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Abstract

The thesis focuses on valuation and hedging problems when the market is incomplete.

The first essay considers the quadratic hedging strategy. We propose a generalized

quadratic hedging strategy which can balance a short-term risk (additional cost) with

a long-term risk (hedging errors). The traditional quadratic hedging strategies, i.e.

self-financing strategy and risk-minimization strategy, can be seen as special cases of

the generalized quadratic hedging strategy. This is applied to the insurance derivatives

market.

The second essay compares parametric and nonparametric measure-changing tech-

niques. The essay discusses three pricing approaches: pricing via Esscher measure,

via calibration and via nonparametric risk-neutral density; and empirically compares

the performance of the three approaches in the metal futures markets.

The last essay establishes the concept of stochastic volatility of volatility and

proposes several estimation methods.
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Chapter 1

Introduction

1.1 Financial Mathematics and Financial Markets

Earlier works in financial mathematics (Black and Scholes (1973), Merton (1973),

etc.) are based on the strong assumption that the market is complete, i.e. that all

contingent claims are replicable by investing in the underlying asset.

However, empirical studies suggest that the market is not complete in practice due

to various reasons like illiquidity, stochastic volatility or jumps in price processes [6].

Once we remove the completeness assumption, we have to face a so-called incomplete

market. In such markets, the pricing by replication is not working so optimal pricing

and hedging depend on the criteria chosen.

Before going into the details of pricing and hedging strategies designed for incom-

plete markets, we would like to introduce the financial markets that will be studied

later on.

1.1.1 Insurance derivatives

Insurance-linked securities have been used as a tool to transfer insurance risks from the

insurance industry to the capital market. At the same time, they provide the financial

market with a diversification tool, since insurance risks are often uncorrelated with

existing financial risks. According to Barrieu and Albertini (2009) [1], there were

approximately $13bn of tradable non-life insurance-linked securities and $24bn in

tradable life insurance-linked securities by the end of 2008.

The most successful non-life insurance-linked security is the catastrophe bond (cat

bond). A cat bond can be understood as an ’insurance contract’with the insurance

or reinsurance companies as the insured and capital market investors as the insurer.

The investors can receive interest payments and get back the principal as long as the

natural disaster does not occur before the maturity of the bond. More details about

cat bonds and other non-life insurance-linked securities can be found in [1].

Life insurance-linked securities include longevity bonds, survivor swaps, mortality

1



2 CHAPTER 1. INTRODUCTION

forwards etc. The typical underlying risks are mortality and longevity risk. Mortality

risk indicates the risk that the actual death rate exceeds the expected rate, whereas

longevity risk is the risk that the actual mortality becomes lower than expected.

Clearly there are plenty of organizations, such as pension funds and life-insurance

companies, which have exposures to mortality risk or longevity risk. Therefore they

are natural players in the life insurance-linked securities market. Capital market

speculators, like hedge funds, have also entered this market to diversify their portfolio

or earn speculating returns.

Insurance derivatives markets are in general incomplete due to illiquidity and basis

risks. The basis risks arise from the inconsistency between the underlying insurance

risk of the derivatives and the insurance risk of the hedger. For instance, an annuity

portfolio can have exposure to the longevity risks of a certain group of people in

England, but the tradable life-insurance derivatives, which the portfolio manager can

choose as hedging instruments, are based on nationwide mortality rates.

1.1.2 Metal futures

Metal futures markets have a long history and are in general mature markets. Precious

metal futures like gold are traded on Commodity Exchange, Inc. (COMEX) and lots

of local exchanges. Industrial metal futures, like copper, aluminium, zinc, etc. are

traded on London Metal Exchange (LME), COMEX, Shanghai Future Exchange, etc.

At a certain time point, we have a futures price curve consisting of spot price and

prices of futures with different maturities. We can describe the curve to be normal if

it is upward sloping over different maturities (starting with time 0) and to be inverted

if it is downward sloping. When we look at the evolvement of the futures price over

time, we will find that it will converge to the spot price when closer to the maturity.

We call the market is contango when the futures price is expected to decrease over

time to the futures spot price, and call the market is normal backwardation if the

futures price is expected to increase to the futures spot price as time goes by. (See

[27] for more details)

Unlike financial assets such as stock and bond, commodities can be consumed.

Moreover, it is sometimes beneficial to hold the commodity rather than the derivatives,

especially when the futures curve is inverted. However, it is not always a good idea to

hold a great deal of commodities since the storage and maintenance costs can be huge.

A concept called convenience yield has been introduced to describe the advantage to

hold commodities. Geman (2005) [14] and Carmona and Ludkovshi (2005) [2] define

convenience yield as the difference between benefit of direct access and cost of storage.

Empirical work implies that convenience yields arise endogenously as a result of the

interaction between supply, demand and storage decisions [7]. Many authors propose

methods to model convenience yield ([21], [15], [7], etc.).

Another concept, which frequently occurs in commodity future studies, is cost-of-

carry. Hull (2003) [17] defines the cost-of-carry as the storage cost plus the interest
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less the income earned on the asset.

Metal futures can serve as price discovery and risk management tools for metal

spot markets. However the metal future cannot be evaluated using complete market

techniques. If we assume future price as the conditional expectation of the spot,

market will be incomplete mainly because: (i) the convenience yield is unobservable

and unhedgeable; (ii) there could be basis risks between the existing position and

hedging instruments; (iii) many metal spot markets are not liquid enough.

1.1.3 Equity and volatility derivatives

Methods to define and compute volatility can be broadly divided into two groups:

the volatility measurements based on underlying asset prices and the ones based on

derivatives prices. Please see chapter four for details.

Volatility is an important concept in financial mathematics. It is a key input

to the Black-Scholes formula and some other option pricing formulas. The positive

derivatives of option prices with respect to volatility increase the value of options when

the market becomes more volatile. Before the existence of volatility derivatives, there

were several trading strategies to bet on volatility using options on the underlying

asset. [26] gives a survey on these strategies: delta-neutral portfolio of stocks and

options, straddles and strangles, volatility surface trading, etc.

With the development of volatility indices (check [5] for more details), volatility

derivatives begin to appear on the financial markets. After the reversion of the CBOE

volatility index (VIX), exchange-traded volatility derivatives have been introduced.

Successful examples of volatility derivatives include variance swaps, volatility swaps,

volatility index (VIX) futures and options [4]. Today variance and volatility swaps are

traded over-the-counter whereas VIX futures and options are actively traded on the

Chicago Futures Exchange (CFE), a division of the Chicago Board Options Exchange

(CBOE). The VIX options are the CBOE’s most liquid option contract after the SPX

index options [4].

Volatility derivatives cannot be priced or hedged using complete market methods

because the underlying ’asset’is typically a non-tradable index.

1.2 Hedging in an incomplete market

1.2.1 Dynamic quadratic hedging strategies

One of the reasons that quadratic hedging is popular among scholars and practitioners

is that it can be formulated in a mathematically elegant way and solved by relatively

easy approaches. Dynamic quadratic hedging in a complete market is always done

by perfectly replicating the derivatives with a dynamic self-financing strategy. In an

incomplete market, this is not feasible. Either we need to give up the self-financing

strategy or give up the perfect replication [22].
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Föllmer and Sondermann (1986) [12] formulate the risk-minimization strategy,

which is a breakthrough in quadratic hedging in incomplete market. The strategy

adopts a mean-self-financing strategy rather than self-financing strategy to minimize

the expected future costs. The optimal strategy, consisting of units of risky asset and

units of riskless asset, can be uniquely determined. Møller (2001) [16] extends Föllmer

and Sondermann (1986) to payment stream cases. Please check the chapter two for

more information on Föllmer and Sondermann (1986) and Møller (2001)’s work.

Föllmer and Sondermann (1986)’s model aims to hedge under the risk-neutral

measure, i.e., the price processes of hedging instruments are martingales under P .

Schweizer (2001) [22] gives an introduction to quadratic hedging strategies without

payment streams in the semimartingale case. The local risk-minimization strategies

can be found when the cost process is a martingale which must be orthogonal to

the martingale part of the price process. One needs to utilize the Föllmer-Schweizer

decomposition, the classical Kunita-Watanabe decomposition computed under the

minimal martingale measure, to construct this strategy. Another hedging method

in the semimartingale case, the mean-variance optimal strategy, is done by a L2

projection under the variance-optimal martingale measure.

Cont, Tankov and Voltchkova (2007) [8] study quadratic hedging strategies when

the underlying asset process has jumps.

1.2.2 Other hedging strategies

There are some other popular hedging strategies, which do not belong to the quadratic

hedging family, and which we survey briefly for completeness. The first one we would

like to discuss is the super hedging strategy. This approach, according to Pham (1999),

is to look for an initial capital x ≥ 0 and an admissible trading strategy θ such that

x+

∫ T

0

θt dSt ≥ H = g (ST ) , a.s.

The weakness of the super hedging strategy is that the cost of hedging could be

too high to be acceptable. If a hedger only has limited initial funding, she could adopt

a quantile hedging strategy. Föllmer and Leukert (1999) [13] describe this approach.

We are looking for an admissible strategy (V0, θ) such that

P

[
V0 +

∫ T

0

θt dSt ≥ H
]

= max,

when V0 ≤ Ṽ0

where Ṽ0 is the capital constraint.

A drawback of quadratic hedging strategy is that it minimizes the potential

losses as well as potential gains. Therefore researchers also proposed several non-

quadratic hedging strategies which target on only one side of the risk. Shortfall risk-

minimization belongs to this category. According to Pham (2002) [19] and Favero
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(2004) [11], shortfall risk-minimization is to minimize the criterion

min
ϕ
E
[
l
(

(H (ST )− VT (ϕ))
+
)]
.

The problem with strategies targeting one side of risk is the absence of a nice

mathematical formulation and explicit optimal solution.

All the hedging strategies mentioned above are dynamic hedging strategies, which

is not feasible in reality due to market frictions. Static hedging strategies have been

studied by Derman, Ergener and Kani (1995) [10], Carr, Ellis and Gupta (1998) [3],

Poulsen(2006) [20], etc.

Dahl, Glar and Møller (2009) [9] proposed a modified quadratic hedging and name

it as mixed dynamic and static hedging strategy. Recall that a strategy is call risk-

minimizing if it can minimize the criterion

R (t, ϕ) = E
[

(CT (ϕ)− Ct (ϕ))
2
∣∣∣Ft] .

where ϕ represents the hedging strategy and C (.) represents the accumulated cost

process. A mixed dynamic and static hedging strategy is defined as the strategy ϕ∗

that minimizes

R (ti, ϕ) , for i = 0, 1, 2...n− 1

where the (ti) is a fixed time grid.

1.3 Pricing in an incomplete market

In a complete market, the derivatives price equals the cost of the self-financing repli-

cation portfolio in order to rule out arbitrage opportunities. In an incomplete market,

we can construct several different hedging portfolios with different initial costs, and

thus the derivative price cannot be uniquely determined. An alternative way to eval-

uate derivatives is to find out a suitable risk-neutral probability measure and then

take the (conditional) expectation under this measure.

[25] describes an ’economic’ interpretation of risk-neutral probabilities. Let us

imagine there is a kind of security call Arrow security, whose payoff is associated

with a particular state of the world. If this state occurs, the holder of the Arrow

security will be paid £ 1, and nothing otherwise. The risk-neutral probability at a

state is nothing but the price of the Arrow security associated with that state, given

the risk-free rate is zero. Obviously, any financial asset can be expressed as a portfolio

of Arrow securities. By the non-arbitrage rule, the price of the financial asset should

equal the price of the Arrow security portfolio.

Harrison and Kreps (1979) and Harrison and Pliska (1981) established the link

between no-arbitrage pricing and martingale theory.

Theorem 1 (First fundamental theorem of asset pricing, from [24]) If a market

model has a risk-neutral probability measure, then it does not admit arbitrage.
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Theorem 2 (Second fundamental theorem of asset pricing, from [24]) Consider a

market model that has a risk-neutral probability measure. The model is complete if

and only if the risk-neutral probability measure is unique.

Put in a different way, in an incomplete market, there exist different risk-neutral

measures and hence different no-arbitrage prices. Popular risk-neutral measures in-

clude minimal entropy martingale measure (MEMM), Esscher Measure, minimal mar-

tingale measure, etc.

[23] gives the definition of MEMM: Fix a time horizon T <∞. An equivalent local
martingale measure QE for S on [0, T ] is called minimal entropy martingale measure

(MEMM) if QE minimises the relative entropy H (Q | P ) over all equivalent local

martingale measures Q for S on [0, T ] . The MEMM is closely linked to the exponential

utility maximization problem, and has connection with the Esscher measure. Chapter

three gives the definition of the Esscher measure. The minimal martingale measure

and the variance-optimal martingale measure mentioned in the previous subsection

can also be used as pricing measures.

There are some nonparametric estimation methods to determine the risk-neutral

density, hence the probability measure. The biggest advantage of nonparametric

methods is that they do not rely on concrete assumptions of underlying asset price

processes. Chapter three introduces a nonparametric method and compares it with

parametric methods.
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Chapter 2

Generalized Quadratic
Hedging Strategies

2.1 Introduction

The incentive of this study is to find a dynamic hedging strategy in the context

of insurance claims which can balance a short-term risk (additional costs) with a

long-term risk (hedging errors). Quadratic hedging approaches have been studied

very intensively in recent decades. A survey of dynamic hedging strategies based

on a quadratic criterion for contingent claims without payment stream is given by

Schweizer (2001) [9]. For an incomplete market, to find a perfect hedge (self-financing

and without hedging error at maturity) for every claim is by definition impossible.

The first remedy is to look for a strategy without hedging error and with a "small"

cost. This so-called risk-minimization approach has been firstly formulated by Föllmer

and Sondermann (1986) [7]. Another possibility is to find a self-financing strategy

with a "small" hedging error. Møller (2001) [8] and Schweizer (2008) [10] extended

the dynamic hedging approach to the payment streams case.

The trade-off between cost and hedging error can be seen as balancing a short-

term and a long-term goal. While the aim of the risk-minimization strategy is to

fulfil the long-term goal, the self-financing strategy puts emphasis on the short-term

one. These are two fundamentally different methods. In this paper we are pursuing a

multi-criteria optimization which aims for interpolation between these two extremes.

It turns out that it is possible to find some kind of strategy enabling a hedger to

decide how important one goal is relative to the other.

In the last part, an application is considered to the hedge of an annuity portfolio,

which comprises a typical payment stream, by mortality forwards. As a new type of

hedging and speculating instrument, insurance derivatives, such as mortality forwards,

have recently been received some attention from industry, see Barrieu and Albertini [1]

for a detailed overview of the securitization of mortality risk. Major investment banks,

9
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such as JP Morgan, Credit Suisse and Goldman Sachs, have introduced mortality

indices, thereby promoting the transactions of insurance derivatives.

The structure of this study can be outlined as follows. The first section sum-

marizes risk minimization and self-financing hedging strategies for payment streams;

the second section introduces different criteria to represent risks and considers the

optimal hedging strategies under those criteria; the final section provides an example

of hedging an annuity portfolio by mortality forwards.

2.2 Quadratic hedging strategies for payment streams

Let (Ω,G, Q) be a probability space equipped with a filtration G = (Gt)0≤t≤T sat-

isfying the usual conditions. We assume that G0 is trivial (apart from containing

the (P,G)-zero sets) and that GT = G. In the following, equalities between random
variables are understood in the almost sure sense.

An agent faces a payment stream V which is modelled as a square-integrable semi-

martingale, i.e. Vt ∈ L2(Q) for all t ∈ [0, T ]. To hedge her risks, she invests into a

risky asset with value process U and holds some amount of cash on a savings account

(we assume that interest rates are zero). We assume that U is a square-integrable

Q-martingale.

The space L2(U) consists of allG-predictable processes θ satisfying EQ
[∫ T

0
θ2
s d [U ]s

]
<

∞. An admissible strategy is a pair of processes ϕ = (θ, η), where θ ∈ L2(U) and η

is G-adapted. Intuitively, θt is the number of shares held in the risky asset U and ηt
represents the value of the savings account, at time t ≥ 0. We define the value process

of the trading strategy ϕ by

Yt(ϕ) = θtUt + ηt, t ∈ [0, T ] . (2.1)

Definition 3 The accumulated cost process C is defined by

Ct = Yt(ϕ)−
∫ t

0

θs dUs + Vt, t ∈ [0, T ] . (2.2)

A strategy ϕ is called self-financing if the cost process C ≡ C0 is constant, which

implies that

dYt(ϕ) = θt dUt − dVt.

If there is a self-financing strategy ϕ such that YT (ϕ) = 0, then the payment stream

V is called attainable.

According to Møller (2001), Yt can also be interpreted as the value of our asset

after a payment dVt has been made at time t. If there is a self-financing strategy ϕ

which can achieve YT = 0, which means that the liability V has been perfectly hedged,

then we say that the claim V is attainable. In general, our market is incomplete which

means that not all payment streams are attainable.
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Definition 4 The risk process of ϕ is defined by

Rt(ϕ) = EQ
[

(CT (ϕ)− Ct(ϕ))
2
∣∣∣ Gt] .

A strategy is said to be risk-minimising if it minimises Rt(ϕ) for all t. A 0-

admissible risk-minimising strategy ϕ is a risk-minimising strategy which satisfies

YT (ϕ) = 0.

A risk-minimising strategy can be obtained by the Kunita-Watanabe projection

theorem. By projecting the martingale V̂t := EQ [VT | Gt] , 0 ≤ t ≤ T on the stable

subspace generated by the square-integrable martingale U under Q, we can get the

decomposition

V̂t = EQ [VT | Gt] = EQ[VT ] +

∫ t

0

θVs dUs + LVt , 0 ≤ t ≤ T

where the (Gt)-adapted process LV is a square-integrable martingale strongly or-
thogonal to U with LV0 = 0. Therefore,

VT = V̂T = EQ [VT | GT ] = EQ[VT ] +

∫ T

0

θVs dUs + LVT . (2.3)

Møller (2001) shows that there exists a unique 0-admissible risk-minimizing strat-

egy ϕ = (θ, η) for V given by

(θt, ηt) =
(
θVt , V̂t − Vt − θVt Ut

)
, 0 ≤ t ≤ T.

The associated risk process is given by Rt(ϕ) = EQ
[(
LVT − LVt

)2∣∣∣ Ft].
Now we try a different kind of quadratic hedging. Our goal is now to minimise

the hedging error using a self-financing strategy

min
ϕ
EQ [YT (ϕ)] = min

ϕ
EQ

(C +

∫ T

0

θs dUs − VT

)2


= min
ϕ
EQ

(VT − C − ∫ T

0

θs dUs

)2
 .

Employing the Kunita-Watanabe decomposition (2.3), the problem can be rewrit-
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ten as

min
ϕ
EQ

(VT − C − ∫ T

0

θs dUs

)2


= min
ϕ
EQ

(EQ[VT ] +

∫ T

0

θVs dUs + LVT − C −
∫ T

0

θs dUs

)2


= min
ϕ
EQ

(C − EQ[VT ]
)2

+

(∫ T

0

(θs − θVs ) dUs

)2

+
(
LVT
)2 .

Thus, the optimal strategy is

θt = θVt ,

C = EQ[VT ],

ηt = Yt − θVt Ut.

2.3 Generalised quadratic hedging strategy

In this section, we are trying to deal with the trade-off between the terminal hedging

error and the additional cost over the whole dynamic hedging process. The problem

can be formulated as:

min
(θ,η)

(J1 (θ, η) , J2 (θ, η)) ≡ min
(θ,η)

(
EQ[Y 2

T ], EQ
[
(CT − C0)

2
])
.

Here YT represents the hedging error at terminal time T , while CT −C0 represents

the additional cost. In this case, we have a multi-objective problem and thus need to

re-define the concept of an optimal solution. The following definition is adapted from

Ehrgott (2005) [6], p.38.

Definition 5 An admissible solution (θ∗, η∗) is called weakly Pareto optimal if there

is no admissible pair (θ, η) such that

J1 (θ, η) < J1 (θ∗, η∗) , J2 (θ, η) < J2 (θ∗, η∗) .

Moreover, it seems to be part of the folklore that this weakly optimal solution

of the vector optimization problem can be obtained by solving the following scalar

optimisation problem, since the objective functionals in our case are (componentwise)

strictly positive and the domain is also convex.

min
(θ,η)

(λJ1 (θ, η) + (1− λ)J2 (θ, η)) ≡ min
(θ,η)

(
λEQ[Y 2

T ] + (1− λ)EQ
[
(CT − C0)

2
])
(2.4)
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Here λ ∈ (0, 1). In fact, a proof of this has been provided in Ehrgott (2005), p.78

in the context of a finite dimensional vector space setting. However, despite that this

result is mentioned in an infinite dimensional setting in several articles, we were not

able to spot a proof of this conjecture. Nevertheless, we will use a dynamic version of

the scalar optimization problem (2.4) which is in itself meaningful as a starting point.

Definition 6 The dynamic hedging criterion is defined as follows for every t ∈ [0, T ]:

ess inf EQ
[
λ (YT )

2
+ (1− λ) (CT − Ct)2

∣∣∣Gt] ,
where we minimise over admissible hedging strategies ϕ = (θ, η) from t to T , and

under the initial condition

C0 = EQ[CT ] = EQ[VT ].

Lemma 7 The cost process C(ϕ) is a martingale if the strategy ϕ = (θ, η) can achieve

the essential infimum of the dynamic hedging criterion.

Proof. Let s ∈ [0, T ] be arbitrary. Define a strategy ϕ̃ by setting θ̃ = θ, and choosing

η̃ such that Yt(ϕ̃) = Yt(ϕ) for t ∈ [0, s), and, for t ∈ [s, T ],

Yt(ϕ̃) = EQ

[
YT (ϕ)−

∫ T

t

θs dUs + VT − Vt

∣∣∣∣∣Gt
]
.

We have YT (ϕ̃) = YT (ϕ), CT (ϕ̃) = CT (ϕ). Therefore,

CT (ϕ)− Cs(ϕ) = CT (ϕ̃)− Cs(ϕ̃) + EQ [CT (ϕ̃)| Gs]− Cs(ϕ).

Note that since Cs(ϕ̃) = EQ [CT (ϕ̃)| Gs] by construction, we have

EQ
[

(CT (ϕ)− Cs(ϕ))
2
∣∣∣Gs] = EQ

[
(CT (ϕ̃)− Cs(ϕ̃))

2
∣∣∣Gs]+(EQ [CT (ϕ̃)| Gs]− Cs(ϕ)

)2
.

Hence,

Js(ϕ) = EQ
[
λ (YT (ϕ))

2
+ (1− λ) (CT (ϕ)− Cs(ϕ))

2
∣∣∣Gs]

= EQ
[
λ (YT (ϕ̃))

2
+ (1− λ) (CT (ϕ̃)− Cs(ϕ̃))

2
∣∣∣Gs]

+ (1− λ)
(
EQ [CT (ϕ̃)| Gs]− Cs(ϕ)

)2
= Js(ϕ̃) + (1− λ)

(
EQ [CT (ϕ)| Gs]− Cs(ϕ)

)2
.

Since the essential infimum is achieved at ϕ = (θ, η), we can conclude that

EQ [CT (ϕ)| Gs] = Cs(ϕ).
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Because of the relation between θ, η and C and the Kunita-Watanabe decomposi-

tion of CT ∈ L2(Q),

CT = EQ [CT ] +

∫ T

0

θCs dUs +

∫ T

0

ξCs dU
⊥
s

= Ct +

∫ T

t

θCs dUs +

∫ T

t

ξCs dU
⊥
s

the dynamic hedging criterion for every t ∈ [0, T ] can be equivalently defined as

follows:

ess inf EQ
[
λ (YT )

2
+ (1− λ) (CT − Ct)2

∣∣∣Gt]
over the admissible control variables

θ ∈ L2(t, T ;U),

θC ∈ L2(t, T ;U), ξC ∈ L2(t, T ;U⊥),

and under the initial condition

C0 = EQ[CT ] = EQ[VT ].

Theorem 8 The optimal hedging strategy can be uniquely determined as

θt = θVt ,

ηt = Ct +

∫ t

0

θVs dUs − θVt Ut − Vt,

where the accumulated cost process at time t is

Ct = EQ [VT ] + λLVt ,

for all 0 ≤ t ≤ T .

The optimal remaining risk process at any time t is given by

λ(1− λ)2EQ
[(
LVT
)2∣∣∣Gt]+ λ2(1− λ)EQ

[(
LVT − LVt

)2∣∣∣ |Gt] .
Proof. Existence: Let us recall first the decompositions

VT = EQ [VT | Gt] +

∫ T

t

θVs dUs +

∫ T

t

ξVs dU
⊥
s ,

CT = EQ [CT ] +

∫ T

0

θCs dUs +

∫ T

0

ξCs dU
⊥
s .
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For some t ∈ [0, T ], we get by equation (2.2) and by plugging in the decompositions,

EQ
[
λ (YT )

2
+ (1− λ) (CT − Ct)2

∣∣∣Gt]
= EQ

[
λ

(
EQ [CT ] +

∫ t

0

θCs dUs +

∫ t

0

ξCs dU⊥s +

∫ T

t

θCs dUs +

∫ T

t

ξCs dU⊥s +

∫ T

0

θs dUs

−EQ [VT | Gt]−
∫ T

t

θVs dUs −
∫ T

t

ξVs dU⊥s

)2

+(1− λ)

(
EQ [CT ] +

∫ t

0

θCs dUs +

∫ t

0

ξCs dU⊥s +

∫ T

t

θCs dUs +

∫ T

t

ξCs dU⊥s − Ct

)2
∣∣∣∣∣∣Gt
 .

By splitting terms and noting that the corresponding mixed terms vanish this equals

λ

(
EQ [CT ] +

∫ t

0

θCs dUs +

∫ t

0

ξCs dU⊥s +

∫ t

0

θs dUs − EQ [VT | Gt]
)2

(2.5)

+(1− λ)

(
EQ [CT ] +

∫ t

0

θCs dUs +

∫ t

0

ξCs dU⊥s − Ct
)2

+EQ

λ(∫ T

t

θCs dUs +

∫ T

t

θs dUs −
∫ T

t

θVs dUs

)2

+ (1− λ)

(∫ T

t

θCs dUs

)2
∣∣∣∣∣∣Gt


+ EQ

λ(∫ T

t

ξCs dU⊥s −
∫ T

t

ξVs dU⊥s

)2

+ (1− λ)

(∫ T

t

ξCs dU⊥s

)2
∣∣∣∣∣∣Gt
 .

Consider first the initial time point t = 0, for which the whole term can be made to

vanish as follows. The first term is zero iff EQ [CT ] = EQ [VT ]. Setting the second

term to zero yields C0 = EQ [CT ] . The third term equals zero if we choose θ = θV as

well as θC = 0. As for the fourth term, note that by the Itô-isometry as well as by

the definition of the predictable compensator

EQ

λ(∫ T

0

ξCs dU⊥s −
∫ T

0

ξVs dU⊥s

)2

+ (1− λ)

(∫ T

0

ξCs dU⊥s

)2


= EQ

[∫ T

0

(
ξCs

)2

− 2λξVs ξ
C
s + λ

(
ξVs

)2

d
[
U⊥
]
s

]

= EQ

[∫ T

0

(
ξCs

)2

− 2λξVs ξ
C
s + λ

(
ξVs

)2

d
〈
U⊥
〉
s

]
,

which equals zero for ξC = λξV .

For arbitrary t ∈ (0, T ], note that since EQ [CT ] already has been determined in

the step for t = 0 that the first term in (2.5) need not be optimised since it depends

only on strategies up to time t. The third and fourth term vanish again for the same

choices as for t = 0, and the second term vanishes if the cost process C is a martingale.



16 CHAPTER 2. GENERALIZED QUADRATIC HEDGING STRATEGIES

With these choices, the first term equals

λ

(
EQ [VT | Gt]− EQ [CT ]−

∫ t

0

θs dUs −
∫ t

0

ξCs dU⊥s −
∫ t

0

θCs dUs

)2

= λ

(∫ t

0

θVs dUs +

∫ t

0

λξVs dU⊥s

)2

.

In summary, the essential infimum of (2.5) is achieved for

θs = θVs , θ
C
s = 0, ξCs = λξVs , (2.6)

for t ≤ s ≤ T , and

Ct = EQ [CT ] +

∫ t

0

θCs dUs +

∫ t

0

ξCs dU⊥s .

The optimal amount η in the savings account is now uniquely determined by (2.1)

and (2.2).

Uniqueness: Clearly once we determine θ and C, the units of riskless asset η will
be automatically uniquely determined. The uniquenesses of θ and C are guaranteed

by the above proof, so the uniqueness of the optimal strategy holds.

Remark 9 When λ = 0, 1, the optimal strategy cannot be uniquely determined with-

out extra conditions. However, the risk-minimization strategy and self-financing strat-

egy are among the set of strategies obtained when λ = 0, 1.

2.4 An example of a hedging annuity portfolio

We will follow Dahl and Møller’s (2007) [4] framework, but will consider different

hedging instruments and apply modified quadratic hedging strategies in addition to

the traditional quadratic hedging strategies. Let H be the filtration generated by the
counting process of death and F be the filtration generated by the mortality intensity.
Define G = H∨F, and assume that all F-martingales remain martingales in the larger
filtration G. Further assume that the interest rate remains zero.
Consider two portfolios consisting of lj , j = 1, 2 lives, all aged x years at time 0.

Denote the initial mortality intensity as µoj(x), which is a deterministric function of

x. Assume the mortality intensity for the considered cohort at time t to be

µj(x, t) = µoj(x+ t)ξj(t).

where ξ(t) follows a CIR process. Put in a different way, we assume the mortatlity

intensity changes in a stochastic way around the initial mortality intensity. Therefore,

we will end up with a CIR-type mortality intensity process

dµj(x, t) =
(
γj(x, t)− δj(x, t)µj(x, t)

)
dt+ σj(x, t)

√
µj(x, t)dWj(t).
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Define the remaining lifetimes as non-negative random variables Tj,1, ..., Tj,n, j =

1, 2. It follows that the survival probability of a single person, given the information

on the mortality intensity as contained in Ft, is given by

P (Tj,i > t| Ft) = E
[
e−

∫ t
0
µj(x,s) ds

∣∣∣ Ft] , j = 1, 2.

The number of deaths at time t in each portfolio is given by

Nj(x, t) =

lj∑
i=1

1[Tj,i≤t], j = 1, 2.

The process Λ =
∫
λj(x, ·)ds is the compensator of N so that

N − Λ is a G−martingale.

Note that for j = 1, 2,

λj(x, t)dt = E [dNj(x, t)| Gt] ,

= (nj −Nj(x, t−))µj(x, t)dt.

2.4.1 Annuity portfolio

Consider a simple structured annuity contract: a premium is paid at time 0, and then

the insurance company is going to pay a rate of at to the survivors in the portfolio 1

continuously at all t ∈ (0, T ]. Here the payment at each time t is at(l1 −N1(x, t)).

Denote the intrinsic value process as V̂ , which amounts to

V̂t = EQ

[∫ T

0

as(l1 −N1(x, s)) ds | Gt

]
,

=

∫ t

0

as(l1 −N1(x, s)) ds+

∫ T

t

asE
Q [ l1 −N1(x, s)| Gt] ds,

=

∫ t

0

as(l1 −N1(x, s)) ds+ (l1 −N1(x, t))

∫ T

t

asQ (τ1 > s| Gt) ds.

V̂ admits a stochastic representation under a risk-neutral measure Q as follows:

dV̂t = −
∫ T

t

asQ(τ1 > s| Gt) ds dM1(x, t),

+(l1 −N1(x, t))

∫ T

t

as
∂Q

∂µ1

dsσQ1 (x, t)

√
µQ1 (x, t) dW1(x, t).
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2.4.2 Mortality forward

Consider a T -year mortality forward as the hedging instrument. The payoff is linked

to the death ratio N2(t, T )/l2. Then the value process U of the forward contract is

Ut = EQ
[
k(
N2(x, T )

l2
− F )

∣∣∣∣ Gt] ,
=

k

l2
EQ [N2(x, T )| Gt]− kF,

= k − k

l2
(l2 −N2(x, T ))Q (τ2 > T | Gt)− kF.

Here k is the nominal and F is the forward price, which is a constant determined

at time 0.

The value process U also admits a stochastic representation under Q:

dUt =
k

l2
Q (τ2 > T | Gt) dMQ

2 (x, t),

− k
l2

(l2 −N2(x, T ))
∂Q

∂µ
σQ2 (x, t)

√
µQ2 (x, t) dW2(x, t).

2.4.3 Hedging strategies and remaining risks

Let

WQ,⊥
2 (t) =

1√
1− ρ2

t

WQ
1 (t)− ρt√

1− ρ2
t

WQ
2 (t),

where ρt represents the correlation coeffi cient between the two Brownian motions

at time t. Set

dV̂ Qt = θt dU
Q
t + dLt,

where ξt is the number of the mortality forwards one should hold at each point.

Moreover, in our case,

θt = −
ρt(l1 −N1(x, t))

∫ T
t
as

∂PQ1
∂µ1

dsσQ1 (x, t)

√
µQ1 (x, t)

k
l2

(l2 −N2(x, T ))
∂PQ2
∂µ σQ2 (x, t)

√
µQ2 (x, t)

.

The error term Lt is given as

Lt = −
∫ t

0

θu
k

l2
PQ2 (τ > T | Gu) dMQ

2 (x, u)−
∫ t

0

∫ T

u

asP
Q
1 (τ > s| Gu) ds dMQ

1 (x, u)

+

∫ t

0

√
1− ρ2

u(l1 −N1(x, u))

∫ T

u

as
∂PQ1
∂µ1

dsσQ1 (x, u)

√
µQ1 (x, u) dWQ

1 (x, u).
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Self-financing strategy

The value of the money market account we should prepare is

ηsft =

∫ t

0

θs dU
Q
s − Vt − θtU

Q
t + EQ [VT ] .

The additional cost risk is by construction then zero.

The hedging error risk is given as follows:

EQ
[
L2
T

∣∣ Gt]
=

∫ T

0

EQ

[(
θu
k

l2
PQ2 (τ > T | Gu)

)2

(l2 −NQ
2 (x, u))µQ2 (x, u)

∣∣∣∣∣ Gt
]
du,

+

∫ T

0

EQ

(∫ T

u

asP
Q
1 (τ > s| Gu) ds

)2

(l1 −NQ
1 (x, u))µQ1 (x, u)

∣∣∣∣∣∣ Gt
 du,

+

∫ T

0

EQ

(√1− ρ2
u(l1 −N1(x, u))

∫ T

u

as
∂PQ1
∂µ1

dsσQ1 (x, u)

√
µQ1 (x, u)

)2
∣∣∣∣∣∣Gt

 du.

Risk-minimization strategy

The value of the money market account we should prepare is

ηrmt = V̂ Qt − Vt − ξtU
Q
t .

Additional cost risk:

EQ
[
(LT − Lt)2

∣∣Gt]
=

∫ T

t

EQ

[(
θu
k

l2
PQ2 (τ > T |Gu)

)2 (
l2 −NQ

2 (x, u)
)
µQ2 (x, u)

∣∣∣∣∣Gt
]
du,

+

∫ T

t

EQ

(∫ T

u

asP
Q
1 (τ > s|Gu)ds

)2 (
l1 −NQ

1 (x, u)
)
µQ1 (x, u)

∣∣∣∣∣∣Gt
 du,

+

∫ T

0

EQ

(√1− ρ2
u(l1 −N1(x, u))

∫ T

u

as
∂PQ1
∂µ1

dsσQ1 (x, u)

√
µQ1 (x, u)

)2
∣∣∣∣∣∣Gt

 du.
By construction, the hedging error risk is zero.

Generalized quadratic hedging strategies

The value of the money market account we should prepare is

ηλt = ληrmt + (1− λ)ηsft .
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Additional cost risk:

λ2(1− λ)EQ[(LT − Lt)2|Gt]

= λ2(1− λ)

∫ T

t

EQ

[(
θu
k

l2
PQ2 (τ > T | Gu)

)2 (
l2 −NQ

2 (x, u)
)
µQ2 (x, u)

∣∣∣∣∣ Gt
]
du,

+λ2(1− λ)

∫ T

t

EQ

(∫ T

u

asP
Q
1 ((τ > s| Gu) ds

)2 (
l1 −NQ

1 (x, u)
)
µQ1 (x, u)

∣∣∣∣∣∣ Gt
 du,

+λ2(1− λ)

∫ T

0

EQ

(√1− ρ2
u (l1 −N1(x, u))

∫ T

u

as
∂PQ1
∂µ1

dsσQ1 (x, u)

√
µQ1 (x, u)

)2
∣∣∣∣∣∣ Gt

 du.
Hedging error risk:

λ(1− λ)2EQ[L2
T |Gt]

= λ(1− λ)2

∫ T

t

EQ

[(
θu
k

l2
PQ2 (τ > T | Gu)

)2 (
l2 −NQ

2 (x, u)
)
µQ2 (x, u)

∣∣∣∣∣ Gt
]
du,

+λ(1− λ)2

∫ T

t

EQ

(∫ T

u

asP
Q
1 ((τ > s| Gu) ds

)2 (
l1 −NQ

1 (x, u)
)
µQ1 (x, u)

∣∣∣∣∣∣ Gt
 du,

+λ(1− λ)2

∫ T

0

EQ

(√1− ρ2
u (l1 −N1(x, u))

∫ T

u

as
∂PQ1
∂µ1

dsσQ1 (x, u)

√
µQ1 (x, u)

)2
∣∣∣∣∣∣ Gt

 du.
Finally, the aggregate risk is given as

λ2(1− λ)EQ[(LT − Lt)2|Gt] + λ(1− λ)2EQ[L2
T |Gt].

2.4.4 Numerical analysis

Mortality data

According to Coughlan et al. (2007) [3], there are two kinds of mortality rates for the

x-year-old: initial rate of mortality qx and central rate of mortality mx. The initial

rate of mortality represents the probability of deaths within one year, defined as the

following ratio

qx =
# of death over the year

# of lives at the start of the year
,

The central rate of mortality reflects deaths per unit of exposure, by replacing the

denominator of the above fraction with the number of lives at the middle of the year,

a proxy for the exposure-to-risk.

mx =
# of death over the year

# of lives at the middle of the year
,
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The connection between the two mortality rates is

qx ≈
mx

1 + 0.5 ∗mx
.

We collect both mortality rates from www.lifemetrics.com. The data contains

the mortality rates of English and Welsh males and females between age 20 and age

89, from 1961 to 2007.The initial rate of mortality has been ’graduated’ in order

to eliminate the noise. The smoothing techniques can be found in Coughlan et al.

(2007). The following figures summarize the data and show the evolvement of the

mortality rate at different ages over years. We can see from the figures that females

have a much lower mortality rate than males. And the mortality rates for senior

citizens have decreased significantly in recent decades.

Crude central rate of mortality (England and Welsh male)
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Crude central rate of mortality (England and Welsh female)

Graduate initial rate of mortality (England and Welsh, male)
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Graduate initial rate of mortality (England and Welsh, female)

Mortality intensity

Inspired by Dahl, Melchior and Møller (2008) [5], we assume the initial mortality

intensity to take the Gompertz-Makeham form. That is to say, the force of mortality

can be expressed as

µo(x+ t) = a+ b cx+t,

where a, b and c are positive constants. We focus on this age group between 30

and 80-year old. The next task is to fit the Gompertz-Makeham mortality curve to

the data. At this stage, we assume the mortality rate remains constant within a year,

which means that the central mortality rate equals the mortality intensity (See Cairns

et al. (2007) [2] for details). Therefore, the data considered here are the observed

central mortality rates of all the ages at one year. Here we adopt a least square

estimation method. Denote the observations as yi, where i represents the age. The

parameters of the model, a, b, c, are estimated by minimizing the objective function

∑
i

(
yi −

(
a+ b (c)

i
))2

, i = 29.5, 30.5, ..., 79.5.

Here 0.5 has been subtracted from the age since crude mortality date have been

used. The following figures show the fitted Gompertz-Makeham mortality curves for

English and Welsh females between years 1961 and 2007.
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However, a deterministic mortality intensity curve is not enough. Following the

idea proposed by Dahl, Melchior and Møller (2008), we multiply the initial determin-

istic mortality curve by a CIR process to capture the stochastic evolvement of the

mortality curve over time. Consider the following CIR noise

dξt = (δ exp (−γt)− δξt) dt+ σ
√
ξtdW (t).

It can be easily shown that the mortality intensity µ(x, t) = µo(x+ t)ξ(t) is again

a CIR process.

The trick here is to leverage the probability to survive from time t to T , which

resembles the zero-coupon bond price in terms of its mathematical form

P (Tj,i > T | Ft) = E
[
e−

∫ T
t
µj(x,s)ds

∣∣∣ Ft] = exp
{
A (T − t)−B (T − t)µj(x, t)

}
.

where A (T − t) and B (T − t) are deterministic functions, containing the parame-
ters γ, δ, σ (See Dahl, Melchior and Møller (2008) for the forms of these two functions).

Please notice that the central rate of mortality is an analogue of the yield to maturity

of a one-year zero-coupon bond.

The parameters are estimated by minimizing the difference between the observed

central mortality rate y and the theoretical central mortality rate −A (T − t) +

B (T − t) (T − t)

min
γ,δ,σ

∑(
y +A (T − t; γ, δ, σ)−B (T − t; γ, δ, σ)µj(x, t)

)2
.
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Remark 10 The mortality intensity and the survival probabiliy obtained in this way
are the ones under the physical meausre P . For pricing purposes, one should either

change the measure to Q or estimate directly under the risk-neutral measure Q. The

latter method would involve market price data of some life-insurance contracts or

derivatives.

The following graph shows the stochastic intensity process over 20 years for Eng-

land and Welsh females aged 60 at time 0. The estimated parameters are

a b c γ δ σ

0.000729 0.000014 1.112223 0.3316 0.0138 0.0552

Stochastic mortality intensity (50 paths, 100 steps per year)

For a pool of 100 60-year old females (l = 100), the number of people surviving

over the next 20 years based on the proposed mortality intensity are shown by the

following figure.
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Survivors counting process (50 paths, 100 steps per year)

Annuity portfolio and hedging

In this section, we show the simulated value of the annuity portfolio and mortality

forwards and some examples of hedging. For pricing and hedging purposes, we adopt

the following parameters for the mortality intensity process of the annuity portfolio

a1 b1 c1 γ1 δ1 σ1

−0.0013 0.0001 1.0956 0.3316 0.0138 0.0552

and the following parameters for the mortality forward

a2 b2 c2 γ2 δ2 σ2

−0.0013 0.0001 1.0956 0.1230 0.0207 0.0354

Further assume that the correlation coeffi cient is ρ = 0.85. The constant payment

to the survivors remains 1. The following figures show the simulated paths of the

values of annuity portfolios and the mortality forwards.
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Annuity portfolio (100 paths, 100 steps per year)

Mortality forward (100 paths, 100 steps per year)
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Right now let us look at a hedging example. Assume λ = 0.5. The following

graphs give the units of the risky assets and riskless assets which should be used

for the hedging portfolio. All the three quadratic hedging strategies, self-financing,

risk-minimization and generalized hedging, follow the same strategy for risky asset.

Number of risky asset

However, the strategy for riskless asset are different. In the following figures, the

blue indicates the units of riskless asset used in self-financing strategy, the black one is

for risk-minimization strategy and the red one is for the generalized quadratic strategy
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with λ = 0.5.

Number of riskless assets

2.5 Conclusion

In this study, we design a new set of quadratic hedging strategies, which can balance

the short-term risk (additional cost risk) and the long-term risk (hedging error). The

unique optimal hedging strategy under the risk-neutral measure can be obtained via

a Kunita-Watanabe decomposition when λ = (0, 1). Though the model is more

complicated, the optimal trading strategy for the risky asset is the same with the

ones in the risk-minimization strategy and the self-financing strategy, however the

trading strategy for the riskless asset is very different.

In the empirical and numerical analysis part, we adopt mortality forwards to hedge

the longevity risk in an annuity portfolio. We apply the generalized quadratic hedging

strategy with λ = 0.5 and compare with the two traditional hedging strategies.
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Chapter 3

Risk-Neutral Densities and
Metal Futures

3.1 Introduction

Harrison and Kreps (1979) [10] and Harrison and Pliska (1981) [11] established the

link between no-arbitrage pricing and martingale theory. The first fundamental asset

pricing theorem states that the absence of arbitrage in the market is equivalent to

existence of an equivalent martingale measure Q for the price process of the under-

lying financial asset. The second fundamental asset pricing theorem states that the

completeness of a market is equivalent to uniqueness of the equivalent martingale

measure. (see Kiesel (2002) [14] for more details.) In reality, the markets are seldom

complete due to undiversifiable and unhedgeable risks. As a result, there could exists

multiple pricing measures that can rule out arbitrage opportunities. This comparative

study considers three pricing measures obtained by different approaches and applies

them to different commodity future markets.

It is important to identify the difference between forward and future prices when

the interest rate is stochastic. At time t, denote the prices of forward and future

contracts expiring at time T to be ForS(t, T ) and FutS(t, T ),respectively. Let S(t)

be the spot price at time t and B(t, T ) be the price of a zero-coupon bond paying 1

at time T .

Definition 11 (Shreve(2000) [19]) Assume that zero-coupon bonds of all maturities
can be traded. Then the forward price is determined by

ForS(t, T ) =
S(t)

B(t, T )
, 0 ≤ t ≤ T,

Definition 12 (Shreve(2000) [19]) The futures price of an asset is given by the for-
mula

FutS(t, T ) = EQ [S(T ) | Ft] .

33
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A long position in the futures contract is an agreement to receive as a cash flow

the changes in the futures price (which may be negative as well as positive) during the

time the position is held. A short position in the futures contract received the opposite

cash flow.

The difference between forward and future prices is the so-called forward-futures

spread.

Commodity futures have been intensively studied in the literature. Schwartz

(1997) [18] compared three models and found out that the dynamics of futures prices

can be captured by three factors: driving spot prices, interest rates and convenience

yields. The convenience yield, according to Carmona and Ludkovshi (2005) [4], is de-

fined as the difference between benefit of direct access and cost of storage. Later on,

a lot of new models for commodity spot prices and future prices have been proposed

and empirically studied. (Ross (1997) [17], Casassus and Collin-Dufresne (2002) [5],

Carmona and Ludkovski (2005), etc)

The focus of this study is not on the dynamics of commodity spot or future prices,

but on the link between spot and future prices. The essay considers three measure-

changing approaches. We aim to find out the best measure-changing technique in

terms of empirical performance. We also would very much like to quantify the perfor-

mance of the frequently studied measure-changing techniques like Esscher transform

compared to calibration method and the non-parametric method. This is important

because techniques like Esscher transform do not require the availability of derivatives

prices and thus have often been adopted to study illiquid, not yet mature markets,

like the insurance derivatives market discussed in the previous chapter.

The article is structured as follows. The first section describes the three measure-

changing techniques. The second section empirically analyzes the performance of the

methods on three commodity markets, gold, copper, and aluminum. The last section

concludes the results.

3.2 Method1: price commodity futures under the

Esscher measure

3.2.1 Dynamics for the commodity spot prices

We work on a probability space (Ω,F , P ). In this section, we will adopt the following

SDE to describe the dynamics of the commodity spot prices.

St = S0 exp(Gt),

where

dGt =
(
µG − λGGt−

)
dt+ σt dLt,

dσ2
t = (κ− ησ2

t−)dt+ φσ2
t− d[L,L]dt .
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The process G follows a COGARCH process, as proposed by Klüppelberg, Lindner

and Maller (2004) [15]. We denote the augmented filtration generated by G and σ2

with F.
L is a Lévy process with differential triplet (b, c, F (dx)) .For simplicity, we assume

the L process to be a NIG process. As we will see later, this process provides a good

fit to the commodity data. With parameters α, β, µ, δ, a NIG random variable has

the density function. Here K1(.) is the modified Bessel function of the third kind with

index 1.

gNIG(α,β,µ,δ)(z) =
α exp(ς + β(z − µ))K1(αδq((z − µ)/δ))

πq((z − µ)/δ)
,

ς = δ

√
α2 − β2, q(x) =

√
1 + x2,

0 < |β| < α, −∞ < µ <∞, δ > 0.

For a COGARCH model, we always require that L has mean zero and unit vari-

ance. To this purpose, we reparameterize NIG(α, β, µ, δ) to NIG(ξ, ρ, κ1, κ2), where

κ1 represents the mean value and κ2 represents the variance.

ξ = (1 + ς)−1/2, ρ = β/α,

κ1 = µ+ δρ/
√

1− ρ2 = 0, κ2 = δ2/
(
ς(1− ρ2)

)
= 1.

The NIG process is a pure jump process. Therefore its differential triplet reduces

to (b, 0, F (dx)), where the drift term b and Lévy measure F (dx) are given by

b = µ+
2δα

π

∫ 1

0

sinh (βx)K1 (αx) dx

F (dx) =
δα

π |x|e
βxK1 (α |x|) dx

Proposition 13 Assume
(
σ2
t

)
t≥0

is the stationary version of the process with σ2
0 =

σ2
∞. If the underlying asset price S follows a COGARCH model then the future price

reduces to

FutS(t, T ) = S(t)ϕQG (t, T ; 1)

where ϕQG is the Laplace transform of G with parameter 1 and Q is a risk-neutral

measure.

Proof. We have

FutS(t, T ) = EQ [S(T ) | Ft]

= EQ [S0 exp(GT −Gt +Gt) | Ft]

= S(t)EQ [ exp(GT −Gt) | Ft]

= S(t)EQ [exp(GT−t)]

= S(t)ϕQG (t, T ; 1) .
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Here the fourth equal sign holds because of the stationary increment property of G.

3.2.2 Risk-neutral distribution estimated from spot price data

For two probability measures Q and P defined on a measurable space (Ω,F), Q is

said to be absolutely continuous with respect to P if all P -zero sets are also Q-zero

sets, denote as Q � P . P and Q are considered to be equivalent if Q � P and

P � Q. If Q � P , there exists a unique density Z = dQ/dP so that for f ∈ L1 (Q)

the following equation holds

EQ [f ] = EP [Zf ] .

One can associate a martingale with respect to Z,

Zt = EP [Z| Ft] .

This martingale is the density process of Q.

For the following definitions and notation we refer to Jacod and Shiryaev(2003)

[12]. Assume that X is a semimartingale and there exists θ ∈ L (X) such that θ ·X is

exponentially special, where · denotes stochastic integration. The Laplace cumulant
K̃X(θ) is defined as the compensator of the special semimartingale Log

(
eθ·X

)
. We

have

K̃X(θ) = κ̃(θ) ·A,

where

κ̃(θ)t = θtbt +
1

2
θ2
t ct +

∫ (
eθtx − 1− θth (x)

)
Ft (dx) .

Here b, c, F are the differential characteristics of X. h : R −→ R is a truncation

function, which are bounded and satisfy h(x) = x in a neighbourhood of 0.

The modified Laplace cumulant KX (θ) is defined as

KX(θ) = log E
(
K̃X(θ)

)
,

If X is quasi-left continuous then KX(θ) = K̃X(θ) and KX(θ) is continuous.

A càdlàg process X is defined as quasi-left continuous if ∆XT = 0 a.s. on the set

{T <∞} for every predictable time T . In our case, G is quasi-left continuous because
L is a NIG process.

In an incomplete market, which is the case when we adopt Lévy-driven asset

process, we could face plenty of different risk-neutral measures with different density

process. In this study, we focus on the widely used Esscher measure [12] with the
density process

Zt = exp

(∫ t

0

θs dXs −KX(0, t; θ.)

)
.
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3.2.3 Futures price under the Esscher measure

Our next goal is to find the process θ making the discounted spot price a martingale

under the Esscher measure Q. Because we are dealing with commodities, we have to

define the discounted spot price in a different way.

Commodities, unlike stocks or bonds, can be consumed or stored with some costs.

The difference between the consumption value and storage expenses per unit of time

is termed the convenience yield δ. Intuitively, the convenience yield corresponds to a

dividend yield for stocks (Carmona and Ludkovski (1991)). Therefore, the discount

rate should become to

rt − δt ,

and the discounted spot price changes to

S̃t = exp

(
−
∫ t

0

(rs − δt) ds

)
St .

It remains to specify a dynamic for δt. In this study, we adopt a convenience yield

proportional to G, i.e.

δt = λGGt−

for some constant λG. With these specifications, the Esscher measure, and there-

fore the risk-neutral spot price, can be determined.

Theorem 14 The discounted spot price is a Q-(local) martingale where θt satisfies

θt σ
2
t−c

2−rt+µG+σt−b+
1

2
σ2
t−c

2 +

∫ (
e(θt+1)σs−y − eθtσs−y − σt−h(y)

)
F (dy) = 0.

Here (b, c2, F ) is the Lévy triplet of L.

Proof. The result can be proved by two different methods.

The first approach rests on Girsanov’s theorem. The density process admits the

representation

dZt = Zt θtσtcdWt + Zt

∫ (
eθtσsx − 1

)
(µ− ν)(ds, dt).

On the other hand, the discounted spot price process under P admits a stochastic

representation as

d
(
e−

∫ t
0

(ru−λGGt−) duSt

)
= S̃t σtc dWt + S̃t

∫
(eσtx − 1) (µ− ν)(ds, dt)

+S̃t

(
−rt + λGGt− + σtb+

1

2
σ2
t c

2 +

∫
(eσtx − 1− σth(x))F (dx)

)
dt.

Therefore the predictable finite variation part in the decomposition of the discounted
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spot price process as a special semimartingale is

dAt = S̃t

(
−rt + λGGt− + σtb+

1

2
σ2
t c

2 +

∫
(eσtx − 1− σth(x))F (dx)

)
dt.

Whereas the predictable finite variation part of the discounted spot price process

under Q takes the form

dA+
1

Z−
d
〈
Z, S̃

〉
= S̃t

(
θtσ

2
t c

2 +

∫ (
e(θt+1)σsx − eσtx − eθt σsx + 1

)
F (dx)

−rt + λGGt− + σtb+
1

2
σ2
t c

2

)
.

This part must be sent to zero in order to guarantee that the discounted spot price

process is a martingale under Q. In this way we end up with a Feynman—Kac type

equation

θtσ
2
t c

2 − rt + λGGt− + σtb+
1

2
σ2
t c

2 +

∫ (
e(θt+1)σsx − eθtσsx − σth(x)

)
F (dx) = 0,

which proves the result.

In the alternative method, we first determine the differential characteristics of

G̃ := −rt + λGGt− + Gt. Recall that in our case, the discounted spot price can be

written as

St = S0 exp
(
G̃t

)
.

Let us define a new process

G̃(h) = G̃− G̃′(h),

where

G̃′(h)t =
∑
s≤t

[
∆G̃s − h(∆G̃s)

]
.

G̃(h)t admits the representation

dG̃(h)t = dG̃t −
∫

(σt−y − h(σt−y)) µ(dy, dt)

= −rtdt+ λGGt−dt+ dGt −
∫

(σt−y − h(σt−y)) µ(dy, dt).

Therefore the differential characteristics of G̃ are

bG̃t = −rt + λGGt− + µG − λGGt− + σt−b+

∫
(h(σt−y)− σt−h(y))µ(dy, dt)

cG̃t = σt−c

F G̃(A)t =

∫
1A(σt−y)F (dy).
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According to Jacod and Shiryaev (2003) (page 224, theorem 7.18), the process eG̃ is

a Q-local martingale if and only if θ · G̃ is exponentially special and if we have

KG̃ (θ + 1) = KG̃ (θ) .

Therefore, by the definition of the Laplace cumulant and modified Laplace cumulant,

the equation in the theorem holds.

The above equation for θ can be explicitly solved when the driving Lévy process

is a NIG process.

Corollary 15 If L follows NIG(α, β, µ, δ), the explicit solutions of the equation for

θ are

1

2

1

(R2
t + σ2

t−δ
2)σt−δ

(
−δ3σ3

t− − 2δ3βσ2
t− − δσt−R2

t − 2δβR2
t

+
√
−δ4σ4

t−R
2
t − 2δ2σ2

t−R
4
t + 4R4

t δ
2α2 −R6

t + 4σ2
t−δ

4R2
tα

2

)
,

and

−1

2

1

(R2
t + σ2

t−δ
2)σt−δ

(
δ3σ3

t− + 2δ3βσ2
t− + δσt−R

2
t + 2δβR2

t

+
√
−δ4σ4

t−R
2
t − 2δ2σ2

t−R
4
t + 4R4

t δ
2α2 −R6

t + 4σ2
t−δ

4R2
tα

2

)
,

subject to an integrability condition. Here

Rt = −rt + µG + µσt−.

Proof. The cumulant function of L is

µu+ δ

(√
α2 − β2 −

√
α2 − (β + u)2

)
,

where u ∈ R. In this case, if we set u = θtσt−, then

KG̃
t (θ̃) =

∫ t

0

(
−rsθs + µGθs + µθsσs− + δ

(√
α2 − β2 −

√
α2 − (β + θsσs−)2

))
ds.

Therefore the equation becomes to∫ t

0

(
δ
√
α2 − (β + θsσs−)2 − rs + µG + µσs− − δ

√
α2 − (β + (θs + 1)σs−)2

)
dt = 0.

Since the above integral equation holds for every t, the result can be solved by equating

the integrand to zero.

The two solution branches have been tested empirically on the commodity data

considered in this study. It seems that, in most cases, only the second solution can

prevent the risk-neutral dynamic from exploding.
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3.3 Method 2: model spot prices under the risk-

neutral measure Q

A problem with pricing under the Esscher measure is that the density process is solely

determined by the spot prices and thus cannot take any information from the futures

price data. A remedy is to model Q-dynamics of the spot prices directly and calibrate

the model parameters from the futures prices. This amounts to selecting a risk-neutral

measure ’chosen by the market’among a set of structure preserving measures.

The risk-neutral spot price can be described by the following stochastic differential

equations:

dSt = St− (rt − λGt−) dt+ St−

∫
(eσt−x − 1) (µ̃− ν̃) (dx, dt),

dGt =

(
rt − λGt− −

∫
(eσt−x − 1) F̃ (dx)

)
dt+

∫
(σt−x) µ̃(dx, dt).

We assume again that the driving Lévy process is a standard NIG process with

parameters (ξ, ρ).

The model parameters can be obtained by minimizing the aggregate difference

between theoretical and realized futures prices.

∑
i

$i

(
Fi (χ)− F obsi

)2
Here χ is the vector of the parameters to calibrate. In this case, we have

χ = (κ, η, φ; ξ, ρ).

F (χ) denotes the theoretical futures price based on the model and the value of χ,

while F obs denotes the observed futures prices gathered from the market. $i ∈ [0, 1]

is the weight for the ith future contract, which reflects the relative importance of the

contract.

However, this kind of calibration problem is usually ill-posed (see Cont and Tankov

(2004) [7] and Chiarella Carddock and El-Hassan (2007) [?] for details). A remedy for
the ill-posed problem is to add a regularization term to the objective functional. See

Cont and Tankov (2004), Chiarella, Carddock and El-Hassan (2007) and Galluccio

and Le Cam (2005) [8] for details. Therefore, we change the objective functional into

the following form:

min
χ

{∑
i

$i

(
Fi (χ)− F obsi

)2
+ αlf (νχ, νinitial)

}
with

Lf (νχ, νinitial) :=

{ ∫
(0,∞)

f
(

dνχ
dνinitial

)
dνinitial if νχ � νinitial

+∞ else.
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The function f is chosen to be

f(x) = x log(x)− x+ 1.

The existence of a solution for this regularization calibration problem has been

proved by Keller-Ressel (2006) [13].

3.4 Method 3: non-parametric estimation of risk-

neutral densities

Grith, Härdle and Schienle (2010) [9] proposed a non-parametric approach to estimate

risk-neutral density from option prices. In this study, their idea will be applied to

futures markets.

There is a link between the p, the conditional density function of the physical

measure, and q, the conditional density function of the risk-neutral measure, namely

q (ST | Ft) = m (ST | Ft) p (ST | Ft) .

Here m is the pricing kernel, which summarizes information related to asset pric-

ing. We cannot incorporate all the factors driving the form of the pricing kernel, so

we consider the projection of the pricing kernel on the set of available payoff functions

and denote it as m∗. Assume it is close to m in the sense that

‖m−m∗‖2 =

∫
|m(x)−m∗(x)|2 dx < ε.

Further assume m∗ has a Fourier series expansion

m∗ (ST | Ft) =
∞∑
l=1

αl,tgl (ST | Ft)

where αl are Fourier coeffi cients and gl is a fixed collection of basis functions.Following

Grith, Härdle and Schienle (2010), we adopt the Laguerre polynomials to conduct em-

pirical analysis. In practice, we can only expand m∗ up to a finite number L, which

gives us an approximation

m̂ (ST | Ft) =
L∑
l=1

α̂l,tgl (ST | Ft) .

The remaining task is to estimate α̂l,t from the derivative prices data. The com-

modity future prices can be expressed in the following way:

Yi,t = e−rt
∫ ∞

0

ST
L∑
l=1

α̂l,tgl (ST | Ft) p (ST | Ft) dST + εi

=
L∑
l=1

α̂l,t

{
e−rt

∫ ∞
0

ST gl (ST | Ft) p (ST | Ft) dST
}

+ εi.
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Set

ψil = e−rt
∫ ∞

0

ST gl (ST | Ft) p (ST | Ft) dST .

Finally we can obtain a feasible estimator of α by least-square estimation

α̃ =
(

Ψ̂T Ψ̂
)−1

Ψ̂TY

which will give us the pricing kernel

m̂ (ST | Ft) = g (ST | Ft)ᵀ α̃

and hence the risk-neutral density.

3.5 Empirical analysis

3.5.1 Estimation method and simulation techniques

Estimate P -dynamic parameters

The COGARCH model can be estimated by a pseudo-maximum likelihood (PML)

method proposed by Maller, Müller and Szimayer (2008) [16]. Suppose we have

observations G(ti), 0 = t0 < t1 < ... < tN = T. In Maller, Müller and Szimayer

(2008)’s case, Yi is defined as the difference between G(ti) and G(ti−1), i.e., the

observed returns.

In our case, we define Yi in a different way in order to facilitate the estimation

procedure, namely

Yi := G(ti)−G(ti−1)−
(
µG − λGG(ti−1)

)
∆ti =

∫ ti

ti−1

σ(s−)dL(s).

Assuming the Yi are conditionally normal, we can write a pseudo-log-likelihood

function for Y1, ..., YN as

LN ($, η, φ) = −1

2

N∑
i=1

Y 2
i

ρ2
i

− 1

2

N∑
i=1

log(ρ2
i )−

N

2
log(2π)

where

ρ2
i : = E

[
Y 2
i

∣∣ Fti−1] ≈ σ2(ti−1)∆ti

σ2(ti) = $∆ti−1 + φe−η∆ti−1Y 2
i−1 + e−η∆ti−1σ2(ti−1).

This method can handle both regularly spaced data and irregularly spaced data.
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Simulate Q-dynamics

Another problem with the Esscher measure is that it sometimes changes the model

class of the driving process, which happens in this case. After measure-changing the

driving process L is not a NIG process anymore due to the time-varying σ and θ.

This increases the diffi culty to simulate GQ, the G process under Q. One way to do

it is to approximate dGQ by the following process:

dĜQt = rtdt+ σ̃tdWt +
d∑
i=1

ci,t∆N
(i)
t − ci,tλi,t1|ci,t|≤1dt

The logic here is to approximate large jumps by d nonhomogeneous Poisson pro-

cesses N (i)
t , 1 ≤ i ≤ d, and small jumps by a Brownian motion with volatility

σ̃2
t =

∫
|x|<ε

x2F ∗t (dx)

where

F ∗t (dx) = eθtσt−xF (dx).

Approximating small jumps by a Brownian motion is a commonly used technique

and can achieve more accurate results than certain alternative approaches (Asmussena

and Glynn (2007) [1]). However, this approximation is not always feasible. A rigorous

discussion for Lévy case was provided by Asmussen and Rosiński (2001) [2], suggesting

the necessary condition for the approximation,

ε/σε → 0,

holds if and only if

σcσε∧ε ∼ σε.

For a NIG process, Asmussen and Rosiński (2001) prove that the approximation

is valid. In our case, after the measure-changing, F ∗t (dx) resembles the Lévy measure

of a NIG process with time-varying parameter β∗ = β − θtσt,

F ∗t (dx) = ν(dx) =
δα

π |x|e
(β−θtσt)xK1 (α |x|) dx.

Next, let us look at the approximation of the big jumps. We adopt a nonhomoge-

neous Poisson process with intensity process

λi,t =

{
F ∗t ([ai−1, ai)) 1 ≤ i ≤ k
F ∗t ([ai, ai+1)) k + 1 ≤ i ≤ d

and time-changing jump sizes

c2i,tλi,t =

{ ∫ ai−
ai−1

x2F ∗t (dx) 1 ≤ i ≤ k∫ ai+1−
ai

x2F ∗t (dx) k + 1 ≤ i ≤ d.
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Here, {ai} are real-numbers satisfying

a1 < ... < ak = −ε

ε = ak+1 < ... < ad

ε ∈ (0, 1).

We choose ε = 0.3, a1 = −5.3, ad = 5.3. All the integrals are approximated by the

composite Simpson’s rule and the nonhomogeneous Poisson processes are generated

by the algorithm in [3].

Numerical approximation of integrals

This study involves quite a lot of integrals such that explicit solutions are very diffi cult

to obtain. In this case, a numerical approximation has been used. An integral between

two finite numbers can be approximated by the composite Simpson’s rule

∫ b

a

f(x)dx ≈ h

3

[
f (x0) + 2

n/2−1∑
j=1

f (x2j) + 4
n/2∑
j=1

f (x2j−1) + f (xn)

]
.

For integrals without finite boundary, a transformation must be adopted first, e.g.∫ ∞
0

f(x)dx =

∫ 1

0

f

(
t

1− t

)
1

(1− t)2 dt.

3.5.2 Gold and gold future market

Gold has played an important role in the development of civilization. It was firstly

used for decoration and then served as a store of wealth and a medium of trade.

Nowadays people possess gold to hedge the risks generated from economic or political

events. Figure 1 show the gold spot prices and the logarithm of gold spot prices

between 26/11/2008 and 26/10/2010. The data is of daily scope and all the non-

trading days have been excluded.

Gold futures provide hedging tools for commercial producers and users of gold, op-

portunities for portfolio diversification and global gold price discovery (http://www.cmegroup.com).

I considered the 11 gold futures traded on COMEX (New York Commodity Exchange,

Inc.) for empirical study: GCG09, GCJ09, GCM09, GCQ09, GCV09, GCZ9, GCG0,

GCJ0, GCM0, GCQ0, GCV0. Here GC is the product symbol. The third letter and

the followed numbers state the expiry month and year of the contract. Trades of the

contract are allowed until three working days before the settlement month. Figure 2

shows the gold future prices surface. We are considering the settlement prices of 11

gold future contracts between 26/11/2008 and 26/10/2010.
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All the data are downloaded from the bloomberg terminal.

Gold spot price

Fit the model under the P measure

The first task is to fit the model to the gold spot price. If we assume the data points

are regularly spaced, i.e., ignore the non-trading days, the estimates of parameters

are
κ η φ µG λ

2.1662e− 06 0.0558 0.0380 0.0016 0.0023

The estimates were obtained by PMLE. So we need to have a closer look of the

standardized residuals in the return function. First of all, we did a Jarque-Bera test

to test the normal assumption of the PMLE. It can be seen from the result that the

normal distribution assumption can be rejected.

Jarque−Bera p− value
34.6801 0.00000

Secondly, we try to fit a standardized NIG distribution. The following table and

figure give the maximum likelihood estimates to the four parameters of the NIG

distribution and the comparison between the histogram of the standardized residual

and the density function of the NIG distribution with the four estimated parameters.

α β µ δ

1.7182171 −0.3124525 0.3021202 1.6336979
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Finally, we check the fitted NIG distribution by the Chi-square test. Unfortu-

nately, the test result suggests the standard residuals do not follow the fitted NIG

distribution.

Chi2stat p− value
39.6754 0.0000

Right now let us look at the case when the non-trading days are considered. Put

it in another way, the data points are irregularly spaced. Let us do the PMLE again

to fit the model parameters and check the distribution assumption of the standard

residuals.

κ η φ µG λ

1.0526e− 06 0.0333 0.0275 −9.3388e− 05 −0.0014

Jarque−Bera p− value
39.048 0.00000

Again, the normality assumption is rejected. So I tried the standard NIG distri-

bution again. The following results are the estimated values of the parameters and

the histogram.

α β µ δ

1.6959514 −0.3029201 0.2932561 1.6154437
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This time the standard NIG assumption cannot be rejected by the goodness-of-fit

test. Therefore, in the following part, we will only focus on the model estimated under

the irregular spaced data assumption.

Chi2stat p− value
7.35 0.3934

The realized θ process

The next task is to find out the realized θ, which determines the realized Esscher

measure. We can see from the picture that θ, the sole factor to determine the risk

premium, is indeed a stochastic process in the gold future market. The positive value
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of θ means that jump sizes tend to be bigger under the pricing measure Q.

The realized theta (26/11/2008-26/10/2010)

Theoretical future prices

The last task is to find out the theoretical future prices determined by the three

approaches and compare them with the realized gold future prices.
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The above show the result of the first method. The first figure shows the fitness

of the theoretical future prices to the real future curve on 28 Nov 2008. The second

figure tells the percentage difference of the model prices and real prices during the

following 30 trading days. The average of the absolute values of percentage difference

in this period is 2.706%.
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The above is the result of the second method. The model is fitted by the historical

future curves on 5 trading days until (including) 28 Nov 2008. The first figures shows

the performance of the model on 28 Nov 2008. The second shows the performance of

the same model for the following 30 trading days. The average of the absolute values

of percentage difference is 0.8509%. The calibrated parameters during this period are

κ η φ λ α β µ δ

6.34E − 07 0.559 0.0275 0.0024 1.3863 −1.2147 0.282 0.1551
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The above is the result of the third method. The model is fitted by the historical

future curves on 5 trading days until (including) 28 Nov 2008. The first figures shows

the performance of the model on 28 Nov 2008. The second shows the performance of

the same model for the following 30 trading days. The average of the absolute values

of percentage difference is 0.2876%. Obviously, the third method achieves the best fit

to the real market prices.
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3.5.3 Copper and copper future market

Due to its vast quantity, copper has been for a long time an important material for

weapon and household objects in the history. In the modern era, copper has been

widely used in electrical and electronic products. The following figure shows the

copper spot prices between 26/11/2008 and 26/10/2010.

Copper futures are traded on several exchanges: LME (London Metal Exchange),

COMEX, SHME (Shanghai Metal Exchange) etc. This study considers 11 future

contracts traded on LME: LPG09, LPJ09, LPM09, LPQ09, LPV09, LPZ9, LPG0,

LPJ0, LPM0, LPQ0, LPV0.

Copper spot price

Fit the model under the P measure

We firstly fit the P model to the spot data. Under the regular space assumption, the

estimated value of the parameters are

κ η φ µG λ

7.1434e− 06 0.0951 0.0828 0.0051 0.0055

Normality assumption of the standardized residuals can be rejected.

Jarque−Bera p− value
9.3126 0.0095

Again we choose standard NIG as a candidate distribution for the standardized
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residuals and check this assumption by the goodness-of-fit test. The SNIG cannot

be rejected.

α β µ δ

3.2182479 −0.6807412 0.6502828 3.0046911

Chi2stat p− value
4.3212 0.8270

And then we repeated the above procedure to fit the model under the irregular

spaced data assumption. The following are the estimated parameters. Jarque-Bera

test is again significant.

$ η φ µG λ

3.2007e− 06 0.0540 0.0568 0.0028 0.0023

Jarque−Bera p− value
10.9453 0.0042

Therefore I tried the SNIG distribution and check the new assumption by the

goodness-of-fit test. The SNIG assumption cannot be rejected.
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α β µ δ

3.1315263 −0.6307958 0.6052008 2.9428774

Chi2stat p− value
11.3803 0.0773

Although the model is valid under both regularly spaced data assumption and

irregularly spaced data assumption, we will only adopt the model under the irregularly

spaced data assumption to estimate the theoretical future price.

Realized θ process

The copper future market also witnesses a stochastic θ. However, unlike the gold

future market, the realized θ process in the copper future market always take negative

value, which means the jump size under Q tend to be smaller than the one under P .



3.5. EMPIRICAL ANALYSIS 55

The realized theta (26/11/2008-26/10/2010)

Theoretical future prices

Finally let us look at the comparison between the theoretical copper future prices and

the realized ones.
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The above are the results of the first method. In-the-sample experiment shows an

average absolute values of percentage difference of 4.8347%.
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The above show the results of the second method. The average of the absolute

values of percentage difference is 1.3073%. The calibrated parameters during this

period are as follows

κ η φ λ α β µ δ

2.97E − 06 0.802 0.0339 0.0028 0.2528 −0.2385 0.0263 0.0093
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The above are the results of the third method. The average of the absolute values

of percentage difference is 0.291%. Again, the third method outperformed the other

two.

3.5.4 Aluminum and aluminum future market

Aluminium is an important industrial material and has wide application in construc-

tion and manufacturing. Aluminum also substitutes for copper in many areas.The

following figure show the aluminum spot price between 26/11/2008 and 26/10/2010.

We considered 11 aluminum future contracts traded on LME between 26/11/2008

and 26/10/2010.
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Aluminium spot price

Fit the model under the P measure

The empirical analyzes starts again with fitting the P model to the spot price. The

following are the values of the estimated parameters under the regular space assump-

tion.
κ η φ µG λ

1.3167e− 05 0.0706 0.0312 0.0011 0.0037

Normality assumption of the standardized residuals can be again rejected.

Jarque−Bera p− value
51.4619 0.0000

A standard NIG distribution has been adopted to describe the distribution of the

standardized residuals. The following table show the estimates.

α β µ δ

2.2156312 −0.4329320 0.4164023 2.0899585

The shape histogram shows similarity to the shape of the density function of the

fitted SNIG distribution. The distribution assumption cannot be rejected by the

test.
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Chi2stat p− value
3.4897 0.7453

Consider the model again under the irregular spaced data assumption. The fol-

lowing are the estimated parameters and the result of the Jarque-Bera test.

κ η φ µG λ

9.6356e− 06 0.0591 0.0302 6.4010e− 05 −0.0023

Jarque−Bera p− value
129.4878 0.0000

Fit a SNIG distribution to the data and test it with the goodness-of-fit test. The

SNIG assumption cannot be rejected.

α β µ δ

1.19206241 −0.05224162 0.05214129 1.18862986
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Chi2stat p− value
3.3442 0.7646

Theoretical future prices

The followings compare the theoretical and observed future prices.
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The above are the results of the first method. For the in-the-sample performance,

the average of the absolute values of percentage difference is 8.0913% .
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The above are the results of the second method. The average of the absolute

values of percentage difference is 4.4504%. The calibrated parameters are

κ η φ λ α β µ δ

9.45e− 06 0.0273 0.0862 −0.0862 0.6206 0.0564 −0.0560 0.6129
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The above are the results of the third method. The average of the absolute values

of percentage difference is 1.6252%.

Not surprisingly, the third method showed for the third time to be the best among

all the methods considered.
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3.6 Conclusion

This research studied three measure-changing approaches and applied them to three

commodity future markets: gold, copper and aluminum. The empirical analysis shows

that the nonparametric measure-changing method give the best fit to the observed

future prices in all the three markets.

In my opinion, the main reason for the relative underperformance of the first ap-

proach is that a model fitted from time-series data is probably incapable of capturing

cross-section phenomenon. We may change this by modeling the whole futures curve

and the stochastic evolvement of the curve, just like what we did in the previous

chapter to model the mortality intensity.

The reason for the underperformance of the second model is the structure of the

spot price dynamics. It would be beneficial to model the convenience yield or the

volatility in a different way.

The main purpose of this essay is to quantify the relative performance of the three

methods in a market with many liquid futures present, in view that in some of the

new financial markets with only very few futures or derivatives available, one has to

resort to pricing by optimal martingale measures like the Esscher measure.
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Chapter 4

Stochastic Volatility of
Volatility

4.1 Introduction

Volatility is one of the most important concepts in financial mathematics. Volatility

is unobservable so there are different ways to define it. In my point of view, they can

be categorized into two groups: volatility measurements determined by the price of

the underlying asset and the ones determined by the prices of the derivatives.

Let us firstly look at the volatility defined via the underlying asset price. Here

the measurement depends on the parametric model of the asset price. This model

can be either discrete or continuous. Popular discrete models include ARCH and

GARCH. Famous continuous models include constant instantaneous volatility models

(e.g. Black-Scholes model), local volatility (LV) models (e.g. constant elasticity vari-

ance (CEV)) and stochastic volatility (SV) models. Swishchuk(2010) [15] summarized

some stochastic volatility models in the existing literature:

1. Continuous-time one factor SV models: Ornstein-Uhlenbeck model, Hull and

White model, Wiggins model, Scott model, Stein and Stein model, Heston

model, etc. Famous discrete-time one factor SV models include the ARV model,

stochastic variance model and the ARCH/GARCH family models.

2. Some studies found that one factor is not capable of matching the high condi-

tional kurtosis of returns and the full term structure of implied volatility surface,

so a set of generalizations have been proposed. These generalized stochastic

volatility models include: 1) Multi-factor SV models; 2) Allow for jumps in the

volatility SDE; 3) Discrete and continuous-time long memory SV; 4) Multivari-

ate models: introducing volatility clustering into traditional factor models.

We can use the so-called realized volatility to estimate integrated volatility. De-

noting the underlying asset price by S, according to Hsu and Murray (2007) [10],

69
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n-day realized volatility can be defined as follow

RV olt,t+n = 100×

√
365

n

n∑
i=1

[
ln

(
St+i
St+i−1

)]2

This concept can be extended to the high frequency case. Studies in this area

include Andersen and Benzoni (2008) [1], Carr and Lee (2007) [6], Aït-Sahalia et al.

(2011) [4], etc. With the ultra high frequency data, we cannot directly use the realized

volatility estimator to estimate the integrated volatility due to the microstructure

noise. The Two Scales Realized Volatility (TSRV) can solve this problem. More

details on TSRV can be found in [4].

The other way to define volatility is via derivatives price. The first attempt to

extract volatility directly from derivatives price is the implied volatility calibrated

from the option prices based on the Black-Scholes formula. Later on, this concept has

been extended to other models.

Dupire (1994) [8] assumed a local volatility model with deterministic volatility

and proposes the following formula to calculate the local volatility from option prices:

σ2 (K,T, S0) =
∂C
∂T

1
2K

2 ∂2C
∂K2

In 1993, the Chicago Board Options Exchange (CBOE) introduced the CBOE

Volatility Index (VIX). Ten years later, CBOE together with Goldman Sachs, modified

the definition of the VIX to better reflect the expected volatility. The new VIX is

based on the S&P 500 Index (SPX) and estimates expected volatility by averaging

the weighted prices of SPX puts and calls over a wide range of strike prices ([16]).

The general formula to calculate the VIX is ([16]):

σ2 =
2

T

∑
i

∆Ki

K2
i

erTQ (Ki)−
1

T

[
F

K0
− 1

]2

where σ = V IX/100;

T : Time to expiration;

F : Forward index level derived from index option prices;

K0 : First strike below the forward index level, F ;

Ki : Strike price of ith out-of-the-money option;

∆Ki : Interval between strike prices —half the difference between the strike

on either side of Ki;

r : Risk-free interest rate to expiration;

Q(Ki) : The midpoint of the bid-ask spread for each option with strike Ki.

Hsu and Murray (2007) found that a change in the VIX does not predict a change

in the 30-day realized volatility of the SPX.

Volatility has been long served as indicator of risk of the underlying asset. Right

now there are plenty of financial instruments purely written on volatility. Carr and
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Lee (2009) [7] give an overview of the historical development of volatility derivatives.

The first liquid volatility derivatives were variance swaps. And then volatility swaps

appeared because practitioners prefer to think in terms of volatility rather than vari-

ance. Later, more OTC volatility products, like conditional and corridor variance

swaps and timer puts and calls, were introduced. In 2003, the CBOE revised the

definition of the VIX and then launched VIX futures and options. The VIX options

have become the CBOE’s most liquid option contract after the SPX index options.

Volatility of volatility is a new area to study the property of volatility. Previous

studies include Herath and Kumar (2002) [9], Ingber and Wilson(1999) [11], Kaeck

and Alexander (2010) [12]. We consider the two biggest challenges in studying volatil-

ity of volatility to be: (i) what is volatility of volatility exactly? (ii) how to estimate

it. This essay aims to answer these two questions.

4.2 The Concept of Volatility of Volatility

In this study, we define two kinds of volatility of volatility:

1. Volatility of the return’s volatility;

2. Volatility of the VIX.

Later on, we will discuss the dynamics of both of them. A very straightforward

method to estimate volatility of volatility from the return data or VIX data is to cal-

culate 30-day volatilities using standard deviation and then to calculate the standard

deviation of the obtained standard deviation. However, we consider this method not

to be feasible on daily data since there are not enough data points available.

Herath and Kumar (2002) [9] proposed a Jackknife estimation method, which

includes three steps:

1. Partition the sample n into m sub-samples with same size;

2. Calculate a pseudovalue θn−1,j , which is the standard deviation of returns after

each observation is omitted;

3. Estimate the volatility of volatility ξ by

ξ̂ =

√
n− 1

n

n∑
j=1

(
θn−1,j − θn−1

)2
where

θn−1 =
n∑
j=1

θn−1,j/n

We apply this algorithm to each 30-day period log return (S&P 500) and VIX

data and get the following figures. The results support Ingber and Wilson (1999)’s

[11] argument that volatility of volatility itself should be stochastic.
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Volatility of volatility of S&P500

The change of volatility of volatility
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Volatility of VIX

Change of volatility of VIX

4.3 Stochastic Volatility of Volatility Model and Es-

timation Methods

Similar to volatility, volatility of volatility can be measured in a parametric way. In

this section, we assume that the volatility of volatility is stochastic.

For VIX, incorporating stochastic volatility of volatility is nothing but using a

stochastic volatility model to describe VIX. SV models are well established and can
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be easily fitted to the data. The biggest problem is to incorporate stochastic volatility

of volatility to the stock model. The following is an example to incorporate stochastic

volatility of volatility into the S&P 500 index model. Assume a 3-SDE model to

describe the dynamics of S&P 500 index. X,
√
V ,
√
V̂ represent the return process,

the volatility process and the volatility of volatility process. Inspired by Kaeck and

Alexander (2010), we adopt the process J to model the jump time and Z to model

the jump size.

dXt = κ (θ −Xt−) dt+
√
VtdW

X
t + ZtJt,

dVt = κV (θV − Vt) dt+ Ṽt
√
VtdW

V
t ,

dṼt = κṼ

(
θṼ − Ṽt

)
dt+ σṼ

√
ṼtdW

Ṽ
t .

For simplicity, assume the following relations between WX ,WV and W Ṽ .

〈
WX ,WV

〉
= 0,〈

WX ,W Ṽ
〉

= 0,〈
WV ,W Ṽ

〉
= 0.

Stochastic volatility of the VIX can be defined by modelling VIX dynamics as

a stochastic volatility process. The biggest challenge to apply those models is to

estimate the parameters. We consider three methods: Markov Chain Monte Carlo

(MCMC), Maximum likelihood estimation via closed-form likelihood expansion and

Calibration methods.

4.3.1 Bayesian MCMC

The idea of Bayesian statistics is to consider both the observations x and the param-

eter θ as random variables. Here, there are two key concepts of the distribution of

the parameter. One is the prior distribution π(θ), which represents the prior infor-

mation about the distribution of parameter; the other is the posterior distribution

π(θ|x), which represents the distribution updated by the information given by the

observations.

The posterior distribution can be calculated by the Bayes’formula

π (θ|x) =
L (x|θ)π(θ)∫
L (x|ς)π(ς)dς

.

And then we can simulate samples from the posterior distribution and obtain the

Bayesian estimate from the sample mean. The simulation procedure is typically done

by the Markov Chain Monte Carlo (MCMC) approach.

Definition 16 (Robert and Casella (1999) [14], page 142) Given a transition kernel
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K, a sequence X0, X1, ..., Xn, ...of random variables is a Markov chain, denoted by

(Xn), if, for any t, the conditional distribution of Xt given xt−1, xt−2, ..., x0 is the

same as the distribution of Xt−1 given xt−1; that is,

P (Xk+1 ∈ A|x0, x1, ..., xk) = P (Xk+1 ∈ A|xk) ,

=

∫
A

K (xk, dx) .

Definition 17 (Robert and Casella (1999) [14], page 231) A Markov Chain Monte

Carlo (MCMC) method for the simulation of a distribution f is any method producing

an ergodic Markov chain
(
X(t)

)
whose stationary distribution is f .

Here comes a problem: how to simulate a Markov chain having stationary distri-

bution, given a distribution with density or probability mass function? A commonly

used method is the Metropolis-Hastings algorithm.

Algorithm 18 Metropolis-Hastings algorithm ([14], page 233)

Given x(t),

1. Generate Yt ∼ q
(
y|x(t)

)
.

2. Take

X(t+1) =

{
Yt with probablity ρ

(
x(t), Yt

)
,

x(t) with probablity 1− ρ
(
x(t), Yt

)
,

where

ρ
(
x(t), Yt

)
= min

{
f(y)

f(x)

q (x|y)

q (y|x)
, 1

}
.

The above is a general Metropolis-Hastings algorithm. In practice, one can use a

random walk Metropolis-Hastings algorithm.

Algorithm 19 Random walk Metropolis-Hastings algorithm ([14], page 245)

Given x(t),

1. Generate Yt ∼ g
(
y − x(t)

)
.

2. Take

X(t+1) =

{
Yt with probablity min

{
f(Yt)
f(x(t))

, 1
}
,

x(t) otherwise.

Another widely used algorithm is the Gibbs Sampler. According to Robert and

Casella (1999), the Gibbs sampling method is equivalent to the composition of p

Metropolis-Hastings algorithms, with acceptance probabilities uniformly equal to 1.

Algorithm 20 The Gibbs Sampler ([14], page 285)
Given x(t) =

(
x

(t)
1 , ..., x

(t)
p

)
, generate

1. X(t+1)
1 ∼ f1

(
x1|x(t)

2 , ..., x
(t)
p

)
;
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2. X(t+1)
2 ∼ f2

(
x2|x(t+1)

1 , ..., x
(t)
p

)
;

...

3. X(t+1)
p ∼ f1

(
xp|x(t+1)

1 , ..., x
(t+1)
p−1

)
;

Prior and posterior distributions

In our case, we can adopt the following Gibb’s sampler.

P
(
Z(g)

∣∣∣Ṽ (g), V (g), J (g−1),Θ(g−1), X
)

P
(
J (g)

∣∣∣Ṽ (g), V (g), Z(g),Θ(g−1), X
)

P
(
Ṽ (g)

∣∣∣V (g−1), Z(g−1), J (g−1),Θ(g−1), X
)

P
(
V (g)

∣∣∣Ṽ (g), Z(g−1), J (g−1),Θ(g−1), X
)

P
(

Θ(g)
∣∣∣Ṽ (g), V (g), Z(g), J (g), X

)
This section specifies the prior distribution for parameters and derives the corre-

sponding posterior distribution. It is often more convenient to use distributions from

conjugate families: the posterior distribution belongs to the same parametric family

as the prior (Asmussen and Glynn (2000) [5]).

The prior and posterior distributions of the parameters are (some priors are in-

spired by [12]):

1. κ: prior distribution N
(
µκ, σ

2
κ

)
, posterior distribution N

(
B/A,

√
1/A

)
.

A =
1

σ2
κ

+
∑
i

(θ −Xi−1)
2
h

Vi−1

B =
µκ
σ2
κ

+
∑
i

(θ −Xi−1) (Xi −Xi−1 − ZiJi)
Vi−1

Proof. The posterior distribution is obtained by the following way.

∵

κ ∼ N
(
µκ, σ

2
κ

)
Xi −Xi−1 ∼ N (κ (θ −Xi−1)h+ ZiJi, hVi−1)
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∴

P (κ |X ) ∝ exp

{
−1

2

[(
κ− µκ
σκ

)2

+

(
Xi −Xi−1 − κ (θ −Xi−1)h− ZiJi√

hVi−1

)2


∝ exp

{
−1

2

[
κ2A+ 2κB

]}

2. θ: prior distribution N
(
µθ, σ

2
θ

)
, posterior distribution N

(
B/A,

√
1/A

)
.

A =
1

σ2
θ

+
∑
i

κ2h

Vi−1

B =
µθ
σ2
θ

+
∑
i

κ (Xi −Xi−1 − κhXi−1 − ZiJi)
Vi−1

3. κV : prior distribution N
(
µκV , σ

2
κV

)
, posterior distribution N

(
B/A,

√
1/A

)
.

A =
1

σ2
κV

+
∑
i

(θV − Vi−1)
2
h

Ṽi−1

B =
µκV
σ2
κV

+
∑
i

(θV −Xi−1) (Vi − Vi−1)

Ṽi−1

4. θV : prior distribution N
(
µθV , σ

2
θV

)
, posterior distribution N

(
B/A,

√
1/A

)
.

A =
1

σ2
θV

+
∑
i

κ2
V h

Ṽi−1

B =
µθV
σ2
θV

+
∑
i

κV (Vi − Vi−1 − κV hVi−1)

Ṽi−1

5. κṼ : prior distribution N
(
µκṼ , σ

2
κṼ

)
, posterior distribution N

(
B/A,

√
1/A

)
.

A =
1

σ2
κṼ

+
∑
i

(
θṼ − Ṽi−1

)2

h

Ṽi−1σ2
Ṽ

B =
µκṼ
σ2
κṼ

+
∑
i

(
θṼ − Ṽi−1

)(
Ṽi − Ṽi−1

)
Ṽi−1σ2

Ṽ
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6. θṼ : prior distribution N
(
µθṼ , σ

2
θṼ

)
, posterior distribution N

(
B/A,

√
1/A

)
.

A =
1

σ2
θṼ

+
∑
i

κ2
V h

Ṽi−1σ2
Ṽ

B =
µθṼ
σ2
θṼ

+
∑
i

κṼ

(
Ṽi − Ṽi−1 − κṼ hṼi−1

)
Ṽi−1σ2

Ṽ

7. σṼ can be simulated by random walk Metropolis algorithm.

8. J : prior Bernoulli(hλ0), posterior Bernoulli
(

A
A+B

)

A = hλ0 exp

−1

2

[
Xi −Xi−1 − κ (θ −Xi−1)h− Zi√

hVi−1

]2


B = (1− hλ0) exp

−1

2

[
Xi −Xi−1 − κ (θ −Xi−1)h√

hVi−1

]2


Proof. The posterior distribution is obtained by the following way:

∵

f (X |J ) ∝ exp

−1

2

[
Xi −Xi−1 − κ (θ −Xi−1)h− ZiJi√

hVi−1

]2


∴

g (J |X ) =
f (X |J ) g (J)∑
f (X |J ) g (J)

=

(
A

A+B

)J (
1− A

A+B

)1−J

9. hλ0: prior distribution Beta(α0, β0), posterior distribution Beta(A,B).

A = α0 +
∑
i

Ji

B = β0 + n−
∑
i

Ji

Proof. The posterior distribution is obtained by the following way:

f (hλ0 |J ) ∝ f (J |hλ0 ) f(hλ0)

∝ (hλ0)

∑
i
Ji (1− hλ0)

n−
∑

i
J

(hλ0)
α0−1

(1− hλ0)
β0−1

= (hλ0)
α0+
∑

i
Ji−1

(1− hλ0)
β0+n−

∑
i
J−1
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10. Z: prior distribution N
(
µJ , σ

2
J

)
, posterior distribution N

(
B/A,

√
1/A

)
.

A =
1

σ2
J

+
∑
i

Ji
hVi−1

B =
µJ
σ2
J

+
∑
i

Ji (Xi −Xi−1 − κh (θ −Xi−1))

hVi−1

11. µJ : prior distribution N
(
µµJ , σ

2
µJ

)
, posterior distribution N

(
B/A,

√
1/A

)
.

A =
1

σ2
µJ

+
n

σ2
J

B =
µµJ
σ2
µJ

+
∑
i

Zi
σ2
J

12. σ2
J : prior distribution InvGamma (α, β), posterior distribution InvGamma (A,B) .

A = α+
n

2

B = β +
∑
i

(Zi − µJ)2

2

Proof. The posterior distribution is obtained in the following way:

f
(
σ2
J |Z

)
∝ f

(
Z
∣∣σ2
J

)
f(σ2

J)

∝ 1

(σ2
J)
n/2

exp

(
−1

2

∑
i

(Zi − µJ)
2

σ2
J

)(
σ2
J

)−α−1
exp

(
− β

σ2
J

)

=
(
σ2
J

)−(α+n
2 )−1

exp

−β +
∑
i

(Zi−µJ )2

2

σ2
J



13. Update V and Ṽ :

P
(
Ṽi

∣∣∣Ṽ−i, X, V, Z, J,Θ)
P
(
Vi

∣∣∣V−i, X, Ṽ , Z, J,Θ)
The appendix shows the result of MCMC on the simulated data for a reduced

model.

dXt = κXtdt+
√
VtdW

X
t ,

dVt = κV (θV − Vt) dt+ VtṼtdW
V
t ,

dṼt = κṼ

(
θṼ − Ṽt

)
dt+ σṼtdW

Ṽ
t .
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Generating random variables in C++

MCMC algorithm needs to simulate random variables from different distributions.

Commonly used distributions include normal, truncated normal, beta and inverse

gamma distributions. In this study, we adopted the C function on [13]: use ’ran1’

to generate uniform random variables, ’gasdev’to generate normal random variables

and ’expdev’to generate exponential random variables.

In the following part, I will show the code for the inverse Gamma distribution. Let

us firstly recall that the probability density function of inverse Gamma distribution

is

f (x;α, β) =
βα

Γ (α)
(x)
−α−1

exp

(
−β
x

)
The easiest way to simulate inverse Gamma variables is to firstly simulate a

Gamma random variable and use the following property.

If X ∼ Gamma
(
α,

1

β

)
, then

1

X
∼ InvGamma (α, β)

The algorithm to generate a Gamma random variable is recorded in Robert and

Casella (1999), (Page 47 and 55). Here ’betarv’ is the function for beta random

variables.

//Inverse Gamma

//Reference: C.P.Robert and G.Casella ’Monte Carlo Statistical Methods’

double invgamma(double aa, double bb, long seed)

{

double y,z,gamma;

double b,c,u,v,w;

//generate Gamma(aa,1)

if (aa<1)

{

y=betarv(aa,1-aa,seed); //betarv generates beta r.v.

z=expdev(&seed);

gamma=y*z;

}//if

if (aa==1) gamma=expdev(&seed);

if (aa>1) {

b=aa-1;

c=(12*aa-3)/4;

for(;;){

u=ran1(&seed);

v=ran1(&seed);
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w=u*(1-u);

y=sqrt(c/w)*(u-0.5);

gamma=b+y;

if(gamma<=0) continue;

z=64*v*v*w*w*w;

if(z<=1-2*y*y/gamma || 2*(b*log(gamma/b)-y)>=log(z)) break;

}//for

}//else

gamma/=bb;

//make it inversegamma (aa,bb)

return 1/gamma;

}//function

4.3.2 Maximum likelihood estimation via closed-form likeli-
hood expansion

Aït-Sahalia (2008) [2] proposed a method to find out the explicit form of a log-

likelihood function, which is the key to the maximum likelihood estimation. Let the

log likelihood function be approximated by a power series in the time interval ∆:

l
(J)
X (∆, x|x0; θ) = −m

2
ln (2π∆)−Dv (x; θ) +

C
(−1)
X (x|x0; θ)

∆
+

J∑
k=0

C
(k)
X (x|x0; θ)

∆k

k!

The coeffi cients C(k)
X solve the equation

f
(k−1)
X (x|x0) = 0

where

f
(−2)
X (x|x0) = −2C

(−1)
X (x|x0; θ)−

∑
i,j

vi,j(x)
∂C

(−1)
X (x|x0; θ)

∂xi

∂C
(−1)
X (x|x0; θ)

∂xj

f
(−1)
X (x|x0) = −G(0)

X (x|x0; θ)−
∑
i,j

vi,j(x)
∂C

(−1)
X (x|x0; θ)

∂xi

∂C
(0)
X (x|x0; θ)

∂xj

for k ≥ 1

f
(k−1)
X (x|x0) = C

(k)
X (x|x0; θ)− 1

k

∑
i,j

vi,j(x)
∂C

(−1)
X (x|x0; θ)

∂xi

∂C
(k)
X (x|x0; θ)

∂xj

−G(k)
X (x|x0; θ)

The functions G(k)
X (x|x0; θ) are specified by Aït-Sahalia (2008).

To better determine the coeffi cients C(k)
X , one may consider the expansion C(jk,k)

X



82 CHAPTER 4. STOCHASTIC VOLATILITY OF VOLATILITY

in (x− x0) of each coeffi cient C(k)
X . Let i = (i1, i2, ..., im) denote a vector of integers

and define Ik = {i = (i1, i2, ..., im) ∈ Nm : 0 ≤ tr[i] ≤ jk} so that the form of C(jk,k)
X

is

C
(jk,k)
X (x|x0) =

∑
i∈Ik

β
(k)
i (x0) (x1 − x01)

i1 ... (xm − x0m)
im

The coeffi cients β(k)
i (x0) are determined by setting the expansion f

(jk,k−1)
X of

f
(k−1)
X to zero. In particular, when tr[i] = 2, we obtain the equation

∑
tr[i]=2

β
(−1)
i (x0) (x1 − x01)

i1 ... (xm − x0m)
im = −1

2
(x− x0)

T
υ−1 (x0) (x− x0)

where υ (x) is the infinitesimal variance-covariance matrix of the process.

Fit Heston model to VIX and VIX option data

We applied this method to fit a Heston model to the VIX data between 03 Jan 2011

and 15 Apr 2011 with Black-Scholes implied volatility exacted from in-the-money

VIX option as the proxy volatility. The following figures compare the histogram of

the realized increments of the log VIX series and the increments determined by the

fitted Heston model. It is obvious that they do not share the same properties.

We experienced diffi culty to apply this method to the SVV model for S&P500 due

to the huge number of equations need to solve.

realized increments of the log VIX series
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increments determined by the fitted Heston model

4.3.3 Calibration

The third method we have tried is the calibration method. This technique can be

implemented to all the models considered.

The object of calibration is to find out the optimal parameters for the underlying

asset model which can best match the observed derivative prices. Mathematically the

idea can be expressed as:

min
Θ

∥∥Ctheoretical(Θ)− Creal
∥∥

VIX and VIX option

Let us firstly look at VIX and VIX derivatives. Kaeck and Alexander (2010) has found

an improvement of the model for VIX after incorporating the volatility of volatility

risk. But there is still a question left: what kind of structure the dynamic of the

volatility of VIX should take? We consider the following models for log VIX:

1. Jump volatility of volatility model:

d ln(V IX)t = (a− b ln(V IX)t) dt+

√
ṼtdWt

dṼt =
(
ã− b̃Ṽt

)
dt+

√
ṼtdJt

Jt ∼ NIG(α, β, µ, δ)
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2. Heston model:

d ln(V IX)t = (a− b ln(V IX)t) dt+

√
ṼtdW

V IX
t

dṼt =
(
ã− b̃Ṽt

)
dt+ σ

√
ṼtdW

Ṽ
t

3. Zeeman’s market model:

d ln(V IX)t = (a− b ln(V IX)t) dt+

√
ṼtdW

V IX
t

dṼt =
(
ã− b̃Ṽt + c̃Ṽ 3

t

)
dt+ σ

√
ṼtdW

Ṽ
t

We calibrated all the three models to the VIX options with different strikes and

maturities. The following figures show the realized VIX option prices in 03 Jan 2011

and theoretical VIX option prices obtained by calibrated models. A clear improvement

can be seen if we model the volatility of the log VIX as a jump process, especially for

out-of-money options.

realized and theoretical option prices in 04 Jan 2011

Now let us try another date, 04 Feb 2011. The jump volatility of volatility model

still outperforms the other two models when price the out-of-money options, however

underperforms when price highly in-the-money options.
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SPX and SPX option

We consider the following SVV models for S&P500 series.

1. Jump stochastic volatility of volatility model:

d lnSt = (a− b lnSt) dt+ VtdW
S
t

dVt =
(
aV − bV Vt

)
dt+ ṼtdW

V
t

dṼt =
(
aṼ − bṼ Ṽt

)
dt+ σṼtdJt

Jt ∼ NIG(α, β, µ, δ),
〈
WX ,WV

〉
= ρ

2. BM stochastic volatility of volatility model:

d lnSt = (a− b lnSt) dt+ VtdW
S
t

dVt =
(
aV − bV Vt

)
dt+ ṼtdW

V
t

dṼt =
(
aṼ − bṼ Ṽt

)
dt+ σṼtdW

Ṽ
t

Jt ∼ NIG(α, β, µ, δ)

3. Stochastic volatility model:

d lnSt = (a− b lnSt) dt+ VtdW
S
t

dVt =
(
aV − bV Vt

)
dt+ σVtdW

V
t
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Surprisingly, we found out that the adding stochastic volatility of volatility worsens

the option pricing.

realized and theoretical option prices in 04 Jan 2011

realized and theoretical option prices in 18 Feb 2011
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4.4 Conclusion

This essay studied two kinds of volatility of volatility: i) the volatility of the volatility

of stock return; ii) the volatility of VIX. The stochastic volatility of volatility model

for S&P500 index involves three SDEs whereas the SVV model for VIX is in fact a

SV model.

The essay also tried three methods to fit SVV models to real data: i) Markov

Chain Monte Carlo; ii) Maximum likelihood estimation via closed-form likelihood

expansion; iii) Calibration. The last method was eventually worked out for all the

models and reveals the influence of incorporating volatility of volatility risk on the

option evaluation. Surprisingly, the SVV model fails to improve the effi ciency of

option pricing significantly.
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Appendix

The following shows the result of MCMC on the data simulated by the 3-SDE

model. The algorithm starts from the true value and include 50,000 iterations.

κ :

κV :
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θV :

κṼ :
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θṼ :

σ :
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Likelihood :


