
SEMIPARAMETRIC FREQUENCY 

DOMAIN ANALYSIS OF 

FRACTIONALLY INTEGRATED AND 

COINTEGRATED TIME SERIES

1998

THESIS SU BM ITT ED  IN  PARTIAL FU LFILM ENT OF TH E REQUIRE­

M EN TS FO R  TH E D EG R EE OF D O C T O R  OF PH ILO SO PH Y  (P H .D .) AT  

TH E U N IV E R SIT Y  OF LO N D O N  B Y  DO M EN IC O  M A R IN U C C I, REG­

IST ER E D  AT TH E LO N D O N  SCHOOL OF ECONOM ICS

1



UMI Number: U119183

All rights reserved

INFORMATION TO ALL USERS  
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript 
and there are missing pages, th ese  will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U 119183
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



I H £ S £ S

r
757

7 o / 3 3 o



A B ST R A C T

The concept of cointegration has principally been developed under the assumption 

that the raw data vector zt is 1(1) and the cointegrating residual et is 1(0); we call 

this framework the C l  (I) case. The purpose of this thesis is to consider more general 

fractional circumstances, where zt is stationary with long memory and et is stationary 

with less memory, or where Zt is nonstationary while et is less nonstationary or station­

ary, possibly with long memory. First we establish weak convergence to what we term 

“type II fractional Brownian motion” for a wide class of nonstationary fractionally inte­

grated processes, then we go on to investigate the behaviour of the discretely averaged 

periodogram for processes that axe not second order stationary. These results are ex­

ploited for the analysis of a procedure originally proposed by Robinson (1994a), which 

we call Frequency Domain Least Squares (FDLS). FDLS yield estimates of the cointe­

grating vector that are consistent for stationary and nonstationary z t , asymptotically 

equivalent to OLS in some circumstances, and superior in many others, including the 

standard C l  (I) case; a semiparametric methodology for fractional cointegration analysis 

is applied to data sets on eleven US macroeconomic variables. Finally, we investigate an 

alternative definition of fractional cointegration, for which we introduce a continuously 

averaged version of FDLS, obtaining consistent estimates in both the stationary and the 

nonstationary case. Asymptotic distributions and Monte Carlo evidence on finite sample 

performance are also provided.
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Chapter 1 

COINTEGRATION AND  

FRACTIONAL INTEGRATION: 

AN OVERVIEW

1.1 INTRODUCTION

Cointegration analysis has developed as a major theme of time series econometrics since 

the article of Engle and Granger (1987), much applied interest prompting consider­

able methodological and theoretical development during the past decade. The reference 

framework can be summarized as follows: for a zero-mean, covariance stationary p  x 1 

vector sequence pt = ■..■,'rjpt)', t = 0 , 1,..., introduce the spectral density matrix

f W  = {/ab(A)} , a, b = 1, ...,p, which satisfies

7ai>M =  f  /ai,(A)e’ATdA , for 7^ ( r )  =  Er}aat]^T . (1.1)
J —7T

We term the series rjat short range dependent or I  (0) if 0 < faa{ 0) <  oo; in case all the 

components of r]t are short range dependent we can introduce the convenient notation 

ft, = 27t/(0). We define zat (fractionally) integrated of order d, written zat ~  I(da), for da
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real, if

zat =  (1 -  L)~d‘ ifaV C  =  (  Vat’ t > 0  , (1.2)
I 0, t <  0

where L  is the lag operator and formally

<> -  -1 r M f i J T I j "  • r <“ > ‘  ■ < u >

The standard paradigm for cointegration analysis envisages a vector of economic variables 

zt which are all 1(1)] these variables are cointegrated if there exists a linear combina­

tion et — a!zt which is 1(0), the prime denoting transposition. Hereafter we term this 

framework the C l  (I) case.

Several reasons motivate the interest aroused by cointegration analysis among the­

oretical and applied researchers. First, the idea of cointegration as a characterization 

of long run equilibria is appealing from the point of view of economic theory; numer­

ous stationary relationships can be conjectured among nonstationary economic variables, 

such as stock prices and dividends, consumption and income, wages and prices, short- 

arid long-run interest rates, monetary aggregates and nominal GNP, exchange rates and

prices, GNP and public debt and many others. Second, it has been argued that the

notion of equilibrium implicit in cointegrating relationships is more meaningful for a 

non-experimental science as economics than others, which typically find their roots in 

the natural sciences (cf. Banerjee et al..(1993)). Third, cointegration analysis has rec­

onciled different methodologies for the analysis of time series data, i.e. the “statistical” 

A R I M A  approach pioneered by Box and Jenkins (1976), who advocated preliminary dif­

ferencing of the raw data in order to make classical inference procedure applicable, and 

the “econometric” simultaneous equation approach typically applied to levels to mantain 

information on long run equilibrium relationships. Granger’s (1987) representation theo­

rem proves that deviations from long-run relationships can be introduced as explanatory 

variables for short run dynamics (modelled on differenced data), so that attitudes from
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both methodologies are included by default in cointegration analysis. Fourth, empirical 

studies starting from the seminal paper by Nelson and Plosser (1982) have highlighted 

the practical relevance of stochastic trends and unit roots nonstationarity in very many 

observed time series. Finally, a number of papers mainly by Phillips and his coauthors 

(Phillips and Durlauf (1986), Park and Phillips (1988), Phillips and Hansen (1990), 

Phillips (1991a,b)) demonstrated that statistical inference procedures can be developed 

for / ( l )  processes, and indeed under appropriate assumptions have even more attractive 

properties than in the stationary framework.

The considerable theoretical and empirical success of the cointegration paradigm mo­

tivates an investigation into its possible generalizations and/or its robustness against 

departures from the C l  (I) case. The 7(1) and 7(0) classes are in fact highly specialized 

forms of, respectively, nonstationary and stationary processes when nested in the 1(d) 

class (1.2), for real-valued d. A definition of cointegration for 1(d) variables is as follows:

D efin ition  1.1 For a p x l  vector Zt whose a-th element zat ~  7(da), da > 0, a =  1, ...,p, 

we say zt ~  F C I(d i ,d 2 , ...,dp;de)) if there exists a p x l  non-null vector a  (called the 

cointegrating vector) such that a'Zt = et ~  I (de) , where mini<a<pd0 > de > 0.

Although the possibility of fractional (i.e. non-integer) da or de was already mentioned 

in Engle and Granger (1987), that paper and the bulk of the subsequent theoretical and 

empirical literature on cointegration focused on the C l  (I) case we introduced earlier. 

There are, however, several arguments from both economics and statistics to support the 

investigation of the more general circumstances described in Definition 1.1. Unit roots 

in multivariate time series can sometimes be viewed as a consequence of economic the­

ory; however, as argued by Sims (1988), even these cases rest on very strong hypotheses, 

or provide only asymptotic justification. The power of unit roots tests has often been 

criticised, and the bulk of these have been directed against 7(0) alternatives, and data 

that seems consistent with the 7(1) hypothesis might well also be consistent with 1(d)
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processes, at least for a certain interval of d values others than unity. Many different 

procedures have been proposed for the estimation of the parameters governing the coin- 

tegrating relationships; these methods are all specifically designed for the CI{  1) case, 

and they typically lack any sound statistical basis once one departs from the unit root 

assumption. In the CI(  1) case, cointegration is typically a true/false proposition, and 

researchers cannot qualify in any quantitative way the “strength” of such equilibrium 

relationships, nor indeed assess the speed of convergence to long run equilibria: both 

notions have however a clear theoretical and empirical relevance.

The purpose of this thesis is to analyze the generalization of the notion of cointegration 

beyond the unit root framework. We shall consider multivariate fractionally integrated 

processes which satisfy Definition 1.1 without restricting de and da to be integers, and in 

this sense are fractionally cointegrated. This allows for many possibilities not covered by 

the C7(l) paradigm: z t can be stationary with long memory and et stationary with less 

memory, or zt. can be nonstationary and et less nonstationary or stationary, possibly with 

long memory; the value of de can be used as a measure of the amount of memory left in 

the cointegrating residual, which can be functionally related to the rate of convergence 

to the long run equilibrium (Diebold and Rudebusch (1989)); the value of da ~  de can be 

linked to the strength of the cointegrating relationship and to the asymptotic behaviour 

of feasible estimates for the cointegrating relationship a ; more generally, cointegration 

can be reconsidered in a broader sense than usual as a relationship that yields residuals 

which, while not necessarily short range dependent nor stationary, have less memory than 

the original series. This enlarged framework also calls for new probabilistic foundations 

and statistical inference procedures.

The plan of the thesis is as follows. The remaining part of this chapter reviews rapidly 

part of the econometric and statistical literature on cointegrated time series and fraction­

ally integrated processes. The contributions in these areas has been so vast in the last 

decade that we shall make no attem pt to be complete or representative. In Section 2 we 

shall concentrate on the asymptotics for some estimates of the parameters that govern
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the cointegrating relationships; we favour those papers that adopt a semiparametric or 

nonparametric specification for the disturbances, and the procedures that can be granted 

a frequency-domain interpretation, even when this perspective is not adopted in the 

original contributions: this motivated some major exclusions, such as the highly pop­

ular Johansen’s (1988,1991) Full Information Maximum Likelihood procedure which is 

deeply rooted within a time-domain, parametric autoregressive specification. In Section 

3 we shall be concerned with the asymptotic behaviour of parametric and semiparamet­

ric estimates of the “memory” parameter d, while a more rapid consideration is given to 

the asymptotic behaviour of quadratic forms in variables having long range dependence 

and to regression with fractionally integrated regressors and/or residuals. Chapter 2 dis­

cusses two alternative definitions of fractional Brownian motion, and shows how these 

definitions have occasionally led to some confusion in the econometric literature. We 

then generalize and correct unpublished results of Akonom and Gourieroux (1987) and 

Silveira (1991) to demonstrate weak convergence of a class of nonstationary fractionally 

integrated processes to what we term “type II fractional Brownian motion” . Chapter 

3 investigates the behaviour of a well-known frequency-domain statistic, the discretely 

averaged periodogram, in somewhat unfamiliar circumstances, namely for processes that 

are not second order stationary, and hence have not a proper spectral density: here the 

main concern is on approximation of sample moments by narrow-band averages. These 

results are then exploited in Chapter 4, where, as an estimate of the cointegrating vector 

a, we analyze for the stationary and the nonstationary case a procedure originally con­

sidered in Robinson (1994a), which we call Frequency Domain Least Squares (FDLS). 

This procedure is shown to yield consistent estimates for any positive value of da, to be 

asymptotically equivalent to OLS in some circumstances, and superior in many others, 

including the standard C l  (I) case. Monte Carlo evidence of finite sample performance is 

also provided, while a semiparametric methodology for fractional cointegration analysis 

is applied to  data  considered by Engle and Granger (1987) and Campbell and Shiller 

(1987). Finally, in Chapter 5 we explore a definition of fractional cointegration which
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cannot be nested into (1.2)/ ( l . 3); for this framework we propose a semiparametric proce­

dure, denoted Weighted Covariance Estimate (WCE), which is not equivalent to FDLS. 

Consistency is shown to hold under both stationary and nonstationary circumstances; 

the asymptotic distribution is derived in the nonstationary case building upon a contri­

bution by Chan and Terrin (1995). Encouraging Monte Carlo evidence of finite sample 

performance is also included.

Throughout this thesis we shall adopt the following notation: (A : B)  will indicate 

the (p i  + P 2 )  X q matrix obtained by stacking the p i  x  q matrix A  over the P2 X q matrix 

B , |A|, rank (A) and tr(A) respectively the determinant, the rank and the trace of the 

(square) matrix A, ||.|| the Euclidean norm of a matrix such that ||yl|| =  y/tr(A'A),  Ip the 

p-rowed identity matrix; we write A  >  0 to signify that A  is positive definite. “[.]” will 

signify the integer part of a real number, “®” will indicate the Kronecker product, ‘Tec” 

the vec operator stacking the colums of a matrix one over the other; “ =  ” will indicate 

equality in distribution and “ =  ” equality by definition; C  will stand for a generic, finite 

and positive constant, which need not be the same all time it is used.

1.2 ASYMPTOTICS FOR COINTEGRATED TIME 

SERIES

We define Brownian motion B(r; or2), r € R, o2 > 0, to be a real-valued Gaussian process 

with independent increments, B(0;a2) = 0, a.s., and

E B {r \a 2) = 0, r € R, (1.4)

EB(ri,cr2)B(r2,<72) = a 2m in(r1, r 2), n , r 2 >  0 . (1.5)

Functional central limit theorems (weak invariance principles) entail weak conver­

gence of random variables to Brownian motion in a suitable metric space; authoritative
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references are Billingsley (1968) and Pollard (1984). Denote by ( X : d ) a complete separa­

ble metric space with metric d and probability measures /x̂ , i > 0, on the Borel sets of X.  

We say that fin converges weakly to /x0 in (X,  d) if for every bounded continuous function 

h in X , limn—oo J*/id/xn =  f  hdfi0. We can construct a probability space P}  with

random elements £n, n > 0, of X  having distributions /xn respectively. If /xn converges 

weakly to /x0 then we write => £0. Two metric spaces which feature considerably in 

the theory of weak convergence are C[0, 1], the space of continuous functions on [0, 1] 

endowed with the uniform topology, and D[0, 1], the space of functions on [0, 1] that 

are continuous on the right with finite left limits, endowed with the Skorohod (1956) J\ 

topology.

Now consider the process zt defined by (1.2), where the a-th component of Zt satisfies 

zat ~  I{ 1), a = 1, 2,...,p , i.e.

Zo = 0 , (1.6)

2t =  »7i +  - + f 7t, t >  1 , (1.7)

for 0= (0, ...,0)/. Introduce the vector random elements

zn(r) = n~1/2z [nr] ; (1.8)

we have

zn(r) € £>[0, I f  =  D [0,1] x ... x £>[0,1] , (1.9)

the space of i?p-valued vector functions whose components are continuous on the right 

and with finite left limit. For the product space, Phillips and Durlauf (1986) suggest the 

metric

dP{9(-), K ) ) =  Hiax {d(9 a(-),ha(-))} , g(-),h(.) € D[0,1]P , (1.10)
a = l,.. .,p
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with ga(.) and h a(.) the a-th components of g  and h  and d(ga( . ) J i a{-)) defined by

d(0a(.),ha(.)) = inf < e : M b < £, sup \ga{ip(r)) -  ha(r)\ < £ 1 (1.11)
^  {  r e  [0,1] J

where 4/ is the class of all homeomorfisms from [0, 1] onto itself with -0 (0) =  0 and

M b = sup |iog ^ 2) _ ^ ) | ? r2?ri € [o,l] , (1.12)
T2̂ r\ 2̂ *̂1

(see also Billingsley (1968)). This choice ensures that dp induces on D[0 ,l]p a a-field 

V p which is the Cartesian product of the cr-fields generated by the open sets on the 

component spaces. Also, D[0, l]p is a complete separable metric space, like D[0,1].

Prohorov’s (1956) theorem shows that in a complete and separable space a family of 

probability measure is relatively compact if and only if it is tight; Billingsley (1968, p.41) 

ensures that probability measures in a product space are tight if and only if the marginal 

probability measures are tight on the component space; Phillips and Durlauf (1986) show 

that the finite dimensional sets obtained from the inverse of the projection mapping form 

a determining class on V p, the class of Borel sets on D[0, l]p. Hence weak convergence in 

D[0, l]p can be established by the same procedure discussed by Billingsley (1968) for the 

univariate case, i.e. establishing convergence of the finite-dimensional distributions and 

tightness of the sequence of probability measures, for which a sufficient condition (see 

Billingsley, 1968, p.128) is that for some c > 0, a  > 1, a = 1, ...,p

E  \zan(r) -  £an(pl) |C kanfo) ~  Zan(r)\° < C \r2 ~  7*i|“ , (1.13)

for all r, r ! , r 2 such that 0 < r !  < r < r2 < 1. More precisely, define multivariate 

Brownian motion B{r\ fi), r 6 i?, H > 0, to be a vector-valued Gaussian process with 

independent increments, B (0; Q) =  0, a.s., and
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EB(r\Q)  = 0 , r € R, EB (r i \Q )B f(r2', ft) = f tm in (ri,r2), n ,^2 > 0 . (1-14)

We shall write B(r)  for B(r;Q)  when ft =  Ip. Now introduce the uniform and strong 

mixing coefficients ipm1 a m defined as

<Pm = SUP SUP \P (A \B ) ~  P (A )\

A^-oo
a m = sup sup \P(A  n  B)  — P(A)P(B)\

Ae^-oo

with =  cr(r]t: rjt_1, j  > 0) the (7-field representing the “information” up to

time t, and =  cr(?7t+m, •••, Pt+m+ji 3 ^  0). From Phillips and Durlauf (1986) we 

learn

T h eo rem  1.1 (Phillips and Durlauf (1986)) Let rjt be a zero-mean p x 1 vector sequence 

satisfying

(a) E h t V  < oo, 2 < 7  < oo

(b) E m = i  V™1/7 < OO or 7  > 2 and Y Z = \  2/7 < oo 

Then under (1.6)/(1.7), if rank(ft) =  p, we have

zn(r) =>• B(r; ft) as n  —► oo . (1.1T)

(1.15)

(1.16)

For instance for rjt covariance stationary and r = 1, (1.17) entails n,-1/2 Yut=\rlt ^  

AT(0, 2tt/(0)). Therefore large-sample inference on time series models, often requires con­

sistent estimation of /(0 ). Such estimates are typically elaborated using techniques from 

the vast spectral density estimation literature (for instance Press and Tukey (1956),
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Eicker (1967). Brillinger (1981), Robinson (1991), (1997)). For a sequence of column 

vectors ut, t = 1, ...,72, define the discrete Fourier transform

wu W  = - 7=  ~ E u t)eltx , (1.18)
V27m

where mean correction need not be entertained if we focus on the Fourier frequencies Aj, 

j  = 1, 2,... . If vu t =  1, ...,n, is also a sequence of column vectors, define the (cross-) 

periodogram matrix

Iuv(A) =  wu(A)iuJ(A) , (1.19)

where * indicates transposition combined with complex conjugation. Further define the 

(real part of the) averaged periodogram

2 <■
Fuv{k,£) = —  V ^R e {Aiu(Aj)} , 1 < h < £ < n - l  . (1.20)

72 z — 4
j = k

In case Fuv(h,£) is a vector we shall denote its a-th element Fw(k ,£) ,  and in case

it is a matrix we shall denote its (a,6)-th element Fiib\ k ,  £)] analogously we will use

luv(F) and A) to denote respectively the a-th element of the vector Iuv A) and the 

(a ,6)-th element of the matrix Iuv(A). We shall drop the subscripts and the superscripts 

whenever this is made possible by the context. Also, for k =  1 we will occasionally use the
/N /S

alternative notation F(l ,£)  =  F(A^); moreover, we shall focus when convenient on the 

continuously averaged version F ( Â ) =  I(X)d\.  Under short range dependence and

regularity conditions, a consistent estimate of / ( 0) is provided by the smoothed statistics

m
f(0)  = £  K m ( Xj ) I ( Xj )  , m  < n  , (1.21)

j = 1

and

f (0)  = r  Km{X)I(X)d\  , (1.22)
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(1.21) and (1.22) popularly labelled as discretely and continuously averaged periodogram 

estimates, respectively. The kernel Km{•) typically satisfies K m(—A) =  K m( \ ), —7r < A < 

7r, and Km.( \)d \  = 1. Recent contributions have also allowed for more general con­

ditions than covariance stationarity, as motivated by the econometric environment, for 

instance non-trending heteroscedasticity in Newey and West (1987), Andrews (1991), An­

drews and Monahan (1992), and Hansen (1992a). Robinson (1997) discusses conditions 

under which smoothing and short range dependence are not necessary for consistency to 

occur under nonparametric autocorrelation.

Consider now the multiple regression problem:

yt = x'tB  +  et , (1.23)

x t = x t- i  +  ut , xQ =  0, t =  1,2,..., (1-24)

where B  is a P2 X p\ matrix of unknown coefficients, Pi +P 2 = P, {yt • %t) = zt and (et : 

ut) = r]t is a p  x 1 vector satisfying the assumptions of Theorem 1.1. This model is general

enough to cover a great variety of serial dependence and simultaneity assumptions; in

particular, it could be regarded as the reduced form of a dynamic simultaneous equations 

system where all variables are jointly endogenous and E x te't ^  0.

By Parseval’s identity

- n —1 - n —1

Fxx0-,n — 1) =  - yj T . ( x t - x ) ( x t - x ) ' , F „ ( l , » - 1 )  =  -  5 2 ( x t  -  z)(i/t -  y)' , (1-25)

where x  = n~l y = n~l 2/d hence the least squares regression estimates for

B  are given by

B  =  (Fxx( 1, n  -  l ))"1 Fxy(l, n -  1) ,

provided Fxx( l , n  — 1) has full rank.

We decompose =  E -f A +  A7, where A =  Y ^= i - (̂T)> ^  ~  r*(0), T(r) =  Er)0rj'T; also
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Q = (1.26)

we partition

{^} ll { ^ ) l2

{^} 21 {^} 22

where { A}a6 is the a, 6-th block component of a generic matrix A  (to achieve notational 

convenience, whenever the context does not allow for ambiguity we shall use the short­

hand Aab)• Phillips and Durlauf (1986) present the following result:

T h eo rem  1.2 (Phillips and Durlauf (1986)) If r]t satisfies the conditions of Theorem 

1.1, then as n —► oo

n(B  — B) => ( ■{ /  B (r ; n ) B '( r ;n ) d r |  j  j j f  B (r ;n )d B '(r ;n )d r  +  E +  a |  .

CL-27)

The proof of (1.27) entails showing that

1 ^ , ( 1 , n -  1) => { [  B(r-,a)B'(r;a ) d r \  , (1.28)
71 l i f l  J 22

and

Fxe(l, n — 1) =»• |  j f  B(r; 0.)dB'(r- tydr  + E +  a )  . (1.29)

The continuous mapping theorem allows to link these two results to yield the asymptotic 

behaviour of B, provided the following condition is established:

l-JY  B (r;f i)B '(r ;fi)d r j | > 0, a.s. . (1.30)

Now (1.28) follows from Theorem 1.1, the continuous mapping theorem and easy

manipulations. The proof of (1.30), which is not trivial, is delayed to Phillips and Hansen 

(1990), Lemma A.3. The proof of (1.29) requires a much more advanced mathematical 

treatment than (1.28) - a similar dichotomy we shall face again in Chapter 4. A first
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attempt to establish (1.29) is in Phillips (1988a), but the argument is flawed by an error, 

as noted by Hansen (1992b). Hence this issue deserves a more careful treatment.

The asymptotic behaviour of

n t

Fxe( l , n -  1) =  ~ Y l Y l u se't (1.31)
n

t = l  a= 1

when {(et : ut), G-oo} is a multivariate martingale difference sequence was first investi­

gated by Chan and Wei (1988); a highly comprehensive treatment within the martingale 

assumption was subsequently achieved by Kurtz and Protter (1990). Define

^ M  p q  ^ ^ M
- 5 2 ^ * 4 =  /  Xn(r)de'n(r), x n(r) = - = y 2 x t ,e„(r) = - j = J 2 e t . (1.32) 

We have the following

Theorem  1.3 (Chan and Wei (1988)) Assume (1.23)/(1.24) holds, and for T)t =  (et : ut) 

let {f/t, Q't} be a martingale difference sequence such tha t =  E, a.s. . Then as

n  —> oo we have

xn(r) =* B(r; E22) , -  => [  B(r; Z22)dB'(r; E n ) . (1.33)

T h eo rem  1.4 (Kurtz and Protter (1990)) Let (1.32) hold, where {{en(r) ,xn(r)),$s[nrj} 

is a martingale array with

(en( r ) ,z „ ( r ) ) ^ ( B ( r ; E n ) ,B ( r ;£ 22)) . (1.34)

Let
1 n

sup — || t̂||2 < 00 1 a 's- • (1.35)
-
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Then we have, as n  —> oo

en(r),xn(r), J  x„(r)de'n(r)J => (-B(r; 2 n ), B(r; E22), J  B(r; Y,Ti)dB'{r\ £ „ ) )  .

(1.36)

The results in Chan and Wei (1988) and in Kurtz and Protter (1990) as they stand are 

of limited applicability in time series econometrics because the martingale assumption 

rules out any form of serial dependence. However, these results are instrumental for the 

analysis of more general cases through martingale approximations theorems. An example 

of this approach is provided by Phillips (1988b); a suitable version of his results is the 

following:

T h eo rem  1.5 (Phillips (1988b)) Let (1.23)/(1.24) hold, with pt =  (et : ut) and

oo

ijt =  A{L)et , A{L) = Y . A j L j , (1-37)

< oo , (1.38)

where the sequence of random vectors (et) is i.i.d.(0, E£) with rank(Ee) = p. Then

1 ” .. C1
-  x t-ie't => /  B(r;Cl22 )dB,(r;Q11) +  A2i , (1.39)

where f2 =  A(1)E£A(1)/.

j=o
oo

E iî ii < °°’ E
j = 0  As=l

E î
j=k

A subsequent contribution by Hansen (1992b) is aimed at obtaining weak convergence 

of n ~1 x t-ie't to f  BdB'  relaxing the linearity and strict stationarity assumptions in 

Phillips (1988b), again exploiting a martingale approximation argument.

T h eo rem  1.6 (Hansen (1992b)) Let rjt be a zero mean, strong mixing sequence with
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mixing coefficients a m = o(m bl^ 6 7)+") for some £ > 0, <5 > 7 > 2. Assume that 

(1.6)/(1.7) hold and supt>1 £ ,||77(||2<5 < 00, where

1 1 . n  ̂xt > 
lim —E x nx'n =  H < 00 , lim — Eqarft = ^  1 rank(Q) =  p . (1-40)
n—>oo 72 n —‘oo 72 ^ y 11

t = l  s = l

Then for 0 < g < 1

1 r
— 2_]xt - i e't => I B(r\Q.2 2 )dB'(r; Cln )dr +  qA2i as n —» oo . (1-41)
"  t=i ^

We note that Theorem 1.5 and Theorem 1.6 do not imply each other, because a strong 

mixing sequence need not be stationary, while on the other hand a strictly stationary 

linear process need not be strong mixing (cf. for instance Ibragimov and Rozanov, (1977), 

Andrews (1984), Pham and Tran (1985)). Recently, a more general result than Theorems 

1.5-1.6 has been given by Davidson and DeJong (1997), but we shall not deal with such 

extension in this thesis.

Gathering together the results from Theorems 1.1,1.2, and 1.5, (1.27) is established; 

we can rewrite the right hand side as S _1x , where

x  =  f B(r; Q.2 2 ) d B ' ( r ' ,Q ,u )d r H 21 + , (1.42)
Jo

S =  f  B (r;f t22)£ '( r ;D 22)dr . (1.43)
Jo

Some features of (1.27) are as follows. Convergence occurs at rate n  and hence faster than 

the usual square root rate which applies to the stationary case; on the other hand, the 

limiting distribution is non-Gaussian and depends on nuisance parameters that inhibit 

statistical inference. For instance, if we consider the classical linear hypotheses of form

H0 : Qvec(B) = q , H i:  Qvec(B) ±  q , (1*44)
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where Q and q are respectively g x pip2, 9 x 1 matrices respectively, and Q has full rank 

g , the Wald statistic takes the form

T\v =  (Qvec(B) -  g)'[Q(27r/(0) 0  ( X ' X)  l )Q'] 1(Qvec(B) -  q) , (1-45)

whose asymptotic distribution is very complicated under the conditions of Theorems 

1.1,1.2, 1.5 and cannot be tabulated without some form of a priori knowledge of the 

covariance structure of the innovations. Furthermore, the distribution (1.27) is affected 

by a bias term {E -f A}21 which is second order in the sense that it does not prevent 

(super-) consistency but it does jeopardize noticeably the behaviour of OLS in finite 

sample (see for instance the simulation results in Banerjee et ah. (1993)).

In order to investigate in greater detail the structure of the asymptotic distribution 

(1.27), we introduce

-^1.2 (g ^ 1.2) =  B i (r; fin ) — fi12fi22 I?2(r; ^ 22) , (1-46)

where we denote by f i i . 2 =  fin  — ^ 12^22 ^21 the covariance matrix of £ i.2(r), the latter

interpreted as the component of Bi(r ; f in ) which is orthogonal (and hence by Gaussianity 

independent) from ^ ( g ^ ^ ) -  We can rewrite (1.27) as

n(B  — B ) =>■ ^  1( x i .2 T fi221̂ 2i^2 T ^21 T A2i) (1.47)

*h.2 =  [  B 2{r; Q22 )dB[ 2(r; fii.2) , x 2 =  f  B2(r; f i^ d B ^ G  fi22) -(1.48)
Jo Jo

The asymptotic distribution of Fxe( l , n  — 1) is then partitioned into three components: 

(i) a stochastic integral (x 12) where the integrand and the integrator are independent 

processes; (i i) the “unit root distribution”, i.e., a stochastic integral driven by identical 

integrand and integrator, multiplied by a constant matrix which can be interpreted as 

the least squares coefficient in a sort of “long run regression” between et and ut\ (in) a 

bias term induced by the long-run correlation between et and ut. Note that if the data
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generating process driving et and ut is such that the two innovations are uncorrelated

at all leads and lags, the terms (ii) and (Hi) vanish: namely, if Q has a block diagonal

structure, with A21 and £ 21 equal to the p2 x pi null matrix, we have that

n(B — B)  =4> E~1x 12 . (1-49)

Let us consider more carefully the asymptotic distribution of (1.49).

Theorem  1.7 (Park and Phillips (1988)) The following equality in distribution holds:

vec(xi.2S _1/2) =  N(0 , Ql2 ® / P2) . (1.50)

Theorem 1.7 implies that the asymptotic distribution of OLS when the innovations in et 

and ut are uncorrelated at all leads and lags is given by

n(vec{B) -  vec(B)) =* f N {0 , KPlP2 { n „  ® G "1} K'piK)dP{G) , (1.51)
J G >  0

where KPlP2 is the commutation matrix of order P1P2 (Magnus and Neudecker, (1991)), 

P(.) is the probability measure associated with G and

G =  f  B 2(r; n 22)B ' (r; i l22)dr . (1.52)
Jo

Hence the asymptotic distribution is a mixture of normals which can be visualized as 

the outcome of a two stage random experiment, such that in the first part we draw the 

random covariance matrix G , while in the second we operate another random drawing 

from a multivariate Gaussian distribution with a covariance matrix that depends on G.

Thus the asymptotic distribution belongs to the so called LAMN family introduced by 

Jeganathan (1980), LAMN standing for Locally Asymptotic Mixed Normal. Hence under 

these circumstances OLS estimates share all the asymptotical properties of this class,
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namely (z) they are symmetrically distributed around zero; (ii) the nuisance parameters 

involve only scale effects and can be easily eliminated for the purpose of inference; (Hi) 

an optimal theory of inference applies (see LeCam 1986); (bu) hypothesis testing can be 

conducted within the usual asymptotic chi-squared paradigm.

Theorem 1.7 motivates most of the procedures proposed for the analysis of cointe­

grated time series, the underlying thread being the implementation of parametric, semi- 

parametric or nonparametric procedures to eliminate the “extra terms” in (1.47). A first 

example of this approach is provided by Phillips and Hansen (1990). Let us concentrate 

on the case of a single cointegrating relationship, so that (1.23)/(1.24) becomes

yt = x't(3 +  et , (1.53)

x t =  xt- i  + u t , xQ = 0 , t =  1,2,... , (1.54)

where f3 is a (p — 1) x 1 non-null vector (a =  (1 : f t )  in the sense of Definition 1.1). 

Consider the p —dimensional process (Bi^{r ) : (r ))> with variance covariance matrix

given by

^ 11.2 O'

o n22
where uzn.2 =  u;n — Now let e(.u =  et — i> an<̂  n° te that

(1.55)

lim  - Y ] e j u =  u u . i  , a.s. , (1.56)
n —>oo f l  — ' 

t = 1

! y > t e tu =► [  B2(r;n22)dBi.2(r;n,.2) + (5+ , (1.57)
71 t=i Jo

=  £ 2 1  "b A 2 1  — ( £ 2 2  +  A 2 2 )D 221 ^ 2 1  • (1.58)

Heuristically, taking y* = y t + etM — et as the endogenous variable eliminates the “unit 

root distribution” from (1.47).

Concerning <5+, feasible estimates of £ 2i and £ 22 are naturally provided by the corre-
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spondig sample covariances; for A21 and A22, Phillips and Hansen (1990) suggest to adopt 

kernel estimates as in Newey and West (1987) and Andrews (1991). As discussed before, 

such consistent estimates of fi2a> a =  1,2 are due to the literature on kernel spectral 

density estimation, for instance Press and Tukey (1956), Eicker (1967), Brillinger (1979). 

This duality cannot, however, be exploited in the estimation of A2G, a =  1,2, because this 

quantity derives from a “one-sided” summation of autocovaxiances and hence cannot be 

granted a  spectral interpretation. We shall get back on the connection between long-run 

covariance matrices and the spectral density matrix at frequency zero in Chapter 5.

A feasible three-step procedure is then the following: (i) estimate the OLS regression 

coefficients and residuals as (3 = (Fxx( l , n  — l ) ) -1 (Fxe(l, n — 1)), e =  yt — x'tP ; (ii) obtain

consistent estimates of <5+, et and et.u from et and ut = x t — x t-\ .  (Hi) implement the

fully-modified procedure as

3 + =  (Fxx( l , r a -  l ) ) _1(Fxy+ ( l , n -  1) -  n t ) , y+ = yt + etM -  et . (1.59)

The previous heuristics is formalized in the following

Theorem  1.8 (Phillips and Hansen (1990)) Under the conditions of Theorems 1.1 and 

1.5, (1.52) and (1.59), we have as n —► 00

n0 + — 0) => f N^cjmG-^dPiG)  ; (1.60)
J g >  o

also, if we consider the set of linear hypotheses

Ho : Qfi — q , Hi : Q0  ̂  q , (1.61)

for fixed g x (p — 1) matrix Q  and g x 1 vector r ^ O w e  have

TW  =  (q 3 + -  r)'(S11.2Q (X 'X )-1Q ')-1(Q3+ ~  r) => x* , (1.62)
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where is the standard chi-squared distribution with g degress of freedom.

An important feature of Theorem 1.8 is that the Wald statistic (1.62) is asymptotically 

distributed as a chi-squared, so tha t hypothesis testing can be performed within the 

standard paradigm.

The case of multiple cointegrating relationships is investigated by Phillips (1991a). 

We rewrite (1.23) /(1.24) in an Error-Correction Mechanism (ECM) format as

A Zt — —T [/, — B'\ Zt-i +  vt , (1.63)

where

r  =

11 1

B'II

r O 1 1 O

---1CN

»?t , fft =  (e t  : « t )  • (1.64)

(1.63) is not the Error Correction representation advocated by Granger (1987), the short- 

run dynamics being entirely confined to the error term vt. We assume that vt is generated 

by the linear model
OO

vt =  ^  Aj(9)et- j  , et =  0, £(0)) , (1.65)
j=o

where 0 is a q x 1 vector of parameters, A q — Ip and

£ b 1/2>t ( 0) < 0 0  - w  •
3=0

(1.66)

The frequency-domain approximation to the Gaussian log-likelihood (the so-called W hit­

tle likelihood) is given by

n — 1

C™(B,0) =  In |E(0)| +  n - 1 {/„„(Xy, 6 ) -1 I ^ X j ) }
j =1

(1.67)
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Phillips (1991a) consider the estimates

B Ml , 0Ml =  argm in C™(B,0) , (1.68)
B,9

where the minimization is carried over a compact parameter space ©. We have the fol­

lowing

T h eo rem  1.9 (Phillips (1991a)) Let (1.63), (1.65) and (1.66) hold. Assume also the 

regularity conditions of Dunsmuir (1979) are satisfied. We have

n(vec(BML) -  vec(B)) => f  N(0, K P1P2 {fin .2 ® G -1 } K'vipJd.P{G) . (1.69)
J G >  0

Under the conditions of Theorem 1.9 a standard theory of inference applies and classical 

testing procedures lie entirely within the usual chi-squared paradigm, despite the con­

vergence of the Hessian to a random limit rather than a constant matrix. The key to 

achieve an asymptotic distribution within the LAMN family is again the elimination of 

the “extra terms” in x . This goal was pursued through semiparametric corrections in 

Phillips and Hansen (1990); in this case, instead, the same objective is pursued through 

the specification of an appropriate ECM mechanism, such that all the a priori informa­

tion on the numbers of unit roots of the series is properly incorporated in the system and 

an efficient MLE procedure can be implemented.

In Theorem 1.9, parametric correlation of a known form is assumed for the residual 

vt. This assumption is relaxed by Phillips (1991b), where the idea is to adapt to the coin­

tegration case efficient techniques for the analysis of a multiple system of linear equations 

in the presence of autocorrelation of unknown form; these techniques were introduced by 

Hannan (1963) and extended in Hannan (1971), Robinson (1972), Hannan and Robinson 

(1973), Robinson (1991). The starting point is again the ECM representation (1.63),
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which in the case of a single cointegrating relationship we rewrite as

A z t = - 'ya'zt- i  + v t , 7 =  (1,0), a! =  (1 ,- /? )  , (1-70)

1 0
vt =

0 Jp_ 1
Vt > Vt =  (et : Wt) . (1.71)

As in Theorems 1.1-1.6, we assume that suitable regularity conditions hold such that as 

n —► 00

[nr]

(1.72)

1 K ,  /■«
~  %tet I B(r',Q,22)dB,(r',Qii)-\-q(Yi2i+A2i).  (1-73)

Moreover, we shall use the following abbreviated notation for the discrete Fourier trans­

form of generic lagged or first differenced sequences:

1 n
w L u ( A ) =  — 7=  V ' u t - i e ‘At ,

V 27T72

1 ”
^Au(A) =  - =  -  ut- i)e tAt.

V 27T72 ^ 7

(1.74)

(1.75)

Consider now the estimate

Ssii =  argm inV 'tr[[u;A 2(Ai ) - 7 a /u;L2(A:;)][u;Az(AJ) -7 Q :/u;Lz(Ai )]+>V 1(AJ-)] , (1.76)Q Z '
i=i

where W(.) is a given positive definite Hermitian matrix. The minimization of Hermitian 

form (1.76) would indeed be equivalent to the maximization of the W hittle’s spectral 

likelihood function if the wv{.) were independent complex normal random vectors with 

covariance matrix given by W (.). In the more general case where Gaussianity does 

not hold, these estimates will no longer be fully efficient; however, it can be shown that
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under a great variety of weak dependence assumptions we have asymptotically (Brillinger 

(1981)), as n —> oo and Aj —► A,

wv(\j)  => N c( 0 J vv(\)),  A ^  0,7r ,  (1.77)

where N c(.,.) indicates the complex normal distribution. Hence, under the assumption 

that f vv(A) > 0 for —7r <  A < 7r, a natural and feasible choice for W(.) is provided by 

W(A) =  f w ( A)-1, where the estimate /««(•), based on residuals from a preliminary least 

squares regression, must be such that

sup \ fvv(X) -  /™(A)| = o p( l ) .  (1.78)
0<A<7T

More rigorously, the minimization problem (1.76) can be shown to approximate a time 

domain generalized least squares criterion, and it is solved by a SR = (1, —/?SjR), where

@ S R  =  ^J2 (/v v (* j))~ 1U>x(*j)Wv( * j)‘)  ■ (1-79)

This is not the expression considered by Phillips (1991b), who analyzes instead

08* =  j  , (1.80)

where

~  M T  1
f x x (Aj) =  ^  k { ~ r f ) c Xx ( T ) ,  cxx { T ) =  ~~ y   ̂ %tx t+ T i (1-81)M j  “ i  x  V ■ /  > —xx  v • / n

t= —M  t =1
M ^   ̂ n—|t|

fxy{^j) =  M T7)Czy(r )> Cxy(T) = ~  x tVt+T , (1.82)
t=—M t= 1

and fc(u) is a lag window such that A;(0) =  1 and A:(w) =  0 when |tz| >  1. (1.79) and (1.80) 

are not asymptotically equivalent in the case of nonstationary cointegrated variables (cf
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Chapter 4); (1.80) can be interpreted as a form of weighted covariance spectral estimate, 

(1.79) being a form of smoothed periodogram estimate: the relationship between Km(.) 

and k(.) will be discussed in Chapter 5. Phillips (1991b) considers also the estimate

3(o) =  ( a U o r 1/ ^ ) ) - 1 ( ( L ( o ) ) ~ % ( o ) )  ■ (i.83)

Let us now analyze the asymptotic behaviour of (1.80)/(1.83).

T h eo rem  1.10 (Phillips (1991b)) Under (1.72), (1.73) and 1 / M  + M 2/ n  —► 0 as n —► oo 

we have

n (PsR - P )  => , (1-84)

n 0(o) ~  P) => • (1.85)

The proof of Theorem 1.10 is based mainly on the Skorohod representation theorem, 

which at crucial steps allows us to interchange almost sure convergence and convergence 

in probability. A fundamental ingredient of the construction is the fact that the number 

(2M  +  1) of covariances considered in f xx(-) and f xy{.) is o (n^2), a condition which can 

be easily assumed to hold for weighted covariance procedures (see for instance Hannan 

(1970)) but which fails in general for the weighted periodogram estimates.

Theorem 1.10 implies that the nonparametric treatment of the vector of innovations 

(et : ut) implicit in the spectral regression procedure achieves the asymptotic optimality 

typical of the LAMN class, as in Theorem 1.8, 1.9. Also, (1.85) shows that narrow­

band and full band procedures can be equivalent under nonstationarity, the heuristic 

rationale being that the “signal” concentrates eventually on the lowest frequencies for 

(co)-integrated variables; in other nonstationary circumstances narrow-band procedures 

can show some superiority, as discussed in Chapter 4.
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1.3 ASYMPTOTICS FOR FRACTIONALLY INTE­

GRATED TIME SERIES

The analysis of the previous section was characterized by the sharp distinction be­

tween processes that are integrated and nonstationary (i.e. /(d ), for d = 1 ,2,...), and 

processes that are stationary with summable autocovariances, which we defined to be 

short range dependent or /(0). We anticipated that the gap between these two classes can 

be smoothed by a broader definition of integration, namely (1.2). For p = 1, — l < d < i  

zt defined there is asymptotically a covariance stationary and invertible scalar process, 

and we might replace the right hand side of (1.2) by r}t to obtain a covariance station­

ary process, (say); under these circumstances, other characterizations are possible for 

fractional integration: more precisely, in terms of the behaviour of the spectral density, 

we have the class of processes

/(A) «  C\~'u  as A —> 0+ , (1.86)

where “ ~  ” indicates that the ratio of the left- and right-hand sides tends to one. Under

mild additional conditions, (Yong (1974)), (1.86) is equivalent to

7 (r) & C t2d_1 as r  —> oo . (1-87)

Processes satisfying (1.86)/ ( l . 87) are called long-memory or long range dependent

for 0 < d < /  and negative dependent for — \  < d < 0; these processes featured in the 

probabilistic literature much before the present interest in unit roots, cf. for instance 

Kolmogorov (1940,1941). Major interest was aroused however by Mandelbrot and Van 

Ness (1968) and subsequent papers, who considered applications to  hydrology and eco­

nomics of fractional Gaussian noise, i.e. the covariance stationaiy Gaussian process with
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spectral density
OO -

/(A) =  C(1 -  cos(A)) £  , (1.88)
j =  — oo

(see Sinai (1976)). In the econometric and statistical literature, the introduction of frac­

tional processes is due to Adenstedt (1974), Robinson (1978), Granger (1980), Granger 

and Joyeux (1980), and Hosking (1981), and in particular a widely considered process 

has been the fractional ARIMA, with spectral density

n  ' 2tr1 1 |¥>(eiA)|2 ’ '  ^

where <p(.) and f?(.) have their roots outside the unit circle; again the literature herefter 

has been so vast that we shall make no attem pt to do it justice. In the sequel we shall 

concentrate mainly on statistical inference for the memory parameter in case 0 < d < | .

The problem of estimating d was addressed already in the early eighties by Mohr 

(1981), Janacek (1982), Geweke and Porter-Hudak (1983) and many others, and before 

them by Mandelbrot and Wallis (1969); for none of these estimates, which are all of a 

semiparametric nature, was a rigorous asymptotic justification provided. We shall delay 

an analysis of the asymptotic behaviour of semiparametric procedures, and consider first 

fully parametric estimates; instrumental for the analysis of the asymptotic properties of 

many such estimates is a careful study of the behaviour of quadratic forms in random 

variables having long range dependence. A first step in this direction is provided by the 

following results.

T heorem  1.11 (Fox and Taqqu (1985)) Let Qt be a zero mean covariance stationary 

Gaussian process such that E(% =  1 and (1.87) holds . Let as, — oo <  s <  oo be a 

sequence of constants satysfying as = a_s and Y^L-oo lasl ^  Then if |  < d <  | ,  as
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n —> oc

[nr] [nr] [nr] [nr] oo

z »(r ) =  a<-«CtC. -  E Y 1 5 1 = * •  ( 5 1  a»)-R(r ) > C1-90)
t = l  S' =  l  £=1 s = l  s =  —  oo

where i?(r) is the Rosenblatt process, which is represented by the following multiple Ito 

integral

1 C" ei(5i+s2)r — 1
R(r) = — --------   77 -r—j-r /  — 7--------- — |s i|d -1|s2|d-1dB(si)<iB(s2) ,

2 r ( l  — 2d) cos((l — 2d)iv/2) J r 2 i(si  +  s2)
(1.91)

where f " signifies that the integral excludes the diagonals S\ =  ± s 2 •

T h eo rem  1.12 (Fox and Taqqu (1985)) Let Qt and as satisfy the assumptions of Theorem

1.11 with 0 < d < L  then as n —* 00, 0 < r <  1

Zn(r) =» a\B{r)  , (1.92)

where oo oo oo
a i =  2 53 53 53 a-»aB'Kfc)7(fc+ji - 3 2 ) ■ (1-93)

k~—00 j \=—00 j2=-00

The proof of Theorem 1.12 is based on the representation of the cumulants of order p of 

the normal random variable Zn( 1) as

cump(Zn( 1)) =  2P-I(p -  1 )\tr(Q(n)A(n)) , (1.94)

where Q(n)  and A(n) are Toeplitz matrices such that

Q(n) = {7(* • t 1-95)

The argument is then completed showing that all cumulants of order greater than two of
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Zn(.) are o(l) and then appealing to the Frechet-Shohat. “moment convergence theorem”, 

and unique determination of the Gaussian distribution by its moments; this result is 

achieved by a (lengthy and demanding) argument based on power counting theorems 

from mathematical physics.

The essential insight we receive from Theorems 1.11 and 1.12 is that the limit of 

appropriately normalized Gaussian quadratic forms will typically be Gaussian for d < | , 

non-Gaussian for d > J. Of course this dichotomy severely inhibits statistical inference. 

Note however that Theorem 1.11 implies the convergence in probability to zero of Zn(r)

when Y^L-oo as =  0 ; it is therefore possible to conjecture that a Gaussian limiting

behaviour can be achieved if a smaller normalization (in terms of the sequence as) is 

adopted. Define g(A) =  Y2T=-oo ase~tXs] the previous conjecture is confirmed by the 

following result

Theorem  1.13 (Fox and Taqqu (1987)) Let a3 and satisfy the assumptions of Theorem

1.11, and in addition let /(A) and g(A) be almost everywhere continuous and bounded

in [<5,7r], for all 6 > 0. Assume also that there exist a i , a 2 <  1 such that aq 4- ol-i < |  and

for each £ >  0

/(A) =  0(A _Ql_e) as A —>• 0+ , (1.96)

g(A) =  0(X~a2~£) as A -> 0+ . (1.97)

Then

Zn{ l ) ^ N ( Q , o * ) ,  (1.98)

where

a\ = 16tt3 f  {/(A)S(A)}2 d \  . (1.99)
J -7T

Theorem 1.13 is the fundamental tool that allows efficient estimates of the parameters

35



of a long memory process to be implemented via maximum likelihood procedures. Let 

us recall from Section 2 that the W hittle approximation to the likelihood function for 

univariate Gaussian processes is defined as

<u “ )

where 6 is a finite-dimensional vector of parameters; assume that d — d{6) is also deter­

mined by 6. Consider the quasi-maximum likelihood estimates

(1.101)

where the parameter space © is assumed to be compact and regularity conditions hold

for Ct, a Gaussian process whose behaviour is entirely determined by 6. The properties
~w

of the vector of estimates 0n are given in the following

T h eo rem  1.14 (Fox and Taqqu (1986)) Let C)t satisfy the assumptions of Theorem 1.11

or 1.12 with spectral density /(A,#o) satisfying suitable regularity conditions on its first 

and second derivatives. Then, as n —» oo

~w
lim 6n = 6q a.s. ,

n —► oo

and

-  00) =» N ( 0, 4 ttW -1(0o)) , (1.103)

where W(8) is a k x k Toeplitz matrix of with elements a, 6-th element

<1104)

The proof exploit standard arguments for implicitly-defined extremum estimates, to-

(1.102)

6„ = a rg m m £ ^ (0 )
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get her with a central limit theorem as Theorem 1.13 for the quadratic form

/  (/(A) -  EI(\))g(X)dX  , (1.105)
J — TV

where in this case g(A) =  d f ~ 1( \ ,6 ) /d6a. Note that the result is made possible by the

special nature of the function g(X)1 because as a consequence of Theorem 1.11 the limit

of (1.105) can be non-Gaussian in general for other choices of g{.).

Further improvements over Fox and Taqqu’s result are provided by Dahlhaus (1989).

This author shows under Gaussianity of and mild additional restrictions tha t (i) the
~w  ~same asymptotics as for 6n holds for oni i.e. the exact maximum likelihood estimates 

obtained as

Qn =  a rgm inCn , Cn = -^ log |Q (rc)| +  - C J 'Q -1 W (Ci, ••••, Cn) . (1-106)

~ ~w
where Q(n) is given by (1.95), and (ii) 6n and 9n are efficient in the sense of Fisher, 

i.e. they attain  the Cramer-Rao lower bound. A major generalization of Fox and Taqqu 

(1987) results is provided by Giraitis and Surgailis (1990). These authors are concerned 

with the behaviour of Zn( 1), cf. (1.90), for as a  sequence of constants as in Theorems 

1.11-1.13, and a linear stationary process defined as

oo oo

Ct =  e3 ~  t.i-d.(0,a2) , <  oo . (1.107)
j = 0  j = 0

Note that by Wold representation theorem any Gaussian stationary sequence satisfies 

the above representation, so that the assumptions of Fox and Taqqu (1987) are nested 

as a special case. For g( A) defined as in (1.105), Q(n) as in (1.95), Giraitis and Surgailis 

(1990) prove the following

Theorem  1.15 (Giraitis and Surgailis (1990)) Assume there exist constants ct\ and 0 2 ,
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with ol\ < 1, Q2 < 1, < 1, such that

/(A) =  0 ( \ ~ a'), g(A) =  0 (A -“2), A e  [0.7r] ; (1.108)

assume also
Um tr(Q(n)A(n)) ^  ^  r* { f { x ) g { x ) f  dx < ^  . (1 10g)

n~*°° n

then as n —> oo,

Zn(l)=>JV(0,<7?), (1.110)

with

o\  = 16tt3 f  (f(X)g(X))2d \  +  c u m ^ i t  f  f(X)g(X)dX)2 . (1-111)
J — TV J — TV

In the same paper Giraitis and Surgailis (1990) derive also asymptotic normality of 

W hittle’s estimates under the conditions of Theorem 1.15. In a related work, linearity 

is assumed also by Beran and Terrin (1994); these authors advocate a slightly modified 

version of W hittle’s estimate which has some computational advantage for very long 

time series as those arising in communication engineering. On the other hand in the 

probabilistic literature the results of Theorem 1.15 are generalized to partial sums of 

Appell polynomials by Terrin and Taqqu (1991) and to continuous stochastic processes 

by Ginovian (1994).

In view of Theorems 1.11-1.15, we can say in short that the problem of estimation 

and inference is solved for fully parametric stationary long memory series. However, 

we note that these estimates will typically be inconsistent if the parametric model is 

misspecified, for instance if the short run dynamics is represented as a stationary A R M  A  

model and both the number of lags included are incorrect. Since fractional integration 

is a long run phenomenon, in that it relates to the behaviour of the series only at the 

smallest frequencies, it could be preferable to adopt a semiparametric approach and 

concentrate only on a proper subset of the available information. In other words, rather
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than specifying a full parametric model for the sequence £(, we might impose conditions 

only on a degenerating band of low frequencies, such as (1.86), which is fulfilled for 

instance by fractional Gaussian noise (1.88) and stationary fractional A R I M A  models 

(1.89). A rigorous attem pt to estimate d under (1.86) is provided by Robinson (1994a).

We note firstly that for A =  0 the spectral density has a singularity and therefore of course

it cannot be estimated. On the other hand, by covariance stationarity the quantity

F(  Am) =  /  f (s)ds  (1.112)
Jo

will be finite, and indeed under (1.86) F(Xm) & C A ^ 2̂ ; F(Am) is a population analogue 

of the averaged periodogram F(Xrn), cf. (1.20). Now introduce the bandwidth condition

1 771
 1-----------► 0 , as 7i —► oo . (1.113)
m  n

Robinson (1994a) proves (a generalized version of) the following 

Theorem  1.16 (Robinson (1994o,)) Assume that (1.86) and (1.113) hold, and

OO o o

Zt =  11+  IPjZt-j , <  00 , C1-114)
j = 0 j = 0

where = cr2, while and Q  — a 2 axe martingale differences sequences with respect 

to the filtration $st = a(£t ,£t_ i,...). Then

(1.115)

Now note that for any q > 0, F(qX)/F(X)  «  g2(1/2~dK This suggests the Averaged

F(Xm)
FiXm)

1 as n —* oo
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Periodogram Estimate (APE)

log{F(gAm)/F(A m)}

Smq~ 2  K 21og (q) J ' (LU6)

A consequence of Theorem 1.16 is the following

T h eo rem  1.17 (Robinson (1994a)) Under the conditions of Theorem 1.16, as n —> oo

dmq-*Pd .  (1-117)

The issue of optimal bandwidth for the APE and for semiparametric estimates in general 

is discussed respectively in Robinson (1994c) and Giraitis, Robinson and Samarov (1995). 

Although the conditions for the consistency of dmq are very mild, the APE has been 

of limited use in practice, mainly because its limiting asymptotic distribution is very 

complicated (Lobato and Robinson (1996)). However, the relevance of Theorem 1.16 

(which has been generalized to the multivariate case by Lobato (1997)) goes far beyond 

Theorem 1.17, as we shall see in the next chapters.

A semiparametric procedure which has met considerable success in practical applica­

tions is the log-periodogram regression proposed originally by Geweke and Porter-Hudak 

(1983). The idea is to estimate d from the least squares regression

log/(Afc) =  C  -  2dlogAfc + v k , (1.118)

where by an analogy with the weak dependent case the Vk (~  log(/(A/c)//(Afc)) were 

conjectured by Geweke and Porter-Hudak (1983) to be asymptotically i.i.d. for k /n  0 

as n —> oo. This conjecture is proven false by Robinson (1995a), where the validity of 

a generalized and modified version of (1.118) is studied, extending the result to vector 

valued time series, under the assumption of Gaussianity. Let be a p  x 1 stationary
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process such that the following conditions holds on the spectral density matrix:

f a a W  «  c a\ ~ u ‘  as A -  0+ , a =  1, . . . , p  . (1.119)

Consider the OLS estimates of C_= (Ci, -..,CP) and d= (di, ...,dp), given by

C

d
v e c { H 'W ( W ’W ) - 1} , (1.120)

for

W  =  (Wl+lt... ,Wm) ' , H  = (HU ...,HP) , (1.121)

Wit =  (1 ,-2  log Afc)' , Ha = (log/aa(Al+i) ,.. ., lo g /oa(Am)) . (1.122)

where I is a trimming number such that l / l  + l / m  —> 0 as 77, —>00, so th a t the very lowest 

frequencies are excluded from the regression. We have

Theorem  1.18 (Robinson (1995a) Under (1.86), Gaussianity of and suitable regularity 

conditions on /(A) and I, m, n, we have as n  —* 00

2Vm(rf -  d) =* 7V(0, V) , (1.123)

where V is consistently estimated by the least squares residuals, i.e

1 m  ~
V V , V = --------  V  VkV£ , Vk = Hk -  C + 2dlogAfc .

A consequence of Theorem 1.18 is that a standard theory of inference will hold for 

classical testing procedures that have an asymptotic justification; for instance, for a
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suitable constraint matrix Q the null hypothesis Ho : Qd = 0 can be tested through the 

usual Wald statistic

Tw =  r f< 3 '{ (0 :Q ) '( ( ^ W )-1 ® V ))(0 :(5 ')} "1(3rf (1-124)

where g is the number of restrictions, i.e. the number of rows of the (full row rank) 

matrix Q\ in particular, for fractional cointegration analysis it could be relevant to test 

the hypothesis that some or all of the components of the vector process zt share the 

same d parameter (Chapter 4). In general, assume we have some a priori knowledge, 

such as d= RO, for a known matrix R  of appropriate dimensions; this information can 

be exploited together with a preliminary estimate of V to set up a GLS type estimate of 

the form

6 =
Ip 0 I , ~ , I Jp 0
P 1 ( r i f  ^ V 1) 1 P
0 R! 0 R

- l
IP 0 

0 R'
vec(V~ H'W)  . (1.125)

We have

T h eo rem  1.19 (Robinson (1995a)) Under (1.86),(1.113), Gaussianity of £t, and suitable 

regularity conditions on /(A) and Z,m, n, as n —> oo

2y/m(dGLs -d )= >  N ( 0, R ^ ' V ^ R ^ R ' )  , (1.126)

where dGLS — RQ and the covariance matrix is consistenty estimated by R (R IV~1R)~1R'.

Since V — R(R'V~1R)~1R I is a positive definite matrix, the GLS procedure achieves in 

this framework efficiency improvements of a standard typology.

The assumption of Gaussianity for the is restrictive, but it is extremely convenient 

because in these estimates the periodogram enters the procedure in a highly nonlinear 

way. Velasco (1997a) obtained consistency for the log-periodogram regression under more
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general conditions, in part icular relaxing Gaussianity to boundedness and integrability of 

the characteristic function of Q. which implies Q has a bounded continuous density. In 

order to obtain the asymptot ic normality of the estimates, however, this author introduces 

a condition very close to Gaussianity, namely the existence of finite moments of all orders.

Consider now a sequence Q satisfying condition (1.86), and introduce the Gaussian 

semiparametric estimate

^  1 I ( \  ■) 1
d = a rg m in £ m (d ) ,  Cm{d) =  log(— V ]  — -  2d— V ' log Â  . (1.127)

dee ra ' A mj=1 3 j=1

for 0  a compact subset of (—| ,  | )  . If we were to assume the model /(A) =  C \ ~ 2d over

all frequencies in (0 ,7r) the estimate (1.127) with m  =  n/2  (or m  = ( n — 1/2) for n  odd)

would be a discretized form of the W hittle’s estimate justified by Fox and Taqqu (1986) 

and Giraitis and Surgailis (1990). Robinson (1995b) considers instead the behaviour of 

(1.127) under (1.113), for Q a linear process with innovations assumed to be martingale 

differences with finite fourth moments. We have

T h e o rem  1.20 (Robinson 1995b) Under (1.86), (1.113), — \  < d < |  and suitable 

regularity conditions on /(A) and m,  for d given by (1.127) we have, as n  —► oo

y / m ( d - d )  =>N(0 1) . (1.128)

The multivariate extension of Theorem 1.20 is provided by Lobato (1995).

Semiparametric estimates for d < |  are considered among the others also by Hall, 

Koul and Turlach (1996), Taqqu, Teverovsky and Willinger (1995), Teverovsky and Taqqu

(1996), Giraitis, Robinson and Surgailis (1996), Hidalgo and Yajima (1997); Hidalgo

(1997) is concerned with the estimation of the pole Ao for covariance stationary variables 

Zt with spectral density /(A) such that /(A) «  C |A —Ao|-2d as A —► Ao, with Ao unknown.

A major extension of Theorems 1.19 and 1.20 is given by Velasco (1996,1997b), build­
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ing in part upon some ideas from Hurvich and Ray (1995). The literature reviewed to 

this stage was concerned with the covariance stationary case d < F  a definition of frac­

tional integration for d which takes values on the entire real line is given in (1.2): this 

definition is not unique, however, and we might define as fractionally integrated of order 

di the process
t

xt = Y , ^ ’ t = 1' 2’- -  (L12Q)
3  =  1

where ~  I{dj  — 1) is a stationary long memory process, |  <  dj < | .  This is the 

definition adopted, for instance, by Hurvich and Ray (1995); the relationship between x t 

and zt as defined by (1.2) is investigated in detail in Chapter 2, but we anticipate that 

the two processes are in no sense equivalent. The discrete Fourier transform of x t can be 

rewritten as

W i { X i )  =  ■ ( U 3 0 )  V Z7VTI t=1

which after some manipulations entails

E I xx(\j)  = [  f x{X)I<n(X -  Xj)d\  , (1.131)
J —7r

where Kn(.) denotes the Fejer’s kernel

K n(X) = , (1-132)27xn sm(A/2)

and formally f x(X) = |1 — ezA|_2/^(A), with

f x(X) w CA_2d/ as A -> 0+ . (1.133)

Although f x (A) is not a proper spectral density, expression (1.133) suggests that the 

rationale for the log-periodogram and the Gaussian semiparametric procedure can still 

be valid for processes integrated of order dj > at least for a certain interval of dj

values. This conjecture is proven correct by Velasco (1996, 1997b). This author firstly
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analyzes the log-periodogram estimates, and shows under regularity conditions that they 

can still be consistent for dj < 1, and consistent and asymptotically normal for dj < |  

when a data taper is used (Velasco (1996)). Consistency and asymptotic normality of 

Gaussian semiparametric estimates of a positive dj which can take values on the entire 

real line is demonstrated in Velasco (1997b), allowing for the existence of deterministic 

trends in x t.

As a first attem pt to narrow the gap between the literature on cointegration considered 

in Section 2 and the literature on long memory and fractionally integrated processes 

considered in this section, we shall now briefly concentrate on a few papers that concern 

regression models with fractionally integrated residuals and/or regressors. The properties 

of least squares for the regression model

yt = 0 w t +  et , (1.134)

where et is stationary long memory and wt is a vector of deterministic functions of 

time were firstly considered by Yajima (1988); OLS estimates are shown to be strongly 

consistent under broad conditions but no longer efficient with respect to GLS, so that 

Grenander’s theorem (1954) does not hold (the rationale being that one of its condition 

fails, namely boundedness of the spectrum at the origin). In a later paper, Yajima (1991) 

shows that OLS and GLS are asymptotically normally distributed under conditions on 

the cumulants of all orders of et; the special case wt = exp(iAt) had been considered 

before by the same author (Yajima (1989)), providing a central limit theorem for discrete 

Fourier transform of long memory stationary variables at fixed frequencies A, whereas 

Dahlhaus (1995) also investigates the behaviour of a form of generalized least squares 

with nonstochastic regressors and stationary long memory residuals.

Robinson and Hidalgo (1997) considered model (1.134) under the assumption that wt 

and et are independent stationary long memory sequences. They consider the class of
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estimates
"7T

K  = ( [  /„ u,(A)^(A)dA) - 1 f  Iwy{\)<f>(\)d\ , (1.135)
J —It J  -7T

which is OLS for 0 (A) =  1, —7r < A < 7r; GLS for 0 (A) =  / e- 1(A); and feasible GLS 

for 0(A) =  / e_1(A), /j"1(^) being any consistent estimate of /^’1(A). Under these cir­

cumstances OLS need no longer be -y/n-consistent, while feasible GLS under suitable 

conditions converge at rate y/n to an asymptotic normal distribution.

As discussed in Chapter 2, model (1.134) when wt = yt-i  and P = 1 is considered 

by Sowell (1990), Chan and Terrin (1995), and Lubian (1996), with the purpose to 

investigate the robustness of unit root asymptotics to departures from the assumption 

that the innovations are weak dependent. The case of a nonstationary or “close” to 

nonstationarity wt is also considered by Jeganathan (1996), as an application of ideas from 

Jeganathan (1980, 1988) and LeCam (1986). Dolado and Marmol (1996) attempted to 

extend the FM-OLS procedure to the case when the regressors wt and the “cointegrating 

residuals” et are fractionally integrated, in the sense of (1.2) for d > |  and in the sense of 

(1.129) for |  <  d < | .  The proof they provide is incorrect, however, and the possibility 

of a practical implementation of their ideas remains an open question. Recent surveys of 

further developments in the study of long memory processes in time series econometrics 

are in Robinson (1994b) and Baillie (1996).
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Chapter 2 

WEAK CONVERGENCE TO 

FRACTIONAL BROWNIAN 

MOTION1

2.1 INTRODUCTION

The second section of Chapter 1 discusses functional central limit theorems entailing 

convergence to Brownian motion of a normalized zt in a suitable metric space, presenting 

also applications of these results to limit distribution theory for statistics that arise 

when investigating time series that have unit roots. In the univariate case, we can 

summarize this literature as follows. Suppose that the scalar sequence rjt is covariance 

stationary and has (without loss of generality) mean zero, and lag-r autocovariance 

7 (r) =  /(A) exp(zAr)dA . Under the “short range dependence” assumption

0 <  / ( 0) <  oo , (2.1)

1 The content o f this chapter is based on the papers “Alternative Definitions o f Fractional 
Brownian M otion” and “A  Functional Central Limit Theorem for M ultivariate Fractional 
Processes” ; both  these papers are the outcom e o f joint work with P.M .Robinson.
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we have

under a variety of conditions, for example with rjt a linear process (e.g. Hannan (1979), 

Phillips and Solo (1992)), various mixing or functions-of-mixing processes (e.g. McLeish 

(1977), Herrndorf (1984)), Wooldridge and W hite (1988)), or with vector valued rjt (e.g. 

Phillips and Durlauf (1986)). We have also seen that in many cases of interest application 

of functional limit theorems of the form (2.2), and the continuous mapping theorem (see 

Billingsley (1968)), typically leads to limit distributions that are nonstandard functionals 

of Brownian motion.

The property (2.1) can be viewed as a mild form of short range dependence condition 

(while it is also possible to focus on behaviour a t alternative frequencies A); for instance, 

under Gaussianity it is known that (2.1) is implied if r}t is strong mixing with rate a m = 

ra~7, any 7 > 0 (Ibragimov and Rozanov, (1977)). Some of the work establishing (2.2) 

has allowed for forms of nonstationarity requiring / ( 0) to have a broader interpretation, 

but nevertheless (2.1) still conveys a sense of weak dependence. While many standard 

time series models for including stationary and invertible mixed autoregressive moving 

averages, satisfy (2.1), recently there has been considerable interest in ones which do not, 

and exhibit instead long memory or long range dependence properties in the sense of 

Chapter 1, (1.86)/ ( l .87). Our purpose here is to bridge the gap between the material of 

Section 2 and 3 of the previous chapter, investigating weak convergence under fractional 

circumstances. Functional central limit theorems for partial sums of long range dependent 

innovations typically lead to an interest in forms of fractional Brownian motion; two 

alternative definitions of the latter process are discussed in Section 2 and Section 3, where 

we also show how these definitions occasionally led to some confusion in the econometric 

literature. We go on in Section 4 to establish a functional central limit theorem for a 

wide class of multivariate fractionally integrated processes; most proofs are collected in 

the Appendix.

(nrj \

Y j ] t J => B(r;27r/(0)), as n 00, 0 < r < l ,  (2.2)
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2.2 “TYPE I” FRACTIONAL BROWNIAN MO­

TION

Mandelbrot and Van Ness (1968) introduced fractional Brownian motion B(r ;a2,dj) 

which we present in the following form (see also Taqqu (1979), Samorodnitsky and Taqqu 

(1994)), for \  < dj <

B (r;(72,dj) =  — Jr  [{(r -  s)+}d/_1 -  { ( - s ) +}d/-1j dB{s;a2) , r e R  , (2.3)

with B (0; <J2,d/) =  0 a.s., and where t+ = m ax(t,0),

u (dr) = { ^ — [ + U d / ) } 2 , m )  =  j T  {(1 +  a)*’- 1 -  a-' ' 1} * *  . (2.4)

We term B ( r \a 2,dj) “Type I” fractional Brownian motion.

For d\ — 1 (2.3) is interpreted as

B(r;<j2, 1) =  f  dB(s-,<j2), r > 0 ,  (2.5)
Jo

B(r; a2, 1) =  — J  d B (s \a 2), r < 0 , (2.6)

so that standard Brownian motion B(r; a 2) =  B(r; <j2, 1) is nested as a special case. For

dj ^  1 can be formally interpreted as a fractional derivative or integral of B(r; a 2) in the

sense of Weyl (1917). We can rewrite (2.3) as
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for 7’ > 0 and

B (r;a2 ’d ') =  i ^ ) X l { ( r “ s)di“1 “ (" s)'i/" 1} dB(s;<72) +

-  £  (~a)dl~1dB(s\cr2) , (2.8)

for v < 0. It is then easily verified that E B ( r \ a 2,di) = 0, r  6 R, and

EB(r:  a2,d,)B(r; cr2,d;) =  1 ( | n r ,_1 +  Irat*-' -1 -  In -  , n , r 2 € R  . (2.9)

Take for notational convenience or2 = 1, and identify B(r\ 1, dj) =  B{r\ dj); the increment 

B{r2;dj) — B{i'i,di),  r2 > has variance

E (B (r2;dI) - B ( r 1;dI))2 = \ r 2 - r 1\2d*-1 . (2.10)

Thus for integers j  = 0, dbl,... the increments (which we term “type I fractional Gaussian 

noise“)

b(j; d7) = B ( j  + 1; d 7) -  B(j;  d7) (2.11)

have zero mean, unit variance and autocovariance

Eb(j;dI)b(k\dI) =  |  (| j - k  + 1|M' ' X -  2 | j -  +  \j -  k -  l | “ ' - x) , (2.12)

so they have standard Gaussian marginals and are stationary, with autocovariance func­

tion such that

Eb(j\di)b(j  -f t ;  dj) «  (2d/ — l)(d 7 — l ) r 2d/_3, as r  —► oo . (2-13)

Mandelbrot and Van Ness (1968) showed that £ ( r ;d 7) has almost all sample paths con­

tinuous, and is self similar with similarity parameter H  = dj — a process, X(t) ,  is said 

to be self-similar with similarity parameter H  if the finite-dimensional joint distributions
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of X ( c t ) are identical to those of cHX(t .), for all c > 0. Verwaat. (1985) showed that 

B(r;dj)  can only be defined for dj > |  in that for dj <  ̂ a self-similar process with sta­

tionary increments is almost surely identically zero, and also showed that for  ̂ < dj < |  

the paths of B(r ;d j ) have almost surely locally unbounded variation, in common with 

standard Brownian motion B(r).  Samorodnitsky and Taqqu (1994) indicate that B ( r ; dj) 

is not a unique representation of fractional Brownian motion, in that for any real a  and 

(3 the process

j R [a {(r -  s ) ^ ' 1 -  ( - s ) J " 1} +  /3 {(r -  s)lJ_1 -  ( - s ) ! 7-1}] dB(s)  , r e R , (2.14)

shares the same properties as B (r;d /), up to a multiplicative constant, where £_ =  

— min(£, 0); (2.14) provides a general expression for “moving average” representations of 

fractional Brownian motion. Samorodnitsky and Taqqu (1994) also discuss “harmoniz- 

able representations”, which for real scalars a  and (3 they present as

J °° (<*( dM(  A) , r e R ,  (2.15)

where d M (A) is a complex Gaussian random measure, such that

d M ( \ )  =  dM{—\ )  , EdM(X)  =  0 , E\dM(X)\2 =  dX , (2.16)

the bar denoting complex conjugation, and

EdM(X)2 = EdM(\)d~M(jij = 0 , A ^  /i . (2.17)

The representation (2.15) was introduced by Dobrushin (1979) and Dobrushin and Major 

(1979), while its equivalence (in the finite-dimensional distribution sense) with (2.14) was 

first proved by Taqqu (1979) .

We now consider how B(r;dj)  describes the limiting behaviour of partial sums of long 

memory random variables £t. The increment sequence b{j\dj) provides a clue as to the
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p r o p e r tie s  o f  Q. C o r r e sp o n d in g  to  (2.13), th e  s ta t io n a r y  se q u e n c e  b(j\dj) h a s  sp ec tra l  

d e n s ity  /(A), —tt <  A <  tt, sa t is fy in g

/(A) { {dl ~  Sin^ J ~  |  as A —> 0+ . (2.18)

Thus it is seen that the b(j; dj) are long range dependent, in the sense of (1.86), after the 

identification d = dj — 1. Correspondingly, the Qt whose partial sums are approximated 

by B{r ; dj) typically have autocovariances 7 (r) that, up to a multiplicative constant, are 

approximated by the right side of (2.13) (and hence satisfy (1.87)), and/or have spectral 

density /(A) that is approximated, up to a multiplicative constant, by the right side 

of (2.18); also, from (2.13) it follows that Var(Y^i C t) ~  cn2̂ -1 as n —* 00. Thus we 

anticipate tha t under (2.18) and regularity conditions

/[nr] \

(cn2dj-1)-1/2 I j =*■ B(r;dj)  , 0 < c < o o , 0 < r < l .  (2.19)

Davydov (1970) established (2.19) in the former case when is a linear process with 

only square summable weights (which in itself permits long range dependence) and i.i.d. 

innovations 8t- In particular, Davydov (1970) considers sequences such that

C ,  =  <  ° °  • »  i d , ~ 2 . ( 2 -20 )
j =0

7 > max(4, ) • (2.21)

Gorodetskii (1977) extends Davydov’s results establishing (2.19) under (2.20) and

7 > max(2, ) ’ (2'22)

Taqqu (1975) established (2.19) under a different type of condition on £t. He assumed 

that Q =  G(vt), where G is a possibly nonlinear function and vt is a stationary Gaussian 

process with zero mean, unit variance and lag-r autocovariance q (r) & cr2dv~l as r  —► 00,
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0 < dv < |  . Assuming EG (vt)2 < oo, Taqqu introduced the Hermite rank of G: denoting 

by

Hj(x)  =  ( -1  Ye**  e- i*2 (2.23)

the j -th Hermite polynomial, and J( j)  = EG(vt)Hj(vt), then the Hermite rank of G is 

m  — minj>o (j  : J ( j ) ^  0). Then (2.19) follows when m  =  1; if m  > 2, the series G(vt) 

is weakly dependent if m  > 1/(1 — 2d), otherwise the limit is non-Gaussian. The results 

of Davydov (1970), Gorodetskii (1977) and Taqqu (1975) are in fact more general than 

reported here because they allow for a slowly varying factor in 7 (r). Similar results have 

been given under various other conditions (e.g. Chan and Terrin, (1995), Csorgo and 

Mielniczuk, (1995)).

2.3 “TYPE II” FRACTIONAL BROWNIAN MO­

TION

Levy (1953), Mandelbrot and Van Ness (1968) mention an alternative definition of frac­

tional Brownian motion, as a Holmgren-Riemann-Liouville fractional integral, which for 

d > |  we write as

W(r;cr2,d) = (2d — 1)2 f  (r — s)d~1dB(s]a2), r >  0 ,  (2.24)
Jo

W(r-,a2,d) = —(2d — l ) i  T ( s  — r)d~1dB(s;a2), r <  0 ,  (2.25)

with W (r ;a 2,d) = 0 a.s.; we call W { r \a 2,d) “Type II fractional Brownian motion”. 

Clearly W(r\( j2 ,d) is again Gaussian with almost surely continuous sample paths, and 

for d =  1 (2.24) and (2.25) reduce to (2.5) and (2.6), thus nesting B(r;cr2) to the same 

extent as does B(r\ (J2,dj). As in Section 2 we take cr2 =  1, and we modify the notation
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accordingly; we have

EW{r,d)  =  0 , E W 2(r;d) = | r |2<' “ 1 , r e R , (2.26)

so that (see (2.10)) the mean and variance of W(r\d)  have the same expression as those

of B{r\dj).  However, when 0 < ?q < r2:

E W ( r i;d)W(r2-,d) =  1 ( r f " 1 + r f ‘~1 - E { W { r 2-d) -  W (r i ;d ) f )  (2.27)

which does not agree with (2.9), because

E  (W(r2; d) -  W { r ^ d ) f  = { 2 d -  l ) { £  {(r2 -  s ) ^ 1 -  (r, -  s)d~l f  ds + j P ( r 2 -  s)'

= (2d -  l)(r2 - n ) 2d_1 X
1 r r i / ( r2- r i )  f . 2

{2 d ^ i  + L  {(i +  « ) _ - « "  } * ) ,

which is not the same as (2.10). Thus the increments of W(r\ d), even at equally-spaced 

intervals, are nonstationary, unlike those of B (r \d j ), though

E  (W (r2; d) -  W in ;  d))2 »  (2d -  l ) U ( d f { r 2 -  t ,)2*"1 as -> oo , (2.29)

and

E ( W ( r 2;d) -  W { n - ,d ) f  «  (r2 -  r t f * - 1 as — --------► 0 , (2.30)
2̂ -  n

the latter expression agreeing with (2.10) if we identify di = d. We can term “type II 

fractional Gaussian noise” the sequence of increments

w(j-d) = W ( j  + 1; d)  -  W ( j ; d), j  = 1, 2. . .  . (2.31)

*-2d3)

(2 .28)
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The process w( j \  d) has mean zero and variance equal to g ( j ) ,  where

g(j) = l  + { 2 d - l )  ^ { ( l  + s Y ' 1 - s 4- 1}2ds , 1 < g(j) < (2d -  l)U{d)2 , (2.32)

where U(d) is defined in (2.4). The autocovariance between w(j; d) and w{k\d ) is 

Ew(J; d)w{k\d) =  h /  -  I I -  I I I  + IV)  , j >  k + 1 ,
Li

for

i  = y  +  i ) * - 1 +  (k +  i ) M- > -  (j -
J — K

I I  = ( j + 1)21' - 1 +  fc2*"1 -  ( j  -  k + 1)2*-1̂  . * )
j  -  k +  1

h i  =  +  (fc+ 1)^-1 - { j - k - 1  )2d- ig ( . fc+ 1 )
j  « I

/ V =  +  A -  (j -  ,
j - k

with obvious modifications when j  = k + 1. It is then readily seen that as

Ew(j\  d)w(k ; d) «  ^ ((; -  A; +  l )2d_1 -  2(j -  h)™'1 + (j  -  k -  l ) 2d_1) , (2.38)

which agrees with (2.12); in particular, we have, for r ,  j  > 0 and d = dj

Ew(0; d)w(r\ d) =  Eb(j\ dj)b(j +  t ;  d/) . (2.39)

The greater dependence on the origin in W (r;d), relative to B (r ;d j ), was offered as a 

criticism by Mandelbrot and Van Ness (1968). Another drawback with the joint distri­

butions of W(r;d)  is that the self-similarity property only applies insofar as univariate 

marginal distributions are concerned. The possibility of providing type II fractional 

Brownian motion with a harmonizable representation in the sense of (2.15) is still an 

open field for research.

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)
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Three reasons can be advanced for interest in W{r\ d). First, it is defined on the same

domain as B(r).  Second, while B(r\dj)  is well defined only for \  < dj < |  (the integral

T(dj) diverges when dj > |) ,  W(r\d)  is defined for all d > I. The value of this can be 

seen in connection with our third point, which indicates how W(r;d)  can describe the 

limit behaviour of certain nonstationary fractional processes. Define the process Zt as 

(1.2) in Chapter 1, i.e.

, f ??., t > 1
z t = ( l - L ) - dr,'t , t > l , r , ' t = { U' ~  , (2.40)

[ 0 t <  0

where the sequence rjt has zero mean and is covariance stationary with spectral density 

/(A) such that r]t is short range dependent, in the sense of (2.1). The convergence

r  (d) (2d -  l)5 n 1/2-dz|nr| =  T ( d ) ( 2 d - l ) h n(r) =» W(r\  27r/(0),d), 0 <  r < 1 , (2.41)

has been discussed by Akonom and Gourieroux (1987) and Silveira (1991), the former as­

suming i.i.d. innovations, the latter considering more general absolutely regular processes. 

The convergence (2.41), combined with the continuous mapping theorem, is useful in 

characterizing the limit distribution of various statistics arising in inference on nonsta­

tionary, possibly fractionally integrated processes, especially in cointegration analysis of 

econometric time series (Chapter 4).

It is of some interest to remark that W (r; d) is taken for granted as the proper defin­

ition of fractional Brownian motion in the bulk of the econometric time series literature, 

whereas the probabilistic literature focusses on B{r \d i ). This dichotomy mirrors differing 

definitions of nonstationary fractionally integrated processes, as mentioned in Chapter 1. 

One definition, zt, which led to IT(r;d), is given in (1.2)/(2.40). The other, which led to 

B(r;d j)y was obtained in (1.129) where we set

= = (2.42)
3 =  1
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where Q is as before zero-mean, stationary long range dependent of order dj — 1. Both 

x t and zt can be viewed as nonstationary fractionally integrated processes, but (‘2.4*2) 

allows only dj < | .  To compare (2.40) and (2.42) when |  < d < |  rewrite (2.40) as

(1 - L ) z t =  (1 -  L Y ~ \

= • (2-43)
j = 0

Now in case x t and zt have the same order of integration (dj =  d) and the same short
oo

range dependent input, so that Ct = satisfies (2.18), in view of (2.20))
j =o

we infer from (2.40) that

oo

(1 -  L){xt -  Zt) = Y ,  t > l  . (2.44)
j = t

In case the spectral density of r]t satisfies a stronger condition than short range depen­

dence, namely 0 < /(A) < C, 7r < A < 7T, (2.44) has variance

=  O  ( t 2d' 3)  - »  0  (2 .4 5 )

as t —* oo, because ipj = 0 ( j d~2).

From ( 2 .7 ) / ( 2 . 8 )  and (2 .2 4 )  we may write down an identity between B(r\d)  and 

W  (r; d) for r  > 0

-  < ® { ( A 3 b 5 H' ( M )  +  ' ('''‘' ) }

=  {1  +  (2d — l ) T ( d ) } _1/2 V r (r ;d )  +  U(d)~1I(r-,d)  (2 .46)

where

J ( r ; d )  =  { ( r  -  s ) d_1 -  ( - s ) <i“ 1}  dB(s) . (2 .47 )

57



Thus B(r; d) is composed of two independent components, one of them a scaled W(r\d).

Occasionally the different definitions of fractional Brownian motion on the one hand, 

and of fractionally integrated time series on the other, have led the definition (2.42) of 

fractionally integrated x t to be incorrectly associated with W(r\d).  An important early 

theoretical econometric contribution in the literature is Sowell (1990), who considered 

the limiting distribution of the least square estimate of the coefficient of a first order 

autoregression in case the true coefficient is 1 and the innovations actually have long 

range or negative dependence. Sowell asserted under conditions assuring (2.18) and with 

X[nr] given by (2.42), that

(cn2d/_1) 1/2 x [nr] => W (r;d /), 0 <  r  < 1, \  < d i < \  > (2-48)

in contradiction to (2.19). Consequently Sowell’s Theorem 3 requires correction by simply 

replacing W(.,d)  by B(.\d).  Related work of Dolado and Marmol (1996), Lubian (1996), 

Cappuccio and Lubian (1997), also appear to make use of (2.48) rather than (2.19) and 

can be corrected in a similar way. To be precise, Sowell considers (2.42) for ~  I(di  — 1) 

and under the assumption that

Ct =  (1 -  \  <  di < \  , % =  *•*•<*• . -%elT <  00 . (2-49)

where 7 satisfies (2.21). We can generalize Sowell’s results as follows. Consider the case

where (2.42) and (2.49) hold, but rjt rather than being i.i.d. is generated by the linear

process

OO
r,t = m t t ,  d(L) = ' £ 0 j Lj , t t ~  i .i.d.(0,ol) , (2.50)

j=0

dj  =  £>|f i pr <  0 0 , 7 > ■ (2-51)

We can rewrite

Ct =  (1 -  L )-* '- '<>(£)*t =  , (2-52)
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where tt(L ) =  TtjlP is such that (1 — L)~dl~ld(L) = tt(L). From Lemma 2.4 in the 

Appendix we learn that 7iq ^  C jdl~2, and hence as a consequence of the results from 

Gorodetskii (1977), under (2.42) and (2.50)/(2.51) we obtain, as n —► oo

1 < d  3
f t  B*(r-,d,)dr ' 2n((p -  1) =► J  , ,  ’ V  ’ 1 <  dI < n > (2-53)

nM' l (£ -  1) => ~  fl , J C , , 1 < d,  < 1 , (2.54)
J0 B 2(r;d 7)dr 2

where £  =  (EJL2 E lU ^ - i^ t  and

/  „ 2 d / - l \  /  1 n \  n

c  =  ( i™  - ^ - J x (P lim - E c ? ) . =  ^ ’(E C .)  • (2-55)

For di > 1 the fractional, unit root distribution under these more general assumptions is

the same as the result obtained by Sowell (1990). Also, by the ergodic theorem

P i t - ^  E C ?  =  S / J 1  "  a.s. . (2.56)

Note that in a similar context, Chan and Terrin (1995) and Jeganathan (1996) make 

appropriate use of (2.19).

2.4 THE FUNCTIONAL CENTRAL LIMIT THE­

OREM

The purpose of this section is to establish a functional central limit theorem for mul­

tivariate fractionally integrated processes which will extend the works by Akonom and 

Gourieroux (1987) and Silveira (1991).

The main ingredient for the proof of (2.41) is the decomposition of zn(r) into two
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different elements, namely

Z n ( r )  =  qn ( r ) + r n ( r ) ,  (2.57)

sup |rn(r)| =  op( 1) , (2.58)
re  [0,1]

for qn(r) = (2d — l )1/2 X lH  1(r — “ )d-1^z, Wi =  n.i.d.{0, 1) and rn(r) a remainder term. 

Weak convergence of qn{r) to W(r; d) entails proving convergence of the finite dimensional 

distributions and tightness of the sequence qn(r), as well-known; the argument provided 

by Akonom and Gourieroux (1987) to establish convergence of the finite dimensional 

distributions appeals directly to the definition of the stochastic integral W (r; d) as the 

mean square limit of the partial sums qn{r). Here we disagree with their proof because 

W(r;d)  defined by (2.24) is not an Ito integral as a function of r , but only for fixed r

as a function of s; more precisely, the integrand function (r — s)d_1 in W(r\d)  is not

adapted to the filtration =  <j(H(/z), fi < s) as r  varies in [0,1]. On the other hand, 

for (2.58) to obtain we need an approximation theorem for partial sums of short range 

dependent variables; Akonom and Gourieroux (1987) refer to results by Komlos, Major 

and Tusnady (1976) and Major (1976), which state that if is a sequence of i.i.d.

random variables such that E\vi \q <  oo for some q > 2, E v j =  0 and E v \  = 1, we 

can construct a copy of {vt}™ (denoted {Pt}^°) and a sequence of i.i.d. random

variables with W\ — AT(0,1) such that

sup |^ t=1 ~-t ~ 1—-| =  op(l) a.s. H(n) — n 1̂ 9 . (2.59)
i <j<n E(n)

The results by Komlos, Major and Tusnady (1976) and Major (1976) are actually 

more general than reported here because they allow for a broader class of functions H(n) 

than powers of n. The procedure we will pursue for the extension of (2.59) to the case of 

dependent innovations relies in part on ideas that have a systematic exposition in Phillips 

and Solo (1992) but can be traced back to Hannan (1970). We shall use the so-called
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Beveridge-Nelson decomposition to rewrite partial sums of stationary linear sequences

(1989) can be applied) plus a stationary process, that we will bound conveniently under 

appropriate moment conditions. In the sequel, we indicate by P o x  the probability law 

of the random vector x ; empty sums axe taken to signify zero. The following assumptions 

introduce the generalization of (2.40) to the multivariate case

A ssum ption 2A 1 For da > |  , a = 1, ...,p, let

A(L) =  A jL3 =  diag {(1 -  L )~d\ ..., (1 -  L)~d"} , ©(L) =  £ 0 ^ '  , ||0(1)|| < oo ,
j= 0 j=0

(2.60)

as partial sums of i.i.d. random vectors (to which multivariate results as in Einmahl

OO OO

and

*  =  a ( l )© ( l) i j ; ,  n: (2.61)

where

A ssum ption 2A 2

oo

Vt =  A ( L ) e t , A ( L )  =  A j U  , ||A(1)|| < oo (2.62)
j=—oo

(2.63)

A ssum ption 2A 3

e t ~  i.i.d. , Eei = 0 , E£ i£\ = E < oo , # ||£ i ||9 < oo , q > 2 , (2-64)

A ssum ption 2A 4

rank(Ti) =  rank(A(  1)) =  rank(Q( 1)) =  p . (2.65)
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We refer collectively to Assumptions 2A1-2A4 as Assumption 2A. For da a positive integer 

and 0(.), A(.) finite order matrix polynomials Assumption 2A covers for instance the 

class of Vector Autoregressive Integrated Moving Average processes (V A R I M A ), which 

extends to the multivariate case the well-known class of A R I M A  models; also, we note 

that for non-integer values of da, due to the truncation on the right hand side of (2.61), 

the class {zt} defined there is more general than

[ 9(L)r)t , t >  0,
*  =  rjt =  -  , (  =  0, ± 1,... . (2.66)

I 0, t  <  0,

The stationary linear specification adopted for {r]t} in (2.62)/(2.64) is instrumental for 

Lemma 2.2 below; extensions to forms of asymptotic stationaxity and stable heterogene­

ity can be allowed for, provided the approximation results of Lemma 2.2 are suitably 

generalized. (2.63) is a mild form of short range dependence condition, which is for 

instance implied by
OO

£  j 1/2||^ I I  < oo , (2.67)
j — — OO

compare Phillips and Solo (1992); (2.67) is implied, for instance, if the spectral density 

of 7ft is differentiable at the origin. Condition (2.65) ensures that the asymptotic limit 

process will have nondegenerate finite dimensional distributions.

For Gaussian eu the decomposition (2.57) /  (2.58) is redundant and Assumption 2A 

suffices for weak convergence. We focus, however, on the more general case where the 

distribution of {£t} is arbitrary; the following lemma follows from Theorems 1,2 and 4 in 

Einmahl (1989).

L em m a 2.1 (Einmahl (1989)) Let {et} : «S —► Rp be a sequence of random vectors 

such that Assumptions 2A3 and 2B hold. Then we can construct a probability space 

(<Sq, ^ 0: Tq) and two sequences of independent random vectors {et} , {wt} with Po oet =
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P  o £t , P0 o w t, = N ( 0, E). n E Ar, such that

n n

^  et — X > | |  =  o{nltq) a.s. . (2.68)
t=i t=i

and
71 71

,=1 t= ,

Results from Silveira (1991) suggest tha t under moment conditions stronger than As­

sumption 2A3 (2.68) can be extended for q < 3 to cover forms of dependence other than 

linearity, such as strong mixing; mixing conditions do not in general allow for more gen­

erality than linear models, however, (Pham and Tran, (1985)). We can now establish 

approximations for partial sums of multivariate linear sequences as follows.

L em m a 2.2 Under Assumptions 2A2-2A3 we can construct a probability space (<S0, Q'o, Po) 

and two sequences of independent random vectors {fjt} , {wt} with P0 o fjt = P  o 7)t , 

Pq o  wt — N ( 0, E), n  E A , such that as n  —► oo, for 2 <  s < q

S(n) — V(n)  = o(nlts) a.s. , (2.70)

l i s p y n ? ) ! !  _  ,971xsup J, 7
j< n  Tl '

for S(j)  =  E h  Vt and V(j)  =  A(l) E L i W  .

P ro o f  For scalar x, we have

A(x) = 4(1) +  (x -  1) {A+(;r) -  A"(x)} (2.72)
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where

A +(x) =  A~{x) = Y , A ~ix i , (2-73)
j = 0  j = 0

OO OC
a ;  =  E  Ak> AJ =  E  -4-* • (2-74)

k—j’+ l A;— j+1

Then

X 7?* =  X £t ^0n (2-75)
t=i t=i

where £0n =  £$ ~  £o -  e+ +  £~ , e f  =  A+(L)et , £t-  =  A~(L)et . Also

^lleonll5 <  c  { B ||e f  ||« +  £ ||£ 0- | |5} , (2.76)

where

E \ \e + r  <  C e | | : | | 7 1 + | | 2 | M | 2 J

< c j f  ( £ | |a ; ih |£. , ip) 2/,J

<  c | £  IIA +fJ £ |M I ' < o o  (2.77)

using Burkholder’s (1973) and Minkowski’s inequalities. In the same way II9 < °0

. Thus £on =  o(nl ls) a.s. by Markov’s inequality and the Borel-Cantelli lemma. The

proof of (2.70) is completed by application of (2.68) to A(l)£* and the identification

rjt = A(L)et , for et introduced in Lemma 2.1. To establish (2.71) write

s{j) - v(j) = A(l) j£et - Tu,«l + ?<W’ (2-78)
[t=l t= 1 J
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and hence P(supJ?<n ||S(j)  — V{j)\\ > An 1/s) is bounded by

J A An1/ 5
P(sup M ( l ) ( ^ £ t -  X ><)ll > —5—) +  P(sup lieojII > —5—) (2.79)

3 < n  t=  1 f = l  ^ ^

By 2A4, the first component of (2.79) is bounded by

^ ( SUP II ( £  ~  £  wt) II > <5An1/s) . (2.80)
j<n t=l t=1

for some 0 < 6 < 00. From (2.69) it follows that the wt can be chosen as n.i.d.(0, E) such 

that

SUP l l ( £ et -  X ^ « )ll =  °p("1/3) (2-81)j<n t=1 t=1

because A is arbitrary. The second component of (2.79) is bounded by

11 11 Anl/\  ^ „ E s a P j< n  ll£0ill9
suplko.ll >  —  ) < C -  -

<  c n g ( l l 4 r  +  ||6oll9) 0 (2.82)
(An1/*)? v '

as 71 —> 00 in view of previous evaluation. □

The only part of Lemma 2.2 which is used in the sequel is (2.71), but we have chosen to 

insert (2.70) to mirror the derivation of analogous results by Komlos, Major and Tusnady 

(1976) and Einmahl (1989). For a recent contribution on weak martingale approximations 

for sequences of linear processes see also Truong-Van (1995).

A ssu m p tio n  2B For q defined by Assumption 2B we have

2
q > max(2, —----- - )  , d* -  min (da) . (2.83)

ZGt* — 1 l<a<P
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A ssu m p tio n  2C For 0(L) defined by Assumption 2A and 'dab̂ k the a, 6-th element of 

0 k , we have

(2.84)

where 6a = max(4 — da, da) .

In view of Assumption 2A3, Assumption 2B is vacuous for d* >  1. In the literature 

on weak convergence there is typically an increasing relationship between the amount of

“memory” one allows in the process and the order of the moment conditions imposed 

on the innovation sequence; for instance, in Herrndorf (1984) normalized partial sums of 

covariance stationary mixing sequences {r)t } are considered, the argument to establish 

weak convergence requiring tighter moment conditions on r/t the smaller the mixing rate. 

On the other hand in (2.83) a larger amount of persistence, i.e. a larger entails weaker 

moment conditions, at least for d < 1. A heuristic explanation is as follows: while the 

mixing rate in classical central limit theorems does not affect the -y/n-normalization, here 

(Theorem 2.1) a lower value of d* entails a smaller normalization, and hence tighter 

bounds on the remainder terms are needed (cf. also (2.21) and (2.22)). Assumption 2C 

imposes a mild upper bound on the asymptotic behaviour of the weight matrices Qk- 

Define the normalizing matrix function D(n\dz) as

D(n;dz) = diag < ( , dz (d \ ,..., dp)

(2.85)

and multivariate fractional Brownian motion for r > 0 as

(2 .86)

(2.87)
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where Q = A(1)EA(1)' is a p x p full rank matrix by 2A4 and G(.) has a, 6-th element

G(r) = | ( 2da -  l ) 2tfab( l) rda , a, b =  1, ...,p . (2.88)

For 0 <  r  < 1 we have rank(G{r)) = rank(0( l )) ,  for any dz . Also, for {rjt} introduced 

by Lemma 2.2 define a copy of {zt} as

rjt, t > 0,
~  , t =  0 ,1,... . (2.89)

0, * < 0,

Clearly the analysis of the weak convergence of a (suitably normalized) {zt} is sufficient 

to establish weak convergence for a (suitably normalized) {z t }• Define for 0 <  r  < 1

zn(r) = D(n;d2)z[nr] , (2.90)

and note that zn(r) 6 D[0,1]P (Chapter 1). The proof of weak convergence in D[0, l]p 

involves the same steps as for the univariate case (see e.g. Csorgo and Mielniczuk (1995)), 

namely convergence of the finite dimensional distributions and tightness of the compo­

nents of zn(r).

T h eo rem  2.1 Under Assumptions 2A, 2B, and 2C, for 0 <  r < 1

zn(r) =4> W (r \d z ,Q) as n  —> oo , (2.91)

where =4̂  signifies convergence in the Skorohod J\ topology of D[0, l]p .

P ro o f  This proof draws from the argument of Akonom and Gourieroux (1987) for the 

univariate case, with modifications and corrections. For S(j) ,  V( j)  defined in Lemma 

2.2 we can write

[nr]

zn(r) = D(n-,dz) J 2 u \nr]-k(S{k) -  S(k -  1)) ,
k=1
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— Ql n{r ) +  Q2n{r ) +  Qsn{r ) +  Q4n(?') +  Qbn(r ) , (2.92)

where the matrix sequence {IT^} is defined by IIfc =  5Z*=0 k — 1 , 2 , and

Qln(r) =
[nr] —1
T ,  G(r — h/n)n~1/2 [V f̂c) — V(k — 1)] 1 ([nr*] > 2) ,
i-—i

(2.93)

[nr] —1
Q‘2n{r) = D(n-,dz ) £  n KI_t [(S(fc) -  S(k  -  1)) -  {V(k) -  V{k  -

h — 1
l))] 1( H  ^ 4 )

[nr]
Qzn{r) = D^n , ci2) ^   ̂ [n|nT.j_fc G(nr  /j)

i-—i
[ V ( k ) - V ( k - l ) ] l ( [ n r •] > 2) , (2.95)

Qau (0 D(n;dz) [5([n?’]) — S([nr] — 1)] l([nr] > 2) , (2.96)

Qdn (?’) = D(n\dz)z[nr]l([nr] < 2) , (2.97)

where 1(.) is the indicator function and G(r) = = 1 , - , p so that

D(n;dz)G(nr — k) = n  l^2G{r — k /n)  . (2.98)

The result will follow if, as n —*■ oo ,

Qm{r) => W(r-dz ,Q ), r e  [0, 1] , (2.99)

sup ||Qin(r)|| =  op(l) , i =  2 ,3 ,4 ,5  . (2.100)
0 < r < l

Now (2.99) follows from Lemma 2.3, while (2.100) with i = 2 from Lemmas 2.4-2.6, with 

i = 3 from Lemma 2.7, and with i = 4,5 from Lemma 2.8. □

Applications of Theorem 2.1 to asymptotic inference on frequency domain estimates

for nonstationary time series are presented in Chapter 4. As noted by Akonom and

Gourieroux (1987), for the special case where d* > 1 a much simpler proof of Theorem 

2.1 is made possible by Abel’s formula of summation by parts and the continuous mapping 

theorem. Also, for the univariate case Silveira (1991) noted that the conditions on the
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moments of the innovation sequence {t*} can be relaxed if we focus on the smoothed 

multivariate series

~ M  =  ^ I > - 0 < r < l  . (2-101)
71 t =  1

Clearly for r = 1 we have = ~zni i.e. the sample mean of {zt} ; the process z ^  

can be interpreted as representing the fluctuations of the partial means of zt. We have 

the following

Corollary 2.1 Let Assumptions 2A and 2C hold. Then as n —* oo , for 0 < r  < 1

nD(n;d+)zfnr] =* W(r;d+,Q) . (2.102)

where d j  =  (d\ -f 1, ...,dp +  1).

P roof Rewrite

nD(n ;d+)z+r] = D (n \d j)(  1 -  L)~lz [nr]

= D (n;d*)A+(L)Q(L)r){nr] , (2.103)

for A +(L) =  diag |(1  — L)-dl_1, ..., (1 — L)_dp_1|  and ©(A), 77̂  the same as in As­

sumption 2A. Hence d+ =  mini<a<p(da +  1) >  § , and then (2.102) follows immediately

from Theorem 2.1. □
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A P P E N D IX

L em m a 2.3 Under the assumptions of Theorem 2.1

Qm{r) => W{r;dz ,Q) , r  € [0, 1] . (2.104)

P ro o f  Since Q\n(r) and W{r\d, H) are Gaussian, convergence of the finite dimensional 

distributions follows if we show equality of the first, two moments. The fact that

Jim  E Q ln(r) = EW{r\dz, Q) =  0 , (2.105)

is obvious. Also, fix without loss of generality r2 > n ;  from the well known identity 

vec(ABC) = (C' 0  A)vec(B)  , we have that

vec (^EW(ri]dz,Q)W(7'2]dz ,Q)''j = J  (G(r2 — s) 0  G(?q — s)) vec(Q)ds . (2.106)

Now note that the absolute value of the a, 5-th component of G(i ' — £) is bounded by 

a costant. if da > 1, and by the absolute value of the a, 5-th component of G(r — s) if 

da < 1, ^ < s <  hence, by the dominated convergence theorem

/  x [ n r i ] - l  /  , k  \  1
vec ( lim E Q ln(ri)Qln(r2)'J =  lim I G{r2 ------ ) 0  G ( n  ) 1 vec(Q)-

\ n —*oo J  n - >° °  \  n  n  J n

[ n r i ] - l  Mk+\)/n
— lim V ' / {G(r2 — s) 0  G(ri — s)) vec(Cl)ds

n—>°° Jk/n

=  f  (G{r2 — s) 0  G(ri — s)) vec(Q)ds , (2.107)
Jo

so that (a) is established. As far as (b) is concerned, Akonom and Gourieroux (1987), 

p. 13 show that a tightness criterion for Gaussian series is given by, for a — 1, ...,p ,
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0 < r, < r < )-2 < 1

-  Q ^ r M Q ^ n )  -  Q ^ ( r ) \ 2 < C |r2 -  n f '  , 7 > 0 . (2.108)

To prove (2.108), define for 0 <  r < 1, a = 1, ...,p,

R««(r) = Z ( r  -  ( j3 (* ) -  B(-V ) ) ,
fc = 1 n' n n

(2.109)

where B(.) is as before univariate standard Brownian motion.

Consider first the case where 7q > 0. The inequality (2.108) is trivial for any fixed n  

(n0, say); we can take n0 =  [^] and focus without loss of generality on n > nQ , so that 

?q > |  always holds. Note that, for a finite positive constant C  depending in general on 

0 (1) and da but not on i \ r 2, we have

E  { q S M  -  Q^nVi)}* E  { Q ftfo )  -  

< C E  {Rnn(r) -  Ran(r-i)}2 E  {Ran(r2) -  Ran('r)}2 ■ (2.110)

From (2.109) we obtain easily, for 0 < p1 < p2 <  1,

E  { R a n M  ~ Ran{pi)}2 =
1 faPil
- Y  n h +

i [ny2] k

ft=l+(nri]
E \{p i ,p 2) +  A>(/T>P2) . (2.111)

Now if da > 2, Di(p1,p2) < (da — 1 )2(p2 — px)2 by the mean value theorem and easy 

manipulations; if 1 < da < 2, Di(p1,p2) < (p2 — p j)2̂ -2 from the inequality \x +  y\° < 

\x \° +  Iv \6 1 1 <  ^ < 2; if da =  1, -Di =  0. Finally, if \  < da < 1, we note that for p2 > p1} 

s 6 ( oo,px)

f i s) =  (Pi -  5)da_1 -  (P2 ~  5)da_1 (2.112)
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is non-decreasing, having derivative

(1 — {(pj — s)d“-2 — (p2 — s)"*”-2} > 0 (•2.113)

Therefore

Di{p11p2) < [  1 f { s ) 2ds
Jo

= (p2 -  Pi)2d“~2 / ' Jo
S _  ( s y a-i(1 4 - )da 1 -  (

P2 Pi P 2 Pi
ds

roo , 9

< (p2 -  Pi)2da_1 I (! +  ^)da_1 -  ^ a-1l dv = C(p2 -  p ^ - ^ . l U )  Jo L J

because for  ̂ < da <

roo r , 2
j  |(1 -f- v )da~1 — u da_1 dv < OO , (2.115)

as discussed in Samorodnitsky and Taqqu (1994). It follows that Di(p1,p2) < C(p2 — p1)'y 

for some 7 > 0. Let us now consider D^{pi, p2)i we assume without loss of generality 

^  ^  dd ^  1, we have

L>2(Pi,P2) ^  P2~
[npi\ +  1

n

< (P2 ~ Pi) +  ~  • n
(2.116)

If instead \  < da < 1, we have that (r — s)2da 2 is non-decreasing in s, for 5 < r . Hence

»[np2] / t

£ 2(f t ,p 2) < [  { p . - s f ^ d s
•/(l+lnPiI)/n

< f 2(P
J Pl

_   ̂(^2 Pi)

2ds

2 d a - l

2d
(2.117)
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which, together with (2.116), gives

E 2 (pi5 P 2 ) <  C(p2 — PiY  4- some f i  > 0 . (2.118)

for all da > | .  Now we identify p2 — 7h Pi ~  r i to bound the first element on the right 

hand side of (2.110), and p2 =  r2 , pY = r to bound the second element on the right hand 

side of (2.110), so we consider together Z?i(r1,r) , D 2(ri,r)  and Di(r, r2), D 2(r,r2). For 

v2 — 7’i < ~ implies either D2(ri,r) = 0 or D2(r,r2) =  0; we assume D2(ri,r)  =  0. Hence 

for 7'2 — 7*1 > ^ we deduce from (2.116) and (2.117) that

E { R an(r) -  R an(ri)}2 E  {Ran{r2) -  R an{r)}2 = CDi(r1:r) [D1(rir2) +  D2(r,r2)]

< C(r2 — 77 )7 some 7 > 0 . (2.119)

Otherwise, when r2 — 77 > we have

E  {Ran(r) -  Ranin)}2 E  {.Ran (7*2) ~  Ran(r)}2 < C max((r -  n ) 7, (r2 -  r )7) -f n
< C  max((?’ -  77)7, f a  -  r )7) +  (r2 -  77)2

< C{r2 -  n )7 , 7 > 0 . (2.120)

The case 77 =  0 can be dealt in a similar way; the result then follows from (2.110). □

L em m a 2.4 Let d > — \  and set

6 =

4, d <  0 ,

4 -  d, 0 <  d < 2 ,

2, 2 <  d ,

(2.121)
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Consider the lag polynomial whose coefficients are determined by

OO
$(x) — ' ^2‘dicx h, |^&| <  Ck~6 , |x| < 1 , (2.122)

A:=0

and write

* k “ S ^ r w r o '  +  i) ’ k = 1’2’"  ’ ( 2 ' 1 2 3 )

Then as k —* oo

K  -  <  Ckd~2 . (2.124)
r ( d )

P ro o f  This lemma generalizes analogous results from Akonom and Gourieroux (1987), 

Silveira (1991) and Kokoszka and Taqqu (1995), on one hand allowing for algebraic rather 

than exponential decay of the coefficients {$*;} , on the other hand establishing a bound 

of order 0 ( j ~ s) rather than 0 ( j -1) for d < Note first that from Abramowitz and 

Stegun (1970), formula 6.1.47, there exist a constant C such that

(2.125)

The left side of (2.124) is thus bounded by T(d)~1 { / +  77 4- I I I  +  I V }  , where

(I) =  | ^ | r  ( d ) , ( I I I )  = ' t \ ^ ^ \ \ f - 1 - k d- 1\ (2.126)

{II)  =  S 1̂ 11̂ - ^ 11 * { I V ) = lp ^ W )  • (2-127)

By (2.122), /  <  Ck~6 < Ckd~ \  and I V  < Ckd~s < Ckd~2. By (2.125) I I  < C  £$=1 K - j l / " 2. 

For d > 2 this is 0 ( k d~2) by summability of tfj implied by (2.122). For d < 2 it is bounded 

by
(/c/2] k oo oo

/ _2+ E l^-il/”2= E l̂ l + ̂ -*EI^I. C2-128)
j = l  j —[k/2\  J=l*/2] 1=0

and this is 0 ( k d~3 +  kd~2) =  0 ( k d~2) by (2.122). For d > 2, by the mean value theorem
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I l l  < Ckd 2 J2j=i |$ fc—j | ~  j)  < Ckd 2 by (2.1*22). Instead for 0 < d < 2

[*/2] A

/ / /  < +  Y ,  \ ^ - A ( k - j )
j=1 i=[&/2]

< C(k~2 +  /cd~2) < 2Ckd~2 . (2.129)

For — ̂  < d < 0

[fc/2] k

I I I  < Y  +  Ckd- 2 Y  \ ^ - A ( k  -  j ) . (2.130)
3 =  1 j = \ k / 2]

The second term is 0 ( k d~2), whereas the first is, by the mean value theorem, less than

C kd- 1k - d 'Ej>\k/2\3\tij\ < Ck~3. □

L em m a 2.5 Under the assumptions of Theorem 2.1, we have, for 11* =  {7Taft,fc}ab , 

a ,b =  1 ,...,p

7r°6,fc ~~ =  0 ( k da~2) j as fc —* oo , (2.131)

and for 0 < ?’ < 1

lln H  -  G(nr)|| =  0 ( £ [ n f “2) . (2.132)
Z=1

P ro o f  Under Assumption 2C, (2.131) follows from a straightforward application of 

Lemma 2.4 to

* ab,k =  ’ k  =  1)2’■" ’ 2̂' 133^

for (2.132), rewrite

||n|nr] -  G(rar)|| <  ||n(nr| -  G([nr])|| +  ||G([nr]) -  G (nr)|| . (2.134)

The first element on the right-hand side of (2.134) is 0(]T^=1 [nr]da~2) by (2.131), while the 

second is 0(YZ,=i[nr]da2) by the mean value theorem, which entails that for a =  1, ...,p
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there exists a fia such that

(7i7’)da_1 =  [nr]da~1 +  (da — 1 )[nr 4- fia]da~2(nr -  [nr]) , 0 < fj-a < 1 . □ (2.135)

L em m a 2.6 Under the assumptions of Theorem 2.1, we have

sup |IQ2n(r)|| =Op(l)
0 < r < l

P ro o f  By Abel formula of summation by parts

[nr] — 1

Qm{r) =  £>(n; d,)  £  n M _* [(5(A) -  S(k  -  1)) -  V(k) - V ( k -  1
k=1 

[nr] - 1

=  D(n\ dz) [n (nr]-fc -  Iljnrj-fc-i [ S (k ) -V (k ) ]  +
k=1

D (n ;4 )n !  [S{[nr] -  1) -  U([nr] -  1)] .

Define II, =  IIj — IIj_i , where from (2.131) we obtain that t lj  is such that

a =  1

Thus

[nr]—2

| |« 2»(r)|| <  C E
j=1 _a=l

+

£ > 1/2 <'a||5([nr] -  1) -  V([nr) -  1)||
i—1

and hence by Lemma 2.2

V n —1

SUp ||Q2nM ||
0 < r <  1

=  op(l)■n}/3Y 2 ' E ( n - k )d‘‘~^nl/2~d‘,
0 = 1  fc=l
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= op( l)n 1' S r mi“(1/2'<,-~1/2) =  Op(l) , (2.140)

because by Assumption 'IB we can choose s > max(2, 2/(2d, — 1)) . □

L em m a 2.7 Under the assumptions of Theorem 2.1

sup ||Q3nWII =  °p{1) ■ (2.141)
0 < r <  1

P ro o f  We have

[nr]—1

HQ3nWII < ™ax I W H 'I I  SUP \\D(n]dz){U[nr]_k -  G{nr -  k))\\ . (2.142)
J- n 0 < r < l  k= 1

As a consequence of Lemma 2.5,

p  [nr] - 1

sup ||Q3„(r)|| < CmaxWwjW sup ^ n 1/2_da ^  ([nr] -  k)dia~2 , (2.143)
0 < r < l  0 < r < l a= 1  fc=1

which for da > |  is bounded by

p

c V) n “ mm(1/2»da-1/2) max n^.|| =  C*n-5 max ||iUj||, some 6 > 0 . (2.144)
a=i j~n j - n

Denote by waj the a-th component of the vector process Wj , and recall that waj = 

n.i.d.(0,a2), for a 2 the a-th element on the main diagonal of S  ; now for any A > 0 , 

i = 1 ,...,p

P  ln ~ s max ||wj|| > a |  =  0 (n  P  {\waj\ > An5} =  o(n e~(Xn6)/2al} — 0(i) i 
J - n  ' 0 = 1  0 = 1

(2.145)

where the second step follows from the inequality

roo „ g ~ P 2/ 2
/  e I du < --------- , y. > 0 . □ (2.146)

Jp n
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L em m a 2.8 Under the assumptions of Theorem 2.1

sup HQinMII =  0p(!) , i =  4,5
0 < r < l

P ro o f  For any A > 0

A) < C P  (max \\fjk \\ > And‘" 1/2)
k< n

CnPiW^W >  A n-'-1' 2)

0 ( n  x n 4*1/2-"-)) =  o(l) ;

likewise

sup HQsnMH =  max{\\D(n\dz )7j1\\,\\D(n;dz)(fj1 +rj2)\\}
0 < r < l

=  0p(1) ,

because E\\rj1 -f rj2|| =  +  t}2\\ < P||?7i|| +  ^ ll^ ll an<̂  under Assumption 2A

oo

£|MI = Eh»II < £  P i P M  < oo. □

P(  sup ||<34n(r)|| >
0 < r < l

<

(2.147)

(2.148)

(2.149)

(2.150)
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Chapter 3

THE AVERAGED 

PERIODOGRAM IN  

NONSTATIONARY 

ENVIRONMENTS1

3.1 INTRODUCTION

In Chapter 1 we introduced the discretely and continuously averaged periodogram ma­

trices (also labelled as the integrated periodogram), which have long been known as 

fundamental statistics in time series analysis. The averaged periodogram of a station­

ary sequence has very much in common with the empirical distribution function of an 

i.i.d. sequence, and in fact this statistic is sometimes also called the empirical spectral 

distribution function (Anderson (1993), Kokoszka and Mikosch (1997)); this analogy has 

motivated many subsequent applications. Grenander and Rosenblatt (1984) constructed

lrThe content o f this chapter is based on the paper “Narrow Band Approxim ations o f 
Sample M oments in the Presence o f D eterm inistic and Stochastic Trends”; this paper is 
the outcom e o f joint work with Prof. P.M .Robinson.
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Kolmogorov-Smirnov type tests for the averaged periodogram of a finite variance process. 

Dahlhaus (1985) showed that the difference between the sample and process spectral dis­

tribution multiplied by the square root of the sample size converges weakly to a Gaussian 

process under several alternative conditions. Dahlhaus (1988) proved uniform central 

limit theorems for versions of the averaged periodogram indexed by set of functions 

(cf. Mikosch and Norvaisa (1995)). Anderson (1993) derived the limit distributions of 

test statistics of Kolmogorov-Smirnov and Cramer-Von Mises type for the averaged self­

normalised periodogram. More recently nonstandard conditions, such as processes with 

infinite variance innovations, have also been considered. Kokoszka and Mikosch (1997) 

consider stationary linear sequences Q = YlJLo where the sequence 'ipj need not

be summable. In that paper, the self-normalised averaged periodogram for the strictly 

stationary linear process Q is rewritten as

Pn(A) =  £  > ^  <  A <  *  • (3-1)

and the following approximation argument is shown to hold:

'« (* )  ~  l xr  u c w  j .  „  r
j -*  l E ” o ^ e - « sP J-*  l£°Zo'/’Je - i* l2

=  I h d s)ds
J- I T

— C* +  +  2 5Z — “  ~c« ( r ) i 0-2)
r = l  T

where
n —T

cK(r) =  n  1 Y ,  Ctft+r • (3-3)
t =  1

It is also shown that as n —► oo the process

(Pn(A) -  cK(0)) (A +  7r) , -7T < A < 7T (3.4)
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° Aweakly converges to a Brownian bridge process B (r) =  B(r)  — rB(2ir) defined on [0,27r] 

if E ^ 2 < oo; otherwise the limit is non-Gaussian. Finally, applications of these results to 

Kolmogorov-Smirnov and Cramer-Von Mises tests of goodness of fit, are considered (see 

also Kluppelberg and Mikosch (1998)).

The averaged periodogram is also the basis for the important W hittle estimate, which 

has been applied to the parameter estimation of long memory processes under Gaussianity 

(Fox and Taqqu (1986)) and under linearity (Giraitis and Surgailis (1990)), cf. Chapter 

1. Kokoszka and Taqqu (1996) recently considered W hittle estimates for long memory 

processes with infinite variance, a-stable innovations.

The behaviour of the averaged periodogram on a degenerating band of low frequencies 

has also raised much interest, especially because of its applications in many semipara- 

metric statistical procedures. In Chapter 1, we discussed the importance under short 

range dependence of F ( l ,  m)/Am as a consistent estimate for the spectral density matrix 

evaluated at the origin (Eicker (1967), Andrews (1992)); we also considered results for 

univariate and multivariate long memory time series (Robinson (1994a), Lobato (1997)), 

mentioning their application to the estimation of long memory parameters.

Under stationarity conditions, it seems therefore that there exists a large and dis­

tinguished literature on the asymptotic behaviour of the averaged periodogram matrix, 

covering also once unfamiliar circumstances as infinite variance innovations or processes 

with spectral singularities. Much less is known, on the other hand, on the asymptotic 

behaviour of F ( l ,m )  for variables that are not stationary and have moments that are 

not constant over time. To this area of research we point our attention in the next sec­

tion, where we consider approximation of sample moments by narrow band periodogram 

averages in the presence of deterministic and stochastic trends. Stochastic trends are rep­

resented as moving averages of stationary innovations with algebraic weights (Theorems 

3.1/3.2); this specification, as we shall discuss in the next chapter, covers multivariate 

fractionally integrated processes as introduced by Assumption 2A. We go on to cover 

smooth determinstic trends, for instance polynomial functions of time, in Theorem 3.3.
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All proofs are collected in the Appendix.

3.2 NARROW-BAND APPROXIMATIONS OF SAM­

PLE MOMENTS

where we impose the following assumptions.

A ssu m p tio n  3A   ̂ =  0 ,± 1 ,..., is a jointly covariance stationary process with

zero mean and bounded spectral density matrix.

A ssu m p tio n  3B  For a = 1,2, 0 <  72 <  7 2, 7j > 72 ^  the sequences <pat satisfy

Vat = Vt('7a)y where for t > 0,

As discussed in Chapter 4, Assumption 3B covers cases where is nonstationary 

whereas z2t is either 1(0) (72 =  0), has asymptotically stationary long memory (0 < 72 < 

1), or is nonstationary (72 > |) .

Consider a bivariate sequence zt — (Z\t , Z2 t)', t = 1 , 2 , . . . ,  defined as

^a t  ^  v V a . t —iVa-i  ? ^  1j ^ (3.5)

Vt( 7) =  l( t  =  0 ) , 7  =  0 (3.6)

(3.7)

(3.8)

(3.9)

1 , 7  =  1

We use here the abbreviated notation F12Q  =  F2l22(.), / 12O) — Iziz2(-)i and we 

consider not only the statistic F 12(l,ra ), but also F i2(m 4- 1, M ), where 0 < m  < M  <
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n/2.  The latter arises as follows. We have

7r m
Fi2(l,m ) =  — y ;  +  /i2(An_7-)}

71 j=\

=  ^ { ^ 12(1, m) +  F i2(n — m , n  — 1)} 

l F 12( l , n - l ) - i

2

" ^ F 12( l , n -  1) -  i p i 2(ra +  l , n -  ra -  1) . (3.10)

For n odd (3.10) is

and for n  even it is

i_F12( l , n - l )  — F12(m +  1, (n — l)/2 )  , (3.11)

^ F 12(l, n -  1) -  ^ F u (m  +  1, n/2) -  ^ F 12(m +  1, n /2  -  1) , (3.12)

where

F i 2( l , n - 1) =  1 ^ ( 2 1 , - 2 ] )  ( z 2 ( - 2 2) • (3 .13)
n t=i

The previous development follows Robinson (1994c). Because we are interested in ap­

proximations of an asymptotic nature, we introduce the following bandwidth condition

A ssum ption 3C

7Ti —> 00 as n  —> 00 . (3.14)

Under Assumption 3C, we will deduce that, when 7i +  72 > 1,

Fn{m  +  1, M)  =  op (n7l+72_1) (3.15)

by showing that both the mean and the standard deviation of the left side are o (?i7l+72-1).

Thus if |77,1_7l~72F12(l, n — 1) has a nondegenerate limit distribution, n 1_7l_72F12(l,m )

shares it. For 7 X -f 72 < 1, only the standard deviation of F i2(m +  1, M)  is o(t27i+72-1)
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and it is necessary to estimate EFi 2 (l. m), which differs non-negligibly from EFi2(l, [(n — 

1) /2]). We first, consider the means.

T h e o re m  3.1 Under (3.5), Assumptions 3A, 3B and 3C, for 0 < m  < M  < n /2

EF12{m +  1, M) = o (n7l+72_1) , 7i +  72 > 1 > (3-16)

and

E F n ( l ,m )  = 0  , 7l +  72 > 1 , (3.17)

=  ° ( G ) 71+721 ’ 7 i + 7 2 < i - (3-i8)

To consider the variances we impose the additional:

A ssu m p tio n  3D  (??itU?2t) fourth order stationary with bounded fourth-order cross- 

cumulant spectrum /  (ai1}/£2, ̂ 3) satisfying

7T 7T 7T

cumA( j , k j ) =  /  /  /  (/Xi, /n2, /Z3) exp 4- ifc/z2 4- iJ/z3)
A U fc=i— 7T —7T -7T

where c u m ^ j . k . l )  is the fourth order cumulant of 7710, rl2j i 1li,j+ki Vij+k+i f°r J> k, I = 

0 , ± 1,... .

T h e o rem  3.2 Under (3.5), Assumptions 3A, 3B, 3C and 3D, for 0 < m  < M  < n/2, as 

n —► 00

Var (Fii{m +  1, M )) =  o (n2(7‘+72_1)) (3.20)

and

Var  (F is(l, M )) =  O (n2'7' ^ - 1)) . (3.21)
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In view of (3.13), In (^ j )  distributes the sample covariance F i2( l ,n  — 1) across the 

Fourier frequencies A j  = 1, ...,n  — 1. Theorems 3.1 and 3.2 suggest that F12( l ,n  — 1) 

is dominated by the contributions from a possibly degenerating frequency band (0, Am) 

when the collective memory in is sufficiently strong (7 X +  72 > 1) while otherwise

jFi2(1, Tfi) — -^Fi2( l ,n  — 1) is estimated by its mean, in view of (3.18).

For the final result of this chapter, we replace the stationary innovation sequence with 

uncorrelated errors that can exhibit non-trending heteroscedasticity; also, we allow for 

deterministic trends of a polynomial nature. More precisely, let us introduce the following

A ssu m p tio n  3E  Let zt = X t+ ^ t i  where \ t  — (X10 •••iX-pt)' ls a p-dimensional determin­

istic function of t and u t is a real-valued, p x 1 stochastic process such that

u t =  (3.22)
*= 1

Eejs', =  0 , j  f i  k , £J||£t ||2 < C , k >  1 , (3.23)

with $0 =  Ip, v t-k =  , a ,b  = and, for 7„ > Sa >

| ^ , |  <  C{ 1 + 1)7*"1 , |x.tl <  C{ 1 +  t )s• , (3.24)

\ ^ , t  ~  V w + i I < , |Xo>( -  Xo,t+i I <  C ^ -  . (3.25)

Condition (3.23) is mild: the innovations et need not be identically distributed nor satisfy 

martingale assumptions, also some stable heterogeneity is allowed for. Condition (3.24) 

sets an upper bound on the asymptotic behaviour of {V’ab,*} an(i {Xafc} 1 which need not be 

decreasing sequences; (3.25) is a quasi-monotonic convergence condition (Yong (1974)). 

In view of (3.24)/(3.25), the sequences {ipat\  mirror the properties of cpat as defined by
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Assumption 3A; however, for simplicity, we consider here only the nonstationary case 

7a > a = 1, also, because the innovations et are now assumed to be uncorrelated, 

to allow for partial sums of short range dependent, possibly correlated processes the 

coefficients need not. be identically equal to unity for 7n =  1. The deterministic

component x at covers for instance the class

Xat =  m t K . sa > 1 , (3.26)

where l{.) is a bounded function varying slowly at infinity (Bingham et al., (1989)), i.e.

a positive, measurable function such that i (ct)/ i(t )  & 1 as t —► oo, for any positive c.

T h eo rem  3.3 Under Assumptions 3C and 3E, for 0 < m  < M  < n /2 , as n —► oo we 

have for a, b = 1, ...p

F?z {m +  1, M) = op(n**+*>-1 +  n6a+6b) , (3.27)

for la , lb  ^  1, <5a,Sb ±  0, and

F?z {m +  1 ,M) = op( r F ^ ' l+£ +  n6**6"**) , (3.28)

any e > 0, otherwise.

Theorem 3.3 provides the same sort of narrow-band approximation as Theorems 3.1 and 

3.2, hence this result does not require any additional comment.

86



A P P E N D IX

To assist proof of Theorems 3.1, 3.2 and 3.3, we introduce the following Lemma.

L em m a 3.1 Let be a scalar deterministic sequence such that

h - K m l  k |  < c ( i  +  t)'’- 1 , t = .

Then

5»„(A) =  X > ia K* (3.29)
t—U

satisfies, for 0 <  u < v, 0 < |A| < 7r,

SuvW  = 1, u =  0 , (3.30)

=  0, u > 0 , (3.31)

and for p > 0

(u + i y - 1 1

W ~ ’ w
|5U„(A)| <  C min ( i f , v , J  , 0 <  p <  1 , (3.32)

|SU„(A)| <  C ^ r , p > \ .  (3.33)

P ro o f  The proof for p = 0 is trivial, so we consider p > 0. Obviously |5UU(A)| < Cvp.

For 0 < p <  1 we can write, for u < s < v,

5 U„(A) =  g  Kteia  +  g ( *  -  Kt+1) g  e™ +  k , g  eitA (3.34)
t=U t=3 V=3 t~S
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by summation-by-parts. Thus because

± r ' s T T J0W -W ‘ *. <**>

we have
/  5p- i

I ^ . W I < C | ( « - l ) '  +  - j j H  • (3.36)

For 1 / |A| < Cv we may choose s «  |A|—1 so that (3.36) is 0 (|A |_P). On the other hand 

we also have

Suv{^) —  53 (^t —  ^ + i)  53 e%sX Kv 5^  > (3.37)
t = U  S — U  t — U

to give |5UU(A)| < C(w + l ) p-1/  |A|. For p > 1, (3.37) gives instead

|£ui;(A)| <  Cvp~l/ \ \ \  . (3.38)

□

P ro o f  o f T h e o rem  3.1 The discrete Fourier transform of zat is, from (3.5),

1 E z“te’a = 15=  itv>*,n-t(A)e“Vt,, a =  1,2 , (3.39)
y /27m  t=1 a \ f 2w n  t=1

where
t

A
= ,«  =  1.2.  (3.40)

8 = 0

Thus by Assumption 3A

1 *
E I a {A) =  —  f  $!(A, - At)$ 2( -A ,/i) /12(/x)d/i , (3.41)

— I T

where fab{p) is the cross spectral density of r)at, ?y6t and

♦.(A ,/!) =  a =  1,2 . (3.42)
t = l
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The modulus of (3.41) is bounded by

(
7T 7T

J  |4>i(A, J  |̂ >2(—A,/z)|2d j i
C
71 j.i

1
2 n  1 2

^  7  1 I I  SUP 1 , (3.43)
n  [j=i >* (=i J

from Assumption 3A. From Lemma 3.1, for 0 < |A| < 7r, t =  1 , ...,n  and a =  1, 2

I'ft.tWI =  0 >  1) +  p^7T1(7a <  ! )J
/ r?m ax(7 a - l , 0 ) \

=  0    w —o ' (3.44)\  [Al*1111̂ 70’ ' /

when 7a > 0. The latter bound also applies for 7a =  0, when it is 0 (1). Thus (3.43) is, 

for 0 < |A| < 7T,
^ m a x (7 i -  l , 0 )+ m a x (7 2- 1,0)

|A|

For A =  A,-, j  = 1,..., M, it is

^  ( i \ 1111511(7!,l)+min(724) ) (3.45)

o f . - ; ; ; -  ) .  (3.46)l jm m ( 7 1,l)+ m in ( 7 2, l )  J  '  J

Hence, when 7 X +  72 > 1, by (3.14)

M27T
F F 12( m + l , M )  < ^  |F / i2(Aj|

71 j = m + 1
oo

< Cn7l+72~ T  j -  m in frj, 1)—m in(7 2, l )

j = m

= o(ra7l+72_1) , (3.47)
m

E F n ( l ,m )  < C'n7‘+72“ l y ; j ' min(7' ’1)-»'in(72.i)
1=1

= O (n7l+72_1) . (3.48)
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Likewise, when 7 j +  72 < 1>

E F n { l ,M )  <  ;
7 =  1 J

= o „ £ p - r  (3 , 9,

□

P ro o f  o f T h eo rem  3.2 We first assume that 72 > 0. From (3.5) and (3.41)

/ 12(A) -  E /12(A) =  - L  E X > i , „ - t (A)952i„_s(-A )ei(t“a>A -  7 i2(s -  <)} . (3-50)
27rn t=i .=1

with 7^(5  — t) = Er}atr]bs. The left hand side of (3.20) is thus bounded by the real part 

of

X { E V u r) u rllr'l2q ~  7 l2(« “  0 7 l2(9 “  r )} . (3-51)

where
 - M  M  n  n n  n

E = E EEEEE-  0.52)
j= m + l  k=m+1 t=l s=l r==l g=l

(3.51) can be written as ai +  a2 +  ^3, where the three terms represent contributions from 

712(9 -  4)7i2(« -  r), 7 „ (r  -  t)-y2i{q -  s), k(s - t , r - s , q - r )  , (3.53)

respectively, in the last line in (3.51). Now

a i  47T27l4

  7T 7r

£//
— 7T -7T

x e i(t-S)AJ-i(r-,)Atei(,-t)A+i(»-r),,ji2(Â i2^ ^ Ad/i

1 \  \  M  M  n

W  /  /  E E î.n-t(̂ )Ê .n-s(-Ai)e-i5̂ -)
<4/1 l l  j=m+i k = m + l  S = 1
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r = 1 q— 1

^ ^  “f  M M
E  E  $ 1(Aj , - A ) 3»2(-A jjjU)4?r2n4

tt _7r j = m + l  fc= m + l

x4>i(—Ak , — f i ) Q 2( ^ k i  A )/i2(A )/i2(/z)dAd/i, , (3.54)

which is bounded in modulus by

§// M

j = m + 1

X

-7T —7T

M

y :  ^ i ( —a*, —//)$ 2(Afc,a)
fc= m + l

* §/ /
M

d / i d X

2

d f i d X

£ l / / . E  E  3>1(Ai , - A ) $ 2(-A 2,/x)

1
7r ^ M  M

_ tr -7T j = m + l  fc= m + l

x 4 > 2 ( — A * , A )^>2 (Aa:, — f i ) d f i d X , (3.55)

due to Assumption 3C and the fact that ^(A,^x) =  ^ ( —A, — /i). Now for £ =  1,2

^71 Tl
[  * t (Ai > - A ) * <( - A * , A ) d A  =  / E ^ , n - t ( Ai ) eit(Ai' A>E ^ - 5( - ^ ) e “ " (A‘ - A)rfA

_A jL t=i s=i

=  27TCjfc/ , (3.56)

where

Thus (3.55) is

f .= i

C M Af
4 53 53 Cjk,iCkj,277**

j = m + l  /c= m + l

(3.57)

(3.58)
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Consider first, the case 71 +  72 > 1- By (3.44) and elementary inequalities

72m ax (7 £, l)

so that (3.58) is bounded in modulus by

2
f  M  ,^mEix(71 —l,0)+ m ax(72  —1,0) \  /  M

_  I    1 < r>n2 (7 1 + 7 2 -1 )  I • - m m ( 7 1,l ) - m m ( 7 2,l)
rf l  I ^  \ 111^(7!,l ) + m in ( 7 2, l )  I — I J

\  i —m + 1 A„- /  \  i = m + l

<  c

J —m + 1  A j  J  W = m + 1

n2(7a+72-l)
m m in (7 ! ,l)+ in m (7 2, l ) - l

=  , (3.60)

using (3.14). Now consider the case 7 X +  72 < 1 but |  <  7 X < 1 and 0 < 72 < \  so that 

7i +  72 >  I* First we deduce from Lemma 3.1 the estimate

I7m I <  • (3.6D

Define

V^2fc(^) =  ^ 2 ,n  —1 ( ^ )  — =  LP 2 se  3 5 ^  =  2, . . . ,7 2  (3.62)
s —n —t + l

4
and ^ 21W  =  0, so that c^ ,2 =  5Z cfcj,2i where

i = l  ’

ct\2 — V,2,n-l(^*)¥!2,n-l( ^j)  (3.63)

=  E ^ 2 <(At )^2t( - ^ ) e it(A‘- ^ ) (3.64)
t= 1

=  -^2,„-i(A t ) E v 2 t(-A i)eit<A‘- Â  (3.65)
t = l

c$2 =  - V V ^ - A , ) ^ ^ ) ^ ^ ) ,  (3.66)
t =  1
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with D t ( \ )  =  e ^ X- Because
j =i

=  n , j  = k

— 0 , j  7̂  A- , m o d n  ,

using also (3.44) we have

( i )  _
Cfc;7,2 = n 2̂,77-1 (^j)

= 0 , jV / c .

2
=  o , j  = k

/2)
To consider c).^2, note that from Lemma 3.1, for 0 < q < n — 1,

c(2)kj ,2 ^  l^2t(^)^2t(_ ^i)l +  X! l^2t(^fc)^2t(“ ^j')l
<—1 t = n — g+1

< - T - E ( n - i  + 2)2̂ - 1>+ Cq

< C

<

t= 1 
,272-1

(A;Afc)^

+AjAfc (AjAfc)72
C

(AjAfc)72+1/2 ’

on picking g =  [(A^A )̂ 1/2]. Next, to consider cj^2, we write

n - l

t = l t = l

which by (3.35) is bounded in modulus by

n —1

E  M |A(A,- -  A*)| < c n72 + l

t = l 1 +  n | A; — Ajt

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)
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for 1 < j . k  < n / 2 .  Thus by (3.44)

c(3)kj,2 < C n f279 + 1

A J2 (1 +  n | A j — Aa- ))

Likewise

'kj ,  2 <
Cn72+ 1

A/2(l +  n |Aj- — Afc|)

W ith reference to (3.58) we have from (3.61) and (3.69)

M  M

n j = m + l  fc= m + l

C M

j = m + 1

-2(7i +72)

M
<  C'n2(7l+72_1) j-2(7 i+72)

j =771+1 
77,2(71+72-!)

<  c
77j2(7l +72 _ 1 /2)

= o (n2*72-1-72- 1’)

From (3.61) and (3.70)

M  M

j = m + l  & = m + l

C  I  M
^  E \ -

\ j = m + 1

7i -72-^

M
<  C T r 2 ^ 4-7 2 - ^  j - 7 1 - 7 2 - 5

yj=m+l 
77,2 (7 i + 7 2 —1)

<  c 777,2(71+72-1/2) =  o (n 2(7l+72“1))

From (3.61) and (3.73)

M  M, E E
j  = m + l  k —m + 1

M M  1

< Cn72-2 £  AT7- 72 £  ralA. - A J W
7= 771+1 A: = 777+1 V1 +  n  lAJ

2j M< Cn2*7i+72_1* y. r 7i"T2{r7i+ E (A:-j)“lfc_7,+ E (fc-i)_1+
7=771+1 I fc=j +  l  fc=2j +  l

(3.73)

(3.74)

(3.75)

(3.76)
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< C n 2̂ 7l+72 ^ ^2  3 71 72 I 3 7l +  J 71 ^ 1 +  ^  ^ 71 1
j = m + l  [  k = 1 A—j

oo

< CVi2(7l+72_;b ^  j - 277- 7Mogj
j = m + l

oo

< Cn2(7l+72_1) £  / “27l“72 (3.77)
j = m + l

for £ > 0. Now because —|— ̂ 2 2 Oh -'> 2 can choose £ such that 2/'yj -bOh— •̂> ^

in which case (3.77) is o ^n2̂ 7l+72_1^ .  In view of (3.74) the same bound is obtained on 

replacing cj^2 by cj^2• Thus we have shown tha t aj =  o ^n2(7l+72_1^  .

Next,

7r 7r

a2 =  ^ E  /  / ^ ,n - e(A i)^,n- 3( - A ,> 1.n- r (-A A0 ^ ,„ - ,(A fc)ei(' - 3>A2- i‘r- 9>A‘
—7T —7T

x e i ( r - t >A+ ^ - ) # ‘/ n ( A ) / 22 ( Al) d A d / i

1 \  M  M= ^ / / E E
n  j = m + l  fc= m + l

x $ 1(—A*, A)$2(Afc, f i ) fn (X) f 2 2 {^)dXdfi (3.78)

and this is bounded in modulus by (3.55) =  o ^n2̂ 7l+72_1^ ,  in the same way as was 

shown for (3.54).

Finally

7T 7T 7T

“3 =  ^ E /  /  / ^ , n- t(A,')¥22,„-a( - A ,> 1.„_r (-A t )¥>2,„_,(At )ei<,- s)A2- ^ - 9)A‘
— 7T —7T —7T

xei(»-‘K +«r-.)^+<(,-r)^/(A4ijA(2j/U3)j j dA4.
i = l

x y. * * M A/- J  J  J Z E ®j(Aj>— Aj-./i, - //2)
^  E tt Ett En- i = m + l  fc=m +l
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x $ i ( - A k,ii2 -  ii3)^2(Xk,ii3)f(fj,1,fj,2,fi3)Y[dfii (3.79)
i= 1

and in view of Assumption 3E this is bounded in modulus by

„ 4  [  [  [  -  f l 2 )  ^ l ( — ^ > ^ 2  ~ / i 3 ) ^ 2 ( A f c , ^ 3 )
\  -7T -7T j=m+l fc=m+l • ’

7T 7T 7T M

* s i / / /
77 77 77

77 — 77 — 77 

/  77

M

X  - / i j )
j'=m+l

3 \ V2

£=1

X

V/ / /
77 — 77 — 77

M
^ i ( —Afc,//2 — //3)<E>2(Afc,/i3)

fc=m+l i b *
i—\

The second integral is bounded by

7r  ̂ M
27r I I  X  $ l ( - A* .^ 2 - / “3)^2(A|i,/i3)

A  JV fc= m + l

z=l

(3.80)

M  3

X £  ^>l(Afc,M3 -  At2 ) ^ 2 ( - A j f c , - / Z 3 ) n rfMi • 
j = m +1 z=l

Because (cf (3.56))

7r
j  $ l ( - A | t , M 2  -  / i 3 ) $ i(A_,-,M3 -  ^ 2 ) ^ 2  =  2 t tcA j ,

(3.81)

(3.82)

it follows that (3.81) =  O ]Ci^=m+i cjk,\C-kj,2 ) • Treating the other integral in (3.80) in 

the same way we see that (3.80) is bounded by (3.58) =  o r̂z2(7l+72-1^ ,  to complete the 

proof of (3.20) when 72 > 0. For 72 =  0, the same proof applies on substituting 1 for 

<£2t(^) and Dn{A +  fi) for <f>2(A,/x), to deduce that aj = o(l) for j  = 1,2,3.

To prove (3.21) we start by bounding the left side by an analogous expression to (3.51),
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with Ylj'Lm+i YlkLm+i replaced by Y^JLi ZlfcLi 'm  J2- Thus the revised a\ is bounded by

M M M

Cn 2̂ 71+72 b  ̂ ^  j  _|_ I 'Y^j  71 72 2 I +  71 272 logj  > = O (ji2̂ 1+l7 ,
j=i \j= i )  j=i J

(3.83)

while the revised a2 and a3 are similarly easily seen to have the same bound. □

P ro o f  o f T h eo rem  3.3 In view of (3.11)/(3.12), and because

(3.84)

and for any M , m < M  < (n — l )/2

F “V  + 1, M)  < [F“a(m +  1, Af)] * [ f “ (m +  1, M) (3.85)

it is not necessary to look at the behaviour of the cross-periodogram. We have

F™(m + 1,M)  <  2F ““(m +  1 ,M) + 2F““(m +  1, M)

T O )  <  2 C W  +  2 T O  •

(3.86)

(3.87)

Define V'a.t-fc the a-th row of and for any A 6 (0,7r] consider

s  t

^ “ (A) =
t = l  s = l  J=1  /c= l

n n m in(s,t)

2,7V71 

1
27T77 5=1 t = l fc=l 

n n

(3.88)

27m 5=1 £=1 i = l  * = 1 , * #

The expected value of the above, non-negative scalar random variable is equal to the
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expected value of (3.88), which is bounded by

n  1i n  min(s ,t)  p p£CW<5r E E e'(s_t)i £  £X><*. , .  (3.90)
Llxn 5=1 6=1 k=l  6=1 c= 1

Defining =  0, k < 0, we get

* W )  =
n  fc=l 6=1 6=1

fc= l 6=1 6=1

= o£±± r f e ^ V w l 2) .  (3.91)
fc=l 6=1 6=1

On the other hand, for the deterministic Xt

WV = ̂ \ t / XxJ2 ■ (3-92)

Clearly to estimate (3.91) and (3.92) we need to estimate 5IJLu e*tAAH for a deterministic 

sequence K,t. and 0 < u < v < n  such that

M  < c ( i  + t y - 1 , |k, -  <  c ^ i , P > i . (3.93)

For p 7̂  1, this issue was considered in Lemma 3.1, where we showed that for 0 < A < 7T,

l E e ^ l  <  ^ , 1 < P < 1 ,  (3.94)

| £ e ieV |  <  C ^ d , p > l .  (3.95)
t=U  I ' M

For p = 1
v C  V_1 , log-?;

I £  e'“ Kt | <  m ( £  r 1 +  1) < , (3.96)
t—U 1^1 6=U lA l

though this is not sharp when is identically equal to 1, i.e. for the simple random
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w a lk  c a se  for cjt , or th e  e q u iv a le n t c a se  for Xt.- w h e n  C / |A | w as o b ta in e d . N o w  h 

( 3 .2 4 ) / ( 3 .2 5 ) ,  it  fo llo w s th a t

E I Z W  <

(logn)2 
A2

Cn27°~2

— ^  -.2 1 7a “  b

—  ^2 ’ Ti  ̂ ’

7Xx(A) -  n \\\26a+2 ’ ”  2 < 6a < 0 ’

C  (logn)2 
n A5 
Cn25“~1 

A5

< - M r r * -  , <5a =  0 ,

for 0 < A <  7T. Thus

f ? f C ( ™ + l , M )  <  C ( > ’ 1 , 5 < 7 . < 1 .m  I
^  Cn(logn)2 _

m  ’ 7a “  ’
Cn2"**-1 

<    > 7« > 1 .m

and

C n2Sa 1 
F “ (m +  1,M) <  - g - ^ ,  - - < 5 o < 0 ,

^  C(logn)2
^  , oa — 0 ,m

CnM« c
<  ---------- , <5a >  0 .m

Thus under Assumption 3C

Fzz(m  +  1, M) =  OpCra27--1 +  n 2i«)

view of

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)
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for 7 7  G ( | .  o c )/l, 6a G oc)/0.\vith obvious modifications for 7 a =  1, Sa = 0. □
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Chapter 4

SEMIPARAMETRJC 

FREQUENCY DOMAIN 

ANALYSIS OF FRACTIONAL 

COINTEGRATION1

4.1 INTRODUCTION

Several motivations for the generalizations of cointegration analysis to fractional cir­

cumstances were discussed in Chapter 1. We recall from Definition 1.1 that zt ~  

F C I(d i , ..., dp\ de) if its a-th element zat ~  /(d a), da >  0, a = l , . . . ,p,  and there ex­

ists a p x 1 vector a  0 such that et = a'z t ~  I(de) where 0 <  de < mini<a<pd0; 

the more standard circumstances where di =  ... = dp =  1, de = 0 were termed the 

(7/(1) case. Aspects of the C /( l)  methodology for cointegration analysis were inves­

tigated in Section 1.2; it is possible to imagine how these could be extended to more 

general F C I ( d i , ..., dp\ de) situations where the da and de are, while not necessarily one

LThis chapter is based on the paper “Semiparametric Frequency Dom ain Analysis o f  
Fractional Cointegration” ; the paper is the outcom e o f joint work w ith  Prof.P.M .Robinson.
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and zero, known values, especially in view of the limit theory for nonstationary fractional 

processes which we presented in Chapter 2; this line of study has been recently pursued 

by Dolado and Marmol (1996). However, when non-integral da and de are envisaged, 

assuming their values known seems somehow more arbitrary than stressing the C l  (I) 

case in an autoregressive setting. It seems of greater interest to study the problem in 

the context of unknown orders of integration da and de in the observed and cointegrated 

processes, possibly less or greater than unity. For example, in circumstances where C l  (I) 

cointegration has been rejected it may be possible to find evidence of FCI(di,  ...,dp; de) 

cointegration for some (d1? ...,dp;de) ^  (1,...,1;0). Our allowance for some “memory” 

remaining in the cointegrating residual et (i.e., de > 0) ,  is appealing, especially recalling 

how de can be linked to the speed of convergence to long run equilibrium (compare for 

instance Diebold and Rudebusch (1989)).

Cointegration is commonly thought of as a stationary relation between nonstationary 

variables (so that da > | ,  for all a, de <  |) .  Other circumstances covered by Definition 1.1 

are also worth entertaining. One case is de > | ,  when both zt and et are nonstationary. 

Another is 0 < da <  for all a, when both zt and et are stationary.

The latter situation was considered by Robinson (1994a), as an application of re­

sults that we reported in Theorem 1.16, which provides limit theory for averages of 

periodogram ordinates on a degenerating frequency band in stationary long memory se­

ries. Ordinary least squares estimates (OLS) (and other “full-band” estimates such as 

generalized least squares) are inconsistent due to the usual simultaneous equation bias. 

Robinson (1994a) showed, in case of bivariate that a narrow-band frequency domain 

least squares (FDLS) estimate of (a normalized) a  can be consistent. It is possible that 

some macroeconomic time series that have been modelled as nonstationary with a unit 

root could arise from stationary 1(d) processes with d near say, and interest in the 

phenomenon of cointegration of stationary variates has recently emerged in a finance 

context. Moreover, it is likely to be extremely difficult in practice to distinguish a zt with 

unit root from one, say, composed additively of a stationary autoregression with a root
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near the unit circle, and a stationary long memory process.

FDLS is defined in the following section, after which in Section 3 we extend Robinson’s 

(1994a) results to a more general stationary vector setting, with rates of convergence. The 

results of Chapter 3 on the approximation of sample moments of nonstationary sequences 

by narrow-band periodogram averages are exploited in Section 4 to demonstrate the 

usefulness of FDLS for nonstationary zt: we partition zt into (yt , x'J1 and we show that 

correlation between x t and et does not prevent consistency of OLS, but it produces a larger 

second order bias relative to FDLS in the CI(  1) case, and a slower rate of convergence in 

many circumstances in which zt exhibits less-than-/(l) nonstationarity. When et is itself 

nonstationary, the two estimates share a common limit distribution. The parametrization 

we shall adopt for zt in the nonstationary case relies directly on the linear expansion of 

the fractional differencing operator, as in Assumption 2A; see Section 4. In this sense, our 

parametrization is equivalent to Dolado and Marmol’s (1996) definition of a nonstationary 

fractionally integrated process only for da > | ,  while for |  < da < § these authors 

actually consider the partial sum of stationary, long memory innovations, (as in (1.129)), 

which leads in our terminology to “cointegration with fractionally integrated errors” 

(as in Jeganathan (1996), cf.Chapter 5). Because of its practical relevance, we support 

our theoretical result for the CI(  1) case in finite samples by Monte Carlo simulations 

in Section 5. Section 6 describes a semiparametric methodology for investigating the 

question of cointegration in possibly fractional conditions, and applies it to series that 

were studied in the early papers of Engle and Granger (1987) and Campbell and Shiller 

(1987). Section 7 mentions possibilities for further work. Proofs are collected in the 

Appendix.

OLS by no means represents the state of the art in C7( 1) analysis. In Chapter 1, we 

discussed more elaborate estimates which have been proposed and shown to have advan­

tages over OLS, such as Phillips and Hansen’s (1990) fully modified least squares, Phillips’ 

(1991a) maximum likelihood estimate for the error-correction mechanism (ECM), and 

Phillips’ (1991b) spectral regression for the ECM. Fully modified least squares and spec­
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tral regression estimates make use of OLS at an early stage, so one implication of our 

results for the CI(  1) case is that FDLS be substituted here. As noted in Chapter 1, 

these methods are all specifically designed for the C l  {I) case, and in more general set­

tings the validity and optimality of the associated inference procedures will be lost, and 

they may have no obvious advantage over OLS. Moreover, like OLS, they will not even 

be consistent in the stationary case. For the computationally simple FDLS procedure, 

this chapter demonstrates a consistency-robustness not achieved by OLS and other pro­

cedures, a matching of limit distributional properties in some cases, and superiority in 

others, including the standard C7(l) case.

4.2 FREQUENCY DOMAIN LEAST SQUARES

Suppose we observe vectors zt = (yt,x'ty, t = 1,..., n, where yt is real-valued and x t is a 

( P -  !) x 1 vector with real-valued elements. Consider, for various m  and assuming the 

inverse exists, the statistic

3m =  FXx{l ,rn)- l Fxy{l ,m)  , (4.1)

where Fxx(l,  m), Fxy(l, m)  represent averaged periodogram matrices, as introduced in 

Chapter 1, (1.20). We can interpret f3m as estimating the unknown (3 in the “regression 

model”

Vt = p x t + eu t =  1,2,... . (4.2)

Recall that

^ 71 — 1 ^  71—1

Fxx( l , n -  1) =  - y 2 ( x t - x ) ( x t - x ) \  Fxy( l }n -  1) =  -  V ( x t -  x)(yt -  y). (4.3)
n z—/ n *—'t= i t=i

Thus (3n_i is the OLS estimate of f3 with allowance for a non-zero mean in the unobserv­

able et. Our main interest is in cases 1 < m  < n — 1, where, because the discrete Fourier
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transform wa(X) has complex conjugate w a(27T — A), we restrict further to 1 < m  < n j 2. 

Then we call (3m an FDLS estimate. Properties of et will be discussed subsequently, but

these permit it to be correlated with x t as well as yt, pm being consistent for (3 due to

Fee(l,m ) being dominated by Fxx( l ,m )  in a sense to be indicated. This can happen 

when zt is stationary with long memory and et is stationary with less memory, if

1 m
 1------ > 0, as 72 —► oo , (4.4)
m  n

which rules out OLS. Under (4.4) (3m can be termed a “narrow-band” FDLS estimator. 

As a consequence of results from Chapter 3, it can also happen when x t is nonstationary 

while et is stationary or nonstationary with less memory, if only

771 <  72, 772 —► OO, as 72 —> OO , (4.5)

(cf. Assumption 3C), which includes OLS. In both situations z t ~  FCI(di ,  ...,dp]de) and 

the focus on low frequencies is thus natural. Notice that when lim(772/72) =  6 € (0, | )  

(so that /3m is not narrow-band), (3m is a special case of the estimate introduced by 

Hannan (1963) and developed by Engle (1974) and others. However, while such m  

satisfy (4.5), our primary interest is in the narrow-band case (4.4) where /3m is based on 

a degenerating band of frequencies and its superiority over OLS can be established under 

wider circumstances. It is the stationary case which we first discuss.

4.3 STATIONARY COINTEGRATION

The covariance stationary processes with which we shall be concerned will always be 

assumed to have absolutely continuous spectral distribution function. We impose the 

following condition on zt introduced earlier. Generalizing the notation we adopt for 

scalar sequences, for two matrices M  and IV, of equal dimension and possibly complex­

valued elements, we say that M  fa N  if, for each (a, 5), the ratio of the (a, 6)-th elements
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of M  and N  tends to unity.

A ssum ption 4A  The vector process z t is covariance stationary with

}zz(A) w AGA, as A —> 0+ , (4.6)

where G is a real matrix whose lower (p — 1) x (p — 1) submatrix has full rank and

A =  diag {A_dl, A " * 1’’} , (4.7)

for 0 < da < 1 < a < p, and there exists a p  x 1 vector a  ^  0, and a c € (0, oo) and

de e  [0,d), such that

a ' f zz{\ )a  f«cA-2d‘ , as A 0 + . (4.8)

Assumption 4A is similar to that introduced by Robinson (1995a) (cf.Theorem 1.18), 

where it is shown to hold for vector stationary and invertible fractional ARIMA processes 

(we could allow here, as there, for negative orders of integration greater than —|) .  How­

ever, there G was positive definite, whereas if Assumption 4A is imposed it has reduced 

rank, because otherwise

ol/ 22(A)a «  (olA) G (Aol) > c \~2* as A —► 0+ , (4.9)

for 0 < c < oo. Nevertheless G must be non-negative definite because f zz(A) is, for all 

A. The rank condition on G is a type of no-multicollinearity one on x t. Notice that 

zat ~  I{da), o> = 1 and et ~  I{de) if we adopt the stationary definition (replacing 

?7tl(£ > 0) by rjt in (1.2)) of an 1(d) process. Notice then that Assumption 4A follows if 

Zt ~  F C I(d \ , de) with de < d. We adopt the normalization given by a = (1, 

so the cointegrating relation is given by (4.2) if et ~  I(de). We stress that Assumption

4A does not restrict the spectrum of et away from frequency zero, because it is only local
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properties that m atter since here we consider (3m under (4.4). Asymptotic properties of 

p m require an additional regularity condition, such as

A ssum ption 4B
OO oc

^ + Y  - Y  ĥ ii2 < 00 ’ (4-10)
j=o j =0

where fiz =  Ez0, and the p x  1 vectors et satisfy

E  (st | Q t - i )  — Q , A  (cts't | ^ t - i )  =  $ 3  ’ a -s -’ (4-11)

for a constant, full rank matrix being the <r-field of events generated by e31 s <  £,

and the £t£ft are uniformly integrable.

This assumption is a generalization of that of Theorem 1.16 (Robinson (1994a)), 

the square summability of the only confirming, in view of the other assumptions, 

the finite variance of Zt implied by Assumption 4A. We could replace the martingale 

difference assumption on £t. and £t£'t — by fourth moment conditions, as in Robinson 

(1994c). Notice that it would be equivalent to replace zt by (et , x't)' with et given by (4.2). 

When z t satisfies both Assumptions 4A and 4B, the \I!j are restricted by the requirement 

that || a '^ ( e tA) ||& c*\~da as A —* 0+, for 0 < c* < 00. A very simple model covered 

by Assumptions 4A and 4B is (4.2) and x t = <pxt~ 1 +  u u with p  =  2, 0 < < 1,

ut ~  I(di)  (implying x t ~  I{d\)), and et ~  I (de), 0 < de < di < When u t and et 

are not orthogonal OLS is of course inconsistent for /?, as indeed is any other standard 

cointegration estimator, notwithstanding the fact that for <p close enough to unity x t is 

indistinguishable for any practical purpose from a unit root process.

T h eo rem  4.1 Under Assumption 4A with a = ( I ,—/?)', Assumption 4B and (4.4), as 

n  —► 00
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— /  /  Tl \  de-da\
Pam.-Pa =  0 f > ( ( ~ )  J  , « =  1, •• •, P “  1 , (4.12)

where (3am and p a are the a-th elements of, respectively, (3m and (3.

It follows that if there is cointegration, so d > de, Pm is consistent for P. In case the 

da are identical there is a common stochastic order Op((n /m )~b), varying inversely with 

the strength b = da — de of the cointegrating relation. We conjecture that Theorem 3.1 

is sharp and that under suitable additional conditions the (n / m ) da~de (j3am — P^j  will 

jointly converge in probability to a non-null constant vector. We conjecture also that after 

bias-correct ion and with a different normalization the limit distribution will be normal 

in some proper subset of stationary (dj, ...,dp_ i,d e)-space, and non-normal elsewhere 

(cf the derivation of Lobato and Robinson (1996) of the limit distribution of the scalar 

averaged periodogram). A proper study of this issue would take up considerable space, 

however, whereas our principle purpose here is to establish consistency, with rates, as an 

introduction to a study of Pm in nonstationary environments.

4.4 NONSTATIONARY FRACTIONAL COINTE­

GRATION

For zt nonstationary (da > a = l ,2 ,...,p ) , we find it convenient to stress a linear 

representation for wt = (et,x't)' in place of that for zt = (yt^x^)1 in Assumption 4B.

A ssum ption 4C The vector sequence wt is given by

(wt -  fiw) = A(L)rjtl(t  > 0) , (4.13)

for

A (L) =  diag {(1 -  L)~d\  (1 -  L)~d\  (1 -  } ,
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fiw a fixed vector with p-th element zero, and

da > ^ , a =  1, 1 , de > 0 . (4.15)

and (cf. Assumption 2A-2D)

OO

Vt = A(L)e t , A(L) = Y ,  A j U  , (4.16)
j = 0

rank (A (l)} =  p , (4.17)

OO /  OO \  0

E ( E I I ^ I I 2)  < ° ° >  (4-18)
j = 0 /

where the are independent and identically distributed p x  1 vectors such that

E et =  0 , Ests'f =  , ran h (Y ,)  =  P > (4.19)

E  ||£t ||* < oo , <9 > max ^4, ^  "2 _  • (4-20)

Assumption 4C strengthens the requirements on £t of Assumption 4B. Under (4.18)

OO /  OO

E Mill E  E M*u2 < 00 (4-21)
j=o i=o \fc=j /

so (4.17) and (4.18) imply that all elements of ryt are in /(0), whereas with reference to 

(1.2), for a =  2,...,p  the a-th element of (and thus of rct) is in I(da), while its first 

element, et, is in 7(de), so in particular u;t could be a vector fractional ARIMA process. 

We have allowed for an unknown intercept, fiw, in wt. Note that A(L) introduced in 

(4.14) is not the same as the fractional differencing operator introduced in Assumption 

2A1, because we have allowed for de < f . Also, (4.20) is stronger than Assumption 2B. 

On the other hand, (4.16)-(4.18) are analogous to Assumptions 2A2-2A4 and are repeated
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here only for convenience.

From (4.13) and (4.16), we can write

wt — Mu; +  ^ 2  ,
3=0

(4.22)

where

i—0

with A j given by the formal (binomial) expansion A (L) 

singular matrix

Ip-1 O'

(4.23)

A j lP . Defining the non-
3=0

P  =
■d’ 1

(4.24)

we find that (4.13) is equivalent to

z t — P'z +  ^22 'b jttt- j  , 
3 = 0

(4.25)

where g z = P ~ lfiw, tyjt = P~1Bjt. The representation (4.25) can be compared with the 

time-invariant one (4.10) for the stationary case (in which tyj =  P ~1Bj00).

Take d =  (di, ...,dp_i)'; for notational convenience, we modify slightly the functions 

D (.) and G(.) as defined in Chapter 2, and we introduce

D — diag j r ( d ! )n ^ -d l,..., T{dp- i ) n ^~dp~1j  , G(r,d) = diag . . . ,rdp_1-1} .

(4.26)

Let 0,22 be the right-hand lower (jp — 1) x (p — 1) submatrix of A{1) where O22

has full rank under Assumption 4C. Let

r 1

W (r; d, U22) = f  G(r -  a; d ) dB( s ; fi22) , W(d,  H22) =  J  W { r ; d,  fi22)dr , (4.27)
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V(d, P.22) =  I  {W(r; d, a » ) W ( r ;  d, fi22) -  W(d, Q22)H’(d, P 22) '} dr . (4.28)
0

W(r; d. Oxx) is "type II" multivariate fractional Brownian motion, as introduced in Chap­

ter 2, albeit with a different normalization. Let x  = n~l x t .

T h eo rem  4.1 Under Assumption 4C, as n  —► oo

Dx\nr\ => W(r- ,d ,022) , 0 < r < 1 , (4.29)

Dx => W ( d , 0 22) , (4.30)

DFxx( l ,n  — l)D => V ( d , 0 2 2) .  (4-31)

The proof of (4.29) was given in Chapter 2 under somewhat milder conditions and the 

result is reported here only for convenience; (4.30) and (4.31) follow from the continuous 

mapping theorem. For dj =  ... =  dp_j =  1, fractional Brownian motion reduces to 

classical Brownian motion and so (4.29) includes a multivariate invariance principle for 

7(1) processes, as can be found for instance in Phillips and Durlauf (1986). (4.31) provides 

an invariance principle for the sample covariance matrix of x t (see (4.3)), and due to the 

following lemma Theorems 3.1 and 3.2 can be applied to deduce one for i^,x(l,m ).

L em m a 4.1 Let Assumption 4C hold. Then with the choices

(a it,a2t) =  (xat,et) , 7i =  da , 72 =  de , a = l , . . . , p -  1 (4.32)

or

(flu ,a2t) =  {Xauxbt) , 7 j =  da , 72 =  db , a,b =  1 1 , (4.33)

it follows that Assumptions 3A, 3B and 3D are satisfied.
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L em m a 4.2 Under Assumption 40 and (4.5), as n  —> oo

DF22(\ ,m )D =>V(d ,S l22) .

We can now proceed to investigate asymptotic behaviour of OLS and FDLS in various 

of the cases that arise when x t is nonstationary, and et has short memory or stationary 

or nonstationary long memory.

C ase  I: da 4- de < 1, a = 1, ...,p — 1.

Here not only does x t possess less-than-unit-root nonstationarity, but the collective 

memory in x t and et is more limited than in the CI(  1) case. It corresponds to ryl + 72 < 1 

of Section 4, and we require first a more precise result than Theorem 3.1 in case m  = n —1. 

Let b'aj be the a-th row of Bj = BJOO =  ]Ci=o ^ i A j - i  given by (4.23). Define

oo

> a =  ■ ( 4 -3 4 )
J=0

L em m a 4.3 Under Assumption 4C with da + de < 1, da > a = 1, ...,p — 1,

lim E F ^ { l , n -  1) =  , a =  l , . . . , p -  1 , (4.35)
n —►oo

where the right hand side is finite.

Lemma 4.3 is of some independent interest in that it indicates how sample covariances 

between a nonstationary and a stationary sequence can be stochastically bounded and 

have the same structure as when both sequences are stationary, so long as the memory 

parameters sum to less than 1, as automatically applies in the fully stationary case.
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Define £ to be the (p — 1) x 1 vector with a-th element £a if da =  dm-m and zero if 

da > rfmillj where dmin =  min da.
l < a < p - l

T h e o rem  4.2 Let Assumption 4C hold with da 4- de < 1, de < da, a =  1, ...,p — 1, and

rank {V(d, O22)} =  V ~  1 , a.s. (4.36)

Then as n —* 00

and under (4.4)

(3 m -  /?) =  Op ( g ) ^ " 1)  =  Op(l) . (4.38)

Theorem 4.2 indicates that so long as f  is non-null the ndmin+da~1 ^/?a5n_! — have 

a nondegenerate limit distribution, whereas when the interval (0, Am) degenerates j3am — 

Pa — °p (n1_dmin_da), a =  1 1, so tha t FDLS converges faster than OLS. In view

of the “global” nature of Pm_i and the “local” nature of Pm this outcome is at first sight 

surprising, but it is due to the bias of Pm becoming negligible relative to that of (5n_1. 

Notice that the rate of convergence of Pn_i is independent of de.

C ase II: T he CI(1)  case (da = 1, a =  1, ...,p — 1, de = 0).

Now we consider the case considered in the bulk of the cointegration literature, where 

z t has a unit root and the cointegrating error is 1(0). Write i for the (p — 1) x 1 vector 

of units, so tha t in the present case d = t and W (r;d ,Q 2 2 ) =  B(r;Q,22 )- Let B*(r\Q) 

be p-dimensional Brownian motion with covariance matrix Q =  A (l) X )A (l)', and thus
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write
, B(r;Q22, ,

B„(r; n) =  ( | , (4.39)
B{r;uju )

where u)u is the (1, l)-th  element of D, and in general B(r]Q,22 ) and B (r;w n) are corre­

lated and thus in effect depend not only on 0,22 and u n  but on the other elements of D 

also. As in Chapter 1, (1.4*2), we write

1

yc — J  B(r]Q22)dB(r-un ) . (4.40)
0

Denote by 7 - the (jp— 1) x 1 vector with (a — l)-th  element Epatet+j, recalling that de =  0 

implies et =  ?/lt. Now define

00
Tj =  1 3 =  0 ,± 1 ,... , (4.41)

MJ\

so that Tj =  f°r 3 — ^ an(  ̂ = Y?e=-oo7e f°r 3 < anc  ̂ t îe Slim (^-41)

converges absolutely for all j  under Assumption 4C. Let h(A) be the vector function with 

Fourier coefficients given by

7r

r (j-| -  r_bhl =  f  /i(A)e«AdA , j  =  0. ± 1 ,... . (4.42)

A ssu m p tio n  4D  h-(A) is continuous at A =  0, and integrable.

Assumption 4D is implied by Y % o  II r lil “  r -b'l-i II < 00» w^ich is in turn implied by

+  ! )  II 7 j  -  7 -J--1  II<  00 , (4 *4 3 )
j =0
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in which case we may write

h (°) =  ^  /L ^ 2-7 +  _  1) ■ (4-44)
i=o

Of course (4.43) is itself true if X ^l-oo(b l ||% || < 00 ôr w^ich a sufficient condition 

in terms of (4.16) is
00

£ ( j  +  l ) | | i y  < 0 0 , (4.45)
j=0

which is stronger than (4.18), while holding when r)t is a stationary ARMA process.

L em m a 4.4 Under Assumption 4D and (4.4)

lim  E  f - F IC( l ,m ) )  =  ( h (0 )  . (4.46)
n —*oo \7Tl J  I

T h eo rem  4.3 Let Assumption 4C hold with d = l, de = 0. Then as n  —► oo

n  (3 „ -i -  p )  =* n t . n ^ ) - 1 { x +  r 0} (4.47)

and if also Assumption 4D and (4.4) hold

n ( p m - p ) = > V { i , n 22) - 1x .  (4.48)

Thus in the C l  (I) case (3n_1 and (3m have the same rate of convergence but under 

(4.4) (3m does not suffer from the “second-order bias” term T0 incurred by /?n_j. More 

precisely, as the proof of Theorem 4.3 indicates, there is a second-order bias of order 

0 ( m / n 2) in /3m which is thus too small to contribute to (4.48), by comparison with the 

0 (n ~ l ) second-order bias in (4.47). As reported in Chapter 1, Theorem 1.10, Phillips
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(1991b) considered a form of narrow-band spectral regression in the C l  (I) case, albeit 

stressing a system type of estimate which has superior limit distributional properties to 

/?m, assuming the C l  (I) hypothesis is correct. However his proof is based on weighted 

autocovariance spectrum estimates, rather than our averaged periodogram ones. As is 

well known, in many stationary environments these two types of estimate are very close 

asymptotically, but in the CI{  1) case the weighted autocovariance version of (3m turns 

out to exhibit second-order bias due to correlation between ut and et (specifically, to 

their cross-spectrum at zero frequency). Note that V(d,Q,2 2 ) — S  in the terminology of 

Chapter 1, (1.43), when d = 1 .

C ase I I I :  The Case da +  de > 1, a =  1, ...,p  — 1, de <

We now look at the case where the collective memory in each (xat,et) combination 

exceeds that of the previous two cases, yet et is still stationary. Thus x t could have less 

than unit root stationarity but in that case the memory in et must compensate suitably. 

On the other hand x t could exhibit nonstationarity of arbitrarily high degree.

T h eo rem  4.4 Let Assumption 4C hold with da+de > 1, 0 <  de < |  <  da, a = 1, ...,p —1, 

and let (4.36) hold. Then for a =  1, ...,p — 1, as n  —► 00

(4.49)

and if also (4.5) holds

(4.50)

(4.51)

The results (4.49) and (4.51) only bound the rates of convergence of OLS and FDLS, 

and we have been unable to characterize even the exact rate of convergence of OLS



in the present case, due to the fact, that on the one hand et is stationary so that the 

continuous mapping theorem does not suffice, whereas on the other hand et cannot be 

approximated by a semi-martingale, unlike in the short-memory case de = 0 (where in 

fact an exact, rate and limit distribution can be derived, as it was in the C l  (I) case). 

We conjecture, however, that at least under some additional conditions the rate in (4.49) 

is exact, whereupon (4.50) implies immediately that Pm shares the same rate and limit 

distribution as /0n_j.

Case IV: The case de >

Now we suppose that cointegration does not account for all the nonstationarity in zt, 

so that. et is nonstationary, as is motivated by some of the empirical experience to be 

described in Section 6. Write d* =  (d',de)' and

o
l

(4.55)
o
l

l/(d „ f t)  = {W(r-d ,n22) - W ( d , n 22)}w(r;de,ujn )dr. (4.56)
o

Let w = n  1 wt. The following theorem is analogous to Theorem 4.1 and needs no 

additional explanation.
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Theorem  4.5 Under Assumption 4C and 4 < d e < d a, a =  1, . . . ,p  — 1, as n  —* oc

D*w\nr] => lF*(r;d*.Q ). (4.57)

D*w =4> W(d*,CL) , (4.58)

n i~ d*DFxe( l , n — 1) => C/(d*,0 ) . (4.59)

T h eo rem  4.6 Under Assumption 4C, |  < de < da, a = 1 ,...,p  — 1, and (4.36), as

72 —> oo

(3 „ -! -  0 )  =► , (4.60)

and if also (4.5) holds

n^'D-1 (pm -  /?) =► t/(d ,fi)-1!7(d.,n) . (4.61)

Now so long as m  is regarded as increasing with ft, the limit distribution is unaffected 

however many frequencies we omit from (3m. Notice that in case the da are all equal the 

rate of convergence reflects the cointegrating strength b defined in Section 1, such that 

/3m is nb-consistent.

4.5 MONTE CARLO EVIDENCE

Because OLS is often used as a preliminary step in C l  (I) analysis, the previous section 

suggests that even if fractional possibilities are to be ignored, FDLS might be substituted 

at this stage. To compare the performance of FDLS with OLS in moderate sample sizes a 

small Monte Carlo study in the C l  (I) case was conducted. The models we employed are

as follows. For a = 1, 2, let r)at be a sequence of N(0,a)  random variables, independent

across t.
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M odel A: AR(1) cointegrating error, p = 2, in (4/2) with

(1 -  L)xt =  i]u  , (4.62)

(1 -  <pL)et = j/k , (4.63)

EViSht — 1? — 0.8,0.6,0.4,0.2 . (4.64)

M odel B: AR(2) cointegrating error, p = 2, in (4.2) with

(1 -  L)xt = r}lt , (4.65)

(1 -  p xL -  p 2L2)et = r)2t , (4.66)

EihPht. = 1 , <̂2 =  -0-9; iPl =  .947, .34, - .34 , -.947  . (4.67)

We fix ip2 = —0.9 in Model B to obtain a spectral peak for et in the interior of (0,7r), 

in particular at A* =  arccos(—</21( l+  <̂ 2)/4<^2)? that is at A* =  7r/3, 47t/9, 57t/9 and 27r/3, 

respectively, for the four On the other hand in Model A et always has a spectral peak 

at zero frequency.

Series of lengths n = 64, 128 and 256 were generated. /3n- i  and (3m, for m  = 3,4,5 

were computed, as were an estimate superior to OLS in the C l  (I) case (cf.Theorem 

1.8), the fully-modified least squares estimate (FM-OLS, denoted f3FM) of Phillips and 

Hansen (1990) which uses OLS residuals at a first step, and also a modified version of this
j(e

(denoted /?FM), using FDLS residuals. B artlett nonparametric spectral estimation was

used in (3FM and (3FM, with lag numbers m  = 4 ,6,8, for n — 64,128, 256 respectively.

Monte Carlo bias and mean squared error (MSE), based on 5000 replications, are

reported in Tables 4.1 and 4.2 for Models A and B respectively. For each m, FDLS is

superior to OLS in terms of both bias and MSE in every single case, often significantly.
 ̂ —*

In fact (3m is best for the smallest m, 3. Our modified version (3FM of FM-OLS improves
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on the standard one fiFM in 23 out of 24 cases in terms of bias, and 16 out of 24 

in terms of MSE, with 8 ties. The intuition underlying FDLS is that on the smallest 

frequencies cointegration implies a high signal-to-noise ratio, so it is not surprising that 

FDLS performs better for AR(2) et. than AR(1) et , especially as A* increases. It is possible 

to devise an et with such power around A =  0 that, in finite samples, FDLS performs 

worse than OLS, for example when cp1 ~  2, ip2 — — 1, ^2 +  VT < 1, so et is “near-/(2)” and 

in small samples et dominates x t. However, given the intuition underlying the concept of 

cointegration, we believe this could be described as a “pathological” case.

4.6 EMPIRICAL EXAMPLES

Our empirical work employs the data of Engle and Granger (1987) and Campbell and 

Shiller (1987). We consider seven bivariate series, denoting by y  the variable chosen to be 

“dependent” and by x  the “independent” one in (4.2), and by dy, dx integration orders. 

We describe the methodology used in three steps.

1) Memory of raw data

A necessary condition for cointegration is dx = dy, which can be tested using esti­

mates of dx and dy. Three types of estimate were computed, and one test statistic. The 

estimates are all “semiparametric” , based only on a degenerating band of frequencies 

around zero frequency and assuming only a local-to-zero model for the spectral density 

(cf Assumption 4A) rather than a parametric model over all frequencies. The semipara­

metric estimates are inefficient when the parametric model is correct, but are consistent 

more generally and seem natural in the context of the present paper. Their asymp­

totic properties were established by Robinson (1995a,b) and reviewed in Section 1.3, 

Theorems 1.18-1.20; there we imposed the assumptions of stationarity and invertibility 

(having integration order between and | )  and so because our raw series seem likely
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to be nonstationary, and quite possibly with integration orders between ~ and we 

first-differenced them prior to d estimation, and then added unity. Although the station- 

arity assumption is natural in view of the motivation of these estimates, we mentioned 

in Chapter 1 that recently Hurvich and Hay (1995), Velasco (1997a,b) have shown that 

they can still be consistent and have the same limit distribution as in Robinson (1995a,b) 

under nonstationarity (although with a different definition of 1(d) nonstationarity from 

ours, namely (1.130)), at least if a data taper is used. We thus estimated dx and dy 

directly from the raw data also, but as the results were similar they are not reported.

Denote by A zt either A x t or Ayt where A is the difference operator. We describe the 

estimation and testing procedures as follows

(i) Log-periodogram regression. For z = x , y  we report in the tables dz = 1 +  <52, 

where 8Z is the slope estimate obtained by regressing log (iAzAz(^j)) on —2 log(Aj) and 

an intercept, for j  = where I  is a bandwidth number, tending to infinity slower 

than n. This is the version proposed by Robinson (1995a) rather than the original one of 

Geweke and Porter-Hudak (1983); trimming out of low frequencies, which is suggested 

by Robinson (1995a), is not entertained, because recent evidence of Hurvich, Deo and 

Brodsky (1998) suggests that this is not necessary for nice asymptotic properties.

(ii) Test of dx = dy. We report the Wald statistic, denoted W  in the tables, of 

Robinson (1995a,b), based on the difference dx — dy = 8Z — 8y. The significance of W  is 

judged by comparison with the upper tail of the x j  distribution, the 5% and 1% points 

being respectively 3.78 and 5.5

(iii) GLS log-periodogram regression. Given that dx =  dy we estimate the com­

mon value by dGLS =  1 +  8gls  where 8GLS is the generalized least squares (GLS) log- 

periodogram estimate of Robinson (1995a) based on the bivariate series ( A x t, A y t), using 

residuals from the regression in (i), 8gls  is asymptotically more efficient than 8X and 8y 

when dx = dy.
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(iv) Gaussian estimation. For z — x. y we report dz =  1 +  £z where Sz minimizes

loS ( E  Af  ̂ ^ ) )  “  f  E  1oS(Aj ) > (4-68)

which is a concentrated narrow-band Gaussian pseudo-likelihood, see Theorem 1.20 and 

Kiinsch (1987), Robinson (1995b). As shown by Robinson (1996b), Sz is asymptotically 

more efficient than Sz.

For the estimates in (iii) and (iv) we report also approximate 95% confidence intervals 

(denoted C l  in the tables) based on the (normal) asymptotic distribution theory devel­

oped by Robinson (1995a,b). From Section 1.3 we know that Robinson (1995a) assumed 

Gaussianity in establishing consistency and asymptotic normality of the estimates in (i) 

and (iii), but recent work of Velasco (1997b) suggests that this can be relaxed. Although 

progress is currently being made on the choice of bandwidth £ in log-periodogram and 

Gaussian estimation, we have chosen a grid of three arbitrary values for each data set 

analyzed in order to judge sensitivity to I. Note that the estimates axe £* -consistent.

2) Cointegration analysis

We report /3m and also a “high-frequency” estimate

0  -  ^ » ( m  +  1'[(n ~ 1) /2]) (4 gm
" m F „ (m  +  1, [(n -  l)/2])

based on the remaining frequencies, substantial deviations between (3m and @_m suggest­

ing that a full-band estimate such as OLS could be distorted by misspecification at high 

frequencies which is irrelevant to the essentially low-frequency concept of cointegration.

The tables include results for three values of m  for each data set. These are much 

smaller than the bandwidt.hs £ used in inference on dx and dy due to the anticipation of
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nonstationarity in the raw data: for stationary x t:yt optimal rules of bandwidth choice 

would lead to m  that are more comparable with the t  we have used. After computing 

residuals et = yt — /3mx t, we obtained the low- and high-frequency R 2 quantities

A* =  x _  ,Ie m = i - b {m +  1’ 1(n ~  1)/21) . (4.70)Fyy(l, TO) Fyy(m +  1, [(tt ~  1) /  2] )

We can judge the fit of a narrow-band regression by R ^  and by comparing this with R 2_m

see to what extent this semiparametric fit compares with a parametric one.

For each m  we report also the fractions

_ F x x Q - i  m ) _  F x y Q - i  m )  \

”  Fxx( 1, [(n -  2)12}) ’ Xy’m "  ^ ( 1 ,  [(n -  2)/2]) ’

their closeness to unity indicating directly the empirical, finite sample relevance of The­

orems 3.1 and 3.2 (though note that 7’X2/,m need not lie in [0,1].)

3) Memory of cointegrating error

We estimated de first by de and de, which are respectively the log-periodogram and 

Gaussian estimates of (i) and (iv) above, based on first differences of the et and then 

adding unity. We also report d*e and d*e which use the raw et and do not add unity, 

because in general we have little prior reason for believing et is either stationary or 

nonstationary. In addition we report 95% confidence intervals based on the asymptotic 

theory of Robinson (1995a,b), though strictly this has not been justified in case of the 

residuals et.

Tables 4.3-4.9 report empirical results based on several data sets.

a) Consumption (y) and income (x) (quarterly data), 1947Q1-1981Q2

Engle and Granger (1987) found evidence of C l  (I) cointegration in these data. Table 

4.3 tends to suggest an integration order very close to one for both variables, the esti­

123



mates ranging from .89 to 1.08 for income and from 1.04 to 1.13 for consumption. The 

Wald statistic is at most 1.06, so we can safely not reject the dx = dy null. Exploiting this 

information, one obtains GLS estimates ranging from .953 to 1.02; but with confidence 

intervals all so narrow as to exclude unity. The (3m are about .232, which is close to 

OLS (.229), but the high frequency estimates (3_m are closer to .20. The unexplained 

variability is four times smaller around frequency zero (1 — R than at short run fre­

quencies (1 — $Lm). Variability concentrates rapidly around frequency zero, 85.1% of 

the variance of income being accounted for by the three smallest periodogram ordinates, 

less than 5% of the total. This proportion rises to 92.6% for 6 frequencies, and is even 

greater for the cross-periodogram, confirming the high coherency of the two series at low 

frequencies. The residual diagnostics are less clear-cut, but in only one case out of 12 

does the confidence interval for de include zero, providing strong evidence against weak 

dependence. The estimates of de vary quite noticeably with I  and the procedure adopted, 

ranging from .2 to .87.

b) Stock prices (y) and dividends (x) (annual data), 1871-1986.

The idea that these might be cointegrated follows mainly from a present value model, 

which asserts that an asset price is linear in the present discounted value of future div­

idends, yt =  0(1 — 0) ]C2o ffEtfat+i) +  c, where 6 is the discount factor; see Campbell 

and Shiller (1987). In Table 4.4, the estimates of dx,dy appear close to unity, although 

now the hypothesis th a t dividends are mean-reverting (dx < 1) appears to be supported. 

The Wald statistics for testing dx = dy are always manifestly insignificant. A marked 

difference between /3m and j3_m is found, the former oscillating around 33 and the latter 

below 24. The spectral R 2 still indicate a much better fit at low frequencies, but em­

pirical evidence of cointegration is extremely weak. Notice in particular that if y and x  

are not cointegrated, de = max(dx,dy), as is amply confirmed by the Gaussian estimates, 

where one gets identical estimates of dx and de = (1.04, .91, .90) for i  =  22,30,40. The 

results of Campbell and Shiller on this data set were, in their own words, inconclusive;
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our findings confirm those of Phillips and Ouliaris (1988), who were unable t.o reject, the 

null of no cointegration at the 10% level.

c) Log prices (y ) and wages (x ) (monthly data), 1960M1-1979M12

The results in Table 4.5 tend to develop those of Engle and Granger (1987) by sup­

porting an absence of a cointegrating relationship of any order. Where our conclusions 

differ is in the integration orders of x  and ?/, in particular of log prices, which appear 

not to be unity, ranging from 1.54 to 1.60, while confidence intervals never include unity. 

This is not very surprising in that the inflation rate might plausibly be characterized as a 

stationary long memory process. W  is always above 5.8, so we reject also at the 1% level 

the hypothesis that dx = dy, and so because this necessary condition for cointegration is 

not satisfied the analysis is taken no further.

d) Quantity theory of money (quarterly data): log M l, M2, M3 or L  (y ) and log GNP 

(x), where L denotes total liquid assets, 1959Q1 - 1981Q2.

Engle and Granger (1987) found the classical equation M V  — P Y  of the quantity 

theory of money to hold for M =  M2, but not M l, M3, L. This is somewhat unsatis­

factory since the latter monetary aggregates are linked with M2 in the long run, so that 

there might exist cointegration (albeit of different orders) between more than one of these 

aggregates and GNP. For log L  in Table 4.6 we reject at the 1% level the hypothesis that 

GNP shares the same integration order. For M2, in Table 4.7, the necessary condition 

for cointegration is met, GLS confidence intervals tending to suggest integration orders 

around 1.3, which seems unsurprising since both aggregates are nominal. The (3m are 

not noticeably influenced by m  and are indeed the same as OLS (.99). Estimates of the 

de are strongly inconsistent with stationarity, ranging from 1.02 to 1.23, the confidence 

intervals excluding values below .88. Overall, it seems very difficult to draw reliable con­

clusions about the existence of fractional cointegration between these variables given such
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a small sample. The relationship of nominal GNP with M l and M3, in Tables 4.8 and 

4.9, appears much closer to that with M2 than Engle and Granger concluded, exploiting 

the greater flexibility of our framework. In particular, the common integration order for 

the bivariate raw data is again estimated via GLS to be 1.31, 1.39, 1.29, (for m  =  16, 22, 

30) for nominal GNP and M l and 1.33, 1.44, 1.42 for nominal GNP and M3; estimates 

of de range from .76 to 1.20 for the former case and from .88 to 1.08 for the latter.

4.7 FINAL COMMENTS

This chapter demonstrates that OLS estimates of a cointegrating vector are asymp­

totically matched or bettered in a variety of stationary and nonstationary cases by a 

narrow-band frequency domain estimate, FDLS. The overall superiority of FDLS relies 

on correlation between the cointegrating errors and regressors; in the absence of such 

correlation FDLS is inferior to OLS for stationary data, and comparable for nonstation­

ary data. The finite-sample advantages of FDLS in correlated situations are observed 

in a small Monte Carlo study. FDLS is incorporated in a semiparametric methodology 

for investigating the possibility of fractional cointegration, which is applied to bivariate 

macroeconomic series.

This chapter leaves open numerous avenues for further research. It is possible that 

the whole of x t does not satisfy the conditions of either Section 3 or one of the cases 

I, II or III/IV  of Section 4, but rather that subsets of x t are classified differently. It is 

straightforward to extend our results to cover such situations, and we have not done so for 

the sake of simplicity, and because the case p = 2 is itself of practical importance. A more 

challenging development would cover such omitted cases as when x t has integration order 

on the boundary between stationarity and nonstationarity, though this can be thought 

of as occupying a measure-zero subset of the parameter space. From a practical viewpoint 

a significant deficiency of our treatment of nonstationarity is the lack of allowance for 

deterministic trends, such as (possibly nonintegral) powers of £, but if these are suitably
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dominated by the stochastic trends Theorem 3.3 suggests that the results of Sections 4 

continue to hold.

A more challenging area for study is the extent to which we can improve on FDLS in 

our semiparametric context, with unknown integration orders, to mirror the improvement 

of OLS by various estimates in the C l  (I) case. There is also a need, as in the C l  (I) 

case, to allow for the possibility of more than one cointegrating relation, where we might 

wish to permit these to have different integration orders. Certainly it seems clear that 

results such as Lemma 4.2 can be established for more general quadratic forms, and so 

the extensive asymptotic theory for quadratic forms of stationary long memory series can 

be significantly extended in a nonstationary direction. The choice of bandwidth m  in (3Tn 

seems less crucial under nonstationarity than under stationarity, but nevertheless some 

criterion must be given to practitioners. For the stationary case, which seems of interest 

in financial applications, bandwidth theory of Robinson (1994c) can be developed, but 

there is a need also to develop asymptotic distribution theory for FDLS, useful application 

of which is likely to require bias-correction due to correlation between x  and e. For 

the relatively short macroeconomic series analyzed in this chapter the semiparametric 

approach employed, while based on very mild assumptions, will not produce as reliable 

estimates of integration orders as correctly specified parametric time series models, and 

it is possible to analyze narrow-band jd estimates in such a parametric framework also.
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A P P E N D IX

P ro o f  of T h eo rem  3.1 From (4.1), (4.2) we have

pm -  (3 =  Fxx( l 1m)~1Fxe(l,rri) . (4.72)

By the Cauchy inequality, as in Robinson (1994a)

I & (!.*»*) I< . (4.73)

For any non-null p x 1 vectors 7 and <5, by Assumption 4A

Y | F 22(l,m ) -  F22(Am) J <5 =  op (^{jfFzz(Xm)/yS'Fzz(Xm) S } ^  , as n -> 00 (4.74)

by a straightforward multivariate extension of Theorem 1.16 (Robinson (1994a)), with

A

F22(A) =  J  Re { /„ ( /!)} d/i «  G(A), as A —> 0+ , (4.75)
0

where G(A) has (a ,6)-th element

/Of \ 1 - d a - d b

° M )  =  t v  - j "  ■ (4-76)1 — da — ab

Gab being the (a ,6)-th element of G. Applying (4.74), (4.75) and (4.4),

A" 1 { F „ ( l ,m )  -  F22(Am)} A' 1 =  op(Am) , (4.77)

where Am =  diag{A.~dl,..., A”dp}, so

F l T \ l , r n )  =  Gab(Xm) +  op ( A ^ - * )  , (4.78)

128



Fee(l,rn) =  a1 Fzz( l .m )a  = a'Fzz(Xm)a + op(a Fzz(Xm)a)

= o p(AirM‘) . (4.79)

because

A A/ f  \ l - 2 d e
a ' f zz(/i)adfi c I fi~2dedfi- = c - — as A —► 0+ . (4.80)

o o  e

Denote by Am, G(A) the right-hand lower (p — 1) x (p — 1) submatrices of Am, G(A). For

any (p — 1) x 1 non-null vector v =  (i/j, ..., vp-i) '

V p- i
" 'A "1Fa:x(Am)A"1i/ «  i /A '1G(Am) A '1i/ > u  / ^  {(Am/A),î 3-}2dA (4.81)

o

=  (4-82)
j=i J

where u; is the smallest eigenvalue of the right-hand lower (p — 1) x (p — 1) submatrix of G, 

which is positive definite by Assumption 4A. It follows that AmF;ra.1(Am)ATn =  Op(n /m ), 

whence the proof is completed by elementary manipulation. □

P ro o f  o f L em m a 4.1 From (4.13)

xat =  (1 -  {»?otl ( t  > 0)} , a =  1 , (4.83)

et =  (1 -  L)~d* {%tl ( t  > 0} , (4.84)

where i]at is the a-th element of rjt. We take

^ (7) =  r ( 7 ) r ( t  + 1) ■ (485)

since this is the coefficient of Lk in the Taylor expansion of (1 — L)-7 , and choose <plfc =
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y k(da) in both cases (4.32) and (4.33), with tp2k — c/,-(^c) in (4.32) and ip2k =  PsSAb) in 

(4.33). Now

¥’*(7) =  0 ( ( l  +  fe)''-1) (4.86)

from Abramowitz and Stegun (1970). Also

¥>*(7 ) -  <pk+1(7 ) =  -<Ph+1(7 -  1) =  O ((1 +  k y ~ 2) , (4.87)

to check Assumption 3B. Next we take r)lt = î at in each case and ri2t =  rjpt and

7ht ~  7lbt m (4.32) and (4.33) respectively. Now the spectral density matrix of rjt is 

(27r)_1A(elA) A{elX)* whose modulus is bounded by C  0 I ll 'l l)  < 00 fr°m (4-21).

Thus Assumption 3A is satisfied. Finally the fourth cumulant of 77 a0, rjai, VbA+ji 7h,i+j+k 

is, for i , j , k  >  0

/  00 00 00 00 \
CWTl f ^  ̂ ^  ̂ ^  ̂ ^ b j i + j - f ^ f i  ^   ̂ ^ b , i + j + k —g ^9  j ’ (4.88)

\ d ——oo e ——oo / = —oo g=~ oo /

where a'aj is the a-th row of Aj. This is bounded in absolute value by

oo

C  ^   ̂ j] —rf || 11̂ 0,1-̂ 11 ||^a,t+j-d|| 11̂ 0,1+̂ '+k—d  || • (4.89)
d = —oo

Because the sum of this, over all a, 6, c, is finite due to (4.21), it follows that the Fourier 

coefficients of the fourth cumulant spectrum of r)at, 77a(, r]bt, rjbt are absolute summable, so 

that their spectrum is indeed bounded and Assumption 3D is satisfied. □

P ro o f  o f L em m a 4.2 We write

DFxx( l ,m ) D  =  DFxx( l , n - l ) D

- D  | Fxx(m  -f- l ,n  -  1) -  EFxx(m  +  l ,n  -  1) j  D  

- D E F xx(m +  l ,n  — 1)D . (4.90)
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In view of Lemma 4.1 the last two components are op( 1) and o(l) from Theorems 3.2 

and 3.1 respectively. The proof is completed by appealing to Theorem 4.1. □

P ro o f  o f L em m a 4.3 We begin by estimating the bajt- First

/  OO \  2

i u y  < ( E  i i ^ f j  (4.9i)

x0 3 /  oo \  2

^ E f z i w n  (4-92)
fc=[i] \ t = k  J

=  o{j~l ) as j  -»• oo , (4.93)

where (4.92) is due to monotonic decay of the right hand side of (4.91), and (4.93) follows 

from (4.18). The a-th diagonal element of A k is (pk(da) for a = 1, — 1 and (fk(de) for

a = p, where <^(7 ) is given by (4.85). Now from (4.23), for a — 1, ...,p — 1

r 1)

IIM I ^  1 1 ^ 1 1 +  E  ‘Pe(d«)\\A3-e II
^=0 £ = r + 1

r oo

< C max | | ^ | | E ^ * " 1 + c 'r *‘“ 1E l l ^ l l
£= 0  <?=0

< (4.94) 

for 1 <  r  < min(j, t — 1). It follows that for j  <  21

ll^ajtll < C j d' - '  , i  = 1, ...,p -  1 , (4.95)

on taking r ss j /2 .  For j  > 2t. we have more immediately

t-i
I M I  < E  II II- ~  > a =  4. -> P  -  1 • (4-96)

£=0
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Similarly

WbpjtW < o  ( jd‘~l) , j < 2 t .  (4.97)

=  O ((j  -  t y Y ' )  , j  > 2t . (4.98)

Next notice that baj = baj t for 0 < j  < t, so from (4.22)

f — 1 oo

E{xate,) = +
j=o j=t

oo 2t— 1 oo

=  Ca “  ^  p̂j +  X !  ^  E  bpjt +  S  bpjt
j=t j=t j=2t

/  oo oo
  £  _j_ |  ^   ̂j d g + d e  — 2 j  ̂ £<in+ d e — 2 _j_ ^da + d e ^   ̂^-—2

\ J = t  J = t

=  e  +  (4.99)

because da +  de < 1, where this and (4.95), (4.97) imply that |£a| < oo. On the other 

hand

n n oo oo

|£(̂ «e)| <  ̂EE EE miiw
3=1 £=1 J = 0  /c=0

s-y (  n n  in in(2s,3+t) n n  2s

* § EE E ^ (j '+ f -r + E E ^ E ^ -)"
I s = l  t = l  m ax(0 ,s— t) 3=1 fc= 1 3 + t

n  n s + t  n n oo

+E E s“‘ E0‘+* - *)de_10' - s)_1+E E E O'-®)-2
3=1 t = l  2s s = l  t = l  m in (2s,s+ t)

=  O (nda_de_1) . (4.100)

The proof is routinely completed in view of (4.3). □
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P roof o f Theorem  4.2 It is convenient to introduce the abbreviating notation

A  =  Fxx( l , n -  1), b =  Fxe( l ,n  -  1), A = Fxx( l.m) ,  b =  Fa.e(l,ra ) . (4.101)

Thus

/?„_! -  P = D (D AD )~1Db , (4.102)

3ro - P  = D (D AD )~1Db . (4.103)

Now

D(A -  A)D = D U A  -  A) -  E (A  -  A ) \  D + D E { A -  A)D  0 (4.104)

from Theorems 3.1, 3.2, Assumption 4C and Lemma 4.1, so that DAD, DAD  =>• V(d,Q.)

by Theorem 4.1. Now denote by ba,ba the a-th elements of b,b. From Theorem 3.2,

Assumption 4C and Lemma 4.1

ba =  Eba + (ba -  Eba) =  Eba + Op(nd,'+d'~1), a = 1, ...,p -  1 , (4.105)

whereas from Lemma 4.3

lim ndm'n~^DEb = £ . (4.106)
n —* 0 0

Then (4.37) follows from (4.36). Finally

ba = Eba +  {ba -  £ & ) }  =  O (  + 0 P (nda+d‘~1) , (4.107)

from Theorems 3.1 and 3.2, Assumption 4C and Lemma 4.1 so the a-th element of (4.103) 

is

( ! ! / n \ d a + d e - l \  f  /  f i  \  dmin+de- l \

n ~2 \ ? a % n * U  ) = ° ' ( "  U  )
= op (n1_da_dmin) , (4.108)
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since d m-m +  d e < 1, to complete the proof of (4.38). □

P ro o f  o f L em m a 4.4 For 1 < j  < m, writing Fj = Yli>j 71 ->

EIxc{Xj) =  i E D v . + - + v ty (i- *
S=1 t= 1

7 1  7 X

27m s=1 t=i
s)Aj

£=l-n X 7

from (3.67). Now for £ > 0 whereas for £ < 0, =  r 0 +  T_! —

has real part

- t  £  (J ~ i ) TecoseXi  + h  S  (* + i )  (r°+ - r<-])coŝ
£=0 v 7 i —\ - n  v 7

The first term can be written

£ = 1- n  x  7

To deal with the second term of (4.110) note that for 1 < j  < n — 1

y b ei«i =  eiAj - 1 _  f o - 1) =  ~ n
J—*' _  eiAi)2 1 -  elXj 1 — ’

which has real part

n f  1 ( 1 ^ n f  2 — 2 cos A j ^ n
2 \1  -  eixi +  1 -  e~ixi J  ~  ~ 2  \ 2 - 2 c o s A j )  ~  ~ 2

(4.109) 

so (4.109)

(4.110)

(4.111)

(4.112)

(4.113)
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Thus, the second term in (4.110) is

( r .  + r - , ) g f  a

2tt ^  V n  I 3 2?r
C — f \  \  /£=0

n —1

47t ' \ n j  47r£=1—n '  7

£ = l - n  v 7

It follows that (4.109) has real part

i  E (x -  ^) (r-w - r-w-0cosAi - (4-115)
t —l —n  '  7

which is the Cesaro sum, to n — 1 terms, of the Fourier series of h(Xj)/2. Equivalently 

we can write

™ ?r•j A
E {££.(!."»)} = 7Z— E / Ip-(A - A*)i2 MA)dA • (4-116)

j=1-*

Fix e > 0. There exists 6 > 0 such that \\h(X) — h(0)|| < e for 0 < |A| <  6. Let n  be

large enough th a t 2Am < 6. Then the difference between the right hand side of (4.116)

and /i(0)/2 is bounded in absolute value by

E g  r!£»„(>-A^)|*IIMA)- M0)||rfA
7  =  1  - I T

[ \ D n( X - X j ) f d \ +  sup \D„(X)\2 I [ \ \h{X)\ \d \  + 27r\\h(0)\\J 4 c l A l C 7 T  \  J
Airnm i = i —7T

6
1

< ---------< e max
4 n n m  I £<|a|<^

-  o ( .  +  i )  , (4.117)
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because of Assumption 4D, (??) and

7r

J  \Dn( \ ) \2 d \  = 2 n n  . (4.118)
—7r

Because e is arbitrary, the proof is complete. □

P ro o f  o f T h eo rem  4.3 (4.47) is familiar under somewhat different conditions from ours 

(see e.g. Theorem 1.2 and the other references mentioned in Section 1.2), but we briefly 

describe its proof in order to indicate how the outcome differs from (4.48). We have

n  (/?„-i -  P) =  ( n ' 1̂ ) ~ 1 {(2 ~ E a )  + Ea} ■ (4.119)

Now

n~lA  =$- V(i,CL) , a — Ea => U(Q.) , as n —► oo (4.120)

from Assumption 4C, Theorem 4.1 and the continuous mapping theorem. Because Ea  —> 

To by elementary calculations and V(t,  fi) is a.s. of full rank by Phillips and Hansen 

(1990), (4.47) is proved. Next

n(Pm ~P)  ~  n~lA  +  n -1 j(A  — A) — E(A — A )j +  n~1E(A  — A)

x [a — Ea  -f {(a — a) — E(a  — a)} +  Ea] . (4.121)

Since n~l — A  — E (A  — A)^ —>p 0, n _1£ ,(A — A) —» 0 and a — a — E(a — a) — 0

from Theorems 3.1, 3.2, and Lemma 4.1, the proof of (4.48) is completed by invoking

(4.120), Lemma 4.4 and (4.4). □

P ro o f  o f  T h eo rem  4.4 From (4.102), Theorem 4.1, (4.36), (3.17) of Theorem 3.1 and
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(3.21) of Theorem 3.2 we deduce (4.49). Next, using (4.103),

3 n_! -  /?„, =  D (D AD )~l { d ( A -  A ) d \ ( D A D ) ~ lDa (4.122)

- ( D A D ) - 1 D { ( a - a )  -  E ( a - a ) }  . (4.123)

The a-th element of the right side of (4.122) is op (nda+de>) by arguments used in the pre­

vious proof and (4.104), while the a-th element of (4.123) is also op (nda+de) on applying

also (3.16) of Theorem 3.1 and (3.20) of Theorem 3.2, to prove (4.50). Then (4.51) is a 

consequence of (4.49) and (4.50). □

P ro o f  o f  T h e o rem  4.6 The proof of (4.60) follows routinely from (4.102), (4.31), (4.36) 

and (4.59). Then (4.61) is a consequence of (4.50) and (4.60), because in view of (4.123) 

it is clear that (4.50) holds for all de < dmm. □
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TABLE 4.1: M O N TE CARLO BIAS A N D  M SE FO R M ODEL A

BIA S ,  n = 64 M SE., n = 6 4
*

3 3 A fib f i n - 1 P f m P f m A A A P n - l P f m P f m

.8 .194 .210 .229 .295 .171 .154 .128 .123 .130 .154 .094 .091

.6 .068 .083 .096 .177 .062 .041 .033 .033 .034 .059 .027 .024

.4 .031 .037 .046 .125 .036 .014 .015 .014 .014 .031 .011 .009

.2 .017 .020 .026 .097 .024 .003 .009 .007 .008 .019 .007 .006

B IA S , n = 128
— *

M S E , n = :128
—*

<Pi A A A f i n - 1 P f m P f m A A P e P n - l P f m P f m

.8 .074 .087 .110 .175 .075 .062 .034 .034 .037 .057 .026 .024

.6 .020 .023 .035 .096 .018 .006 .008 .008 .008 .018 .005 .006

.4 .008 .010 .015 .066 .010 -le-4 .004 .003 .003 .009 .002 .002

.2 .003 .005 .007 .051 .008 -4e-4 .001 .001 .001 .003 .001 .001

B IA S , n = 256
—*

M S E , n = :256

¥>i Pe A PlQ f i n - 1 P f m P f m A A fi 10 f i n - 1 P f m P f m

.8 .038 .048 .053 .097 .026 .019 .008 .009 .009 .018 .006 .005

.6 .008 .013 .015 .050 .003 -.002 .002 .002 .002 .005 .001 .001

.4 .004 .005 .006 .034 .003 -.001 7e-4 7e-4 7e-4 .002 5e-4 5e-4

.2 .001 .003 .004 .026 .002 -.001 4e-4 3e-4 4e-4 .001 3e-4 3e-4
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TABLE 4.2: M O NTE CARLO BIA S A N D  M SE FOR M ODEL B

BIA S, n = 6 4 M SE , n = 6 4
A* P3 P a A P n - l P f m P f m A A A P n - l P f m

■—■ *
P f m

7r 
3 -.008 -.010 -.010 .089 .025 .007 .007 .007 .006 .025 .010 .007
47T
9 -.005 -.006 -.007 .057 .032 .022 .003 .002 .002 .011 .006 .004
57T
9 -.002 -.005 -.006 .040 .011 .003 .001 .001 .001 .007 .002 .002
27r
3 -.003 -.003 -.004 .030 .031 .026 .001 .001 7e-4 .005 .004 .003

B IA S, n = 128 M SE , n = 128

A* A P a A P n - l P f m P f m A A A P n - l P f m P f m

7T
3 -.001 -.003 -.004 .0.44 .007 6e-4 .002 .001 .001 .005 .002 .001
47T
9 -.001 -.001 -.002 .026 .005 5e-4 5e-4 5e-4 4e-4 .002 5e-4 4e-4
57r 
9 -.001 -.001 -.001 .020 .014. . .011 3e-4 3e-4 2e-4 .001 7e-4 5e-4
27T
3 -.001 -.001 -.001 .015 .011 .009 2e-4 2e-4 2e-4 9e-4 5e-4 4e-4

BIA S, n= 256 M SE , n = 256

A* P b A Pio P n - l P f m

— *
P f m A A Pio P n - l P f m

—★
P f m

7T
3 -5e-4 -.001 -.002 .022 -.002 -.004 3e-4 3e-4 3e-4 .001 3e-4 3e-4
47T
9 -.001 -7e-4 -7e-4 .013 .005 .004 le-4 le-4 le-4 4e-4 2e-4 le-4
57T
9 -3e-4 -6e-4 -.001 .009 .005 .003 5e-5 5e-5 5e-5 2e-4 le-4 7e-5
27T
3 -3e-4 -5e-4 -.001 .007 .007 .006 3e-5 3e-5 3e-5 2e-4 le-4 9e-5
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TABLE 4.3: C O N SU M PT IO N  (y) A N D  INCO M E (x)

(n=138, /?„-!=•229, 1 -  R 2= . 009)

1) M em o ry  o f R aw  D a ta

£ dx dy W dGLS Cl dx Cl dy

22 .89 1.13 1.06 .95 .94, .97 .99 .78, 1.20 1.13

30 .95 1.04 .02 .98 .97, .99 1.03 .84, 1.21 1.10

40 1.02 1.04 .02 1.02 1.02, 1.03 1.08 .92, 1.24 1.12

2) C o in teg ra tio n A nalysis

m Pm P-m T'xx,m  ̂xy,m i—
1 1 S3
 

3 M 1 - R l m

3 .231 .219 .85 .86 .003 .013

4 .232 .210 .88 .89 .004 .013

6 .232 .201 .93 .93 .004 .013

3) M em ory  o f  C o in teg ra tin g  E rro r

£ d*e Cl de Cl dl Cl de Cl

22 .20 -.05, 46 .56 .29, .84 .44 .22, .65 .62 .41, .83

30 .57 .27, .87 .84 .60, 1.07 .68 .49, .86 .78 .60, .96

40 .61 .38, .84 .86 .66, 1.06 .76 .60, .92 .87 .71, 1.02

Cl 

.92, 1.34 

.93, 1.29 

.96, 1.28
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TABLE 4.4: STO CK  PR IC ES (y) A N D  D IV ID E N D S (x)

(n=116, /5n- 1—30.99, 1 -  R 2=  15)

1) M em ory o f  Raw D ata

I  dx dy W  dGLS Cl dx Cl dy Cl 

22 .91 .96 .07 .94 .92, .96 .36 .15, .57 1.04 .83, 1.25

30 .86 .83 .04 .84 .83, .85 .48 .30, .66 .91 .73, 1.09

40 .91 .84 .36 .87 .86, .87 . 70 .54, .86 .90 . 74, 1.06
2) C ointegration A nalysis

m Pm P-m 1 xx,m ^xy,m 1 ~ R 2m 1 - R l

3 33.16 23.24 .78 .84 .076 .215

4 33.55 21.49 .79 .85 .093 .210

6 32.47 22.81 .85 .89 .114 .190
3) M em ory o f  Cointegrating Error

£ de Cl dl de Cl

22 .73 .74 .47, 1.01 .95 1.04 .83, 1.26

30 .60 .60 .36, .83 .85 .91 .73, 1.09

40 .64 .66 .46, .86 .84 .90 .74, 1.06
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T A B L E  4.5: LO G  P R IC E S  (y)  A N D  LO G  W A G ES (x)

(n=360, 3 „_ i =-706, 1 -  R2=.033)

M em ory  o f  R aw  D a ta
£ dx dy W dx Cl dy Cl

30 1.16 1.60 5.84 1.07 .89, 1.25 1.24 1.06, 1.42

40 1.03 1.54 11.1 1.07 .92, 1.23 1.25 1.09, 1.41

60 .99 1.54 19.9 1.07 .94, 1.20 1.27 1.14, 1.40

T A B L E  4.6: LO G  L (y) A N D  L O G  N O M IN A L  G N P  {x)

(n=90, 3 n - i= 1 *039, 1 -  R 2=.00085)

M em ory  o f R aw  D a ta
£ dx dy W dx Cl dy Cl

16 1.29 1.61 5.51 1.23 .98, 1.48 1.46 1.21, 1.71

22 1.36 1.68 6.30 1.25 1.03, 1.46 1.56 1.35, 1.77

30 1.29 1.68 9.99 1.22 1.04, 1.40 1.60 1.42, 1.68
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TABLE 4.7: LOG M2 (y) A N D  LOG N O M IN A L G N P  (x)

(n=90, 3n-i=-99» 1 ~  #*=.0026)

1) M em o ry  o f R aw  D a ta

£ dx dy W dcLs C l dx Cl dy 

16 1.29 1.53 .69 1.29 1.28, 1.30 1.23 .98, 1.48 1.35

22 1.36 1.56 .83 1.38 1.37, 1.39 1.25 1.03, 1.46 1.47

30 1.29 1.64 3.67 1.33 1.32, 1.34 1.22 1.04, 1.40 1.59

2) C o in teg ra tio n  A nalysis

m Pm P-m J-xx,m Txy,m 1 ~ R 2m 1 - R 2_.

3 .99 .98 .83 .84 .002 .003

4 .99 .99 .87 .87 .002 .003

6 .99 .99 .91 .91 .003 .003

3) M em o ry  o f  C o in teg ra tin g  E rro r

£ d'x de Cl d'e de Cl

16 1.15 1.19 .88, 1.52 1.20 1.23 .98, 1.48

22 1.10 1.16 .89, 1.43 1.04 1.10 .89, 1.31

30 1.10 1.15 .92, 1.38 1.02 1.09 .91, 1.27

Cl 

1.10, 1.60 

1.25, 1.69 

1.41, 1.78
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TABLE 4.8: LOG M l (y)  A N D  LOG N O M IN A L G N P  (x)

(n=90, 3x7-1=-643, 1 -  i?2=.00309)

1) M em ory o f Raw D ata  

£ dx dy "W” Cl dx

16 1.29 1.53 7.70 1.31 1.30, 1.32 1.23

22 1.36 1.42 .346 1.39 1.38, 1.40 1.25

30 1.29 1.29 .001 1.29 1.28, 1.30 1.22

2) C ointegration A nalysis

m Pm P - m rxx,m ^ry.m 1 ~ R 2m h-* 1 i «
3 .645 .632 .83 .84 .003 .003

4 .645 .630 .87 .88 .003 .003

6 .645 .629 .91 .91 .003 .003

3) M em ory o f  C ointegrating Error

£ d; de Cl d\ de Cl

16 .99 1.20 .88, 1.52 .97 1.06 .81, 1.31

22 .76 1.07 .80, 1.34 .77 .92 .71, 1.13

30 .78 .88 .64, 1.11 .76 .85 .67, 1.03

Cl d , Cl

.98, 1.48 1.39 1.14, 1.64

.97, 1.46 1.33 1.12, 1.55

1.04, 1.40 1.27 1.09, 1.45
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TABLE 4.9: LOG M3 (y) A N D  LOG N O M INA L G N P (*)

(n=90, 3 „_i =1-0997, 1 -  R2=.0023)

1) M em ory o f Raw D ata

£ dx dy W  dGLS Cl dx Cl dy Cl

16 1.29 1.45 .79 1.33 1.33, 1.34 1.23 .98, 1.48 1.34 1.08, 1.60

22 1.36 1.62 2.01 1.44 1.43, 1.44 1.25 1.03, 1.46 1.50 1.28, 1.71

30 1.29 1.71 7.04 1.42 1.41, 1.43 1.22 1.04, 1.40 1.65 1.47, 1.83

2) C ointegration A nalysis

m Pm P -m Lea:,m Lry,m 1 ~ R 2m 1 - R 2_

3 1.10 1.10 .83 .83 .002 .002

4 1.10 1.10 .87 .87 .002 .002

6 1.10 1.10 .91 .91 .002 .002

3) M em ory o f Cointegrating Error

£ *1 de Cl d*e de Cl

16 .88 .89 .57, 1.21 1.02 1.02 .76, 1.28

22 .97 1.00 .73, 1.27 1.05 1.08 .87, 1.29

30 .96 1.01 .78, 1.21 .98 1.04 .86, 1.22
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Chapter 5 

COINTEGRATED TIME SERIES 

WITH LONG MEMORY 

INNOVATIONS

5.1 In trod uction

Consider the two-dimensional observations (yt , x t), t =  1,2,.... , where

< Vt ^  t +  1 , U t ~  I(du) , et ~  /(d e) , \<t>\ <  1 , (5.1)
X t  =  (f)Xt -  1 +  Ut

with 0 < de,du < I. Here, as in Section 4.3, we adopt for ut: et the stationary definition 

of fractional integration, i.e. we identify ut (et) with zt and we substitute rjt for rjtl( t  > 0) 

on the right hand side of (1.2). We allow for nonstationarity in x t,yt by including the 

possibility that <j) equals unity, thus covering partial sums of long memory innovations as 

in (1.129); it would be tempting in this case to indicate x t ~  I(dx), and hence to term 

the bivariate process (yt,xt) cointegrated of fractional order (dx,d e), with dx = du 4-1; 

indeed this is the terminology adopted by Dolado and Marmol (1996) in similar circum­
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stances, as mentioned in Section 4.1. Note however that this terminology does not agree 

with Section 4.4, where the definition of fractional cointegration in the nonstationary 

case d > 1 is reserved for processes which generalize (1.2) via Assumption 2A or As­

sumption 4C (cf. also Chapter 2, Section 3); to prevent ambiguities, it may be better 

when <j> =  1 to term x t a unit root process with long memory innovations, and to define 

(5.1) a cointegrated vector with long memory (or fractionally integrated) innovations, as 

in Jeganathan (1996), where this model is investigated under the assumption that the 

distribution of (et , ut) is known. For (j) = 1, (5.1) can hence be considered an alternative 

avenue for the generalization of the CI(  1) case to fractional circumstances.

For fractional cointegration analysis, in Chapter 4 we advocated a form of narrow­

band estimates that in the bivariate case could be considered the solution of the following 

minimization problem:

dm  =  R e  | a r g m j n X j  \wv(Xj) -  / ^ * ( Ai ) | 2 j  1 I 3 =  > ( 5 - 2 )

for wy(.),wx(.) discrete Fourier tranforms and under the bandwidth condition

1 171 f r  o \m  < n  , ---- 1 >• 0 as n —> oo . (5.3)
777, n

The solution of (5.2) can be written in closed form as

/? =  R p  I  W x ( ^ j ) w y ( ^ j )  1 _  -̂ aey(l» m) /c ^
Fxx( l ,m )

where F ( l,m )  denotes as in (1.20) the real part of the discretely averaged periodogram. 

We recall from Chapter 1 that for stationary, short range dependent vector sequences 

Zt = (yt,Xt), the statistic

/„ (0 )  =  A-1F „ ( l ,m )  (5.5)

provides under (5.3) and regularity conditions a consistent estimate of the spectral density
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matrix at the origin; hence we can rewrite formally

3  _  F x y {l-i 777,)/A m _  f x y  (Q)

P m ~  Fxx( l , r n ) / \ m ~  f x x (0)  * . K°'  }

The behaviour of (5.4) under (5.1) is difficult to establish in general, although some 

possibilities considered in Chapter 4 are relevant here, for instance the stationary and 

CI(  1) cases. Rather than pursuing a complete characterization of FDLS under cointegra­

tion with long memory innovations, in this chapter we find more interesting to investigate 

instead the behaviour of a different frequency-domain semiparametric procedure, entail­

ing minimization of a functional of the continuously averaged periodogram; namely we 

consider

=  Re  jargrm n j  K M(^)\wy(\)  -  (3wx( \) \2d \ ^  , (5.7)

which in closed form becomes

-  JZ, K M(X)Ixy(X)dX
Pm K M(\) Ixx( \ ) d \  ’ 1 ' 1

where for M  = 1,2,... K m (^) represents a frequency-domain kernel such that A) =

/ \ m(A), M  representing a bandwidth parameter such that

1 M
M  < n , —  H >• 0 as n —► oo . (5.9)

M  n

For short range dependent processes an estimate of the spectral density matrix at fre­

quency u  alternative to (5.5) is given by (cf. (1.22))

f(w) = r  K m (X)I{u, -  \ ) d \  , (5.10)
J  — 7T

whence we can rewrite (3M (formally) as

Pm =  U ( 0 )  =  f  K M(X)U(\)dX,  a,b = x , y ,  (5.11)
fxxiy) J - ?r
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so that, analogously to (3m, p M can be interpreted as resulting from a form of spec­

tral regression carried over the components of x t and yt corresponding to the smallest 

frequencies. Under regularity conditions (Brillinger (1981)), /o&(0) is equivalent to

_  M
fab(0) =  kM{r)cab{T) , (5.12)

r = —M

where &(.) is the lag window defined by kM(r) =  KM(&)e1Tada, and

Cab(r) = <

Therefore we can rewrite for (5.8)

£?=iT fybt+r , t  > 0 

£t= |r|+ l a t h - T  , T < 0
(5.13)

E r = - M k M ( T ) c x y (T)  

k M ( r ) c x x ( r )
P m  =    . 1 <  M  < n -  1 , (5.14)

and adopt for (3M the natural definition of Weighted Covariance Estimate (WCE). Note 

that (5.6) can also be approximated by (5.14), if we take kM(r) =  sin(7n;)/7rc;, v = t / M  

and M  = n — 1. However, for convenience we shall impose the bandwidth condition (5.9), 

which rules out (5.6). For short range dependent (et,u t) and 0 = 1 ,  i.e. in the CI(  1) 

case, PM is the special case for f vv (0) =  1 of the estimates (1.83) considered by Phillips 

(1991b) and reviewed in Chapter 1, cf. Theorem 1.10; the following sections analyzes the 

behaviour of (3^ in the fractional circumstances considered in this chapter.

We shall show that under suitable conditions (including du > de in the stationary case, 

considered in Section 2) WCE is consistent, even if x t and et are not orthogonal. In other 

words, given long memory behaviour in the innovations, the presence or absence of a unit 

root in the data generating process (DGP) of x t is no longer crucial to derive consistent 

estimates for P - a conclusion that mirrors the results from Chapter 4. Hence we can 

again overcome the sharp distinction between stationarity and nonstationarity which 

characterizes the C l  (I) case. For some aspects we are also able to derive here sharper
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results than in Chapter 4. and in particular we characterize the limit distribution of OLS 

and WCE estimates when the DGP of x t does include a unit root and et is stationary long 

memory. Companion to  this derivation is a functional central limit theorem for a class 

of quadratic forms in nonstationary fractionally integrated variables, a result which may 

have some independent interest and can be extended to more general quadratic forms, 

as shown at the end of Section 3. In Section 4 some numerical evidence to motivate 

the procedure and investigate its finite sample performance is presented; most proofs are 

collected in the Appendix.

Throughout the chapter, we restrict our attention to the bivariate case for simplic­

ity; multivariate generalizations require in the nonstationary case suitable extensions of 

functional central limit theorems from Gorodetskii (1977) and Chan and Terrin (1995); 

such extensions are still under investigation.

5.2 T he S tation ary  C ase

When <f> is in absolute value smaller than unity, we find it notationally convenient to 

specify a model for the covariance stationary sequence (e*, xt ) =  ((et, 1 — <f>L)~lut) rather 

than for (et, ttt), and to  write dx for du.

A ssu m p tio n  5A  Assume that (5.1) hold, where \(j)\ < 1 and

oo

(et , xt)' =  *(L )et , (L) =  £  * kL k , (5.15)
k = 0

with $ 0 =  Ip, and for k = 1,2,... ^  has (a, b)-th element

i^ibk ~  cibkde~l , 7jj2bk ~  c2bkdx~1 , as k —► oc , 0 <  <  oc , (5.16)

for a, b = 1,2, and where et =  (£n, £2t)' represents a zero-mean, i.i.d. sequence tha t

satisfies E||£:t||4 < o°-
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The meaning and interpretation of Assumption 5A has been largely discussed in the 

previous chapters, cf. Assumption 4A and 4C. As a consequence of (5.16), a s r - +  ± 00,

E x tx t+T rH gx \r\2d*~l , 0 < gx < 00, E x tet+T »  gxe\r |d*+d«-1} (5.17)

cf (1.87) and Bladt (1994); gxe = 0 if E£it£2t =  0.

In the sequel, we find it convenient to set &m (t ) =  and to introduce

A ssu m p tio n  5B The kernel k(.) is a real-valued, Lebesgue-measurable function that 

for v E R  satisfies

J  k(v)dv = 1, 0 < k(v) < C  , k(v) = 0 ,  |t;| >  1 . (5.18)

Assumption 5B is common for spectral estimates, and it is satisfied by (normalized ver­

sions of) truncated kernels such as the Bartlett, modified Bartlett, Parzen, and many 

others; see Brillinger (1981) for a review.

L em m a 5.1 Under Assumptions 5A and 5B, as M  —► 00 for M  =  o(n2) we have

( M ) _1 U
\ E  H t 7)HxA t ) [ £  k (j7)c*x(T) = 1 +  OpC1) . (5-19)
( r = - M  1V1 ) t = —M 1V1

(  M  \  _1 U

\  E  > E  k ( - n ) C*e(T) =  l+ O p ( l) .  (5.20)
[ t= - M  1V1 J t ——M 1V1

For dx > 0, the spectral density of x t has a singularity at frequency zero and cannot
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be estimated there; as reported in Chapter 1, Theorem 1.16, it was shown by Robinson 

(1994a) under (5.3) and regularity conditions weaker than 5A that.

r  F ( l ,m ) /A m
phm  — ---- — — =  1 , as n  -»• oo . (5.21)

F( l , ra ) /A m

Lemma 5.1 is similar to (5.21), relating however to the case when the continuously aver­

aged periodogram is considered.

Under Assumption 5A and in view of (5.17), (5.18), as M  —► oo we have, by the 

dominated convergence theorem

<5-221

for 7ab(r) = EaobT, a,b = x,e,  and

B xx = g x J  ̂  k ^ v ^ ^ d v  , Bxe =  gxe J  ̂  . (5.24)

Hence B xe can be equal to zero if gxe is, in which case the left-hand side of (5.23) is op( 1). 

As an application of Lemma 5.1, we consider the statistic

M  T
In | ^ 2  k (— )cxx(r)| — 2dx In M  — In B xx +  op( 1) as n  —> oo, (5.25)

t = - M  ™

whence a consistent estimate of the parameter dx can be obtained under Assumptions 

5A, 5B and (5.9) by

T l n | £ TM=- M ^ K * ( T ) |
dx ~  2 h M  • [bUb)

This estimate is likely to be severely biased in finite samples, though, and rather than 

investigating in more detail its properties we concentrate on (5.1), for which we introduce
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the following result..

T heo rem  5.1 Under (5.1), Assumptions 5A-5B and M 2 — o(n) ,  as M  —► oo

M d*~d' 0 M - l3 )  = ^  + op( l ) .  (5.27)
-&XX

Theorem 5.1 suggests that the presence of correlation between x t and et does not prevent 

consistency of /?M, the rate of convergence being determined by the strength of the 

cointegrating relationship dx — de (cf. Theorem 4.1). We delay to future research the 

investigation of issues such as: the determination of optimal bandwidth parameter M  

(Robinson (1994c); the choice of an optimal kernel &(.); the estimation of the bias term 

Bxe/Bxxi the implementation of bias reduction techniques, and the derivation of the 

asymptotic distribution for the adjusted estimate; the comparison between performance 

of WCE and FDLS in the case of cointegration between stationary variables. We focus 

instead on the unit root case, which is dealt with in the next section.

5.3 T he U n it R oot C ase

The unit root case is characterized by the identification (j) — 1 in (5.1), so to obtain (after 

the initialization x 0 = 0)
t

*  =  t  =  * ( 5 -2 8 ) 
3= 1

We consider first the C l (1) case. For convenience, we write wab =  27r/a&(0), a, b = u, e, 

with |cjo6| < oo, because of course (cf. Chapter 1)

0 <  /(0 )  < oo . (5.29)
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The following result is proved by Phillips (1991b), cf. Theorem 1.10 in Chapter 1.

L em m a 5.2 (Phillips 1991b) Let (5.1) hold for <fi = 1, and assume that as n —> oo

^ f B2{r'iUtn)dr ■> (5*30)
n  t = l  s = l  J 0

2 n t . j  oo

~ L ( T “ »)e'  =* /  B (r < ^)d B (r ;u !U) +  y 7 „ ( r )  , (5.31)
n t = l r f  J® T =0

Assume also that Assumption 5B holds. Then under (5.9), as n —*■ oo

n (f3M - P )  => (JQ B 2(r-,u22 )d rSJ ^  B (r;a;22)dJB(r;a;11) +  ^ 7 we(T) j  • (5-32)

Regularity conditions under which (5.30)/(5.31) hold are discussed in Chapter 1,

Theorems 1.2-1.6, and hence need not be reviewed here.

When (5.29) fails, et and ut are not short range dependent and the asymptotics for 

f3m depends on functional central limit theorems for normalized partial sums of long 

memory innovations. As discussed in Chapter 2, Section 2, such results have now been 

given under a variety of different conditions, major references including Taqqu (1975, 

1979), Dobrushin and Major (1979), Davydov (1970), Gorodetskii (1977), and more 

recently Chan and Terrin (1995), Csorgo and Mielniczuk (1995). For our purposes, we 

introduce the following

A ssu m p tio n  5C  (5.28) holds, where for —\ < d u < \

ut = Y  , Y  I2 < 00 ’ ~ cidu 2asi — 0 < c < oo , (5.33)
j =o j=  0

et = i.i.d.{Q,cr2£) , a 2 < oo , E\et \s < oo , <5 > • (5-34)
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We have allowed here for the possibility that ut is antipersistent, i.e. du < 0 (the condition 

on 6 is clearly redundant if du > 0). Some of the results of this section need somewhat 

stronger assumptions than 5C, and therefore we introduce also

A ssu m p tio n  5D  Assume (5.1) holds with <f> — 1, and for d ^ L )  and 'de(L) lag polyno­

mials such that 0 < |$u(l) |, |$e(l) | < oo, we have

at = f exp( i t \ ) faa(X)1/2dMa(X) , (5.35)
J  — TT

f a a W  = -^ |A |-2da|$a(ezA)|2 , 0 <  A < 7r, a = u,e  , (5.36)

where Mu(.), Me(.) are complex-valued, Gaussian random measure which satisfy

dMa{ X) = dMa{ - A) (5.37)

EdMa(X) = 0 (5.38)

0, A ^  fi
E d M a(X)dMb(X) = { , a , b  = u , e .  (5.39)

dA, A = / j l

Because by Wold representation theorem any Gaussian covariance stationary sequence 

can be viewed as a linear process with i.i.d. innovations, Assumption 5D entails stricter 

conditions on ut than Assumption 5C. In the sequel, for notational convenience we shall 

occasionally use the identification dx = du + 1; we stress again, however, that x t does not 

satisfy (1.2).

L em m a 5.3 Let ut = a j£ t - j> for i =  1,2,..., where

oo oo

Y  \ & j \ 2 < oo , Y , aj a j+T w c r2du_1, 0 < c < oo, as r  oo, (5.40)
j=o j=o
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E t t =  0 , E g  < C ,  E & .  =  0 , t j t s .  (5.41)

Under (5.9), (5.28) and for k(.) such that (5.18) holds, we have

1 M  T
^ ( 0 )  — ^  k (— )cxx(r) = op(n x ) . (5-42)

1V1 t = —M  1V1

Because £t need not be stationary nor satisfy any moment condition of order greater than 

two, (5.40)/(5.41) are weaker than Assumption 5C.

We noted already in Chapter 4, Section 4, Case III that quadratic forms involving at 

the same time stationary and nonstationary variates are typically more difficult to deal 

with than others, where both variables are other stationary or nonstationary. This di­

chotomy is met also under the circumstances of the present chapter, and for the following 

result we need to  narrow the focus and impose Assumption 5D.

L em m a 5.4 Under Assumption 5D, dx 4- de > 1, (5.9) and (5.18)

1 m

c*e(°) -  77 £  k ( j 7 ) ^ ( r )  =  op(nix+d* *) . (5.43)
1VL t = —M  IV1

In Chapter 2 we introduced “type I” fractional Brownian motion, which for convenience 

we parameterize here by da , a =  w, e, for — |  < da < so that the moving average 

representation (2.3) becomes, up to multiplicative constants

B(r; da) =  f  {(r -  *)+}*“ -  {(-«)+}*■ dB(s) , (5.44)
J  R

while the harmonizable representation (2.15), on which we focus, is

B{r-da) =  K(da) [  expW  -  1 faa{x)m dMa(\)  , (5.45)
J  R  ZA
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/  1 1 \ 1/2 
K(da) = yn 1(da 4- - )r (2da +  1) sin7r(da +  - ) J  . (5.46)

Here we consider the compound processes, for da 4- db > 0, a, b =  u, e

P{da) = [  B 2(r; da)dr , (5-47)
J o

Q(da,db) =  [  B(r ;da)dB(r-,db) +  C(da,db) , (5.48)
J o

where

C(d0, d„) =  K{da)K(db) f  [ f  1 - e XP (5.49)
Ji? Jo Ifl

The stochastic integral on the right-hand side of (5.48) is defined only in a formal sense 

to be equal to

f  [ f  exp(z£A)eXP^ ^  - ] fuu(fi)1/2fee(\)1/2dMu(ii)dMe(\) , (5.50)
Jr2 Jo z/i

where f R 2 signifies that the integral excludes the diagonals fi =  ±A. (5.50) is a multiple 

Wiener-Ito stochastic integral in the sense of Major (1981), but it cannot be defined

as an Ito integral with respect to B(r;de) because fractional Brownian motion is not a

semimaxtingale.

L em m a 5.5 (Gorodetskii (1977)), Chan and Terrin (1995)) As n —* oo, under Assump­

tions 5C and 5D

( ^ ^ ( l ) 2) 1 => P(du) , (5.51)
t= l

Also, under Assumption 5D, dx +  de >  1

(ndx+de,du(l )^ e( l))  ^ x tet Q{du,de) . (5.52)
t=i

P ro o f  (5.51) follows under Assumption 5C from Gorodetskii (1977) and the continuous
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mapping theorem; (5.52) is given in Chan and Terrin (1995). □

We learned from Lemma 5.2 that in the CI(  1) case (3M and (3n_x share the same asymp­

totic distribution, as opposed to FDLS estimates; when the innovation are long memory 

a stronger result holds, namely the difference between the two estimates is asymptotically 

op(nde~dx). More precisely,

T h eo rem  5.2 Under Assumption 5D, (5.1), (5.9) and (5.18)

" “• " ‘■(A.-i -  0) = , (5.53)

and

= oP(nd‘- ^ ) ,  (5.54)

nd*-d‘ (0M - P )  =  (5.55)

P ro o f  (5.53) follows from Lemma 5.5 and the continuous mapping theorem. For (5.54) 

we can rewrite (cf. the proof of Theorem 4.4)

M  _  U1 f 1 M

P m  P n - l  -  J 2 M k ( M ) c x e { r )  Cx e (0)

f  1 M  T  1 1 f  1 M  T  1
+ E  \ j —  E  k (~j^)cxx{T) — cxx(Q)\ (cxx(0)) cxe(0)

=  Op(n1- M-)Op(nd*+de“1) +  O p in ' - ^ O p in ^ - ^ O p in * * - ^ )

= Op(nde~dx) (5.56)

where the stochastic orders of magnitude follow from Lemmas 5.3 and 5.4, so that the 

proof of (5.54) is completed. (5.55) follows immediately. □
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The constant C(du,de) at the numerator in (5.53) is due to the non-zero correlation 

between ut and et. The left-hand side of (5.53) generalizes in an intuitive way the rate 

of convergence and the asymptotic distribution of the CI(  1) case , which is provided by 

Lemma 5.2.

Theorem 5.2 might be extended to allow for du < 0, provided dx +  de > 1, i.e. 

du + de > 0. However we refrain from the analysis of this case here, both for the sake of 

brevity and to mantain simmetry with the stationary case where du < 0 was ruled out. 

The possibility of an “antipersistent” behaviour in the innovation sequence U t  seems in 

any case less relevant from the point of view of practical applications.

From Lemmas 5.3-5.5 we learn that under (5.9)

*~1—2dx M

-  .y  - H r / M ) c x x { r )  => flu(l)2P(du) +  op(l) (5.57)
M  t = —M

and

m l - d-X de M
— 77—  K T/ M )cxe{r) =^'du(l)'de(l)Q(du,de) +Op(l) . (5.58)

T——M

In view of (5.12), (5.57)/(5.58) provide the asymptotic distribution of the weighted 

covariance estimate of the (cross-) spectral density at zero frequency for the variables 

x t and et when the former is nonstationary. This result can have some independent 

interest, for istance for estimates of the differencing parameter du +  1 under the same 

circumstances as in Hurvich and Ray (1995), Velasco (1996), (1997b) and (1.129) of 

Chapter 1. Moreover, the same argument as in Lemma 5.3-5.4 can be exploited in the 

analysis of the behaviour of more general quadratic forms in nonstationary variables 

(cp. Fox and Taqqu (1985),(1987), Giraitis and Surgailis (1990) and the other references 

mentioned in Chapter 1, Section 3). Consider the quadratic form

n n

E E  n(t -  s )x tx s , (5.59)
t = 1 3=1
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where 6j\/.n(r) = k*(r/M)  (say), for k*(.) such that Assumption 5B holds and x t satisfying 

Assumption 5D; hence

^ n n n —1 ^ n —iT!

^Af,n(^ S ^ X t X g  ^  ) b M , n  ( T ) ^
71 t = l  s = l  r = - n + 1 72 t = l

M

=  T  k ' ( - n ) c**(T) • (5-60)
t ——M  IV1

Then under (5.9) we have

^  2rfa; —1 Tl f t

— ——  £  £  &M,n(£ -  s)£txs =* ^u (l)2 /  B 2(r; du)dr , as n —► oo. (5.61)
M  t = l  5=1 -70

The main difference between (5.61) and the results for the stationary long memory case 

we reviewed in Section 1.3 lies in the functional dependence of the weight function 6(.) 

from n and M ; this dependence, however, appears an intrinsic consequence of the notion 

of nonstationarity.

5.4  N um erical E vidence

We argued earlier here and in the previous chapter about the practical difficulty to 

distinguish, on the basis of a finite sample of observations, between a unit root process and 

a stationary ARMA with long memory innovations and roots close to the unit circle. In 

order to provide numerical evidence to support this claim, 5000 replications of stationary 

series of length n = 64 and n = 128 were generated according to the following model:

Xt = (1 -  L )-d( 1 -  cfrLy'ut , U t  =  n.i.d.{0,1) , (5.62)

with (j) = .5, .6, .7, .8, .9 and d = .1, .2, .3, .4. For each series, then, the classical Dickey- 

Fuller (DF) and Augmented Dickey-Fuller (ADF(l)) tests for unit roots were carried 

out, choosing 5% as the size of the test (implying a rejection value of -1.95 for both



procedures). The results axe reported in Tables 5.1 and 5.2. While the power properties 

of these tests are satisfactory for small values of both d and 0, when these two parameters 

approach the nonstationarity region the probability to reject the null H 0  : (f) — 1 decays 

very rapidly. For instance, for n = 128 and (f) =  .8 the probability to reject the null using 

a DF test is 99.2% when d = .1, 83.98% for d = .2, 44.04% for d = .3 and only 14.12% for 

d = .4; using an A DF(l) test the probability to  reject the null is around 5% even when 

(j) is as small as .6. Of course, the probability of a type II error would increase further 

with smaller sample sizes or for lower significance level, i.e., 2.5% or 1%.

As noted earlier, one of the main advantages of the WCE procedure is its robustness 

to the presence/absence of unit roots in the DGP of the raw data. In order to investigate 

the finite sample behaviour of this estimate, then, we have considered the following DGP:

yt =  x t(3 +  et , et = n.i.d.(0,18) , E u tet = 3 , (5.63)

with x t generated according to (5.62) but now (j) =  .6, .7, .8, .9,1, i.e. also the nonsta­

tionary case is included. Again series of length n  =  64 and n  =  128 were considered, 

with 5000 replications; for each sample, f3M was then calculated for M  =  4,6, resp., 

(M ~  \Ai/2) and k(v) the truncated kernel k(v) =  l(|u | < 1). The mean squared error 

(MSE) and the bias for WCE are reported in Table 5.3; as expected, the performance of 

the estimate increases rapidly as <j) and d grow, i.e., exactly when it becomes more and 

more difficult to distinguish stationaxity and nonstationarity. For instance the MSE for 

n — 64 and d = .3 decreases steadily from .144 to .011 when (j) increases from .6 to 1. 

Note that there is a discontinuity in the asymptotic rate of convergence of the estimate 

when we pass from (f) = .9 to <f) =  1; however, although this is somewhat mirrored in the 

result of our simulations, for a fixed sample the improvement in the MSE for increasing 

values of (f> is relatively smooth.
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A P P E N D IX

P ro o f  o f L em m a 5.1 Recall that

M  V M  V V
E  E  H jj ) c » ( p )  =  E  * ( £ ) ( !  -  J )7 « (p )  , (5.64)

p ——M  p ——M

E  E  k { j 7 )<^e(p) = E  k (J 7 X1 -  «(p) . (5-65)
p=-M M  p=-M M n

where, under (5.9), (5.22) and (5.23)

h Epa1-m(i -  g ) * ( £ b „ ( p )  =  j. Ep1-m(i - g)fe(£b„ (p ) =
T % L - M k ( f i ) ' y x x ( p )  T ^ - M k ( ^ h x e ( P )

(5.66)

by the dominated convergence theorem. Hence it is enough to prove that under Assump­

tion 5A we have ~ '

E / ( j ? )  { s - M  -  (1 -  f f r - w }  =  «%.(«“ ■). (5-67)

E  k ( j j )  {c^(p) -  (1 -  ^)7«(p)} = op(M dx+d‘) . (5.68)

For (5.67)/(5.68), it is sufficient to show that

M —1 M - 1
^  Ca.a(g))| =  o(M 2dx+2da) , a = X ,  e . (5.69)

p = —M + l  <?=— M + l

From Hannan (1970), p.209, we have that Cov(cxa(p), cxa(q)) is equal to

“ E  (1 -^ )(7 x x (’')7aa(f + q -p )+ '1 x a ( r  + q)'yax ( r - p )  (5.70)
n  r= —rl+1 n

^ n — 1 n —r

+~2 £  S  ^ W a ( s , s + p , s  +  r ,s  +  r-|-g ) (5.71)
^  r = —n + 1  s = l —r
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Now for (5.70), when d x +  da < 1

n — 1 oo

Y  7^M 7oo(,' +  P - 9 )  +  7;ra(r +P )7^ (»--9)l < c Y  {7L W  + 7L 1
r=—n+1 r——00

<  00

because 7 (r)7 (5) < |  (7 2(r) +  72(s)} , r, s =  0, ±1, ± 2 , and hence

M  M  2  n —1 lyj

E  E  : l  E ( 1 - — ) { 7 a;x ( ' ' ) 7 a o ( r + P - 9 ) + 7 x < . ( r + P ) 7 a x ( r -
p —- M  q = - M  71 r = —n + 1  71

M 2 
= 0 ( - ) = o(l ) .

For ^  +  da >  | ,  and in view of (5.17),

M  M  ■j n —1 I I

Y  Y  - \  Y  ( ! - — ) 7 * t W 7 « a ( » ’ +  P - 9 ,) l
p ——M  q = —M  r = - n + l  71

M —1 n —1 Ayr M - 1 n —1

<  —  Y  Y  l 7 x x W 7 ^ , ( » -  +  r ) |  < C —  Y  Y  |r | 2d* _ 1 |?' +  r | 2d
U  t = M —1 r = —n + 1  r = M - l r = - n + l

= Q f— ][/f^x+2da\ _  0^ 2 d x+2da\
Tl

Also, by Cauchy-Schwarz and elementary inequalities

M  M  I n - 1  | |

E  E  ;l E  ( i - —)7m(»-+p)7«x(»--?)|
p = —M  q = —M  r = —n + 1  U

< C —  Y  7 x a ( r )  =  0 ( M 2 n 2dx+2d‘~'1) = o(M idl+2dl) .
n  r=—n+1

For (5.71), by Hannan (1970), p.211 and Assumption 5A we have that

cumxaxa(p, q ,r,s) < C ^ 9 (p +  %(<* 4- q ~  p)g{d + r ~  p)g(d + s -  p)
d = 0

r )}

(5 .7 2 )

?)}|

(5 .7 3 )

(5 .7 4 )

(5 .7 5 )

(5 .7 6 )

(5 .7 7 )
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with g(u)  =  (|w| -1- l ) dx L Hence the left-hand side of (5.71) is bounded by

/ ' t  n —1 n —r  oo

72 2  £  ^2 9 (d)g(d + p )g{d^r)g{d  + r + q)
n  r = 0  s= l-r  d = 0 

n — 1 oo

< — J 2  g{d)g{d + p)g(d + r)g(d + r + q)
^  r = —n + 1  d = —oo 
/nr n — 1 oo

^ -  E  E  V (< 0 =  OC1) > (5-78)
r = —n + 1  d ——oo

where the last inequality follows from A B C D  < A 4  4- B A 4- C4 -1- D 4, which holds for 

real-valued A, B  ,C, D. □

P ro o f  o f T h eo rem  5.1 We can rewrite

P m ~ P  = ( E  fc(T7)c**(p)') E  7)cze(p)
\ p = - M  /  p = - M  m

= A_16 (5.79)

for

■A = E C 1 -  ^)Hjfhxx(p) +  E  fe( ^ )  (czz(p) -  (1 -  |b**(p)) (5-80) 

t> =  E C 1 -  ^M^hxeip) + E  k(jf) (^Cp) ~  C1 _  ^ )7^Cp)) (5-8i)
p = —M  p ——M

Now by Lemma 5.1 and Assumption 5A

7  C1 -  f M ^ b z x C P M - 1 =  1 +  OpW , (5.82)
72 Mp = —M

E C 1 -  5 =  1 +  OpW ■ (5-83)
\P——M  J

and hence the result follows by Slutsky’s theorem and (5.66) . □
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P ro o f  o f L em m a 5.3 Because by Assumption 5B M  1 ~  1 as —* °°j

it is sufficient to prove that

t = —M

The left-hand side of (5.84) is equal to 2/M  times

i M i n  n I
-  E  fc( a?) \ E xl -  E  x ‘x ‘-r  [ (5-85)
, L  T=1 (t=l t=T +  l J

=  ^ E fc( j g ) E * ?  (5-86)
U  T = 1 1 1  t = 1i M n

+~ E  *(t ;) E  -  x‘- t) • (5-87)
71 T = 1  1 V 1  t= T + l

For (5.86), we have easily

m  r M  r  'j Af

E i E ^ ^ f ^ ^ ^ E ® ? -  (5-88)
t = l  t r = t  1V1 J t = 1

where
M  M  t  oo M  t  t  oo oo

E x? = E ( E E ajC ))2 = E E E E E  a w t . - A - i  ■ (5.89)
t = l  t = l  S=1 j = 0  t = l  s = l  fc=l j = 0  i= 0

To bound the expected value of the above (non-negative) random variable, we use 

(5.40)/(5.41) to obtain

M  t  t  oo M  t  t

E E E E a )a ‘-* «  ^  c j r +
t —1 s = l  fc= l j —0 t = l  s = l  fc= l

M t-1 • ,
=  C Y l t 1 2 ( l ~  )^2du_1 ^  C M 2d% (5.90)

t= 1 u=0 ^

whence it follows that J2u=i x t = op(n2dx). By Cauchy-Schwarz inequality, (5.87) is
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bounded by

The last element has stochastic order of magnitude

I f "  1 2  M  f  n  )  2

) ° p ( B I l k ( j f )  |  Y ,  ( X t - X t - r ) 2 \  )

M  (  n  1 2

=  O p i n ^ - 'E j ^ l  (x t ~  x t - r f  > ) ,  (5-92)
T = 1 [  t=T  4~1 J

in view of Assumption 5B and because {n_1 x 2} * =  0 p(ndx~l) follows from previous

calculations. From Jensen’s inequality

M  (  n  2̂ m  (  n ' 1 5

£ £  £ ( x ( - x t_T)2 < C £  £  E (x t - x t- r f \  , (5.93)
T = 1  ̂t — T -J-1 J T = 1 ^ t= T + l J

where

£  E {xt - x l- Tf  =  £  £ (  £  «»)2
t=T  +  l  t — T  -f-1 S=t — T + l

n  t t oo oo

=  £  E  £  £  £ £ a 3« . C - ^ - ,
t = r + l  s= £ -r - t - l  f c = t - r + 1  j = 0  i = 0  

n r —1 r —1 oo

< c  £  £ £ £ « i « * - . + i
t = r 4 - l  s = 0  fc=0 j = 0

< C t  j r  £ „ * . - !  < CnT* . - i .  (5.94)
t = r 4-1 v = 0

It follows that

E (x t - x t- r)2 \ < C Y ^ ( nr2dx *)* =  o(n1/2M dx+1/2) ; (5.95)
T=1 ( t = T - \ - 1 J T =  1

hence in view of (5.92), (5.87) is op(n2dx), which completes the proof of Lemma 5.3. □
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P ro o f  o f L em m a 5.5 In the sequel, we repeatedly use the inequality

\Eatbs\ < C( 1 +  11 — s |)da+dfa_1, a,b = u ,e  , (5.96)

which holds under Assumption 5D. We have

1 M  t  1 M  r
CXe { , 0 ) - —  £  k {  —  ) c x e ( T )  =  -7j£^(-7T){Cxe(0)-Cie(r)}

T——M  T = 1

1 _1 r“*"T7 ) ( Ccce(0) — cxe{r ) }
1V1 t = - M  11

+c“ (0) < 1 m t5 m* V

=  I  + I I  + I I I  + I V  + V  (5.97)

with

i n  -

V -  «..(») | l  -  j f  jb 'M .  jg )J  ■ (5.100)

Define
M  M M  ME=EEEE-  (5-101)

t = l  3=1 V =3 T = t

In view of Isserlis formula (Brillinger (1981), p.21) which for zero-mean Gaussian variables 

gives

E x 1X2 X3 X4 =  EX 1X2 EX3 X4 4- EX 1X3 EX3 X2 4- EX 1X4 EX3 X2 , (5.102)
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the expected value of the square of ( I I )  is bounded by

(5.103)
( m r m T \ 'j2 .—,

E 1 E  i E *(77) [ < C E Y x tetx .e . = C  (r , +  r 2 + r 3} ,
U = 1  l r = t  M  y  ;  

for

Ti =  Y ^E x tetE x 3 eS: T2 = ^ E x tx 3 E ete3, T3 =  Y ^ E x setE x te3 . (5.104)

Now in view of (5.96), Ti is bounded by

^ E ^ U j e t E j ^ U i e ,  < C £ t d*+d«sd“+de =  0 (M 2d“+2de) =  o(M 2 n2du+2d*+2) , (5.105)
j = 1 i = l

and T2 is bounded by

M M  t  s

C M 2 £  £ ( | t  -  s| +  1
t = l  3=1 i = l  j = l

M M  M

< C M 2 £  £ ( | i  -  *| +  £  Ifcp11" -1
t = l  3=1 ft= l

Af M
=  0 (M 2d“+1 £ £ ( 1 *  -  a| +  l ) 2de_1) =  o(M 2 n 2dx+2de) , (5.106)

t = i  8 = 1

As far as r 3 is concerned we have that

M  M  M  M

r 3 < c m 2£ £ £ ] T ( | s - j\ +  iyi'‘^ - \ \ t - i \  +  i) i '‘^ - ' L
t = 1 8=1 j —1 1=1

=  0 (M 2du+2de+4) =  o(M 2 n2dx+2de) , (5.107)

because

|£ s ,e t | =  | £ X > e t | ^  C E d 4 -  *1 +  l)d"+<' ^ 1 • (5.108)
1= 1  1 = 1

Hence r* =  o(M 2n 2dl+2de), i = 1,2,3, and ( II)  is op(ndx+dc *); same argument can be

168



applied to IV.  For (I) is concerned, we can write

M  | n n n

^  ^  (  J. r )  j  ^  ^  'y ^  (* E f .  r ) ^ t — T  ^  "  ' t̂ — T^t—T
T  =  1 ( t = T + l  t = T + l  t= T  +  l

=  A , — A 2 -  A3 , (5.109)

where

M  j n I M

A 1 =  E  * ( t 7  ) 1 E  x ‘e ‘ b  A 2 = E  k(7 7 ) i  E  ~  X « - r ) e ( - T  > ,
T=1 ( t = . /V - T + l  J T=1 ( t ^ T + 1  J

A  =  \jlx̂  ■ (5-110)

Now Ai and A 2 axe, apart from a change of index, proportional to ( II)  which we analyzed

before. On the other hand, A3 can be dealt exactly as (I I I ), again with a change of

index; therefore we analyze (I I I ). In view of (5.28), we have

j h  (xt -  x t- T)et =  ^  Y  u^ '  (5.111)
t = r + 1 t —T 1 i —t - r + 1

Also

with

( E  E  «.*)* =  E  E  E  E
t = T + 1 i = t - T + l  S=T +1 t= T + 1 i = t — T  + 1  j = k — T + l

— y  j (5 . 1 1 2 )

n  n  t  s .— .

E  E  E  E  =  E -  (5-ii3)
S=T+1 t = T + 1 i = t  —  T  + 1 j — S —  T + l

Hence we obtain EYj^t^i^suj =  © 1  +  © 2  +  ©3? for

©1 =  Y ^ etesEUiUj, ©2 =  Y ^ etUi ^ esuji ©3 =  Y E etUjE Uiea • (5.114)
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Thus

©I = e  Y  Y  e^ E  Y  Y  uiuJ
s = r + l  t = r + 1 i = t - r + 1 j = S — T + l

= 0(n(n  -  r )2de)0(T 2d“+1) =  o(ra2d*+2d') , (5.115)

j  XL A0 2 =  E  E  E  E  ^
t = T - f l l= t  — T + l S=T+1 J= S — T + l

< c E E (it-ii + i)^ -1 E E (k-ii + i)^*-1
t= T + l i = t — T + 1 3=T +1 j  =  S — T + l

2 ,

= 0({(n -  T)rd“+de} ) = o(n2d*+2d') , (5.116)

03 = E  E  Ee*ui E  E  Eu*es
t= T + l  J= S —T + l S=T+1 l = t - T + l

=  0({(ra — r ) r du+dcj  ) =  o(n2dl+2de) . (5.117)

Because the expected value of the square of ( I I I )  is bounded by C n ~ 2 {©i +  ©2 +  ©3} , 

we have easily ( I I I )  = op(ndl+de-1).

Finally, from of Assumption B we have (V) =  op(cxe( 0)) =  op(ndx+de), the last equality 

following from (5.52). □
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TABLE 5.1: PO W ER  OF TH E D F TEST  
n = 6 4  n = 128

d .  o .5 .6 .7 .8 .9 .5 .6 .7 .8 .9

.1 100 99.48 95.36 66.70 20.24 100 100 100 99.20 56.54

.2 99.22 95.06 74.08 34.56 6.46 100 100 99.50 83.98 19.92

.3 92.12 73.16 41.24 13.90 2.06 99.92 98.92 88.02 44.04 4.45

.4 67.12 41.72 18.12 4.18 .56 95.76 83.14 52.00 14.12 .64

TABLE 5.2: PO W ER  OF TH E A D F (l)  TE ST  

n = 6 4  n = 128

d,<f )  .5 .6 .7 .8 .9 .5 .6 .7 .8 .9

.1 69.76 44.08 18.18 4.18 .58 99.34 92.42 58.72 12.42 .52

.2 41.40 20.56 7.12 1.26 .16 87.84 59.50 21.30 2.44 .08

.3 19.12 8.02 1.96 .36 .10 50.36 22.86 5.02 .42 .00

.4 7.36 24.4 .58 .12 .08 18.92 5.3 .9 .04 .00

TABLE 5.3A: M SE A N D  BIA S FO R TH E W C E ESTIM ATES, n = 6 4
B IA S M SE

d , 4 > .6 .7 .8 .9 1 .6 .7 .8 .9 1

.1 -.043 -.035 i o CO O
) -.023 -.009 .221 .179 .125 .072 .031

.2 -.041 -.038 -.035 -.027 -.001 .180 .142 .088 .055 .020

.3 -.026 -.030 -.023 -.022 -.001 .144 .098 .066 .037 . 0 1 1

.4 -.039 -.025 -.019 -.015 3E-4 .104 .070 .047 .024 .006
TABLE 5.3B: M SE A N D  BIAS FO R  TH E W C E ESTIM ATES, n = 128

BIA S M SE

d , ( f ) .6 .7 .8 .9 1 .6 .7 .8 .9 1

.1 -.049 -.046 i o 00 -.030 -.016 .114 .082 .051 .027 .006

.2 -.051 -.045 -.038 -.031 - . 0 1 1 .082 .057 .036 .017 .003

.3 -.055 -.040 -.036 -.025 -.007 .062 .041 .024 . 0 1 1 .002

.4 -.051 -.040 -.031 -.020 -.003 .043 .027 .016 .007 .001
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■ 17) 9 | j should be ^uv (A)

- page 18, line 10j,  x'tB  should be B 'xt

- page 18, line 3 |,  Fxx( l , n — 1) should be Fxx( l , n  — 1), Fxy( l , n —1) should 

be Fxy( l ,n  -  1)

- page 18, line 2 |, Fxx( l ,n  — 1) should be Fxx( l , n  — 1)

- page 19, 6 |, B should be B

-  page 23, line 3 |,  X 'X  should be x tx't

- page 27, line 10 j., Granger (1987) should be Engle and Granger (1987)

-  page 53, line 3J,, Hj(x) should be Hj(x)

- page 60, (2.59), v should be T>

- page 65, 2 f , Assumption 2B should be Assumption 2A

- page 70, 7f, contant should be constant

- page 71, [ny2] should be [np2] and [nrj] should be [npj

- page 73, line 10j,  r 2 — rj >  ^ should be r2 — ri < J

-  page 87, line 5 |, add Kt = l ( t  = 0) for p = 0

- page 87, line 7j, add p =  0 after 0 <  |A| < 7r

- page 106, line 4 J,, real matrix should be real symmmetric matrix

- page 107, line 2f, Theorem 4.1 should be Theorem 3.1

- page 108, line 1 |, dots are missing after (1 — L)~dl

- page 110, equation (4.24), O' should be 0

- page 113, line 8 |,  /3m_ 1 should be (3n_l
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- page 128, line 4j, add a.s.
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