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Abstract

This dissertation looks at various specific applications of stochastic processes in finance. The 

motivation for this work has been the work on the valuation of the price of an Asian option 

by Rogers and Shi (1995). Here, we look at functions of integrals of log - Gaussian processes 

to obtain approximations to the prices of various financial instruments.

We look at pricing of bonds and payments contingent on the interest rate. The interest rate 

is assumed to be log - Gaussian, thus ensuring that it does not go negative. Obtaining the 

exact price might not be easy in all cases - hence we use of a combination of a conditioning 

argument and Jensen’s inequality to obtain the lower bound to the prices of the bond as 

well as payments contingent on interest rates. We look at single driver models as well as 

multi-driver models. We also look at bonds where default is possible.

We try to provide a mathematical justification for the choice of the conditioning factor used 

throughout the thesis to approximate the price of bonds and options. This is similar to the 

approach used by Rogers and Shi (1995) to valuing an Asian option; but they had provided 

no mathematical justification.

Another part of this dissertation deals with the problem of pricing European call options on 

stochastically volatile assets. Further, the price and the volatility processes are in general 

correlated amongst themselves. Obtaining an exact price is quite involved and computation 

intensive. Most of the previous work in this field has been based on the solution to a 

system of partial differential equations. As in the case of pricing bonds, here too, we use 

a conditioning argument to obtain an approximation to the prices. This method is much 

faster and less computation intensive. We look at the situations of fixed and stochastic 

interest rates separately and in each case, we look at the volatility process following a simple 

Brownian motion and an Ornstein Uhlenbeck process.

We also look at the value of stop - loss reinsurance contract for the case of a doubly stochastic 

Poisson process. Finally, we look at an alternative method of pricing bonds and Asian 

options. This is done by using a direct expansion and thus avoids the numerical integration 

that is used in the earlier chapters.
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Chapter 1 

Introduction

1.1 General Introduction

Mathematical finance is a very interesting field and there exists a large number of application 

areas where statistical tools like probability and stochastic process could be extensively used. 

The problems examined in this thesis belong to this category - problems which could be 

explained based on the knowledge of stochastic processes and probability. Two of these 

problems are the following.

First, we look at the problem of pricing of bonds with non-negative interest rates and then 

in the second instance, we look at problems of pricing of options on assets with stochastic 

volatility. The first of the two problems is the one of pricing a bond with non-negative interest 

rates. We assume a log-normal model for the interest rate, thereby ensuring non-negative 

interest rates. Thus, the instantaneous rate of interest rs is given by

rs =  beXs,

where 6 is a scaling constant and

X s — fig -)- I s.

Here {ys; 0 < s < l } i s a  Gaussian process with zero mean and so fis is the drift of X s.

In the course of this work, we have looked at pricing zero coupon bonds as well as bonds 

with coupon payments. In both cases, the interest rate is as defined above. We have also 

extended our study to situations where there is a possibility of default. Associated with this



is also the problem of valuing a contingent payment on the interest rate. Now, the value 

of the “contingent” payment on the interest rate is the shortfall between 1 and the amount 

accumulated by an initial investment c. In the course of this dissertation, c is treated as the 

strike price at which the value of the contingent payment is calculated.

Here, we will outline the problem of valuing a zero coupon bond as also the problem of 

valuing a contingent payment on the interest rate. The price of a zero coupon bond is given

by

E(e~bf ° eX‘ds); (1.1)

and the value of a contingent payment to be made at the strike price c is given by

E(e~bJ'‘ eX‘d‘ - c ) +, (1 .2 )

where X s is as defined earlier. The exponential nature of the model ensures that interest rates 

do not go negative since negative interest rates are unrealistic and could lead to undesirable 

consequences, as outlined by Rogers (1995). This can be put in the framework of the work 

set out by Heath, Jarrow and Morton (1992) and is also an extension of the work by Black 

and Karasinski (1991) and Black, Derman and Toy (1990).

The second problem is the one of valuing European call options on assets with stochastic

volatility. Thus, we have

d X t = rXtdt +  o e - ^ X t l p d B ^  + y / l  -  />2dBt(2)], (1.3)

dVt = pdt + d B ^ ,  (1.4)

or dVt = - a V tdt + dB<f > (1.5)

where X t is the price process and Vt is the volatility process. Further, r  is the rate of interest 

and B ^  and B ^  are two independent standard Brownian motions. When the volatility 

process Vt follows a simple Brownian motion (as defined by equation (1.4)), is the drift 

of the Brownian motion. In the case of Vt following an Ornstein - Uhlenbeck process (as
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defined by equation (1.5)), a is the mean reversion force of the Ornstein - Uhlenbeck process. 

Further, p is the correlation between Vt and the logarithm of X t. In this situation r is  treated 

as a constant, but later we also look into situations where it is stochastic in nature. Also, we 

let the volatility process, Vt to be either a simple Brownian motion (as in equation (1.4)) or 

an Ornstein - Uhlenbeck process (as in equation (1.5)). Here, we are interested in the price 

of a call option. Under an equivalent martingale measure (see Harrison and Kreps (1979) 

and Harrison and Pliska (1981)), this is given by

X 0{e-rE(eY' - b ) +}, (1.6)

where b is the strike price at which the value of the option is calculated, Xo is the current 

price of the asset and Yt = We shall also look into the situation of the interest rate

being stochastic in the pricing of options on stochastically volatile assets.

The common strand is that both problems essentially involve the evaluation of functions of 

integrals of log-normal processes, although in the case of pricing of options on stochastically 

volatile assets the situation is more complicated.

Rogers and Shi (1995), in valuing an Asian option on a risky asset S t, solved a somewhat 

similar problem. In fact, it was their work which served as the motivation for this thesis and 

is explained in detail in the next section.

1.2 M otivation for the work

Rogers and Shi assume that at time t, the price of a risky asset St is given by

St = SQexp(aBt -  ^ a 2t +  c£), (1.7)

where, {B t; 0 <  t < 1} is a standard Brownian motion, a 2 is the instantaneous variance. 

Also, c is a constant. Another thing they also assume is that under an equivalent martingale 

measure, c =  r, the riskless interest rate (see Harrison and Kreps (1979) and Harrison and 

Pliska (1981)). The problem that Rogers and Shi looked at is that of computing the value 

of an Asian (call) option with maturity T  and the strike price K  written on the risky asset
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S t . Rogers and Shi fix T = 1. Mathematically, this is the same as calculating

E (Y  -  K )+ = E{max(Y -  K, 0)], (1.8)

where, Y  is defined by

Y  =  [  Sudu. (1.9)
Jo

They calculate the price of the option for both fixed and floating strike prices.

Rogers and Shi used the following equation to obtain the lower bound to the price of the 

option.

E ( f (Y ) )  = E (E ( f(Y ) \Z ) )  > E ( f(E (Y \Z ) ) ) .  (1.10)

In their case, the function /  is defined as f(x) = max(x-k, 0), where k is the strike price of the 

option. Further /  is a convex function and Z is a suitably chosen conditioning factor. The 

second part of equation (1.10) is Jensen’s Inequality. Hence, using this equation, Rogers and 

Shi obtain a lower bound to the price of an option. They also found an approximation to the 

upper bound and it turned out that the two bounds were very sharp. In fact, the bounds 

obtained were so sharp that the lower bound could indeed be treated as the true price of the 

option written on the risky asset.

Rogers and Shi have used the conditional factor Z to be a zero mean Gaussian variable. This

ensures that the conditioned process, conditionally on Z still remains a Gaussian process.

Their conditioning factor is of the form

Z  = I  B sds. (1.11)
Jo

According to Rogers and Shi, they had investigated numerically several possible choices for 

Z, some of them bivariate. However, they found that for the fixed strike Asian option, the 

best choice was the one defined in equation (1.11).

Conditionally on Z, for {0 < t  < 1} and {0 < s  < 1}, we have

E (B t \Z) = m tZ  and c o v ( jB s , B t \Z) -  vsU

4



where

Co v(Bu Z) E (B tZ)
m< Var (Z) E (Z 2)

and

E {Z 2)

We thus have

_  3t(2 -  t)    Zst(2 -  s)(2 - 1)
TTit — -----~----- and vsf — s  A t —---------------------- .

1 2 4

Once the values of m t and vst are known, then one can easily find the value of E (Y \Z ) ,  where 

Y  is defined by equation (1.9). Finally, taking expectation over the distribution of Z, one 

gets the lower bound of the price of the option. The lower bound to the price of the option 

is thus given as

r°° 1 =2
/ Q(z)—-==e 2 dz , (1-12)

J —oo V 271

where
+

n(z) =  [  ezm,+5v“dt -  k
U  o

Now, the lower bound on equation (1.10) is not guaranteed to be good. However, the estimate 

of the error can be made using the following approach. We have, for any random variable U,

0 <  E{U+) -  E{U)+

= i ( £ ( | t / | )  -  |£ ( t/) |)

< l-E ( \U  - E ( U ) \ )

< iv a r ( /7 ) i

Thus, in their case, Rogers and Shi had

0 <  E [E (Y +\Z) -  E {Y \Z )+] < i£ (V ar(F |Z )5 ).
£



Thus, using this, they found the upper bound to the price of the option. As already remarked, 

Rogers and Shi observed that the two bounds were so close to each other that it in fact 

represented the true price itself. We have used the same idea in finding the bounds to the 

prices of bonds or options on assets with stochastic volatility.

As a follow up to Rogers and Shi’s work, Thompson (1999) has developed a method to refine 

the upper bound to the price of the Asian option.

1.3 Different Concepts Used

In the course of this thesis, the prime aim is to calculate the value of the price of an asset. 

We use the idea given by the inequality in equation (1.10), where the conditioning factor 

is suitably chosen. As it might not always be possible to obtain the price easily, we try to 

use Jensen’s inequality to obtain a lower bound to the price. Now, in most cases, the lower 

bound obtained is so sharp that it can be regarded as a very close approximation to the true 

price. Thus, for any convex function /  of a random variable X, we have

E( f ( X ) )  = E[E{f{X\Z)) )  > E( f ( E( Y\ Z) ) ) ,

where Z is the conditioning factor which is suitably chosen. This is similar to the approach 

used by Rogers and Shi (1995) to calculate the value of an Asian option. Here, we look at 

functions which are different from the one studied by Rogers and Shi. We continue to use the 

same technique as used by them to find the lower bound of the price and hope it works well. 

An important consideration is the appropriate choice of the conditioning factor Z. Various 

choices of Z have been tried and in all these situations,

Jo Y,ds

^/Vart/,,1 Ysds)

has been found to be the “optimal” choice in some respects which will be explained later 

in the thesis. {Ts;0 < s < 1} represents the logarithm of the price process in the case of 

pricing of options, while in the case of bond pricing it is either a geometric Brownian motion 

or an exponential function of an Ornstein - Uhlenbeck process. We present a mathematical
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justification of the choice in chapter 3. Division by yV ar( f*  Ysds) ensures that the condi

tioning factor is suitably normalised and thus we have a standard normal distribution for 

the conditioning factor.

In the course of this thesis, the approach has been to make use of a suitable conditioning 

factor to calculate the price of bonds or options. This technique is particularly useful in 

pricing options, often there being no other way to calculate these. In the case of the bonds 

as well, this technique is quite useful, especially in the situations where the variance is 

relatively high and other more direct methods that we will also look at, fail.

In the case of pricing the bonds, one can alternatively make use of a direct expansion tech

nique. This technique does not work for pricing of options, neither does it work for pricing 

of bonds when the variance is relatively high. In the case of bond pricing, for relatively lower 

values of the variance, this method can be used for comparison purposes.

In the calculation of options, we concentrate only on the European call option. However, 

having calculated the value of the European call option, the corresponding put option value 

can be easily calculated using the Put - Call Option parity concept. Also, for non-dividend 

paying stocks, one can easily calculate the value of an American call option from the Euro

pean call option, as has been shown by Merton (1973).

1.4 Previous Work

A number of researchers other than Rogers and Shi have also made a significant contribution 

to the field of pricing derivative assets and options on such assets where the volatility is either 

constant or stochastic in nature. One of the earliest pioneering works in this field has been 

by Black and Scholes (1973) on pricing of assets and corporate liabilities. Merton’s (1973) 

work on the theory of rational option pricing is also very important. This was followed by 

Rubenstein (1976) with his work on the pricing of options and valuing uncertain income 

streams. However, in all these three works mentioned, the volatility of the price is assumed 

to be constant.
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However, constant volatility is not the most realistic of the situations - in fact, more often
i

than not, the volatility present in the market is stochastic in nature. Due to this “stochastic 

nature” , the price and the volatility processes can thus be represented as stochastic differ

ential equations. Further, if the volatility process is stochastic in nature being driven by a 

Brownian motion (or a Wiener process), it can be represented as a simple Brownian mo

tion process or an Ornstein - Uhlenbeck process. This general framework was introduced 

by Vasicek (1977) and is hence referred to as the Vasicek model. This framework has been 

modified by many researchers to model interest rates and price bonds and options. Quite a 

number of these modifications have been outlined by Baxter and Rennie (1996). The work 

of Harrison and Kreps (1979) and Harrison and Pliska (1981) on the use of martingales 

and stochastic integrals in financial applications, especially in the securities market and in 

continuous trading is also very important.

Notable work on modelling interest rates and pricing of bonds have been carried out by 

Black, Derman and Toy (1990), Black and Karasinski (1991), Hull and White (1990, 1993,

| Fall 1994, Winter 1994, 1996), Heath, Jarrow and Morton (1992) and Cox, Ingersoll and 

I Ross (1985). Black, Derman and Toy as well as Black and Karasinski have used a binomial 

tree to model and hence calculate interest rates and thereby price bonds. Hull and White 

have used an idea similar to Black, Derman and Toy as well as Black and Karasinski, only 

using a trinomial tree rather than a binomial one to calculate interest rates. Furthermore, 

Black and Karasinski as well as Black, Derman and Toy use a log-normal model for the 

interest rate - this is similar to the model used by us in this thesis. The Hull and White 

model is quite similar to the Vasicek model and also takes into account the fact tha t the
l
' interest rate does not go negative. This is because negative interest rates have undesirable 

I consequence as shown by Rogers (1995). Under the Gaussian set-up, Heath, Jarrow and 

i Morton’s contribution is also very important. Another idea to model the interest rate, as
i

has been done later in this thesis, is to use a log-normal model for the interest rate as has been 

used by Goldys, Musiela and Sondermann (1994), Sandermann, Sondermann and Miltersen 

(1994) and Brace, Gatarek and Musiela (1997). The basis of research in this field has not 

been restricted only to the Gaussian set-up. In fact, a considerable amount of work has also



been carried out under the assumption of a non-Gaussian set-up. Most significant among 

that is the contribution from Cox, Ingersoll and Ross which looks at the term structure of 

interest rates in a non- Gaussian framework. Most of the contributions referred above deal 

with the one - factor model. However, work has also been done on the multi - factor model. 

Prominent among them are Duffie and Kan (1994, 1996) and Longstaff and Schwartz (1992a, 

1992b).

Research has also been done in the area of pricing of options. After all, options have become 

one of the most important financial instruments in recent years. The same set-up has been 

used to calculate the value of an option, European, American or Asian. Some of the most 

im portant work carried out in option pricing can be attributed to Hull and White (1987), 

Rogers and Shi (1995), Heston (1993), Jarrow and Rudd (1982), Stein and Stein (1991), 

Wiggins (1987), Willard (1996) and Romano and Touzi (1997). Hull and White have looked 

at the problem of pricing of European call options on assets with stochastic volatility where 

the volatility and the logarithm of the price process can be correlated. They solve the problem 

by making use of a set of partial differential equations based on the price and the volatility 

process and in their solution they further assume the correlation between the volatility and 

the logarithm of the price process to be zero. Another notable contribution has been the 

work by Rogers and Shi, which we have discussed in detail in the previous section. Heston, 

Jarrow and Rudd, Stein and Stein and Wiggins have looked at problems of option pricing 

and have used partial differential equations to find the value of the option. Romano and 

Touzi have also used a partial differential equation approach to look at contingent claims 

and market completeness in a stochastically volatile model with the price and the volatility 

process being correlated.

1.5 Order of work

Chapter 2 deals with modelling of interest rates and the calculation of bond prices for zero 

coupon bonds. The interest rate model is essentially taken to be log-normal. This ensures 

that the interest rate does not go negative. Here we are interested in finding the expected 

value of the integral of a log-normal distribution. We make use of the conditioning factor



approach, it is similar to the one used by Rogers and Shi (1995). We also make use of a direct 

expansion technique to find the price, rather the bounds to the price, of the zero coupon 

bonds by a direct expansion method. Furthermore, for the zero coupon bonds, we also look 

at the value of a contingent payment at some strike price c.

In chapter 3, we try to provide a mathematical justification of the choice of the conditioning 

factor th a t we use to price zero coupon bonds in the previous chapter. We also justify the 

choice of the conditioning factor by Rogers and Shi (1995) for valuing the fixed strike Asian 

option. The conditioning factor is given by,

Z  =  [  Yudu ,
Jo

where {Y^O < u < 1} is a Gaussian process. Rogers and Shi had {1^,0 <  u < 1} 

follow a simple Brownian motion. However, we not only present a detailed mathematical 

justification of this choice of the conditioning factor, but also extend it to the general case of 

{Yu, 0 <  u < 1} following different Gaussian processes. We look a t two situations - one where 

{Yu, 0 <  u < 1} comprises of only one process and is referred to as the single driver case 

as well as the case of {F^;0 < u < 1} being a linear combination of a number of Gaussian 

processes and is referred to as the multi driver case.

Chapter 4 deals with the calculation of bond prices for bonds making coupon payments. We 

look at two situations - one where the bond has a zero probability of default and in the 

second case where the bond has a non - zero probability of default. The interest rate model 

is again taken to be log-normal. This ensures that the interest rate does not go negative. 

Here also, we are interested in finding the expected value of the integral of a log-normal 

distribution and make use of the conditioning factor approach.

Chapter 5 looks at the problem of pricing bonds where the interest rate process is governed 

by n Markov processes. These n Markov processes need not necessarily be independent of 

each other. We refer to these models as multi - driver models. In the chapter, we discuss 

two different ways of modelling the interest rate - we refer to them as model 1 and model 

2. Model 1 looks at the situation when the interest rate process is still a log-normal process 

while model 2 is the situation when the interest rate process is a sum of log - Gaussian



processes. In both cases, we use a conditioning factor based argument (similar to the one 

used in chapter 2) to obtain an approximation to the price of the bonds.

In chapter 6, we first look at the calculation of option prices (European call options) on 

assets with stochastic volatility. In the first section, we assume that the interest rates are 

fixed. The rationale of such an assumption - after all it is a “special” case of the problem, is 

that the mechanism is easier to understand in this case. In the second section of the chapter, 

we generalise to the situation of stochastic interest rates as well. The model in question here 

is the Hull and White (1987) model. Furthermore, the price and the volatility processes are 

stochastic in nature and in general the correlation co-efficient between the volatility process 

and the logarithm of the price process is assumed to be p. The volatility process follows 

either a Brownian motion (as given by equation (1.4)) or an Ornstein - Uhlenbeck process 

(as given by equation (1.5)). The objective here is also to find the expected value of the 

exponential of a log-normal process. The calculations are carried out by making use of the 

conditioning factor approach similar to Rogers and Shi (1995); the conditioning factor being 

of the form as described in chapter 3. In this part of the chapter, we also calculate the 

implied volatilities and comment on them. The second part of this chapter can be regarded

in a way, as an extension of the first part. In this part, the results and concepts of the first

part of this chapter, where we assume constant interest rates, are extended to the situation 

when the interest rate itself follows another stochastic process. Thus, we have

d X t =  rtX td,t + o -e ^ X d  +  p2<£Bt(2) +  pi<iB((1)] (1.13)

drt =  —b(rt — r ')d t + <j>[y/ l — 7 2d B ^  +  y d B ^ ]  (1-14)

d,Vt -  /td t +  dB,(1) (1.15)

or dVt =  -aVtdt + dB,(1) (1.16)

As in the case of fixed interest rates defined by equations (1.3 -1.5), here also, X t is the price 

process and Vt is the volatility process. Similar to the situation of constant interest rates, 

the volatility process Vt follows either a Brownian Motion (equation (1.15)) or an Ornstein
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- Uhlenbeck process (equation (1.16)). Further, rt - the interest rate process, is taken to 

follow an Ornstein Uhlenbeck process. This ensures that the interest rate does not explode

- a possibility if it followed a simple Brownian motion. Here, all the three processes are 

stochastic in nature and are in general correlated with each other. The calculations here 

are also based on the use of the conditioning factor approach, similar to the one used in the 

previous section. In this section, we do not calculate the implied volatilities. This is because 

of the fact that the picture provided by the implied volatilities is blurred whereas in the case 

of of constant interest rates, the picture is much clearer. Hence, this is another reason for 

us to look at the constant interest rate case separately, though it can be treated as a special 

case of the stochastic interest rate case.

Chapter 7 looks at other applications of the approximation technique used in the previous 

chapters. Instead of having a stochastic process defining the price of an asset, we have a 

Poisson process with the parameter A itself following a stochastic process. Here also, we 

have a log-normal process and we are interested in the expected value of a function of the 

log-normal process. The log-Gaussian Cox process has been previously used mainly in the 

analysis of spatial data by Mpller, Syversveen and Waagepetersen (1998) and Rathbun and 

Cressie (1994). Again, using the same conditioning technique approach, we try to find the 

price of an option in this set up. Work in this area has been done by Dassios (1987), Duffie 

(1996), Lando (1998) and Jang(1998) among others. In fact the idea of the doubly stochastic 

Poisson process - also known as the Cox process was the outcome of work in the related area 

by Cox (1955).

The first section of chapter 8 looks at an alternative way to value an Asian option. It is an 

alternative approach to the work of Rogers and Shi (1995). Here, we avoid the numerical 

integrations used by Rogers and Shi and replace them with an expansion of an exponential 

term and then look at exact integrals, a technique that can simplify calculations considerably. 

However, similar to the Rogers and Shi approach, we do make use of the conditioning factor 

approach as well. The second section of this chapter looks at the calculation of the prices 

of zero coupon bonds and contingent payments on them. Here also, we make use of the 

conditioning factor, as in chapter 2, but unlike chapter 2, we do not use any numerical

12



integration. In fact, similar to the first section of this chapter, we replace all numerical 

integrations with an expansion of an exponential term and then calculate some integrals 

exactly. In both cases, this method without any numerical integration is very fast and easy 

to use.

Finally, we conclude by identifying a few problems where the technique discussed here could 

be put to use. We think these could be explored as future research areas and leave these as 

open problems.

The numerical results supporting our claims in each of the chapters are given in the form 

of tables, with self explanatory titles, at the end at the end of each of the chapters. The 

various program codes used are attached as an appendix at the end of the thesis. All these 

program codes are in Splus, although to obtain some of the codes, especially for expansion 

purposes, the algebraic package MAPLE has been used.

13



Chapter 2

Interest Rate M odelling and Bond  
Pricing : Zero Coupon Bonds

2.1 Introduction

Interest rate modelling is an interesting topic in mathematical finance. The fact that prices 

of bonds are dependent on the interest rate makes it more important to the finance industry. 

Now, a bond, is a certificate issued by the government or an institution promising to repay 

borrowed money at a fixed rate of interest at a fixed time in the future. W ith volatility in 

the market playing a very important role, the correct modelling of interest rates is of prime 

importance. In this chapter, we look at the pricing of zero coupon bonds. Zero coupon 

bonds are bonds which make only one payment - the payment is made at the end of the 

term of the bond. Generally, the time periods of the zero coupon bonds are far smaller than 

the bonds which make interim payments.

We adopt a log-normal model for interest rates. This is similar to the approach of Goldys, 

Musiela and Sondermann (1994), Sandermann, Sondermann and Miltersen (1994) and Brace, 

Gatarek and Musiela (1997). The log-normal model ensures that the interest rates cannot 

go negative. Negative interest rates are not practical and they have undesired consequences 

as explained by Rogers (1995).

Let the instantaneous rate of interest rt be given by

r t =  5eMt+v,t

14



where Yt is a Gaussian process with zero mean and a variance - covariance

(jLt is the drift of Yt and is deterministic in nature. Also, b is a scaling factor whose importance 

will become apparent in the next section. This can be put in the framework of the work 

set out by Heath, Jarrow and Morton (1992) as shown by Baxter and Rennie (1996) and 

is also an extension of the work by Black and Karasinski (1991), as well as Black, Derman 

and Toy (1990). In fact, Black and Karasinski as well as Black, Derman and Toy have used 

a log-normal model as has been used here. Black and Karasinski as well as Black, Derman 

and Toy have used a binomial tree approach to calculate the prices. A similar approach is 

used by Hull and White (1990) who essentially use a trinomial tree. The Hull and White 

model is quite similar to the Vasicek (1977) model. In the Hull and White model as in our 

case, the interest rate cannot become negative; this is a drawback of the Vasicek model.

In this chapter, we look into the problem of calculating bounds for the price of the zero 

coupon bond, in two ways - first by the use of a suitable conditioning factor as in Rogers and 

Shi (1995) and also alternatively by direct expansion. Further, we also look at the pricing of 

contingent payments on the paths of the interest rate for various strike prices which is the 

same as the contingent payments on the interest rate itself. A more general problem is the 

calculation of

where, /  is a convex function. Thus, in particular the price of the bond (f(x) =  e bx) is given 

by

E(e~bt i  eYs+fisdsy (2 .1)

Now, the value of “contingent” payment on the interest rate is the shortfall between 1 and 

the amount accumulated by an initial investment c and is given as

E(e~ f ° rsds(l -  c e ^ Tsds)+) =  E(e~ t i r*ds -  c)+.

15
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Here c is treated as the strike price at which the contingent payment is calculated and we 

thus have f ( x )  = (e~bx — c)+. Hence, using the expression of the interest rate rt as defined 

earlier, we have the value of the contingent payment, for a given strike price c, given as

E (e -bt i ‘Y‘+r’ds - c ) +. (2.2)

To calculate the bounds of the price of a zero coupon we use a conditioning factor to obtain 

the values of the bounds and obtain both the lower and upper bounds explicitly.

To compare the results that we obtain by using the conditioning factor, we calculate the 

bounds to the price of a zero coupon bond directly - the method is explained in detail later 

in the chapter.

The conditioning factor technique that we use is similar to the one suggested by Rogers and 

Shi (1995) in valuing an Asian option. As stated earlier, we are in general interested in 

calculating the value of E( f ( X) ) ,  where the function /  is convex. Thus, making use of a 

suitable conditioning factor Z, we have

E( f ( X ) )  =  E( E( f ( X) \ Z) )  > E{ f {E{X\Z) ) ) .

The first part on the above statement is obvious; the second part being nothing but Jensen’s 

inequality. Thus, in this way, we can obtain a lower bound of the price of the bond or the 

value of the contingent payment on the price of the bond. For the case of the zero coupon 

bonds, the upper bound to the price can be easily obtained as shown later. The conditioning 

factor we use for finding the bounds of the zero coupon bonds as well as the value of the 

contingent payments on it is given by

fc Ysds 

^/Var ( £  Ysds)

Here Z follows an standard normal distribution. This is similar to the conditioning factor 

used by Rogers and Shi (1995). A detailed explanation for the choice of the conditioning 

factor is given in the next chapter.
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2.2 Calculations using conditioning

As mentioned in the previous section, we condition on Z. Conditionally on Z, Yu is a Gaussian 

process with

E{YU\Z) =  kuZ, (2.3)

where ku = Cov(Yu, Z) = ^  Cov(y “' K»̂ f  (2.4)

yVarC/o1
and Cov(yu,K |Z )  =  -  fcu/cv =  wuv say. (2.5)

We are interested in calculating a lower bound (LBi in tables 1,2 and 3) and the corre

sponding upper bound (UBi in tables 1,2 and 3). We do that by considering the following

argument. There exists some random variable f  such that

E ( f ( X ) )  = E[ f (E(X\Z))}  + E[(X -  E ( X \ Z ) ) f ( E ( X \ Z ) ) ]  + |b [ ( X  -  E (X \Z ) )2/" ($ ] ,  

so, E ( f ( X ) )  = f ( E ( X \ Z ) )  + \ E [ ( X  -  E( X \ Z ) ) 2f ' m ,  

=> E[f (E(X\Z) )}  < E( f ( X ) )  < E[f (E(X\Z) ) ]  + \ e {X  -  E (X \Z ) )2sup f ' ( x ) .
*  x > 0

Thus, in the case where f(x) =  e~bx, a lower bound is given by

LBX =  E[f (E(X\ Z) ) \  (2.6)

and an upper bound is given by

U BX =  LBi +  i 6 2E (V ar(X |Z )), (2.7)

since sup f i x )  =  b2. Also, here X  = eVs+Msds. Thus,
x>0

E[Var( f  eVs+flsd s \Z )]= E [E ( T  /  eY*eYvdudv\Z) -  (E( [  eYsds\Z))2]
J o  Jo  Jo  J o

-  J  J  exP ( i f c  +  hi]2 +  \ [ wuu +  Ww]j (eWuv ~  1) dudv . (2.8)

17



Let us define

h{z) = E( I  eY‘+l‘‘ds\Z — z) = f  ek' x+l w"‘du. (2.9)
Jo  J o' 0 J O

In the case of calculating the price of the bond,

E[e~b^ eVs+lisds],

the lower bound is given by,

/°° 1 2
e-w»M - — e - ^ d z  (2.10)

. 0 0 ^ 2 ^
and the corresponding upper bound is given by

U B i  =  J  e - 6 ^ — L = e - ^ dz + ^  Jq j  e x P  Q f c *  +  v̂)2 +  [̂wuu +  (eWuv -  1 )  dvdu.

(2 .11)

In the case of calculating the price of a contingent payment on the interest rate, we are 

interested in calculating

E[e-b̂ eYa+ltada - c ] +,

where c is the strike price at which the contingent payment is calculated. The lower bound 

is given by

J  — oo

°° 1 2
e-«W  _  c]+- — e-T d z . (2.12)

v 27T

We just present the lower bounds in this case (see Tables 4 - 6) as also the corresponding 

simulated values. We can employ a combination of the argument used above in the calcula

tion of upper bounds for bond prices and a similar idea due to Rogers and Shi to calculate 

the upper bounds for the price of the contingent payment on the interest rate. But, as the

calculated lower bounds are close to the simulated values, this was not deemed necessary.
2

To calculate h ( z ) ^ e-  '2 dz, or anything similar, we make use of a numerical integration

procedure. A transformation is used in the integration as it improves accuracy.

Alternatively, we can also look at it by first expanding ekuZ+^Wuu in terms of a and then 

obtaining a polynomial in a  and Z using an algebraic manipulation program such as MAPLE.
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We can then calculate the value of the polynomial for various values of a  and finally perform 

one numerical integration to find out the final expectation. This method works very well 

for small values of a. Moreover, when we actually applied it, results for larger values of a 

were also very close to the results obtained by direct numerical integration. As a m atter of 

fact, if we restrict our expansion to the 4th power of a, then we do not even need to use 

the numerical integration procedure - we can replace it with a set of exact integrals. This 

technique is explained in detail later in the thesis - in chapter 8, section 3.

2.2.1 Examples

In the following examples, we present the exact form of the bounds to the price of the bond 

as well as the value of the contingent payment for two special cases; first the Geometric 

Brownian Motion and then an exponential function of an Ornstein - Uhlenbeck process. 

Again, for the Ornstein - Uhlenbeck process, we look at two situations - first when the initial 

value is known and second when the initial value has a stationary distribution.

T h e  S im ple B row nian  M o tio n  case 

In this case, we have,

rt = beat+Yt.

Here,

Yt = gB u (2.13)

where B t is a standard Brownian motion, t = 1 and b =  r 0 is the initial value of the interest 

rate. The one year bond price is

E exp ^ —b J  exp{aB5 + (2.14)

The conditioning factor is Z  = -A / Q Bsds , where B s is a standard Brownian Motion. 
6 VVar {fiB.ds)'

Here, ouv =  a2(u A u), =>• auu =  a2u. Also, jiu =  au.
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Now,

Var( I B sds) = I (1 -  s)2ds =  ^ 
Jo  J o 3

Thus, we have, in this case

v 2
(1 — s)ds =  y/Sa(u — ;

'o

Conditioning on Z, Yu is a Gaussian process with

f ’U y 2

ku =  Cov(Bu, Z) =  v 3 a  / (1 — s)ds =  y/Sa(u — —). (2.15)
Jo  2

E(YU\Z) =  + kuZ , (2.16)

and Cov(Tu, YV\Z) =  a2(u A v )  — kukv =  wuv. (2-17)

Once we have these values, we can then easily calculate the price of the bond by substituting 

(2.16) and (2.17) and as fit =  at in equations (2.10) and (2.11) (results shown in Table 1) 

and the price of the contingent payment on the interest rate for various strike prices by 

substituting in equation (2.12) (results shown in Tables 4.1 - 4.3).

Ornstein - Uhlenbeck Process

Now, let us consider the case where the interest rate {rs;0 < s <  1} is governed by an 

exponential function of the Ornstein Uhlenbeck process. First we will look at the situation 

where the initial value is known and then we will also look at the case where the initial value 

has a stationary distribution.

Initial value is known

Here the initial value of the process Y0 is known and is assumed to take the value 0. The 

interest rate model is thus defined as

rt =  beYt.

Yt is the solution of the stochastic differential equation

dYt =  —aYtdt +  adBt, (2.18)
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i.e. Yt = a I  e~<s- u)dBu, 
Jo'0

where B t is a standard Brownian motion and t = 1. Now,

rt = beYt = elnb+Yt.

1 <72Thus, In b is the long term mean of the logarithm of the interest rate process. Hence, be* 

is the long term value of the interest rate. Also, b = r 0, the initial value of the interest rate.

In this case, auv =  Further, {iu — 0. The conditioning factor is
% — /q1 Ysds

x/Varc/o1 y s ds)

We thus have,

•i 1 _  g—a(l—s)
f 1 Ysds =  a f  

Jo Jo
d B ..

and

, x , f'1 A -  e~<l~u\ 0 a 1 2a +  4e~a -  e~2a -  3
Var( /  Ysds) -  a  /  (----------------) du =    t-----=  V, say (2.19)

Jo Jo a 2a a

K  = Cov(K„, Z) = -J= Y a ( / 'V (S”“) “  e““(u+s))ds +  f  (e“l“- s) -  e- “(“+s))d s )

1 cr2 f 1 — e-a“ 1 -  £ -“(!-“) e_““ -  e~a(-l+u) 1
=  a +  a a ) '  (2'20)

So, we then have that given Z, is a Gaussian process with

E{YU\Z) =  kuZ, (2.21)

and Cov(y„, YV\Z) =  -  e -a(“+,,)] -  kukv = wuv. (2.22)

Once we have these values, we can then easily calculate the price of the bond by substituting

equations (2.21) and (2.22) in equations (2.10) and (2.11) (results shown in Table 3) and the 

price of a contingent payment on the price of the bond for various strike prices by substituting 

in equation (2.12) (results shown in Table 6).
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Initial value has a stationary distribution

The initial value of the process has a stationary distribution, the distribution being N (0, |^). 

Here, Yt is the solution of the stochastic differential equation

dYt =  —aYtdt +  adB t, (2.23)

i.e. Yt = cr e-<s~u)dBu,
J — OO

where B t is a standard Brownian motion and t = 1. Now,

rt = beYt =  elnb+Yt.

Thus, In b is the long term mean of the logarithm of the interest rate process. Hence, be* fr is

the long term  value of the interest rate. Also, cruv = ?^e~a\u~v\ and fiu =  0. The conditioning

factor is Z  = —̂ = ^ = L = .
VVar (Jo1 Ysds)

Thus, we have

f 1 Ysds — <j f  e~as [ eaudBuds = a [ e~as I eaudBuds + a [ e~as [ eaudBuds
J  0 J  0 J — o o  J  0 J — o o  J  0 J o

i _  p-o r° r1 i _  p-a(i-u)
=  a  —  /  eaudBu +  a  /  ----------------dBu.

& J-oo Jo &

Var( I  Ysds) =  a4 
Jo

1 — ea \  2 ro
e2audu + 

—oo J 0

•1 (  \  — g -a(l-u)

a
du

a 1 ( l - e - “ \ 2 <t2 2a +  4e““ -  e '2“ -  3 <T2 a +  e"“ - l
2a V a

+ 2a
= V  say, (2.24)

and

t , - C o
2 r  1 1 (J 2 f -u  Z*1

=  -± J L -[  / eo(*-“)<is+ / e“(“- s)ds 
V V 2 a lJ0 Ju

1 <72 .1 -  e"“u 1 _  g-afl-u)
■[ +v /y  2 a L a

(2.25)
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Once again, we have that given Z, Yu is a Gaussian process with

E(YU\Z) =  kuZ, (2.26)

and Cov(Yu.Yv\Z) =  — e a|u say. (2.27)

Once we have these values, we can then easily calculate the price of the bond by substituting

equations (2.26) and (2.27) in equation(2.10) and (2.11) (results shown in Table 2) and the 

price of a contingent payment on the price of the bond for various strike prices by substituting 

in equation (2 .1 2) (results shown in Table 5).

2.3 Calculation of Upper and Lower Bounds directly

Here, we employ a direct method for finding bounds for the one year bond price. This 

technique is used to calculate the bounds to the price of the bond, primarily for comparison 

purposes with the bounds obtained using the conditioning factor. Further, it should be noted 

that the direct expansion method as discussed here can only be used for the calculation of the 

bounds to the price of the bond. It cannot be used to calculate the value of the contingent 

payment on the bond, for which case we have to use a conditioning factor.

In the direct method of calculating the bounds to the price, we use a Taylor series expansion. 

We use the fact that for x > 0, e~x > 1 — x, e~x < 1 — x  +  e~x > 1 — i  +  y -  an<̂  

so on. We will use the last two inequalities as the bounds suggested are very close to each 

other. Here, we have,

where,

J o  J o

I 2 =  E[ I  eYs+̂lsds]2 = I I  exp
J o  J o  J o

exp [ /xu +  na +  ~[<JUU +  ass +  2 crsu] J dsdu,
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and I 3 =  £[/o eYs+ll‘ds}s

6xp "h J-ly "1" fJ/y d- 2  [̂ UU d” V̂U d- S d- d” 2 d” 2(Ty5 Ĵ  dsdvdUt
- f f fJo Jo Jo 

Thus the lower bound is given by

1 -  bh + h 2 l 2 -  h 3I3 (2.29)2

and the corresponding upper bound is

1 -  bh + h 2h  (2.30)

2.3.1 Examples

We use the same examples as used in the case of calculating the bounds to the price of the 

bond using a conditioning factor.

The Simple Brownian M otion case

In this case, ass =  a2s and aus = a 2 (u A s) and also fis =  as. Thus,

I\ =  J  exp ^as 4 - \ <j2̂  ds,

I 2 =  2 j j exp ( a s  4- au  4- - a  s  4- - a  u  J d s d u ,
o j o

h  =  6 j  I  I  exp \a u  + av + as + \ o 2u +  \cr2v 4- \ o 2s 4- cr2v 4- 2a2s ] dsdvdu. 
J o  J o  J oro j o  j o  

The upper bound is thus given by

UB2 =  1 — b [  exp ( as +  ]rcr2s ] ds +  b2 [  /  exp ( as 4- au 4- - a 2s 4- \ o 2u | dsdu
Jo V 2 J Jo Jo \ 2 2 J

-  1 1 e 2(a+<72) _  !  ea+  ̂_ ,
a d - i c +  a  +  | ^ [  2 ( a  +  a 2 ) a + i < 7 2 ’̂ ( ^
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and the corresponding lower bound by

LB2 =  UB2 — b3 f  I  I  exp ( au + av +  as + \cr2u +  ] r&2v  +  \ o 2s +  o2v +  2a2s 
J o  J o  J o  \  2 2 2

=  u b 2 -  ^ _  +  3<e(‘+5'  > -  *>
(a +  §0-2)(a 4- 2<r2)(a +  §<j2) (a +  |cr2)(a +  2cr2)(a +  \a2)

3 (e2(a+£r2) _  ^  6 (e â+^ 2) -  1)

( a  +  | c r 2 ) ( a  +  §<72 ) ( a  +  cr2) ( a  +  §cr2 ) ( a  +  f c ^ H a  +  |< 7 2 ) 

Calculations are given in Table 1 .

The Ornstein - Uhlenbeck Case

Initial value follows a stationary distribution

Now, for the stationary case, fis =  0, Var(Ts) =  ^  = ass, and Cov(l^, Yv) =  §^e- a 'u_1 

Thus

I \  — e 2 2a ,

I 2 =  I  I  e ^ + ^ +<Tuvd v d u  =  2 I  (  e ^ + ^ e a(u v)^dvdu
J o  J o  J o  J o

=  2 e £  l \ l - w ) e £ e~awd w ,  
Jo

1 /-I rl3 a±
'3

ro J Q  J O

h  =  I I I

=  6 e§ £  I  ' I"" f  e i ^ - ^ ' ^ - ^ - ^ - ^ d s d v d u .
J o  J o  J o

and by using a suitable transformation and changing the order of integration, 

I 3 =  6e§£ J \  1 ~ r ) J  exp ( ~ ^  [e~ar +  e"a” +  e - ^ r ~ w ) ] )  d w d r .

J d s d v d u

(2.32)
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Thus the upper bound is given by

UB2 =  1 — be* 2a +  be** / (1 — w)e**e dw
J o

and the corresponding lower bound is given by

•1 fT /  ^2
LB2 =  UB2 -  63e 5 ^  J  (1 -  r) J  exp ( ^  [e~ar +  e~aw +  e“o(r- “’)] j  dwdr.

The results are presented in Table 2 .

Initial value is known

For the non-stationary Ornstein - Uhlenbeck case, jis =  0, Var(Y5) =  |^ ( 1  — e~2as) 

Cov(yu,y„) =  -  e- “(“+”)] =  auv. So,
2 a

r lT 1 i  g2 ■,
h  — e 2 2a du,

r rl 1_.21 _ e- 2au ' , _2 ea |a -* l  _ e~a(u+v)
h =  /  e 2 2a 2 2a 2a dvdu

J o  J o
[2

r0 ^0

~  ( l f U l - 3 1- e ~ 2ou , 1 _2 1—e ~ 2av ,=  2 / / e2a 2a 2 2a +<7 2a dvdu,
J o  Jo

/ 3 =  f  f  I  e - ^ a s s + a v v + a ^ +<Tuv+aus+(Tvsd s d v d u .  
J o  J o  Jo

Thus the upper bound is given by

i  I _  p - 2 a u

UB2 =  1 — b j exp-------------^------- ) du

,2 f 1 r  ( \  2 1 — e~2au 1 2 l - e ~ 2av e a ( u - v )  _ e - a ( u + v ) \
+b / / exp - a ---------------1- - a     h o ----------- ------------  dvdu,

Jo Jo \ 2  2a 2 2a 2a J

and the corresponding lower bound is given by

•1 r l  r l

LB2 =  UB2 -  b3 J J J  exp [ass +  avv 4- auu] +  auv +  aus +  ov̂ j dsdvdu.

The results are tabulated in Table 3.
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N ote :
Alternatively, we could make use of the following recursion relation to calculate Ii, I 2 and 13 

and thereby the bonds; especially for the case of the Non-stationary Ornstein - Uhlenbeck 

process. We have

dYt =  - a Y tdt +  adBt

and we define

Zt — I  eYsds.
Jo

Further, let us also define

f ( t ,  y, z) = 5T5i ' 2“‘. (2.37)

Let us apply Ito calculus on equation (2.37) to obtain E ( f ( t , y , z ) ) .  For that, we first need 

to calculate the relevant derivatives. They are

=  ZJneVne‘“~ i ^ ~ e2‘“ (Y tjaeat -  ^ a 2y2e2at),

—  =  2 troerne°‘- 5 £feie2“‘(7e“!), 
dy

dy2 K J

and

dz

Thus, we have, using Ito’s lemma,



E U ( t ,Y u Z t)) = E gmgYtieat — - e2at2 2 a

t

m I  E  
'o

2 . 2Z m- 1  eYa (7«~+1 ) -1 ds.

Setting j  = he Q*, we have

=  E ( Z ? e kYi) =  m  I f lm_1(Ae-a(t->  +  l , s ) e ^ * 2(1- e' 2“(‘'*))ds.

From this recursive relation, we can get Ii = Hi(0,1), / 2 =  # 2(0 ,1) and / 3 =  ^ 3(0 ,1). Thus 

the lower and upper bounds can be given as

UB2 =  1 -  bHi(0 , 1) +  j i ? 2 (0 , 1)

LB2 =  1 -  bHi(0,1) +  j H 2 (0 ,1 ) -  ^ H 3 (0,1).

The recursive procedure thus described is particularly useful in the calculation of triple 

integrals, and even higher order integrals, of the form as in equation (2.36).

It should be noted that the expansion technique described in this section is not guaranteed 

to work. Indeed, the expansion used might diverge making it impossible to improve accuracy 

by calculating more terms. For example, in the case of the Brownian motion we observed 

that the model completely breaks down for a > 1.5. For the Ornstein Uhlenbeck case, the 

expansion starts to diverge for a < 1.5. In our case, the method works because we mostly 

(but not always) consider small values of a (a ranges between 0 .1  and 1 ).

2.4 Conclusion and Remarks

The lower bounds to the price of the bonds or even the approximation to the prices (in case 

of the contingent payments) calculated by using the conditioning factor seem to be so close 

to the actual price ( in some cases, the simulated prices were lower than the lower bounds ) 

that they can be regarded as a very good approximation to the true value. This is true for
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both the situations of a Brownian motion or an Ornstein - Uhlenbeck process being used as 

the driving force of the stochastic process.

One advantage of using a conditioning factor in the calculation of the one year bond prices 

is tha t the method works even for large values of a. This is not the case when using the 

direct expansion method; here, for higher values of a, the values start diverging quite fast, 

thereby causing the whole system to break down. Also, as shown earlier, the method using 

conditioning factors can be easily modified to calculate the value of a contingent payment 

defined on the price of a bond. Further, it is not possible to calculate the contingent payment 

on the interest rate of a bond using the direct expansion technique.

2.5 Tables

Next, we present a set of tables outlining the numerical results based on the formulae stated 

earlier in the chapter. Tables 1 , 2 and 3 show the values of the upper and lower bounds 

of the price of a zero coupon bond. In these 3 tables, LBi and UBi refer to the values of 

the bond calculated using the conditioning factor while LB2 and UB2 refer to the directly 

calculated bounds.

The set of tables 4 - 6  show the values of the contingent payments on the interest rate for 

various strike prices, c. In all cases, the stochastic process governing the interest rate process 

is given in the title of the table. For comparison purposes, in these tables, the simulated 

values along with the standard errors of simulation are also presented.

In all cases, all the prices are multiplied by 100.
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T able 1 : The interest rate follows a geometric Brownian motion.

a a LB1 UB1 LB2 UB2

-0.5 0.1 94.657 94.657 94.629 94.636
0.5 94.368 94.374 94.342 94.347

0.75 93.965 93.979 93.943 93.951
1 93.35 93.375 93.334 93.352

-0 .2 0 .1 93.86 93.86 93.839 93.843
0.5 93.514 93.52 93.497 93.503

0.75 93.034 93.047 93.021 93.033
1 92.303 92.328 92.297 92.328

0 0.1 93.239 93.239 93.224 93.23
0.5 92.849 92.855 92.838 92.847

0.75 92.308 92.322 92.303 92.32
1 91.49 91.514 91.491 91.538

0 .2 0 .1 92.534 92.534 92.526 92.534
0.5 92.094 92.1 92.091 92.104

0.75 91.486 91.5 91.489 91.513
1 90.57 90.595 90.581 90.649

0.5 0 .1 91.291 91.291 91.297 91.31
0.5 90.765 90.771 90.777 90.798

0.75 90.041 90.055 90.061 90.102
1 88.962 88.986 88.987 89.11
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T able  2 : The interest rate follows an exponential function of a stationary Ornstein -

Uhlenbeck process with a = 1.

G LB1 UB1 LB2 UB2
0.1 93.239 93.25 93.223 93.223

0.5 92.859 92.898 92.844 92.853

0.75 92.342 92.382 92.326 92.343

1 91.576 91.608 91.561 91.597

T ab le  3 : The interest rate follows an exponential function of a non-stationary Ornstein -

Uhlenbeck process with a = 1.

G LB1 UB1 LB2 UB2
0.1 93.245 93.246 92.227 93.233

0.5 93.029 93.031 92.939 92.948

0.75 92.736 92.749 92.557 92.575

1 92.308 92.331 92.001 92.043

N o te  : In some cases in tables 1,2 and 3, lower bounds calculated using one approach are 

slightly higher than the upper bounds calculated by the other method. This is due to small 

inaccuracies in the numerical integration procedures and indicates how close they are to the 

actual price.
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Table 4.1 : The interest rate follows a geometric Brownian Motion with no drift.

a c Calculated Simulated S.E.
0.1 93.1 0.223 0 .2 2 2 0.00113

93 0.292 0.290 0.00126
92.9 0.368 0.367 0.00138
92.8 0.452 0.4512 0.00147
92.7 0.541 0.540 0.00154
92.6 0.634 0.633 0.00159

0.5 93.5 0.475 0.470 0.00329
93 0.715 0.71 0.0029

92.5 1.005 1 .0001 0.00489
92 1.34 1.336 0.00397

91.5 1.711 1.708 0.00627
91 2.114 2 .1 1 1 0.00483

0.75 93 0.913 0.905 0.00533
92.5 1.183 1.175 0.00616
92 1.484 1.475 0.00696

91.5 1.812 1.803 0.00773
91 2.164 2.154 0.00845

90.5 2.537 2.527 0.00913

1 94 0.633 0.632 0.00461
93 1.069 1.071 0.00632
92 1.607 1.613 0.00801
91 2.230 2.240 0.00963
90 2.923 2.936 0.01113
89 3.673 3.691 0.01251
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T able 4.2 : The interest rate follows a geometric Brownian Motion with a drift of -0.5.

a c Calculated Simulated S.E.
0.1 95 0 .012 0 .0 1 1 0 .0 0 0 2

94.8 0.05 0.046 0.00045
94.6 0.136 0.129 0.00076
94.4 0.275 0.265 0.00228
94.2 0.451 0.44 0.00263
94 0.644 0.633 0.00277

0.5 95 0.295 0.288 0 .0 0 2 2 1

94.5 0.522 0.512 0.00303
94 0.816 0.805 0.00381

93.5 1.168 1.156 0.0045
93 1.564 1.552 0.00509

92.5 1.993 1.981 0.00555

0.75 95 0.444 0.44 0.00313
94 0.944 0.94 0.0048
93 1.604 1.601 0.00631
92 2.379 2.377 0.00757
91 3.232 3.231 0.00858
90 4.136 4.135 0.00935

1 95 0.564 0.56 0.00385
94 1.049 1.043 0.00556
93 1.656 1.651 0.00719
92 2.357 2.354 0.00867
91 3.131 3.129 0.00998
90 3.958 3.959 0 .0 1 1 1 2
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T able 4.3 : The interest rate follows a geometric Brownian Motion with a drift of 0.5.

G c Calculated Simulated S.E.
0.1 91.6 0.079 0.083 0.00081

91.4 0.147 0.154 0 .0 0 1 1 2
91.2 0.246 0.256 0.00143
91 0.375 0.389 0.0017

90.8 0.529 0.546 0.00192
90.6 0.703 0.721 0.00207

0.5 93 0.209 0.209 0.00234
92 0.5 0.499 0.00387
91 0.951 0.95 0.00551
90 1.55 1.549 0.00707
89 2.271 2.27 0.00842
88 3.083 3.084 0.00952

0.75 93 0.423 0.425 0.00385
92 0.766 0.796 0.00548
91 1.218 1.223 0.00717
90 1.771 1.778 0.00883
89 2.41 2.421 0.01037
88 3.121 3.137 0.01179

1 92 0.978 0.979 0.0067
91 1.428 1.431 0.00843
90 1.952 1.96 0.01014
89 2.543 2.555 0.0118
88 3.192 3.207 0.01338
87 3.89 3.911 0.01487
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Table 5 : The interest rate follows an exponential function of a stationary Ornstein -

Uhlenbeck process with a = 1 .

cr c Calculated Simulated S.E.
0.5 95 0.093 0.093 0.00134

94 0.32 0.32 0.00275
93 0.745 0.747 0.00437
92 1.362 1.367 0.00589
91 2.127 2.133 0.00711
90 2.994 2.999 0.00801

0.75 95 0.232 0.234 0.00251
94 0.524 0.528 0.00407
93 0.955 0.962 0.00574
92 1.517 1.525 0.00737
91 2.187 2.197 0.00885
90 2.944 2.956 0.02269

1 94 0.69 0.697 0.00512
93 1 .12 1.128 0.00687
92 1.647 1.657 0.00852
91 2.259 2.271 0 .0 1 0 1 2
90 2.942 2.957 0.01163
89 3.684 3.702 0.013
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T able 6  : The interest rate follows an exponential function of a non-stationary Ornstein -

Uhlenbeck process with a = 1 .

O c Calculated Simulated S.E.
0.5 95 0 .02 0 .0 2 0.00005

94 0.16 0.159 0.00163
93 0.56 0.559 0.0032
92 1.235 1.234 0.0046
91 2.093 2.091 0.00549
90 3.04 3.038 0.00595

0.75 95 0.082 0.082 0 .0 0 1 2 2
94 0.299 0.2979 0.002619
93 0.713 0.709 0.00424
92 1.315 1.312 0.00579
91 2.065 2.062 0.00707
90 2.916 2.913 0.00803

1 95 0.16 0.161 0.00192
94 0.421 0.423 0.00343
93 0.837 0.840 0.0051
92 1.395 1.400 0.00673
91 2.072 2.077 0.00821
90 2.84 2.844 0.00949
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Chapter 3 

Choice of an appropriate conditioning  
factor

3.1 Introduction

In the previous chapter, we have used a conditioning factor argument to price zero coupon 

bonds and contingent payments on the interest rate. The motivation of using the conditioning 

factor approach was derived from the use of a similar technique by Rogers and Shi (1995) to 

value an Asian option (as discussed in chapter 1 , section 2 ). Rogers and Shi have not given 

any mathematical justification for the choice of the conditioning factor - they just state that 

they tried a number of conditioning factors and the one used by them was found to perform 

the best. The objective of this chapter is to obtain an appropriate conditioning factor. Our 

aim is to provide a mathematical justification to the conditioning factor used - both of the 

one used by us in the previous chapter as well as the one used by Rogers and Shi. We also 

try to find a general form of the conditioning factor for a general Gaussian distribution.

In the previous chapter, when we looked at pricing of bonds and contingent payments, we 

were interested in calculating

E(e~bx -  K ) + =  E(max[e~bx -  K,  0]) (3.1)

where K  was the strike price, b was a constant and X  was the random variable.

To find the price of the bond, we took K  = 0 while for the value of the contingent payment, 

we let K take the various values of the strike price at which the contingent payment was 

calculated.
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Let us assume K  such that K  =  1 - ab, where a >  0 is a constant. Also, ab is of order b and

b is small. We shall now prove the following Lemma.

L em m a 3.1 : Assume that b is small and that X  is a non-negative continuous random 

variable. Further assume that g(x), the density function of X, is bounded and the second 

moment of X  exists. Then, for b small enough, we have

E  [(e~bx -  (1 -  ab))+ -  (1 -  bX  -  (1 -  a&))+] <  62C, 

where C is a constant.

P ro o f  : Now,

E  \{e~bx -  (1 -  ab))+ - ( l - b X - ( l -  ai))+]

=  E(e~bx -  (1 -  ab))+ -  E(  1 -  bX -  (1 -  ab))+

— l n ( l —ab)

=  I  (e~bx — (1 — ab))g(x)dx — j  (1 — bx — (1 — ab))g(x)dx
J o  Jo

' — l n ( l  — ab)

=  I  [e~bx — (1 — bx)\g(x)dx +  /  [e~bx — (1 — ab)]g(x)dx
J o  J a

r a  7 2 2 - l n ( l - o t )  - f n ( l - a b )/  b2x z , . , 7 /  b f  b b2X2 . . .
< j  - Y - 9 { x ) d x - b  J  [x -  a)g(x)dx + J  —̂ -g{x)dx.

Now, we know that the g(x) is bounded and the second moment of X exists. Thus,

r  b2x 2 r ~ ^  b2x 2
/ ——  g(x)dx < b2Ci and / —~—g(x)dx < b C$.J  o 2  J a  2

— l n ( l — ab)

Also, for the term b f a L (2; — a)g(x)dx, the limits of the integral are very close to each 

other - in fact, the range of integration is

[— i (—ab — a2b2 — ....... ) — a] =  b( 1 4 - a2b 4- a3b2 + ...... ) =  0 (6).
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Further, since b is small, we have

- l n ( l - a b )

b I (x — a)g(x)dx < b.bC2 =  b2C2

i.e. this term is also of order b2. Here, Ci, C2 and C3 are constants such that C =  C1+C 2 +C3 . 

Hence the result.

Now, using Lemma 3.1 and assuming b to be small such that we can ignore terms of order 

b2 and higher, equation (3.1) can be approximated by

E(  1 - b x -  K)+ = £[max[(l -  bx -  I<), 0]]. (3.2)

Thus, to find the price of the bond, we calculate the expression given by equation (3.2) as 

that would give us an approximation to the price of the bond (for small 6, the approximation 

is very accurate). Throughout the course of this chapter, we shall take

=  /  eaYads (3.3)
Jo

X
J o

where {Ts ,0  < s < 1} is a stochastic process and a is the instantaneous variance of the 

process Ys.

Let us define

f (U) = [ U -  K]+ = max([U -  K], 0 ) (3.4)

where U is a random variable and K  is a constant - in the case of pricing of contingent 

payments on the interest rate, K  is the strike price at which the contingent payment is 

calculated. Note that /  is convex. In general, we are interested in finding

Thus, in the case of pricing of bonds,

U =  1 -  bX
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where 6 is a constant whereas for the Rogers and Shi problem of valuing of Asian options,

U = X.

In both cases X is as defined in equation (3.3).

Using the fact that the unconditional expectation is the expected value of the conditional 

expectation and also Jensen’s Inequality, we have

E[f(U)\  =  E[E{f(U)\Z}) > E[f(E{U\Z})}  (3.5)

where, Z is another suitably normalised random variable used for conditioning purposes.

The lower bound in the equation (3.5) is not guaranteed to be good. However, an estimate 

the error made using the following argument. For any random variable U, we have,

0 < E{U+) -  E(U)+

= ±(E( \U \) - \E(U ) \ )

< l-E{ \U  -  E(U)\)

< \ y / V ^ U ) .

This implies that for the Rogers and Shi case, we have

0 <  E  [E([X -  K]+\Z) -  E([X -  K]\Z)+} < ]-E [yV ar([X  -  K\\Z)] . (3.6)

Further, using Cauchy - Schwarz inequality, we have from equation (3.6)

l E
y V a r([X  -  K]\Z)] < \ y E  [Var([X -  K]\Z)) = i y /E  [Var(X|£)]. (3.7)

Similarly, for the problem of pricing of bonds and contingent payments on the interest rate 

(as discussed in the previous chapter),

0 < E  [£([1 -  bX -  K]+\Z) -  E{[ 1 - b X -  K]\Z )+]
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/V a rQ l - b X -  K]\Z) \ . (3 .8 )

Again, using Cauchy - Schwarz inequality, we have from equation (3.8) 

&
v/Var([l - b X  -  K]\Z)] < Y e  [Var([l -  bX -  K)\Z)) = l ^ / b 2E[V&i(X\Z)]. (3.9)

J  ̂ z

Thus, in order to minimise the error made by using the lower bound as an approximation 

to the true value as given in equation (3.5), we try to choose the conditioning factor Z  such 

that

E{Var(X\Z)] (3.10)

is minimised.

This is true of both situation - the problem of pricing of bonds and contingent payments 

on the interest rate (equation 3.9) as well as the Rogers and Shi (1995) problem of valuing 

Asian options (equation 3.7). For pricing of European call options on assets with stochastic 

volatility, the situation is much more complicated. We propose to use a similar argument 

and minimise the same quantity as defined in equation (3.10).

In the following two sections, we look at the exact form of the conditioning factor that 

minimises the expected value of the conditional variance. We look at a general Gaussian 

process and try to obtain the conditioning factor that minimises the expected conditional 

variance. We look at two cases; first we look at the case when the Gaussian process is 

driven by just one stochastic process - this is what we call the Single Driver case and the 

the situation when the Gaussian process is driven by a linear combination of n stochastic 

processes - this is what we call the Multi Driver case. In both cases, for the Gaussian 

process following specific processes, the explicit form of the conditioning factor are shown as 

examples.

3.2 Single driver Model

Let {ys,0 < s < 1 } be a general Gaussian process, where Ys =  f^° L(s ,u)dBu subject to
/ • o o  00

the constraint sup( / L 2 (s,u)du < oo). Also, let the conditioning variable, in general, be 
•S J -  o c
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Z, where

Z  — /  a(u)dBu, (3.11)

a(*) is so chosen that it satisfies the condition f™ a2 (u)du =  1. This condition ensures that 

the variance of the conditioning factor is 1 . B u is a standard Brownian motion. We are 

interested in finding

E{ eaYsds\Z) 
Jo

Var( /  eaYsds\Z) 
Jo

(3-12)

(3.13)

where a 2 is the instantaneous variance of the process. For this, we require the following 

terms : E{Ya\Z), Var(ys|Z) and Cov(ys, YV\Z).

Our objective is to find Z such that the variance of Ys conditionally on Z is minimised, that 

is Var(ys|Z') is minimum.

Now, for 0 <  s <  1, we have

/ oo
L{s,u)a(u)du

■OO

(3.14)

Var(Ks|Z) =  j  L 2 ( s , u ) d u - ( j  L{s,u)a{u)duds\  (3.15)

/'OO f  OO f‘ oo

L(s, u)L(v, u)du — / L(s,u)a{u)du / L(v,u)a(u)du  (3.16)
-oo J —oo J—oo

Therefore, we have, 

E ( f 0l e°Y'ds\Z) =

M - ' C   -  , J
L(s,u)a(u)du+-cr  L ( s , u ) d u - - a *

oo *■' J —oo ^ / oo
L(s , u)a(u)du

■oo
ds

(3.17)

E ( f 01 e°Y- d s f } e ^ d v \ Z )  =

t  f t

0 J O
exp < o Z L(s,u)a(u)du + j L(v,u)a(u)du 
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exp <; -<r
OO /• oo

2/„ , / r 2 ,L (s, u )dv-f / L (v,u)du } X

exp s L(s, u)a(u)du) +  / L(v,u)a(u)du x

exp < a 2 /  L(s, u)£(v, v)dv — a ' * L(s, u)a(u)du / L(v, u)a(u)du > dvds > 
— o o  j — OO J J J

(3.18)

Var( /  effysds|Z) =  |  I  I  e x p /a Z  I  L(s ,u)a(u)du+ f  L(v,u)a(u)du
J O  I  Vo  Vo . I  J —oo J —oo

X

exp <; - a
l

oo /*oo
2 / „ , / r 2 .L (s, u)dv +  / L (v,u)du } X

exp - - a
2 /  /*oo

L(s, u)a(u)du ) + (  / L(v,u)a(u)du

r  r /*oo />oo /»oo n ^
exp < a 2 / L(s,u)L(v,u)du — / L(s, v)a(u)dv / L(v,u)a(u)du  > — 

L L«/ —oo J  — oo «/ —oo J )
d v d s |

(3.19)

Therefore,

E ( V a r ( f  eaYsds\Z)) = < f  I  exp j  -  f  j  L (s ,u )du+  (  L(v,u)du  
J o  l Jo  Jo  2  \ V —oo V - oo

x

exp - a /oo /'OO
2 / „ „ \  , /  r 2,L (s ,u)du+  / L (v,u)du

exp \ ~ 2 a L(s,u)a(u)du ) — I /  L(v, u)a(u)dv

/” r /‘oo /‘oo /'oo
exp < cr2 / L(s,u)L(v,u)du — / L (s,v)a(v)dv / L(v,u)a(u)du

1 I"/ — oo J —oo J —oo

X

- 1 dvds |  

(3.20)
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Now to minimise the expected value of the conditional variance, we need to maximise the 

second term of equation (3.21), given by

•1 /-i

1 1
u +  L (v,u)du

exp a J  L(s,u)a(u)du j  L(v,u)a(u)du  ^ |  dvds. (3.22)

This is because the other part of equation (3.21) does not involve any a(u) and hence is fixed 

for fixed values of a. Further a  is assumed to be small, thereby allowing the linearisation to 

be carried out. On linearisation of the integrand in equation (3.22), we have

J o  Jo j 1 +  tC H o  L 2 ( S ’ u ) d u  +  f - c c  L * ( V ’ “ )d“ )

+(j2 I  L(s,u)a(u)du I  L(v, u)a(u)du +  0(cr4) \  dvds. (3.23)
J —OO J -oo J

Now, equation (3.23) contains some terms independent of a(s). These terms are fixed and

hence equation (3.22) is maximised by maximising the terms involving a(u) in equation

(3.23). This is the same as maximising

•1 roo
( /  / L(s,u)a(u)duds)\
J 0 J —oo

which is the same as maximising

1 /‘OO
L(s , u)a(u)duds

0 J —oo



subject to the constraint Ĵ °ood2{s)ds =  1 , i.e. the variance of the conditioning factor is 1 . 

On changing the order of integration of the function to be maximised, we are required to 

maximise L(s,u)dsa(u)du subject to the constraint f ^ a t f y d s  =  1 . This implies

that the optimal

a(u) oc J‘q L(s,u)ds : u <  1

/ oo p o o  p i
a(u)dBu =  / / L(s,u)dsdBu : u < t .

■oo J  —oo J  0

3.3 M ulti Driver Model

As in the case of the single driver model, here also we try to find the general form of the 

conditioning factor. We have again assumed {Ts, 0 < s < l } t o b e a  Gaussian process where

/ oo n
Y ^ L i ( s , u ) d B ^

■OO1= 1

/■OO n

^ ^ L 2 (s,u)du < oo). Let the conditioning factor in gen- 
_0° i=l

eral be Z, where

/■oo n
(3.24)

■°° *=1

aj(») is so chosen that it satisfies the condition J^  53"=1 a%(u)du = 1. This condition ensures

that the variance of the conditioning factor is 1 . Bu^ for i =  1 , 2,...n is a standard Brownian

motion and are independent of each other. We are interested in finding

E( I  eaYsds\Z) (3.25)
Jo

Var( I  eaYsds\Z) (3.26)
Jo

where a 2 is the instantaneous variance of the process. For this, we require the following 

terms : E(YS\Z), Yar(Ts|ds) and Cov(y„yw|Z).
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Our objective, as in the case of the single driver, is to find Z such that the variance of Ys 

conditionally on Z is minimised, that is Var(ys|Z) is minimum.

Now, for 0 <  s < 1, we have
f -oo 71

(3.27)E(Ya\Z) = Z  / ' ^ L i{s,u)ai{u)du
i = l

'S^ l% (s ,u )du— ( / L j ( s , u)aj(u)duds) 2 (3 .28)
■°° i= l  d - o o  i=1

/ OO 71 /'•CO n /*oo 71
w) a* (u) du / ^  Lj (u, u) a,i (u) du

•oo i=1 - / -o o  i=1 d - o o  i= 1

(3 .29)

Therefore, we have,

E{$le°v-ds\Z)  =

/•i f /*oo 71  ̂  ̂ r°° 71
/ exp < crZ / 'ŝ L i ( s , u ) a i{ u ) d u + - a 2 I y ^ L 2 (s,u)du

Jo [ J -oo i=1 2 oo i=1

1 /‘OO n 1

- r 2 {} Y Li(s' u)ai(u)du) 2 1  ds 

Also E(/q eaY*ds effYvdv\Z) =

( pi p i ( poo n /*oo n
< / / exp < <tZ / T^(s, u)a,i(u)du +  /  E ^
^ d o  d o  [  [  [ d - o o  d - o o  i=1

(3.30)

exp |  i f f2
poo 71
/ Y ^L ?(s,w )dw -

r 2

poo n
/ Li(s, u)ai(u)du

.  1 "'-«> i=i d—  i=1

exp 1  iff2
poo n
/ ^ 2 L2 ( v ,u ) d u -

/••oo 71
/ y ^L i(s,u )a i(u )d u

.  1 ■
i = i

& . d - o o  i = l

x

X

( /  pco poo n poo n \  'I
exp < cr2 I / L(s,u)L(v,u)du — / y^Z/*(s, u)ai(u)du / ^  Lj(u, I >

I  \ d - o o  d - o o  i=1 d - 0 0  i= 1  /  J
dvds 

(3.31)
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exp < a Z
i=l

___ ___
's£ 2 L i (s ,u )a i(u)du + / y ^Li(v ,u)ai(u)du

i=i
x

exp < - a L?(s: u)du — a2 j / £t(s? u)aj(u)du
i=i i= 1

X

exp  ̂ -cr — cr2 I / y^Li(s,w)ai(u)cfai
1 = 1 i=l

X

exp < cr Y L L i(s, u)L{(v, u)du—
i=i

i=i
y y  Li(5, u)ai(u)du Y , L^  , u)ai(u)du 

J - 00 i=i
-  1 Gfods > (3.32)

Therefore,

£(V ar( f  e°Y’ds\Z)) = 
Jo e x P ' 2 /•oo 71 /*oo 71

X > ( s - l i j  d u  “}~ J  ( ^ , if  j  d u

-oo j=1 7-00 i=1

exp  ̂ - a /•oo n /  /.oo n
y ^ L 2(s ,u )d u -  / y^Li(i;,w)ai(?z)du

-oo *=i V 00 1=1

x

exp < - a /• o o  71 f  f'O O  n

L?(v, u)du — I / y ^  u)aj(u)du

-oo i=1 V °° 1=1
X

exp < cr I > ( * .
i=i

x



7o Jo
exp  ̂ - a

i=l
y^L ?(s ,it)du  +  / Y ^ L 2i(v >u)d‘

•'-oo i=l
u dvds > x

7o Jo

f ' fro Jo 

exp

'OO n

explcr 2 'ŝ 2 / L i(s,u)Li( v ,u )d u \d vd s
[  • ' - ° °  i= i  J

1 /  /'OO 71 /*oo 71

2 <j2( /  Y l L^ s ' u)du + J  J 2 l 2i(v ’u )d X

/  /.OO ra /»00 71 '
exp I a 2 / '^2 Li(s,u)ai(u)du / Ti(^, u)aj(u)du

\ J —oo „■ i 7 —oo . _ i
dvds (3.34)

- ° °  * = i  '/ - ° °  i = i

Now to minimise the expected value of the conditional variance, we need to maximise the 

second term of equation (3.34) given by
/•OO r - \ n  T r, ,  \  ,  \ X{/o1 So [exP |V2 (l-oo 17=1 L1 (s ’u)du +  /-T o E “=1 L i(v,U)du)_

/  /-CO 71 /-OO 71
exp I cr2 / £*(s, u ) a i { u ) d u / y j  Lj(i;, it)<2i(it)d'

V - ' - o o  i = i  ■'-«> i = l

dvds (3.35)

This is due to the fact that the first integral in equation (3.34) does not involve any a* (it) 

and hence is fixed for fixed values of a. Further a is assumed to be small, thereby allowing 

the linearisation to be carried out in equation (3.35). Thus, on linearisation, we have

fa  fa  [ l  +  T  ( / - »  E S , i  (* .  « ) * *  +  E ? = i  %  ( » .  « ) * * )

+<T' /•OO 71 (' oo 71
L i(s,u)ai(u)du / y :  Lj(v, u)aj(u)du +  0(<74)

-oo i=l •'-oo i=l

dvds. (3.36)

Now, equation (3.36) contains some terms independent of ai(ii). These terms are fixed and 

hence equation (3.35) is maximised by maximising the terms involving a*(it) in equation 

(3.36). This is the same as maximising
1 r oo 71

JO J — oo ■
y  Ti(s, u)ai(u)duds)2,
i = l

which is the same as maximising f Z  X )"=1 Z/;(s-,it)aj(it)duds subject to the constraint 

J Z  C 7  a2 (s)ds =  1 , i.e. variance of the conditioning factor is 1 . Changing the order of 

integration, we need to maximise f Z  X^=i L i ( s , u ) d s a i ( u ) d u  subject to the constraint 

JZ S i i  ai (s )d s  =  1 . This implies that
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a,i(u) oc Jq Li (s ,u)ds  : u < 1

/ OO n  /-OO p i  n

Y a M d B V  =  /  /  Y ']L i(s ,u)dsdB^  : u < t.
■0° Z=1 7 - 0 0  J o  i= 1

3.4 Examples

3.4.1 Single Driver M odels

In this section, we obtain the exact form of the conditioning factor Z for certain specific

forms of the Gaussian process. In particular, we look at the situations when L(s,u) follows

a Brownian Motion, an Ornstein - Uhlenbeck process and a Brownian Bridge.

B row nian  M otion
1

L(s,u)  =
0

0 < u < s 

otherwise

Thus, we have, Z  =  f ^ d s d B u = f*(  1 -  u)dBu =  f* Yudu, where {1^,0 < u < 1} is a 

Brownian Motion.

O rn s te in  - U hlenbeck  : N o n -sta tio n a ry  (Y0 =  0)

g -a (s -u )

L(s , U) =
0

0  < u < s 

otherwise

Here, we have,

z  =  S o  fu e -a{s' u)dsdBu =  / 0‘ dBu = f a‘ Yudu,

where {Y^O < u < 1 } is a non-stationary Ornstein - Uhlenbeck process.
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Ornstein - Uhlenbeck : Yq has the stationary distribution

g - a ( s - u )

L(s, u) =
u < s

otherwise

In the case of the stationary Ornstein - Uhlenbeck case, we have,

2  =  /-oo f l  e - ° ^ d s d B u  =  £ „  1= ^ ^ d B u  =  Y u d u ,

{Yu> 0 < u < 1 } being a stationary Ornstein - Uhlenbeck process.

B row nian  B ridge

{Yu, 0 < u < 1 } is a Brownian Bridge and is represented as {B u — uBi}  where B u is a simple 

Brownian Motion and B\  is the value of the Brownian Motion at time 1.

L(s, u) =  <

0

1 — s

—s

0

u < 0 

0  < u < s 

s < u < 1 

u > 1

For the Brownian Bridge, the situation is slightly different than from the ones discussed 

earlier. Here we also take into account some amount of the information of the future, in fact, 

the final value. Thus

z  = f o d o  ~ sds +  fu (1 -  s)ds}dBu = f t  I 1 dsdBu -  f t  sdsdBu =  Yudu.

3.4.2 M ulti-driver models

In this section, we look at situations where {yu, 0 < u < 1}, the Gaussian process, follows a 

linear combination of Ornstein Uhlenbeck processes only. The situation of {Yu, 0 < u < 1}, 

the Gaussian process, following a linear combination of Brownian motions is quite trivial 

as the linear combination of Brownian motions result in another Brownian motion and can 

thus be treated as in the single driver case.
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g-Qi(s-u)

Ornstein - Uhlenbeck : Non-stationary (y0 = 0)

0 < u < s

otherwise 

Here, we have

z =So ft E"=I e-^dsdB V  = /„> Er=1 = $  sr=i
where {T^,0 <  u < 1} is a non-stationary Ornstein Uhlenbeck process.

Ornstein - Uhlenbeck : Y q has a stationary distribution

u < sg - a j ( s - u )

otherwise

In the case of the Stationary Ornstein - Uhlenbeck case, we have,

Z = IL  ft Efai e-^dH U ®  = SL ES.1*=*^*8® = £"=1
W . o  <  u < 1 } being a stationary Ornstein - Uhlenbeck process.

3.5 Alternative forms of the Conditioning Factor

The conditioning factor used in all the above examples is based on only one term. In all 

cases, we take the conditioning factor Z, to be

z  _  Jo Yj d s  3 7 ^

^ V a r^ 1 Ysds)

where, {ys,0 <  s < 1 } is a stochastic process - following a Brownian motion or an Ornstein 

- Uhlenbeck process. The denominator term in the conditioning factor ensures tha t the con

ditioning factor is suitably normalised. It is essentially the numerator tha t we are interested 

in, while obtaining the conditioning factor. We tried using an extra term in the numerator 

of conditioning factor. Thus, for the situation where {Ts,0 < s < 1} is a Brownian motion, 

we had the conditioning factor as

g | / ^ ( l  -  u)dBu +  7  f *( l  -  u)2dBu}
Z' =

^V ar (a  { /^ ( l  -  u)dBu +  7 J ^ t1 ~  u)2dBu} )
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where 7  is a constant. We performed the same calculations with this conditioning factor 

Z'  for different values of 7 . The case of 7  =  0 is the case where Z' — Z. When 7 ^ 0 , 

we found that the results obtained using the new conditioning factor Z ' was a very slight 

improvement on the ones obtained by using Z - in fact less than the order of 0.01. Hence, 

we concluded that by using the conditioning factor Z in preference to Z ’, we would not be 

making any substantial error. On the other hand, using Z in preference to Z 1 would allow us 

to gain in terms of speed since calculations involving Z'  take considerably longer time than 

those involving Z. The results were the same for the case where {TS, 0 < 5 < 1 } followed an 

Ornstein Uhlenbeck process.

We also looked at other forms of the conditioning factor. Among them were forms that 

maximised the correlation between the conditioning factor Z and the stochastic process 

< 5 < !}• We also tried a conditioning factor of the form

F  =  J o  [1 -  e ~ * (1~ u ) ] d Y ,

- e - ^ d Y S

where the stochastic process {Yu,0 < u < 1} could be either a Brownian motion or an 

Ornstein - Uhlenbeck process and 8 is a constant. However, here also, the gain in accuracy 

was negligible, hence we decided to continue with the conditioning factor of the form given 

by equation (3.37).

3.6 Conclusion and Remarks

The conditioning factor used in all cases discussed above is of the form Z  = Ysds. This 

is the one that we obtained in the situations for the Brownian motion and the Ornstein 

Uhlenbeck process where the initial value is known. However, in the case of the Ornstein 

Uhlenbeck process where the initial value has a stationary distribution, the correct expression 

should have been Z  =  f* Ysds. However, we still use Z  =  Ysds. This means that we 

lose the information between —0 0  to 1 - in practice it has been observed that conditioning 

on information available from time 0 to time 1 yields results very close to the ones obtained 

on conditioning on all the information available from —00  to time 1 . This justifies our 

conditioning on the information available between 0  and 1 .
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For the single driver, the reason for not using the conditioning factors based on two or more 

processes was that the gain in accuracy was negligible when compared to the results by 

using the conditioning factor based on one process. Also, using more than one process as a 

conditioning factor meant increased computing time.

We have dealt with the Single Driver case separately, even though it can be treated as a 

special case of the Multi Driver situation. This is because understanding the mechanism 

for the Single Driver case is much easier than the Multi Driver case, thus making it much 

simpler to generalise to the Multi Driver situation.

Finally, the choice of the conditioning factor discussed here has been based on the problem 

of pricing bonds and contingent payments on interest rates of the bonds. As stated earlier, 

for the problem of pricing of European call options on assets with stochastic volatility, the 

situation is more complicated. However, we still propose to use the conditioning factor Z as 

defined in equation (3.37) to obtain an approximation to the price of the call option. As will 

be seen later in the thesis, the results obtained by using the conditioning factor are quite 

accurate.
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Chapter 4

Valuation of coupon carrying bonds : 
Non-default able and D efaultable

4.1 Introduction

In this chapter, we look at pricing of bonds which make coupon payments and have a longer 

time to maturity. As a m atter of fact, coupon paying bonds are quite common in practice. 

The only difference from the zero coupon bonds is that coupon paying bonds are generally of 

a longer term. There can be two situations : one when there is a zero probability of default 

occurring and the second situation is when there is a non - zero probability of default. The 

approach of calculations of the prices is the same as in the case of a zero coupon bonds as 

discussed in chapter 2. We make use of an appropriate conditioning factor to find a lower 

bound of the price of the bond. As before, we assume the interest rate to be governed by 

a stochastic process. Here, we assume the stochastic process to be an Ornstein - Uhlenbeck 

process where the initial value is known. The choice of such a process governing interest 

rate is based on the fact that in practice, rarely does one come across a situation of the 

interest rate being governed by a Brownian motion or an Ornstein - Uhlenbeck process with 

the initial value having a stationary distribution. Furthermore, both these situations can be 

treated as special cases of the Ornstein - Uhlenbeck process where the initial value is known. 

For example, when the mean reversion force in the Ornstein - Uhlenbeck process goes to 

zero, we have a Brownian motion. Also for the case of the Ornstein - Uhlenbeck process 

with the initial value having a stationary distribution, we have the initial value distributed
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as a normal variable with zero mean and variance cr2 is the instantaneous variance of the 

Ornstein - Uhlenbeck process and a  is the mean reversion force. However, in both the cases, 

the formulae need to be slightly adjusted.

4.2 Non-defaultable bonds

In this section, we look at the situation of the bond making coupon payments during the life 

of the bond. This is in some sense a generalisation of the zero coupon bond situation. Note 

that the coupon is payable at a continuous rate.

Here we want to calculate,

E C /  e~ T' iuds + e~f? T' du 
J o

where, the value of the coupon is given by

E c j  e-fc^ds 
J o

and the value the principal is given by

E  \e~f° Tudu

As before,

r t — b e aYt

(4.1)

and Yt = [  e -ait' s)dBs, 
Jo

where, rt is the instantaneous rate of interest, a the instantaneous variance and Yt is a 

stochastic process - in this case, it is an Ornstein - Uhlenbeck process where the initial value 

is known and is assumed to be 0. b is a scaling constant. Also, b =  ro, the initial value of the
1 <T2

interest rate and be* ^  is the long-term value of the interest rate. Further, C is the coupon 

rate and b is the discount factor.
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4.2.1 Choosing a conditioning factor

Here, there are two quantities that we want to calculate; one is the value of the coupon 

payments and the other is the principal. The calculation of the value of the principal is 

exactly the same as calculating the value of a zero coupon bond, the details of which are 

given in the previous section. To calculate the value of the coupon payments we again make 

use of a suitable conditioning factor. The conditioning factor used for calculating the value 

of the coupon payments is slightly different from the one used in the calculation of the price 

of the zero coupon bonds, but is still based on the same principles as outlined in chapter 3. 

The function that we are interested in is

As in chapter 3, we shall use a linearisation argument to obtain the conditioning factor. For 

this purpose, we assume o and b to be small. First, we look at

(4.2)

Expanding the exponential term with respect to a, we have

Thus, equation (4.2) can be rewritten as

Now, we expand the exponential term again with respect to b. We thus have,

fo Ysds+0^ 2̂ dt.

b T 2 l 'T  f ' l
= T    ba / Ysdsdt — bO(a2) +  0(b2).

2 I n I nJo Jo

Since we assume a  and b to be small, we ignore terms involving a2 and higher as well as 

those involving b2 and above. Thus the only stochastic part in the integral is the integral 

involving Ys.
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Thus the conditioning factor in this case is proportional to J0r  Ysdsdt, i.e. the conditioning 

factor Z\ is given as

s i  Jo y sdsdt

\/V ar ( / 01 f^Ysdsdt)

The conditioning factor obtained based on the expansion techniques described above is ex

pected to work for small values of a and b. However, in practice, the method works for even 

relatively high values of a and b, as will be evident from the results in tables 7.1 and 8.1.

Here, as stated earlier, we take the stochastic process {ys;0 < s <  1 } as an Ornstein - 

Uhlenbeck process with the initial value Y q = 0.

4.2.2 Calculation of interest payments

Once we have obtained the conditioning factor as above, we can then easily calculate the 

value of the coupon payment. In general, we take T = 1 and adjust the other parameters 

accordingly to account for the longer time period of the bond. Thus, with T = 1, we have

Now, using the fact that {Yi; 0 < s < 1 } here follows an Ornstein - Uhlenbeck process with 

Y q =  0, where Y q is the initial value, we have,

So Jo Y*duds

r-1 e —a ( l—.)  + a ( i

Jo Jo a Jo

=  [3 — 3 e 2a — 12ae a — 6a2 4- 6 a] — V  say.
6 a5 L

Further, Z\ is distributed as a standard normal variable.

Conditionally on Z\, Yu is a Gaussian process with

E(YU\Z{) =  kuZ x (4.3)
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where ku =  Cov(y„, Z x) =  j "  | e-«(»-^)e “(1 +  ° ( 1 s )— 1 j  d s

1 a 2 e - ail~u) +  2a(l  -  u) -  e_a(1+w) -  2ae_au
y f V ' l a

Also,

(4.4)

Cov(Yu, Yv|Zi) =  Cov(Y1i, Yv) -  /cu/cv =  wuv say. (4.5)

Here, Cov(Y^, Yv) =  ^  [ealu_vl — e~a(u+v)]} as {1^; 0 < u < 1 } follows an Ornstein Uhlenbeck 

process. Once we have these values, then we can easily calculate the the value of the coupon 

payments.

So, conditionally on Z\, we have the lower bound of the value of the intermediate payment 

given as

J  exp ^ —b J  exp ksZi + ^w ss ds^j du = hi(Zi)  say. (4.6)

Thus, to get the lower bound to the value of the intermediate interest payments, we take 

the expectation of hi(Zi)  with respect to Z\\ that is we calculate

y f % f

The value obtained thus is inflated by the coupon rate. The results are for a short term 

bond is shown in table 7.1 while for a long term bond is shown in table 8.1. The coupon 

rate assumed here for the numerical results is 5%, i.e. C = 0.05.

Also, the value of the final payment, H2, is calculated exactly the same way as the zero coupon 

bonds and hence the detailed calculation of that is not shown in this section. Finally, the 

value of the long term bond is obtained by discounting the intermediate payment by the 

coupon rate and then adding the final payment to it, i.e., the value of the coupon paying 

bond is given as

C H X +  H2.

r°° 1Hi = J hi(z)—j==e 2 dz.

We have calculated an approximation to the lower bound to price of a coupon paying bond 

for a number of values of cr, b and a - the mean reversion force of the Ornstein - Uhlenbeck
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process. In general, we take T =1, that is the term of the bond to be one year. However, 

we account for long term bonds by adjusting the values of the other parameters. Thus for a 

bond with a life of t years, a2 changes to a2t , a changes to at and b changes to bt and the 

we are able to keep T = 1. Here the long period bond is taken to have a life of 10 years.

The results for different values of the parameters are given in tables 7.1 and 8.1. Table 7.1 

shows the results for the short term bond while table 8 .1  shows the results for the long term 

bonds. In each case, for comparison purposes, the simulated values along with their standard 

errors are given in the same table.

4.3 Defaultable Bonds

In this section, we look at situations where there is a non-zero probability of default taking 

place. However, as is observed in practice, the probability of default is quite small. Work in 

this area has been done by, among others, Lando (1997) and Duffie and Singleton (1995). 

Here it is assumed that in case of a default all payments cease (including coupons) and a 

certain percentage of the value of the bond at maturity (known in advance) is paid out, 

else the full value is paid on maturity. The analysis here has been based on coupon paying 

bonds. The reason being that a zero coupon bond cannot default at any other time but the 

final maturity time and hence is of little interest. It is the coupon paying bonds which are 

of considerable interest as they might default at any time prior to m aturity and thus the 

coupon payments would stop.

Here, we are interested in calculating

'•T
E D f  (e- r*-£  s)ds + (e-re -b£ x'ds) + C I  ( T { e - rudu)e- ^ x‘duXsds) 

. J o  Jo  Jo

/ •T n'r . . *
(4.7)

r0

where

+C I  e-™Ai(e-JoTA“‘i“)
Jo

X, = be°y
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and Yt = /  e- a{t- s)dBs.
JO

Here, At is the rate of default and Yt is a stochastic process - in this case, it is the non- 

stationary Ornstein - Uhlenbeck process, r is the interest rate which is assumed to be 

constant. Also, a is the instantaneous variance. Further, D is the percentage paid out in 

case default occurs and C is the rate of coupon payments during the life of the bond, b is 

a scaling factor, representing the discount rate. The terms in equation (4.7) represent the 

following.

E D  Jo e  rs f ° XuduX Sd s  =  Payment at default.

=  Final payment on maturity, when no default takes place.E  [e_re"^oT Xsds

^  f 0T( f0Se -rudu)e- f o ^ du\ sds =  Coupon payments in case of default.

E  J c  Jq e ~ TUd u ( e ~ J o Xudu) = Coupon payments in case no default occurs.

As in the case of coupon paying bond discussed in the previous section, we take T  = 1 and 

adjust the other parameters for a long period bond. Now, equation (4.7) can be rewritten 

as

E (.D - C ) [  e~rse~bf° e° Y'‘d'‘be”y , d s  +  —  [  
Jo  r  Jo

dubecY,ds

Now,

+  (1 -  —)e~re~bf° + '±e-i‘So‘"y'‘d'‘ 
r  r

C

j  J  e - ' K s ^ b e ^ ’ds =  j  ( l  -  e-^o . 

Substituting this in equation (4.8), we have

E {D -  C) f L e -TSe-bK e’ Y' dubeaY‘ds+  (1 -  £ ) e- re- ‘ /o +  2.

(4.8)

(4.9)

This is what we are interested in calculating.
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4.3.1 Choosing a Conditioning Factor

In this section, we are really interested in calculating the first term of equation (4.9). This 

term gives us the value of the payment that is made in case of default. The second term 

of equation (4.9) gives the value of the bond, assuming no default. To calculate the second 

term - rather the integral involved, we use the same approach as used earlier in the case 

of the non-defaultable bonds without any coupon payments. However, the parameters are 

suitably adjusted to account for the long period of the bond. In case of the bond being 

a short term one, then the parameters remain exactly the same as in the case of the zero 

coupon bonds. Now, to calculate the value of the payment if default occurs, we need to 

calculate the first integral of equation (4.9). As in all the cases stated earlier, we make use 

of a suitable conditioning factor.

As in the case of the bonds making coupon payments with zero probability of default, we 

use a different conditioning factor for each of the two integrals. For the second integral, the 

conditioning factor is exactly the same as that in the zero coupon case. This is given by

So1 ysds 

^ V a r tf ,1 Y,ds)

The first integral in equation (4.9) is

f  e- rt-t/o *°Y'‘dube',Y,dt = b I  e - rt- b%e’r'‘due'’Y,dt.
J  o Jo

As in the previous section, here also, we assume a and b to be small, thereby allowing us to

expand the exponential term with respect to a  first and then b. Thus we have, on expansion,

b [  |e”rt- t J o +  a Y t ) \ dt + 0(ba)
Jo  L -*

= b j  e~rt ( l  + <jYt + bs + bsoYt + bo j  Yudu + ba2Yt Yud v \ dt +  0(ba )

= I  \ e ~ rsb +  bae~TSYs)ds +  0(ba). (4.10)
Jo
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Again, the only stochastic term in equation (4.10) is f*  Ysds. Thus, the conditioning factor, 

Z 2 , we use is proportional to Ysds, i.e.,

Jo1 Y s d sZ; =
^V ar(/o  Ysds)

Here, we observe that Z\ and Z-i are exactly the same and thus we use the same conditioning 

factor for both the integrals. Let us call this conditioning factor Z. So,

Z  — Z\ — Z<i-

As in the situation of coupon paying bonds, the expansion is supposed to be valid for small 

values of o  and b. However, as is noted in practice, it works well for even not so small values 

of a  and b.

4.3.2 Calculations for defaultable bonds

Once we have obtained the conditioning factor as above, we can then easily calculate the 

value of the interim payment. We take T = 1 and adjust the other parameters accordingly 

to account for the longer time period of the bond. The conditioning factor Z is exactly the 

same as the one in the zero coupon case. Now, conditionally on Z, Yu is a Gaussian process 

with

E{YU\Z) = kuZ  (4.11)

fc„ =  Cov(Fs, Z) =  / U(ea(s+U) -  e-<s+u))ds + f -  e - “<u+s>Ws
y V  2 a J 0 Ju

1 <j2 1 — e~au 1 -  e-a(1_u) e~au -  e~a(1+u),
{---   + --------     }, (4.12)

y /V 2  a 1 a

2

and Cov(y„, YV\Z) = -  kukv =  wm . (4.13)
la

Once we have these values, then we can easily calculate the the value of the first integral.
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So, conditionally on Z, we have

J  e~TU |e x p  b J  exp k$Z  +  ^ wss ds'j |  b |e x p  ^ kuZ  +  ^ w ut^j j  du = hi(Z)  say.

(4.14)

Finally, we take the expectation of IfaZ) with respect to Z\ that is we calculate

r ° °  i .2
H i  =  /  h i ( z ) —r==e a d z .

J — oc v  2 tt

Once we have obtained the value of H i ,  we multiply it with the difference between the 

percentage paid out in case of default and the ratio of the percentage of coupon payments 

to the interest rate, that is we calculate

( D  -  f a , .

Here, we assume that the amount paid it in case of default is 50%, i.e. D = 0.5 , the 

percentage of coupon payments is 4%, i.e. C = 0.04 and the interest rate is 5%, i.e. r  =

0.05. Now, the term

( D ~ j )r

can go negative depending on different choices of D , C and r. That is why the price obtained 

using this term will not be a lower bound to the price - but just an approximation to the 

price. However, as is evident from the results the approximation is a very accurate one.

Next, the second integral is calculated exactly similarly to the zero coupon bond case. Let us 

denote that by H 2. Since we have discussed the calculation of H 2 earlier (section 2 .2 .2  and 

the examples in that section), we do not go into it here. Thus, the second term of equation

(4.8) is calculated as

(i -  f a .r

Finally, the value of the bond with a non-zero probability of default is given as

( D  -  - ) H ,  + (1 -  - ) H 2 +
r r r
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We have calculated an approximation to the price of the bond with a non-zero probability 

of default for a number of values of cr, 6 and a - the mean reversion force of the Ornstein 

Uhlenbeck process. In general, we take T  =1, that is the life of the bond to be one year. 

However, we account for long term bonds by adjusting the values of the other parameters. 

Thus for a bond with a life of t years, cr2 changes to a2t, a changes to at and b changes to 

bt and the we can be able to keep T = 1. Here the long period bond is taken to have a life 

of 10 years. This is exactly the same as discussed in the case of coupon paying bonds with 

zero probability of default.

The results for different values of the parameters are given in tables 7.2 and 8.2. Table 7.2 

shows the results for the short term bond while table 8 .2  shows the results for the long term 

bonds. In each case, for comparison purposes, the simulated values along with their standard 

errors are given in the same table.

4.4 Conclusion and Remarks

The lower bounds to the price of the bonds or even the approximation to the prices calculated 

by using the conditioning factor seem to be so close to the actual price ( in some cases, the 

simulated prices were lower than the lower bounds ) that they can be regarded as a very 

good approximation to the true value. This is true of both the situations discussed - that of 

coupon paying bonds with a zero probability of default as well as coupon paying bonds with 

a non-zero probability of default having a payout at default using an Ornstein - Uhlenbeck 

process as the driving force of the stochastic process.

The conditioning factor approach is also useful in calculating prices of coupon paying bonds. 

These values could not be calculated by a direct expansion.

4.5 Tables

Next, we present a set of tables outlining the numerical results based on the formulae stated 

earlier in the chapter. Table 7.1 shows the results for the case of a coupon paying short
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term (1 year) bond while table 8.1  shows the results for the case of a coupon paying long 

term (10 year) bond. Table 7.2 shows the results for a short term (1 year) bond which has a 

non-zero probability of default and table 8 .2  shows the results for a long term (1 0  year) bond 

which has a non-zero probability of default. In both cases of a coupon paying bond as well 

as a bond with a non-zero probability of default (short term and long term ), the stochastic 

process governing the interest rate process is assumed to be an Ornstein - Uhlenbeck process 

where the initial value is known. Again, for comparison purposes the simulated values along 

with their standard error are presented.

In all cases, all the prices are multiplied by 100.
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T able 7.1 : Table showing the calculated values of the total payments of coupon paying 

bonds along with the simulated values and their standard errors where the term of the bond 

is 1 year and the coupon rate is 5%.

cr a b Calculated Simulated S.E.
0.1 1 0.07 98.07985 98.05825 0.0027

0.5 1 0.07 97.68948 97.82111 0.0145

0.75 1 0.07 97.16662 97.54738 0.023

T able 7.2 : Table showing the calculated values of the payments of bonds at default along 

with the simulated values and their standard errors where the term of the bond is 1 year 

and and the amount paid out in case of default is 50%.

a a b Calculated Simulated S.E.
0.1 1 0.07 95.7805 95.7549 0.0015

0.5 1 0.07 95.6761 95.652 0.0078

0.75 1 0.07 95.5354 95.4768 0.01208
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T able 8 .1  : Table showing the calculated values of the total payments of coupon paying 

bonds along with the simulated values and their standard errors where the term of the bond 

is 10 years and the coupon rate is 5%.

cr a b Calculated Simulated S.E.
0.1 1 0.07 53.25209 53.17027 0.0104

V'OT 1 0.07 52.58027 52.4876 0.0334

0.5 1 0.07 51.46158 51.37964 0.0537

0.75 1 0.07 49.1404 49.1597 0.081

T able 8.2 : Table showing the calculated values of the payments of bonds at default along 

with the simulated values and their standard errors where the term of the bond is 10  years 

and and the amount paid out in case of default is 50%.

cr a b Calculated Simulated S.E.
0.1 1 0.07 74.6547 74.65141 0.0057

\ / 0 T 1 0.07 74.3201 74.3066 0.0179

0.5 1 0.07 73.795 73.8483 0.0288

0.75 1 0.07 72.705 72.7103 0.044

N o te  : To calculate the prices of the long - term (10 year) bonds, we use the same formulae 

as in the case of 1 year bonds. However, as stated earlier in sections 4.2.2 and 4.3.2, for 

calculation purposes, we take the term of the bond T = 1 but adjust the other parameters 

accordingly to represent a T = t year bond. Thus, for a bond with a life of t years, a 2 

changes to <r2t, a changes to at and b changes to bt. In our case, t = 10.
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Chapter 5

Pricing of Bonds based on 
M ulti-driver M odels

5.1 Introduction

In this chapter, we look at the situation where the interest rate process is a linear combination 

of n Markov processes which need not necessarily be independent of each other. Such models 

are referred to as multi-driver models and are used quite commonly in practice. Work on 

multi Driver models have been done by a number of researchers, prominent among them are 

the works by Heath, Jarrow and Morton (1992), Duffie and Kan (1994, 1996) and Longstaff 

and Schwartz (1992a, 1992b).

We have the instantaneous rate of interest given by rt. As before, we are interested in the 

calculation of

E ( e -W o1 (5. 1)

where b is a scaling factor.

Continuing with the idea of the use of a suitable conditioning factor as employed in the 

previous chapter and using Jensen’s inequality, we approximate the price of the bond by the 

lower bound of the price of the bond. Here, as in chapter 2 , the function that we look at is 

f ( x )  = e~bx and we are interested in finding the expected value of /. Also, the function /  is 

convex and hence Jensen’s inequality holds. Thus, we have

E ( f ( X ) )  = E[f(X )\Z] > E[f{E{X \Z)}}

68



and we want to find E ( f(E (X \Z ) ) )  as it is a lower bound to the true price. Here, Z is the 

conditioning factor. This is similar to the approach of Rogers and Shi (1995). The choice of 

the conditioning factor Z, is based on the explanations given in chapter 3.

Here, in general, rt is governed by n stochastic processes - say {Y/z), 0 < t < 1, i =  1, 2 ,...., n}. 

Further, the stochastic processes {T/^,0 < t < 1} and { Y ^ \  0 < t < 1 } could be correlated 

amongst themselves with a correlation coefficient p. Now, we can have two situations. One 

is when rt is just the sum of the stochastic processes. That is, we have
n

n  =  exp(]T  ftYtW), (5.2)
i=l

where f t , i  = 1,2, ....,n  is a constant. In this situation, rt is still a log-normal process and 

hence cannot go negative. We will refer to this as model 1.

A slightly different model which we will look at is when rt is based on n drivers directly. 

This is given by

rt =  Y ^ J ie PiYtM, (5.3)
2 =  1

where 7 * and f t  are constants for 2 =  1,2, ....,n. Here rt is a sum of n log-normal processes.

We will refer to this as model 2.

In particular, for reasons of simplicity, we shall take n = 2 throughout this chapter. Thus,

we have the two stochastic processes {Y^^O < t < 1 } and {y /2\ o  <  t < 1}. Also, we

assume f t  =  1 , fa  =  P, 7 i =  1 and 72 =  7 . Thus, equation (5.2) (model 1) becomes

rt =  ey‘( )+/3y‘( ] (5.4)

and equation(5.3) (model 2) becomes

rt =  er<( ] +  7 e^y‘( (5.5)

Both model 1 and model 2 can be regarded as special cases of the Heath, Jarrow and Morton 

(1992) model. We shall discuss these two cases separately in the following two sections. We 

have Yt(1) and given by

dY}1] = - aiYt{1)dt +  a d ft(1) (5.6)
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and dYt{2) =  - a 2Yt{2)dt +  a[pdB^] +  y / l  -  p2d B {2)] (5.7)

where, B ^  and B ^  are two independent Brownian motions driving the two processes 

and Yt(2). Also, ai is the mean reversion force of and a2 is the mean reversion force of 

y }2\  Further, p is the correlation between and Y ^  and a  is the instantaneous variance.

We shall now look at the two situations defined by equations (5.4) and (5.5) separately.

5.2 M odel 1

Here, we have r t given by

r t =  en(1W 2)5

where, (3 is a constant. Here, we have the interest rate following an exponential of a linear 

combination of two Gaussian processes which is a Gaussian process itself. We are interested 

in finding

E(e~bt i rtdt) = E
r l ,~bfo(e 4 4 )dt

Here Y ^  and Y ^  are as defined by equations (5.6) and (5.7). The conditioning factor Z 

used here is given, as explained in chapter 3 section 3, by

z  =  Jo Y s ^ d s  +  P  Jp1 Y s ^ d s  ( 5 g )
s/Va.T(f01Y y)ds + l3tiYPds)

Further, Z has a standard normal distribution.

Now, V ar(/0l Ysm ds + /?/„ Y ^ d s )  = Var(/„ Y$m ds) + /?2Var( / 01 Y ^ d s )

+20Cov{ I  Ysm ds, I  YWds)  =  V  say, (5.9)
J o  J o

where

Var( I  Y ^ d s )  = 
J o

and Var( f  Y j^ds)  =  
J o

a 2 2ai +  4e ai — e 201 — 3
2 a2 ai

2a2 +  4e" °2 -  e" 2°2 -  3
j o  <22
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Also, Cov(f* Ys(l)ds, Ys(2)ds) =  f j  f t  Cov(Yum ,Yv(2))dudv

= a 2p
1 rv

e"“i(“- s)e-“2(”- s>ds£lu +  / /  e ' “l(“_s)e“<‘2(’'_s)dsdt;
r0 ^0 Ju Jo

du

a 2p
o 2{ai +  ^2) 

Thus,

„ (o2 +  l)(e " fil -  1) 2 (e~^ai+a2) -  1 ) 1 -  e_a2 e_(ai+a2) -  e“ a2
a2 -  1 +  — ----- - ------------ -    :---------L + -------------+

ai Gi +  a2 a 2 ai

V  =
a2 2ai +  4e-ai -  e~2ai -  3 a2 2o2 +  4e" °2 -  e_2a2 -  3

2 a2 a 1 + 0
2 0,2 02

2 /3cr2p
0>2 ( a l  +  O2)

Now, we have

02 — 1 +
(o2 +  l) (e -ai - 1)

ai
2 (e~(°1+a2) — 1 ) 1 — e~a2 e~(ai+a2) _  e-o2

v - +  +  —
<2l +  02 02 Oi

E { Y V  + f}YW\Z) = kuZ, (5.10)

where ku =  Cov(Kp* +  0 Y u \ Z )

=  J =  { f  Cov(Ki1), F i1) ) *  +  /I2 j T  Cov(F® , F /2))ds +  2/3 f  C ov(K «, K ^ ) ^ }

1

Tv
(j2 f 1 — e - a i “ 1 — e - a i(1-u) e_ a i“ — e - ai(i-*0 

2ai 1 Oj Oi &1

QZq-Z f l — e~a'2u 1 _  g-a2(l-*0 e~<L2U _  g - a 2( l - u )
1 -I----------------------------------------------------

202 I 02 o2 02 }
« ( an — e~aiU(an 4- 1) 4- 2 p - (°1+a2)“ -I- pC"” 1)®* — g - ( ai “+ a2) _  1 'j "I

+ ^ >  { — : — 1 }] ■ <5 n > 

Also, we have

Var(Ku(1) +  p Y i2)\Z) =  Var(Fu(1)) +  /32Var(F„(2)) +  20Cov(y £1\  r j 2)) -  k2

rr2 rr2 1 — p ~ ( a i + a 2)u
= 5- ( l  -  e - 2ai“) +  /32— (1 -  e 2“) +  2()o2p-------- ----------

ZCL\ £Ci2 Oi +  02
- k l  = vu. (5.12)
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Once we have these vales of ku and vu as given by equations (5.11) and (5.12), we can then

easily find the lower bound to the price of the bond conditionally on Z, by using equation 

(5.10). Thus, the lower bound conditionally on Z is given by

Finally, we find the lower bound to the price of the bond by taking expectation over Z, i.e.

For comparison purposes, we use a simulated set of values based on the same values of the 

parameters as used in the calculation of the lower bound to the price or the contingent 

payment on the price of the bond. The results showing the approximations to the lower 

bound to the price of the bond are given in table 9.

Further, as in the situation of the zero coupon bond governed by one driver as described in 

chapter 2 , we can calculate the price of a contingent payment on the price of a bond in this 

case as well. In that case, we have the function /  defined as

where c is the strike price at which the contingent payment is made. Thus, once we have

(5.13)

1  ~ L Z2 J—= e  dz. (5.14)
J  — OO

f (x )  — (e bx — c)+ =  max((e bx — c), 0 )

obtained Cl(Z) as defined in equation (5.11), all we need to do is to take the expectation 

over Z in the appropriate region, i.e. perform the following integration :

I  max{(£l(z) — c), 0 )
J —OO

(5.15)

5.3 M odel 2

Here, we have rt given by
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where /? and 7  are constants. Here the interest rate process follows a linear combination 

of two log-Gaussian processes. This situation is thus significantly different from the one 

discussed in the previous section. We are interested in finding

jE(e~bt i rtdt) = E  ^e~bti(eY* )+i e0Y* .

Here, Y^  and are as defined by equations (5.6) and (5.7). The conditioning factor Z 

used here is given, as explained in chapter 3 section 3, by

f ^ Y ^ d s  + y f ^ Y ^ d s
Z  = (5.16)

^ V M f o ' Y s ^ d s  +  y f ^ Y ^ d s )

Further, Z has a standard normal distribution.

Now,

Var( P  Ytw ds) + 7 2/?2Var( / 1 Y® ds)  +  27/3Cov( j  Ysw ds, [  Y ® ds)  =  V, say, (5.17) 
J o  J o  J o  Jo

where

Var( f  YWda) =  ,
J o  CL 1

Var( /  Y ^ d s )  = 
J o

2a,2 4- 4e 02 — e 2az — 3
2a2 a|

and

Cav( [ ' Y,m ds, [  Y ® d s ) =  I  I  Cov(YW  ,Y j2))dvdu 
J o  J o  Jo  J o

=  1 1  \ ° 2P I  e - a^ u- s)e - a^ v- s )d s
J o  J o  I Jo

uAv
dvdu

1 f V

• w  nJO  .Jo Jo J u  J o

e - a i (u-s)e -a2(?-s)d s dv +  1 / e - ^ s ) e -a2{v-S)d s d v du

a 2 p
CL 2 — e-aiU(a2 4-1) 4- 2e_fai+a2lu 4- e(u-1)a2 — e~̂aiU+a2̂

a2(al 4* a2)
du
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a 2p

a2{al +  a2)

Now, we have

a  2
( a 2 +  l ) ( e -G l — 1 ) g ~ ( a i+ ° 2 )  — i  i _ e - ° 2  e - ( o : + a 2)

— 1 +  — -----     -  2 ------------------h -------------h ------------
fll +  &2a\ a 2 a i

where

E { Y ^ \ Z ) = k ^ Z  i =  1,2

*W =  Cov(yW, Z) = Wf°- / 1 Ys 1)ds +  7 A1 PY ^ ds)
. /o

Here,

and V a r ( ^ |Z )  =  Var(yW) -  (fcW)2 =  say.

Var(yW) =  ^ - ( 1  -  e_2o‘“).

Further,

*£> =  ^C ov(K „(1), J,1 Ys(1)ds +  7  Jo1 P YP ds)

=  JL +  j ' c w ( Y ? \ Y W ) d i

1

V v
I 2 — e~aiu 1 — e-a i(1-11) e-ai“ — g-ai(i+u)

H_2 ai  ̂ ai +
ai ai }

+ 7  /3a2p
a2 _  e-aiU(a2 +  1) +  2 e~(ai+a2^  +  e(u_1)a2 -  e-(aiTi+a2) 1

fl2(cii +  0*2) I
and

fcl2) =  ^Cov(/3y„(2), Ysw ds +  7  Jo1 /3yi2)ds)

=  - !=  j r /3 2 £  C o v ( ) f \Y W ) d s  +  /? £  Cov(Y^l\ Y ^ ) d i

_ 1

+0<J2p

/yP2<j2 f 1 — e_a2U 1 — e_a'2(1-ld g-fl2u _  e- 02(i+u)  ̂
2 a2 \  a2 a2 a2 J

a2 -  e_aiu(a2 +  1) +  2 e_(ai+a2)u +  e (u-1)a2 -  e_(aiU+a2) )
fl2(a l +  a2)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

74



Once we have these values of ku^ and as given by equations (5.21) and (5.22), we can 

find Vu  ̂ and Vu  ̂ by using these values of kiP and ku and the unconditional variance of Yu%>) 

given by equation (5.20). Thus, the lower bound to the price of the bond conditionally on Z 

is given by

Q.{Z) — exp ( —b { J o  e x p  k ^ ) z  +  \ v{^  d u  +  7 J 0 e x p  ^ 2 ) z  +  5 ^ 2) d u } )  • ( 5 *2 3 )

Finally, we can find the lower bound to the price of the bond by taking expectation over Z,

i.e.

For comparison purposes, we use a simulated set of values based on the same values of the 

parameters as used in the calculation of the lower bound to the price or the contingent 

payment on the price of the bond. The results showing the approximations to the lower 

bound to the price of the bond are given in table 1 0 .

Further, as in the situation of the zero coupon bond governed by one driver els discussed in 

chapter 2 , here also, we can calculate the price of a contingent payment on the price of a 

bond. In that case, we have the function /  defined as

where c is the strike price at which the contingent payment is made. Thus, once we have

Q(z)—F=e 2 dz. 
W 2 tt •

(5.24)

f (x )  =  (e bx — c)+ =  max((e bx — c), 0 )

obtained Q(Z) as defined in equation (5.23), all we need to do is to take the expectation 

over Z in the appropriate region, i.e. perform the following integration :

max((Q(,z) — c), 0 ) (5.25)

5.4 Calculations

We obtain the approximations to the lower bound to the price of the bond in both case 

- that is when the interest rate rt remains a log-normal process as well as when rt is the
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sum of two log-normal processes. In each case, the results are presented in tables 9 and 10 

respectively. We take different values for the parameters. The values taken are 7  =  1 , /? =  1, 

gl\ =  1, 02 = 2 . Also, b takes the value 0.07 in the first case where the interest rate process 

is still a log-normal process. In the second situation, when the interest rate process is a sum 

of log-normal distributions, b = 0.03. The values of p considered are -0.5, 0 and 0.5 and for 

each value of p, we take a to take values 0.1, 0.5 and 0.75.

5.5 Conclusion and Remarks

An important point to note in the situation of multi-driver models is the dependence of the 

conditioning factor on the value of the constants. In both the cases, model 1 and model 2, 

as discussed earlier, the conditioning factor is dependent on the value of the constants f t

and 7 i, for i — 1 ,2 ,.......,n . Thus, in choosing a conditioning factor that is appropriate, we

cannot ignore the presence of these constants without compromising on the accuracy of the 

calculations.

In some cases, the calculated lower bounds that we obtain by using the conditioning fac

tor approach, gives us results which are very slightly above the simulated values. This is 

primarily due to small inaccuracies in the numerical integration procedure used - in effect 

the lower bounds thus calculated are so accurate that even a slight inaccuracy pushes the 

calculated values to be above the simulated values. This problem can be avoided by using 

finer sub-divisions of the interval while performing the numerical integration.

5.6 Tables

In the following section, we present two tables. The calculated value refers to the value of 

the lower bound to the price obtained by using the conditioning factor. For comparison 

purposes, in each table we also present a simulated set of values along with their standard 

errors. We present the results for prices of bonds for both the situations of the interest rate 

rt as defined in sections 5.2 and 5.3.
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T h e follow ing tw o tab les  show th e  lower b o u n d  o f th e  ca lcu la ted  prices an d  th e  

s im u la ted  values w ith  th e  s ta n d a rd  erro rs  of s im u la tio n  for d ifferen t values o f p 

and  cr. H ere  a\ =  1 , 02 =  2 an d  7  =  1 .

T able 9 : Here the interest rate follows a log-normal process and b = 0.07.

p a Calculated Price Simulated Price Standard Error
0 0.1 93.239 93.224 0.0015

0.5 92.874 92.864 0.0081
0.75 92.37 92.362 0.0134

0.5 0.1 93.232 93.218 0.0018
0.5 92.672 92.656 0 .0 1 0 2

0.75 91.876 91.893 0.0176

-0.5 0.1 93.247 93.232 0 .0 0 1 1
0.5 93.066 93.055 0.0057

0.75 92.824 92.792 0.009

T able 10 : Here the interest rate follows a sum of two log-normal processes. Also, b =

0.03 and (3 =  1.

P 0 Calculated Price Simulated Price Standard Error
0 0.1 94.185 94.172 0 .0 0 0 2

0.5 94.024 94.015 0.0034
0.75 93.806 93.796 0.0054

0.5 0.1 94.185 94.167 0.0008
0.5 94.024 94.012 0.0041

0.75 93.807 93.798 0.0065

-0.5 0.1 94.185 94.17 0.0005
0.5 94.023 94.003 0.0025

0.75 93.806 93.796 0.0041
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Chapter 6

The Pricing of Options on A ssets w ith  
Stochastic Volatility

6.1 Introduction

An interesting problem in mathematical finance with a widespread applicability is the pricing 

of European call options on assets with stochastic volatility. Problems of this nature were 

addressed by Hull and White (1987). They observed that using a simple log - normal model, 

as used by Black - Scholes (1973), frequently overprices the price of the asset. Hull and White 

looked at the pricing of European call options on assets with stochastic volatility. The price of 

an asset according to Hull and White, under an equivalent martingale measure [see Harrison 

and Krepps (1979) and Harrison and Pliska (1981)] follows the following stochastic process :

d X t = rXtdt +  o e ^ X t l f i d B ^  +  y / l  -  fdB?'*}, (6 .1)

dV, = ndt + d B ? \  (6 .2)

where X t is the price process, o is the instantaneous variance of the price process and r is 

the rate of interest, which is a constant. Equation (6.2) describes the volatility process and 

H is the drift of the Brownian motion defining the volatility process. A slight variation from 

the Hull and White set up is the volatility process following an Ornstein - Uhlenbeck process 

(as used by Stein and Stein (1991)) and is given by

dVt = -aVtdt +  d B ? \  (6 .3)
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where a is the mean reversion force of the Ornstein - Uhlenbeck process.

Further, B ^  and B ^  are two independent standard Brownian motions. The two processes, 

the price process, X t, and the volatility processes, Vt, are in general correlated with p being 

the correlation between Vt and the logarithm of X t.

Work in the area of option pricing has also been done by Williard (1996). He has used a 

conditional Monte Carlo technique to calculate the prices of the derivatives. Wiggins (1987) 

has numerically solved the call option valuation problem for a fairly general continuous 

stochastic process for return volatility. He has obtained the estimators for the volatility 

process parameters, the estimates being obtained for several individual stocks and indices. 

He has also looked at the relative implied volatilities in the sample from which he obtains 

the estimates. Various other models have also been used in this field. Stein and Stein (1991) 

have used an Ornstein - Uhlenbeck process as the volatility process as given by equation 

(6.3). The price process is similar to the one given by equation (6.1). However, they do 

not assume an exponential link between the price and the volatility processes as shown in 

the equations (6.1) and (6.3). Work in this area has also been done by Romano and Touzi 

(1997) in which they consider the price and the volatility process to be correlated with each 

other. They use the solutions to a set of partial differential equations to solve the problem, 

but offer no closed form solutions to the problem.

Here we want to calculate the prices of European call options on assets with stochastic 

volatility. Mathematically, it is given by

X Q{e-rE(eY1 -  b)+} = f (Y ]) say,

where b is the strike price at which the value of the option is calculated, r is rate of interest 

and X q is the current price. Also, Yt = where X t is the price process and is given as

rt kBd) rt ___
Yt = Y0 + rt + a / pe~*~dB^  + cr y / l -  

J  o J o

This is the same as equation (6.7) and the way we obtain it is described in the next section. 

Further, Yi is the value of Yt at time t = 1. The exact form of Y\ is given later in equation 

(6.8).
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To calculate the price of the call option, we will use a conditioning factor approach. This 

approach is similar to the Rogers and Shi (1995) technique of valuing an Asian option as 

well as the method of pricing bonds we have discussed in the previous two chapters. The 

only difference here being that in this case the function /  as defined above is not convex and 

hence Jensen’s inequality cannot be used to obtain a lower bound to the price. We will thus 

try  to find an approximation to the price of the call option itself, rather than try  to find a 

lower bound to the price of the option.

Now, the interest rate r  defined in equation (6.1) could be a constant, as in the Hull and 

White model. However, it could be stochastic in nature and thus, we could have a stochastic 

process {r*,0 < t < 1 } defining the interest rate process (see equation (6.41)). We look at 

the two situations separately.

6.2 Constant Interest Rate

6.2.1 The Simple One Dimensional Brownian M otion Problem

The situation when the volatility process follows a standard Brownian motion is exactly 

similar to the Hull and White model, with the drift in the volatility process being 0. Thus 

the stochastic volatility process and the price process is explicitly defined as

dX, = r X tdt +  a e ^ X ^ p d B ^  +  0  -  (6.4)

dVt = (6.5)

We are interested in finding

X 0{e~TE(eY' -  6)+}, (6 .6 )

where b is the strike price at which the value of the option is calculated and X q is the current 

price. Also, let Yt = Taking logarithm of equation (6.4) and then integrating it, we

get

rt fcB(i) f t  ___
Yt = Yo + r t + a I p e ~ ! - d B ^  + a y / l ^

Jo  Jo
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We set t =  1 and Yo =  0- Thus equation (6 .5 ) gives us

Yi = r +  a I  pe~*~dB^  4- o f  y / \  — p2e ~ ^ d B ^  — - a 2 f  }ds. (6 .8 )
Jo Jo 2  J n

Here, conditionally on the paths of {Ps^,0 < s < 1}, we have o y / l  — p2e ^ “ d B ^  

following a normal distribution with zero mean and variance a2( 1 — p2) ekB*1] ds.

Also, conditioned on the path {B^l\  0 <  s < 1 }, Y\ follows a normal distribution with mean 

(r — \cr2P  +  peQ) and variance cr2(l — p2)P , where

ih!1)
P  = ]ds and Q = I  e~*~dB  

Jo

Now, Q consists of a stochastic integral and to calculate the stochastic integral we need to 

express it terms of time integrals. Using Ito calculus, we have

exp I =  2 6XP I 2 j ^  +  2 I 2 J 6XP 2 B‘

Now, integrating both sides in the range [0,1], we have,

exp ( | s ()  -  1 =  |  ^  exp ( | b ((1))  dB[l) + {j^ l  exP ( ^ < w )  *

‘ exP ( ^ )  ^  -  551 6XP ( ^ )  dS} ' (6'9)
The second term of equation (6.9) is similar to P, the only difference being th a t in the

exponent, instead of having a k as in P, it now has a | .  So it can be calculated exactly the

same way as P, replacing k by

We suggest an approximation approach as given by the following lemma :

L em m a 6 .1  : Let P, Q and Z be random variables. Also, let o and p be constants. Then, 

assuming

1. a is small

2. ^ ( a 2P, pcrQ) is a function such that it is at least twice differentiable and piecewise 

continuous
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3. Z is used as a conditioning factor and is suitably normalised 

we have

E (9 {o 3P,paQ))  =  E[9(oaE(P\Z),paE(Q\Z))]

+ l-p a 2E { i 22{a2E{P\Z),paE(Q\Z))Vai{Q\Z)} + 0 { u 3). (6.10)

P ro o f  : Expanding 4,(cr2P, paQ) in a Taylor series expansion (in terms of a) conditioned 

on a suitable random variable Z, appropriately normalised, we have,

E  [y{c2P,poQ)} = E{E\'l!(a1P,paQ)\Z)} = E[<S{a2E{P\Z),paE{Q\Z))}  

+ E{o2V 1{c?E(P\Z\p<jE{Q\Z))[P -  E(P\Z)} +  pa^!2{a2E{P\Z),paE(Q\Z))[Q  -  E(Q\Z)]}  

+ E {±p2a2<S22(<j2E(P\Z),peE(Q\Z)){Q -  E{Q\Z))2} +  0(<r3)

=  E{V{o2E(P\Z),poE(Q\Z))} + j;p2a 2E{'!!22(<j2E(P \Z), paE(Q\Z))Va.i(Q\Z)} +  0 ( a 3).

m

Note here that indicates the first derivative with respect to the first argument of ’F, ^ 2  

indicates the first derivative with respect to the second argument of and ^22  indicates the 

second derivative with respect to the second argument of \£. It is easy to see th a t all other 

terms will be of order a3 or higher.

In this case, let us define

^{(j2P2 paQ) =  (eYl — b)+ =  max[(eyi -  6), 0],

where Y\ is given by equation (6 .8 ). Further, P and Q are of the form as described earlier. 

Also, as stated previously, a is the instantaneous variance of the price process and p is the 

covariance between the volatility process and the logarithm of the price process. \!>(<7 2P, paQ) 

is piecewise continuous and differentiable and hence the second derivative of (cr2P, pcrQ)
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exists. We are interested in finding 

E ^ i ^ P ^ o Q ) ]  = E{eY' -  b)+ =  £[max((eK> -  6), 0)]

I 1 j  2 n  T (  r  +  2 Cj2-P ( 1 “  2 ^ 2 ) +  P J Q  ~  l n b=  exp r  -  - a  p P  +  paQ 0  1 2
2 J V

( r -  \ a 2P + paQ -  lnb \

- * (  ) ■  , < m )

Also, the second derivative of ^l[a2P,paQ)  with respect to Q is given by

r +  paQ +  |cr2( 1 — 2 p2)P — Inb
V q q ^ P i P o Q )  =  jexp +  paQ -  ^ a 2p2P ^  $

>/cr2( 1 -  p2)P

r +  paQ -  \ a 2p2P  (  (r +  paQ +  | a 2(l — 2p2)P  — Zn&):
' V 2 a % (l-p » ) i>  6XP V---------------- 2cr2(l — p2)P < > ' ^

Equation (6.11) represents the first term approximation to the price of the call option. 

However, the first term alone does not approximate the price well enough as is evident from 

the tables given later. So, we need the second term in Lemma 6.1. We shall call the second 

term in Lemma 6 .1  the Correction Factor.

To calculate E [^ (a 2P, paQ)], we make use of Lemma 6.1. Thus, we first calculate £l(Z), 

where

Q{Z) =  V{a2E{P\Z),paE{Q\Z)).

Here, Z is a suitably chosen conditioning factor and has a standard normal distribution. 

Finally, to get the unconditional value of the first term approximation to the price, we take 

the expectation of Q(Z) with respect to Z.

Similarly, to obtain the correction factor we define O(Z)  as

Q(Z)  =  l- p 2a H QQ{a2E (P \Z )>PaE{Q\Z))V^(Q\Z) .

This is exactly the same as the second term in Lemma 6 .1 . To get the unconditional value 

of the correction factor, we take the expectation of Q(Z)  with respect to Z.
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Now, to calculate the required prices, we need to calculate E(P\Z)  and E(Q\Z)  as well 

as Var(Q|Z). To do this, we first need to find out a value j u such that the conditional 

expectation is independent of the conditioning factor. We also need to get the conditional 

variance and covariance of the standard Brownian motion conditioned on the conditioning

factor Z, i.e. we need to obtain Var(J* B udu\Z ) and Cov ( f^  B udu, f*  B vdv\Z). As has been

shown in chapter 3, the conditioning factor used here is

f 1 B sds
Z  =  Jo =  (6.13)

y/Vai(J0l B sds)

where Var( / 0 B sds) = | .  This is the same as obtained in chapter 3. Thus, we have

E ( B u\ Z ) = j uZ  (6.14)

where j u =  Cov(Bu, Z) = - ^ = ^ = = C o v(Bu, /„ B sds)

=  V z  I  (1 — s)ds = %/3(« — ^ -). (6.15)
Jo  2

l'2
(1 — s)ds =  VS (u — ;

ro

Also,

Cov(Bu, BV\Z) =  {u A v) -  j uj v =  suv. (6.16)

Moreover, B u conditioned on Z is a Gaussian process.

Once we have these values, we can then easily get the expected values of P and Q. We do that

by first getting the expected values conditionally on Z and finally taking the expectations 

over Z to yield the unconditional expectations. Thus we have

E{P \Z ) =  j f  exp ( k j uZ  +  y s A  du (6.17)

e x p ( t f z  +  £ i ) - l  k  , i  ( k
E(Q\Z)  =  { -----   -k------- -----------   j exp ( - j uZ  +  — suu ) du } (6.18)

5  4 Jo  8
k2
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=> Conditionally on Z 

Q(Z) =  <$(<r2E(P\Z) ,paE(Q\Z))

r + \ o 2E(P \Z){ \  -  2pi ) + poE{Q\Z) -  Inb
=  exp ( r  -  ^ a 2p2E(P\Z)  +  p<rE(Q\Z)) $

y/a*(l  -  p2)E(P\Z)

t  -  \ a 2E{P\Z) + paE(Q\Z)  -  Inb 

y/0 *(l ~ P2)E(P\Z)
- 6$  ------ , . (6.19)

Thus the first term approximation to the price of the call option is obtained by taking the 

expectation of Cl(Z) with respect to Z, i.e.

/•OO -I

{ l { z ) - = e * z2dz. (6.20)
-oo v 27T

As noted earlier, the first term alone does not approximate the lower bound of the price 

of the option accurately enough. Thus, we have to use the second term of Lemma 6 .1  - 

the correction factor. To calculate the correction factor, we need to calculate Var(Q|Z) and 

y QQ(a2E(P\Z) ,paE(Q\Z)) .

Now, continuing from equation (6.12), we have

V Q Q ( a 2 E ( P \ Z ) , p < 7 E ( Q \ Z ) )

'r + paE(Q\Z) +  ±a2(l -  2 p2) E ( P \Z ) -  Inb=  |e x p  ( r  +  paE{Q\Z) -  ±<j2p2E (P \Z )^  <£>
y/<?2(l  -  p*)E(P\Z)

r + poE{Q\Z)  -  ±a2p2E ( P \Z ) (  (r +  paE(Q\Z) + -  2 p2)E{P\Z) -  Inb)'
6 X p

y / 2 a 2n ( l  -  p2)E(P\Z)  V 2 ct2 ( 1  -  p?)E(P\Z)

Also,

{ p ^  _  1 k2 r1 t rO) Jr p-f 1 _  1 /*! fcB(l)
V a r ( 5 _ p - i |Z ) +  YgVar(Jf e ~ ^ d s \ Z )  -  |C o v (— -g— , jf e~ t~

We thus have,
k B  i

k hi
2 4

n/3Z<:Var( j |Z) =  e °2 e s _ e 2 e ie =  — e 2 (e» - e « )4 y/3Zfc fcl
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( Vzzk k2\  r1 ( k . „ k2 \ "
-  exp I ——  +  32  1 yo exP ( ?JuZ +  — suuj  du .

Having obtained these values, we can easily find the value of Var(Q|Z) and using Var(Q|Z)

and q q ( g 2 E ( P \Z ) , paE{Q\Z)),  we can find the correction factor, conditionally on Z, given

by

@(Z) = l- p 2a ^ QQ{<j2E{P \Z ) t paE{Q\Z))VBi{Q\Z).

To calculate the correction factor, we take the expectation of Q(Z)  i.e. we calculate

7 ^ e~4 d z  (6 -21)

Finally, we just add up the calculated values of the prices and the corresponding correction 

factor to get an approximation to price of the option. Thus, the Corrected Calculated Price 

is given by

m e ~ r{H1 + H2) (6 .2 2 )

where # i  is the first term approximation to the price, H 2 is the associated correction factor 

and Xo is the current price of the asset (we assume Xq =  1 0 0 ).

6.2.2 The Ornstein - Uhlenbeck Case

In this case, we have the volatility process following an Ornstein Uhlenbeck process. The 

tendency of an Ornstein Uhlenbeck process to move towards a long - term average value

H2 = j  Q(z)



(see Stein and Stein (1991)) makes it a more realistic model for the volatility process. As 

in the situation of the volatility process following a Brownian motion, here also, we have 

two independent standard Brownian motions, B ^  and B f \  Further, the volatility process 

and the logarithm of the price are correlated with correlation co-efficient p. Also, r, a and k 

denote exactly the same thing as earlier, the only extra term being a - the mean reversion 

force of the Ornstein - Uhlenbeck process. Thus the stochastic process defining this set up 

under an equivalent martingale measure (Harrison & Kreps (1979) and Harrison & Pliska 

(1981)) is given by

dXt =  r X tdt + a e ^ - X t l p d B ^  + y / l  -  f i B f * ) ,  (6.23)

dVt =  - a V tdt +  dB,(1). (6.24)

As before, we are interested in finding

X 0 {e~rE(eY' -  b)+},

where b is the strike price, X q is the current price of the asset and Yi, the price of the asset

at time t = 1 , is as defined in equation (6.25). Here also, we take Yt =  ̂ ( ^ ) 5 and assume

t = l  and Yo =  0. Proceeding in a similar manner as before, we get

Yi =  r +  o I p e ^ d B ^  +  a f  \ / l  — p2et 4 dBf^ — \-g2 f  ekV‘ds. (6.25)
Jo  J o  2 J 0

Again, conditionally on the paths of { 5 ^ ,0  < s < 1 }, we have a y j l  — ( P - e ^ d B ^

following a normal distribution with zero mean and variance cr2(l — p2) ekVsds.

Also, Y*i conditioned on the path { B ^ \  0 < t < 1 } follows a normal distribution with mean 

A and variance E2, where

A  = r -  U 2 1 1 ekv,dt + a I p e ^ d B ^  (6.26)
2 Jo Jo

E2 =  ct2(1 -  p2) I ekv‘dt (6.27)
J o

Let us, as in the case of the Brownian motion, define



Thus,

A = r — \ a 2P  +  paQ
JU

and E2 =  a 2(l — p2)P.

We use the argument similar to the one used in the case of the volatility following a simple 

Brownian motion to express e ~ ^ d B ^  in terms of time integrable terms. Thus, using Ito

calculus

exp { \ Vt =  ^exp ( M  - a V tdt + dB\(i)

Integrating both sides over the range [0,1], as T is assumed to be 1 , we have

exp =  a V ttx p (H  d t + \  I  exp (IK) dB‘(1) + i j 2 ~ I  exp (IvAdt

exp ( f i l )  -  1

4 Jo

kVt
„ 6XPU dt + a J  V*exp ^  

(6.28)

As before, let us define

$ ( a 2P, paQ) =  (eYl — b)+ =  max[(eyi — 6),0]

where Y\ is given by equation (6.25). Again, we are interested in finding

E [ $ ( a P, paQ)] =  P (e  1 -  b)+ =  exp ( A +  —  j  $
£ 2\  „ /A  +  E2 - M

\ / £ 2

A — lnb\
Vs2 J

=  exp (r -  p2P  +  Q)) $
r +  i<j2P ( l  — 2p2) +  paQ — lnb\  (  r — \ P  +  paQ — Inb

y / a * { l  -  p2)P 7 a2( l - p 2 ) p

(6.29)

Equation (6.29) represents the first term approximation to the price of the option. However, 

as stated earlier, the first term alone does not approximate the price well enough - a fact 

reflected in the tables given later. Thus, we also need the second term of Lemma 6.1 - in 

effect the Correction Factor.
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To calculate E[$(<j2P, paQ)), we make use of Lemma 6.1. Thus, we first calculate Cl(Z), 

where

Q(Z) = ${a 2E{P\Z),paE{Q\Z)).

Here, Z is a suitably chosen conditioning factor and has a standard normal distribution. 

To get the unconditional value of the first term approximation to the price, we take the 

expectation of £l(Z) with respect to Z.

Similarly, to obtain the correction factor we define O(Z) as

6 (Z) = ±p2<7 H QQ(o2E(P\Z),paE(Q\Z))Va.T(Q\Z).

This is exactly the same as the second term in Lemma 6.1. Finally, to get the unconditional 

value of the correction factor, we take the expectation of 0 (2 )  with respect to Z.

Thus to calculate the price, we make use of the same conditioning argument as earlier. The 

conditioning factor used here is

f o  V s d s

^/Var ( / ;  Vsds)

where

I '1 2o — (1 — e_a)(3 — e~a)
Vo VsdS) = l   /  dS = ------------- 2 ? -------------

The justification of using the above form of Z as a conditioning factor has been shown in 

chapter 3.

To calculate Q(Z) and 0 (2 ’), we first find out a j u such that the conditional expectation is 

independent of the conditioning factor. We also need to find the conditional variance and 

covariance of the Ornstein - Uhlenbeck process { 1 4 , 0 < t < l } .  Thus, we have,

E{Vu\ Z ) = j uZ, (6.31)

where

j u =  Cov(Vu, Z)  =  1 Cov(K, [  Vsds)
y V ar ( / ;  Vsds) Jo
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yVar(/„l V.d»)
E(VuVt)dt+  /  E{VuVt)dt

Vsds)

f u e aus in h (a t )^  j ’1 e atsinh(au) ^
IJ o

1 e au(cosh(au) — 1) +  sinh(au){e au — e a}

^/V ar(/#l V$ds)

Also,

flU{cosh(au) H-sinh(au)} — e au — e asinh(aii) 
y/2 a — (1 — e~a)(3 — e~a) ]• (6.32)

e a \ u - v \  _  g-a(ii+v)
Cov(K, Vv\Z) =  Cov(14, K) -  j u j v  =  (----------«---------- ) ~  j u j v  =  (6.33)

Moreover, 14 conditioned on Z is a Gaussian process.

Once we have these values, we can easily calculate the values of E(P\Z)  and E(Q\Z).

k 2
E(P\Z)  =  j exp I kjuZ  +  y suu j  du, (6.34)

E(Q\Z) =
exp ( “ * +  f  -  £ 2}) -  1 /•> *

i  /> 4
exp ( +  y suu du

/
jo

+a / + o (
1 , 1  - e —2 a u

2 '  2 a - i l )
. ju Z  , 1 rl  — e-2o“ 

6XP 1 —  +  8 2a -  J«]) (6.35)

2g—(1—e ~ a )(3—e ~ tt)where L = and B =  y --------

Thus, conditionally on Z, we have

fi(£ ) =  exp ( r  -  l a V £ ( P |Z )  +  /xrE(Q\Z)j  4>
V +  \ o 2E(P \Z ){ \  -  2p2) +  /xr£(Q |Z) -  Inb 

1 -  p2)£ (P |£ )

-6 $
r  -  i<r2P (P |Z )  +  p<rP(Q|Z) -  Inb 

v/<P(l -  P2)P (P |Z )
(6.36)
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To obtain the first term in the approximation to the price of the call option, as given 

by Lemma 6 .1 , we take the expectation of Q(Z) with respect to Z. Thus, the first term 

approximation to the price of the option is

r ° °  i .2
Hi = Q(z)—= e  2 dz. (6.37)

J —oo \ J 2t t

To obtain the correction factor, the second term in Lemma 6.1, we proceed exactly the same 

way as in case of the volatility process following a Brownian motion. We need the terms 

V QQ{<j2E{P\Z),paE{Q\Z))  and Var(Q|Z).

Now,

<BQQ(a2E ( P \ Z ) , p o E ( Q \ Z ) )

exp ( r  +  p * E {Q \ Z )  ~  W )  *  ^  +  +  ^
2 7  V V a 2(l -  /P)E(P\Z)

exp (r + poE(Q\Z)  -  i a 2p2E(P\Z))  /  ( r  + \ a 2E{P\Z)( \  -  2p2) +  paE(Q\Z) -  Inb)'
* exp ' ------  ---------------------------------

72<t27t( 1 -  p ) E { P \Z )  V 2 <r2(l -  p2)E(P\Z)

and

{ e^T1 — 1 k 2 C l  kVt r 1 itv,
Var(— p — \Z) + — Va.i{J e ^ d t \ Z )  + a2Vax(J Vte ^ d t \ Z )

k V x T . k V l  1
p  2 — 1 /* fcV* ]c £ 2  — 1 I kV*

+2aCov(— p — , /  VSe-^dtlZ) -  -C ov( - p  /  e ^ d t |Z )
2 2

Q>k ^  . f 1 k V t  f 1 fcVj.. . „
Cov( /  V ^ d t ,  /  e ^ d t | 2 )

2 7o 7o

k 2 ,  o ,  _ „ k  „ a k  t
#6— 7i +  —7/2 4- fl2/3 4- 2a74 — —/s — — 7|

16 2 u 2 

where,

7i =  [exp (&Lz){exp(y  ( ■  -  L2)) -  e x p (^ [^ § ^ -  -  L2])}],

I 2 = Var(/o exp(^)cft|Z ) =  f* exp( l ( ju + j v)Z  4- ^ [ s ttu 4- svt,]){exp(^suv) -  1 jdudv,  

h  =  Var( / 01 di|Z) =  f*  ex p ( |[jt 4- j u\Z  4- 4- suu])[exp(*£stu)stu -  1 ]dtdu

n1 k k2 k2 k k
exp(—[jt 4" ju]Z 4 g~[^  ̂d- d d~ 2 {^tt d- }{ juZ  4- ~ (sult 4~ Stu)ydtdu,

91



h  = C o v ( £ ^ i ,  f 1 Vte ^  dt\Z)

= J  exp( ^ j t Z  +  Y s t t ) { U t Z  +  | ( s t t +  su ))e x p ( |ji^  +  ^ - sn  +  s“ ) “  exp( f +  y Sll)}rf

^  . kVf 
h  =  Cov(e \ i  1, / 0 e 2 dt\Z)

=  w [  exp ( f  h z  +  Y s « ){ exP ( | j i ^  +  Y s n  +  Y Sl") “  exP ( ^ ' i^  +  y * i i ) } * .
2

J6 =  Cov(/0A V ^ d t ,  f 0l e ^ d t \ Z )

-1 '•> k2. ............. k2n A; A; k k k
ex p (-[7's +  +  y [ 5SS +  s«]){[exp(—sat)(j tZ  +  g +  Ŝ ))I “  t i tZ  +  -s*t]}dsoft.

Here L  =  1 2 g j£  and M  =  ^/Varf/,,1 Fsds) =

Once we have all the values of i i ,  / 2 , h ,  h ,  h  and 1$, we can easily have the value of 

Var(Q|Z). Knowing E(P\Z)  and E(Q\Z)  , as given by equation (6.34) and (6.35), we can 

find ^QQ(a2E(P\Z),  paE(Q\Z)).  The correction factor ©(Z), conditionally on Z, is given as

Q(Z)  =  ^ c ^ Q Q ^ E ^ ^ a E i Q l z m ^ Z ) .

Thus, the correction factor is obtained by taking the expectation of 0 (Z ) with respect to Z 

and is given by

H
r°° i -*2=  / 0 ( z ) —r=e  2 dz. (6.38)

J —oo v 27T

Finally, we just add up the calculated values of the prices and the corresponding correction 

factor to get an approximation to the price of the option. Thus, the Corrected Calculated 

Price is given by

100e-r (tfi +  tf2) (6.39)

where Hi  is the first term approximation to the price, H2 is the associated correction factor 

and X 0 is the current price of the asset (we assume X 0 =  100).

92



6.3 Stochastic Interest Rates

The validity of a constant interest rate, as discussed in the previous section, might not hold 

in all circumstances. In this section, we look at the situation where the interest rate process 

{rt,0 < t < 1} is itself stochastic in nature. Empirically it has been observed tha t interest 

rates have a tendency to move towards a long - term average value. Using this empirical 

knowledge, we shall model the interest rate process as an Ornstein - Uhlenbeck process. In 

fact, we shall take the interest rate to follow the Vasicek (1977) model. Now, generalising 

from equations (6.1) and (6.2) and the Hull and White approach, the price of a derivative 

asset with stochastic interest rate under an equivalent martingale measure [see Harrison and 

Krepps (1979) and Harrison and Pliska (1981)] follows the following stochastic process :

d X t = rtX tdt +  a e ^ X t l y / l  ~  f d B f 1 +  f rdB t(2) +  pidB,(1)] (6.40)

drt =  —b(rt — r')dt +  — "f2d B ^  +  (6-41)

dVt =  pdt + dB ,(1) (6.42)

where { V t , 0 < £ < l } i s  the volatility process, p is the drift of the Brownian motion defining 

the volatility process, b is the mean reversion force of the Ornstein - Uhlenbeck process 

defining the interest rate process and r* is the long term interest rate value. As in the case 

of constant interest rates, the volatility process could follow an Ornstein - Uhlenbeck process 

as well and is given by

dVt = -aVtdt + dBt(1) (6.43)

where a is the mean reversion force of the Ornstein - Uhlenbeck process defining the volatility 

process. B ^ \  and are three independent Brownian motions. Also, {rt,0  <  t  < 1 } 

is the interest rate process and X t is the price process. Further, the volatility process, 

the interest rate process and the logarithm of the price process are correlated amongst 

themselves. We thus have, 7  as the correlation between the volatility process and the interest 

rate process, pi as the correlation between the volatility process and the logarithm of the 

price process and p2 as the correlation between the price and the interest rate processes. 

Also pi and p2 are such that p2 +  p{ +  p\ =  1 .
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As before, we look at the situations of the volatility process following a simple Brownian 

motion and that of it following an Ornstein Uhlenbeck process separately.

6.3.1 The Simple One Dimensional Brownian M otion Problem

We first discuss the situation of the volatility process following a standard Brownian motion, 

with the drift of the Brownian motion being 0 . Thus, the price process { X t, 0 <  t  <  1 }, 

interest rate process {rf, 0 < t < 1} and the volatility process {Vt,0 < i < l }  are defined as

d X t =  rtX tdt + o e ^ X t W l  -  p2d B ? ) +  p2dB ,(2) +  pidBt(1)], (6.44)

drt = —b(rt — r*)dt +  — y*dBf^ + jdB ^1'1}, (6.45)

dVt =  dBt(1). (6.46)

We are interested in finding

X 0E { e - ^ uds{eYl - c ) +], (6.47)

where c is the strike price at which the value of the option is calculated and Xq is the current 

price. The difference in this situation from the one in section 6 .2 .1 ., equation (6 .6 ) is that 

here the interest rate is not a constant and hence cannot be taken out of the expectation. 

Now, let Yt = and t = 1 . Then taking logarithm and then integrating equation (6.44),

we have

Y1 = Y 0 + /„* rtdt + o \J l  -  p2 /„’ e~Y-  d B f ] +  api f*  e.~t-  dB t(1)

+OP2 [ '  e ^ d B ^  -  U 2 f  ekB‘' \  (6.48)
Jo 2 Jo

Further, on integrating equation (6.45), we have

r u = r* + (r0 -  + <jn / "  e~b{u- s)dB™ + <j>y/l -  7 2 / ' ” e~b̂ - s)d B ^  (6.49)
Jo  J o

=> R i =  So r udu  =  r*  +  ( r 0 -  r

+<h f  ( \ - b̂ d B ^ d u  + ^ ^  I  [ U e~Ku- s)dBi2)du (6.50)
J o  J o  J o  J o
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1 _  p - b  r l  1 _  p b ( s - l )    r l  -t _  M s - 1)
=  r* +  (r0 -  r*)—  ------1- 0 7  j  ----------  d B ^  + </>y/T^i* J    d B f \  (6.51)

Let us assume Y0 = 0 and on replacing f* rtdt in equation (6.48) by the expression of f*  rtdt 

as given by equation (6.51), we have

1 _  p~b r l  1 _  p b { s - 1)   r l  i _  p b ( s - 1)
Y i =  r + ( r 0 -  r * ) — —  +  <t>j J     ^  1 -  72 J  — ^ ---------d £ < 2>

ehB‘l)ds.
,______ Z'1 /*! fc»(D /•! fc»(i) 1 Z*1

-fc r\/l ~  P2 /  2“ d j B ^ + a p i  /  e 2 dJ3^+<Tp2 /  e ~ 2~ d B ^  — - a 2
J o  Jo  J o  2 y0

(6.52)

Let

,______  Z'1 1 — a>6(s_1) Z'1
Ci =  0^ 1 “  7 2 j  ------ £------ ^  +  aP2 j  e _ dB(2\

Now, conditionally on the paths of {12^,0 < s < 1}, Y\ and R\  have a bivariate normal 

distribution with means

r* +  (ro _  r * ) i ^  + 07 f 1 +  api f 1 e ^ d S ? )  -  Jo2 [ '  e ^ d s
b Jo b Jo 2 J 0

and

1 _  p ~ b  f l  1 _  ^ 6 (s-l)
r* +  ( r0 -  r * ) — - —  +  07  J  ------- -------- d B ^ \

variances

a2( 1 -  p2) / 0l e ^ ’ds +  02(1 -  72) 2̂ C ^ 3 + a2p2 j i  ekBi»ds

,:l k B j 1 — eb(s_1)/ o I kB* 1 — e™ '+ 0 <7 p2 yj  1 -  7  /  e 2 -------------ds
Jo b

and

02(1 -  72)
2 2, 2b + 4e~b -  e -2b -  3

263

respectively. Further, the covariance is given by

4>2 ( i -  72) 26  +  4e~ ^ e~211- "  +  <^#2  J2b +  4e~b — e" 21 -  3 , /:------  f 1 ^  1 -  e ^ - 1)e 2 ------   ds.
o b
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Writing Ri  for / 0 rsds in equation (6.47), we are thus interested in

E[e~Rl{eYl - c ) +]. (6.53)

Let us define R[ such that

R[ = R i - p Y i

where

Cov(R[, Yi) = Cov (R u Yi) -  pVax{Yi) = 0 

CoV(Ru Yi)

Substituting in equation (6.53), we have

e~Rl(eYl — c)+ =  e~(R'1+pYl\ e yi — c)+ =  e~ R>1 (e~pYl (eYl — c)+) =  A (yi,i?i) say.

We are interested in finding

E[A(Yi, Ri)} =  E[e-R']E[e-pYl (eYl -  c)+}. (6.54)

As before, we use a conditioning factor to obtain an approximation to the price of the call 

option. The volatility process follows a Brownian motion. Thus, following the explanation 

given in chapter 3, the conditioning factor Z is given as

So B P d s

^/Var( j ;  EfPda) ’

where V ar(/01 B ^ d s )  =  |  and Z has a standard normal distribution. This conditioning 

factor is similar to the one used by Rogers and Shi (1995) in valuing an Asian option. Thus, 

we have

E{Bu\ Z ) = j uZ  (6.55)

where j u =  Cov(Bu, Z)  =  - j ^ L = = C o v { B u, B sds)

CU r- U2
=  V s  / (1 — s)ds =  Vs(u  — —). (6.56)

Jo 2
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Also,

Cov(Bu, B V\Z) = (u A v) -  j uj v = suv. (6.57)

Note here that the three stochastic integrals that we need to calculate to evaluate E(Y{) and 

E(R\)  are

f l  i _  p - b ( l - s )
' i  i  dB(1>

h s 10 0

e ^ d s
o

and

k pO)> ■» f t t
'  S 

'0
d B V .

Now, the last two are exactly the same as P and Q as defined in section 6.2.1. However, to 

calculate e i B^ d B ^ ,  we need to find a gi such that conditioning on Z, f*  1 e *-(1 3- d B ^  — 

g \Z  is independent of Z. Here g\ is given by

f 1 l  — e- 6(i-s) r 1 i  _  e-Ki-*)
9 i

n  i  _  e- 6(i-s) r  1 — e~b[1~s>
= Cov( j  -------------- d B ? \  Z)  =  J^ -------   (1 -  s)ds

Also,

r l  1 _  g—6(1—s) r l  i _  g—6(1—s) f l  i  _  g—6(1—s)
Var( J     d B , - g 1Z) = V a i ( j  ---------------d B , ) - 2 giCav(J  ---------------dBs, Z) +  p?

/•^ l  - e ~b(l- s\ ,  , 2 26 +  4e-6  — e-26 — 3 2 r „,
=  (------- $-------)2^ - 5? = ------------ ^ --------------- r f . (6.59)

r ' , 1  ,  26 +  4e~b — e~2b — 3
r0

This implies, conditionally on the paths of { B ^ \  0 < s <  1 }, Ri  follows a normal distribution 

with mean

r* +  (r0 -  r*)— r --- -̂4>19i Z
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and variance

,2 ( 2 b +  4 e - b - e - 2b - 3 \  , 2 2 2

* (  w  ' "  0  7  S?

Let us define the L =  Cav(Yi,Ri\Z),  Ai  =  E(Yi\Z),  E? =  V a r^ lz ) ,  A 2 =  £ ( i? i |£ )  and 

E2 =  Vax(R\\Z). We thus have,

12 , , 2^26 +  4e-il -  e '2i -  3 , ,------------[ f l n # ’ ( \  -  r-W -*)'
L  =  (j) (1 -  7 ) ----------- 2̂ 3------------ +  V 1 -  7 2#  J e 2 d s |.Z

2 2' 2fc +  4 e ' l>- e ' 2!' - 3=  ^ (  I - 7 2) 263 + <70/32l/l — 72 J  e*k,!2Z + 2S““* (
1 _  g -6(l-u)

du, 

(6.60)

1 -  e“ 6
A i =  r* +  ( r 0 -  r * ) — :--------h $ i g \ Z  +  a p i E J.1 kB*1)

- £
r 2 l !

ikB^ d s \ Z

=  r *  +  ( r 0 -  r * )

where

- / 'Jo
P =  I ekB^ d s

'O

kB ^  m
Q =  /  e -# -d flW  =

Jo

e  2 — 1 k
 £---------— e * ds (using Ito calculus (section 6 .2 .1))

o J 00 2 ** «/0 

and B (P |B ) and E(Q\Z)  are given by equations (6.17) and (6.18) respectively.Also,

E2 =  <r2(l -  p2) f  ekk' z+i s™du +  0 2 (1 -  7 2) 
J o

2b + 4e~b -  e~2b -  3 ,  ,
2^  + < 7 p 2

f  gkkuZ-{-  ̂
J O

*$uudu

+<j(f>p2 y / l  ~  7 2 I  e ^  
Jo

Z  1 1  —  p ~ bd - “ )
- + 2S““-------  dw — <j)2rY2g l , (6.61)

A 2 =  r* +  ( r 0 -  r * ) - — ----- 1- 4 > ig iZ y (6.62)

E2 =  <A2
2b +  4e~ l1 -  e-26 -  3 

2ft3 -  4>2'i2 §\ (6.63)
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Now, conditionally on Z, Y\ follows a normal distribution with mean A\  and variance E2 and 

Ri  follows a normal distribution with mean A 2 and variance E^.

To calculate £[A(Yi,.Ri)], we use the technique used in the previous section. We first find 

the expected value of A(Yi, Ri)  conditionally on Z and then take expectation over Z to obtain 

the unconditional value. Now, conditionally on Z, we have

E[k{Yu Ri\Z)\  =  E[R[\Z]E[e~pYl(eYl -  c)+\Z] = A (Z) say. (6.64)

Now, E[A(Z)\  is exactly the same as the first term in Lemma 6.1. To calculate E[&(Z)\, 

we need to calculate E[R[\Z]dLnd E[e~pYl(eYl — c)+\Z]. Here

E[B!1 \Z] = e x p ( - [ A 2 + pA l] + ± y 2 _____
1

(6.65)

Next, we need to find
/•°o

E[e-pYl(eY' -  c)+\Z] = /  e- pYl{eYl -  c)
JlliC

( y i - M Y
2 S?

%/2¥E i
f dYi

- rJ lnc

1 <yi > r
, ( i - P ) V i — 1— c i d Y i - c  /

J \
,-pYi

\/27rEi Inc \/27rEi
dYi

= I i -  cl2 say.

Let us first prove the following lemma which we will then use to obtain the values of I\ and

h-

L em m a 6 .2 : Let Y  have a normal distribution with mean A and variance E2, then

L

00 1 4>y  i
\/27rE

exp
(Y — A)2\  /  E V \ _  ( A  + Y?4>-G'

I d Y  =  exp I A(f) H  — I $
2E2

P ro o f  : We have,

= Ja eXp( ~ i {y_[4 + ̂ 2l)2 + ^  + ̂ ) 7 f e rfK
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— exp I A(f> H  — I <$

To obtain J1? we replace 0  by (1  - p), to obtain / 2, we replace 0 by —p. In both cases, G 

takes the value of In c. Thus, conditionally on Z, the first term approximation to the price 

of the call option given by

A (Z) = exp ( ~ A 2 +  1[S^ +  E? -  21] j  exp ( ^ ( 1  -  — — 'j

f  A E22\  (  . 2 L \ „  ( A i - L - l n c X
exp ( - A 2 +  y j  exp ( - A ^ j  $  ^ -------j (6.66)

This implies that the first order approximation to the price of the call option is obtained by

taking the expectation of 'ff(Z) with respect to Z, i.e.

f'°° 1 *2
H i =  A ( z ) - = e ~ ^ d z .  (6.67)

J —oo V27T

As in the case of constant interest rate, the first term on Lemma 6.1 alone does not approx

imate the price accurately enough. So, we need the second term of the Lemma 6.1 - the 

correction factor. The correction factor is calculated exactly in the same way as for constant 

interest rate. As before, we look at the second derivative of A (Z) with respect to A\ (A\ is 

as defined earlier in the section) and multiply it with the variance of Q conditionally on Z. 

The reason for looking only at the derivative with respect to A\  is because the approxima

tion error arises from Ai  only; it is in A\  that we approximate a stochastic integral by the 

final value of the stochastic process and a time integral. Also, Q is as defined earlier in this 

section as well as by equation (6.9).

Thus, we have

jA (2 ) =  A”{z) =  exp ( - A 2 +  | p 2 +  E? -  2 L\ +  Ai[l -  | | ] )  $  ( Al+ElSlL Znc) ( l  -d A

4L 2 (  A . E* . , 2LAi \  ^  ( A\ — L — Inc
exp —Ai  +  —=■ +  In c  — I §

E \ y  V 2 E? ;  V S i
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1 (  A E | , 2LAi

t + ~2 ~ z r
exp

(Ai -  L -  Inc)' 
2EJ

(6.68)

Also,

ArBi
e  2 — l . r l «<l)

16 ./o

a- p i 1 — i r1 jtB(i) 
Var(Q|Z) =   ̂Varf t ‘ \Z) + ^ V a r (  /  e ^ d s | £ )  -  -C ov( j  , J  e - ^ d s \ Z )  >,

where
k B x

2 — 1 . 1 
Var( 1----- \Z) = WId

4

exp
\ / 3 Z k \  ( k2

exp
2 J  V 8 J "~r  \ 2

— exp y / lZ k k2

e x p | i 6

4_
¥

( V 3 Z k \  ( ( k2

6XP {— J
k 2

exP 1 — ) -  exP l Yg

Var(J  e ^ d s \ Z )  = J  J  ^e?Uu+3v)z+%-(suu+sVv+2sUv)'j _  ^e| 0'u+>)^+V(s««+s^)^ j dudv

— ^  J  CXp  ̂̂  (ju "1* 3 v ) ^  ~h g (S u u  ~k $ v v ) exp ( suv J 1 dudv

and

f 1 kB̂ 1) I 71 /  /c.. . x A;2 . N A;2 \
Cov(e 2 ,y  e 2 d5 |Z) =  y  exp +  ji )Z  +  y ( s uu +  Sn) +  — SiuJ du

VSZk  k2\  f 1 ( k  . _ A:2 . ,
GXP 1 T ~  +  32 J J0 6XP V 2 +  ~&Suu I

Having obtained these values, we have the correction factor, conditionally on Z, is given by

G(Z) = - p 2a 2A"(2 )Var(Q|Z). (6.69)

Finally, to calculate the correction factor, we take the expectation of &(Z)  with respect to 

Z, i.e., we calculate

H,
r°° i

=  L @{z ) 7 ^

. 2

e ~ ^  dz. (6.70)
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Once we obtain the calculated value of the price and the corresponding correction factor all 

th a t is left to do is to add up the two values, the calculated price and the correction factor, to 

get the value of the price of the option comparable to the actual price. Thus, the Corrected 

Calculated Price is given by

X0(ffi +  ff2), (6.71)

where Hi  is the first order approximation to the price of the call option, H2 is the associated 

correction factor and X 0 is the current price of the asset (we assume X 0 =  100).

6.3.2 The Ornstein - Uhlenbeck Case

Here, we take the volatility process to follow an Ornstein - Uhlenbeck process. As discussed 

in the situation of constant interest rates, the Ornstein - Uhlenbeck process is a more realistic 

model for the volatility process. Furthermore, the Brownian Motion can be regarded as a 

special case of the Ornstein - Uhlenbeck process with the mean reversion force a = 0. Thus, 

we have the price process {X*,0  < t < 1 }, interest rate process {r* ,0  < t <  1 } and the

volatility process {Vt, 0 < t < 1 } given as

dXt  =  rtX tdt +  X t lp ^d B ^  +  +  >/l -  f ? d B f )], (6.72)

drt =  —b(rt — r')dt  +  <f)[ydB(^ +  \ / l  — j 2d B ^ ] ,  (6.73)

dVt = - a V tdt +  dB((1). (6.74)

Here all the parameters are the same as in the case of the volatility following a Brownian 

motion and a is the mean reversion force of the Ornstein - Uhlenbeck process defining the 

volatility process. We also assume the initial value of the Ornstein - Uhlenbeck process Vo 

to be zero. We are interested in finding

XoE[e~J°r' ds(eYl — c)+] (6.75)

where c is the strike price at which the value of the option is calculated and X q is the current 

price.
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As in the earlier case, let us define Yt =  Further, let us also assume Y0 = 0 and t =  1 .

Thus, on integration of equation (6.72) we have

Yi =  Jo1 rtdt +  a y / l  -  p2 /o e ^ d B f ] +  opx e d B f(1)

+crp2 /  -  ^ a 2 f  ekVtdt. (6.76)
Jo 2 Jo

Also, let Bi =  /q1 r td£

i _  p-fc pi i _  PKs_1) ,_____  r 1 i _  z>̂ (s-i)
=  r* +  ( r 0 — r*)— -------- b 0 7  /     d B ^  +  0 ^ 1  -  7 2 /   r  ^ 2)- (6-77)b Jo b J o b

Equations (6.76) and (6.77) imply

Vi =  r* + (r0 -  +  * 7 / 0  ^ r ^ d B ^  + 1- = ^ d B ? )

+ a ^ / l  — (P- I  e ~ ^ d B f  ̂ +  ap\ /  e ~ ^ d B ^  +  ap2 /  e ~ ^d B ® — i<x2 f  ekv‘dt. (6.78)
Jo Jo Jo 2 J  o

Further, Ri  is normally distributed with mean

l _  p~b r l 1 _
r* +  (r0 -  r*)----- b 0 7  J  -------------dB™

and variance

0*7
2 2 26 +  Ae~b — e~2b — 3

2 63

As in the case of the volatility process following a Brownian motion, let us define

Ci =  0 V T f  /  -— %r----- dB {p + a p 2 [  e ~ ^ d B f \  (6.79)
J o  b J o

? ( i )Now, conditionally on the paths of {V ,̂ 0 < s < 1} i.e. on the paths of {Bs , 0 <  5 < 1}, Y\ 

and Ri have a bivariate normal distribution with means
1   p —b Z*1 1   p(b(s—1) p i  . v  -I p i

r* +  (’"o — r*)—   F 0 7  /  ------ ------- d B ^  +  a pi /  e~^ dB^  — - a 2 /  ekVsds
b J o b J o 2 Jo

and

r +  (r0 -  r  )—  -----+  0 7  J' ------ -------d B ^ \

variances

cr2(l -  p2) ekVsds +  0 2(1 -  7 2) 26+4e~2V3e"2' ~ 3 +  ^ p\ Jo' ekV*ds

*1 kv. 1 — eb(s_1)
Jr ( j ) a p 2 \ / l  -  7 2  /  e ^ 2

Jo
ds

o b
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and

0*7
2 226 +  Ae~b — e~2b — 3

2 63

respectively. Further, the covariance is given by

26 +  4e-6  — e-26 — 3 /-------  / ‘1 ^  1 -
e 2 ------   ds.

'0 &
,2/ - 2x26 +  4 e - ° - c - " - 3  , , /-------r f

0  ( 1 - 7  ) --------------^ 3 -------------- + C 7 0 P 2 V l - 7 2 y

Writing i?i for f*  rsds in equation (6.75). we are thus interested in

E[e~Rl(eYl — c)+]. (6.80)

Let us define R[ such that

R[ = R 1 - p Y 1

where

Cov{R[,Yi)  =  Cov(i?1,yi) - pVar(Yi) =  0

_  Cov( R u Y J  
P Var(Ki) '

Thus, we have

e~Rl(eYl — c)+ =  e~(R'1+pYl  ̂(eYx — c)+ =  e~ R>1 [e~pYl (eYl — c)+] =  A(Yi, Ri).

We are interested in finding

E[A{YU RJ]  = E[e-R,'}E[e~pYl (eYl -  c)+]. (6.81)

This is exactly similar to equation (6.54).

As before, we use a conditioning factor to obtain a lower bound to the price of the call

option. The volatility process follows an Ornstein - Uhlenbeck process. Thus, following the

explanation given in chapter 3, the conditioning factor Z is given as

fpVsds  

]/Va.r(fo Vsds) ’
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where

Var( f Vsm ds) = 
Jo

-1 f 1 _  e-o(i-») 1 2 2a -  (1 -  e—)(3 -  e~a) 
as = --------

'o Jo ( u ) 2 a3

Further, Z has a standard normal distribution. Thus, we have

E(Vu\ Z ) = j uZ,

where j u = ^=Cov(K , f* Vsds)

e~au {cosh(au) +  sinh(au)} — e~au — e~asinh(au)

=  V  say.

Also,

-y/2a  — (1 — e-a )(3 — e-a )

ga|u-u| _  e—o(u+u)
Cov(14; ^v\^)  — Cov(Vyj VyJ — jujv — — &UV'

(6.82)

(6.83)

(6.84)

Note here that the three stochastic integrals that we need to calculate to evaluate E(Y\)  and 

E(Ri)  are

f i 1 -

'o1
■ d & \

I. 0 )
ekv‘ ds

and

e 2

Now, the last two are exactly the same as P and Q as defined in section 6.2.2. to calculate 

Jo 1-~ r* \  we need to find a gi such that conditioning on Z, / J  dBs1̂ — piZ

is independent of Z. Here is given by

1 1 — 1 _ f l 1 — e—6(1—«)

0
Pi

r l  1 _  ^ -6(1-5 ) i /*1 1 _  p -fc (l-s )  /*1 ru
= Cov(jf  j dB®, Z)  = - j = C a v { ]   j d B « ,^  e— jT e^dBWds)

=  ^ C0V(/„
•1 1 _  „-b(l-s) /‘I /*1

—  dB^, / J e-^dse^dBP)
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Also, V a r ^ 1 d B ^  -  3 lZ)

f l  1 _  p —b(l—s) f l  1 _  p —b(l—s)
= Var(J  ---------------dBji» ) - 2 g 1Cav(J  -------g-------dBl1\ Z )  + g21

I ( 1 _  e-b ( l s )  } 2 ^  + 4g_6 _  e_2b _  3

o , — ------- )  d S ~ S' = ----------- 2P --------------

This implies, conditionally on the paths of {Vs; 0 <  s < 1) that is the same as the paths of 

{B« ; 0  <  s <  1), R\  follows a normal distribution with mean

r* +  (r0 -  r*)-—p ---- h (f>J9 iZ

2 / 2b +  4e b — e 2b — 3 \ , 2 2 2

and variance

** { " -  ’" V --------

Let us define L =  C o v ^ , R ^ Z ) ,  Ax =  A 2 =  £ (.R i|£ ), S? =  V&x(Yx\Z) and

S 2 =  Var(Bi|Z). We thus have

r ,2/1 2\ 26 +  4e_il -  e~2t — 3  ̂ [ f 1 a a  /1  -  e_4(1_s)\B = 0 (1 — 7 ) 2ft3 + ct# 2\/1 -7 2B / e 2 ( ----- -̂----J ds|B

=  ^2( l - 7 2) 2 6 + — 26-3 e - + < j < t > P 2 \ / l - l 2 6&(— du,

(6.86)

1 -  e~b
Ai  =  r* +  (r0 -  r*)—   I- 4>ygiz +  op\E C  e ^ d B l l)\z] -  \ a 2E  f  ekv‘ds\Z  

Jo . 2 7  0



=  r* +  (r0 -  r*)—  h 07Piz +  o-pi£[Q|Z] -  icr2J5[P|Z], (6.87)

where, as defined earlier in section 6 .2 .2 ,

P =  I  ekv‘ds 
Jo

and
fcV,X i  X X

Q = f  e^Vsd B ^  =  -— ^— - — 7  /  ds + a f  Vte^Ytdt (using Ito calculus),
JO 2 J° •'O

and P (P |Z )  and I?(Q|Z) are given by equation (6.34) and (6.35) respectively. Also,

Ej =  ct2( 1 — p2) I  ekiuZ+^Suudu +  4>2 (1  — 7 2) —— — - r r r -    +  cr2p2 [  ekjuZ*^Suudu
Jo 26 Jo

,_____  /•! , . 7 . 1 _  o—6(1—u)
+a<j>p2 y / l  -  7 2 /  e 2 +2Su“--------- r-----du-<^ 2^ 2g\, (6 .8 8 )

Jo o

A2 =  r* +  (r0 -  r*)^—j7 ---- 1- <£701Z, (6.89)

^2 2  ̂+  4e 6 e 2i — 3 ^ 2 2 2  /c nn\
^2  =  0 ----------- 263-------------- r T 9 i -  (6.90)

Now, conditionally on Z, Yi follows a normal distribution with mean A\  and variance E2 and 

Ri  follows a normal distribution with mean A 2 and variance E2.

Once we have found all these values, we then proceed to find an approximation to the price 

of the call option. To do this we use a conditional approach as in all previous situations. 

Thus, we first look at

E[A{YU Ri\Z)] =  E[R!{\Z]E[e-pYl(eYl -  c)+\Z] = A (Z)  say.

This is exactly similar to equation (6.64) when the volatility process is a simple one di

mensional Brownian motion. Proceeding exactly in the same manner as in the case of the 

volatility following a simple Brownian motion, we have using equation (6.65) and Lemma 

6.2, the first order approximation to the price of the option, conditionally on Z, given by
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A(z) =  exp ( -A *  +  ^[E2 +  E2 -  21] +  ^ [ 1  ~ | f  ] W
A\  +  £ 2 — L — Inc

Si

—c £ 2  2Lj4i \  (  A\ — L  — Inc
exp - A 2 +  — =5— $ (6.91)

2 E? J V Si 

This is the same as the first term of Lemma 6 .1 . Thus, the first order approximation t to 

the price of the call option is obtained by taking the expectation of Z ) with respect to Z; 

i.e.

r°° 1 -2# i  =  /  A { z ) - = e ~ =Tdz. (6.92)
J —oo y/OiTT

As noted in all the situations discussed earlier, the first term of Lemma 6 .1  alone does not 

approximate the price accurately enough. So, we need the second term of the Lemma 6.1 - 

the correction factor. To calculate the correction factor we take the product of the second 

derivative of A (Z) with respect to A\ and the variance of Q conditionally on Z where Q 

is as defined earlier in this section and is the same as given by equation (6.28) and A\  is 

defined in equation (6.87). The reason for looking only at the derivative with respect to A\  

is because the approximation error arises from A\  only; it is in A\  that we approximate a 

stochastic integral by the final value of the stochastic process and a time integral.

Thus, we have

d2

3A\

where,

A(z) =  A"(z) = C F l  -  CF2  +  CF3,  (6.93)

(  . 1 ^ 2  ^2  „ „  2 L .\  ( A\ + l S  — L  — ln c \  (  2L \ 2
C F l  -  exp ^-v42 +  - [S 2 +  £ i -  2L] +  A i[l -  ^ -----------—---------- J ^ 1  -  ,

4 L 2 (  A E? , 2 LAi \  ,  ( A i -  L - I n c
C F 2  =  -=rexp - A 2 + - £  + l n c ---------- ==-=■ $  '

£< ^  ^ 2 S i /  V Ei J

, (  , E? , 2 L A i \  1 (  (Ai — L  — Inc) 2
and C F 2> =  exp I — Ao +  —  + In c  —f— ) — exp '

2 S? J K V 2 E2 )

Now,

(  —  1  k 2  7 1 k V  f 1 k V i
V ar(Q |^) =  { Var(— p — \Z) +  — Var( /  e ^ d t \ Z )  + a2Var( /  Vte ^ d t \ Z )

-7T 16 Jo Jo
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k V\   ̂ k V \  t j

+ 2aCov(e ^  ~ \  /  Vte ^ d t \ Z )  -  ^C ov(e 8 /  e ^ c ttlZ )

1 fcV, f‘l k V f
^ C o v (  I Vte ^ d t ,  I e ^ d t \ Z )

2  Jo  J o  J
}

k 2  t  9  T— Ii +  — h  + a 1 $ + 2 a/ 4 — —75 — — / 6

where,

/ i  = exp (fcDZ) .j exp  ̂y ( — ^ --------£>2))  -  exp
1 — e—2a

2a

^  f   ̂ f*̂  (  k  k^
=  Var(J  e 2 dt\Z) =  J  J  exp f - [ j u +  +  — [suu +  svv]

- D '

k 2
exp ( y 5™ ] -  l dudv,

r l ^  f 1 f‘l k k 2 k2
= Var( j  Vte 2 cft|Z) =  / /  ex p (-[jt +  j u]Z +  — [stt +  5uu])[exp(— stu)stu -  1 ]dtdu

0 jo

n1 k k2 k2 k k
®^p(~ \jt 3u[^  ̂ ^"[s« "h ^wi] “I “I- ~^(stt “h +  ~{suu ■+■ Stu)}dtdu,

^Y'i 1 u y ,

h  =  C o v ( 2 ^ i ,  /q1 Vte ^ d t \ Z )
2

= exp( ^ j tZ  + -gStt){(jtZ  +  \ { s«  + s 11))exp( ^ ; 12  +  y s n  +  s lt) -  e x p (^ jiZ  +  y sn )}dt ,

k V 1

h  =  Cov(e---Ŷ 1, /q1 dt\Z)

=  W  J q e x P ( \ i t Z  +  Y s t t ) { e x p { p i Z  +  y  s n  +  y  5 lu ) -  e x p ( ^ ? i Z  +  y  S n ) } ^ ,

/ 6 =  Cov( /q Vte*¥dt, dtjZ)

n
'1 k k2 k 2 k k

exp(2 \}‘ +  i*]Z +  +  2 {Sss +  _  ViZ  +  2 s“ l^(is* -

Here D =  and M  = y / v a i t f  V.d») =
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Once we have all the values of Ii,  J2, Is, I4 , I5 and Iq, we can easily have the value of 

Vai(Q\Z).  Having obtained Var(Q|Z), we can easily find the correction factor, conditionally 

on Z, is given by

@(Z) = \ p\ g2[CFI -  CF2  +  CF3]Var(Q |£). (6.94)

Finally, to calculate the correction factor, we take the expectation of 0 (Z) with respect to 

Z, i.e., we calculate

Once we have obtained the first order approximation to the price and the corresponding 

correction factor all that is left to do is to add up the two values to get the approximate 

price of the option comparable to the actual price. The Corrected Calculated Price is given 

by

X Q{H, + H2), (6.96)

where H\  is the first order approximation to the price of the call option, H 2 is the associated 

correction factor and Xo is the current price of the asset (we assume Xo =  1 0 0 ).

6.4 Calculations

For all cases, we look at various values of the strike price; in fact, we let the strike price vary 

between 110 and 90 in steps of 5. Further, in the case of the volatility process following an 

Ornstein - Uhlenbeck process, we let the mean reversion force, a to take values between 0.1 

and 10. Also, k =  1 and a =  0.1.

For the constant interest rate situation, we allow p, the correlation factor, to take any value 

between ± 1 . The case of p =  0 is included as a specific case of this general framework. The 

value of the interest rate is taken to be 5%, i.e. r =  0.05.

For the stochastic interest rate situation, we allow pi, p2 and thereby p as well as 7  to take 

any value between ± 1 . The long term value of the interest rate is taken to be 5 %, i.e.

110

H2 = I  Q(z)
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r* =  0.05 and 7  =  0.025. We also let 6, the mean reversion force in the process defining the 

interest rate to take different values in the range of 2 to 1 0 0 .

For comparison purposes, we calculate the prices from simulated values for both the volatility 

processes. Also included are the standard errors of the simulated values.

The results in the case of the volatility process following a Brownian motion with constant 

interest rate is given in Table 1 1 ; while for the volatility process following an Ornstein - 

Uhlenbeck process with constant interest rate, the results are given in Tables 12.1 to 12.4. 

The results in the case of the volatility process following a Brownian motion with stochastic 

interest rates are given in Tables 13.1 and 13.2; while for the volatility process following an 

Ornstein - Uhlenbeck process with stochastic interest rates, the results are given in Tables 

14.1 and 14.2.

6.5 Implied Volatilities

We first discuss the situation of constant interest rate. Here, we have two stochastic processes 

- the stochastic volatility process and the price process. Tables 15.1 and 15.2 show the values 

of implied volatilities for different values of p and the strike price. The 3-dimensional plots 

(Figure 1 - 5 )  show how implied volatilities behave with changes in the correlation between 

the two stochastic processes as well as the strike price. In attem pting to explain these changes 

more accurately, we also look at two sets of 2-dimensional plots. Figures 6 -10 are plots of 

implied volatilities against the strike price for fixed values of p while figures 11- 15  are plots 

of implied volatilities against p for fixed values of the strike price.

It is well known, and as is observed in practice, volatility is usually higher when prices fall 

than when prices rise. This is evident from the fact that crashes occur in a very short time, 

while for prices to rise, it takes a considerably longer time.

The plots of the implied volatility, that is assuming the volatility is constant, against the 

strike price for fixed values of the level of correlation between the two processes, show an 

expected pattern of behaviour. The strike price here is taken to vary between 110 to 90. 

The exercise is repeated for different values of p between -0.95 and 0.95.
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In the Brownian Motion situation, we have the effect of p and the stochastic volatility on the 

system. Here, we observe a “smile” - a “smile” is a situation where values at the extremes 

are higher than the values at the centre. However, lower values of the strike price have higher 

implied volatility compared to higher values of the strike price, same distance away from the 

centre. When p is non-zero, it plays a more important role in the system. For negative values 

of p, the implied volatility is high for low strike prices and it decreases with increasing strike 

prices. However, for positive values of p, the implied volatility increases with increasing 

strike prices. Furthermore, in most cases, for the strike price 100, the implied volatility is 

slightly higher than the initial value.

In the Ornstein - Uhlenbeck process, the presence of the mean reversion force, complicates 

matters slightly. The behaviour is similar to the Brownian motion, only that the picture 

gets slightly blurred. The “smile” is no longer at p =  0, it is shifted to the right - to positive 

values of p. The extent of the shift depends on the value of the mean reversion force. Other 

than tha t the pattern of behaviour of the implied volatilities is the same as the Brownian 

motion.

The justification in both cases (Brownian motion as well as the Ornstein - Uhlenbeck process) 

is due to the fact that negative values of p are associated with falling prices and thereby 

higher volatility; whereas positive values of p indicate comparatively lower volatility. The 

plots, (Figures 6  to 10) illustrate these facts.

The other set of 2-dimensional plots - figures 11 to 15 are plots of the implied volatilities 

against the correlation p for fixed values of the strike price. We repeat this exercise for 

all the five values of the strike price that we use - namely 90, 95, 100, 105 and 110 for 

both the situations of the volatility process following a Brownian motion and an Ornstein 

- Uhlenbeck process. In these plots we observe that for low strike prices, in fact for strike 

prices less than or equal to 100  the implied volatility decrease as the correlation increases 

from —1 to 1. However, for higher values of the strike price, namely above 100, we see a 

reversal in this trend of the implied volatilities. For those situations, we have the implied 

volatilities increasing from —1 to 1 . As in the case of the plots of the implied volatility 

against the strike prices for fixed correlations, here also, the picture becomes slightly blurred
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for the Ornstein - Uhlenbeck case with a high value of the mean reversion force.

For the case of the stochastic interest rate, calculation of the implied volatilities is not that 

simple. Also, when calculated, the plots are not too informative even for the Brownian 

motion. This is due to the fact that the interaction of the three correlation co-efficients blurs 

the picture. Thus, we do not go into the detailed analysis of the implied volatility in the 

case of stochastic interest rates.

6.6 Conclusions and Remarks

The tables show the values of the calculated price along with the simulated values. A look 

at the tables show that in all the cases, the calculated value of the option, including the 

correction factor, is very close to the simulated value. When the volatility process follows a 

Brownian motion, any difference in the values is within one standard error of the simulated 

set. This is true for both constant and stochastic interest rates. When the volatility process 

follows an Ornstein - Uhlenbeck process, the lower the value a the closer agreement of the 

calculated values with the simulated values; again, any differences are within standard errors. 

Even for higher values of a (as high as a =  10) the calculated and simulated values agree 

quite closely, any differences are within two standard errors of the simulated values.

Another fact to be noticed is that higher the value of p, i.e. the closer p is to ± 1  the greater 

the contribution of the correction factor to the corrected calculated price. In fact, for p =  0, 

the value of the correction factor is 0 . This is true for all cases tha t we have considered.

The biggest advantage of this method is that one does not need to make restrictive assump

tions such as independence of the price and the volatility processes as has been done by Hull 

and White. In fact, in practice, rarely do price and volatility act independent of each other 

- price fluctuations affect volatility; price falls are associated with higher volatilities whereas 

price rises are associated with low volatility. The method is quite fast to use for different 

values of the strike price.

Another justification of use of the correction factor is in the approximation carried out during 

conditioning. In the case of the volatility process following a Brownian motion, conditioning
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Jq ekBsds on f*  B sds works well for k relatively small or not too large. But, conditioning 

B\ on Jq1 B sds does not work so well and leads to an error. Probably one reason for this is 

the fact that B\ and f*  B sds are rather more closely correlated than f*  ekBads and B sds. 

Similar is the situation when the volatility process follows an Ornstein - Uhlenbeck process. 

In that case, conditioning f*  ekVsds on JtQ1 Vsds works well for k relatively small or not too 

large, but conditioning Vi on Vsds does not work so well and leads to an error. Here also, 

Vi and f*  Vsds are more closely correlated than f*  ekVsds and f*  Vsds. Thus, in both cases, 

the correction factor is needed to rectify that error.

6.7 Tables

In the following tables, we present the Calculated prices, the associated Correction Factors 

(C.F.), the Corrected Calculated prices along with the simulated prices and the standard 

errors of simulation (S.E.). We present the results for both the constant and stochastic 

interest rates with the volatility process being either a Brownian motion or an Ornstein - 

Uhlenbeck process. For each table, the volatility process and the values of the parameters 

are stated in the table headings. We also present the values of the implied volatilities for 

the constant interest rate situation.
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6.7.1 Constant Interest Rates

T able  1 1  : The volatility process here is a Simple Brownian Motion with a = 0.1, r =  0.05

and k =  1 .

p b Calculated C.F. CCP Simulated S.E.
0.95 110

105
100
95
90

2.044508
3.497231
5.910315
9.546253
14.09038

0.779841
0.816586
0.672918
0.370436
0.200528

2.824346
4.313817
6.583233
9.916688
14.290908

2.990192
4.453916
6.720349
10.067917
14.421779

0.142218
0.15819
0.174477
0.187047
0.19195

-0.95 110
105
100
95
90

1.449652
3.61698

6.730394
10.522814
14.743085

0.515492
0.664221
0.656562
0.560182
0.443986

I.965143 
4.281493 
7.386937
II.082996 
15.187071

I.979887 
4.32144 
7.478487
II.252283 
15.427257

0.046055
0.070859
0.093149
0.110801
0.123809

0.75 110
105
100
95
90

2.321014
3.857499
6.310175
9.854223
14.235053

0.440063
0.475741
0.42701

0.291273
0.167333

2.761077
4.33324

6.737185
10.145325
14.402386

2.79501
4.370133
6.803907
10.274714
14.549206

0.109881
0.128513
0.146796
0.160558
0.167553

-0.75 110
105
100
95
90

1.764733
3.897485
6.94123

10.673079
14.852886

0.351344
0.411583
0.393316
0.331616
0.136765

2.116077
4.309067
7.334547
11.004534
14.989651

2.080526
4.276188
7.277515
10.929826
15.024697

0.054295
0.077837
0.099984
0.118031
0.131557

0.5 110
105
100
95
90

2.51401
4.162327
6.703056
10.214073
14.457174

0.1796
0.195099
0.18134

0.138677
0.093119

2.69361
4.357426
6.884301
10.35275

14.550293

2.677158
4.349432
6.887848
10.389251
14.596035

0.099293
0.118616
0.137491
0.151995
0.160504

-0.5 110
105
100
95
90

2.106229
4.159931
7.104181
10.766899
14.91327

0.15975
0.15833
0.168977
0.141742
0.111661

2.265979
4.31826
7.273158
10.908641
15.024931

2.249182
4.309344
7.214149
10.812996
14.920499

0.063796
0.086421
0.107748
0.125257
0.137719

Table 11. Continued
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Table 11. Continued

p b Calculated C.F. CCP Simulated S.E.
0.25 110 2.573018 0.042315 2.614529 2.578021 0.089701

105 4.329345 0.046211 4.375555 4.340218 0.109824
100 6.968613 0.043416 7.012029 6.983028 0.129222
95 10.490538 0.037539 10.528077 10.506015 0.144528
90 14.660471 0.016196 14.676667 14.660233 0.154393

-0.25 110 2.359796 0.040272 2.400067 2.38458 0.072381
105 4.320381 0.044348 4.364726 4.322913 0.094257
100 7.162415 0.041809 7.204224 7.133907 0.114915
95 10.766043 0.034854 10.800897 10.711205 0.131551
90 14.897422 0.027139 14.924561 14.835279 0.143077

0 110 2.517138 2.486435 0.080825
105 4.378393 4.326996 0.101893
100 7.118547 7.062116 0.121822
95 10.674126 10.61299 0.137816
90 14.811251 14.743523 0.148634
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Table 12.1 : The volatility process follows an Ornstein - Uhlenbeck process with a

k = l, r=0.05, a =  0 .1 , X q =  100 and Vq = 0.

p b Calculated C.F. CCP Simulated S.E.
0.95 110 2.052779 0.7262169 2.778996 3.010594 0.1194083

105 3.516785 0.7696407 4.286425 4.521037 0.1380072
100 5.938746 0.6435333 6.582279 6.827903 0.1563951
95 9.570367 0.3594557 9.929823 10.20763 0.1701949
90 14.10503 0.1884444 14.29347 14.57596 0.1754179

-0.95 110 1.465225 0.5031988 1.968424 2.009105 0.04744766
105 3.625432 0.6366818 4.262114 4.322088 0.07209224
100 6.730491 0.6212323 7.351724 7.436452 0.09447091
95 10.51867 0.5240718 11.04274 11.16606 0.1127158
90 14.73891 0.4112558 15.15017 15.28758 0.1265338

0.75 110 2.312387 0.4122456 2.724633 2.963393 0.1109139
105 3.858761 0.4486269 4.307388 4.549214 0.1302168
100 6.321038 0.4044438 6.728094 6.978501 0.1488933
95 9.86696 0.2757934 10.14276 10.39694 0.1632714
90 14.24454 0.1568302 14.40137 14.67709 0.1701071

-0.75 110 1.769973 0.3372281 2.107201 2.154169 0.05585269
105 3.89501 0.392482 4.287492 4.369176 0.07926726
100 6.931021 0.3723157 7.303337 7.424602 0.1009169
95 10.65958 0.3112112 10.97079 11.11974 0.118411
90 14.84905 0.25439755 15.08492 15.24523 0.13155

0.5 110 2.49434 0.1686056 2.662946 2.8703595 0.1017094
105 4.149523 0.1846999 4.334223 4.549074 0.1216292
100 6.69702 0.1717737 6.868794 7086679 0.1407383
95 10.21131 0.1307052 10.34202 10.56835 0.1554402
90 14.45612 0.08677706 14.5429 14.79708 0.1635396

-0.5 110 2.098748 0.1524248 2.251173 2.309457 0.06623995
105 4.147055 0.1704263 4.317481 4.397041 0.0884599
100 7.085885 0.1602199 7.246105 7.371216 0.1090454
95 10.74705 0.1333718 10.88042 11.04136 0.1257021
90 14.89608 0.1041142 15.0002 15.18395 0.1376807

Table 12.1 Continued
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Table 12.1 Continued

p b Calculated C.F. CCP Simulated S.E.
0.25 110 2.548681 0.04003625 2.588718 2.755464 0.09290375

105 4.309619 0.04386708 4.353486 4.534631 0.1133543
100 6.952337 0.04116863 6.993506 7.176826 0.1328749
95 10.47678 0.03287068 10.50966 10.71232 0.1479818
90 14.65015 0.02367886 14.67383 14.90507 0.1571716

-0.25 110 2.342994 0.03831577 2.381316 2.472027 0.07555303
105 4.301222 0.04222176 4.343443 4.436763 0.09709313
100 7.140569 0.0396711 7.18024 7.314232 0.1170629
95 10.74409 0.03283458 10.77692 10.95539 0.13306
90 14.8789 0.02532481 14.90423 15.1089 0.1440347

0 100 2.494862 2.447907 0.08430024
105 4.356859 4.48986 0.1052663
100 7.097289 7.257128 0.1248408
95 10.65413 10.83947 0.1405096
90 14.79503 15.01577 0.1505679
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T able 12.2 : The volatility process follows an Ornstein - Uhlenbeck process with a

k = l, a =  0.1, r=0.05, X 0 =  100 and Vo =  0

p b Calculated C.F. CCP Simulated S.E.
0.95 110

105
100
95
90

2.09989
3.646248

6.1333845
9.73706

14.195358

0.447118
0.5089709
0.464807
0.293513
0.1382265

2.547003
4.220439
6.598191
10.03057

14.333585

2.548632
4.112885
6.525032
9.963072
14.279104

0.097955
0.117202
0.1362929
0.1508313
0.157423

-0.95 110
105
100
95
90

1.5899428
3.69556
6.735551
10.489035
14.706939

0.4052
0.4622925
0.418772
0.330147
0.243942

1.995117
4.157852
7.154322
10.819182
14.950881

I.991513 
4.236061 
7.33981
II.06061 

15.240569

0.0498523
0.073901
0.095757
0.113573
0.125994

0.75 110
105
100
95
90

2.262628
3.879919
6.408653
9.963557
14.30883

0.264496
0.300598
0.280251
0.196094
0.107945

2.527124
4.180517
6.688904
10.159651
14.416775

2.584736
4.223171
6.717862
10.184946
14.43912

0.095141
0.114804
0.134083
0.148958
0.156727

-0.75 110
105
100
95
90

1.826288
3.895454
6.873095
10.575978
14.765211

0.251618
0.280364
0.254095
0.201038
0.148761

2.077907
4.175818
7.127265
10.777024
14.913972

2 .1 1 0 2 2 1
4.276621
7.318380
11.03507
15.205012

0.055864
0.079287
0.100699
0.117759
0.12995

0.5 110
105
100
95
90

2.380043
4.213388
6.679581
10.213332
14.461569

0.112509
0.126909
0.118985
0.088932
0.055906

2.492552
4.340297
6.798567
10.302254
14.517475

2.580589
4.316617
6.896327
10.389594
14.610227

0.089893
0.110125
0.129877
0.145253
0.153949

-0.5 110
105
100
95
90

2.073016
4.081688
6.979388
10.626602
14.792283

0.110172
0.121574
0.110921
0.087954
0.064725

2.183188
4.203263
7.090308
10.714556
14.857008

2.256874
4.319746
7.271171
10.945949
15.122616

0.063475
0.086171
0.107133
0.123765
0.133774

T ab le  12.2 C o n tin u ed
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T able 12.2 C on tin u ed

p b Calculated C.F. CCP Simulated S.E.
0.25 110 2.413203 0.027436 2.440639 2.541466 0.083981

105 4.201249 0.030675 4.231924 4.356218 0.104821
100 6.868059 0.028669 6.896728 7.029882 0.125354
95 10.407819 0.022154 10.429973 10.563992 0.140587
90 14.599412 0.015009 14.61442 14.760626 0.150066

-0.25 100 2.255778 0.078588 2.334366 2.380508 0.070676
105 4.195983 0.03005 4.226033 4.348916 0.089182
100 7.014515 0.02766 7.042175 7.205699 0.113402
95 10.614835 0.021898 10.636734 10.840324 0.129624
90 14.771185 0.016628 14.787079 15.024725 0.140343

0 110 2.370209 2.47521 0.077528
105 4.236678 4.364865 0.099009
100 6.978257 7.132334 0.119306
95 10.541857 10.71344 0.135304
90 14.705379 14.900923 0.145439
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Table 12.3 : The volatility process follows an Ornstein - Uhlenbeck process with a =

=  1, r =  0.05, V0 =  0, *o =  100 and a  =  0.1.

p b Calculated C.F. CCP Simulated S.E
0.95 110

105
100
95
90

2.137067
3.794151
6.370623
9.952418
14.306623

0.237643
0.281266
0.270195
0.192543
0.102126

2.37471
4.075416
6.640818
10.144961
14.408749

2.561357
4.291533
6.865626
10.384923
14.674882

0.861595
0.107003
0.127188
0.14248

0.150144

-0.95 110
105
100
95
90

1.776722
3.803327
6.747577
10.447001
14.659225

0.253205
0.272852
0.237855
0.17913
0.125902

2.029927
4.07618
6.985433
10.62613
14.785127

2.017369
4.046229
6.948214
10.584016
14.714235

0.055157
0.078814
0.10078

0.118278
0.130749

0.75 110
105
100
95
90

2.220781
3.928297
6.537557

10 .1 0 0 2 1 1
14.393528

0.146139
0.170457
0.162546
0.119333
0.069114

2.36692
4.093047
6.704859
10.219544
14.462642

2.531267
4.269829
6.858439
10.375287
14.648838

0.082694
0.104039
0.124502
0.140108
0.14817

-0.75 110
105
100
95
90

1.931459
3.928801
6.826811
10.490471
14.686249

0.153773
0.16661
0.147206
0.111763
0.078441

2.085232
4.095411
6.974016
10.602281
14.76469

2.062847
4.064735
6.941111
10.551997
14.703153

0.057827
0.081134
0.102902
0.120401
0.132249

0.5 110
105
100
95
90

2.284024
4.050093
6.702199
10.255014
14.492846

0.064315
0.073812
0.069637
0.052321
0.032667

2.348339
4.123905
6.771836
10.307335
14.525512

2.477775
4.236122
6.860935
10.40566
14.633903

0.078619
0.100423
0.121084
0.136807
0.145889

-0.5 110
105
100
95
90

2.088548
4.046267
6.889473
10.51469
14.696808

0.066547
0.07275
0.065271
0.049876
0.034769

2.155095
4.119017
6.954744
10.564564
14.731577

2.142708
4.098209
6.93823

10.384923
14.684328

0.061576
0.08456

0.106045
0.14248
0.134854

Table 12.3 Continued
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Table 12.3 Continued

p b Calculated C.F. CCP Simulated S.E.
0.25 110 2.301905 0.016037 2.317942 2.391139 0.745337

105 4.122086 0.018038 4.140224 4.200953 0.096481
100 6.818457 0.016922 6.835379 6.892887 0.117254
95 10.374146 0.012888 10.387034 10.434283 0.133539
90 14.576525 0.008442 14.584967 14.636719 0.143274

-0.25 110 2.203506 0.016312 2.219818 2.220772 0.065822
105 4.118925 0.018011 4.136936 4.133687 0.088377
100 6.909927 0.016391 6.926318 6.929604 0.109585
95 10.50377 0.012568 10.516338 10.514062 0.126455
90 14.681065 0.008657 14.689722 14.659044 0.137839

0 110 2.278312 2.302384 0.070203
105 4.144716 4.169655 0.092405
100 6.887281 6.913079 0.113403
95 10.457036 10.474615 0.130023
90 14.640267 14.643454 0.140643
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T able 12.4 : The volatility process follows an Ornstein - Uhlenbeck process with a =  10, k

=  1, r =  0.05, Vq =  0, Xq =  100 and a  =  0.1.

p b Calculated C.F. CCP Simulated S.E.
0.95 110

105
100
95
90

2.145946
3.928759
6.610466
10.192842
14.454283

0.085411
0.098936
0.093486
0.069991
0.04308

2.231357
4.027696
6.703952
10.262832
14.497363

2.308187
4.066879
6.723736
10.29781

14.543108

0.073264
0.095204
0.115949
0.131655
0.140696

-0.95 110
105
100
95
90

1.991431
3.922141
6.751405
10.386169
14.596767

0.090238
0.098474
0.087625
0.065568
0.044268

2.081669
4.020615
6.83903

10.473794
14.641035

2.078354
3.999647
6.853382
10.507584
14.695058

0.060331
0.083325
0.104518
0 .1 2 1 0 1 2
0.132083

0.75 110
105
100
95
90

2.180094
3.983075
6.678632
10.256393
14.499057

0.053217
0.061118
0.057421
0.04322

0.027137

2.23332
4.044764
6.736053
10.299613
14.526194

2.299371
4.094231
6.773408
10.334223

14.5503

0.072509
0.094412
0.115251
0.131357
0.140927

-0.75 110
105
100
95
90

2.058914
3.977592
6.787376
10.406935
14.611664

0.055518
0.060891
0.054626
0.041081
0.027673

2.114432
4.038484
6.842002
10.448016
14.639337

2.099698
4.022176
6.826005
10.438221
14.625447

0.061669
0.084489
0.106001
0.12277
0.133612

0.5 110
105
100
95
90

2.208241
4.035839
6.74748

10.322142
14.544878

0.023676
0.026927
0.025112
0.018987
0.012187

2.231917
4.062766
6.772597
10.341129
14.557065

2.279903
4.123707
6.803292
10.364329
14.555246

0.07128
0.093146

0.1202188
0.130605
0.140691

-0.5 110
105
100
95
90

2.128028
4.031225
6.818265
10.421298
14.620672

0.024329
0.026861
0.024318
0.018368
0.012319

2.152356
4.058086
6.842583
10.439667
14.632991

2.152001
4.051619
6.809635
10.399439
14.596948

0.064217
0.086781
0.108321
0.125018
0.13546

Table 12.4 C o n tin u ed
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Table 12.4 C on tinued

p b Calculated C.F. CCP Simulated S.E
0.25 110 2.218443 0.005933 2.224377 2.2814 0.069658

105 4.068162 0.006689 4.074851 4.128462 0.091961
100 6.796636 0.006197 6.802833 6.807212 0.113399
95 10.371454 0.0047 10.376154 10.373525 0.12969
90 14.579721 0.00307 14.582791 14.56239 0.139915

-0.25 110 2.178563 0.006012 2.184576 2.209668 0.664102
105 4.06566 0.006681 4.072341 4.075665 0.088959
100 6.831474 0.0061 6.837573 6.810703 0.110319
95 10.420737 0.004623 10.42536 10.37738 0.12704
90 14.617989 0.003084 14.621073 1.4585143 0.137122

0 110 2.208792 2.255537 0.068118
105 4.078353 4.107981 0.090602
100 6.824676 6.811075 0.112042
95 10.404252 10.372034 0.128603
90 14.604139 14.571978 0.138699
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6.7.2 Stochastic Interest Rates

For th e  follow ing tw o tab les , th e  vo la tility  process is a  S im ple B row nian  m o tio n . 

T ab le  13.1 : r* =  ro =  0.05, pi =  —0.5, p2 = 0, p =  0.5,0 =  0.025, 7  =  0.5, k = 1 , a  =  0.1.

b c Calculated CF CCP Simulated SE
2 110 2.064465 0.1611706 2.2256356 2.310308 0.0660562

105 4.095731 0.1804528 4.2761838 4.382218 0.08842041
100 7.034479 0.1695461 7.2040251 7.331723 0.1091908
95 10.70558 0.1409024 10.8464824 11.02632 0.1254156
90 14.86396 0.1099334 14.9738934 15.19951 0.1368878

10 110 2.093385 0.1602639 2.2536489 2.259263 0.06468547
105 4.141573 0.1794597 4.3210327 4.328258 0.08711183
100 7.085474 0.1692707 7.2547447 7.246289 0.1082364
95 10.75171 0.141638 10.893348 10.8837 0.1252286
90 14.90246 0.111301 15.013761 15.01425 0.1373567

100 110 2.104869 0.1598071 2.2646761 2.211097 0.0641309
105 4.158042 0.1789455 4.3369875 4.295031 0.08627042
100 7.102307 0.1690128 7.2713198 7.252563 0.1070702
95 10.76544 0.1417372 10.9071772 10.91719 0.1238452
90 14.9123 0.1116313 15.0239313 15.04275 0.1362203

T able  13.2 : r* =  r0 = 0.05, pi = P2 — —0.5, p =  \/0^5,4> =  0.025, 7  =  0.5, k =  1, a  =  0.1.

b c Calculated CF CCP Simulated SE
2 110 2.017732 0.1656024 2.1833344 2.206077 0.06216576

105 4.065671 0.1863177 4.2519887 4.325182 0.08479317
100 7.0414 0.1752696 7.2166696 7.35174 0.1055256
95 10.75224 0.1461538 10.8983938 11.09033 0.1218745
90 14.94813 0.1150628 15.0631928 15.28329 0.1335367

10 110 2.078971 0.1616269 2.2405979 2.258156 0.06211812
105 4.132393 0.1812652 4.3136582 4.383701 0.08494235
100 7.087163 0.1710576 7.2582206 7.394359 0.1059289
95 10.76594 0.1432922 10.9092322 11.07711 0.1229537
90 14.92828 0.1129232 15.0412032 15.24218 0.1348843

100 110 2.103928 0.1599549 2.2638829 2.182876 0.06147877
105 4.157038 0.1791416 4.3361796 4.294288 0.08400627
100 7.102475 0.1692079 7.2716829 7.26275 0.1052165
95 10.76696 0.1419183 11.9088783 10.91344 0.1224794
90 14.91508 0.1118078 15.0268878 15.01305 0.1354558
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For th e  following tw o tab les, th e  v o la tility  p rocess follows an  O rn s te in  - U hlen- 

beck p rocess w ith  a = 10.

T able  14.1 : r* =  r 0 == 0.05, p i  = p 2 = —0.5, p ==  a/ 0 5 ,  0  = 0.025, 7  =  0, k

b c Calculated CF CCP Simulated SE
2 110

105
100
95
90

2.06303
4.133098
7.110789
10.81206
14.99419

0.1639484
0.1844626
0.1745349
0.1469173
0.116723

2.2269784
4.3175606
7.2853239
10.9589773
15.110913

2.102134
4.153669
7.125634
10.79806
14.93185

0.06165597
0.08408443
0.1048683
0.1218218
0.1342896

10 110
105
100
95
90

2.094306
4.189908
7.210147
10.96168
15.19063

0.1709928
0.1910147
0.1788339
0.1485368
0.1165081

2.2652988
4.3809227
7.3889809
11.1102168
15.3071381

2.185812
4.268511
7.23119
10.87745
14.99816

0.06353131
0.0857572
0.1065925
0.1237045
0.1362137

100 110
105
100
95
90

2.054383
4.129651
7.116331
10.82718
15.01792

0.1648769
0.185607

0.1756074
0.147904

0.1177059

2.2192599
4.315258
7.2919384
10.975084

15.1356259

2.19794
4.296375
7.20394
10.84065
14.99894

0.06428884
0.08629285
0.107596

0.1245641
0.1361814

T able 14.2 : r* = r0 = 0.05, p i  = p 2 =  -0 .5 , p = y/Qj, 0 =  0.025, 7  =  -0 .5 ,

b c Calculated CF CCP Simulated SE
2 110

105
100
95
90

2.116959
4.204124
7.177411
10.86007
15.021022

0.1613869
0.1814496
0.1725708
0.146436
0.117141

2.2783459
4.3855736
7.3529818
11.006506
15.138361

2.149737
4.233522
7.182837
10.84428
14.99599

0.0611461
0.08382539

0.105094
0.1221353
0.134167

10 110
105
100
95
90

2.075828
4.153163
7.133133
10.83257
15.01177

0.1635142
0.1839162
0.1742366
0.1470139
0.1170782

2.2393422
4.3370892
7.3073696
10.9795839
15.1288482

2.204069
4.310886
7.312911
10.98678
15.11348

0.06165472
0.08433407
0.1051778
0.1222365
0.1348204

100 110
105
100
95
90

2.062773
4.135536
7.116246
10.81996
15.00403

0.1641028
0.1845996
0.174644

0.1470448
0.1168847

2.2268758
4.3201356

7.29089
10.9670048
15.1209147

2.21406
4.325516
7.284714
10.95219
15.07071

0.06285299
0.08524463
0.1063538
0.1232499
0.1358424

=  0 . 1.

,(7 =  0 . 1.
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Table 15.1 : Table showing the values of Implied volatilities for different values of p and 

strike price b when the volatility process follows a simple Brownian motion.

p b Implied volatility
-0.95 110 0.0947

105 0.1069
100 0.1192
95 0.1329
90 0.1481

-0.75 110 0.0975
100 0.1058
100 0.1136
95 0 .1211
90 0.1274

-0.5 110 0 .1 0 2 1
100 0.1066
100 0.1118
95 0.1167
90 0.1213

-0.25 110 0.1057
100 0.107
100 0.1095
95 0.1127
90 0.1158

0 110 0.1084
100 0.1071
100 0.1075
95 0.1088
90 0.1094

0.25 110 0.1109
100 0.1074
100 0.1052
95 0.1044
90 0.1028

Table 15.1. Continued

127



Table 15.1. Continued

p b Implied Volatility
0.5 110 0.1135

100 0.1076
100 0.1024
95 0.0993
90 0.097

0.75 110 0.1167
100 0.1081
100 0.0999
95 0.0941
90 0.092

0.95 110 0.1218
100 0 .1 1 0 2
100 0.0975
95 0.0836
90 0.0708
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Table 15.2 : Table showing the values of Implied volatilities (I.V.) for different values of p 

and strike price b when the volatility process follows an Ornstein - Uhlenbeck process with

mean reversion force a.

p b I.V. (a=0.1) I.V. (a= l) I.V. (a=3) I.V. (a=10)
-0.95 110 0.0955 0.095 0.0979 0.0974

105 0.1069 0.1048 0 .1 0 0 1 0.0988
100 0.1181 0.1153 0.1042 0.1014
95 0.1298 0.126 0.1094 0.1044
90 0.1414 0.139 0.1072 0.1057

-0.75 110 0.0995 0.0983 0.097 0.0979
100 0.1081 0.1058 0.1005 0.0994
100 0.1177 0.1147 0.104 0.1006
95 0.1281 0.1251 0.1084 0.1015
90 0.1393 0.1374 0.1062 0.0997

-0.5 110 0.1036 0 .1 0 2 2 0.0991 0.0994
100 0.1088 0.1068 0.1013 0 .1 0 0 2
100 0.1162 0.1134 0.1039 0 .1 0 0 1
95 0.1253 0.1217 0.1068 0.0997
90 0.1361 0.1329 0.1048 0.097

-0.25 110 0.108 0.1056 0.1013 0.1009
100 0.1098 0.1076 0 .1 0 2 2 0.1008
100 0.1146 0.1116 0.1036 0 .1 0 0 2

95 0 .1221 0.1178 0.1047 0.0988
90 0.1321 0.1275 0.1027 0.0959

0 110 0.1117 0.1082 0.1035 0 .1 0 2 2

100 0 .1 1 1 1 0.1081 0.1031 0.1016
100 0.113 0.1095 0.1032 0 .1 0 0 2

95 0.1177 0.1128 0.1031 0.0986
90 0.1269 0 .1 2 0 1 0.1013 0.0945

0.25 110 0.1156 0.1099 0.1059 0.1027
100 0.1123 0.1078 0.1039 0 .1 0 2 1

100 0.1107 0.1065 0.1025 0 .1 0 0 1
95 0.1128 0.1068 0.1013 0.0986
90 0.1204 0.1106 0.1007 0.0935

Table 15.2. Continued
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Table 15.2. Continued

p b

rHoII>1—i I.V. (a= l). I.V. (a=3) I.V. (a=10)
0.5 110 0.1187 0.1109 0.1082 0.1029

100 0.1126 0.1068 0.1048 0 .1 0 2
100 0.1081 0.1027 0.1017 0.1
95 0.1069 0.0994 0 .1 0 0 1 0.0982
90 0.1132 0.0983 0.1004 0.0927

0.75 110 0 .1211 0 .1 1 1 0.1096 0.1034
100 0.1126 0.1044 0.1056 0 .1 0 1 2
100 0.105 0.0974 0.1016 0.0991
95 0.0996 0.0897 0.0987 0.0968
90 0.1042 0.0753 0.1018 0.0921

0.95 110 0.1223 0 .1 1 0 1 0.1105 0.1037
100 0.1119 0.1017 0.1062 0.1005
100 0.1007 0.0918 0.1018 0.0976
95 0.0908 0.0775 0.0991 0.0951
90 0.095 0.0678 0.1039 0.0913
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6.8 Figures

Here we present a set of figures showing plots of implied volatilities against the correlation 

co-efficient and strike price for the constant interest rate case. These are the figures referred 

to earlier in section 5.5. As stated earlier, the first five figures (Figure 1 - 5 )  are three 

dimensional plots showing changes of implied volatility with changes in correlation between 

the two stochastic processes as well as the strike price. Figures 6 - 1 0  show plots of implied 

volatility against different values of the strike price but for fixed values of correlation. Finally, 

figures 11-15  show plots of implied volatility against correlation co-efficients for fixed values 

of the strike price.
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Figure 1 : The Simple One Dimensional Brownian Motion
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Figure 2 : The Ornstein - Uhlenbeck Case; a
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Figure 4 : The Ornstein - Uhlenbeck Case; a
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Figure 7 : The Ornstein - Uhlenbeck Process; a = 0.1

E T-

9 0 95 100 1 05 110 90 95 100 105 110 9 0 95 1 0 0  1 0 5 110

Strike Price  
C orrelation =  -0 .9 5

Strike Price 
C orrelation = -0 .7 5

Strike P rice  
C orrelation =  -0 .5

9 0 9 5 100 105 110 90 95 1 0 0  105 110 9 0 95 100 1 0 5 110

Strike Price  
C orrelation =  -0 .2 5

Strike Price  
C orrelation = 0

Strike P rice  
C orrelation =  0 .2 5

9 0 95 1 0 0  1 0 5 110

~  o

90 9 5 1 0 0  105 110

Strike Price 
C orrelation =  0 .5

Strike Price  
C orrelation = 0 .7 5

9 0 95 100 1 0 5 110

Strike P rice  
C orrelation =  0 .9 5

138



1
3

9

0q w
1 *•'£ to O T)
3  3 .II CD

0 .0 9 8

Implied Volatility

0 .102  0 .106 0.110

Oo
3  CO 
CD 5  
0) a>
°  ?  II o  O ®

Im plied Volatility 

0 .0 8  0 .0 9  0 .1 0 0.11

Implied Volatility 

0 .0 7  0 .0 8  0 .0 9  0 .1 0  0 .11

O
§  CO
2. 3. 0) 7? ZT. CD
§ 5II O^  n>

Strike 
Price 

Strike 
Price 

Strike 
Price 

Correlation 
= 

-0.25 
Correlation = 

0 
Correlation = 

0.25

100 
105 

110 
90 

95 
100 

105 
110 

90 
95 

100 
105 

110

Implied Volatility 

0 .1 0 5  0 .1 1 0  0 .1 1 5  0 .1 2 0  0 .1 2 5

0 .1 0 8

Implied Volatility 

0 .1 1 2  0 .1 1 6 0.120

Implied Volatility 

0 .1 0 7  0 .1 0 8  0 .1 0 9  0 .1 1 0

—  3 .I  ig .®
3  1 3

II o' 
■ CD

a 2?CD ^  O) 7T 
g C D  3 U

0
1 ~CD 3 .o> 2T &. ® q i3

Implied Volatility

0 .1 0  0.11 0 .12  0 .13  0 .14

Implied Volatility  

0 .1 0  0 .11  0 .1 2  0 .1 3

Implied Volatility 

0 .1 0 5  0 .1 1 5  0 .1 2 5

(Q
C—c
CD
00

HIT 
CD
O
3
CO
CD
Z3

CD D cr 
CD
o7T
Tl —\
Oo
CD
CO
CO
D)



140

o° w
1 1  £  ® o  t i3  3 .

Implied Volatility

0 .100  0 .102  0 .1 0 4  0 .1 0 6  0 .108

cno
if)— g0) 7Te s  m —*■

Implied Volatility

0 .1 0 0  0 .1 0 4  0 .1 0 8

=? 0)
CD q- 
0) Xs
o  o
D  J  O  

II o 'O ®
cn

o  CO

I IQ) ®
1 33  o  II to
o

§

CD

co

0.100

Implied Volatility 

0 .1 0 4  0 .1 0 8

O cn
§  CO 
2 . 2n> J _*ZT. CD "T

§3> §
II o

O
§ 2? to .  Z3.w S'cr. CD

° 3
II o  o ®

Implied Volatility 

0 .1 0 2  0 .1 0 3  0 .1 0 4

0 .1 0 1 5

Implied Volatility 

0 .1 0 2 5 0 .1 0 3 5

0.101

Implied Volatility 

0 .1 0 3  0 .1 0 5

o
o3 co

I |
5 ® ,
3  3» o'
• CD

0 .0 9 8

Implied Volatility

0.102 0 .1 0 6

£ o -2 tJ 8

Implied Volatility 

0 .0 9 8  0 .1 0 2  0 .1 0 6
 I_________I________ I________ I________ I_________L.

Implied Volatility 

0 .1 0 0  0 .1 0 2  0 .1 0 4  0 .1 0 6

Tl
CO
c  
—* 
CD

CO

Hor
CD

0  
3
CO
CD

o ’
1

C
o r
CD
OCT
CD
O

CO



Im
pli

ed
 

Vo
lat

ilit
y 

Im
pli

ed 
Vo

lat
ilit

y 
Im

pli
ed

 
Vo

lat
ilit

y

Figure 10 : The Ornstein - Uhlenbeck Process; a = 10
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Figure 11 : The Simple Brownian Motion : Plots of Implied Volatility against Correlation
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Figure 12 : T h e  O rnstein - U h len b eck  P r o c e ss  with a = 0.1 P lots of Implied Volatility a g a in st  Correlation
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Figure 13 : The Ornstein - Uhlenbeck Process with a = 1 : Plots of Implied Volatility against Correlation
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Figure 14 : The Ornstein - Uhlenbeck Process with a = 3 : Plots of Implied Volatility against Correlation
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Figure 15 : The Ornstein - Uhlenbeck Process with a = 10 : Plots of Implied Volatility against Correlation
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Chapter 7 

D oubly Stochastic (Cox) Poisson  
Process

7.1 Introduction

In this chapter, we extend the approximation technique used to price bonds and options to 

the case of the Cox process (for details see Daley and Vere - Jones (1988) and Kallenberg 

(1997))- also known as the doubly stochastic Poisson process. The approximation technique 

used is the same as in the earlier chapters. The Cox process provides us with a very useful 

framework for modelling prices of financial instruments in which credit risk is a significant 

factor. Examples of such instruments are bonds, insurance policies, reinsurance policies 

among other. Work in this area has been done by a number of people; notable among them 

are Duffie (1996), Lando (1998), Dassios (1987) and Jang (1998). Most of Dassios’ and 

Jang’s work has been to look at the application of the Cox process in valuing insurance and 

reinsurance claims. On the other hand, Duffie and Lando have looked at the applications of 

the Cox process in pricing of bonds and valuing contingent payments to be made on bonds.

Claims arising from catastrophic events depend on the intensity of such natural disasters. 

Therefore the intensity means the frequency of claims arising from the natural disaster.

In order to calculate the price for catastrophe reinsurance contracts and insurance derivatives, 

the claim arrival process needs to determined. A homogeneous Poisson process can be used 

as a claim arrival process. Under this approach, the claim intensity function is assumed to 

be constant. Another approach is to use a non-homogeneous Poisson process where the claim
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intensity is assumed to be a non-random function of time. However, both these processes do 

not adequately explain the phenomena of catastrophes.

Under a doubly stochastic Poisson "process, or a Cox process, the claim intensity function is 

assumed to be stochastic. The Cox process is more appropriately used as a claim arrival 

process as it can allow for the assumption that catastrophic events occur periodically.

A doubly stochastic Poisson process can be viewed as a two step randomisation procedure. 

A process Af is used to generate another process N t by acting as its intensity. This means 

that N t is a Poisson process conditional on Af (if Xt is deterministic, then N t is simply a 

Poisson process). The term “doubly stochastic” was introduced by Cox (1955).

Many alternative definitions of a doubly stochastic Poisson process can be given. We will 

offer the one adopted by Bremaud (1981).

D efin ition  : Let N t be a point process adopted to a history T t and let At be a non-negative 

process. Suppose that Xt is ^-measurable, t > 0 and that

ASds < oo almost surely (no explosions).

If for all 0 < ti < <2 and u € 72.

then N t is called a ^ -doub ly  stochastic Poisson process with intensity Xt.

(7.1)

In this dissertation, we will take T t to be the natural filtration of the probability space.

Equation (7.1) gives us

k\
(7.2)

and

(7.3)

SO

E ( e N'i~N‘ i) = E  {E  < s <  t2)} =  E  j  (7.4)
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=> E  (9Nt2 _Nti) =  E (7.5)

where

ft
X t =  ASds  the aggregated process.

Jo

Thus, it is easy to note that the problem of finding the distribution of N t, the point process, 

is equivalent to the problem of finding the distribution of X t , the aggregated process.

The log-normal Cox process, rather the log-Gaussian Cox process, has also been used in 

the past in studying spatial data by Mpller, Syversveen and Waagepetersen (1998) as well 

Rathbun and Cressie (1994).

7.2 Calculations

Here, we are again interested in finding the value of a stop-loss reinsurance contract. We 

assume t = 1. Thus, the value of the stop - loss reinsurance contract is given by

where {Yt , 0  <  t < 1 } is a Gaussian process. Also, c is a constant and c =  A0, where A0 is 

the initial value of the process A*. Now, in this case, define

a stationary Ornstein - Uhlenbeck process or a non-stationary Ornstein - Uhlenbeck process. 

Now, as we can see from Lemma 7.1, given later

E{Ni -  k)+ (7.6)

where, N \  is conditionally a Poisson random variable with a random parameter M  and k is 

the strike price at which the contract is calculated. Also, let us assume

In continuation of the examples used earlier, Yt could represent either a Brownian motion or

E[(Ni -  k)+\M] = MG(M, k) -  kG{M, k +  1) =  /(A f) say. (7.7)
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Here G(a, b) is the distribution function of a Gamma distribution with parameters (a, b), 

a > 0 , b > 0  and is given as

G{a, b) =  J  e~axx b~ldx.

Further, for convenience, we assume k to be an integer.

L em m a 7.1 : Let N  be a Poisson random variable with parameter t. Then,

E {N  - k ) + = t G { t , k ) - k G ( t , k  + 1).

P roof : Suppose {Nt , t  > 0} is a Poisson process with parameter 1. Then, N t is a Poisson 

random variable with parameter t. Then, we have,

00 oo j

E ( N  -  fc)+ =  E (N t - k ) + = U -  k)P r(N t =  j )  =  £  £  P r(N t =  j )
j = k + 1 j=A:-f 1 z= fc+ l

oo oo oo oo

=  £  Z J  P r  w =•»') =  E  P r  w  ^  *) =  J 2  P r w *  ^  * + ! ) •  (7-8)
i = k + l  j = i  i = k + l  i = k

Now, P r(N t > i +  1) =  Pr(Ti+i < t)  = f* 1̂ jr~dv, where T* is the time of the ith jump.

Thus, we have using equation (7.8),

OO OO />£ j  —v

E (N t -  k)* = ^ P r ( r « . i  < t)  = J 2  V- ^ ~ dv
i = k  i = k  J °  %■

r* vie~v r 1
=  / ^  — -— dv — / P r(N v > k)dv 

Jo i=k *• Jo

f l f u ' - ' e - ,  , /■*, . ,

= / . / .  i k ^ d u d v = L { t - U)w ^ du

= t G ( t , k ) - k G ( t , k  + 1 ). (7.9)
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Further, the function /  is exactly the same as defined in equation (7.7) and is given by 

/(AT) =  E[(Ni -  k)+\M] = M G{M , k) -  kG (M , k +  1).

Now, /  is convex. This is obvious from the fact that /  can be written as

■dudv.1 rv  u k ~ l e ~ u
o Jo  (fc  ~ !)■

Now, the second differential of this expression with respect to t is positive and hence the 

function /  is convex.

As stated earlier, we are interested in obtaining

E[(N i -  k)+] = E [E (Afi -  k)+\M] = E [ f{M )\.

Now, since/is convex, we have using a suitable conditioning factor Z  and Jensen’s inequality,

E[f(M)] = E(E[f(M )\Z}) > E (f(E (M \Z ))) .

The choice of the conditioning factor Z  is based on the same principle as explained in chapter 

3 and is given by

Z = ■ k Y.‘ds. .—  (7.10)
^/Var ( £  Ysds)

Now, conditionally on on Z, Yt has a Gaussian distribution. Furthermore, Z, itself has a 

standard normal distribution. Also,

E(YU\Z) =  kuZ , 

where ku =  Cov(yu, Z) 

and Cov(Yu,Yv\Z) = Cov(yu,y v) -  kukv =  vu say.

Thus,

E {M \Z  = z) = E{A0 I '  eaYads =  A0 / '  eak' z+!£ v*du =  h(z) say. (7.11)
7o Vo
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Now, once we have obtained the value of /i(z), we then obtain the lower bound to the value of 

the stop-loss reinsurance contact, conditionally on the conditioning factor Z. This is obtained 

by using equation (7.7) and Lemma 7.1 and is given by

f h ^  f v u k e ~ u /•'■ M  / ' " W  U V “/ / ——— dudv = / dv——— du = / (h(z) — u)——— du (7.12)
Jo Jo k\ J 0 Ju k. J o k\

=  h{z)G{h{z), k) -  kG(h(z), k +  1) =  Q(z). (7.13)

Finally, the lower bound to the unconditional price of the stop-loss reinsurance contract is 

obtained by taking the expectation of f2(z) with respect to Z, where Z has a standard Normal 

distribution. Thus, we finally calculate

I  n^ z k ^ e~rdz 7̂'14̂
to obtain the unconditional price of the stop-loss reinsurance contract.

Here, as an example, we assume that the process {Fs,0 <  s  < 1 } follows an Ornstein - 

Uhlenbeck process. We give the explicit forms of Z, ku and vu in that case. Having these 

values, using equation (7.11) it is easy to obtain h(z) and having obtained h ( z ) ,  we can easily 

find the lower bound to the value of the stop-loss reinsurance contract, conditionally on Z, 

by using equation (7.13). Once we have that, we then use equation (7.14) to obtain the

unconditional value of the lower bound of the stop-loss reinsurance contract.

Thus, here we have

dYt =  —aYtdt +  adBt

i.e. Yt = a I  e -a(t- u)d£„.
Jo

Here, Y0, the initial value is zero. The conditioning factor, Z, is then given by

Jo1 Y ' fe
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We observe that

Var( 1 1 Ysds) =  <r2 [ '  I ‘ {e-â d B uf d s  =  ^  2o +  4e ° - e 2° ~  3 =  v> say 
Jo Jo Jo 2a a

Thus,

ku = Cov(Yu,Z )  = - ^ ^ - { l  (ea(s+“> - e - ^ s+u))ds+  / ' V ('1~s) -  e ' “(u+s))ds 
v  V 2 a y0 Ju

1 <j2 1 — e ~ au 1 — g~a(1_“) e-au — g~a(1+u)
=  - 7 = — {-------------1------------------------------------------).

V y  2 a a a a

Also,
2

Cov(Ku, y„|2) =  ^ [ e “l“"''1 -  -  i:uA:v =  v„.

Once we have this, then using equations (7.11), (7.13) and (7.14), we can easily find the 

lower bound to the value of the stop-loss reinsurance contract. The numerical results based 

on these calculations are given in tables 16.1 and 16.2.

7.3 Conclusion and Remarks

Using the conditioning factor in the Cox process situation, we can thus very easily calculate 

the price of the option. Evaluation of h(z) is similar to the situation in the earlier chapters 

(2, 4 and 5) as also discussed by Rogers and Shi (1995). Once M, rather E (M \Z ), is 

evaluated, given the strike price, k, the calculation of the price of the option is just looking 

up the Gamma distribution tables - in fact, all statistical software would return the values. 

It is time saving as well as very efficient. Furthermore, the use of the conditioning factor 

approach means that we can account for all values of the instantaneous variance of the 

stochastic process driving A, the parameter.

7.4 Tables

The following two tables show the comparison of the values obtained by using the condition

ing factor approach (Calculated Value) contrasted against simulated values. Also included 

are standard errors of simulation.
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Table 16.1 : c =  A0 =  10
a Strike Price Calculated Value Simulated Value Standard Error

0.5 8 2.924 2.911 0.0144
10 1.706 1.698 0.0117
12 0.901 0.898 0.0088
15 0.292 0.292 0.005
20 0.031 0.03 0.0015

0.75 8 3.49 3.507 0.0184
10 2.268 2.285 0.0158
12 1.401 1.416 0.013
15 0.631 0.642 0.009
20 0.147 0.152 0.0044

1 8 4.293 4.278 0.0244
10 3.067 3.065 0.0219
12 2.143 2.147 0.0192
15 1 .22 1.229 0.0152
20 0.466 0.47 0.0099

Table 16.2 : c =  A0 =  100
o Strike Price Calculated Price Simulated Value Standard Error

0.5 80 25.053 25.001 0.0986
100 11.198 11.162 0.0754
120 3.948 3.925 0.0473

0.75 80 31.238 31.194 0.1491
100 18.053 18.047 0.1258
110 9.678 9.706 0.0982
120 3.496 3.549 0.0625

1 80 39.771 39.767 0.2173
100 26.909 29.956 0.1947
120 17.783 17.856 0.1684
150 9.385 9.545 0.1303
20 0 3.251 3.41 0.0818
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Chapter 8 

A lternative Num erical Techniques

8.1 Introduction

In this chapter, we make use of certain alternative numerical techniques to solve the problem 

of pricing the Asian option. Rogers and Shi (1995) has also looked at this problem and 

obtained bounds to the price. In fact, the lower bounds that they obtain are so close that it 

can be regarded as the true price itself. However, they make use of a numerical integration 

technique to solve the problem. Now, this can be time consuming and also might require 

sophisticated machines and programs. In this chapter, we make use of a simple expansion 

technique to solve the problem and avoid the numerical integration by replacing it with a 

set of exact integrations. For the expansions, we use the algebraic package MAPLE.

We also extend this same idea of using a simple expansion technique to obtaining the price of 

the zero coupon bonds. Here also, this method allows us to avoid the numerical integration 

and use exact integrals in there place.

8.2 The Asian Option

Rogers and Shi assumes that at time t, the price of a risky asset St is given by

S t = S0exp ( a B t -  ^oH  +  c tj  , (8 .1 )
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where, B t is a standard Brownian motion, a2 is the instantaneous variance. Also, c is a 

constant. They assume also that under an equivalent martingale measure c =  r, the riskless 

interest rate (see Harrison and Kreps (1979) and Harrison and Pliska (1981)). The problem 

th a t Rogers and Shi looked at is that of computing the value of an Asian (call) option with 

m aturity T  and the strike price F  written on the risky asset S t. Mathematically, this is the 

same as calculating

E {Y  -  F )+, (8.2)

where, Y  is defined by

=  I  Sudu. (8.3)
Jo

Y
J o

W ithout loss of generality, we take t =  1 . We make use of the Rogers and Shi idea of using 

Jensen’s inequality to obtain a lower bound to the price. Thus, like Rogers and Shi, we are 

interested in finding E (f(E (Y \Z )) ) ,  where the function /  is convex in nature and is defined 

exactly the same way as is done by Rogers and Shi. Thus, we have f ( x )  = max([x — F], 0). 

Z is the conditioning factor used and is suitably normalised. This is similar to the one used 

by Rogers and Shi with t = 1 and is given by

2  =  Jo Bsds

B sds) ’

where Var(f* B sds) =

Thus, like Rogers and Shi, we are interested in finding

E J  exp ^ aB u — J a 2u +  rv̂ j du\Z (8.4)
uo

This is similar to the lower bound of the price as found by Rogers and Shi.

Now, to find the expectation as defined by equation (8.4), we first find the following.

E (B U\Z) = kuZ , (8.5)
; ^  ^  Cov(Bu, £  B sds)
ku = Cov{Bu, Z) =  — ; — =  v 3 {u -  — ), (8 .6 )

X/V ar( / 01 B sds

Var(£„|Z) =  a2(u -  k2). (8.7)
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Once we have these values, we are then interested in finding, conditionally on Z, the expected 

value of

E[J  eaBu~*a~u+Tudu\Z] =  J  exp +  akuZ  — — T>~)2̂  ^ u

= l  + ) } d“-

Writing k =  J , we have the lower bound to the price of the asset, conditionally on Z, as

J  | exp | 'kau  4- <jVs Z  — <̂j2 û —  ̂|  du =  J  g(k , a, u, z)du say.

(8 .8)

Rogers and Shi performed a numerical integration at this stage in order to obtain the price of 

the option conditionally on Z and then finally the expectation is taken over Z to obtain the 

final price of the option. However, at this stage that we make use of an expansion argument 

and differ from the approach of Rogers and Shi. This is done so as to allow us to avoid the 

numerical integrations involved.

We expand the exponential term, g { k ,a ,u ,z ), in equation (8 .8 ) in terms of a, and retain 

terms up to the fourth power of a. Thus, we have, conditionally on Z =  z,

g{k ,a ,u ,z)  = gi{k,a,u, z) + 0{cr5),

where,

g i(k , cr, u, z) =  1 4- ^ku  4- y/Szu — ^y/Szu2^ o

4- / —̂ -u2 4- ^-u3 — 4- ^rk2u2 4- ku2yf%z — ^-ku3VSz  4- ~\z2u2 — \ z 2u3 4- tf5
 ̂ 2 2 8 2 2 2 2 8 J

4- /  —— z3u6V 3 4- \ z 2ubk — ^ z2uAk 4- ^-z3u5V 3 4- \ k 2u3y/Zz — \ k 2uAV2>z 
 ̂ 16 8 2 8 2 4

+^-z2u3k 4- ^-z3u3V 3 — 3 4- - k 3u3 — \̂ku5 4- -^-y/Szu6
2 2 4 6 8 16
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—  \ k u z + \\ku4 — ^-VSzu3 + 7"n/3z u a — ^n/3zu5 1 <r3 
2 2 2 4 8 J

f 9  2 4 9 4 9 5 27 6 3 2 4 3 2 5 3 2 6 9 2 5 3 2 6 1 2 3 2 5 , 2+  < — -z u  4- - n  u H— - u  k u +  - k  u  k u +  - z  u H z u k  z  u k
\  4 8 4 16 4 4 16 2 16 4

+ — ku7y/Sz — \ k u AV2>z +  - k u 5V3z  — %zAu7 — \ z zu7\/%k — - k u 6y/3z — ^ z 4u5+
16 2 4 16 16 8 4

——zAvf* +  \ z AuA — ^-z3u5k V 3 +  ^ z 3u6k V 3 — -t-£;3145\/3z +  +  ifc3ii4 \/3z
16 8 4 8 12 2 6

+ - ^ - z V  +  ^-z2uAk2 — ^ - z 2u6 +  \ z 2u 7 -  - -̂rz2u8 +  Tr:kAuA +  ^ - u 8 — 0"4- (8.9)
128 4 8 8 64 24 128 16 J v 1

Next we integrate out u from (8.9) and re-arrange the equation so that we have a polynomial 

in z. Thus, we have

I  ĝ k'a' z d̂u = + ( ^ 4 io <74fc + 1 3])*3

2  4  , 2 9  4 2 . 1 1  3 ,  . l j \  2

+  | - 3 5 ff4 +  560^  +  8 0 ^ + 5 CT U

+  , ± n 2k + L  +  J-<t3Jc2 -  -  |r<73 +  W ^ 3] ) *
•24 3 40 4480 35 360 J '

(■, 1 2 1 4 29 <+  ( 1  o  H a  a
V 5 35 560 lft2 +  ^ f f 3* 3 -  l ^ a 3fc +  jU 2* 2 +  j^ q 0'4^4 +  ^ k j  =  ^(fc, O', 2 ) say-

We are thus left with expressions in terms of k, a  and z. Treating k and a as constants, or 

known values, we thus have a 4th degree polynomial in z.

Like Rogers and Shi, we are also interested in finding the lower bound to price of the option 

given by

E (E (Y  -  F )+\Z) = E[g2(k, a, z) -  F]+,

where F  is the strike price of the option. Now, the strike price value is grouped with the 

coefficient of z° in the polynomial g2{k,a,z). The next thing that we need to do is to find
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the roots of this 4th degree polynomial in z. Now, being a 4th degree polynomial, it can have

at most 4 real roots. Let these be pi, p2, p-z and p4. W ithout loss of generality, let us assume

that

Pi <  P2 <  p3 5: P a -

Our objective is to calculate the price of the option in the region where the function E ( Y  — 

F\Z)  is positive. This is the area defined by the intervals (—oo, pi), {p2,pz) and (p4 ,oo). In 

case, the polynomial has some imaginary roots, we ignore them and concentrate on the real 

roots only.

Let us define the coefficient of z-7 by a,j for j =  0, 1, 2, 3, 4. Thus, we have, 

a0 =  1 -  | a 2 +  ± a 4 -  ^ a4k2 +  3k3 -  |i<r3k + \ a 2k 2 +  ^<?4k4 + \ k - F ,

“ i =  V U l i i ^ k  + &  + ± a 3k2 -  ^ a 4k -  ± a 3 +  ^ a4k3],

“2 =  +  K -

“3 =  +  ^<73],

“4 =  Tos^4-

Knowing the values of r, a and F, we know k = J. Once we know the values of k, a  and F , 

we can easily find the roots of the polynomial in z. Having obtained the value of pi, p2, P3 

and p4 to calculate the value of the option, we then need to calculate

E /  ai z i ^ e ~ ^ d z + Y , j  ai z i ^ e ' ^ d z + Y . j  a*z j ^ e ~ ^ d z
j —o J  ~ o c  V 7̂T j_q V j_o "  Pa V *71

=x> J p z i ^ ^ d z + i i ai  f  z i ^ e~ ^ d z + i i ai  j  z i ^ e ~ ^ d z -
j —o j —OO V  ATI j = 0  J  P'2 V ATI J _ Q J  p A V ATI

4 P00 1 2> E aJ I  z ’ - T ^ e - ^ d z .  (8.10)
J=0 **̂  V 27T

Here, a;- is the co-efficient of and being independent of z can be taken outside the integral. 

Since we are interested in the lower bound to the price, we look at

4 '*°° 1 z2

j = o
E a! I  zJ7 /f^ e ~2dz’ (8'U )
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where p± is the largest of the real roots. Furthermore, in practice the contribution from

Finally, the only thing that remains to be done to calculate the value of the lower bound 

of the option is to multiply the appropriate coefficients of z, a , j  (j =  0 , 1 ,2 ,3,4) with the 

corresponding values of the integrals and add them up. To obtain an approximation to the 

price of the asset, all that needs to be done is to put the strike price of the option at 0. Thus, 

in effect one needs to calculate

is negligible and hence can be ignored. This fact is also reflected in the results obtained, as 

shown in the tables (Tables 17.1 - 17.4).

Being interested in the lower bound of the price as given by equation (8.11), we are thus 

interested in the following integrals;

+04 [■
p\e ^  +  3p4 ^  +  3 y ^ 7r(l ~  $(p4)) 

y/2ir
] =  Q(r, cr, F)  say. (8 .12)
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This is because k = L and p is a function of k. a and F.<7 • 1

The values obtained using this method is given in Tables 17.1 to 17.4. The values of cr and r 

as well as the strike price b are exactly the same as the ones used by Rogers and Shi (1995). 

In fact, we also give the values of the Asian option obtained by Rogers and Shi. We give the 

values which they denote by L B 2 - according to them, it is the closest approximation to the 

true price.

8.3 Bond Pricing : Zero Coupon Bonds

As in the case of the Asian option, here also, we employ a technique which combines the use 

of the conditioning factor Z to obtain the prices and the expansion technique. The fact that 

we use the expansion technique in conjunction with the conditioning factor ensures tha t the 

method does not collapse for relatively high values of a (a > 1.5; see also chapter 2, section 

3). This method reduces the number of numerical integrations performed when only the 

conditioning factor is used and replaces these by simple integrations. The way it works is 

tha t first it performs a linearisation of the exponential term and then evaluates the integral 

exactly. In fact, no integration is required as long as the exponent is expanded up to 4 terms. 

This is because, in this case, the final integration to calculate the expected value is over Z, 

which is raised to various powers, and the co-efficients are dependent on certain fixed values 

of the parameters, but independent of Z. The expressions are multiplied by the standard 

normal density function, as we are interested in finding the expected value.

We have the situation

rt = beXt 

and X t =  p t +  oYu

where rt is the instantaneous rate of interest, is the drift and Yt is a is a Gaussian process 

with zero mean and a variance - covariance Cov(Yu, Yv) =  luv and 6 is a constant which takes 

different values in different situations. In our examples, we take Ys to be either a Brownian
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motion with a drift [i or an Ornstein - Uhlenbeck process. In the last two cases, fit =  0. We 

are interested in finding

E ( f ( [  (oY. + n.)ds)),
Jo

where /  is a convex function. Thus, in particular the price of the bond (f(x) =  e~bx) is given 

by

E (e -bt i e<rYs+tlsds) (8.13)

and the value of the contingent payment on the bond (f(x) =  [e~bx — c]+) is given by

E(e~bf° eCrYs+tlsds — c)+. (8.14)

We make use of the conditioning factor approach as discussed in chapter 3 to calculate the 

price of the bond as well as the contingent payment on it.

E{e~bt i e<rYs+,iads\z)  (8.15)

and to calculate the contingent payment on the bond, we look at

E (e -bti  _  C\Z)+, (8.16)

where Z, the conditioning factor, is chosen as explained in chapter 2 and is given by

Z  =  1° lsds  — (8.17)
VVar

Now, Ys is either a Brownian motion or an Ornstein - Uhlenbeck process, depending on what 

the volatility process is. Conditionally on Z, Yu is a Gaussian process with

E{YU\Z) =  kuZ, (8.18)

where K  = flnvfy-, 7.) =  Cov(K" ’ Y^ ds (8.19)
VVarOi1 Y‘ds)

and Cov{Yu,Yv\Z) = IUV ku kv =  wuv say. (8 .2 0 )

W hat we want to find out is an approximation to the price of the bond. That is given by

E(e~bf° e<7Ys+̂ ds) =  E[E{e~bt i eaYs+,Xsds)\Z]. (8.21)
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Also, the price of the contingent payment is given by

E(e~bS ' _  c)+ = E[E(e~bf° e°Y,+l‘’ds _  c\Z)+}. (8.22)

Now, in both cases, we first need to find out

E(e~bt i  e ^ + ^ d u ^  _  exp J  exp{g,u +  akuz +  ^ a 2wuu}du j  =  g(fiUJ a, a, b, Z) =  say.

The expressions for ku are different for Yu taking different forms and hence g(nu, a, b, z , b) 

takes a different form for different forms of Yu. When Yu represents a Brownian motion, a 

=0 and iiu represents the drift, while in the case of Yu representing an Ornstein - Uhlenbeck 

process, (iu =  0 and a represents the mean reversion force of the Ornstein - Uhlenbeck 

process.

At this point, this method diverges from the one used in chapter 2 in valuing zero coupon 

bonds. In tha t case, we had made use of numerical integrations to obtain the approximation 

to the lower bound to the price of the bond as well as the lower bound of the value of the 

contingent payment on the bond. However, here, we do not use any numerical integrations 

and look at the expansion of g(fiu,a,a,b, z) in terms of a and retain terms up to the 4th 

order. We thus have a a polynomial in cr, 6, Z, k and a, where k =  n u is the drift in case 

of the Brownian motion and \iu =  0 in the case on the Ornstein Uhlenbeck process. Let this 

polynomial be denoted by gi(k,cr,u, z,b). Thus, we have

g{tiu,a ,o ,b ,z)  =  gi(k, a, a, 6 , z) + 0 (a5),

where,

gi(k, a, cr, 6, z) =  bo 4- bi(k, a, z, b)a +  b2 (k,a, z , b)a2 +  b$(k, a, z, b)az 4- b±(k, a, z, 6)cr4.
(8.23)

Now, the first term in the expansion is a constant and thus, bo = e~b and bj(k ,u ,z,b)  is a 

function of k, u, z and 6 for j =  1 , 2, 3, 4. The exact form of g i(k ,a ,u ,z ,b )  for the case of 

Yu following a Brownian Motion and a Stationary Ornstein - Uhlenbeck process are given in 

the appendix to this chapter.
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Next we re-arrange the terms of equation(8.23) in terms of z, we have, gi(k, a, a, 6 , z) a

polynomial in 2:, since we treat a, b, k and a as constants. Thus, we have,
4

gi(k, a, cr, b, z) = '^ ^a j(k ,a ,a ,b )z :i. (8.24)
j=0

Here, a / s  are the co-efficients of zj - j =  0, 1, 2 , 3, 4. Further, a0 =  b0 =  e~b. Also,

a,j(k, a, a, b) are the co-efficients of zj ; j =  1, 2, 3, 4 and are functions of k, a  and b.

To calculate the price of the bond, we need to calculate

E[E(e~bti  = E[gi(k,a,a,b,z)],  (8.25)

while to calculate the contingent payment on the price of the bond we need to calculate

E[E (e-bi'» -  c\Z)+} = E[{gi(k, a, a, b, z) -  c}+], (8.26)

where c is the strike price at which the contingent payment on the bond is calculated.

From the above two equations, equations (8.25) and (8.26), it is obvious that by equating c 

to 0, in equation (8.26), we obtain the approximation to the price of the bond. Since this 

is the more general set up, we will use this equation to value both the bond as well as the 

contingent payment on it. For approximating the price of the bond, we will just equate c, 

the strike price, to 0.

Now, to calculate an approximation to the price of the contingent payment on the bond ( 

as well as an approximation to the price of the bond), we group the value of the strike price 

at which the contingent payment on the bond is calculated, c, with the coefficient of z° in 

the polynomial gi(k, a, a, 6, z). The next thing that we need to do is to find the roots of this 

roots of this 4th degree polynomial in z and choose the largest of the real roots, say p. This 

is because while taking the expectation over Z to calculate the price of the option we are 

only interested in the region where the function E(e~bfo eYs+fl*ds — c\Z) is positive.

Knowing the values of pu, cr, 6, a and c, we know k = Once we know the values of k, a

b, a and c, we can easily find the roots of the polynomial in z. Having obtained the value of 

p, to calculate the value of the contingent payment, we then need to calculate



f p 1 -2 ( p 1
=  (ao -  c) /  - y = e  "* dz +  >  a j  /  - = e  2 dz. (8.27)

J —00 V  27T J —00 y  2/K

Here, a j  is the co-efficient of z-7 and being independent of z can be taken outside the integral. 

Now, we have,

/ _ l ^ e' 4d2=$(p)’

r  1 1/ 2—7 = e  2 dz =  —p = e  2
7—00 \/27T v27T

r  s-L'-tto*,!-r z. -££±tvpir±w),
7-00 V ^ T  7p v 27T V27T

2 +  p2 __gj 
\/27r \/2

3 -=- J * -r y2  e 2 dz = ------- 7^-e 2 5

r  2< ‘ 4 = 3 -  r  = 3 -  p3e~v + ^  v  -L3^ * 1 -  .
7-00 v27T Jp v 2 tt \/27r

Finally, the only thing that remains to be done to calculate the value of the contingent 

payment on the price of the bond is to multiply the appropriate coefficients of 2 , op j =  0 , 

1 , 2 , 3, 4 with the corresponding values of the integrals and add them up. To obtain an

approximation to the price of the asset, all that needs to be done is to put the strike price of
2

the option at 0. Thus, re-writing equation (8.26) explicitly with the form of dz,

j =  0, 1, 2, 3, 4, one needs to calculate

/  x , ,  v r 1 u pe~^  +  \/27r(l -  $ (p ))i r 2 +  p2 _ £ *
( a 0 -  c ) $ (p )  +  a i[ -^ = = e  2 ] +  a 2[ l ------------------- - j= --------------- ] +  a 3[----- ^ / | “ e  2 1

r p 3e “ V  +  3 p e - V  +  3 a/ 2 7 t( 1 — $ ( p ) )  .
+ a4[3-------------------------= -------------------- ] =  Cl(r, a, b, c) say. (8.28)

v  2n

This is because k =  ^  and p is a function of k, a, b and c.

Thus, to calculate the price of the bond, we put c =  0 in Cl(r, a, b, c), whereas to calculate 

the value of the contingent payment on the bond, we let c take the value of the strike price 

at which the payment is to be made.
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8.4 Conclusion and Remarks

The prices calculated in using this approach for both the Asian options as well as the bonds 

are exactly similar to the ones calculated by using the conditioning factor approach. This 

method has a few distinct advantages. First of all, it is very fast and can provide output 

in real time and does not need to perform any numerical integration. Secondly, and more 

importantly, all calculation in this approach can be carried out on such simple machines as 

a programmable calculator. The only care that needs to taken is to ensure that it has the 

facility to calculate the roots of a polynomial. Though the method involves the calculation of 

the roots of a 4th degree polynomial, packages exist for it and can be done very easily. Further, 

the alternative would be to make use of two numerical integrations and thus obtaining the 

roots of the polynomial in z seems to be much better option.

The method works well for fairly large values of a as well; for a  taking values up to 1, the 

value of the option calculated by this method is very close to the simulated values.

The exact Splus codes used to calculate the values of the Asian Option as well as the bonds 

are attached in the appendix to this chapter.
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8.5 Tables

The following tables show the comparison of the values obtained by the alternative method 

of valuing an Asian option as contrasted to the values obtained by Rogers and Shi (1995). 

The values obtained by the alternative method is given as in the calculated price.

Table 17.1 : a =  0.05
r Strike Price Calculated Price Rogers & Shi Price

0.05 95 7.178 7.178
100 2.716 2.716
105 0.337 0.337

0.09 95 8.809 8.809
100 4.308 4.308
105 0.958 0.958

0.15 95 11.094 11.094
100 6.794 6.794
105 2.744 2.744

Table 17.2 : cr =  0.1
r Strike Price Calculated Price Rogers & Shi Price

0.05 90 11.951 11.951
100 3.641 3.641
110 0.331 0.331

0.09 90 13.385 13.385
100 4.915 4.915
110 0.630 0.630

0.15 90 15.399 15.399
100 7.028 7.028
110 1.413 1.413
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Table 17.3 : a =  0.2
r Strike Price Calculated Price Rogers & Shi Price

0.05 90 12.596 12.595
100 5.763 5.762
110 1.989 1.989

0.09 90 13.831 13.831
100 6.777 6.777
110 2.545 2.545

0.15 90 15.642 15.641
100 8.408 8.408
110 3.555 3.554

Table 17.4 : a =  0.3
r Strike Price Calculated Price Rogers &: Shi Price

0.05 90 13.952 13.952
100 7.944 7.944
110 4.070 4.070

0.09 90 14.983 14.983
100 8.827 8.827
110 4.695 4.695

0.15 90 16.512 16.512
100 10.208 10.208
110 5.728 5.728
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8.6 Appendix

In this appendix, we give the exact form of gi(k ,a ,u , z,b) as defined by equation (6.23) for 

Yu following a Brownian motion or a Stationary Ornstein - Uhlenbeck process.

8.6.1 Brownian M otion with drift

We rewrite k  =  L. We, thus have,O’ ' '
exp ( —bfo exp (kau  +  o z \ /3(u — y )  +  ^  (u  -  Z(u — !f ')2) ) )

=  9 l(k, a, u, z, b) + 0(a>) =  e - ‘ -  ( |

+  ( -2 0 ft4 -  65VZzk3 -  234z2ft2 -  12Zz3V3k  -  72z4 -  6k2 -  \2 k V lz  

—18z2 +  156fc4 + 50b'/Zzk3 +  185bz2k2 + 1006z3fc\/3 +  606z4) ik+viz)1

-  (—13866\/3zft3 -  34026z3ft\/3 +  3888z6 +  630ft6 +  195306Vft2 +  97656V ft4 -  90726z6 

+251 lz 4 -  377376z2ft4 +  17955z2ft4 -  12606A6 -  727656z“ft2 +  32805z4fc2 +  25206V  

+31562ft6 -  405096ft3\/3z3 +  10125z5\/3ft -  61956ft5\/3z -  230586z5v/3ft +  157562ft8\/3z  

+3024ft5\/3z  +  106756V \/3ft3 +  63006V V 3 k  +  18765z3V3ft3 +  6480z2ft2 

+3834z3^ f t  +  l m V Z z k 3 +  441ft4 -  22686z4 -  378b k 4 -  5670b z 2 k 2 )  ^ 6  7̂ 1 ^

+ (—16200z2k2 -  10800z3ft\/3 -  900ft4 -  8100z4 +  7566ft4

+6804&Z4 +  136086z2ft2 +  30246fe3zv/3 +  90726z3ft V3 -  33615ftsz%/3 +  4798086z2ft4 

+1548726z6 +  10738446z4ft2 -  1335606Vft4 -  3061806Vft2 -  6480ft6 -  63180z6 

—216000z2fc4 -  461700z4ft2 +  138606ft6 -  453606V -  378062ft6 +  54685266z4ft4 

+11494356z2ft6 +  40632036z6ft2 -  1188900z4ft4 -  263160z2ft6 +  210006ft8 -  5040ft8 

+5548326ftV %/3 -  244350ft V \ / 3  -  153495z5%/3ft -  2016062ft5z \/3  -  10584062z5ftv/3 

—1562406V v^ft3 +  3663366z5ftV3 +  732006ft5zv/3 -  31920ft W 3  +  1050063ft7z \/3  

+2643846z8 -  18144062z8 +  2520063z8 +  157563fc8 -  51840z8 +  46217563z4ft4 

+9135063z2ft6 +  36540063z6ft2 -  350784062z4ft4 -  71232062z2ft6 -  26989206Vft2 

—837540z6ft2 -  1260062ft8 -  115794062fcV \/3  -  6123606Vfc\/3 +  34520046ftV-/3 

+18369006ftV-\/3 +  3010006V ft3 n/3 +  1505006Vfc6v/3 +  840006Vfcv/3 

—8295062ft7z \/3  -  2253510&Vfc3 V3 +  9065526z7ft\/3

+1360806fc7z\/3  -  182115z7ft\/3 -  730710ftV \/3 -  409995ftVv'3) 60̂ 00 ik f j iz y  +  0 (°'5)-



8.6.2 Stationary Ornstein - Uhlenbeck Process

Here, we assume that the process has a mean reversion force of a. We, thus have, 

exp ( - 6  Jo1 exp +  $  ( ^  -  ) * ) )  <i«)

=  gi(k ,(j,u ,z,b) + 0 ( a h)

=  «-* -  ff

— (2a3 +  7a +  4 a2z2 — 6a2 +  8 z2ae~“ — 8ae~“ — 7 z2a — z2ae_2a +  ae_2“

+ 2z2a2e-° -  4bz2a2 -  8bz2ae~a + 86z2a -  46z2e -2<‘ +  86z2e- a -  46z2) ^ a3(ae+~ _i._ 1

+  (171e_“a3 +  55e-“a2z2 -  28a2z2 -  18e_aa4z2 -  12a4z2 +  40a3z2 -  174a3 -  21e-“a3z2 

—21e_3oa2 +  3e_3aa3 -  27e“2“a2z2 +  e"3“a2z2 -  219e"aa2 +  135e-2aa2 +  102a2 -  z 2 a 2 e ~ 4a 

— e ~ Saa 3 z 2 -  18e ~ 2aa 3z 2 -  18a5 +  90a4 +  3 e '4“a2 +  4862z2a3 -  7262z2a2 -  1262z2a4 

+4862z2a -  1356z2a3 -  1806a2 +  186a5 -  906a4 +  1896a3 -  1262z2e -4a -  7262z2e_20 -  4 8 b 2 z 2a e ~ 3a 

+4862z2e_0+4862z2e_3o+186a2e-3a+96ae-4(!+96ae_2“+186z2a4e-0 —186ae_3“+186z2a2e_3“ 

+366z2a3e_2°+96a3e_2a+ 1446z2a2e_2“+ 1086z2a3e~“+ 186a2z2e_2“—96az2e_2“ — 186a2z2e_3° 

—96a3z2e~2“ +  186az2e -3“ +  7 2 b z 2 a e ~ 3a -  9 b a z 2e ~ 4a +  2076ae~2“ -  186a2e -2a -  726ae"3a 

—1986ae_° — 1 4 4 b 2z 2 a e ~ 2a +  1 4 4 b 2z 2a 2 e ~ a -  3246z2a2e"“ 4- 1 4 4 b 2 z 2 a e ~ 2a -  2076z2ae-2“ 

-4862 z2a3e -“ -  2166a3 e"“+3786a2e"a +  366a4e -“ +  186a3 e"2“ -  1986a2 e~2a+366z2a4 -  1262z2 

+636a — 7262z2a2e_2a — 636z2a + 1626z2a2 + 1986z2ae_“) 77 =̂ 77 - =72 (s/a)9(Va+e~a — l)5

+A(z,  6, a)a4 4- 0(<r5),

where A(z, 6, a) is a function of z, b and a. Essentially it is the co-efficient of cr4 in the 

expansion. The term being too long, is written in this form and not explicitly as in the other 

cases.
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Chapter 9 

Further Comments and Open 
Problem s

We conclude the thesis by outlining three problems - problems which are similar to the 

ones discussed in this thesis. Note that we do not attempt to solve these problems but just 

provide an outline of them and leave them as open problems for future work. The first two 

problems are extensions to the problem of pricing of options on stochastically volatile assets 

and the problem of pricing of bonds. We believe that both these problems can be solved 

using the approximation technique discussed throughout this thesis. As a m atter of fact, 

the approximation technique discussed throughout the thesis can be used in any situation 

where there is a log - Gaussian process. The third problem is to find another justification of 

the conditioning factor used throughout this thesis. We shall now briefly define each of the 

problems.

The first problem is of pricing an European call option on a basket or portfolio of stochas

tically volatile assets. The idea used to price bonds based on multi - driver models (as 

discussed in chapter 5) could possibly be extended to price the call option on the portfolio 

of stochastically volatile assets. As in the case of pricing of options on just one stochas

tically volatile asset ( els discussed in chapter 6), in this case also, we might not obtain a 

lower bound. However, we could try to obtain an approximation to the price of the option 

instead. We believe that as long as the log - normality of the model is not violated very close 

approximations to the actual price of the option can be obtained using the approximation 

technique.
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Another problem is of using a different model for the interest rate process in pricing of 

options on stochastically volatile assets with stochastic interest rates. In our analysis, we 

have taken the interest rate process to follow an Ornstein - Uhlenbeck process. This is very 

similar to the Vasicek (1977) model. However, one could try to model the interest rate as 

a  log - Gaussian process; this is similar to the model we have used in chapters 2, 4 and 5 

when modelling interest rates and pricing bonds. Again, we believe that the approximation 

technique used in chapter 6 would still work though the calculations could become very 

complicated and involved.

The third problem is of providing another explanation for the choice of the conditioning 

factor. Throughout this thesis we have used a conditioning argument to obtain the approx

imations - lower bounds in the case of bond prices and approximate prices in case of option 

prices. In chapter 3, we have provided one justification to the choice of the conditioning 

factor starting from a general Gaussian distribution. However, an attem pt could be made to 

explain the choice of the conditioning factor by using factor analysis or principal component 

analysis techniques. The idea is to try  to obtain the conditioning factor Z which explains 

the majority of the variation. We believe that the form of the conditioning factor would still 

remain as defined in chapter 3 - only that there would be one more justification for using 

this form of the conditioning factor.
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Appendix I : Programs

In this section, we present the code written in Spliis to carry out the various calculations 

throughout the thesis. Before each program, or the group of programs, there is a short note 

describing what the program is supposed to do.
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Valuing bonds using conditioning factors.

The following set of programs calculates the value of bonds using the appropriate conditioning factor. 
The first set of programs calculate the value of the bond when the underlying stochastic process 
follows a Brownian motion, the second set assumes that the underlying stochastic process follows a 
Non-stationaiy Omstein Uhlenbeck process and in the third situation, the underlying stochastic process 
follows a Stationary Omstein Uhlenbeck process.

Brownian Motion with a drift

Here, the drift of the Brownian motion is aO, the instantaneous variance is si and the discounting factor 
is b. The first program, kkug, calculates the value of the conditioning factor. The second program, kdb, 
calculates the value of the integral for individual values of z and u, while the third program actually 
ensures the integration with respect to u, over the range [0,1].

kkug <- function(u) {
ak <- si * (3*0.5) * (u - ((uA2)/2»
retum(ak)
>

kdb <- function(z, u) { 
al <- kkug(u) * z
a2 <- u - (3 * (uA2» + (3 * (uA3)) - ((3 * (uA4))/4) 
a2 <- a2 * (siA2)
a3 <- ((aO - ((siA2)/2)> * u) + yO + al + (a2/2) 
retum(exp(a3))
>

kdbb <- function(z) { 
x < - 1:100 
for(i in 1:100) { 
x[i] <- kdb(z, i/100)
>
retum(exp(-b * mean(x)))
>

Finally, we evaluate the price by integrating with respect to z, after having multiplied with the standard 
normal density function over the entire range of z, that (- a>, oo).

Non-stationary Omstein Uhlenbeck Process

Here, the mean reversion force of the Non-stationary Omstein Uhlenbeck process is aO, the 
instantaneous variance is si and the discounting factor is b. The first subroutine, vz, calculates the 
variance of the conditioning factor and the subroutine kug calculates the value of the conditioning 
factor. The subroutine db calculates the value of the integral for individual values of z and u, while the 
subroutine dbb actually ensures the integration with respect to u, over the range [0,1].

vz <- function(si) {
q <- (2 * a * t) + (4 * exp( - a * t)) - exp(-2 * a * t) - 3
qq <- (siA2) * (q/(2 * (aA3)))
retum(qq)
>

kug <- function(u) {
bl <-1 - exp( - a * u)
b2 <-1 - exp( - a * (t - u))
b3 <- exp( - a * u) - exp( - a * (t + u))
b <- (bl +b2 -b3)/a
bb <- (siA2) * b * (1/(2 * a)) * ( l / ^ s i ) ^ ) )
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retum(bb)
>

db <- fimction(z, u) {
al <- kug(u) * z
a2 <-1 - exp(-2 * a * u)
a2 <- (siA2) * a2 * (1/(2 * a))
a3 <- kug(u)A2
a4< -al + ((a2-a3)/2)
retum(exp(a4))
>

dbb <- function(z) { 
x < - 1:1000 
for(i in 1:1000) { 
x[i] <- db(z, i/1000)
>
retum(exp(-b * mean(x)))
>

Finally, we evaluate the price by integrating with respect to z, after having multiplied with the standard 
normal density function over the entire range of z, that (-» , oo).

Stationary Omstein Uhlenbeck Process.

Here, the mean reversion force of the Stationary Omstein Uhlenbeck process is aO, the instantaneous 
variance is si and the discounting factor is b. The first subroutine, vzs, calculates the variance of the 
conditioning factor and the subroutine kus calculates the value of the conditioning factor. The 
subroutine dbs calculates the value of the integral for individual values of z and u, while the subroutine 
dbbs actually ensures the integration with respect to u, over the range [0,1].

vzs <-function(si) { 
ql <- a + exp( - a) -1 
q2 <- ql * (siA2) * (l/(aA3)) 
retum(q2)
>

kus <- fimction(u) { 
b l <-1 - exp( - a * u) 
b2 <-1 - exp( - a * (1 - u)) 
b <- (bl + b2)/a
bb <- (siA2) * b * (1/(2 * a)) * (l/(vzs(si)A0.5)) 
retum(bb)
>

dbs <- function(z, u) { 
al <- kus(u) * z 
a2 <- (siA2)/(2 * a) 
a3 <- kus(u)A2 
a4 <- al + ((a2 - a3)/2) 
retum(exp(a4))
>
dbbs <- function(z) { 
x < - 1:1000 
for(i in 1:1000) { 
x[i] <- dbs(z, i/1000)
}
retum(exp(-0.07 * mean(x)))
>
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Finally, we evaluate the price by integrating with respect to z, after having multiplied with the standard 
normal density function over the entire range of z, that (- oo, oo).

Subroutines to calculate the prices, using the alternative method.

The following set of subroutines calculates the value of bonds using the alternative method as 
described in section 3.6. The first set of subroutines calculate the value of the bond when the 
underlying stochastic process follows a Brownian motion, the second set assumes that the underlying 
stochakic process follows a Non-stationary Omstein Uhlenbeck process and in the third situation, the 
underlying stochastic process follows a Stationary Omstein Uhlenbeck process.

Brownian Motion with a drift

The following subroutines calculate the value of the bond as well as the value of a European option 
priced on the bond. The subroutines coeffbO, coeffbl, coeffb2, coefb3 and coeffb4 calculates the values 
of the co-efficients of the polynomial in "z". The subroutine rootb evaluates the roots of the polynomial 
and returns that largest real root as its output The subroutines intbO, intbl, inlb2, intb3 and intb4 
calculate the value of the integrals. In fact, here the value of the integrals can be calculated exactly. 
Finally, the subroutine valueb combines the outputs obtained from the subroutines coeffbO, coeffbl, 
coeffb2, coeffb3, coeffb4 and intbO, intbl, intb2, intb3, intb4 to return the value of the bond or the 
value of the option priced on the bond. The user of this program only sees the subroutine valueb and all 
the user has to do is input the values of variance (si), the drift of the Brownian motion (a), the discount 
factor of the bond (b) and the strike price of the option of the bond (op). In case of calculating the value 
of the bond alone, the value of op is 0.

coeffbO <- function(si, k, b){
bpl <- 1 - ((1/6) * b * 3 * k * si) - ((1/6) * b * (kA2) * (siA2)) - ((1/20) * b * (siA2))
bp2 <- ((1/8) * (1^2) * (kA2) * (siA2)) - ((1/24) * b * (kA3) * (siA3)) -((7/240) * b * k * (siA3))
bp3 <- ((1/12) * (1^2) * (kA3) * (siA3)) + ((1/40) * (^2 ) * k * (siA3))
bp4<-((-l/48)*(bA3)*(kA3)*(siA3))-((l/672)*b*(siA4))-((l/160)*(bA3)*(kA2)*(siA4))
bp5 <- ((1/384) * (1^4) * (kA4) * (siA4)) - ((1/120) * b * (kA4) * (siA4))
bp6 <- ((5/144) * (1^2) * (kA4) * (siA4)) - ((1/48) * (^3) * (kA4) * (siA4))
bp7 <- ((l/800)*(bA2)*(siA4))-((3/280)*b*(kA2)*(siA4))+((l l/480)*(bA2)*(kA2)*(siA4))
bp < -exp(-b) * (bpl + bp2 + bp3 +bp4 + bp5 + bp6 + bp7)
retum(bp)
>
coeffbl <- function(si, k, b){
bql <- ((-1/6) * b * 2 * si) - ((5/24) * b * k *  (siA2)) + ((1/6) * (1^2) * k * (siA2))
bq2 <- ((-1/24) * (bA3) * (kA2) * (siA3)) + ((23/144) * (1^2) * (kA2) * (siA3))
bq3 <- ((-31/1680) * b * (siA3)) - ((3/40) * b * (kA2) * (siA3)) + ((1/60) * (bA2) * (siA3))
bq4 <- ((-57/4480) * b * k * (siA4)) - ((31/576) * (1^3) * (kA3) * (siA4))
bq5 <- ((-1/120) * (^3 ) * k * (siA4)) - ((7/360) * b * (kA3) * (siA4))
bq6 <- ((31/360) * (b*2) * (kA3) * (siA4)) + ((1/144) * (bA4) * (kA3) * (siA4))
bq7 <- ((37/1260) * (bA2) * k * (siA4))
bq <- exp( - b) * (S'XXS) * (bql + bq2 + bq3 + bq4 + bq5 + bq6 + bq7) 
retum(bq)
>

coeffb2 <- function(si, k, b){
brl <- ((-1/5) * b * (siA2)) + ((1/6) * (bA2) * (siA2)) - ((1/12) * (1^3) * k * (siA3))
br2 <- ((37/120) * (bA2) * k * (siA3)) - ((11/80) * b * k * (siA3)) - ((113/720) * (bA3) * (kA2) * (siA4))
br3 <- ((1/48) * (bM) * (kA2) * (siA4)) + ((31/128) * (1^2) * (kA2) * (siA4))
br4 <- ((-1/120) * (b*3) * (siA4)) - ((29/560) * b * (kA2) * (siA4))
br5 <- ((-13/1120) * b * (siA4)) + ((239/8400) * (bA2) * (siA4))
br <- exp( - b) * (brl + br2 + br3 + br4 + br5)
retum(br)
>
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coeffb3 <- function(si, k, b){
bsl <- ((-1/35) * b * (3A0.5) * (siA3)) + ((1/15) * (bA2) * (3A0.5) * (siA3))
bs2 <- ((-1/54) * (bA3) * (3*0.5) * (siA3)) - ((93/4480) * b * k * (3A0.5) * (siA4))
bs3 <- ((57/560) * (b*2) * k * (3^.5) * (siA4)) + ((1/108) * (bA4) * k * (3^.5) * (siA4))
bs4 <- ((-49/720) * (bA3) * k * (3A0.5) * (siA4))
bs <- exp( - b) * (bsl + bs2 + bs3 + bs4)
retum(bs)
>

coeffb4 <- function(si, k, b){
btl <- ((1/216) * (siA4) * (bA4)) - ((1/105) * b * (siA4)) 
bt2 <- ((17/350) * (bA2) * (siA4)) - ((1/30) * (bA3) * (siA4)) 
bt <- exp( - b) * (btl + bt2) 
retum(bt)
>

rootb <- function(si, k, b, op){
stl <- polyroot(c((coeffbO(si, k, b) - op), coeffbl(si, k, b), coeffb2(si, k, b), coeffb3(si, k, b), coeffb4(si, 
k,b))) 
st2 <- stl 
for(i in 1:4) { 
if(abs(Im(stl[i]))> le-06) 
st2[i] <- stl[i] - 1000000000 
>
stt <- max(Re(st2)) 
retum(stt)
>

intbO <- fimction(si, k, b, op){
re <- rootb(si, k, b, op)
bbl <- (coeffbO(si, k, b) - op) * pnorm(re)
retum(bbl)
>

intbl <- function(si, k, b, op){ 
re <- rootb(si, k, b, op)
bcl <- coeffbl (si, k, b) * exp((reA2)/(-2)) * (-l/((2 * pirO.5)) 
retum(bcl)
>

intb2 <- function(si, k, b, op){
re <- rootb(si, k, b, op)
bdl <- re * exp((reA2)/(-2))
bd2 <- ((2 * p i)^ ^ )  * (1 - pnorm(re))
bd3 <- (bdl +bd2) * (l/((2 * p i ) ^ ) )
bd <- coeffb2(si, k, b) * (1 - bd3)
retum(bd)
}
intb3 <- function(si, k, b, op){
re <- rootb(si, k, b, op)
bel <- (2 + (reA2)) * exp((reA2)/(-2))
be <- coeffb3(si, k, b) * bel * (-l/((2 * piyH).5))
retum(be)
}
intb4 <- function(si, k, b, op){ 
re <- rootb(si, k, b, op) 
bfl <- (reA3) * exp((reA2)/(-2))
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bf2 <- 3 * re * exp^re^)/^))
bf3 <- 3 * ((2 * p i ) ^ )  * (1 - pnorm(re))
bf4 <- (bfl + b£2 + bf3) * (l/((2 * pi)A0.5»
bf <- coeffb4(si, k,b) * (3 -bf4)
retum(bf)
}

valueb <- function(si, a, b, op){ 
k <- a/si
bval <- 100 * (intbO(si, k, b, op) + intbl(si, k, b, op) + intb2(si, k, b, op) + intb3(si, k, b, op) + intb4(si,
k, b, op))
retum(bval)
>

Stationary Ornstein Uhlenbeck Process

The following subroutines calculate the value of the bond as well as the value of a European option 
priced on the bond. The subroutines coeffousO, coeffousl, coeffous2, coeffous3 and coeffous4 
calculate the values of the co-efficients of the polynomial in Hz". The subroutine rootous evaluates the 
roots of the polynomial and returns that largest real root as its output. The subroutines intousO, intousl, 
intous2, intous3 and intous4 calculate the value of the integrals. In fact, here the value of the integrals 
can be calculated exactly. Finally, the subroutine valueous combines the outputs obtained from the 
subroutines coeffousO, coeffousl, coeffous2, coeffous3, coeffous4 and intousO, intousl, intous2, 
intous3, intous4 to return the value of the bond or the value of the option priced on the bond The user 
of this program only sees the subroutine valueous and all the user has to do is input the values of 
variance (si), the drift of the Brownian motion (a), the discount factor of the bond (b) and the strike 
price of the option of the bond (op). In case of calculating the value of the bond alone, the value of op 
is 0.

coeffousO <- function(si, a, b){
cpl <- (1/8) * b * ((2 * (aA3)) + (7 * a) - (6 * (aA2)) + (a * exp(-2 * a)) - (8 * a * exp( - a))) 
cp2 <- (aA3) * (a + exp( - a) -1) 
cp3 <-1 - ((cpl * (siA2))/cp2)
cp4 <- (-108 * exp(-2 * a) * (aA4)) + (432 * (aA5)) - (432 * b * (aA5)) +(1152 * b * (aA4))
cp5 <- (-1440 * exp( - a) * (aA3)) + (882 * b * (aA2)) - (288 * b * (aA2) * exp(-3 * a))
cp6 <- (-576 * b * (aA4) * exp( - a)) - (1512 * b * (aA3)) - (96 * (aA3) * exp(-3 * a))
cp7 <- (72 * b * (aA4) * exp(-2 * a)) - (72 * (aA6)) - (216 * b * (aA3) *exp(-2 * a))
cp8 <- (1404*b*(aA2)*exp(-2*a))+(1728*b*(aA3)*exp(- a))-(2016*b*(aA2)*exp(- a))
cp9 <- (9 * exp(-4 * a) * (aA3)) - (1152 * (aA4)) + (18 * b * (aA2) * exp(-4 * a))
cplO <- (216 * exp(-2 * a) * (aA3)) + (1311 * (aA3)) + (72 * b * (a^))
cp ll <- (1/2304) * b * (cp4 + cp5 + cp6 + cp7 + cp8 + cp9 + cplO) * (l/(cp2A2))
cp <- exp(-b) * (cp3 + cpll)
retum(cp)
>

coeffousl <- fimction(si, a, b){
cql <- si * (l/((aA0.5)A3)) * ((a + exp( - a) - 1)A0.5)
cq2 <- (378*b*(aA2)*exp(- a))-(216*b*(aA3)*exp(- a))-(216*b*(aA2)*exp(-2 * a))
cq3 <- (3 * (aA2) * exp(-4 * a)) + (18 * b * (aA2) * exp(-3 * a)) + (189 * b * (aA3))
cq4 <- (36 * b * (aA4) * exp( - a)) + (27 * b * (aA3) * exp(-2 * a)) + (63 * b * a)
cq5 <- (216 * b * a * exp(-2 * a)) - (18 * b * a * exp(-3 * a)) + (171 * (aA3) * exp( - a))
cq6 <- (9 * b * a * exp(-4 * a)) + (102 * (aA2)) - (219 * (aA2) * exp( - a))
cq7 <- (135 * (aA2) * exp(-2 * a)) - (174 * (aA3)) + (3 * (aA3) * exp(3 * a))
cq8 <- (-21 * (aA2) * exp(-3 * a)) - (72 * b * a * exp(-3 * a)) - (18 * (aA5))
cq9 <- (90 * (aA4)) - (198 * b * a * exp( - a)) - (180 * b * (aA2))
cqlO <- (-90 * b * (aA4)) + (18 * b * (aA5))
cql 1 <- ( ( a ^ J )^ )  * (((a + exp( - a) - ir0 .5)A5) * (1/72) * (siA3)
cq <- exp( -b) * b * (-  cql + cqll)
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retum(cq)
>

coeffous2 <- function(si, a, b){
crl <- (4 * (aA2» - (7 * a) - (a * exp(-2 * a)) + (8 * a * exp( - a)) 
cr2 <- (2 * (aA2) * exp( - a» - (4 * b * (aA2)) - (8 * b * a * exp( - a)) 
cr3 <- (8 * b * a) - (4 * b * exp(-2 * a)) + (8 * b * exp( - a)) - (4 * b)
cr4 <- (aA3) * (a + exp( - a) -1) 
cr5 <- (-1/8) * (crl + ci2 + cr3) * (l/cr4) * (siA2)
cr6 <- (1368 * (aA4)) + (4032 * b * (aA2) * exp( - a)) - (18 * (aA3) * exp(-4 * a))
cr7 <- (-2376*b*(aA3)*exp(- a))-(2808*b*(aA2)*exp(-2 * a))+(576*b*(aA2)*exp(-3 * a))
cr8 <- (2520 * b * (aA3» + (120 * (aA3) * exp(-3 * a)) - (288 * (aA5))
cr9 <- (1800 * (aA3) * exp( - a)) + (144 * b * (aA4) * exp( - a)) - (72 *b * (aA4) * exp(-2 * a))
crlO <- (-216 * b * (aA3) * exp(-2 * a)) + (216 * (aA3) * exp(-2 * a)) - (2118 * (aA3)>
crl 1 <- (2880 * (bA2) * (aA2» - (1008 * (bA2) * a) + (1008 * (aA4) * exp( - a))
crl2 <- (-144 * (aA5) * exp( - a)) + (72 * b * (aA3) * exp(-3 * a)) - (2880 * b * (aA4))
c rl3 <- (672*b*(aA2)*exp(-3*a)) (3168*(bA2)*a*exp(- a))-(576*(bA2)*(aA4)*exp(- a))
crl4 <- (-432 * (b*2) * (aA3) * exp(-2*a)) - (6048 * (bA2) * (aA2) * exp(-a)) - (4320 * b * (aA2) * exp(-
2 * a))
crl5 <- (1440 * (1^2) * (aA4» - (3264 * b * (aA2» + (1152 * (1^2) * a *exp(-3 * a))
crl6 <- (-3456*(bA2)*a*exp(-2*a)) + (3456 * (1^2) * (aA2) * exp(2 * a)) + (5568 * b * (aA3))
crl7 <- (576 * b * (aA5)) - (96 * b * (aA3) * exp(-3 * a)) - (288 * (b*2) * (aA5»
crl8 <- (7008 * b * (aA2) * exp( - a)) - (288 * (^2) * (aA2) * exp( - a)) + (288 * (b*2) * a * exp(-3 *
a))
crl9 <- (-5472 * b * (aA3) * exp( - a)) - (144 * (1^2) * a * exp(-4 * a)) + (144 * b * (aA5) * exp( - a)) 
cr20 <- (3456 * (bA2) * (aA3) * exp( - a» - (3024 * (bA2) * (aA3» - (132 * b * (aA2) * exp(-4 * a)) 
cr21 <- (-1764 * b * (aA2» - (1368 * b * (aA4)) + (144 * (aA4) * exp(2 * a)) + (288 * b * (aA5)) 
cr22 <- (cr6 + cr7 + cr8 + cr9 + crlO + crl 1 + crl2 + crl 3 + crl4 + crl 5 + crl6 + crl7 + crl8 + crl9 + 
cr20 + cr21)
cr23 <- (1/2304) * (cr22/(cr4A2)) * (siA4) 
cr <- exp( - b) * b * (cr5 + cr23) 
retum(cr)
}

coeffous3 <- function(si, a, b){
csl <- (-324 * b * (aA2) * exp( - a)) + (108 * b * (aA3) * exp( - a)) + (162 * b * (aA2) * exp(-2 * a))
cs2 <- ( -  exp(-4 * a) * (aA2)) - (18 * b * (aA2) * exp(-3 * a)) - (135 *b * (aA3))
cs3 <- (18 * b * (aA4) * exp( - a)) + (27 * b * (aA3) * exp(-2 * a)) - (12 * (bA2))
cs4 <- (-63 * b * a) - (216 * b * a * exp(-2 * a)) - (72 * (bA2) * (aA2))
cs5 <- (48 * (b*2) * a) - (144 * (bA2) * a * exp( - a)) + (144 * (b*2) * (aA2) * exp( - a))
cs6 <- (-12 * (b^2) * (aA4)) - (48 * (bA2) * a * exp(-3 * a)) + (144 * (bA2) * a * exp(-2 * a))
cs7 <- (-72 * (bA2) * (aA2) * exp(-2 * a)) - (48 * (bA2) * a * exp(-3 * a)) + (18 * b * a * exp(-2 * a))
cs8 <- (48 * (^2) * (aA3)) - (21 * (aA3) * exp( - a)) - (9 * b * a * exp(-4 * a))
cs9 <- (-28 * (aA2)) + (55 * (aA2) * exp( - a))
cslO <- (-27 * (aA2) * exp(-2 * a)) + (40 * (aA3)) - ((aA3) * exp(-3 * a))
csl 1 <- ((aA2) * exp(-3 * a)) + (72 * b * a * exp(-3 * a)) - (12 * (aA4))
csl2 <-(198 *b*a*exp (-a)) + (48 * (b*2) * exp(-3 * a))- (72 * (^2 ) * exp(-2 * a))
csl3 <- (48 * (bA2) * exp( - a)) + (18 * (1^2) * a * exp(-3 * a)) - (18 *(aA3) * exp(-2 * a))
csl4 <- (-18 * (aA4) * exp( - a)) - (12 * (bA2) * exp(-4 * a)) + (162 * b * (aA2)) + (36 * b * (aA4))
csl5 <- ((a*0.5)A9) * (((a + exp( - a) - l y ^ y ^ )
csl6 <- (csl + cs2 + cs3 + cs4 + cs5 + cs6 + cs7 + cs8 + cs9 + cslO + csl1 + csl2 + csl3 + csl4)
cs <- exp( - b) * b * (1/72) * (csl6/csl5) * (siA3)
retum(cs)
>

coeffous4 <- function(si, a, b){
ctl <- (-96 * (aA4)) - (2016 * b * (aA2) * exp( - a)) + (3 * (aA3) * exp(-4 * a))
ct2 <- (648 * b * (aA3) * exp( - a)) + (1404 * b * (aA2) * exp(-2 * a)) - (288 * b * (aA2) * exp(-3 * a))
ct3 <- (-1008 * b * (aA3)) - (8 * (aA3) * exp(-3 * a)) + (96 * (bA3))
ct4 <- (-120 * (aA3) * exp( - a)) + (288 * b * (aA4) * exp( - a)) + (72 * b * (aA4) * exp(-2 * a))
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ct5 <- (432 * b * (aA3) * exp(-2 * a)) - (144 * (aA3) * exp(-2 * a)) + (269 * (aA3»
ct6 <- (-2592 * Q>*2) * (aA2)) + (1008 * (bA2) * a) - (288 * (aA4) * exp( - a))
ct7 <- (-72 * b * (aA3) * exp(-3 * a)) + (384 * b * (aA4» - (32 * b * (aA2) * exp(-3 * a))
ct8 <- (-3168 * (1^2) * a * exp( - a)) - (288 * (bA2) * (aA4) * exp( - a)) - (432 * (1^2) * (aA3) * exp(-2 *
a))
ct9 <- (5184 * (1^2) * (aA2) * exp( - a» + (864 * b * (aA2) * exp(-2 * a)) - (576 * (bA2) * (aA4» 
ctlO <- (896 * b * (aA2)) - (1152 * (bA2) * a * exp(-3 * a)) + (3456 * (0*2) * a * exp(-2 * a)) 
ctl 1 <- (-2592 * (bA2) * (aA2) * exp(-2 * a)) - (1280 * b * (aA3)) + (32 * b * (aA3) * exp(-3 * a» 
ctl2 <- (-1760 * b * (aA2) * exp( - a)) + (288 * (bA2) * (aA2) * exp(-3 *a)) - (288 * (bA2) * a * exp(-3 * 
a))
ctl3 <- (672 * b * (aA3) * exp( - a)) + (144 * (1^2) * a * exp(-4 * a)) - (1728 * (bA2) * (aA3) * exp( - 
a))
ctl4 <- (2160 * (bA2) * (aA3» + (576 * b * (aA4) * exp( - a)) + (576 * b * (aA3) * exp(-2 * a)) 
ctl5 <- (576 * (o*3) * (aA2)) - (288 * Q>*2) * (aA2) * exp(-3 * a)) + (1152 * (1^3) * a * exp( - a)) 
ctl6 <- (-1152 * (0*3) * (aA2) * exp( - a)) + (384 * (bA3) * (aA3) * exp( - a)) - (1152 * (bA3) * a * exp(- 
2 * a »
ctl7 <- (384 * (bA3) * a * exp(-3 * a)) + (576 * (^3) * (aA2) * exp(-2 * a)) - (384 * (bA3) * a)
ctl8 <- (96 * (b*3) * exp(-4 * a)) + (576 * (0*3) * exp(-2 * a)) - (384 * (1^3) * exp(-3 * a))
ctl9 <- (96 * (bA3) * (aA4» - (384 * (bA3) * (aA3)) - (384 * (^3) * exp( - a)) + (50 * b * (aA2) * exp(-4
* a))
ct20 <- (882 * b * (aA2)) + (288 * b * (aA4)> - (36 * (aA4) * exp(-2 * a)) 
ct21 <- (aA6) * ((a + exp( - a) - 1)A2)
ct22 <- (ctl + ct2 + ct3 + ct4 + ct5 + ct6 + ct7 + ct8 + ct9 + ctlO + ctll + ctl2 + ctl3 + ctl4 + ctl5 +
ctl6 + ctl7 + ctl8 + ctl9 + ct20)
ct <- exp( - b) * b * (1/2304) * (ct22/ct21) * (siA4)
retum(ct)
>

rootous <- fiinction(si, a, b, op){
ptl <- polyroot(c((coeffousO(si, a, b) - op), coeffousl(si, a, b), coeffous2(si, a, b), coeffous3(si, a, b), 
coe£fous4(si, a, b))) 
pt2 <- ptl 
for(iin 1:4) { 
if(abs(Im(ptl[i])) > le-06) 
pt2[i] <-ptl[i] -1000000000 
>
ptt <- max(Re(pt2)) 
retum(ptt)
>

intousO <- function(si, a, b, op){
re <- rootous(si, a, b, op)
cbl <- (coeffousO(si, a, b) - op) * pnorm(re)
retum(cbl)
}
intousl <- function(si, a, b, op){ 
re <- rootous(si, a, b, op)
ccl <- coeffousl(si, a, b) * exp((reA2)/(-2)) * (-l/((2 * p i)^^)) 
retum(ccl)
>

intous2 <- fimction(si, a, b, op){
re <- rootous(si, a, b, op)
cdl <- re * exp((reA2)/(-2))
cd2 <- ((2 * piy^OJ) * (1 - pnonn(re))
cd3 <- (cdl + cd2)* (l/((2 * p i ) ^ ) )
cd <- coeffous2(si, a, b) * (1 - cd3)
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retum(cd)
>

intous3 <- function(si, a, b, op){
re <- rootous(si, a, b, op)
cel <- (2 + (reA2)) * exp((reA2)/(-2))
ce <* coeffous3(si, a, b) * cel * (-l/((2 * piyKXS))
retum(ce)
>

intous4 <- fiinction(si, a, b, op){
re <- rootous(si, a, b, op)
cfl <- (reA3) * exp((reA2)/(-2))
cf2 <- 3 * re * exp((reA2)/(-2))
cf3 <- 3 * ((2 * p i)* ^ ) * (1 - pnorm(re))
cf4 <- (cfl + c£2 + cf3) * (l/((2 * pir0.5))
cf <- coeffous4(si, a, b) * (3 - cf4)
retum(cf)
>

valueous <- fimction(si, a, b, op){
cval <-100 * (intous0(si, a, b, op) + intousl(si, a, b, op) + intous2(si, a, b, op) + intous3(si, a, b, op) +
intous4(si, a, b, op))
retum(cval)
}

Subroutines to simulate the prices.

The three programs below are the three subroutines that can be used to generate a simulated set of data 
to obtain the simulated prices. The variables b, si and aO represent the same thing as earlier.

Subroutine for generation of the data set in the Brownian Motion case.

for(i in 1:10000){
wl<-morm(1000,0,si/(1000A0.5))
w2<-cumsum(w 1)
w3<-exp(w2)
w4<-mean(w3)
rxl [i]<-100*exp(-b*w4)
+>

Subroutine for generation of the data set in the Non-stationary Ornstein Uhlenbeck case.

j<-l:1000
j<-j/1000
for(i in 1:10000){
wl<-morm(1000,0,si/(1000A0.5))
w2<-wl *exp(a0*j)
w3<-cumsum(w2)
w4<-w3*exp(-a0*j)
w5<-exp(w4)
w6<-mean(w5)
rxl [i]<-100*exp(-b*w6)
+>

Subroutine for generation of the data set in the Stationary Ornstein Uhlenbeck case.

j<-l:1000
j<-j/1000
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1< - 1:1000 
K-l/l
for(i in 1:10000){
wl<-morm(1000,0,si/(1000A0.5))
w2<-wl*exp(a0*j)
w3<-cumsum(w2)
w4<-rnorm(l,0,si/((2*a)A0.5))
w5<-((w4*l)+w3)*exp(-a0*j)
w6<-exp(w5)
w7<-mean(w6)
rxl [i]<-100*exp(-b*w7)
+}

Valuation of Bonds based on two drivers.

These programs are the ones used to calculate the price of a bond where the interest rate is driven by 
two drivers where in general the two drivers could be correlated amongst themselves. The driving 
process is assumed to be a non-stationary Omstein Uhlenbeck process. We present the programs for 
both the situations as outlined in chapter 4.

Interest Rate following a log-normal process.

The following set of programs calculates the value of the bond when the interest rate follows a log
normal process. This is the situation as described in Chapter 4, section 2. Here, we have rt - the interest 
rate process defined as

rt = exp(Y,(1) + yY,® )
where Ys(1) and Yg(2) are the two driving stochastic processes with a correlation between them to be p. 
The first subroutine mvzl calculates the variance of the conditioning factor, mkugl calculates the value 
of ku, mdbl calculates the value of the conditional expectation and finally mdbbl calculates the value 
of the bond for different values of Z in the range (-oo, oo). Here t =1 and b = 0.07.

mvzl <- fimction(si) {
ql <- (2 * al * t) + (4 * exp( - al * t)) - exp(-2 * a l * t) - 3 
q2 <- (2 * a2 * t) + (4 * exp( - a2 * t)) - exp(-2 * a2 * t) - 3 
qql <- (ql * (siA2))/(2 * (alA3)) 
qq2 <- (q2 * (siA2))/(2 * (a2A3»
q31 <- (a2-l+((a2+l)*(exp(-al)-l)*(l/al)M2*(exp( -(al+a2))-l)*(l/(al + a2)»)
q32 <- ((1 - exp( - a2))/a2) + ((exp( - (al + a2» - exp( - a2))/al)
q3 <- q31 + q32 qq3 <- (((siA2) * rho * q3)/(a2 * (al + a2»)
qq <- qql + ((gammaA2) * qq2) + (2 * gamma * qq3)
retum(qq)
>

mkugl <- functional) {
bl <- 2 - (2 * exp( - al * u)) - exp( - al * (t - u)) + exp( - al * (t + u))
b2 <- 2 - (2 * exp( - a2 * u)) - exp( - a2 * (t - u)) + exp( - a2 * (t + u))
b3 <- a2-(exp(-al*u)*(a2+l))+(2*exp((-al*u)+(-a2*u)))+exp((u-l)*a2)exp((-al*u)-a2)-l
b <- (bl/(2*(alA2)))+(((gammaA2)*b2)/(2*(a2A2)))+((2*gamma*rho*b3)/(a2*(al+a2)))
bb <- (siA2) * b * (l^mvzKsi)^^))
retum(bb)
>

mdbl <- function(z, u) {
dl <- mkugl(u) * z
d2 <- ((1 - exp(-2 * al * u))/(2 * al))
d3 <- (gammaA2) * ((1 - exp(-2 * a2 * u))/(2 * a2))
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d4 <- 2 * gamma * rho * (1 - exp(( - a l* u )  + (- a2* u))) * (l/(al + a2))
d5 <- (siA2) * (d2 + d3 + d4)
d6 <- mlmgl(u)A2
d7<-dl + ((d5-d6)/2)
retura(exp(d7))
}

mdbbl <- function(z) { 
x <-1:100 
for(i in 1:100) { 
x[i] <- mdbl(z, i/100)

>
retum(exp( - b * mean(x)))
>

Once we have the values of the function for different values of Z in the interval (-oo, oo), all that we 
have to do then is to take the expectation over Z to find the value of the price of the bond. Remember 
that Z follows a standard normal distribution. In order to find the value of the contingent payment on 
the price of the bond, we need to restrict the integral while taking the expectation to the required region 
as described in chapter 4 section 2. For that we use the following subroutine.

rpb <- function(c) {
rl <- 1:2000
r2 <-1:2000
for(i in 1:2000) {
rl[i] <- max((rzcl[i] - c), 0)
r2[i] <- max((rzc2[i] - c), 0)

>
rr <- r l + r2 
for(i in 1:200) {
ll[i] <- (rr[i] * exp(((y 1 [i]/tr)A2)/(-2)))/(tr * y[i])

>
retum(mean(ll)/((2 * piy^O.S))
>

where y is a vector consisting of elements 2000 elements, the values varying from 0.005 to 1 and yl is 
the logarithm of this vector. To calculate the lower bound to the price of the bond, we take c =0. To 
calculate the value of the contingent payment, we take c to be the value of the strike price at which the 
contingent payment is calculated.

Interest Rate following a sum of two log-normal processes.

The following set of programs calculates the value of the bond when the interest rate follows a log
normal process. This is the situation as described in Chapter 4, section 3. Here, we have rt - the interest 
rate process defined as

it = exp(Ys(1))+ y exp(PYs(2) ) 
where Y,(1) and Y,(2) are the two driving stochastic processes with a correlation between them to be p. 
The first subroutine tdrl calculates the variance of the conditioning factor, tdrl lc and tdrl2c calculates 
the value of k«(1) and k«(2) respectively, tdr21c and tdr22c calculates the value of the conditional 
expectation. Finally tdr3 calculates the value of the bond for different values of Z in the range (-oo, oo). 
Here t = / and b = 0.07.

tdrl <- fimction(si) {
ql < -(2 * a l* t)  + (4*exp(-al * t))-exp(-2*al * t)-3  
q2 <- (2 * a2 * t) + (4 * exp( - a2 * t)) - exp(-2 * a2 * t) - 3 
qql <- (ql * (siA2))/(2 * (alA3)) 
qq2 <- (q2 * (siA2))/(2 * (a2A3))
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q31 <- (a2-l+((a2+l)*(exp(-al)-l)*(l/al))-(2*(exp(-(al+a2))-l)*(l/(al+a2))))
q32 <- ((1 - exp( - a2))/a2) + ((exp( - (al + a2)) - exp( - a2))/al)
q3 <- q31 + q32 qq3 <- (((siA2) * rho * q3)/(a2 * (al + a2)»
qq <- qql + ((betaA2) * (gammaA2) * qq2) + (2 * beta * gamma * qq3)
retum(qq)
>

tdrllc <- function(u) {
bl <- 2 - (2 * exp( - al * u)) - exp( - al * (t - u» + exp( - al * (t + u» 
b2 <- (((siA2) * bl)/(2 * (alA2)»
b3 <- (a2-((a2+l)*exp(-al*u))+(2*exp(-(al+a2)*u))+exp((u- I)*a2>exp(-((al*u)+a2))-l) 
b4 <- ((beta * gam m a * b3 * (siA2) * rho)/(a2 * (al + a2))) 
bb <- (b2 + b4) * (l^tdrltsirO.S)) 
retum(bb)
>

tdrl2c <- function(u) {
cl <- 2 - (2 * exp( - a2 * u)) - exp( - a2 * (t - u)) + exp( - a2 * (t + u)) 
c2 <- (((betaA2) * gamma * (siA2) * cl)/(2 * (a2A2»)
c3 <- (a2-((a2+l)*exp(-al*u))+(2 *exp(-(al+a2)*u))+exp((u-l)*a2)-exp(-((al*u)+a2))-l) 
c4 <- ((beta * c3 * (siA2) * rho)/(a2 + (al + a2))) 
cc <- (c2 + c4) * (l/(tdrl(si)A0.5)) retum(cc)
>

tdr21c <- function(z, u) {
dl <-tdrllc(u) * z
d2 <- ((1 - exp(-2 * al * u))/(2 * al))
d3 <- (siA2) * d2
d4 <-tdrllc(u)A2
d5< -d l + ((d3-d4)/2)
retum(exp(d5))
>

tdr22c <- function(z, u) {
el <- tdrl2c(u) * z
e2 <- ((1 - exp(-2 * a2 * u))/(2 * a2))
e3 <- (siA2) * e2
e4 <- tdrl2c(u)A2
e5< -el + ((e3-e4)/2)
retum(exp(e5))
>

tdr3 <- function(z) { 
x < - 1:100 
for(i in 1:100) {
x[i] <- tdi21c(z, i/100) + (gamma * tdr22c(z, i/100))

>
retum(exp( - b * mean(x)))
>

Once we have the values of the function for different values of Z in the interval (-oo, oo), all that we 
have to do then is to take the expectation over Z to find the value of the price of the bond. Remember 
that Z follows a standard normal distribution. In order to find the value of the contingent payment on 
the price of the bond, we need to restrict the integral while taking the expectation to the required region 
as described in chapter 4 section 3. For that we use the following subroutine ipb as defined above.
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Subroutines used for simulation

This subroutine is used for generating the prices of the bond when rt - the interest rate process defined 
as

rt=exp(Y,(1) + y  Ys(2) )
where Ys(1) and Ys(2) are the two driving stochastic processes with a correlation between them to be p.

gentdrll <- function(op) {
wl <- morm(1000,0, (si/(1000A0.5»)
w2 <- morm(1000,0, (si/(1000^0.5»)
w3 <- wl * exp(al * j)
w4 <- cumsum(w3)
w5 <- w4 * exp( - al * j)
w6 <- ((rho * wl) + (((1 - (rhoA2»A0.5) * w2)) * exp(a2 * j)
w7 <- cumsum(w6)
w8 <- w7 * exp( - a2 * j)
w9 <- mean(exp(w5 + (gamma * w8)))
retum(exp( - b * w9))
where si is the instantaneous variance.

This subroutine is used for generating the prices of the bond when rt - the interest rate process defined 
as

rt = exp(Ys(1)) + y exp(PY,(2) )) 
where Ys(1) and Y,(2) are the two driving stochastic processes with a correlation between them to be p 
and si is the instantaneous variance.

gentl <- function(op) {
wl <- morm(1000,0, (si/(1000/v0.5)))
w2 <- monn(1000,0, (5^(1000*0.5)))
w3 <- wl * exp(al * j)
w4 <- cumsum(w3)
w5 <- w4 * exp( - al * j)
w6 <- ((rho * wl) + (((1 - ( r h o ^ ) ) ^ )  * w2)) * exp(a2 * j)
w7 <- cumsum(w6)
w8 <- w7 * exp( - a2 * j)
w9 <- exp(w5) + (gam * exp (beta * w8))
retum(exp( - b * mean(w9)))
}

Pricing of European options using conditioning factor.

These programs are the ones used to calculate the price of a European option and its associated 
correction factor. In the first case, it is assumed that the volatility process follows a simple one
dimensional Brownian Motion, while in the second case, the volatility is assumed to follow an Omstein 
Uhlenbeck process.

Volatility following a Brownian Motion

The first set of programs are to calculate the expected value of P conditionally on Z, where both P and 
Z have been defined earlier (see 4.2.1). Here t2 calculates the value of the conditioning factor for 
different values of u. The subroutine thw calculates the value of the conditional expectation for given 
values of z and u and the subroutine tthw performs the function of the integration over u, the range of u 
being between [0,1].
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t2 <- function(u){
a<-(3A0.5)*(u-((uA2)/2))
retum(a)
>

thw <- function(z, u){
p i <- k * t2(u) * z
p2 <- ((kA2) * (u - (t2(u)A2)))/2
p <- p i + p2
retum(sum(exp(p)))
>

tthw <- function(z){ 
x <-1:1000 
for(iin 1:1000 ){ 
x[i]<-thw(z, i/1000)
>
retum(mean(x))
>

Finally, we perform the integration over z, by allowing z to take vales in the range of (-00,00); for all 
practical purposes, we let z take values in the range [-3, 3] in very small steps - the entire range is sub
divided into 1000. This gives a vector of values corresponding to the values of z in that range, say hsl.

We repeat a similar exercise to calculate the expected value of Q conditionally on Z, where both Q and 
Z have been defined earlier (see 5.2.1). Here t2 calculates the value of the conditioning factor for 
different values of u. The subroutine thwl calculates the value of the conditional expectation for given 
values of z and u and the subroutine tthwl performs the function of the integration over u, the range of 
u being between [0,1].

t2 <- function(u){
a <- (3*0.5) * (u - ((uA2)/2))
retum(a)
>

thwl <- function(z, u){
ql <- (k/2) * t2(u) * z
q2 <- (((k/2)A2) * (u - (t2(ur2)))/2
q<-ql+q2
retum(sum(exp(q)))
>

tthwl <- function(z){ 
x<-l:1000 
for(iin 1:1000){ 
x[i]<-thwl(z, i/1000)
>
retum(mean(x))
>

Finally, we perform the integration over z, by allowing z to take vales in the range of (-00,00); for all 
practical purposes, we let z take values in die range [-3, 3] in very small steps - the entire range is sub
divided into 1000. This gives a vector of values corresponding to the values of z in that range, say hs2.

Once we have the vectors hsl and hs2, we can then calculate the vectors a and sigma so that we can 
calculate the price of the option as well as the associated correction factor. To calculate a , we first 
calculate rl, where rl is given by



We calculate the value of rl using the same value of z as used in the calculation of the two integrals. 
Once we have rl, the we easily calculate the value of a and sigma as defined below and use these 
values to calculate the value of the option along with its correction factor.

a -  r  -  ycr 2hs 1 + p a  [rl -  (^h s  2 )]

sigma = ycr2(l -  p 2)hs 1

Having obtained these values, the corresponding values of the price of the option and the associated 
correction factor is given by

ppb <- function(b){
ql <- pnorm((a + sigma - (1 * log(b/100)))/(sigmaA0.5)) 
ql <- ql * exp(a+(sigma/2)) 
q2 <- pnorm((a - (1 * log(b/100)))/(sigmaA0.5» 
q2 <- q2 * (b/100) 
q <- ql - q2
q3 <- exp(a + (sigma/2))*exp(((a + sigma - (1 * log(b/100)))A2)/(-2 * sigma))
q3 <- q3/((2 * pi *sigma)A0.5)
qq <- (ql + q3)* 00
for(Iinl:1000){
chk <- (-3 + ((6 * i)/1000))
ll[i] <- (q[i] * exp((chkA2)/(-2)))/((2 * pir0.5)
lll[i] <- (qq[i] * e x p ^ ^ )  * chk * k * 0.5) * exp((chkA2)/(2)))/((2 * p i ) ^ )
>
yl <-sum(ll) * 0.6 
y2 <-sum(lll) * 0.6 
retum(yl, y2)
>

The value returned as yl is the value of the option without the correction factor, while the value 
returned as y2 is the value of the correction factor. Thus the corrected calculated value of the option is 
the sum of the two values, namely yl + y2. Here 1 is a vector of 1 of suitable length. Also, 00 is a 
constant and is given by
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Throughout the examples, aO, the initial value has been taken as 0.

Volatility following an Ornstein Uhlenbeck process

The first set of programs are to calculate the expected value of P conditionally on Z, where both P and 
Z have been defined earlier (see 4.2.2). Here ol calculates the value of the conditioning factor for 
different values of u. The subroutine ow calculates the value of the conditional expectation for given 
values of z and u and the subroutine oow performs the function of the integration over u, the range of u 
being between [0,1]. Here, al is the mean reversion force of the Omstein Uhlenbeck process and vO is 
the initial value.

ol <- function(u, al){
pi <- (2 * al) - ((1 - exp(-al)) * (3 - exp(-al)))
p2 <- ((2 * a i y p l ) ^
p3 <- exp(-al * u) * (Cosh(al * u) -1)
p4 <- Sinh(al * u) * (exp(-al * u) - exp(-al))
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p5 <- (p2 * (p3 + p4))/al 
retum(p5)
>

ow <- function(z, u){
p i <- ((1 - exp(-2 * al *u))/(2 * a l»  - (ol(u, al)A2) 
p2 <- k * ol(u, al) * z
p3 <- p2 + ((kA2) * p i * 0.5) + (k * vO * exp(-al *u)) 
return(sum(exp(p3)))
>

00 w <- function(z){ 
x < - 1:1000
for( i in 1:1000){ 
x[i] <- ow(z, i/1000)
}
retum(mean(x))
>

Finally, we perform the integration over z, by allowing z to take vales in the range of (-00,00); for all 
practical purposes, we let z take values in the range [-3, 3] in veiy small steps - the entire range is sub
divided into 1000. This gives a vector of values corresponding to the values of z in that range, say hs3.

We repeat a similar exercise to calculate the expected value of Q conditionally on Z, where both Q and 
Z have been defined earlier (see 4.2.1). However, in this case, we need to calculate two integrals to 
obtain the expected value of Q conditionally on Z, as shown in 4.2.2. In both these cases, ol calculates 
the value of the conditioning factor for different values of u. The differences are in the subroutines 
owl and owe. The subroutine owl calculates the value of the conditional expectation for given values 
of z and u for the exponent with a factor of (k/2). The sub-routine owe calculates the conditional 
expectation of the integration within the range [0,1] of Vt exp((k Vt)/2) with respect to dL The 
subroutine oowl performs the function of the integration over u, the range of u being between [0,1] 
corresponding to the conditional expectation obtained through owl, while owcl does the same for die 
function corresponding to owcl.

01 <- function(u, al){
pi <- (2 * al) - ((1 - exp(-al)) * (3 - exp(-al)))
p2<-((2*al)/p l)A0.5
p3 <- exp(-al * u) * (Cosh(al * u) -1)
p4 <- Sinh(al * u) * (exp(-al * u) - exp(-al))
p5 <- (p2 * (p3 + p4))/al
retum(p5)
>

owl <- function(z, u){
pi <- ((1 - exp(-2 * a l * u))/(2 * al)) - (ol(u, al)A2) 
p2 <- (k/2) * ol(u, al) * z
p3 <- p2 + (((k/2)A2) * pi * 0.5) + ((k/2)* vO *exp(-al * u)) 
retum(sum(exp(p3)))
>

oowl <- function(z){ 
x <-1:1000 
for(i in 1:1000){ 
x[i] <- owl(z, i/1000)
>
retum(mean(x))
}
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Finally., we perform the integration over z, by allowing z to take vales in the range of (-00,00); for all 
practical purposes, we let z take values in the range [-3, 3] in very small steps - the entire range is sub
divided into 1000. This gives a vector of values corresponding to the values of z in that range, say hs4.

To calculate the final integral, that is to obtain owe, we proceed as follows.

ol <- fimction(u, al){
p i <- (2 * al) - ((1 - exp(-al)) * (3 - exp(-al)))
p2<-((2*al)/p l)A0.5
p3 <- exp(-al * u) * (Cosh(al * u) -1)
p4 <- Sinh(al * u) * (exp(-al * u) - exp(-al))
p5 <- (p2 * (p3 + p4))/al
retum(p5)
>

owe <- function(z, u){ 
p i <- ol(u, al) * z
p2 <- ((1 - exp(-2 * a l * u))/(2 * al)) - (ol(u,al)*2) 
p3 <- pi + (p2/2) 
p4 <- (pl/2) + (p2/8) 
p <- p3 * exp(p4) 
retum(sum(p))
>

oowc<- function(z){ 
x < - 1:1000 
for(i in 1:1000){ 
x[i] <- owc(z, i/1000)
>
retum(mean(x))
>

Finally, we perform the integration over z, by allowing z to take vales in the range of (-00,00); for all 
practical purposes, we let z take values in the range [-3, 3] in very small steps - the entire range is sub
divided into 1000. This gives a vector of values corresponding to the values of z in that range, say hs4.

Once we have the vectors hs3, hs4 and hs5, we can then calculate the vectors a and sigma so that we 
can calculate the price of the option as well as the associated correction factor. To calculate a , we first 
calculate rl, where rl is given by

We calculate the value of rl using the same value of z as used in the calculation of the two integrals. 
Once we have rl, the we easily calculate the value of a and sigma as defined below and use these 
values to calculate the value of the option along with its correction factor.

r l  = *
2

sigma = ycr2(1 -  p 2)hs3
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Having obtained these values, the corresponding values of the price of the option and the associated
correction factor is given by 

ppou<- function(b){
ql <- pnorm((a + sigma - (1 * log(b/100)))/(sigmaA0.5)) 
ql <- ql * exp(a + (sigma/2)) 
q2 <- pnorm((a - 0 * log(b/100)))/(simaA0.5)) 
q2 <- q2 *(b/100) 
q <- ql - q2
q3 <- exp(a + (sigma/2)) * exp(((a + sigma - (1* log(b/100)))A2)/(-2 * sigma))
q3 <- q3/((2 * pi * sigmay^O.S)
qq <- (ql + q3) * oo
for(i in 1:1000){
chk <- (-3 + ((6*i)/1000))
ll[i] <- (q[i] * exp((chkA2)/(-2)))/((2 * pir0.5)
111 [i] <- (qq[i] * exp(2 * (k/2) * L * chk)*exp((chkA2)/(-2)))/((2 * p i ) ^ )
>
yl <- sum(ll) * 0.6 
y2 <- sum(lll) * 0.6 
retum(yl, y2)
>

The value returned as yl is the value of the option without the correction factor, while the value 
returned as y2 is the value of the correction factor. Thus the corrected calculated value of the option is 
the sum of the two values, namely yl + y2. Here 1 is a vector of 1 of suitable length. Also, oo is a 
constant and is given by

Throughout the examples, vO, the initial value has been taken as 0.

Subroutines to simulate the prices

These two programs are used to generate a simulated set of data to obtain the simulated prices. The 
variables are the same as before. Also we start with Y0 = 100.

Subroutines for generation of the data set in the Brownian Motion case

z<- 1:10000 
for(i in 1:10000){
wl <- morm(1000,0, 1/(1000A0.5))

w2 <- morm(1000,0,1/(1000^.5))
v <- k * cumsum(wl)
v l <- c(0, v)
w ll <-c(wl, 0)
wl2 <- c(w2, 0)
q <- ((r - (0.5 * (siA2) *exp(vl)))/1000)
v2 <- q + (si * * exp(vl/2) *((rho * w ll) + (((1 - (ihoA2))A0.5) * wl2))) 
z[i] <- Y0 * exp(sum(v2))

/  \
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}

Subroutines for generation of the data set in the Ornstein Uhlenbeck case

z < - 1:10000 
j <-1:1000 
j <-j/1000 
for(i in 1:10000){
wl <- morm(1000,0,1/(1000*0.5)) 

w2 <- moim(1000,0,1/(1000*0.5)) 
wOl <- wl * exp(al * j) 
vOl <- k * cumsum(wOl) 
v <- (vOl + vO) * exp(-al * j) 
v l <- c(0, v) 
w ll <-c(wl, 0) 
wl2 <- c(w2, 0)
q <_ ((r . (0.5 * (si*2) *exp(vl)))/1000)
v2 <- q + (si * * exp(vl/2) *((rho * w ll) + (((1 - (rho*2))*0.5) * wl2))) 
z[i] <- YO * exp(sum(v2))
>

Valuing stop-loss reinsurance contracts

Here, we give the Splus codes to calculate the value of the stop-loss reinsurance contracts when we 
have a doubly stochastic Poisson (Cox) process. The code out here is under the assumption that the 
stochastic process in question is a non-stationaiy Ornstein Uhlenbeck process with a mean reversion 
force a. Also, throughout the calculations, t = 1. The approach is the same as in the earlier situations of 
pricing of bonds. We first look at a conditioning factor and find the conditional value of the stop-loss 
contract The conditioning factor is so chosen that it has a standard normal distribution. Finally, we 
take expectation over the distribution of the conditioning factor to get the unconditional value. We also 
present a simulation routine - this is to compare the values obtained by using the conditioning factor 
approach.

Here, si is the value of the instantaneous variance and con is the scaling factor of the aggregated 
process as defined in chapter 5, section 3. The subroutines vz, kug, db, pdbbcou and pdbblou are used 
to calculate the conditional value of the stop-loss reinsurance contract and real is used to calculate the 
unconditional value once the conditional value has been obtained. We assume that the conditional 
values are stored in rxss.

vz <- function(si) {
q <- (2 * a * t) + (4 * exp( - a * t)) - exp(-2 * a * t) - 3
qq <- (si*2) * (q/(2 * (a*3))) 
retum(qq)
>

kug <- function(u) {
bl <-1 - exp( - a * u)
b2 <-1 - exp( - a * (t - u))
b3 <- exp( - a * u) - exp( - a * (t + u))
b <- (bl +b2 -b3)/a
bb <- (si*2) * b * (1/(2 * a)) * (l/(vz(si)*0.5)) 
retum(bb)
>

db <- function(z, u) { 
al <- kug(u) * z 
a2 <-1 - exp(-2 * a * u)
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a2 <- (siA2) *a2*  (1/(2 * a)) 
a3 <- kugOi)^ 
a4 <- al + ((a2 - a3)/2) 
retum(exp(a4))
>

pdbbcou <- function(z) { 
x < - 1:1000 
for(i in 1:1000) { 
x[i]<-db(z, i/1000)
>
retum(con * mean(x))
>

pdbblou <- function(z, k) {
pq <- (pdbbcou(z) * pgamma(pdbbcou(z), k)) - (k * pgamma(pdbbcou(z), (k + 1))) 
retum(pq)
>

rcal<- function(op) { 
for(i in 1:200) {
qql[i] <- (rxss[i] * exp(((yl[i])A2)/(-2)))/(y[i])
>
retum((mean(qql)/((2 * piyH).5)))
>

Simulation sub-routine

The subroutine, genou, used for simulation purposes and rsim is them used to calculate the value of the 
stop-loss reinsurance contract for different values of the strike price b.

genou <- function(con) {
wl <- monn(1000,0,1/(1000*0.5))
w2 <- (exp(a * j)) * wl
w3 <- cumsum(w2)
w4 <- (exp( - a * j)) * w3
w5 <- exp(si * w4)
w6 <- con * mean(w5)
w7 <- rpois(l, w6)
retum(w7)
>

rsim <- function(b) { 
yck <- (abs(rxs - b) + (rxs - b))/2 
yyck <- (var(yck)/50000)*0.5 
retum(mean(yck), yyck)
>

Subroutines to calculate the prices of an Asian option, using the alternative method.

The following set of subroutines calculates the value of an Asian option using the alternative method as 
described in chapter 6. This is an alternative method to calculate the prices as compared to the one 
proposed by Rogers and Shi (1995). The following subroutines calculate the value of the Asian optioa 
The subroutines coeffO, coeffl, coefi2, coef3 and coeff4 calculate the values of the co-efficients of the 
polynomial in "z". The subroutine root evaluates the roots of the polynomial and returns that largest 
real root as its output The subroutines into, inti, int2, int3 and int4 calculate the value of the integrals. 
In fact, here the value of the integrals can be calculated exactly. Finally, the subroutine value combines 
the outputs obtained from the subroutines coeffO, coeffl, coef£2, coef£3, coeff4 and into, inti, int2,
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int3, int4 to return the value of the bond or the value of the option priced on the bond. The user of this 
program only sees the subroutine value and all the user has to do is input the values of variance (si), the 
interest rate (r) and the strike price of the option (b). In the case of calculating the value of the 
underlying asset, the value of the strike price, b, is 0.

coeffO <- function(si, k){
apl <- 1 - ((1/5) * (siA2)) + ((1/35) * (siA4)) - ((29/560) * (siA4) * (kA2))
ap2 <- ((1/24) * (siA3) * (kA3)) - ((11/80) * (siA3) * k) + ((1/6) * (siA2) * (kA2))
ap3 <- ((1/120) * (siA4) * (kA4)) + ((1/2) * si * k)
ap <- apl + ap2 + ap3
retum(ap)
>

coeffl <- function(si, k){
aql<-((5/24)*(3A0.5)*(siA2)*k)+((l/3)*(3A0.5)*si)+((3/40)*(3A0.5)*(siA3)*(kA2))
aq2 <- ((-279/4480) * (3^.5) * (siA4) * k) - ((3/35) * (3^.5) * (siA3))
aq3 <- ((7/360) * (3A0.5) * (siA4) * (kA3))
aq <- aql + aq2 + aq3
retum(aq)
>

coeff2 <- function(si, k){
arl <- ((-2/35) * (siA4)) + ((29/560) * (siA4) * (kA2)) 
ar2 <- ((11/80) * (siA3) * k) + ((1/5) * (siA2)) 
ar <- arl + ai2 
retum(ar)
>

coeff3 <- fimction(si, k){
asl <- ((93/4480) * (3A0.5) * (siA4) * k) + ((1/35) * (3^.5) * (siA3)) 
retum(asl)
>

coeff4 <- function(si, k){ 
a t l< - (1/105) *(siA4) 
retum(atl)
>

root <- function(si, k, b){
rtl <- polyroot(c((coeff0(si, k) -b), coeffl(si, k), coeff2(si, k), coef£3(si, k), coeff4(si, k))) 
rt2 <- rtl 
for(iin 1:4) { 
if(abs(Im(rtl[i])) > le-06) 
rt2[i] <-rtl[i] -1000000000 
>
rtt <- max(Re(rt2)) 
retum(rtt)
>

into <- function(si, k, b){ 
re <- root(si, k, b)
abl <- (coeff0(si, k) - b) * (1 - pnorm(re)) 
retum(abl)
>

inti <- function(si, k, b){ 
re <- root(si, k, b)
ael <- coeffl (si, k) * (l/((2 * p i ) ^ ) )  * exp((reA2)/(-2)) 
retum(ael)
>
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int2 <- function(si, k, b){
re <- root(si, k, b)
adl <- re * exp((reA2)/(-2))
ad2 <- ((2 * pi)^0.5) * (1 - pnorm(re»
ad <- coef£2(si, k) * (adl + ad2) * (l/((2 * pi)A0.5))
retum(ad)
>

,int3 <- function(si, k, b){ 
re <- root(si, k, b)
ael <- (2 + (reA2)) * exp((reA2)/(-2)) 
ae <- coefE3(si, k) * ael * (l/((2 * pir0.5)) 
retum(ae)
>

int4 <- function(si, k, b){
re <- root(si, k, b)
afl <- (reA3) * exp^re^)/^))
af2 <- 3 * re * exp((reA2)/(-2)>
af3 <- 3 * ((2 * p i)^ ^ ) * (1 - pnorm(re))
af <- coe£f4(si, k) * (afl + af2 + af3) * (l/((2 * p i ) ^ ) )
retum(af)
}

value <- function(si, r, b){ 
k <- i/si
val <- intO(si, k, b) + inti (si, k, b) + int2(si, k, b) + int3(si, k, b) + int4(si, k, b)
vail <- val * exp( - r) * 100
retum(vall)
>
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