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Abstract

This thesis consists of three essays, all of which use the tools of economic theory to

analyze specific situations in which multiple strategic agents interact with each other.

The first chapter studies the strategic transmission of information between an

informed expert and a decision maker when the latter has access to imperfect private

information relevant to the decision. The main insight of the paper is that the access

to private information of the decision maker hampers the incentives of the expert to

communicate. Surprisingly, in a wide range of environments, the decision maker’s

information cannot make up for the loss of communication and the welfare of both

agents diminishes.

The second chapter presents a model of electoral competition between an in-

cumbent and a challenger in which the voters receive more information about the

quality of the incumbent. If the incumbent can manipulate the information received

by the voters through costly effort, the model predicts an incumbency advantage,

even though the two candidates are drawn from identical symmetric distributions,

and the voters have rational expectations. It is also shown that a supermajority

re-election rule improves welfare, mainly through discouraging low-quality politicians

from manipulating the information.

Finally the third chapter uses a mechanism design approach to characterize the

class of social choice functions which cannot be profitably manipulated, when the

individuals have symmetric single-peaked preferences. Our result allows for the design

of social choice functions to deal with feasibility constraints.
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Preface

This thesis consists of three independent and unrelated chapters. Each of them rep-

resents an area of my research interests. The first chapter of this thesis contributes

to the fascinating and growing literature of cheap talk. This literature studies the

transmission of soft information; information not verifiable and which cannot be con-

tracted upon. Crawford and Sobel (1982) provided a tractable working framework

to analyze this issue. In their seminal paper a privately informed expert sends a

message to an uninformed decision maker who then has to make a decision. They

show that, if the interests of the two agents are not perfectly aligned, only coarse

information can be transmitted in equilibrium. A natural reaction from the decision

maker to this poor information transmission, would be to acquire some information

by herself. Chapter 1 presents a model in which the decision maker has access to

an imperfect and private source of information. The presence of this extra source of

information has a twofold effect on the expert’s incentives to transmit information.

On the one hand, more information allows the decision maker to choose better actions

on average, reducing the implicit cost of being imprecise. This effect hampers com-

munication. On the other hand, the extra information introduces uncertainty to the

expert, since he is no longer certain of the decision maker’s reaction to his messages.

A risk averse expert has an incentive to report more precise messages to reduce the

variance of the decision maker’s actions. This effect favours communication. Chap-

ter 1 provides some environments in which the first effect dominates the second and

the access to information reduces (and sometimes prevents) the communication in

equilibrium. More strikingly, the loss of communication can be such that, even if the

decision maker has access to valuable information, the net welfare effect is negative;

the decision maker should commit to acquiring no extra information.

The second chapter of this thesis contributes to the literature of political econ-

omy. More specifically, Chapter 2 presents a model of electoral competition between

an incumbent and a challenger. In developed countries powerful causal incumbency

advantages seem to be present in offices which have little direct control over the elec-
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toral process, and where there is no seniority rationale for re-election. The principal

asymmetry between incumbent and challengers seems to be just in information: that

voters are much more informed about incumbents. However, with rational expecta-

tions, extra information about the incumbent should not systematically bias voters’

beliefs. In the second chapter of this thesis it is shown that if incumbents were able to

manipulate the information that reaches the voters, then, even under rational expec-

tations, incumbent power over information can lead to a systematic bias in election,

such that incumbents are re-elected with a significantly higher probability than in

the case without manipulation. More interestingly, Chapter 2 shows that voters can

improve the efficiency of the electoral system by handicapping the incumbent, that

is, by requiring the incumbent to be above average quality to win re-election. The

handicap suggested is not time consistent, i.e. voters do not want to enforce it ex

post. Chapter 2 proposes a simple constitutional mechanism for implementation: a

supermajority rule, where incumbent politicians require a share of the vote strictly

greater than one half in order to win re-election.

Finally, the third chapter of this thesis contributes to the literature of social choice.

This literature studies mechanisms to aggregate individual preferences in order to

reach a collective decision and such that certain desirable properties are satisfied.

In particular, Chapter 3 is concerned with the property of strategy-proofness. An

aggregation mechanism (or social choice function) is strategy-proof if no agent has ever

incentives to strategically misrepresent his preference; in other words, the mechanism

cannot be manipulated by the individuals. Chapter 3 provides a characterization of

the class of strategy-proof social choice functions when the individuals have symmetric

single-peaked preferences, which means that the preferences respond to the notion of

distance.
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Chapter 1

Cheap Talk With Two-sided

Information

1.1 Introduction

Decision makers often seek advice from better informed experts before making a

decision. Examples range from management consulting to political, financial and

medical advice1. Frequently, the interests of the expert are not perfectly aligned with

those of the decision maker and this creates an incentive for the expert to manipulate

his information. Crawford and Sobel (1982)2 (CS henceforth) studied the strategic

information transmission between a biased expert (he) and an uninformed decision

maker (she) when contracts or other commitment devices are not available3. They

show that only coarse information can be transmitted in equilibrium, even though,

when the divergence of preferences is small, the expert might like better to truthfully

reveal his information than to provide coarse information. The problem is that the

expert cannot credibly submit more precise information, because if he were trusted,

he would have an incentive to lie.

1Cheap talk games have been applied to study communication in a wide variety of areas. See
Morgan and Stocken (2003) for an application to finance, Gilligan and Krehbiel (1989); Stein (1989);
Austen-Smith (1993); Krishna and Morgan (2001b) and Morgan and Stocken (2008) for applications
to political science and Galeotti et al. (2009) for an application to organization design and sociology.

2Green and Stokey (2007), which circulated in 1981, also study the information transmission
between two agents. They analyze the welfare implications of improving the information available
to the expert. Along the same lines, Fischer and Stocken (2001) and Ivanov (2010) study the relation
between the precision of the expert’s information and the communication between the two players.

3Dessein (2002) and Alonso and Matouschek (2008) analyze the case in which the decision maker
can commit to delegate her decision to the expert. Goltsman et al. (2009) and Kovac and Mylovanov
(2009) study cases in which the decision maker can commit to a mechanism. Krishna and Morgan
(2008) analyze optimal contracts with full and imperfect commitment.
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A natural reaction from the decision maker to this poor information transmission,

would be to acquire some information by herself, in addition to consulting the expert.

I argue that the decision maker should be cautious before making such a move. In fact,

I show that the presence of an informative signal may hamper the communication

between the agents and as a result, in a wide range of environments, the decision

maker would be better off by committing not to acquire extra information.

To gain some intuition of the results, consider a decision maker who wants to

choose an action y ∈ R to minimize the distance to an unknown state of the world.

For simplicity, suppose that the state of the world, θ, takes one of the values {0, 1
2
, 1}

with equal probability. The decision maker consults an expert who perfectly knows

the true state of the world, but who would like a higher action to be implemented.

For instance, suppose that the expert wants the decision maker to choose the action

y = θ + 1
3
, where 1

3
represents the bias of the expert4. Along the lines of CS, full

revelation is not possible in equilibrium because the expert observing the lowest state

of the world has an incentive to deviate and pretend that he observed θ = 1
2
. In

the most informative equilibrium5, the expert reveals the lowest state of the world

and pools the two higher states. Notice that, in this case, when the expert observes

the lowest state of the world, he does not have an incentive to behave as if he had

observed a higher state, because doing so would lead to an action y = 3
4
, further away

from his optimal action. Given this equilibrium, the ex-ante expected utility of an

uninformed decision maker is EUD = − 1
24

.

Suppose now that the decision maker has access to an informative signal, s, which

takes values in {0, 1
2
, 1} with the following conditional probability matrix:

s \ θ 0 1
2

1

P =

0
1
2

1

 0.7 0.15 0

0.3 0.7 0.3

0 0.15 0.7


where Psθ = Prob(s|θ) is the conditional probability of observing signal s given that

4To be more precise I am assuming in this example that both agents have quadratic loss utilities
given by u(y, p) = −(y−p)2 where p represents the peak of the preferences which is θ for the decision
maker and θ + 1

3 for the expert.
5There is an issue of multiplicity of equilibria in cheap talk games. In particular there is always

a babbling equilibrium. CS show that for the case of quadratic-loss utilities, the most informative
equilibrium is preferred by both agents to any other equilibrium and hence I focus on this one.
For refinements of equilibria in cheap talk games, see Matthews et al. (1991); Farrell (1993); Rabin
(1990) and Chen et al. (2008) among others.
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the state of the world is θ.6 Given this signal structure, the expert can no longer

credibly separate the lowest state from the other two. The reason is that when he

observes that θ = 0, he knows that the decision maker will receive the signal s = 0

with high probability. If he lies and reports that θ ∈ {1
2
, 1}, with probability 0.7 the

decision maker will choose y = 1
2

and with probability 0.3 she will choose y = 13
20

,

leading to an expected utility to the expert of − 1783
36000

' −0.0495, which is higher

than the expected utility he would have if he truthfully revealed that θ = 0 (in that

case the utility for the expert would be −1
9
' −0.1111). Therefore, the introduction

of the private information prevents the expert from revealing any information at all.7

Moreover, the ex-ante utility of the decision maker when she has access to the signal

(and hence does not receive informative messages from the expert) is EUD = − 6
85

,

which is lower than what she had in the uninformed case.

This example shows that allowing the decision maker to have access to a private

signal lowers the incentives of the expert to reveal information because he knows

that the signal will shift the decision maker’s action towards the true state of the

world, making exaggeration more attractive. To generalize this intuition, I consider

the CS model with a continuum of states and allow the decision maker to access

a continuous signal distributed symmetrically around the state of the world before

making her decision. The main contributions of the paper are as follows.

First, for general symmetric preferences, I show the existence of partition equilibria

similar to those characterized by CS and extend the properties of the CS equilibria

to this setup.

Second, for the quadratic-loss preferences case, I decompose into two opposing

effects the impact of private information on the expert’s incentives to communicate.

On the one hand, there is an information effect which arises because more information

allows the decision maker to choose better actions on average. The information effect

reduces the incentives of the expert to report precise information because the signal

in expectation pulls the decision maker’s action towards the real state of the world.

This makes exaggeration more attractive and leads to less communication between

the agents. On the other hand, there is a risk effect which occurs because the expert

is no longer certain of the decision maker’s reactions to his messages. Since the expert

is risk averse, he has an incentive to report more precise messages and thus reduce

the variance of the decision maker’s actions. This effect favours communication.

6Observe that the signal is not only informative, but it is affiliated with the state of the world,
meaning that higher realizations of the signal lead to higher posterior beliefs about θ in the first
order stochastic dominance sense.

7These results are not driven by the presence of zeros in the conditional probability matrix.
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Third, I show that in some environments, the information effect dominates the

risk effect, reducing (and sometimes preventing) the communication in equilibrium.

I illustrate this result for two different models, the normal private information model

and the uniform private information model, where I derive some comparative statics

with respect to the accuracy of the signal: communication decreases with the accuracy

of the signal.

Finally, I show through the normal and uniform models, that the acquisition of

private information may lead to a decline in the welfare of both agents and hence in

those cases the decision maker should commit to acquiring no information.

The rest of the paper is organized as follows. In Section 1.2, I discuss the related

literature. In Section 1.3, I state the model and show the existence of the partition

equilibria. In Section 1.4, I analyze the communication incentives and illustrate the

welfare implications for the uniform and normal models. In Section 1.5, I relax some

of the assumptions of the model and discuss the implications of the results; and

finally, in Section 1.6, I conclude.

1.2 Related Literature

Only a few papers have studied information transmission when the decision maker is

privately informed. Two early references are Seidmann (1990) and Watson (1996)8.

They show different ways in which private information might facilitate communica-

tion. In Seidmann (1990) different types of expert share the same preferences over

actions but differ in their preferences over lotteries. By introducing private informa-

tion to the decision maker, experts can be partially ranked, whereas no information

can ever be revealed in the uninformed case. In Watson (1996) the information of

the two parties is complementary. The preferences of the two players depend on a

two dimensional state of the world, and each player receives a signal about a different

dimension. He finds conditions such that a fully revealing equilibrium exists. By

contrast, this paper suggests that when the decision maker’s information acts as a

substitute for the expert’s information, less communication arises in equilibrium.

My paper is most closely related to Chen (2010); Lai (2010) and Ishida and

Shimizu (2011). These papers introduce information to the decision maker within the

standard framework of CS. Chen (2010) studies the optimal timing of the sender’s

8Olszewski (2004) also introduces private information to the decision maker alongside two kinds of
expert; sincere non-strategic experts and experts who are exclusively concerned with being perceived
as honest. He shows that full revelation is the unique equilibrium, because the decision maker can
use her private information to cross-check the expert’s statements.
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report when the players have access to a public signal. The present paper differs from

hers on the question. She is concerned with the timing of the report and hence she

compares the equilibria which ensue if the public information was available before and

after the communication stage, whereas I compare the equilibrium of the model with

private information9 to the equilibrium of the uninformed case. In other words, the

question of this paper is whether it is worth acquiring information at all. Lai (2010)

studies communication between an expert and an amateur who knows whether the

state of the world is below or above a cutoff point which is her private information.

As in the present paper, Lai finds that the expert in the amateur model is less willing

to provide information. However, the decision maker always ex-ante benefits from

having access to the extra information. The setup of this paper allows for more flex-

ible signal structures. In particular, I am able to explore the communication as the

signals become smoothly more precise and I find that in some cases having access to

information reduces the ex-ante welfare of the decision maker. Finally, Ishida and

Shimizu (2011), analyze the case when both the expert and the decision maker have

discrete imperfect signals about a binary state of the world. They show that when

the two agents are equally informed, no information can be revealed in equilibrium

for arbitrarily small biases.

Also related to this paper are models which introduce multiple experts because

each expert represents a different source of information to the decision maker. Austen-

Smith (1993) analyzes the case of an uninformed House that refers legislation to two

expert committees (which are imperfectly informed) under open rule. He finds that

any single committee is willing to provide more information under single referral than

multiple referral. However, the information content of multiple referral is superior

to that of single referral. In Krishna and Morgan (2001a) a decision maker can

sequentially consult experts with different biases. They find that if the experts have

similar biases the decision maker cannot do better than to ignore the messages of

the most biased expert. Galeotti et al. (2009) study communication across a network

where all the agents are at the same time senders and receivers. They find that the

willingness of a player to communicate with a neighbour declines with the number

of opponents who communicates to this neighbour. In all these papers there is an

equilibrium in which the decision maker ignores the report of all except one expert,

and, as a result, consulting multiple experts cannot be detrimental. By contrast, in

the setup of the present paper, it is never rational for the decision maker to ex-post

ignore her signal and hence the welfare implications can be negative.

9Analogous to the case where the public signal arrives after the sender’s report.
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Finally there are three papers which study the effect of uncertainty (to both

agents10) on the incentives to communicate. Krishna and Morgan (2004) introduce

a jointly controlled lottery together with multiple rounds of communication in the

CS framework and show that the resulting equilibria Pareto dominate those of the

original model. Blume et al. (2007) introduce error in the message transmission. They

show that adding noise to the model almost always leads to a Pareto improvement.

Goltsman et al. (2009) study optimal mediation in communication games. They find

that mediators should optimally introduce noise in their reports because this eases the

incentive compatibility constraints of the expert. In all these papers the uncertainty is

independent of the state of the world. By contrast, I show that if instead of pure noise

the decision maker receives an informative noisy signal, the results can be reversed.

1.3 The Model

1.3.1 Setup

There are two players, an expert (E or he) and a decision maker (D or she). The

expert privately and perfectly observes the value of the state of the world θ, while

the decision maker only receives a noisy signal s ∈ R. The conditional distribution

of the signal is common knowledge, but the realization s is privately observed by

the decision maker. I will refer to θ and s as the type of the expert and the decision

maker respectively. After learning θ, the expert sends to the decision maker a costless

messagem from a message setM. The decision maker, taking into account her private

signal and the expert’s message, chooses an action y ∈ R which affects both agents’

payoffs.

The payoff functions of the players are defined by the following utility functions:

uD(y, θ) = ũD(y − θ)
uE(y, θ, b) = ũE(y − (θ + b))

where ũD and ũE are strictly concave, twice differentiable and symmetric functions

around 0. The parameter b represents the bias of the expert; given a realisation of

the state of the world θ, the expert would like the decision maker to choose action

θ + b, whereas the optimal action for the decision maker is to match the state of the

world. I will consider the case b > 0 although all the results can be replicated for

10Another branch of the literature introduces uncertainty on the preferences of the expert. See for
example Li and Madarasz (2007); Morgan and Stocken (2003); Wolinsky (2003) and Dimitrakas and
Sarafidis (2005). They find that more information can be transmitted because the decision maker
is less sensitive to the message of the expert.
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negative biases b < 0.

The state of the world is a random variable uniformly distributed on [0, 1]. I

assume that the signal and the state of the world are affiliated11, meaning that higher

realizations of s lead to higher posterior beliefs about θ in the first-order stochastic

dominance. I will further assume that, given θ, the signal which the decision maker

receives is distributed symmetrically around θ, with conditional density distribution

f(s− θ), where f(·) is symmetric around 0, single-peaked and positive everywhere.

The symmetry assumption of the payoff functions and the conditional distribution

of the signal, together with the uniform prior, simplify the analysis of the problem,

because, as will become clearer in Section 1.4, the preferences of the expert over

messages in equilibrium, depend only on the distance between the state of the world

and the states induced by the message and not on the particular values of these

variables.

I will refer to this model as the private information model and denote it by F−PI
where F refers to its signal structure.

1.3.2 Equilibrium

The equilibrium concept I consider is the Bayesian Nash Equilibrium (BNE). Given

θ, a message strategy for the expert is a probability distribution over M denoted by

q(m|θ). Due to the concavity of ũD, the decision maker has a unique preferred action

in any information set and we can restrict attention to pure strategies. Given s and

a message m, an action strategy for the decision maker is denoted by y(m, s). The

strategies (q(·), y(·)) constitute a BNE if:

1. for each θ,
∫
M q(m|θ)dm = 1, and if q(m∗|θ) > 0 then

m∗ ∈ arg maxm
∫
S
ũE(y(m, s)− (θ + b))f(s− θ)ds;

2. for each m and s, such that
∫ 1

0
q(m|t)f(s− t)dt > 0,

y(m, s) ∈ arg maxy
∫ 1

0
ũD(y − θ)g(θ|m, s)dθ, where

g(θ|m, s) = q(m|θ)f(s− θ)/
∫ 1

0
q(m|t)f(s− t)dt

Since f(·|θ) has full support for all θ ∈ [0, 1], after any possible equilibrium mes-

sage, all the receiver’s types agree about which states of the world have positive

probability. If an expert deviates pretending to be another type, the deviation will

11 For unidimensional random variables, being affiliated is equivalent to saying that the joint
density distribution is log-supermodular in (s, θ) or that the conditional density distribution f
satisfies the Monotone Likelihood Ratio Property (MLRP): f(s|θ)f(s′|θ′) > f(s|θ′)f(s′|θ) for all
s > s′, θ > θ′.
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not be discovered and the beliefs of the decision maker will be determined by Bayes’s

rule, as indicated in point (2). In particular, this implies that the Bayesian equilibria

of this game can be made perfect by specifying some beliefs for unsent messages which

replicate the beliefs after an equilibrium message; hence, perfection does not refine

the set of equilibria.12

If the signal s were independent of θ, the setup would correspond to the canonical

model of CS. However, when the signal is informative two main differences arise. First,

the expert is no longer able to perfectly forecast the reaction of the decision maker

to his message. Each message induces a lottery over actions and when the expert

decides which message to send, he is in fact comparing lotteries and not actions.

Second, since the signal depends on the state of the world, the distribution of the

lotteries depends on the expert’s type, and therefore two experts sending the same

message face different lotteries. This implies that the set of experts who prefer one

message to another does not need to form an interval as in CS13. This latter fact

makes it difficult to provide a complete characterization of the equilibria. However,

as shown below, equilibria of a special kind exist. These special equilibria share the

structure of the partition equilibria characterized by CS and have the property that

as the signal becomes less informative, they converge to the equilibria in CS. In the

remainder of the paper I focus exclusively on these equilibria.

1.3.3 Monotone Partition Equilibria

In this section I show the existence of monotone partition equilibria similar to those

characterized in CS. An equilibrium is said to be a monotone partition equilibrium if

the state space, [0, 1], can be partitioned into intervals such that all the experts with

types in a given interval use the same message strategy, which has disjoint support

from the message strategies used in other intervals. Formally:

Definition 1.3.1. An BNE equilibrium (q(·), y(·)) is a monotone partition equilib-

rium of size N, if there exists a partition 0 = a0 < a1 < ... < aN = 1 such that

12If the support of the signal varies with θ, it might be the case that an expert deviating by
sending a message which corresponded to another type would be discovered. In this case, perfection
might impose an extra restriction since some out of equilibrium beliefs need to be specified and the
beliefs should be consistent with the information revealed by the signal, i.e, it has to satisfy that if
g(θ|m, s) > 0, then f(s− θ) > 0.

13Chen (2009) in a similar setup provides an example of an equilibrium in which low and high
types pool together whereas middle types send a different message. Krishna and Morgan (2004) also
show the existence of non-monotone equilibria (Example 2) when the expert faces the uncertainty
of a jointly controlled lottery.
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q(m|θ) = q(m|θ′) if θ, θ′ ∈ (ai, ai+1)14, and if q(m|θ) > 0 for θ ∈ (ai, ai+1) then

q(m|θ′) = 0 for all θ′ ∈ (aj, aj+1) with j 6= i.

Given a monotone partition equilibrium, the only information that the decision

maker learns upon receiving a message is the interval in which the actual state of

the world lies. As a result, I consider all the equilibria with the same partition as

equivalent and with some abuse of notation I say that m ≡ [a, a] if [a, a] = cl({θ ∈
[0, 1] | q(m|θ) > 0}), where cl(A) denotes the closure of the set A.

Before turning to the characterization of monotone partition equilibria, I introduce

two further pieces of notation which simplify the exposition of the argument. First

I denote by y(a, a, s;F ) the best response of a decision maker with signal s upon

receiving [a, a]:

y(a, a, s;F ) = argmax
y

∫ a

a

ũD(y − θ)f(s− θ)dθ (1.1)

Second, I denote by UE(a, a, θ, b;F ) the expected utility of an expert with type θ and

bias b who sends message m = [a, a]:

UE(a, a, θ, b;F ) =

∫
R
ũE(y(a, a, s;F )− (θ + b))f(s− θ)ds

The following proposition establishes that only a finite number of messages can

be sent in a monotone partition equilibrium. The intuition behind this result is that

the intervals sent in equilibrium cannot be too small (except for the first one). If

the size of an interval were smaller than 2b, the expert on the lower bound of the

interval would strictly prefer all the actions induced by this message to any possible

action induced by a lower interval. By continuity, an expert with type slightly below

the lower bound of the interval would like to deviate and report that he belongs to

the interval, violating the equilibrium conditions. Since a separating equilibrium is a

partition equilibrium with an infinite number of messages, no separating equilibrium

exists under the setup of this model.15

14The definition above does not determine the strategy of boundary types θ = ai. As we will
see in the construction of the equilibria, those types are indifferent between the message strategies
of adjacent intervals, and therefore there are many strategy specifications which lead to payoff
equivalent equilibria.

15This result contrasts with the finding of Blume et al. (2007). In their setup there exist monotone
partition equilibria with an infinite (even uncountable) number of intervals. In their model the
message of the expert is lost with a fixed probability and replaced by a random message. As a result
the decision maker can rationally choose an action outside the interval induced by the expert’s
message and the argument used in Proposition 1.3.2 does not apply.
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Proposition 1.3.2. The number of intervals sent in a partition equilibrium is finite.

In particular, there is no separating equilibrium in the private information model.16

Note that Proposition 1.3.2 is true for arbitrary supermodular payoff functions

(not necessarily symmetric) and arbitrary affiliated signal structures.

As in CS, a monotone partition equilibrium is determined by a partition 0 = a0 <

a1 < ... < aN = 1 which satisfies the following arbitrage condition:

UE(ai−1, ai, ai, b;F ) = UE(ai, ai+1, ai, b;F ) (AF )

Condition (AF ) means that the boundary type ai is indifferent between sending mes-

sage mi ≡ [ai−1, ai] and message mi+1 ≡ [ai, ai+1]. In CS this condition was necessary

and sufficient to determine an equilibrium. When the decision maker has private

information correlated with the state of the world, condition (AF ) alone may not be

sufficient. The reason is that when an expert chooses between two messages, he is

not choosing between two different actions but between two different lotteries over

actions. If an expert with type ai is indifferent between mi and mi+1, he must prefer

the actions induced by mi when the realization of the signal is high, and the actions

induced by mi+1 when the realization of the signal is low. Since θ and s are affiliated,

an expert with type θ > ai allocates higher probability to high signals and as a result

he may prefer mi over mi+1.

To prevent such reversals of preferences, I impose the following condition on the

signal structure:

Assumption A1: The signal structure F satisfies
∫
|f ′(s)|ds

1−F ( 1
2

)
< bK11

ũE(0)−ũE(1+b)
, where

K11 > 0 is a constant related to the concavity of ũE.17

The ratio
∫
|f ′(s)|ds

1−F ( 1
2

)
in Assumption A1 is a measure of the precision of the signal.

Intuitively, as the signal becomes uninformative, the ratio tends to zero and as the

signal becomes perfectly informative, the ratio tends to infinity. For the particular

case of a signal distributed normally with standard deviation σ,
∫
|f ′(s)|ds = 2

σ3
√

2π

and hence the ratio decreases in σ.

Assumption A1 bounds the precision of the signal so that a change in θ does not re-

sult in a strong shift of the probabilities of the signal, ensuring that UE(ai, ai+1, θ, b;F )−
UE(ai−1, ai, θ, b;F ) is increasing in θ (see Lemma A.1.4 in Appendix A.1.2), and hence

that (AF ) is also sufficient for equilibrium.

16All the proofs are relegated to Appendix A.1
17More specifically, K11 is a strictly positive constant satisfying −(ũE1 (y)− ũE1 (y′)) ≥ K11(y− y′)

for all y, y′ ∈ [0, 1 + b]. This constant exists due to the concavity of ũE .
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Finally, to be able to make welfare comparisons between equilibria, I henceforth

assume:

Assumption A2: UE(a, a, a, b;F ) is single-peaked in a for a ≥ a.

Assumption A2 guarantees that given ai−1 ≤ ai there is at most a unique ai+1

which satisfies the arbitrage equation (AF ). It allows a stronger version of condi-

tion (M) in CS18 to be proved, which in particular ensures that there is at most

one partition of size N satisfying (AF ) and this allows comparative statics of the

equilibria.19

The following theorem characterizes the monotone partition equilibria:

Theorem 1.3.3. Under Assumptions A1 and A2, if b > 0, there exists an integer

N(b, F ) such that, for every 1 ≤ N ≤ N(b, F ):

1. there exists a unique monotone partition equilibrium characterized by the par-

tition 0 = a0 < a1 < ... < aN = 1 satisfying (AF ),

2. ai+1 − ai > ai − ai−1 for all i = 1, ..., N − 1.

Moreover, both the decision maker and the expert ex-ante prefer equilibrium partitions

with more intervals.20

Theorem 1.3.3 establishes that for each positive integer up to a finite number

N(b, F ), there exists a unique monotone partition equilibrium of that size, for which

the intervals are increasing in length. In particular, this implies that the messages

sent by the expert in equilibrium are less precise as the state of the world increases.

Finally, Theorem 1.3.3 also states that the equilibria can be Pareto ranked, and that

the equilibrium with size N(b, F ) ex-ante Pareto dominates all the others. On the

basis of this last statement, for the welfare analysis in Section 1.4, I will focus on the

equilibrium partition with the highest number of intervals.

1.4 Communication and Welfare

In this section I analyze how the access to private information affects the incentives

of the expert to disclose information.

18See Proposition A.1.6 in Appendix A.1.2.
19Observe that Assumption A2 does not depend on the equilibrium partition and hence it is an

assumption on the primitives of the model which can be checked for every particular signal structure.
20All the comparative statics with respect to the divergence of preferences b established in (CS)

can also be transferred to the private information model. Since this is not the focus of the paper I
do not state them here.
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Observe that, given the symmetric setup of the model, the decision maker in the

private information model has ex-ante the same preferences over partitions as the

uninformed decision maker has. Hence, it is meaningful to say that one partition is

more communicative than another if ex-ante the uninformed decision maker prefers

the former over the latter.

For 0 ≤ ai−1 ≤ ai ≤ ai+1 ≤ 1, denote by V (ai−1, ai, ai+1, b;F ) the difference in

expected utility to the expert with type ai between sending mi+1 = [ai, ai+1] and

mi = [ai−1, ai]:

V (ai−1, ai, ai+1, b;F ) = UE(ai, ai+1, ai, b;F )− UE(ai−1, ai, ai, b;F )

In particular, the arbitrage condition (AF ) can be written as V (ai−1, ai, ai+1, b;F ) = 0.

Proposition 1.4.1 provides a sufficient condition to order different signal structures

in terms of the communication transmitted in equilibrium. More precisely, it states

that, to determine whether one signal structure leads to more communication than

another, it is sufficient to study how the indifferent expert changes when the signal

structure changes.

Proposition 1.4.1. Suppose that F and F ′ are two signal structures satisfying the

following condition:

(C): If V (ai−1, ai, ai+1, b;F ) = 0, then V (ai−1, ai, ai+1, b;F
′) > 0.

Then there is less communication transmitted in the F ′−PI model than in the F−PI
model.

Namely, if a and a′ are two equilibrium partitions of size N of the F − PI and

the F ′ − PI models respectively, then ai > a′i for all 1 ≤ i ≤ N − 1. Moreover,

N(b, F ) ≥ N(b, F ′).

Intuitively, if V (ai−1, ai, ai+1, b;F ) > 0, the expert with type ai strictly prefers

message mi+1 to message mi. As a result, the new indifferent type a, such that

V (ai−1, a, ai+1, b;F ) = 0, would be to the left of ai, but then the new partial partition

{ai−1, a, ai+1} provides less useful information to the decision maker. The reason is

that mi+1 was larger than mi, and hence a shift of ai to the left makes the size of

the intervals more uneven. Given the concavity of the decision maker’s preferences,

partition {ai−1, ai, ai+1} is preferred to partition {ai−1, a, ai+1}, because her ex-ante

expected utility is higher under the former than under the latter.

Since the CS setup can be seen as a limiting case of the private information model

(one in which the information structure is completely uninformative), to analyze how
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the communication is affected by the acquisition of private information, Proposition

1.4.1 says that it is enough to study how the preferences over messages change for

the experts who were indifferent in the CS setup.

In order to proceed, I restrict attention to the case of quadratic-loss utilities.21

The quadratic-loss utility functions are given by:

ũD(y − θ) = −(y − θ)2

ũE(y − (θ + b)) = −(y − (θ + b))2.

Given these utilities, the decision maker’s optimal action when she receives mes-

sage m and signal s is to match her expectation about the state of the world:

y(m, s) = E[θ|m, s]. Moreover, the expected utility of an expert with type θ who

sends message m can be written as:

UE(m, θ) = −σ̂2(m, θ)− (ŷ(m, θ)− (θ + b))2 (1.2)

where ŷ(m, θ) and σ̂2(m, θ) are the expectation and the variance of the actions chosen

by the decision maker when the expert sends message m and has type θ.22 Equation

(1.2) states that the expert’s expected utility depends only on the variance of the

actions and the distance between the expert’s peak and the expected action of the

decision maker.

Denote by yCS(m) the action chosen by an uninformed decision maker upon receiv-

ing message m. The change in the expert’s expected utility due to the introduction

of private information is:

UE(m, θ)− UE
CS(m, θ) = −σ̂2(m, θ)︸ ︷︷ ︸

Risk Effect

+ (yCS(m)− (θ + b))2 − (ŷ(m, θ)− (θ + b))2︸ ︷︷ ︸
Information Effect

(1.3)

The introduction of private information has two effects on the expert’s expected

utility: an information effect and a risk effect. The information effect arises because

the signal allows the decision maker to choose better actions on average. In expec-

tation, her actions will be closer to θ than they were before. For a boundary expert,

an action closer to the actual state of the world is also an action closer to his peak.

Hence, fixing a message, the information effect has a positive impact on the expected

utility of a boundary expert. The risk effect occurs because the expert is no longer

certain of the response of the decision maker to his message. Since the expert is risk

averse, he dislikes this uncertainty and, if the message is fixed, the risk effect always

21Section 1.5 provides a discussion of the results for other symmetric preferences.
22Namely, ŷ(m, θ) =

∫
R y(m, s)f(s− θ)ds and σ̂2(m, θ) =

∫
R(y(m, s)− ŷ(m, θ))2f(s− θ)ds.
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has a negative impact in the expert’s expected utility.

I now compare the information and risk effect across messages for an expert with

type θ = ai who is indifferent between sending messages mi = [ai−1, ai] and mi+1 =

[ai, ai+1] in the CS model. If there were no divergence of preferences between the

agents (b = 0), the length of the two intervals would be the same and due to the

symmetric setup, the signal would influence the decision maker in a symmetric way

and the expert would still be indifferent between the two messages. However, the

presence of a bias b > 0 implies that mi+1 is larger than mi, and therefore the

lotteries over actions induced by these two messages are qualitatively different.

Consider first the information effect. Observe that the message sent by the expert

determines the prior of the decision maker before hearing her signal. Since message

mi+1 is larger than message mi, sending mi+1 instead of mi implies that the decision

maker will have a less precise prior about the state of the world. But a less precise

prior implies that the decision maker will rely more on her signal when updating her

posterior. In other words, the actions of the decision maker are more sensitive to

her private information the larger the sent message is. From the point of view of the

expert with type ai, it means that the expected action of the decision maker will shift

towards him by more when he sends mi+1 than when he sends mi. Hence the expert

with type ai, strictly prefers ŷ(mi+1, ai) to ŷ(mi, ai). Abstracting from risk aversion,

this result implies that the message mi+1 becomes more attractive to the expert than

the message mi. Hence, the information effect of the signal lowers the incentives of

the expert to communicate.

Proposition 1.4.2. The information effect hampers communication. Namely, if

0 ≤ ai−1 ≤ ai < ai+1 are such that the expert with type ai is indifferent between

yCS(mi) and yCS(mi+1), where mi = [ai−1, ai] and mi+1 = [ai, ai+1], then the expert

strictly prefers ŷ(mi+1, ai) to ŷ(mi, ai).

Consider now the risk effect. Intuitively, sending a larger message spreads the

decision maker’s actions across the interval, thereby increasing the variance of the

lottery. Hence the risk effect is stronger in mi+1 than in mi. Abstracting from the

information effect, a risk averse expert prefers the lower and narrower interval, easing

the communication between the agents.

Proposition 1.4.3. The risk effect eases communication. Namely, if 0 ≤ ai−1 ≤
ai < ai+1 are such that the expert with type ai is indifferent between yCS(mi) and

yCS(mi+1), where mi = [ai−1, ai] and mi+1 = [ai, ai+1], then σ̂2(mi+1, ai) >σ̂
2(mi, ai).
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Proposition 1.4.2 and 1.4.3 highlight two surprising effects of the acquisition of

private information. More accurate actions deter communication whereas adding risk

favours it. To understand these results, observe that in CS, low type experts were

deterred from sending high messages because they led to actions too far away from

their preferred actions. When private information is introduced, low type experts

know that, even if they send a high message, the action chosen by the decision

maker will be pulled towards their preferred action, because the signal received is

affiliated with the state of the world. This pulling force makes high messages more

attractive and hence, to avoid deviations, high intervals have to be even less precise in

equilibrium, leading to a loss in communication. The opposite effect arises with the

riskiness of the signal. A risk averse expert will try to balance the risk associated with

the actions of the decision maker by making the intervals more even, hence favouring

communication.

1.4.1 No Communication Results

The following results present some environments for which the introduction of infor-

mation prevents all sort of communication.

Proposition 1.4.4. For any information structure F , there exist b < 1
4

such that if

b > b, there is no communication in the F − PI model. Moreover, for any b > 0,

there exists a sufficiently precise signal structure such that there is no communication

in the private information model.

Observe that for b < 1
4

there exists an informative equilibrium in the CS model,

and hence Proposition 1.4.4 refers to situations where those equilibria are lost and

only the babbling equilibrium subsists.

The intuition behind the proof of Proposition 1.4.4 is as follows. Consider an

expert with bias b = 1
4

in the CS model. In this case the expert with type θ = 0 is

indifferent between perfectly revealing his type or pooling with the rest of the inter-

val. If the expert perfectly reveals his type, the introduction of private information

does not involve any risk or information effect, since the decision maker’s action is

independent of the signal. However, if the expert pools with the rest of the interval,

the addition of information has a positive impact on the expert’s expected utility,

because a better informed decision maker would tend to choose lower actions. In par-

ticular the information effect will dominate the risk effect and V (0, 0, 1, 1
4
;F ) > 023.

23Observe that this is the case because the expert’s preferences have the same shape as those of
the decision maker. If the risk aversion of the expert were higher than that of the decision maker
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By continuity this implies that for b sufficiently close to 1
4
, V (0, 0, 1, b;F ) > 0 and

no information can be transmitted in equilibrium. For the second statement, observe

that for any b, there is a precision of the signal structure such that the lottery over

actions induced by message [0, 1] is preferred by an expert with type θ = 0 to the

constant action y = 0. This being the case, no information can ever be transmitted

in equilibrium.

1.4.2 Welfare

We have seen that in some environments the information effect dominates the risk

effect and as a result there is less communication in equilibrium. Nevertheless, the

signal itself may provide enough information to make up for the loss of communica-

tion. Clearly, if the divergence of preferences is such that there is no communication

in the CS model (b ≥ 1
4
), private information is always welfare improving24. Sim-

ilarly, if the information is very precise, the decision maker is better off even if no

information is ever transmitted from the expert.

However, acquiring information is not always welfare improving. In what follows I

analyze two different families of signal structures: the normal family and the uniform

family. In both cases, the communication from the expert declines as the accuracy

of the signal increases. Moreover, for each family there is a range of parameters for

which increasing the accuracy of the signal reduces welfare and, strikingly, the welfare

falls below the welfare level of the uninformed decision maker.

Normal Private Information Model

Consider the case in which the signal is distributed normally around θ with variance

σ2. The parameter σ2 is a measure of the dispersion of the signal.25

To be more specific, suppose that the bias of the expert is b = 1
20

.26 For this

bias, the most informative equilibrium in the standard CS model is determined by

the following partition: {0, 2
15
, 7

15
, 1}. The expert reveals whether the state of the

world lies in [0, 2
15

], in [ 2
15
, 7

15
] or in [ 7

15
, 1], and the decision maker reacts by choosing

this result could be reversed. In Section 1.5 I provide a discussion of the role of risk aversion and I
give an example where the risk effect dominates the information effect.

24See Persico (2000) and Athey and Levin (2001). They show that for decision problems where
the signals are affiliated to the state of the world and the payoff of the decision maker satisfies
the single crossing condition in (θ, y) (see Milgrom and Shannon (1994)), the ex-ante utility of the
decision maker increases with the accuracy of the signals.

25Equivalently, 1
σ2 is a measure of the precision of the signal.

26This bias corresponds to the example illustrated in Crawford and Sobel (1982).
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the midpoint in each interval27.

In the private information model with σ = 0.3, the most informative equilibrium

is determined by the partition {0, 0.0863, 0.59, 1}. Figure 1.1 provides a graphical

illustration of the two equilibria.

0 0.133 0.466 1

(a) CS Equilibrium (b = 1
20 )

0 0.0863 0.39 1

(b) PI Equilibrium (b = 1
20 , σ = 0.3)

Figure 1.1: Monotone Partition Equilibrium in CS model and in the Normal PI model,
with b = 1

20 and σ = 0.3

To compute the loss of communication due to the introduction of the signal, I

compute the ex-ante utility of an uninformed decision maker under both partitions.

The loss of communication is EUD
CS,{0, 2

15
, 7
15
,1} − EUD

CS,{0,0.0863,0.39,1} = (−0.0159) −
(−0.0213) = 0.0054.

Figure 1.2 shows the partition equilibria as a function of the variance of the

signal. For every σ the partition can be read by tracing the horizontal line at this

level. The points of the partition correspond to the intersections with the solid lines.

The case of σ = 0.3 is depicted as an example. The horizontal line cuts the solid

lines at a1 = 0.0863 and a2 = 0.39, indicating that the partition equilibrium is

{0, 0.0863, 0.39, 1}.
From Figure 1.2 we can see that for σ < σ0 ' 0.09 no information is revealed

in equilibrium. For σ0 < σ < σ1 ' 0.193 the partition equilibrium contains only

two intervals and for σ > σ1 the partition equilibrium is formed by three intervals.

Finally, as σ increases, the equilibrium partition converges to the CS equilibrium.

Figure 1.2 suggests that the communication declines with the precision of the

signal. This comparative statics is proven in Theorem 1.4.5 for the case of the family

of uniform signals.

27It is easy to check that this in fact constitutes an equilibrium. For instance, when the expert
observes θ = 2

15 he is indifferent between reporting the first interval and the second, because they
lead respectively to actions a1 = 1

15 and a2 = 9
30 , which are equidistant to his preferred action

2
15 + 1

20 .
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a
 i

σ

Figure 1.2: Monotone partition equilibria in the Normal PI model for different vari-
ances of the signal. (b = 1

20)

Even if some communication is lost due to the introduction of the signal, the

decision maker is able to choose better actions as a result of it. The welfare ef-

fect of making more accurate decisions can be computed as the difference in the

ex-ante utility of the informed and the uninformed decision maker under the new

partition. Coming back to the example depicted in Figure 1.1, the welfare gain is

EUD
PI,{0,0.0863,0.39,1} − EUD

CS,{0,0.0863,0.39,1} = (−0.0162)− (−0.0213) = 0.0051.

The overall welfare effect of the addition of information can be computed by

combining the loss in communication with the gain in accuracy. In this particular

case the overall effect is negative: EUD
PI,{0,0.0863,0.39,1}−EUD

CS,{0, 2
15
, 7
15
,1} = (−0.0162)−

(−0.0159) = −0.0003; the decision maker would be better off if she could commit to

have no access to this additional information.

The next figure shows the ex-ante expected utility of the decision maker for dif-

ferent variances of the signal. The horizontal dashed line corresponds to the ex-ante

utility of the CS model.

As can be seen from Figure 1.3 unless the precision of the signal is sufficiently

high (σ < 0.1735), the decision maker is better off not seeking external information.

The minimum ex-ante utility is reached at σ = 0.1930 which corresponds to the case

where the partition equilibrium of the model passes from being of size 3 to size 2.

To understand why the loss in communication might outweigh the gain in infor-
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Figure 1.3: Ex-ante expected utility of the decision maker in the Normal PI model,
for different variances of the signal. (b = 1

20)

mation, it is useful to highlight two facts. First, as the signal is introduced, the largest

interval becomes even larger, whereas the smallest ones are reduced (see Figure 1.2).

The addition of information is most useful for those types lying in the big interval, but

it is precisely this interval which becomes even larger, losing informativeness. Sec-

ond, the introduction of information affects more the types determining the partition

equilibrium than the rest of the types, so the change in communication is relatively

high with respect to the overall change in welfare. To understand why this is the

case, consider an interval in equilibrium: the introduction of an informative signal

has a higher impact on welfare for those types close to the boundaries of the interval

because they generate signals further away from the midpoint of the interval, which

are the signals that lead to higher variation in the best response of the decision maker.

So the boundary experts, those who determine the change in the communication, are

the ones who are more affected by the introduction of the signal. If the signal is not

precise enough, the welfare improvement due to the addition of the signal will not be

able to outweigh the addition of noise due to the enlargement of the interval.
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The Uniform Private Information Model

Suppose now that the signals are distributed uniformly on [θ − δ, θ + δ].28 The

parameter δ plays the same role as σ in the normal example. Upon receiving a signal

s and a message m = [a, a] the decision maker’s posterior distribution of θ is uniform

on the interval [max{a, s−δ},min{a, s+δ}]29. Given these beliefs, the optimal action

for the decision maker is30:

y(a, a, s, δ) =
max{a, s− δ}+ min{a, s+ δ}

2

In this more tractable case the comparative static results which we observed for

the family of normal signals can be proven.

Theorem 1.4.5. In the Uniform Private Information model, an increase in the pre-

cision of the signal (a decrease in δ) leads to less communication in equilibrium.

Namely, if aδ and aδ
′

are two monotone partition equilibria of size N of the Fδ − PI
and Fδ′ − PI models respectively, with δ′ < δ, then aδ

′
i < aδi for all i = 1, ..., N − 1.

Moreover N(b, δ′) ≤ N(b, δ).

Theorem 1.4.5 states that the communication from the expert declines with the

accuracy of the decision maker’s information. Figure 1.4 illustrates the comparative

static results for the family of uniform signals and Figure 1.5 shows the ex-ante

expected utility of the decision maker for different precisions of the signal.

When δ ∈ [0.302, 0.343] the ex-ante welfare of the informed decision maker is

lower than the welfare when the decision maker was uninformed. These levels of δ

28All the derivations related to this section, including the proof of Theorem 1.4.5, can be found
in Appendix A.2

29Note that this signal structure does not satisfy the full support assumption. As is clear in the
example, this assumption is not necessary for the existence of the monotone partition equilibria
or for establishing its properties. However, the fact that the support of the signal varies with θ
implies that an expert pretending to have another type might be discovered and this gives rise to
more equilibria constructed by using out of equilibrium threats. For instance full revelation could
be supported in an equilibrium using the following strategies:

q(m|θ) =

{
1 if m = θ
0 otherwise

y(m, s) =

{
m if m ∈ [s− δ, s+ δ] ∩ [0, 1]
−b2 − 4δb otherwise

Here I take a mild approach because I am interested in understanding how similar signals with full
support (in which threatening with off equilibrium actions is not possible) affect the incentives to
communicate. Note as well that full revelation cannot be supported if we impose perfection and
require that out of equilibrium beliefs should be consistent with the information provided by the
signal, that is, the support of the beliefs after signal s should be a subset of [s− δ, s+ δ] ∩ [0, 1].

30All the functions previously defined will be indexed by δ to indicate the signal structure in
consideration.
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Figure 1.4: Monotone Partition equilibria in the Uniform PI model for different values
of δ. (b = 1

20)

correspond to the cases where the loss of communication is greater (see Figure 1.4).

For these values of δ, a decision maker receiving a low signal is able to reject some

high states of the world and hence the information effect in the upper interval is

substantially stronger than in the lower interval, leading to a strong decrease in the

communication, whereas the increase of welfare given the improvement of the signal is

smoother. The minimum ex-ante utility is reached at δ = 0.3182, which corresponds

to the case where there are two payoff-equivalent equilibria, one with three intervals

and one with two.

Although these results are not general, they do show that a better prepared de-

cision maker does not necessarily lead to a better outcome in equilibrium. Several

papers in the literature have suggested that more information might be worse (see,

for example, Prendergast (1993) or Aghion and Tirole (1997)). However, the forces

driving their results are completely different. Either the expert cares about his rep-

utation and hence wants to pander to what he thinks the decision maker believes,

or the decision maker’s private information reduces the incentives of the expert to

acquire information because she might overrule his proposal. In this setup, however,

there are no reputation concerns and the expert already has the information relevant

to the decision. The loss of welfare comes from the fact that private information

makes it more difficult for the expert to credibly separate low types from high types,
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Figure 1.5: Ex-ante expected utility of the decision maker in the Uniform PI model
for different dispersions of the signal. (b = 1
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because the implicit cost of exaggerating (i.e. the risk that the decision maker will

choose too high an action) is reduced by the private information.

1.5 Discussion

1.5.1 Information Acquisition

Up to now I have assumed that the decision maker had access to a free signal. Suppose

instead that the acquisition of information is costly and that the decision maker has a

quasi-linear utility in money.31 In this case the timing of the acquisition of information

matters. If the decision maker has to choose whether to acquire information or not

before she meets the expert, then the results in Section 1.4.2 suggest that the decision

maker would abstain from acquiring information unless the signal structure is precise

enough and the information is not too costly.

Suppose now that the decision maker consults the expert and after hearing his

message she decides whether or not to pay for the extra signal. In this situation it is

worth acquiring information only if the message of the expert is coarse enough. To

understand how the incentives to communicate are affected in this new framework,

31The decision maker’s utility function can be written as uD(y, θ,m) = m+ ũD(y − θ).
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consider a partition equilibria with only two intervals in the CS setup. We know that

the upper interval is larger than the lower interval. If the cost of acquiring information

is sufficiently low for the decision maker to be willing to acquire information upon

receiving any of the messages, then we are back to the private information model

studied above. If contrariwise, the information is so costly that the decision maker

never finds it profitable to acquire information, then we are in the CS framework. In

the more interesting case in which the cost of information is such that the decision

maker is willing to acquire information upon receiving the higher message but not

upon receiving the lower one, the incentives to communicate become even weaker

than with free private information. To understand why, notice that in this case the

information effects on the incentives to communicate are present only on the upper

interval. The boundary expert (in the uninformed CS model) knows that if he sends

the upper message the decision maker will acquire information and therefore make

a more accurate decision, closer to his preferences. If he sends the lower message,

there is no acquisition of information and the middle action is chosen. Clearly, the

expert prefers in this case to send the upper interval, shifting the indifferent type

even further to the left than in the private information case studied before.

1.5.2 Other Information Structures

My analysis throughout Section 1.4 used the decomposition of the incentives of the

expert to understand how the equilibria changed with the introduction of private

information. The same decomposition of the incentives could be used to understand

other communication results in the literature where the information structure of the

game is modified. Consider for example the model proposed by Blume et al. (2007),

in which the introduction of uncertainty leads to more communication in equilibrium

and higher welfare. In their model the message sent by the expert is lost with some

exogenous probability ε > 0 and in such cases the decision maker receives a random

message. The decision maker cannot distinguish between a message which has arrived

by mistake and one sent by the sender, and hence upon receiving a message the

decision maker chooses an action which is a weighted average between the ex-ante

mean and the average expert who could have sent that message; yDm = (1− ε)dm + ε1
2

where dm is the midpoint of the interval (message) sent. 32.

32In this setup, the actual message strategy has a role in determining the equilibrium. The reason
is that the message strategy affects the posterior beliefs of the decision maker on whether a certain
message has arrived by mistake. This in turn determines the weights of the weighted average that
represents her best response.
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Consider the CS equilibrium with two intervals. As in the main text we can

analyze how the incentives of the boundary expert are affected when the messages

are random with a fixed probability. Since in the CS equilibria the intervals are

increasing in length, the midpoint of the lower interval is further away from 1
2

than

the midpoint of the higher interval. Therefore, when noise is introduced, the shift

in the best response of the decision maker is higher for the lower interval than for

the higher one and the boundary expert now strictly prefers the lower interval.33

In other words, the information effect in the lower interval is stronger than in the

higher interval and this shifts the indifferent point to the right, leading to more

communication in equilibrium.34.

1.5.3 Other Preferences

In Section 1.4, I focused the analysis on the case of quadratic-loss utilities. Here I

provide some intuition on the way in which the results might change if we consider

other functional forms for the preferences of the agents. In particular, I consider the

following families of utility functions:

uD(y, θ) = −|y − θ|ρ

uE(y, θ, b) = −|y − (θ + b)|%.
where ρ, % ≥ 1. These families of utility functions were first introduced under this

context by Krishna and Morgan (2004). One can interpret ρ and % as a measure

of risk-aversion since they measure the degree of concavity of uD(·, θ) and uE(·, θ, b)
respectively. The case ρ = % = 2 is equivalent to the quadratic-loss utilities studied

before. The higher the ρ (%) the more risk averse is the decision maker (expert).

In general, when % 6= 2, the expected utility of the expert can no longer be written

simply in terms of the expectation and the variance of the decision maker’s action.

However, it is useful to think of the information and risk effect in developing an

intuition on these cases. Observe that the actions of the decision maker are completely

independent of the preferences of the expert. Hence, if we fix the preferences of the

decision maker and change the risk aversion of the expert, we are in fact comparing

two fixed lotteries from the point of view of a risk averse agent. Intuitively, as %

decreases, the expert is more tolerant of risk and the risk effect diminishes. As a

result, larger intervals become more attractive, leading to even less communication in

33Notice that there is no risk effect in this setup because the expert can perfectly forecast the
reaction of the decision maker to his message if she gets it.

34Observe that when the indifferent expert has type θ > 1
2 , the addition of noise has the opposite

effect. Hence, when for small biases, i.e., when the most informative equilibrium has several steps,
the communication implications are not so clear.
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equilibrium. In contrast, as the expert’s risk aversion increases, the risk effect becomes

larger, reducing the impact of the information effect. For high enough risk aversion,

it can even be the case that the risk effect outweighs the information effect leading to

more communication in equilibrium. Consider for example an expert with preference

parameter % = 6 and bias b = 1
4

who faces a decision maker with quadratic preferences

(ρ = 2). In the uninformed case, no information can be transmitted in equilibrium.

However, if the expert learns that the decision maker has access to a signal normally

distributed around the state of the world and with standard deviation σ = 0.5, then

his risk aversion allows him to reveal the following partition: {[0, 0.0119], [0.0119, 1]}.
In this case obviously both agents are better off by the presence of the signal.

Alternatively, we could fix the preferences of the expert and change the preferences

of the decision maker. In this case, however, a change in the preferences of the decision

maker changes the lotteries over actions and hence changes indirectly the preferences

of the expert. Intuitively, a more risk averse decision maker is less sensitive to her

private information because she dislikes the risk associated with the signal; in order

for her to choose an action below (above) the middle of the interval, she needs to

receive a lower (higher) signal than when she was less risk averse, so that she is more

certain that the true state of the world is actually low (high). In fact, an increase in

the risk aversion of the decision maker has a similar effect on her actions to a decline

in the accuracy of the signal structure. Hence, using the intuition of the comparative

statics in Section 1.4, since the decision maker reacts less to her signal, the incentives

to exaggerate are reduced and more communication arises in equilibrium.

For the case where ρ = %, namely uE(y, θ, 0) = uD(y, θ)35 the intuition is that

although an increase in risk aversion smoothes the communication between the agents,

the communication will still be worse compared to the canonical CS36. The reason

is that, as discussed in Section 1.4, the value of information for the decision maker

is bigger when her prior is less precise. A boundary expert with the same shape of

preferences as the decision maker has nearly the same preferences as the decision

maker when the state of the world is an extreme of the interval. Therefore the signal

will make it more attractive for the expert to report the higher interval leading to

less communication in equilibrium than in the CS case.

To sum up, as we increase the risk aversion of both agents the communication

between them improves, and as a result the welfare of the agents increases (as a

35This assumption was made in CS to derive the comparative statics.
36Observe that in CS, the risk aversion of the agents does not play any role when the prior

distribution is uniform in [0,1] and the preferences are symmetric, as in this model. In fact, the
equilibria in the CS are the same with any set of symmetric preferences (i.e. for any ρ, % ≥ 1).
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function of their risk aversion). This counterintuitive result was first highlighted

by Krishna and Morgan (2004), although in their case only the risk aversion of the

expert mattered because, in the absence of private information, the induced actions

were independent of the risk aversion of the decision maker. This discussion extends

their surprising conclusions to the risk aversion of the decision maker.

1.6 Conclusion

In this chapter, I analyze the strategic information transmission from an expert to

a decision maker who has access to private information. The decision maker’s infor-

mation has two opposing effects. On the one hand, it allows the decision maker to

choose better actions. On the other hand, it hampers the incentives of the expert to

communicate because it makes exaggeration more attractive. As a consequence, the

welfare of both agents might decline and hence the decision maker could benefit from

committing to acquire no extra information. I provide two different environments in

which this is the case.



Chapter 2

Handicapping Politicians: The Optimal

Majority Rule in Incumbency Elections1

2.1 Introduction

In developing countries sitting politicians often are able to exercise considerable influ-

ence over the electoral process, and so engineer re-election. This power may explain

observations of high re-election rates and voters’ desire for term limits. However in

developed countries powerful causal incumbency advantages seem to be present in

offices which have little direct control over the electoral process, and where there is

no seniority rationale for re-election (Ansolabehere and Snyder, 2002). The principal

asymmetry between incumbent and challengers seems to be just in information: that

voters are much more informed about incumbents. Cain et al. (1987) state this as

follows:

Incumbents win because they are better known and more favorably evaluated by any

wide variety of measures. And they are better known and more favorably evaluated

because, among other factors, they bombard constituents with missives containing a

predominance of favorable material, maintain extensive district office operations to

service their constituencies, use modern technology to target groups of constituents

with particular policy interests, and vastly outspend their opponents.2

This observation is difficult to reconcile with rational expectations, where extra

1This chapter draws on a joint work with Francecso Caselli, Tom Cunningham and Massimo
Morelli. The idea of the paper was motivated by Francesco Caselli and Massimo Morelli willingness
to provide a normative solution to deal with the well-documented problem of casual incumbency
advantage. Tom Cunningham and myself carried out all the analytical results and writing of this
paper with equal share; general decisions about the direction of the paper were made equally between
the four authors.

2See Cain et al. (1987) p10.
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information about the incumbent should not systematically bias voters’ beliefs.

We show in this paper that even under rational expectations incumbent power

over information can lead to a systematic bias in election, such that incumbents are

re-elected with a significantly higher probability than in the case without the ability

to manipulate the signal. Roughly, the reason is that medium-quality politicians exert

a lot of effort to send signals similar to those sent by high-quality politicians, thus

generating a skew distribution of signals. The median signal is above the mean signal,

meaning that more than 50 percent of signals lead to posterior expected quality that

is greater than the average quality, so more than 50 percent of politicians will be

re-elected.

More interestingly we show that voters can improve the efficiency of the electoral

system by handicapping the incumbent, that is by raising the threshold on expected

quality needed to win re-election. A handicap will weaken the incentive of low-quality

incumbents to exert effort, while strengthening the incentive of medium and high-

quality incumbents to exert effort. The net effect is to raise the average quality of

elected politicians.

The handicap we suggest is not time consistent, i.e. voters do not want to enforce

it ex post. We thus suggest a simple constitutional mechanism for implementation: a

supermajority rule, where incumbent politicians require a share of the vote strictly

greater than one half in order to win re-election.

In the remainder of this Introduction we discuss related empirical and theoretical

literature. Section sets up the model, and characterizes the equilibrium. For the rest

of the paper we consider a simple symmetric 3-types distribution of politician types.

Section analyzes the case of the simple majority rule. Section shows that under

the simple majority rule an incumbency advantage exists in equilibrium. Section

shows that the optimal re-election rule is a supermajority rule. Section gives an

illustrative calibration, and Section discusses related issues and implementation of

the supermajority rule.

2.1.1 Empirical Literature

The observed incumbency advantage is usually thought of as composed of a selection

effect and a causal effect. The selection effect is due to incumbents being typically

higher quality than challengers, and may be largely benign. A causal effect of incum-

bency could arise for a number of reasons, good and bad. For example, experience in

office may improve the ability of a politician, or make them more effective through

earning seniority. On the other hand, the privileges of office may allow them to
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unfairly influence the next election. The causal and selection effects are difficult to

separate, though there are some notable recent attempts.

Levitt and Wolfram (1997) compare repeated pairings of candidates for election to

the US Congress, in an attempt to control for the quality of incumbent and challenger.

They find that the winner of the previous race has on average a 4% higher vote share

in the second pairing.

Ansolabehere et al. (2000) compare county-level vote shares after redistricting

in US Congressional elections. They find that incumbents receive 4% fewer votes

in counties which have been redistricted into their constituencies, than in counties

which remained in their constituency for both elections.

Lee (2008) compares bare winners and bare losers of elections. He finds that a

party which barely wins a Congressional election has on average an 8% higher vote

share and a 35% higher probability of winning the next election.3

Supermajority rules (also called “special majority”) are common in constitutions,

for example the US Congress can bypass the US President’s veto only with a two

thirds majority (Goodin and List, 2006).4 More recently, the Turkish ruling party

narrowly missed the supermajority threshold of two thirds of the seats that would

have allowed them to change the Constitution unilaterally. However we are not aware

of any supermajority rule being used to handicap the election of incumbents in the

way that we suggest.

Finally note that although we know of no explicit incumbent supermajority rules,

a similar effect is produced by existing institutions. Constitutional term limits can

generally be overturned by an amendment, and constitutional amendments often

require a supermajority among legislators. The net effect is then something similar

to a supermajority rule on re-election. This is not uncommon in states with term

limits, see for example in Colombia in 2004 and in Algeria in 2008.

2.1.2 Theoretical Literature

The theoretical literature discusses three mechanisms related to incumbency that are

relevant to our model. The three mechanisms are (i) that re-election can function

as a reward for good behavior, (ii) that extra information about incumbents allows

signaling, and (iii) that there can be complementarities between politicians’ terms.

An early literature on re-election incentives proposes that voters motivate politi-

3Note that Lee estimates the incumbency advantage that accrues to the party, not the candidate.
4 Caplin and Nalebuff (1991) show that under certain conditions, a 64% supermajority voting

rule can eliminate intransitivities in aggregation of preferences.



Ch. 2: The Optimal Majority Rule in Incumbency Elections 40

cian effort by using re-election as a reward for good behavior (e.g. Barro (1973)).

In this kind of model a term limit would have an unambiguously negative effect on

welfare because it would disable one of the principal mechanisms by which politicians

are motivated.

A problem with models of this type is that the threat of punishment is only barely

credible. When politicians all have the same quality voters are always indifferent be-

tween the incumbent and the challenger. This indifference means that an equilibrium

in which voters punish badly behaved politicians can be subgame perfect.5 However

this indifference also means that if there exists any heterogeneity in politician talent,

then the equilibrium disappears. For forward-looking voters any difference in per-

ceived talent will dominate incentives to punish or reward sitting politicians. Voters

may in fact be partly backward looking (see Smith et al. (1994)), which would of

course complicate incentives for incumbents. We abstract away from these consider-

ations in this paper.

A second strategic aspect of incumbency exists when politicians differ in ability,

and voters observe signals related to ability when a politician is in power.6 Early

papers in this literature include Rogoff (1990), in which signaling produces a political

budget cycle.

Smart and Sturm (2006) use this type of model, a signaling model, to analyze term

limits. Their model has two types of politicians and information about the economy

which is private to the politician. Re-election incentives cause both types to ignore

their private information, for fear of being perceived as a low type. A term limit,

which removes re-election incentives, can eliminate the distortion in policy choice

and so raise welfare. Under certain parameters their model also predicts that a two-

period term limit is superior to a one-period limit, because there will be some sorting

of politicians in the first term.

Our model extends this signaling literature, and shows that it has a natural pre-

diction for a rule on vote shares.

Finally, Gerbach (2008; 2009), like us propose a supermajority rule. In Gerbach

(2008), the politician’s type is fully revealed to voters once they are elected. How-

ever low quality incumbents are sometimes re-elected because while in power they

implement policies with benefits that are contingent on re-election, thus generat-

ing complementarities between terms in office. A supermajority rule can deter such

hostage-taking policies. In an independent work, Gerbach (2009) proposes a model

5Along with many other equilibria.
6This can be seen as a reinterpretation of the intuition in Barro (1973).
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in which incumbents signal their ability with costly effort, with similar predictions

to ours. Their different model however displays a continuum of pooling and semi-

separating equilibria, and hence welfare judgments are derived under assumptions

about the likelihood distribution over equilibria. Our modeling assumptions allow us

to avoid such equilibrium selection problems.

2.2 The Model

The game is between two politicians - incumbent and challenger - and a continuum

of voters. Both incumbent and challenger are defined by their talent θ ∈ Θ. Talent

may be understood as the quality of the politician, a characteristic orthogonal to

the political space, valued by every voter in the same way7. A few examples of

what might be called talent are competency, honesty and charisma. The talents of

both politicians are drawn from the same distribution with cumulative distribution

function F (·) and mean θ̂.

The asymmetry between incumbent and challenger comes from the fact that dur-

ing his period in office the incumbent can send a message about his talent to voters.

More importantly, the incumbent can boost his message by exerting some costly ef-

fort. The message, denoted by θ̃, is an additive combination of the politician’s talent

and his effort, θ̃ = θ+ e. The cost of effort is denoted by c(·) and is incurred only by

the incumbent.8

Voters receive the message with some noise, representing the many unobservables

which contribute to political outcomes, and constrain voters’ ability to infer a politi-

cian’s quality. Both the incumbency advantage and the supermajority result can be

derived without noise, but noise eliminates pooling equilibria and hence allows us to

explore the comparative statics of the equilibria. Also, noise generates a realistically

continuous distribution of vote shares, which we use in our calibration.

To differentiate between the information sent by the incumbent and the informa-

tion received by voters, we will call message what the incumbent sends and signal

what the voters receive. The signal is equal to the original message, plus noise

s = θ̃ + ε, where ε is drawn from a continuous distribution with mean zero, symmet-

ric and single peaked density distribution function g(·) and cumulative distribution

7This concept is also called in the literature quality or valence (Ansolabehere and Snyder, 2000;
Carrillo and Castanheira, 2002; Ashworth and Bueno de Mesquita, 2008a;b).

8One might also think of the politician signaling their talent through the choice of a public
policy as in Smart and Sturm (2006). We have abstracted of this because we wanted to isolate the
informational effect of signalling and its indirect welfare implications.
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function G(·).
Note that all voters receive the same signal, i.e. the noise is common to all voters.9

However, voters differ in their preferences for the incumbent. We assume that the

utility of voter i given an incumbent with talent θ is given by:

ui(θ) = θ + ηi (2.1)

where ηi represents voter i’s relative preference for the incumbent over the challenger.

We assume that ηi is continuously distributed, with full support on the real line, with

cumulative distribution function H(·), density distribution h(·) with both mean and

median equal to 0.

This model can be seen as a reduced form of a model in which, after the incumbent

sends his message to the population, both incumbent and challenger announce their

political platforms. In any subgame perfect equilibrium of such a model, there would

be convergence of platforms to the median voter’s preferences, and hence the choice of

effort is taken as if the voters had preferences given by (2.1).10 Finally, we assume that

voters support the incumbent when indifferent, though because the noise distribution

is atomless, the probability of an indifference occurring is vanishingly small.

Politicians are only office-motivated. Being in office leads to a reward of π. Their

only cost is the cost of effort. Thus the incumbent chooses the level of effort to

maximize

V (θ, e) = πPr(reelection|θ, e)− c(e)

The game has two decision stages. In the first stage the incumbent sends a message

that the voters receive with some noise. In the second stage the voters cast their vote.

The outcome of the election depends on the votes cast and the re-election rule. We

will denote a re-election rule by q when the incumbent needs at least the fraction q

of the votes in order to be re-elected. In Section 2.3 we consider the particular case

of simple majority rule for which q = 1
2
.

Given voters’ preferences a simple majority rule is equivalent to giving all power to

the median voter, which is in turn equivalent to maximizing a utilitarian social welfare

9We discuss in footnote 17 the general effects of heterogenous information.
10There is a recent literature that focuses on the interaction between the choice of effort and the

choice of platform (see Ansolabehere and Snyder (2000); Aragones and Palfrey (2002); Carrillo and
Castanheira (2002); Ashworth and Bueno de Mesquita (2008a); Meirowitz (2008)) when there is
no asymmetry between the candidates. In some of these papers there is divergence of platforms in
equilibrium. We abstract from the possibility of divergence and we choose instead to work with a
model that corresponds to the more standard convergence outcome because the focus is not on the
interaction between valence and political competition.
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function. On the other hand, as we will discuss later in Section 2.5, a supermajority

rule is equivalent to giving all the power to a voter who is opposed to or dislikes the

incumbent. In order to be re-elected the incumbent’s talent should be high enough

to gain the support from this hostile voter.

Given a re-election rule q, an equilibrium is defined by an effort rule, eq : Θ →
[0,+∞) for the incumbent, and a voting rule, vq : R×R→ {0, 1} for the voters such

that:
(i) eq(θ) ∈ argmaxe πPrε(reelection|vq(·), θ + e, q)− c(e)
(ii) vq(s, ηi) = 1 if and only if E[θ|s, eq(·)] + ηi ≥ θ̂

(2.2)

where Prε(reelection|vq(·), θ + e, q) is the probability of re-election given the voting

rule vq(·), the message θ̃ = θ + e and the re-election rule q:

Prε(reelection|vq(·), θ + e, q) = Prε

(∫
vq(θ + e+ ε, ηi)dH(ηi) ≥ q

)
and where E[θ|s, eq(·)] is the expected talent of the incumbent given that the public

signal is s and using a posterior distribution of the incumbent’s talent consistent with

the equilibrium effort eq(·).
Finally, we will say that the noise distribution g(·) satisfies the Monotone Likeli-

hood Ratio Property (MLRP) if whenever θ̃1 > θ̃2, then g(s−θ̃1)

g(s−θ̃2)
increases in s.11 The

MLRP implies that higher signals lead to higher posterior distributions of the talent

(higher here meaning first-order stochastic dominance).

The following proposition states than in equilibrium, the incumbent is re-elected

whenever the public signal is equal to or above a certain threshold, and is not re-

elected otherwise.

Proposition 2.2.1. For any re-election rule q, if the cost of effort, c(·) is strictly

convex and the distribution of noise satisfies the MLRP, then in any equilibrium

e∗q(·) and v∗q (·), the incumbent is re-elected if and only if the public signal is above a

threshold kq, where kq is given by:

E[θ|s = kq, e
∗
q(·)] = θ̂ −H−1(1− q) (2.3)

Equation (2.3) states that the expected quality of an incumbent who sends a

signal s = kq should equal the expected quality of a challenger, minus the partisan

preference of the qth percentile voter towards the incumbent.

11This definition corresponds to the special case of the MLRP defined by Milgrom (1981) when
the signal structure is additive.
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The proof of Proposition 2.2.1 is similar to that of Theorem 1 in Matthews and

Mirman (1983) regarding limit pricing. Their setup is close to ours: a monopoly

wants to deter the entrant of a possible challenger, and they do so by lowering their

price, to signal lower profitability in the market. Analogously, a politician exerts

effort to signal their type.

We begin with two preliminary results. In Lemma 2.2.2 we show that if the cost

function is convex, the message sent by the incumbent is nondecreasing in his type.

Lemma 2.2.2. Given a re-election rule q, if c(·) is strictly convex, and eq(·) is a best

response to vq(·), then the corresponding message θ̃q(·) is nondecreasing in θ.

Proof Let θ1 < θ2, and denote θ̃q(θi) by θ̃i and Prε(reelection|vq(·), θ̃i, q) by P (θ̃i).

Since eq(·) (and therefore θ̃q(·)) is a best response to vq(·),

πP (θ̃1)− c(θ̃1 − θ1) ≥ πP (θ̃2)− c(θ̃2 − θ1)

πP (θ̃2)− c(θ̃2 − θ2) ≥ πP (θ̃1)− c(θ̃1 − θ2)

Rearranging:

c(θ̃2 − θ1)− c(θ̃1 − θ1) ≥ π(P (θ̃2)− P (θ̃1)) ≥ c(θ̃2 − θ2)− c(θ̃1 − θ2)

Since the distance between the two sets of points is the same: |(θ̃2−θ1)−(θ̃1−θ1)| =
|(θ̃2 − θ2)− (θ̃1 − θ2)|, the convexity of c(·) implies that θ̃1 ≤ θ̃2. �

In Lemma 2.2.3 we find sufficient conditions so that each voter’s best response is

a threshold rule.

Lemma 2.2.3. If θ̃(·) is increasing and g(·) satisfies the MLRP, then voter i’s best

response is a threshold rule:

v(s, ηi) =

{
0 if s < ki

1 if s ≥ ki

where ki is determined by E[θ|s = ki, eq(·)] + ηi = θ̂. Moreover, ki is decreasing in

the preference parameter ηi.

Proof If θ̃(·) is increasing in θ and g(·) satisfies the MLRP, the conditional expec-

tation of the talent is increasing in the signal received by the voter (Milgrom, 1981),

i.e., if s1<s2 then E[θ|s1, eq(·)] < E[θ|s2, eq(·)].
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Moreover, since no information is revealed from the challenger, the expected talent

of the challenger coincides with the mean of the talent distribution. Therefore, a voter

with partisan position ηi supports the incumbent if and only if:

E[θ|s, eq(·)] + ηi ≥ θ̂ (2.4)

Since the conditional expectation is increasing and continuous, there is a unique

solution ki to the equation E[θ|s = ki, eq(·)] + ηi = θ̂ and voter i follows a threshold

rule in which v(s, ηi) = 1 if and only if s ≥ ki. Finally, by the monotonicity of the

expectation, ki is decreasing in ηi. �

Now we prove Proposition 2.2.1.

Proof (Proposition 2.2.1) For any equilibrium e∗q(·) and v∗q (·), if c(·) is convex,

Lemma 2.2.2 implies that θ̃∗q(·) is nondecreasing in theta. By the MLRP this implies

that E[θ|s, eq(·)] is nondecreasing in s, and therefore v∗q (·, ηi) is nondecreasing in s.

If v∗q (·) is constant, then e∗q(·) ≡ 0 since the effort is costly and does not change the

behavior of voters. But then θ̃∗(θ) = θ is increasing in θ and Lemma 2.2.3 implies that

v∗q (·) is not constant. Therefore v∗q (·, ηi) must be a threshold rule with some threshold

ki,q. By the monotonicity of the expectation, ki,q is decreasing in ηi. Denote by

φq(·) the decreasing function such that φq(ηi) = ki,q. The set of voters that support

the incumbent given a signal s is Ss = {i : ηi ≥ ηs} where ηs = φ−1
q (s). Define

ηq = H−1(1 − q) and kq = φq(ηq). The signal s = kq is the minimal signal that

guarantees reelection under rule q. In effect if s ≥ kq then the share of votes for the

incumbent is: Pr(ηi ≥ ηs) ≥ Pr(ηi ≥ ηq) = 1−H(ηq) = q. �

Given a threshold kq, the probability of re-election for an incumbent that sends

message θ̃ is Pr(θ̃ + ε ≥ kq) = 1 − G(kq − θ̃) = G(θ̃ − kq), where the last equality

comes by the symmetry of the noise distribution.

We can now write the expected payoff of the incumbent as:

V (θ, e, q) = πG(θ + e− kq)− c(e)

then the (local) first and second order conditions for the optimal effort level, e∗q(·)
are:

πg(θ + e∗q(θ)− kq) = c′(e∗q(θ))

πg′(θ + e∗q(θ)− kq)− c′′(e∗q(θ)) < 0
(2.5)

To guarantee that the local first and second order condition are sufficient for a
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global optimum we assume throughout the paper the following condition:

inf
e
c′′(e) > π sup

ε
g′(ε) (2.6)

Condition (2.6) requires the cost function to be sufficiently convex, so that the

marginal cost cuts only once the marginal benefit.

Equation (2.5) together with the definition of the threshold (2.3), determine the

equilibrium.

Up to now we have not made any assumption on the set Θ and the cumulative

distribution of the talent F (·). For the rest of the paper we assume that the distribu-

tion of the politician talents is symmetric and has three types, i.e. Θ = {θL, θM , θH},
with θH − θM = θM − θL ≡ δ and p = Pr(θM) = Pr(θL).

The symmetry assumption is here because, following the argument of Cain et al.

(1987), we want to isolate the effect of the manipulation of the messages on the incum-

bency advantage. If the distribution of talent was skewed, for example if the median

talent was above the mean, we would expect an incumbency advantage even without

the manipulation of the messages. To see this, suppose that the voters could perfectly

learn a politician’s talent once he is in power. Then in more than 50% of elections

the voters will discover that the incumbent has greater talent than the expected tal-

ent of the challenger, and hence they will strictly prefer to keep that politician. So

more than 50% of the candidates will be re-elected. In a symmetric distribution, no

incumbency advantage can arise without manipulation of the messages.

We consider three types because it is the simplest model that is rich enough to be

able to explain all the mechanism we want to highlight. Simulations with continuous

distributions make us believe that the results are true more generally, but we leave

derivations for future work.

2.3 Simple Majority Rule

As a benchmark consider the simple majority rule q = 1
2
. Notice that given the

assumptions on the voters’ preferences for the incumbent, equation (2.3) becomes:12

E[θ|s = k∗] = θ̂ (2.7)

12For clarity we suppress reference to the effort function e∗1/2(·).
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where k∗ denotes the equilibrium threshold in the simple majority case. In other

words, the simple majority rule is equivalent to giving all the power to the median

voter, the voter that is ex-ante (before receiving the signal) indifferent between the

incumbent and the challenger. The incumbent will be re-elected if and only if this

voter believes him to have a higher than average talent.

The equilibrium for the simple majority rule has the following properties:

Proposition 2.3.1. With a simple majority rule, the equilibrium is unique. The

effort levels satisfy eM > eL = eH ≡ e∗ with e∗ = c′−1(πg(θH−θM)) and the threshold

signal is given by k∗ = θM + e∗.

Proof For clarity we omit the reference to the electoral rule on the equilibrium

variables. Given the talent distribution, upon receiving a signal s = k∗, equation

(2.7) becomes: ∑
j θjg(k∗ − θ̃j)Pr(θj)∑
j g(k∗ − θ̃j)Pr(θj)

= θM

and given Pr(θH) = Pr(θL) and θH − θM = θH − θM , it simplifies to:

g(k∗ − θ̃H) = g(k∗ − θ̃L) (2.8)

In particular, given the symmetry of the noise distribution, equation (2.8) implies

that the equilibrium threshold will be exactly half-way between the signals sent by

the high and low types incumbents:

k∗ =
θ̃H + θ̃L

2
= θM +

eH + eL
2

(2.9)

On the other hand, the first order conditions for the equilibrium effort (2.5) to-

gether with equation (2.8) imply that eH = eL. Denote by e∗ this effort level. Then

(2.9) implies k∗ = θM + e∗.

To see that eM > e∗ notice that, from the single-peakedness and symmetry of g:

πg(k∗ − θM − e∗) > πg(k∗ − θL − e∗) = c′(e∗)

that is, the marginal benefit for an incumbent with type θM of exerting effort e∗

outweighs the marginal cost of exerting this level of effort. Therefore, eM > e∗.

Finally, replacing k∗ = θM + e∗ into the first order conditions for e∗ given by
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πg(θ̃ − k∗)

θL θM θH

c′(eL) c′(eM) c′(eH)

︷ ︸︸ ︷e∗

θ̃L

︷ ︸︸ ︷e∗

θ̃H

︷ ︸︸ ︷eM

θ̃M

k∗ = θM + e∗

Figure 2.1: Equilibrium

equation (2.5), we obtain the equilibrium level e∗:

c′(e∗) = πg(δ)

where δ ≡ θH − θM = θM − θL represents the dispersion of the talent distribution13.

�

The equilibrium can be visualized in Figure 2.1. Both the talents and the mes-

sages can be read on the horizontal axis. The upward sloping lines represent the

marginal costs of effort for each type. Equilibrium messages are determined by their

intersections with the curve which represents the marginal benefit of exerting effort,

πg(θ̃−k∗). The curve’s peak is at k∗ = θM+e∗, the threshold above which incumbents

are re-elected.

The effort level e∗ is increasing in π, decreasing in the marginal cost, and decreas-

ing in the dispersion of the incumbent’s talent δ. These results are very intuitive,

a direct change in the marginal benefit or cost changes the effort level accordingly.

Moreover, if the distance between incumbents increases then it is more difficult to

fool the voters by exerting effort and therefore the marginal benefits of effort goes

down and they exert less effort.

Assuming that the noise is normally distributed with variance σ2
ε and mean zero,

we can further study how the equilibrium effort level changes with the variance of

13The distance between the talents of the incumbents is a measure of the dispersion of the distri-
bution. In fact the variance of the talents is given by: V ar(θ) = 2p(θH − θM )2 = 2pδ2
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the noise. The change in the equilibrium effort with respect to the variance of the

noise depends on the relative size of the variance of the noise and the square of the

dispersion of the incumbents:

∂e∗/∂σ2
ε < 0 if and only if σ2

ε > δ2 (2.10)

To understand this result consider the following two extreme scenarios. Suppose

that the signal is extremely noisy, then voters do not infer much from the signal and

incumbents exert very little effort. If the variance of the signal decreases making

the signal more informative, then re-election will be more responsive to the signal

received and incumbents will exert more effort. On the other hand, if the signal is

very precise, incumbents are not going to be able to fool the voters and exert little

effort. Condition (2.10) says that whether we consider the signal extremely noisy or

very precise depends on the relative variances of the two distributions.

2.4 Incumbency Advantage

One interesting feature of the equilibrium is that the incumbents with middle talent

are the ones that exert higher effort. The reason is that the equilibrium threshold is

closer to their types and hence they have greater incentive to exert effort.

This extra effort from the incumbents with middle talent implies that the distri-

bution of the messages, signals, and ultimately of expected types, will be negatively

skewed (median is above the mean) leading to our result of an incumbency advantage.

We say that there is an incumbency advantage if the expected probability of being

re-elected for an incumbent is greater than 50%.

Proposition 2.4.1. The electoral competition model with the simple majority rule

exhibits an incumbency advantage.

Proof From Proposition 2.3.1, eM > e∗. The probability of re-election for an

incumbent with talent θj that sends message θ̃j is then:

Pr(reelection | θ̃j) = Pr(θ̃j + ε > k∗) = 1−G(k∗ − θj − ej)
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The unconditional probability of re-election is therefore:

Pr(s ≥ k∗) = p(1−G(k∗ − θ̃H)) + p(1−G(k∗ − θ̃L)) + (1− 2p)(1−G(k∗ − θ̃M))

= p+ (1− 2p)(1−G(k∗ − θ̃M))

> 1
2

(2.11)

Where the second equality follows because G(k∗ − θ̃H) = 1 − G(k∗ − θ̃L) and the

inequality because eM > e∗ so θ̃M > k∗. �

Intuitively, when the median voter chooses whether to reappoint the incumbent

or not, she compares her updated belief about the talent of the incumbent with the

average talent of the challenger. In doing so, she can ignore middle type incumbents

because they have just average talent, and hence taking into account the equilibrium

messages of the incumbents, the threshold signal would be just the middle point

between the messages sent by the low and the high signals. But given that the

incumbents with middle talent exert more effort than the others, the message θ̃M will

exceed the threshold and therefore they will be re-elected more than half of the times.

Because the average re-election probability for low and high types, when combined, is

equal to exactly 50%, the total expected re-election probability will be greater than

50%.

2.5 Supermajority

In this section we consider the social planner’s problem of maximizing the total wel-

fare of the voters by choosing a re-election rule (we ignore the utility of the incumbent

when computing the social welfare). We prove that the simple majority rule is sub-

optimal and that the welfare maximizing rule must be a supermajority rule (q > 1
2
).

We proceed in two steps. First, for the simple majority rule equilibrium we show

that the voters would be better off if they could commit to a higher threshold to re-

elect the incumbent. This commitment is not credible because ex post it is efficient

to re-elect the incumbent if the updated beliefs indicate that he is above average

(i.e., if the median voter would prefer him). We then propose a way to implement

this commitment by setting a supermajority rule that takes decision power from the

median voter and gives it to a voter with a partisan position somewhat against the

incumbent.

Proposition 2.5.1. In the electoral competition model with the simple majority rule,

the welfare maximizing threshold is above the equilibrium threshold k∗.
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Proof Given a threshold k, the expected welfare can be expressed as the value of

the outside option (the expected value of a challenger, θM), plus the expected change

in value from retaining the incumbent:14

EW = θM + pPr(θ̃H + ε ≥ k)(θH − θM) + pPr(θ̃L + ε ≥ k)(θL − θM)

= θM + pδ(G(θ̃H − k)−G(θ̃L − k))
(2.12)

The optimal threshold is then determined by the first order condition:

∂EW

∂k
= pδ

(
g(θ̃H − k)(

∂eH
∂k
− 1)− g(θ̃L − k)(

∂eL
∂k
− 1)

)
= 0 (2.13)

At the equilibrium threshold, g(θ̃H − k∗) = g(θ̃L − k∗), therefore if we evaluate the

derivative (2.13) at k∗, the direct effect on welfare of a change in the threshold is zero.

However, the change in the threshold also affects the choice of effort. Recall that the

optimal level of effort given a threshold k satisfies the following first and second order

conditions:
πg(θj + ej − k) = c′(ej)

πg′(θj + ej − k)− c′′(ej) < 0
(2.14)

In particular, totally differentiating the first order condition with respect to k and

rearranging:
∂ej
∂k

=
πg′(θj + ej − k)

πg′(θj + ej − k)− c′′(ej)
(2.15)

and using the second order condition and the fact that g′(θL + eL − k∗) > 0 >

g′(θH + eH − k∗) we have that:

∂eH
∂k

∣∣∣∣
k=k∗

> 0 and
∂eL
∂k

∣∣∣∣
k=k∗

< 0

Hence, plugging this into (2.13), the indirect effect on welfare of a raise in the thresh-

old is positive. Increasing the threshold causes θH to exert more effort15 while θL will

reduce his effort, leading to more separation between the incumbents’ signals and as

a result an increase in welfare.

We have shown that welfare is improved by marginally increasing the threshold

from its Nash equilibrium level. However this is not sufficient to show that a threshold

higher than the Nash equilibrium threshold is optimal, because the welfare function

14The partisan preferences (ηi) disappear from this expression, because of their zero mean.
15A marginally higher threshold also leads the middle θM to exert more effort. To see this observe

that θM + eM − k∗ = eM − e∗ > 0 and hence g′(θM + eM − k∗) < 0 and ∂eM
∂k |k=k∗ > 0.
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eL(·) eH(·)

k∗ k
︸ ︷︷ ︸
θH − θL

Figure 2.2: Effort functions

may not be single-peaked. We therefore demonstrate below that for any threshold

k < k∗ the correspondent welfare is strictly lower than the welfare at the equilibrium

threshold k∗. To see that, first notice that given θj, the optimal effort level ej defined

by equation (2.14) is a single-peaked function of the threshold k. For a given θj, the

effort ej(·) is increasing for k < θj + c′−1(πg(0)) and decreasing otherwise. Moreover,

given equation (2.14), we have the following identity:

eL(k − (θH − θL)) ≡ eH(k)

so the optimal effort function of the low type is a horizontal shift to the left of the

effort of the high type (see Figure 2.2).

At the equilibrium threshold, eL(k∗) = eH(k∗) ≡ e∗ so eL(k∗) = eL(k∗−(θH−θL))

which implies that k∗ is on the downward-sloping part of curve eL(·) and on the

upward-sloping part of eH(·). A representation of the effort functions can be seen in

Figure 2.2.

Consider k < k∗, then eL(k) > eH(k) and hence the distance between the high

and low messages under threshold k is smaller than under threshold k∗:

θ̃H(k)− θ̃L(k) < θ̃∗H − θ̃∗L (2.16)

Notice that by the symmetry of the noise distribution, the following two remarks are

satisfied:

R1: Whenever two points are at a fixed distance h, G(x)−G(x−h) is maximized

at x = h
2
, that is, when the two points are equidistant to the mean.16

R2: Given two points equidistant to the mean, the difference in the cumulative

16To see this consider the first order condition with respect to x: g(x)− g(x− h) = 0, and by the
symmetry of g(·), this implies x = −(x− h) or x = h

2 .
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distribution is increasing in the distance between the two points:

∂

∂h

[
G(
h

2
)−G(−h

2
)

]
=

1

2
(g(

h

2
) + g(−h

2
)) > 0

We can now conclude that for any threshold k < k∗ the welfare under threshold

k is lower than under the equilibrium threshold k∗:

EW (k) = θM + pδ(G(θ̃H(k)− k)−G(θ̃L(k)− k))

≤ θM + pδ(G( θ̃H(k)−θ̃L(k)
2

)−G(− θ̃H(k)−θ̃L(k)
2

))

≤ θM + pδ(G(
θ̃∗H−θ̃

∗
L

2
)−G(− θ̃∗H−θ̃

∗
L

2
))

= EW (k∗)

where the first inequality follows from R1 and the second from R2 and (2.16). �

Proposition 2.5.1 implies that the voters would be better off if they could commit

to re-elect incumbents that have expected talent above a level which is strictly higher

than the ex-ante average talent. An increase in the threshold will cause high types

to exert more effort and low types to exert less effort. For both types their efforts

will not offset the increase in the threshold, so both will be re-elected with a lower

probability. But it is the larger fall in the probability of low-type re-election that

increases welfare. In other words a supermajority rule makes voters better off entirely

through discouraging low quality politicians from seeking re-election.

This higher threshold is not optimal ex post, because it asks the voters not to re-

elect some politicians with expected talent strictly greater than the expected talent

of the challenger. As discussed in the introduction regarding Barro (1973), it is not

clear that individual voters have access to credible commitment devices. However

committing to a higher threshold has a natural interpretation with respect to the

voters as a whole: a constitutional rule such that incumbents will only be allowed a

second term if they exceed some threshold of the vote share strictly greater than one

half, i.e. a supermajority rule.

If all voters are identical then this rule, of course, has no effect. However, if the

voters differ in their preferences for the incumbent, in the way we have assumed, then

a supermajority amendment transfers the decision power from the median voter to

a voter that is ideologically opposed to the incumbent.17 Therefore a supermajority

17Another source of voter heterogeneity may be differential information. However if agents are
rational, and there is common knowledge of rationality, then it is difficult to argue that the heteroge-
neous information will not be efficiently aggregated. Information can be indirectly passed through,
for example, opinion polls. If a voter compares her own private signal with the aggregated signals
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rule acts in effect as a commitment device that sets a higher threshold of talent for

re-election.

Proposition 2.5.2. In the electoral competition model, the welfare maximizing re-

election rule is a supermajority rule (qW > 1
2
).

Proof Given a threshold k, there is a re-election rule that implements that threshold

in equilibrium. Denote by ek(·) the optimal effort the incumbent exerts if he faces

threshold k,18 as a function of his type. We define q(k) as follows:

q(k) = 1−H(θM − E[θ|s = k, ek(·)]) (2.17)

Clearly, setting the re-election rule q = q(k) leads to the equilibrium effort

e∗q(k)(·) ≡ ek(·) and to the equilibrium threshold kq(k) = k. To prove Proposition

2.5.2 it would be sufficient to prove that q(k) is increasing in k. However this need

not be true everywhere. As the threshold gets past a certain point both high and low

types will react to an increase in the threshold by lowering their levels of effort (see

Figure 2.2), thus an increase in the threshold could correspond to a lower expected

quality from a signal sent at the threshold.

To prove the result we proceed in two steps. First we show that the equation

q(k) = 1
2

has a unique solution at k∗. Then we show that q(·) is strictly increasing

at k∗, the equilibrium threshold of the simple majority case. Since q(·) is continuous,

this implies that for any k > k∗, q(k) > q(k∗) = 1
2
.

Formally, q(k) = 1
2

if and only if E[θ|s = k, ek(·)] = θM . By equation (2.7),

k∗ satisfies E[θ|s = k∗, ek∗(·)] = θM . To see that k∗ is the unique solution to this

equation notice that if E[θ|s = k, ek(·)] = θM , it has to be the case that θ̃L(k) and

θ̃H(k) are equidistant to the threshold k. This implies that ek(θL) = ek(θH) = k−θM .

Substituting this in the first order conditions leads to ek(θL) = e∗ = c′−1(π(θH−θM))

and k = k∗.

We now show that q(k) is increasing at k∗, or equivalently, that E[θ|s = k, ek(·)]
is increasing at k∗:

∂E[θ|s = k, ek(·)]
∂k

∣∣∣∣
k=k∗

=
∂

∂k

[
(θH − θM)p[g(θ̃H − k)− g(θ̃L − k)]

p(g(θ̃H − k) + g(θ̃L − k)) + (1− 2p)g(θ̃M − k)

]∣∣∣∣∣
k=k∗

of 1000 people in an opinion poll, then the latter would seem to swamp the former. Also voters
should vote using the expectations conditional on being decisive; this force will generally make a
supermajority rule less effective (see Feddersen and Pesendorfer (1998)).

18The effort function ek(·) solves equation (2.14).
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Denoting by D the denominator of this fraction:

∂E[θ|s=k,ek(·)]
∂k

∣∣∣
k=k∗

= (θH−θM )p
D

[
g′(θ̃H − k∗)(∂eH(k∗)

∂k
− 1)− g′(θ̃L − k∗)(∂eL(k∗)

∂k
− 1)

]
> 0

where the inequality follows because D > 0, g′(θ̃H − k∗) = −g′(θ̃L − k∗) < 0 by the

equilibrium condition (11) and
∂ej(k

∗)
∂k

< 1 for j ∈ {H,L} by equation (2.15).

Therefore, denoting by kW the welfare maximizing threshold defined by equa-

tion (2.13), kW > k∗ by Proposition 2.5.1 and therefore the optimal re-election rule

q(kW ) > 1
2

is a supermajority rule. �

2.6 Calibration

In this section we do a simple calibration exercise to illustrate the magnitudes involved

in our model. We assume that the noise and preference distributions are normal. We

also assume a quadratic cost of effort function, with coefficient c
2
: c(e) = c

2
e2, and

without loss of generality we set θM = 0.

The model has five free parameters (discussed below), and we do not estimate

all those parameters. Instead we have two modest goals. First, to show that a

set of parameters which seem intuitively reasonable (to the authors at least) can

reproduce incumbency effects of the right magnitude. Second, to show that the

implications for an optimal supermajority rule and its welfare effects are also of an

intuitive magnitude.

We target the causal incumbency advantage numbers reported in Lee (2008).

That paper uses a regression discontinuity analysis on U.S. Congressional elections,

and finds that the difference in the probability of winning an election between a

marginal winner and a marginal loser (i.e., a winner or loser of the previous election)

is 35%, and that the difference in the average vote share is of 7-8%.19

The free parameters of the model are (1) the variance of the noise distribution

σ2
ε , (2) the variance of the voters’ preferences σ2

η, (3) the dispersion of the talent

distribution δ = θH − θM , (4) the probability of the high and low types p, and (5)

19These numbers correspond to the party rather than the candidate incumbency advantage and
average vote share advantage. The problem with the establishment of a candidate incumbency
advantage is that there is an endogenous attrition of candidates that distorts the results.
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the relative cost of effort is c (we normalise π = 1).20

Given the quadratic cost and the normal distributions, the equilibrium of the

model is the following:

eH = eL = e∗ = 1
cσε
φ( δ

σε
)

eM = 1
cσε
φ( eM−e

∗

σε
)

k = 1
cσε
φ( δ

σε
)

(2.18)

where φ(·) is the standard Normal density distribution.

The probability of winning for an incumbent is given by equation (2.11) and hence

the difference in the probability of winning between the incumbent and the challenger

is:

x = 2Pr(reelection)− 1 = (1− 2p)

(
1− 2Φ

(
k∗ − eM
σε

))
(2.19)

where Φ(·) is the standard Normal cumulative distribution.

Note that Lee (2008) computes the difference in the probability of winning between

a marginal winner and a marginal loser. This avoids the problem of unobserved

heterogeneity between winners and losers, if there is sufficient unpredictable noise in

votes. Posterior differences between a bare winner and loser thus must be caused by

the fact of winning or losing. In our model, all the politicians come from the same

distribution of talents and therefore they are ex-ante identical and the difference in

the probability of winning comes entirely from having been incumbent.

To compute the average vote share, note that given a signal s the share of voters

that support the incumbent is H(E[θ|s]) (see equation (2.4) for the individual voting

rule). Hence the average vote share is given by:

AV S =
∑

j∈{L,M,H}

Pr(θj)

∫
H(E[θ|s]) g(s|θ̃j)ds (2.20)

and the difference in the average vote share between the incumbent and the challenger

is

y = AV S − (1− AV S)

We choose the parameters as follows: the difference in quality between θH and

θM is δ = 1.4 (which by symmetry is also the difference between θM and θL). The

20The sufficient condition (2.6) is translated in the following restriction for the parameters:

c ≥ 1

σ2
ε

√
2π
e−

1
2
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probability of the middle type is (1 − 2p) = 0.7. The noise has standard deviation

σε = 1, and voters’ preferences have standard deviation ση = 1
2
. Finally the cost of

effort is c
π

= 1
4
. These parameters deliver an incumbency advantage matching Lee’s

estimates, with a difference in the probability of winning of 35% and a difference in

the average vote share of 7%.

We can now calculate, using equations (2.13) and (2.17), that the optimal super-

majority rule is qW = 57%. This supermajority rule then leads to a welfare increase

of 5%, by lowering the proportion of low-quality candidates who are re-elected.

2.7 Discussion

This paper suggests that if incumbents can use their term in office to influence the

voters’ perception of their ability, handicapping the incumbent by requiring a higher

vote share to be re-elected can improve welfare.

Throughout the paper we have assumed the incumbent faces only a single chal-

lenger. To implement our supermajority rule in practice we suggest a two-part ballot:

In the first part voters indicate whether they wish to retain the incumbent. In the

second part they choose their preferred challenger. This has the advantage of not

handicapping the incumbent’s party for example, the Republican incumbent can run,

and the Republicans can also field a challenger. This ballot structure has been used

in some recall elections, e.g. that used for California Governor Gray Davis in 2003.

The type of model we use (screening with noise, in a continuous typespace,

but with a discrete reward) is uncommon in the literature. As mentioned earlier,

Matthews and Mirman (1983) has the most similar model, though they do not derive

analogues of either our incumbency advantage or supermajority results. Besides limit

pricing, our approach may be fruitful in a number of other contexts in which thresh-

olds are observed, most naturally entry into jobs which require a minimum score on

some test of skill.

A useful extension would be to build a model extending over more than two peri-

ods, allowing incumbents to fight multiple elections, and perhaps finding a stationary

equilibrium. Unfortunately this is not a simple exercise because two new effects must

be modeled: first, the posterior distribution of incumbent types will become asym-

metric, through selection; second, voters must now take into account the option value

of electing a challenger.

Finally we note that the incumbency advantage and supermajority result can also

be shown to occur in a much simpler model with näıve voters. Suppose that there are
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two kinds of voters - sophisticated and näıve - and that the preferences of the median

sophisticated voter coincide with social welfare. Suppose näıve voters always vote for

the incumbent because, for example, they are irrationally influenced by advertising,

and incumbents always advertise more than challengers. In this case we would expect

an incumbency advantage equal to x% of the vote share, where x is the proportion of

voters who are näıve. Further, a supermajority handicap on the incumbent of exactly

x% would make the democratic outcome welfare maximizing. Much of the novelty of

this paper is to show that similar results hold even when voters are rational.



Chapter 3

On Strategy-proofness and Symmetric

Single-peakedness1

3.1 Introduction

Consider a society with n agents who have to collectively choose one alternative

from a given set of social alternatives. Assume that this set is endowed with a

natural strict order because alternatives have a common characteristic that makes

the comparison between pairs of alternatives meaningful and objective. For instance,

the set of alternatives may consist of physical locations (a public facility on a road or

street), properties of a political project in terms of its left-right characteristics, the

expenditure level on a public good, indexes reflecting the quality of a product, feasible

temperatures in a room and so on.2 In all these cases and in many others, this linear

order structure permits to identify the set of alternatives with a subset of the real

line. Agents have (potentially different) preferences on the set of alternatives. Black

(1948) is the first to suggest that, given the linear order on the set of alternatives,

agents’ preferences ought to be single-peaked. The preference of an agent is single-

peaked if there exists an alternative (called the top) which is strictly preferred to any

other alternative and on each side of the top the preference is strictly monotonic,

increasing on its left and decreasing on its right.3

1The work in this chapter was carried out jointly with equal share by Jordi Massó and me. The
paper is published in Games and Economic Behavior 2011 (72) 467-484.

2There is an extensive literature studying collective choice problems where the set of social
alternatives is a linearly ordered set. See Moulin (1980), for instance. This class of problems also
plays a fundamental role in Sprumont (1995) and Barberà (2001; 2010), three excellent surveys on
strategy-proofness.

3The set of single-peaked preferences is extremely large and rich; for instance, for each alternative
there are many single-peaked preferences that have as top this alternative. Moreover, no a priori
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Society would like to select an alternative according to agents’ preferences. But

since they constitute private information, agents have to be asked about them. A

social choice function on a domain of preferences requires each agent to report a

preference and associates an alternative with the reported preference profile. Hence,

a social choice function on a Cartesian product domain induces an (ordinal) direct

revelation game where each agent’s set of strategies is his set of possible preferences.

A social choice function is strategy-proof if no agent has ever incentives to strategi-

cally misrepresent his preference; in other words, truth-telling is a (weakly) dominant

strategy in the direct revelation game induced by the social choice function.

Moulin (1980) characterizes the class of strategy-proof and tops-only social choice

functions on the domain of single-peaked preferences as the set of generalized median

voter schemes.4 A generalized median voter scheme is, in general, a non-anonymous

extension of the median voter. It can be interpreted as a particular way of distributing

the power to influence the social outcome among all coalitions of agents. In addition,

Moulin (1980) also identifies the two nested subclasses of strategy-proof, tops-only

and anonymous social choice functions and strategy-proof, tops-only, anonymous and

efficient social choice functions.5 The ranges of all functions in Moulin (1980)’s char-

acterizations are closed intervals. This implies that if some alternatives were banned

or infeasible, either the social choice function would have to request from the agents

more information than just their tops, or there would be a single-peaked preference

profile and an agent with incentives to misreport his preferences.

In many applications however, the domain of preferences can be restricted even

further because the linear order structure of the set of alternatives conveys to agents’

preferences more than just an ordinal content. Often, an agent’s preference on the set

of alternatives is responsive also to the notion of distance, embedding to the preference

its corresponding property of symmetry. A single-peaked preference is symmetric if

the following additional condition holds: an alternative is strictly preferred to another

one if and only if the former is strictly closer to the top. If an indifference class

contains two alternatives then both are located in opposite sides of the top and are

restriction is imposed on how pairs of alternatives lying in different sides of the top are ordered.
Ballester and Haeringer (forthcoming) identify two properties that are both necessary and sufficient
to characterize the domain of single-peaked preference profiles.

4A social choice function is tops-only if the chosen alternative only depends on the profile of
tops. Tops-only social choice functions are especially simple in terms of the amount of information
they require about individual preferences. Ching (1997) gives an alternative description and several
axiomatic characterizations of generalized median voter schemes; in particular, Ching (1997) shows
that in Moulin (1980)’s characterization tops-onlyness can be replaced by continuity.

5A social choice function is anonymous if it is independent of the identities of the agents; it is
efficient if it always selects a Pareto optimal alternative.
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at the same distance of the top.6

To restrict further the domain of a social choice function is equivalent to shrink the

set of agents’ strategies in its induced direct revelation game. Thus, strategies that

were dominant remain dominant while strategies that were not dominant in the larger

domain may become dominant after the domain reduction. Therefore, two important

facts hold. First, any strategy-proof social choice function on a domain remains

strategy-proof on all of its subdomains. Second, a manipulable social choice function

on a domain may become strategy-proof in a smaller subdomain.7 Hence, we ask

whether the set of strategy-proof and tops-only social choice functions on the domain

of single-peaked preferences, identified by Moulin (1980) as the class of generalized

median voter schemes, becomes larger when the domain of preferences where we

want the social choice functions to operate is the subdomain of symmetric single-

peaked preferences. We answer this question affirmatively by completely identifying

the larger class of functions that emerge after restricting further the domain.

The new class of social choice functions can be described as generalized median

voter schemes disturbed by discontinuity jumps. A social choice function f in the

class coincides with a generalized median voter scheme except that at some (countable

number of) discontinuity jumps (for instance, an interval (a, b) with midpoint d),

instead of taking the value prescribed by the generalized median voter scheme, f

takes the constant value a at [a, d), either the value a or b at d and the constant value

b at (d, b]. Our description of the class makes precise that the choice of either a or b at

any of those profiles where the generalized median voter scheme would choose d must

be monotonic in order to preserve strategy-proofness of the social choice function.

We want to stress the importance for applications of admitting discontinuous

social choice functions that are non-onto because they have a disconnected range and

6The notion of symmetric single-peakedness has already been considered in the context of
strategy-proofness; for example in Border and Jordan (1983); Peters et al. (1992); Klaus et al.
(1998); Ehlers (2002); Nisan (2007); Kar and Kibris (2008); Klaus and Bochet (2010). It has also
been considered in the context of Political Economy to model voters’ preferences over policies iden-
tified with an interval; for example in McKelvey and Ordeshook (1993); Krehbiel (2006).

7Observe two things. First, this is just a possibility. For instance, for the case where the set of
social alternatives is the family of all subsets of a given set of candidates Barberà et al. (1991) show
that voting by committees is the class of strategy-proof and onto social choice functions on both, the
domain of separable preferences as well as on the subdomain of additive preferences, although the set
of additive preferences is strictly smaller than the set of separable preferences. No new strategy-proof
social choice function appears after the domain reduction in this case. Second, given a tops-only
social choice function on the domain of single-peaked preferences, the set of agents’ strategies in its
induced direct revelation game is smaller when single-peaked preferences are further restricted to be
symmetric because the fact that the rule is constant (by tops-onlyness) in a large subset of profiles
is unrelated with the fact that the set of preferences that agents may use to evaluate the outcomes
of the social choice function is smaller.
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this range can in fact be any closed subset of alternatives. Besides, this range can be

chosen beforehand. Non-onto social choice functions are indispensable for the design

of social choice functions that require that some subsets of alternatives are never

chosen due to feasibility constraints. For instance when the range of the function

has to be finite, or not all locations for a public facility are possible, or the set of

indexes reflecting the quality of a product must be disconnected, or the thermostat

controlling for the temperature in a room can not take all values and so on. In all

these cases and in many others, discontinuities can not be regarded as pathological

features of social choice functions but rather as indispensable requirements to deal

with constraints on the set of feasible alternatives to be chosen.8

There is a large literature studying strategy-proofness on domains related to

single-peakedness. Border and Jordan (1983) extend Moulin (1980)’s results to multi-

dimensional environments. One of the domains they consider is the set of quadratic

separable preferences that coincides with the domain of symmetric single-peaked pref-

erences when the number of dimensions is equal to one. However, Border and Jordan

(1983) only consider social choice functions that respect unanimity (i.e., if all agents

have the same top then the common top should be chosen). Hence, all their results

apply only to social choice functions whose ranges coincide with the set of alterna-

tives. In particular, they show that for the one-dimensional case strategy-proof social

choice functions that respect unanimity on the domain of symmetric single-peaked

preferences are uncompromising,9 and the partial converse that all uncompromis-

ing social choice functions are strategy-proof; moreover, all uncompromising social

choice functions on this domain are continuous. Nehring and Puppe (2007b;a) study

strategy-proofness in rich domains satisfying a general notion of single-peakedness

based on abstract betweenness relations. However, their richness condition explicitly

excludes as an admitted domain the set of symmetric single-peaked preferences since

it requires that for any triple of alternatives (y, x, z) with y not being between x and

z there must exist a preference relation in the domain with top on x such that z is

strictly preferred to y. Thus, their results and ours are logically unrelated.

Our result and its proof are closely related to the following papers. Theorem 3.4.2

partly retains the structure of Moulin (1980)’s characterization of strategy-proof and

tops-only social choice functions under the single-peaked domain of preferences. Our

8Barberà et al. (1997; 1998; 2005) identify subclasses of strategy-proof social choice functions
that are able to deal with constrained sets of alternatives in different environments.

9A social choice function is uncompromising if an agent’s top lies to the right (respectively, left)
of the chosen alternative x, then any change in the top which leaves it to the right (respectively,
left) of x will not affect the choice.
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result in Theorem 3.4.2 says that strategy-proof social choice functions on the sym-

metric single-peaked domain that are manipulable on the larger single-peaked domain

consists of generalized median voter schemes that are perturbed by specific disconti-

nuities. Our result is also related to Theorem 3 in Barberà and Jackson (1994) char-

acterizing all strategy-proof social choice functions on the domain of single-peaked

preferences. Their characterization includes social choice functions whose range is

not an interval; however, the characterization is open because it relies on a family

of tie-breaking rules (used to select between the two extremes of the discontinuity

jumps) that are not fully described. Our characterization is closed because it ex-

plicitly describes the exact family of admissible tie-breaking rules needed to preserve

strategy-proofness. Yet, we are able to provide this closed description because our

domain contains only symmetric preferences. The proof of our result relays at some

point on Berga and Serizawa (2000)’s characterization of all strategy-proof and onto

social choice functions on a minimally rich domain as the class of generalized median

voter schemes;10 we use their result in the easier case when the given strategy-proof

social choice function is continuous. In addition, our proof is substantially simpler

than it would have been if we were not able to use Barberà et al. (2010) result identi-

fying conditions of preference domains under which (individual) strategy-proofness is

equivalent to group strategy-proofness. Their result allows us to avoid many steps of

individual changes of preferences by instead moving simultaneously the preferences

of all members of a given coalition.

The paper is organized as follows. In Section 3.2 we present preliminary notations

and the most basic definitions. In Section 3.3 we state some previous results and give

the main definitions and intuitions in order to understand why and how the class of

generalized median voter schemes has to be enlarged in order to identify the full class

of strategy-proof social choice functions on the domain of symmetric single-peaked

preferences. In Section 3.4 we state and prove our main result characterizing the

complete class of strategy-proof social choice functions on the domain of symmetric

single-peaked preferences (Theorem 3.4.2). After presenting some preliminaries of

the proof in Subsection 3.4.2, we prove Theorem 3.4.2 in Section 3.4.3. In Section 3.5

we first state as corollaries of Theorem 3.4.2 the corresponding characterizations un-

der strategy-proofness and anonymity (Corollary 3.5.2) and under strategy-proofness,

10A domain is minimally rich if (i) it is a subset of the single-peaked domain, (ii) for each
alternative x there is a preference relation in the domain with top at x and (iii) for any pair of
alternatives x and y (x 6= y) there is a preference in the domain that strictly orders x and y and
whose top lies between x and y. Obviously, the set of symmetric single-peaked preferences is a
minimally rich domain.
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anonymity and efficiency (Corollary 3.5.3). We then argue about the importance for

applications of allowing for non-onto social choice functions which were ruled out by

the combination of strategy-proofness and tops-onlyness in Moulin (1980)’s charac-

terization under single-peaked preferences and state Corollary 3.5.4 characterizing all

strategy-proof social choice functions that are efficient relative to a given closed set

of feasible alternatives. We finish with the remark that, as the consequence of the

main result in Barberà et al. (2010), the four statements hold if we replace in them

strategy-proofness by group strategy-proofness.

3.2 Preliminary notations and definitions

Let N = {1, ..., n} be the set of agents of a society that has to choose an alternative

x from the interval [0, 1].11 Subset of agents will be denoted by capital letters (like

S) and their cardinalities by their corresponding small letters (like s). The preference

of each agent i ∈ N on the set of alternatives [0, 1] is a complete, reflexive and

transitive binary relation (a complete preorder) Ri on [0, 1]. Let R be the set of

complete preorders on [0, 1]. A preference profile R = (R1, ..., Rn) ∈ Rn is a n-tuple of

preferences. To emphasize the role of agent i or subset of agents T , a preference profile

R will be represented by (Ri, R−i) or (RT , R−T ), respectively. As usual, let Pi and

Ii denote the strict and indifference preference relations induced by Ri, respectively.

Given Ri ∈ R, the top of Ri (if any) is the unique alternative t(Ri) that is strictly

preferred to any other alternative; i.e., t(Ri)Pix for all x ∈ [0, 1]\{t(Ri)}.
Given a subset of preferences S ⊆ R, a social choice function (SCF from now

on) f on S is a function f : Sn → [0, 1] selecting an alternative for each preference

profile in Sn. We will refer to this Cartesian product set Sn (or to the set S itself)

as the domain of preferences. Given a SCF f : Sn → [0, 1], denote its range by rf ;

i.e., rf = {x ∈ [0, 1] |there exists R ∈ Sn such that f(R) = x}.
We will be interested in SCFs that induce truth-telling as a (weakly) dominant

strategy in their associated (ordinal) direct revelation game.

Definition 3.2.1. A SCF f : Sn → [0, 1] is strategy-proof if for all R ∈ Sn, all i ∈ N
and all R′i ∈ S,

f(Ri, R−i)Rif(R′i, R−i).

If f(R′i, R−i)Pif(R) we say that i manipulates f at R via R′i.

Definition 3.2.2. A SCF f : Sn → [0, 1] is group strategy-proof if for all R ∈ Sn, all

11Our results also hold for any linearly ordered metric space of alternatives. In particular, for any
set of alternatives which is a closed interval of real numbers (as well as for the set R∪ {−∞,+∞}).
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T ⊆ N and all R′T ∈ St with R′i 6= Ri for all i ∈ T ,

f(RT , R−T )Rif(R′T , R−T )

for some i ∈ T . If f(R′T , R−T )Pif(R) for all i ∈ T we say that T manipulates f at R
via R′T .

We will also consider other properties of SCFs. A SCF f : Sn → [0, 1] is anony-

mous if it is invariant with respect to the agents’ names; namely, for all one-to-one

mappings σ : N → N and all R ∈ Sn, f(R1, ..., Rn) = f(Rσ(1), ..., Rσ(n)). A SCF

f : Sn → [0, 1] is dictatorial if there exists i ∈ N such that for all R ∈ Sn, f(R)Rix

for all x ∈ rf . A SCF f : Sn → [0, 1] is efficient if for all R ∈ Sn, there is no

z ∈ [0, 1] such that, for all i ∈ N , zRif(R) and zPjf(R) for some j ∈ N .12 A SCF

f : Sn → [0, 1] is unanimous if for all R ∈ Sn such that t(Ri) = x for all i ∈ N ,

f(R) = x. A SCF f : Sn → [0, 1] is onto if for all x ∈ [0, 1] there is R ∈ Sn such

that f(R) = x ( i.e., rf = [0, 1]). A SCF f : Sn → [0, 1] is tops-only if for all

R,R′ ∈ Sn such that t(Ri) = t(R′i) for all i ∈ N , f(R) = f(R′). Let S ⊆ R be any

subset of preferences with the property that for each x ∈ [0, 1] there exists at least

one preference Ri ∈ S such that t(Ri) = x. Then, Sn is called a rich domain and

with some abuse of notation, given a tops-only SCF f : Sn → [0, 1] we will refer to it

by its corresponding voting scheme f : [0, 1]n → [0, 1].

The version of the Gibbard-Satterthwaite Theorem when the set of alternatives is

the interval [0, 1] states that a SCF f : Rn → [0, 1], with #rf 6= 2, is strategy-proof if

and only if it is dictatorial (see Barberà and Peleg (1990)). An implicit assumption of

the Gibbard-Satterthwaite Theorem is that the domain of the SCF is universal: the

SCF operates on all preference profiles, because all of them are reasonable. However,

for many applications, a linear order structure on the set of alternatives naturally

induces a domain restriction in which there always exists a top and at each of the

sides of the top the preference is strictly monotonic.

Definition 3.2.3. A preference Ri ∈ R is single-peaked if:

(1) there exists the top t(Ri) of Ri and

(2) for all x, y ∈ [0, 1] such that y < x ≤ t(Ri) or t(Ri) ≤ x < y, xPiy.

Let SP be the set of single-peaked preferences on [0, 1]. Observe that, given a

single-peaked preference Ri ∈ SP , yPix may hold even if |t(Ri)− x| < |t(Ri)− y|;
but then, x and y are necessarily located in different sides of the top t(Ri). Often,

the linear order structure of the set of alternatives and a distance conveys to the

12In Section 3.5.2 we will define the notion of efficiency relative to a subset of alternatives A ⊆ rf
by replacing the above condition “there is no z ∈ [0, 1]” by “there is no z ∈ A”.
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preference a symmetric property around the top (coming for instance, from a location

interpretation of the set of alternatives) that naturally induces the restriction that

preferences respond to the distance as follows.

Definition 3.2.4. A preference Ri ∈ R is symmetric single-peaked if:

(1) there exists the top t(Ri) of Ri and

(2) for all x, y ∈ [0, 1], xPiy if and only if |t(Ri)− x| < |t(Ri)− y|.

Obviously, a symmetric single-peaked preference is single-peaked. Let SSP be

the set of symmetric single-peaked preferences on [0, 1]. Given any alternative x ∈
[0, 1], there is a unique symmetric single-peaked preference Ri with its top t(Ri) = x

(SSP is a rich domain). Hence, there is a one-to-one mapping between the set of

symmetric single-peaked preferences SSP and the set of alternatives [0, 1]. Thus,

we will use ti ∈ [0, 1] to identify the (unique) Ri ∈ SSP such that t(Ri) = ti and

t = (t1, ..., tn) to denote the corresponding symmetric single-peaked preference profile

R = (R1, ..., Rn) such that t(Ri) = ti for all i ∈ N . Note that, by this one-to-one

identification, any SCF f : SSPn → [0, 1] is tops-only. Thus, we will also denote

a SCF f : SSPn → [0, 1] by its corresponding voting scheme f : [0, 1]n → [0, 1].

Following Berga and Serizawa (2000) a subset S ⊆ SP is a minimally rich domain if

it is rich and for any pair of alternatives x, y ∈ [0, 1], x 6= y, there exists Ri ∈ S such

that xPiy and t(Ri) ∈ (min{x, y},max{x, y}). Observe that SSPn is a minimally

rich domain.

3.3 Previous results and main intuition

3.3.1 Previous results

Moulin (1980) characterizes the family of strategy-proof and tops-only SCFs on the

domain of single-peaked preferences as well as its anonymous subfamily.13 The two

characterizations are useful to develop helpful intuitions to understand our charac-

terization of strategy-proof SCFs (and its anonymous subfamily) on the domain of

symmetric single-peaked preferences. To state them, we need to define the median of

an odd set of numbers and the notion of a monotonic family of fixed ballots. Given a

set of odd real numbers {x1, ..., xK}, define its median as med{x1, ..., xK} = y, where

y is such that #{1 ≤ k ≤ K | xk ≤ y} ≥ K
2

and #{1 ≤ k ≤ K | xk ≥ y} ≥ K
2

; ob-

serve that since K is odd the median belongs to the set {x1, ..., xK} and it is unique.

13Moulin (1980) also characterizes the subfamily of strategy-proof, tops-only, anonymous and
efficient SCFs on the domain of single-peaked preferences. See Corollary 3.5.3 in Section 3.5 for the
characterization of the same class of SCFs on the domain of symmetric single-peaked preferences.
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A collection {pS}S∈2N is a monotonic family of fixed ballots if pS ∈ [0, 1] for all

S ∈ 2N and T ⊂ Q implies pQ ≤ pT .

Proposition 3.3.1 (Moulin, 1980). A SCF f : SPn → [0, 1] is strategy-proof, tops-
only and anonymous if and only if there exist n+1 fixed ballots 0 ≤ pn ≤ ... ≤ p0 ≤ 0
such that for all R ∈ SPn,

f(R) = med{t(R1), ..., t(Rn), pn, ..., p0}.

Proposition 3.3.2 (Moulin, 1980). A SCF f : SPn → [0, 1] is strategy-proof and
tops-only if and only if there exists a monotonic family of fixed ballots {pS}S∈2N such
that for all R ∈ SPn,

f(R) = min
S∈2N

max
i∈S
{t(Ri), pS}.

The SCFs identified in Propositions 3.3.1 and 3.3.2 are called median voter schemes

and generalized median voter schemes, respectively. A simple way of interpreting

them is as follows. Each generalized median voting scheme (and its associated mono-

tonic family of fixed ballots) can be understood as a particular way of distributing

the power among coalitions to influence the social choice. To see that, take an arbi-

trary coalition S and its fixed ballot pS. Then, coalition S can make sure that, by

all of its members reporting a top alternative below pS, the social choice will be at

most pS, independently of the reported top alternatives of the members of the com-

plementary coalition.14 An alternative way of describing this distribution of power

among coalitions is as follows. Fix a monotonic family of fixed ballots {pS}S∈2N (i.e.,

a generalized median voter scheme) and take a vector of tops (t(R1), ..., t(Rn)). Start

at the left extreme of the interval and push the outcome to the right until it reaches

an alternative x for which the following two things happen simultaneously: (i) there

exists a coalition of agents S such that all its members have reported a top alter-

native below or equal to x (i.e., t(Ri) ≤ x for all i ∈ S) and (ii) the fixed ballot

pS associated to S is located also below x ( i.e., pS ≤ x). Median voter schemes

are the anonymous subclass of generalized median voter schemes. Hence, the fixed

ballots of any two coalitions with the same cardinality of any anonymous generalized

median voter scheme are equal. From a monotonic family of fixed ballots {pS}S∈2N

associated to an anonymous generalized median voter scheme f we can identify the

n+ 1 ballots pn ≤ pn−1 ≤ ... ≤ p0 needed to describe f as a median voter scheme as

follows: for each 0 ≤ s ≤ n, ps = pS for all S ∈ 2N such that #S = s. Moreover, if n

is odd the (ordinary) median voter is obtained by choosing pn = ... = pn+1
2

= 0 and

14See Barberà et al. (1997) for a similar interpretation for the case of a finite number of ordered
alternatives.



Ch. 3: On Strategy-proofness and Symmetric Single-peakedness 68

pn+1
2
−1 = ... = p0 = 1 since for any R ∈ SPn,

med{t(R1), ..., t(Rn), pn, ..., p0} = med{t(R1), ..., t(Rn), 0, ..., 0︸ ︷︷ ︸
n+1
2
−times

, 1, ..., 1︸ ︷︷ ︸
n+1
2
−times

}

= med{t(R1), ..., t(Rn)}.

Finally, the SCF f where agent j ∈ N is the dictator (i.e., for all R ∈ SPn, f(R) =

t(Rj)) can be described as a generalized median voter scheme by setting pT = 0 for

all T ⊂ N such that j ∈ T and pS = 1 for all S ⊂ N such that j /∈ S. Then, for

any R ∈ SPn, max{t(Rj), p{j}} = t(Rj) , for any T ⊂ N such that j ∈ T , t(Rj) ≤
maxi∈T{t(Ri), pT} and for any S ⊂ N such that j /∈ S, maxi∈S{t(Ri), pS} = 1. Thus,

minS′∈2N maxi′∈S′{t(Ri′), pS′} = t(Rj).

Moulin (1980) also shows that the class of group strategy-proof and tops-only

SCFs on the domain of single-peaked preferences coincides with the set of generalized

median voter schemes. From the main result in Barberà et al. (2010) we can conclude

that any strategy-proof SCF on the domain of symmetric single-peaked preferences

is group strategy-proof as well. Since we will later use this fact we state it here as a

remark. 15

Remark 3.3.3 (Barberà, Berga and Moreno, 2010). Let f : SSPn → [0, 1] be a
strategy-proof SCF. Then, f : SSPn → [0, 1] is group strategy-proof.

To see that in the statements of Propositions 3.3.1 and 3.3.2 tops-onlyness does

not follow from strategy-proofness consider the SCF f : SPn → [0, 1] where for all

R ∈ SPn,

f(R) =

{
0 if #{i ∈ N | 0Ri1} ≥ #{i ∈ N | 1Pi0}
1 otherwise.

(3.1)

Notice that f is strategy-proof and anonymous but it is not tops-only. It also violates

efficiency, unanimity and ontoness. In the last section of the paper we will describe

how our characterization includes this class of SCFs on the domain of symmetric

single-peaked preferences.

3.3.2 Main intuition and definitions

15Barberà et al. (2010) give sufficient conditions defining domains of preferences under which
strategy-proofness is equivalent to group strategy-proofness. The domain of symmetric single-peaked
preferences satisfies these sufficient conditions.
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Consider Propositions 3.3.1 and 3.3.2 for the simplest case where n = 1.16 Figure 3.1

depicts the voting scheme f : [0, 1] → [0, 1] of a strategy-proof and tops-only SCF

f : SP → [0, 1] with the two associated fixed ballots 0 < p1 < p0 < 1. Observe

that for any pair of fixed ballots 0 ≤ p1 ≤ p0 ≤ 1 the corresponding voting scheme

f : [0, 1] −→ [0, 1] is always increasing (i.e., 0 ≤ x < y ≤ 1 implies f(x) ≤ f(y)),

continuous and rf = [p1, p0]. For any n ≥ 1, a voting scheme f : [0, 1]n −→ [0, 1] is

increasing if f(t) ≤ f(t′) for all t, t′ ∈ [0, 1]n such that ti ≤ t′i for all i ∈ N .

t
0

p1

p0

f(t)

p1 p0 1

1

0

Figure 3.1: Voting scheme of a strategy-proof and tops-only SCF on SP, for n = 1
and two fixed ballots 0 < p1 < p0 < 1.

More generally, let S be a subset of SP . A SCF f : Sn → [0, 1] is increasing if

f(R) ≤ f(R′) for all R,R′ ∈ Sn such that t(Ri) ≤ t(R′i) for all i ∈ N . By Proposition

3.3.2 the following remark holds.

Remark 3.3.4. Let f : SPn −→ [0, 1] be a strategy-proof and tops-only SCF. Then,
its corresponding voting scheme f : [0, 1]n −→ [0, 1] is increasing and continuous.

Lemma 3.3.5 below states that, for any n ≥ 1, any strategy-proof SCF is increasing

on the domain of symmetric single-peaked preferences (observe that tops-only is not

required explicitly since for each x ∈ [0, 1] there exists a unique Ri ∈ SSP such that

t(Ri) = x).

Lemma 3.3.5. Let f : SSPn → [0, 1] be a strategy-proof SCF. Then, f is increasing.

Proof The statement follows from the iterated application of Claim A.

16When n = 1 anonymity is vacuous. Indeed, we can uniquely identify the two fixed ballots of
the propositions as p1 = p{1} and p0 = p∅.
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Claim A Let f : SSPn → [0, 1] be a strategy-proof SCF. Let t, t′ ∈ SSPn be such

that for some i ∈ N , ti < t′i and t−i = t′−i . Then, f(t) ≤ f(t′).

Proof of Claim A Assume otherwise; that is, there exist t, t′ ∈ SSPn and i ∈ N
such that

ti < t′i, (3.2)

t−i = t′−i and f(t′) < f(t). We distinguish among six possible cases. The first three

cases (i) f(t′) < f(t) ≤ ti < t′i, (ii) ti ≤ f(t′) < f(t) ≤ t′i and (iii) f(t′) < ti ≤ f(t) ≤
t′i contradict strategy-proofness of f since in all three cases i manipulates f at t′ via

ti. The two cases (iv) ti < t′i ≤ f(t′) < f(t) and (v) ti ≤ f(t′) ≤ t′i ≤ f(t) contradict

strategy-proofness of f since in both cases i manipulates f at t via t′i. The remaining

case is (vi) f(t′) ≤ ti < t′i ≤ f(t). Since ti, t
′
i ∈ SSP and f is strategy-proof,

f(t)− ti ≤ ti − f(t′)

t′i − f(t′) ≤ f(t)− t′i.

Adding up,

f(t)− ti + t′i − f(t′) ≤ ti − f(t′) + f(t)− t′i
t′i − ti ≤ ti − t′i

t′i ≤ ti,

a contradiction with (3.2). �

We have shown that the monotonicity of strategy-proof SCFs is preserved when we

restrict the domain of single-peaked preferences to be symmetric. However, continuity

(of its corresponding voting scheme) does not follow from strategy-proofness and tops-

onlyness in this smaller domain. Indeed, a special class of discontinuities may arise.

It is very easy to understand why when n = 1. First, take any τ, δ ∈ (0, 1) such that

δ ≤ min{τ, 1− τ} and define the SCFs f− : SSP −→ [0, 1] and f+ : SSP −→ [0, 1]

where for each ti ∈ SSP ,

f−(ti) =

{
τ − δ if ti ≤ τ

τ + δ if τ < ti

and

f+(ti) =

{
τ − δ if ti < τ

τ + δ if τ ≤ ti.

In Figure 3.2 we depict f−. Both f− and f+ are strategy-proof on the domain of
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symmetric single-peaked preferences. At any ti ∈ SSP such that either ti > τ or

ti < τ agent i can not manipulate them. Let ti ∈ SSP be such that ti = τ. Then,

(τ − δ)Ii(τ + δ) since (τ − δ) and (τ + δ) are at the same distance δ to τ. The function

f− : [0, 1] −→ [0, 1] is left-continuous while the function f+ : [0, 1] −→ [0, 1] is right-

continuous.17 Observe that neither f− nor f+ are strategy-proof on the domain of

single-peaked preferences since, for instance, for τ = 1/2, δ = 1/4 and any Ri ∈ SP
such that t(Ri) = 3/8 and 3/4Pi1/4 agent i manipulates f− and f+ at Ri via any R′i

such that t(R′i) = 7/8 since f−(R′i) = f+(R′i) = 3/4Pi1/4 = f+(Ri) = f−(Ri).

t

f−(t)

0
0

τ − δ

τ + δ

τ 1

1

Figure 3.2: A discontinuity that preserves strategy-proofness on SSP: f−.

More generally, a strategy-proof SCF f : SSP −→ [0, 1] could have a countable

number of discontinuities as long as the midpoint of each discontinuity jump is the

discontinuity point itself; namely, for the point d ∈ [0, 1] where f is discontinuous at

d,

d =
lim
x→d−

f(x) + lim
x→d+

f(x)

2

must hold, otherwise, f is not strategy-proof. Thus, discontinuity jumps have to be

symmetric around the discontinuity point.

As we will show in Section 3.4, the class of strategy-proof SCFs on the domain of

symmetric single-peaked preferences is the class of generalized median voter schemes

identified by Moulin (1980) plus the SCFs obtained after perturbing each generalized

17A function g : [0, 1] −→ [0, 1] is left-continuous (respectively, right-continuous) if for all x ∈
[0, 1] and for any sequence {xm}m∈N such that xm ≤ x (respectively, xm ≥ x) for all m ∈ N,
{xm}m∈N −→ x implies {g(xm)}m∈N −→ g(x).
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median voter scheme by admitting these very particular kind of discontinuities. We

will call them disturbed minmax. Formally,

Definition 3.3.6. Let {pS}S∈2N be a monotonic family of fixed ballots. A collec-
tion of open intervals I = {Im}m∈M , where M is an indexation set, is a family of
discontinuity jumps compatible with {pS}S∈2N if:

(1) M is countable,

(2) for all m ∈M , Im = (am, bm) ⊂ [pN , p∅],

(3) for all m,m′ ∈M such that m 6= m′, Im ∩ Im′ = ∅,
(4) for all S ∈ 2N , pS /∈

⋃
m∈M

Im.

Given a family of discontinuity jumps I = {Im}m∈M we denote the midpoint of

each open interval Im = (am, bm) by dm = am+bm
2

and we preliminary perturb the

identity function as follows.

Definition 3.3.7. Given a family of discontinuity jumps I = {Im}m∈M , the cor-
responding perturbation function ΠI : [0, 1] → [0, 1] is defined as follows: for each
x ∈ [0, 1],

ΠI(x) =


x if x /∈

⋃
m∈M

Im

am if x ∈ (am, dm]
bm if x ∈ (dm, bm).

(3.3)

Let I be a family of discontinuity jumps compatible with the monotonic family

of fixed ballots {pS}S∈2N . A possible perturbation of the generalized median voter

scheme associated to {pS}S∈2N that preserves its strategy-proofness in the symmetric

single-peaked domain is as follows: for each t = (t1, ..., tn) ∈ SSPn,

f(t1, ..., tn) = ΠI(min
S∈2N

max
i∈S
{ti, pS}).

We will show that these perturbed functions (of generalized median voter schemes)

are the basis to characterize the class of all strategy-proof SCFs on the domain of

symmetric single-peaked preferences.

Figure 3.3 illustrates the perturbation for the case n = 1, M = {m} and I =

{Im = (am, bm)}; i.e., f(t) = ΠI(med{t, p1, p0}).
Notice that ΠI arbitrarily assigns the value am to the point dm. If instead

ΠI(dm) = bm, the perturbed median voter scheme would still be strategy-proof. When

n = 1, there are just two ways of perturbing the generalized median voter scheme

at each discontinuity jump while preserving its strategy-proofness. When n > 1

the process of assigning values to the discontinuity points in a way that maintains

strategy-proofness is more complex.
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f(t)

t
0

0

p1

am

p1 p0

bm

p0

dmam bm 1

1

Figure 3.3: A strategy-proof SCF for n = 1 and M = {m} and Im = (am, bm).

Figure 3.4 illustrates the perturbation of an anonymous SCF for the case n = 2,

M = {m}, I = {Im} and 0 < p2 < am < dm < bm < p1 < p0 < 1; i.e., f(t1, t2) =

ΠI(med{t1, t2, p2, p1, p0}). The tops of the two agents are measured on the axes and in

bold-italic is represented the value of the SCF in each region. The bold line indicates

the discontinuity points of the SCF.

It is easy to see that if ΠI had assigned the value bm, instead of am, to dm the per-

turbation of the generalized median voter scheme would still have remained strategy-

proof on the domain of symmetric single-peaked preferences. But now there are

more ways of assigning values to the discontinuity points that preserve the strategy-

proofness of f . For the particular case depicted in Figure 3.4, the SCF would have

remained strategy-proof and anonymous if it had assigned the value am to the points

in the set B1 = {(t1, t2) ∈ [0, 1]2 | 0 ≤ t1 < dm and t2 = dm}, as well as to the

points in the set B2 = {(t1, t2) ∈ [0, 1]2 | t1 = dm and 0 ≤ t2 < dm}, whereas it had

assigned bm to the point (dm, dm) . Actually, if anonymity was not required then it

could also have assigned the value am to the points in B1 and bm to the rest of points

in B2 ∪ {(dm, dm)}. However assigning the value am to the point (dm, dm) and bm to

the rest of points in B1 ∪ B2 would violate strategy-proofness because at any profile

(t1, dm) with 0 < t1 < dm agent 1 could manipulate the SCF via t′1 = dm.

Intuitively, the perturbation of the generalized median voter scheme should pre-

serve the increasing monotonicity of the SCF; otherwise, some agent could manipulate

it at some profile. We next formalize all these possibilities.

Consider a generalized median voter scheme with its associated monotonic family

of fixed ballots {pS}S∈2N . Let I = {Im}m∈M be a family of discontinuity jumps
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t(R1)
0

0

t(R2)

p2

p2

p2

p1

p1

p1

p1

t(R1)

t(R2)

t(R1)

t(R2)

t(R1)

t(R2)

p0

p0

p0

am

am

am

bm

bm

bm

dm

dm 1

1

Figure 3.4: An anonymous and strategy-proof SCF for n = 2, M = {m}, I = {Im}
and 0 < p2 < am < dm < bm < p1 < p0 < 1.

compatible with {pS}S∈2N and assume M 6= ∅. Fix m ∈M and define

Dm = {t = (t1, ..., tn) ∈ SSPn | min
S∈2N

max
i∈S
{ti, pS} = dm};

namely, Dm is the set of symmetric single-peaked preference profiles at which the

generalized median voter scheme will select dm and thus the corresponding pertur-

bation function ΠI will generate a discontinuity point. We refer to any set Dm as a

discontinuity set. We want to determine the shape of the discontinuity sets because,

in order to maintain strategy-proofness, we must preserve the increasing monotonic-

ity of the function. To do that we need to track the agents with tops strictly below,

equal and strictly above dm.

Note that, since no fixed ballot belongs to any discontinuity jump, if t ∈ Dm then

there is at least one agent i ∈ N such that ti = dm.

For each t ∈ Dm define the vector of extreme votes evm(t) = (evm1 (t), ..., evmn (t)) ∈
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{0, dm, 1}n, where for each i ∈ N ,

evmi (t) =


0 if 0 ≤ ti < dm

dm if ti = dm

1 if dm < ti ≤ 1.

The vector evm(t) describes at the profile t the location of the top of each agent

relative to dm (0 if it is strictly below, 1 if it is strictly above and dm if it is ex-

actly located at dm). Let EV (Dm) denote the set {evm(t) | t ∈ Dm}. Namely,

the set EV (Dm) describes all the extreme votes at which dm is chosen by the gen-

eralized median voter scheme associated to the monotonic family of fixed ballots

{pS}S∈2N . Notice that since minS∈2N maxi∈S{ti, pS} = dm, if we reallocate the tops

below dm to 0 and the tops above dm to 1, the minmax is not affected. Therefore,

minS∈2N maxi∈S{ti, pS} = dm = minS∈2N maxi∈S{evmi (t), pS}.
We now turn to describe how strategy-proof SCFs on the symmetric single-peaked

domain may choose between am and bm at those profiles that induce a discontinuity

at dm = am+bm
2

. Define the preorder � on Rn as follows: for all x, x′ ∈ Rn,

x � x′ ⇔ xi ≤ x′i for all i ∈ {1, ..., N}

and, given m ∈M , denote the restriction of � on the set EV (Dm) by �m . Observe

that the natural preorder � on Rn induces an incomplete, reflexive and transitive

binary relation �m on EV (Dm) with the property that êvm �m evm if and only if

evm represents a shift to the right of some of the extreme votes of êvm. Thus, �m
can be read as the relation “to be more rightist than”.

Let Ym be a non-empty subset of EV (Dm). Denote by Xm = U(Ym) the upper

contour set of Ym (according to �m) as

Xm = U(Ym) = {evm ∈ EV (Dm) | êvm �m evm for some êvm ∈ Ym}.

By convention, set U(∅) = ∅. Now, given Xm ⊆ EV (Dm) with the property that

Xm = U(Xm), define gXm : Dm −→ {am, bm} as follows: for every t ∈ Dm,

gXm(t) =

{
bm if evm(t) ∈ Xm

am otherwise.

The functions gXm cover all different ways of assigning values am and bm to the

preference profiles that generate a discontinuity point at dm preserving the monotonic-

ity of the perturbation. For each particular m ∈ M there are many such functions
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because there are many subsets Xm ⊆ EV (Dm) with the property that Xm = U(Xm).

Given a family of discontinuity jumps I = {Im}m∈M we say that {Xm}m∈M is a family

of tie-breaking sets of M if for all m ∈M , Xm ⊆ EV (Dm) and Xm = U(Xm).

3.4 Characterization

We are now ready to define disturbed minimax SCFs and state and prove that they

constitute the class of all strategy-proof SCFs on the domain of symmetric single-

peaked preferences.

3.4.1 Definition and statement

Definition 3.4.1. A SCF f : SSPn −→ [0, 1] is a disturbed minmax if there exist:

(1) a monotonic family of fixed ballots {pS}S∈2N ;

(2) a family of discontinuity jumps I = {Im}m∈M compatible with {pS}S∈2N ; and

(3) a family of tie-breaking sets {Xm}m∈M of M

such that, for all t = (t1, ..., tn) ∈ SSPn,

f(t) =

 ΠI(min
S∈2N

max
i∈S
{ti, pS}) if min

S∈2N
max
i∈S
{ti, pS} 6= dm for all m ∈M

gXm(t1, ..., tn) if min
S∈2N

max
i∈S
{ti, pS} = dm for some m ∈M.

(3.4)

Theorem 3.4.2. A SCF f : SSPn −→ [0, 1] is strategy-proof if and only if it is a
disturbed minmax.

Before moving to the proof of Theorem 3.4.2 consider again the SCF f defined in

(3.1) but restricted to the domain of symmetric single-peaked preferences, where for

all R ∈ SSPn,

f(R) =

{
0 if #{i ∈ N | 0Ri1} ≥ #{i ∈ N | 1Pi0}
1 otherwise.

Observe that for any Ri ∈ SSP , 0Ri1 if and only if t(Ri) ≤ 1
2
. It is easy to see that in

the domain of single-peaked preferences f is strategy-proof and anonymous but it is

not tops-only. Hence, while it is excluded in Moulin (1980)’s characterization under

the domain of single-peaked preferences stated above as Proposition 3.3.2, it has

the following representation as a disturbed minmax under the domain of symmetric

single-peaked preferences. Its family of monotonic fixed ballots is

pS =

{
0 if #S ≥

⌈
n
2

⌉
1 if #S <

⌈
n
2

⌉
,



Ch. 3: On Strategy-proofness and Symmetric Single-peakedness 77

where
⌈
n
2

⌉
is the smallest integer larger or equal to n

2
. The family I of discontinuity

jumps compatible with the monotonic family of fixed ballots contains only one dis-

continuity interval Im = (am, bm) = (0, 1) with dm = 1
2

and the tie-breaking set of

M = {m} is Xm = {ev ∈ {0, 1
2
, 1}n | #{i ∈ N | evi ∈ {0, 1

2
}} <

⌈
n
2

⌉
}.

3.4.2 Preliminaries of the proof of Theorem 3.4.2

We start with some additional notation. Given x ∈ [0, 1], S ⊆ N with s = #S and

t ∈ SSPn, define xS ≡ (x, ..., x︸ ︷︷ ︸
s−times

) and tS ≡ (tj)j∈S. Thus, (xS, t−S) ≡ (y1, ..., yn) ,

where yj = x if j ∈ S and yj = tj if j /∈ S. Let f : SSPn −→ [0, 1] be a SCF

and S ⊆ N. Define the SCF ∆S
f : [0, 1] × SSPn−s −→ [0, 1] as follows. For all

(x, t−S) ∈ [0, 1]× SSPn−s,

∆S
f (x, t−S) = f(xS, t−S).

We will denote the diagonal function associated to f by ∆f ≡ ∆N
f .

Given t ∈ [0, 1]n and x ∈ [0, 1], define the subset of profiles of tops Ct,x as:

Ct,x = {t′ ∈ SSPn | x ≤ t′i ≤ ti for all i such that x ≤ ti and

ti ≤ t′i ≤ x for all i such that ti ≤ x};

namely, Ct,x is the set of profiles t′ with the property that the top t′i of each agent i

lies between ti and x. Given a SCF f : SSPn −→ [0, 1], a subset T ⊆ SSPn and

x ∈ [0, 1] the notation f |T≡ x means that for all t ∈ T , f(t) = x.

As a consequence of Remark 3.3.3 and Lemma 3.3.5 the following statements hold.

Remark 3.4.3. Let f : SSPn −→ [0, 1] be a strategy-proof SCF. Then,

(R1) f is unanimous on its range rf ; namely, x ∈ rf implies f(xN) = x;

(R2) for all S ⊆ N , ∆S
f : [0, 1]× SSPn−s −→ [0, 1] is strategy-proof; and

(R3) if t ∈ SSPn is such that f(t) = x then, f |Ct,x ≡ x.

The two first statements follow from group strategy-proofness (Remark 3.3.3) and

the last one from monotonicity (Lemma 3.3.5) and (R1).

We now state and prove the following three lemmata that will be useful in the

proof of Theorem 3.4.2. Lemma 3.4.4 says that the range of a strategy-proof SCF

and the range of its associated diagonal function coincide and it is a closed subset of

[0, 1] (see also Zhou (1991)).

Lemma 3.4.4. Let f : SSPn −→ [0, 1] be a strategy-proof SCF. Then, rf = r∆f
.

Moreover, rf is closed.
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Proof By definition of ∆f , r∆f
⊆ rf . Take x ∈ rf . Then, by (R1), f(xN) = x.

Thus, x ∈ r∆f
. Let {xk} → x be such that xk ∈ rf for all k ≥ 1 and assume

x /∈ rf . Define y = f(xN) 6= x and let xk be such that |xk − x| < |y − x|. By (R1),

f(xNk ) = xk. Thus, N manipulates f at x via xk. �

Lemmata 3.4.5 and 3.4.6 roughly say that if a strategy-proof SCF is constant and

equal to x on one variable over some interval containing this constant x, but it is

not constant over the whole interval [0, 1], then there is a discontinuity at some point

z and the discontinuity leaves indifferent the agent with top at z (see Figures 3.2

and 3.3). In the proof of Theorem 3.4.2, z will correspond to the midpoint dm of a

discontinuity jump Im = (am, bm), where am = x and bm = 2z − x.

Lemma 3.4.5. Let f : SSPn −→ [0, 1] be a strategy-proof SCF with the property
that there are i ∈ N , x ∈ [a, b) ⊂ [0, 1] and t−i ∈ SSPn−1 such that

(1) f(ti, t−i) = x for all ti ∈ [a, b) and

(2) f(1, t−i) = y > x.

Then, there exists z ∈ [b, x+y
2

] such that f(·, t−i) is discontinuous at z and

f |[a,z)×{t−i} ≡ x
f |(z,2z−x]×{t−i} ≡ 2z − x.

Proof Let i ∈ N , x ∈ [a, b) and t−i ∈ SSPn−1 be such that conditions (1) and

(2) hold for f . First note that the interval [b, x+y
2

] is not empty since b ≤ x+y
2

: If

b > x+y
2

then b would be closer to y than to x and for a small enough ε > 0, i would

manipulate f at (b− ε, t−i) via t′i = 1.

Define z = sup{ti ∈ [0, 1] | f(ti, t−i) = x}. Obviously z ≥ b > x and, by the

monotonicity of f , limti→z− f(ti, t−i) = x and f |[a,z)×{t−i} ≡ x. We now prove that

limti→z+ f(ti, t−i) = 2z − x. Suppose that limti→z+ f(ti, t−i) < 2z − x. Then, there

exists ε > 0 such that f(z + ε, t−i) + 2ε < 2z − x and f(z − ε, t−i) = x. Either

f(z + ε, t−i) > z − ε, in which case 0 < f(z + ε, t−i) − (z − ε) < (z − ε) − x =

(z− ε)−f(z− ε, t−i) and hence, i would manipulate f at (z− ε, t−i) via t′i = z+ ε. Or

f(z+ ε, t−i) < z− ε and therefore f(z− ε, t−i) = x < f(z+ ε, t−i) < z− ε and i would

manipulate f at (z − ε, t−i) via t′i = z + ε. Similarly, if limti→z+ f(ti, t−i) > 2z − x,

there exists ε > 0 such that f(z+ ε, t−i)−2ε > 2z−x and f(z− ε, t−i) = x. But then

f(z + ε, t−i)− (z + ε) > (z + ε)− x = (z + ε)− f(z − ε, t−i) > 0 and hence, i would

manipulate f at (z+ ε, t−i) via z− ε. Thus, limti→z+ f(ti, t−i) = 2z−x and f(·, t−i) is

discontinuous at z. Now by (R3), f |(z,2z−x]×{t−i} ≡ 2z − x. Finally, by monotonicity

of f , 2z − x ≤ y and hence, z ∈ [b, x+y
2

]. �
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Lemma 3.4.6. Let f : SSPn −→ [0, 1] be a strategy-proof SCF with the property
that there are i ∈ N , x ∈ (a, b] ⊂ [0, 1] and t−i ∈ SSPn−1 such that

(1) f(ti, t−i) = x for all ti ∈ (a, b] and

(2) f(0, t−i) = y < x.

Then, there exists z ∈ [x+y
2
, a] such that f(·, t−i) is discontinuous at z and

f |(z,b]×{t−i} ≡ x
f |[2z−x,z)×{t−i} ≡ 2z − x.

Proof Omitted since it is symmetric to the proof of Lemma 3.4.5. �

3.4.3 Proof of Theorem 3.4.2

It is easy to check that any disturbed minmax SCF is strategy-proof on the symmetric

single-peaked domain. To see this notice that if f is a disturbed minmax SCF, for

all t ∈ SSPn,

|f(t)− min
S∈2N

max
j∈S
{tj, pS}| = min{|x− min

S∈2N
max
j∈S
{tj, pS}| | x ∈ rf}. (3.5)

Fix a profile t ∈ SSPn and an agent i ∈ N . If ti = minS∈2N maxj∈S{tj, pS},
then by (3.5) i cannot benefit from reporting a different preference. Suppose that

ti < minS∈2N maxj∈S{tj, pS} (the case ti > minS∈2N maxj∈S{tj, pS} is symmetric).

The only way i can affect the value of the SCF is by reporting a preference t′i >

minS∈2N maxj∈S{tj, pS}. Since disturbed minmax SCFs are increasing, f(t′i, t−i) ≥
f(t). We distinguish between two cases:

Case 1: f(t) ≥ ti. Then |f(t′i, t−i)− ti| = f(t′i, t−i)− ti ≥ f(t)− ti = |f(t)− ti| and

the deviation is not profitable.

Case 2: f(t) < ti < minS∈2N maxj∈S{tj, pS}. By the definition of the disturbed min-

max, it must be that f(t) = am for somem ∈M and am < ti < minS∈2N maxj∈S{tj, pS} ≤
dm. Hence, either f(t′i, t−i) = am = f(t), in which case the deviation is not profitable,

or f(t′i, t−i) ≥ bm and |f(t′i, t−i)− ti| = f(t′i, t−i)− ti ≥ bm − ti > bm−am
2
≥ |f(t)− ti|

and again the deviation is not profitable.

Thus, any disturbed minmax SCF is strategy-proof.

Let f : SSPn −→ [0, 1] be a strategy-proof SCF. To show that f is a disturbed

minmax we first have to identify its associated monotonic family of fixed ballots

{pS}S∈2N , family I = {Im}m∈M of discontinuity jumps compatible with {pS}S∈2N

and family of tie-breaking sets {Xm}m∈M of M . Then, we will show that f coincides

with the disturbed minmax SCF obtained by (3.4) in Definition 3.4.1, applied to all

of them.
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For each S ∈ 2N , define its associated fixed ballot by setting

pS ≡ f(0S, 1N\S); (3.6)

i.e., pS is the image of f at the profile where all agents in S have their top at 0 and

all agents not in S have their top at 1.

Consider the diagonal function ∆f : SSP −→ [0, 1] associated to f . By (R2) ∆f

is strategy-proof. Thus, by Lemma 3.3.5, ∆f is increasing and hence it has at most a

countable number of discontinuities.18 Denote by {dm}m∈M the discontinuity points

of ∆f , where M is a countable set. For each m ∈M , define am = limx→d−m ∆f (x) and

bm = limx→d+m ∆f (x). Since ∆f is discontinuous at dm and increasing on [0, 1], am

and bm exist and am < bm. By Lemma 3.4.4, r∆f
is closed and therefore am, bm ∈ r∆f

and by (R1), ∆f (am) = am and ∆f (bm) = bm. Moreover, since ∆f is strategy-proof,

dm must be the midpoint of Im ≡ (am, bm). Otherwise, if dm < am+bm
2

, there would

exist an ε > 0 such that dm < am+bm
2
− ε and ∆f (

am+bm
2
− ε) ≥ bm, which would imply

that ∆f is manipulable at am+bm
2
− ε via t′ = am. Similarly, if dm > am+bm

2
, there

would exist an ε > 0 such that dm > am+bm
2

+ε and ∆f (
am+bm

2
+ε) ≤ am, which would

imply that ∆f is manipulable at am+bm
2

+ ε via t′ = bm.

Notice that the family of discontinuity jumps I = {Im}m∈M is compatible with

{pS}S∈2N since:

(1) M is countable.

(2) By the monotonicity of ∆f , am = ∆f (am) ≥ ∆f (0) = pN and bm = ∆f (bm) ≤
∆f (1) = p∅ and therefore Im = (am, bm) ⊂ [pN , p∅].

(3) By the monotonicity of ∆f and the definition of am and bm, Im ∩ Im′ = ∅ for

any m,m′ ∈M , m′ 6= m.

(4) Finally, by (3.6) and Lemma 3.4.4, for each S ∈ 2N , pS ∈ rf = r∆f
, rf ∩

(am, bm) = r∆f
∩ (am, bm) = ∅. Thus, for all S ∈ 2N , pS /∈

⋃
m∈M

Im.

In fact,

rf = r∆f
= [pN , p∅]\{

⋃
m∈M

Im}. (3.7)

18Any real-valued monotone function of a real variable has at most a countable number of dis-
continuities. This result is due to Froda (1929) although in the literature it is widely used without
Froda’s name being mentioned.
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If M is empty (i.e., ∆f is continuos and its range is equal to [pN , p∅]), the state-

ment of Theorem 3.4.2 follows because f is a generalized median voter scheme defined

on the minimally rich domain SSPn (see Theorem 1 in Berga and Serizawa (2000)).19

Assume M is non-empty and fix m ∈ M . To identify the element Xm in the

family of tie-breaking sets of M , consider the previously defined discontinuity set

Dm = {t = (t1, ..., tn) ∈ SSPn | min
S∈2N

max
i∈S
{ti} = dm},

the set of profiles of extreme votes that induce dm through the minmax

EV (Dm) = {evm(t) | t ∈ Dm},

and its associated preorder �m. Then, define

Xm = {evm ∈ EV (Dm) | f(evm) > dm}. (3.8)

By Lemma 3.3.5, f is increasing and therefore Xm coincides with its upper contour

set relative to �m; i.e., Xm = U(Xm).

So far we have identified from f the monotonic family of fixed ballots {pS}S∈2N , the

family I = {Im}m∈M of discontinuity jumps compatible with {pS}S∈2N (we are now

assuming thatM 6= ∅) and the family {Xm}m∈M of tie-breaking sets ofM (and hence,

its corresponding family of tie-breaking functions {gXm : Dm −→ {am, bm}}m∈M).

Given all of them, let F be the SCF defined by condition (3.4) in Definition 3.4.1.

We want to show that f = F.

Let t = (t1, ..., tn) ∈ SSPn be arbitrary. To show that f(t) = F (t) define q =

minT∈2N maxi∈T{ti, pT}. We distinguish among four different cases relating q, t and

f(t).

Case 1: q /∈ {t1, ..., tn}.

Consider S = {i ∈ N | ti < q}. Then pS = q. To see that observe that if

pS < q then maxi∈S{ti, pS} < q contradicting the definition of q. Further, since

q = minT∈2N maxi∈T{ti, pT} /∈ {t1, ..., tn}, there exists T̄ ∈ 2N , such that pT̄ = q and

tj < pT̄ for all j ∈ T̄ . But then, T̄ ⊆ S and, by the monotonicity of p = {pT}T∈2N ,

pS ≤ pT̄ . Therefore, by the definition of q, pS = pT̄ = q.

19Observe that all results in Berga and Serizawa (2000) refer only to onto SCFs. Hence, to be
more precise with the application of their result, notice that the restriction of SSP on the interval
[pN , p∅] is a symmetric single-peaked domain (on [pN , p∅]) and it is a minimally rich domain (on
[pN , p∅]). Denote it by SSP |[pN ,p∅] . Thus, we can identify the notation of Berga and Serizawa
(2000) for the image set Z = [α, β] with our identified interval [pN , p∅] and apply their Theorem 1
to the SCF f∗ : (SSP |[pN ,p∅])

n −→ [pN , p∅]. Finally, observe that their generalized median voter
schemes (defined through a left-coalition system) satisfy voter sovereignty and hence, rf∗ = [pN , p∅].



Ch. 3: On Strategy-proofness and Symmetric Single-peakedness 82

By the definition of S and the assumption that q /∈ {t1, ..., tn}, tj > pS for all

j /∈ S. Then, t ∈ C(0S ,1N\S),pS
and, by (R3) and the definition of pS, f |C

(0S,1N\S),pS

≡ pS.

Therefore, f(t) = pS.

Moreover, by (3.7), pS /∈ ∪m∈MIm. Hence, by ( 3.4) in Definition 3.4.1 and the defi-

nition of ΠI in (3.3 ), F (t) = ΠI(minT∈2N maxi∈T{ti, pT}) = minT∈2N maxi∈T{ti, pT} =

pS. Thus, f(t) = F (t).

Case 2: q = ti for some i ∈ N and f(t) = ti.

If ti = f(t), then ti ∈ rf and therefore, by (3.7), ti /∈ ∪m∈MIm. By (3.4) in Defi-

nition 3.4.1 and the definition of ΠI in (3.3), F (t) = ΠI(minT∈2N maxj∈T{tj, pT}) =

ΠI(ti) = ti. Thus, f(t) = F (t).

Case 3: q = ti for some i ∈ N , f(t) ≡ x 6= ti and ti /∈ ∪m∈M{dm}.

To show that in this case f(t) = F (t) we proceed in two steps. First we prove

that f(t) = f(tNi ) and then we prove that f(tNi ) = F (t).

Step 1: f(t) = f(tNi ).

Define S<i = {j ∈ N | tj < ti}, S=
i = {j ∈ N | tj = ti} and S>i = {j ∈ N | tj >

ti}. We will denote S≤i = S<i ∪ S=
i and S≥i = S>i ∪ S=

i .

Because ti = minT∈2N maxj∈T{tj, pT}, it must be that ti ∈ [p
S≤i
, pS<i ]. Other-

wise, suppose first that ti < p
S≤i

and consider T ∈ 2N . If T ⊂ S≤i , we have

that ti < p
S≤i
≤ pT and therefore ti < maxj∈T{tj, pT}. If T ∩ S>i 6= ∅, then by

the definition of S>i , maxj∈T{tj, pT} > ti. Hence, we have a contradiction with

ti = minT∈2N maxj∈T{tj, pT}. Similarly, if pS<i < ti, then maxj∈S<i {tj, pS<i } < ti again

contradicting ti = minT∈2N maxj∈T{tj, pT}.
We now show that f(tNi ) ∈ [p

S≤i
, pS<i ]. If f(tNi ) < p

S≤i
≤ ti, then N manipulates

f at tNi via (0S
≤
i , 1S

>
i ) since f(0S

≤
i , 1S

>
i ) = p

S≤i
and if ti ≤ pS<i < f(tNi ), then N

manipulates f at tNi via (0S
<
i , 1S

≥
i ) since f(0S

<
i , 1S

≥
i ) = pS<i .

We prove that f(t) = f(tNi ) by contradiction. Suppose f(tNi ) 6= f(t) = x. Then,

either x < f(tNi ) ≤ pS<i or p
S≤i
≤ f(tNi ) < x. The two cases are symmetric and

therefore we omit the proof for the second case (which uses Lemma 3.4.6 instead of

Lemma 3.4.5).

Suppose x < f(tNi ) ≤ pS<i . The condition x < f(tNi ) implies x < ti since we are

assuming that x 6= ti holds and if x > ti, then N would manipulate f at tNi via t .

By (R3), the definition of S≥i and f(t) = x,

∆
S≥i
f (τ, tS<i ) = x for all τ ∈ [x, ti].
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On the other hand, since tj < ti ≤ pS<i for all j ∈ S<i , (τS
≥
i , tS<i ) ∈ C

(0S
<
i ,1S

≥
i ),p

S<
i

for

all τ ∈ [pS<i , 1] and therefore by (3.6) and (R3),

∆
S≥i
f (τ, tS<i ) = pS<i for all τ ∈ [pS<i , 1].

By Lemma 3.4.5, applied to the strategy-proof SCF ∆
S≥i
f : [0, 1] × [0, 1]S

<
i −→ [0, 1],

where [a, b) = [x, ti) and y = pS<i , there exists z ∈ [ti,
x+p

S<
i

2
] such that ∆

S≥i
f (·, tS<i ) is

discontinuous at z and

∆
S≥i
f |[x,z)×{tS<

i
} ≡ x and ∆

S≥i
f |(z,2z−x]×{t

S<
i
} ≡ 2z − x.

Applying (R3) again, if τ ∈ (z, 2z − x] and t′j ∈ [tj, 2z − x]20 for all j ∈ S<i , then

∆
S≥i
f (τ, t′S<i

) = 2z − x. (3.9)

Note that z is a discontinuity point of ∆f as well. To see that observe that by

(3.9), f(wN) = 2z − x for all w ∈ (z, 2z − x]. On the other hand, f(t) = x and

hence, x ∈ rf and by (R1), f(xN) = x. Assume that there exists ŵ ∈ (x, z) such that

f(ŵN) 6= x. By monotonicity of f , x < f(ŵN) ≤ 2z−x. Then, either f(ŵN) = 2z−x
and N manipulates f at ŵN via xN , or f(ŵN) < 2z−x and for any 0 < ε < z− ŵ, N

manipulates f at (z+ ε)N via ŵN . Thus, f(ŵN) = x. Therefore, ∆f has the property

that

∆f (w) =

{
x if w ∈ [x, z)

2z − x if w ∈ (z, 2z − x].

This means that ∆f is discontinuous at z and hence there exists m ∈ M such that

dm = z. Since under Case 3, ti is not a discontinuity point of ∆f , ti 6= z and

therefore, by the definition of z, ti < z.

By monotonicity of f and (3.9), f(tNi ) ≤ ∆
S≥i
f (z+ε, t

S<i
i ) = 2z−x for all sufficiently

small ε > 0 (in the next paragraph we will find an upper bound for such ε’s). We

want to show that the inequality is strict; i.e., f(tNi ) < 2z − x holds. Suppose

f(tNi ) = 2z − x ; then, since ti < z can be re-written as ti − x < 2z − x − ti, this

means that N would manipulate f at tNi via t which contradicts strategy-proofness

of f .

To sum up, we have shown that if x < f(tNi ) ≤ pS<i , then f(tNi ) < 2z − x and

limτ→z+ ∆
S≥i
f (τ, t

S<i
i ) = 2z − x. But then it is easy to see that for a small ε > 0,

S≥i manipulates f at ((z + ε)S
≥
i , t

S<i
i ) via t

S≥i
i . Namely, if 0 < ε <

f(tNi )−x
2

, then

20Notice that if j ∈ S<i then tj < ti ≤ 2z − x and therefore the interval is well defined.
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−(2z − x − (z + ε)) < f(tNi ) − (z + ε) < 2z − x − (z + ε) where the first inequality

is equivalent to the assumption ε <
f(tNi )−x

2
and the second inequality follows from

f(tNi ) < 2z − x. Therefore,∣∣f(tNi )− (z + ε)
∣∣ < 2z − x− (z + ε),

which means that S≥i manipulates f at ((z+ ε)S
≥
i , t

S<i
i ) via t

S≥i
i ; a contradiction. This

concludes the proof of Step 1.

Step 2: f(tNi ) = F (t).

By strategy-proofness of f , ∆f is strategy-proof and since ∆f (ti) ≡ f(tNi ) 6= ti,

by (R1), ti /∈ r∆f
. By (3.7), there exists m ∈ M such that ti ∈ (am, bm). By (R1),

∆f (am) = am and ∆f (bm) = bm. Since ∆f is strategy-proof,

x = ∆f (ti) =

{
am if am < ti < dm

bm if dm < ti < bm,
(3.10)

which coincides with the value of F (t) = ΠI(minT∈2N maxj∈T{tj, pT} = ΠI(ti) = x.

Thus, f(tNi ) ≡ ∆f (ti) = F (t). This concludes the proof of Step 2.

Putting together Step 1 and Step 2, we have shown that f(t) = F (t).

Case 4: q = ti for some i ∈ N , f(t) ≡ x 6= ti and ti = dm for some m ∈M.

Denote by Im = (am, bm) the discontinuity jump corresponding to dm. Denote

S=
m = {j ∈ N | tj = dm}, S<m = {j ∈ N | tj < dm} and S>m = {j ∈ N | tj > dm}

and let ε be such that 0 < ε < minj∈S<m, k∈S>m{dm − am, dm − tj, tk − dm}. Given

this ε > 0 , consider the two profiles of tops tε− = (tS<m , (dm − ε)S
=
m , tS>m) and

tε+ = (tS<m , (dm + ε)S
=
m , tS>m). By construction of tε− and tε+, the fact that ti =

minT∈2N maxj∈T{tj, pT} and since pT /∈ Im for all T ∈ 2N , minT∈2N maxj∈T{tε−j , pT} =

dm − ε and minT∈2N maxj∈T{tε+j , pT} = dm + ε. Both dm − ε and dm + ε belong to Im

and therefore they do not belong to rf . Moreover, since Im ∩ Im′ = ∅, neither dm − ε
nor dm + ε are discontinuity points of ∆f . We are therefore under the assumptions of

Case 3 and by Step1 :

f(tε−) = ∆f (dm − ε) = am

f(tε+) = ∆f (dm + ε) = bm,

where the second equality in both statements follow from the strategy-proofness of

∆f . By monotonicity, f(tε−) ≤ f(t) ≤ f(tε+), which together with (3.7) implies that

f(t) ∈ {am, bm}. Thus, we have shown that if t is such that minT∈2N maxj∈T{tj, pT} =
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ti = dm for some m ∈M then,

f(t) ∈ {am, bm}. (3.11)

To show that f(t) = F (t), assume first that t is such that evm(t) /∈ Xm. By definition

of F , F (t) = am. Since evm(t) /∈ Xm, by (3.8), f(0S
<
m , d

S=
m
m , 1S

>
m) ≤ dm which means,

by ( 3.7), that f(0S
<
m , d

S=
m
m , 1S

>
m) ≤ am. Moreover, t′ = (0S

<
m , d

S=
m
m , 1S

>
m) is such that

minT∈2N maxj∈T{t′j, pT} = dm and, by (3.11 ), f(0S
<
m , d

S=
m
m , 1S

>
m) = am. By (R3),

f(0S
<
m , dS

=
m
m , tS>m) = am. (3.12)

If S<m = ∅, then (0S
<
m , d

S=
m
m , tS>m) = t and f(t) = am. If S<m 6= ∅ then f(t) = am or

otherwise S<m manipulates f at t via 0S
<
m . Thus, we have shown that f(t) = am = F (t).

Symmetrically, we can show that if t is such that evm(t) ∈ Xm then f(t) = F (t) = bm.

This finishes the proof of Theorem 3.4.2.

3.5 Final remarks

As direct consequences of Theorem 3.4.2, Corollaries 1, 2 and 3 below characterize

three relevant subclasses of strategy-proof SCFs on the domain of symmetric single-

peaked preferences.

3.5.1 Anonymity and efficiency

Corollaries 3.5.2 and 3.5.3 characterize two nested subclasses: the class of strategy-

proof and anonymous SCFs (Corollary 3.5.2) and the class of strategy-proof, anony-

mous and efficient SCFs (Corollary 3.5.3).

To state Corollary 3.5.2 we first need to translate the definitions of extreme votes

and tie-breaking sets of M to the anonymous case. Consider the family of n+ 1 fixed

ballots 0 ≤ pn ≤ ... ≤ p1 ≤ p0 ≤ 1 associated to a median voter scheme and let

m ∈M. The set of profiles at which the median voter scheme will select dm is

D̃m = {t = (t1, ..., tn) ∈ SSPn | med{t1, ..., tn, pn, ..., p0} = dm}.

By anonymity, we only need to track the number of agents with tops strictly below,

equal and strictly above dm. Hence, for each t = (t1, ..., tn) ∈ SSPn, define the triple

lm(t) = (lm< (t), lm= (t), lm> (t)) where:

(1) lm< (t) = #{i ∈ N | ti < dm},
(2) lm= (t) = #{i ∈ N | ti = dm} and
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(3) lm> (t) = #{i ∈ N | ti > dm}.
Observe that lm< (t) + lm= (t) + lm> (t) = n and since fixed ballots do not belong to any

discontinuity jump, if t ∈ D̃m then, there is i ∈ N such that ti = dm (i.e., lm= (t) ≥ 1).

Let ∇n = {(x, y, z) ∈ {0, 1, ..., n}3 | x + y + z = n and y ≥ 1} be the set of triples

with positive integer components adding up to n and whose middle component is

equal or larger than 1 and define L(D̃m) = {lm(t) ∈ ∇n | t = (t1, ..., tn) ∈ D̃m};
namely, L(D̃m) describes all anonymous distributions of tops (number of tops strictly

below dm, number of tops at dm, number of tops strictly above dm) at which the

median voter selects dm. Define the preorder �̃ on {0, 1, ..., n}3 as follows: for all

(x, y, z), (x′, y′, z′) ∈ {0, 1, ..., n}3,

(x′, y′, z′)�̃(x, y, z)⇔ z′ ≤ z and x′ ≥ x.

Denote the restriction of the preorder �̃ on the set L(D̃m) by �̃m and let Ỹm be a

non-empty subset of L(D̃m). Denote by X̃m = U(Ỹm) the upper contour set of Ỹm

(according to �̃m) as the set of triples in L(D̃m) such that they are more rightist than

some triple in Ỹm; namely,

X̃m = U(Ỹm) = {(l<, l=, l>) ∈ L(D̃m) | (x, y, z)�̃m(l<, l=, l>) for some (x, y, z) ∈ Ỹm}.

By convention, set U(∅) = ∅. Given X̃m ⊆ L(D̃m) with the property that X̃m =

U(X̃m), define gX̃m : D̃m −→ {am, bm} as follows: for every t ∈ D̃m,

gX̃m(t) =

{
bm if lm(t) ∈ X̃m

am otherwise.

Given a family of discontinuity jumps I = {Im}m∈M we say that {X̃m}m∈M is an

anonymous family of tie-breaking sets of M if for all m ∈ M , X̃m ⊆ L(D̃m) and

X̃m = U(X̃m).

Definition 3.5.1. A SCF f : SSPn −→ [0, 1] is a disturbed median if there exist:

(1) a family of n+ 1 fixed ballots 0 ≤ pn ≤ ... ≤ p1 ≤ p0 ≤ 1;

(2) a family of discontinuity jumps I = {Im}m∈M compatible with pn, ..., p1, p0; and

(3) an anonymous family of tie-breaking sets {X̃m}m∈M of M

such that, for all t = (t1, ..., tn) ∈ SSPn,

f(t) =

{
ΠI(med{t1, ..., tn, pn, ..., p0}) if med{t1, ..., tn, pn, ..., p0} 6= dm for all m ∈M
gX̃m(t1, ..., tn) if med{t1, ..., tn, pn, ..., p0} = dm for an m ∈M.
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Corollary 3.5.2. A SCF f : SSPn −→ [0, 1] is strategy-proof and anonymous if and
only if it is a disturbed median.

Corollary 3.5.3. A SCF f : SSPn −→ [0, 1] is strategy-proof, anonymous and
efficient if and only if it is a median voter scheme with the property that pn = 0 and
p0 = 1.

Efficiency requires that f respects unanimity and hence, rf = [0, 1]. Thus, (i)

its associated family of n + 1 fixed ballots has the property that 0 = pn ≤ pn−1 ≤
... ≤ p0 = 1 and (ii) the family of discontinuity sets M is empty. Observe that since

pn = 0 and p0 = 1 they cancel each other out in the computation of the median at any

profile t and therefore, the generalized median voter scheme can also be described as

the median of the n tops and the n−1 fixed ballots pn−1 ≤ ... ≤ p1. This corresponds

to Moulin (1980)’s characterization of the class of strategy-proof, anonymous and

efficient SCFs on the domain of single-peaked preferences. Thus, the reduction of the

domain does not generate in this case new strategy-proof, anonymous and efficient

SCFs.

3.5.2 Feasibility constraints

Our result has important implications for the design of strategy-proof SCFs on the

domain of symmetric single-peaked preferences under feasibility constraints. Often,

some subsets of alternatives (although conceivable) can not be chosen due to feasibility

constraints. Then, discontinuities are compulsory rather than pathological because

discontinuity jumps on the range of strategy-proof SCFs are necessary. Our result

precisely describes their nature and how the strategy-proof SCF may select its value

at these discontinuity points. However, if f is a strategy-proof and discontinuous SCF

then, rf ( [0, 1] and hence, f will not be efficient; in particular, f will not respect

unanimity. SCFs that are not efficient but they are efficient relative to the feasible set

of alternatives are specially interesting. Thus, let A ( [0, 1] be a closed set of feasible

alternatives.21 A SCF f : SSPn −→ [0, 1] is efficient relative to A if rf ⊆ A and for

all R ∈ SSPn there is no z ∈ A such that, for all i ∈ N , zRif(R) and zPjf(R) for

some j ∈ N. The following result follows from Theorem 3.4.2.

Corollary 3.5.4. Let A be a closed subset of [0, 1]. A SCF f : SSPn −→ [0, 1] is
strategy-proof and efficient relative to A if and only if it is a disturbed minmax with
rf = A.

Note that the requirement rf = A imposes certain conditions on the monotonic

family of fixed ballots {pS}S∈2N and on the discontinuity jumps. For instance pN =

21Remember that, by Lemma 3.4.4, strategy-proof SCFs have a closed range.
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min{x ∈ A}, p∅ = max{x ∈ A} and pS ∈ A for all S ∈ 2N . Moreover since A is

closed the set [pN , p∅]\A is open and therefore it can be written as a countable and

disjoint union of open intervals: [pN , p∅]\A = ∪m∈MIm where Im is an open interval

for all m ∈M and Im ∩ Im′ = ∅ for all m,m′ ∈M . This representation is unique up

to permutations in M and in fact the requirement rf = A implies that the family of

discontinuity jumps compatible with {pS}S∈2N is exactly I = {Im}m∈M .

As an illustration of Corollary 3.5.4, suppose that the set of feasible alternatives

is A = {0} ∪ {0.1} ∪ [0.2, 0.8]∪ {0.9}. In that case the only general requirements on

the fixed ballots are that pN = 0, p∅ = 0.9 and pS has to belong to A for all S ∈ 2N .

The family of discontinuity jumps is given by I1 = (0, 0.1), I2 = (0.1, 0.2) and I3 =

(0.8, 0.9) and therefore the discontinuity points are d1 = 0.05, d2 = 0.15 and d3 = 0.85.

To proceed with the illustration and in order to design a particular strategy-proof

and anonymous SCF f whose range rf be equal to A let N = {1, 2, 3} be the set of

agents and let p3 = p2 = 0 and p1 = p0 = 0.9 be the family of four fixed ballots. In

this particular case the ballots cancel each other and hence, for all (t1, t2, t3) ∈ SSP3,

med{t1, t2, t3, 0, 0, 0.9, 0.9} = med{t1, t2, t3}. For each discontinuity point dm the set

L(D̃m) consists of four triplets: L(D̃m) = {(1, 2, 0), (0, 3, 0), (1, 1, 1), (0, 2, 1)} where

for example, the triplet (1, 2, 0) means that one top is strictly below dm and the re-

maining two tops are exactly equal to dm. Note, that in all the four cases the median

of the tops coincides with dm and hence all the profiles of tops that are represented by

L(D̃m) result in discontinuity points. Moreover, and since L(D̃1) = L(D̃2) = L(D̃3),

�̃1 = �̃2 = �̃3 as well. Denote it by �̃′ and observe that (1, 2, 0)�̃′(1, 1, 1)�̃′(0, 2, 1),

(1, 2, 0)�̃′(0, 3, 0)�̃′(0, 2, 1) and that (1, 1, 1) and (0, 3, 0) are not comparable by �̃′

. To assign a value to the SCF on these discontinuity points preserving the mono-

tonicity of the SCF f we need to select for each dm a tie-breaking set X̃m such

that X̃m = U(X̃m). Given L(D̃m), there are six different ways of doing so: X̃m ∈
{∅, {(0, 2, 1)}, {(1, 1, 1), (0, 2, 1)}, {(0, 3, 0), (0, 2, 1)}, {(1, 1, 1, ), (0, 3, 0), (0, 2, 1)},
L(D̃m)}. For instance, choose X̃1 = {(1, 1, 1), (0, 2, 1)}, X̃2 = {(0, 2, 1)} and X̃3 =

L(D̃m). Thus, the disturbed median f that we may define applying Definition 3.5.1

to the family of four fixed ballots 0 = p3 = p2 < p1 = p0 = 0.9, the family of disconti-

nuity jumps I1 = (0, 0.1), I2 = (0.1, 0.2) and I3 = (0.8, 0.9) and the anonymous family

of tie-breaking sets X̃1 = {(1, 1, 1), (0, 2, 1)}, X̃2 = {(0, 2, 1)} and X̃3 = L(D̃3) has

range equal to A and it is efficient relative to A. The disturbed median f could also be
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defined as follows. For all t = (t1, t2, t3) ∈ SSP3 and after setting y ≡ med{t1, t2, t3},

f(t) =



0 if y < 0.05 or y = 0.05 and #{i | ti ≤ 0.05} = 3

0.1 if y = 0.05 and #{i | ti ≤ 0.05} < 3 or 0.05 < y < 0.15

or y = 0.15 and either ∃j s.t. tj < 0.15 or t1 = t2 = t3 = 0.15

0.2 if y = 0.15 and #{i | ti ≥ 0.15} = 3 and ∃j s.t. tj > 0.15

or 0.15 < y < 0.2

y if 0.2 ≤ y ≤ 0.8

0.8 if 0.8 < y < 0.85

0.9 if y ≥ 0.85.

The complexity of this description indicates the usefulness of Theorem 3.4.2’s char-

acterization.

Finally, by Remark 3.3.3, the four statements above (Theorem 3.4.2 and Corol-

laries 3.5.2, 3.5.3 and 3.5.4) also hold after replacing strategy-proofness by group

strategy-proofness.
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Appendix to Chapter 1

A.1 Proofs

A.1.1 Proof of Proposition 1.3.2

Proposition 1.3.2 The number of intervals sent in a partition equilibrium is finite.

In particular, there is no separating equilibrium in the private information model.

Proof of Proposition 1.3.2 The proposition follows as an immediate corollary of

Lemma A.1.1 and the fact that [0, 1] is bounded. �

Lemma A.1.1. If b > 0 and m = [a, a] is a message sent in a partition equilibrium
with a > 0, then a− a ≥ 2b.

Proof of Lemma A.1.1: Suppose by way of contradiction that we could find a

partition equilibrium in which message m = [a, a] with a > 0 and a − a < 2b was

sent. Then in particular |a− (a+ b)| < b = (a+ b)− a implying that an expert with

type θ = a strictly prefers action y = a to action y′ = a. By continuity of preferences,

there exists ε > 0 such that a − ε > 0 and an expert with type θ′ = a − ε strictly

prefers y = a to y′ = a. Hence, by the concavity of the expert’s preferences, all the

actions y(a, a, s), s ∈ R are preferred to y′ = a, which implies that type θ′ strictly

prefers message m to any interval message m′ ⊂ [0, a], contradicting the view that m

belongs to a partition equilibrium. �

A.1.2 Proof of Theorem 1.3.3

Theorem 1.3.3 Under Assumptions A1 and A2, if b > 0, there exists an integer
N(b, F ) such that, for every 1 ≤ N ≤ N(b, F ):
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1. there exists a unique monotone partition equilibrium characterized by the par-
tition 0 = a0 < a1 < ... < aN = 1 satisfying

UE(ai−1, ai, ai, b;F ) = UE(ai, ai+1, ai, b;F ) (AF ),

2. ai+1 − ai > ai − ai−1 for all i = 1, ..., N − 1.

Moreover, both the decision maker and the expert ex-ante prefer equilibrium partitions

with more intervals

Before moving to the proof of the theorem, I derive some previous results which

will be used in the proof. Lemma A.1.2 establishes some monotonicity properties of

the decision maker’s best action:

Lemma A.1.2. Given a message m = [a, a], y(a, a, s) is increasing in all its argu-
ments and a ≤ y(a, a, s) ≤ a for all s ∈ R

Proof of Lemma A.1.2: y(a, a, s) solves the first order condition1:∫ a

a

ũD1 (y(a, a, s)− θ)f(s− θ)dθ = 0 (A.1)

Since ũD11(·) < 0 and f(·) ≥ 0, there exists a θ̄ ∈ (a, a) such that ũD1 (y(a, a, s)− θ̄) = 0

and therefore:

ũD1 (y(a, a, s)− a) < 0 and ũD1 (y(a, a, s)− a) > 0 (A.2)

Differentiating (A.1) with respect to its first argument and rearranging:

y1(a, a, s) =
ũD1 (y(a, a, s)− a)f(s− a)∫ a

a
ũD11(y(a, a, s)− θ)f(s− θ)dθ

> 0

where the inequality follows by (A.2) and ũD11(·) < 0. Analogously, differentiating

(A.1) with respect to its second argument:

y2(a, a, s) = − ũD1 (y(a, a, s)− a)f(s− a)∫ a
a
ũD11(y(a, a, s)− θ)f(s− θ)dθ

> 0

To show that y(a, a, s) is increasing in s it is sufficient to prove that U(y, s) =∫ a
a
ũD(y − θ)f(s − θ)dθ is supermodular in (y, s) (see Athey (2002)). Given y′ > y,

U(y′, s) − U(y, s) =
∫ a
a

(ũD(y′ − θ) − ũD(y − θ))f(s − θ)dθ which is increasing in s

because ũD(y′ − θ) − ũD(y − θ) is increasing in θ by ũD11(·) < 0, and f(s − θ) is

1Partial derivatives are denoted with subscripts.
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ordered in the FOSD (Milgrom, 1981). Therefore U(y, s) is supermodular in (y, s)

and y(a, a, s) is increasing in s.

Finally, (A.2) and uD11(·) < 0 imply that a ≤ y(a, a, s) ≤ a for all s ∈ R. �

Lemma A.1.3 shows that, given the symmetry of the setup, the decision maker’s

best response is completely determined by the length and the initial point of the

interval sent and it is symmetric with respect to the mid-point of the interval which

the expert sends.

Lemma A.1.3. If ũD(·) and f(·) are symmetric:

1. Pr(θ ∈ [a, a+ h)|s) = Pr(θ ∈ [0, h)|s− a).

2. Pr(θ ∈ [0, h)|h
2
− s) = Pr(θ ∈ [0, h)|h

2
+ s)).

3. g(h
2
− θ|0, h, h

2
− s) = g(h

2
+ θ|0, h, h

2
+ s).

4. y(a, a+ h, s) = a+ y(0, h, s− a).

5. y(0, h, h
2

+ s)− h
2

= h
2
− y(0, h, h

2
− s). In particular y(0, h, h

2
) = h

2
.

Proof of Lemma A.1.3: All the results are immediate implications of the symmetry

of the functions and a change in variable.

1. Pr(θ ∈ [a, a+ h)|s) =
∫ a+h

a
f(s− θ)dθ =

∫ h
0
f(s− a− θ)dθ = Pr(θ ∈ [0, h)|s− a).

2. Pr(θ ∈ [0, h)|h
2
− s) =

∫ h
0
f(h

2
− s− θ)dθ =

∫ h
0
f(h− θ− (h

2
+ s)) =

∫ h
0
f(θ− (h

2
+

s))dθ =

Pr(θ ∈ [0, h)|h
2

+ s)).

3. g(h
2
− θ|0, h, h

2
− s) = f(s−θ)

Pr(θ∈[0,h)|h
2
−s) = f(θ−s)

Pr(θ∈[0,h)|h
2

+s)
= g(h

2
+ θ|0, h, h

2
+ s).

4. 0 =
∫ a+h

a
ũD1 (y(a, a+h, s)−θ)f(θ−s)dθ =

∫ h
0
ũD1 (y(a, a+h, s)−a−θ)f(θ−(s−a))dθ

therefore y(a, a+h, s)− a solves
∫ h

0
ũD1 (y− θ)f(θ− (s− a))dθ = 0 which implies that

y(0, h, s− a) = y(a, a+ h, s)− a.

5. 0 =
∫ h

0
ũD1 (y(0, h, h

2
+s)−θ)f(θ−(h

2
+s))dθ =

∫ h
0
−ũD1 (h−y(0, h, h

2
)−θ)f(h

2
−s−θ)dθ

and therefore y(0, h, h
2
− s) = h− y(0, h, h

2
).

Finally, using this equation for s = 0, y(0, h, h
2
) = h

2
. �

Lemma A.1.4 shows that, given Assumption A1, UE(ai, ai+1, θ) − UE(ai−1, ai, θ)

is increasing in θ and hence the arbitrage condition (AF ) is sufficient to characterize

an equilibrium.

Lemma A.1.4. Under Assumption A1, ∂
∂θ

(
UE(ai, ai+1, θ)− UE(ai−1, ai, θ)

)
> 0
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Proof of Lemma A.1.4: The derivative of UE(ai, ai+1, θ)− UE(ai−1, ai, θ) is given

by:

∂
∂θ

(
UE(ai, ai+1, θ)− UE(ai−1, ai, θ)

)
=∫

R−
[
ũE1 (y(ai−1, ai, s)− (θ + b))− ũE1 (y(ai, ai−1, s)− (θ + b))

]
f(s− θ)ds

+
∫
R−

[
ũE(y(ai−1, ai, s)− (θ + b))− ũE(y(ai, ai−1, s)− (θ + b))

]
f ′(s− θ)ds

(A.3)

Consider the first integral in (A.3). By Lemma A.1.2 and Lemma A.1.3.5, y(ai, ai+1, s) >
ai+ai+1

2
for all s > ai+ai+1

2
. By Lemma A.1.1 ai+1 − ai > 2b so

y(ai, ai+1, s)− y(ai−1, ai, s) > b for all s >
ai + ai+1

2
(A.4)

By the concavity of ũE(·) there exists a constant K11 > 0 such that for all y, y′ ∈
[0, 1 + b], −(ũE1 (y)− ũE1 (y′)) ≥ K11(y − y′). Moreover,∫

s>
ai+ai+1

2

f(s− θ)ds = 1−F (
ai + ai+1

2
− θ) > 1−F (

ai+1 − ai
2

) > 1−F (1/2) (A.5)

Putting everything together:∫
R−

[
ũE1 (y(ai−1, ai, s)− (θ + b))− ũE1 (y(ai, ai−1, s)− (θ + b))

]
f(s− θ)ds >∫

s>
ai+ai+1

2

−
[
ũE1 (y(ai−1, ai, s)− (θ + b))− ũE1 (y(ai, ai−1, s)− (θ + b))

]
f(s− θ)ds >

K11b
∫
s>

ai+ai+1
2

f(s− θ)ds >

K11b(1− F (1/2))

(A.6)

where the first inequality follows because the integrand is positive for all s given the

concavity of ũE. The second inequality follows by (A.4) and the definition of K11 and

the third inequality follows by (A.5).

Turning to the second integral in (A.3):

ũE(y(ai−1, ai, s)−(θ+b))−ũE(y(ai, ai−1, s)−(θ+b)) < ũE(0)−ũE(1+b) for all s ∈ R

hence:∫
R−

[
ũE(y(ai−1, ai, s)− (θ + b))− ũE(y(ai, ai−1, s)− (θ + b))

]
f ′(s− θ)ds >

−
∫
R

∣∣ũE(y(ai−1, ai, s)− (θ + b))− ũE(y(ai, ai−1, s)− (θ + b))
∣∣ |f ′(s− θ)|ds >

−(ũE(0)− ũE(1 + b))
∫
R |f

′(s− θ)|ds
(A.7)

Combining (A.6) and (A.7) we have that if
∫
|f ′(s)|ds <

K11b(1−F ( 1
2

))

ũE(0)−ũE(1+b)
, then

∂
∂θ

(
UE(ai, ai+1, θ)− UE(ai−1, ai, θ)

)
> 0 �
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Note that Lemma A.1.4 is sufficient but not necessary to prove that (AF ) is also a

sufficient condition for equilibrium. In fact, it would be enough to show that whenever

{ai−1, ai, ai+1} satisfy (AF ), then

UE(ai, ai+1, θ)− UE(ai−1, ai, θ) > 0 if θ ∈ [ai, ai+1]

UE(ai, ai+1, θ)− UE(ai−1, ai, θ) < 0 if θ ∈ [ai−1, ai].

which is a weaker condition that the monotonicity shown in Lemma A.1.4. Moreover,

from the proof of Lemma A.1.4 we can see that the bound in Assumption A1 does

not bind. In fact, with the normal and uniform signal structure, (AF ) is always a

sufficient condition for the equilibrium, even if Assumption A1 is not satisfied.

Lemma A.1.5 will be used in the proof of Proposition A.1.6 and Proposition 1.4.1.

Lemma A.1.5 uses Assumption A2 to derive some properties of the function V (·).
Recall that V (ai−1, ai, ai+1, b) = UE(ai, ai+1, ai, b)− UE(ai−1, ai, ai, b)

2.

Lemma A.1.5. If 0 ≤ ai−1 < ai < ai+1 ≤ 1 and V (ai−1, ai, ai+1, b) = 0, then
UE

1 (a, ai, ai, b) > 0 and V1(a, ai, ai+1, b) < 0 for all a ∈ [0, ai), UE
2 (ai, a, ai, b) < 0 and

V3(ai−1, ai, a, b) < 0 for all a ∈ [ai+1, 1], and V (ai−1, ai, a, b) > 0 for all a ∈ [ai, ai+1).

Proof of Lemma A.1.5: By the concavity of ũE(·) and lemma A.1.2,

∂

∂a
UE(a, ai, ai) =

∫
R
ũE1 (y(a, ai, s)− (ai + b))

∂y

∂a
(a, ai, s)f(s− ai)ds > 0 (A.8)

so UE(a, ai, ai) is strictly increasing in a for all a ≤ ai and hence V1(a, ai, ai+1, b) < 0

for all a ∈ [0, ai]. Assumption A2 and the fact that V (ai−1, ai, ai) > 0 (which follows

by UE
1 (a, ai, ai, b) < 0 for all a ∈ [0, ai] and V (ai−1, ai, ai+1, b) = 0) entails that

UE
2 (ai, a, ai, b) < 0 and V3(ai−1, ai, a, b) < 0 for all a ∈ [ai+1, 1], and V (ai−1, ai, a, b) >

0 for all a ∈ [ai, ai+1). �

The following proposition uses Assumption A2 to prove a stronger version of the

monotonicity condition (M) in CS which in particular ensures that there is at most

one partition of size N satisfying (AF ).

Proposition A.1.6. If â and ã are two partial partitions satisfying (AF ) with â0 = ã0

and â1 > ã1, then âi − âi−1 > ãi − ãi−1 for all i ≥ 1.

Proof of Proposition A.1.6: Denote by hi+1 = ai+1 − ai and hi = ai − ai−1. By

Lemma A.1.3 UE(ai, ai+1, ai, b) = UE(0, hi+1, 0, b) and UE(ai−1, ai, ai, b) = UE(0, hi, hi, b).

Hence V (ai−1, ai, ai+1, b) is a function only of the length of the intervals hi and hi+1

2For clarity of exposition I omit the reference to the signal structure F whenever it does not lead
to confusion to do so.
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and not of the location of the intervals. Denote this function as Ṽ (hi, hi+1). Namely,

Ṽ (hi, hi+1) = UE(0, hi+1, 0, b) − UE(0, hi, hi, b). Given h, define φ(h) as the positive

number, if one exists, which solves Ṽ (h, φ(h)) = 0. (If this equation does not have

a solution then I will consider that φ(h) = +∞). By Assumption A2, there is at

most one solution to this equation and therefore φ(h) is a well defined function of

h. Proposition A.1.6 is then reduced to prove that φ(h) is increasing in h, which is

immediate from Lemma A.1.5. �

We are now ready to prove Theorem 1.3.3.

Proof of Theorem 1.3.3: The proof of the first statement of the theorem follows

closely the proof of Theorem 1 of CS. I start by proving that there exists an integer

N(b, F ), such that for every N , 1 ≤ N ≤ N(b, F ), there exists a partition of size N

satisfying the arbitrage condition (AF ).

First, note that, by equation A.8 UE(a, ai, ai) is strictly increasing in a. Denote by

âi the strictly decreasing partial partition â0 > â1 > ... > âi which satisfies (AF ). By

the monotonicity of UE(a, âi, âi), there can at most be one value âi+1 < âi satisfying

(AF ).3

Define K(â) ≡ max{i : there exists 0 ≤ âi < .... < â2 < â < 1 satisfying (AF )}. By

Lemma A.1.1, K(â) is finite, well defined and uniformly bounded. Define N(b, F ) =

supâ∈[0,1)K(â) < ∞. Note that N(b, F ) is achieved for certain ā ∈ [0, 1) because

K(â) ∈ N and bounded. It remains to be proven that for each 1 ≤ N ≤ N(b, F )

there is a partition a satisfying (AF ). Denote aK(a) the decreasing partial partition of

sizeK(a) satisfying (AF ) and such that a
K(a)
1 = a. The partition changes continuously

with a and therefore K(a) is locally constant and can at most change by one at a

discontinuity. Finally K(0) = 1, so K(a) takes on all integer values between one and

N(b, F ).

Now, I argue that the arbitrage condition (AF ) is also sufficient for the equilibrium.

By uE11(·) < 0, UE(mi, θ) is single-peaked in i and condition (AF ) and Lemma A.1.4,

that UE(mi, θ) = maxj U
E(mj, θ) for θ ∈ [ai−1, ai].

For the second statement of Theorem 1.3.3, let a be a partition which supports an

equilibrium, and let hi = ai−ai−1 and hi+1 = ai+1−ai. Suppose that hi+1 ≤ hi, then

for all s ∈ R, y(ai, ai+1, ai+s)−ai ≤ y(ai, ai+hi, ai+s)−ai = ai−y(ai−hi, ai, ai−s) =

ai − y(ai−1, ai, ai − s), where the inequality follows because hi+1 ≤ hi and lemma

3In CS the authors use a symmetric argument with strictly increasing partial partitions. The
reason that I use decreasing partitions is that, given that b > 0 the expected utility of an expert of
type ti when he sends message m = [t, ti] strictly decreases as t decreases. For increasing partitions,
the monotonicity is harder to prove because there are actions on both sides of the expert’s peak.
(This is the role of Assumption A2, although it is not necessary for this stage.).
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A.1.2 and the equality follows by lemma A.1.3. But then if b > 0, an expert with

type ai strictly prefers y(ai, ai+1, ai + s) to y(ai−1, ai, ai − s) for all s, and since

f((ai+s)−ai) = f((ai−s)+ai) by the symmetry of f(·), UE(mi+1, ai) > UE(mi, ai),

contradicting the equilibrium condition.4

Finally, the proof of the third statement of the theorem mimics the proofs of

Theorem 3 and 5 of CS using Proposition A.1.6 in the place of condition (M). �

A.1.3 Proof of Proposition 1.4.1

Proposition 1.4.1 Suppose that F and F ′ are two signal structures satisfying the
following condition:

(C): If V (ai−1, ai, ai+1, b, F ) = 0, then V (ai−1, ai, ai+1, b, F
′) > 0.

Then there is less communication transmitted in the F ′−PI model than in the F−PI
model.

Namely, if a and a′ are two equilibrium partitions of size N of the F − PI and

the F ′ − PI models respectively, then ai > a′i for all 1 ≤ i ≤ N − 1. Moreover,

N(b, F ) ≥ N(b, F ′).

Proof of Proposition 1.4.1: Suppose that for any 0 ≤ ai−1 ≤ ai ≤ ai+1 ≤ 1

such that V (ai−1, ai, ai+1, b, F ) = 0, we have V (ai−1, ai, ai+1, b, F
′) > 05. First I prove

that if a(K) and a′(K) are two partial partitions of size K satisfying (AF ) and (AF
′
)

respectively, with a0(K) = a′0(K) and aK(K) = a′K(K) then ai(K) > a′i(K). The

proof is made by induction on the size of the partition K. If K = 1 the statement is

vacuous. Suppose K > 1 and the statement is true for all K ′ = 1, .., K − 1. Suppose

by way of contradiction that aj(K) ≤ a′j(K) for some j = 1, ..., K − 1. Suppose

further that j is the highest index for which this inequality is satisfied and hence

ai(K) > a′i(K) for all j < i < K. Define xa ≡ (xa0,
x a1, ...,

x aj) the partial partition

which satisfies (AF ) such that xa0 = 0 and xa1 = x. By definition a1(K)aj = aj(K) ≤
a′j(K). By the continuity of xa in x there exists an x̄ ≥ a1(K) such that x̄aj = a′j(K)

and by Proposition A.1.6, x̄ai ≥ ai(K) for all 0 < i < j. Denote by ā ≡ x̄a. By

Lemma A.1.5, there exists a unique āj+1 > āj such that V (āj−1, āj, āj+1, F ) = 0.

By the condition of the Proposition, V (āj−1, āj, āj+1, F
′) > 0. By Proposition A.1.6

āj+1 ≥ aj+1(K) > a′j+1(K), and hence using the fact that āj = a′j(K) and Lemma

A.1.5:

V (āj−1, a
′
j(K), a′j+1(K), F ′) > 0 (A.9)

4This second statement follows directly from Proposition A.1.6, but I prove it here because the
proof of Proposition A.1.6 requires Assumption A2, whereas this proof does not.

5The opposite case is symmetric.
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At the same time, applying the induction hypothesis to (ā0, ..., āj) and (a′0(K), ..., a′j(K)),

a′i(K) < ā′i for all 0 < i < j. But then using Lemma A.1.5,

V (āj−1, a
′
j(K), a′j+1(K), F ′) < V (a′j−1(K), a′j(K), a′j+1(K), F ′) = 0

which contradicts (A.9) and establishes the result.

Finally, let a′(N(b, F ′)) be the partition equilibrium of F ′ − PI of size N(b, F ′).

Let ā be the partial partition satisfying (AF ) such that ā1 = a′1(N(b, F ′)), then by

Proposition A.1.6 and the previous result, āi < a′i(N(b, F ′)). In particular, ā is at

least of length N(b, F ′). Hence N(b, F ) ≥ N(b, F ′) �

A.1.4 Proof of Proposition 1.4.2

Proposition 1.4.2 The information effect hampers communication. Namely, if 0 ≤
ai−1 ≤ ai < ai+1 are such that the expert with type ai is indifferent between yCS(mi)

and yCS(mi+1), where mi = [ai−1, ai] and mi+1 = [ai, ai+1], then the expert strictly

prefers ŷ(mi+1, ai) to ŷ(mi, ai).

The following results are used for the proof of Proposition 1.4.2. Lemma A.1.7

transfers the symmetric properties of the best response established in Lemma A.1.3

to the expected best response.

Lemma A.1.7. Given a message m = [a, a), and a type θ, the expected action of the
decision maker ŷ(a, a, θ) satisfies the following properties:

1. ŷ(a, a, θ) is increasing in all its arguments and a < ŷ(a, a, θ) < a

2. ŷ(a, a+ h, θ) = a+ ŷ(0, h, θ − a).

3. ŷ(0, h, h
2

+ θ)− h
2

= h
2
− ŷ(0, h, h

2
− θ). In particular ŷ(0, h, h

2
) = h

2
.

Proof of Lemma A.1.7: All the results are immediate implications of Lemma A.1.3,

Lemma A.1.2 and a change in variable.

1. It is a direct implication of Lemma A.1.2 and the fact that s and θ are affiliated.

2. ŷ(a, a+ h, θ) =
∫
R y(a, a+ h, s)f(s− θ)ds =

∫
R a+ y(0, h, s− a)f(s− θ)ds =

= a+
∫
R y(0, h, s)f(s− (θ − a))ds = a+ ŷ(0, h, θ − a).

3. ŷ(0, h, h
2

+ θ)− h
2

=
∫
R y(0, h, s)f(s− (h

2
+ θ))ds− h

2
=

=
∫
R h− y(0, h, h− s)f(s− (h

2
+ θ))ds− h

2
=

= h
2
−
∫
R y(0, h, s)f(h

2
− θ − s)ds = h

2
− ŷ(0, h, h

2
− θ).

Finally using this equation for θ = 0, ŷ(0, h, h
2
) = h

2
. �



App. A: Appendix to Chapter 1 98

Lemma A.1.8 is the key result for Proposition 1.4.2. It states that as the length of

the interval increases, the distance between the (CS) action and the expected action

from the point of view of the boundary type increases.

Lemma A.1.8. ∂
∂h

(h/2− ŷ(0, h, 0)) > 0

Proof of Lemma A.1.8: By Lemma A.1.7.3, ŷ(0, h, θ) + ŷ(0, h, h− θ) = h. Totally

differentiating this equation with respect to h:

ŷ2(0, h, θ) + ŷ2(0, h, h− θ) + ŷ3(0, h, h− θ) = 1

where all the terms on the left hand side are positive by Lemma A.1.7.1. It is there-

fore enough to show that if θ < h/2 then ŷ2(0, h, θ) ≤ ŷ2(0, h, h− θ) since this would

imply that ŷ2(0, h, θ) < 1/2 for all θ < h/2, and in particular that h/2− ŷ(0, h, 0) is

increasing in h.

First note that given quadratic loss utilities, y(0, h, s) =
∫ h

0
θ f(θ−s)∫ h

0 f(t−s)dt
dθ, and there-

fore:

y2(0, h, s) =

∫ h

0

(h− θ)f(h− s)f(θ − s)
(
∫ h

0
f(t− s)dt)2

dθ =

∫ h

0

(h− θ)g(h|0, h, s)g(θ|0, h, s)dθ

and therefore if s > 0:

y2(0, h, h
2

+ s)− y2(0, h, h
2
− s) =

∫ h
0

(h− θ)
[
g(h|0, h, h

2
+ s)g(θ|0, h, h

2
+ s)

−g(h|0, h, h
2
− s)g(θ|0, h, h

2
− s)

]
dθ

=
∫ h

0
(h− θ)

[
g(h|0, h, h

2
+ s)g(h− θ|0, h, h

2
− s)

−g(h|0, h, h
2
− s)g(h− θ|0, h, h

2
+ s)

]
dθ

> 0

(A.10)

where the equality follows by Lemma A.1.3-3 and the inequality follows because

g(θ|·, s) is log-supermodular in (θ, s) (recall that θ and s are affiliated).

Finally, if θ < h
2
,

ŷ2(0, h, θ)− ŷ2(0, h, h− θ) =
∫
R y2(0, h, s)(f(s− θ)− f(s− h+ θ))ds

=
∫
s>0

(
y2(0, h, h

2
+ s)− y2(0, h, h

2
− s)

) (
f(h

2
+ s− θ)− f(h

2
+ s− (h− θ))

)
ds ≤ 0

where the second equality follows by dividing the signal space at h/2, and the in-

equality follows because the first term is always positive by (A.10) and the second is

negative whenever θ < h
2
. �

Proof of Proposition 1.4.2: If ŷ(mi+1, ai) ≤ ai + b, then by Lemma A.1.7.1 ai <

ŷ(mi+1, ai) ≤ ai + b and ŷ(mi, ai) < ai. So clearly (ŷ(mi+1, ai) − (ai + b))2 ≤ b2 <
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(ŷ(mi, ai) − (ai + b))2. This together with the fact that ai + b is equidistant to

yCS(ai−1, ai) and yCS(ai, ai+1), implies that the information effect for message mi+1

is greater than for message mi.

Suppose now that ŷ(mi+1, ai) > ai+b. In this case comparing the distance between

the expected actions and the expert’s peak is equivalent to comparing the distance

between the expected actions and the respective CS actions. The bigger the distance

between the expected action and the CS action, the closer is the expected action to

the expert’s peak and hence the bigger is the information effect.

Using Lemma A.1.7.2 and A.1.7.3, the distance between the expected actions and

the CS actions can be written as a function which depends only on the length of the

intervals:

yCS(mi+1)− ŷ(ai, ai+1, ai) = ai+ai+1

2
− ŷ(ai, ai+1, ai) = hi+1

2
− ŷ(0, hi+1

2
, 0)

ŷ(ai−1, ai, ai)− yCS(mi) = ŷ(ai−1, ai, ai)− ai−1+ai
2

= ŷ(0, hi, hi)− hi
2

= hi
2
− ŷ(0, hi

2
, 0)

(A.11)

where hi+1 = ai+1 − a1 and hi = ai − ai−1.

Since hi+1 > hi, then to conclude that the information effect for message mi+1 is

greater than for message mi it is enough to show that h
2
− ŷ(0, h, 0) increases with h,

which is proved in Lemma A.1.8. �

A.1.5 Proof of Proposition 1.4.3

Proposition 1.4.3 The risk effect eases communication. Namely, if 0 ≤ ai−1 ≤
ai < ai+1 are such that the expert with type ai is indifferent between yCS(mi) and

yCS(mi+1), where mi = [ai−1, ai] and mi+1 = [ai, ai+1], then σ̂2(mi+1, ai) >σ̂
2(mi, ai).

Lemma A.1.9 is used in the proof of Proposition 1.4.3. It establishes some useful

symmetric properties to the variance of the decision maker’s actions:

Lemma A.1.9. Given a message m = [a, a), and a type θ, the variance of the actions
of the decision maker σ̂(a, a, θ) satisfies the following properties:

1. σ̂(a, a+ h, θ) = σ̂(0, h, θ − a).

2. σ̂(0, h, h
2

+ θ) = σ̂(0, h, h
2
− θ).

Proof of Lemma A.1.9: All the results are immediate implications of Lemma A.1.3,

Lemma A.1.7 and a change in variable.

1. σ̂(a, a+ h, θ) =
∫
R(y(a, a+ h, s)− ŷ(a, a+ h, θ))2f(s− θ)ds =∫

R(y(0, h, s− a)− ŷ(0, h, θ − a))2f(s− θ)ds =∫
R(y(0, h, s)− ŷ(0, h, θ))2f(s− (θ − a))ds = σ̂(0, h, θ − a).
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2. σ̂(0, h, h
2

+ θ) =
∫
R(y(0, h, s)− ŷ(0, h, h

2
+ θ))2f(s− (θ + h

2
))ds =∫

R(y(0, h, h− s)− ŷ(0, h, h
2
− θ))2f(s− (θ + h

2
))ds =∫

R(y(0, h, s)− ŷ(0, h, h
2
− θ))2f(h

2
− θ − s)ds = σ̂(0, h, h

2
− θ). �

Proof of Proposition 1.4.3: Using Remark A.1.9 the information effect for a

boundary type can be written as a function of the size of the interval sent only:

σ̂(ai, ai+1, ai) = σ̂(0, hi+1, 0) and σ̂(ai−1, ai, ai) = σ̂(0, hi, 0). Hence to compare the

risk effect of sending mi versus mi+1 it is enough to show that ∂
∂h
σ̂2(0, h, 0) > 0.

But this follows because by (A.10) the distance between the decision maker’s actions

increases with h. �

A.1.6 Proof of Proposition 1.4.4

Proposition 1.4.4 For any information structure F , there exist b < 1
4

such that if

b > b, there is no communication in the F − PI model. Moreover, for any b, there

exists a sufficiently precise signal structure such that there is no communication in

the private information model.

The following Lemma will be used in the proof of Proposition 1.4.4. It states that

an expert with type θ = 0 strictly prefers to send message [0, 4b] to perfectly reveal

himself.

Lemma A.1.10. V (0, 0, 4b, b) > 0

Proof of Lemma A.1.10: Recall that V (0, 0, 4b, b) = UE(0, 4b, 0, b)−UE(0, 0, 0, b).

V (0, 0, 4b, b) = −
∫
R(y(0, 4b, s)− b)2f(s)ds+ b2

=
∫
R(2b− y(0, 4b, s))y(0, 4b, s)f(s)ds

=
∫
s>0

[(2b− y(0, 4b, 2b+ s))y(0, 4b, 2b+ s)f(2b+ s)+

(2b− y(0, 4b, 2b− s))y(0, 4b, 2b− s)f(2b− s)] ds
=
∫
s>0

(2b− y(0, 4b, 2b− s))(y(0, 4b, 2b− s)f(2b− s)− y(0, 4b, 2b+ s)f(2b+ s))ds

where the third equality follows by dividing the signal space at 2b, and the last equality

follows by the symmetric properties of the functions (see Lemma A.1.3). The first

factor in the integral is always positive and using the fact that for quadratic-loss

preferences y(0, 4b, s) =
∫ 4b

0
θg(θ|0, 4b, s)dθ the second factor can be written as:

y(0, 4b, 2b− s)f(2b− s)− y(0, 4b, 2b+ s)f(2b+ s) =

=
∫ 4b

0
f(t− 2b+ s)dt·[∫ 4b

0
θ (g(θ|0, 4b, 2b− s)g(4b|0, 4b, 2b+ s)− g(θ|0, 4b, 2b+ s)g(4b|0, 4b, 2b− s)) dθ

]
> 0
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where the equality follows from the fact that g(4b|0, 4b, 2b + s) = f(2b−s)∫ 4b
0 f(t−(2b+s))

,

g(4b|0, 4b, 2b− s) = f(2b+s)∫ 4b
0 f(t−(2b−s))

and
∫ 4b

0
f(t− (2b+ s)) =

∫ 4b

0
f(t− (2b− s)), and the

inequality uses the affiliation of s and θ. �

Proof of Proposition 1.4.4: To prove the first statement of the Proposition, ob-

serve that by Lemma A.1.10, V (0, 0, 1, 1
4
) > 0. By continuity of V (·) in b, there exists

a b̄ < 1
4

such that V (0, 0, 1, b) > 0 for all b ∈ (b̄, 1
4
]. By Lemma A.1.5 V (0, 0, a, b) > 0

for all a ∈ [0, 1], so there can be no information transmitted in equilibrium.

Finally, for the second statement suppose that the conditional distribution of the

signal belongs to a parameterized family {F λ(·|θ), λ ∈ (0,∞)}, where λ represents the

precision6 of the signal, and such that in the limit, when λ→∞, it corresponds to the

degenerate distribution in θ. Then the second statement follows by the fact that as

λ → ∞ the conditional distribution G(θ|s) converges to the degenerate distribution

on s. And hence, there is a precision λb, such that the lottery induced by message

[0, 1] is preferred by the expert with type θ = 0 and bias b to the constant action

y = 0. Namely, V (0, 0, 1, b, F λ) > 0, and by Lemma A.1.5, V (0, 0, a, b, F λ) > 0 for

all a ∈ [0, 1], so there can be no information transmitted in equilibrium. �

A.2 Uniform Private Information Model

Recall that the optimal action in this model is:

y(a, a, s, Fδ) =
max{a, s− δ}+ min{a, s+ δ}

2

If a − a ≤ 2δ the expectation and the second moment of the decision maker’s

actions from the point of view of the expert are given by:

ŷ(a, a, θ, Fδ) = a+a
2

+ 1
8δ

(a− a)(2θ − a− a)

E(y2|a, a, θ, Fδ) = (a+a)2

4
+ 1

24δ
[(θ + a)3 − (θ + a)3 − 3(a+ a)2(a− a)]

If a− a > 2δ, the expectation and second moment of the decision maker’s actions

6One signal is more precise than another if the latter is a mean preserving spread of the former.
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are:

ŷ(a, a, θ, Fδ) =


δ+a+θ

2 + 1
8δ (a− θ)2 if θ < min{a+ 2δ, a− 2δ}

a+a
2 + 1

8δ (a− a)(2θ − a− a) if a− 2δ < θ < a+ 2δ
θ if a+ 2δ < θ < a− 2δ
θ+a−δ

2 + 1
8δ (θ − a)2 if θ ≥ max{a+ 2δ, a− 2δ}

E(y2|a, a, θ, Fδ) =


1

24δ [4(a+ δ)3 + 4(θ + δ)3 − (a+ θ)3] if θ < min{a+ 2δ, a− 2δ}
1

24δ [4(a+ δ)3 − 4(a− δ)3 + (θ + a)3 − (a+ θ)3] if a− 2δ < θ < a+ 2δ

θ2 + δ2

3 if a+ 2δ < θ < a− 2δ
1

24δ [(a+ θ)3 − 4(a− δ)3 − 4(θ − δ)3] if θ ≥ max{a+ 2δ, a− 2δ}

Given quadratic-loss utilities, UE(a, a, θ, b, Fδ) = −E(y2|a, a, θ, b, Fδ)+2ŷ(a, a, θ, Fδ)−
(θ+ b)2. In particular, denoting by hi = ai − ai−1 and hi+1 = ai+1 − ai, the expected

utilities of an expert with type θ = ai who sends message [ai−1, ai] and [ai, ai+1] are

respectively:

UE(ai−1, ai, ai, b, Fδ) =

{
−(hi

2
+ b)2 + 1

12δ
h3
i + b

4δ
h2
i if hi ≤ 2δ

−δb− δ2

3
− b2 if hi > 2δ

UE(ai, ai+1, ai, b, Fδ) =

{
−(hi+1

2
− b)2 + 1

12δ
h3
i+1 − b

4δ
h2
i+1 if hi+1 ≤ 2δ

δb− δ2

3
− b2 if hi+1 > 2δ

(A.12)

Remark A.2.1. Assumption A2 is satisfied in the Uniform private information

model.

Proof of Remark A.2.1: Taking the derivative of UE(0, h, 0, b, Fδ) in Equation

(A.12) with respect to h: ∂
∂h
UE(0, h, 0, b, Fδ) = 1

4δ
(h − 2b)(h − 4δ) if h ≤ 2δ, 0

otherwise. If b > 2δ no information can be sent in equilibrium and there is nothing to

check7. If b < 2δ, UE(0, h, 0, b, Fδ) is increasing for h < 2b and decreasing for h > 2b.

�

A.2.1 Proof of Theorem 1.4.5

Theorem 1.4.5 In the Uniform Private Information model, an increase in the pre-

cision of the signal (a decrease in δ) leads to less communication in equilibrium.

Namely, if aδ and aδ
′

are two monotone partition equilibria of size N of the Fδ − PI
and Fδ′ − PI models respectively, with δ′ < δ, then aδ

′
i < aδi for all i = 1, ..., N − 1.

Moreover N(b, Fδ′) ≤ N(b, Fδ).

For the proof of Theorem 1.4.5 I use the following results:

7See Remark A.2.3
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Lemma A.2.2. Let aδ be a monotone partition equilibrium of the Fδ − PI model.

Suppose that aδi+1 − aδi < 2δ, then V (aδi−1, a
δ
i , a

δ
i+1, Fδ′) > 0 for all δ′ < δ.

Proof of Lemma A.2.2: By Theorem 1.3.3, hi+1 ≡ aδi+1− aδi > aδi − aδi−1 ≡ hi, and

hence, hi+1 < 2δ implies hi < 2δ. Since V (aδi−1, a
δ
i , a

δ
i+1, Fδ) = 0, for δ′ ∈ (hi+1

2
, δ):

V (aδi−1, a
δ
i , a

δ
i+1, Fδ′) = V (aδi−1, a

δ
i , a

δ
i+1, Fδ′)− V (aδi−1, a

δ
i , a

δ
i+1, Fδ)

= ( 1
12δ′
− 1

12δ
)(h2

i+1(hi+1 − 3b)− h2
i (hi − 3b))

(A.13)

which is positive for δ′ < δ as long as hi+1 > 3b. Note that as δ goes to infinity,

the signal becomes uninformative resulting in the CS setup where hCSi+1 = hCSi + 4b ≥
4b. Therefore, by (A.13), as the signal becomes more informative, the required hi+1

which makes θ = aδi indifferent between mi and mi+1 becomes larger, implying that

hi+1 ≥ 4b > 3b always holds, and thus V (aδi−1, a
δ
i , a

δ
i+1, Fδ′) > 0. If δ′ < hi

2
, then by

(A.12), V (aδi−1, a
δ
i , a

δ
i+1, Fδ′) > 0. �

Consider now the case aδi+1−aδi > 2δ. Observe that it cannot be that aδi−aδi−1 > 2δ

as well, because in that case by (A.12) the expert with type aδi strictly prefers mi+1.

Since by Theorem 1.3.3, intervals in equilibrium are increasing in size, the only interval

which might be larger than 2δ is the last one. The following remark summarizes this

argument.

Remark A.2.3. For any equilibrium partition aδ = {0 = aδ0 < aδ1 < ... < aδN−1 < aδN}
of the Fδ − PI model, hi = aδi − aδi−1 < 2δ for 1 ≤ i ≤ N − 1.

The following lemma shows that whenever aδi−aδi−1 < 2δ < 1−aδi and V (aδi−1, a
δ
i , 1, Fδ) =

0 then V (aδi−1, a
δ
i , 1, Fδ′) > 0 for

aδi−aδi−1

2
< δ′ < δ.

Lemma A.2.4. Suppose that aδi − aδi−1 < 2δ < 1− aδi and V (aδi−1, a
δ
i , 1, Fδ) = 0 then

V (aδi−1, a
δ
i , 1, Fδ′) > 0 for δ′ < δ.

Proof of Lemma A.2.4: By (A.12), V (aδi−1, a
δ
i , a

δ
i+1, Fδ) = δb− δ2

3
− b2 + (hi

2
+ b)2−

1
12δ
h3
i − b

4δ
h2
i . Taking the derivative with respect to δ:

∂
∂δ
V (aδi−1, a

δ
i , a

δ
i+1, Fδ) = b− 2δ

3
+ 1

12δ2
h3
i + b

4δ2
h2
i

< b− 2δ
3

+ 1
12δ2

(2δ)3 + b
4δ2

(2δ)2 = 0

where the inequality follows because, by assumption hi < 2δ. V (·) decreasing in δ

combined with V (aδi−1, a
δ
i , 1, Fδ) = 0 implies V (aδi−1, a

δ
i , 1, Fδ′) > 0 for hi

2
< δ′ < δ. If

δ′ < hi
2
< hi+1

2
, by (A.12), V (aδi−1, a

δ
i , 1, Fδ′) > 0. �
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Proof of Theorem 1.4.5: The theorem is a direct implication of Propositions A.2.2,

A.2.4, Remark A.2.3 and Proposition 1.4.1. �
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Barberà, S., Berga, D. and Moreno, B. (2010). Individual versus group strategy-

proofness: when do they coincide?, Journal of Economic Theory 145: 1648–1674.

Barberà, S. and Jackson, M. O. (1994). A characterization of strategy-proof social

choice functions for economies with pure public goods, Social Choice and Welfare

11: 241–252.
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Barberà, S., Massó, J. and Neme, A. (2005). Voting by committees under constraints,

Journal of Economic Theory 122: 185–205.
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Klaus, B., Peters, H. and Storken, T. (1998). Strategy-proof division with single-

peaked preferences and individual endowments, Social Choice and Welfare 15: 297–

311.



Bibliography 109

Kovac, E. and Mylovanov, T. (2009). Stochastic mechanisms in settings without

monetary transfers: The regular case, Journal of Economic Theory 144: 1373–

1395.

Krehbiel, K. (2006). Pivots. The Oxford Handbook of Political Economy. Edited by

B.B. Weingast and D. Wittman. Oxford University Press.

Krishna, V. and Morgan, J. (2001a). A Model of Expertise, The Quarterly Journal

of Economics 116: 747–775.

Krishna, V. and Morgan, J. (2001b). Asymetric Information and Legislative Rules:

Some Amendments, American Political Science Review 95: 435–452.

Krishna, V. and Morgan, J. (2004). The art of conversation: eliciting information

from experts through multi-stage communication, Journal of Economic Theory

117: 147–179.

Krishna, V. and Morgan, J. (2008). Contracting for information under imperfect

commitment, RAND Journal of Economics 39: 905–925.

Lai, E. K. (2010). Expert Advice for Amateurs. Mimeo.

Lee, D. S. (2008). Randomized experiments from non-random selection in U.S. House

elections, Journal of Econometrics 142: 675–697.

Levitt, S. D. and Wolfram, C. D. (1997). Decomposing the Sources of Incumbency

Advantage in the U.S. House, Legislative Studies Quarterly 22: 45–60.

Li, M. and Madarasz, K. (2007). When Mandatory Disclosure Hurst: Expert Advice

and Conflicting Interest, Journal of Economic Theory .

Matthews, S. A. and Mirman, L. J. (1983). Equilibrium Limit Pricing: The Effects

of Private Information and Stochastic Demand, Econometrica 51 (4): 981–996.

Matthews, S. A., Okuno-Fujiwara, M. and Postlewaite, A. (1991). Refining Cheap-

talk Equilibria, Journal of Economic Theory 55: 247–273.

McKelvey, R. and Ordeshook, P. (1993). Information and elections: retrospective

voting and rational expectations, Experimental Foundations of Political Science

31: 641–666. edited by D.R. Kinder and T.R. Palfrey. Michigan Studies in Political

Analysis.



Bibliography 110

Meirowitz, A. (2008). Electoral Contests, Incumbency Advantages, and Campaign

Finance, The Journal of Politics 70: 681–699.

Milgrom, P. R. (1981). Good news and bad news: Representation theorems and

applications, Bell Journal of Economics 12: 380–391.

Milgrom, P. and Shannon, C. (1994). Monotone Comparative Statics, Econometrica

62: 157–180.

Morgan, J. and Stocken, P. C. (2003). An Analysis of Stock Recommendations,

RAND Journal of Economics 34: 183–203.

Morgan, J. and Stocken, P. C. (2008). Information Aggregation in Polls, American

Economic Review 98: 864–896.

Moulin, H. (1980). On strategy-proofness and single peakedness, Public Choice

35: 437–455.

Nehring, K. and Puppe, C. (2007a). Efficient and strategy-proof voting rules: A

characterization, Games and Economic Behavior 59: 132–153.

Nehring, K. and Puppe, C. (2007b). The structure of strategy-proof social

choice−Part I: General characterization and possibility results on median spaces,

Journal of Economic Theory 135: 269–305.

Nisan, N. (2007). Introduction to mechanism design (for computer scientists). Algo-

rithmic Game Theory. Edited by N. Nisan, T. Roughgarden, E. Tardos, and V.V.

Vazirani. Cambridge University Press.

Olszewski, W. (2004). Informal communication, Journal of Economic Theory

117: 180–200.

Persico, N. (2000). Information Acquisition in Auctions, Econometrica 68: 135–149.

Peters, H., van der Stel, H. and Storken, T. (1992). Pareto optimality, anonymity,

and strategy-proofness in location problems, International Journal of Game Theory

21: 221–235.

Prendergast, C. (1993). A Theory of ”Yes Men”, The American Economic Review

83: 757–770.

Rabin, M. (1990). Communication Between Rational Agents, Journal of Economic

Theory 51: 144–170.



Bibliography 111

Rogoff, K. (1990). Equilibrium political budget cycles, The American Economic

Review pp. 21–36.

Seidmann, D. J. (1990). Effective Cheap Talk with Conflicting Interests, Journal of

Economic Theory 50: 445–458.

Smart, M. and Sturm, D. M. (2006). Term Limits and Electoral Accountability.

CEPR Discussion Paper No. 4272.

Smith, D. J., Dua, P. and Taylor, S. W. (1994). Voters and macroeconomics: Are

they forward looking or backward looking, Public Choice 78: 283–293.

Sprumont, Y. (1995). Strategy-proof collective choice in economic and political envi-

ronments, Canadian Journal of Economics 28: 68–107.

Stein, J. C. (1989). Cheap Talk and the Fed: A Theory of Imprecise Policy An-

nouncements, The American Economic Review 79: 32–42.

Watson, J. (1996). Information Transmission when the Informed Party is Confused,

Games and Economic Behavior 12: 143–161.

Wolinsky, A. (2003). Information Transmission when the Sender’s Preferences are

Uncertain, Games and Economic Behavior 42: 319–326.


	Title Page
	Declaration
	Abstract
	Dedication
	Table of Contents
	Preface
	Preface
	List of Figures
	Cheap Talk With Two-sided Information
	Introduction
	Related Literature
	The Model
	Communication and Welfare
	Discussion
	Conclusion

	The Optimal Majority Rule in Incumbency Elections
	Introduction
	The Model
	Simple Majority Rule
	Incumbency Advantage
	Supermajority
	Calibration
	Discussion

	On Strategy-proofness and Symmetric Single-peakedness
	Introduction
	Preliminary notations and definitions
	Previous results and main intuition
	Characterization
	Final remarks

	Appendix to Chapter 1
	Proofs
	Uniform Private Information Model

	Bibliography

