with
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respect to actual control variables to meet the target or desired 

values. Minimisation of the loss function reveals a set of plans 

or contingencies which limit the expense of adjusting to a moving 

target.

The target of an agent response function is static, but we have 

no reason to believe that this is the case. If we look at the 

Consumer Maximising utility, his target is the optimal point on a 

demand curve. If the consumer problem is an intertemporal one or 

the commodities are addictive or habit forming, then the demand 

curve will be a function of current and future prices, in the 

first case or past prices in the last. In general our target 

relationship will be dynamic or, in the direct optimisation 

approach of Hansen and Sargent, the utility of profit function 

will depend on past and future values of exogenous variables:

(5.3) = A(L) X: + A (L‘l) x^ + tt t — t + 1 t

where A(L) = I + A]̂ L + A^L^ + .... ApLP 

and A_(L) = I + A_iL"l + A_2L"2 + ... A_j.LT 

with the p < s where s is the order of the process

driving the exogenous variable and L is the lag operator

and L“  ̂ the lead operator

The short-run model depends on the solution to the rational 

expectations model and the stochastic process forcing the 

exogenous variables. If the endogenous variables can be described 

as a vector autoregressive model which is weakly stationary, then 

that can be inverted to reveal an infinite order moving average 

model :
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(5.4) - Z Cg E^+g
3 = 0

where is a Martingale difference or white noise

innovation.

The forward looking solution to the rational expectations model 

is found by minimising (5.1) with respect to that reveals the 

first order or lagrange Euler conditions; Sargent and Hansen 

(1981) and Sargan (1982) present this result for the multivariate 

costs of adjustment model. Therefore:

(5.5) E(o; - 8K y^,;- Ky^_^ =

where 0 = ((1 + 6)K + H)o
VT

(5.6) yL^m^ 6 E(y^lfi^) ^ 0

Condition (5.5) equates the marginal cost of adjustment with the 

discounted benefit of achieving the target and condition (5.6) is 

the necessary condition for stability. If (5.6) does not hold 

then we would not get a finite solution to our problem. Equation 

(5.5) will be valid when we either have two stage decision making 

process, so that the target values do not depend on the solution 

to the cost minimisation problem or a target based on a global 

solution which is not affected by the actions of individual 

agents. The two problems need to be separable which implies a 

general problem that is linear, so that the solution to the cost 

function and the utility function or profit function determines 

the z-j-s. The approach of Sargent and Hansen do not allow for 

disequilibria, but they do allow for exogenous variables in the 

structure of the revenue or expenditure functions. Nickell(1987) 

shows that the two problems are identical.
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In (5.5) we have a second order difference equation for which 

there is a standard solution. Sargent (1979) covers the 

univariate case in detail and Sargent and Hansen (1981) and 

Sargan (1982) deal with the multivariate rational expectations 

model. The problem can be factorised into a backward-forward 

solution given an equal number of stable and unstable roots, the 

well known saddle point result for rational expectations models.

(5.7) E(yt - Fyt_i = (I - GiL"l)"lFBoZt 10%)

where = 6F, Bq = = (BF + F"^ - (1 + B)I),

Q = B^Q and F = B ^PMP"^ where M is composed of the o o
stable roots of the system where IH*p - (1 + p*)II = 0 

and p, 1/p and Bp will be real roots given that H*= K~^Qq 

is positive definite (see appendix 4.A1 for details).

Solving forward and working through the expectations operator in

(5.7) implies that;

® s(5.8) y% - Fy%_i = Z(Gi) G2 E(z% 10%) + u%
s=0

where u% is the error associated with elements of u% which 

have either been left our or cannot be modelled; u^ will be 

white noise if the model is correctly specified.

Transforming (5.8) above using a first order Koyck lead

eliminates the future values of the target variables; Muellbauer

and Winter(1980) have dealt with this in the univariate case and

Sargan (1982) and Hunter (1984) for the multivariate case. Here,

the problem is complicated by the lag and lead terms, but future

expectations in the exogenous variables may still be removed by

applying the Wiener-Kolmogorov prediction formula (see Appendix

4.A1 for details). If (5.3) involves future values then some of
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those expectations will not be removed by this process;

(5.9) (I-G,L"l)(y^-Fy+ -u ) = 2 (G* E(x+ .Ifi )-(G,)~^D , , )1 t 't-1 t i=-p t+i t 1 -i t+1

where G . = FB A . and D . = 2 G^FB A ,C . . and 1 = i + 1 -1 o -1 -1 1 0 - 1  j-1
for all i > 0 and i = 1 otherwise.

At this stage the model could be estimated using the errors in 

variables approach of Wickens (1982), but as was explained in the 

previous chapter, that would not take account of the cross 

equation restrictions or the moving average error term (u^ - 

Giut+i). One alternative to the approach we adopt here would be 

to explicitly model the error process, but that would introduce 

further complications. The more usual formulation of the VMA 

error would require exact maximum likelihood estimates of the 

parameters, because the roots of the matrix of coefficients lie 

outside the unit circle when the rational expectations costs of 

adjustment model is correct. An alternative formulation could be 

derived with the moving average parameters inside the unit 

circle; Pesaran(1987) calls this a forward filter method. A 

further non-linearity would be introduced into such exact 

methods, because the likelihood would have to be conditioned on 

the current, future and lagged ys. Here, we use the approach of 

the previous chapter which reverses the Koyck lead to reveal a 

forward looking solution in terms of the actual x^s:

-1-1, E -i,(5.10) y^-Fy^ -u^= (I-G,L ) ( 2 (G E(x^ .IQ )-(GJ D ,)t ■'t-1 t 1 i = -p t+1 t 1 -1 t+1

If we let the RHS of (5.10) be equal to h^ then we have a model 

which can be estimated recursively using maximum likelihood 

techniques (see Appendix A2 for details). Therefore:

(5.11) yt - Fyt _i - u% = h^
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(5.12) hr = Z (G* E(x+ .I )-(G,)"^D . , )  + G,h  ̂
t i=-p t+1 t 1 -1 t+1 1 t+1

and E(xt+ilOt) “ %t+i tor all i < 0

If the parameters of the exogenous process are known and 

outside the sample we use predictions to compute h^+i, then for a 

sample and prediction period T + N, where N is sufficiently

large, the truncation of the backward iteration should be o(T"%),

given that (5.6) holds. The dynamics specified appear an 

unnecessary complication, but they are both consistent with the 

solution of rational expectations models and with a general

modelling strategy. Setting up models in this way is more likely

to generate correctly specified models, because it allows the 

restrictions to be tested rather than imposed. A number of 

dynamic models are nested within (5.11) and (5.12), but we will 

limit ourselves to the restrictions which differentiate this 

model from the static equilibrium model, present a method of 

testing the backward forward solution and use a demand system to

explain the relevance of our results.

The standard costs of adjustment model presented by Sargan (1982)

and Hunter (1984) is a special case of this model, in which the

target is specified by (5,2) so that A_^ = 0 for all i f 0. If

the target relationship is the relevant model of the dependent

variable, then we would expect the future convolution not to be

important and the distributed lag on the exogenous variables to

depend on stable roots not related to F. The structure of the

quadratic loss function imposes the symmetric backward-forward

solution, but we can test the assumption in this case by imposing

the correct restrictions on the lagged coefficients. When the

first order cost of adjustment model from chapter four is
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appropriate, then we would expect A_ĵ  for all i < 0 to be equal 

to F'^Aq and 6=0. If 0 = 0 was the only restriction that held, 

then that could be caused by either the future expectations being 

heavily discounted or the exogenous variable models not being 

very good.

We can show that (5.11) and (5.12) allow a range of models to be 

tested within one structure and in the utility maximising 

framework we can formulate three hypotheses which would produce 

dynamic models: habit persistence, durable goods and non- 

separable intertemporal choice. The framework presented above 

allows us to compare some of these dynamics with those due to 

rational expectations. If we take the stock-flow model of Stone 

and Rowe (1957) and Nerlove (1956), as presented in Deaton and 

Muellbauer (1980), and generalise it to g goods:

(5.13) d^ = R (S^ - ,)+ 68^ ,t o t t-1 t-1

d,_ s* = *ŝ and S = s, ̂It t It t It

, , ^gt

Hence d^ is the demand for the vector of goods, based on a stock 

adjustment principal, given a relationship for the desired stock 

last period and the stock held:

where x^ = [1, y^/P^l in Deaton and Muellbauer, but in

general it depends on many more variables.
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Application of a Koyck lead on (5.13) allows us to eliminate the 

stock S which is not observed from the demand relationship:

d^ - <l-6)dt-i = RoRi(xt - (l-6)xt-i)

+ (61 - Rq )CS^_2 - (1-6)S^_23

= RqR j (x ^ - (l-5)xt-i) + (61 - Ro)dt-i

(I - (I - Ro)L)dt = RoRi(xt - (l-6)xt_i)

Inverting the Koyck lead gives the demand model purely in terms 

of the observed exogenous variables x-j-.

d^ = 2 (I - R )^R BLCx^ - (l-6)x^ .] t i=o o o 1 t t-1

where A = R R, , A . = [61 - R ][I - R ^R R .o o l j  o o o 1
for all j > 1

Using (5.11) and (5.12) to reveal the model in terms of actual 

demands solved for future expectations, we have:

= K - l  ' ht + "t

where d^ is the vector of actual real expenditure on g goods 

and G . = F B ^A ., A. is defined above, D . = 2 G,FB A .C.-1 0 - 1 1  -1 1 0 - 1  j-1
G^=6F and  ̂ are from the moving average form for the xs.

An appropriate criterion function would be minimised with respect 

to 6, 6, Rq , Ri and F, given the restrictions on Bq and the 

Cj_is.
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5.2 General Quadratic Objective Functions

In this section we extend the first order cost of adjustment form 

of the previous section to allow for interaction between 

the stock and flow and to introduce higher order costs of 

adjustment. Kollintzas (1985) extended the model due to Hansen 

and Sargent (1981) to include such terms for the case in which 

the costs of adjustment matrixes are symmetric and he presents 

the multivariate result, as the solution to a number of

univariate problems. Here, we analyse a similar model in the

same manner as in the previous section, but we do not impose the 

symmetry which implies that the transformation to a univariate 

formulation is not possible. The more general framework allows 

the restrictions implied by the simpler formulations to be tested 

and provides models which do not impose such a strong variant of 

the theory, but allow the econometric specification to correspond 

more closely to the data generation process.

The inter-action term takes account of the additional effect 

that distance from the target may have on adjustment. This is 

similar to an acceleration cost, because shifts to a point far 

from an agent optimum or made far away from such an optimum 

becomes increasingly more expensive. The cost function to be 

minimised is the same as in the previous section except that it

includes a term bilinear in y^ and (y^ - z^). Therefore:

T t(5.14) E(C 10 ) = E( 2 6 (Ay'K Ay^+ (y+- z. )'H(y^- z^ ) +L L t^O t U L L U H

2Ay^J (y^- z^) 10^)

where y^ and z^ are as specified for equation (5.1) ,

E(Xj+g lOj) is the expectation of xj+g conditional on the
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r K J
L J' H .

is theinformation available at period j and 

positive definite cost matrix; a necessary condition for a 

a minimum and a cost function that is convex^.

The target is taken to be static in this case, so that its 

relationship is given by (5.2) in the previous section. The set 

of optimal plans is devised by minimising (5.14) with respect to 

Vf

Kollintzas' approach is defined in terms of maximising an 

objective function subject to symmetric cost matrixes. The full 

matrix of costs needs to be negative semi-definite for the 

solution to reveal a maximum, the method of deriving the solution 

is not materially different, but the result is. Obviously the 

two underlying agent problems suggest different coefficient 

values implying that in most cases only one of these models is 

likely to be validated by the data. In special cases we may find 

two models which are observationally equivalent, but it seems 

unlikely that both formulations will be both correctly specified 

and theory consistent. Symmetry is a sensible condition for a 

model to satisfy when it is based on utility or profit 

maximisation, but it should be criterion to be tested rather than 

imposed. The example presented in Kollintzas relates to the 

interrelated factor demand model which should satisfy symmetry 

restrictions, but as Deaton and Muellbauer(1980) show in the case 

of consumer theory that such restrictions are an important check 

on the validity of the model. Kollintzas' approach simplifies 

the solution of rational expectations models at the cost of

1 J = J' implies that we can use Kollintzas method
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imposing symmetry which makes this approach questionable, because 

inappropriate restrictions are likely to misspecify the model.

Here, we do not impose symmetry and the stochastic environment 

for the exogenous variables is given by (5.3) above. The 

Lagrange-Euler first order conditions are given by minimising

(5.1) subject to y-f-. Therefore:

(5.15) E(0; Q*' y^.^=(J * H)*^-

where Û = ((1 + 8)K + J + J' + H) and Û. = J + Ko 1

( 5 . 1 6 ) y L ^ m ^  0” ^ E ( y ^ i n ^ )  0

The first order condition is similar to the separable cost model 

presented by Sargan (1982), except for the asymmetry caused by 

J X J' the non-symmetric interaction cost and the introduction of 

a first-order lead in the target. The standard solution to the 

multivariate costs of adjustment problem can be augmented to take 

account of the asymmetry (see Appendix B2 for detail). The lead

in the target does not affect the forward solution to the dynamic

problem presented in (5.15) and (5.16). Therefore

(5.17) E(y^- Fy^  ̂ = (I - G^l"^)'^(F(Q^ +(Q*)'^(H - K))z^ +

8(<o ;')-1k -

where = BFQ^ , 0^ = (0^') ^0^ and F = 6 *PMP"1 and

M is composed of the stable roots of the characteristic 

equation “ Q*p= - 0*'l = 0 and p, 1/p and Bp are real

roots of the system if Û* is positive definite and J is a 

symmetric matrix, symmetry of is sufficient for a 

solution to exist, but that will not guarantee real roots.
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It is possible from (5.17) to derive the same type of forward 

looking econometric specification by working through the 

expectations operator and replacing the unobserved target 

variables using the static agent response or equilibrium 

condition (5.2), so that:

(5.18) y - Fy = 2(G )®FE(B z - B.z. ,10.) + u t t-1 3=0 1 o t 1 t+1 t t

where u^ is a white noise error term if (5.18) is well

specified and B = (Q, +(Q, ') ^(H - K)) and ^ o i l
B, = (Q^-(Q/)'^K) and B = 60*(F - I) + f "^- I + B, 1 1 1  o 1 1

By analogy with the previous section we can perform the same 

operations to transform (5.18) into an iterative model from which 

the future expectations have been removed. The first stage 

utilises the Koyck lead and the Wiener-Kolmogorov prediction 

formula to eliminate the predictions of the exogenous variables, 

but that reveals the model with the moving average error (see 

Appendix 4.A1). The second stage gets rid of the moving average 

error term by reversing the Koyck lead and this converts our 

original forward model in expectations into a forward looking 

model in actual exogenous variables which can be represented in 

iterative form (see Appendix A2 of this chapter):

( 5 . 1 9 )  y ^ -  F y ^ . . j -

( 5 . 2 0 )

where G, = 6FQ\ GL + FB A G^ = FB,A G* = FD 1 1 2 O j 1
D = S (G,)®"^ (G,B - B,)AC , and 

3 = 1  1  l o i  S - 1

B = 6Q* (F - I) + f"^ - I + B, o 1 1

The model can be solved recursively by iteration over h^, given

that the terminal condition h^+n = 0 and the stability condition
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(5.16) are satisfied. The appropriate criterion function will be 

optimised with respect to the discount parameter 6 the deep 

parameters A the factor matrix F and the matrixes and 0^

which are composed of the original cost matrixes H, K and J; Bq
+  —  1 +  can be derived from B^= BQ^(F-I)+F - I ♦ B^, given BF, B^ and

The system specified by (5.19) and (5.20) nests a number of 

models within it: the static model in which y% = 2%, a vector 

AR(1) model, a partial adjustment model and the separable cost of 

adjustment model with static target. The restrictions associated 

with different econometric specifications similarly apply to the 

separable cost model.

( 5 . 2 1 )  y ^  =  A x ^  +  u t

when F = 0, so that we have a simple static model

( 5 . 2 2 )  y t  =  F y t _ i  +  u %

when A = 0, which is a VAR(l) time series model. Certain 

exchange rate models and the Hall consumption function have 

been justified in this way.

(5.23) y-t = Fyt-i + (I - F)Ax^ + u%

when B =0, so that the future convolution is not important 

we are left with a partial adjustment model. The long-run 

solution to (5.23) is given by the target condition, so that

* A *y = Ax .

The other restrictions transform the model into costs of
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adjustment rational expectations models with specific 

restrictions on the loss function. If Bq = 0, then the target 

cost and inter-action cost cancel each other out, so that J = -H 

and the term in is left out of (5.20). It is then possible to

estimate all the parameters of this model directly, because is
+ -1 computed using -(60^(1 - F) + I - F ). If B^ = 0 we are

left with the separable cost model from chapter four, because the

restriction implies that J = 0 and 0* = I. We could also include

lags and leads in the target relationship of the separable cost

model, but some parameters would not have to exceed the lag

length of the exogenous process and in an unrestricted model the

coefficients on the first lead term would not all be identified

if the target condition (5.3) contained the same lead.

The separable cost of adjustment model has a solution with real 
* *roots when and are positive definite, while no such 

condition holds in the non-separable case. The solution requires 

to be symmetric in the separable case, but that does not 

ensure positive definiteness and positive definiteness does not 

ensure real roots. Kollintzas confirms this assertion in the 

case in which and Q* are symmetric by showing that the roots 

may be imaginary for this special case. If the cost matrixes are 

positive definite, then the backward forward solution for all the 

models presented in chapter four and five cannot have roots on 

the unit circle (see Appendix C for proof of this result in the 

most general case).

Econometric specifications are usually reductions or 

marginalisations of a more general formulation, such models can
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be represented as multivariate autoregressive moving average 

models with exogenous variables. Therefore:

(5.24) 8(L)st = $(L) €t

where s^ = Vt 8 (L) = 8ii(L) 8 i2 (L)

%t 8 2 1 (L) 0 2 2 <L)

*(L) = $ll(L) *12(L)

The models presented so far restrict 0 2 i(L) and $2 i(L) to be zero

which implies that the x's are strictly exogenous, so that there

is no feedback into the process driving the y's. The backward

and forward solutions impose specific restrictions on the other 
parameters in the model, in the forward case: 8 ^^(L) = (I-FL),

8 ^2 <L) = B*(L), $^^(L) = I, = D*(L*^) and
•k k$2 2 (L) = C(L) where B and D depend on the specific form of

the loss function and the equilibrium condition. The principals

of general modelling suggest that such restrictions should be

tested by starting with a more general formulation and moving to

a more specific one, even if the specific form appears to be well

specified (Davidson et al 1978 and Hendry and Mizon (1978)

explain such methods for single equations). Such a procedure

would suggest that we either start with a model which is an order

higher than we believe is correct or select a form which is

consistent with the existing evidence. Hendry, Pagan and Sargan

(1984) point out that the general qth order cost of adjustment
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model is the only form which will be compatible with (5.24), so 

that :

(5.25) E(C in ) = E( i 6^(Ay/K*Ay% y'H y^) in+) t t t“0 t t t t

where t-1

t-q

+ + + , y = y^- 2^ and "t-1

t-q

and K* is a positive definite matrix with typical elements 

matrix and is positive definite with element matrix 

where i = 0, ... q and j = 0, 1, ... q.

The loss function could be thought of directly in state space

terms with (5.25) being minimised subject to y^ which would yield

a first order representation of the model, but this does not
+apply in this case, because the solution with respect to y^ 

depends on past values of y . Hence, the first order analogue of 

the usual model does not take account of the restrictions implied 

by minimising (5.25) separately with respect to all of the y^s, 

because it assumes that plans do not overlap or such restrictions 

are not important. The first order form in y^ will only be valid 

for rational expectations models derived from the solution of

(5.25) when K or H are diagonal or can be diagonalised

simultaneously. It is only possible to diagonalise the system if
+ + + +H and K are symmetric and H + (1 + 0) K is positive definite.

The only other case in which a simple first order model holds is

when there are no adjustment lags and one lag in the target cost

term. If K* = K y^= y^ and y^ = [(y^- z^)'(y^ z^ ^)']

then (5.25) becomes;
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T t +~(5.26) E(C Ifl ) = E( 2 6 (Ay'K Ay.+ y'H y. 10.)
t  t  "t~o "t t  t  "t

where K and H = Hqo ^ol 
"lo "ll

are positive definite and is 

the static target given by condition (5.2).

The solution to (5.26) is given by minimising the loss function 

with respect to y^ which gives us a similar first order condition 

to (5.14). Therefore;

(5.27) E<0;y^-B0;y^^^- Q‘/y^.^=

where o; = ((l + 8)K * =(0;'.BQ% >

and o; = . K . oj' = . K

%T
(5 .28)^L^m^ B E (y^ lO ^)  ^ 0

The Lagrange Euler condition (5.27) is the same as (5.15) except 

for the coefficients on the target variables z^, z^-i and z^+i 

which means that the forward looking solution may be derived by 

analogy with the results for the inter-action model; equation

(5.28) is the usual stability condition:

(5.29) E(y^- Fy^_i =(I )-^F<B^z^* eB_^z^^^l !)̂ )

where G., = BQ*F , 0L=(O* )0*, B =(Q )(H + BH ),1 1 1 1 1  o 1 oo 11

+  —  1 B =BQ,(F-I)+F - I + BB + Bo 1 - 1 + 1

The forward solution is arrived at by straight forward

application of the same techniques applied to (5.17) which reveal

a similar type of recursive model, except for the addition of a

lag term in the exogenous variable(see Appendix B2 for details).

(5.30) y^- Fy^_j-
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(5.31)

where G, =BFO*, G.= FB.A for i=-l,0,»l G* = Z (G,)^'^D , 1 1 1 1  i = -l 1 -1
and D.= 2 (G,)®"^G.C ,1 s=l 1 1 8-1

The model can be solved recursively subject to a criterion 

function for the composite cost parameters and ; the

matrix related to the stable solution to the system F; the deep 

parameters A and the discount factor 6. The coefficients on E^+i 

are imposed using the parameters from the process determining 

the exogenous variables, and Bq by the restriction on the cost 

matrix determined by the solution.

Equations (5.30) and (5.31) provide a general model within which 

we can nest (5.21) when F=0 and (5.22) when A = 0. When 0 = 0 we 

get a pure partial adjustment model when B.^ = 0 and a more usual 

dynamic econometric model otherwise:

(5.32) = FB' Ax^.^ - FB^ Ax^

* *which has the long-run solution y = Ax , given the

restriction B = (F - I - Bf).o 1

We get the first order model from chapter four when B'l = 0 and 

Bi = 0, but as this is observationally equivalent to a model with 

a diagonal target cost matrix it is not direct evidence that 

longer lagged effects do not exist. If B+^ = 0 we have a model 

that is observationally equivalent to the inter-action cost model 

and when B_^ = 0 we have a triangular cost model which cannot be 

confused with inter-action costs, but must be seen as a pure 

asymmetric cost of disequilibrium in which the effect only feeds 

backwards.
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The general solution to the intertemporal problem presented in

(5.25) does not usually lead to first order models, but to more 

complex results based on the solution to higher order difference 

equations. Differentiation of (5.25) with respect to y-j- reveals 

the following Lagrange-Euler first order condition which becomes 

in compact form:

(5.33) dE (C^l 0^) = E(K A y^^^+ K Ay^+ H Ay^l 0^)

*•" ^Oq
K*= I*K*= *10*^11" *• *%iq and H*= I*H*=

KqO* • ‘ . K*qq_ _"qO " •• ■■ - V

where K .. = K..( L/0) and H* . = H. .( L/B)~^

The result may be easily validated by reference to the 

first order condition (5.27) where K = K, y^ = y^.

I* =[I :(L/B)"^I3 and H* = I H H , 
" i :

The general model can be factorised in a similar way to the 

relationships already presented and that factorisation is dealt 

with in Appendix Bl. When the cost matrixes are positive definite 

the factorisation eliminates the possibility of unit roots and it 

suggests that the stable roots are all in modulus less than B^; 

the first proposition is proved in Appendix C. If the saddle 

point solution is correct the forward solution to the model 

reveals similar recursive results to those already obtained 

(Appendix A2 deals with the general result) which is:

(5.34) (L)y^ - u^ = h^
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(5.35) = (G^(L"^))"^g^

where g = E( f B® ^2 B^H ..z. 10.) and H. . is ant g=_q i=o i(s+l) t+s t ij
element of the cost matrix H*, G*(L ^) = G'(L ^B^ ), 

G^(L)= WG(B ^L) and W, G(.) and G'(.) come from the 

factorisation of the polynomial in y from the less 

compact version of the Lagrange Euler equation (5.33).

If we re-write (5.35) to bring out the recursive nature of the 

solution, then:

(5.36)  ̂ •••

as G*(L“^) = (I - F'L'l- F'l"? F' l'*’)1 1 2  q

The model can be solved backwards, given a terminal condition h^

and a method of replacing the expectations in g^. In the first

order models it was sufficient to combine a Koyck lead of the 
+ -1form G^(L ) and the Wiener-Kolmogorov prediction formula to 

eliminate the infinite distributed lead in exogenous expectations 

implied by the forward solution, but that is not possible here, 

because the order of the polynomial is greatly increased (the 

second order costs of adjustment model can be quite easily 

solved). As in all of these types of model it may only be 

possible to compute the costs of adjustment terms to a factor. It 

is difficult to know whether it is easier to estimate the model 

using (5.34) and (5.36) or to use the first order condition.

5.3 Identification of the cross product model of adjustment

In this section we look at the identification of the cross

product model, but these results can be related to most of the
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other models presented here and in chapter 4. It is difficult to 

derive both necessary and sufficient conditions for 

identification in non-linear models, both Rothenberg (1971) and 

Sargan (1975,1983b) do this for quite general structures. 

Rothenberg (1971) produces local conditions for the 

identification of non-linear models, but global conditions 

usually depend on the form of the non-linearity. In this section 

we use the Lagrange-Euler first order condition to produce 

necessary conditions for global identification and then these can 

sometimes be augmented by sufficient conditions. In the next 

section we derive local conditions which do not depend on the 

global ones. A direct analogy can be made between the results 

presented here and the identification of models with 

autoregressive errors (see Sargan (1983a)). Such results usually 

rely on knowledge of the lag structure and such information is 

useful in identifying rational expectations models. Pesaran 

(1987) presents a number of conditions drawn from the literature 

which suggest that the difficult task of identifying rational 

expectations models may be simplified by our knowledge of the 

structure.

Initially we use the first order condition which incorporates the 

same restrictions as the quasi-reduced form in the previous 

section and the likelihood of this quasi structural form is also 

equivalent to that of the reduced form (see Pesaran (1987) for a 

related result). It can be shown that asymptotic identification 

and consistency are intimately related (see Sargan (1975) for a 

proof of this). If we can then relate consistent estimates of the 

parameters of the model to the quasi-reduced form, it can be

254



shown that the parameters of that model will be identified. We 

start with the first order condition to simplify this procedure, 

as the non-linearities are less complex in that case. We then 

relate the first order condition to its reduced form, because 

those parameters can be identified under very weak conditions. 

When the reduced form is identified, then these less restricted 

parameters can be relate back to the structure. Hence, the 

Identification conditions are derived sequentially by firstly 

showing that the reduced form parameters are identified and then 

showing that a unique relationship exists between those 

parameters and the parameters of the structural form.

Rothenberg(1971) shows that this is a sufficient condition for 

identification.

The cross product model can be presented in the following first

order form which can be consistently estimated using either

instrumental variables or an exact maximum likelihood method that

estimates the moving average term encapsulated in the composite 
+error u^. The equivalent conditions for identification are much 

easier to derive in the instrumental variables case.

(5.37) û*y^- HAx^- JACx^-

where Q = (1 + 6)K + J + J' + H and Q, = K + Jo 1

Clearly we can derive an order condition which is necessary for 

identification in this instance by comparing the parameters in

(5.37) with those in the freely estimated reduced form:

(5.38) y^ = PiYt+i  ̂ Pz^t-l * ^ 3 ^ ’ '’4^*1 " \

where 0Q* = 0* , Q = Q P_,l o i  1 o Z
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Then, if we can identify , ?2 , P3 and P4 it may be possible to 

solve out for the parameters 0, K, J, H and A. Such a solution 

will be derived in two stages the first relating (5.38) to a 

slightly more restricted form which is then related back to

(5.37). We can simplify (5.37) in the following way:

(5.39) (3*ŷ  - BQ* ‘ K - 1  ‘ *l’‘t ' \

Let us deal with the identification of the parameters in (5.38) 

first. If there is a matrix of optimal instruments (yt+l^ Vt-l 

: X-J-; Xt+i], then a necessary condition identification is that 

this matrix is of full rank, so that its cross product is non­

singular. This condition is somewhat complicated by the fact 

that we have to estimate (5.38) by instrumental variables which 

means that the condition for identification depends on the whole 

set of instruments.

If we have the process for x-j- approximated by an sth order vector 

autoregressive model we find that the unrestricted backward 

solution for y^ is given by the following polynomial distributed 

lag model:

s-1
(5.40) ''t* ^t-i \ ! o  * “t

where the F depends on the parameters of the autoregressive 

process and those for the loss function, B,H,K,J and A.

It is clear that we need enough additional information to 

estimate the parameters in the reduced form (5.38) which means 

that s > 2 is required, as Xt+i depends on x^-k for k = 0 ,
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l..(s-l) and y-t+i depends on the same exogenous variables plus 

Yt-i' We can see when we lead equation (5.40) one period and then 

take expectations yt+i will depend on x^+i, yt and x^-k for 

k = 0, ...,(s-2). As y^ is clearly correlated with the error we 

need to instrument it which from (5.40) means that the instrument 

set is yt-l# %t-k for k=0, ..., (s-1). Identification of all the 

parameters in (5.38), requires there to be information in 

addition to x^ and yt-i so that the x^ process should on average 

have more than two lags on each variable. The first order model 

estimated in chapter 4 has the same backward solution (5.40) and 

it requires s > 1 to identify the reduced form coefficients, the 

model in the first section of this chapter requires s > r + p + 1 

where r is the number of leads and p the number of lags on the 

exogenous variables. Equation (5.38) sets r = 1 and p = 0, so 

that we need at least a VAR(3) or exogenous variable processes 

with third order lags on g of the variables.

The reduced form (5.38) is linear in parameters which means that 

a necessary and sufficient condition for identification is the 

independence of x^+i, yt+1' Vt-l x-j-, and that in turn depends 

on the number of lags in the autoregressive model forcing x^. If 

equation (5.38) satisfies the condition of independence, then the 

more stringent condition s > r + p + 1 should also be satisfied. 

At this stage we can use the fact that when the less restricted 

parameters associated with (5.38) are identified, then any 

consistent method of estimation which imposes additional 

restrictions should also be identified. Hence, we can derive an 

order condition associated with the parameters in (5.37) which 

will be necessary for global identification and a step-wise
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procedure which produces side conditions which are sufficient 

firstly to identify the parameters in (5.39) and finally those in

(5.37). With 2kg + 2k2 parameters in the reduced from (5.38), 

the order condition for the identification of 6,K,H,J and A will 

be :

2gk + 2g2 > 3g^ + gk + 1

gk > g2 + 1 or k > g

As K and H are assumed to be positive definite, though we only 

need K to be positive definite we can introduce the additional 

restriction that H and K are symmetric. The symmetry restrictions 

can be tested by comparing the likelihood of the model which 

imposes them with that which does not, then if it is valid we 

have the weaker condition that:

2gk + 2g2 > g(g +1) + g2 + gk + 1

gk > g + 1 k > 1

The order conditions presented above are intuitively appealing, 

but they are not easily augmented by additional conditions of a 

similar degree of simplicity. Let the parameters of the reduced 

form (5.38) be denoted by the vector q/, the less restricted form

(5.39) by the vector I and the parameters of the quasi structural 

form (5.37) by the vector 8, then we can derive a sufficient 

conditions for identification by applying sequentially the global 

conditions presented in Rothenberg(1971). If the conditions for 

the identification of the reduced form parameters are met, so 

that then the parameters of equation (5.39) are identified

when a unique solution E=E* exists to the following equation:
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\|/* = p ( Ç )

where P(5) is a vector function of the parameters of 

equation (5.39).

Conditional on the existence of such a solution the sufficient 

condition for the identification of the quasi structural form is 

the existence of a unique solution 0 = 0* to the following 

relationship:

I* = 0 (0)

where 0(0) is a vector function of the parameters of 

equation (5.37).

Firstly we will deal with the identification of the parameters of

(5.39), this is a linearisation of the original model and then we
* *use that to relate the parameters Oq , 0^, A]̂ , A£ and 6 to the 

P^s. Equation (5.39) is linear except for S which means that it 

should be relatively easy to derive sufficient conditions for 

those parameters. We have four equations relating the parameters 

in (5.39) to those in (5.38):

* * * ' *30 = 0 P, , OL = 0 P^,l o i '  1 o 2‘

2 = «* P4 and *1 * *2 = %  P3

The existence of the reduced form representation in terms of the 

structural from parameters C depends on Oq being non-singular 

which in the context of the our cost minimisation problem means 

at least one positive definite cost matrix with the others being 

non-negative definite. It seems reasonable to assume that their 

are positive costs of adjustment which implies that K is positive

259



definite. If we take the first term above and relate it to the 

transpose of the second then:

» J. »
Û P = BP_ Q* o 1 2 o

Q* P - BP^Q* = 0 o 1 2 o

Vectorising this relationship (see Dhrymes (1984) chapter 4) 

gives :

(5.41) Vec (Q*P - BP'Q ) = ((P/BI) - B (IBP')) vec (Û*) o 1 2 o 1 2 o

assuming that 0 ^ and hence H and K are symmetric

positive definite matrixes.

We now have an homogeneous system of linear equations for which 

vec (Qg) is an eigen vector and given the conditions mentioned 

above P2 should have an inverse. Therefore multiplying (5.41) by 

(P2 ) g i v e s  us :

((P;B (P')~^) - 6 I) vec (Û*) = 01 2  O

It can be shown that the roots of the two matrixes P^ and P2 are

related. If X and p are the latent roots of (P'^) and (P'2 )
-1respectively, then (P^@ (P^^ ) has roots X/p which are in theory

equal to 6 from (5.42). Hence, we have g* estimates of B = X^/pj 

for all i,j = 1 , .. g, but we have no way of choosing the roots 

to guarentee that the restriction holds. As far as the 

identification of B is concerned this is not a problem as we only 

need to find one such root. We can derive an estimate of 6 by 

looking at the following symmetric family of functions of the 

roots :

B = tr(P^)/tr(P2 )

As estimation of the reduced form produces g^ estimates, then 6

will usually be over-identified and i above will usually be 1 ,
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but as any choice of i will do we only need to find one for

identification. Hence, the condition for non-identification of 6

is the non-existance of any i for which the above condition holds

and this only occurs when has finite roots and ?£ has no roots

for which the sum of the i^^ powers is non zero. Conditional on

?! having finite roots, we will fail to identify the model when

the all of the roots of ? 2 are zero or equivalently ?2 = 0. An

appropriate i will always be found and B identified when ?2 is

not nilpotent. If Qq is positive definite, then nilpotency

implies that all of the roots of ?2 are zero which means that 
* *

@1 = 0. Now @1 = K + J, so that the nilpotency condition means 

that K = -J and non-identification of 6 occurs when that is true. 

When K is positive definite we only require non-negative 

definite J to generate non-nilpotency and that is sufficient to 

identify 6 . In the case of the model in chapter 4, J = 0 and 6 is 

identified when K is non-zero or positive semi-definite with 

minimum rank one.

Given that B is identified we can use equation (5.41) to provide 

us with a rank condition for the identification of Qq and 

from this follows identification of the other parameters in the 

system. In deriving (5.38) in terras of the structural form 

parameters we require Qq to be positive definite, this is 

guaranteed by the structure of the model as K needs to be 

positive definite for a solution to the rational expectations 

problem to exist and J to be non-negative definite for the 

identification of B. If Qq is positive definite, then without 

loss of generality we can always transform it into a symmetric 

form, so that we can re-write (5.41) in terms of the vector of
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non-similar elements q and the elimination matrix of supra 

diagonal elements due to Magnus and Neudecker (1980).

(5.43) ((P'ei) - 8 (lOP')L^q = 0

where is the elimination matrix and vec(O) = L qC O
and P”" = ((P^ei) - 8 (I0P^)

We have a linear system of equations for which q is now an eigen 

vector and 8 is an eigen value. As q has %g(g + 1) terms in it 

and the dimension of Lq is g*x%g(g+l), then for a unique 

solution to exist we require:

(5.44) rk[((P^ei) - 8 (I0P^))L^] = %(g+l)g -1 

(5.44b) rk[((P^ei) - 8 (I0P^)] < g(g-l).

The choice of 8 in (5.44b) produces a multiplicity of g similar 

roots, as the roots of P^ and P2 are proportional when the 

appropriate restrictions are imposed. Hence, we have g roots 

of P2 and g roots of P^ for which = 8p^ for all i = 1 ... g 

which means that g columns of the matrix in (5.44b) cancel, so 

that the rank of (5.44b) is less than or equal to g(g-l). The 

rank of (5.44), then has to be less than g(g-l).

When the rank condition (5.44) is satisfied we will be able to 

identify q to a scaler multiple and so Qq. Notice, that when the 

rank condition is equal to l/2g(g+l) the system is satisfied by q 

= 0, but that is inconsistent with our method. When the rank is 

l/2g(g + l)-i, then we have multiplicity of solutions the number 

of which depends on i the nullity of (P'̂ Lq ), so for i > 1 the 

system cannot be identified without imposing further
* *restrictions. If we do apply further restrictions to 0^ and Qq ,

then we can identify those parameters by looking at the family of
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solutions associated with the linear form (5.43):

q = qo + ®iqi + ®2q2 + ®aq3 + - -

where the are arbitrary scalers.

We will assume that (5.44) is satisfied, so that Qq or the 

dissimilar elements will be identified. As we can see it is 

possible to identify firstly 0 and then Qq from the reduced form 

(5.38) and once this has been done it is easy enough to derive 

estimates of Qj, and A2 using the following relationships.

Q* = (1/0)Q* P, , Q*' = Q*P_,1 o 1 1 o 2

A = (1/6)Q* P and A = Q* P - A_2 o 4 1 o 3 2

It is then possible to derive the original structural parameters 

from the linearised parameters using:

QjA = KA + Ai Ai = JA A2 = HA

QqA = (1 + 0)KA + J'A + A2 + Ai Qi*'A = KA + J'A

We can initially solve for A using the above formulae and then

use those parameters to derive solutions for H,J and K.

Therefore:

Qq A - 6Qj A - Q% A = A2 + A^ - 0 A^

(Q q  - 0Q^ ~ Q]̂ )A = A2 + (1 " 0)Ai

A - (Qq  - 0Q^ - Q^) A2 + (1 “ 0)Ai 

* * * ̂
As long as (Q q  - 0Qj - Q^ )) is non-singular we will be able to

solve for A and as this term is (H + (1 - 0)J), positive cost

matrixes will guarentee non-singularity in the context of our

cost minimising approach. Matrices H and J only need to be

positive semi-definite for theory consistency and positive

definiteness is too strong, as the sufficient condition is rk(H +

(1 - 0)J) = g . In a thoery consistent context, positive
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definiteness of H and J is more than we need as we only require 

any negative element in (1 - 0)J to be dominated by the positive 

elements in H or positive roots in H and J to compensate for 

negative and zero roots. If we limit ourselves to cases in which 

6 < 1 we can have a non-singular matrix when J is positive 

definite, but we cannot have any unit roots as the conditions in 

appendix Cl are not satisfied. If there is rank deficiency in 

both H and J we will either need to transform the model to take 

account of it or to impose additional restrictions on A.

Once we can solve for A, then we should be able to identify J and 

H. When rk(A) = g one or more partitions of A exist, so that we 

can compute a number of sub matrixes A^^^ from which we can 

produce different estimates of the parameters H and J. If (5.39) 

is used to estimate the model, then H and J will be over­

identified when the k > g and exactly identified when 

k = g. If is the partition associated with A^^^ then:

and correspondingly for A and A^.

and

K = Q. - J and then H can also be derived from Q1 o

The non-singularity and the rk(A) = g, provide sufficient

conditions for the identification of A, J, H and K when we

estimate the model using (5.39), so that identification will only

be strengthened when (5.37) is estimated as it imposes all of the

restrictions associated with the interaction cost model. The

order conditions which supports our side conditions depends on

either positive definiteness or symmetry of H and K . We cannot
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guarantee that H and K will be symmetric, but we can provide 

symmetric estimates :

H = (H + H')/2 and K = (K + K')/2

We could then test for symmetry by comparing the estimates of the 

off diagonal elements or by estimating the models parameters with 

and without the restrictions and then comparing the likelihoods 

to see whether symmetry was valid.

The order conditions presented in this section are not very 

stringent, but they are global and they can be augmented by 

additional conditions which are sufficient for global 

identification. A direct relationship exists between the 

sufficient conditions and the structure of the model as theory 

consistency requires some positive-negative definite cost

matrixes. The derivation of the backward forward solution
* * needs to be non-singular and we require to be non-

-singular for the reduced form parameters in (5.38) to have a

structural interpretation. If the two conditions presented above

are to be met then we need either K or J to be positive definite.

The sufficient conditions presented in this section are also

based on the Identification of the reduced from parameters P^,

?2 , P3 and P4 which in turn depends on the instruments being

independent. A necessary condition for the independence of the

instruments is given by the order condition s > p + r + 1 , where

s is the number of lags in the forcing equation for the xs and r

the number of future expectations and p the number of lags in the

first order condition. Conditional on the above conditions being

met the following conditions are both necessary and sufficient
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for the identification of the parameters B, H, J, K and A.

1 ) k > 1 (order condition which is necessary)

2) 0 (Q^ non-nilpotent or rk(K + J) > 0)

3) rk[((P^«I) - 6 (leP^)L^] = %(g+l)g -1
* * * ̂

4) rk(Q^ - BQ^- 0^ ) = g (H or J non-singular)

5) rk(A) = g

The order condition (1) depends on the symmetry of Qq/ s o  when 

that is not valid we need to fall back on the more stringent 

condition k > g. Conditions (2)-(4) will hold as long as J is 

non-singular, though that could be replaced by H and K non­

singular and for theory consistency in the context of the cost 

minimising case we would require positive definiteness. If the 

rank conditions (3) and (4) are not met, then it still may be 

possible to identify all of the parameters by imposing additional 

restrictions on Qq and A respectively. When the other conditions 

hold, but Qq is not symmetric, then we can usually identify all 

of the parameters by imposing g normalisation restrictions on the 

parameter matrix of the endogenous variables. The conditions 

presented here can be extended to deal with the other models in 

the chapter and the model in chapter 4 can be dealt with as a

special case in which J = 0. Under cointegration H and J cannot

be positive definite as positive cost matrixes do not allow unit 

roots and when this does not hold we may need to impose further

restrictions to identify the A matrix.

5.4 Local Conditions for Identification

A necessary and sufficient condition for local identification can
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be derived using the Jacobian matrix and the moment matrix of the 

data. Rothenberg(1971) deals with conditions for local 

identification of quite general models and we can extended those 

conditions when there are enough appropriate instruments for the 

endogenous variables and the future exogenous variables.

Sargan(1983b) shows that the first order condition for 

identification based on the rank of the jacobian matrix is only 

necessary for non-identification and that it can be augmented by

extra conditions on the second moment matrix of the data and the

variance-covariance matrix. In particular this confirms the need 

to have more lags in the processes driving the exogenous 

variables as there are also lags of exogenous variables in the 

model for the endogenous variables. If we take the case in which 

there are no constraints on A, then we require the data matrix to 

have at least rank 2g^ + 2gk and the parameter matrix to be of 

full rank. We know that the following condition should hold in 

the Generalised Instrumental Variables framework, given the 

orthogonality of instruments and the data matrix.

Theorem 1 ; In a neighbourhood of the true parameter values 0

(5.45) V(0) plim (X*'Z*) = 0

where X = CY Y , Y , X X . ] and Z = [Y Y , Y  ̂ X X^J
+1 -1 +1 +1 -1 +1

and V (0) = CQ* ; - 60* : - Q*': - (H + J)A : 6JA]o 1 1
= [(1 + 6 )K + J + J' + H : -B(K + J) : -K + J':

-(H + J)A : BJAI

We can make this condition opperational by replacing Y^^, Y and 

X+2 in Z* and then using Z* = (Y_i X,X_i,X_2 , . • • X_g)'

If we vectorise (5.41) and let p lim (X 'Z ) = M ' then:
N
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Vec ( V (0) p lim (X 'Z )) = (M 01) vec (V) = 0
N

Sargan(1983b) shows for a generalised instrumental variables 

system that a necessary and sufficient condition for local 

identification is given by looking at the first derivative of the 

probability limit specified above. Hence, the necessary and 

sufficient depends on the both the second moment matrix having 

rank 2g^ + 2gk and the Jacobian being of full rank.

* * 2 rk [(M 01) dvec (V)] = m  = g k + g  + g(g+l)
d8

where vec(V)'= [((l+6 )vec(K) + vec(J+J') + vec(H)': 

(~6vec(K+J)'(-vecCK + J')': (-(A'01)vec(J) - (A '01)vec(H )' 

8(A'0I)vec(J)']

When K and H are symmetric we know that;

vec(K) =L k and vec(H) = L ho o o o

and it is also useful to remember that:

-(A '01)(vec(J) + vec(H)) = -((I0H) + (I0J)) vec(A)

(A'01) vec(J) = (I0J) vec(A) = vec(JA)

The moment matrix of the data can be written as

M* = p lim ^ : Z^' : Z*'Y Z*'X^: Z^'X^^

= CM : M. : M : M : M 3O 1 Z j 4

If we now let 0' = C8 : vec (A)' vec (J)' : h' : k'3 theno o
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ô vec (V (0)) = 
60

vec(K)

vec(K +J)

Û

Q

vec(JA) 0(I0J)

I ♦ A

-61

-A

L (1 + 6 )L o o

-6L

-L

6 (A'@I)

where A^ is the transposition matrix for the cases in which 

we differentiate vec(J') with respect to vec(J).

Now we can re-write (5.45) using (M 01) = CM 01 : ... IM 01]o 4

(M 01) Slog V ( 0 ) ] '  = [(M 01) vec(K) - (M,0I) vec(K + J)   o 1
60

+ (M,0I)vec(JA): 6(M,0J) - (M^0(H + J)): (M 01)(I + A ) 4 4 3 o o

- B(M^0I) - (M20I)A^- (M2®I)(A'0I) + e(M^0I)(A'01)

: (M 0I)L - (M^0I)(A'0I)L : ((1 + 6 )M - 6M, - M^)0I)L ] o o 3 o o 1 2 o

= [((M - M.)0I)vec(K) + (M .01)vec(JA) - ( 0 1 ) vec(J); o 1 4 1

6(M,0J) - (M^0(H + J)((M - 6M,)0I) + ((M - M^)0I) A 4 3 o 1 o 2 o

+ ((6M, - M^)0I)(A'0I) : ((M 01) - (M^0I)(A'0I)) L 4 3 o 3 o

: t((l + 6 )M - 6M, - M^)0I) L ]o 1 2  o

[vec(K(M - M,)'+ JAM'- M:J) : 6(M,0J) - (M_0(H + J) o 1 4 1 4 3

((M - 6M,)0I) + ((M - M^)0I)A + ((6ML - M^)A'0I)o 1 o 2 o 4 3

((M - M^A')0I)L : (M^0I)L ]o 3 0 / 0
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= [vec(K(M - ML) + J(AM:- M')): B(M^ÔJ) - (ML6 (H + J)) o 1 4 1 4 3

((M - 6M + (6M.- M_)A')@I) + ((M - M^)@I)A :o 1 4 3 o 2 o

((M - MLA')L : (M^0I)L ]o 3 o 7 o

= Cvec(K(M - ML)' - JM; ) ; 6(M^0J) - (M^0(H + J)) o 1 6 4 3

((M - M_)0I)L + ((ML- 6M^)0I): (M^0I)L : (ML0I)L ]o 2 o  5 6  5 o 7 o

where = M - M_A' = (ML - MLA') and5 o 3 6 1 4
ML = ((1 + 6 )M - 6M, + M^)/ 0 1 2

It is the rank of this matrix which determines local 

identification.

rk

vec(K (M - M,)' - JM;)o 1 6

6(M^0J) - (Mg0(H + J))

( (M - ML)0I)A + ((ML o 2 o 5

(Mr0I)L5 o

(M_0I)L7 o

6M^)0I)D

= m

If there are restrictions on the A matrix or any other of 

parameters then this condition will change. In the case of A, if 

we let vec(A) = Ra + a^, then the rank condition becomes;
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rk

vec(K (M - M,)' - JM') o 1 6

[6 (M^*J) - (Mg# (H + J))]R

(Mc9I)L 5 o

(M„9I)L / o

= m - r

As Pesaran(1983) notes such local conditions are not easy to 

interpret or to use in setting up direct tests of non- 

identifiability, though an equivalent condition can be derived by 

looking at the condition of the Hessian which is an approximation 

of the information matrix. In the case of non-linear models non­

singularity of the Hessian of second derivatives is necessary for 

local identifiability, but given our ability to invert almost 

singular matrices we must be skeptical of relying on such 

conditions alone. As Sargan(1983b) states it seems more 

reasonable to deal with probabilities of unidentifiability which 

suggests satisfaction of the conditions presented in this section 

should be interpreted as meaning that the chance of 

identification was high, but not certain. It is for this reason 

that it is important to augment some of the conditions presented 

here by the global conditions presented in the previous section. 

In addition the use of the condition of non-singularity of the 

Hessian combined with global conditions which mainly depend on 

the structure of the underlying model has a natural appeal.

5.5 Conclusions

In the framework of rational expectations models or models which
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utilise the prediction decomposition there are a broad category 

of results associated with the regular or saddle point solutions. 

The models differ from the standard first order multivariate 

costs of adjustment model, because they incorporate richer 

dynamics. In section 5.1 the results are similar to the types of 

model covered in the literature, except for the type of problem 

which is being optimised, because we allow disequilibrium and 

adjustment to a dynamic target. In this sense rational 

expectations models are the product of a two stage optimisation 

procedure: first, agents derive optimal behavioural relationships 

and then they decide the best way of reaching a point on that 

relationship. The two stage procedure implies we are a hostage 

to our desires which we then try to attain at the least cost.

The modelling implication is that the strong rational 

expectations restrictions on the forward solution are broken 

which leaves a model with a number of freely estimated future 

exogenous variables. If such a method is not believed on 

theoretical grounds, then it is still valid in general modelling 

terms, because it provides a framework within which the strong 

first order rational expectations model may be tested. In this 

light, the future expectations are an indication that the 

original model is not well specified which either suggests that 

the regular solution is not correct or that the underlying 

optimisation problem includes the wrong variables.

In section 5.2 we dealt with the same cost of adjustment model, 

as Kollintzas(1905), but we do not restrict the adjustment 

matrixes in the optimisation problem to be symmetric. A similar 

model comes from allowing a lag in the target cost term and it is
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noted that those two models may be observationally equivalent in 

operational terms. The final result of this section of the 

paper covers the general solution to saddle point models of up to 

qth order. The details of the full solution to the model would 

require decomposition of the future expectations terms and then 

their replacement by actual values.

In the last two sections we looked at identification of the non- 

symmetric cost model. It is shown that the parameters can all be 

identified using a combination of local and global techniques. 

Approximate conditions for global identification have been 

derived in association with a rank condition which is both 

necessary and sufficient for local identification. Similar 

conditions can be derived for some of the models presented here, 

though the cost parameters for the first order cost of adjustment 

model can only be identified when the symmetry restriction is 

imposed, otherwise they are only determinate as a ratio of the 

original cost elements of the loss function.

The essence of this chapter is to show, that it is possible to 

derive general models within a structured method of modelling 

which will allow theory to be tested or model types to be 

compared. We emphasise general models, as do Hendry and Mizon 

(1978) and Davidson et al (1978), because we believe that a 

particular implementation of a theoretical model should be tested 

rather than imposed on the data. We also feel that the models 

presented here will allow any modeller to set up his model in 

framework which will make it possible to compare a number of 

diverse alternatives.
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The method of estimation which we would prescribe is maximum 

likelihood, because it is more efficient than many of the 

alternatives. We prefer the likelihood approach to method moments 

estimation, because that approach imposes orthogonality 

conditions which really should be tested. If we deal with the 

most general form (5.34) and (5.36), then that could be solved 

recursively using the Quasi Newton method suggested by Gill, 

Murrey, Pitfield. The criterion function would be the 

concentrated likelihood solved for the variance covariance matrix 

2. Therefore:

* *Log L = log I S I

N
where S = l/N(^Z,u^u') is a consistent estimator of 2 t=l t t

and u^= (L)y^- h^

The criterion would be minimised with respect to F^, i = 1,

....q, A (given that (5.2) in section 5.1 is the target

condition) and the Hij's for all i = 1, ...q and j = 1,  q.

Equations (5.11) and (5.12), (5.18) and (5.19), and (5.30) and 

(5.31) are all special cases of this which implies that these 

models may be estimated by restricting the parameters of the more 

general model.

The extent to which different parameters may be estimated will be 

affected by our ability to identify them, but usually it is 

enough for the order of the moving average or vector 

autoregressive representations of the exogenous variables to 

exceed either q the order of the cost of adjustment in the loss 

function or p the lag in the target condition in the first order 

models in section 5.2. In practice such conditions need to be
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effective, so that the parameters in the exogenous processes need 

to be significant if they are to identify the model; the result 

also presumes that the lag length is known. In addition we have 

the usual requirement that the conditions associated with a 

maximum are satisfied and that the underlying form of the model 

is correctly specified. Hence, non-identification will either be 

associated with the non-existence of a solution or with estimated 

parameters which are not consistent with cost minimisation.
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Appendix 5.A Replacement of Expectations using the Generalised 

Riener-Kolmogorov Prediction Formula in models with Past and 
Future Exogenous Variables

1 Given, that has a moving average representation of the form 

of (5.4) in section (5.1) then:

(D
E ( X 10.) = Z C et+s t r=s ® t+s-r

which implies that the difference between the expectations 

of period t and t + 1 is the innovation Gt+l*

the target or equilibrium relationship is replaced by the 

static equilibrium form to produce the results in section 5.2:

zt = Axt +

and the dynamic form in section 5.1.

z-t = A(L) x^ + A_(Lrl)xt + i + V-J-.

If we make the substitution in the case of the multivariate costs 

of adjustment model from section 5.1, this becomes after taking 

expectations :

(aii) ŷ  ~ Fy^ - u^ = (I - G l’^)"^F B E(A(L)x^+ A (L'^)x^ JO^) t 't-1 t 1 o t — t+1 t

where G^ = 6F

The difference in the expectation is used in conjunction with a 

Koyck lead to remove the infinite lead in the future

276



expectations. Imposing a Koyck lead on (aii) above gives;

(I - GjL-')(y^- u^) =J^G^FB^E(A(L)x^,^>

+ > V s . 2 '“t n >

= FB A(L)x^+ FB E(A (L‘^)x  ̂ ,IQ )o t - t+1 t

+ 2 cfFB E(A(L)x^ +A (L'^)x^ ,IQ )g=l 1 O t+s - t+s+1 t

- E(A(L)x^ - A (L'^)x  ̂ J Q  , ) (aiii)t+s — t+s+1 t+1

The difference in the expectations, given A(L)x = z A.x . andt i=o  ̂ t~i
-1 rA (L )x^ = ,2-A x^ . . is defined below as:— t+1 1=0 -1 t+i+1

D(L)x^ = Z, (G )®FB (E(A(L)x^ + A (L~^)x^ J Q  )t+1 S = 1  1 O t+s — t+s+1 t

- E(A(L)x^ + A (L‘^)x  ̂ ,in )t+s - t+s+1

œ q r r
= Z (G,)FB (Z A (x^ . 10! )-Z A E(x^ .10! ,))S=1 1 o i = _ p  - 1  t + S - 1  t i = _ p  - 1  t+s+1 t+1

® s r(aiv) = Z (G“)FB (Z a .(E(x^ .10^) - E(x^ .10^ ,)))s=l 1 o i = _ p  -1 t+s-i t t+s-i t+1

If we use (ai) above to replace the difference in the 

expectation then (aiii) becomes:

D (L) = -Z (G ) FB Z A .C . ,t+1 g=i i=-p -1 s-i-1 t+1

reversing the summation signs

D*(L) = -(FB Z Z (G® )A ,C . ,)o i=-p 8=1 1 -1 s-i-1
r _i ® -j

= (-FB Z G /  Z G^ A .C. ,)o i=_p 1 j=i+i 1 -1 J-1

If j < 0, then j + i < 1 and Cy_^= 0. Splitting the first 

summation sign about i = 0 means that:

* “ 1 -i ® i r m 4-D (L) = FB (Z g /  Z ,C. + Z G. Z G:Ja .C . ,)
o i=-p 1 j=i+l 1 -1 J-1 i=0 1 j=i 1 -1
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-1 -i <n -j r -i ® i
= FB (2 g /  2 G^A .C. + 2 g /  2 G'^A .C. ,)o i=_p 1 j=i 1 -1 J-1 i=o 1 j=i+l 1 -1 J-1

-1 -1 ® -i r -1 ® -i
= 2 g /  2 G^FB A .C. , + 2 g /  2 G^A ,C. ,i = -p  ̂ j = 1  ̂ o 1 J 1 1 j=i + i 1 i J 1

-1 -i r -i
= 2 G, D .+ 2 G, D .
i=-p 1 -1 i=0 1 -1

® iwhere D .= 2 G^FB A C. _ and 1 = 1  for i<0 and 1 = i+1 for i>0. -1 j=i 1 o -1 j-1
Hence we can re-write (aii) above in terms of D(L) t+1

(I - G,L~^)(y^- Fy^- u^> = FB A(L)x^+ FB E(A (L"^)x ^1 ' t 't t o t o -  t+1 t

. D(L)Xt+i

= FB A(L)x^* FB E<A (L'^)x^ ,10^)O t o — t +1 t

- D'(L)Ct+i

Where D (L) is defined above and we can rewrite the relationship 

thus :

(I - G^L-S(y^- Fy^_i- u^) ‘

* ® •) * where G .= FB A . and D .= 2 G::G .C . . and 1  = 1 when i<l 
- 1  o  - 1  - 1  1  - 1  J - 1

and 1 = i+1 when i>0 .

The result is much simplified when we use the static equilibrium 

condition from the second section, because A^ in the definition 

of D  ̂ will always be the same. The results above hold except 

that Au = A.
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2 General Recursive Solutions for Rational Expectations Models

If we have a model of the form:

G*<L)y^-

Then all of the formulations of Section 5.1 and 5.2 can be
*4* + — 2related to it by placing specific restrictions on G ^ ( L ) , G^(L ) 

+ -1and g^. If G^(L ) is invertible we can derive the following 

recursive solution. Let:

then:

G;(L-')h^ =

ht = 9t ' °lht*l*

-1In Section 5.1 g. = FB A(L)x^+ FB E(A (L )x. .10! ) - D (L)e , t o  t o  t+1 t t+1
G^/L) = (I - FL), G^(L~^) = (I - 0FL~^) and D*(L) is defined in

section 5.A1 and B is defined in section 5.1.o

In section 5.2 the cross product model derived by minimising

(5.14) uses the following definitions: g^= FB Ax^-FB.Ax^ .-FDe^ _t o t 1 t+1 t+1
and G%(L) = (I - FL) and G.CL )̂ = (I - BFÛ.); B , B, and Q. are 2 1 l o l l
defined at the beginning of section 5.1.

The model which is derived from (5.26) uses the same definitions

for G*(L ^) and G (L), but g. = FB Ax +FB Ax +BFB Ax -G e1 Z t 1 t-1 o t -1 t + 1 t + 1
where B , B,, B , and Q, are as defined in the second part ofo 1 -1 1
section 5.2.
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Appendix 5.B1 First Order conditions and Symmetric Factorisations 
for Genctral Systems.

(bi) E(C I ft ) =(Z + y\H*y^)l ft̂ )t t t~0 t t t t t

y_ z^'t t
where y = ?t-l / y = y^- 2^ and = ^t-1

2^-q_

p o o Kq i ... ^Oq p o o «01 "oq
•=10 *-1 1 '"' ^Iq and H = «10 «11 "iq

PqO *qq_ _v Hqq_

Differentiation of (bi) w.r.t. y^ reveals a minimum if K and
+ + +H are positive definite and a maximum if K and H are

negative definite. Positive definiteness suggests the cost

minimising approach of Sargan (1982) and negative definiteness a

model with benefits to adjustment or disequilibrium. Equation

(5.33) presents the first order condition associated with (bi).

Therefore :

(bii) dE (Cl ft̂ ) = E(K A y^ + K Ay^+ H Ay^I ft̂ ) t t 't+1 't 't t

V o i - *̂0q »Ôo*«Ôl •••*«0q
K*= I*K*= •• ' < q and * * +H = I H = «îo^«n •••*«lq

JV . . . K*qq_ j; •.. ■■

where K . . = K . .( L/6 ) 
ij iJ

^ and H* . = H* .( L/6 )~^ ij ij

To bring out the symmetric nature of the solution we can re-write
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(bii) in less compact form.

c . u >  . E( ^

+ I  ] + H^^^y Ifi )g=l t-s 't+s 't t

where ^2^ B^K and ^2^ Hi=0 i(s+i) i=o i(s+i)

For an optimum dE(C^IO^)/dy^= 0, which means that we can 

re-formulate (biii) into a 2 (q+l)^^ order difference equation:

q+1 %c; q *
(biv) E ( 2 Q B y^ = 2 H B IG" )s=-(q+l) ® t+s s=-q ® t+s t

* % c ( S ) ̂ ^
where = B H for s > 0 and ^(_g)“ ^(s) s > 0,
Q = B % ( s + l ) [ ( g % + g - % ) ^ ( s )  g % ^ ( s + l )  g - % ^ ( s + l ) ^ g - % ( s ) ^

s
Q^_ for s>0 and

o

To derive a solution to the rational expectations problem we need

to factorise (biv). Notice that the form is symmetric about 0^,

as Q = Q' and Q = O' . The spectral decomposition of (biv) o o s -s

q + 1 sis Q(x) = 2  O x
s=-(q+l) ®

The roots are usually split into two sets stable and unstable, 

given the symmetric structure of Q(x) this suggests the following 

factorisation :

Q(x) = G*(x)WG(l/x)

* * q+1 * g
where W is chosen so that G = G = I, G (x) = 2 G x ando o s=0 ®q+1 s
G(x) = 2  G X .As the reciprocal of x also satisfies the 

s=0 s
characteristic equation we will have an equal number of
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stable and unstable roots

Q(l/x) = G*(l/x)WG(x)

while the transpose of Q(x) is given by 

Q'(x) = G'(l/x)W'G*'(x) 

which suggests that:

(bv) Q'(x) = Q(1/x)

The separation of the roots into two equal sets implies, that we 

have a unique solution (see Sargan (1983) for the standardisation 

conditions). Condition (bv) above implies that:

O'(x) = G*(l/x) W G (x)

transposition of Q'(x) implies:

Q(x) = G'(x) W  G*' (1/x)

which given uniqueness means W = W  and G (x) = G'(x)

Q(x) = G'(x)WG(l/x)

If we let:

G*(x) = G'(x/6 *), G* = W G (6 *x) and g.= E (1 8*H*z 10.)
1 Z t s=~q t+s t

then the solution to our general problem is given by:

E (Ĝ  (L'l) G* (L) y^ 10^) = g^

G*2 (L) y^ = [G^ (L ^)]  ̂g^ + u^

The recursive solution to this type of problem can be found in 

Appendix 5A
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5.B2 Particular Solutions for the Interaction Cost Model and a 
Model with Second Order Cost of Disequilibrium

The solution to all of the models in section 5.1 and 5.2 

can be derived from the results presented for the general model 

derived in Appendix 5.B1. Here we will deal with the solution to

(5.14) and (5.26). The first order conditions in both cases are 

very similar and they can be nested within the following 

framework :

(bvi) ECO^y^- o X - l ' V "  ^ " * 1 =t-l * V t  '

Where y^and are defined appropriately for the different 

models presented in section 5.2 and in the case of the costs of 

adjustment model (5.14) = 0, = (J + H) and H*^ = J. In the

lagged target case H* = H* = and H*^ =

We can, then derive a symmetric form from (bvi) above by letting 

y^ = (%6 )^y^ and Q^= 6 for i = 0 , 1 , and setting the

r.h.s. to zero reveals an homogeneous difference equation 

which has the following characteristic equation if y^= p^p^:

(bvii) (O^p - O^p: - ) g = 0

If Q(x) = X - 0^ x=- then this polynomial has two sets of

distinct roots p and 1/p. If we utilise the factorisation 

theorem presented above the solution is of the form:

Q(x) = G'(x)WG(l/x)

If we let X = p, then:
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- 0^ = (G'p - I)W(G - pi)

= (W + G'WG)p - G'Wp - WG=

which implies, that:

(bviii) Q = W + G'WG , Q = G'W and Q! = WG o 1 1

From (bviii) we have

Q = W + 0,G o 1

and

W = (G')  ̂ and W = Q^G  ̂ which implies:

Q = Q'G“  ̂ + Q G,o 1 1

If we revert back to our original form in terms of and we let 

F = 6 G, then we can re-write the first order condition in 

the following way using the factorisation presented in (bviii) 

above :

E(C8Q^F . V l  ' « X

* '"t'

— 1 + * — 1 * Multiplying through by (Q^ F ) and then setting = (Q^)

and G^= BFQ^ implies that:

E((I - BFQ*l '^)(I - FDy^lft^) = E(F(B ,1  ̂t t o t 1 t-1

-1where L is the forward lead operator and L the lag operator,

and B^, B_^ and B^^ are appropriately defined in the relevant

parts of section 5.2 of chapter five for the cross product and 
lagged target cost models.

284



"“X “XIf we multiply through by (I - G^L ) we get the forward

looking solution:

-l.-lE(y^- Fy^.jia^) = E((I - G^L ) (F(B^z^ .

* "t>

Appendix 5.Cl Proof of the non existence of unit roots when the
Cost Matrices are Positive Definite

We can show for any of the models presented here that the

latent roots cannot lie on the unit circle. To prove this

proposition we will use the most general model specified at the 

end of Section 5.2 and explained in detail in Appendix S.Bl.

After elimination of the discount factor the loss function can be 

written in the following form (see (bi) in Appendix 5.B1).

N % * X * J*(ci) E(C^IQ ) = E(2 (ŷ  t t t=l t - 6 V i >  >= (ft- 0 V l '

10 )^t t

where

^1 (t-q) ^1 (t-q)
* V •

1 (t-q+1 ) y =

j i t J i t

♦ %t * %tand Vit = 8 and y%t = (fit- " =1t'

H*q 8^ Hqq •

H* =

BHii

_«0
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K =

* * * *K K Kq qq qq-1 qo
K ,q-1
• . K* K*11 10
K* K*0

_
00 _

where K =rs rs and H* =rs rs

Then the first order condition is :

If we take a latent root p and corresponding latent vector

then p = p and p , = ^ p , so that P* is an extendeds ^o sk o s
latent vector defined below:

p*. . p-P*V;, s-1 , S , ^
M Po' P Po’

then substitution for y, in (cii) above gives an eulerIt+s
condition in terms of the latent roots.

s = 0

since yt+s

8 * - (p + l/p>) * * ■* P + H PS S £

^lt-q+1

• •

= 0

= P

and as P = u^P we have s o

(c.iv) I (6  ̂ + 6* - (p + l/p)> + H" ] P = 0
s = 0 8 O

Lemma 1

The latent roots of the system (ciii) cannot lie on the unit
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circle if the system is to be consistent with an optimising model 

with positive cost matrices.

Proof

Let p = e where w is real and p^ be the complex 

conjugate of p^

then 0^ + 6 ^ -  (p+l/p) = 0^ + 6 ^ -  2cos w > 0 
% _%

since 0 + 0  > 0  and cos w < 1

pre-multiplying (civ) by p^ implies

(c.v) 1 M ^ P  (K* (0^ + 0 ^ - 2cosw) + H* ) P8=0 o s  s o

Let = K* (0^ + 0"^ - 2cosw) + H*

where M
M M ,  qq q(q-l)

Moq o(q-l)

qo

oo

then we can re-write (cv) in matrix form:

P.
q-1 P P. Pi

1 -q 1
P P,

= 0

iw s + isw + _as p = e , then p p^= e p^ is the complex

_ -s + conjugate of p p^

Hence, when P^ is the complex conjugate of P^

then P^ P = 0  o o

But this contradicts the standard result with respect to positive 

definite matrixes: 

d Ad > 0
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where A is positive definite and d is the complex conjugate of 

d.

5.C2 Conditions on the size of the roots

%
Given the form of (civ) it seems likely that Ip I < 6  for 0 in

the neighbourhood of 1 .

If max Ipl = p (6 ) where IpI < 1 then p (8 ) < 1m m
and p is a continuous function of 8 given the quadratic loss 

function. If 0 = 1 we know from Lemma 1, that p (8 ) < 1, 

because unit roots are not usually valid given the structure of 

the loss function.

Then:

p (6 ) < 8m

and p (8 ) - 6 < 0m

when 6 = 1

and in a neighbourhood of 6

^m^®^ ■ ® ) when 1 > 6 > 6

and Ipl < 0 ^

where p is a stable root of the system.

o

280



Conclusion

Sargent(1978) assumes that aggregation can be dealt with by 

summing across companies which have identical production 

surfaces, but such analysis is ingenuous, it produces a trivial 

correspondence between micro and macro phenomena, as it does not 

take account of the inherent differences between productive units 

or the associated distributional problems. Deaton and Muellbauer 

(1980a) and (1980) produce a far more elegant statement of the 

representative agent theory in relation to consumer behaviour.

The literature on systems of demand equations has many examples 

of attempts to derive aggregate relationships which are capable 

of being determined by individual agents maximising utility. Even 

so, this approach has been criticised by Hildenbrand (1983) who 

presents conditions on the distribution of income and household 

characteristics that enable us to be able aggregate perfectly 

individual agent phenomena for general functions. Kirman(1989) 

summarises the recent state of debate and the tenet of the 

article suggests that the usual equilibrium concepts require 

group behaviour or some law of large numbers for uniqueness. 

Hence, micro foundations are only the basis of macro phenomena 

when strict aggregation conditions are met or when the form of 

the basic relationship is highly simplistic, otherwise aggregate 

micro relationships are no better than any other hypothesis at 

explaining macro behaviour. This view is consistent with the old 

fashioned idea that the macro phenomena behave in a distinctly 

different way to micro ones. In this light, notions of natural 

prices and unique equilibria cannot be seen to be derived from
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any micro foundations and this then separates such ideas from the 

Wallrasian principles used to justify them. Once this knot is cut 

the associated optimality of such phenomena is put into doubt and 

the likelihood that they are the observed state of nature is 

diminished.

In theoretical terms the non-existence of natural prices or 

unique equilibria supports the notion of disequilibrium as the 

natural state of markets which have a high degree of inertia and 

then macroeconomics is a gestalt of Keynesian demand side theory 

associated with aggregate expectational behaviour and large micro 

phenomena on the supply side. Markets which adjust quickly are 

then seen to exhibit jump behaviour and overshooting unless 

institutional arrangement exist or large operators dominate and 

stabilise trade. In practice there are a number of questions 

which need to be addressed if we wish to transport such ideas 

into the domain of econometrics. Aggregation is still a key issue 

when analysing data as it affects the behaviour of the data and 

our ability to find a stable constant parameterisation. If one 

reads Keynes General Theory there is a clear appreciation of the 

way in which macro phenomena mesh with individual market 

responses to produce the behaviour of an economy in the 

aggregate. An elegant story is spun from the movement of the 

whole which is itself woven consistently from the fragmented 

activity of individual firms and households.

The Keynesian model, suggests that at any moment of time the 

whole process should be coalescing to a state of a balance 

constructed from the entropy associated with individual actions.
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The observation of cohesive aggregate behaviour depends on the 

random behaviour of the atoms relative to markets as a whole; 

micro phenomena are then brownian motion in relation to the 

overall movement of the economy. Individual activity is not 

necessarily irrational or non-deterministic within a micro 

context, but it appears so at the macro level. If such a view is 

not true or we do not have all agents being the same or the exact 

aggregation conditions required for the representative consumer 

theory or the distributional conditions associated with 

Hildenbrand (1983), then representations of macro phenomena using 

time-series data will exhibit non-constancy of the parameters.

The omission of such variables will then cause highly restrictive 

models to be biased and general models either to be non-constant 

or verbose and difficult to interpret.

The results presented here do not seem to be able to reject a 

Keynesian explanation of the data, as vacancies seem to have a 

disequilibrium role, price homogeneity fails and output 

employment relationships seem to dominate price effects. The more 

classical explanation of the output employment model is better 

specified in the autoregressive from, though the factor demand 

interpretation of the employment model depends on money wages. 

Models with the time trend seems to dominate, but then neither 

output nor employment equation satisfy homogeneity. It seems 

likely that there are better models, but the ones estimated do 

seem to move somewhat closer to producing acceptable models with 

future expectations. Price Homogeneity is a restriction to be 

tested, rather than imposed and in the context of most standard 

models it should be satisfied unless relative price effects are
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important. The question of aggregation are only partially 

answered here and they may only be addressed properly when we 

have sufficient panel data to augment aggregate models with such 

information.

Main Findings

We have attempted to construct models which both produce a 

statistically valid partition of the data matrix and reveal 

results with an economically meaningful interpretation. We have 

used rational or consistent expectations, but without always 

restricting the dynamics to the simplest form of the first order 

models which impose strong rational expectations restrictions.

The methods make no assumptions about market clearing and they do 

not impose strong informational assumptions. Where ever possible 

we have tried to test hypotheses and construct general models 

which encompass associated specifications. The models determining 

the exogenous variables are estimated by OLS and recursive least 

squares and the models are then validated. We have attempted to 

eliminate models that perform badly, but we would like to feel 

that models specified for theoretical analysis need to satisfy 

additional criterion based on Economic theory.

We assume that we can partition the original data by eliminating 

variables which are not of interest and this leaves a conditional 

model in which y depends on z where z^ = Ax-j-

(6.1) = D(y^lz^,S^_jX^)D(z^lS^.jX2>

where s^= [y^,z^] and S^= [Y^,Z^]

292



The partition above assumes that is sufficient information to 

determine the parameters of interest and when we construct the 

rational expectations model we also assume that the xs or zs are 

not Granger caused by the ys. The xs are then assumed to be 

strictly exogenous and the data seems to confirm this, though 

there are some signs of the xs being Granger Caused by specific 

lags on the ys. The xs feed into the y process which means that 

they are not weakly exogenous and when we do not have weak 

exogeneity, efficiency and valid inference depends on modelling 

the two processes. Estimation of the joint system will not 

necessarily lead to correct standard errors as we need to take 

account of parameter variation both directly and through the 

generated variables. We have constructed separate autoregressive 

models of the exogenous variables to derive efficient predictors 

which are assumed to be replace expectations generated by the 

available information.

(6.2) z® = B*(L)z^ , t t-1

We try to produce well specified marginal models of prices, 

wages, inventory accumulation and vacancies by a restricted VAR 

which should be equivalent to a cointegration form of the model:

BCD

" Ait ’ ®lt '

vt ®2t

Pt ®3t

_ «t . - ®4t ■

where the stand for innovations in the variables 

chosen as exogenous to the system and B(L) is the 

associated matrix polynomial.
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In Chapter 3 we estimated such models of the exogenous variables 

by OLS. The models were validated using the methods explained in 

chapter 2 and such methods are used to try to determine whether 

the marginalisation is correct. It is very important that the 

parameters are stable and this is partly dependent on whether 

employment and output or other variables determine output prices, 

wages, vacancies and inventory accumulation. The evidence was not 

conclusive, though there is some suspicion that some instability 

exists and that individual output and employment terms are 

important. Chow and CUSUM tests seem to imply that the models are 

stable in period, but the models do not always predict well which 

may be due to the difficulty in predicting the stock shake out 

and fall in output and employment associated with the Thatcher 

experiment. The theory presented would not disagree with the 

notion that inventories, prices, wages and vacancies do not 

depend on current output and employment, but it would be 

difficult to deny all causal links. A further cause of breakdown 

may be due to the omission of other variables and there is much 

evidence in favour of such an hypothesis, though stable 

prediction models could not be derived when the set of exogenous 

variables was extended. It is difficult to find variables 

without some sort of link or to derive a procedure which would 

allow the system as a whole to be estimated.

Cointegration or unit root tests of the models above show that 

wages and prices might not be stationary in first differences, 

but such tests are problematic, because they lack power and they 

do not directly test for cointegration. Dolado et al (1989) show 

that the loss of power may depend on the form of the Dickey
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Fuller tests used. It seems likely from the Dolado, Ericsson and 

Kremers results, that tests should be treated with skepticism and 

that the simple t-tests on the error correction may be preferred. 

We would discard the notion that wages and prices are 1(2) on 

this basis and suggest that all variables are 1(1) excluding 

inventory accumulation which is assumed to be 1(0).

The models presented here perform reasonably well in terms of the 

standard test procedures suggested in the literature which 

suggests that ordinary least squares is both consistent and 

relatively efficient. The wage and price models have long-run 

solutions which do not reject the notion of real relationships 

being important in the long-run. The forecasts of the series seem 

to increase over time, but in a non-accelerating way which seems 

to give some credence to the cointegration hypothesis. If the 

series are cointegrated, then the VAR parameters do suggest that 

a way exists by which we can reverse the Smith-Mcmillan-Yoo form 

to transform these results into the VMA form in cointegrating 

variables. If we had such a technique it would be possible to 

invert any autoregressive form what ever the order of integration 

or cointegration into the moving average representation required 

here. The partition of the system into exogenous and endogenous 

variables (see Hunter(1988)) produces the following prediction 

formula ;

(6.3) E(n^^.l«^) = C+2(L).Et

where + C22,[i + 2]L: . . .

Substituting out for the expectations produces a very

specific VARMA system which is similar to the open form presented
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in Davidson and Hall(1979)

(6.4) F*(L)s^ = D*(L)e^

F (L)

D*(L) D__(L)

d(L)

where = I + D^^tDL* + + . . .

and

The cointegration approach to modelling the exogenous variables 

naturally feeds into this procedure, because the VMA 

representation always exists and when the exogenous variables are 

cointegrated the predictions are highly efficient (see Granger 

and Engle(1987)). Substitution using the VMA produces a 

computationaly efficient method of estimating the quasi-reduced 

form which allows one to estimate the deep parameters of the 

model.

In Chapter 4 we used these results to derive models of output and 

employment which take account of the model structure above. The 

method of estimation derived only requires one step ahead 

forecast errors and future predictions of the variables treated 

as exogenous. The first order conditions of the optimisation 

problem gives a rationale to models with future expectations in 

them, though they do not have to be based on that. If such models 

are solved for the future values, then the following model will 

result :
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(6.5) y®= F G*(l ")z®

where L is the forward operator which does not alter the 

time subscript associated with the expectations.

We derive the estimator and relate it to the backward looking 

representation of the model which is shown to have an error 

correction and cointegration form. A reduced rank solution to the 

forward representation still exists when we have unit roots and 

it may even be possible to derive estimates of the deep 

parameters as the unit root is in the null-space of Bq . The long- 

run form of the output employment model is related to the 

optimising theory and specific models of the long-run or deep 

parameters. The model suggests that we should observe demand 

equations for output and employment in the long-run and this 

turns out to be roughly consistent with the results. The long-run 

models can either be thought of as targets for a cost minimising 

control approach or as being derived from appropriate revenue or 

utility functions in the choice theoretic or profit maximising 

framework. Under such an optimising framework we would normally 

expect the coefficients on the difference and levels terms to 

satisfy conditions associated with the underlying criterion. In 

this case we would expect cost matrices to be positive definite 

or at the least positive-semi-definite, such conditions are 

related to the existence of unit roots or cointegration and to 

identification. The Forward form in actual xs is given below;

(6.6) y^= F G (L )z^- D "2^.1 + “it

where D* is a complex function of G*(.) and B(.)
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We use the Muellbauer form of the model to derive initial 

estimates, these models suffer from serial correlation, but under 

the rational expectations assumption the instrumental variables 

method of Wickens(1982) should produce consistent estimates. The 

IV estimates of the deep parameters are roughly consistent with 

theory, though those of Bq are not. The problem may be attributed 

to cointegration, as unit roots can cause us to observe negative 

estimates of the cost parameters, this idea is partially 

supported by the discovery of a unit root and the possibility 

that output and employment are cointegrated. The Maximum 

Likelihood method appears to produce more efficient estimates, 

than the IV approach and the estimates of F are quite consistent 

with some form of optimisation story. Unfortunately in its 

simplest form this method does not seem to be able to remove 

first order serial correlation and the model suggests a discount 

factor which is unrealistic. The deep parameters are mainly 

consistent with theory, excepting that employment depends on 

nominal wages and anticipated inventory changes appear to 

represent investment or speculative rather than disequilibrium 

effects. In terms of applicability the model in which the 

innovations are included separately seems to be preferred and 

although it still suggests a nominal employment model, it does 

not suffer from serial correlation and it is compatible with a 

more reasonable discount factor. The model suggests that 

unanticipated factors do influence employment in the way expected 

by theory. The model with a trend has deep parameters with signs 

which can be given a theoretical justification, but neither of 

the long-run demand equations satisfies homogeneity and the test 

for first order serial correlation is marginal at the IX level.
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The models estimated produce deep parameters which can be used to 

derive equilibrium values and on inspection such value are not 

totally unreasonable, better formulated long-run models would 

produce more accurate equilibria.

Generalised estimates of the first order model show that the 

period of expectation may either lie between t and t-1 or that 

there should be agent expectations for the two periods. The 

question is complicated, because it is bound up with the test of 

the rational expectations restrictions, the nature of exogeneity 

and the role of innovations in the model. It appears from the 

estimates derived that the xs are strictly exogenous when a 

Hausman test is acceptable, but weak exogeneity also depends on 

the invariance of the parameters and the test of restrictions on 

the one step ahead forecast errors. The invarience condition may 

not be satisfied, as there is some indication of parameter change 

when different periods are selected.

The discovery of a unit root, suggests cointegration and then the 

first-order condition has an error correction form in which the 

the matrix on the correction term is singular. The cointegration 

form in this guise is unstable which suggests that error 

correction models with unstable dynamic effects or explosive 

coefficients on the correction matrix are reparameterisations of 

the first order rational expectations model. It then seems more 

appropriate to estimate the model using a method which imposes 

the rational expectations restrictions, than the un-restricted 

first order condition.
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We have used aggregate models which may be representative or that 

allow a simple transform to eliminate the problem, this is 

similar to NickelK1984). We present a more general model with an 

autoregressive error, the adjustment for serial correlation 

eliminates first order effects and produces a model which is 

compatible with pure error autocorrelation. The trend model seems 

to be preferred in this case, even though the output equation 

dose not satisfy homogeneity the system has a higher likelihood 

and the discount rate is more reasonable. Serial correlation may 

either be due to aggregation or to the omission of unobservable 

effects, but to answer that question we would either need to 

estimate the most general specification or to be able to include 

individual market effects.

It seems excessive to rely on Keynes Marshallian assumption that 

capital is fixed in the short-term, though other authors such as 

Sargent(1978), Kennan(1979) and Muellbauer and Winter(1980) have 

made such an assumption. It may be that the model should be 

extended to include hours or the capital stock as an endogenous 

variable and the exchange rate and other prices as exogenous 

variables. Alternatively we may need to have more general models 

which better approximate the actual data generation process. We 

have started to look at more general models by including 

autoregressive errors and lagged exogenous variables, but these 

simple extensions only go part way to generating the type of 

models which are theoretically possible.

The backward forward model has the following form when there are 

a number of future exogenous and endogenous variables:
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(6.7) 0(L*,L)y^ = GT(L*,L)z®

+ + +where Q(L ,L) and G (L ,L) are matrix polynomials in the lag 

operator L and the forward operator L and s® is an expectation

In the framework of rational expectations models or models which 

utilise the prediction decomposition there are a broad category 

of results associated with the regular or saddle point solution. 

The models differ from the standard first order multivariate 

costs of adjustment model, because they incorporate richer 

dynamics. We allow disequilibrium and adjustment to a dynamic 

target and because of that rational expectations models may be 

the product of a two stage optimisation procedure. The modelling 

implication is that the strong rational expectations restrictions 

on the forward solution are broken which leaves a model with a 

number of freely estimated future exogenous variables. If such a 

method is not believed on theoretical grounds, then it is still 

valid as it provides a framework within which the strong first 

order rational expectations model may be tested.

We have dealt with the same cost of adjustment model, as

Kollintzas(1985), but we do not restrict the adjustment matrixes

in the optimisation problem to be symmetric. A similar model

comes from allowing a lag in the target cost term and it is noted

that those two models may be observationally equivalent. The

final result of chapter 5 covers the general solution to saddle

point models of up to qth order. The details of the full solution

to the model would require decomposition of the future

expectations terms and then their replacement by actual values.

The solutions are possible to derive, though quite complex in the
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case of general models; the second order model gives a standard 

symmetric solution.

Identification of the non-symmetric cost model depends on a 

combination of local and global techniques. Quasi sufficient 

global identification conditions have been derived in association 

with a rank condition which is both necessary and sufficient for 

local identification. Similar conditions can be derived for some 

of the models presented here, though the cost parameters for the 

first order cost of adjustment model can only be identified when 

the symmetry restriction is imposed, otherwise they are only 

determinate as a ratio of the original cost elements of the loss 

function. In the case of symmetric models, it seems likely that 

these conditions will generalise as it is then possible to derive 

a canonical representation of the qth order system.

It is possible to derive general models within a structured 

method of modelling which will allow theory to be tested or model 

types to be compared. We emphasise general models, as do Hendry 

and Mizon (1978) and Davidson et al (1978), because we believe 

that a particular implementation of a theoretical model should be 

tested rather than imposed on the data. We also feel that the 

models presented here will allow any modeler to set up his model 

in framework which will make it possible to compare a number of 

diverse alternatives.

The extent to which different parameters may be estimated will be 

affected by our ability to identify them, but usually it is 

enough for the order of the moving average or vector
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autoregressive representations of the exogenous variables to 

exceed either q the order of the cost of adjustment in the loss 

function or p the lag in the target condition. In addition we 

have the usual requirement that the conditions associated with a 

maximum are satisfied and that the underlying form of the model 

is correctly specified. Hence, non-identification will either be 

associated with the non-existence of a solution or with estimated 

parameters which are not consistent with cost minimisation. If 

the system is not identified, we may have the reduced rank 

solution associated with cointegration, but that model may still 

be directly estimated subject to restrictions on the coefficients 

of the deep parameters.

Suggestions for future resetarch

The results seem to imply that the systems method is to be 

preferred to methods which produce unrestricted estimates of the 

first order condition and there seem to be benefits to the 

techniques used and developed when we compare them with 

unrestricted VARS. In the VAR case systems estimation may be 

preferred and cointegration theory would strengthen this idea.

It seems likely that the exogenous processes should be jointly 

modelled and that the appropriate form of the vector time series 

or cointegration system will depend on its original parsimonious 

parameterisation. In such a systems context it seems likely that 

the issues of unit roots, feedback versus feedforward and the 

role of differential information will be increasingly important.

As a result of this study I feel that it is important to derive
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new methods to estimate the exogenous processes and it seems 

important that the techniques suggested in Chapter 3 should be 

developed for this purpose. There also seems to be some merit in 

producing efficient estimates of the first order condition, as 

that would more easily allow the questions of cointegration and 

irregularity to be addressed. In addition to this the first order 

condition has an error correction form which may allow the 

feedforward versus feedback debate to be more clearly dealt with.

There are also interesting questions of information, differential

expectations and the very nature of expectations which have not

been fully addressed. The results specified here are predicated

on the actual expectational processes and the mathematical

expectation being the same which implies that expectations are

not a characteristic for the future path of all prices. Strict

exogeneity is not enough for (6.5) to produce efficient

estimates, as X and X in (6.1) will depend on the same deep 
1 2

parameters. If the zs are weakly exogenous, then the parameters 

of (6.5) are invariant to changes in B*(L) which means that the 

endogenous variable relationship can be efficiently estimated on 

its own. In these circumstances the strict rational expectations 

hypothesis does not hold. The rational expectations hypothesis is 

imposed when the optimal predictor is the same as the true 

expectation, but if that is not the case then the error term will 

include the difference between the theoretical expectation and 

the prediction. Therefore:

(6.8) y^= F y^_^+ G*(L*)zP + u*^

and u*\= UU.+ G(L*)(B*(L)-B(L))z. .It It t-1
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where = B(L)z^ ,t t-1

The imposition of rationality may affect the consistency and 

efficiency of the estimates, as the zPs may be correlated with 

the error term. This will be a problem if there are considerable 

differences between the processes driving the expectations and 

the zs. In general one would believe that the parameter 

differences involved would be small relative to uj^/ so that the 

degree of inconsistency would be small. Alternatively consistency 

would be satisfied in large samples if the predictors or the 

expectations tended to rationality. The evidence sighted by 

Blume and Easley(1982) would be counterfactual to this, as would 

the notion that people took up ideologically different views of 

the world based on belief. In practice, it may only be possible 

to replace expectations by predictions, as subjective factors may 

never be captured perfectly. Hence, the model including 

predictions will be the best that can be achieved in the short- 

run and estimation would be consistent if the subjective and non- 

modelable elements of expectations are orthogonal to the 

exogenous variables.
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Appendix 6.A Program REXP

The program uses the Numerical Algorithms Library(NAG) routines,

E04JBF, E04HBF, F04AEF, F03ABF and FOIABF. The first is the Gill Murray 

Pitfield algorithm which is used to solve the models, the second 

provides initial estimates of the Hessian, F04AEF produces the accurate 

solution of a set of linear equations and the last two the determinant 

and inverse of a symmetric matrix using the Cholesky decomposition. In 

practice only E04HBF and E04JBF are actually used as we know the inverse 

of a 2x2 matrix.

PROGRAM REXP 
IMPLICIT REAL (A-H,0-Z)

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c
C PROGRAM TO ESTIMATE A MODEL WITH EXOGENOUS RATIONAL EXPECTATIONS
C
C DATA MATRICESE
C
C YI120:6] = ENDOGENOUS VARIABLES
C XI120:15] = EXOGENOUS VARIABLES
C WCI120:15]= FORCAST ERRORS OF EXOGENOUS VARIABLES
C U1120:6] = EQUATION ERRORS
C XPRI30:15]=PREDICTI0NS ON EXOGENOUS VARIABLES
C
C GENERAL MATRICESE OF PARAMETERS
C
C PI140]
C
C DI6:15] = PARAMETERS OF FORCAST ERRORS
C
C
C PARAMETERS OF THE MODEL
C
C NEQ = NUMBER OF EQUATIONS
C NEX = NUMBER OF EXOGENOUS VARIABLES
C NOBS = NUMBER OF OBSERVATIONS
C NPR = NUMBER OF PREDICTION PERIODS
C NSEAS = NUMBER OF SEASONALS : 1 CONSTANT : 2 + TREND : + SEASONALS
C : 4 + SEASONALS : 5 + SEASONALS AND TREND
C
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

REAL Y,X,XPR,WC,P,ETA,CST,HT,UT,S,RLOGL,YSTAR(160,6), 
1YFIT(160,6),ADFC 
INTEGER IRSTN(6,15),IRSTNF(6,6),IRSTNTC6),IRSTNR(6,6)
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CHARACTER NAMEX(15) *5.NAMEY(6) *5,FORM(10*8
DIMENSION Y(120,6),X(120,15),XPR(60,15),WC(120,15),P(100),
1 CST(160,5),HT(160,6),U(120,6),S(6,6),BO(15,15,10)
COMMON /CHAR/ NAMEX,NAMEY,FORM 
COMMON /DATA/ Y,X,XPR,WC,CST,HT,U,S,BO 
COMMON /EXTRA/ ADFC
COMMON /FORM/ ITAPE,ITVAR,ITAPEl,NFORM,IFORM 
COMMON /MODEL/ NEQ,NEX,NOBS,NPR,NLPAR,NSEAS,NLOC,NTYPE,NDTS 
COMMON /REST/ RRLMDA,IRSTN,IREST,NREST,IRSTNF,IRSTNT,NFRES, 

1NTRES,IRSTNR,NRES
DATA ZERO/0.0/,HALF/O.5/,ONE/1.0/,TWO/2.0/ 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c 
c
C INPUT SECTION 
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
1000 FORMAT(20X,40(IH*),/,2(20X,IH*,38X,IH*,/),20X,IH*,7X,'PROGRAM
1 TO ESTIMATE',7X,1H*,/,20X,1H*,5X,'RATIONAL EXPECTATIONS MODELS', 

25X,1H*,/,20X,1H*,38X,1H*,/,20X,1H*,8X,'PROGRAM BY JOHN HUNTER', 
38X,1H*,/,20X,1H*,10X,'COPYRIGHT MAY 1983',lOX,IH*,/,2(20X,IH*, 
438X,IH*,/),20X,40(IH*),///)

1001 FORMAT(5X,'MODEL SPECIFICATION ',/,5X,19(IH-),//,5X,'NEQ=',14,2X, 
l'NEX=',I4,2X,'N0BS=',I4,2X,'NPR=',14,2X,'NSEAS=',14,2X)

1002
F0RMAT(5X,'NLPAR=',14,2X,'NTYPE=',14,2X,'NDTS=',14,2X,'IBO=',14,2X, 

l'IREST=',I4/,5X,'NTRES=',I4,2X,'NFRES=',14//)
1003 FORMAT(5X,'ADFC=',F6.3,2X,'ETA=',F5.4,2X, 

l'EP=',F13.7,2X,'IERR=',I2,/)
READ(1,*)NEQ,NEX,NOBS,NPR,NSEAS,ITAPE,ITVAR,IFORM,NLPAR,
1ITAPEl,NLOC,NTYPE,NDTS,IBO,IREST,NTRES,NFRES 
WRITE(2,1000)
WRITE(2,1001)NEQ,NEX,NOBS,NPR,NSEAS
WRITE(2,1002)NLPAR,NTYPE,NDTS,IBO,IREST,NTRES,NFRES
IF(IFORM.EQ.l) THEN
READ(2,'(8A10)')FORM
READ(2,'(13)')NFORM
ELSE
NF0RM=0
ENDIF
READ(1,*)ADFC,ETA,EP,IERR 
WRITE(2,10 03)ADFC,ETA,EP,IERR 
READd, ' (6A5) ') (NAMEY(I),I = 1,NEQ)
READ(1,'(15A5)')(NAMEX(I),1=1,NEX)
N=NEQ*(2*NEQ+NEX+NSEAS)+1
IF(NTYPE.EQ.2) N=NEQ*(NEQ+NEX+NSEAS)+l
IF(NTYPE.EQ.3) N=NEQ*(NEQ+NEX+NSEAS*1)+1
IF(NTYPE.EQ.4) N=NEQ*(NEQ+NEX+NSEAS+NEQ)+1
IF(NTYPE.EQ.5) N=NEQ*(NEQ+NEX+NSEAS+NEX)+1
IF(NDTS.GT.l) N=N+NEQ*NEX
IF(NDTS.EQ.3) N=N+NEQ*NEX
IF(IREST.EQ.l.OR.IREST.EQ.3) THEN
N=N-1
READd,*) RRLMDA 
ENDIF
IF(IREST.GT.l) THEN 
READd, *)NREST 
N=N-NREST
READd,*) ( (IRSTNd, J), J = 1,NEX) ,I = 1,NEQ)
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ENDIF
IF(NFRES.GT.O)THEN 
N=N-NFRES
READ(1,*)((IRSTNF(I,J),J=1,NE0),I=1,NE0)
ENDIF
IF(NTRES.GT.O)THEN 
N=N-NTRES
READd,*) (IRSTNT(I), 1 = 1,NEÛ)
ENDIF
IF(NTYPE.EQ.4) THEN 
R E A D d ,  *)NRES 
IF(NRES.NE.O) THEN 
N=N-NRES
READd,*) ((IRSTNR(I,J),J = 1,NEQ),I = 1,NEQ)
ENDIF
ENDIF
CALL DATAIN(P ,NEQ,NEX,NOBS,NPR,N ,NLPAR)
NTN=NOBS+NPR
IF(NSEAS.GT.O) THEN
CALL SETZER(CST,5,160,ZER0)
DO 1 1=1,NTN

1 CST(I,1)=0NE
IF(NSEAS.E Q .4.O R .NSEAS.E Q .5) THEN 
DO 2 1=1,NTN,4 
J = I + 1 
K = I+2
CST(I,2)=0NE
CST(J,3)=0NE

2 CST(K,4)=0NE 
ENDIF
IF(NSEAS.EQ.2.0R.NSEAS.E Q .5) THEN 
DO 3 1=1,NTN

3 CST(I,NSEAS)=FLOAT(I )/FLOAT(NTN)
ENDIF
ENDIF
CALL EST(NTN,N ,RLOGL,P ,ETA,IBO,EP,IERR,YSTAR,YFIT)
STOP
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
c ESTIMATION OF MODEL WITH RESTRICTED D MATRIX
C YCT]=FY[T-1] * SUM[1:T][RLMDA*F**I*BINV*A(X[I]-D*WCCI*1]]
C
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

SUBROUTINE EST(NTN,N,RLOGL,P,ETA,IBO,EP,lERR,YSTAR,YFIT) 
IMPLICIT REAL (A-H,0-Z)
INTEGER IW(2),ISTATE(100)
REAL RLOGL,DELTA(50),P (50),HESD(50),HESL(2450),G (50), 
1YFIT(NTN,NEQ),
2VCOV(50,50),C(50,50),CTD(50,50),W(900),BL(50),BU(50), 
3YSTAR(N0BS,NEQ),A1(6,15)
LOGICAL LOSCH
COMMON /MODEL/ NEQ,NEX,NOBS,NPR,NLPAR,NSEAS,NLOC,NTYPE,NDTS 
EXTERNAL M0NIT,FUNCT,E04JBQ 
DATA ZERO/0.0/,HALF/O.5/,ONE/1.0/,TWO/2.0/

DATA DOTWO/0.2/,TEN/10.0/,HUNTH/100000.0/
MAXCAL=80*N*N 
IF(NLOC.EQ.l) THEN 
LOSCH=.TRUE.
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ELSE
LOSCH=.FALSE.
ENDIF
LH=N*(N-l)/2
IF(N.EQ.1)LH=1
LW=2*N
IFAIL=0
CALL E04HBF(N,FUNCT,P,NF,DELTA,HESL,LH,HESD,RLOGL,G,IW,1,W,LW, 
IIFAIL)
FEST=DOTWO*RLOGL
LW=9*N
IFAIL=1
IF(IBO.NE.l) THEN 
DO 1 1=1,N 
BU(I)=TEN**(6)

1 BL(I)=-TEN**(6)
BL(N)=ZERO
ENDIF
CALL E04JBF(N,FUNCT,MONIT,10,LOSCH,0,E04JBQ,MAXCAL,ETA,ZERO,
1HUNTH,FEST,DELTA,IBO,BL,BÜ,P,HESL,LH,HESD,ISTATE,RLOGL,G 
2,IW,2,W,LW,IFAIL)
WRITE(2,'(14)')IFAIL
CALL TEST(VCOV,STLOG,HESD,HESL,N,LH,RLOGL,C,CTD,P,EP,IERR)
CALL PRNT(YSTAR,YFIT,NTN,N,CTD,C,VCOV,P,Al)
RETURN
END
SUBROUTINE FUNCT(IFLAG,N,XC,FC,GC,IW,LIW,W,LW)
IMPLICIT REAL (A-H,0-Z)
INTEGER IFLAG,N,IW,LIW,LW
REAL XC,FC,GC,W,TEMP(6,6),TEMP1(6,15),TEMP2(15,15),TEMP3(6,15), 
1G1,G2,G3,F,BINV,A,Q,D
DIMENSION XC(N),GC(N),W(LW),IW(LIW),G1(6,6),G2(6,15),G3(6,15), 
1F(6,6),BINV(6,6),A(6,15),Q(6,5),D(6,15),R(6,6),A1(6,15),
2G4(6,15),GS(6,5),APR(6,15),D1(6,15) 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
C INITIALISING MATRICESE F BINV A FROM P
C FOR FUNCTION EVALUATION
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

IFLAG=0
CALL EQUAT(FC,XC,G1,G2,G3,TEMP,TEMPI,TEMP2,TEMP3,F,A,BINV,Q,D,N, 
1R,A1,G4,GS,APR,D1)
RETURN
END
SUBROUTINE BIN(F,BINV,NEQ,G1,RLMDA,T1)
IMPLICIT REAL (A-H,0-Z)
REAL F(NEQ,NEQ),BINV(NEQ,NEQ),G1(NEQ,NEQ),TEMP(7,7),Z(6),RLMDA, 
1TEMP1(7,7),T1(NEQ,NEQ)
DATA ZERO/0.0/,HALF/0.5/,ONE/1.0/,TWO/2.0/
CALL SETZER(T1,NEQ,NEQ,0NE)
IFAIL=0
CALL F04AEF(F,NEQ,T1,NEQ,NEQ,NEQ,BINV,NEQ,Z,TEMP,7,TEMP1,7,IFAIL)
IF(IFAIL.NE.O) WRITE(2,1000)IFAIL
DO 2 1=1,NEQ
DO 2 K=1,NEQ
TMP=BINV(I,K)
IF(I.EQ.K)BINV(I,K)=G1(I,K)+TMP-(RLMDA+1)
IF(I.NE.K)BINV(I,K)=G1(I,K)+TMP
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2 CONTINUE 
RETURN

1000 FORMAT(2X,'INVERSION ROUTINE FAIL WITH IFAIL= ',I2,/,2X,
I'l MEANS NOT PDF AND 2 MEANS ILL CONDITIONED MATRIX')
END
SUBROUTINE EQUAT(FC,XC,G1,G2,G3,TEMP,TEMPI,TEMP2,TEMP3,F,A,BINV, 
10,D,N,R,A1,G4,GS,APR,D1)
IMPLICIT REAL (A-H,0-Z)
REAL FC,XC(N),G1(NEQ,NEQ),G2(NE0,NEX),G3(NE0,NEX),TEMP(NEQ,NE0), 
ITEMPl(NEQ,NEX),TEMP2(NEX,NEX),TEMP3(NEQ,NEX),F(NEQ,NEQ), 
2BINV(NEQ,NEQ),A(NEQ,NEX),Q(NEQ,NSEAS),D(NEQ,NEX),H1,Y1,SE,DET, 
3WKSPC(6),RLMDA,R (NEQ,NEQ),Al(NEQ,NEX),G4(NEQ,NEX),GS(NEQ,NSEAS), 
4APR(NEQ,NEX),Die NEQ,NEX)
COMMON /DATA/ Y(120,6),X (120,15),XPR(60,15),WC(120,15), 
1CST(160,5),HT(160,6),U(120,6),S(6,6),BO(15,15,10)
COMMON /EXTRA/ ADFC
COMMON /MODEL/ NEQ,NEX,NOBS,NPR,NLPAR,NSEAS,NLOC,NTYPE,NDTS 
COMMON /BANDD/ VECBIN(36),VECD(90)
COMMON /REST/ RRLMDA,IRSTN(6,15),IREST,NREST,IRSTNF(6,6),
1IRSTNT(6),NFRES,NTRES,IRSTNR(6,6),NRES 
DATA ZERO/0.0/,HALF/O.5/,ONE/1.0/,TWO/2.0/
DATA DOTWO/2.0/,TEN/10.0/,HUNTH/100000.0/
DATA TWENTY/20.0/
NK=0
IF(NFRES.GT.O)THEN
CALL TRANSA(F,NEQ,NEQ,NK,XC,N,IRSTNF, 6)
NK=NK+NEQ*NEQ-NFRES
ELSE
CALL TRANS(F,NEQ,NEQ,NK,XC,N)
ENDIF
IF (NTYPE.EQ.1)CALL TRANS(BINV,NEQ,NEQ,NK,XC,N)
IF(NDTS.GT.l) THEN
IF(NDTS.LE.3) CALL TRANS(D,NEQ,NEX,NK,XC,N)
IF(NDTS.GT.3) CALL TRANS(D1,NEQ,NEX,NK,XC,N)
ENDIF
IF(IREST.GT.l) THEN
CALL TRANSA(A,NEQ,NEX,NK,XC,N,IRSTN,15)
NK=NK+NEQ*NEX-NREST
ELSE
CALL TRANS(A,NEQ,NEX,NK,XC,N)
ENDIF
IF(NSEAS.NE.0)THEN 
IF(NTRES.GT.O) THEN 
DO 2 1=1,NEQ 
DO 2 J=l,NSEAS
IF(J.EQ.NSEAS.AND.IRSTNT(I).EQ.O) THEN
Q(I,J)=ZERO
ELSE
NK=NK+1
Q(I,J)=XC(NK)
ENDIF 

2 CONTINUE 
ELSE
CALL TRANS(Q,NEQ,NSEAS,NK,XC,N)
ENDIF
ENDIF
IF(NTYPE.EQ.4) THEN
IF(NRES.EQ.O) THEN
CALL TRANS(R,NEQ,NEQ,NK,XC,N)

310



ELSE
CALL TRANSA(R ,NEQ,NEQ,NK,XC,N,IRSTNR,6)
NK=NK+NEQ*NEQ-NRES
ENDIF
ENDIF
IF(NTYPE.EQ.S) CALL TRANS(A1,NEQ,NEX,NK,XC,N)
RLMDA=XC(N)
IF(IREST.EQ.l.OR.IREST.E Q .3) RLMDA=RRLMDA 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
C SET UP OF MATRICESE TO BE MODELLED G1 G2 G3
C
C G1=RLMDA*F
C G2=F*BINV*A
C G3=F*BINV*D
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

DO 5 J=1,NEQ 
DO 5 1=1,NEQ

5 G1(I,J)=RLMDA*F(I,J)
IF(NTYPE.NE.l) THEN
BINV(1,1)=G1(1,1)+F(1,1)**(-1)-(RLMDA+1)
IF(NEQ.GT.l) CALL BIN(F,BINV,NEQ,Gl,RLMDA,TEMP)
ENDIF
INO=0
CALL VEC(INO,NEQ,NEQ,VECBIN,BINV)
IF(NDTS.LE.1.0R.NDTS.EQ.4) THEN
IF(NDTS.E Q .0)CALL SETZER(D ,NEQ,NEX,ZERO)
IF(NDTS.EQ.l) THEN 
IF(NTYPE.EQ.S) THEN 
DO 6 1=1,NEQ 
DO 6 J=1,NEX

6 APR(I,J)=A(I,J)
CALL MATMLT(Gl,A 1,APR,NEQ,NEQ,NEX,1)
CALL DMA(D ,NEQ,NEX,B O ,NLPAR,G l ,APR,TEMPI,TEMP3,TEMP2)
ELSE
CALL DMA(D ,NEQ,NEX,BO,NLPAR,G 1,A ,TEMPI,TEMP3,
1TEMP2)
ENDIF
IN0=0
CALL VEC(INO,NEQ,NEX,VECD,D)
ENDIF
ENDIF
CALL MATMLTCF,BINV,TEMP,NEQ,NEQ,NEQ,0)
CALL MATMLT(TEMP,A ,G2,NEQ,NEQ,NEX,0)
CALL MATMLT(TEMP,D ,G 3 ,NEQ,NEQ,NEX,0)
IF(NTYPE.EQ.S) CALL MATMLT(TEMP,A1,G4,NEQ,NEQ,NEX,0)
CALL MATMLT(TEMP,Q ,GS,NEQ,NEQ,NSEAS,0) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c
C CREATION OF HT MATRICES AND EVALUATION OF FC 
C
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

CALL SETZER(S,6,6,ZERO)
NT=NOBS+NPR 
NT1=NT+1 
NTL=NT-1 
NE=NEQ+1 
DO 10 K=1,NEQ
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IF(NTYPE.EQ.3) THEN 
NK=NK+1
HT(NT1,K)=XC(NK)
ELSE
HT(NT1,K)=ZER0 
ENDIF 

10 CONTINUE 
NDF=1
IF(NTYPE.EQ.4) NDF=2 
NBS1=N0BS+1 
DO 24 1=1,NTL 
I1=NT1-I+1 
12 = 11-1 
I3=I1-N0BS-1 
14=12-1 
15=13-1 
DO 19 K=1,NEQ 
Y1=ZER0 
H1=ZER0 
DO 14 J=1,NEQ 
IF(I2.GT.N0BS) THEN
H1=H1+G1(K,J)*HT(I1,J)+G2(K,J)*XPR(I3,J)
IF(NTYPE.EQ.S) THEN 
IF(I2.EQ.NBS1) THEN 
H1=H1+G4(K,J)*X(N0BS,J)
ELSE
H1=H1+G4(K,J)*XPR(I5,J)
ENDIF
ENDIF
ELSE
H1=H1+G1(K,J)*HT(I1,J)+G2(K,J)*X(I2,J)-G3(K,J)*WC(I2,J) 
Y1=Y1+F(K,J)*Y(I4,J)
IF(NDTS.GT.3) H1=H1+D1(K,J)*WC(14,J )
IF(NTYPE.EO.S) H1=H1+G4(K,J)*X(14,J)
ENDIF 

14 CONTINUE
IF(NEX.GT.NEQ) THEN 
DO 16 J=NE,NEX 
IF(I2.GT.N0BS) THEN 
H1=H1+G2(K,J)*XPR(I3,J)
IF(NTYPE.EQ.S) THEN 
IF(I2.EQ.NBS1) THEN 
H1=H1+G4(K,J)*X(N0BS,J)
ELSE
H1=H1+G4(K,J)*XPR(I5,J)
ENDIF
ENDIF
ELSE
H1=H1+G2(K,J)*X(I2,J)-G3(K,J)*WC(I2,J)
IF(NDTS.GT.3) H1=H1+D1(K,J)*WC(14,J)
IF(NTYPE.EQ.S) H1=H1+G4(K,J)*X(14,J)
ENDIF

16 CONTINUE 
ENDIF 
SE=ZERO
IF(NSEAS.NE.0) THEN 
DO 17 J=l,NSEAS

17 SE=SE+GS(K,J)*CST(I2,J)
ENDIF
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HT(I2,K)=H1+SE 
IF(I2.LE.N0BS) THEN 
U(I2,K)=Y(I2,K)-Y1-HT(I2,K)
ENDIF

19 CONTINUE 
IF(I2.LT.N0BS) THEN 
IF(NTYPE.EQ.4) THEN 
DO 21 K=1,NE0 
E1=ZER0
DO 20 J=1,NE0

20 E1=E1+R(K,J)*U(I2,J)
U1=U(I1,K)

21 U(I1,K)=U1-E1 
ENDIF
DO 22 IJ=1,NEQ 
II = IJ
DO 22 K=II,NEQ 
IF(NTYPE.EQ.4) THEN
TT=S(II,K)+(U(I1,K)*U(I1,II)/(FL0AT(N0BS-NDF)))
ELSE
TT=S(II,K)+(U(I2,K)*U(I2,II)/(FL0AT(N0BS-NDF)))
ENDIF

22 S(II,K)=TT 
ENDIF

24 CONTINUE
DO 26 1=1,NEO 
DO 25 K=1,NEQ 
IF(I.GT.K) S(I,K)=S(K,I)

25 TEMP(I,K)=S(I,K)
26 CONTINUE

IF(NTYPE.NE.4) THEN 
DO 30 1=1,NEQ 
DO 30 J=1,NEQ
TT=S(I,J) + (U (NOBS,I)* U (NOBS,J)/(FLOAT(NOBS-NDF)))

30 S(I,J)=TT 
ENDIF
IF(NEQ.EQ.l) THEN 
FC=L0G(S(1,1))/ADFC 
ELSE
IF(NEQ.EQ.2) THEN
DET=S(1,1)*S(2,2)-S(1,2)**2
ELSE
IFAIL=0
CALL F03ABF(TEMP,NEQ,NEQ,DET,WKSPC,IFAIL)
WRITE(2,1010)IFAIL
IFAIL=0
ENDIF
IF(DET.LE.ZERO) THEN 
FC=TEN**20
WRITE(2,1000)RLMDA,((S(I,K),I=1,NEQ),K=1,NEQ)
ELSE
FC=FLOAT(NOBS-NDF)*LOG(DET)/TWO/ADFC
ENDIF
ENDIF
RETURN

1000 F0RMAT(5X,' UNSTABLE VALUES OF EITHER RLMDA ',F13.7,' OR F',/, 
15X,'HAVE GENERATED LARGE EQUATION VARIANCES ',/, 
26(5X,6E13.7,/))

1010 F0RMAT(5X,' IFAIL FOR DETERMINANT SOLUTION ',12,/)
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END
SUBROUTINE DATAIN(P,NEO,NEX,NOBS,NPR,N,NLPAR)
IMPLICIT REAL (A-H,0-Z)
CHARACTER NAMEX(15)*5,NAMEY(6)*5,FORM(10)*8 
REAL P(N),A1(120,15),A2(120,15),A3(120,15)
COMMON /CHAR/ NAMEX,NAMEY,FORM
COMMON /FORM/ ITAPE,ITVAR,ITAPEl,NFORM,IFORM
COMMON /DATA/ Y (120,6),X(120,15),XPR(60,15),W C (120,15),
1 CST(160,5),HT(160,6),U(120,6),S(6,6),BO(15,15,10)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
C READ DATA SECTION
C IN ORDER ; ENDOGENOUS , EXOGENOUS , PREDICTIONS , PREDICTION
ERRORS
C THEN : P MATRIX OF INITIAL VALUES , BO MATRIX OF REDUCED FORM 
C COEFFICIENTS
C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

IF(ITAPE.EQ.O) ITAPE1=1 
IF(ITAPE.LT.3) ITAPE=1 
IF(ITVAR.EQ.l) THEN
READdTAPE,*) ( (Y ( I, J ), 1 = 1,NOBS), J=1,NEQ)
READ(ITAPE, *) ( (Aid, J), 1 = 1,NOBS) ,J=1,NEX)
READdTAPE,*) ( (A2(I, J ) , I = 1,NPR), J=1,NEX)
READdTAPE,*) ( (A3(I,J),1 = 1,NOBS), J=l,NEX)
ELSE
IF(IFORM.EQ.O) THEN
READdTAPE,*) ( ( Y ( I, J ) , J=1, NEQ), 1 = 1, NOBS )
READdTAPE,*) ( ( Al ( I, J), J = 1, NEX ), 1 = 1, NOBS )
READdTAPE,*) ( (A2(I, J), J = 1,NEX), I = 1,NPR)
READdTAPE,*) ( (A3(I,J),J=1,NEX),1 = 1,NOBS)
ELSE
READ(ITAPE,FORM)((Y (I,J),J=1,NEQ),I=1,NOBS)
CALL INFORM(Al,NFORM,NEQ,NOBS)
CALL INF0RM(A2,NFORM,NEQ,NPR)
CALL INFORM(A3,NFORM,NEQ,NOBS)
ENDIF
ENDIF
IF(ITAPE1.LT.3) ITAPE1=1 
READdTAPEl,*) (P(I),I = 1,N)
READdTAPEl,*) ( ( (B0( I, J,K),K=1,NLPAR), J=1,NEX), 1 = 1,NEX) 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c
C WRITE DATA INPUT TO OUTPUT 
C
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

WRITE(2,1000)(NAMEY(I),I=1,NEQ)
DO 1 1=1,NOBS 

1 WRITE(2,1001)(Y(I,J),J=1,NEQ)
WRITE(2,1002)
CALL DATOUT(A 1,NEX,NOBS)
WRITE(2,1003)
CALL DAT0UT(A2,NEX,NPR)
WRITE(2,1004)
CALL DAT0UT(A3,NEX,NOBS)
DO 2 J=1,NEX 
DO 2 1=1,NOBS 
X(I,J)=A1(I,J)
IFd.LE.NPR) XPRd,J)=A2(I,J)
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2 WC(I,J)=A3(I,J)
WRITE(2,1005)
RETURN

1000
FORMAT(/,10X,'ENDOGENOUSVARIABLES',/,10X,19(lH-),/,lX,6(4X,A5,4X),/, 

1/,1X,10(4X,5(1H-),4X,/))
1001 FORMAT(6F13.5)
1002 FORMAT(/,10X,'EXOGENOUS VARIABLES',/,10X,19(1(1H-)),/)
1003 FORMAT(/,10X,'PREDICTIONS OF EXOGENOUSVARIABLES',/,lOX,34(IH-),/)
1004 FORMAT(/,10X,'ONE STEP AHEAD FORCAST E R R O R S l O X , 2 9 (IH-),/)
1005 FORMAT(/,10X,'END OF DATA S E C T I O N l O X , 17(IH-),/)

END
SUBROUTINE DMA(D,N1,N2,BO,NLPAR,G l ,A,TEMP,TEMPI,TEMP2)
IMPLICIT REAL (A-H,0-Z)
REAL D,BO,Gl,TEMP,TEMPI,TEMP2
DIMENSION D(N1,N2),TEMP(N1,N2),TEMPI(N1,N2),TEMP2(N2,N2)
DIMENSION G1(N1,N1),BO(15,1S,10),A(N1,N2)
CALL MATMLT(G1,A,D,N1,N1,N2,0)
DO 1 1=1,N1 
DO 1 J=1,N2

1 TEMP(I,J)=D(I,J)
DO 4 J=l,NLPAR
CALL MATMLT(Gl,TEMP,TEMPI,N1,N1,N2,0)
DO 2 1=1,N1 
DO 2 K=1,N2

2 TEMP(I,K)=TEMP1(I,K)
DO 3 K=1,N2
DO 3 1=1,N2

3 TEMP2(I,K)=B0(I,K,J)
4 CALL MATMLT(TEMPI,TEMP2,D,N1,N2,N2,1)

RETURN
END
SUBROUTINE DAT0UT(XS,NEX,N5)
IMPLICIT REAL (A-H,0-Z)
CHARACTER NAMEX(15)*5,NAMEY(6)*5,FORM(10)*8 
REAL XS
DIMENSION XS(120,15)
COMMON /CHAR/ NAMEX,NAMEY,FORM
Nl = l
N2=10

1 CONTINUE 
IF(NEX-N2.LT.O) N2=NEX 
WRITE(2,1000)(NAMEX(K),K=N1,N2)
DO 2 1=1,N5

2 WRITE(2,1001)(XSCI,J),J=N1,N2)
IF(N2.EQ.NEX) RETURN 
N1=N2+1
N2=N2+10 
GOTO 1

1000 FORMAT(//,IX,10(4X,A5,4X),/,10(4X,5(lH-),4X),/)
1001 FORMAT(10F13.5)

END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
C GHESS CALCULATES NUMERICAL SECOND DERIVATIVES
C WHICH ARE USED TO DERIVE ALTERNATIVE ESTIMATES
C OF THE VARIANCE-COVARIANCE MATRIX
C CTD CONTAINS THE HESSIAN
C

315



ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE GHESS(N ,CTD,C,XC,RLOGL,EP)
IMPLICIT REAL (A-H,0-Z)
REAL CTD(N,N),C(N,N),XC(N),RLOGL,EP,DIV,ZAP 
DATA ZERO/O.0/,HALF/O.5/,ONE/1.0/,TWO/2.0/
DATA DOTWO/2.0/,TEN/10.0/,HUNTH/100000.0/
IF(ABS(RLOGL).LT.EP) THEN
DIV=ONE
ELSE
DIV=RLOGL
ENDIF
IVIEW=0
DO 3 1=1,N
C(I,1)=EP
ZAP=XC(I)

2 XC(I)=XC(I)+C(I,1)
CALL FUNCT(IFLAG,N,XC,C(I,2),GC,IW,1,W,1)
IDEF=1
IF((ABS((C(I,2)-RL0GL)/DIV).LT.EP).AND.(C(I,1).LT.ZAP) 

l.AND.(IDEF.LT.l)) THEN 
C(I,1)=C(I,1)*TEN 
GOTO 2 
ELSE 
ENDIF
XC(I)=XC(I)-TW0*C(I,1)
CALL FUNCT(IFLAG,N,XC,C(I,3),GC,IW,1,W,1)
XC(I)=XC(I)+C(I,1)
II = I
DO 3 J=1,II 
XC(I)=XC(I)+C(I,1)
XC(J)=XC(J)+C(J,1)
CALL FUNCT(IFLAG,N,XC,D,GC,IW,1,W,1) 
CTD(I,J)=(D+TW0*RL0GL-C(I,2)-C(J,2)-C(I,3)-C(J,3))
X C (I)=XC(I)-TWO*C(I,1)
XC(J)=XC(J)-TW0*C(J,1)
CALL FUNCT(IFLAG,N ,XC,D ,GC,IW,1,W ,1)
C T D d ,  J) = (CTD(I, J)+D)/(TWO*C( I,1)*C(J,1) )
XC(I)=XC(I)+C(I,1)

3 XC(J)=XC(J)+C(J,1)
N1=N-1
DO 4 1=1,N1 
11=1+1 
DO 4 J=II,N

4 CTD(I,J)=CTD(J,I)
IF(IVIEW.GT.O) THEN 
DO 5 1=1,N
II = I

5 WRITE(2,'(6(G17.9))')(CTD(I,J),J=1,II)
ENDIF
RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
C GAUSS-JORDAN SWEEP OPERATOR TO INVERT A SYMMETRIC 
C POSITIVE MATRIX
C USED TO INVERT THE HESSIAN
C SYM CONTAINS THE HESSIAN
C AND VCOV ITS INVERSE
C
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
SUBROUTINE GJS(SYM,VCOV,N)
IMPLICIT REAL (A-H,0-Z)
REAL SYM(N,N),VCOV(N,N)
INTEGER I,J,K,L1,L2 
REAL ZERO,HALF,ONE
DATA ZERO/O.0/,HALF/O.5/,ONE/1.0/,TWO/2.0/
DO 99 L1=1,N 
DO 98 L2=L1,N

VCOV(L2,LI)=SYM(L2,LI)
98 CONTINUE
99 CONTINUE

C
C

DO 1 K=1,N
TEMP=(-ONE)/VCOV(K,K)

VCOV(K,K)=TEMP 
DO 3 1=1,N 
IF(I.NE.K)THEN 
IF(I.LT.K)THEN

C
C CHANGE ROW K 
C

VCOV(K ,I)=VCOV(K ,I )+TEMP 
T2=VC0V(K,I)

ELSE
C
C CHANGE COL K 
C

VCOV(I,K )=VCOV(I,K )*TEMP 
T2=VC0V(I,K)

ENDIF
C
C CHANGE THE REST OF THE LOWER TRIANGLE 
C

DO 4 J=1,I
IF(J.NE.K)THEN

IF(J.LT.K)THEN
T4=VC0V(K,J)

ELSE IF (I.GT.K)THEN
T4=VC0V(J,K)

ENDIF
VCOV(I,J )=VCOV(I,J )+T2*T4/TEMP 

ENDIF
4 CONTINUE 

ENDIF
3 CONTINUE 
1 CONTINUE 

DO 5 1=1,N 
VCOV(I,I)=-VCOV(I,I)
DO 5 J=I+1,N 
V C O V d ,  J)=-VCOV(J,I)
VCOV(J,I)=-VCOV(J,I)

5 CONTINUE 
RETURN 
END
SUBROUTINE INFORM(XS,N4,N5)
IMPLICIT REAL (A-H,0-Z)
CHARACTER NAMEX (15 ) *5, NAMEY ( 6 ) *5, FORM ( 1 0*8
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REAL XS
DIMENSION XS(120,15)
COMMON /CHAR/ NAMEX,NAMEY,FORM
COMMON /FORM/ ITAPE,ITVAR,ITAPEl,NFORM,IFORM
Nl = l
N2=NF0RM

1 CONTINUE 
IF(N2-N4)2,4,3

2 READ(ITAPE,FORM)((XS(I,J),J=N1,N2),1=1,N5)
N1=N2+1
N2=N2+NF0RM 
GOTO 1

3 N2=N4
4 READ(ITAPE,FORM)((XS(I,J),J=N1,N2),1=1,N5)

RETURN
END
SUBROUTINE MATMLT(XX,YY,NEW,N1,N2,N3,NS2)
IMPLICIT REAL (A-H,0-Z)
REAL XX,YY,NEW,F
DIMENSION XX(N1,N2),YY(N2,N3),NEW(N1,N3)
DATA ZERO/O.0/,HALF/O.5/,ONE/1.0/,TWO/2.0/

DO 2 K=1,N3 
DO 2 1=1,N1 
F=ZERO 
DO 1 J=1,N2

1 F=F+XX(I,J)*YY(J,K)
IF(NS2.EQ.0)THEN
NEW(I,K)=F
ELSE
NEW(I,K)=NEW(I,K)+F
ENDIF

2 CONTINUE 
RETURN 
END
SUBROUTINE MONIT(N,XC,FC,GC,ISTATE,GPJNRM,COND,POSDEF,NITER,
1 NF,IW,LIW,W,LW)
IMPLICIT REAL (A-H,0-Z)
COMMON /MODEL/ NEQ,NEX,NOBS,NPR,NLPAR,NSEAS,NLOC,NTYPE,NDTS 
COMMON /EXTRA/ ADFC
DATA ZERO/O.0/,HALF/O.5/,ONE/1.0/,TWO/2.0/,TWENTY/20.0/
LOGICAL POSDEF
INTEGER N,ISTATE,NITER,NF,IW,LIW,LW 
REAL XC(N),FC,GC(N),GPJNRM,COND,W,RLOGL 
NDF=N0BS-1
IF(NTYPE.E0.4) NDF=N0BS-2
RLOGL=-HALF*(NDF)*(NEQ*2*L0G(2*3.1743)+ONE)-(FC*ADFC) 
WRITE(2,1000)
WRITE(2,1001)NITER,FC,RLOGL 
WRITE(2,1010)(XC(I),I=1,N)
WRITE(2,1012)
WRITE(2,1010)(GC(I),I=1,N)
WRITE(2,1020)GPJNRM,COND
RETURN

1000 FORMAT(' NO ITERATIONS FUNCTION VALUE ',/)
1001 F0RMAT(8X,15,8X,F10.5,8X,F10.5,/,5X,'PARAMETER VALUES',/)
1010 F0RMAT(7F11.6)
1012 F0RMAT(5X,'GRADIENT OF FUNCTION AT XC',/)
1020 FORMAT(6X,'EUCLIDEAN NORM CONDITION OF HESSIAN',/,7X,F10.S,7X, 

1F13.5)
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END
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c 
c
C MAXI CALCULATES THE MAX AND MIN OF A SERIES Y
C
C
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE MAXI(Y,RMX,RMN,I,N,N2,N3,N4)
IMPLICIT REAL(A-H,0,Z)
DIMENSION Y(N,N2)
DO 1 K=N3,N4
IF(Y(K,I).GT.RMX) RMX=Y(K,I)
IF(YCK.I).LT.RMN) RMN=Y(K,I)

1 CONTINUE 
RETURN 
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
C PRINTY PRINTS OUT THE EXOGENOUS VARIABLES Y FOR THE ITH
C EQUATION, THEIR FITTED VALUES YFIT AND THE CALCULATED
C EQUILIBRIUM VALUES YSTAR FOLLOWING THIS ARE PREDICTIONS
C STORED IN YFIT
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

SUBROUTINE PRNTY(YSTAR,YFIT,I,NTN,NSTRT)
IMPLICIT REAL(A-H,0-Z)
CHARACTER NAMEX(15)*5,NAMEY(6)*5,FORM(10)*8,LINE(61)*1, 
1LINEK9)*!
DIMENSION YSTAR(NOBS,NEQ),YFIT(NTN,NEQ)
COMMON /CHAR/ NAMEX,NAMEY,FORM
COMMON /DATA/ Y(120,6),X (120,15),XPR(60,15),WC(120,15), 
1CST(160,5),HT(160,6),U(120,6),S(6,6),BO(15,15,10)
COMMON /MODEL/ NEQ,NEX,NOBS,NPR,NLPAR,NSEAS,NLOC,NTYPE,NDTS 
DATA TWO/2.0/,NINE/9.0/,SXTYl/61.0/,AETYl/81.0/,ZERO/O.0/, 

lHALF/0.5/,F0UR5/4.5/
RMX=Y(1,I)
RMN=Y(1,I)
CALL MAXI(Y,RMX,RMN,I,120,6,NSTRT,NOBS)
CALL MAXI<YSTAR,RMX,RMN,I,NOBS,NEQ,NSTRT,NOBS)
CALL MAXI(YFIT,RMX,RMN,I,NTN,NEQ,NSTRT,NTN)
R=RMX-RMN
SS=R/SXTY1
H=(RMX+RMN)/TWO
SE=S(I,I)**HALF
R2=SE*F0UR5
WRITE(2,1005)RMN,H,RMX 
DO 5 K=NSTRT,NOBS 
DO 1 J=l,80

1 LINE(J)=' '
DO 2 J=l,9

2 LINE1(J)=' '
J=MAX0(1,IFIX((Y(K,I)-RMN)/SS) )
LINE(J)='+'
J=MAX0(1,IFIX((YSTAR(K,I)-RMN)/SS))
LINE(J)='*'
J=MAX0(1,IFIX((YFIT(K,I)-RMN)/SS))
LINE(J)='x'
IF(ABS(U(K,I)).LT.R2)THEN
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J=MAXO(1,IFIX((U(K,I)+FOUR5*SE)/SE))
LINEl(J)='x'
ELSE
IF(U(K,I).GT.ZER0)LINE1(9)='*'
IF(U(K,I).LT.ZER0)LINE1(1)='*'
ENDIF

5 WRITE(2,1010)Y(K,I),YFIT(K,I),YSTAR(K,I),LINE,
1U(K,I),LINE1 
N01=N0BS+1 
DO 10 K=N01,NTN 
DO 7 J=l,80 

7 LINE(J)=' '
J=MAX0(1,IFIX((YFIT(K,I)-RMN)/SS))
LINE(J)='x'

10 WRITE(2,1015)YFIT(K,I),LINE 
RETURN

1005 F0RMAT(7X,'Y',12X,'FIT',12X,'E0',6X,G13.5,11X,G13.5,11X,
1G13.5,5X,'ERROR',9X,'O',/,7X,'-',12X,12X,'--',6X,30(1H-), 
21H+,30(1H-),SX,S(1H-),5X,4(1H-),1H+,4(1H-),/)

1010 F0RMAT(1X,3(G13.5,1X),61A1,1X,G13.5,1X,9A1)
1015 F0RMAT(15X,G13.5,15X,80A1)

END
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c
C SUBROUTINE PRNT CALCULATES THE FITTED VALUES YFIT AND
C PREDICTIONS FOR NPR FUTURE PERIODS STORED IN THE LAST
C NPR SPACES OF YFIT
C IT ALSO CALCULATES EQUILIBRIUM VALUES YSTAR USING
C
C YSTAR=A*X
C
C THESE ARE PASSED INTO PRINTY FOR PRINTING THE ITH
C THESE ITH EQUATION VALUES
C
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

SUBROUTINE PRNT(YSTAR,YFIT,NTN,N,F,A,Q,P,A1)
IMPLICIT REAL(A-H,0-Z)
DIMENSION YSTAR(NOBS,NEQ),YFIT(NTN,NEQ),F(NEQ,NEQ),A(NEQ,NEX), 
1Q(NEQ,NSEAS),P(N),A1(NEQ,NEX)
COMMON /MODEL/ NEQ,NEX,NOBS,NPR,NLPAR,NSEAS,NLOC,NTYPE,NDTS 
COMMON /DATA/ Y(120,6),X(120,15),XPR(60,15),WC(120,15), 

1CST(160,5),HT(160,6),U(120,6),S(6,6),BO(15,15,10)
COMMON /REST/ RRLMDA,IRSTN(6,15),IREST,NREST,IRSTNF(6,6),

1IRSTNT(6),NFRES,NTRES,IRSTNR(6,6),NRES
DATA ZERO/O.0/,HALF/O.5/,ONE/1.0/,TWO/2.0/

DATA DOTWO/0.2/,TEN/10.0/,HUNTH/100000.0/
NK=0
IF(NFRES.GT.O) THEN
CALL TRANSA(F,NEQ,NEQ,NK,P,N,IRSTNF,6)
NK=NK+NEQ*NEQ-NFRES
ELSE
CALL TRANS(F,NEQ,NEQ,NK,P,N)
ENDIF
IF(NDTS.GT.l)NK=NK+NEQ*NEX 
IF(IREST.GT.l) THEN
CALL TRANSA(A,NEQ,NEX,NK,P,N,IRSTN,15)
NK=NK+NEQ*NEX-NREST
ELSE
CALL TRANS(A,NEQ,NEX,NK,P,N)
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ENDIF
DO 3 1=1,NEO 
DO 3 J=l,NSEAS
IF(J .EQ.NSEAS.AND.IRSTNT(I).EQ.ZERO.AND.NTRES.GT.O) THEN
Q(I,J)=ZERO
ELSE
NK=NK+1
Q(I,J)=P(NK)
ENDIF 

3 CONTINUE
IF(NTYPE.EQ.5) THEN
CALL TRANS(Al,NEQ,NEX,NK,P,N)
ENDIF
NSTRT=2
IF(NTYPE.EQ.4) NSTRT=3 
DO 7 1=1,NEQ 
DO 7 J=NSTRT,NOBS 
J1=J-1
YFIT(J,I)=Y(J,I)-U(J,I)
YO=ZERO
DO 5 K=1,NEX
YO=YO+A(I,K)*X(J,K)
IF(NTYPE.EQ.S) Y0=Y0+A1(I,K)*X(J1,K)

5 CONTINUE
IF(NSEAS.GT.O)THEN 
DO 6 K=l,NSEAS
IF(K.EQ.1.0R.K.EQ.5) YO=YO+Q(I,K)*CST(J,K)

6 CONTINUE 
ENDIF

7 YSTAR(J,I)=YO 
DO 10 1=1,NEQ 
YO=ZERO
DO 9 K=1,NEQ 

9 YO=YO+F(I,K)*Y(NOBS,K)
10 YFIT(N0BS+1,I)=Y0+HT(N0BS+1,I)

N02=N0BS+2
DO 14 J=N02,NTN 
DO 14 1=1,NEQ 
YO=ZERO 
DO 11 K=1,NEQ

11 Y0=Y0+F(I,K)*YFIT(J-1,K)
14 YFIT(J,I)=Y0+HT(J,I)

DO 16 1=1,NEQ 
WRITE(2,1005)1
CALL PRNTY(YSTAR,YFIT,I,NTN,NSTRT)

16 CONTINUE 
RETURN

1005 FORMAT(5X,'PLOT OF FITTED VALUES AND RESIDUALS FOR EQUATION:', 
112,//)
END
SUBROUTINE SETZER(XX,N1,N2,AN)
IMPLICIT REAL (A-H,0-Z)
REAL XX,AN 
DIMENSION XX(N1,N2)
DATA ZERO/O.0/,HALF/O.5/,ONE/1.0/,TWO/2.0/

DO 1 J=1,N2 
DO 1 1=1,NI 
IF(I.EQ.J) THEN 
XX(I,J)=AN
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ELSE
XX(I,J)=ZERO 
ENDIF 

1 CONTINUE 
RETURN 
END
SUBROUTINE TEST(VCOV,STLOGL,HESD,HESL,N,LH,RLOGL,C,CTD,XC,EP, 
IIERR)
IMPLICIT REAL (A-H,0-Z)
CHARACTER NAMEX(15)*5,NAMEY(6)*5,FORM(10)*8
REAL VCOV(N,N),STLOGL,HESD(N),HESL(LH),RLOGL,CTD(N,N),C (N,N), 
1XC(N),SE(120),T(120),RRL0GL,T1(120)
COMMON /BANDD/ VECBIN(36),VECD(90)
COMMON /DATA/ Y(120,6),X(120,15),XPR(60,15),WC(120,15), 

1CST(160,5),HT(160,6),U(120,6),S(6,6),B0(15,15,10)
COMMON /CHAR/ NAMEX,NAMEY,FORM 
COMMON /EXTRA/ ADFC
COMMON /MODEL/ NEQ,NEX,NOBS,NPR,NLPAR,NSEAS,NLOC,NTYPE,NDTS 
COMMON /REST/ RRLMDA,IRSTN(6,15),IREST,NREST,IRSTNF(6,6),

1IRSTNT(6),NFRES,NTRES,IRSTNR(6,6),NRES
DATA ZERO/O.0/,HALF/O.5/,ONE/1.0/,TWO/2.0/,TWENTY/20.0/

DATA TEN/10.0/
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
C CREATION OF ASSYMPTOTIC VARIANCE COVARIANCE MATRIX
C H = L D L'
C VCOV = H(INV) = L'(INV) D(INV) L(INV)
C L IS REPRESENTED BY THE MATRIX C WHICH IS INVERTED BY BACK
C SUBSTITUTION
C
C HESD CONTAINS THE DIAGONAL ELEMENTS OF D AND HESL CONTAINS
C THE N(N-)/2 LOWER TRIANGULAR ELEMENTS OF L EXCLUDING THE
C LEADING DIAGONAL WHICH IS MADE UP OF I'S . THIS FED INTO
C HESL BY ROWS
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

WRITE(2,'(7F13.5)')(HESDd),I=1,N)
WRITE(2,299)

299 F0RMAT(/,5X,'HESD AND HESL',/)
NN=N*(N-l)/2
WRITE(2, ' (7F13.5) ' ) (HESLd ), 1 = 1,NN)
11=0
DO 2 J=1,N 
I1=I1+J 
12=11-1 
DO 2 1=1,N
IFd.LT. J)C(I, J)=ZERO 
IFd.EQ. J)C(I, J)=ONE 
IFd.GT.J) THEN 
TEM=ZERO 
11=1-1
DO 1 NN=J,II 
12=12+1

1 TEM=TEM-HESL(I2)*C(NN,J)
C(I,J)=TEM
I2=I2+J-1
ENDIF

2 CONTINUE 
DO 3 1=1,N
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DO 3 J=1,N
IFd.LT.J) CTD(J,I)=ZERO 
IFd.EQ.J) CTD(J,I)=1/HESD(J)
IFd.GT.J) CTD(J,I)=C(I,J)/HESD(I)

3 CONTINUE
CALL MATMLT(CTD,C,VCOV,N,N,N,0)
NN=N*(N-l)/2
CALL TESVCO(VCOV,HESL,HESD,CTD,C,N,LH,0)
IF(IERR.GT.O) THEN
CALL GHESS(N,CTD,C,XC,RLOGL,EP)
CALL GJS(CTD,C,N)
CALL TESVCO(VCOV,HESL,HESD,CTD,C,N,LH,1)
ENDIF
DO 4 1=1,N
SE(I) = (VCOV(1,1)/ADFC)* *HALF 
HESD(I) = (C(I,I)/ADFC)* *HALF 
Tld) = (XCd)/HESD(I))

4 Td) = (XCd)/SE(I))
RRLOGL=RLOGL
NDF=N0BS-1
IF(NTYPE.EQ.4) NDF=N0BS-2
RLOGL=-HALF*(NDF)*(NEQ*2*L0G(2*3.1743)+ONE) 

1-(RRL0GL*ADFC)
WRITE(2,290)RLOGL
WRITE(2,295) ( (Sd, J), I = 1,NEQ), J=1,NEQ)
WRITE(2,300)
WRITE(2,301)
IF(IREST.EQ.O.OR.IREST.EQ.2) THEN 
WRITE(2,302)XC(N),SE(N),HESD(N),T(N),T1(N)
ELSE
WRITE(2,'(5X, "  RLMDA '',F13.5)')RRLMDA
ENDIF
N0=0
N01=0
DO 9 1=1,NEQ 
NCN=0
WRITE(2,303)1,NAMEYd)
WRITE(2,304)
IF(NFRES.GT.O)THEN
CALL WRITR(6,6,NCN,N,I,NEQ,XC,SE,HESD,T,T1,IRSTNF)
NCN=NCN+NEQ*NEQ-NFRES
ELSE
CALL WRIT(NEQ,N,NCN,NEQ,I,N4,XC,SE,HESD,T,T1)
ENDIF
WRITE(2,305)
IF(NTYPE.EQ.l) THEN
CALL WRIT(NEQ,N,NCN,NEQ,I,N4,XC,SE,HESD,T,T1)
ELSE
DO 5 J=1,NEQ 
N0=N0+1

5 WRITE(2,405)VECBIN(N0)
ENDIF
WRITE(2,306)
IF(NDTS.GT.l) THEN
CALL WRIT(NEQ,N,NCN,NEX,I,N4,XC,SE,HESD,T,T1)
ELSE
DO 6 J=1,NEX 
N01=N01+1

6 WRITE(2,405)VECD(N01)
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ENDIF
WRITE(2,307)
IF(IREST.GT.l) THEN
CALL WRITR(6,15,NCN,N,I,NEX,XC,SE,HESD,T,T1,IRSTN)
NCN=NCN+NEQ*NEX-NREST
ELSE
CALL WRIT(NE0,N,NCN,NEX,I,N4,XC,SE,HESD,T,T1)
ENDIF
IF(NSEAS.NE.O) THEN 
WRITE(2,308)
NS=NSEAS-1
IF(NTRES.EQ.0)NS=NSEAS
CALL WRIT(NEQ,N,NCN,NS,I,N4,XC,SE,HESD,T,T1)
IF(NTRES.GT.O)THEN 
IF(IRSTNTd) .EQ.O)THEN 
WRITE(2,'(5X,''ZERO COEFF'')')
ELSE
WRITE(2,309)XC(NCN),SE(NCN),HESD(NCN),T(NCN),T1(NCN)
ENDIF
ENDIF
ENDIF
IF(NTYPE.EQ.3) THEN 
WRITE(2,310)
NCN=NCN+1
WRITE(2,309) XC(NCN),SE(NCN),HESD(NCN),T(NCN),T1(NCN)
ENDIF
IF(NTYPE.EQ.4) THEN 
WRITE(2,311)
IF(NRES.EQ.O) THEN
CALL WRIT(NE0,N,NCN,NE0,I,N4,XC,SE,HESD,T,T1)
ELSE
CALL WRITR(6,6,NCN,N,I,NE0,XC,HESD,T,T1,IRSTNR)
NCN=NCN+NEQ*NEO-NRES
ENDIF
ENDIF
IF(NTYPE.EQ.S) THEN 
WRITE(2,312)
CALL WRIT(NEQ,N,NCN,NEX,I,N4,XC,SE,HESD,T,T1)
ENDIF 

9 CONTINUE 
DO 14 1=1,N 
DO 12 J=1,N 
CNEW=C(I,J)/ADFC 
VNEW=VCOV(I,J)/ADFC 
C(I,J)=CNEW 

12 VCOV(I,J)=VNEW 
14 CONTINUE 

NLM=1
IF(NTYPE.EQ.4) NLM=2
CALL TESTLM(S,VCOV,NLM,N,NEQ,NOBS)
IF(IERR.GT.O) CALL TESTLM(S,C,NLM,N,NEQ,NOBS)
RETURN

290 FORMAT(5X,'LOG LIKELIHOOD =',F13.5,/,5X,16(IH-),/)
295 FORMAT(5X,'VARIANCE COVARIANCE MATRIX OF THE EQUATIONS',/,5X, 

143(lH-),/,6(SX,6F13.9,/))
300 FORMAT(5X,'PARAMETER ESTIMATES BY EQUATION ',/,5X,31(IH-)//)
301 FORMATdSX,'COEFFICIENT STANDARD ERROR STANDARD ERROR 

1' T-STATISTICS Tl-STATISTICS',/,16X,71(IH-)/)
302 F0RMAT(5X,'LMDA',5(2X,F13.5))
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303 FORMAT(SX,'EQUATION ',12,' DEPENDENT VARIABLE NAME ',A5,/,5X, 
IIKIH-))

304 FORMAT(SX,'F MATRIX')
305 FORMATCSX,'B-1 MATRIX')
306 FORMATCSX,'D MATRIX')
307 FORMATCSX,'A MATRIX')
308 FORMAT CSX,'SEASONALS')
309 F0RMATC9X,SC2X,F13.S))
310 FORMATCSX,'TERMINAL CONDITIONS')
311 FORMATCSX,'AR(l) MATRIX')
312 FORMATCSX,'Al MATRIX')
40S F0RMATC11X,F13.S)

END
SUBROUTINE SCALCCN,N1,N2,N4,V1,V2,SS)
IMPLICIT REAL CA-H,0-Z)
REAL SSCNEQ,NEQ),V1C120,6),S,V2C120,6)
COMMON /MODEL/ NEQ,NEX,NOBS,NPR,NLPAR,NSEAS,NLOC,NTYPE,NDTS 
DATA ZERO/0.0/,HALF/0.S/,ONE/1.0/,TWO/2.0/
N3=N0BS-1
IFCNTYPE.EQ.4) N3=N0BS-2 
DO 2 1=1,NEQ 
DO 2 J=1,NEQ
IFCJ.GE.I.OR.N.LT.l) THEN 
S=ZERO
DO 1 K=N1,N2 
NS=K+N4

1 S=S+CV1CK,I)*V2CNS,J)/CFL0ATCN3)))
SSCI,J)=S
ELSE
SSCI,J)=SSCJ,I)
ENDIF

2 CONTINUE 
RETURN 
END
SUBROUTINE TESTLMCS,VCOV,NLM,N,NEQ,NOBS)
IMPLICIT REAL CA-H,0-Z)
REAL VC0VCN,N),SSC7,6),SC6,6),SINVC6,6)
IA=NEQ+1
CALL LMCSS,VCOV,SINV,NEQ,NLM,NOBS,N,IA,S)
RETURN
END
SUBROUTINE LMCSS,VCOV,SINV,NEQ,NLM,NOBS,N,IA,S)
IMPLICIT REAL CA-H,0-Z)
REAL SC6,6),VC0VCN,N),TEMPC6,6),TEMP1C6,6),SINVCNEQ,NEQ),Z(7), 
1S2C6,6),SSCIA,NEQ),TLM3,TLM1 
IFAIL=0 
DO 3 1=1,NEQ 
DO 3 J=1,NEQ

3 SSCI,J)=SCI,J)
CALL FOIABFCSS,lA,NEQ,SINV,NEQ,Z,IFAIL)
IFCIFAIL.GT.O) WRITEC2,100)IFAIL 
DO S J=2,NEQ 
II=J-1 
DO S 1=1,11 

S SINVCI,J)=SINVCJ,I)
CALL LMICSINV,S2,VCOV,TEMPI,SS,TEMP,TLM3,1,1,N,IA)
WRITEC2,104)TLM3
TLM1=ZER0
CALL LMICSINV,S2,VCOV,TEMPI,SS,TEMP,TLMl,2,0,N,IA)
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TLM3=TLM3+TLM1 
WRITE(2,106)TLM3 
DO 7 1=3,4 
TLM1=ZER0
CALL LM1(SINV,S2,VCDV,TEMP1,SS,TEMP,TLM1,I,0,N,IA)

7 TLM3=TLM3+TLM1 
WRITE(2,108)TLM3 
TLM1=ZER0
CALL LMICSINV,S2,VCOV,TEMPI,SS,TEMP,TLMl,5,0,N,IA)
TLM3=TLM3+TLM1
WRITE(2,110)TLM3
RETURN

100 F0RMAT(2X,'INVERSION ROUTINE FAIL WITH IFAIL= ',I2,/,2X,
I'l MEANS NOT PDF AND 2 MEANS ILL CONDITIONED MATRIX')

104 FORMATCSX,'LM TEST FOR 1ST ORDER SERIAL CORRELATION =',F8.5,/)
106 FORMATCSX,'LM TEST FOR 2ND ORDER SERIAL CORRELATION =',F8.S,/)
108 FORMATCSX,'LM TEST FOR 4TH ORDER SERIAL CORRELATION =',F8.S,/)
110 FORMATCSX,'LM TEST FOR STH ORDER SERIAL CORRELATION =',F8.S,/>

END
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
C SUBROUTINE LMl CALCULATES THE MULTIPLE EQUATION
C VERSION OF THE BOX PIERCE STATISTIC BY SETTING
C NLM > 0 IT TAKES ACCOUNT OF LAGGED DEPENDENT
C VARIABLES IN THE MODEL IN CALCULATING THE RELEVANT
C LM TEST
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

SUBROUTINE LMICSINV,S2,VCOV,TEMPI,SS,TEMP,TLM,NLM,LDEP,N,IA) 
IMPLICIT REAL CA-H,0-Z)
REAL S2CNEQ,NEQ),S3C6,6),SINVCNEQ,NEQ),VC0VCN,N),

ITEMPlCNEQ,NEQ),TEMPC NEQ,NEQ),SS CIA,NEQ),VEC C 36),VEC1C 36),TLM,TLM1 
COMMON /MODEL/ NEQ,NEX,NOBS,NPR,NLPAR,NSEAS,NLOC,NTYPE,NDTS 
COMMON /DATA/ YC120,6),XC120,IS),XPRC60,IS),WCC120,IS), 
1CSTC160,S),HTC160,6),UC120,6),SC6,6),BOC1S,1S,10)
DATA ZERO/0.0/,HALF/0.S/,ONE/1.0/,TWO/2.0/
NDF=1
IFCNTYPE.EQ.4) THEN
NDF=2
NLM=NLM+1
ENDIF
NLMl=NLM+2
N4=2-NLM1
CALL SCALCC-1,NLMl,NOBS,N4,U,U,S2)
CALL MATMLT C SINV,S2,TEMP,NEQ,NEQ,NEQ,0)
CALL MATMLT C TEMP,SINV,TEMPI,NEQ,NEQ,NEQ,0)
TLM=ZERO 
DO 6 1=1,NEQ 
TLM1=ZER0 
DO S J=1,NEQ

5 TLM1=TLM1+TEMP1CI,J)*S2CI,J)
6 TLM=TLM+TLM1 

TLM=FLOAT C C NOBS-NDF))*TLM 
TLM1=ZER0 
IFCLDEP.EQ.l) THEN 
NEQ2=NEQ**2
CALL LMLAGCSINV,TEMPI,S2,S3,SS,VCOV,TEMP,VEC,VEC1,IA,NEQ2,TLMl, 
1NLM,N,NDF)
TLM=TLM+TLM1

326



ENDIF
RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
C SUBROUTINE LMLAG ADJUSTS THE LM TEST FOR THE EXISTANCE
C OF LAGGED DEPENDENT VARIABLES
0
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE LMLAG(SINV,SY,S2,S3,SS,VCOV,TEMP,VEC,VEC1,IA,NE02,TLMl, 
1NLM,N,NDF)
IMPLICIT REAL (A-H,0-Z)
REAL S2(NEQ,NEQ),S3(NEQ,NEQ),SY(NEQ,NEQ),SINV(NEQ,NEQ),
1TEMP(NEQ,NEQ),SS(IA,NEQ),VEC(NEQ2),VEC1(NEQ2),Z (7),TLM2,TLM,TLM1, 
1VC0V(N,N)
COMMON /DATA/ Y(120,6),X(120,15),XPR(60,15),WC(120,15), 
1CST(160,5),HT(160,6),U(120,6),S(6,6),BO(15,15,10)
COMMON /MODEL/ NEQ,NEX,NOBS 
DATA ZERO/O.0/,HALF/0.5/,ONE/1.0/,TWO/2.0/

Nl=2
IF(NDF.EQ.2) THEN
NLM=NLM+1
N1=N1+1
ENDIF
N2=NLM+1
CALL SCALC(1,N1,N2,0,U,U,TEMP)
DO 2 1=1,NEQ 
DO 2 J=1,NEQ 

2 SS(I,J)=S(I,J)-TEMP(I,J)
IFAIL=0
CALL F01ABF(SS,lA,NEQ,S3,NEQ,Z,IFAIL)
IF(IFAIL.GT.O) WRITE(2,100)IFAIL 
DO 4 J=2,NEQ 
II=J-1 
DO 4 1=1,11 

4 S3(I,J)=S3(J,I)
NLMl=NLM+2
CALL SCALC(0,NLMl,NOBS,0,U,Y,SY)
CALL MATMLT <S3,SY,TEMP,NEQ,NEQ,NEQ,0)
11=0
DO 8 L=1,NEQ 
DO 8 1=1,NEQ 
TLM1=ZERO 
DO 7 J=1,NEQ 
TLM2=ZER0 
DO 6 K=1,NEQ

6 TLM2=TLM2+S2(J,K)*TEMP(K,I)
7 TLM1=TLM1+SINV(J,L)*TLM2 

11=11+1
8 VEC(II)=TLM1 

DO 11 J=1,NEQ2 
TLM2=ZER0
DO 10 K=1,NEQ2

10 TLM2=TLM2+VEC(K)*VC0V(K,J)
11 VEC1(J)=TLM2 

TLM1=ZER0
DO 12 I=1,NEQ2

12 TLM1=TLM1+VEC(I)*VEC1(I)
TLM1=FL0AT(N0BS-NDF)*TLM1
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RETURN
100 F0RMAT(2X,'INVERSION ROUTINE FAIL WITH IFAIL= ',I2,/,2X,

I'l MEANS NOT PDF AND 2 MEANS ILL CONDITIONED MATRIX')
END
SUBROUTINE TRANS(XX,N1,N2,K,NC,N)
IMPLICIT REAL (A-H,0-Z)
REAL XX,NC
DIMENSION XX(N1,N2),NC(N)
DO 1 1=1,NX 
DO 1 J=1,N2 
K = K + 1  

1 XX(I,J)=NC(K)
RETURN
END
SUBROUTINE TRANSA(XX,NX,N2,K,XC,N,IRE,N3)
IMPLICIT REAL (A-H,0-Z)
REAL XX(N1,N2),XC(N)
INTEGER IRE(6,N3)
DATA ZERO/O.0/,HALF/0.5/,ONE/1.0/,TWO/2.0/

DO 1 1=1,NX 
DO 1 J=1,N2
IFdREd, J) .LT.O) THEN 
IR=K-IRE(I,J)
XX(I,J)=-XC(IR)
ENDIF
IFdREd, J) .EQ.O) XXd,J)=ZERO 
IFdREd, J) .GT.O) THEN 
IFdREd, J) .EQ.99) THEN 
XX(I,J)=ONE 
ELSE
IR=IRE(I,J)+K
XX(I,J)=XC(IR)
ENDIF 
ENDIF 

1 CONTINUE 
RETURN 
END
SUBROUTINE VEC(INO,NEQ,NEX,VECTOR,MATRIX)
IMPLICIT REAL (A-H,0-Z)
REAL VECTOR(*);MATRIX(NEQ,NEX)
DO 1 1=1,NEQ 
DO 1 J=1,NEX 
IN0=IN0+1 

1 VECTOR(INO)=MATRIX(I,J)
RETURN
END
SUBROUTINE WRIT(NEQ,N,N1,N2,N3,N4,XC,SE,HESD,T,T1)
IMPLICIT REAL (A-H,0-Z)
REAL HESD(N),XC(N),SE(N),T(N),T1(N)
N1=N2*(N3-1)+1+N1 
N4=N1+N2-1 
DO 1 I=N1,N4 

1 WRITE(2,1000)XCd) ,SE(I) ,HESD(I),T(I),T1(I)
N1=N4+N2*(NEQ-N3)
RETURN

1000 F0RMAT(9X,5(2X,F13.5))
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
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c SUBROUTINE WRITR PRINTS OUT THE PARAMETERS WHICH ARE
C RESTRICTED. THESE INCLUDE F A AND THE LAST COLUMN OF
C Q IF THEIR IS A TIME TREND
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

SUBROUTINE WRITR(N1,N2,NCN,N,I,N4,XC,SE,HESD,T,T1,IRSTN) 
IMPLICIT REAL(A-H,0-Z)
DIMENSION XC(N),SE(N),T(N),T1(N),HESD(N),IRSTN(N1,N2)
DO 7 J=1,N4
IF(IRSTN(I,J).LT.O) THEN 
IR=NCN-IRSTN(I,J)
TEM=-XC(IR)
WRITE(2,309)TEM,SE(IR),HESD(IR),T(IR),T1(IR)
ENDIF
IF(IRSTN(I,J).EQ.O) WRITE(2,'(5X,'' COEFF ZERO 
IF(IRSTN(I,J).EQ.99) WRITE(2,'(5X,''COEFF ONE ")') 
IF(IRSTN(I,J).GT.O) THEN 
IR=NCN+IRSTN(I,J)
WRITE(2,309)XC(IR),SE(IR),HESD(IR),T(IR),T1(IR)
ENDIF 

7 CONTINUE 
RETURN

309 F0RMAT(9X,5(2X,F13.5))
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
C SUBROUTINE TESVCOV CHECKS TO SEE IF BOTH ESTIMATES OF
C OF THE VARIANCE MATRIX GIVE IDENTITY WHEN MULTIPLIED
C BY THE HESSIAN
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

SUBROUTINE TESVCO(VCOV,HESL,HESD,CTD,C,N,LH,IMET)
IMPLICIT REAL (A-H,0-Z)
REAL CTD(N,N),C(N,N),VCOV(N,N),HESD(N),HESL(LH)
DATA ZERO/O.0/,HALF/0.5/,ONE/1.0/,TWO/2.0/
IF(IMET.LT.l) THEN 
12=0
DO 3 1=1,N 
II = I
DO 1 J=1,II 
12 = 12+1

1 C(I,J)=HESL(I2)
12= 12-1
DO 2 J=II,N

2 C(I,J)=ZERO
3 C(I,I)=ONE
CALL MATMLT(VCOV,C,CTD,N,N,N,0)
DO 6 1 = 1, N 
II = I
DO 4 J=II,N

4 C(I,J)=C(J,I)*HESD(I)
DO 5 J=1,II

5 C(I,J)=ZERO
6 C(I,I)=HESD(I)

12=0
ENDIF
DO 8 1=1,N 
HESD(I)=VCOV(I,I)
II = I
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DO 7 J=1,II 
12= 12+1

7 HESL(I2)=VC0V(I,J)
8 12= 12-1

CALL MATMLT(CTD,C,VCOV,N,N,N,0) 
DO 10 1=1,N

10 WRITE(2,100)(VC0V(I,J),J=1,N) 
100 FORMAT(5X,(6G14.8,/))

12=0
DO 12 1=1,N 
II = I
DO 11 J=1,II 
12= 12+1
VC0V(I,J)=HESL(I2)

11 VCOV(J,I)=VCOV(I,J)
12= 12-1

12 VCOV(I,I)=HESD(I)
RETURN
END
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Appendix 6.B Data Definitions

The un-generated data come from three sources: C.S.O. Economic Trends, 

International Financial Statistics and a series generated by the Centre 

for Labour Economics. The predictions and one step ahead forecast errors 

were generated using unrestricted vector AR processes and the initial 

estimates using an instrumental variables technique. The series for 

output, employment, stocks and vacancies came from the C.S.O.'s Economic 

Trends. The output series was the index for industrial production for 

British manufacturing industry. The series for employment statistics 

and vacancies were taken as deviations from their logarithmic means. 

The employment series was employment in British manufacturing, vacancies 

were the series for total vacancies notified and remaining unfilled, 

stocks were the value of physical increase of stocks; 2000 was added to 

this series so that it remained positive. The price series was the 

series for industrial output prices taken from International Financial 

Statistics. The wage series was an index generated by the Centre for 

Labour Economics; this series took account of hours worked, assuming a 

45-hour week for more detail see S Wadhwani (1982) and J S Symons 

(1981).

The prediction series were generated using unrestricted VARs, over the 

period 1959(IV) to 1979(IV). General models were estimated and tested 

downwards to derive parsimonious final forms. The models were estimated 

recursively for the period from 1962(IV) to 1980(1) to generate the one 

step ahead forecast errors for the exogenous variables; wages, prices, 

Astocks and vacancies. The parameters from the 1979(IV) models were used 

to derive the C^ parameters used in the D matrix in section 3 of Chapter 

4. These are the data used to estimate the models in Chapter 4.
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Data for the output and employment models in logarithms

o 1

1.24400 1.04400

1.31500 1.04300

1.29600 1.03200

1.34500 1.02800

1.28700 1.03200

1.39400 1.04000

1.42300 1.03800

1.43600 1.04200

1.35200 1.04900

1.46400 1.05900

1.46000 1.05500

1.47300 1.05500

1.37900 1.06100

1.47900 1.06700

1.49300 1.06000

1.49800 1.05800

1.41200 1.06200

1.46300 1.05600

1.47700 1.03800

1.49500 1.03000

1.40900 1.02700

1.51100 1.02600

1.53600 1.01700

1.55500 1.01600

1.48200 1.02400

1.57900 1.03200
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1.57800 1.02900

1.60200 1.03100

1.51600 1.03700

1.60900 1.04300

1.59100 1.03500

1.58900 1.03100

1.52400 1.03100

1.61800 1.03100

1.59600 1.01800

1.58900 1.00000

1.51500 0.99300

1.60000 0.98300

1.56600 0.96600

1.60900 0.96000

1.55100 0.96400

1.67500 0.96700

1.69800 0.96400

1.67900 0.96500

1.63400 0.97200

1.71600 0.97900

1.67000 0.97100

1.68800 0.97000

1.62800 0.97700

1.67800 0.97200

1.65900 0.95100

1.60500 0.92900

1.53200 0.91700

1.62000 0.91000

1.62200 0.89600

1.61700 0.89300
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1.56600 0.89600

1.65300 0.90000

1.65900 0.89500

1.61200 0.89400

1.56700 0.90000

1.63900 0.90000

1.64600 0.89300

1.65700 0.88900

1.60100 0.89300

1.65900 0.89200

1.65500 0.88300

1.67600 0.88000

1.58600 0.88300

1.66700 0.87500

Exogenous variables

Ai V P w

1.65728 0.94876 -0.89160 -1.32583

1.53796 0.85203 -0.88916 -1.31635

1.61431 0.84419 -0.88673 -1.30769

1.70210 0.91998 -0.88673 -1.29909

1.62364 0.96284 -0.88431 -1.28696

1.67415 1.14166 -0.87707 -1.27487

1.73762 1.29832 -0.86988 -1.25998

1.83716 1.36129 -0.85567 -1.23125

1.79811 1.43372 -0.84863 -1.22242

1.81440 1.49717 -0.84397 -1.20223

1.71423 1.52146 -0.83241 -1.16693

1.75577 1.60212 -0.82098 -1.15686
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1.79606 1.60212 -0.81193 -1.13323

1.65634 1.59842 -0.80968 -1.10242

1.67786 1.62040 -0.80073 -1.08176

1.72091 1.63121 -0.79186 -1.06160

1.79811 1.55683 -0.78526 -1.08594

1.52078 1.32301 -0.78746 -1.04398

1.67322 1.20949 -0.78526 -1.04294

1.71512 1.11799 -0.78526 -1.03198

1.68202 1.11199 -0.77871 -1.03357

1.59438 1.18739 -0.76787 -1.00085

1.51425 1.19850 -0.75502 -0.97653

1.79893 1.19850 -0.74234 -0.96761

1.82445 1.23644 -0.73814 -0.97555

1.69803 1.30827 -0.72981 -0.93700

1.70120 1.30330 -0.71539 -0.90342

1.79194 1.30330 -0.70725 -0.89292

1.72356 1.29330 -0.69917 -0.89016

1.66200 1.28320 -0.68717 -0.85649

1.52510 1.26786 -0.66553 -0.80521

1.78945 1.24175 -0.64817 “0.76688

1.79647 1.22036 -0.63111 -0.74735

1.65017 1.15906 -0.61065 -0.71086

1.62071 1.01064 -0.57448 -0.65843

1.63095 0.84419 -0.55165 -0.63500

1.65302 0.78749 -0.53614 -0.61927

1.63530 0.77068 -0.53273 -0.59267

1.45876 0.82028 -0.50088 -0.53514

1.67369 0.89035 -0.48776 -0.51422

1.59890 0.99043 -0.47000 -0.50365

1.64922 1.17048 -0.44785
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1.83281 1.44242 -0.43541 -0.44014

1.95893 1.68358 -0.43078 -0.40741

1.90286 1.80814 -0.39750 -0.39393

1.78114 1.87774 -0.35810 -0.34284

1.47250 1.66643 -0.28502 -0.32539

1.94520 1.74939 -0.21691 -0.28760

1.95928 1.71703 -0.17793 -0.23514

1.57968 1.57973 -0.12783 -0.15698

1.23201 1.38450 -0.06507 -0.07747

1.39142 1.07517 -0.01511 -0.02934

1.47364 0.87520 0.02078 0.02512

1.49443 0.72739 0.05543 0.07512

1.50934 0.71850 0.09803 0.10769

1.60738 0.73620 0.13540 0.14195

1.75620 0.82028 0.17563 0.14817

1.81763 0.87520 0.22474 0.17992

1.79523 0.97673 0.28518 0.19597

1.82764 1.01728 0.33361 0.21104

1.65444 1.03044 0.36325 0.20857

1.75534 1.08760 0.37707 0.25833

1.69803 1.22036 0.40012 0.29497

1.79194 1.30827 0.41739 0.34918

1.76726 1.37064 0.43696 0.35495

1.67740 1.45104 0.45298 0.40298

1.90692 1.44674 0.47995 0.42228

1.75620 1.52545 0.51879 0.48526

1.90175 1.51343 0.56758 0.50749

1.61481 1.43372 0.59774 0.55912
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Predictions for 51 future periods from 80ql to 9i

Ai V P w

1.5233345 1.2980938 .6420898 .6003236

1.6808429 1.2047858 .6761237 .6504613

1.5889025 1.0778918 .7046930 .6857339

1.4994731 .9774995 .7344052 .7437041

1.4972076 .9339538 .7606076 .7788034

1.6261125 .8849554 .7876015 .8100430

1.7033944 .9109278 .8124157 .8178712

1.6802158 .9714270 .8384063 .8506738

1.7154078 1.0413594 .8760573 .8746650

1.7948208 1.1355982 .9085183 .8937582

1.8223944 1.2175565 .9400029 .8981110

1.6970630 1.2876554 .9718125 .9310237

1.7122431 1.3496499 1.0099611 .9674275

1.7804184 1.3990688 1.0426002 1.0004580

1.7560005 1.4248190 1.0726681 1.0220343

1.6587582 1.4269371 1.1000851 1.0650420

1.6350203 1.4038224 1.1368110 1.1045111

1.7443080 1.3776374 1.1720649 1.1426789

1.7588916 1.3415847 1.2050183 1.1608872

1.6378655 1.2915955 1.2391529 1.2019992

1.6131792 1.2303243 1.2815765 1.2372288

1.7047944 1.1801200 1.3197771 1.2686878

1.7003984 1.1296945 1.3555369 1.2862258

1.6143684 1.1018348 1.3882594 1.3253570

1.5878897 1.0803237 1.4272461 1.3599460

1.6897659 1.0811367 1.4609348 1.3902653

1.7230287 1.0987072 1.4904929
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1.6595030 1.1304283 1.5185632 1.4389184

1.6658554 1.1685920 1.5553303 1.4691217

1.7767706 1.2175436 1.5880128 1.4949948

1.7851315 1.2522454 1.6193467 1.5045505

1.7078247 1.2821493 1.6493584 1.5380656

1.6853480 1.2938175 1.6879213 1.5683324

1.7675719 1.3011680 1.7224203 1.5978889

1.7486973 1.2895255 1.7537076 1.6121244

1.6500735 1.2684603 1.7821819 1.6505926

1.6206317 1.2359781 1.8181703 1.6850663

1.7195010 1.2142262 1.8490120 1.7173384

1.7140756 1.1879020 1.8773116 1.7325262

1.6348510 1.1685987 1.9033778 1.7703251

1.6236839 1.1494555 1.9375749 1.8015971

1.7336245 1.1473908 1.9675426 1.8301115

1.7381406 1.1464348 1.9956019 1.8415473

1.6605520 1.1530671 2.0214434 1.8765010

1.6407795 1.1559234 2.0554211 1.9061935

1.7469535 1.1722674 2.0841913 1.9341393

1.7431493 1.1833663 2.1104410 1.9457207

1.6627440 1.1971278 2.1341255 1.9819714

1.6425872 1.2034674 2.1657391 2.0128019

1.7487402 1.2182217 2.1924050 2.0419197

1.7456684 1.2241049 2.2171090 2.0539756

338



One step ahead forecast errors for 63ql to 80ql

=Ai EV =P =w

.1074748 .0200527 -.0016097 -.0080406

.0406501 .0038699 -.0043580 .0001839

.0283296 -.0437200 -.0052444 -.0006037

.0271608 -.0699275 -.0031523 .0030652

.0209148 .0206738 .0044225 .0056514

.0079970 -.0064300 .0045683 -.0022844

.0041508 -.0081375 .0041279 .0015609

.0983910 -.0055759 .0003846 -.0011400

.0930972 -.0077625 -.0030084 -.0034120

.0261221 -.0121544 .0012317 .0040415

.0113274 .0199692 -.0013761 -.0072713

.1030089 .0397769 -.0021798 .0169455

.0183241 .0352650 -.0061837 .0041606

.0196740 .0469371 -.0002975 -.0026979

.0141638 .0085945 .0007647 .0070550

.1116294 .0878741 -.0029845 -.0274702

.0794642 -.0678324 -.0054199 .0180654

.0824694 -.0742514 -.0052443 .0046234

.0131454 .0324350 -.0018546 .0022081

.0508117 .0478489 .0023481 .0033456

.0736289 .1073453 .0065766 .0208505

.1116240 -.1346229 .0033970 .0013951

.0456909 .0020130 .0000338 .0009424

.0485348 .0062310 -.0022672 -.0196935

.0385409 .0182635 -.0000924 -.0040098

.0172539 -.0962926 .0037767
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0788855 -.0200663 -.0037917 -.0113475

0513600 -.0086186 .0042226 .0006555

0296569 -.0883730 .0082297 .0103186

0847945 -.0130064 .0080196 .0145347

0174594 -.0205135 .0060445 .0199747

0210127 .0104070 .0065249 .0110691

0008435 -.0690384 .0062176 -.0106544

0190030 -.1026225 .0104220 .0074709

0465984 -.0661487 -.0081976 -.0158911

0665347 .0508398 -.0030560 .0030452

0138625 -.0623448 -.0042571 .0016197

0876647 .0595873 .0140852 .0108354

0027955 .0045886 -.0065939 .0005138

1107861 .0306863 .0039980 -.0016612

1057978 .0461563 .0043950 .0144781

0661261 .0710177 -.0146018 -.0109096

0435789 .0143333 -.0077016 -.0111660

0542179 -.0350571 .0136703 .0041366

0286741 -.0197681 .0132678 .0180188

1703661 -.1631977 .0181247 -.0083458

1669667 .1841233 .0069491 .0128958

0565331 .0385755 -.0042748 .0204161

0748233 -.0206987 .0039773 .0004192

0318076 -.0063498 -.0020832 .0101262

1324047 -.0643090 .0043704 .0123871

0420566 .0039977 -.0065814 .0157709

0471160 -.1349717 .0083330 -.0142080

0788013 .0555945 -.0096952 -.0084460

0118588 .0463356 .0015788 .0187110

0055709 .0394845 -.0002619
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.0898412

.0097025

.0318881

.0492864

0389393

.0256613

0856710

.1544580

0412267

.0797465

1563542

.1130612

0208115

.1045748

.0590099

.0181037

.0845901

.0186935

0348603

.0964117

0235906

.0132063

0740345

.0244758

0692327

.0161270

0007135

.0331254

-.0003119

-.0095343

-.0084016

-.0154615

-.0111075

.0015517

-.0089092

-.0015911

-.0028205

-.0015999

.0072512

.0018719

-.0089524

.0063227

.0034395 

-.0063467 

-.0065692 

-.0224353 

.0126170 

-.0028035 

.0125487 

-.0033465 

.0032009 

-.0087730 

.0208705 

.0002630 

-.0055350 

.0043489
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The VMA Inverse of the AR parameters estimated in Chapter 3 

computed for 15 lags back.

MA parameters of the Inventory equation.

O.OOOOOOOOOOOOOE+000 -1.2514980000000E-001 -3.1765101342000E-001 

-3.2646452682350E-002 1.0053285475554E-001 -1.862S840971845E-001

Ai -2.3976516055017E-001 -1.0824S41141211E-001 -2.2069477792S70E-003 

2.2231332743825E-001 9.4339491013653E-002 1.3231999222392E-001

6.90411197890S8E-002 1.7640793001392E-001 -1.3215072234279E-002

5.1400000000000E-001 2.4448220000000E-001 2.0419718358000E-001

4.7406884478336E-001 1.9033950499763E-001 6.0497918792057E-002

V -3.3730172674992E-001 -6.34S0125012490E-001 -4.3228210848726E-001 

-5.1648281182742E-001 -3.6146511471744E-001 -2.549S904791473E-001 

-1.237S046870575E-001 1.2073158183619E-001 3.4401705278002E-001

1.42000000000000 3.7184140000000E-001 -1.4700681504000E-001

-9.0402642657385E-001 -1.72442142693320 -4.54143309073680

p 3.3436803451184E-001 -6.1346697713902E-001 1.43632473107330

1.35368278251790 6.8495374018799E-001 9.1244309189129E-001

1.39258438329700 -3.5917198637737E-001 9.4932367541358E-002

-1.43000000000000 -1.76983020000000 -2.2060808066000E-001

2.3043091693053E-001 -4.8717021934422E-002 1.15749449018990

w -1.0689292929222E-001 -7.6682552156615E-001 -1.5067834105956E-001 

3.9082473478804E-001 9.2877675590360E-001 -1.16994683526090

-9.1538952455004E-001 1.9051788766211E-001 1.12075396092610
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MA parameters for the Vacancies equation

-9.7700000000000E-002 -1.8276523000000E-001 -3.1914020426500E-001 

-4.7392729836707E-001 -4.0922845296995E-001 -3.8027364922477E-001 

Ai -4.4641933403057E-001 -4.3894339106107E-001 -4.0659666612778E-001 

-2.2850233751810E-001 -8.7077800704250E-002 1.3791920673694E-002

9.8825580461375E-002 1.5421569050559E-001 1.8908502267012E-001

1.49830000000000 1.81845757000000 1.89675161189300

1.72772265179820 1.32791762235970 8.6196873706096E-001

V 3.0855151945645E-001 -3.1989746254630E-001 -7.5894808962767E-001 

-1.09979349885140 -1.25946543611990 -1.23481999640430

-1.13626503070700 -8.6676791040784E-001 -5.0543996628760E-001

-1.0640000000000E-001 -7.5813451000000E-001 -1.29085566648000 

-2.40840094213420 -3.48770853116060 -4.50833792903650

p -4.58218331301940 -5.05938728367990 -4.82432722713430

-4.40332322078560 -4.87283020731310 -4.77211606441480

-4.14430362691100 -3.74783014275530 -2.74095592620630

-6.9430000000000E-001 -7.9543549000000E-001 -7.5462530607100E-001 

-3.2757371466812E-001 -5.6026467091979E-001 -4.9019342308045E-001 

w -5.9599316111245E-001 -1.14062880794230 -1.09316443957410

-1.37079097246100 -8.4685735770871E-001 -4.8034965088913E-001

-3.8000137349206E-001 8.8637805670867E-002 8.2013414053780E-001
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MA parameters for the Output Price equation

O.OOOOOOOOOOOOOE+000 2.1129940000000E-002 3.2515937616000E-002

3.5985763408269E-002 2.8385713203580E-002 1.5273734848366E-002

Ai 1.2069811151307E-002 -2.5551440063643E-002 -3.2605600870051E-002

-3.6248451299001E-002 -3.4533953980145E-002 -3.6024166132161E-002

-3.8635980084262E-002 -3.9385282846486E-002 -2.9285647869892E-002

-8.2000000000000E-003 3.1337040000000E-002 8.3344327886000E-002

1.2761620169335E-001 1.7238993275455E-001 2.2179566086094E-001

V 2.6389151318858E-001 3.1197244040444E-001 3.2324010338656E-001

3.2666282515369E-001 3.2904250208076E-001 3.1293859686547E-001

3.0140220926118E-001 2.9441868538869E-001 2.8716333889621E-001

1.70450000000000 

2.76881845988880 

3.07764625503620 

3.00826752532400 

3.04038686113820

2.19450833000000

2.89273273857710

3.02814975634250

3.03062238266740

3.06457360504710

2.55158874766700

3.11457697178570

3.01397303948680

3.10465176628470

2.87516128116420

1.2000000000000E-002 3.8147260000000E-002 8.5104988880000E-003

-3.4692312214126E-002 -4.8671092390624E-002 -1.9717659359955E-002 

-6.4158091464568E-003 3.6655753205810E-002 1.1640320286375E-001

1.5243196705628E-001 1.3633194707881E-001 1.0523177988310E-001

1.2500260979537E-001 9.5837296883110E-002 9.7485142569482E-002
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MA parameters for the wage equation

5.2400000000000E-002 5.2400000000000E-002 3.7517365402000E-002

4.7697367623093E-002 7.0902049888077E-002 1.0337971678592E-001

Ai 1.1012779822012E-001 9.0867064815238E-002 8.4547937964914E-002

8.7481983782055E-002 7.0252492871607E-002 5.8097501510809E-002

3.5520212978476E-002 4.2383571311621E-002 4.4842242348602E-002

O.OOOOOOOOOOOOOE+000 1.1542940000000E-002 2.5397651432000E-002

1.6026928112438E-003 3 .4517113056900E-002 5.2961520570049E-002

V 7.2890180139729E-002 9.0973737776476E-002 1.0154055984832E-001

1.0366305754362E-001 1.1074604156467E-001 8.0525254758717E-002

5.2038150656641E-002 5.1502430249560E-003 -4.2472943771564E-002

4.0130000000000E-001 3.5512385000000E-001 9.6918947218900E-001

1.27724137867270 1.72520365975460 1.98378159502990

p 2.09137017458770 1.76092235874900 1.62022777594770

1.15861804446400 9.0279317359622E-001 4.1741756023198E-001

6.5498028385177E-002 -1.5529780611283E-001 -1.8997240557726E-001

1.00000000000000 1.14388360000000 1.05309882295800

1.32241119716820 1.55651707404700 1.35811989797070

w 1.22392288048020 1.12017382794970 1.07603929000270

1.04972285686790 9.2342088493451E-001 9.4081823390516E-001

9.3530476275553E-001 8.9787133523443E-001 8.9001434085094E-001
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If we assume that the following VAR is used to generate the data, then:

B(L)s^= and s^= C(L)G^

Then when the VAR parameters are invertible into a VMA:

C(L) = (B(D)-l so that B(L)C(L) = I

We can solve for using the following recursive formula: 

k
C . = 2 B C . where C = I and C . = 0 for j < 0

1  s=l 3  1 - 3  o J

When there are unit roots or roots within the unit circle, then we need 

to take account of that. The Smith-Mcmillan-Yoo transformation can be 

used to invert a VAR with unit roots, but in practice this is slightly 

more difficult. We have either truncated the VMA parameters, estimated D 

without restriction or observed that many of the coefficients do decay 

after a long decline in the lag structure or cycle.
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