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Abstract

This thesis consists of three original articles in the field of general equi­
librium with incomplete markets and general equilibrium with asymmetric 
information, and an introduction to the theory, which traces its development 
and embeds the following chapters in a common framework.

In Pareto Improving Trade Restrictions in an Incomplete Markets Econ­
omy, we consider a stylised three period one good general equilibrium model 
with incomplete security markets. We show that the introduction of an 
indiscriminate marginal constraint on security trades can lead to a Pareto 
improvement, even though all prices are endogenous and agents are fully ra­
tional and have symmetric information.

In Signaling Credit Quality Independently of Contract Choice: a Non- 
Transaction Cost Approach to Swaps in Anonymous Markets, we demon­
strate that under two conditions, swaps are non-redundant securities in 
anonymous financial markets. Firstly, there is asymmetric information over 
the project payoff which is financed by swaps. And secondly, borrowers are 
restricted from being investors at the same time. If either of this condition 
fails, then swaps are redundant assets. Swaps permit a constrained optimal 
solution to an asymmetric information problem.

Finally, Anonymous Corporate Bond Markets with Asymmetric Informa­
tion, the main article of this thesis, shows that in an anonymous credit mar­
ket which is characterised by limited liability and asymmetric information 
between borrowers and lenders, the nominal rate of interest on tradable debt 
{the coupon rate) sorts borrowers by their riskiness and in this way has an 
indirect influence on the price and quantity of bonds traded in equilibrium. 
This is in contrast to symmetric information models, in which the nominal 
coupon rate has no function. The paper claims that the adverse sorting effect 
of the nominal interest rate, as in Stiglitz-Weiss (1981), is maintained in a 
competitive setting, but that, even though changes in the nominal interest 
rate result in non-monotonic changes in the deliveries of agents, the orderly 
functioning of markets is not impaired.
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Chapter 1

General Introduction

1.1 Classical General Equilibrium Theory

Traditionally, the focus of general equilibrium theory has been on the analy­

sis of the complete entity of an economic system, described by the behaviour 

of individuals and firms based on axioms of choice. The data of a general 

equilibrium economy are preferences, endowments and technology. We will 

describe them in turn:

Let X, y and z denote three consumption bundles, over which individual i 

has a choice. General equilibrium theory is based on two consistency axioms 

regarding the choice over these consumption bundles: Completeness^ that 

either x y, or y x, or both, in which case x y. And transitivity^ that 

if ̂  h i 2/ and y z, then x  z. Individuals whose behaviour complies with 

these axioms are called ’rational’. With some additions, the main one being 

that individuals are non-satiated in the consumption of goods, analytically
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meaningful utility functions u '{x ,y ,z)  representing these preference axioms 

can be constructed.

Individuals are endowed with endowments u. Individuals choose com­

modity bundles subject to the restriction that the value of the commodity 

bundles which they choose do not exceed the value of their endowments. If 

there are L goods, and p G IR^ denotes the vector of prices of a commodity 

bundle, then the budget constraint is 5*(p, w*) =  {p.x* < p.w*}.

Technology is referred to as the way in which commodity bundles can 

be substituted for each other. Smooth substitution implies infinitesimally 

divisible goods and a smooth transactions technology. Thus continuity and 

differentiability of the utility function can be interpreted as assumptions on 

technology.

With the data of the economy specified, demand correspondences can be 

found, which are the sets of the maximum elements of the problem of max­

imising the utility of agents subject to the budget constrained over a range of 

prices, which agents take as given. Denote the demand correspondences by 

f*(p,u}*) G arg max {u*(a;*)|a;* G 5*(p,o;*)}. By the Maximum Theorem, de­

mand correspondences own certain properties from the construction of utility 

functions and the budget constraint: boundedness, continuity, homogeneity, 

budget feasibility and a type of boundary behaviour. The sum of all demand 

correspondences, the aggregate demand correspondence, or, equivalently, the 

aggregate excess demand correspondence Z(p) = Ef=i(/*(p) — w*) inherits
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boundedness, continuity, homogeneity, ’Walras’ Law’ that pZ{p) = 0 for all 

p G iR^, and the boundary behaviour of the individual demand correspon­

dences by the properties of sequential compactness. A general equilibrium is 

defined as a tuple of a price vector and an allocation, such that at

p*, all individuals in the economy maximise utility subject to their respec­

tive budget constraints and markets clear, ie. the aggregate excess demand 

function has a zero.

There are three issues which are studied in general equilibrium theory: 

existence, welfare properties and comparative statics.

Under the conditions on the economy above, invoking a fixed point the­

orem such as Kakutani’s theorem is enough to show existence of a general 

equilibrium. Existence was first proved by Arrow and Debreu (1954), and 

independently by McKenzie (1959), who made assumptions on demand cor­

respondences^. Existence of a general equilibrium is often associated with 

the idea of ’the orderly functioning of markets’.

However, the real power of classical general equilibrium theory must be 

traced back to its welfare properties. The first welfare theorem states that 

every competitive equilibrium is Pareto efficient. Pareto efficiency means 

that an equilibrium allocation (p*,x*) cannot be improved upon for any one 

agent, without making at least one other agent worse off. The proof of the 

first welfare theorem relies on the fact that a superior allocation must lie

 ̂There is an earlier claim due to Wald (1936)
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in the upper contour set of at least one agent and is therefore not budget 

feasible, since prices in a particular equilibrium are uniquely determined for 

all agents.

The issue of multiplicity and determinacy of equilibria is essential for 

comparative statics. There are several results in this area. Debreu (1970) 

proved that generically, general equilibria are locally unique. However, three 

powerful results on the structure of the excess demand functions, by Mantel 

(1976)-Debreu (1974)-Sonnenschein (1972), show essentially that the exis­

tence results are equivalent to the fixed point theorems, implying that if a 

correspondence satisfies the conditions of a fixed point theorem, then it can 

be viewed as the aggregate excess demand correspondence of one particu­

lar economy. The results imply that very little can be said regarding the 

structure of the demand correspondence of a particular economy under ob­

servation, since the ’real’ underlying economy cannot be identified. Without 

further restrictive assumptions on utility functions, or on the distribution of 

preferences in the economy (Hildenbrand, (1982)), comparative statics be­

comes impossible.

In view of these discouraging results on comparative statics, and of solved 

questions regarding existence and welfare properties, general equilibrium has 

developed beyond the classical questions, and, in some way, has moved away 

from the analysis of the entity of an economic system to more specific ques­

tions in finance, production, money and policy. In an early contribution, 

Debreu (1959) and Arrow (1964) show that the underlying logic of the gen-
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eral equilibrium approach can be carried over to the setting of uncertainty 

and time without any changes, as long as goods can be traded contingent 

on time and location. Significantly reducing the numbers of markets needed 

for the equivalence result, Arrow (1964) showed that ’contingent contracts’, ,̂ 

rational expectations and a system of complete contingent security markets, 

will suffice to make an economy equivalent to a classical general equilibrium

economy again. This result was generalised to the case of a general complete

financial structure by Radner (1972). Neither the underlying mathematical 

techniques, nor the existence question or welfare properties are altered when 

time and uncertainty are treated in this way. Since the contingent contract 

construction is extremely helpful and revealing for the analysis of incom­

plete markets economies, it warrants further study: Let there only be one 

good in the economy, which can be interpreted as income, and whose price 

is normalised to one. Let there be two periods, and a finite number of states 

s = 1, • • •, 5  in period t =  1. A contingent contract for state s G 5  is a 

promise to deliver one unit of the good in state s and nothing otherwise. Its 

price, denoted by tTs is payable at t  =  0. The optimisation problem of agents 

is transformed into

max u*{x*) s.t.

X* G B * { 7 T , u ' )  =  {tT.X* <  TT.UJ'}

When writing the first order conditions of this problem, it becomes clear

^Contracts that pay off one unit in one particular state and zero otherwise
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that the contingent contract prices are equal to the marginal utilities of 

income in states s =  0, • • •, 5 , and can therefore be referred to as ’state 

prices’. The welfare properties of a general equilibrium can be expressed 

in terms of the collinearity of the marginal utilities of income in the states, 

hence, the state prices. At a Pareto optimum, the vector of marginal utilities 

of income point in the same direction for all individuals. This insight carries 

over to the welfare analysis of more general economies and we will return to 

it presently.

1,2 Developing the Classical Paradigm: changes 

in the fundamental data of general equi­

librium theory

General equilibrium theory retains its analytical power from the simplicity 

of its approach. All agents are price takers, prices are linear and contracts 

are anonymous. Extensions to general equilibrium theory attempt to pre­

serve these methodological underpinnings, while allowing for changes in the 

fundamental data of preferences, endowments and technology. As we have 

already stated, research has arguably shifted to answering more specific ques­

tions in the fields of policy, finance, macroeconomics. This thesis is written 

in this spirit. It uses the methodology of anonymity, price taking and non­

exclusiveness to analyse very particular phenomena in, from the viewpoint 

of traditional general equilibrium theory, highly specialised settings.
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Several attempts have been made to allow for generalisations of prefer­

ences, endowments or technology. Bounded rationality can be viewed as a 

modification of utility functions that allow for non-completeness of prefer­

ences. Moral hazard can be interpreted as allowing for non-convex pref­

erences. Both of these modifications are not easily introducible into gen­

eral equilibrium theory. Moral hazard introduces problems of non-existence 

(eg. Helpman and Laffont, (1975)), while, more fundamentally, the incom­

pleteness of preferences makes the very construction of utility functions non- 

obvious at the very least.

General equilibrium theory has been extended with a lot more success to 

allow for more restrictive transactions technologies, as in the case of general 

equilibrium with incomplete markets (GET). The next section will elabo­

rate on this point. A very recent development has been the introduction 

of adverse selection, which could be viewed as allowing for type-specific en­

dowments, and whose integration necessitates non-type specific transactions 

technologies. The three papers that make up this thesis are based on these 

two extensions, and we will now briefly turn to discuss the issues raised when 

extending general equilibrium along these lines.

1.2.1 Uniformly Restricted Participation: General Equi­

librium with Incomplete Markets

Market incompleteness of financial markets can be viewed as a restriction on 

the trading technology of individuals. Specifically, individuals are restricted
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to trade bundles of goods and are not able to disentangle the bundles. In the 

mathematical construction, it implies that individuals face multiple budget 

constraints, which can not be trivially reduced to a single budget constraint as 

in the case of a ’contingent market equilibrium’. Denote the vector of security 

prices by q and the matrix of security payoffs as V, where V  =

Then a financial markets budget constraint is

X g — (jJg = qz' z' € JR'

x \ —Lj\ = Vz^ s = l , “ *,5

In contrast to the original budget constraint, the financial market budget 

constraint consists of a set of 5 + 1  constraints. The market is said to be com­

plete if 5  =  J , where j  are the linearly independent securities available in the 

market. Since the matrix V  becomes square when markets are complete, by 

a basic theorem of linear algebra, there are portfolios z* that generate every 

possible income stream y € JR^j since z* =  yV~^ always has a solution for 

every y. This allows to rewrite the complete market financial budget set as 

a single budget equation. If markets are non-trivially incomplete, not every 

income stream y lies in the span of (F). However, the no-arbitrage principle 

of contingent market pricing, that there is no arbitrage if and only if there 

exists a vector of positive state prices (or prices of Arrow securities), carries 

over to incomplete markets. Thus the fundamental pricing relation that the 

price of a security equals its discounted value of payoffs under some prob­

ability measure, q = ttF , carries over straight from the contingent market 

construction^, and every income stream in the span of (V) can be uniquely

^To see this, normalise the marginal utility of income at period t =  0 to one. Then 

denoting by A* the Lagrange multipliers of agent i in state s, the first order conditions
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priced: Cg(y) =  qz  = ttV z =  [t t ,?/] determines a unique cost c  of the income 

stream y.  Note, however, that now the vector of state prices tt ceases to be 

unique across agents.

These basic observations of incomplete markets theory suffice to give an 

intuition for the results on existence and welfare, and, perhaps more fun­

damentally reveal why the utility function construction is not endangered 

by the introduction of restrictions on technology: since agents are forced, in 

equilibrium, to agree on the value of the bundles of goods which they can 

trade, even though they disagree about the valuation of individual income 

streams, the value of ’everything which is traded’ is uniquely determined and 

an equilibrium always exists in the case of one good and two periods, and 

generically (for an open dense subset of the parameter space) for multigood 

or multiperiod economies, since then the payoff matrix is not independent of 

prices anymore (Hart (1975)). Existence was proved by Werner (1985) for 

nominal assets, by Geanakoplos-Polemarchakis (1986) for a numéraire com­

modity and by Duffie and Shafer (1985, 1986) for general asset structures.

Regarding welfare, note that the indeterminacy of state prices allows the 

non-collinear alignment of marginal rates of substitution for different agents 

at the same equilibrium prices. Consequently, a central planner who reallo­

cated payoffs in such a way as to make state prices/marginal rates of substi­

tution collinear, would be able to Pareto improve upon the equilbrium allo-

with respect to the portfolio choice z* are — AqÇ + A* =  0. Since ^u*{x*) =  A*, 

and by the normalisation, q =  ttV.
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cation. However, a stronger result is true. Geanakoplos and Polemarchakis 

(1986) establish the generic constrained suboptimality of GEI equilibria with 

many goods (or many periods). A GEI equilibrium is called ’constrained op­

timal’ if a budget feasible reallocation of portfolios in the trading period with 

the existing assets cannot improve upon the equilibrium allocation. A con­

strained optimal reallocation must respect budget feasibility and the security 

structure available. At first sight, considering the maximum properties of in­

dividual choices, it seems surprising that individuals, when left to their own 

devices, cannot find the choice which truly maximises their utility. However, 

the intuition is the following: a portfolio reallocation changes relative income 

levels of agents in all states of nature, and in doing so, afiects relative prices. 

The relative price change, however, cannot be decomposed into portfolio 

reallocations. In other words, faced with the relative prices of the Pareto im­

proving allocation, individuals would not trade portfolios in such a way that 

at those prices sport markets and asset markets cleared. The proofs of con­

strained suboptimality rely heavily on tools of differential topology, and all 

the analysis is local. It is an open question to construct a mechanism which 

finds the constrained optimum, and there is debate as to the definition of 

constrained suboptimality employed in Geanakoplos and Polememarchakis 

(1986) (see Kajii (1995)).

Pareto Improving Trade Restrictions in an Incomplete M arkets 

Economy

The contribution of this thesis to the theory of incomplete markets is con­

tained in chapter two. In this chapter, we provide another interpretation
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of the constrained suboptimality result of multiperiod incomplete market 

economies. We conduct the analysis in a highly specialised setting, and our 

main result does not hold for every arbitrary economy satisfying the standard 

assumptions.

The result is the following: in a two agent replica economy with three 

periods and uncertainty only between t =  0 and t  = 1, with general prefer­

ences and short-lived securities, imposing a marginal indiscrimate borrowing 

constraint on agents can induce a Pareto improving reallocation, even though 

all prices are endogenous.

The mechanism used to generate the result is that a marginal borrowing 

constraint induces one of the agents to save more in the previous period. As 

a consequence of his saving, the individual arrives at the period in which 

borrowing is constrained with a greater level of wealth. The changed distri­

bution of wealth induces a price change. The price change may make both 

agents better off, and compensate for an adverse price change in the period 

prior to the constraint period. Hence the allocation may be improved with 

respect to the GEI equilibrium.

Again, the result seems surprising at first sight. It suggests that indi­

viduals borrow too much in equilibrium, and with rational expectations and 

utility maximisation, one does not expect this to happen. However, the 

intuition is the following: when individuals are confronted with the prices 

that are the prices of the Pareto improved allocation, they choose portfolios
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that would yield an ever greater utility level for them, than the borrowing 

constraint allocation does. However, these portfolio choices are not market 

clearing, and hence are not an equilibrium. Another way to look at the same 

problem, taking into account that utility functions are additively separable, 

would be to see that the multiplicity of budget constraints ^disconnects’ the 

portfolio choice problems from periods i =  0 to t =  1 and from i =  1 to t =  2. 

The portfolio choice problem from t = 1 to t  = 2 determines the prices of the 

securities traded in these periods. These prices depend on the endowments 

in both periods, wheighted by the preferences of the individuals. However, 

agents do not take into account the fact that the previous choice problem 

from t =  0 to t =  1 changes the distribution of wealth in period t = 1 and 

therefore influences the choice problem in subsequent periods.

Methodologically, the contribution of the article is that the borrowing 

constraint is ’non-discriminating’. In contrast to the interventions suggested 

by Geanakoplos and Polemarchakis (1986,1990), or by Herings and Polemar­

chakis (1997), the knowledge requirement is very low. However, the result 

is, even in the highly special economy, not true all values of the parame­

ters. Economies can be found for which the borrowing constraint induces 

an adverse price effect in the previous period which destroys the Pareto im­

provement of the portfolio reallocation.
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1.2.2 Restricting Trade Spaces to Types: General Equi­

librium with Asymmetric Information

Following the fundamental contributions by Akerlof (1970), Mirrlees (1974), 

Spence (1974) and Rothschild and Stiglitz (1976), problems of asymmetric 

information have taken centre stage in economic theory. Several attempts 

have been made to analyse the implications of informational asymmetries in 

a general equilibrium setting. Helpman and LaEont (1975) provide an ex­

ample of non-existence of a general equilibrium with moral hazard. Prescott 

and Townsend (1984) establish a framework to analyse existence and welfare 

properties. Gale (1992, 1996), has developed a framework from a different, 

more contractual approach. The problems of general equilibrium with asym­

metric information (GEAA) have become clearer with a series of articles by 

Geanakoplos (1990), Gottardi and Bisin (1997), Polemarchakis and Minelli 

(1993) and a joint effort by the above authors. The issues are that agents 

have market power if they possess information that other individuals in the 

economy do not have. Even though they remain price takers, their private 

knowledge over the payoff of a contract individualises the contract for them. 

Hence, a generic model of asymmetric information could be written in an 

Arrow-Debreu style fashion by making the payoff matrix V  dependent on 

the individuals i. When doing so, two problems naturally arise. Equilibria 

with asymmetric information may not exist, since agents are given additional 

arbitrage opportunities and because new feasibility problems are introduced. 

Both complications can be seen with relative ease, and suggest two restric­

tions which are needed to make them compatible with the anonymous market 

set-up. One, that agents are small, and two, that trading restrictions are in-
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troduced which prevent individuals from excessively exploiting their private 

information. In a way, asymmetric information can be introduced as long as 

it is confined to small trades and as long as only the informational advantage 

cannot be exploited for speculation beyond its immediate allocational advan­

tage. There are several ways in which ’speculation’ can be prevented. They 

all aim at restricting individuals from holding unlimited long and short posi­

tions in the same asymmetric information security. Constructions achieving 

this are: imposing an upper bound on short sales, separating the long and 

short sides of the market, either by decree or by introducing bid-ask spreads, 

and the construction of pool securities. Since we make extensive use of the 

last, we will present a brief formal statement of the pool security construction.

Let security purchases be denoted by and sales by 6*. For simplicity, 

let there be only one standard security, whose payoff depends on the charac­

teristics of the individuals in the economy, and only one type of agent, but 

infinitely many agents of the same type. For example, one may think of a 

mortgage as a security which individuals sell to a bank, and which is almost 

completely standardised, yet the sellers of the security may have superior 

information regarding the likelihood of repayment. Then the payoff V* of 

the security depends on the individual who sells it. On the other side of the 

market, pool all the individual securities, and denote the average delivery on 

one unit of the pooled security by V^. To emphasise the distinction between 

portfolios of pool securities and of individual securities, denote purchases by 

If certain assumptions are made regarding the distribution of payoffs of 

the individual security, namely that there are infinitely many securities of the
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same type, whose payoffs are iid., then, in the limit for the number of sellers 

of the security approaching infinity, the law of large numbers can be invoked 

to make the payoff of the security constant across all social states of nature. 

Recall that the law of large numbers states that under iid. assumption on the 

distribution of random variables, their partial sum tends to the average for 

every sequence of outcomes. In contrast to individual states, which we call 

s, we denote the partial sums of the random variable (the aggregate states) 

by a. Then the law of large numbers states that V’̂ (<j), the payoff of a share 

in the pool, tends to the average simple average payoff of the individual se­

curities for the number of projects becoming infinitely large. The deliveries 

into the pool security are endogenous, whereas for the individual security, it 

is the price which is the equilibrating variable. This leaves the price for the 

pool security undetermined. For every price, in equilibrium the deliveries will 

adjust such that the ’effective’ return fulfills the requirements of the market. 

Denote the price of the security by g. A convenient normalisation for the 

price of the pooled security is that g =  Considering that individuals of a 

certain type will make the same choices, their optimisation becomes:

max u*(x*) s.t.

where the budget set is:
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4  =  ^0 -  9 -  ^*(5))

4  =  +  VP{cr)<l>*'̂ {a) — V’*(5)0*(s)

Vs, Va

The trading restrictions we must impose are that 0*’̂ , 6* > 0. Under the 

conditions which we have listed above, a general equilibrium with asymmet­

ric information exists. The mechanism can be thought of in the following 

way: prices for individual securities are announced; these prices induce a 

certain supply; depending on which individuals supply the securities there 

is a quantity of deliveries into the pool; given that the price of the pooled 

contract is set equal to the price of the individual contract, the deliveries 

induce an effective rate of return. There is a demand for pool securities at 

this return. If demand and supply coincide, markets clear and there is an 

equilibrium.

Since there are restrictions on unbounded arbitrage sales, equilibria in 

this way are not unconstrained efficient. However, no notion of ’constrained 

efficiency’ has been devised.

In this thesis, the GEAA setting is exploited to analyse specific phenom­

ena of financial markets.
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A Non-Transactions Cost Approach to  Swaps in Anonymous Mar­

kets w ith Asymmetric Information

There are two different views one could take of a swap market: one which 

emphasises the bilateral relationship between the counterparties, the other 

which views swaps as anonymous exchanges of payment profiles across time, 

with bilateral payments taking place at every period.

Taking the first viewpoint, it is almost trivial to see that with symmetric 

information and complete markets, swaps, which are exchanges of payment 

streams which were traded prior to the swap trade, are redundant assets. 

Likewise, since interest rate swaps are usually exchanges of coupon streams 

on a notional principal, swaps trivially make an incomplete market more 

complete in the same way that 'asset strips’ do.

It is then clear that some type of complication or inefficiency must be in­

troduced into a financial market to give swaps a role, over and above the sav­

ings on transactions costs which they provide by implicitly allowing retrade 

of bonds. The paper provides a model in which swaps are non-redundant, 

and are used to signal good future credit quality to a myopic market. There 

are two firms who seek finance for the same type of project, but who have 

private information over the different probabilities of success of the projects. 

The projects pay off after two periods, however the financial market can only 

distinguish between the two projects one period ahead. Consequently the 

good risk firm would like to signal its good credit quality to the market. If 

there are short sale constraints, and for a particular preference structure, (all
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firms prefer smooth repayments), swaps will be employed by the good firm 

in its financing decision. The good risk firm will issue short term one period 

debt and swap it for long term debt, while the bad firm will issue long term 

bonds from the start. The result holds true if there are restrictions on short 

sales and there is asymmetric information in the market. As a restriction on 

short sales is required for the existence of equilibrium in a GEAA model, its 

use comes natural in our application.

The model is completely written from a unilateral viewpoint, which means 

that the swap dealer and the investors are the same individuals and the swap 

is like a bond contract with a future-type add-on. In an extension to the 

model, we show that preferences for a counterparty can be found which trans­

form the set-up into a more traditional bilateral treatment of swap contracts.

Anonymous Corporate Bond Markets w ith Asym m etric Informa­

tion

The central question of the last paper is whether the nominal coupon rate 

on bonds, the ’coupon rate’, has a role to play in competitive markets with 

asymmetric information. If information is complete and symmetric, then the 

nominal rate plays no role as the price of bonds adjusts to equilibrate the 

supply and demand of credit. With asymmetric information and limited li­

ability, however, we show that the nominal coupon rate sorts borrowers by 

their riskiness, and pooling equilibria exist in which the good risk borrowers 

subsidise the bad risk borrowers.
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The uncertainty construction expands upon a seminal article by Stiglitz 

and Weiss (1981) (SW) on credit rationing in markets with asymmetric in­

formation. The SW model is game theoretic. There is a monopolistic bank 

which is a price setter in its credit market and a quantity setter in its deposit 

market. SW show that it may be the case that, if borrowers have asymmet­

ric information over their projects, a credit market is characterised by credit 

rationing. One problem with the analysis is that, even with symmetric in­

formation, it is a standard result that a non-price discriminating monopolist 

’rations’ its clients in its product markets. In other words, it is difficult to 

disentangle the two possible causes of credit rationing: the game theoretic 

set-up and the asymmetric information.

When conducting a SW type analysis in a competitive setting, credit 

contracts are traded after their issue, and the definition of a Walrasian equi­

librium precludes credit rationing. The equilibrium interest rate is then not 

directly affected by the nominal coupon rate as in SW. However, there is a 

more complicated mechanism. The nominal coupon rate still sorts borrowers 

by their riskiness, and hence the quantity of credit at every coupon rate is 

dependent on the nominal coupon rate. Even though in equilibrium, the ef­

fective interest rate always adjusts to equilibrate demand and supply in the 

market, and, in this sense, there is no credit rationing, the different deliveries 

for different nominal rates imply that the equilibrium occurs at a different 

effective interest rate and a different quantity of credit traded. Indeed, if one 

were to constrain individuals in the quantity they could borrow, then it may
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happen that the credit market clears at a higher effective interest rate and 

a higher quantity of credit issued. In this sense, some of the intuition and 

mechanism behind the credit rationing result carries over to the competitive 

setting.

The analysis is extended to see how the credit market would react, if 

the propensity to lend deteriorates. The Einswer is that good risk borrowers 

would always be driven out of the market first.

Up to that point, the analysis only considers one-dimensional credit con­

tracts. We then introduce collateral in an extension to the basic model, and 

show that separating equilibria can be constructed, similar to Bester (1985). 

In separating equilibria, projects are priced according to their riskiness, and 

no mispricing through pooling occurs. Moreover, as long as the separating 

equilibrium is upheld, the nominal coupon rate becomes insignificant. We 

also show that if the propensity to lend deteriorates, it will be the case that 

bad risk borrowers drop out of the market first, as their risk is properly priced 

and they need to pay a higher interest rate for the same expected return of 

the project.

1.3 Concluding Remarks

The articles on GEAA economies show that the underlying structure of gen­

eral equilibrium models, price taking behaviour and the anonymity of con­
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tracts, can be used to analyse specific issues in specialised areas of economics. 

Financizd markets, in particular, seem to lend themselves easily to this type 

of analysis. Using a general equilibrium approach ensures consistency and 

closedness of the models, and, as in the case of SW, isolates the informational 

restriction from the behaviour of the individuals in the economy.



Chapter 2 

Pareto Improving Trade 

Restrictions in an Incomplete 

Markets Economy

2.1 Introduction

One of the most surprising results in General Equilibrium Theory with In­

complete Markets (GET) concerns the inefficiency of a market economy. Geanakoplos- 

Polemarchakis (1986) and Geanakoplos-Magill-Quinzii-Dreze (1990) prove 

that, generically, a general equilibrium economy with at least two goods or 

at least three periods is constrained Pareto inefficient Even if a ‘central 

planner’ is allowed to interfere with market allocations only once at the be­

ginning of time, he can still improve upon the competitive allocation.

The reason for the inefficient behaviour of individuals is that, agents are

27
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not aw2ire that their asset trades in previous periods induce a change in the 

distribution of wealth in the current period, which influences prices in the 

current period and hence total welfare. Since casual empiricism suggests that 

a market economy does not have a complete set of markets in the Arrow- 

Debreu sense, the apparent generality of the result is all the more striking.

However, fascinating though these assertions may be, they do not serve 

as a basis for a ‘normative theory of inefficiency’. The information require­

ment on the central planner to find the Pareto improving allocation are 

extremely high: to intervene in the correct way, the central planner must 

know the agents’ preferences and endowments. Geanakoplos-Polemarchakis 

(1990) show that if the individuals’ assets and goods demands can be ob­

served (in a multigood model), then preferences can be recovered. However, 

two limitations of their result seem important. One that to observe indi­

viduals’ demands, there would have to be a period of observation before a 

central planner could intervene, and, secondly, that individuals’ demands can 

usually not be deduced from aggregate demands.

In a recent paper, Herings-Polemarchakis (1997) show that a Pareto im­

provement allocation can be found by exogenously changing the prices of 

goods (in the setting of a multi-period good model). The strengthening with 

respect to previous results consists of allowing the central planner to intervene 

at the macro-level. However, it is not enough to intervene in the first period 

only, as required in Geanakoplos-Polemarchakis (1986) and Geanakoplos- 

Magill-Quinzii-Dreze (1990). In this respect, it remains unclear whether the
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Herings-Polemarchakis (1997) contribution constitutes a weakening or not 

from the normative point of view of the inefficiency results. Kajii (1994) 

attacks the problem of the knowledge requirement of the central planner by 

proposing the concept of ‘anonymous intervention’. In his set-up, the cen­

tral planner suggests an intervention rule, but agents are allowed to choose 

whether to truthfully reveal their type or not. Kajii concludes that if agents 

are not allowed to retrade after the intervention, Pareto improvements are 

possible. However, if retrade is allowed, then agents will go back to the initial 

equilibrium and revert the changes of the central planner, essentially because 

of the maximum properties of the equilibrium allocation.

The two papers by Herings-Polemarchakis (1997) and Geanakoplos-Polemarchakis 

(1990) point towards the two routes that one can conceivably take to provide 

a basis for a normative theory of inefficiency. Either mechanisms must be 

found that reveal sufficient information to the central planner to enable him 

to intervene in a beneficial way, or alternative characterisations of Pareto 

inefficiency, and, correspondingly, simple intervention rules are called for. In 

spirit, this paper falls into the second category. The main finding is that 

we present a class of incomplete market economies for which an indiscrimi­

nate borrowing constraint on everyone in the time of need leads to a Pareto 

improvement. In terms of the ‘central planner’ analogy, a more appropriate 

term for our intervention would be to call it a ‘non-discriminatory constraint 

mechanism’. The only knowledge requirement on the mechanism is to detect 

whether agents borrow out of need in a precise sense which will be defined 

below. Also, in contrast to the previous literature, we allow all prices to be
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endogenous, including prices in the period in which the mechanism is imposed 

on the economy, and prices in the first period. In this respect, our example 

is a generalisation of Geanakoplos-Polemarchakis (1986) and Geanakoplos- 

Magill-Quinzii-Dreze (1990). However, we confine our analysis to a highly 

parameterised economy, which is why we may call the model an ‘example’.

The remainder of this paper is organised in five sections: Section 2.2 

gives an intuitive explanation for our main assertion that an indiscriminate 

borrowing constraint can make everyone better off. Section 2.3 sets up the 

model. Section 2.4 contains the main result and Section 2.5 concludes the 

analysis. All the proofs are contained in the Appendix.

2.2 Intuition for the Effect

Our analysis builds on Geanakoplos and Polemarchakis (1988) and Geanako- 

plos, Magill, Quinzii, Dreze (1990). Their articles define and explore effi­

ciency properties of incomplete market economies. As soon as an incomplete 

markets model has more than one good or lasts longer than two periods, 

a pecuniary externality effect arises which makes the equilibria generically 

constrained Pareto suboptimal. In other words, even a central planner who 

has not more securities available to himself than the market and, in addition, 

who is only allowed to intervene once, can still improve upon the market al­

location.

In this paper we demonstrate that we can find easily characterisable and
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non-discriminating restrictions on agents’ borrowing decisions in the time of 

need that trigger off a mechanism that produces the pecuniary externality 

needed in the proofs of the aforementioned theorems on market inefficiency. 

Moreover, all prices are endogenous. The intuition is as follows:

Since markets are incomplete, agents’ marginal utilities of income in the 

same state are generally distinct: If it happens that in one state of nature 

the distribution of endowments is unequal, then, in this state, the poor agent 

has a high marginal utility of income, while the rich agent’s marginal utility 

of income is low. Since in this state the poor agent wants to borrow and 

the rich agent is willing to lend, a reduction in the interest rate benefits the 

poor agent but hurts the rich agent. Symmetrically, if the distribution of 

endowments is reversed in a second state, a reduction in the interest rate in 

that state affects agents’ marginal utility of income in the direction opposite 

to the first state.

However, since the marginal utility of income is low when an agent is a lender 

and high when he is a borrower, a reduction in the interest rate benefits an 

agent more when he borrows (low income/ high marginal utility) than it hurts 

him when he lends (high income/ low marginal utility). Thus, in expected 

terms, a reduction in the interest rate in a time period in which agents can 

be either rich or poor with some probability has the potential to improve the 

welfare of all agents.

The inequality of marginal valuations of income across agents due to

the incompleteness of markets drives the Pareto improvement in the model.
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What remains to show is how the introduction of a borrowing constraint 

leads to a fall in the interest rate, and why the agents could not ‘find’ an 

interest rate which made everyone better oflf in the competitive setting:

To produce the desired result we introduce agent heterogeneity. All agents 

have the same risk-averse, time separable utility functions, but their discount 

rates are different. The borrowing constraint in the time of need induces 

agents to change their behaviour in the preceding period. To ensure con­

sumption in the state when they are poor, both agents would like to precau- 

tionarily save for one period. This is not possible, since one agent’s savings 

decision is the other agent’s lending decision. Who will be allowed to save in 

period one depends on the severity of the constraint imposed on agents. If 

they face the same constraint, the more patient agent will be allowed to save 

(ie. lend) in the previous period, since his marginal utility of consumption 

in the restricted state increases proportionately more with the introduction 

of the borrowing constraint. This agent will then arrive with more wealth in 

the next period. The price for the security in this period depends on total 

endowments in the period and the next period, ‘weighted’ by the discount 

rate of agents. If more weight is given to the patient agent (he arrives with a 

larger endowment), his preferences will determine the relative price for cur­

rent consumption in terms of future consumption to a larger extent. Since 

future consumption is more important for the more patient agent, the price 

of future consumption will fall and the price of current consumption will rise. 

Hence the price of the security will rise, or equivalently, the interest rate will 

fall.
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One complication we have ignored so far is that when the patient agent is 

induced to save more prior to the period in which we introduce a borrowing 

constraint, then prices will turn against him, ie. the interest rate at which 

he can lend (=save) will fall. His utility will fall. We have to show that this 

fall in utility is more than compensated for by the utility increase due to the 

borrowing constraint.

Why do the agents not find the Pareto maximising prices, given the se­

curity constraints? After all, the claim is that utility maximisation does not 

find the utility maximum. The reason can be found in a pecuniary external­

ity: Agents are not aware that their portfolio decisions today affect prices 

tomorrow by changing the distribution of wealth tomorrow, and that the new 

prices affect welfare. Although they have no individual market power, they 

as a group influence prices through the changes in the income distribution 

induced by the borrowing constraint.

The externality raises the question whether a competitive equilibrium is 

the right framework for this model. If agents understood that as a group 

they influence prices, they might be able to act strategically and induce a 

Pareto improving allocation. However, this analysis would depart from the 

assumption of infinitesimally small agents.

We would like to stress again that the following simple trade restriction, 

which drives the Pareto improvement in the economy, is not a general mech-
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anism. In this sense, the following is more of an example than a theory.

2.3 The Economy

2.3.1 Agents, Endowments and Securities 

Time and Uncertainty

The most simple model we can write has three time periods t =  0,1,2 and 

uncertainty only in period  ̂=  1, represented by two states of nature and 

^2, which happen with equal probability. The structure can be represented 

by a tree with five nodes, which we will refer to as ^22))- One

can think of the uncertainty as an endowment shock. Either agent 1 or agent 

2 experiences an endowment shock with equal probability in period t = 1.

There is symmetric information throughout and agents form expectations 

rationally. Moreover, the probabilities of states (1 and 2̂ are objectively 

known.
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Fig.l: Event Tree of the Economy S{U, w, V)
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Agents and Endowments

There are two types of agents, and a continuum of each type, such that 

each agent has Lebesgue-measure zero and the total measure of agents is 

two. Agents i have time-separable, state independent, strongly monotone
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and strictly quasi-concave preferences defined by a utility function

U*iA^o),

=  u ’ (a ro (fi)) +  l / 2 ( a j u ’ ( i j (Ç i) )  4- afu'ixii^n))) 

+l/2{oiiu'{xi{^2)) + a?«’(®i(&)))

with u'f{) > 0 and uV/() <  0. a* is the discount rate of agent z,with a i  > 0:2, 

ie agent 2 discounts future consumption more strongly (he is relatively impa­

tient). Endowments are given by w* =  (W(^o), ̂ ;*(^i),^ '(6 2 ), ^ '( 6 2 )).

Agents have the same endowment in periods t = 0 and t = 2, but suffer 

from an endowment shock in one of the two states in t =  1. We model the 

endowment shock by setting and ^^(^2) > (see Fig.l)

Comm odities and Securities

There is only one commodity in the model, whose price is normalised to 

one and which acts as the numéraire. We can interpret this commodity as 

‘income’. There is a structure of real securities V, meaning that they pay 

out in terms of the commodity. We assume that the security markets are in­

complete. In a multi-period setting this implies that the number of actively 

traded securities is less than the number of states in at least one period of 

the model. In our simple setting, incomplete markets imply that there is 

only one security which has a non-zero payoflf in period t =  1. For simplicity 

we assume that the only traded assets are one period bonds in states ^0,



CHAPTER 2. PARETO IMPROVING TRADE RESTRICTIONS 37

and (2, paying oflf one unit for sure of the commodity in the subsequent 

period. Focusing on short-lived and risk-free securities also allows us to disre­

gard the well-known existence problem for multi-period security economies, 

first detected by Hart (1975). This problem only arises if securities can be 

traded before their date of maturity. Then the span of the security struc­

ture will depend on the - endogenously determined - prices of the securities. 

Non-existence arises if the span collapses discontinously at an equilibrium 

candidate. Since there is no interim trade in our securities, spanning be­

tween periods t  =  0 and ( =  1 is independent of prices.

Economy

The economy described above is denoted by S{U,uj, V).

2.3.2 Equilibrium

Agents i maximise utility subject to their financial market budget constraint. 

Using q for the prices of securities and z* for the porfolio choice of agent i, 

the budget constraint with three one period bonds 0, 1 and 2 issued at i =  0 

and i =  1 and paying oflf one unit in the subsequent period (regardless of the 

state) is:

B % w \ V )  =  (2.1)

r'((o) =  w‘(Ço) -  ?o2’(6 )

+  z'((o) — ?iz'(^l)
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^*(^12) =  ^*(6 2 ) +  ^*(Çl) 

2̂ *(Ç22) =  (̂ *(̂ 22) +  ^*(6 )

To illustrate the security structure more visibly, define the security matrix 

W {q,V) as

—Qo 0 0

W{q,V)=:

0 0

0 0 1

Every row in the matrix corresponds to one node in the tree of the econ­

omy S. The first row represents ^0, the second ^1, the third ^2, the fourth 

(12 and the fifth ^22- To better understand the structure, we have divided 

the different time periods by dotted lines, eg. qo in the first row indicates 

that there at node there is trade in security 1 at price following the 

first column down shows that this security pays off 1 at both nodes and ^2-

For subsequent analysis, it will be helpful to define the present value 

vector of*an agent. The present value vector is the valuation that an agent 

gives to income in a certain state. It is defined as the vector of present values 

of the Lagrange multipliers of an agent’s maximisation problem.
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*■ -  <*■'«> -  Ü
where Â* is the Lagrange multiplier of agent i.

We can now write the agents’ maximisation program as a Lagrangean 

function

r ( x \  z \  A') =  u* -  A*(x* - w ' -  W{q, V )z').

Given our assumptions on utility functions, the necessary and sufficient 

first-order conditions for the maximisation problem of an agent are:

V L \ x \ z * ,y )  = 0

Of particular interest to us is the gradient of L*() with respect to portfolios 

z'Q:

VzL*(x\ ?,#■) =  0 yW {q , V) =  0 (2.2)

which for our economy can be written as

^ '(0 % =  (2.3)

where are the successor nodes of (2.3) is the fundamental pricing 

equation for our model

It asserts that in equilibrium the price of a security must be equal to the

sum of its payoffs weighted by their marginal utilities. Equilibrium for the

^This first order condition is equivalent to a no-arbitrage condition, see existence proof 

in Appendix
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values as parameters of the economy. The new economy we call S{U,u, V). 

Then we impose a marginal positive change dz*{^i),dz*{^2 )  ̂ on portfolio 

holdings. The effect of the restriction is our main proposition and stated in 

the following theorem.

Proposition 1 (Pareto Improvement)

For a symmetric distribution of endowments, sufficiently small heterogeneity 

amongst agents^ time preference and sufficiently low impatience of all agents a 

positive marginal portfolio change the economy S(U ,uj,V ),

such that markets clear, is Pareto improving.

Proof: We organise the proof in a number of successive claims. Firstly we 

need to establish that the borrowing constraint is binding at the equilibrium:

Lemma 1 (Binding Borrowing Constraint)

The marginal restriction of trade dz*(^i),dz'(^2 ) imposed on the parame­

terised economy S (U ,u ,V ) is binding.

We can now state the first claim, which will set the stage by revealing 

the variables which are affected by the borrowing constraint.

Claim 1 (Characterisation of Marginal Change in Utility)

The marginal change in utility for agent i induced by an exogenous change 

in portfolios dz\,dz2  for the economy is given by:

^When an agent borrows, he sells a security, ie. his portfolio holding z*(^) is negative. 

Hence a positive marginal change imposes a borrowing restriction.
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It remains to demonstrate that there are parameterisation such first term 

of the fundamental equation (4) is small, and the Pareto improvement is not 

destroyed. The change in qo, ie. the price elasticity of demand for security zq 

will depend on the precise specification of the utility function. However, the 

following claim indicates that suitable endowment/ time-preference combina­

tions are feasible to ensure that trade at period zero is small (ie. —Zq small). 

The fact that it is not necessarily true that for every parameter values, a 

trading restriction leads to a Pareto improvement, bounds the generality of 

the borrowing constraint mechanism, even in the context of the special en­

dowment and security structure which we use.

Parameter Restriction

A Pareto improvement requires that the first term in the marginal utility 

change equation (2.4), whose sign is negative for the patient agent, does not 

dominate the net effect of the sum of the last two terms. In other words, the 

product of the bond price change and the security trade in period  ̂=  0 must 

be small relative to corresponding products in period t = l. Only considering 

agent 1 (for agent 2 the price effect in period t =  0 is beneficial), equation 

(2.4) can be rewritten as

dgo < + n d g ,( - z i )

By concavity of the utility functions a large difference in initial endow­

ments for a similar utility function implies that net trades will be large. 

For small and at node lj\ « <  (aode (2: » >  Wg)

implies that z\ (z^) is large. Since ^} > ^2» difference of the products
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^ \{—z\)+Tt2 {—z\) (recall that —z\ < 0 and —z\ > 0) can be made arbitrarily 

large. In addition, large aggregate endowments and a discount factor smaller 

than one imply that it less costly in utility terms to transfer income across 

periods t = 1 and t = 2 than across t  = 0 and t  = 1. In combination with 

the assumption of ’symmetric endowments’ this implies that —Zq is relatively 

small in absolute terms. In this way, parameter restriction can be found that 

control for the adverse price change of dq  ̂ for agent 1.

Claims (1) to (3) and the parameter restriction complete the proof of the 

proposition. □

2.5 Conclusion

In this paper we have given an example of a class of multiperiod incomplete 

market economies, for which a non-discriminating borrowing constraint leads 

to a Pareto improvement. The result supplements the literature on con­

strained Pareto inefficiency of general equilibria with incomplete markets. 

The knowledge requirement for the intervention is very low, and all prices 

are allowed to adjust, however, the economy is very special in its security 

structure, uncertainty structure, endowments and heterogeneity of agents. 

Because of these restrictions, the article serves as an illustration for a possi­

ble line of research on constrained Pareto inefficiency, namely the design of 

easily implementable mechanisms that generate Pareto improvements.
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2.6 Appendix 

Proof of Theorem (1)

We present a version of the proof which is based on the notion of a ’nor­

malised no-arbitrage equilibrium’. The proof is stzindard.

For the notion of a no-arbitrage equilibrium we first state a standard 

lemma (without proof) that ensures that no arbitrage is equivalent to equa­

tion (2.2) and in turn guarantees the existence of positive state prices tt.

Lemma 2

In the economy S (U ,u ,V ), the following conditions are equivalent:

(i)The problem max {it*(a;‘) | x* € B*(ç, y)} has a solution.

(ii) There are no arbitrage opportunities on the financial markets.

(Hi) There is a vector of positive state prices tt € jRf , such that 7tW(ç, V) =  

0 .

Proof: see Magill and Quinzii (1996, p. 73)

In order to transform the economy into one with state prices, first define 

the state prices for each node as:

TT = (l>’r(Çi).’r(6).’rfâ2),7r(62)) € (2.6)

such that (2.3) holds. Thus prices q can be written as:

90 =  7Tl +  7T2 (2.7)
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7Ti2 
Qi — —  7Ti

7T22
Q2 =  ----7T2

Inserting these equations into the budget constraint (2.1), and write the 

budget equations for and Ç12 and for 2̂ and (22 in one equation.

7ri(a;*(fi) -  w'(^i)) +  ~  ^̂ *(6 2 )) =  7TiZ*(̂ o)

7r2(x*(f2 ) -  ^ ' ( ( 2) )  +  7T22(a;*(^22 -  (^*(6 2 ) )  =  7r2Z*($o)

(2.8)

which can be written, using the ’successor box product’, as:

7Ti

7T2

where

7T O (%' -  W') =  2 ]  -  W')(C)

&
('€3

(2.9)

In words, the box product is the vector of discounted values of net demand 

at each of the successors of fo- Equivalently, (2.9) can be written as:

TT □ (a;* — ÙJ*) 6
7Tl

7T2
(2.10)
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where () indicates the span. Using the state prices and the transformed 

budget equations (2.8), the original budget equation for date t =  0 can be 

rewritten as:

7t(x* — w') =  0

This completes the transformation of the budget set V) into the

state price budget set

7t(x* —cj* )= 0 

7T O (x* — LÜ*) €

fô

7Ti

7T2
(2.11)

The transformation implies equivalence of the two budget sets. Since 

markets are incomplete between t =  0 and t =  1, there is an indeterminacy 

of state prices. We can hence use the ’Cass trick’, and choose agent I ’s 

present value vector to represent the security prices. Explicitly, by (2.3),

q =  Tt^V = >  7f̂  G {tt € ]R^ĵ \kV  =  ïtV}

Consequently, agent I ’s budget set reduces to

=  {x^ 6 —u') =  0}

A no-arbitrage equilibrium for the economy S(U^uj^V) can now be de­

fined as a pair of state prices and allocations (x, it) € IR}̂  x iR^+such that:

(i) x} — arg max {u^(x^)|x^ 6  B^(#, w^)}

(ii) x^ =  arg max {u^{x^)\x^ e  B^(7r,w^, V)}
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(iii)

The reformulation allows to define demand functions (recall that U*{.) 

is strictly quasi-concave) for agents 1 and 2 which are functions of all the 

maximum elements for all possible state prices, ie..:

/^(tt) =arg max 6 and /v (7r) =arg max {u^{x^)\x^ e

y)}. Since the budget correspondences are continuous and com­

pact valued and convex valued correspondences, and U*(.) is strictly quasi­

concave, by the Maximum Theorem the demand functions are continuous 

convex, compact and non-empty valued functions. Furthermore, the demand 

function for agents one and two satisfy /*(a7r) =  / ‘(tt) for all a  > 0, for all 

7T G and 7r/*(7r) =  ttcj* for all tt G and agent I ’s demand satisfies 

the boundary condition that if tt" G is such that tt” — > tt G dlR^^ and 

if TTû  > 0, then /^(tt”) — > oo as n — > oo. The aggregate excess demand 

Z^(7r) =  + f v M  — inherits continuity, homogeneity, boundary

behaviour, and Walras Law by the property of continuous compact corre­

spondences. By Kakutani’s theorem, a fixed point Zy{7r) =  0 of the economy 

S{U ,u,V ) exists. □.

Proof of Lemma (1)

The economy 5 (t/, w, V) is constructed by parameterising the economy 6!(Z7, uj, V) 

with the equilibrium values of ^(^i) and ^(^2- Since u*() is monotonically 

increasing and concave in x* by assumption, it is also monotonically increas­

ing and concave in z*. Since the budget set is compact and u* is continuous 

and strictly quasi-concave, the continuity is inherited in the solutions by the
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maximum theorem. The concavity of the maximisation problem guarantees 

that the constraints are binding at the maximum. □

Proof of Claim (1)

Given that there is only one good in the economy, we can write agent i’s 

utility as the sum of the products of marginal utility times consumption:

U*{x) =  AJXq +  +  Âi2̂ 12 +  ^2 2̂ +  ^22̂ 22

where consumptions are given by the budget equations above. Using 

present value vectors, the total marginal change in utility induced by dz\ 

and dz2  at the equilibrium is:

du*
=  dx*Q +  TT\dx\ +  n\2 dx*i2 +  +  ' 2̂ 2 ^ ^ 2 2

—dqo^ — qodzQ +

+  TTi{dzQ — q\dz\ — dqiz]^

+

+  — Qidz2 — (̂ 92^2)

+ ^22(<̂4 )

which can be rewritten as

— —dqozl — {qo — ttJ — T̂ ^̂ dz*Q

-  (q i^ \-^ \2 )d z \
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-  (92^2 -  ^22)(^4

-  ^[dqi^i

-

Since we are considering marginal changes around the equilibrium, the 

first order conditions are still valid. Consequently the change in utility re­

duces to

-TT =  dqo{-zl)  +  TT{dqi{-z\) +  7f5d^2(-^2) °

Note that the constraint itself, dz\ for i =  1,2, s =  1,2 has no direct 

effect on utility, since the redistribution of wealth through the constraint 

is compensated in period t =  2 by Since Çg =  the direct impact 

on wealth, qait\dz\ is just equal to Tt\2dz\. The only effect is through the 

portfolio reallocation in period i =  0, which, in turn changes the distribution 

of wealth in period t =  1 and induces reoptimisation at ( =  1.

Proof of Claim (2)

Consider the version of the agents’ maximisation problem which has the 

budget constraints substituted into the utility functions:

max U*(z, q) =  u*{wq — q^zl)

+  4  -  9 i4 ) +  ^*(^2 +  4 ))

+ \(a iu \w \ +  4  -  % 4) +  a ,-̂ ‘^22 +  4 ))
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Collect the date 1 portfolio demands in a vector Using this notation 

the restricted portfolio choice between date 0 and date 1 portfolios is {zq — 

dzj, Zj +CÎZ2). We can measure the cost of the portfolio restriction by asking 

how much extra income agents need in period 0 to be just as well off with 

the restriction as without it. In other words, we want to solve the linear 

equation:

du*i(—dzJjdzj) =  0 (2.12)

Note that the borrowing constraint, viewed as a security, lies in the ’mar­

ket subspace’, ie.. the column span of (U). Since the differential is a linear 

functional, it can be represented using an inner product. For this purpose, 

define the mcirginal utility of an additional unit of portfolio as:

Then, equation (2.12) can be written as:

du\i(-dzl, d z\)  =  [//J(z*), -dzj] -f [Viw*(z*), dz\] = 0

Consequently the cost of marginal changes in portfolios in period 1 is:

c \d z \;x ')  =  [K\{z'),dz\]

where

is agent i’s present value of his portfolio holding.
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The value of the trading restriction in t  =  0 can then be written explicitly

as:

Since the utility functions of the two types of agents are the same except 

for the discount factor, and states s =  1 and s =  2 are symmetric, the 

adjustment is higher for the patient agent. Since both agents solve the local 

maximisation problem

max du\i (—dzg, )

they both want to lend in period 0 (dzj is negative, they want to sell the 

security). However, only one agent can lend. The other one has to borrow. 

Therefore in equilibrium only the agent, whose cost is higher will lend. This 

agent, as we have shown, is the more patient agent. The price % of the 

security will then adjust to equilibrate the marginal valuation of the bond 

income stream again. □

Proof of Claim (3)

To calculate the bond price change in period 1, we only need to look at the 

subeconomies 2^i(fi, Ç12) and P 2(&, (22), since the only determinants of bond 

prices in period 1 are preferences in period 1 and 2 and the distribution of 

endowments in those periods. In other words, for the purpose of price compu­

tations, the payoff of securities traded in period 0 influences the distribution 

of endowments in period 1 exogenously.
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Fig,2 Subeconomies 6 2 ) onj >̂2 (̂ 2» 2̂2)

hr.

V,

Since U^{.) is strictly concave for both i =  1,2, with utility of con­

sumption in all states and interior aggregate endowments, wX&) > 0 for 

at least one i, the equilibrium in the subeconomies P i (^1,^12) is an inte­

rior equilibrium. By strict concavity, the slopes of the level sets of the 

functions: = atU*(2:j(fi)) 4- o;?w*(xi( î2) in the subeconomy P i and

for T>2 are, in equilibrium, equal for agents 

2 ==1,2 in each subeconomy. Since the argument is symmetric, restrict the 

analysis to one of the subeconomies, P i. Since markets are complete, and
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the bond from t =  1 to t =  2 pays out one unit, it is like an Arrow- security, 

and the equilibrium in the subeconomies is equivalent to a ’contingent mar­

ket’ equilibrium, meaning that the price of the bond is the relative price of 

consumption at t =  1. By the additive separability of the utility functions, a 

marginal increase in endowments in period t = 1  only has an effect on con­

sumption in the same period, and not at  ̂=  2. Take s =  1 as the starting 

point of an economy. Then the equilibrium in the subeconomy V i can be 

represented by the following first-order conditions:

i =  1,2 (2.13)

^*(6) +  91^X62) =  wX6) +  « =  1,2

+  ^ ( f i )  =  j  =  1 . 1 2

Using the budget constraints and the pricing equations, the price of the 

bond can be written as:

oi____ I________ 02___
((1  )) ( 6  )+u /^ C gi2)-g^  (^0 )) ^ 2  1 4 ^

By additive separability, the denominator will not change with a change 

in endowments at t =  1, and by market completeness the marginal utilities at 

t  = 1  are equal across the two agents, Consequently,

the marginal change in the price çi,

ai________I_____   gg ______ _

u ' ( ï l ( ^ 1 2 ) )  u ' ( x 2 ( Ç i 2 ) )
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is positive, since a i >  0 2 . □



Chapter 3

Signaling Credit Quality 

Independently of Contract 

Choice: a Non-Transact ions 

Cost Approach to Swaps in 

Anonymous Markets

3.1 Introduction to the Problem

There is an informal argument in the literature that swaps can be used to 

signal future credit quality (eg. Litzenberger (1992)), when credit quality 

is unobservable by lenders. The verbal argument is simple: entrepreneurs 

prefer smooth repayment streams. Good risk entrepreneurs borrow short at 

every period and swap this variable rate repayment profile into a fixed repay-

57
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ment profile. Borrowing short means that entrepreneurs allow the market to 

evaluate their riskiness in every time period. If entrepreneurs have superior 

information of their own good future credit quality than the market, then 

they would like to give the market time to be able to reveal their good credit 

quality. Entering into a swap then allows borrowers to still retain a smooth 

consumption profile. Bad risk entrepreneurs, in contrast, will take out fixed 

rate finance from the start.

We construct a simple two-type, n-agent model for which this argument 

holds. However, it turns out that entrepreneurs could equally well signal 

their good credit quality by borrowing variable and then smoothing their con­

sumption stream by acting as investors in the asset market. Consequently, 

we need an extra restriction on asset trades. The natural restriction is that 

entrepreneurs cannot at the same time be investors in the asset markets. 

Under this condition, entrepreneurs cannot smooth consumption over and 

above their original credit commitment.

It is easy to see that if either of the two trading restrictions - asymmetric 

information or the one-side constraint - is not present, then the swap contract 

would be redundant:

If there is no asymmetric information, then agents will, by the maximum 

property of their portfolio choice problem, always trade their best portfo­

lio at the initial date With our assumptions of consumption smoothing

În a different context see Kajii (1995).
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over time and the structure of endowments, both types of entrepreneurs will 

choose the fixed bond contract at their respective publicly observable likeli­

hood of default.

If there are no one-side restrictions and entrepreneurs are allowed to trade 

as investors at t =  1, then good risk entrepreneurs will choose the variable 

rate bond and smooth their repayments through additional investment in 

period t =  1, while bad risk entrepreneurs will opt for the fixed coupon bond 

contract.

It could be argued that, in our context, the assumption of a one-side con­

straint is a natural one to make. There is only one class of projects available, 

so that in the case that entrepreneurs decided to invest as well as borrow in 

period t =  1, they would finance their own projects, which seems somewhat 

artificial. A situation in which we would observe asset positions of this kind 

(on both sides of the market) is usually one where arbitrage opportunities 

exist. Precisely the problem of arbitrage opportunities also arises in our the­

oretical setting of competitive markets with asymmetric information. The 

way by which we make the competitive model compatible with asymmetric 

information is to introduce one-side constraints and pool securities. Thus the 

one-side constraint solves the arbitrage problem present in the competitive 

set-up, and, at the same time, gives rise to the non-redundancy of swaps. 

Since, in this way, it is a requirement of the theory employed, it appears 

much more palatable as an assumption for the functioning of a swap market.



CHAPTERS. NON-REDUNDANT SWAPS 60

3.1.1 Related Literature

The literature on the existence of swaps is often informal and, if models are 

introduced, almost always focuses on the bilateral exchange nature of swaps. 

There has been a steady development in the sophistication of the argument 

put forward for the existence of swaps, and, given the enormous size of the 

swap market, there is the perception of a need to explain why swaps are 

traded beyond the obvious, if intuitive, assertion that they save on transac­

tions costs.

The first idea for the existence of swaps was ’comparative advantage’ 

(Wichmann (1988), Simons (1989)). For some exogenous reason, one type of 

entrepreneur is seen as having a borrowing advantage in a fixed rate market, 

while another entrepreneur has an advantage in a variable rate market. If 

the preferences of these firms are the reverse of their respective comparative 

advantages, then they can profitably swap their coupon payments. In partic­

ular, it was observed that firms with a good reputation in financial markets 

are often the only ones that can issue fixed long bonds. If these firms are 

also the ones which are less averse to ’payment smoothing’, then they can 

profitably swap their finance with a smaller or lesser known firm. It was soon 

realised that this explanation relies on some kind of market imperfection 

Without any frictions, borrowers could exploit their comparative advantage 

directly.

^There is another strand of literature on swaps, which emphasises default arrangements 

(Cooper and Mello (1991), Duffie and Huang (1996)).
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A fundamental friction in the credit market is the asymmetric information 

between borrowers and lenders. The swaps literature has shifted its attention 

to these asymmetries, and recent articles view swaps as a contract choice that 

signals credit quality (Simmons (1993), Litzenberger (1992)). The present 

model is written along these lines of the recent development in the literature, 

and uses swaps to allow a good risk borrower the signaling of his good credit 

quality.

However, one essential difference to the established literature is that we 

take a completely unilateral and anonymous view of the swap market. There 

is a swap dealer, who, at the same time, is also the pool of investors providing 

project finance. In this view, swaps are regarded as not being very different 

from bonds. They promise a repayment stream with a future type addition 

that they pay more if the credit quality of the borrower deteriorates. Accord­

ing to this view, the ’price’ of a fixed-for-variable swap is the interest rate 

on a fixed payment profile which sets the market valuation of that payment 

stream equal to the market valuation of a variable rate payment stream, for 

the same duration, and for the same credit quality. The variable counterparty 

is then obliged to pay, to its own variable creditors, any additional payments 

that result out of a deterioration of its credit quality.

In the model, the underlying agreed swap rate is the fixed rate of the good 

borrowers. Should the borrower turn out to be bad, then he has to make an 

additional payment to the lenders, over and above his payment to the swap 

dealer. For simplicity, the two coincide, so that, in our specific setting, they
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effectively buy a credit contract which has a fixed ’floor’ and the option to 

top up payments, should credit quality deteriorate. Figure (3.1.1) illustrates 

the view of the swap market in the article.

Fig. (3.1.1) A uni-lateral View of the Swap Market

coupon payments 
depend on credit 
quality

receive 
cash

Borrower

pay variable 
coupons and 
principal

swap

payment exchanges 
determined for a 
notional credit quality 
- free of credit risk

or variable

Creditors Swap Dealer

In an extension to the model we explicitly introduce a swap counterparty 

that issues fixed bonds and swaps them for variable bonds. The counterparty 

is constructed in such a way that it is indifferent between entering into the 

swap and issuing the variable bonds directly. The extension is written with 

the purpose to illustrate that concentrating on one party in a swap contract 

is not a necessity, and is done to emphasise the anonymity of the market and 

a unilateral view of swap transactions.
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In the following, the next section sets up the uncertainty structure of the 

model. Section (3.2) describes the uncertainty and security structure, the 

agents, and the equilibrium concept. Section (3.3) provides a formal devel­

opment of an equilibrium with swaps and consists of our main proposition. 

Section (3.4) extends the model to take account of a counterparty. Section 

(3.5) concludes. Proofs are contained in the appendix.

3.2 Structure of the Model

3.2.1 Uncertainty

The model we are using is based on the general equilibrium model of asym­

metric information, as, for example, in Bisin, Geanakoplos, Gottardi, Minelli 

and Polemarchakis (1998). The economy is a pure finance economy with 

one physical good, whose price is normalised to one. There are investors 

and entrepreneurs with projects, over which they have asymmetric informa­

tion. Investors lend to entrepreneurs (or borrowers) to finance their projects. 

There are three time periods, t =  0,1,2 and two states in period t =  2 for 

every project. There are two types of entrepreneurs, denoted by ^ € {^i, ^2}, 

and the number of entrepreneurs of each type is countably infinite, with an 

entrepreneur of a given type indexed by n = 1, • • •, 00. An entrepreneur 

is then identified by the tuple {6 ,n }. The proportion of entrepreneurs of 

a type 9 in the economy is called Â , and, since there are only two types, 

A®̂ =  1 — A®2. Every entrepreneur {0,n} has a project which requires an 

investment of one unit of the numéraire commodity in t =  0 and which has a
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safe interim payoflf of K\ units at t =  1 and an uncertain payoff of K 2  units 

if successful in period t =  2, where K  =  Æ2} is such that the value of

the project is positive. Types are identified by the riskiness of their projects. 

Projects are treated implicitly. Entrepreneurs need to raise one unit of en­

dowment in the first period to finance the project. If they choose to do so, 

they will obtain payouts (ATi, ATg) in periods t =  1 and t — 2  respectively, 

if the project is successful. Entrepreneurs have no utility of consumption in 

period  ̂=  0, and are therefore only concerned about the repayment stream 

on the financing of the project.

When describing the states in period i =  2, individual states need to be 

distinguished from social (or aggregate) states. Individual states refer to the 

outcomes of the individual projects of every agent. Social or aggregate states 

are then all possible combinations of outcomes of the individual projects. Ag­

gregate states will be discussed below.

The two individual states in period t = 2 are referred to as the success 

state S21 and the default state ^22- Define a payoff in a state s as i?,. Then 

R 2 1  =  K 2 is the payoff in the success state, while R 2 2  =  0 is the payoff in the 

default state. This description defines a random variable R  : H with

finite support {i?2i, ^ 22} on a probability space (f2, T , P). The payoffs in an 

individual state are the same for the two types of entrepreneurs, and types 

are only distinct in the likelihood that a certain state occurs. Consequently 

the measure Ps{0) is type-specific. In order to clarify the dependence of the 

distribution of the random variable R o n  6  and n, we use the shorthand R^’̂ .
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To complete the temporal structure of the model, we collect all the states s 

in the set S  =  {sqj S2 1 , S2 2 } and introduce a set of partitions IF =  {JFi, IF2 } 

on the set of states S. The temporal structure from the point of view of en­

trepreneurs can be depicted in the following tree:

Fig.l Uncertainty Structure for Entrepreneurs

s =  0

t =  0 t =  l  t = 2

We order the two types of entrepreneurs 9\ and 2̂ in the following simple 

way, and describe the information structure by assumption (2):

Assum ption 1 (Riskiness of Projects in the Economy)

Projects of type 9i are the ’good risk projects ie.

P«l(^l) >P»jl(^2) (3.1)
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The probability measures are such that the net present value of the projects 

is positive.

A ssum ption  2 (A sym m etric In form ation)

The probabilities ps^i(Oi), ^321(^2) are private information of the entrepreneurs 

a t t  = ^. However, they become publicly known at t  = 1.

We now have to describe how the random variables for every individual 

entrepreneur {6 , n} are combined to form aggregate states.

Essentially, we have to make assumptions on the correlation between dif­

ferent projects. We assume the following:

A ssum ption  3 (C orrela tion  of P ro je c t Payoffs)

are mutually independent, and for every 9, are identically

and independently distributed across n.

Assumption (3) allows to invoke the law of large numbers. In the limit 

for the number of projects of each type approaching infinity, it holds that:

d

I f ; - ,  e ib ?’'] = ^  (3.2)
n= l

where p. is the vector [p{9i), ̂ {6 2 )],

The law of large numbers ensures that if infinitely many projects with 

the characteristics of assumption (3) are pooled together, then the payoflf of



CHAPTER 3. NON-REDUNDANT SWAPS 67

Rff is constant across all states. From the point of view of investors, there is 

no uncertainty in the economy. All the states are equivalent and can hence 

be written as one single state. This state is denoted by a.

3.2.2 Project Finance

As we have stated before, entrepreneurs want to finance a project that costs 

one unit of the numéraire good in t =  0 and pays out Ki units of the good 

in t =  1 for sure and K 2  units at i =  2 if successful. We impose certain 

restrictions on the model that allow us to get explicit results regarding the 

use of swaps.

The project is indivisible. We choose utility functions such that all en­

trepreneurs undertake the project, and only the method of finance remains 

as a choice variable for them. There are three forms of financing available: a 

two-period bond, which the entrepreneur issues at t =  0 and which pays the 

same coupon at t =  1 and in the success state S2 1 (together with repayment 

of the principal in that state); two one-period bonds, which are issued at 

t =  0 and t  = 1, respectively, and which pay coupons and principal at t  =  1 

and in state S21; and two one-period bonds and a fixed-for-variable interest 

rate swap, in which case the bonds are issued at  ̂=  0 and  ̂=  1, the principal 

is repaid at t =  1 and in S2 1 , but the coupons paid out at t =  1 and in state 

S21 are swapped and hence the same for both states. The three methods of 

finance are abbreviated as /  for fixed, v for variable, and sw for swapped.
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In contrast to the usual discount formulation of the price of financial 

securities, here we take the interest payments as variable, while the is­

sue price is fixed and equal to one^. A coupon payment in state s is de­

noted by Vj, and the portfolio holding in a bond for a type 0 is where 

j  = f ,v ,s w .  For the two standard methods of finance, the following relations 

hold: V,{(9) =  and V- f

While variable and fixed coupon finance are conventional, swap finance 

warrants more explanation: the way we define a fixed-for-variable swap is 

that it is a promise at t =  0 to pay a fixed coupon based on a presumed 

probability of success Ps2i{0 i)- Should the true probability of success turn 

out to be lower, then the issuer tops up the payment by the difference between 

the variable rate for that period for type 6 2 , and the fixed rate.

D efinition 1 (Swap Finance)

Swap finance consists of the coupons payments:

{ v :r  = v l(e ,) ]  (3.3) 

v z { e )  =  v l,{e ,)  i f  p,,,{9) =  pM  \

' . K T W  =  v L  (»i) +  { K .  (%) -  v L  (»i)) ((») =  (®2). '

The way we look at swap finance here is completely unilateral from the 

point of view of the entrepreneur. This is made possible by the set-up of 

anonymous markets and pool securities, which are discussed below. Essen­

tially, we look at the net pay-off of swaps. From this point of view, swaps 

simply introduce an ’future’ type element into the bond contract: should the

În other words, ail bonds are sold at par.
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basis for the swap (the variable coupon rate) not turn out to be true, then 

the issuer must make excess payments.

To ensure that agents are price takers, we need to view the securities as 

already existing in the market. All three types of securities are available for 

the financing decision of entrepreneurs, but not all of them will be traded in 

equilibrium.

3.2.3 Utility Functions and Optimisation Problems 

Entrepreneurs

Entrepreneurs are assumed to have utility of consumption in periods t  =  1 

and t = 2 only. We make the following assumption on entrepreneurs’ utility 

functions. Since all entrepreneurs of the same type take the same action^, 

the superscript ’n ’ will be omitted.

Assumption 4 (Assumption on Entrepreneurs’ U tility  Functions)

For each state s £ S  \  {sq} the utility function uJ is increasing, linear, and 

time independent. Furthermore, is additively separable. Explicitly:

U\d>) =  (3.4)

^Contrary to BGGMP, the n’ construction is mainly used to generate logically con­

sistent pool securities. All the asynunetric information is contained in the type, and not, 

as in their work, in different members of the same type.
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Entrepreneurs are assumed to have no endowments at t =  0, and suf­

ficiently high project payouts at t =  1 and in S2 1  to repay interest on the 

financing of their project. Since entrepreneurs’ projects are sold for one unit 

of investment in period t =  0 and pay out K 2  units in state S21, entrepreneurs’ 

optimisation programs are as follows

max U^{c^) (3.5)

cL  =  K 2 +  (Vl, (0) +  l)z^J +  (0) +

C  =  0

Let the budget constraint be denoted by B^{K, V^) where is the matrix 

of security returns. We assume that project finance cannot be split, so that 

all the porfolio variables either take on the value zero or minus one. In 

addition, we impose a particularly strong form of a one-side constraint:

A ssum ption  5 (No re trad e  a t t =  1 for en trep ren eu rs)

=  zl'j, j  =  f ,v ,sw , which implies that entrepreneurs cannot 

refinance their projects a t t = \ ,  and z^'^ < 0, entrepreneurs are only on the 

issue side of the asset market.

The way we model entrepreneurs may seem overly restrictive at first sight.

However, it is a natural multiperiod extension of an Allen and Gale (1991,

®The form of the entrepreneurs’ optimisation program is developed explicitly in the 

appendix.
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1994) type set-up. In Allen and Gale, entrepreneurs have an uncertain in­

come stream in the second period of the model, which they want to sell to 

maximise their utility in the first period. In fact, entrepreneurs disappear 

completely after the first period. Here, the assumption of linear utilities of 

entrepreneurs combined with the ’no retrade’ restriction and the construction 

that entrepreneurs do not consume in period t =  0 serves a similar purpose. 

It implies that entrepreneurs want to issue the security which has the lowest 

coupon payments, ie. which allows them to invest one unit in period t  = 0  

with the minimum reduction in consumption in periods t = 1  and t =  2, 

regardless of the payment profile.

Investors

We assume that lenders want to smooth their consumption over time and 

have sufficient endowments to buy the contracts offered by entrepreneurs. 

Since there is no uncertainty for investors, there is no loss of generality in 

only considering one aggregate state a. There are countably infinite identical 

investors with utility functions given by;

Assum ption 6 (Investors’ U tility Functions)

Investors i have utility functions Î7*(c*), which are continuous and strictly 

quasi-concave in every period, time and state independent and additively sep­

arable. The relevant states for investors are the equivalent aggregate states 

a. Thus:

lP(c^) = u‘(4 ) +  tt-(ci) +  u‘(4 )  (3.6)
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The aim of the paper is to model swaps in an anonymous market. In 

particular, we want to abstract from the notion that a swap is a bilateral 

arrangement. Instead, we think of swaps as trades in risk profiles. We model 

the agent who offers these trades as the pool of investors. In addition to swap 

finance, the pool of investors also buys the fixed and variable bond finance 

described in the a preceding paragraph. Thus it acts as a counterparty to 

all borrowers. The pool is hence the swapdealer and the counterparty at the 

same time.

Investors invest into pools. They buy the project finance of entrepreneurs 

in period one, in return for which they get a coupon payment at t =  1 and 

in the success state S21, and their principal is returned to them in S21. How­

ever, they do not buy individual securities, but rather a share in the pool of 

all the securities issued by borrowers. A pool security is constructed in the 

following way: the coupons of the individual securities V^(0), j  = fjV ,sw , 

are paid into a pool (a separate pool for each risk class). Depending on 

the riskiness of entrepreneurs, the deliveries into the pool differ. The actual 

deliveries then define the coupon in the respective pool securities 

j  =  / ,  V, sw. In other words, the coupons of pool securities is determined by 

the actual deliveries of entrepreneurs, whereas the value of the individual se­

curities is determined by demand and supply in the securities market. Using 

assumption (3), in the limit for the number of entrepreneurs of every type 

approaching infinity, the coupons on pool securities are®:

®Strictly speaking, the payoff of the pool security stated is only the limit payoff for the 

number of projects n — )■ 00, ie. equation (3.7) should read a.s..
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j  = f ,v ,s w  k = I , <7 (3.7)

If only one type of security is pooled, the vector of payoffs is simply:

= Vi^{Ok) Pa2i^i(%) ] A; =  1,2 (3.8)

We also need to assume rational expectations on the delivery rates of the

coupons, in other words, that investors know the proportion of entrepreneurs

who default.

Investors are assumed to have endowments in period t = 0 only. They 

buy shares in whichever pool securities are issued. We assume that the num­

ber of investors is the same as the number of entrepreneurs, so that every 

investor invests a total of one unit into the pool securities. Combining the 

security structure and the utility functions of investors, their optimisation 

program becomes:

,sw
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where {9) = V^'^{9i) are row vectors,

are column vectors, for j  =  / ,  v, sw, k = 1, a. The portfolios at a time period 

add to one and are all positive.

Analogous to the ’no retrade’ restriction we imposed on entrepreneurs, 

we make a similar assumption for investors:

Assum ption 7 (No retrade at t =  1 for investors)

No asset retrade is permitted a t t  = l  for investors.

With this assumption, there is essentially ’autarky’ between periods t =  1 

and t = 2 . In this way, the only security trade in the economy is that 

entrepreneurs finance their project by issuing one unit of one of the three 

securities. Their consumption stream will be ^0, ATi — Vg{(9 ) ,K 2  — 

j  =  f ,v ,s w .  Investors’ consumption stream is ~ 

j  = f ,v ,s w .  Since the project has a positive net present value, and en­

trepreneurs’ utility functions are such that they are indifferent between in­

come in the different periods, they will not want to issue more securities in 

period t = 0 .

Autarky between t = 1  and t = 2  means that the marginal utilities of 

income in a state, or even for the same consumption streams, are not forced 

into equality in equilibrium. This allows the agents to have different marginal 

valuations of the same income stream, ie. the same security.
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M arket C learing

Since we have strictly separated the market into its supply and demand 

sides, no additional concerns arise out of the introduction of asymmetric 

information. The market clearing conditions are that the total supply of 

individual asymmetric information securities by entrepreneurs is equal to 

the total demand by the pool of investors, and that the deliveries on the 

contracts are feasible.

^  j  = f ,v ,s w  (3.10)
e

implies

E < E « =  si, «21 (3.11)
9 9

By our assumption on endowments of entrepreneurs in states 8%, 21, this 

condition is trivially satisfied.

3.3 A Separating Equilibrium with Swaps

There are two issues when establishing the separating equilibrium with swaps. 

The first issue is to determine the securities which are traded in equilibrium. 

Then, given these securities, it must be shown that the existence of an equi­

librium can be established. Which securities are traded is determined by the 

incentive compatibility constraints in the separating equilibrium.

We attack the problem in the following way: we describe a separating 

equilibrium with swaps by a set of conditions. We then argue that an equi-



CHAPTERS. NON-REDUNDANT SWAPS 76

librium exists if these conditions are met. In the next section, and our main 

proposition, we proceed to show that given the structure of the model, the 

conditions of the separating equilibrium are indeed fulfilled.

Define = , where =

yp,/

yp.v

yp,3w

, as the matrix of

pool security payoflfs, and = Vi Vi , where =

y /
y v

y a w

, as the

matrix of individual security payoffs. Denote vectors of consumption by

c‘ = "0 ^S\ 3̂21
r*i/
p p p

, and =  

and —

fS J3 JiCq Cl Cg , and vectors of portfolios by

^9 ^9,v 9̂,3w

A separating equilibrium with swaps is a collection ((c*, c^); (z \ z®); V^) €

X ]R\ X X X ]R^ x JR® for all i ,  for all 9 s.t.

agents choose portfolios to maximise their utility of consumption

(i)(c*,z*) e  arg max {C/*(c*)|(c*,2*) G

(ii) (c ,̂ G arg max {U^{c^)\{c^, z^) G B^(K ,V^)}

security markets clear and deliveries are feasible 

(iü) z*J =  Z ,  A'z'-; j  =  / ,  sw = »  VfJ < E ,K ,  s = si, S2 i

$i issues swaps and 0 2  issues fixed rate finance
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(iv) — 2^2 .u — — Q

(v) =  — 1

(vi) =  yp,/(^2)

Points (iv)-(vi) are restrictions on agents’ trades; given these restrictions, 

asymmetric information disappears, since the distinct trades of the two types 

9i and 6 2  reveals the riskiness of their projects. Then, the pool security con­

struction generates two different pool securities for the two agents and the 

model is transformed into a standard general equilibrium problem, which can 

be shown to exist by standard arguments.

3.3.1 Structure of Traded Securities

It remains to demonstrate that the restrictions on securities traded encom­

passed in (iv) to (vi) is the equilibrium choice of the agents, in other words 

it satisfies (i) to (iii). In terms of agency theory, (ii) is the incentive com­

patibility constraint in the model. We need to show that if (iv) to (vi) hold, 

then (ii) ( as well as the investors’ maximisation program and the market 

clearing condition) is satisfied :

P roposition  1 In the economy, the only equilibrium is separating. The good 

risk borrowers 6 1  sell the variable/fixed-for-variable swap finance, while the 

bad risk borrowers 6 2  issue fixed bonds.
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Proof:

If a separating equilibrium exists, then it will reveal entrepreneurs’ types 

9i and ^2, and the probabilities Ps{9) 'is, 9 =  ^1,^2 become public at i =  0. 

This, and the independence assumption on the projects, allows us to rewrite 

the type specific probabilities set-up in an equivalent common probabilities 

framework. Since there are two types in the original economy with projects 

that have payouts with different probabilities in the two individual states S21 

and S22, the model can be rewritten as a four state model in which the two 

types of entrepreneurs issue different securities and the probabilities of the 

states are binomial. The following lemma states that this is indeed the case.

Lemma 1

The binomial model with common probabilities and the model with type spe­

cific probabilities are equivalent.

Investors evaluate issued and unissued securities using their own valuation 

of pooled securities. Then entrepreneurs, who only care about minimising 

the expected value of repayments using their own non-smoothing preferences, 

issue that security which has a higher valuation by investors. We show that 

this security is the fixed bond security.

Lemma 2

With assumption (6 )  and the one-side restriction of assumption (7), in­

vestors have a higher valuation for project finance with a lower variance.
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Given that investors dislike variance, it needs to be established that the 

coupons of the individual fixed projects do yield a lower variance in the pool 

securities.

Lemma 3

Fixed project finance yields a lower variance of the pool repayments.

It is then required to show that, given the variance dislike of investors 

and the security structure, entrepreneurs prefer to issue fixed rate bonds.

Lemma 4

All entrepreneurs prefer to issue fixed rate bonds.

It remains to show that good risk borrowers issue the swap, while bad 

risk borrowers issue fixed rate finance, and that bad risk borrowers have no 

incentive to imitate.

Lemma 5

9i type borrowers issue the swap, while 6 2  type borrowers issue fixed rate 

finance.

Hence the equilibrium is separating and fulfills conditions (iv) to (vi) in 

section (3.3). Thus we have characterised the separating equilibrium with 

swaps of section (3.3). □
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3.4 Extension: Explicit Modeling of the Swap 

Counterparty

Our model takes a simplified unilateral view of the swap market. There is 

no explicit counterparty to the swap which borrows fixed and then swaps 

variable for fixed. The swap is seen as a normal bond contract, but with 

the option of increased payments to investors should the borrowers’ credit 

quality be worse than expected in period t =  0.

It is straightforward to extend the model to take into account a variable- 

for-fixed counterparty for one particular case. This case is the one in which 

the variable-for-fixed counterparty is a ’known’ borrower, meaning a borrower 

who does not suffer from asymmetric information over his project. It could 

be argued that this is a relevant case in practice: variable-for-fixed swap 

counterparties are often governments or state owned banks with a known 

high credit rating.

We make the following assumptions on the preferences of the variable-for- 

fixed counterparty. Let the superscript r  denote the actions of that party.

Assum ption 8 (Preference of Variable-for-Fixed Swap Counterparty)

For each state s G S  \  {sq} the utility function u'l is continuous, increas­

ing, strictly concave, time independent and additively separable:

f/^(cO =  (3-12)
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Counterparty swap finance is defined in the same way as the swap finance 

of definition one. However, we make the assumption that the swap counter­

party has a project with a known probability of success, ie. ps î (t) is known 

at t = 0. To simplify even further, we assume that the probability of success 

of the counterparty project is the same as the probability of success of the 

good risk firm. We assume that Ps2i( t)  =  Ps2i(^i)- This ensures that the 

pricing for any security issued by the party and the counterparty have the 

same present value in a separating equilibrium and that, consequently they 

can swap the coupon payments without any alteration.

Introducing the counterparty brings one further complication: there are 

now two effects of default. Firstly, bondholders lose their principal and the 

interest to which they are entitled to, but, additionally, the swap closes out 

prematurely. Like all financial securities, by no arbitrage a swap is an ex­

change of payments such that the net present value of the transaction is zero. 

From a bilateral viewpoint, the difference with bonds is that there is no in­

tertemporal element. Both parties pay and receive payments in all periods. 

Hence, when one of the parties defaults and swap payments have already 

been made, the net present value of the outstanding payments is generally 

different from zero. This must be taken into account in the pricing of the 

swap. In our set-up, in addition to the exchanges of coupon payments in 

period  ̂=  1, one of the parties must make a payment which is just equal to 

the net present value of its gain should one of the parties default. We have 

shown that the fixed coupon payment is higher than the variable coupon pay­

ment in period t  = 1. Given that the net present values of the two payment
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streams, under the probability measure of the investors, must be equal, this 

implies that the fixed coupon payment in t =  2 is smaller than the variable 

coupon payment. Thus, in a swap agreement, the fixed-for-variable party 

receives a larger fixed payment at  ̂ =  1 and must make a larger payment 

at t =  2. If any one of the counterparties defaults at t =  2, it is the fixed- 

for-variable party that stands to gain. When entering into the swap, it must 

pay the present value of the expected gain of default to the variable-for-fixed 

party. The relevant state prices for the calculation of this swap default pre­

mium are the consumption smoothing state prices of the swap counterparty.

Given our set-up, the swap premium is period

t = 2, the fixed-for-variable party’s repayment is lowered by the probabil­

ity that default occurs multiplied by the difference of the variable minus 

the fixed coupon. The repayment is reduced by Paji ('^)(K2i (^i) “

For the fixed-for-variable party to still enter into the swap, we need that 

-  Ps2i )] (K-21 (^i) “  < 5̂0 +  (^i)-

Modified swap finance is:

=  y.‘M )  +  (KL(»i) -  (3.13)

= v L  (*i) -  (T)(KL («0 -  (*i)
-  v/je,)) - P.,ArW:J6i) -  Vf{0r)) p,,A«) = pM

Counterparty swap finance becomes:

Definition 2 (Counterparty Swap Finance)

^Implicitly, the swaps constructed here are between pools of borrowers.
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Counterparty swap finance consists of the coupon payments:

I  =  V” +  ^  (y .; (0i) -  W («i) I  (3.14)

{%:T(T) =  v .i(e^) + p M ( v f J » i )  -  y^(«i))}

The separating equilibrium essentially remains unchanged for the asym­

metric information entrepreneurs, as long as the additional restriction given 

above is satisfied.

If the swap counterparty has sufficiently strong preferences for smooth 

consumption, then if the project payoffs are such that

var {k , -  y -C r) , K , -  (y /“ (r) +  1}) <  var {k , -  -  (V ,i {9,) +  1})

the effect of higher coupons for variable financing described in lemma (3) 

may be outweighed, and the counterparty has an incentive to issue fixed rate 

finance and swap into variable bonds (or may at least be indifferent between 

variable bond finance and variable-for-fixed swap finance).

Our construction of the swap counterparty is only intended to serve as 

an illustration of the kinds of characteristics that would be needed for such 

a party to exist, and to demonstrate that the unilateral view of the swap 

market is taken to simplify the analysis. Perhaps more intuitively, the swap 

counterparty could be constructed as the pooling of heterogeneous borrow­

ers by a swap dealer. The pool would then have to have characteristics that 

induce the swap dealer to synthetically construct a variable-for-fixed coun­

terparty. In this paper, however, the main thrust of the argument is the
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construction of a model in which, in an anonymous market, swaps will be 

issued by asymmetrically informed entrepreneurs.

3.5 Conclusion

In this article, we have described a model in which swaps are used by asym­

metrically informed entrepreneurs, who cannot reoptimise their financing in 

interim periods. We have shown that both these conditions must hold for 

swaps to be traded in an anonymous market. If there is no asymmetric infor­

mation, all agents choose their optimal finance immediately by the maximum 

property of their portfolio choice problem. If retrade is allowed in the interim 

period of the model, the consumption smoothing achieved through swaps can 

equally well be attained by issuing variable rate bonds and buying or selling 

additional units of these bonds. If no reoptimisation is allowed, then swaps, 

in a precise limited sense, allow entrepreneurs to signal their credit quality 

to the market and still have their preferred consumption stream, given the 

trading restriction. In this way the article unifies two strands of literature on 

swaps: the literature which emphasizes that swaps allow the refinancing of 

liabilities when no such arrangement was previously agreed on, and the work 

which stresses the possibility to use swaps to signal future credit quality.
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3.6 Appendix

Optimisation Program of Entrepreneurs

In its most general form, the optimisation program of entrepreneurs is:

max U^{cP) (3.15)

<  - K ,  =  {¥>(9) +  q Q  -  q f y j

+ v : A : - < n A :

- k 2  =  y / (g )z y  +  K”. (g )4 "  +  - 1

C  =  0

The differences between the three methods of financing are that the long 

bond could be sold at t =  1, and that the coupons have the characterisations

Using assumption (5) the optimisation program simplifies to:
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-  üTi =

+(v;'; +  i)z>''’ -

+ (K 7  + 1)2"’™’ -

C  - ^ 2  =  ivf{9)z<''f +  1)4- (1%. (0) +  l)z''" +  (V/“ (d) +  l ) z ' ' -

=  0

The difference in the securities can be read from here: both the fixed 

and swapped finance pay fixed coupons, but the swapped finance is based 

on borrowing short. By the normalisation of all bond prices to one, and the 

construction that the project requires one unit of investment at t =  0, we 

arrive at the budget constraint stated in (3.5).

Proof of Lemma (1)

Let the states in this reformulation be denoted by a hat. The transformed 

uncertainty structure is illustrated in Fig. 2.



CHAPTER 3. NON-REDUNDANT SWAPS 87

Fig.l Binomial reformulation of the Model when Types are revealed

9\ 6 2  Bin.Proh.

5 =  21 K 2  K 2  P32i(^i)Ps2i{02)

5 =  22 K 2  0 Pazi (^l)Pa22 (^2)

5 =  23 0 K 2  ^322(^1)̂ 521 (^2)
5 =  15 =  0

5 =  24 0 0 ^522(^1)^522(^2)

( =  0 t  = \  t = 2

The column vectors below the 0’s stand for the payoffs of the original 

projects in the transformed economy.

It is required to show that the two formulations are in fact equivalent. 

We do this by proving that the values of the projects are the same under any 

probabihty measure. This construction will then allow us to introduce state 

prices for the explicit valuation of the projects.

First note that the expectation under the binomial probability measures 

do indeed give the same value as under the type-specific probabilities:
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^Wp,{9i) — Ps2i{^i)Ps2i(^ 2 )^^2 -^Ps2i(^i){^ — Ps2i ) ^ 2  (3.17)

=  Ps2 1 ^ 2

Now let pj, 9 =  1,2 denote the vectors of some alternative probability 

measures for the original economy, ie.

Ps{0) =  [ps2i (^) Ps2 2 i ^ ) f  (3.18)

where ps{9) > 0 and Ha/9s(^) =  1 for ^ =  1,2. Then define a change of 

measure vector [ps{9) —Ps{9)]

[ P s { 9 )  - P a ( 9 ) ]  = (3.19)Ps2x{^) -  PS2X{ )̂

Ps22 (^) “  Ps22 (^)
For the type specific economy, the expectation of the project payoff under 

the original measures Ps{9) are:

E \R ]„ .(9)= P À 6TI^ fo r  0 1 , 6 2  

Under alternative measures Ps(6 ), the expectations are:

(3.20)

E[RU (S) =  {pÀ O f + [pM  -  p M f )  R" 01,02 (3.21)

In the transformed economy, define the vector of binomial probabilities

as
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Pa  =

Pa2M P s 2i(^2 ) 

Ps2M P a 2 2 i^2 ) 

Ps2 2 i^l)Pa2i{^2 ) 

Ps22 (̂ 1 ')Pa22 (^2 ) 
and similarly for the changed measure Ps.

(3.22)

Taking the alternative measures for the original economy (ps(ûi),ps(0 2 )) 

and writing the expectation in the transformed economy yields:

E[R]f, =  p’̂ R , (3.23)

R>

—  \P s 2 \  P a h  P a h  ^ «24]
-.T

P 52l ( ^ l ) / 552i ( ^ 2 )

P a 2 i ( ^ l ) P a 2 2  ( ^ 2 )

Pa22  (^ l )^ » 2 1  ( ^ 2 )

P a 22  ( ^ l ) P s 22 ( ^ 2 )

This expression must be equal to transforming the economy first and 

then changing its measure. The expectation of the transformed economy 

computed with the original probabilities is:

E [R ?]t.= f,R ?  (3.24)

Define a change of measure vector for the transformed economy as:
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[ps -  Ps] = (3.25)

Pssi [S\)Psn  (% ) -  Ps„  ( ^ i )p « ,  (^2)

P«M(^i)P«»(%) - P « ,{6 i)Pss2 (%)

P«2 (^i)P«i (%) -  Psn (^i)P52, (%)

Ps22 i^l)Ps23 (^2) Pj22 (^i)P^22 (^2)

Then the expectation in the transformed economy under the alternative 

measure is:

E [R ?]f. = (pT + [Â-P2|)%

=  f s R s

(3.26)

This equation is the same as transforming the changed-measure expec­

tation directly. We have thus shown that if a separating equilibrium exists, 

state prices for the redefined individual economy can be found. □

Proof of Lemma (2)

The first order conditions of investors are:

% +  +  KvS'^(e)

K (3.27)

=  0 j  =  f ,  V,  sw
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Defining a state price (the price of an Arrow security) as

A*
0̂

the pricing equations can be rewritten as:

'^s — (3.28)

1 =  7r{Vj^^(e) +  (3.29)

Since the repayments on the bond is the only source of consumption for 

investors, (3.29) becomes:

1 =  7t\c\ +  ir'̂ c'g. (3.30)

We need to show that u*(cjj +  u*(^) is decreasing in the variance of 

consumption. In general, concavity of the utility function does not imply 

variance-aversion. However, in a two ’state’- model, this is indeed the case. 

The variance of the consumption stream in t =  1, t =  2 can be written as:

O '
which implies that the variance is increasing in the difference — c; 

To ensure that we stay at the same mean utility, ie. for -I- c^, choose
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dc\̂  = —dâ^ > 0. Then the total change in utility from a marginal increase 

in the variance of consumption is:

(3.32)

=

which is negative by concavity. □

Proof of Lemma (3)

Since Ps2iW  < 1, 5̂21 (^) > since there is no aggregate risk, it

must hold that Correspondingly, if individual

coupons are constrained to be the same across periods, then, since (9) < 1 , 

Vg{’̂ {9) > Vj'P(9). Under these conditions, and with the reasonable as­

sumption that < 1, we need to show that var (V^^^(9),V^'^{9) H- 1) > 

var (Vg{'^{9), Vj'^{9) 4- 1). For variable coupons the variance is:

var(V^'P{9),V^'P{9) + l) = (3.33)

1
2

For fixed coupons, it is:
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var {V,{nO),V/’”{e) +  l) =  Q { V , { m  ~  V j^{ 0 )) +Q  -  V/^{9)) +  i
(3.34)

which is smaller that since 0 < V/ '̂^{9) — < 2. We have thus

shown that the fixed coupon finance has a lower variance in the pool and 

consequently will be issued by entrepreneurs. □

Proof of Lemma (4)

By assumptions (5) and (7) on the one-side constraints, entrepreneurs and 

investors will in general have different valuations of the same securities. The 

view we take is that investors evaluate rank pooled project finance given their 

’preference for smooth consumption’ utility functions. Given this ranking, 

entrepreneurs take the repayments V  as given and evaluate them using their 

own ’non-smoothing preferences’. Entrepreneurs issue those securities that 

have a lower individual valuation for them. Denote the individual valuation 

of project finance j  by entrepreneurs 9 as g^(9). Recall that the budget 

constraint is:

max U^(c^) (3.35)

C  =

4 , - K i =
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+ iv .7 W  + 1 )/'""  -

c l .  - K ,  = {Vf{e)z '̂f +  1) +  ( C  (0) +  +  (K*“ (0) +

This yields the following pricing equations:

qf{9) =  n{e)Vf(9) + n (e )[v f(9 ) + l)  (3.36)

Non-smoothing implies that the state prices are the same and indepen­

dent of consumption in that state. By the risk-averse pricing of investors, 

2V^{0) < +  K2i(^)' Together with (3.36) this implies that the valua­

tion of fixed finance is lower. Therefore all entrepreneurs prefer issuing fixed 

finance. □

Proof of Lemma(5)

In a separating equilibrium, since, by assumption (1), Ps2i(^i) > ^«21(^2}) a 

simple argument shows that the coupons for the same type of security for 

types 6 2  must be larger:
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< V^{0 2 ) j  = f ,v ,s w

For a pooling equilibrium, recall that investors require the return j  = 

f ,v ,s w ,  where P E  denotes ’pooling equilibrium’. The default probabilities 

are pooled, such that it can be deduced from assumption (1) that {$i) > 

Pa2ii^PE) > P&21 (^2), where at least one inequality must be strict. It follows 

that

j  =  A 7;, (3.38)

with at least one inequality strict.

Therefore, good risk entrepreneurs 9i always have an incentive to reveal 

their type. However, if they choose the variable coupon finance, they will 

lose some of their gain of their revelation, since they prefer a fixed income 

stream to a variable income stream. Hence, with variable and fixed coupon 

securities, a separating equihbrium cannot be guaranteed for all parameter 

values, and pooling equifibria may exist. With a swap, however, the cost 

of signaling disappears, since entrepreneurs can have a fixed coupon stream, 

while still signaling their type. Therefore type 9i borrowers prefer swap fi­

nance.

Suppose entrepreneurs 9i enter into the fixed-for-variable swap. Then the 

swap is a promise to pay a low coupon rate, and should the probability of 

default ^«22(^2) at t =  1 turn out to be higher than envisioned at t =  0, 

when the swap was written, to top up the coupon rate by the difference to
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the variable rate given the true probability, (recall definition (1)). Since 

entrepreneurs 0 ± are the good risk entrepreneurs, they will be revealed to 

be good at t =  2 and end up paying fixed finance correctly priced for their 

type 0±. Suppose now that entrepreneurs O2 also entered into the swap. By 

definition (1), they would end up paying and Since =  1,

but p«2i(^i) < 1 and V/^{9) = it follows that V^{9i) > This

implies that the coupons and (^2) would be preferred. However, by

lemma (4), (^-^(^2); + 1) is preferred to (Ki ? K21 (^2) +  !)• Therefore,

imitation would leave bad risk borrowers with a more expensive payment 

stream, and, by the linearity and time independence of their utility function, 

with less utility than if they paid the fixed coupons conditioned on their own 

bad credit quality W (^2)- Thus the equilibrium is separating. □



Chapter 4 

Anonymous Corporate Bond 

Markets with Asymmetric 

Information

4.1 Introduction

This paper studies an anonymous credit market which is characterised by 

asymmetric information. The market is anonymous in the sense that credit 

contracts are traded by many borrowers and lenders at a price which only 

reflects the information in the market, and that this price is taken as given by 

all participating traders. The market we intend to represent with this model 

is the market for corporate bonds. Corporate bonds are debt instruments 

which are issued by companies and are bought by private or institutional 

investors. On the whole, even though financial engineering has meant that 

there now is a proliferation of different debt structures available to compa-

97
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nies, corporate bonds are normally tradable fibced income debt contracts.

A corporate bond contract is a promise to pay a coupon at pre-specified 

payment dates over a pre-arranged period. At the time of writing the con­

tract, the borrower receives money from the lender, which he pledges to 

return at maturity, and on which he promises to make coupon payments 

at regular intervals. The lender is the buyer of the credit contract, and he 

can sell the contract to other traders in financial markets before maturity. 

Tradability of the contract means that the contract not only has a nominal 

coupon rate and a face value, but that it also trades at a market price, which 

is determined by the demand and supply conditions for that specific contract 

and by the overall conditions prevalent in the credit market.

It is usually argued that debt markets suffer from a fundamental asym­

metry of information between borrowers and lenders. Borrowers are thought 

of as being better informed regarding either the likelihood of success or the 

size of the payouts of the projects which they undertake. Indeed, there is 

a whole literature on the design of different credit contracts that addresses 

this issue (Freixas and Rochet, 1997). Usually, a distinction is drawn between 

two types of asymmetric information: adverse selection and moral hazard. 

The distinction relates to the timing of the private information (Hart and 

Holmstrom, 1987). In adverse selection economies, agents have private in­

formation over either the distribution or the realisation of their payout and 

trade on this information. With moral hazard, agents can affect the state 

which will be realised.
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In this model, we chose to introduce asymmetric information in its ’ad­

verse selection’ incarnation. Agents have a project, which they need to fi­

nance. They have private information over the probability of success of the 

project, and they trade bond contracts dependent on their private infor­

mation. In particular, depending on their riskiness, they prefer some bond 

contracts over others, and, depending on the market price for these contracts, 

would want to engage in the trade of some but not others. For lenders, we 

assume for simplicity, that the only public information available is that all 

projects have the same mean payoff for all risk classes of agents.

A second important feature of credit markets, which is incorporated in 

the present model, is the possibility of default. If a project is not successful 

and the payoff does not cover the required repayments on the corporate bond 

which was issued to finance it, a firm is said to default. If default happens, 

the lender will not receive the full repayment of the loan. In that sense, the 

possibility of default corresponds to limited liability for the borrower.

The possibility of default makes adverse selection bite in our set-up. De­

fault, or rather limited liability, introduces a non-linearity in the payoff func­

tion of borrowers. Should a project be unsuccessful, then the borrower is 

only required to return the value of the project, and not the full value of 

the loan. For his payoff position this implies that as long as the value of 

the project is below the repayment on the bond, his payoff is zero, but it 

can never be negative. Once the payout of the project surpasses the value of
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repayments on the loan, the borrower starts to get a positive payout. Indeed, 

what we have just described is the payoff of a long position in a call option 

on one’s own project. As is well known from the option pricing literature, 

the non-linearity of the payoff implies that the valuation of a call option is 

a positive function of the volatility of the underlying security. Since, in our 

model, the volatility of the underlying (of the project) is private information, 

borrowers can be thought of as trading on their own idiosyncratic volatility.

In the following we describe how the interaction of private information on 

the borrowers’ own project volatility, limited liability, and the anonymity of 

the market interact to the effect that the nominal coupon rate influences the 

market price and quantity traded indirectly through the sorting of borrowers.

This effect is the central result of this paper and stands in contrast to a 

symmetric information environment, in which the nominal coupon rate plays 

no role. The result carries over from a non-competitive asymmetric informa­

tion model like the SW-model. However, just like in a symmetric competitive 

environment, a market clearing interest rate always exists, and there is no 

credit rationing.

In section (4.6) we provide an important extension to our basic set-up, by 

allowing borrowers to put up collateral at the time of writing the contract. 

In this way, we make the bond contracts multidimensional. We show that 

with collateral separating equilibria can exist, and we characterise one such 

equilibrium for the special case, when there are only two types of risk classes.
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In this case, it still holds that the characteristics of the credit contracts sort 

borrowers, while the preferences of investors determine the demand and sup­

ply of credit. However, it is no longer the case that good risk borrowers drop 

out of the market first.

Section (4.2) introduces the set-up verbally and gives an intuition for our 

main result. For reference purposes, section (4.3) briefiy reviews the Stiglitz- 

Weiss (SW) model (Stiglitz-Weiss, 1981) of credit rationing, which pioneered 

the limited liability uncertainty structure which we use. Section (4.4) trans­

lates the SW set-up into a general competitive model with asymmetric infor­

mation and describes the model structure and equilibrium concept in detail. 

Section (4.5) presents the results of the basic model in a series of proposi­

tions. Section (4.6) extends the basic model to take into account borrower 

heterogeneity and collateral. Section (4.7) concludes. The appendix contains 

all the proofs.

4.2 The Separation of Nominal Bond Coupon 

Rates and Market Prices

There are many investors and many borrowers with projects in the economy. 

Borrowers have asymmetric information over the probability of success of 

their projects. They have no endowments at the beginning of time, which 

forces them to borrow in order to finance their projects. They borrow by sell­

ing limited liability bonds to investors. The issuing process is not modeled.
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Instead, we look at economies in which some assets are traded that already 

exist.

Even though all projects have the same mean payoff, the possibility of 

default combined with the private information of borrowers means that differ­

ent types of agents value the limited liability bonds differently. It is standard 

to show that given any coupon rate, riskier agents have a higher valuation of 

the bonds.

The reduced valuation for borrowers of higher coupon bonds, however, 

does not mean that these bonds feature a higher return for lenders. The 

reason is that the bond also has a market price. The market price adjusts 

the payout on the bond in such a way, that, should we live in an economy 

with symmetric information and risk neutrality, the equilibrium valuation of 

the bond, defined as its payoff divided by its price, is the same for all bor­

rowers. Here, however, asymmetric information lets borrowers have different 

valuations for the same income stream. The precise effect of one market price 

for different types of contracts is that, as soon as contracts feature pooling 

of different types of borrowers, good borrowers always have a lower expected 

return on the project than bad borrowers. Indeed, this is just the common 

occurrence in asymmetric information models, that good agents ’subsidise’ 

bad agents in pooling equilibria, and that in an extreme case, the market may 

unravel completely, either breaking down, or only leaving the worst agents 

willing to trade.
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The different valuation of contracts by borrowers is the counterimage of 

their different delivery rates. As all the investors in our model are identical 

and risk-averse, they will hold the market portfolio, or, equivalently, a share 

in the ’pool’ of all traded bonds. Since different types of borrowers have 

different delivery rates into the pool, and since the probability of delivery 

changes with the ’strike price’ of the bond, the price of the bonds varies 

with the nominal coupon rate in a way which not only reflects the changed 

deliveries required by a changed nominal coupon rate, but also by the mix of 

borrowers. We show that with our assumption of mean-preserving spreads, 

there are two possibilities. Either an increase in the coupon rate raises the 

effective interest rate on the limited liability bond, or it is lowered. If the 

effective interest rate goes up, some borrowers may leave the market. These 

are the good risk borrowers, since the bad risk borrowers always have a higher 

valuation of the limited liability bond.

The pooling of deliveries of different types of agents and the resulting 

price determination of the limited liability bonds is the fundamental force 

behind the model, and the reason why introducing an anonymous market 

into a Stiglitz-Weiss setting is not superfluous. Indeed, with respect to the 

Stiglitz-Weiss model, the introduction of tradabiUty and the use of a general 

equilibrium set-up allows to ’close’ the model, in the precise sense that all as­

sets are priced consistently in a market. The central theme of Stiglitz-Weiss, 

’credit rationing’ disappears in this way, while some of the characteristics, 

for example that good risk borrowers drop out of the market first, both if 

the strike price increases and if the supply of credit contracts, still hold up.
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For all contracts that can be issued, higher risk agents always have a 

higher valuation. This is true for every contract and consequently makes 

contract choice independent of the demand and supply conditions in the 

market. In this way, the coupon rate sorts borrowers by their riskiness (in 

the sense that a coupon rate gives a lower limit for the riskiness of borrowers 

who still apply for credit), while the preferences of investors and borrowers 

and the riskiness of projects determine the average return on any one credit 

contract.

In our model, a higher coupon rate may worsen the quality of the pool of 

borrowers who still want to finance the project. Moreover, the coupon rate 

is independent of the demand and supply of credit, and there is no contract 

which is valued higher by good risk borrowers than by bad risk borrowers, 

this result also implies that if credit contracts, good borrowers will always 

drop out of the market first.

When extending the model to take into account collateral, we show in a 

simplified two borrower type set-up, that separating equilibria exist. In sepa­

rating equilibria, the driving force behind the different valuations of the same 

credit contracts, namely the pooling of different delivery rates, breaks down. 

The bond prices correctly refiect the delivery rates of the different types of 

borrowers. However, the good risk type must signal his good risk quality 

to the market through collateral and, in equilibrium, will have to put up a 

quantity of collateral that makes the bad risk type just indifferent between
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the cost of putting up collateral and the benefit of pooled pricing. This cost 

of collateral prevents the separating equilibrium from being unconstrained 

efficient.

An immediate consequence of the separation is that, in equilibrium, higher 

risk borrowers pay higher interest rates than lower risk borrowers. Since all 

the projects are identical with respect to the mean payoff, this also means 

that, should credit contract and the interest rate required by investors rise, 

bad credits will leave the market first.

Another consequence of separation is that, at least for the party who does 

not have to signal its good credit quality, the strike price and the nominal 

coupon rate on the contract become irrelevant just like in a symmetric infor­

mation setting.

One could argue that the Stiglitz-Weiss credit rationing result is, in our 

set-up, reflected by the pooling of deliveries, and the resulting ’mispricing’ 

of the bonds. Once a separating equilibrium is established, the mispricing 

disappears in the same way that credit rationing disappears in the Stiglitz- 

Weiss model (Bester, 1985).
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4.3 The Limited Liability Set-up of Stiglitz- 

Weiss

For reference purposes, and to facilitate understanding, we briefly recap the 

SW-model of credit rationing. Our model is essentially a general equilibrium 

with asymmetric information version of the SW-model. The objective of the 

SW model is to show that credit markets can be characterised by the ra­

tioning of credit for ex-ante indistinguishable borrowers. Instead of charging 

a higher interest rate, banks may prefer to turn down creditors who would 

be willing to pay the same interest rate as others who are given credit. This 

is similar to our model in the sense that it is useless to change the nominal 

coupon rate if there is an excess demand for bonds. However, in our model 

the market price regulates the demand and supply of loans, while in SW 

the unwillingness of the bank to charge a higher interest rate may result in 

’credit rationing’.

In SW, the agents are banks and borrowers. They are all risk neutral. 

Borrowers have an indivisible project of flxed size, whose mean payoff is 

known, but whose riskiness is private information. Let 9 denote the riskiness 

of the project, R  its gross return, F(iE, 6 ) the cumulative distribution function 

of the returns with associated density function f(R ,9 ). Then, project 9\ is 

riskier than 6 2  in the sense of mean preserving spreads  ̂ if, for 9i riskier than 

%

roo rco
/  R f{R ,e x )d R =  I R f{ R , 0 2 )d R  (4.1)
Jo JQ
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then, for y >  0

r F (R ,e{)d R >  r F (R ,e 2 )dR  (4.2)
Jo Jo

The borrowers have to put up an amount of collateral C. Crucially, they 

have limited liability. If B  is the amount borrowed, and f  is the interest rate 

charged by the bank, then borrowers are said to default if

C - h R < B { l+ r )  (4.3)

In the case of default, the bank receives the collateral. Consequently the 

net return to the borrower is:

7r(iî, f) =  max (i? — (1 +  f)B , —C) (4.4)

The net return to the bank is then:

S(R, r) =  m in {R +  C, B{1 +  f)) (4.5)

Note that the net return to the borrower is a kinked, convex function in

R, while the net return to the bank is a kinked, concave function in R. Even

though banks compete for deposits, they are not price takers. Banks set the 

interest rate f  to maximise their profits.



CHAPTER 4. CORPORATE BOND M ARKETS 

Fig.(l) Borrowers’ Profits in Stiglitz-Weiss
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Fig.(2) Return to the Bank in Stiglitz-Weiss

109

5

C

With this setup, Siglitz-Weiss establish the possibility of credit rationing 

through a succession of five theorems. We state the theorems without proofs.

The first theorem establishes that the expected value of the project, which 

determines the ability to repay by the assumption of risk-neutrality, is in­

creasing in the riskiness of the project 9.

Theorem 1 (Stiglitz-W eiss 1)

For a given f ,  there is a critical value of 9 s.t. a firm borrows from the hank 

if and only if  9 > 9.

The second theorem states that agents will choose riskier projects if the 

interest rate is higher.



CHAPTER 4, CORPORATE BOND MARKETS  110

T heorem  2 (Stiglitz-W eiss 2)

As the interest rate increases, the critical value of 9, below which individuals 

do not apply for loans, increases.

Theorem 3 is the analogue of theorem 1 for the bank.

T heorem  3 (Stiglitz-W eiss 3)

The expected return on a loan to a bank is a decreasing function of the risk­

iness of the loan.

Theorem 4 establishes non-monotonicity of the bank’s profits, which un­

derpins the result on credit rationing in theorem 5.

T heorem  4 (Stiglitz-W eiss 4)

I f  there are a discrete number of potential borrowers (or types of borrowers), 

each with a different 0, S(f) will not be a monotonie function of f ,  since as 

each successive group drops out of the market, there is a discrete fall in S. 

(5(f) is the mean return to the bank from the set of applicants at interest rate 

f)

T heorem  5 (Stiglitz-W eiss 5)

Whenever 5(f) has an interior mode, there exist supply functions of funds 

s.t. competitive equilibrium^ entails credit rationing.

^The notion of ’competitive equilibrium’ used in SW is one of a bank setting interest 

rates for many potential borrowers and quantities of deposits for potential depositors. In 

contrast, competitive equilibrium in the current paper is used in the strict sense of price 

taking agents.
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SW note that even when there is a bank’s profit maximising interest rate 

which entails credit rationing, there is always another ’Walrasian’ interest 

rate, which is higher and which has the market clearing property that de­

mand for loanable funds equal to supply of loanable funds.

4.4 Modeling Stiglitz-Weiss in General Equi­

librium

There appear to be three main issues when attempting to conduct a compet­

itive credit market analysis based on a SW structure. The first is that the 

uncertainty structure must be reformulated. The second refers to the mod­

eling of limited liability. The third consists of the treatment of competition 

itself.

Uncertainty in SW is described by the continuous distribution function 

F(.) and its associated density /( .) . To avoid continuous state spaces these 

functions need to be ’discretised’ in an appropriate manner.

SW rely heavily on the possibility of limited liability. No limited liabil­

ity is possible in a standard general equilibrium model (see, however, Zame 

(1993) and Dubey, Geanakoplos and Shubik (1997)). To introduce the char­

acteristics of default, we introduce contracts that have the same payoffs as 

limited liability contracts.
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As regards the issue of competition, even though competition is not ex­

plicitly modeled in SW, the implicit game theoretic setup is that banks are 

price setters in the credit market and quantity setters in the deposit market. 

They simultaneously choose a demand for deposits and a nominal loan rate 

to maximise their profits, taking as given the return demanded by depositors 

and the loan rates set by other banks. In our model, bond contracts are 

traded on an anonymous credit market. In order to gain insights in the spirit 

of SW into the functioning of the anonymous market, we conduct compara­

tive statics analysis on bond contracts with different nominal coupon rates.

4.4.1 Discrete Uncertainty Structure

The model we are using is based on the general equilibrium model with asym­

metric information, as exemplified by Bisin, Geanakoplos, Gottcirdi, Minelli 

and Polemarchakis (1998). In the economy there are agents with projects, 

over which they have private information (they will be called borrowers), and 

there are investors who lend to these borrowers. There are two periods, which 

are denoted by t =  0,1, and finitely many states in period t = 1. To use 

the same notation as SW, there are 0 G 0  =  {1,•••,©} types of borrowers, 

and count ably infinite borrowers of each type, n =  1, • • •, oo. A borrower is 

then identified by the tuple {9, n}. The proportion of borrowers of a type 

9 in the economy is called =  ^ . Every borrower {#, has a project 

which requires one unit of investment in period one and has an uncertain 

payoff in period t = 1. The project pays off in the single consumption good, 

whose price is normalised to one. In order to simplify the model, projects are
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not explicit, but rather manifest themselves in the endowments of borrowers. 

Borrowers have an endowment of zero at t =  0. If they borrow, they will 

receive a random endowment in period t = 1. If not, they will end up with 

zero endowments in both periods. Different types of borrowers are identified 

with the riskiness of their projects.

To obtain discrete analogues of (4.1) and (4.2) it is first necessary to 

describe and order the payoffs of projects in period t = 1. We make a dis­

tinction between individual and aggregate payoffs. Individual payoffs refer 

to the outcomes of the individual projects of every agent. Social or aggre­

gate payoffs are then all possible combinations of outcomes of the individual 

projects. Aggregate payoffs will be discussed below.

Without loss of generality we choose to rank the payoffs by an ascend­

ing order. Define a payoff in a state s as Rg > 0, then the ordering is 

Ri < R 2  < ’ • • < Rs- Therefore R  : Q — > 1R+ is a random variable with fi­

nite support {Ri, R 2 , . . .  jR s}, defined on a probability space (fi, .F, P). The 

payoffs in a particular state are the same for all agents, and types are dis­

tinct only in the likelihood that a certain payoff occurs. Consequently the 

image measure Ps{6) =  P {u  6 D |P =  Ps} is type-specific, implying that the 

random variables have different probability measures on the same support. 

In order to clarify the dependence of the distribution of the random variable 

P  on ^ and n, we use the shorthand P^’”.

Differences in the riskiness of projects are defined in the sense of mean
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preserving spreads.

Assum ption 1 (Mean Preserving Spread)

Type 9i has a riskier project than if, for

s s
H  RsP3 {Oi, ^) =  X) ^sPs (^2, n) (4.6)
3=1 3=1

then, for all 1 < s < S  and for all Rs < y < Rg+i (and define i?o =  0 

and Rs+i = oo)

-  R s-i)p> W  > Z K  -  R s- i )Ps{02) (4.7)
3 = 1  3 = 1

It is now necessary to describe how the individual random variables are

combined to form aggregate payoffs. For this purpose, we must make as­

sumptions on the correlation of different individual projects.

Assum ption 2 (Correlation of Project Payoff's)

{R?'^}e,n o.re mutually independent and have the same mean p., and for every 

9, {.R ’̂"}n ore identically and independently distributed across n.

Assumption (2) allows to invoke the law of large numbers. In the limit 

for the number of projects of each type approaching infinity, it holds that:

d

1  f ;  ^  (4.8)
n = l
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The construction ensures that if infinitely many projects are pooled to­

gether, aggregate payoffs are constant and equal to /x.

It will be helpful to sum up the uncertmnty set-up. The probability dis­

tribution of an individual project is a function of the private information 

risk parameter 9. However, to make sense of a notion of ’the average payoflF 

of a project’ as in SW theorem (4), many projects of each type have to be 

introduced. Consequently, the probability distribution of aggregate payoffs 

are functions not only of the riskiness of projects, but also of the nature 

of the correlation between projects of the same type and across types. We 

have made an appropriate assumption on the correlation between different 

projects to exploit averaging properties of the pooling of payoffs. The result 

is that in the limit for the number of projects approaching infinity, all aggre­

gate payoflà are equivalent, since all idiosyncratic risk is averaged out.

There is a subtle difference to the Gottardi and Bisin (1997) use of an 

n x  9 structure. In their case, under asymmetric information the n agents of 

every type have private information over their index. This generates prob­

lems of averaging, exemplified in the possible existence of arbitrage. Here, 

private information occurs exclusively for the types 0, and the n  agents of 

each type only guarantee a consistent description of pooling via the law of 

large numbers.
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4.4.2 Security Structure and Optimisation Programs 

Security Structure

Borrowers^ optimisation

In SW, borrowers have an uncertain project and finance this uncertain 

project by taking out a bank loan of the ’standard debt contract’ form. They 

partially secure the loan by collateral and repay only if the project is suc­

cessful. In general equilibrium, all agents have unlimited liability for all their 

obligations. In order to mimic the payoff of a limited liability debt contract, 

we split up the SW contract into two parts a sale of the project with un­

limited liability and the purchase of a call option on one’s own project. We 

postulate that these two contracts can only be executed jointly.

Firstly, agents sell their project (ie. equity). With assumptions (1) and

(2) on utility functions the price of this contract in period  ̂=  0 must be equal 

to p* where P* is the equilibrium discount factor. Since projects all

have the same mean this price is equal across all agents {0, n) and can be 

written as P*y,. The payoff of this contract is just the payoflf of the project, 

ie. it is for s =  1, • • •, 5, and again, it is ex ante the same for all agents 

of all types^.

^Note that there is only one good in the economy, whose price is normalised to one,

and the securities pay off in this good; also, in the basic model, we consider only the case

of non-collateralised loans, meaning that we set C = 0 throughout (Section 4.6 provides

an extension to the basic model which introduces collateral). To simplify further, we only

consider bonds of size B  = 1.
^Recall that the individual component of the payoffs are the type specific probabilities
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Secondly, borrowers buy a call option on their own project, ie. a contract 

which pays off zero in states that have a lower payoff than (1 +  r), and 

— (1 +  r) in states with a payoff exceeding (1 +  r). (1 +  r) is the strike 

price of the call option and will be denoted K . Let the price of the call option 

be denoted by q .̂

Netting the payoffs of the two contracts gives a payoff equivalent to a 

limited liability bond of size 1 with coupon rate (1 4- r).

Min[R, 1 +  r] =  ^  -  Max[R  -  (1 +  r), 0)] (4.9)

Let the price of the limited liability bond be q .̂ Then

-  ( f  (4.10)

Call the position of agents 9 in the limited liability bond contract. Bor­

rowers issue, ie. sell the limited liability bond contract, which means that, 

in conjunction with the sign convention we use, they take a long position in 

the call option. Crucially, only the combination of equity and the call option 

together generates the limited liability contract of SW. Since the equity part 

of the contract is the same for all agents, it will be convenient in the analysis 

that follows to focus on the call option part of the contract only.

over the states, and not the payoffs in a state.
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The security construction can be better visualised when we write the op­

timisation program of borrowers. We assume that all borrowers are identical 

in their preferences (but not in their endowments). Since ex ante borrowers 

only differ in their private information parameter all n  borrowers of the 

same type take the same actions, conditional on 9. Therefore the superscript 

n can be omitted. Borrowers’ utility functions are:

A ssum ption  3 (U tility  functions of borrow ers)

The utility functions of borrowers are given by

=  +  (4.11)

where (3̂  G (0,1) is the common discount factor of borrowers, U^(.) is smooth

and strictly increasing and expectations are taken with respect to each bor­

rower's type specific probability measure p(9).

Combining the utility functions of borrowers, the project characteristics 

and the security structure, the optimisation program of borrowers becomes'^:

max c l / 3 ^  E[c\] (4.12)

Co =

0 i f  R , < { l  + f)

c? =  J [ % - ( l 4 . f ) ] /  i f R , > { l  + f)

f or  s =  l , - - - , 5

^Recall that the project pays off R, which is equivalent to the equity contract, so that 

for payofis below the strike price, the payout position of borrowers is (R ,—R«)z^ =  0, while 

for project payoffs exceeding the strike price it is: [R,—Ra+R ,—(l+r)]z^ =  [R3—(l+f)]z®.
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Borrowers are assumed to take long positions only in the call option, and, 

since the project is indivisible, G (0,1). The budget set of borrowers will 

be denoted by B^{q^,R).

Investors ’ optimisation

Since for borrowers, issuing the limited liability bond is equivalent to 

selling their project and buying the call option contract described above, in­

vestors - who act as counterparties to the borrowers - buy the projects and 

sell the call contracts. The result is that the counterparties have a payment 

profile equivalent to a short position in the limited liability bond contract, 

and, in this sense, the final position again corresponds to the SW structure.

Figure (3) shows graphically the payoff position of investors:
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Fig. (3) Payoff position of investors
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Project payoff

Resulting Short Limited Liability Bond Payoff

Short Call payoff

For each individual project, investors’ payoff such that markets clear in 

period t = 1 must be:

Rs i f  R s < { l  + r)
(l +  r) i f R , > ( l  + f)  (4.13)

f or  s =  1, • • •, 5

To see this, add the delivery of the borrowers’ contract to the contract 

just stated. The result is Rj for s =  1 , . . . ,  5, which is just the payoff of the 

project.
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The 0, n-stnicture of the model greatly simplifies the investors’ optimi­

sation problem. We assume that investors are all the same and they are 

all risk-averse. The risk in the economy is embedded in the asymmetric in­

formation that borrowers have over their own projects. By the anonymity 

of the market, all options sell at the same price, but, in general, each {9, n) 

option will have different delivery rates, since 9 is the riskiness of the project, 

and n reflects the idiosyncratic risk of an individual borrower. Since, by the 

law of large numbers there is no aggregate uncertainty, risk-averse agents, in 

equilibrium, will ensure themselves against the idiosyncratic risks of different 

individual delivery rates by holding a share of every project offered in the 

market. Therefore, there is no loss in generality to model investors’ diversi­

fication of idiosyncratic risk directly as the purchase of shares in an explicit 

asset pool. Since the equity part of the contract pays off the same for every 

project, only the call option part of the contract requires pooling.

The payoff of the pooled call option, is the average payoff of the call 

option, where the simple average can be used because of the law of large 

numbers.

_ E.AV(E«.>g,,)PW(i?,-(l + r)))

is the average payoff of the pooled call option for n — > oo.

In order to introduce some consistency into the equilibrium concept, we 

need to make an assumption on the expectation of the delivery rates into 

the pool. The least stringent, yet consistent assumption would be that, in
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equilibrium, investors rationally expect aggregate deliveries in the limit for 

the number of members n  of each type 9 going to infinity. Since, for investors, 

all options are ex-ante the same, the truly expected aggregate deliveries will 

then be used to find the equilibrium price of all call options.

Assum ption 4 (Rationally expected aggregate delivery rates)

Let the superscript ’p ’ denote the pool of call options. Then the expected 

average deliveries into the pool, or equivalently the expected average payoff of 

the pooled call option, E[r*̂ ^̂ ] is, in equilibrium, just equal to the true payoff 

of the pooled call option,

The construction of the asset pool and the law of large numbers allow us 

to write the utility function of investors in a simplified way as the utility of 

consumption today and one aggregate state cr at t  =  1 only. Since investors 

do not have an asymmetric information project, we simply index them by i. 

There are i € /  investors in the economy, where /  is a countably infinite set.

Assum ption 5 (U tility function of investors)

The utility functions of all investors are identical and are given by

=  (4.i5)

where Vq̂ v '̂ . : JR\ — > M are smooth and strictly increasing functions on 

1R++ and we assume vj'(c) > 0, vf{c)  < 0, Vc G 1R++, vi{c) —> oo os c -> 0, 

and agents have ’pure time preference’, ie.
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The fact that for the pooled call option the repayments are endogenous 

and determine the return on the contract, makes it possible to have several 

normalisations for the price of the pooled call. One such normalisation would 

be to set the price equal to one. Another one would be to set the price equal 

to the price of the individual call option. We choose the latter for consistency 

reasons of the pricing of the individual and the pooled call option. Therefore, 

the optimisation program of investors is:

max vi(co)-h (4.16)

c*o =  z*

4  =  >2*

For investors we restrict z* to be positive, and assume that they have 

sufficiently large endowments to cover their purchase of the project in f =  0, 

ie. we assume that each investor has cJq > p*fi. The budget set of investors 

is denoted by

Lower and upper hounds for the nominal coupon rate f

Our results depend on a strictly positive nominal coupon rate (l4-f) > 0, 

since only a positive strike price K  of the call option mimics the limited liabil­

ity nature of the bonds we want to model. As an upper bound for the nominal 

coupon rate, we only allow for r ’s, whose mean repayments are smaller than
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the mean payoff of the project, ie the maximum strike price K  = (1 4- f) 

cannot exceed the mean payoff of the project [jl.

Market Clearing

Market clearing in the call option requires that the supply of call option con­

tracts by investors equals the demand of call option contracts by borrowers, 

and that the deliveries of call option payoffs is feasible.

=  (4.17)
e

implies

zV'P =  ^ A V r '( g )  (4.18)
9

This condition is trivially satisfied, since borrowers simultaneously sell 

their projects to investors and buy the call option on it, such that there are 

always sufficient endowments to pay the borrowers.

Competition

As mentioned in the introduction to section (4.2), the SW model is set in a 

game theoretic framework. Here, we describe the competitive environment by 

allowing borrowers to trade on their private information 0, but they cannot 

influence the prices of the contract. Likewise, we allow investors to sell the 

call option at a uniform price for borrowers of the same observable quality, 

but they are not in a position to set the interest rate on these contracts. The
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price setting behaviour of the SW bank is modeled by conducting compara­

tive statics analysis on changes in r. The analysis involving different nominal 

coupon rates is thus transformed into one that analyses an equilibrium with 

different credit contracts.

By performing comparative statics analysis of different types of contracts 

via the nominal coupon rate, the price taking assumption can still be used.

The central contribution of the paper is that, in contrast to standard 

models of symmetric information, unlimited liability and individual contract 

trading, the coupon rate is not just another description of the price of the 

bond. The market price of the bond is determined in equilibrium by the 

return requirements of investors on the pool of these bonds. The deliveries 

in the pool, in turn, depend on the nominal coupon rate, since the nominal 

coupon rate sorts borrowers by their riskiness. Consequently, the relationship 

between the coupon rate and the price of the contracts is more complex than 

the usual relationship

1 +  H =  — =>  1 4- H =  (1 -f- f )—T (4.19)
q j   ̂  ̂ '  qJ  ^

for a standard one period security, where r{ is the normalised effective return 

on one unit, ie when ^  units of the security are purchased at price q^. In our 

model, it is the case that f  describes the call option contract, which in turn 

induces an equilibrium return on the pooled call option. So (4.19)

changes to
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(l +  r |)  =  ( l + r - = ' P ) ) ^  (4.20)

As we will show, which risk classes decide to trade and deliver into the 

pool depends on the nominal coupon rate. Since different risk classes have 

different average deliveries, the pooled return required to leave the effective 

return unchanged, does not change in a one-to-one way with changes in the 

nominal coupon rate.

Recall that pooling is generated endogenously from the asymmetric in­

formation set-up, and that the asymmetric information set-up has bite, since 

we have modeled limited liability. In this way, (4.20) is - in a nutshell - the 

difference of introducing an anonymous market into the Stiglitz-Weiss model

4.4.3 Existence of a General Credit Market Equilib­

rium

Since contracts are only one-dimensional and the private information is over 

the same parameter, only pooling equilibria exist. In the following, we prove 

the existence of a general credit market equilibrium for any strike price in 

the range given above. A competitive equilibrium of this economy is a triple 

consisting of actions, a price and the associated pool deliveries for the call

®The fact that the simple relationship expressed in (4.19) is no longer true in our set-up, 

also strengthens the view that borrowers can issue securities without, somehow implicitly, 

becoming pricesetters in the asset markets.
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option ç X c  x x M + x  M+ such that «:

(i) {c",z”) € arg max {f/’( 4 , 4 )  Kc'.z') 6

(ii) (c’ .̂z*") € arg max {[/'(eg, 4 )  \ {< ^ ,^ )  €

(1Ü) z* =  E u  A 'z ' = >  zY":'P =  E u  A 'z'r":

 ----------------------------------------- Y "  À '* 2 « e

(v) r**̂ = *
0 i f  R s < { l  + r)

{ R s - { l  + f))z^ i f R s > ( l - ^ f )  

f or  5 =

(vi)

(vii) z* < 0

(viii) z^ € {0,1}

Verbally, the equilibrium price determination can be thought of in the 

following way: borrowers perceive a price for the call option q̂ . At this 

price, they decide whether to buy or not. Since they are risk neutral, and 

by the indivisibility of the project, they will either demand one unit, or zero. 

Since all n agents of a given type 9 take the same actions, there are then 

9 different demands for the call option. All the deliveries of the call option 

are pooled. The price of the pooled call is, by (vi), the same as the price 

of the individual call. The price - pool delivery combination is observed by 

investors and they supply a quantity of call options for this combination. If 

the quantity supplied and the quantity demanded coincide, there exists an

^Since ail n borrowers of a type 9 take the same actions, we omit the superscript n
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equilibrium.

Theorem 6 (Existence)

A general credit market equilibrium (GOME) exists.

4.5 Characterising the Equilibrium

We proceed in the following way. Firstly, we show that for every coupon rate 

contracts are relatively more valuable for higher risk types. The counterim­

age of the first proposition is that individual delivery rates, for every coupon 

rate, are a decreasing function of the riskiness of the project. We deduce that 

deliveries into the pool are dependent on the strike price. Since, by a stan­

dard argument, the equilibrium price will adjust if the deliveries into the pool 

change to equilibrate demand and supply of the call option, the individual 

call option price will change with both the strike price and the different mix 

of borrowers. With mean preserving spreads the effective interest rate on the 

call option may rise or fall with an increase in the strike price. However, by 

proposition (1) it will always be true that bad risk borrowers value the call 

option more, independently of the mix of borrowers. Consequently, if the 

strike price change induces an adverse change in the mix of borrowers, then 

good risk borrowers will drop out of the market first.

Next we assert that a reduced willingness to lend will increase the equi­

librium price of the call option, for every strike price. We deduce that this 

leads to a deterioration in the quality of the borrowers. We argue that the
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equilibrium price of the call option must rise proportionately more than the 

increase in the unwillingness to trade. However, as long as the market does 

not unravel to a no trade equilibrium, we can still always find a - higher 

- equilibrium price independently of the contract chosen, which yields the 

same required average return. We will then deduce that an increased un­

willingness to lend has the effect that the average return on bonds increases 

for all contracts, ie. independently of the coupon rate, and that, if the same 

contracts are used, the equilibrium volume of credit goes down.

It is first necessary to establish that the real return on the asset is posi­

tive. Otherwise, all projects would always be undertaJcen.

Lemma 1 (Positive Effective Return)

The equilibrium real return on the pooled call option is positive.

Even though the market, from the point of view of the agents, is effectively 

’complete’, the asymmetric information over borrowers’ projects, combined 

with the short sale constraints (vii) and (viii), imply that the valuation of the 

call option will remain different for different borrowers. The next proposition 

states how the riskiness of a type of borrower relates to their valuation of the 

call option.

Proposition 1 (Borrowers’ Call Option Valuation)

For a positive strike price K  =  (1 +  r), borrowers with a higher 9 have a 

higher valuation of the call option.
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We deduce from this proposition that the preferred contract for everyone 

is the one with the lowest possible strike price, ie. with ÜT =  0. In this case, 

all borrowers have the same valuation of the limited liability bond. Once the 

strike price is strictly positive, the mix of borrowers induced by the strike 

price starts playing a role.

For the reverse side of the market, we can state a similar proposition, 

namely that for every individual call option, the payout is inversely related 

to the riskiness of the borrower.

Proposition 2 (Payout of Individual Call Option)

The payout r® of the individual call option is a decreasing function of the 

riskiness of the projects.

All the deliveries go to the pool, and the deliveries in the pool deter­

mine the price of the pooled call option and consequently the price of the 

individual call option by the arguments in section (4.4.3). Since all the call 

options are pooled, the mix of borrowers who buy the call option, which by 

proposition (1) is dependent on the strike price AT, as well as the repayment 

characteristic of the call option itself, are decisive for the deliveries of the 

pool. These deliveries, in turn, determine the price of the pooled call option. 

The next proposition states that, by a standard argument, the price of the 

pooled call option adjusts in such a way that markets clear.

Proposition 3 (Adjustment of Pooled Call)
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When the strike price changes, the equilibrium price of the pooled call option 

adjusts such that markets clear.

However, it is still the case that the nominal coupon rate r  plays a role. 

It still sorts borrowers adversely by their riskiness (Proposition (1)), and, 

more strongly, in the sense that they will be the first not to demand the call 

option should a change in the strike price induce an adverse mix. Hence the 

strike price has an infiuence on the demand for the bond. However, it is 

important to note that the proposition is weaker than in the SW set-up: the 

assumption of a mean preserving spread does not necessarily imply that the 

riskiness of the pool always deteriorates with an increase in the coupon rate.

Proposition  4 (Sorting of B orrow ers)

i4s the nominal coupon rate f  of the bond increases, the critical value of 

9, below which borrowers do not buy the bond, may increase. Borrowers 

are sorted by their riskiness, in the sense that if borrowers drop out of the 

market, they will be the good risk ones. The nominal coupon rate influences 

the demand for bonds.

We state as a corollary:

Corollary 1 (Pool Deliveries)

The deliveries into the pool are not a monotonie function of the nominal 

coupon rate f . Therefore the effective interest rate on the call option may go 

up or down with changes in the strike price.
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4.5.1 Comparative Statics of a Credit Crunch

An increase in the strike price is only one way in which good borrowers are 

forced out of the market. The other possibility refers to a situation, in which 

the propensity to lend falls. Then, the following proposition shows , that 

the price of the call option must increase. Since lower risk borrowers have a 

lower valuation for all call options with a positive strike price K  it is then 

implied that, should credit contract, good borrowers will be driven out of the 

market first.

The situation we want to depict is the following. For some external rea­

sons, the supply of credit is low (in our model creditors are unwilling to 

lend). We ask whether in this situation lenders should raise the interest rate 

at which they lend to borrowers. The answer is that it is not useful to use 

the nominal coupon rate as a device to adjust the volume of credit, since 

independently of the supply of credit it will always sort the riskiness of the 

borrowers. A lower volume of credit may actually worsen the adverse selec­

tion effect, in the sense that good borrowers will be driven out of the market. 

However, even if this corresponds to the SW credit rationing argument, our 

point here is that the problem of the return on pool securities is unchanged 

by the volume of credit. The contracts used will not be changed.

We model reduced willingness to lend money by a decrease in the discount 

factor /?*.

P roposition  5 (Fall in  P ropensity  to  Lend)

The equilibrium price for the call option is a decreasing function in
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A reduced willingness to lend on the part of investors drives up the equi­

librium price and consequently drives out those borrowers that have a lower 

valuation for the insurance offered by the call option. By proposition (1), 

these are the low risk borrowers. Consequently the risk profile of borrowers 

deteriorates. However, this does not imply that the return on the pool se­

curity falls, since the price of the call option rises as well. Since proposition

(3) on the equilibrating mechanism of the market price is independent of 

the level of the market price, all contracts with different strike prices K  and 

different nominal coupon rates (1 +  r) will adjust accordingly.

4.5.2 A Comparison with Credit Rationing in Stiglitz- 

Weiss

Since the uncertainty structure and securities are very similar to the set-up 

in SW, it may be of interest to compare their result of credit rationing to our 

model. Naturally, since the definition of Walrasian equilibrium does not per­

mit the existence of excess demand for credit at positive prices in equilibrium, 

the concept of credit rationing needs to be reformulated in an appropriate 

manner. One way to achieve comparable predictions is to introduce borrow­

ing constraints on the individuals level, and characterise the credit market 

equilibrium in the presence of these constraints.

The change we need to introduce is to consider divisible projects, and 

impose a borrowing constraint on the equilibrium demand for credit. Risk- 

neutrality on the part of borrowers simplifies the process. Assume that the
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upper bound on the size of a project is one unit of the numéraire commodity 

in period t =  0. By risk neutrality of borrowers, they will either demand 

zero or one unit of the security. Consequently, a binding borrowing con­

straint must be of size less than one.

If the propensity to lend of investors is unchanged, the borrowing con­

straint implies that there is excess supply of credit at the old equilibrium 

price. Consequently, the price of credit falls. Since, by proposition (5), good 

risk borrowers drop out of the market first, conversely it must hold that new 

entrants into the market will be better risk borrowers. As a consequence, 

by corollary (1) average pool deliveries may rise, and the price for the indi­

vidual call option could fall, while the volume of credit dispensed could rise. 

The resulting new equilibrium, even though it necessarily features a lower 

individual price for the call option, may have a higher effective interest rate 

for investors and/or a higher volume of credit.

Compared to SW, there is a remarkable similarity in the slant of the ar­

gument. Although a borrowing constraint will not directly change the return 

for investors as in SW, by attracting lower risk borrowers it may decrease the 

effective interest rate for borrowers and hence increase the volume of credit 

at the same rate of return for borrowers. Market clear in both situations, but 

the borrowing constraint may be beneficial for lenders. This outcome could 

be interpreted as corresponding to credit rationing in the SW set-up.
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4.6 An Extension to the Bcisic Model: Intro­

ducing Collateral

Credit contracts are generally multidimensional. Perhaps the most impor­

tant feature apart from the interest rate is collateral. Collateral is used both 

to secure a loan and to recover the losses in case of default. We introduce 

collateral into a simplified version of the model with two types only, 9i and 

0 2 , where #i's project is a mean preserving spread of $2 .

Collateral is collateral of the consumption good, with the restriction that 

it cannot be consumed by investors at t =  0. Collateral is stored from Z =  0 to 

t =  1 (it cannot be invested), and, in the case of default by firms, is consumed 

by investors at ( =  1. On the other hand, if the project is successful, the 

collateral will return to borrowers for consumption in t  = 1. Since we want to 

consider risky loans only, we assume that the collateral which can be call up 

to secure the loan is less than the outstanding value of the loan. All projects 

cost one in period t =  0, so that this condition implies that the maximum 

collateral must be smaller than one. The way we restrict collateral is by 

assuming that firms have an endowment smaller than one in period t = 0 .

Assumption 6 (Collateral o f Firms)

Firms have an endowment of Uq < 1 units of consumption good in t  = 0 and 

can call up at most 7  ̂ < Uq units of collateral.

The optimisation problem of borrowers is altered in an obvious way:
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Cn —

c; =  <

max v^(cq) +  /? E[c\] 

wg +  [/8> - Y  -  9"=] z"

0 i f  R ,< C i. + f ) - ' f

(J%.-(l  +  f ) X  i f  R , > ( \  + f ) - ' f  

f or  5 =  1, • • • ,5

(4.21)

Since the strike price is changed, we will denote the strike price with 

collateral by =  (1 +  f  ) — To construct the payoff of the pooled call

option, again we first look at the payout of the corresponding individual call.

(4.22)
R s  +  7  ̂ i f  -Ra <  (1 +  r) -  7^

(1 +  r) i f  R s >  { I + r ) -  7^

f or  s =  1, • • •, 5

Following assumption (5) again on the price of the pooled security, and

using the law of large numbers, the payoff of the pooled call option is now:

= I (4.23)
9 \  a=l Ra=K

and the investors’ optimisation program is unchanged:

Cn =

max u*(co) + /?*F7[cJ] 

r '^ z ' Vcr

(4.24)
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Note that the collateral ’disappears’ in t =  0. It is subtracted from the 

utility of borrowers but does not appear in the utility function of investors. 

This is the most simple formulation for the notion that collateral can only 

be stored, but not consumed. Looking at the net payoff of a long position in 

the call option and a short position in the call option,

% + y  i f  R s < ( i + f ) - Y
R , i f  iîj  > (1 +  r) -  y

collateral reappears in the payoff. Thus, it is implicit in the investment 

in the call option.

Equilibrium determination in this variation of the model is unchanged. 

Investors require a return on the pool security depending on their preferences 

of consumption today over consumption tomorrow. Individual securities then 

for every combination of a coupon rate and a level of collateral then sell at 

the price which makes their deliveries just equal to the expected return re­

quired by lenders.

However, there is now a fundamental difference in pricing. Since a sepa­

rating equilibrium reveals the true ^’s, the securities will be priced ’correctly’. 

The pool does not longer consist of a mixture of different types with differ­

ent probability distributions of success. Rather there exist two pools now, 

whose prices reflect the probabilities of success of each type. A direct conse­

quence is that the more complex price/return relationship in equation (4.20) 

is replaced by the standard price/return relationship of (4.19). Thus, in a 

separating equilibrium, the price or the return of a security characterise it
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completely and the introduction of the anonymous market does not add to 

the analysis. Interestingly, with collateral it is also the case that separat­

ing equilibria, should they exist, solve the problem of credit rationing in the 

Stiglitz-Weiss model (Bester (1985)). Consequently, in a certain way, the 

credit rationing of Stiglitz-Weiss is reflected in the pooling of different risk 

types in the anonymous market price in our model. Credit rationing can be 

expressed as ’mispricing’ in the credit market.

4.6.1 Characterisation of a Separating Equilibrium with 

Collateral

We will now state the proposition regarding the separation with collateral: 

P roposition  6 (S epara ting  E quilibrium  in Econom y w ith  C ollateral)

In the economy with collateral, the following separating equilibrium exists: 

low risk borrowers 0 2  buy a call option with more collateral and a lower coupon 

rate than high risk borrowers B\.

4.6.2 Comparative Statics of a Credit Crunch with 

Collateralised Bonds

Our main interest is in the behaviour of borrowers in a situation in which 

credit contracts. Without collateral we have shown that the average credit 

quality always deteriorates, and that flrms have no incentives to offer higher
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coupon rates since the market price always adjusts.

The result we present is that good borrowers can outstay bad borrowers 

in the market.

Corollary 2 (Fall in Propensity to Lend in Economy w ith  Collateral)

If, in an economy mth collateral, the propensity to lend falls, and all as­

sets have limited liability, the bad risk firm may be the first one not to 

apply for credit.

4.7 Conclusion

In this paper we have demonstrated that if borrowers have asymmetric in­

formation over projects and can issue limited liability bonds, then, while the 

nominal coupon rate on bonds has no direct effect on the equilibrium price, 

it always sorts borrowers by their riskiness at any strike price. The sorting 

mechanism implies that borrowers have different delivery rates for ex-ante 

identical contracts. If the deliveries are pooled, or, as in the present model, 

investors hold the market portfolio, then different average delivery rates are 

reflected in the dependency of the bond price on the nominal coupon rate. 

Therefore, there is an indirect effect of the nominal coupon rate on both the 

volume and price of the contracts traded.

The model we have chosen is a perfectly competitive price taking mar­

ket. By the equilibrium deflnition of this model, Stiglitz-Weiss type credit
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rationing cannot exist. Rationing is avoided through the adjustment of the 

market price of credit. However, a result which is similar in spirit to Stiglitz- 

Weiss can be obtained, if borrowers face individual borrowing constraints.

Once collateral is introduced, separating equilibria which solve the asym­

metric information problem may exist. In such an equilibrium, borrowers 

pay for the true riskiness of their projects plus a possible signaling cost. In 

this setting, the nominal coupon rate and collateral not only serve to sort 

borrowers and are important for the characteristics of the equilibrium, like 

in the version without collateral, but they also have a direct effect on price, 

since the riskiness of borrowers is revealed.
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4.8 Appendix

Proof of Theorem (6)

For investors there is no aggregate risk, since the only payoff is the payoff of 

the project security, which is constant across aggregate states. By the risk- 

neutrality of borrowers, only cj and E[R] matter. Consequently the individ­

ual call option (ç®, r^) can be thought of as financing consumption transfers 

from Cq to E[Cg], while the pooled call option finances transfers from

Cq to c^. An equilibrium occurs when the quoted price induces aggregate 

deliveries by borrowers such that at the combination (ĝ  =  r^’̂ ) the

supply of the pooled call is just equal to the sum of individual calls. By condi­

tions (vi) and (vii), and the positivity of prices, the budget correspondences: 

B* : (ĝ 'P, Wg, r^’̂ ) — > X  and : (q ,̂ R) — > X  are compact-valued, convex­

valued, and continuous correspondences. Define the demand correspondences

$*(g<=)

argmax{U'{cQ,cY}\{c*,z*) e  and (q̂ P̂, r̂ P̂) =

orgmax{C/^’” (c2’”, Cj") |(c®’”, 2 ’̂") Ç. B^'^{q^,R)}, where the demand corre­

spondences are shorthand for ’c* are the elements which maximise C/(.) over 

the budget set and z* finances c*\ Using the Maximum Theorem, by the 

linearity and smoothness of U^(.), $^(.) is an upper- hemicontinuous (uhc) 

correspondence. By the strict concavity and smoothness of U*(.), $*(.) is 

a continuous function. Since the asset pays in the numéraire commodity, 

doubling prices doubles demand and income, so that $®(.), 0 * are homoge­

neous of degree zero, ^{aq^) =  0(g) for all a  > 0, for all ĝ  E JR++. By strict 

monotonicity, and recalling that the price of the numéraire commodity is nor-
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malised to one, cq—cjo — Vs, for all q .̂ Since € {0,1}

for every i, $(.) is bounded. Demand ’tends away’ from the boundary, since 

agents have interior endowments (resources), ie if — >• q  ̂ G dJR++ and 

uq > 0, $(.) — > GO as 71 — y oo. An equilibrium exists where the aggregate 

excess demand function Z{q^) =  +  Eg ) has a zero. By stan­

dard arguments on the sum of continuous correspondences, Z{q*̂ ) inherits 

boundedness, uhc, homogeneity, Walras’ Law that q^Z{q^) =  0 for all q ,̂ and 

boundary behaviour. Since the borrowers only exist through the projects (if 

= 0  for all zero, there are no borrowers), their equilibrium demand must 

lie in the set {0,1}. Since =  0 is also an equilibrium candidate, by the 

intermediate value theorem, an equilibrium must exist. □

Proof of Lemma (1)

By the risk neutrality of borrowers and the constancy of payoffs, and hence 

resources, in the aggregate economy, projects carry no risk premium. Thus 

the equilibrium effective return on the pooled call option can be written as 

1 +  . It is required to show that > 0. Projects are viable,

E[R] > 1 and by the monotonicity of U^{.), borrowers prefer positive con­

sumption to zero consumption, and will always prefer trade at 1 +  r*®’̂  > 0 

to no trade. For investors, pure time preference implies that (c) < Vq (c)  

Vc > 0. r*®’̂  < 0 contradicts this assumption and consequently investors 

would not lend. Hence the real return on the call option must be strictly 

positive. □
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Proof of Proposition(l)

Consider the optimisation program of the borrowers. Identifying the La­

grange multipliers by A and equilibrium values by a star, the first order 

conditions are:

VC/'(c"') =  A*" (4.26)

+ X f { R , - { l  + f)) = 0
Rs=K

=  <
0 i f  R , < { l  + f)

( % - ( l  +  f))z ' i f R , > { l + f )  

f or  s =

Since all agents are risk neutral, the first line can be expressed in terms 

of the type-specific probabilities of the agents:

VU ^(c'‘) = jM i^ ) , - - ,P s ( 0 ) )  (4.27)

Use this to rewrite the equilibrium valuation of the call option as:

Q^(R)— E  -  (1 +  f)) (4.28)
R s= l P  R s= K  P

For a positive strike price Kj  the price of the call option is non-decreasing 

convex in the project payout Since a mean-preserving spread

is equivalent to second-order stochastic dominance, it follows that for two 

different risk classes 6 i and 6 2 , with 9i riskier than %,
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-  Ri-i)Pi{Oi) > '^q ^ '{R ){R , -  Ri-i)Pi{02) (4.29)
t= l t= l

which by the assumption of the same mean of R  implies that

g^' {R)>q^HR)  (4.30)

□

Proof of Proposition (2)

The proof is the mirror image of the proof to proposition (1).

Proof of Proposition (3)

We distinguish two cases: one that deliveries into the pool rise to , the 

other that deliveries fall to , such that and are in the neigh­

bourhood of the equilibrium (ie in an open set which contains these points 

which is a subset of every set that contains the equilibrium). We need to 

show that (c*,z*)) and , {c*, z*)) are not GCME. This

will always be the case if GCMEs are regular, the condition for which is that 

dZ{q^)/dq^ (Z  being the excess demand correspondence) is non-zero at the 

equilibrium, which is the case given our utility functions and endowment and 

uncertainty structure. □
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Proof of Proposition (4)

By proposition (1), borrowers with a higher 9 have a higher valuation of a

call option for any positive strike price K .  For a given type 9,  the valuation

of the option is:

q^(R) =  * 0 +  S  PsWi^s  -  (1 +  ^)) ] (4.31)
P  \  Rs=Ri R s= K  )

Ps > 0 and that the second sum is decreasing in r  imply that for a larger 

K  the equilibrium valuation of a given type 9 falls. Assumption (1) permits 

two cases: one in which the valuation falls relatively more for a high risk 

type, and one in which it falls relatively more for a low risk type (as long as 

proposition (1) holds). To see this, consider two risk classes, 9i and 02-

By assumption (1),

( R k - 1 — R s - i )  [Ps(^i) ~Ps[^2)]  >  0 (4.32)
5= 1

integrating by parts yields:

{ F { K ,  5 i )  -  F { K ,  02}) K  =  (4 .3 3 )

(s= K —1 \  5=%—1 s= K —l

E b.(̂ i)-p.(«2)]U > E - E
5 = 1  /  5 = 1  5= 1

by the assumption of the same mean for every 9, it follows that:

' E - p.(%)]) if < E ŝPs(0i) - E (4.34)
< 5=1 /  s= K  s = K
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Note that the right hand side is just the difference of the type-specific val­

uations of the call option. Proposition (1) assures that the right hand side 

is always positive, for every K  and every pair of 9’s. However, the left hand 

side could be positive or negative, and consequently the size of the difference 

on the right hand side is not determined by the mean preserving spread. 

Geometrically, the intuition is the following: the criterion of the mean pre­

serving spread is a statement about the area under the distribution functions 

for different risk types. However, it still allows (indeed requires) that the dis­

tribution functions itself cross an odd number of times. Depending on the 

strike price, either the 6 i or the $ 2  distribution function may lie above the 

other. When F{RjOi) lies above F(i2, ^2) for a particular strike price, the 

difference or ratio of call option valuations expands. When F(R,  $i) lies be­

low F( Rj 0 2 ), the difference or ratio of call option valuation contracts. □

Proof of Corollary (1)

Proposition (4) implies that depending on the strike price of the call option, 

the differences in valuation across different risk types can expand or contract. 

Since valuations are just the mirror image of deliveries into the pool, differ­

ent strike prices imply different average pool deliveries. Since by proposition

(3) bond prices always adjust, the effective return on the bond as defined in 

section (4.4.2) may be higher or lower. Since for borrowers, the individual 

effective return on the bond is their delivery rate divided by the price of the 

call, a different mix of borrowers will buy the call option, depending on the 

strike price. Consequently deliveries into the pool are non-monotonic in the
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strike price. □

Proof of Proposition (5)

Since the two sides of the market are completely separate, a change in /?* is 

’shift’ upwards in the demand function. By the strict concavity of U*, its level 

surfaces are convex and smooth. An increase in /?* means that — 

decreases, meaning that a higher is required for indifference. Hence the 

’supply’ function $ ’(.) moves to the right, and the equilibrium price will in­

crease. □

Proof of Proposition (6)

The good type borrowers call up collateral up to the point at which the bad 

type borrowers are just indifferent between imitating and paying the higher 

interest rate in a separating equilibrium. If at this point the incentive com­

patibility conditions of borrowers are still met, then a separating equilibrium 

exists.

The first order conditions for the borrowers’ program with collateral is:

R s= K
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c?’" =  <
0 i f  R , < ( l  + f ) - Y

(R,  -  (1 +  f )B) ^{9)  i f  R , > ( l  + f ) -  /

fo r  s =  1,• • • ,5

Using risk-neutrality, the gradient vector can be expressed in terms of the 

probabilities of the states:

V t/‘’(c^) =  ^ ( p i W , - - - , P s W )  (4.36)

Use this to rewrite the equilibrium valuation of the call option as:

£  '^ P s W i^ s  -  (1 +  r)) (4.37)

Compare the first order conditions and equation (4.37) with the first or­

der conditions for the program without collateral and the pricing equation 

(4.27). The difference of introducing collateral into the model is that the 

strike price shifts ’down’ at a cost of 7 units of consumption in period t =  0.

The value of the collateral can be explicitly calculated, using the linearity 

property of the expectations operator:

3=5 2 3=5
l^Ps{&){Rs -  (1 +  r)) -  ^  -^Ps{0){Rs - ( 1 4 -  f)) (4.38)

3 = # c  P  3 = # c  P

3=AT':4-/ 2
-  E  ~0Pi{ )̂{Rs -  ( 1  +  f ) )

3=#c

Using proposition (1), it can be deduced that the value of collateral is 

decreasing in the riskiness 9 of the projects. This implies that the good risk



CHAPTER 4. CORPORATE BOND MARKETS  149

firm 6 2  has a lower cost of collateral than the firm 9i.

The bad risk firm takes on the cost of collateral as long as the benefit 

from pooling exceeds the cost of collateral. The benefit from pooling for the 

high risk firm is the ’subsidy’ they gain by being pooled with low risk agents 

who deliver more into the pool security than they themselves. Denoting by 

e the effective interest rate, and writing p for a pooling allocation and s for a 

separating allocation, the benefit in terms of a normalised effective interest 

rate is:

<  -  '•I =   ̂ ( ^  -  ^ )  (4.39)

The incentive compatibility constraints are then the obvious differences 

between the cost of collateral and the benefit of pooling, and the cost of 

collateral and the cost of pooling. They are:

(i’) gf' < r ‘ - r ‘ 

(ii’) gf' > r ‘ - r

Whether these conditions are fulfilled depends on the risk parameters 9 

and the proportions in the economy. A description of an equilibrium would 

then consist of actions and prices for the call option ((c*,z*,y), q*^{ri), ^*^(^2)) E 

X  C X x ] R ? ^ x R + x R +  such that:

(i) ( c '\z " )  € arg max |(c‘,z ‘) €

(ii) (c*®,z**,7**) € arg max {[/'(cg,c^) |(c" ,z ',7 '') e
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(iv) rl^ =

(iii) =  z* for k = 1,2 and for both call contracts.

0 i f  R s < { l 4 - f i )

(Rg — ( 1 ri))z^ i f  R g > ( l  + ri) 

f or  s =  1, • • •, 5

0 i f  R s < { l  + r2)

{Rg — (14- 2̂ ))^^ i f  i?5 >  (1 4" fg) 

f or  s = 1, - "  , S

(v) =  <

(vii) 2* < 0

(viii) e  {0,1}

and conditions (i’) and (ii’). If the incentive compatibility conditions are 

met, the problem turns into a standard equilibrium problem with symmet­

ric information and prices for the individual call options can be found by 

standard arguments. □

Proof of Corollary (2)

The corollary is an immediate consequence of the existence of separating 

equilibria. In separating equilibria, types are revealed and bad types pay 

higher interest rates at positive strike prices than good types. Since all 

projects have the same mean return, for positive strike prices bad borrowers 

will find the net payoff of the project less valuable than good borrowers and 

consequently will be the first to drop out of the market should credit contract. 

□
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