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To my parents



in his brains,- 

W hich is as dry as the remainder biscuit 

After a voyage,- he hath  strange places cram m ’d 

W ith observation, the which he vents 

In mangled forms.

A s You Like It



Abstract

This dissertation considers sem iparam etric spectral estim ates of tem poral depen­

dence in tim e series. Semiparametric frequency domain m ethods rely on a local 

param etric  specification of the spectral density in a neighbourhood of the frequency 

of interest. Therefore, such methods can be applied to the analysis of singularities 

in the spectral density at frequency zero to identify long memory. They can also 

serve as the  basis for the estim ation of regular parts of the spectrum . One thereby 

avoids inconsistency tha t might arise from misspecification of dynamics at frequen­

cies other than  the frequency under focus. In case of long financial tim e series, the 

loss of efficiency w ith respect to fully param etric methods (or full band estim ates) 

may be offset by the  greater robustness properties. However, if sem iparam etric fre­

quency domain m ethods are to be valid tools for inference on financial tim e series, 

they need to  allow for conditional heteroscedasticity which is now recognized as a 

dom inant feature of asset returns. This thesis provides a general specification which 

allows the tim e series under investigation to exhibit this type of behaviour. Two 

statistics are considered. The weighted periodogram statistic provides asym ptoti­

cally norm al point estim ates of the spectral density a t zero frequency for weakly 

dependent processes. The local W hittle (or local frequency domain m axim um  likeli­

hood) estim ate provides asym ptotically normal estimates of long memory in possibly 

strongly dependent processes. The asymptotic results hold irrespective of the be­

haviour of the spectral density at non zero frequencies. The asym ptotic variances 

are identical to those tha t obtain under conditional homogeneity in the distribution 

of the innovations to the observed process. In sem iparam etric frequency domain 

estim ation, the choice of bandw idth is crucial. Indeed, it determ ines the asym ptotic 

efficiency of the procedure. Optim al choices of bandwidth are derived, balancing 

asym ptotic bias and asym ptotic variance. Feasible versions of these optim al band- 

widths are proposed, and their performance is assessed in an extensive Monte Carlo 

study where the innovations to the observed process are sim ulated under numerous 

param etric submodels of the general specification, covering a wide range of persis­

tence properties both  in the levels and in the squares of the observed process. The



techniques described above are applied to the analysis of tem poral dependence and 

persistence in intra-day foreign exchange rate returns and their volatilities. W hile 

no strong indication of returns predictability is found in the former, a clear pa tte rn  

arises in the la tter, indicating th a t intra-day exchange rate returns are well described 

as m artingale differences w ith weakly stationary and fractionally cointegrated long 

memory volatilities.
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C hapter 1

Long m em ory and cond itional 

h eterosced astic ity

1.1 Long memory

The theory of econometric tim e series is the branch of econometrics concerned w ith 

the modelling of dependence across different realisations of a economic process x . 

Because of the description of the scale of realisations of the process as a tim e scale, 

this dependence is usually called tem poral dependence and the process is indexed 

by t . Allowing for tem poral dependence in the process implies relaxing the indepen­

dence part of the traditional assumption of independence and identity of d istribution 

(i.i.d.) for the stochastic process under focus. The identity of distribution p a rt of the  

i.i.d. assum ption is either defined by strict stationarity, meaning th a t for all positive 

integers n, t i , . . . ,  t n and /i, the distributions of (x t l , . . . ,  x tn) and (x tl+hi • •, Xtn+h) 

are identical, or partly  defined by weak (or covariance) stationarity, meaning th a t 

the covariance E((x t  — E ( x t) ) (xs — E ( x s))) depends only on |s — 1|. The la tte r form 

of stationarity  is implied by the former in case the process has finite variance. The 

la tte r form of stationarity  is assumed throughout this work for the process x t . From 

the Wold Decomposition Theorem (Wold (1938)), each realisation of a purely non- 

determ inistic weakly stationary stochastic process x t can be described as a  result
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of an infinite weighted sum of uncorrelated errors of common variance, with square 

summable filtering weights.

oo oo
X t  =  E ( x t) +  Y l , a 3 £ i - 3 i  <*0 =  1, 5 Z ° J < 0 0 ,  ( i -1)

i=o j=o

with

E(ej)  =  0  a.s. and E(£j£k) =  Sjk&e f°r — 0 , (1 *2 )

where 8 stands for the Kronecker symbol.

A way of relaxing the independence within the i.i.d. assumption while retaining 

weak dependence between distant x ’s, or asymptotic independence, was introduced 

by Rosenblatt (1956) and Ibragimov (1959),(1962) with the notions of strong and 

uniform mixing. Let (0 , A , P)  be the probability space in which the process x t is 

defined, where A  is the smallest Borel field including all the Borel sets of the form 

{cj|(xj(fc)(nfc,o;), k = 1 , . . .  , m)  G 5 }  with B  a Borel set in IRm. Let T v be the cr-field 

of events determined by X*, t < p and T q be the cr-field of events determ ined by X*, 

t > p. Define the sequences

px( k ) : = s u p { \ P ( A n B ) - P ( A ) P ( B ) \ ,  A  e  F p, k > 1 } (1.3)

and

c,(fc) :=  s u p { | f ^ p  -  P (B ) |,  A e r P, B e j ^ +k, * > i ) .  (1.4)

px (k ) was introduced by Rosenblatt (1956) and called a-m ixing or strong-mixing 

sequence and C^(^) was introduced by Ibragimov (1962) and called ^-m ixing or 

uniform-mixing sequence (The usual a  and </> notations are replaced by p and £ 

respectively to avoid a clash of notation with what follows). The strictly stationary 

process x t is called strong (resp. uniform) mixing if px(k)—>0 (resp. Cr(&)->0 ) when 

fc—*0 0 . It is easily seen th a t 2px (k) <  Cx(k) and therefore th a t uniform-mixing 

implies strong-mixing although the converse is not always true  (see for instance 

Doukhan (1995) §1.3.2). Zurbenko (1986) gives an extensive discussion of these 

and other definitions of mixing behaviour. Alternatively, Brillinger (1975) applies
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summability conditions on cumulant moments of all orders, which are assumed to 

exist. Defining the kth  order cumulant of a strictly stationary process by

c u m f* ! , . , . , X k) =  £ ( - l ) p(P -  1 )!(E I I  Xj )  . . . ( E Y [  Xj )  (1.5)
jevp

where the sum m ation extends over all partitions (i/i , . . .  ,i/p), p =  1 , . . . , &,  and 

defining

= cvm (x u x i+tli. . . , x t+tk_1), for t u  . . . ,  t k- X = 0 ±  1 , . . .  , (1 .6 )

Brillinger (1975) introduces a mixing condition of the form

+oo

^ 2  <  0 0  for all k >  2 . (1.7)
11 00

It is easily seen th a t this condition includes absolute sum m ability of autocovariances 

of the process, a condition which restricts the choice of filtering weights on the 

innovations et in 1 .1 , because it is equivalent to

4-oo 00

E  l E ^ i+i | < o o ,  (1.8)
l——00 j —0

with the convention aj = 0, j  < 0.

However, it is clear th a t specification 1.1-1.2 derived from the Wold Decomposition 

Theorem allows for much more far reaching patterns of correlations between ob­

servations, including the possibility of greater dependence between d istan t z ’s, and 

indeed, does not impose absolute summability of autocorrelations, or any condi­

tion of the mixing type. Tim e series processes with non sum m able autocovariances 

and, correspondingly, slow decay of Wold filtering weights, have been the focus 

of considerable attention, particularly recently, with the development of parsimo­

nious param etric representations of long range tem poral dependence and of robust 

sem iparam etric estim ation methods. The failure of long range uncorrelatedness as 

highlighted by the nonsum m ability of autocovariances was first investigated in the 

field of Hydrology. Joseph’s famous prophesy (Genesis 41, 29-30) promising Pharaoh 

seven years of abundance followed by seven years of famine in Egypt gives a specu­

lative account of the long periods of drought followed by long periods of recurrent



24 Chapter 1

flooding of alluvial plains by the Nile river bringing prosperity to the region. A 

more definite account is provided by the  particularly reliable measurements of the 

annual low levels of the Nile at the Ghoda Range collected between A.D. 622 and 

A.D. 1284 and appearing in Toussoun (1925) (the first missing observation is for 

year A.D. 1285 outside the sample chosen). Two characteristics of this series are 

consistent with non mixing behaviour: slow decay of sample autocorrelations and a 

sample mean with variance which decays a t a markedly slower rate than n - 1  (for 

graphical assessments, see, e.g. Beran (1994) p. 22). Hurst (1951) gives a quantita­

tive account of a phenomenon la ter nam ed after him  “Hurst effect” together with a 

heuristic approach to the m easurem ent of the degree of tem poral dependence associ­

ated with this effect. He defined the  rescaled adjusted range or R / S  statistic which 

is the standardised ideal capacity of a reservoir between a tim e origin and tim e T, 

and he observed a pattern  consistent w ith the relation

E[R/S)  ~  cT h  as T  —> oo with H  > (1.9)

where indicates th a t the ratio  of the left hand side and the right hand side 

tends to one when T  tends to infinity, whereas H  (often called the self-similarity 

param eter) should be equal to |  if the river flow behaved like a process under any 

type of mixing assumption. In his pioneering work on stock prices, Mandelbrot 

(1973) identified the same type of phenomenon and related it to the self-similarity 

distributional property introduced by Kolmogorov (1940), by which the joint distri­

bution of x t l , . . . ,  x tn is identical to  a~H tim es the joint distribution of x atl, . . . ,  x atn 

for any a > 0, with the introduction of fractional Gaussian noise (in M andelbrot 

and Ness (1968)), a Gaussian process with zero mean and autocovariances following

cov(a;1 ,a;i+i) =  iv a r ( z i){ |j  +  l \ 2H - 2 \j\2H +  |j  -  1 |2H}, for j  = 0 , ± 1 , . .  ( 1 .1 0 )

Mandelbrot (1972) proposed the use of the la tte r model and the R / S  statistic in 

the investigation of economic d a ta  supporting thereby G ranger’s view on the typical 

spectral shape of  an economic variable, expounded in Granger (1966) referring to 

the recurrent pa tte rn  of estim ated spectral densities with a peak at zero frequency 

(corresponding to  a long range of tem poral dependence in the process) and decreas­

ing at higher frequencies. As Robinson (1994d) points out, Usuch behaviour could
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be consistent with the presence of  one or more unit roots, but the same series also 

displayed a tendency for  the spectrum of first differences to exhibit a trough at zero 

f r e q u e n c y . . . The large proportion of variance concentrated around zero frequency 

is indeed a translation in the frequency domain of non sum m ability of autocovari­

ances, bu t it need not indicate non stationarity, let alone the presence of a unit 

root.

The most popular model, besides fractional Gaussian noise in 1.10, which encom­

passes this distinction, is the autoregressive fractionally integrated moving average 

model, where

(1  -  L)dxb(L)xt = a(L)eti with ~  \  < dx < \ ,  (1-H)
z z

where a(z)  and b(z) are both finite order polynomials with zeros outside the unit 

circle in the complex plane. This model was proposed by A denstedt (1974), Hosking 

(1981) and Granger and Joyeux (1980). (1 — L)d has a binomial expansion which is 

conveniently expressed in term s of the hypergeometric function
OO

(1 -  L f  =  F ( - d , 1, 1 ;L) =  J2 r(Jb -  d)T(k +  l ) " ^ - * / ) - 1 /;* (1.12)
k —0

where T(.) denotes the Gam m a function. W riting
oo

a i z ) =  (L13)
j=o

1 .1 1  corresponds to a param etric representation nested in specification 1 .1- 1 .2  with

a(*) =  ( l - *) - <■ (1.14)

and when |  >  dx >  0 , this implies a slow decay of filtering weights

aj  =  0 ( j d*~l ) as j  —» oo (1*15)

and of autocorrelations

Y 2 i= 0  „ - 2 d x ~ l  „• v __—— ----2 ~  c3 as j  -¥ oo (1.16)
l ^ i - 0  a i

consistent with the Hurst effect. Note th a t here, and in all th a t follows, H  — 1/2

will be denoted dx and will be called long memory in the levels because it measures

the impulse response of the mean of the process.
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Hyperbolic decay of the filtering weights as in 1.15 implies th a t the la tter decay so 

slowly as to be non sum m able even though they remain square summable for dx 2 * 

In term s of impulse response, this implies a very long lived but non perm anent re­

sponse to shocks at any tim e in the series, consistent with very slow mean reversion 

in the process (a notion widely used in the  economic literature, and which can be 

formally defined within this framework by a dx value strictly below one, distinguish­

ing it thereby from a stationarity  concept). Hyperbolic decay of autocorrelations 

translates into the existence of a singularity of hyperbolic nature in the spectral 

density of the process in the neighbourhood of frequency zero. Conditions for equiv­

alence between tim e domain and frequency domain representations of long memory 

are discussed in Yong (1974). Therefore, throughout this work, long memory in a 

weakly stationary tim e series x t , t =  0 , dbl , . . with autocovariances satisfying

cov (xu x t+j) =  [  f(X)cos(jX)dX j  = 0 , ± 1 , . . .  , (1-17)
J —7T

will be modelled semiparam etrically by

/(A ) ~  L (X ) \~ 2i* as A -> 0+ , with -  \  < dz < (1.18)
Li Li

where L(X) > 0 and is continuous at A =  0 when dx = 0, and is otherwise a slowly 

varying function at zero defined by

j*. J —> 1 as A —> 0 for all t > 0. (1-19)
L(A)

Under 1.18, /(A ) has a pole a t A =  0 for 0 <  dx < |  (when there is long memory in

x t), / (A) is positive and finite for dx (which is identified with short memory in x t)

and / ( 0 ) =  0  for — |  <  dx < 0  (which can be described as negative dependence or 

antipersistence, and which is characteristic of the first differences of a process which 

was mistakenly believed to hold a unit root, but was in fact m ean reverting in the 

sense defined above). Param etric submodels of 1.18 such as autoregressive fraction­

ally integrated moving average or fractional Gaussian noise in the tim e domain, can 

also be w ritten in the frequency domain. This is the case w ith the generalisation of 

Bloomfield’s exponential model (Bloomfield (1973)) proposed by Robinson (1994d),
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Beran (1993) and Janacek (1993) with an appended quasi m axim um  likelihood es­

tim ation m ethod for the degree of dependence. The spectral density in the most 

common version of this model is given by

/(A ) =  |1  -  e'x \~2dx e x p { J 2 v j cos J*}  (1 .2 0 )
j=o

where the short memory part of the representation provides an arbitrarily  accurate 

approxim ation of any positive function with a Fourier decomposition.

1.2 Sample mean o f long memory processes

Long range dependence may also be detected through the behaviour of the  sample 

mean of the process. Consider the partial sums

S„ =  X > t, (1 -2 1 )
t= 1

with variance cr̂  =  E \ S n|2, and suppose E x t =  0  w ithout loss of generality. As 

noted by Robinson (1994d), cr2 always exists and is equal to 27rn  tim es the  Cesaro 

sum, to n — 1 term s, of the Fourier series of /(A ), spectral density of the process x t . 

Therefore, if /  is continuous at the origin,

2

— ^ 2 7 r/(0 ) as n —>oo. 
n

Thus, if / (0 )  7  ̂ 0 is estim ated consistently by /(0 ) , the Central Limit Theorem  and 

Slutzky’s Theorem  yield

5'n(27rn/(0))_ 2 —yd Af(0,1 ) as n —> oo (1 .2 2 )

See Hannan (1979) for a proof of 1.22 for a stationary x t following 1 .1  with i.i.d.

innovations et (this can be extended to conditionally homoscedastic and uniformly

integrable m artingale differences) and

oo

£ N < ° ° .  (1-23)
3=0
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Eicker (1956) gives consistent estim ates of the lim iting variance of the LSE and other 

simple estimates of param etric models in the presence of param etric and nonpara- 

m etric disturbance autocorrelation. 1 .2 2  implies a convergence of the sample mean 

at the ra te  a feature which generally fails when 1.23 does not hold. W hen the 

filtering weights ctj are not absolutely summable, bu t follow 1.15, with long memory 

param eter dx >  0 , the cr2 need to be scaled with a  factor n “ (2rf*+1) instead of n - 1  

to converge. Moreover, the sample mean is no longer BLUE (Adenstedt (1974)). 

Samarov and Taqqu (1988) found tha t efficiency can be poor for d <  0 but is at least 

0.98 for d > 0. Providing u 2n does not have a finite lim it, a central lim it theorem 

continues to hold when x t follows 1 .1  with i.i.d. innovations (this can be relaxed to 

m artingale difference innovations) in the form:

(r~l Sn -+d N (0 , 1 ) with n ^ dx(j~l —> c > 0, (1-24)

in Ibragimov and Linnik (1971). Giraitis and Surgailis (1986) use the Appell gener­

alisation of Hermite polynomials to  extend the result 1.24 to  nonlinear functions of 

processes satisfying 1 .1  with i.i.d. innovations

1.3 Conditional heteroscedasticity

Long memory therefore provides a framework for a very parsimonious representation 

of tem poral dependence, in th a t the long range dependence is embodied in the 

one param eter dx. To derive asym ptotic distributional results for processes with 

strong tem poral dependence typically outside the scope of any mixing assum ption, 

the approach chosen here relies on a m artingale difference or non predictability 

assumption for the Wold innovations et of the process. In other words, letting T% 

denote the filtration associated with the <7-field of events generated by (es, s  <  t ), 

one needs to assume the innovations are martingale differences:

E(et \F t- i )  =  0 almost surely (a.s.). (1.25)

However, limit results for generalized linear processes under 1.25, such as Hannan
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(1979)’s, require the assumption of constant conditional variance

=  a 1 a.s. (1.26)

th a t m any tim e series, in particular long financial tim e series where a large degree 

of tem poral dependence is (and can be) observed, are generally believed to  violate. 

Financial returns, constructed from first differenced logged asset prices or foreign 

exchange bank quote midpoints sampled at weekly, daily or intra-daily frequencies, 

typically exhibit thick-tailed distributions and volatility clustering, i.e. conditional 

variances changing over tim e in such a way th a t periods of high movement are 

followed by periods displaying the same characteristic, and periods of low movement 

also. One therefore needs to  allow for tim e varying volatilities for the innovations, 

and 1.26 needs to  be replaced by

E{e2t\Tt- i)  =  of a.s. (1-27)

where of is a stochastic process whose tem poral dependence properties can in turn  

be considered. The conditional variance of can be allowed to depend on some latent 

structure, as in the model due to Taylor (1980):

£ t  =  r ) t ° u

log 0 * =  7 0  +  71 log o-t_ i +  u t ,

T)t , u t independent i.i.d. .

In this model, the  latent variable crt can be construed as embodying the flow of

heterogeneous inform ation arrivals on the m arket, as in the work of Clark (1973).

The latent variable crt can also be allowed to depend on the lagged values of the 

innovations. This approach was chosen by Engle (1982) in a form he called autore­

gressive conditional heteroscedasticity (ARCH), and generalised by Bollerslev (1986) 

who introduced lagged values of of thereby introducing a latent ARMA structure 

for the squared innovations (the GARCH model). A model ensuring the positivity 

of of and producing skewed conditional distributions is the exponential generalised 

autoregressive conditional heteroscedasticity model (EGARCH) proposed by Nelson
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(1991), and some nonlinearities were introduced by Sentana (1995) with an exten­

sive study of quadratic ARCH models and by Zakoian (1995) with the threshold 

ARCH class of models. An extensive review of the literature in this field of econo­

m etric research is given by Bollerslev, Engle, and Nelson (1994). All of the above are 

based on a param eterisation of the  one step-ahead forecast density, a particularly 

appealing feature -as pointed out by Shephard (1996)- as much of finance theory 

is concerned with one step-ahead moments or distributions defined with respect to  

the economic agent’s inform ation. A sym ptotic theory for param etric ARCH mod­

elling was proposed by Weiss (1986), Lee and Hansen (1994) Lumsdaine (1996) and 

Newey and Steigerwald (1994). Bollerslev, Chou, and Kroner (1992) give reviews 

of the GARCH modelling approach. A nonparam etric specification encompassing 

both ARCH and GARCH as special cases was proposed by Robinson (1991b) where 

of is an infinite sum of lagged values of ej:

oo oo

of =  cr2 +  y f  V??(ef_v — &1) a.s. with <  oo. (1.28)
j=i j=i

This can be reparam eterised as

oo

°t = P +  £  V’jfit- j  (1-29)
j= 1

and includes both standard ARCH (when ipj =  0, j  > p, for finite p) and GARCH

(for which the ipj decay exponentially) models. However, as Robinson (1991b) in­

dicated, long memory behaviour is also covered. This, and the semi-strong ARMA 

representation for the squared innovations implied by the above specification, is 

made apparent in the following reparam eterisation. If, for complex valued z,

oo

tp(z) =  1 -  Y j& jz 3 (1-30)
3 — 1

satisfies

IV-(z)l ^  0, 1*1 <  1, (1.31)

define

oo

<t>(z ) = Y j & z 3 =  V’W * 1, <h = 1- (1-32)
j =o
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Then, Robinson (1991b) rewrote 1.28 as

oo

A ~ ° 2 = (L33)
i=o

where

ut = e2t - a 2 (1.34)

satisfies

E (y t \Ft-i)  =  0  a.s., (1.35)

by construction. As a result, the chosen specification does not include all weak 

GARCH processes as defined by Drost and Nijman (1993) as processes w ith the 

same linear projections as ordinary GARCH. However, as for weak ARMA processes, 

limiting distribution theory for weak GARCH processes, provided, for instance, by 

Francq and Zakoian (1997), relies on mixing assumptions which m ay preclude the 

high levels of tem poral dependence in the squares which are allowed by 1.33 with 

a suitable choice of filtering weights. To allow for specific types of nonlinearities in 

the squares, Robinson (1991b) also proposed a quadratic version of 1.28:

oo 2
a 2 = ( a +  a.s. (1.36)

j=i

which endogenises the positivity constraint on a 2. It is apparent in the  empiri­

cal literature on ARCH modelling of financial series, surveyed by Bollerslev, Chou, 

and Kroner (1992), th a t the degree of dependence in second m om ents is too large 

to be modelled in term s of mixing behaviour or with a laten t stationary ARMA 

structure (and therefore exponentially decaying weights). Param eter estim ates from 

GARCH(1,1) models on asset returns and foreign exchange, the most popular mod­

elling technique, lie close to the boundary of stationarity  for the  process, prom pting 

the introduction of a unit root in the autoregressive moving average equation de­

scribing the behaviour of the squares. Lumsdaine (1996) shows asym ptotic norm ality 

of the quasi-maximum likelihood estim ator in the integrated GARCH(1,1) model. 

However, the IGARCH model implies full persistence of shocks on the variance in 

a sense defined by Bollerslev and Engle (1993). According to  Nelson’s distinction



32 Chapter 1

(Nelson (1990b)), it corresponds to persistence of shocks on both forecast moments 

of a 2 and on forecast distributions of a 2. A long memory representation of volatil­

ity, replacing for instance the unit root by a fractional filter in the equation for the 

squares, reconciles a high degree of tem poral dependence in volatilities with lack of 

persistence and, possibly, with covariance stationarity. Denoting s t =  cq2 — a 2 and 

Xt = £? — <72, for I > 0, we have
OO

st+i = i/>ixt +  5Z ^ j X t - j + i  a.s. . (1.37)
j #

Now as under 1.28, ipiXt —> 0 almost surely when I —>• oo, x  is persistent in the 

volatility according to none of the definitions adopted by Nelson (1990b), i.e. per­

sistence in probability, in Lp-norm or almost surely.

Besides, the analogy is apparent between the clustering of volatilities of financial 

returns and what M andelbrot (1973) described as “Joseph effect” . And, effectively, 

W histler (1990), Lo (1991), Ding, Granger, and Engle (1993) and Lee and Robin­

son (1996), are among the first to show how well the long memory representation 

performs empirically. A general fractionally integrated GARCH model is obtained 

as a special case of specification 1.28 with the <̂>(2 ) polynomial defined as

=  (1-38)a(z)

for 0 < d£ < |  and finite order polynomials a(z)  and b(z) whose zeros lie outside 

the unit circle in the complex plane. Note th a t the degree of fractional integration 

is called ds in this case to distinguish long memory in the squared innovations from 

long memory in the levels. Baillie, Bollerslev, and Mikkelsen (1996) apply 1.38 to 

asset prices with the addition of a drift param eter

(1 -  L)d'a{L)e2 =  /1 +  b(L)vt . (1.39)

Nelson (1990b) proves almost sure convergence of the conditional variance a 2 in the

short memory case de in 1.38 w ith a(z)  and b(z) of degree one. A part from 1.38,

the requirem ent
00

0  <  ^ 2 $ 2j < 0 0  (1-^0)
j = 0
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includes the other traditional long memory specification of moving average coeffi­

cients, the fractional noise case with autocorrelations satisfying

corr (e?,e*+J-) =  E g ° J ^ ’+3 =  \  { \ j  -  i r *  -  \j\2d+l +  |j +  l r 1} ■ (1.41)
Z ^ i= 0  V i  z

Robinson (1991b) developed Lagrange multiplier tests for no-ARCH against alter­

natives consisting of general finite param eterisation of 1.28, specialising to 1.38 and

1.41. In both these cases, the autoregressive weights ^ j  satisfy

Under 1.42 and

2  t e l  <  °°
3=1

max E  (eJJ <  oo,

(1.42)

(1.43)

it follows th a t
00 0

E t f )  <  E f c U e U - S ) }
j=0

00 00

3=0

< I<
3 = 0

(1.44)

where K is a generic constant, so the innovations in 1.33 are square integrable 

m artingale differences, is well defined as a covariance stationary process and its 

autocorrelations can exhibit the usual long memory structure implied by 1.38 or

1.41. Even if 1.43 does not hold, the “autocorrelations” YtLo fafa+j/  YiZo <f>] are 

well defined under 1.40. Both param etric representations 1.38 and 1.41 have the 

implication th a t autocorrelations follow

Y i -0 fiifii+j •2de- l  •~  cj as j 00
ESo

which in turn  implies a rate  of decay for the innovations filtering weights of

<t>3 =  0 ( j d‘ *) as i  00.

(1.45)

(1.46)

This is taken as a characterisation of long memory in the process when dE > 0 

and it implies nonsum m ability of weights (j>j and autocovariances

7i =  cov(£?,eJ+i). (1.47)
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The rate  of convergence of the sample m ean is also characteristic of long memory

processes when (f)j satisfies 1.46. Indeed, 1.35 and 1.44 imply th a t the partial sums

of the squared innovations have variance

n n oo

V a r E ( e ?  -  cr2)] =  E E h h + ' - t E t f - j )  (1.48)
<=1 s,t=l j=0

=  0(n£e«) (1.49)

with

t=i

©< :=  E  \ M h *\ =  0 ( t  1) (1.50)
3=0

under 1.46. Therefore, we have the  same ra te  upper bound as in 1.24, i.e.

£ ( e ?  -  °*) =  Op(nd'+i ) .  (1.51)
t= 1

This result, and nonsum m ability of the </>/s, is to be contrasted with standard latent 

ARMA representations for the squares, where weights decay exponentially and are, 

therefore, absolutely summable. In view of the empirical evidence and the focus 

on possible long memory in financial returns £*, it seems appropriate to allow for 

possible long memory in the e\ also. This thesis is concerned with the estim ation 

of tem poral dependence structures in a  covariance stationary tim e series x t via the 

analysis of its spectral density in a neighbourhood of zero frequency. This concerns 

the case where x t displays short memory as well as the cases where x t displays

long memory; and a large part of the results provide asym ptotic theory in case the

squared innovations possibly exhibit long memory themselves.

1.4 Estim ating dependence

Estim ating the degree of dependence and carrying out inference on the process x t 

may require estim ation of the spectrum  a t zero frequency, when it is continuous 

or of the slope of the logged spectrum  at the origin when the process is strongly 

autocorrelated.
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1.4.1 Param etric estim ation of long m em ory

Take x t to be a covariance stationary series with mean f io and spectral density 

/ ( A;$o), —n <  A <  7r, where /  is a given function of A and 6. For a realisation of 

size n, we consider the discrete Fourier transform

n

wx(X) =  (27m)“ 2 J ~2xtettX (1.52)
t=i

and the periodogram

4(A ) =  K ( A ) |2. (1.53)

This statistic  was first proposed by Schuster (1898) to investigate hidden periodic­

ities in tim e series. A useful general result, under various regularity conditions, is 

the following1:

^ £ rCW[I*M-f(Wo)]d\-+iN(p,A(0 + B(Q) as n-Kx>, (1.54)

where

M O  =  ~  (1.55)

B(0 = (1.56)

and where

= (2tt)-3 £  (1.57)
u,v ,w

is the fourth order cumulant spectral density, and

£u,v,w — cum(x^, Xf .̂u, Xf^.y, Xf ) (1.58)

is the fourth order cum ulant m oment of the process x t .

1In case x t are residuals from a fitted parametric model, taking yo  =  0 does not, under regularity 

conditions (including conditions on the function C(A)), affect the asym ptotic properties o f the 

estimates of 6q considered below.
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When x t is Gaussian, B(C) vanishes, and under suitable regularity conditions on 

((A) and /(A ; 0), Fox and Taqqu(1986) show tha t 1.54 holds even when x t is strongly 

autocorrelated, providing a pole of /(A ; 0) is matched by a zero of f(A) of suitable 

order. Fox and Taqqu (1986) showed as a result that W hittle’s estim ate of 9q 

(W hittle (1962), Hannan (1973)), i.e. an estim ate resulting from the m inim ization 

of

is asym ptotically normal with rate  n -1/ 2. Beran (1986) and Dahlhaus (1989) extend 

this result to prove th a t the Gaussian maximum likelihood estim ate of 0O remains 

efficient in the Cramer-Rao sense when x t is strongly autocorrelated. Robinson 

(1994d) shows th a t root-n asym ptotic norm ality results also apply to the estim ate 

resulting from the maximization of a discretised version of the W hittle likelihood

where A j =  2it j / n  are the harmonic frequencies.

When x t is possibly non Gaussian, the three estimates above (pseudo m axim um  

likelihood, W hittle  and discretized W hittle) continue to be root-n consistent and 

asym ptotically normal under conditions involving weak autocorrelation (see M ann 

and Wald (1943), W hittle (1962), Hannan (1973) and Robinson (1978a)). Solo 

(1989) shows 1.54 for x t satisfying 1.1 with 1.25 and restrictions on the Wold coeffi­

cients which include many strongly autocorrelated non Gaussian processes. In case 

x t is non Gaussian, B ( ( )  does not vanish in general. An im portant case where this 

occurs is when x t follows 1.1 and 1.25 with dynamic conditional heteroscedasticity 

in the innovations as discussed in the previous section. In th a t case, / 4(A ,—/i,/i) 

contains contributions from fourth cum ulant moments of the innovations et other 

than k =  cum (et ,£ t ,£ t ,£t). Under 1.26, which imposes constant second and fourth 

conditional mom ents, we have

cum (er ,e s,£ i ,e u) =  k, if r = s = t = u, (1.60)
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and zero otherwise. Under 1.27, with of defined by 1.28, however,

cum(er ,6 s,£ i,eu) — k if r = s = t = u, (1.61)

— 7 r_s if r = t s = u, (1.62)

=  7 r_* if r = s ^  t = u, (1.63)

=  j r - s  if r  =  u /  t  =  s, (1-64)

and zero otherwise. Therefore, the fourth cum ulant 1.58 is equal to

oo

Cu,V,XJJ   ^ ^  y &kd-k-\-uQk-\-v&k + w (1.65)
k=0

d- ^  y Kk—i &k+v&k+w d* &j+v&k+u&k+w
k^j

d- (1.66)

and zero otherwise. The ARCH special case of 1.27 was considered by Weiss (1986), 

and the GARCH (1,1) by Lee and Hansen (1994). Both show asym ptotic norm ality 

of the quasi m axim um  likelihood. Lumsdaine (1996) allows for nonstationarity  of 

the integrated form in the conditional variance equation, bu t long term  dependence 

is not covered for x t.

1.4.2 Sm oothed periodogram  spectral estim ation

Sem iparam etric alternatives in the estim ation of the slope of the logged spectrum  

at the origin rely on specification 1.18. Local specification around the  frequency of 

interest avoids the pitfall of param etric estim ation of the long memory param eter 

dx: a mispecified spectrum  at non zero frequencies may cause inconsistency in esti­

m ation of the long memory param eter (characterizing the low frequency dynamics 

of the system). This type of estim ation is based on low frequency harm onics of the 

periodogram 1.53 whose properties are briefly discussed in this paragraph.

The periodogram is an asym ptotically unbiased estim ate for the spectral density, at 

continuity points of the latter. However, as Grenander (1953) first showed, the  vari­

ance of the periodogram does not vanish with sample size, so th a t the  periodogram
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is not a consistent estim ate for the spectral density. More precisely, consider a sta­

tionary process x t following 1.1 with i.i.d. innovations e t and filtering weights ctj 

satisfying
OO

^ 2 r \ a j I <  oo, (1.67)
j=o

and with spectral density defined as in 1.17. The periodogram of x t has the following 

asym ptotic sampling properties:

cov(/x(A ),/*(ju)) =  (1 +  £oa +  +  0 (71- 2 )) +  0 ( n _1), (1.68)

where S stands for the Kronecker symbol. A proof of this result is given in Brock- 

well and Davis (1991). The same result is shown to  hold by Brillinger (1975) for 

a strictly stationary process satisfying the mixing condition 1.7. 1.68 shows not 

only th a t periodogram ordinates are not mean-square consistent, but also th a t at 

distinct frequencies they are asym ptotically uncorrelated under these conditions, 

which perm its the construction of consistent estim ates of the spectral density such 

as

/(A ) =  £  Wn{j)Ix{A +
|j|<m 71

where m  is a bandwidth sequence satisfying at least

1 m  . „ ,
 1-------- ^0 as n —>• 0 0 , (1.69)
m  n

and W n(j)  is a sequence of sym m etric weight functions satisfying

W n(j) = 1 and as »->oo. (1-70)
|j|<m |j|<m

Under 1.67 and 1.43, we have (see Brockwell and Davis (1991) for a proof)

J im ,  (  C0V( / ( A)> f i t * ) )  =  (1 +  ^oa +  $ * \ ) S \ J x W 2,
\|j|<m /

so th a t, in view of 1.70, var(/(A )) shrinks to zero with sample size and /(A ) is a 

consistent estim ate for /(A ). B artle tt (1950) and Tukey (1950) propose estim ates 

of the spectral density based on earlier versions of the asym ptotic uncorrelatedness 

property as discussed in Grenander and Rosenblatt (1966).
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1.4.3 Sem iparam etric estim ation  of long m em ory

The estim ation strategy based on low frequency periodogram ordinates which is 

considered in this work is related to a strategy first proposed by Hill (1975) in 

tail estim ation for distributions with a high degree of leptokurtosis. Research in 

th a t field was fuelled in the last couple of years by institutional regulations allowing 

banks to derive their own m ethod of estim ation for the probability of extrem e losses. 

Hill’s sem iparam etric approach to the estim ation of the  tail of distributions relies 

on a param etric specification of the tail of the distribution and a nonparam etric 

treatm ent of the rest of the distribution. The probability d istribution is said to 

feature a heavy tail if it behaves asym ptotically like the Pareto distribution

P ( Y  > y )  = y~'yL(y),  7  >  0, y > 1, (1.71)

where L(y)  is a slowly varying function at infinity. The Hill estim ate for the  “tail 

index” 7  (which, similarly to the long memory param eter in the tim e domain or the 

frequency domain representations, appears as an exponent) maximises a conditional 

Pareto likelihood

where Y^) >  . . .  >  Y(n) are the order statistics of a sample of observations Yi , . . . ,  Yn 

and m  is the num ber of statistics used in the estim ation, satisfying 1.69.

Now suppose x t is weakly stationary and follows 1.18. One wishes to estim ate 

the degree of long memory dx in a way th a t is robust to  possible mispecification 

of the short range dynamics. A sem iparam etric estim ate of dx was proposed by 

Kiinsch (1987) and will be dwelt upon in chapter 3 of this thesis. It is based on the 

W hittle likelihood discretisation 1.59, but the optim isation is realised over the first 

m  frequencies only, w ith 1.69, in accordance with the local specification 1.18. The 

function to minimise is

Qn(Jz)  =  ^ t  {l°S +  i j & j t } (1.73)
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noting th a t /(A ) is replaced by its local param etric form in the neighbourhood of 

zero frequency 1.18 with 0 < L ( A )  =  G < o o .  The estim ate is not defined in closed 

form, so th a t a prior consistency result (as in Robinson (1995a) under very weak 

local smoothness conditions for the spectral density, in addition to assumption 1.26 

is necessary. Robinson (1995a) also proves asymptotic normality under

/(A ) =  CrA“ 2d*(l -f O(A^)) as n —> oo, (1-74)

for some p  G [0 , 2 ), under slightly stronger local smoothness conditions and finite 

fourth moments for x t still satisfying 1.26. The proof of the result

y/m(dx -  dx) -±d N(0, j )  (1-75)

assumes the following restrictions on the choice of “bandw idth” m,

1 m  ^ log m
 1---------- r-r----------> 0 as n —> oo (1-76)
m  n 1*3

which perforce restricts the rate  of convergence of the estim ate. The la tter will 

therefore be inefficient w ith respect to correctly specified param etric W hittle  esti­

mation, when m  = [(n — 1)/2], which has n ~s rate  of convergence. Robinson also 

conjectures th a t the theorem  still holds under the milder and more natural condition

1 m 2P+1
m  n 1

I I I  /  V

H r-r > 0 as n —> oo. (1-77)

An asym ptotic norm ality result for the estim ate may still hold when m  is of ex-
20

act order of m agnitude n 2̂ 1, corresponding to optimal smoothing. In th a t case, 

asym ptotic bias will not be zero as in the cases of “oversmoothing” (cases where m 

is small in order to  avoid asym ptotic bias): 1.77 and 1.76.

This estim ate has the advantage of an asym ptotic variance which is free of unknown 

param eters and which is smaller than  for any other known asymptotically normal 

sem iparam etric estim ate of dx under 1.18. The la tter property may correspond to 

the minimiser of 1.73 retaining some of the  optim ality properties of its param etric 

(full-band) counterpart through optim al weighting of the low-periodogram ordinates. 

However, to date, no optim ality theorem  in the Cramer-Rao sense seems to  be
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available for stationary processes with spectral densities satisfying 1.74. G iraitis, 

Robinson, and Samarov (1997) give a ra te  optim ality theory but no lower bound 

for the asym ptotic variance of estim ates achieving th a t rate. C hapter 4 will be 

concerned with optim al smoothing and optim al bandwidth selection.

O ther estim ates of dx following the same estim ation principle are the log peri­

odogram estim ate proposed by Geweke and Porter-Hudak (1983), the averaged pe­

riodogram estim ate proposed by Robinson (1994c) and the exponential estim ate 

proposed by Janacek (1993). The log periodogram is based on a regression of the 

first m  harmonics of the log periodogram on a simple function of frequency. An 

efficiency improving version of this estim ate was proved in Robinson (1995b) to pro­

duce a consistent and asym ptotically normal estim ate of dx, applying least squares 

to the regression

log Ix (Xj) =  C  +  dx(21og Xj) +  Uj, j  =  / +  l , . . . , m  (1-78)

where I is a trim m ing param eter which diverges at a slower ra te  than  the band­

width m. Hurvich, Deo, and Brodsky (1998) further show th a t for a  slightly more 

specific local param eterisation, the original Geweke-Porter-Hudak estim ate is also 

asym ptotically norm al and th a t no trim m ing of very low frequency harm onics is 

necessary. Janacek’s estim ate (Janacek (1993)) is a counterpart of the log peri­

odogram estim ate based on the fractional exponential model 1 .2 0 , but, to  date, 

there seems to be no asym ptotic theory for it. The averaged periodogram  esti­

m ate proposed by Robinson (1994c) will be considered in C hapter 2 of this thesis 

in more depth. It is based on an analogy with the weak dependence case where 

averaging over approxim ately independent periodogram harmonics in a neighbour­

hood of zero frequency produces a consistent estim ate of the spectral density at 

zero frequency. However, the asym ptotic properties of low periodogram  ordinates 

are considerably affected by long range dependence, and new results had to  be de­

rived. The idea of the log periodogram estim ate is drawn from the identity 1.78 

under 1.18, where C = logL(O) — E,  E  is Euler’s constant E  = 0 .5 7 7 2 ..., and 

Uj = log(L(A j)/L(0)) +  log(/x(A j)//(A j)) +  E.  The Uj can be thought of as ap­

proxim ately zero m ean and i.i.d. in view of the result, derived under a variety of
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assumptions -all of which include a form of weak dependence-, th a t for A 7  ̂ 0 modulo 

7r and J  a finite positive integer, / x(Aj), j  = 1 , . . . ,  J  are asym ptotically independent 

/(A ;)x l/2  variates (see for instance Theorem 5.2.6 page 126 in Brillinger (1975) and 

Theorem 12 page 223 of Hannan (1970)). Asymptotic properties of the averaged 

periodogram estim ate of the spectral density at zero frequency
-I 771

/ ( ° )  =  - £ * « ( * > ) .  (1-79)

m  being the bandw idth following at least 1.69, and, more generally, of weighted 

periodogram spectral estim ation (in Brillinger (1975)), follow from this asym ptotic 

distributional result for ordinates of the periodogram under short memory.

For a process x t where the conditional homogeneity condition 1.26 fails (and there­

fore the conditions applied by Hannan (1970) who assumed the et to be i.i.d .), and 

is replaced by 1.27 with a 2 defined by 1.28, the asymptotic distributional result for 

periodogram ordinates may not continue to hold, possibly because of non sum m able 

fourth cum ulant contributions to asymptotic variances. In C hapter 2, it is proved 

tha t in spite of this, 1.79 remains an asymptotically normal estim ate of / (0 )  w ith a 

suitable choice of bandw idth m.

W hen x t displays long memory (it follows 1.18), the asym ptotic distributional result 

continues to hold for fixed positive frequencies (see Rosenblatt (1981) and Y ajim a 

(1989)) but not for periodogram ordinates in a neighbourhood of zero, as docu­

mented by Kiinsch (1996), Hurvich and Beltrao (1993), Comte and Hardouin (1995), 

and Robinson (1995b). The periodogram ordinates Ix(Xj) are no longer independent 

or identically distributed when the sample size n tends to infinity. In this setting, 

Theorem 2 of Robinson (1995b) gives a m ajor result on asym ptotic variance and cor­

relations of low frequency periodogram ordinates which applies to the  dependence 

structure considered in this thesis under 1.74: putting v(X) = wx ( \ ) / G 1/ 2\ ~ dx, 

where tu*(A) is the discrete Fourier transform defined in 1.52, and a 2 is the  uncon­

ditional variance of the innovations to the process, we have

£M A ;)u(A t )] =  Sjko* + 0 { ^ )  (1.80)
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£[t,(A,-)«>(A*)] =  O ( ^ ) .  (1.81)

This result is instrum ental to the proofs of the asym ptotic properties of the log 

periodogram, the local W hittle  and the averaged periodogram estim ates of long 

memory, and it remains valid when the conditional homoscedasticity condition 1.26 

is relaxed to 1.27 with of following 1.28. In this setting, C hapter 3 proves th a t the 

asym ptotic norm ality result 1.75 continues to hold for the local W hittle  estim ate of 

long memory, and th a t it continues to hold w ith identical asym ptotic variance so 

th a t no features of the ARCH structure defined by 1.28 or 1.36 enter. This result 

is due to additional smoothing of the periodogram via the slightly more stringent 

condition on the choice of bandwidth

ra log m =  o(n 2 ~de) as n  —> oo (1.82)

which ensures th a t the contribution to the variance of the periodogram of the er­

rors et from fourth cum ulants 1.62-1.64 induced by long memory conditional het­

eroscedasticity is of small order of m agnitude with regards to the suitable approx­

im ating m artingale. This implicit effect of ARCH -restricting attainable rates of 

convergence for the estim ates- is directly in contrast with param etric or adaptive 

estim ation (see, e.g. Weiss (1986) and Kuersteiner (1997)) where ARCH-type be­

haviour directly affects lim iting distributional properties.

This outcome (i.e. no explicit effect of ARCH) is especially desirable in the case 

of the local W hittle estim ate. This is in the first place due to  the simplicity of the 

lim iting variance in 1.75, which is independent of G and dx . Moreover, although 

maxim um  likelihood estim ation of param etric versions of 1 .3 3  such as 1.38 or 1.41 is 

implicit in the derivation of LM tests by Robinson (1991b), no rigorous asym ptotic 

theory exists for such estim ates, apart from the ARCH or GARCH special cases 

studies by Weiss (1986), Lee and Hansen (1994) and Lumsdaine (1996). Thirdly, 

there is no asym ptotic theory available for sem iparam etric estim ation of the mem ­

ory param eter determ ining the asym ptotic behaviour of the or <̂ j’s in 1.27 or 

1.33. C hapter 2 and 3 develop for the first tim e asym ptotic theory in a  long memory 

context th a t allows for ARCH structure. The mixing conditions stressed above do
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not perm it long memory, whereas long memory literature features either Gaussian 

processes (e.g. Fox and Taqqu (1986), Robinson (1995b)), non linear functions of 

Gaussian processes (e.g. Taqqu (1975)), linear functions of independently and iden­

tically distributed sequences (e.g. Giraitis and Surgailis (1990)), nonlinear functions 

of such linear filters ( “Appell polynomials” , see Giraitis and Surgailis (1986)), as well 

as the model defined by 1 .1 , 1.2, 1.25 and 1.26. None of these approaches represents 

conditional heteroscedasticity in a m artingale difference sequence.

1.5 Choice of bandwidth

It is apparent from the discussion above, th a t the choice of bandwidth m, the number 

of periodogram ordinates used in the estim ation procedure, is crucial in semipara­

metric estim ation of long memory. It is crucial to  both asym ptotic distributional 

results and mean square optimality. Moreover, insofar as it determines from which 

point the practitioner starts to describe the behaviour of the series as asym ptotic, 

bandwidth is central to the concept of long memory itself. In th a t regard, specifying 

the series only in the “asym ptotic region” with a structure th a t does not impose 

itself on short run cycles, seems an intrinsically be tte r approach, notw ithstanding 

considerations of efficiency and robustness.

A discussion of sem iparam etric estim ates of long memory would therefore not be 

complete without mean-square optim ality theory. Bandwidth choice considerably 

affects kernel density estim ates (see for instance Delgado and Robinson (1992), Sil­

verman (1986), Hardle (1990)) and smoothed periodogram spectral estim ates (see 

for instance Robinson (1983a), Robinson (1983b), Robinson (1991a)). Long memory 

semiparametric estim ates are no exception. Henry and Robinson (1996) and Smith 

and Chen (1996) report extensive Monte Carlo experiments which show the huge 

variability of bias and variance with bandw idth for the local W hittle estim ate of 

long memory. A similar picture is found in Monte Carlo studies of the log peri­

odogram estim ate in Robinson (1995b), Hurvich and Beltrao (1994), Hurvich, Deo, 

and Brodsky (1998), Taqqu and Teverovsky (1995a), and for the averaged peri-
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odogram estim ate in Lobato and Robinson (1996), Delgado and Robinson (1996), 

Delgado and Robinson (1994). The need for an optim ality theory for the determ i­

nation of bandw idth is therefore evident. Giraitis, Robinson, and Samarov (1997) 

show th a t for long memory estim ates, in a similar way as for smoothed periodogram 

estim ates, one cannot improve on a rate of convergence which depends on the lo­

cal smoothness properties of the spectral density following specification 1.74. They 

further show th a t the log periodogram estim ate of long memory in the form pro­

posed by Robinson (1995b) attains this optim al rate  of convergence. Under the 

more restrictive specification

/(A ) =  |2 s in ( ^ ) |‘ 2V ( A )  (1.83)

where /* (A) is twice continuously differentiable and positive at A =  0, Hurvich, 

Deo, and Brodsky (1998) give a precise expression for the  m ean squared error of the 

estim ate and derive an optim al bandw idth formula. For spectral densities satisfying

f W  =  L( X) X~2dr ( l  +  Effdr^ 13 +  0 <  1 ^ 1  <  oo, p  e (0,2], (1.84)

as A —Y 0+ (with L ( A) defined as in 1.18), and defined nonparam etrically on the rest 

of the spectral domain, Henry and Robinson (1996) propose a heuristic derivation of 

the m ean squared error for the local W hittle estim ate based on the assum ption th a t 

the asym ptotic variance in 1.75, i.e. 1/4m , remains the same when the oversmooth­

ing condition 1.77 fails. A full proof requires a treatm ent of the first two moments 

of the local W hittle scores and is the m atter of further research. As for the averaged 

periodogram estim ate of long memory, Robinson (1994b) provides theoretical val­

ues for the mean squared error, and corresponding optim al bandw idth formulae, and 

Delgado and Robinson (1996) provide an autom atic bandw idth selection procedure, 

including estim ation of the constant Epdr in 1.84, and Henry and Robinson (1996) 

use a similar procedure applied to the local W hittle estim ate. However, to  date, 

there seems to be no fully autom atic bandw idth selection procedure in the sense 

th a t every stage is supported by asym ptotic theory. A fully autom atic procedure 

was provided in Danielsson, de Haan, Peng, and de Vries (1997) for the determ i­

nation of the bandw idth in the Hill estim ation procedure of equation 1.72, but the
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sub-sample bootstrap technique employed relies on the i.i.d. assum ption for the 

observations, and does not seem to be readily extendible to strong dependence. One 

therefore needs to rely on M onte Carlo experiments to assess the quality of optim al 

bandwidth selection formulae, and it remains advisable to report a wide range of 

bandwidth choices in empirical applications.

1.6 Long memory in speculative returns

One of the main areas of application of long memory estimates in economics is the 

investigation of the behaviour of speculative returns (i.e. first differences of log 

prices) on financial m arkets. The theoretical focus of this thesis is particularly  well 

adapted to this analysis. Indeed, financial da ta  on speculative returns sampled at 

high frequencies (weekly, daily and intra-daily) is now readily available in long and 

reliable data  sets, in particular through data  collection agencies such as Bloomberg 

and Reuters. N onparam etric and sem iparam etric procedures are well adapted to the 

analysis of tem poral dependence in these long data  series. First and foremost, tim e 

series methods are instrum ental to the investigation of m arket efficiency. M arket 

efficiency is defined broadly by Fama (1991) as the characteristic of a  m arket w ith 

risk-neutral and rational agents where “prices fully reflect all available information” . 

Fama (1991) draws distinctions between three types of tests for the Efficient M arkets 

Hypothesis: “tests for  return predictability, relating to the ability to forecast future 

returns from the knowledge of past returns, “event studies”, or m icrostructure stud­

ies of issues relating to the speed with which prices incorporate public inform ation 

announcements (such as central bank decisions or macroeconomic announcem ents), 

and “tests for  private information”, relating to the implications of m icrostructure 

models allowing for asym m etric information in the market (such as Glosten and 

Milgrom (1985)). The null hypothesis for the non predictability of returns is 1.25 

with et =  r t the process of financial returns. In particular, the issue of predictabil­

ity over long horizons can be addressed with long memory modelling for returns. 

Evidence of long range dependence in stock m arket returns is found in Greene and
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Fielitz (1977). This finding raises a num ber of questions on the effects long memory 

in returns may have on portfolio decision and on derivative pricing using m artingale 

m ethods. However, the finding of Greene and Fielitz (1977) is challenged by Lo 

(1991) with a slightly more powerful analysis based on a modified form of the R / S  

statistic. Lee and Robinson (1996) are the first to apply sem iparam etric m ethods to 

the measure of memory in stock price returns, and Lobato and Savin (1998) apply 

the Pitman-efficient test statistic  developed in Lobato and Robinson (1998) to con­

clude w ith Lo (1991) th a t evidence of long memory in returns is spurious. They do, 

however, find strong evidence of long range dependence in the squared and absolute 

returns, as do Ding and Granger (1996). This refines the widely recognised stylised 

facts on conditionally heteroscedastic behaviour of financial returns (see M andelbrot 

(1963) and Fam a (1965) for a first description of the phenomenon) and reinforces 

the value of long memory estim ation procedures robust to (possibly long memory) 

conditional heteroscedasticity when examining the long run predictability of returns.

Henry and Payne (1997) and Andersen and Bollerslev (1997a) find the same pa ttern  

in intra-day foreign exchange ra te  returns and give a rationale based on the aggrega­

tion of heterogeneous autoregressive information arrival processes on the m arket. In 

view of the more pervasive evidence of long range dependence in the volatilities than 

in the returns, the focus of interest is therefore naturally shifted to the investigation 

of tem poral dependence in the volatility process. Modelling volatility is fundam ental 

for several reasons. Volatility serves as a measure of risk, albeit very crude, and it 

is used in derivative pricing formulae such as the Black-Scholes formula. Secondly, 

the volatility process can be identified with an aggregate process of information ar­

rivals on the m arket (see Clark (1973), Epps and Epps (1976) and Tauchen and 

P itts  (1983)). Thirdly, higher volatilities imply larger bid-ask spreads (difference 

between the buy and the sell quotations) and more generally, although knowledge of 

the volatility process alone is not sufficient to test whether such spreads are caused 

by asym m etric information or inventory control (or other m icrostructure questions 

relating to  the “tests for  private information”), modelling of volatility paves the 

way for the investigation of m arket efficiency in term s of inform ation transmission
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( “event studies”) and, in particular, the long run effect of transactions on the price 

process (see for instance Lyons (1985), and Hasbrouck (1991)).

1.7 Synopsis

The following two chapters are concerned with the effect of possibly long memory 

conditional heteroscedasticity on sem iparam etric estim ation of long memory.

Chapter 2  considers the averaged periodogram statistic  for a linear process with pos­

sibly long memory in the innovations conditional variance. An asym ptotic norm ality 

result is given for averaged periodogram  estim ation of finite and positive spectral 

densities at zero frequencies. The proof is adapted from Robinson and Henry (1997). 

The robustness of the results in Robinson (1994c) regarding consistency of the av­

eraged periodogram statistic  in the presence of long memory is then shown and a 

Monte Carlo experiment assesses the effect of conditional heteroscedasticity in small 

sample averaged periodogram long memory estim ation. The estim ation of stationary 

cointegration is then discussed in this framework.

Chapter 3 presents the proofs of robustness to (possibly long memory) conditional 

heteroscedasticity of the consistency and asym ptotic normality results for the local 

W hittle estim ate of long m em ory in Robinson (1995a). A Monte Carlo study in­

vestigates the effect of conditional heteroscedasticity on local W hittle  estim ation of 

long memory in small samples. This chapter is based on a joint research with Peter 

Robinson, appearing in Robinson and Henry (1997).

Chapter 4 derives the asym ptotic m ean squared error of the local W hittle estim ate 

of long memory and an autom atic optim al bandw idth selection procedure. An ex­

tensive Monte Carlo study assesses its performance in comparison with autom atic 

log periodogram estim ation of long memory and autom atic averaged periodogram 

estim ation of long memory. The la tte r is proven to be valid under the current fram e­

work allowing for (possibly long memory) conditionally heteroscedastic innovations. 

An earlier version of this chapter is joint work with Peter Robinson and appears in
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Henry and Robinson (1996).

C hapter 5 investigates patterns of long range dependence and co-dependence in 

several intra-day foreign exchange rate  data  series. Little evidence is found of pre­

dictable returns, bu t strong evidence is found of long range dependence in returns 

volatility, with a pa tte rn  of stationary cointegration in support of a m ixture of dis­

tributions model for the inflow of information into the m arket. This chapter is the 

result of joint research with Richard Payne, part of which appears in Henry and 

Payne (1997). A very similar research was conducted simultaneously and indepen­

dently by Andersen and Bollerslev (1997a) on a part of the same data  set.
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C hapter 2

A veraged  periodogram  sta tistic

2.1 Introduction

This second chapter is concerned with the use of an averaged periodogram sta tistic  

proposed by Grenander and Rosenblatt (1966) to investigate tem poral dependence in 

weakly dependent tim e series. The process x t considered is stationary and satisfies

1 .1  and 1 .2  w ith the m artingale dependence assumption 1.25 on innovations et . 

The approach is sem iparam etric in the sense th a t x t is supposed to have spectral 

density /(A ) satisfying the local specification 1.18 with dx >  0; and the averaged 

periodogram statistic  is used to investigate the behaviour of /(A ) in a neighbourhood 

of zero frequency, estim ating / ( 0 ) =  L(0 ) when dx =  0  and estim ating dx when the 

la tte r is strictly positive. Section 2  of this chapter presents issues and past results.

In the use of a sem iparam etric approach, one may have in m ind estim ating de­

pendence in long financial da ta  series. To th a t end, asym ptotic properties of the 

averaged periodogram statistic need to be justified when there is a possibly high 

degree of tem poral dependence in conditional variances.

Asym ptotic norm ality of the averaged periodogram estim ate of / (0 )  when dx =  0 

follows from H annan (1970) under 1.26 and other regularity conditions. Section 3 of 

this chapter extends the validity of this result with unchanged asym ptotic variance
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to the case 1.27 with of defined by 1.28 corresponding to (possibly long m em ­

ory) conditional heteroscedasticity in the  innovations of a generalised linear process. 

Consistency of the averaged periodogram based estim ate of dx > 0 is proved w ith a 

specific rate of convergence by Robinson (1994c). Section 4 of this chapter extends 

the validity of the la tte r result to processes satisfying 1.27 with of following 1.28.

A simple corollary is the extended validity of a consistent estim ate of stationary 

cointegration proposed by Robinson (1994c). This is presented in Section 5 of this 

chapter while Section 6  proposes an investigation of the effect of conditional het­

eroscedasticity in small samples. Section 7 concludes this chapter.

2.2 Averaged periodogram  statistic

Let the discrete Fourier transform  of a covariance stationary process Xt be defined 

as in 1.52 and the periodogram I x ( X )  as in 1.53. Define the averaged periodogram 

by

p _  [A n /27r]

= T  E  W  (2 -1)
n i=i

where Aj = 2n j l n ,  n is the sample size and [x] denotes the largest integer smaller 

or equal to x. Because I x ( X j )  is invariant to location shift, no m ean correction 

is necessary for 2.1. F ( A) is a discrete analogue of the more widely documented 

continuously averaged periodogram (see Ibragimov (1963)) where 1.53 is replaced 

by its demeaned version. The estim ate / ( 0 ) =  F ( X m ) / X m  given in 1.79 was proposed 

for /(0 )  by Grenander and Rosenblatt (1966) and is readily generalisable to a wide 

class of weighted periodogram spectral estim ates defined below. Let K ( A) be a 

bounded function satisfying

I<{X)dX = 1 , I < { -A) =  K (  A). (2 .2 )

Defining

oo
K m(X) = m  £  K ( m ( \  + 2nj ) )  (2.3)

j=—OO
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where m  is a positive integer called the bandwidth, weighted periodogram estim ation 

of / ( 0 ) is given by

/« (0 ) =  — 2  * » (* ,- ) / ,(A*). (2.4)
71 j = 1

The class of kernel functions such th a t

K m { A) = 0  for A >  X m  (2.5)

provides a basis for estim ation of /(0 )  under specification 1.18 with dx =  0. Sup­

posing 1.69 is satisfied, a set of sufficient conditions for

fw (0 ) — / ( 0 ) as n —y oo (2 .6 )

includes absolute sum m ability of fourth cumulants

-foo

Y  |cu m (x i,x i+/l,x i+i,x i+J)| <  oo. (2.7)
h , i , j = - o o

Suppose tha t a local Lipschitz condition is imposed on the spectral density in the 

form,

f W  =  /(0 )(1  +  E p r f )  +  o ( \0) as A -> 0+ , (2.8)

with

P G (0 , 2 ], 0  <  / ( 0 ) <  oo, 0 <  Efi < oo,

and suppose the bandw idth m  satisfies 1.77. Under the conditions above, asym ptotic 

norm ality of /(A ) given by 1.79

m ^ (/(0 ) -  /(0 ))  A /'(0,/(0)2) as n o o  (2.9)

occurs under the two following sets of sufficient conditions: Brillinger (1975), Theo­

rem 5.4.3, page 136 assumes 1.7 and existence of all moments of x t ; Hannan (1970), 

Theorem 13, page 224, assumes th a t x t follows 1 .1  with i.i.d. innovations. H annan 

(1970), Theorem  13’, page 227 also proves 2.9 under the uniform m ixing condition 

1 .4  and fourth order stationarity with absolutely summable fourth cum ulants as
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in 2.7. However, he needs the additional assumption th a t the spectral density of 

the process x u /(A ), be absolutely continuous for all A. Such a global condition is 

undesirable in this sem iparam etric framework where one wishes to allow for discon­

tinuities in the spectrum , and indeed for any kind of behaviour for the spectrum  at 

non zero frequencies, providing it remains integrable (a consequence of covariance 

stationarity).

Robinson (1983b) gives a survey of the possible applications of spectral estim ation. 

One of the m ajor applications of 1.79 is documented by Robinson and Velasco (1996). 

They show how a consistent estim ate of the spectral density at zero of a weakly 

dependent process is instrum ental in location inference, linear regression and more 

complex econometric models. As appears in 1.22 for instance, the sample m ean of 

a process with nonparam etric autocorrelation provides an asym ptotically norm al, if 

not efficient, estim ation of the population m ean where misspecified autocorrelation- 

corrected estim ates might prove misleading.

2.3 A sym ptotic normality o f the averaged periodogram

As indicated in Section 2, the averaged periodogram statistic  more commonly lends 

itself to the estim ation of the spectral density at frequency zero for a weakly depen­

dent process x t (or indeed at any continuity point of the spectrum ). The following 

theorem shows th a t the discretely averaged periodogram (1 /m ) YCf=\ f®(Aj)  remains 

an asym ptotically normal estim ate for the spectral density at frequency zero of an 

observed generalised linear process w ith conditional heteroscedastic innovations.

We make the following assumptions:

Assumption A l /  satisfies 1.84. In addition, in a neighbourhood (0,5) of the 

origin, a(A) is differentiable and

^ lo g « ( A ) =  O ( l ^ i )  as A 0+, (2.10)

where a  (A) =  YL%oaj e^ X •
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Assumption A2 m  satisfies 1.77 and

m  1
-* 0 , 0  <  de < (2 -1 1 )n i-2 d c ’ c 2

Assumption A3 x t satisfies 1 .1 , 1.25, 1.27, 1.28, 1.33, 1.40 and 1.42. In addition, 

1.46 holds with the same de as in 2.11 and

m axEe*  < oo, (2 .1 2 )

E  ( e je u l^ - i )  =  E  (ei£l £v\Ft-i )  =  0, a.s., t > u > v , (2.13)

and the aj  are quasi monotonically convergent, th a t is, a^ —>-0 as j —t oo and there 

exists J  < oo and B  < oo such th a t for all j  < J ,

« i + i  <  a o ( X +  y )  ‘ ( 2 '1 4 )

Consistency of i^(Am)/Am holds when /(A ) is only continuous at frequency zero, 

but a Lipschitz condition is necessary for asym ptotic normality. 2.10 is needed for 

the treatm ent of fourth cumulant moments of the errors, to justify the m artingale 

approximation. 1.77 is a minimum requirem ent for asym ptotic norm ality in view of 

the fact th a t an optim al bandw idth rate is n 2P/2P+1 at which ra te  bias and asym ptotic 

variance have the same order of m agnitude. 2.11 strengthens 1.77 unless d£ <  

1/(4/?+2). 2.11 is required for the left-hand side of 2.9 to converge to a finite random  

variable. Quasi-monotonicity of the Fourier coefficients aj  of / ,  and boundedness of 

/(0 )  imply absolute sum m ability of the Fourier coefficients aj:

oo

S l “ j | < o o .  (2.15)
i=o

The requirement 2.13 th a t conditional odd moments be non stochastic up to seventh 

order is restrictive, bu t satisfied if e* has a conditionally sym m etric density, or, more 

specially, if

~  N { 0,<r(2). (2.16)
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Note tha t 2.12 itself entails a restriction on the m agnitude of the <£,■; see for in­

stance the results of Engle (1982), Bollerslev (1986) for ARCH (l) and GARCH(1,1) 

processes under 2.16, and of Nelson (1990b) under more general distributional as­

sumptions. However, 2.12 is only a sufficient condition in this setting. The quasi­

monotonicity assumption on the aj  entails (see Yong (1974)), for all sufficiently 

large j ,

Ia i ~  a j+1| <  (2.17)
3

In fact, we believe th a t this requirement could be removed or relaxed by a more 

detailed proof, but the quasi-monotonicity requirement does not seem very onerous, 

while 2.11 is also needed when the ej have long memory, and there always exists an 

m  sequence satisfying both  1.77 and 2.11.

T h e o re m  1 Under Assumptions A1-A3, 2.9 holds.

Proof1

m ( F ( Am) T r\ \ 27t

j=]

+

+

m  2

7 (0 ) E ( / ( ^ ) - / ( 0 ))- (2 .2 0 )

From 2.8,

2.18 can be further decomposed into

( 2 ' 2 I )

1The proof is adapted from the proof of Theorem 2 in Robinson and Henry (1997).
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1 £  I 1 -  m  U M -
+

Because E ( I e(Xj)) = a j 27T, the third term  has first absolute m om ent bounded by

j=i
1 -

/(A,-)
/ ( 0)

=  O (m^+2n ^  =  ° ( 1 )>

from 2.8 and 1.77. The second term  has first absolute m om ent bounded by

3 =  1

1 -

m
E  {Ix(Xj) ) . (2 .22)

Now,

E ( U V )  = ^  E  E ( x tx s) e « - ’»
t , S =  1

-I n  oo

<7
27T

t,5—1 —0

2 oo n —1

X ! X  »tO!t+,e’a  < K  X  K  l <  °°>
j=0 t—- j  \ j =0 /

where the second equality is derived from application of 1.1, the th ird  equality is 

derived from application of 1.25 and the last inequality follows from 2.15. Therefore, 

2.22 is bounded by

K m  2 E  
j=i

1 _ / ( M
m

= 0  (m ^+2n ^  = o (l),

from 2.8 and 1.77. 2.21 has second moment equal to

m -1 y '  p  ( Ix{Xj) 27r r / \ f  Ix(^k) 2ir .  \
£ E I m  ~  ^  e( i )  U m  ~  ^  ‘ { k \

(2.23)
j,k=l

Robinson (1995a) proves th a t this is o(l) under assumptions such th a t 

cum(er ,£4,£ t,£ u) =  k when r = s = t =  u and zero otherwise. Under the present 

assumptions, 1.62-1.64 also contribute. The complete fourth cum ulant contribution



58 Chapter 2

to 2.23 is the following:

1 m  I n

£  ,7 /T'V £  cum (i„ x s, x t, x„)e'*r-s 'Ai-i*,_“'A*(2.24)
™(2im)2 ^  f ( Xj ) f ( h )  r^ =l

-I m  /  o  x 2 n

+  = ! 5 * £ f e )   <2 -“ >

1 m i r) n

£  7 7 7 7 ^  £  cum(£r ,£ s,x (,x tl)e><’- s)^- '< 1- “)A‘ (2.26)
m (2irn)2 ^  f { \ k) a 2 r s^ =1

1 m -1 n _  n

£  7 7 T 7 - 2 £  cum(xr ,x 5>£(,£„)ei(’- s)Ai- '( ‘- ‘)A‘ (2.27)
m ( 27r« ) 2 j j E i  / ( Ai )  r , » ^ = l

Now, applying 1.1,

r s t u

cum(xr, x syx t , x u) =  S  H  a r_pas_ga t_ /a u_vcum(£p,£ g,£ /,e v)
P — — 0 0  q = — o o  / =  — o o  v = —o o  

n

— /C ^  Otr-pOLs-pOti-pOtu—p
p =  — o o  

n

4 “ ^   ̂""f p —q { Q r —p d s —pQ-t—q d-u—q 4~ & r —p d s —q d t —p & u —q
p¥-<i 
— o o

4 “QV—p ^ a —q ® t —q & u —p )

in view of 1.61-1.64 and with the convention th a t a j =  0, j  <  0. In the same way,

t  u

cnm(£r , cs, Xf, x u) — ^ ^  ] ^i-p^u-^cuni(£c,^s, p̂>
p = — o o  q = — o o

min(t ,u)

— K,8r s OLi—r OLu —r  -}~ ra £  ^ r - p O i t - p O t u - p  
p — — o o

4 ” Tr — a ( ^ t —r & u —s 4” s & u —r ) j

and a symmetric expression can be w ritten for cum(xr , x s, £*, eu). The contributions 

from k is also proved to be o(l) in Robinson (1995a). The contribution of 1.62-1.64 

is the following:

m - l n ~2 ™ 1 " "
/ o  \2  ^  f ( \  \ f ( \  \  / _ ^ l p - q \ OLr - p OLs - p a t - q a u - q
( 27r) 2 ^  f ( X j ) f ( X k )  r,s7 X=l

— O O

4-ar_pa s_ga t_pau_g -f a r_pa s_9a*_ga u_p) e,(r - *)AJ '',(<"'tt)A* (2.28)

— 1 —2 771 71

+  £ £ > - . (  1  _p e t (r —*)(Aj-hAfc) _|_ e * (r -a )(A j-A fc) j  ( 2 . 2 9 )

® j , k = l  rjts
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2m ~ 1n ~2 ”  1 "
2 ^  £ / ( A t ) r,s£ =17,- " (a r- iQs- “

+ a r _ „ a , _ , )  e * '( '-» )A )- i ( * - « ) A »  ( 2  3 0 )

o rr7- l r7- 2  m  1 n  m in p .u )

 E  T T in  E  E  ■ y (2.31)
27ra i,fc=l A A*J r ,S)t = l  P= - o o

From 2.15, the four contributions above are 0  (m n_1 17* l)> which is 0 ( n 2dt~lm )

by 1.46, and therefore, from 2.11, it is o(l) as required.

There remains to prove th a t

m  ,  o _  r  x

m ^ E  f M  { — f  -  l )  ^ (0 ,1 ) . (2.32)
j = 1 V a  '

The left-hand side is a m artingale equal to zt with z t =  £* esct^ s, where 

cs =  2m -1/ 2/is/ / ( 0 )  and fis = L Y??=i / ( Aj) cos s ^j- We wish to  show th a t as n  —> oo

(2.33)
t = i

y :  e  ( ^ i ^ 7t- i)  ~^p a4> (2 .3 4 )
*=1

which, following Brown’s M artingale Central Limit Theorem  (in Brown (1971)), 

implies 2.32. By the Schwarz inequality, E( z f )  < (E s* Y  (■&(?)*. Because £t = 

I^s=i £sCt-s is a m artingale, by Burkholder’s inequality (Burkholder (1973)),

t - 1

£  (ft8)  <  K E ( E  4 - . ^ )  <  m a x  # £!  (  E  c» )  •
. .  . < ) '  

S = 1  S = 1

Now, putting  f j  = / (A j) / /(0 ) ,

iZ  cl =  ] C 4m  ln  2 f j  cos 5Aj

m  n

=  4m 1n f f  ^ 2  cos2 s \ j  (2.35)
j = 1 S=1
m  n

+  2 m ~ ln ~2 Y2  f j f k  J2  Icos 5(Ai +  A*) +  cos 5(Ai ~  A*)l •
& k  S = 1

1
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2.35 is 0 (1 /n )  whereas, using trigonometric identities in Zygmund (1977) p. 49,
n

Y  [cos s (^j +  ^k) +  COS s(Xj -  A*)] =
s =  1

s i n f o  +  | ) ( A j  +  Xk) sm(n +  ±)(\j -  \ k) =
2  sin | ( A j  +  Ajb) 2 sin | ( A j  — A * )

for j  ^  k,  so tha t

X > ’ =  0 Q ) ,  (2-36)
5=1

which in turn  implies

± E ( 4 ) < ^  0
t - 1  u

to verify 2.33. To check 2.34, write

E  [z] \Ft- i )  =  +  (at ~  a2)&-

From (4.14) and (4.15) of Robinson (1995a),

Y t f  -  ° 2 =  Y  X t r n - t  +  a 1 ( $ 3  ~  X }  +  Y Y e r £ s Ct - r Ct s ,  ( 2 -3 7 )
*=1 t = 1 I  t = l  )  t = 2  r ^ s

writing Xt = 6t ~  0-2 anc  ̂ Tt = cj +  . . .  +  cj. The first term  on the right has mean 

zero and variance
n —l n —1

Y  Y  I t - v T n - t r n - u ,  (2.38)
t = 1 u = l

where 7 j = cov(eJ, eJ+J-). 5Z?=i r n_* can be w ritten

a m  n —l  n —t  o  n —l  n —t

r - ?  E / ; E E  cos2(sAj) +  — j  22 fifh 22 E  [cos(a(Aj + **)) +  cos(s(Aj -  A*)))
m n  j = 1 t = 1 s = l  j^A: t = l  5= 1

Robinson (1995a) shows th a t
n —l  n —tn - l n - t  ( n — Y \ 2

E E '  0 ^ )  =  £ - H - ,
* = i  5 = 1  

n —l n —t

Y  Y  [cos(5 (Aj +  A*)) +  cos(s(Aj -  A*))] =  - n .
t= 1 5=1

Because
1 m

—  E  f j  =  1 +  0  { Xm )  =  1 +

= 5 M- °( i §' ;) =0©'
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it follows tha t

n —l

>1, as n —> oo. (2.39)
t = i

As, moreover,

|7 j | <  K $ 0$ j  = O ( j 2de_1) —>-0, as j  —>• oo (2.40)

by 2 .1 2  and 1.46, it follows from the Toeplitz lemma tha t 2.38 tends to zero. Clearly,

the second term  in 2.37 thus tends to zero, whereas the last term  has mean zero and

variance bounded by

( v n min(*—l ,u —1)

max E e \ ) ^  X  |c*_rct_scu_r cu_s |. (2.41)
'  t , U = 2  r ^ i s1

This follows from the corresponding derivation in Robinson (1995a), b u t upper 

bounding E(e2el)  by the Schwarz inequality. Following Robinson (1995a) step by 

step, we bound 2.41 by

\cf—rCt—§cu— (2. 42)
t — 2  r j i  a t — 3  U = 2  r ^ t  3

1 1

From 2.36, the left-hand side is 0 ( l / n ) .  By summation by parts, we have

(2.43)Iccl =  2 m 1!2n 1
m —1 j  m

X  ( f j  ~  f j + 1) X cos s X * +  / " > E cos
3 =  1 1=1 j = l

Now E / =1 cossA/I =  0 ( n / s )  for 1 < j  < m  and 1 <  s <  n /2  by Zygmund (1977) 

page 2. Moreover, by 1.84,

771 /  771 \

E  If i  -  /i+ iI =  0  -  Ai+>l =  (2.44)
3 = 1 \3 = 1 )

Therefore, |cs| =  0(m P ~ ll2n~^ s~l +  m _1//2s_1) =  0 ( m ~ ll 2s~l ). It is im m ediate to 

see th a t |cs | is also 0 ( m 1̂ 2n ~ 1). Therefore, from Robinson’s derivation (in Robinson 

(1995a)), the right-hand side of 2.41 is bounded by



62 Chapter 2

which is

s = [ n / m 2/ 3]

as n->oo, so th a t 2.41 is 0  (m -1/3) in view of 2.36. It remains to show th a t

t ( a t ~  -^p°-
t=i

The left side is

a 2 J 2  ( ° t  ~  a 2 ) r t -1  +  t  ( a t ~  a 2 )  Z  c2-sX s  +  i t  { a t “  <j2)  Z l £^ c* -” c* - s ( 2 '4 5 )
t=i

The first term  is

t =  1 < =  1  S = 1  i = l  vjls
1

V 2 Z )  £ t o - ^ - i  =  <T2 (5i +  S2) ,
t —2 j = 1

where
n —l  n —l  —n  n —l

S i  =  Z  X i Z l r ^ - i + i ’ S 2 =  Y^, X j ^ r t A - j + u
j  — l  — Tl t =  1 j  — ~  OO t = l

and =  0, j  <  0. Now Si has m ean zero and variance

n —l n —l oo 2 2 n —2

H  l i - k  ’'S ifa- j+ifa-k+i  <  5Z ITj-I
j , k —l —n  s , t = l  j = l  j = 0

=  o

using 1.42, 2.40 and 2.36. On the other hand
n —l  oo

E  |S2| <  K  ^ 2 r t as n-^oo,
t = 1 j —n

from 1.42 and 2.39, so th a t the first term  in 2.45 is op(l) . The second term  in 2.45 

is

i t  T  ^ - « E  C t - s X v X s  (2.46)
t = 2 v — — co s = l

+  i t  Z  Z  c t - s X v X s -  (2.47)
t = 2  v = l  s = l

The expectation of the absolute value of 2.46 is bounded by

(
\  n  oo

m ax E e^J  ^  Z j  |Vhlr <-i 0
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using 1.42, 2.39 and the Toeplitz lemma. 2.47 includes the component

n t — 1

12 12
t = 2 s = 1

whose absolute value has expectation which likewise tends to zero. The rem ainder 

of 2.47 can be w ritten

n t — 1 v — 1 n t — 1 t — 1

1 2 1 2  h - *  1 2  <%-sXvX< + 1 2 2 2  h - *  22
t = 2 v = \  s = l  t = 2 v = l  s = v + l

(2.48)

The first term  in 2.48 has m ean square

n t — 1 v — 1 u — 1 g—1

1 2  1 2  $*-< >  1 2  <% -* 1 2  V v - ,  1 2  c I - „ e  ( X v X s X q X p )  •
t , u = 2 v = l  s = l  g = l  p =  1

(2.49)

Now each (u, s, g ,p) such tha t s < v, p < q satisfies one of the relations v = q, 

s < q < v , q < s < v , p < v < q o i v < p < q .  The contribution from sum m ands in

2.49 such tha t v = q is bounded by

n  m in(<—l ,u —1)C \  71 u u i q . - i , u - i ;  V — 1  V— l

m ax E x t )  2 2  1 2  1 2  ct- i  1 2  cl - v
t , u = 2 v = l  s = l  p =  1

( \  oo 2

max E e ^ j r l ^ n  |^ - |)  =  O ( l / n ) - + 0 .

Next, for v > q >  s, p  < g,

E  ( X v X s X q X p )  =  E \  J 2  t v - j V j X s X q X p  f  ,
( i = - o o  J

because

g
^ ( X ^ ^ g ) =  ]C  a.s., v > q,

J  =  —  O O

as follows from 1.33 and

E  (y j\Tq) =  £  ( ^ l ^ )  - E { E  [e)\Tj-2)  IJ7,)  =  0 , a.s., q <  j .

(2.50)

(2.51)

Now 2.50 is bounded in absolute value by 

q
( 4>v-jVj'jXsXqXpE

j = —oo
E  ^ 1 2  (m a x  E x t ' )  i
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< K {
yJ =  ~CO

9
<  m _ q E  t i - i E  {yf)

<  K $ v-.q,

where the second inequality employs Burkholder’s (1973) inequality and the final 

one E  (v*') <  8  (e fj  -f E  { E  <  K,  by 2.12. Considering similarly

the three cases {p < q < s < v}, {p  <  v < q and s <  v} and {s < v < p < q}, we 

have

\ E  ( X v X s X q X p ) \  ^  K  +  ^ g —v  4" ^ g —p )

whenever s < v, p < q and v /  q, where 4>j =  0 for j  <  0. Thus the contribution to

2.49 for u / g  is bounded in absolute value by

k  E  E  l f c - . l  E  E  l v > u - , l E  c* - „  ( $ « - ,  +  $ v - s +  v .  +  V * )
t ,u —2 v —\  5= 1  g = l  p = l

t- 1

^  K  1 2  (  1 2  \ ^ t - v ^ u - q \ ^ v - q  [  r f _ i r u _ i
t , u = 2 (  v =  1 g = l  J

(2.52)
oo n  n t —1 f  t —1 ^

+  k  E  iV’i l  E  r “ - i  E  E  c t - ,  { E  [ •
j —1 u—2 t= 2  S — 1 U = 1  J

The terms in braces are bounded respectively by

oo oo

i + j + u - t  I * , - ,  e  
i , j = 0  i = l

which tend to zero as \u — t \—>oo and 11 — s|-*oo respectively, in view of 1.40 and

1.42 and the Toeplitz lemma. Thus, 1.42, 2.39 and the Toeplitz lemma further im ply 

th a t 2.52—>0 as n —»■ oo, completing the proof th a t the first term  of 2.48 is op(l) . The

second term  of 2.48 can be treated  in the same way to  conclude th a t 2.47 is op( l) .

The last term  of 2.45 is

n t —1 t — 1

2 £ v £ s c t - v c t - s -
t —2 j = —oo

(2.53)
»»< a 

1
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Now, note tha t

E  (x j£s£vXk£r£u) =  0, v <  s, u <  r, v ^  u or s ^  r.

This follows by proceeding recursively using 1.28 and nested conditional expecta­

tions, and the fact tha t E  E  ( e ^ F t - i ) ,  E { e /leu \Jru _i),  t >  u and

E(e$e levl ^ - i ) ,  t > u > v, are all a.s. zero under A3. On the other hand, for 

all indices,

\E (x jSs£vXk£r£u)\ <  rnax E  (ef) <  oo 

by Holder’s inequality. It follows th a t 2.53 has second m om ent

n  t - 1 u-1 m in ( t , u ) - l

4 y ^  ^ t —j  y ^ J v*u —k 5 3  c t —v c t —s c u —v c u —s E  ( x j X k t v £ s )

t,u=  2 ?'=—00 k=—oo v<s1
n m in (t ,u )  — 1

^  ^  ^  ] l^t—v ^ t —s ^ u —v ^ u —s | — O
t ,u—2 V<3

as in 2.41, to complete the proof th a t 2.37 —>p 0 and thus of 2.34.

2.4 C onsistency under long memory

In case /(A ) satisfies 1.18, the singularity at zero naturally  precludes estim ation of 

/ ( 0 ), but the strength of the dependence in the process is embodied in the slope of 

the spectrum  in a neighbourhood of frequency zero. Properties of the discrete Fourier 

transforms in this framework are discussed in Rosenblatt (1981) and in C hapter 1 of 

this thesis. Yajim a (1989) proves a central lim it theorem  for discrete Fourier trans­

forms of strictly stationary processes with finite moments of all orders and absolutely 

summable higher-order cumulants a t fixed non zero frequencies, whereas Theorem  2  

of Robinson (1995b) gives the orders of m agnitude 1.80 and 1.81 for m om ents of 

discrete Fourier transforms in a neighbourhood of frequency zero under 1.18, and 

very weak additional regularity conditions. Their asym ptotic distribution under the 

current framework is still an open question. However, as shown in Robinson (1994c),
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the slope of the spectrum  at frequency zero can be consistently estim ated using the 

averaged periodogram statistic  providing

1 as n —y oo. (2.54)

This chapter proves th a t 2.54 continues to hold when 1.26 is replaced by 1.27 with 

1.28. Robinson (1994c) proved 2.54 under minimal moment conditions capable of 

delivering convergence in probability only, whereas this chapter requires 1.43. This is 

particularly unfortunate, as 1.43 reduces the scope of GARCH specifications covered 

by 1.28 and is generally not supported by empirical evidence on financial returns 

(see He (1997) for an investigation of the fourth moment structure of the GARCH 

model).

We now consider the case where the observed process Xt displays long memory, with 

the degree of tem poral dependence embodied in the long memory param eter dx. The 

following theorem shows th a t the weak consistency result 2.54 continues to  hold when 

the error process et displays (possibly long memory) conditional heteroscedasticity.

The following assumptions are introduced:

Assumption B 1 /  satisfies 1.18, for 0 < dx < ~. In addition, 2.10 holds for 

a(A) =  £ “  0^ \

Assumption B2 m  satisfies 1.69.

Assumption B3 x t satisfies 1 .1 , with 1.25, 1.28-1.33, 1.40, 1.42 and 1.43. In

addition either

E  ( e f |^ _ i )  =  E(e3t ) a.s., t = 0 , ± 1 . . . ,  (2.55)

or

oo

£  1^1 < 0 0 . (2-56)
3= 0

Assumptions B 1 and B2 correspond to assumptions A and B in Robinson (1994c)

with the addition of 2 .1 0  which is used to control the martingale approximation
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term  2.59 below. 2.10 is added here for clarity of the proof. It is not strictly  nec­

essary for the consistency results of Theorems 2  and 3. Only the m agnitude of the 

singularity is specified for the spectrum  at frequency zero while Assumption B2 is 

a minimal assum ption for sem iparam etric estim ation based on a degenerating band 

of harmonic frequencies. Assumption B3 relaxes the restriction on fourth cum ulants 

(condition C(ii) in Robinson (1994c)) through the introduction of conditional het- 

eroscedasticity. Robinson only assumed the innovations are uncorrelated, whereas 

in Assumption B3, they follow a m artingale difference sequence. Condition C(iii) in 

Robinson (1994c) is replaced by the fourth moment condition 1.43. Assum ption A3 

implies Condition C(iv), as

2  (e < ~  ct2) =  °p(n) (2 -57)t=i

Indeed, left side of 2.57 has m ean zero and variance
n oo n oo

Y  Y  fafaEfa-jVi-k) = Y  Yfafa+s-tEtf-j)  (2-58)
t,s=l j,k= 0 f ,s=l j = 0

in view of 1.25, w ith (f>j =  0, j  <  0. In view of 1.44 and the Cauchy inequality, 2.58 

is, with = ( E S j  0 ? ) 2 j equal to

/  O O  71— 1 \

0  nY $  + n$o Y  = ° (712)
\  j - 0 j=1 /

by the Toeplitz lem m a and 2.56, thus verifying 2.57.

Again, the requirem ent 2.55 th a t conditional th ird  moments be nonstochastic is 

restrictive, but again is satisfied if et has a conditionally sym m etric density, or, 

more specially, if it follows 2.16. The alternative requirem ent 2.56 rules out long 

memory in e\ bu t covers standard  ARCH and GARCH specifications as well as many 

processes for which autocorrelation in squares decays more slowly than  exponentially. 

As noted above, 1.43 entails a  restriction on the m agnitude of the (j>j. However,

1.43 is not a necessary condition, and indeed, under 2.56 it can be shown to  be 

unnecessary by means of a longer argument, involving truncations, than  th a t in the 

proof of the following theorem .

T h e o re m  2  Under Assumptions B1-B3, 2.54 holds.
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Proof Calling I£(A) the periodogram of the innovations, Robinson (1994c) wrote
O — TTl / O _  \

F( Xm) - F ( \ m) =  - Z ( l * ( A j ) - — f  M W , - ) )  (2.59)n • , \  <7 /
.7 =  1

^  E  / ( Ai)  - x)  (2-60)+
n J 

Ott m
+  (2.61) 

n j=l

The first parts of Propositions 1 and 2 of Robinson (1994c) carry through to As­

sumptions A 1 to A3, so th a t 2.61 is o(F(Am)).

From (3.17) of Robinson (1995a) and Theorem 2 of Robinson (1995b) whose proofs 

are not affected by conditional heteroscedaticity,

E
2n ^ l° g j

so tha t 2.59 is Op ]£jLi f ( ^ j )  From 1.18 and lemma 3(ii) in Robinson

(1994c), 2.59 is therefore Op F"(Am)^ which is op(m 7,~^F(Am)), for any

T] > 0 .

There remains to prove th a t 2.60 is op(F (Am)). The left-hand side of 2.60 is propor­

tional to

{" i S - ct2) + ( 2 ' 6 2 )

where ~ I2JLi f i ^ j )  cos In view of 2.57, it is sufficient to show th a t

J 2 ^ s ^ t - s  = op( n F ( \ m)). (2.63)
s < t

The left hand side of 2.63 has variance

Y  E (e 2t£2s)pL2t_s +  2 Y  E{£t£s£u)vt-sVt-u (2.64)
s < t  t > s > u

from 1.25. Substituting 1.33 in the second term  of 2.64 yields

(  n  /  o o  \  ^
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.   2 ^  ] <t>t-SE fJ't — sf̂ 't — U
u < s < t

1

n

2 ^   ̂ (f>t—sE  ^ £ s £ u ^  ,
U < i < t

1

where the first equality applies nested conditional expectations and 1.25 for j  > 

t — s, and 1.35 for j  <  t — s, whereas the second equality employs 1.34 and nested 

conditional expectations with 1.25 to verify E ( a 2eseu) =  0 for u < s. Under 2.55, 

this is identically zero. Under 2.56, it is bounded in absolute value by

n —l oo n

2 n max E(e^) ^  <  K n F ( X m)J2 \(f>j\J2 \tJ'^
t > s = l —n j —0 s— 1

<  K n F ( X m) ^ 2 \ f i s \, (2.65)
5=1

where the first inequality follows from fit =  0 (F (A m)) from Proposition 1 in Robin­

son (1994c).

Now, following Robinson (1994c),

|/is | =  O ( r F ( \ m) +  n m ax 2 |//*|^ (2.66)

for n / m  < r < n / 2 , where the first term  on the right follows again from fit = 

0 ( F ( Am)), and, be Lemma 1 (ii) of Robinson (1994c),

m ax hi*I =  0 (r2(dx~ ^ )  as r  —)• oo.
r < t < n / 2

Choosing r ~  nnnSl~2dx^^2dx~2\  which is indeed larger than  n / m ,  yields the tightest 

bound for 2.66, i.e. 0 { n F { \ rn)mS2dx~l^^2~2dx̂ ). It follows th a t 2.65 is 0 ( n 2 F(A m ) 2 

m (2dx-i)/(2- 2dx)  ̂ wj1ici1 is o(n2F ( Am)2) as required.

The first term  in 2.58 is Op (n £ " =1 Ft)-> which is proven in the same way to  be 

0 ( n 2F ( \ m)2m 2(2dx~1̂ (3~4ix))1 which is also o(n2F ( Am)2) as required.

The consistency result of Theorem 2 is sufficient for a num ber of applications, in­

cluding consistent estim ation of dx, the long memory param eter which determ ines 

the extent of tem poral dependence in the observable process Xt. However, in order
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to determine the scale of the hyperbolic pole of its spectral density in the neigh­

bourhood of frequency zero, it is necessary to derive an upper bound for the rate 

of convergence of F( Xm) / F( Xm) to 1. To derive this upper bound, a smoothness 

assumption is added to Assumption B 1 and a rate of decay is given for the </>j, co­

efficients of the infinite moving average decomposition for the squares of the errors 

This rate of decay controls the degree of tem poral dependence in the squared 

error process.

Assumption C l /(A ) satisfies 1.74 with 0 < dx <  |  and 2.10 holds.

Assumption C2 1.69 holds.

Assumption C3 Assumption B3 holds. In addition, when 2.56 does not hold, 1.46

does with d£ <

Assumption C l is weaker than Condition A ’ in Robinson (1994c) while 1.46 is needed 

to derive the upper bound 1.51 for the partial sums of squared innovations.

T h e o re m  3 Under Assumptions C1-C3,

=  Op ( n * - i + g ) /, +  m -*) as n  oo

for 5 < ( |  — dx) / ( 3 — 2 dx).

Proof The proof of Theorem 3 in Robinson (1994c) still applies to  show th a t 2.61 is 

Op[((^)'9 -l-m - 5)F(A m)]. The proof of Theorem 1 established th a t 2.59 was op(m 7,“ 2 ) 

for any 77 > 0, so th a t 2.59 is Op(m~s) for any <$ <  ( |  — dx) / ( 3 — 2dx) as dx E (0, | ) .  

As for 2.60, the first term  in 2.62 is 0 ( n dc~^F(Xm)) from 1.51, whereas the second is 

shown to be + m ^ 1 - 2 ^ 2_2^ ] i ;i(Am)) in the proof of Theorem  2.

The result follows from the inequalities ( |  — dx) / ( 3 — 2dx) <  ( |  — dx) / (  1 — 2dx) < 

( |  -  dx) / ( 3 -  4dx) for any dx E (0, |) .



Averaged periodogram statistic 71

2.5 Estim ation of long memory

An estim ate based on the average periodogram statistic was proposed by Robinson 

(1994c)

dx" '  2  log q

m otivated by the fact th a t F( qX) / F( X)  ~  q2 d̂x~\) for any q >  0. From Theorem  1 , 

(4.3) of Robinson (1994c) and Slutzky’s Theorem, it is im m ediate th a t

C o ro lla ry  1  Under Assumptions B1-B3,

dXq -±p dx as n —> oo, for any q £ (0 , 1 ).

Under the additional requirement

m  =  0 ( n 7), 0 <  7  <  1 (2.67)

on the bandw idth, and

L(X) = GM{X ), G > 0, (2.68)

and M( X)  is a known function, a ra te  can be specified for the convergence of dXq

and G can be consistently estim ated by

- 2 ( 1  -  4 , ) ^
M ( \ m)

C o ro lla ry  2  Under Assumptions C1-C3, 2.67 and 2.68,

dxq — dx — Op(n~ ) as n —> oo, for some S > 0 ,

Gq —>p G as n 4  oo, for any q £ (0 , 1 ).

This estim ate is particularly convenient for its great com putational simplicity com­

pared to the local W hittle  estim ate which is not defined in closed form. Its asym p­

totic distribution under Gaussianity (see Lobato and Robinson (1996)), however, is
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only normal when 0 <  dx <  1/4 and, unlike tha t of the local W hittle estim ate, it is 

not free of dx . W hen 1/4 < dx <  1/2, its asym ptotic distribution is influenced by 

the Rosenblatt process.

2.6 Finite sample investigation of the averaged periodogram  

long memory estim ate

While the weak consistency result proposed for dXq in Corollary 1 is valuable for the 

investigation of long financial tim e series, it is of interest to examine its relevance 

to series of more m oderate length. Moreover, as Corollary 1 does not provide any 

limiting distributional result2, it is im portant to provide simulation values for stan­

dard errors, and thereby to  investigate the robustness of distributional results given 

by Lobato and Robinson (1996).

The finite sample results presented here do not consider the sensitivity of the esti­

m ate to the choice of the constant q (q = 1 / 2  is chosen arbitrarily), but concentrate 

on the sensitivity to conditional heteroscedasticity in the errors. Robustness to  

departures from finite fourth m om ent condition is also considered.

Finite sample performance of dxq was examined under the presum ption of no con­

ditional heteroscedasticity (and indeed unconditional Gaussianity of the errors) in 

Lobato and Robinson (1996). We present here results of a Monte Carlo study 

of the averaged periodogram estim ate applied to simulated series x t following an 

ARFIM A(0,da;,0) param etric version of 1 .1  with conditionally Gaussian innovations 

St (see 2.16) satisfying the following five models for the conditional variance of:

(i) IID: of =  a 2. The et are independent and identically distributed, so th a t 

there is no conditional heteroscedasticity. We can take a 2 =  1 with no loss of 

generality.

2It is only conjectured that dxq remains asymptotically normal for 0 <  dx <  1 /4 .
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(ii) ARCH: of =  .5 4 - .5el_1. The et are A R C H (l) with modest autocorrelation in 

the e f; they satisfy 1.43 (Engle (1982)).

(iii) GARCH: of =  .05 +  -5el-i +  ■45o-f_1. The et are GARCH(1 ,1 ), with strong 

autocorrelation in the ef at “short” lags (nearly IGARCH); they do not satisfy

1.43 (Bollerslev (1986)).

(iv) LMARCH: of =  | l  — (1 — L ),25}ef. The et have (moderate) long memory 

ARCH structure  satisfying 1.28-1.33 and 1.38 with a(z ) =  b(z) =  1, so th a t 

the ef follow the ARFIM A(0,de,0) structure discussed in Section 4 of Robinson 

(1991b), with d£ = .25.

(v) VLMARCH: of =  | l  — (1  — L )’45} e f . The et have “very long mem ory” ARCH 

structure, such th a t the el follow the same type of model as in (iv) bu t with 

de =  .45, close to  the stationarity  boundary.

So far as the ARFIM A(0,dx,0) model for x t is concerned, so th a t in relation to  1 .1 , 

=  (1 — L)~dx, we consider:

(a) “M oderate long m em ory” : dx=.2,

(b) “Very long m em ory” : dx=.45.

We study each of (i)-(v) with (a)-(b), covering a range of long/very long memory in 

x t and a range of short/long memory in ej.

Tables 2.1-2.3 and 2.4-2 .6  deal respectively with each of the two dx values (a)-(b). In 

each case the results are based on n = 6 4, 128 and 256 observations, with bandwidths 

m = n / 16, n / 8 , n / 4, and 10000 replications. In tables 2.1-2.2 and 2.4-2.5, we report, 

for the conditional variance specifications (i)-(v), Monte Carlo bias of the averaged 

periodogram estim ate and Monte Carlo root m ean squared error. In tables 2.3 and 

2 .6 , we report the efficiency of the averaged periodogram estim ate relative to the 

local W hittle  estim ate, th a t is the ratio  of the M onte Carlo m ean squared errors.

We make the comparison with the local W hittle estim ate because it is extensively 

investigated in C hapter 3 and because asym ptotic distributional theory is provided.
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Table 2.1: Moderate long memory averaged periodogram biases

Monte Carlo BIASES for the averaged periodogram estim ate of long memory applied to  an ARFIM A(0, .2, 0) series 

with five specified innovation structures.

MODEL m = 4

n=64

m =8 m = 16 m = 8

n=128

m =16 3 II CO to m =16

n=256

m =32 m =64

IID -0.17 -0.10 -0.07 -0.10 -0.06 -0.04 -0.05 -0.03 -0.02

ARCH -0.17 -0.11 -0.07 -0.09 -0.06 -0.05 -0.05 -0.04 -0.03

GARCH -0.17 -0.11 -0.08 -0.10 -0.07 -0.05 -0.07 -0.05 -0.04

LMARCH -0.18 -0.11 -0.07 -0.10 -0.06 -0.04 -0.05 -0.04 -0.03

VLMARCH -0.17 -0.11 -0.08 -0.09 -0.06 -0.05 -0.06 -0.04 -0.03

Table 2.2: M oderate long memory averaged periodogram RMSEs

M onte Carlo ROOT MEAN SQUARED ERRORS for the averaged periodogram estim ate of long m emory applied  

to an ARFIM A(0, .2, 0) series with five specified innovation structures.

MODEL m = 4

n=64

m = 8 m = 1 6 3 II 00

n= 128

m =16 m =32 m =16

n=256

m =32 m = 64

IID 0.41 0.25 0.17 0.26 0.16 0.11 0.16 0.11 0.07

ARCH 0.41 0.25 0.18 0.24 0.16 0.12 0.16 0.11 0.09

GARCH 0.40 0.28 0.20 0.26 0.20 0.15 0.19 0.15 0.12

LMARCH 0.42 0.26 0.17 0.25 0.17 0.12 0.16 0.12 0.08

VLMARCH 0.41 0.27 0.19 0.25 0.17 0.14 0.18 0.13 0.10

Table 2.3: M oderate long memory relative efficiencies

RELATIVE EFFICIENCY of the averaged periodogram compared to the local W hittle estim ate of long m em ory  

applied to an ARFIM A(0, .2, 0) series with five specified innovation structures.

MODEL m =4

n=64

m = 8 m = 1 6 B II 00

n=128

m =16 m =32 m =16

n=256

m =32 m =64

IID 0.86 0.92 1.00 1.00 0.88 1.00 0.88 1.00 1.00

ARCH 0.81 0.92 1.00 0.92 0.88 1.00 1.00 1.00 0.79

GARCH 0.85 1.00 1.00 0.93 1.00 1.00 1.00 0.87 0.84

LMARCH 0.82 0.93 0.89 0.92 1.00 1.00 0.88 1.00 1.00

VLMARCH 0.81 1.00 1.00 0.86 0.89 0.86 1.00 1.00 1.00



Averaged periodogram statistic 75

Table 2.4: Very long memory averaged periodogram biases

M onte Carlo BIASES for the averaged periodogram estim ate of long memory applied to an ARFIM A(0, .45, 0) 

series with five specified innovation structures.

M ODEL m =4

n= 64

m = 8 m = 16 m = 8

n= 128

m = 16 m =32 m =16

n=256

m =32 m =64

IID -0.25 -0.18 -0.14 -0.16 -0.12 -0.09 -0.12 -0.09 -0.07

ARCH -0.26 -0.19 -0.14 -0.17 -0.12 -0.10 -0.12 -0.09 -0.08

GARCH -0.27 -0.19 -0.15 -0.17 -0.13 -0.11 -0.13 -0.10 -0.08

LMARCH -0.26 -0.18 -0.14 -0.17 -0.12 -0.10 -0.12 -0.09 -0.07

VLMARCH -0.26 -0.18 -0.14 -0.17 -0.13 -0.10 -0.12 -0.09 -0.08

Table 2.5: Very long memory averaged periodogram RMSEs

M onte Carlo ROOT M EAN SQUARED ERRORS for the averaged periodogram estim ate of long m emory applied  

to an ARFIM A(0, .45, 0) series with five specified innovation structures.

M ODEL m =4

n = 64

m = 8 m =16 m = 8

n= 128

m = 16 m =32 m =16

n= 256

m =32 m =64

IID 0.40 0.26 0.18 0.25 0.16 0.12 0.16 0.11 0.09

ARCH 0.40 0.26 0.19 0.24 0.16 0.13 0.16 0.12 0.09

GARCH 0.41 0.27 0.21 0.26 0.19 0.15 0.18 0.14 0.12

LMARCH 0.41 0.26 0.19 0.25 0.17 0.13 0.16 0.12 0.09

VLMARCH 0.41 0.27 0.19 0.26 0.17 0.14 0.17 0.13 0.10

Table 2.6: Very long memory relative efficiencies

RELATIVE EFFICIENCY of the averaged periodogram compared to the local W hittle estim ate of long memory 

applied to an ARFIM A(0, .45, 0) series with five specified innovation structures.

MODEL m =4

n = 64

m = 8 m = 16 m = 8

n= 128

m =16 m =32 m = 16

n= 256

m =32 IIE

IID 0.90 0.78 0.60 0.77 0.66 0.56 0.56 0.52 0.44

ARCH 0.85 0.78 0.70 0.76 0.76 0.59 0.56 0.44 0.60

GARCH 0.86 0.86 0.65 0.78 0.62 0.53 0.60 0.51 0.44

LMARCH 0.87 0.78 0.62 0.70 0.58 0.47 0.66 0.44 0.44

VLMARCH 0.87 0.79 0.70 0.71 0.67 0.51 0.58 0.47 0.49
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Indeed, Theorem 5 below proves asym ptotic norm ality of the local W hittle  estim ate 

under moment conditions which include models (i), (iv) and (v), and the M onte 

Carlo results of C hapter 3 indicate th a t Theorem 5 continues to hold for models

(ii) and (iii). In case of i.i.d. errors e*, the relative efficiency results reported are 

to be compared with theoretical ratios of asym ptotic variances based on Theorem  5 

for the local W hittle estim ate on the one hand (i.e. l /4 m  for all values of dx), and 

Theorem 1 of Lobato and Robinson (1996) for the averaged periodogram estim ate 

on the other hand. W hen dx = .2, the ratio of asym ptotic variances is ( l / 4 ) / ( (3  — 

21 4 )(.3)2/(.21og2 2)) ~  .74. W ith  the choice q = A  (instead of q =  .5 which is 

chosen here) which is the asym ptotic variance minimizing value for q when dx =  .2  

(see Lobato and Robinson (1996)), the theoretical relative efficiency is .76 instead.

The errors et were sampled from a conditionally normal distribution (see 2.16) w ith 

conditional variance of in a recursive procedure with iid normal s tartup  values 

subsequently discarded. Namely, for t =  —1000 to 0, £* were generated els iid 

normal and cr2 were identically set to one; and for t = 1 to 2n, of =  a 2 +  P(L )e 2 and 

et =  yjvjrit, where rjt are iid normal and a 2 and P(L)  are the relevant intercept and 

operator in cases (i) to (v), truncated  to 1 0 0 0  lags in the two long memory cases (iv) 

and (v). The Gauss random  num ber generator RNDN was used with random  seed 

starting at the value 12145389. A m ethod based on the Cholevsky decomposition 

j=i ° f  the Toeplitz m atrix  (p|t_j|) . where p j  are the autocovariances of an 

ARFIMA(0,dx,0), was then used to  simulate x t from the errors et as x t = 

t = 1 , . . . ,  27i, the first n values being subsequently discarded. For each of the  series 

simulated, the periodogram was computed by the Gauss Fast Fourier Transform 

algorithm.

Monte Carlo biases seem relatively unaffected by the model specification for the 

errors. Monte Carlo biases when the errors follow the near unit root GARCH process 

are largest (in absolute value) 9 tim es and tie largest 8  times out of the 18 dx, n, m  

combinations, but the difference with other error specifications is very slight. In any 

case, the difference is more likely to  be due to the effect of a near unit root ra ther 

than a failure of m om ent conditions 1.43 and 2 .1 2 . O ther error specifications lead
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to almost identical performances to  i.i.d. errors. The typical decay of biases with 

n is in line with the consistency theorem of the previous section while the  decay 

of biases with m  is rather more surprising. Biases are all negative and on average 

twice as large in case of very long memory (dx =  .45) than  in case of m oderately long 

memory (dx=.2), with an indication tha t for very small values of m  and n (n = 64 

and m  — 4), estim ates of dx are centered on 0 whatever the true value.

Monte Carlo MSEs seem hardly more affected by conditional heteroscedasticity than 

biases, apart from GARCH which again results in the worst performance. GARCH 

MSEs are largest 13 times and tie largest 4 times among the 18 dx, n, m  combi­

nations. The discrepancy between GARCH and other cases increases w ith n  and 

m , indicating th a t asym ptotic behaviour may be significantly different as well. To 

investigate this point further, empirical distributions of estim ates of the memory pa­

ram eter are plotted  for three different values of the sample size, n = 500, n = 1000 

and n = 2000, and for two models for the errors, GARCH and i.i.d., to  investi­

gate the possible divergence of the two distributions. The empirical distributions of 

1.7\Jm{dx — dx) are plotted in figures 2.1 for n =  500, 2.2 for n =  1000 and 2.3 for 

n =  2000. In each graph, the empirical distributions of the  estim ate with GARCH 

errors and with i.i.d. errors are compared with the norm al distribution function. 

There is clear indication of convergence of the empirical distribution with i.i.d. er­

rors to  the normal distribution function in accordance w ith asym ptotic theory, and 

there is clear indication th a t the tails of the empirical distribution with GARCH 

errors become fa tte r with sample size, so th a t the la tte r is very unlikely to converge 

to the normal distribution function.

MSEs are very similar for the two reported values of dx . They are identical in 22 

cases and different by more than .01 only in 2 cases out of the 45 combinations of 

n, m  and error models.

Finally, the relative efficiency of the averaged periodogram estim ate of long memory 

compared to the local W hittle estim ate for dx =  .2 is significantly larger in small 

samples than  would be expected from the theoretical value in the i.i.d. case. The 

average periodogram  even performs equally well as the local W hittle  in 23 cases.
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Figure 2.1: Averaged periodogram empirical distribution for n =  500
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Figure 2.2: Averaged periodogram empirical distribution for n =  1000
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Figure 2.3: Averaged periodogram empirical distribution for n = 2000
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Table 2.7: Averaged periodogram relative efficiencies for larger sample sizes

RELATIVE EFFICIENCY of the averaged periodogram compared to the local W hittle  estim ate of long m emory 

applied to and A R FIM A (0,di,0) series with five specified error structures, sam ple size 1000 and bandw idth 250.

MODEL IID ARCH GARCH LMARCH VLMARCH

dx — -2 0.62 0.74 0.82 0.71 0.78

PL H II Cn 0 .16 0.24 0.43 0.21 0.32

The relative performance is always at least 5% higher than  the known theoretical 

value for the i.i.d. case. There is no evidence of a worsening of relative efficiency 

with sample size for the  sample sizes reported. To see whether this pa tte rn  persists, 

relative efficiencies are reported also for a sample size of n = 1000 in table 2.7 

and one observes th a t in the case dx =  .2 , relative efficiencies become close to  the 

theoretical value given for i.i.d. errors, conditional heteroscedasticity appearing to 

have again no significant effect. In no cases does the model chosen for the errors 

seem to influence relative efficiency, supporting the conjecture th a t the  asym ptotic 

norm ality result given in Lobato and Robinson (1996) for 0 <  dx <  |  continues 

to hold when the errors are conditionally heteroscedastic. For dx = .45, where 

the asym ptotic distribution is non standard even for i.i.d. errors (see Lobato and 

Robinson (1996)), relative efficiency of the average periodogram decreases steadily
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with sample size and bandw idth and reaches values as low as 16% for a sample size 

of n =  1 0 0 0 .

2.7 Estim ation o f stationary cointegration

Another main application of the  averaged periodogram statistic  in a long memory 

environment is the estim ation of stationary cointegrating relationships. A large 

strand of literature has recently investigated the possibility of long run relationships 

between nonstationary variables. In the equation

yt = p z t +  x t,

yt and zt were typically assumed to have a unit root, and x t to  be weakly dependent. 

This notion of cointegration was extended by Granger (1987) to  cases where x t can 

be a long memory process, and prom pted a new type of investigation of the Long 

Run Purchasing Power Parity  Hypothesis (see e.g. Cheung and Lai (1993)). For 

stationary yt and zt series, a notion of cointegration can be defined as in Robinson 

(1994c) when all three variables are possibly long memory covariance stationary tim e 

series, providing x t has a lesser degree of dependence. A similar idea was proposed by 

Gourieroux and Peaucelle (1991) to  identify codependence between moving average 

series in the sense th a t a linear combination of the original variables has a lower 

moving average order.

However, ordinary least squares estim ation of the fractional cointegration coefficient 

j3 is inconsistent in the stationary case unless z t and x t are orthogonal. Robinson 

(1994c) pointed out th a t one should envisage the equilibrium relation between yt 

and z t at high lags only, and carry out the regression in the frequency domain on 

a degenerating band of frequencies. We assume th a t yt and zt follow the same 

assumptions as x t with long memory param eters dXy and dXz such tha t 0  <  dx < 

dXy <  dXz <  1 / 2 , and we denote by

/„Z(A) =  Wy{X)Wz{\ ) (2.69)
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the cross periodogram  of yt and z t , and by
«  [7i A / 2 tt]

Fy*(A) =  -  E  U V  (2-70)
"  3=1

the dicretely averaged cross periodogram of yt and zt. If, moreover, Fz{A) denotes 

the discretely averaged periodogram of z t ,

n  _

Fz( \ m)
is the low-pass frequency domain least squares estim ate of /?. More precisely, we 

make the following assumptions on the process z t:

Assumption B l ’ zt has spectral density f z(A) satisfying

f z W  ~  Lz (X)X~2dxz as A—̂ 0+ with dx < dXz < ^
£

and Lz(X) is a slowly varying function a t 0.

Assumption B3’
oo

zt =  o-| +  E a ^ e*.-i
3 = 0

and the conditions in Assumption B3 are satisfied when a 2, a j ,  et , and (j)j are 

replaced by cr2, a 2j, eZt, ipZj and cj)Zj respectively.

We can now state  the following Corollary to Theorem 2 :

C o ro lla ry  3 Under Assumptions B l, B l ’, B2, B3 and B3’,

(3—vp(3 as n —voo.

Proof As pointed out by Robinson (1994c),

\p - p \ <
TZe(FI2(Xm)) < Fxz(,Xm')

Fz(Xm)
^ [ F(Xm) 
~ (Fz(Xm)

by the Cauchy inequality. The result is therefore an im m ediate consequence of 

Theorem  2 applied to  both x t and z t .

This result will be shown in C hapter 5 to  be valuable for the  investigation of common 

persistence patterns in the conditional variances of financial returns.
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2.8 Conclusion

This chapter has focused on the simple averaged periodogram statistic insofar as it 

provides insights into the dependence structure of a tim e series. It was shown in this 

chapter th a t the averaged periodogram is an asymptotically normal estim ate of the 

spectral density at zero frequency for a weakly dependent process. The conditions 

of this theorem do not presume anything on the short memory structure, and, more 

im portantly allow for a very high degree of temporal dependence (including long 

memory) in the conditional variance and higher moments. It is conjectured th a t 

this property continues to hold when one focuses on non zero frequencies where the 

spectral density is continuous. However, to gain insights into the short memory 

structure of the process, functional estim ation of the spectral density would then 

be required, and global conditions on the smoothness of the spectral density would 

have to be imposed. This chapter has also extended the applicability of Robinson 

(1994c)’s results on the averaged periodogram statistic in the presence of long range 

dependence. It has been shown th a t all the results in Robinson (1994c) still hold for 

long memory processes with (possibly long memory) conditionally heteroscedastic 

errors. This perm its consistent estim ation of long memory and stationary cointe­

gration which proves especially useful in the investigation of dependence and code­

pendence in foreign exchange ra te  returns analysed in chapter 5.



C hapter 3

Local W h ittle  estim ation  o f  long  

m em ory w ith  conditional 

h eterosced astic ity

Joint work w ith  Peter Robinson

3.1 Introduction

This chapter is concerned with the Gaussian, or local W hittle  estim ate of long 

memory proposed by Kunsch (1987). Only recently has asym ptotic distributional 

theory of this estim ate been laid down by Robinson (1995a). Despite the  efficiency 

improvements Robinson (1995b) made to  the log periodogram estim ate, the local 

W hittle  remains the more efficient and its asym ptotic variance, given by 1.75 is 

free of unknown param eters. Unlike the log periodogram estim ate, it is not defined 

in closed form, bu t nonlinear optim isation is only needed with respect to a single 

param eter, dx , and can be accomplished rapidly.

The asym ptotic theory of Robinson(1995a,b) rules out the possibility of conditional 

heteroscedasticity, and this seems a drawback in case of financial series for which
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semiparametric estim ates otherwise seem appropriate. Indeed, Robinson (1995b) 

analysed the log periodogram under the assumption th a t x t is Gaussian, whereas for 

the Gaussian estim ate he did not assume Gaussianity but 1 .1  where the et satisfy at 

least 1.25 and 1.26. This chapter is concerned with relaxing 1.26 in the derivation of 

the asym ptotic distribution of the local W hittle estim ate of long memory, to allow for 

the possibility of autocorrelation in the £*, for example in some financial applications, 

the levels x t can be approxim ated by a martingale sequence (so ctj = 0 , j  >  0 ) but 

the squares x \  =  e\  cannot, so th a t the sequence x t is not a sequence of independent 

random variables. In fact, empirical evidence (discussed in chapter 1) has also 

suggested th a t dependence in the squares can fall off very slowly, in a way th a t 

is possibly more consistent with long memory than  with standard short memory 

ARCH and GARCH specifications.

Here, again, we adopt specification 1.28 for the conditional variance a1 and consider 

the local W hittle estim ate of dx in these circumstances, partly  because it is well mo­

tivated by superior efficiency properties under the previous conditions, and because 

the log periodogram estim ate (and some others) are technically more complex and 

cumbersome to handle when Gaussianity is relaxed, due to  their highly nonlinear 

structure.

The following section describes the Gaussian estim ate of dx . Because the estim ate 

is of the implicitly defined extrem um  type, one has to establish consistency prior 

to deriving lim iting distributional behaviour, and these tasks are carried out in 

Sections 3 and 4. Section 5 reports a Monte Carlo study of finite sample behaviour. 

Section 6  contains some concluding comments.

3.2 Local W hittle estim ate

On the basis of observations x t , t =  l , . . . , n ,  define the periodogram Ix(A) as in 

1.53. Again, let Xj =  2ttj / n  and consider the discrete local likelihood defined in 

1.73. for 0 <  m  < [n/2]. As indicated by Robinson (1995a), we can concentrate out
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G, and then consider estim ating dx by

dx = argminA l< rf< A2 R(d),  (3.1)

where — \  < A i <  A 2 <  \  and

For m  = [(n — l) /2 ], dx is a form of Gaussian estim ate under the param etric model 

/(A ) =  GIAI-2 1̂, all A £ (—7r , 7r], and its asym ptotic properties would be approxi­

m ately covered by Fox and Taqqu (1986), Giraitis and Surgailis (1990) and others, 

under Gaussianity, or more generally the assum ption th a t x t is linear with indepen­

dent and identically distributed innovations. (These authors considered continuous, 

rather than discrete, averaging over frequencies.) W hen m  < [n/2] such th a t 1.69 

is satisfied, dx can be viewed as a sem iparam etric estim ate based on 1.18 w ith 

0 < L(X) = G < oo. Under 1 .1 , 1.25 and 1.26, and other regularity conditions, 

Robinson (1995a) showed th a t dx is consistent for and under further conditions 

th a t 1.75 holds (see also Taqqu and Teverovsky (1995b) for a discussion of this 

result). The bandw idth param eter m  is analogous to  th a t employed in weighted pe­

riodogram estim ates of the spectral density of short memory processes. Clearly 1.69 

is a minimal requirem ent for consistency under 1.18. C hapter 4 discusses optim al 

choices of m in the determ ination of dx .

The compact set [A i,A 2] of admissible d values in Robinson (1995a) can include 

ones between 0  and where there is long memory, ones between — |  and 0 , where 

there is negative dependence or antipersistence, and d =  0 , where there is short 

memory. It seems desirable to avoid assuming, say, 0 <  dx <  | ,  a priori, but ra ther 

to allow also for the  possibility th a t dx <  0 , especially in view of the very m ixed 

evidence of the existence of long memory in levels of financial series (see, e.g. Lo 

(1991), Lee and Robinson (1996)), in view of the efficient m arkets hypothesis, and 

in view of the possibility th a t log price levels may be nonstationary with less than  

a unit root, in which case returns can exhibit negative dependence (as will be seen
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in chapter 5). By contrast, the bulk of asym ptotic theory relevant to long memory 

assumes a priori tha t long m em ory exists.

It turns out tha t not only is dx still consistent for dx in the presence of the (possibly 

long memory) ARCH behaviour described in the previous section (although with 

stronger moment conditions), bu t 1.75 holds in detail with the same asym ptotic 

variance, so th a t no features of the ARCH structure defined by 1.28 or 1.33 enter (see 

discussion of this point in chapter 1 ). Our derivation of the asym ptotic properties

of dx follows the main steps of the proof in Robinson (1995a), and uses a num ber of

properties established there, bu t it also differs significantly, posing new challenges, 

prim arily the control of fourth cumulants and the convergence of partial sums of 

conditional variances of the  approxim ating martingale.

3.3 Consistency o f the local W hittle estim ate

We introduce the following assumptions.

Assumption D 1 For dx G [A1? A 2], — \  <  Ai <  A 2 < | ,  and 0 <  L(X) = G < 0 0 , 

/(A) satisfies 1.18. In addition, in a neighbourhood (0, <£) of the origin, /(A ) is 

differentiable and

A  log /(A ) =  OCA"1) as A - tO 1 . (3.3)
(LA

Assumption D2 Assum ption B2 holds.

Assumption D3 Assum ption B3 holds.

Assumptions D 1 and D2 are identical to  Assumptions A l, A2 and A4 of Robinson 

(1995a). We stress th a t only local (to zero) assumptions are made on /(A ), so 

tha t it need not be smooth, or even bounded (or nonzero) outside a neighbourhood 

of the origin. In place of the current Assumption A3, Robinson (1995a) assumed 

1 .1 , 1.25 and 1.26 with a homogeneity condition, so th a t we require more m om ents
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while allowing for ARCH behaviour, possibly w ith long memory. The discussion of 

Assumptions B l to B3 applies.

T h e o re m  4 Under Assumptions D1-D3,

dx —̂p dx , as n —̂ oo.

Proof The m ain part of the proof of the corresponding Theorem 1 of Robinson 

(1995a) applies except for the proof th a t

r = l
£  (2tt/,(A j ) -  <T2)
3=1

(3.4)

where

2nn
itX

t = 1

and A =  A x when dx < |  +  A i and A E (dx — | ,  dx] otherwise. (Note th a t unlike in 

Robinson (1995a), we take the unconditional variance of et to be cr2, not unity.)

The justification for the above claim rests on the fact th a t the rem ainder of the 

aforementioned proof depends only on unconditional second m om ent properties. 

2.57 holds under the present conditions, so th a t in view of (3.18) of Robinson (1995a), 

3.4 is implied if

71

=  op(r1~’’n), some 17 >  0 , (3.5)

1

uniformly in r  E [1, m — 1], where =  J2j= 1 cos [ ( 5 ~  To prove 3.5, the left

hand side has variance

4 E
(

f 2 i 2 S^>£>‘e«A st)AUV ■ (3.6)
u < t i  s < t  
1 1

In view of 1.25 of Assumption D3, it is clear th a t no sum m ands for which t ^  v can 

contribute. Thus, 3.6 is

AE
\ \

£ £ ? 6 24 f  + 8 £ (
V f / u<»<t  1

(3.7)
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The first term  in 3.7 is bounded by

4 m a x E ( e * ) Y ^ A {st)2 =  0 ( rn 2),
3<t1

from (3.20) of Robinson (1995a). Substituting 1.33 in the second term  of 3.7 gives

 ̂ n (  ^  \  ^

8  E J 2  [ v 2 +  ) £u£sA{J?Aut
yU<i<t Y j = o J

=  8 <t>t-sE(vs£ue s ) A {J't)Aut
u < a < t1

=  8 f a - s E  (e s£u) A $ A $ ,
u < a < t  

1
where the first equality applies nested conditional expectations and 1.25 for j  > 

t — s, and 1.35 for j  < t — s, whereas the second equality employs 1.34 and nested 

conditional expectations with 1.25 to  verify E(<jg£seu) =  0  for u < s. Under 2.55, 

this is identically zero. Under 2.56, it is bounded in absolute value by

E  E  E  4 > ,- ,E {s 3t e u) A $ A (; }
t —3 5 = 2  i t = l

I A st | <  r  from Robinson (1995a), so the quantity above is bounded by
71 t  — 1 5 — 1

8 r max E(e  <) E  E  E  \4>t-sA MiUt I
t = 3 5 = 2  u = l

By 1.43, this is further bounded by
n t —1 t —s —1

K r ' E ' E  E  \ ^ \  <  / f r E l ^ l E l ^ - l
t = 3 5 = 2  U =1  j = 0 a<t

<  / T r n | ^ A ^ )2j  =  0 ( r 2 n 2) 

because 51™<t A =  0 ( r n 2) is proven in Robinson (1995a). Thus, 3.5 is verified.

As explained by Robinson (1995a), there is a lack of uniformity in the convergence 

of R(d) around d =  dx — |  which is of concern when dx >  |  +  A, and then one has 

to show also th a t
1 771

-  E(°i - 1) (2*Wi) - <n -+»0 (3-8)
i = l
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where aj =  (^ )2(A dx) for 1 <  j  < p, and aj = (^ )2(Al for p < j  <  m , where

1 n
27r/£(Aj) — a 2 = — ^  £*£s cos(.s — t)Xj — a 2

71 t , s = 1

=  “  a2) +  - 5 Z 5 <£«cos(5 - t ) X j .  (3.9)
71 t =  1 71 s* t

1

The contribution of the first term  to the left-hand side of 3.8 is equal to

The first term  in brackets is proven to be 0 (1 ) in Robinson (1995a), whereas the 

second term  in brackets is o(l) because 2.57 holds under the present conditions. The 

contribution to 3.8 from the second term  in 3.9 is given by

2 m  i  n

2— ]T)(Uj — 1)— £tes cos(6  — t)Xj.
771 j=1 71 t  >3

1

Call B st =  jy jL i(aj  ~  1) cos(s — t)Xj. We need to  prove th a t

n

^ 2 e se t B st =  Op(nm ).
t>3

1

Now

E
 ̂ n \  n

J 2 ^ s e tB st =  Y j E (£2s£t)Bst + Y ^ ' E (es£teu£v)BstB uv (3.10)
\ T  / t>a

1

where the sum m ation J2 1S over such th a t s < t and u < v and u ^  5 ,or

i /  The first term  on the right-hand side of 3.10 is o(mn2) from 1.43 and the 

property derived in Robinson (1995a) tha t

J 2 B st =  » ( " " ’ )• (3-11)
s < t

The second term  on the right-hand side of 3.10 has possibly non zero contributions 

from sum m ands such th a t t — u only, in view of 1.25. Now as shown in the previous 

section w ith replaced by B st,

J 2  E(e2£seu) B stB ut = J 2  <l>t-,E(e3seu)B stB ut
t > S > U  U < 3 < t
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which is zero under 2.55 and which is bounded in absolute value under 2.56 by

n 2—1 s — 1

2=3 5=2  u = l

l ^ l  <  m,  so th a t the quantity  above is bounded by

n 2—1 s —1

m
2= 3  5 = 2  u = i

By 1.43, this is further bounded by

n 2—1 2 —5—1

E  l ^ - ^ l  <  ^ m E I ^ I E I ^ I
2=3 5 =  2 U=1 7=0 «<t

1

<  K m n
\  *

E * i
S < t
1 /

=  O

in view of 3.11, which serves to establish 3.8 under Assumption D3.

3.4 A sym ptotic normality o f the local W hittle estim ate

The limiting distributional properties of dx rest on stronger conditions than  those 

sufficient for consistency.

Assumption E l For some j3 E (0,2], /(A ) satisfies 1.74 with dx E [Ai, A 2]. In 

addition, in a neighbourhood (0, $) of the origin, a(A) is differentiable and

loga(A) =  O (lf f i ) as A -> 0+ , 

where a(A) =  YCjLoctjel̂ x .

Assumption E2 As n —» 0 0

l_ +  m 1+2g(logm ) 2 +  (m log to ) 2 q 
m  n 2̂  n ’

and, if 2.56 does not hold, 1.82 holds with d£ defined by 1.46.

Assumption E3 Assumption A3 holds with 1.15.
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Compared to the corresponding assumptions in Robinson (1995a), Assum ptions E l 

is unchanged (still restricting /(A ) only near the origin, such th a t (3 indicates the 

smoothness of f (X ) /G X~2ix there), but Assumptions E2 and E3 trade off the  relax­

ation of constant conditional innovations variances and fourth moments w ith some 

strengthening of conditions. The eighth m oment condition 2 .1 2  replaces the fourth 

moment condition of Robinson (1995a), while, when there is long memory in the e j, 

extension of 2.55 to the constancy of the first three odd conditional m om ents 2.13 

is again satisfied in case 2.16. The strengthening of m om ent conditions is a m at­

ter both of practical concern, in view of the characteristics of much financial data, 

and of theoretical concern in view of the results of Engle (1982), Bollerslev (1986), 

Nelson (1990b), for example. As with Theorem 4, it is likely th a t Theorem  5 below 

can be established under a milder moment condition by a more detailed argum ent. 

Condition 1.46 strengthens 1.40 while being satisfied in the examples 1 .1 1  and 1.41. 

d£ can be arbitrarily close to | ,  so th a t 1.46 in not of great concern in itself, except 

th a t 1.82 strengthens 3.12 unless d£ <  (1 — 2(3)/(4/3 +  2), which is possible only 

when (3 < \  is chosen in 3.12, whereas when the levels x t themselves have fractional 

noise or ARFIMA long memory (analogous to models 1.10 and 1 .1 1  for e2), (3 =  2 is 

available in Assumption E l. In 3.12, the requirement (m lo g m )2/n  —> 0 was not in 

Robinson (1995a), but it does not bind when (3 Fractional noise and ARFIM A 

x t satisfy 1.15, which is consistent with Assumption E l, and also satisfy the quasi­

monotonicity assumption on the a,-, which entails 2.17. In fact, we believe th a t 

this requirem ent, and 1.82, could be removed or relaxed by a more detailed proof, 

but the quasi-monotonicity requirement does not seem very onerous, while 1.82 is 

also needed when the e2 have long memory, and there always exists an m  sequence 

satisfying both 3.12 and 1.82.

T h e o re m  5 Under Assumptions E1-E3, 1.75 holds.

Proof Again, the basic structure of the proof of Robinson (1995a) is unchanged, 

and a num ber of properties established there are still of use. Again a mean value 

theorem argum ent is applied, and the scores approxim ated by a m artingale. The
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approximation, and the trea tm en t of second derivatives of R(d),  are affected by the 

changed conditions, but we postpone discussion of this until after we have estab­

lished the asym ptotic norm ality of the approximating m artingale, whose proof is 

considerably affected.

Let zt =  et£t, where =  HlZi £sCt-s with cs = f t / n m * )  cossAj, Vj =

log j  — m ~ l YCj=i lo g ij so Ylt=2 zt a m artingale, and, as in Robinson (1995a), 

we wish to show th a t as n  —> oo, 2.33 and 2.34 hold. By the Schwarz inequality, 

E (z t) ^  (E tt )*  (E £ f )* . Because is a martingale, by Burkholder’s inequality 

(Burkholder (1973)),

E (f?) < KE{^4-s£l)4 < = °  ((logrnf/n4) (3.13)
5= 1  5=1

uniformly in t by (4.22) of Robinson (1995a). Thus,

£ e U ) < K ^ ^ 0  (3.14)
t= 1 71

to verify 2.33. To check 2.34, write

E  ( z ^ t - i )  =  crUt = +  ( a t ~  <r2)&- (3-15)

From (4.14) and (4.15) of Robinson (1995a),

n n —1 ( n —1 'j n

ft -  ° 2 =  Y2 X t r n - t  +  cr2 \ r*-i ~  1 f +  Sv£sCt-vCt-3, (3.16)
t = 1 t = 1 I <=1 J t=2 vjzS

writing X t  — e t ~  v 2 and r t =  c\ +  • • • +  ct • The first term  on the right has mean

zero and variance

n —l n —1

'y  ̂ y  j 7 t—uT'n—tT'n—ui (3.17)
t = l  n = l

where 7 j = cov(eJ, eJ+J-). Now

|7 j | <  K<b0$ j  —>-0, as j  —> 0 0  (3.18)

by 2.12 and 1.46 and

n —1

5 ^ r n_t —)>1, as n -> 0 0  (3.19)
t=1
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established by Robinson (1995a). It follows from the Toeplitz lem m a th a t 3.17 tends 

to zero. Clearly, the second term  in 3.16 thus tends to zero, whereas the last term  

has mean zero and variance bounded by

( v n m in ( i—l , u —1)

m ax E e t J  Y Y  I c ^ c ^ c ^ c ^ l .  (3.20)
t , U—2 Vj is

1

This follows from the corresponding derivation in Robinson (1995a), bu t upper 

bounding E{ele2s) by the Schwarz inequality. The absolute value did not arise in 

Robinson (1995a) but it is clear from his derivation th a t the bound established there 

applies to 3.20, namely O ((logm )4 (n - 1  -f m -1/3)) —>-0. It remains to  show th a t

t = 1

The left side is

( a t ~  <j2) r t -1  + Y  ( a t ~  v 2)  Y  c t - s X s  +  t  ( a t ~  a 2 )  Y ^ M - v 0 * - ^ - 2  1)
t=i

The first term  is

t — 1 t = l  S=1 t = l  v ^ s
1

0-2 Y  Y ^ j X t - ^ t - l  =  cr2 ( S i  +  S 2)  ,
t = 2 j = 1

where

n —1 n —1 —n n —1

si = Y  xiYl^t-j+u s2= Y  xjJ2r̂ -j+1»
j  =  l — n t = l  j ——oo t = l

and = 0, j  <  0. Now Si  has mean zero and variance

n —1 n —1 oo 2 2 n —2

Y  Ij-k Y, r̂ s-j+î t-k+i < Knrl-i(Y\^j\) Y  \li\
j , k = l —n  s , t = 1 j = 1 j = 0

( (logm )8\
= ° (  n i - u  )

using 1.42, 2.40 and rn =  O((log m )4 /n ) , which was established by Robinson (1995a). 

On the other hand

n —1 oo

E |S2| < K Y  rt Y  as n-¥oo,
t = 1 j = n
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from 1.42 and 2.39, so th a t the first term  in 3.21 is op( 1 ). The second term  in 3.21 

is

n 0 t — 1

E  E  V’i-v E  cExvX » (3.22)
t = 2 V— —00 5—1

+ Y  Y  Y  c t - s X v X s . (3.23)
t =  2 U =1 5 — 1

The expectation of the absolute value of 3.22 is bounded by

( \  n oo

m ax E e t
'  t = 2  j = t

using 1.42, 2.39 and the Toeplitz lemma. 3.23 includes the component
n t —1

E E ^ i
t = 2  5 = 1

whose absolute value has expectation which likewise tends to zero. The rem ainder 

of 3.23 can be w ritten

Y  Y  Y  ct-sXvXs +  Y Y  Y ct-sXvXs• (3.24)
t = 2  V = 1  5 = 1  t = 2  V = 1  5 = v + l

The first term  in 3.24 has m ean square

Y Y  &-V Y Y  ̂ u - , Y  Cl-PE  {XvXsXqXp) • (3.25)
t , u = 2  v = l  5 = 1  g = l  p =  1

Now each (v , s ,q ,p )  such th a t s < v, p < q satisfies one of the relations v = q, 

s < q < v , q < s < v , p < v < q o T v < p < q .  The contribution from sum m ands in

3.25 such th a t v = q is bounded by

n  m i n ( < — 1 , « — 1 )  V-1 v-1
m a x  E x t )  E  E  E i . E i ,

t ,  n = 2  v=l 5 = 1  p = l

(
\  o o  2

m a x £ e? J  ^ n - i^ (Z )  l^il) =  O ((log m )4 /n )  - > 0 .

Next, for v > q >  s, p <  <?,

E  {XvXsXqXp) = E  |  Y tv-jVjXsXqXp |  , (3.26)

because

E{Xv\Fq) =  Y  t v - M *  a -s-> v > (3-27)
j ——oo
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as follows from 1.33 and

E  (”j\Fq) = E  {£2j\Fq) -  E  (E  \Fq) = a -S‘> Q <  j-

Now 3.26 is bounded in absolute value by 

q
( V v 4>v—j l/j SJXsXqXpE

3  —  - 0 0

< E  ^ ( m ax E x t

< K<

i
2 \  T

Kj=—oo

q
< m _ q y :  & ~ i E  ( " ; )

L J =  — O O

<  K $ v- q,

where the second inequality employs Burkholder’s (1973) inequality and the final

<  K , by 2.12. Considering similarlyone E  ( r f )  <  8  \E  (ef) + E { E  ( e j | ^ - i ) } ‘ 

the three cases {p < q < s < u}, {p <  v <  q and 5 <  u} and {s <  v < p  <  q}, we 

have

\E  { X v X s X q X p )  I 5^ K  ( ^ v —q d -  *&q—v  T  ^ g - p )

whenever s < v, p < q and v ^  q, where =  0 for j  <  0. Thus the contribution to

3.25 for v =£ q is bounded in absolute value by

^  E  E  \ $ t - v \  5 E  Ct - S  \ t p u - q l  ^ 2  Cl - P  ( ® v - q  +  ® v - s  +  ® q - v  +  ® q - p )
t , u = 2 v = l  s = l  g = l  p = l

n  (  t — 1 u —1 ^

^  K  Y 2  {  ^ 2  J 2  \ ^ t - v ^ u - q \ ^ v - q  \  r t - \ r u - \
t , u = 2 ( u = l  q =  1 J

oo n n t —1 ( t — 1

+  k  E  \ M  E  r “- i  E  E  ct s  \ E
j = l  u—2 t = 2 s = l  f  u = l

(3.28)

The term s in braces are bounded respectively by
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which tend to zero as |u — t \—>00 and 11 — s | —> 0 0  respectively, in view of 1.40 and 

1.42 and the Toeplitz lemma. Thus, 1.42, 2.39 and the Toeplitz lemma further imply 

tha t 3.28—>0 as n —>• 0 0 , completing the proof th a t the first term  of 3.24 is op( 1). The 

second term  of 3.24 can be treated  in the  same way to conclude tha t 3.23 is op( 1). 

The last term  of 3.21 is

71 t — 1 t  — 1

2 £  £  (3.29)
t =  2 i =  — OO V < 3J 1

Now, note tha t

E  {Xj£s£vXk£g£u) =  0, v <  s, u < q, v ±  u or s ^  q.

This follows by proceeding recursively using 1.28 and nested conditional expecta­

tions, and the fact th a t E ( e t \T t - i ) ,  E  E  (e*£u\Tu- \ ) ,  t >  u and

E{e^£\ev l^u -i), t >  u >  u, are all a.s. zero under E3. On the other hand, for 

all indices,

\E (x j£s£vXk£q£u)\ <  m ax E  (e8) <  0 0  

by Holder’s inequality. It follows tha t 3.29 has second moment

71 t - l  u —1 m in ( t ,u ) —1

4 53 53 5 ] ^u —k 53 Ct—vCt—scu—vcu—sE  (xjXk£v£s'j
t ,u = 2  j = —oo k = —oo v<s

1

„ m in ( t ,« ) - l  / , ,  „ m \ 4 \

< K i l  £  \ c t - v C t - s C u - v C u - s  | =  O 1 g £
t ,u = 2 t><3 \  /

as in 3.20, to complete the proof tha t 3.16 -* p 0 and thus of 2.34.

Application of the rem ainder of the proof of Robinson (1995a) requires estim ation 

of Ur -  r a 2 and Vr -  Ur, where Ur = 2 t tE ;=i / e(A,-), and Vr = £ J =11 { \ j ) / G \ J 2dx,

for 1 <  r  <  m.  In Robinson (1995a) it is shown th a t Ur — r a 2 =  Op(ri) ,  However,

to show th a t (4.7) in Robinson (1995a) is op((logm )-8) as required, it is sufficient 

for Ur — r a 2 and Vr — Ur to  be Op(r1-77), for any rj > 0. From Robinson (1995a),

Ur - r a 2 = -  ^3(eJ -  a 2) +  53 53 £*bt-s,  (3-30)
n  t =  1 t = 2 5 —  1
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where b3 = -  £ j= i  cos s Xj .  The first term  of 3.30 has m ean zero and, in view of 1.51, 

it has variance

o  ( £  E  b l )  =  o  =  o  ,

and this is O ^r2(1_7d) under 3.12 on taking 77 <  |  — d£. The second term  in 3.30 

has mean zero and variance

E { i t ,  a t J2  # ? - . )  +  E a 2t J2  esevdt- abt- v \  .
11=2  5=1 J [ t = 2  V ^ s  J

The first term  is Op (n(m axt Ee ^) ]C"=i &?) =  ^ ( r ) from Robinson (1995a), whereas 

the second term  is zero from 2.13. Thus, Ur — r a 2 = Op( r 1-7?), some 77 >  0. As for 

Vr -  Ur, we establish below the bound

Op ( r 1̂ 3(log r ) 2/ 3 +  r^ +172~̂  -j- r 1f 2n~1̂ A -f rn de~ 2 ) , (3.31)

which is indeed op( r 1-,?), some 77 >  0. As shown in Robinson (1995a), to  approxim ate 

the scores by a suitable m artingale it is sufficient tha t

E *7 ( ^ p 7  -  " ’ '.(A ,-)) =  (3-32)

and the left side is, by sum m ation by parts and | log?—  log(r +  1 )| <  r -1 , bounded

by 771 — 1 I
~ \ V r  — U r \  +  21ogm|Kn — U m \ .

r = l  r

We can then invoke 3.12 and 1.82 to  establish 3.32, if indeed Vr — Ur = 3.31. Now 

Vr — Ur has second m oment equal to

Robinson (1995a) proves tha t this is

0  ( r  3 (log 7") 3 -f r2f3+1n~213 +  rn~ 2 j

under assumptions such th a t cum(£u;,es, et,eu) — k when w  =  s =  t = u and zero 

otherwise. Under the present assumptions, 1.62-1.64 also contribute. The complete
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fourth cumulant contribution to 3.33 is the following:

E  n i t \  \ \ - u  E  cum(i„, x s , x t ,(2n n f  G 2( \ j \ k ) ~ 2d‘ w^ u=l

+  T T - v i  E  ( ^ Y  E  (3.35)[67rnj  j k=1 \ a  j  w>s>ttU=1

1 E  tY = ^ T 2 E  cum(£„,£„ x t, (3.36)(2?rn)2 ^  G \ k 2 * <r2 WJ ^ U=1

1 E  E  c u m ( i„ ,i„ 6 (,e ,)e ,(* -!>J>-‘(| -*)A‘ (3.37)
(27m)2 ^  G \ j  2d* a 2 

Now, applying 1.1,

w s t  u

cu n i^ ^ , 3'ti — E  E  E  E  &w—p&s—gUf-lft^-^CUm^Ep, ^qi &15
p = —oo q——oo / = —oo v = —oo

—  AC ^   ̂ QLw —pQLs—p(Xt—p Q :^ —p 
p = —oo 

n

“I-  ^   ̂ T p —<7 ( ^ tw —p&s— p & t—q& u—q T  Q-w—pCX-s—qOt-t—pQu—q
p̂ q 
—oo

~\~OCyj—pOCs —qCXf—qOCu—p'}

in view of 1.61-1.64 and with the convention tha t otj = 0, j  < 0. In the same way,

t u
cnm{ew, e s , x t , x u) =  E  E  OLf—pOLu—g C U m (£  £ s , £ p ,  £g )

p = —oo q=—oo

m in (t ,u )

—  AC 5\usOtt —w ^ u —w  “I” &ws 'y  y l w - p & t - p < X u - p  
p = —oo

"h  ^Yw—si^^t—w ^ u —s “I” ^ t —s ^ u —w Y

and a symmetric expression can be w ritten for c\ im(xw, x s , x t , x u). As pointed out 

above, the contributions to 3.33 from cum (xw, x Si x t , x u) are proved in Robinson 

(1995a) to be

O ( r 3 (logr) 3  -f- r 2 i0 +1 n-2  ̂+ rn"*j .

The contribution to  3.33 from 1.62-1.64 is the following:

r  n n

JZ X ^  1P~q {Q-w-p&s-p&t-q&v.-q
(  )  j , k =  1 W ,3 ,t ,U = l  pj tq

—oo



Local Whittle estimate 99

+ a w- pa s- qa t- pa u-q +  a w- pa s_qa t - qa u-p) e^w s^ 3 u X̂k (3.38)

— 2  r n

+  V  E  £ > « —  ( l  +  e '( '" - s>(A>+A‘ ) +  e*(u,-* )(* i--x*))
& -■ i__-i  < -

(3.39)
j ,k=  1 wjis 

1
O r )  2 r  71

E  ^  E  7<-«
2-irGa2 j  k=1 w,s,t,u=i

o  —2 r n m in(t,u)

 __  V  V  Y" V a, a e -^ -u)XkOrrHrr'l ^  k Z_> Ju)-p^ t-p^u-p^
J,Jb=l ii/,* ,t= l P = -o o

(3.41)

3.39 is 0 ( r 2n 1 ]Cj=i l7j|) — 0 ( r 2n 2de *) as desired. 3.38 contains three term s of the 

form

1
(27TnG)2 ^  x X  7/-u«u(Aj)a/( Aj)a/(A/.)au( A&), (3.42)

where a u(A) =  Ylt=i &t-u£xtX and a t =  0, t < 0. W hen u <  0 such th a t (—it) 1 =  

0(|A |) we have by sum m ation by parts, 1.15 and 2.17, th a t

n —u —l

|<*u(A)| <  |<*t-<*t+i|
t = l —u

n —u —l

=  E
t —l — U
n —u —l

Oit ~  Olt+i
sin A/2

<  X ! Ia * ~  a *+i

t n —u

E  « 'sA 4* |o!ti_ .1 E  e ’aA
5=1 —U 5=1—U

1 1 1 CXn—u
4" l ^ n —u| sin A/2

t = l —u

sin(t -f 1) A/2
sin A/2 4“ |<̂ n—n|

sin(n +  1) A/2
sin A/2

. (3.43)

As (—it) 1 =  0 ( |A |) as A—>-0, A ^  0(7r), we have, by 2.17, th a t 3.43 is bounded by

*  f l ‘ S  +  t )  5  ' ' ‘ t F  -  ( 3 4 4 >

where the inequality uses 1.15. W hen u <  1 such th a t — u = 0 (1 /|A |) , we have

(3.45)
1—u + s

|<̂ u(A)| ^  'y  ̂ |a tt| 4-
t = l —u

E  a ‘e
t = l — u + s

i’sA

for 1 <  s < n. Applying sum m ation by parts in the same way as above to  the 

second term  of 3.45 indicates th a t it is 0 ((1  — v -f s )d*-2 /|A |), while the first term  is 

0((1  — v -f s )dx). Choosing s such th a t 1 — v -f s ~  1 /1A| indicates th a t 3.45 is also 

0 (|A |-d;r). W hen 1 <  u <  n, we have, by sum m ation by parts,

la u(A)| <  \at-u\ +
t=i

c*t-ue
t = s + 1

i tX
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Applying sum m ation by parts to the second term  on the right-hand side, and 

choosing s ~  1/A, we find again tha t a u(A) =  0(|A | dx). Therefore, 3.42 is is 

0 { r 2n~l 1 |7 j|) — 0 ( r 2n 2dc~1) as desired. The two remaining term s 3.40 and

3.41 are treated  in precisely the same way. This completes the proof th a t the fourth 

cumulant contribution to Vr — Ur is Op(rnde~ 2). We have of course not assumed 

2.56 in the above, but if we do then ]£ j i0l7jl <  00» so ^  ls easily seen th a t 3.42 is 

0 ( r 2n -1 ), whence 1.82 is not required.

3.5 Finite sample comparison

While the asym ptotic properties of dx which we have established are highly de­

sirable, and reassuring in applications to long financial series, it is of interest to 

examine their relevance to series of more m oderate length. For example, conditional 

heteroscedasticity might worsen the normal approximation in 1.75, and if there is 

considerable persistence, of the  ARCH or GARCH type or especially of the long 

memory type which our asym ptotic theory also perm it, the variance of dx m ight dif­

fer considerably from 1 /4m. It is also of interest to consider robustness to departures 

from the m oment conditions of Theorems 4 and 5. Finite sample performance of dx 

was examined under the presum ption of no conditional heteroscedasticity by Robin­

son (1995a), and compared w ith tha t of a version of the log-periodogram estim ate, 

while Taqqu and Teverovsky (1995a) include such estim ates in a more comprehensive 

simulation study, but again restricting to conditionally homoscedastic environments.

We present here results of a M onte Carlo study of the local W hittle estim ate applied 

to simulated series x t following an ARFIM A(0,dx,0) param etric version of 1.1 with 

conditionally Gaussian innovations et (see 2.16) satisfying the same five models (i) 

to (v) for the conditional variance a 2 as in chapter 2. The model specification 1.28 

adopted here for the conditional variance a 2 does not allow for asym m etric response 

of conditional variances to positive and negative returns. This effect is reported in 

the empirical finance litera tu re  els the leverage effect. The local W hittle  estim ate 

of long memory is nonetheless applied to series x t following an ARFIM A(0,dx,0)
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param etric version of 1.1 with conditionally Gaussian innovations following a specific 

form of Nelson’s EGARCH, which models the leverage effect, and which will be 

denoted model (vi).

(vi) EGARCH: et = atz t , z t are independent standard normal variables, and 

In of =  —.5 +  .Olnof..! — ,5zt- i  +  .b\zt- i \ .  The coefficient of zt- i  induces 

a strong leverage effect, i.e. volatility rises in response to unexpectedly low 

returns. In case of unexpectedly high returns, the volatility behaves as in 

a simple first order autoregressive stochastic volatility model, w ith autore­

gressive coefficient calibrated on typical values in the empirical lite ra tu re  on 

financial volatilities. The innovations et have finite unconditional m om ents of 

arbitrary order.

So far as the ARFIM A(0,dx,0) model for x t is concerned, so th a t in relation to  1.18, 

HjLoa jL* ~  (1 — L )~dx, we consider:

(a) “A ntipersistence” : dx=~.25,

(b) “Short m em ory” : <^=0,

(c) “M oderate long m em ory” : dx=.25,

(d) “Very long m em ory” : dx=.45.

We study each of (i)-(vi) with (a)-(d), covering a range of short/long/negative m em ­

ory in et and a range of short/long memory in gf.

Tables 1-4, 5-8, 9-12 and 13-16 deal respectively with each of the four dx values 

(a)-(d). In each case the results are based on n=Q4, 128 and 256 observations, with 

bandwidths m =  rc/16, rc/8, n /4 , and 10000 replications, as in the M onte Carlo study 

of Robinson (1995a) with conditionally homoscedastic et. In each group of tables 

we report, for the conditional variance specifications (i)-(vi), M onte Carlo bias of 

the local W hittle  estim ate; Monte Carlo root m ean squared error; 95% coverage 

probabilities based on the N(dx, l/4 m ) approximation 1.75 for dx; and also the
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Monte Carlo BIASES for the local W hittle estim ate of long memory applied to an ARFIM A(0, —.25, 0) series with

five specified innovation structures.

MODEL 3 II

n= 64

m = 8 m = 16 m = 8

n=128

m =16 3 II CO to 3 II

n=256

m =32 m =64

IID 0.060 0.014 -0.001 -0.006 -0.011 -0.004 -0.028 -0.017 -0.004

ARCH 0.062 0.010 -0.001 -0.003 -0.016 -0.007 -0.028 -0.016 -0.006

GARCH 0.065 0.020 0.005 -0.004 -0.010 -0.003 -0.026 -0.018 -0.006

LMARCH 0.064 0.012 0.002 -0.001 -0.012 -0.004 -0.022 -0.014 -0.003

VLMARCH 0.064 0.018 0.001 -0.002 -0.010 -0.004 -0.020 -0.013 -0.004

EGARCH -0.107 -0.054 -0.039 -0.033 -0.012 -0.017 -0.002 -0.002 -0.007

Table 3.1: Local W hittle biases with antipersistence

Monte Carlo ROOT M EAN SQ UARED ERRORS for the local W hittle estim ate of long memory applied to  an 

ARFIM A(0, —.25, 0) series with five specified innovation structures.

MODEL m = 4

n= 64

m = 8 m = 1 6 \
r

~
11

n=128

m =16 m = 32 m =16

n=256

m =32 m =64

IID 0.34 0.24 0.16 0.23 0.16 0.11 0.16 0.11 0.07

ARCH 0.34 0.23 0.17 0.23 0.16 0.12 0.16 0.11 0.08

GARCH 0.34 0.25 0.19 0.24 0.19 0.14 0.18 0.14 0.11

LMARCH 0.34 0.24 0.17 0.24 0.16 0.12 0.16 0.12 0.08

VLMARCH 0.34 0.25 0.18 0.24 0.17 0.13 0.17 0.13 0.10

EGARCH 0.37 0.26 0.18 0.25 0.17 0.13 0.17 0.11 0.08

Table 3.2: Local W hittle RMSEs with antipersistence

efficiency of the log-periodogram estim ate relative to the local W hittle  estim ate, 

tha t is the ratio of the Monte Carlo mean squared errors, and we can compare this 

with the ratio of the asym ptotic standard deviations y/6/ir ~  .78.

The series were sim ulated in the same way as in chapter 2 and for each series dx 

computed using a simple gradient algorithm. The optim isation was constrained to 

the compact set [—.499, .499] (chosen values for Ai and A 2 respectively) and for 

selected replications, R(d)  was plotted on the interval [—1.5,1.5] and was always 

found to be very smooth with a single relative minimum.

We make the comparison with the  log periodogram estim ate (the version in Robinson
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95% COVERAGE PROBABILITIES for the local W hittle estim ate of long memory applied to an AR FIM A (0, —.25, 

0) series with five specified innovation structures.

MODEL m = 4

n= 64

m =8 m =16 m = 8

n= 128

m = 16 m =32 m = 16

n= 256

m =32 3 II

IID 0.85 0.90 0.84 0.91 0.84 0.89 0.83 0.88 0.91

ARCH 0.85 0.90 0.82 0.92 0.84 0.85 0.84 0.88 0.85

GARCH 0.84 0.88 0.75 0.90 0.76 0.76 0.77 0.77 0.74

LMARCH 0.84 0.90 0.82 0.91 0.83 0.85 0.82 0.86 0.86

VLMARCH 0.85 0.89 0.79 0.91 0.79 0.80 0.79 0.81 0.80

EGARCH 0.81 0.86 0.80 0.88 0.83 0.84 0.84 0.88 0.86

Table 3.3: Local W hittle 95% coverage probabilities w ith antipersistence

RELATIVE EFFICIENCY of the log periodogram compared to  the local W hittle estim ate of long m emory applied 

to an ARFIM A(0, —.25, 0) series with five specified innovation structures.

MODEL m = 4

n=64

m = 8 m =16 m = 8

n= 128

m = 16 3 II CO to m =16

n= 256

m =32 m = 64

IID 0.56 0.68 0.73 0.68 0.76 0.78 0.76 0.80 0.78

ARCH 0.57 0.67 0.74 0.67 0.74 0.79 0.75 0.79 0.81

GARCH 0.57 0.67 0.74 0.66 0.74 0.80 0.73 0.80 0.84

LMARCH 0.57 0.68 0.74 0.67 0.75 0.80 0.76 0.81 0.81

VLMARCH 0.56 0.68 0.75 0.67 0.75 0.81 0.75 0.82 0.83

EGARCH 0.56 0.67 0.73 0.67 0.74 0.80 0.75 0.80 0.81

Table 3.4: Log periodogram relative efficiencies with antipersistence
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Monte Carlo BIASES for the local W hittle estim ate of long memory applied to white noise with five specified error

structures.

MODEL m =4

n=64

17 1 = 8 m =16 m = 8

n=128

m =16 3 II CO to m = 16

n= 256

m =32 m = 6 4

IID -0.035 -0.029 -0.025 -0.027 -0.026 -0.013 -0.020 -0.013 -0.008

ARCH -0.034 -0.030 -0.021 -0.030 -0.024 -0.016 -0.021 -0.015 -0 .009

GARCH -0.033 -0.034 -0.019 -0.037 -0.022 -0.018 -0.026 -0.019 -0.012

LMARCH -0.031 -0.034 -0.020 -0.032 -0.021 -0.013 -0.019 -0.011 -0.009

VLMARCH -0.032 -0.032 -0.025 -0.033 -0.024 -0.016 -0.022 -0.015 -0.007

EGARCH -0.030 -0.036 -0.031 -0.031 -0.025 -0.020 -0.018 -0.015 -0.010

Table 3.5: Local W hittle  biases with short memory

Monte Carlo ROOT MEAN SQUARED ERRORS for the local W hittle estim ate o f long m emory applied to  white  

noise with five specified error structures.

M O D EL m = 4

n = 64

m = 8 m = 16 3 II 00

n=128

m =16 m =32 3 II o>

n= 256

m =32 m = 6 4

IID 0.37 0.27 0.18 0.27 0.18 0.11 0.18 0.11 0.07

ARCH 0.36 0.27 0.19 0.27 0.18 0.13 0.17 0.11 0.08

G ARCH 0.36 0.29 0.21 0.28 0.20 0.15 0.20 0.15 0.11

LM ARCH 0.37 0.28 0.19 0.27 0.18 0.12 0.18 0.12 0.08

V LM ARCH 0.37 0.28 0.20 0.28 0.19 0.13 0.19 0.13 0.10

EG A R C H 0.36 0.27 0.19 0.27 0.18 0.13 0.17 0.11 0.09

Table 3.6: Local W hittle  RMSEs with short memory

(1995b), but with no trim m ing) because it has been popularly used, bu t we do not 

otherwise report the results for this estim ate.

As for the averaged periodogram estim ate of long memory investigated in C hapter 2, 

the most striking feature of the results is the poor performance of dx and of the 

normal inference rule 1.75 provided by Theorem 5 in the GARCH case, relative to 

the others. Out of the 36 dx , m , n  combinations, the GARCH bias is largest in 18 

cases, while its MSE ties largest in 3 cases and is outright largest in 28. Moreover 

the deviation of 95% coverage probabilities from their normal values ties largest 3 

times and is outright largest 28 tim es, for GARCH. Relative efficiency to  th e  log 

periodogram estim ate are also most out of line with their asym ptotic values for the
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95% COVERAGE PROBABILITIES for the local W hittle estim ate of long memory applied to white noise with five

specified error structures.

MODEL m =4

n=64

m =8 m = 16 m = 8

n= 128

m = 16 m =32 m =16

n= 256

m = 32 IIE
IID 0.63 0.76 0.84 0.77 0.84 0.89 0.83 0.88 0.92

ARCH 0.65 0.77 0.81 0.77 0.83 0.84 0.85 0.88 0.86

GARCH 0.65 0.72 0.76 0.74 0.77 0.75 0.79 0.77 0.74

LMARCH 0.64 0.75 0.81 0.76 0.82 0.85 0.82 0.86 0.87

VLMARCH 0.64 0.75 0.79 0.75 0.80 0.81 0.80 0.81 0.81

EGARCH 0.65 0.77 0.80 0.78 0.84 0.84 0.85 0.88 0.86

Table 3.7: Local W hittle 95% coverage probabilities with short memory

RELATIVE EFICIENCY of the log periodogram compared to  the local W hittle estim ate of long m em ory applied  

to white noise with five specified error structures.

MODEL m =4

n= 64

m = 8 m =16 m = 8

n= 128

m = 16 m =32 m = 16

n= 256

m = 32

<oIIE

IID 0.60 0.78 0.82 0.78 0.84 0.80 0.84 0.82 0.77

ARCH 0.60 0.77 0.80 0.78 0.83 0.82 0.83 0.82 0.82

GARCH 0.60 0.76 0.81 0.77 0.84 0.84 0.84 0.86 0.85

LMARCH 0.60 0.78 0.82 0.78 0.84 0.82 0.84 0.83 0.81

VLMARCH 0.60 0.76 0.82 0.78 0.83 0.83 0.84 0.85 0.84

EGARCH 0.61 0.78 0.82 0.79 0.83 0.82 0.83 0.81 0.82

Table 3.8: Log periodogram relative efficiencies with short memory

Monte Carlo BIASES for the local W hittle estim ate of long m emory applied to an ARFIM A(0, .25, 0) series w ith  

five specified innovation structures.

M O D E L

•>*IIE

n=64

m = 8 m =16 3 II 00

n= 128

m = 16 3 II 00 to m = 16

n= 256

m = 32 m =64

IID -0.108 -0.050 -0.027 -0.040 -0.012 -0.010 -0.004 0.001 -0.007

ARCH -0.112 -0.053 -0.031 -0.035 -0.014 -0.015 -0.003 -0.004 -0.005

G A R C H -0.113 -0.057 -0.033 -0.043 -0.020 -0.020 -0.014 -0.007 -0.006

LM A R C H -0.110 -0.051 -0.026 -0.038 -0.013 -0.011 -0.005 0.001 -0.006

VLM A R C H -0.104 -0.052 -0.034 -0.044 -0.015 -0.010 -0.005 -0.004 -0.006

EG A R C H -0.107 -0.054 -0.039 -0.033 -0.012 -0.017 -0.002 -0.002 -0.007

Table 3.9: Local Whittle biases with moderate long memory
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Monte Carlo ROOT M EAN SQUARED ERRORS for the local W hittle  estim ate of long m emory applied to an

ARFIM A(0, .25, 0) series with five specified innovation structures.

M ODEL m = 4

n= 64

m = 8 m = 16 m = 8

n=128

m =16 3 II CO to m = 1 6

n= 256

m =32 m =64

IID 0.38 0.26 0.17 0.26 0.17 0.11 0.17 0.11 0.07

ARCH 0.37 0.26 0.18 0.25 0.17 0.12 0.16 0.11 0.08

GARCH 0.37 0.28 0.20 0.27 0.20 0.15 0.19 0.14 0.11

LMARCH 0.38 0.27 0.18 0.26 0.17 0.12 0.17 0.12 0.08

VLMARCH 0.37 0.27 0.19 0.27 0.18 0.13 0.18 0.13 0.10

EGARCH 0.37 0.26 0.18 0.25 0.17 0.12 0.17 0.11 0.08

Table 3.10: Local W hittle RMSEs with m oderate long memory

95% COVERAGE PROBABILITIES for the local W hittle  estim ate o f long m emory applied to  an ARFIM A(0, .25, 

0) series with five specified innovation structures.

M ODEL m = 4

n=64

m =8 m = 16 m = 8

n=128

m =16 m = 32 m = 16

n= 256

m =32 m =64

IID 0.80 0.86 0.83 0.87 0.84 0.88 0.84 0.89 0.91

ARCH 0.81 0.86 0.80 0.88 0.84 0.85 0.85 0.88 0.86

GARCH 0.80 0.84 0.75 0.86 0.76 0.76 0.79 0.77 0.75

LMARCH 0.80 0.85 0.81 0.87 0.83 0.85 0.82 0.86 0.87

VLMARCH 0.80 0.85 0.79 0.86 0.80 0.81 0.80 0.82 0.81

EGARCH 0.81 0.86 0.80 0.88 0.83 0.84 0.84 0.88 0.86

Table 3.11: Local W hittle 95% coverage probabilities w ith m oderate long memory

RELATIVE EFFICIENCY of the log periodogram com pared to  the local W hittle  estim ate of long memory applied 

to an ARFIM A(0, .25, 0) series with five specified innovation structures.

M O D E L m = 4

n —64 

m = 8 m = 16 m = 8

n= 128

m = 16 m = 32 m = 16

n= 256

m =32 m =64

IID 0.61 0.75 0.79 0.74 0.78 0.79 0.79 0.81 0.79

A R C H 0.62 0.75 0.78 0.74 0.79 0.80 0.78 0.82 0.80

G A R C H 0.60 0.74 0.79 0.74 0.79 0.81 0.80 0.82 0.83

LM A R C H 0.61 0.76 0.78 0.74 0.80 0.80 0.79 0.81 0.81

VLM A R C H 0.61 0.75 0.80 0.74 0.79 0.81 0.79 0.82 0.81

E G A R C H 0.61 0.75 0.80 0.74 0.79 0.81 0.78 0.80 0.80

Table 3.12: Log periodogram relative efficiencies with moderate long memory
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M onte Carlo BIASES for the local W hittle estim ate of long memory applied to an ARFIM A(0, .45, 0) series with

five specified innovation structures.

MODEL m = 4

n=64

m =8 m =16 m = 8

n=128

m =16 m =32 m =16

n= 256

m =32 m = 64

IID -0.201 -0.102 -0.059 -0.087 -0.044 -0.027 -0.035 -0.015 -0.013

ARCH -0.190 -0.107 -0.070 -0.085 -0.047 -0.033 -0.034 -0.017 -0.018

GARCH -0.210 -0.132 -0.088 -0.110 -0.073 -0.053 -0.060 -0.043 -0.037

LMARCH -0.210 -0.117 -0.076 -0.101 -0.060 -0.043 -0.052 -0.030 -0.024

VLMARCH -0.218 -0.121 -0.081 -0.112 -0.064 -0.047 -0.056 -0.037 -0.032

EGARCH -0.187 -0.105 -0.070 -0.084 -0.046 -0.034 -0.034 -0.017 -0.017

Table 3.13: Local W hittle biases w ith very long memory

M onte Carlo ROOT M EAN SQUARED ERRORS for the local W hittle  estim ate of long m emory applied to an 

ARFIM A(0, .45, 0) series w ith five specified innovation structures.

MODEL m = 4

n= 64

m = 8 m =16 m = 8

n= 128

m =16 m =32 m =16

n= 256

m =32 m = 64

IID 0.38 0.23 0.14 0.22 0.13 0.09 0.12 0.08 0.06

ARCH 0.37 0.23 0.16 0.21 0.14 0.10 0.12 0.08 0.07

GARCH 0.38 0.25 0.17 0.23 0.15 0.11 0.14 0.10 0.08

LMARCH 0.38 0.23 0.15 0.21 0.13 0.09 0.13 0.08 0.06

VLMARCH 0.38 0.24 0.16 0.22 0.14 0.10 0.13 0.09 0.07

EGARCH 0.37 0.23 0.16 0.21 0.13 0.10 0.12 0.08 0.07

Table 3.14: Local W hittle RMSEs with very long memory

95% COVERAGE PROBABILITIES for the local W hittle estim ate o f long m emory applied to an ARFIM A(0, .45, 

0) series with five specified innovation structures.

M O D E L m = 4

n=64

m = 8 m =16 m = 8

n= 128

m =16 m =32 m =16

n= 256

m = 32 m =64

IID 0.80 0.86 0.89 0.88 0.91 0.93 0.93 0.94 0.95

A R C H 0.81 0.86 0.87 0.89 0.91 0.91 0.93 0.94 0.92

G A R C H 0.81 0.85 0.85 0.87 0.88 0.87 0.90 0.90 0.86

LM A R C H 0.81 0.86 0.88 0.89 0.91 0.91 0.92 0.94 0.93

V LM A R C H 0.80 0.86 0.87 0.87 0.90 0.89 0.91 0.92 0.89

E G A R C H 0.82 0.87 0.87 0.89 0.92 0.91 0.93 0.94 0.92

Table 3.15: Local Whittle 95% coverage probabilities with very long memory



108 Chapter 3

RELATIVE EFFICIENCY of the log periodogram compared to  the local W hittle estim ate of long memory applied 

to an ARFIMA(0, .45, 0) series with five specified innovation structures.

MODEL m = 4

n=64

m = 8 m =16 m = 8

n=128

m =16 m =32

<£>HIIE

n= 256

m =32
■>*II£

IID 0.61 0.65 0.64 0.62 0.61 0.63 0.57 0.59 0.65

ARCH 0.59 0.67 0.67 0.62 0.62 0.63 0.57 0.59 0.66

GARCH 0.62 0.67 0.65 0.63 0.61 0.61 0.57 0.57 0.60

LMARCH 0.61 0.65 0.64 0.61 0.59 0.61 0.56 0.54 0.59

VLMARCH 0.62 0.65 0.65 0.61 0.60 0.60 0.56 0.56 0.62

EGARCH 0.61 0.67 0.68 0.61 0.61 0.64 0.57 0.58 0.66

. Table 3.16: Log periodogram relative efficiencies with very long memory

GARCH: it ties w ith the largest discrepancy 12 times and has the outright largest 10 

times. To further investigate this relatively poor performance of the local W hittle  

estim ate in case of GARCH errors, empirical distributions of 2y/rn(dx — dx) are 

plotted for all values of dx (-.25 corresponding to antipersistence, 0 corresponding 

to short memory, .25 to m oderate long memory and .45 to very long memory) on 

one graphic alongside the standard normal distribution for comparison.

Three graphics are presented in figures 3.1 to 3.3, for three different choices of the 

pair (n ,m ), n =  64 and m  = 4, n =  128 and m =  16, n =  256 and m  = 64. 

These empirical distributions are truncated because the estim ate is restricted to the 

interval of admissible values [—0.499,0.499]. In the case where n =  64 and m  — 4, 

the empirical distributions are highly leptokurtic and a high proportion of estim ated 

values for dx hit one of the boundaries of the interval of admissible values. W hen n 

and m increase, the tails become thinner.

Looking at the other error specifications, VLMARCH leads to  a slightly worse per­

formance than LMARCH, but with no reliable evidence th a t this is significantly 

worse than ARCH, or indeed IID. Failure of the m om ent conditions 1.43 and 2.12 

has no evident effect. In our series of modest length, the  relatively poor behaviour 

under GARCH m ay be be tte r explained by the im pact of a near unit root; for much 

larger values of n , LMARCH and VLMARCH would presumably do worse than
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GARCH, bu t in such samples this is unlikely to be a m atte r of great practical con­

cern. In absolute term s, even GARCH does not perform so badly for us to  question 

the usefulness of the asym ptotic robustness results in m oderate sample sizes. The 

local W hittle estim ate performs has identical root mean squared errors and 95% 

coverage probabilities in case of EGARCH errors and in case of ARCH errors. In 

case of EGARCH errors, Monte Carlo biases are typically larger when there is an­

tipersistence and smaller in case of very long memory. Finally, out of the 36 dx, m, n 

combinations, relative efficiency of the log periodogram estim ate ties largest in 8 

cases and is outright largest in 4 cases when the error structure is EGARCH.

As expected, MSE decreases monotonically, as n, and m , decrease. The decay in 

bias in n is less noticeable, while the typical decay in bias in m  is broadly in line 

with results of Robinson (1995a), in case of fractional Gaussian noise (which has 

similar spectral shape to  th a t of the ARFIM A(0,dx,0)). As in the  no-ARCH finite 

sample results of Robinson (1995a), coverage probabilities are markedly sensitive to 

choice of m.

Finally, the effect of heavy-tailed conditional distributions for et is investigated in 

tables 17-20 and 21-24 in case of short memory levels (dx = 0).

Monte Carlo biases, root MSEs, coverage probabilities and relative efficiencies of 

the log periodogram  estim ate are reported as before for models (i) to  (v) only with 

et — atr]t, where the r)t are i.i.d. t2 in tables 17-20 and i.i.d. 14 in tables 21-24 so 

tha t 77* has respectively infinite second m oment and infinite fourth moment.

Relative efficiency of the log periodogram estim ate seems unaffected by heavy- 

tailedness. However, when there is no conditional heteroscedasticity, dx on the 

whole performs b e tte r when rjt is t4 than  when it is normal, and bette r still when 

it is t 2, in term s of Monte Carlo bias, MSE and coverage probability. Conditional 

heteroscedasticity produces a reverse picture. The results for t4 rjt are b e tte r than 

those for norm al rjt in only 7 cases in respect of bias, 4 in respect of MSE and 2 

in respect of coverage probability. The results for t 2 are be tter than  those for t 4 

in only 1 case in respect of bias, 4 in respect of MSE and 4 in respect of coverage



1 1 0 Chapter 3

Monte Carlo BIASES for the local W hittle estim ate of long memory applied to white noise with five specified error

structures.

MODEL m = 4

n= 64

m = 8 m =16 m = 8

n=128

m =16 3 II CO to m = 16

n=256

m =32

(OIIE

IID -0.018 -0.027 -0.019 -0.024 -0.018 - 0 .0 1 0 -0.017 -0.009 -0.006

ARCH -0.043 -0.047 -0.042 -0.042 -0.039 -0.037 -0.036 -0.032 -0.034

GARCH -0.047 -0.042 -0.035 -0.051 -0.048 -0.040 -0.055 -0.047 -0.038

LMARCH -0.036 -0.038 -0.032 -0.040 -0.034 -0.028 -0.047 -0.038 -0.028

VLMARCH -0.042 -0.036 -0.037 -0.052 -0.043 -0.037 -0.054 -0.048 -0.037

Table 3.17: Local W hittle biases with errors

probability. Moreover, these exceptions are mostly for the n = 64, m  = 8 com­

bination, and frequently the deterioration produced by extrem e heavy-tailedness is 

substantial. And although bias and MSE typically decrease with increasing n  and 

m for ^-distributed 7]t , suggesting tha t consistency of dx is m aintained, there is some 

tendency for coverage probabilities to actually worsen (become smaller) especially 

for £2 , so th a t not only is the heavy-tailedness reflected in the distribution of dx but 

there is evidence th a t the lim it distribution of Theorem 5 may not hold under this 

violation of the m om ent conditions.

Overall the results suggest th a t the possibility of conditional heteroscedasticity can 

be a cause for concern in m oderate sample sizes, especially for IGARCH-like be­

haviour and when the  conditional distribution of et has heavy tails. On the other

hand, some forms of conditional heteroscedasticity appear to  have little  effect and

in these circumstances, use of H  and the associated large sample inference rules of 

Robinson (1995a) seems w arranted at least for reasonably large samples, though as 

is typically the case with smoothed nonparam etric estim ation, reporting results for 

a range of bandwidths is a wise precaution.
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Monte Carlo ROOT M EAN SQUARED ERRORS for the local W hittle estim ate of long memory applied to  white

noise with five specified error structures.

MODEL m = 4

n=64

m =8 m =16 m = 8

n=128

m =16 m =32 m =16

n= 256

m =32 3 II 01

IID 0.35 0.25 0.16 0.26 0.16 0.10 0.16 0.10 0.07

ARCH 0.33 0.26 0.23 0.24 0.21 0.20 0.17 0.17 0.19

GARCH 0.35 0.31 0.26 0.31 0.28 0.24 0.28 0.26 0.23

LMARCH 0.36 0.29 0.23 0.30 0.25 0.21 0.28 0.24 0.20

VLMARCH 0.35 0.30 0.25 0.31 0.27 0.23 0.29 0.26 0.22

Table 3.18: Local W hittle RMSEs with t 2 errors

95% COVERAGE PROBABILITIES for the local W hittle estim ate of long m emory applied to  white noise w ith five 

specified error structures.

MODEL m = 4

n= 64

m = 8 3 II h-* o> 3 II 00

n= 128

m =16 m =32 m = 16

n = 256

m =32 m = 64

IID 0.68 0.81 0.87 0.80 0.88 0.91 0.87 0.91 0.93

ARCH 0.74 0.78 0.71 0.83 0.78 0.65 0.86 0.76 0.56

GARCH 0.68 0.67 0.62 0.66 0.57 0.53 0.59 0.50 0.42

LMARCH 0.65 0.71 0.70 0.67 0.65 0.62 0.59 0.55 0.50

VLMARCH 0.68 0.68 0.65 0.66 0.61 0.56 0.58 0.50 0.45

Table 3.19: Local W hittle 95% coverage probabilities with t 2 errors

RELATIVE EFICIENCY of the log periodogram compared to the local W hittle estim ate of long m emory applied  

to white noise with five specified error structures.

MODEL m = 4

n= 64

m = 8 m = 16 3 II 00

n= 128

m =16 m =32 m = 16

n= 256

m =32 m =64

IID 0.61 0.76 0.79 0.78 0.80 0.78 0.83 0.80 0.77

ARCH 0.64 0.75 0.79 0.77 0.81 0.81 0.81 0.83 0.83

GARCH 0.62 0.73 0.78 0.73 0.80 0.83 0.78 0.82 0.84

LMARCH 0.60 0.74 0.80 0.74 0.81 0.84 0.80 0.85 0.86

VLMARCH 0.61 0.73 0.80 0.73 0.80 0.84 0.78 0.83 0.85

Table 3.20: Log periodogram relative efficiencies with t 2 errors
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Monte Carlo BIASES for the local W hittle estim ate of long memory applied to white noise with five specified error

structures.

MODEL m =4

n = 64

m = 8 m =16 m = 8

n=128

m =16 m =32 m =16

n=256

m =32 m =64

IID -0.028 -0.031 -0.020 -0.026 -0.022 -0.011 -0.021 -0.011 -0.005

ARCH -0.033 -0.041 -0.035 -0.028 -0.030 -0.022 -0.025 -0.020 -0.019

GARCH -0.041 -0.043 -0.027 -0.042 -0.037 -0.027 -0.043 -0.029 -0.024

LMARCH -0.035 -0.030 -0.027 -0.031 -0.023 -0.016 -0.021 -0.022 -0.013

VLMARCH -0.031 -0.036 -0.028 -0.029 -0.029 -0.019 -0.030 -0.024 -0.019

Table 3.21: Local W hittle  biases with errors

Monte Carlo ROOT M EAN SQUARED ERRORS for the local W hittle estim ate o f long memory applied to  white 

noise with five specified error structures.

MODEL m = 4

n = 64

m = 8 m = 16 m = 8

n=128

m =16 3 1! 00 to 3 II

n=256

m =32 m =64

IID 0.37 0.27 0.17 0.28 0.17 0.11 0.17 0.11 0.07

ARCH 0.35 0.26 0.21 0.25 0.18 0.16 0.17 0.13 0.13

GARCH 0.36 0.30 0.24 0.30 0.25 0.21 0.26 0.22 0.18

LMARCH 0.36 0.28 0.20 0.28 0.20 0.15 0.22 0.16 0.11

VLMARCH 0.36 0.29 0.22 0.29 0.22 0.17 0.24 0.19 0.15

Table 3.22: Local W hittle RMSEs with errors

95% COVERAGE PROBABILITIES for the local W hittle estim ate of long memory applied to  white noise w ith five 

specified error structures.

M O D E L m = 4

n= 64

m = 8

CO 
rHIIE m = 8

n= 128

m =16 m =32 3 II 1—i CT
>

n= 256

m =32 m =64

IID 0.64 0.76 0.85 0.77 0.85 0.89 0.85 0.89 0.91

ARCH 0.69 0.78 0.76 0.80 0.82 0.76 0.86 0.84 0.72

GARCH 0.66 0.68 0.69 0.69 0.65 0.61 0.63 0.58 0.53

LMARCH 0.65 0.74 0.78 0.73 0.78 0.77 0.74 0.75 0.74

VLMARCH 0.65 0.72 0.74 0.72 0.72 0.72 0.69 0.67 0.64

Table 3.23: Local W hittle 95% coverage probabilities with t \  errors
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RELATIVE EFICIENCY of the log periodogram compared to the local W hittle estim ate of long m emory applied

to white noise with five specified error structures.

MODEL m = 4

n=64

m =8 m = 16 m = 8

n= 128

1 7 1 = 1 6 3 II CO to m = 16

n=256

m =32

toIIE

IID 0.60 0.77 0.80 0.78 0.81 0.78 0.83 0.81 0.77

ARCH 0.61 0.77 0.80 0.78 0.83 0.82 0.82 0.83 0.83

GARCH 0.60 0.74 0.81 0.74 0.82 0.85 0.81 0.85 0.88

LMARCH 0.60 0.77 0.82 0.77 0.84 0.84 0.84 0.86 0.85

VLMARCH 0.60 0.76 0.83 0.76 0.83 0.85 0.83 0.87 0.86

Table 3.24: Log periodogram relative efficiencies w ith t4 errors

Figure 3.1: Em pirical distributions of the local W hittle  estim ate w ith GARCH errors
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Figure 3.2: Empirical distributions of the local Whittle estimate with GARCH errors
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Figure 3.3: Empirical distributions of the local W hittle estim ate with GARCH errors 
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3.6 Conclusion

The local W hittle  estim ate can be used at an initial stage in the analysis of a 

series x t , perhaps to test for a specific value of dx such as 0 (as in Lobato and 

Robinson (1998)), or to create a fractionally differenced series A dxx t , where A is 

the differencing operator. This represents an asym ptotically valid aproxim ation to 

an 1(0) series without any param etric assumption on the autocorrelation of the 

underlying 1(0) process A dxx t , so we might then proceed to identify the order of a 

param etric model such as an ARMA on the basis of the A dxx t , possibly then carrying 

out estim ation of the  ARFIMA model for x t by a param etric Gaussian m ethod. This 

perm its to distinguish between a trend stationary and a difference stationary series as 

in the derivations of Smith and Chen (1996) and Deo and Hurvich (1998). A question 

th a t then arises is whether the innovations in the model (equivalent to  our St) have 

conditional heteroscedasticity, and if so, what is the nature and extent of it. This is of 

interest whether or not x t has long memory, and even if x t is a m artingale difference, 

x t =  et. If 1*33 is param eterized, say by 1.41 or 1.38, then we can estim ate the 

unknown param eters by applying the conditional Gaussian loglikelihood underlying 

the LM tests developed by Robinson (1991b), though asym ptotic properties of the 

param eter estim ates rem ain to be established in the long memory case, and indeed 

in many short memory ones. However such a procedure carries the disadvantage 

th a t even the memory param eter de will be inconsistently estim ated if the short 

memory dynamics of the squares is misspecified, while we may in any case prefer an 

exploratory approach at the initial stage.

One may thus consider applying a sem iparam etric procedure for estim ating de to 

the £*, or their proxies. For example, the local W hittle  m ethod appears to be a 

candidate, because, although the cannot be Gaussian, Gaussianity of x t was not 

assumed by Robinson (1995a), or in the current thesis. However, while some of the 

analysis of these papers will be relevant, and 1.33 represents ej as a linear filter 

of m artingale differences z/*, not only do the i/t have conditional heteroscedasticity 

but their odd conditional moments are perforce stochastic, so th a t no conditions
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analogous to 2.55 or 2.13 can be imposed. The form of the limiting distribution of 

the local W hittle estim ate of d£, as well as its derivation, are thus open questions.
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O ptim al bandw idth  choice

Joint work w ith Peter Robinson  

4.1 Introduction

This chapter is concerned with the optim al choice of bandw idth, or num ber of pe­

riodogram ordinates used in the estim ation of long memory in tim e series. The 

sem iparam etric estim ates th a t are considered are those for which asym ptotic theory 

was provided. Namely, this chapter is concerned w ith bandw idth choice in local 

W hittle estim ation described in chapter 3, in log periodogram  estim ation and in 

averaged periodogram estim ation described in chapter 2.

The asym ptotic norm ality result

y/m{dx — dx) Af(0, V (dx)) (4.1)

which holds for the local W hittle  estim ate (hereafter LW) for A i <  dx <  A 2 for 

any A i, A 2 such th a t — |  <  A i <  A 2 <  \  and w ith variance V(dx) =  for 

the log periodogram estim ate in the modified form of Robinson (1995b) (hereafter 

LP) for 0 <  dx < |  with variance V(dx) =  7t2/24, and for the averaged periodogram 

estim ate (hereafter AP) for 0 <  dx < \  with variance V(dXq) =  ( 1 + g -1 — 2q~2dx){ \  — 

c y 2/[(log2 q)(l — Adx)\ (see Lobato and Robinson (1996)) for any choice of q G ( 0 ,1)
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shows the crucial role the bandw idth m  plays in the  precision of the estim ate. For 

the LW, 4.1 is derived under 1.76 which implies a rate of convergence for dx of 

n~rM n where r = 0 / (1  +  2/?) and (log m )_1^ 1+2̂ M n =  o(l) as n  —> oo. For the 

LP and AP, 4.1 is derived under 1.77 which implies a rate of convergence of n~rM n 

where M n diverges arbitrarily slowly.

All the results mentioned above are derived under conditions of “oversmoothing” ; in 

other words, under conditions on the bandwidth which ensure th a t the asym ptotic 

bias of the estim ate is of small order of m agnitude with regards to  its asym ptotic 

variance. However, it appears clearly th a t a be tter precision would be achieved by 

these estim ates w ith choices of m  outside the scope of the results expounded above. 

In fact, Giraitis, Robinson, and Samarov (1997) show th a t for long memory processes 

with spectral density satisfying 1.84, the best attainable rate of convergence for an 

estim ate of dx is n~r. They further show th a t such a rate is attained in the case of 

the LP estim ate in the modified form of Robinson (1995b). Once this optim al rate  

is achieved, the problem of choosing bandw idth optim ally remains one of balancing 

bias and imprecision. Taqqu and Teverovsky (1996) propose a graphical m ethod for 

the determ ination of bandw idth which consists in plotting a series of estim ated values 

for dx against n / m  and choosing the appropriate estim ate for dx in the following way: 

Starting at large values of m  (small values of  n / m ) ,  we would expect to find a range 

where the estimates of  dx are incorrect because of  the short range effects. Then, as 

m  decreases ( n /m  increases), the short range effects should disappear and the value 

of dx obtained should represent the true long memory dependence. Thus there should 

be a period of  relative stability, where the estimates o f  dx are approximately constant. 

Then, i f  we move to smaller m ’s, we will get into a region where the estimates of  

dx are very scattered and unreliable because there are not enough frequencies left to 

have an accurate regression. Thus we should expect to see a flat region somewhere in 

the middle of  the plot of  the estimates of  dx and we can estimate an overall dx from  

that region. Examples they give for electronic d a ta  seem graphically convincing. 

However, for the three semipaxametric estim ates LW, LP and AP, applied to the 

Nile River da ta  (described in chapter 1), plotting estim ates of dx against bandw idth
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Figure 4.1: Long memory function of bandwidth in the Nile river da ta
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(as in figure 1) does not produce anything resembling a flat region in the plot wherein 

the estim ate of dx might be selected.

Figures 4.2 to 4.5 are plots of the long memory estimates against bandwidth for a 

simulated A R FIM A (l,dx,0) series of length n = 1000 with autoregressive coefficient 

a = .5 and for values of the long memory param eter dx =  —.25, dx = 0, dx =  .25 and 

dx =  .45. Each graphic corresponds to one true value of dx, and the estim ated values 

for dx using the local W hittle, the log periodogram and the averaged periodogram 

are plotted against bandwidth. In all four figures, there is a region -approximately 

the first 40 values of bandwidth- where the estimates are extremely erratic, and 

a region -approxim ately for m  > 100- where estimates of long memory increase 

continuously with bandwidth, because of the increasing influence of the short range 

structure which spuriously inflates estimates of long range dependence. One would 

therefore wish to choose a bandwidth somewhere between these regions.
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Figure 4.2: Long memory estimation in an ARFIMA(l,-.25,0) series

d

o

o
o

0 d
1 '
E
O'c oO I

di

d  
1 0 200 240 280 32040 80 120 160

bandw idth
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Figure 4.4: Long memory estimation in an ARFIMA(1,.25,0) series
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Here, we are interested in theoretical optimal bandwidths for LW, LP and AP, 

and feasible approximations thereof. Grenander and Rosenblatt (1966) propose 

a theoretical criterion for optimal choice of bandwidth with the minimisation of 

the estim ate’s mean squared error which suitably balances asym ptotic bias and 

asymptotic variance. The mean squared error of a generic estim ate dx of dx is:

E\dx — dx |2 =  V(dx) +  (Edx — dx )2. (4.2)

Robinson (1994b) proposed an optimal bandwidth theory for the AP based on an 

analogue of the m ean squared error of smooth spectral density estimates. Delgado 

and Robinson (1996) assessed feasible approximations to this optim al bandwidth, 

and the following section of this chapter shows tha t such optim al bandwidth for­

mulae and their approximations remain valid when the process x t follows 1.1 with 

innovations displaying (possibly long memory) conditional heteroscedasticity.
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Figure 4.5: Long memory estimation in an ARFIMA(1,.45,0) series
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Section 4.3 of this chapter derives an expression for the mean squared error and 

the corresponding optimal bandwidth for the LW estim ate of long memory and 

gives feasible approximations to it. Section 4.4 gives a small sample assessment 

of autom atic bandwidth selection procedures in semiparametric estim ation of long 

memory in an extensive Monte Carlo study. The case of the LP is treated in Hurvich, 

Deo, and Brodsky (1998) for processes satisfying the fractional representation 1.83. 

The bias behaves asymptotically as

)m *
9 /*(0) (

and the variance as 7r2/24m , whence a mean squared error minimising bandwidth is

derived,

/ 81(2/*(0))2 T  i  
mLP ~ ^96jr2( / '" ( 0 ) ) 2  ̂ ” S ^

which will be applied for comparison in the small sample assessments of the perfor­

mance of the three semiparam etric estim ates of long memory under optim al band­

width choice.



Optimal bandwidth 123

4.2 Bandwidth selection for the averaged periodogram

Grenander and Rosenblatt (1966) proposed the mean squared error criterion for opti­

mal bandwidth selection in weighted periodogram estim ation of the spectral density 

of a weakly dependent process, for the simple discretely averaged periodogram , this 

criterion is equivalent to the minimization of

E
F(Xm)

- / ( 0)
F( Xm)

- m

Calling

g(X) = L(X)X -2 d.

and

G(A)= [Xg(9)de,
Jo

Robinson (1994b) proposes an analogue to  this mean squared error in case the 

spectrum  of the process x t is singular at zero frequency and follows 1.18:

M S E  — E F { \ m )

[G(Xm)
-  1

To describe the bias component in this M S E , /(A ) is specified in the following way: 

Assumption F I / ( A) follows 1.84. In addition, /  is differentiable, and

f ' (X )  =  0  as A ->■ 0+

Other assumptions for the determ ination of optim al bandw idth are added below: 

Assumption F2 Bandwidth m  satisfies 1.69.

Assumption F3 Assumption B3 holds with the  additional requirem ent th a t the 

ctj are quasi monotonically convergent, and

o tj  ~  Cj or a i  ------- 0  as j  -»  oo, (4.5)
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where

(j = (J ^ ) r ( l  -  dx) c o s (( i -  dx)ir)L* ( j ) j dx~ \

and

-  ?  
e -  (2/3 +  1)-

Quasi monotonic convergence of the ctj entails 2.17 for all sufficiently large j .  It is 

satisfied if the aj  are eventually decreasing, and is satisfied in case of autoregressive 

fractionally integrated moving average. 4.5 and 4.6 are also satisfied in th a t case, 

and so is 1.84 with (3 — 2. 4.5 implies 1.15 which is required for the  trea tm ent of 

fourth cumulants. Optim al bandwidths formulae proposed by Robinson (1994b) for 

processes under the conditional homogeneity condition 1.26 continue to  hold under 

assumptions F1-F3:

(4.6)

(4.7)

T h e o re m  6 Under Assumptions F1-F3 and 0 <  dx < 1/4,

M E E  ~ ‘ <5 -  J *>’ ( ( H i i S  +  ( r r f e j )  ’■ • )  ■

and a mean squared error minimising bandw idth is given by:

(  (1 — +  P)2 \ 2/3+1 2/3

m =  \2(3Epdi(2w)2l3(l  — 4<7c)y ’ (4-9)

W hen 1/4 <  dx < 1/2, /(A ) is no longer square integrable in a neighbourhood of 

the origin. Therefore, as Robinson (1994b) notes, a global Lipschitz condition of 

degree 1 — 2dx is imposed on the spectral density via quasi monotone convergence 

of the autocovariances.

T h e o re m  7 If Assumptions F1-F3 and 1/4 <  dx < 1/2 hold, and the autoco­

variances of the  process x t are quasi monotonically convergent, then a m ean squared 

error minimising bandw idth m  is given by

.  to / Ddx(1 -  2<k +  /3) r2<4 -  1 +  /3
 ̂ £ (I )  ) m  ~  „i-M.+P V 4/3 I E0d,(2dx)
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1 f ( l - 2 d x +/3)2 1 / 1
\Epdl\ l ( d + \ y ( 2 d xy  + i m 2 x\ 4 d x - l ) ( 2 d x)

-  ------- ------------- 4r2(24) \jh\rsfcTg . .
(dx +  i ) 2 ( 2 4 ) 2 T(4dx + 2 ) '  > J ' ’ ( -lUI

where Ddx =  2T(2(dx — |) )  co s(( | — dx)?r).

Proof Assumption F3 differs from Assumption 7 in Robinson (1994b) only to  

the extent th a t Robinson (1994b) assumed th a t cum(£r ,£*,£s,£u) =  0 unless r = 

t = s = u. Therefore, the contributions to the mean squared error described in 

Theorem 4 of Robinson (1994b) are unchanged except for the contribution of fourth 

cum ulants of et to the variance of F(Xm). Therefore, the proof of Theorem  4 of 

Robinson (1994b) still applies except for the proof th a t the additional term  in the 

MSE due to non-Gaussianity, namely K m/G(X^n) with
1 m n 

^  j , k =  1 q ,r , s , t= 1

is of small order of m agnitude with respect to other term s in the MSE, and therefore 

does not influence asym ptotic optimal bandw idth choice. More precisely, we need 

to prove tha t

- ( A . 
K m = o ----------  as n —>oo. (4.11)

\  m  J

Now, applying 1.1,
q r  s t

cum(a:g,a:r,x s,xt) =  E E E E CXq—j Oi r —fcQJg—l & t —Ucum(£j, £fc, S i , £u)
j = —oo k —oo / = —oo u = —oo

— K E a q- i a r- i a s- ic tt- i  
1 —  —  00 

n

T ^ ] 7u —l ( & q —u & r —u & s —l & t —l T & q —uOLr —lOLs —u Ot.t—l
l*u
—oo

~{~Otq—uQLr—l Q s —l & t —u )

in view of 1.61-1.64 and with the convention th a t aj  =  0, j  <  0. Therefore,
i  m  n  n

K ™ = — E E * E a q-la r - lOta-lClt-iei(q~r'Xi~i'a~t* (4.12)
n  j ,k = l q ,r ,s ,t= l I— oo 

m  n  n

+ z * E E E “7u—l (&q—u&r—u&s—l&t—l “H (^q—u^-r—lĈ s—u^-t—l
n  j ,k = l q ,r,s,t=  1

—oo
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The proof of Lemma 12 of Robinson (1994b) still holds to  show th a t 4.12 is 0(G (X m)2/n )  

which is o(G (\m)2/ m )  under 1.69 as required. 4.13 contains three term s of the form
j m  nE E 7 i - < . “ u ( A j ) a i ( - A , - ) a i ( A t ) a t, ( - A t ) ,  (4.14)

—  O O

where a u(A) =  ]C?=i a t- ueltX and a t = 0, t <  0. W hen u <  0 such th a t (—w)-1 =  

0(|A |) we have by sum m ation by parts, 1.15 and 2.17, th a t

n —u —1< E I oct -  at+i|
a t — a t+1

t = l —u

n —u —1

= E
t=i—it 
n —it—1

sin A/2 

<  \a t ~  a *+i

t n —u

E *isAT |^n—.1 E e'sA
3 = 1 —U 3 = 1 — U

1 1 1 Ctn —u
T |^n—u| sin A/2

t — l —u

sin(i -f l)A /2
sin A/2

T |a n_u |
sin (n +  l)A /2

sin A/2
(4.15)

As (—u) 1 =  0(|A |) as A-»0, A ^  0(tt), we have, by 2.17, th a t 4.15 is bounded by

where the inequality uses 1.15. W hen u < 1 such th a t — u =  0 (1 /|A |) , we have

(4.17)
1—u + s

|«tl(A)| <  ^ 2  la 4l| +
2 = 1 —it

E a ‘e
t = l —u + s

for 1 < s < n. Applying sum m ation by parts in the same way as above to the 

second term  of 4.17 indicates th a t it is 0 ( (  1 — v +  s)da:-2/|A |), while the first term  is 

0((1  — v +  s )da:). Choosing s such th a t 1 — v +  s ~  1/|A| indicates th a t 4.17 is also 

0 ( |A |-^ ) .  W hen 1 <  u <  n, we have, by sum m ation by parts,

|orrt(A)| <  ^  [at-ul +
t=i

)  ] Ott—uC 
t = s + 1

i tX (4.18)

Applying sum m ation by parts to the second term  on the  right-hand side, and choos­

ing s ~  1/A, we find again th a t a u(A) =  0 ( |A |-d;r). Therefore, 4.14 is

ofAfE(W2̂ nEl7ilV
KJ, k=l j=1
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Now from the proof of Theorem 1 of Robinson (1994b), G(A) ~  K \ l~2dx as A—»0+ , 

so tha t 4.14 is O (G { \m )2n ~ l YJj=i) which is O (Gf(Am)2n 2d,_1) by 1.46. W hen de 

satisfies 4.7, 4.14 is o(G(Xm)/m )  which is negligible with respect to other components 

of the MSE. We have of course not assumed 2.56 in the above, but if we do then 

X ĵT0 l7 jl <  °°? so it 1S easily seen th a t 4.14 is 0 ( G ( Am)2 /m ) , whence 4.7 is not 

required. Therefore, fourth cum ulant contributions to  the M S E  are o ( l /m ) , which 

is negligible with respect to other components of strict order of m agnitude 1 /m .

Delgado and Robinson (1996) proposed feasible approxim ations to this optim al 

bandwidth, noting th a t its ra te  of convergence is free of dx only when 0 <  dx < 1/4. 

The validity of the approxim ations to the optim al bandw idth follows from the va­

lidity of the theoretical optim al bandwidths.

4.3 B andw idth choice for the local W hittle estim ate

The estim ate considered in this section is the LW described in chapter 3 which 

minimises R(d)  defined in 3.2. Hereafter, the dependence in m  of R  will be referred 

to explicitly by writing R ( m , d). For the sake of asym ptotic bias determ ination, the 

spectral density of the  process x t needs to be specified with 1.84 w ith 0 <  L (A) =  

G < oo and writing Epdx explicitly as a function of dx as Ep(dx). As was noted 

in chapter 1 and the  introduction to the present chapter, Giraitis, Robinson, and 

Samarov (1997) showed tha t there exists a lower bound for the ra te  of convergence 

of sem iparam etric estim ates on a class of spectral densities including the above 

specified. They showed, moreover, th a t this lower bound is a tta ined  by the LP. We
A,

suggest th a t the sam e property holds for the local W hittle  estim ate dx .

As is fam iliar from other uses of smoothed nonparam etric estim ates, th is optim al 

rate of convergence lies outside the asym ptotic norm ality range for the local W hittle  

estim ate dx considered here, as M n is not free to diverge arbitrarily  slowly. Nonethe­

less, heuristically, the  asym ptotic variance remains equal to  l /4 m  and the optim al 

bandw idth is the one th a t yields th a t same rate of convergence for the  squared bias.
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More precisely, the Mean Value Theorem yields:

d R ( m , d x )

dx — dx = d2̂ dm ^  where \d — dx \ < \dx -  dx \. (4-19)
d 2d

Now, as shown in Robinson (Robinson 1995a), ? A  4. The first two moments

of dRg^'d̂  can be treated  heuristically as follows. As n —> oo,

d R  2 ^  r /x(A,-) , , . 1 A ,  . ,
I d  ^ ' [G A = ^  “  11 ^  ^  =  b g '3 ~  m  £ l0g (4'20)J  — 1 3 k — 1

the notation meaning th a t the ratio of left and right sides tends to 1 in probability. 

We thus suggest tha t the expectation of | j j  (assuming it exists) can be approxim ated 

by

l y v i  J M _ . i l  (4 2 1 )
m. ^  GXJ J’ [ >

so under 1.84 the bias may be approxim ated by

~  ( 4 -2 2 )  

=  5 ^ ^ Ee(.dx) \ i .  (4.23)

Likewise we suggest th a t the variance of | j j  can be approximated by

4 A  2 n r 4 M  E[Ix(Xj)].2 4 ™ 2 4 ,
~  = * g * f  -  s  <**>

Thus we suggest, from 4.23 and 4.24, th a t the mean squared error E(dx — dx ) 2 is 

dominated by

+ <4M>
from which an “optim al bandw idth” as n tends to infinity can be derived by straight­

forward calculus:

” ~ H s d s S w » ] " b ”* '  <“ >
This optimal bandwidth may be compared to ones relevant to the averaged peri- 

odogram estim ate of dx in 4.9 and 4.10.
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When we consider the smoothest specification, i.e. (3 = 2 , the heuristic optim al 

spectral bandwidth becomes: m opt = ( ^ ) $ \ E 2(dx)\~s . In a fractional differenc­

ing representation of the form 1.83, E 2(dx) can be approxim ated by 2/»(oj 

as shown by Delgado and Robinson (1996). Figure 4.6 plots the optim al band­

width as a function of n and dx and four models for the levels: ARFIM A(0,dx,0), 

ARFIM A (l,dx,0), ARFIM A(0,dx,l)  and ARFIM A(2,dx,0) with autoregressive co­

efficients ai = .5 and a2 =  .2  and moving average coefficient h = —.45. W hen 

there is no short range dependence structure, the optim al bandw idth displays very 

little dependence in dx except in a close neighbourhood of dx = 0 , where the  op­

timal bandwidth is singular. It is therefore truncated a t m  =  [(n — l)/2 ] which 

corresponds to param etric W hittle estimation. The optim al bandw idth is even less 

variable in dx and exhibits no singularity in the case of an A RFIM A (p,dx,q) for 

max(p, q) >  0. As might be expected for series exhibiting autoregressive moving 

average features, the optim al bandw idth is far smaller than  in the previous case, 

fewer harmonic frequencies being used to avoid flawing the estim ates. Note th a t in 

the A R FIM A (l,dx,0) case, 2/»(o) = ~ (1-a )2 » see Delgado and Robinson (1996), so 

tha t the optim al bandw idth tends to zero as the autoregressive coefficient a tends to 

one. For A R FIM A (l,dx,0) series of length n = 1000, with autoregressive param eter 

a = .5, the theoretical optim al bandw idth is m opt =  60 for all values of dx, which 

indeed falls into the region which seemed optim al upon inspection of figures 2 to 5.

4.4 Approxim ations to  the optim al bandwidths

In this section, infeasible and feasible approximations to  the optim al bandw idths 

are proposed for the local W hittle, the log periodogram and the averaged peri- 

odogram estim ates of long memory. We consider the sm oothest specification in 

the class above, namely (3 = 2 . An approximation to  the optim al bandw idth 

m 0pt =  ( f j )* \E2(dx)\~i  relies on a prelim inary approxim ation of the unknown
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Figure 4.6: Optim al bandw idth for the local W hittle estim ate of long memory

A R IM A (2 ,H -1 /2 , 0 )  A R IM A (0 ,H -1 /2 , 1 )

A R IM A (0 .H -1 /2 .0 ) ARIMA(I . H - 1 / 2 , 0 )
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E 2. The la tte r’s dependence on the long memory param eter naturally  points to  an 

iterative procedure whereby

d j k) =  argminde[AliA2] R ( m (k\ d ) ,  (4.27)

„(*+■) =  \E2( d J k)) \ - i ,  (4.28)
47T

starting from an ad hoc value and with A i =  —0.499 and A 2 =  0.499.

Consider the fractional representation 1.83. In th a t case, as pointed out in the 

previous section, E 2(dx) can be approxim ated by t * +  jJ  where r* =  

framework, all three sem iparam etric estim ates can have their optim al bandw idth 

formulae stated  as follows:

LW For - \ < d x < i ,

mLW = ( £ ) 5 ( r*+ i t ) ’ ni  (429)

LP For 0 <  dx <

/  81 \ s  2 4
™LP =  ( § 6^ )  (4 3 0 )

APi For 0 < dx <

m A Pl =
(3 -  2dx y

4 ( 2 ^ (i - y  (T*+n) (4.31)

AP2 For j  < dx < i

n 3- 2d* f 2 r ( l  — 2 dx) co s(( | — 4 ) t t ) (3  — 2 dx) (  2 dx — 3  

m A P 2  =  ^ " \ -----------------------------------8
1

\E2{dx)\
(3 -  2 4 )

(2 4  )2 ( 4  ■+•

l

\ 2 d x E 2(dx)

^  +  3 2 ( - - 4 ) { 2 4 ( 4 4 _ 1)
1

  4r(24)2 I'd"1
(44 + 1)(4 + i )2 r(44 + 2)

3 - 2  dx

(4.32)

First an infeasible procedure is considered in which r* is taken as known. We con­

sider three models for the  levels: ARFIM A(0,4>0), ARFIM A(1,4>0) and A R FIM A (1,4 ,1)
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with autoregressive coefficient a =  .5 and moving average coefficient b = —.45 when 

applicable. Delgado and Robinson (1996) show th a t in the ARFIMA case,

b a ,
T = (1  -  6 )2 “  (1  — a ) 2 4̂ '33^

so tha t the true values are r* =  0 for the ARFIM A(0,dx,0), r* =  —2  for the 

A RFIM A (l,dx,0), and t *  =  —3.49 for the ARFIM A(0 ,dx,l) . Series of length n =  

1 0 0 0  are simulated with the six error structures corresponding to models (i) to 

(vi) in chapter 3 and with long memory param eter values dx =  —.2 corresponding 

to antipersistence, dx = 0  corresponding to short memory, dx = .2  corresponding 

to m oderate long memory and dx =  .45 corresponding to  very long memory. For 

dx =  —.2, only 4.29 is theoretically applicable, bu t 4.30 and 4.31 are used nonetheless 

for the LP and the AP estim ates respectively for comparison. dx =  .2 is w ithin the 

range of applicability of 4.29, 4.30 and 4.31, whereas dx =  .45 is within the range 

of applicability of 4.29, 4.30 and 4.32. Series are simulated in the same way as in 

chapter 2  and optim al bandwidths are derived together with corresponding estim ates 

of dx using the recursive procedure defined by 4.27 and 4.28 for the LW and by

dx * = d ( m ^ ) ,  (4-34)

m (A:+1) =  m opt( d J k\  r*) (4.35)

for the LP and the AP. r* are taken as known.

A feasible approxim ation to the optimal bandwidth is then proposed following the

lines of Delgado and Robinson (1996). It is based on an expansion of the semipara-

m etric spectral density /(A ) =  |1  — exp(«A)|_2d;r /* (A). /*(0) and f*"(0)  are taken 

to be respectively the first and last coefficient in the least squares regression of the 

periodogram I x ( X j )  against |1  — exp (zA y ) |— C * ( 1 , Ay, ^-) for j  = 1 to 

The results are significantly worse when the approximations to r* are updated at 

each iteration, convergence of the selected bandwidth is much slower and often fails 

altogether, and the results are not reported here. W ith no updating of the approxi­

m ation to t * ,  convergence of the selected bandwidth occurs at the second iteration. 

Table 4 .1  presents the feasible and infeasible long memory estim ates (with selected
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Table 4.1: Automatic estimates of long memory in introductory examples

Infeasible and feasible autom atic estim ates of long memory (with selected bandwidths in brackets) for the Nile river 

data and the A R FIM A (l,dI(0) series presented in figures 4.2-4.5.

MODEL LW LP AP

feasible infeasible feasible infeasible feasible infeasible

Nile river 0.38(56) - 0.28(109) - 0.31(58) -

dx  — —.25 -0.21(69) -0.20(61) -0.11(148) -0.15(116) -0.21(69) -0.33(61)

a. H II O 0 .07(42) 0.10(61) 0.10(80) 0.17(116) 0.19(42) 0.10(61)

dx  — .2 0.35(23) 0.25(61) 0.28(46) 0.32(116) 0.25(55) 0.20(61)

dx  =  .45 0.44(34) 0.49(61) 0.47(65) 0.49(116) 0.36(40) 0.39(61)

bandwidths) for the Nile river data  and the four series sim ulated in figures 4.2-4.5. 

For the ARFIMA series, all selected values of bandw idth (feasible and infeasible 

with all three estim ates) fall within the range which was identified on figures 4.2-4.5 

as th a t where variability starts to decrease, but estim ates have not yet s tarted  to 

increase steadily under the influence of the short range dynamics.

To investigate the improvement provided by choosing the bandw idth optim ally in 

the local W hittle procedure, figures 4.7 and 4.8 respectively give plots of Monte 

Carlo biases and root mean squared errors against bandw idth for A R FIM A (l,dx,0) 

series of length n = 1 0 0 0  with autoregressive coefficient a =  .5 , dx taking the  values 

-.25, 0, .2. Monte Carlo RMSEs are compared with the theoretical RMSEs derived 

in section 4.3. Monte Carlo RMSEs are identical to the theoretical RMSEs and one 

sees th a t they are a very smooth function of bandwidth with a unique m inim um  at 

m  =  61. RMSEs vary between 0.08 and 0 .1 2  for bandwidths between 30 and 120. 

Choosing bandwidth optim ally obviously provides a considerable improvement on 

the efficiency of the estim ate and even approximations to th a t optim al bandw idth 

which are as low as 30 or as high as 120 will provide a considerable improvement 

on an estim ation w ith ad hoc bandwidth of 200, for which the  RM SE is 0 .2 . One 

notices th a t Monte Carlo biases of the local W hittle estim ate of long m em ory are 

biased towards zero for low values of the bandwidth, whereas for bandw idths larger 

than 30, biases are equal for all true values of the long memory param eter, they  are
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Figure 4.7: Local Whittle biases against bandwidth
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slightly positive and increase continuously and linearly w ith bandw idth.

Table 4.2 presents biases and RMSEs of local W hittle  estim ates of long memory using 

both the infeasible and the feasible procedures on series sim ulated according to the 

three models ARFIM A(0,dx,0), A R FIM A (l,dx,0) and A RFIM A (1 ,g?x,1 ), dx taking 

the values -.25, 0, .2 and .45. The autoregressive and moving average param eter are 

a = .5 and b = —.45 respectively when applicable. The series were sim ulated 10000 

times with sample size 1000 (the simulation techniques were discussed in C hapter 2 ), 

and the averaged selected bandwidths in each case are reported for first, second and 

final iterations. Looking first a t results with the infeasible procedure, one notes 

th a t the bandw idth selected is always equal to  the theoretical optim al bandw idth. 

A part from very slight bias towards zero, the true  value of dx seems to have no 

influence in case of ARFIM A(0.dx,0) series. In case of A R FIM A (l,dx,0) series, the 

bias is more significant and positive. However, it seems to be cancelled by the 

introduction of an MA term . RMSEs are very similar in case of A R FIM A (l,dx,0) 

and A R FIM A (l,dx,l) . The significant edge in term s of bias and RMSEs th a t is 

observed for dx = .45 is due to  the estim ates being censored at .499. We now 

tu rn  to the  results of the feasible procedure. In case of ARFIM A(0,dx,0) series, 

autom atic bandw idth selection performs worse than  the ad hoc choice m  =  n4/ 5, 

but this does not affect quality of estim ation very much due to the  absence of short 

memory dynamics. Biases are essentially unchanged compared to  the results of the 

infeasible procedure, and although RMSEs are twice as large as with the infeasible 

procedure, they rem ain small. The cases of A R FIM A (l,dx,0) and A R FIM A (l,dx,l)  

are very similar, M onte Carlo RMSEs being slightly worse in the  la tte r case, due 

presum ably to the near unit root short memory structure. Compared to the  case 

of the infeasible procedure, the sign of Monte Carlo bias is reversed in 5 out of 8  

cases w ith short memory structure; the bandw idth selected being lower than  the 

optim al, bias is located on the left side of the node which is apparent in figure 4.7. 

A utom atically selected bandwidths are significantly lower than  optim al values in 

all bu t one of the 12 cases considered. In case dx =  .2, they fall as low as half 

the optim al value, which results in high RMSEs, although this does not elim inate
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Table 4.2: Infeasible and feasible automatic local Whittle estimation

Monte Carlo Biases and Root Mean Squared Errors of local W hittle estim ates of series following twelve specified 

models with bandwidths selected autom atically using the infeasible and the feasible procedure respectively.

MODEL AR FIM A(0,dx ,0) A R FIM A (l,dXl0) ARFIM A( M * ,l )

infeasible feasible infeasible feasible infeasible feasible

dx  =  - .2 5 bias 0.013 0.002 0.030 0.050 0.007 0.031

rmse 0.031 0.046 0.081 0.088 0.077 0.090

dx =  0 bias -0.001 -0.002 0.027 0.006 0.001 -0.012

rmse 0.023 0.044 0.080 0.102 0.075 0.132

iiH bias -0.012 -0.009 0.033 -0.059 0.005 -0.041

rmse 0.030 0.059 0.083 0.187 0.076 0.204

dx  =  .45 bias -0.010 -0.021 0.013 -0.047 0.001 -0.053

rmse 0.032 0.086 0.045 0.177 0.056 0.182

Averaged bandwidths selected with the infeasible and the feasible procedure in local W hittle estim ation of long 

memory in series following twelve specified m odels.

MODEL ARFIMA(0,dj: ,0) ARFIMA(l,dar ,0) ARFIMA(l,da:,l)

infeasible feasible infeasible feasible infeasible feasible

ft- H II 1 to cn n(°) 256 256 256 256 256 256

nW 376 164 61 78 58 50

n(°°) 376 163 61 77 58 51

dx  — 0 n<°) 256 256 256 256 256 256

498 174 61 44 58 30

n (°°) 498 174 61 44 58 29

dx  — .2 n(°> 256 256 256 256 256 256

nW 411 146 61 27 58 24

n (°°) 411 146 61 26 58 23

dx  =  .45 n (°) 256 256 256 256 256 256

nW 299 64 61 44 58 44

n (°°) 299 65 61 44 58 44
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Figure 4.9: A utom atic and optim al bandwidths for the local W hittle  estim ate
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the usefulness of the  iterative procedure proposed here, as improvement on ad hoc 

choice m =  256 remains significant. We plotted autom atically selected and optim al 

bandwidths for 40 equally spaced values of sample size between 50 and 2000. They 

appear on figure 4.9, while figure 4.10 shows a plot of corresponding M onte Carlo 

RMSEs compared to RMSEs in case of ad hoc choice m  =  n 4/5j for bandw idth. 

Autom atic bandw idth remains below optimal bandw idth, and the negative bias 

seems to increase with sample size in an alarming way. However, for large sample 

sizes, choice of bandw idth is likely to become a m atter of less concern, as long as 

the optim al rate  n 4/ 5 is m aintained.1

Concentrating on the A R FIM A (l,dx,0) model with autoregressive param eter a =  .5, 

in view of the focus of section 4.2, it is of interest to know how the autom atic long 

memory LW, LP and AP estim ation procedures compare in the way they are af­

fected by conditional heteroscedasticity in the innovations e*. Asym ptotic results

1Series were simulated 1000 times according to and ARFIM A(1,.2,0) model.
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Figure 4.10: RMSEs with optimal, automatic and ad hoc bandwidth choice
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of sections 4.2 and 4.3 show that the optimal bandwidth formulae for the LW and 

AP estimates are not affected. However, their feasible approximations may be af­

fected. Table 4.3 compares biases and mean squared errors of the three estimates 

using the infeasible and the feasible procedures on ARFIMA(1,.2,0) series simu­

lated with the five error models described in section 2.6. In case of the infeasible 

procedure, bandwidth selection is unaffected by conditional heteroscedasticity. The 

effect of conditional heteroscedasticity on bias is non-existent. The effect of condi­

tional heteroscedasticity on RMSEs is the same across estimates. As was observed 

in chapters 2 and 3, GARCH innovations lead to the worst performance for all three 

estimates of long memory. VLMARCH innovations leads to a better performance 

than GARCH, and LMARCH better still, whereas ARCH innovations lead to iden­

tical performances to i.i.d. innovations. Log periodogram performance is worse than 

local W hittle performance. In fact, the relative performance of the log periodogram 

equals its asymptotic value in case of normally and identically distributed innova­

tions. The slightly better performance of the averaged periodogram is surprising 

considering asym ptotic relative efficiency of the AP in case of i.i.d. innovations 

is .75. The feasible Monte Carlo results show that the iterative procedure seems 

better suited to the averaged periodogram and log periodogram estim ates than to
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Table 4.3: Sensitivity of automatic procedures to conditional heteroscedasticity

Monte Carlo Biases and R oot Mean Squared Errors of local W hittle, log periodogram and averaged periodogram  

estim ates of long memory in A R FIM A (l,.2 ,0) series with five specified innovation structures and bandw idths selected  

autom atically using the infeasible and the feasible procedure respectively.

ERROR MODEL LW LP AP

infeasible feasible infeasible feasible infeasible feasible

IID bias 0.032 -0.048 0.093 0.009 0.004 -0.030

rmse 0.082 0.173 0.113 0.121 0.078 0.110

ARCH bias 0.032 -0.044 0.093 0.013 0.004 -0.028

rmse 0.082 0.171 0.113 0.114 0.076 0.108

GARCH bias 0.022 -0.051 0.089 0.001 -0.007 -0.033

rmse 0.121 0.193 0.140 0.146 0.110 0.136

LMARCH bias 0.032 -0.047 0.094 0.009 0.003 -0.031

rmse 0.088 0.175 0.117 0.117 0.081 0.116

VLMARCH bias 0.028 -0.050 0.092 0.003 -0.005 -0.037

rmse 0.109 0.191 0.128 0.139 0.101 0.136

A utom atic bandwidths selected for local W hittle, log periodogram and averaged periodogram estim ation of long  

memory in A R FIM A (l,.2 ,0) series with five specified innovation structures.

ERROR M ODEL LW LP AP

infeasible feasible infeasible feasible infeasible feasible

IID n(°) 256 256 256 256 256 256

n 0 ) 61 27 116 60 61 59

n(°°) 61 26 116 60 61 60

ARCH n(°) 256 256 256 256 256 256

61 28 116 59 61 60

n(°°) 61 26 116 59 61 61

GARCH n(°) 256 256 256 256 256 256

n(!) 61 29 116 59 61 51

n(°°) 61 30 116 58 61 51

LMARCH n(°) 256 256 256 256 256 256

n(!) 61 26 116 56 61 49

„(°°) 61 27 116 55 61 49

VLMARCH n(°) 256 256 256 256 256 256

nW 61 28 116 57 61 51

„(°°) 61 29 116 57 61 51
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Figure 4.11: Averaged periodogram RMSEs against bandwidth
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the local W hittle. For local W hittle  and log periodogram estim ates, autom atic 

bandwidths are significantly lower than  optim al bandwidths, although this is less 

damaging to the log periodogram than  to  the local W hittle estim ate. In case of 

average periodogram estim ation, autom atic bandwidths are equal to optim al band­

widths in case of i.i.d. and ARCH innovations, whereas they are 15% lower in case 

of GARCH, LMARCH and VLMARCH. To investigate whether the corresponding 

loss in precision of the averaged periodogram estim ate when innovations follow a 

GARCH model is to be a ttribu ted  partly  to  the bandwidth selection procedure, we 

plot RMSEs functions of bandw idth for ARFIMA(1,.2,0) series of length 1000 with 

autoregressive coefficient a =  .5 and w ith i.i.d. and GARCH innovations.2 The 

RMSE function is much flatter around optim al bandwidth (61) in case of GARCH 

innovations, and it is also significantly above tha t for i.i.d. innovations. The flat­

ness of the RMSE function in case of GARCH innovations explains the slightly less 

efficient autom atic bandw idth selection bu t at the same tim e makes it irrelevant to 

the precision of the estim ate. The reduced efficiency is due to the effect of near unit 

root conditional heteroscedasticity on RMSEs for all bandwidths.

2the Monte Carlo values used to generate the graph were derived with with 10000 replications.
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Table 4.4: Autom atic local W hittle estim ation of long memory in fractional Gaussian 

noise series

Monte Carlo Biases and R oot Mean Squared Errors of autom atic local W hittle estim ates of long memory in fractional 

Gaussian noise series with four values of the self-similarity parameter.

H .25 .5 .7 .95

bias -0.014 -0.001 0.001 0.006

rmse 0.067 0.030 0.048 0.066

Finally, recalling th a t the idea for the approximation of E 2(dx) was based on the  

fractional representation 1.83, it is of interest to see how the autom atic selection 

procedure described above performs on a fractional Gaussian noise series w ith auto­

correlations given by 1.41. Series of length n = 1000, autocorrelations given by 1.41 

and variance 1 are simulated using the algorithm of Davies and H arte (1987). M onte 

Carlo biases and root mean squared errors are reported for H  =  .25, H  = .5, H  =  .7 

and H  = .95 in table 4.4. A part from the fact th a t estim ates of long m em ory in 

fractional noise series seem to be biased away from zero, whereas they were biased 

towards zero for ARFIM A(0,dx,0) series, autom atic local W hittle  perform ance does 

not seem affected by the model chosen for the series. Performance is (if anything) 

slightly better on fractional noise series than on ARFIMA(0,c?r ,0) series.

4.5 Conclusion

This chapter has addressed the question of bandwidth choice for estim ates of long 

memory analysed in chapters 2 and 3, the averaged periodogram and the  local 

W hittle  estimates. The need for m otivated bandw idth selection is m ade apparent 

by looking at sensitivity of the estim ates to bandwidth. Existing theory on opti­

m al bandwidth for the averaged periodogram estim ate was shown to hold in case 

of (possibly long memory) conditionally heteroscedastic innovations for the process. 

An optim al bandw idth formula was derived for the local W hittle  estim ate w ith a 

heuristic justification unaffected by innovation conditional dependence structure.
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An autom atic iterative procedure was assessed for these estim ates, prim arily on 

ARFIMA series with simple short range dynamics, and it was shown to  produce 

excellent results (irrespective of conditional dependence structures of the innova­

tions) in case of the averaged periodogram estim ate. Further research into possible 

theoretical justification for this optim al bandw idth iterative approximation would 

therefore be needed. The slightly less convincing results from autom atic local W hit­

tle estimation do not elim inate the  usefulness of the procedure in tha t case, but the 

search for a more efficient one may be warranted.



C hapter 5

A nalysis o f d ep en d en ce in  

in tra-day foreign exchange returns

Joint work w ith  Richard Payne

5.1 Introduction

In recent years, a vast amount of empirical work has been devoted to  the characteri­

sation of tem poral dependence in financial tim e series. Many authors have examined 

the tim e series structure in asset returns, trading volumes and, perhaps more ex­

tensively, return  volatility. Such studies are valuable in th a t they yield insights into 

issues such as the discrimination between regular and irregular m arket activity, the 

nature of inform ation flows into financial m arkets, the way in which this information 

is assimilated into asset prices and the m anner in which information is transm itted  

between m arkets. This chapter extends the research in this area w ith an empirical 

analysis concentrated on modelling the volatility process associated w ith a year long 

intra-day sample of three m ajor exchange rates.

Financial returns are now widely recognised to  exhibit non linear features such as 

volatility clustering, leptokurtosis, and various distributional asymm etries. Volatil­
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ity clustering and leptokurtosis are traditionally accounted for by allowing condi­

tional variance to vary across tim e, as in 1.27. The central issue, therefore, is the 

type of process followed by the conditional variance of insofar as it provides a way 

of determining whether of is stationary, whether shocks are persistent in of, and 

more precisely, of measuring the degree of tem poral dependence in of.

Analysing issues of tem poral dependence in a tim e series requires obviously as large 

a sample size as physically possible, all the  more so if one wishes to disentangle 

short run from long run dependencies through use of sem iparam etric or nonpara- 

m etric procedures. However, structural breaks may spuriously increase the measure 

of dependence in data collected over long tim e spans under the presum ption of struc­

tural stability. This contradiction may be resolved if one turns to da ta  sampled at 

higher frequencies (typically within one day) recently made available from news 

screens such as Reuters or Bloomberg. This approach is advocated by Goodhart 

and O ’Hara (1997). The validity of this approach is supported by Nelson’s result 

on continuous sampling of diffusion processes (Nelson (1990a)). He proves tha t 

processes following certain stochastic difference equations converge in distribution 

to  well defined solutions of stochastic differential equations when the tim e interval 

tends to zero, and tha t GARCH(1,1)-M and Exponential A R CH (l) models in par­

ticular have diffusion limits. One would therefore expect analysis of high frequency 

data  to yield more accurate results on the nature of the tem poral dependence in of. 

In particular, the analysis of long high frequency financial da ta  series warrants the 

use of a long memory paradigm  in the volatility equation, be it in the ARCH or the 

Stochastic Volatility framework, provided the strong intra-day seasonality charac­

teristics of these series -tim e of the day effects described in section 2- are controlled 

for. The use of the long memory paradigm  for the volatility process is moreover em­

pirically justified by the findings of correlograms for these intra-day volatility series 

which decay far more slowly than  the exponential decay which is associated with 

conventional GARCH or Stochastic Volatility models. Finally, the use of the long 

memory paradigm  is highly desirable for the flexible representation it provides and 

also as a framework to  define and test persistence concepts. The ARFIMA model
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1.11 for long memory tim e series is a particularly suitable and flexible alternative 

to standard ARIMA, perm itting a far more general characterisation of the tem poral 

dependencies in a given tim e series. An ARFIM A(p,d,q), with p and q the orders 

of the autoregressive and moving average polynomials respectively, satisfying 1.11, 

is a process which is integrated of order d, labelled 1(d). 1(0) corresponds to  the 

weakly dependent ARM A process, while 1(1) corresponds to  a process w ith a unit 

root, d >  — |  ensures invertibility of the ARFIMA while d <  |  ensures covariance 

stationarity. For d <  1, the process can be said to be “m ean reverting” , a concept 

which is different from return  to initial position with probability one, a feature of 

the random  walk. It is mean reverting in the sense th a t, if x t is 1(d) w ith ' d e l ,  

E (x t+i\x t > E ( x t)) < x t . A finer notion of persistence of innovations on the process 

(or lack of it) may also be derived with a long memory structure, in th a t the j -th  

impulse response coefficient of an 1(d) process is of order OQ’̂ -1 ), the larger d, the 

greater the persistence of shocks on the process.

This chapter proposes a comprehensive methodology for assessing the  nature  of 

tem poral dependence. The methodology entails the following steps. The first step 

is to test the order of integration in the process using the methodology presented 

in Robinson (1994a). The test is based on an underlying ARFIM A structure  for 

the series in question and perm its any degree of integration (integer or fraction) 

as a null hypothesis. Next, we gain a precise estim ate of the degree of integration 

using each of the three robust sem iparam etric estim ates of long memory which have 

been described in the preceding chapters: the LW, the LP and the  AP. At this 

point, and analogous to the 1(1) case, one can filter the long range dependence from 

the series and fit a covariance stationary ARMA to the residuals using traditional 

model selection procedures. We go on to  fit a fully param etric model to the  series. 

The model is an extended version of the Long Memory in Stochastic Volatility 

(LMSV) model given in Harvey (1993), allowing for both  short and long range 

dependence, and is sensitive to any short range mis-specification due to  its fully 

param etric nature. The reason for fitting the fully param etric model is to perm it one 

to assess the  contributions of the short and long memory components to the  overall
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dependence in the series. This is accomplished via a set of Quasi-Likelihood Ratio 

statistics for the fully param etric model. Hence, ultim ately, we can discrim inate 

between the long and short range dependent features of the process.

The data we examine in this work are the volatilities associated with three in tra­

day foreign exchange (FX) return  series (the exchange rates in question being the 

DEM /USD, JPY /U SD  and JPY /D EM .) A pervasive result from previous work on 

this type of data is th a t the volatility process can be characterised as non-stationary 

(see, inter alia, Andersen and Bollerslev (1997b), DeGennaro and Shrieves (1995) 

and Guillaume (1995).) There are however, some indications th a t this result may 

be due to mis-specification of the volatility models employed. First, the tem poral 

aggregation results for GARCH processes do not hold when applied to  FX data. 

The degree of persistence one identifies in daily data, for example, far exceeds th a t 

which would be implied by the results of estimations from data  sampled a t 1 hour 

intervals.1 Second, other authors (e.g. Dacorogna, Muller, Nagler, Olsen, and P icte t 

(1993)) have noted th a t the correlograms of these intra-day volatility series decay 

far more slowly than  the exponential decay which is associated with conventional 

GARCH or SV models. The combination of these two points serves as the m otivation 

for our investigation of long-memory in volatility.

A theoretical m otivation for the presence of long memory in asset price volatility can 

be generated by combining the simple m ixture of distributions model in Tauchen and 

P itts  (1983) and the  results on aggregation in Robinson (1978b) and Granger (1980). 

The former dem onstrate, in a highly stylised framework, th a t both the volume and 

volatility in asset m arkets inherit the tem poral dependencies associated w ith the 

latent flow of inform ation into the m arket. Now assume th a t information flows are 

heterogeneous. Specifically, assume th a t there are an infinity of information arrival 

processes, each of which follows a stationary autoregression. The heterogeneity 

is modelled by variation in the AR param eters, which we assume follow a be ta  

distribution. As Robinson (1978b) dem onstrates, the aggregate information flow 

process will then exhibit long range dependence and, hence, so will volatility.

1See Andersen and Bollerslev (1997b), for example.
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This would imply not only th a t the long memory component in volatility is a  feature 

inherent to the returns generating mechanism as opposed to  the consequence of 

om itted nonlinearities, but also tha t sharing the same aggregate inform ation flow 

process (which is a reasonable assumption to make on the exchange ra te  m arket for 

m ajor currencies such as USD, Yen and DM), several returns generating mechanisms 

would also share the same long memory component in volatility and hence display 

fractional cointegration in volatilities. Such a feature is tested for and fractional 

cointegration estim ated according to  the methodology described in Robinson (1994c) 

and chapter 2 of this thesis.

The chapter is set out as follows. Section 2 introduces the d a ta  employed in the 

study. As previously mentioned, we focus on intra-day foreign exchange ra te  volatil­

ities, which are sampled at ten m inute calendar intervals. In section 3, we present a 

more detailed account of the empirical methodology. Section 4 presents estim ation 

and testing results. We find th a t the foreign exchange return  process is well charac­

terised by an 1(0) process, in line with the Efficient M arkets Hypothesis. Results for 

the three volatility series dem onstrate th a t all are covariance stationary and exhibit 

significant long memory. Further, estim ation and testing of the fully param etric 

model dem onstrates th a t the finding of non stationarity  in foreign exchange volatil­

ity in previous work is due to mis-specification. W hen one perm its the possibility of 

long memory in volatility, all specifications strongly indicate covariance stationar­

ity. Finally, investigation of cointegration between two of the three series (to avoid 

a circularity effect) strongly indicate th a t the long memory component is shared 

between the series, a tentative evidence of the validity of the above in terpretation.

5.2 The D ata

As indicated in the Introduction, the focus of this work is the behaviour of volatil­

ity  in the intra-day Foreign Exchange (FX) m arket. We study three sets of FX 

returns, on the DEM /USD, JPY /U SD  and JP Y /D E M , covering the period from
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Table 5.1: Summary statistics for exchange rate returns

Rate Mean s.d. Skew Kurtosis Pi P2 Pa Q(10)

DEM /USD 6 x 10"6 0.001 0.16 9.61 -0.076 -0.040 -0.005 306.8

JPY /U SD - 4  x 10-4 0.074 -0.06 13.85 -0.09 -0.015 0.0035 334.8

JPY/DEM - 5  x 10-4 0.045 -0.25 7.93 0.0066 -0.0004 0.0009 13.5

Notes: the coefficients p i ,  p 2 and ps  represent the first through third sample autocorrelations re­

spectively. Q(10) is the tenth order Box-Ljung test statistic. The Box-Ljung statistic is distributed 

Yio an(i h33 critical value 23.2 at 1%.

the beginning of October 1992 to the end of September 1993.2 These re turn  series 

are filtered transcriptions of the tick-by-tick quotation series which appear on the 

Reuters FXFX page. Each quote encompasses a tim estam p, bid and ask quotation 

pair, plus identifiers which allow one to  determ ine the inputting  bank and its loca­

tion. In this study we ignore the identification of the inputting institution, using 

the tick-by-tick data solely to  construct a homogenous time-series in calendar time.

The basic horizon over which we calculate returns is 10 m inutes.3 This yields, for 

each currency, a time-series with 37583 observations. The basic sum m ary statistics 

of the returns are shown in table 5.1 .

The above table illustrates the following facts. F irst, all three return  series have 

a mean which is insignificantly different from zero. A point which conforms with 

many earlier studies is th a t there is pronounced excess kurtosis in the returns dis­

tribution. This, as pointed out by Bollerslev and Domowitz (1993), is a  natural

2These data were supplied by Olsen and Associates (Zurich), to whom we are most grateful.

3Returns are determined as follows: at each 10-minute observation point the last mid-quote 

entered into the system is taken as the market price. We then first difference this quote series to  

obtain returns. At points when no quote is entered in a 10 minute interval, an artificial quote is 

calculated by linear interpolation between the nearest preceding and succeeding quotes. Finally, 

all weekend quotes are eliminated from the analysis due to the lack of FX market activity at these 

times. We define weekends as 21:00 GMT Friday to 21:00 GMT Sunday. Note also that the results 

presented in this paper carry over to the analysis o f percentage returns.
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Table 5.2: Summary Statistics for the Logarithm of Squared Returns

Rate Mean s.d. Skew Kurtosis Pi P2 P3 Q(10)

D EM /USD -14.67 1.28 0.828 0.072 0.281 0.244 0.220 15948.03

JPY /U SD -7.68 3.36 -1.313 1.24 0.24 0.183 0.166 8433.88

JPY /D EM -8.66 3.16 -0.99 0.45 0.353 0.29 0.264 20463.21

Notes: the coefficients p i , p 2 and p$ represent the first through third sample autocorrelations re­

spectively. Q(10) is the tenth order Box-Ljung test statistic. The Box-Ljung statistic is distributed 

Xio and has critical value 23.2 at 1%.

feature of time-series which display conditional heteroskedasticity, although their 

analysis shows th a t after correcting for the conditional heteroskedasticity much of 

the kurtosis remains. Finally, the autocorrelation coefficients show th a t there is some 

tem poral dependence in the re turn  series, the DEM /USD and JPY /U SD  demon­

strating  negative autocorrelation whilst the JPY /D E M  displays positive first-order 

autocorrelation. The significance of these autocorrelation coefficients is confirmed in 

the Box-Ljung statistics, which dem onstrate th a t one cannot reject the hypothesis 

of up to tenth  order serial correlation.

In table 5.2 we present identical sets of statistics for our volatility proxy. We em­

ploy the  logarithm  of squared returns as our volatility measure, a choice which is 

m otivated by the Long Memory in Stochastic Volatility model which is presented 

in Section 3. The m ain feature of these results lies in the correlation structure of 

volatility. As is visible from comparing tables 5.1 and 5.2, there is far larger depen­

dence in volatility than  in returns. The first-order autocorrelations are between 3 

and 5 times greater for volatility than  for returns, whilst the Box-Ljung statistics 

are, a t least an order of m agnitude greater. The characterisation of this tem poral 

dependence is the focus of this work.

In order to clarify the  nature of the dependencies in volatility in Figures 5.1 to  5.3 

we present the first 1000 periodogram and logged periodogram ordinates for the
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Figure 5.1: Periodogram for JPY/USD Log Squared Returns
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YEN/USD volatility plus the first 1000 sample autocorrelations.4

Examining first the correlogram, one feature which is imm ediately apparent is the 

existence of a pronounced daily seasonal in volatility. This seasonal has recently 

been the subject of many papers, including Dacorogna, Muller, Nagler, Olsen, and 

Pictet (1993), Andersen and Bollerslev (1997b) and Payne (1996). It is generated 

by the 24 hour activity in the foreign exchange m arket and the alterations in m arket 

activity which occur as trading shifts from the Far East to  Europe to  North America 

and so on. There is also evidence of seasonality a t the weekly frequency. In the 

current context, however, this component is of no intrinsic interest and simply masks 

the underlying tem poral structure  of volatility. Hence, when estim ating our long 

memory specifications we filter this component.

In the periodogram of the d a ta  this seasonal component is represented by peaks 

at integer multiples of the fundam ental seasonal frequency.5 A feature of the  peri-

4Throughout the work we present graphical examples for this currency only as those for the 

other two currencies are qualitatively similar.

5As there are 144 ten minute intervals in one day, the seasonal frequency is corresponding,
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Figure 5.2: Log Periodogram for JPY/USD Log Squared Returns
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odogram which is more relevant to the current study is the behaviour of the peri- 

odogram in a neighbourhood of zero frequency, where the peak (visible on Figures 

1 and 2) can be viewed as tentative evidence for the presence of long memory in our 

volatility series.

A salient feature of these data  sets is the seasonality in volatility described in more 

detail in Payne (1996) and Andersen and Bollerslev (1997b). Seasonal components 

appear in the periodogram as peaks at certain harmonic frequencies. These peaks 

effect all periodogram based estim ation. The param etric estim ation becomes invalid, 

and the efficiency of the robust estimates is significantly reduced.

If one thinks of the spectrum  of the process with strong seasonal components as 

a mixed spectrum , there is a need for spectral estim ation methods which remove 

the Dirac mass points at the seasonal frequencies and smooth out the leakage from 

these peaks into the neighbouring frequencies. Sachs (1994) proposes a peak insen­

sitive non-param etric procedure to estim ate the continuous part of the spectrum , 

treating the periodic components as outliers (so th a t it does not perm it the esti­

m ation of the discrete component in the spectral density). Kooperberg, Stone, and 

Truong (1995a) propose a fully integrated estim ation procedure for both the con­

tinuous and the discrete parts of the spectrum. Only related asym ptotic results 

are proposed (see Kooperberg, Stone, and Truong (1995b)), the m ethod is com­

putationally very expensive and there is no indication th a t it deals with leakage 

efficiently. The spectral estim ate used here is a Double-Window smoother proposed 

by Priestley (1981) which is designed to remove seasonal components and the leak­

age around the seasonal frequency. Suppose the volatility series is decomposed into 

two uncorrelated components x t =  z% +  Q where zt has a continuous spectral density 

and St = ]C?=i Ar cos (u rt -f </>r ). The examination of this mixed spectrum  is greatly 

simplified by the knowledge of the seasonal harmonics u r , which correspond to the 

weekly frequency and multiples of the daily frequency.6 The am plitudes of the sea­

approximately, to harmonic 228.

6Hence we can avoid employing tests to detect harmonic components (W hittle, Bartlett, Hannan 

or Priestley, in Priestley (1981)).



Application 153

sonal harmonics are estim ated through a regression of x t against (cos (urt -f </>r ))f=1, 

and the spectrum  of z t is consistently estim ated with a Double-Window sm oother. 

The spectral window adopted is the B artlett-Priestley window

0, 1*1 £

where M  is the bandw idth.7 Call /m (^ ) =  f - n I (6 )W (uj — 6] M )d0  the spectral 

estim ate using W (6 ]M ).  The Double Window spectral estim ate is constructed as 

follows:

fDw(w) =

/m M , \LO — Ur \ >

(5.1)

( / , (w) -  c /m(w ))/(l -  c), |u  -  Wr ] <

where m > /, c = W(0; /)/W (0; m) and the o;r ’s are the harmonics of the seasonal 

components defined above. A cross-validated likelihood maximising procedure for 

the determ ination of both bandwidths (see Hurvich (1985), Beltrao and Bloom­

field (1987) and Robinson (1991a) for the asym ptotics) proved com putationally too 

expensive and gave poor results. An ad hoc choice of bandwidths m  = y/n  and 

I — m /10  was preferred.

5.3 M ethodology

Let { rt}n be the series of raw returns and define x t := log as a proxy for the 

volatility. Assume x t adm its spectral density with representation 1.18 w ith 0 <  

L (A) =  G < oo. Bearing in mind th a t the LW is justified for all values of dr in 

a compact subset of (—1 , | ) ,  th a t the LP and AP are justified for 0 <  dr < 

a prelim inary test of stationarity  and invertibility is required for the log squared 

returns x t .

7This spectral window is a smoothed version of the Daniell (or rectangular) window and it is 

chosen for its compact support.
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5.3.1 Testing for persistence, long range dependence and stationarity

The testing procedure presented here is fully param etric, and sensitive, as indicated 

above, to mis-specified short range dynamics. The conclusions of the test need 

therefore to be confirmed after the model selection stage. This testing procedure 

relies on efficient tests of long range dependence (Robinson (1994a) and Gil-Alana 

and Robinson (1997)) which perm it a wide class of null hypotheses. The object is the 

test of the hypothesis of persistence in foreign exchange volatility. As was mentioned 

above, most of the available m ethods for testing for unit roots (see Diebold and 

Nerlove (1989) for a review on the subject) have non standard limiting distributions 

and lack P itm an efficiency.8 Unit root tests against autoregressive alternatives, 

in particular, are based on the Wald, Likelihood Ratio and Lagrange M ultiplier 

principles, but they lack the sufficient degree of smoothness across the param eter 

of interest th a t would yield null x 2 lim iting distributions and P itm an efficiency. 

Indeed, a process following the autoregression x t =  pxt~\ +  is weakly dependent 

for \p\ < 1, non-stationary for p =  1 (the unit root case) and explosive for \p\ > 1.

Moreover, these tests give only one possible persistence null hypothesis. The testing 

procedure used here, on the other hand, allows one to postulate any value of d 

(integer or fraction) as a null hypothesis and possesses efficiency and a null x 2 

limiting distribution. In the fully param etric LMSV model, the volatility satisfies 

(1 — L)d( 1 — 4>L)xt =  r)t which can be rew ritten as (1 — L )dx t = ut where u t is a 

stationary AR(1), therefore 1(0), process. u t has spectral density

\ 1   v/.(A; 4>) = 1 —2 <j> cos A -f (j)2

Suppose we want to test the hypothesis Ho : d =  do. Let IU(X) be the periodogram 

of the residuals ut =  (1 — L )d°x t . The frequency domain quasi-likelihood is

£(<4> = -  X! log ( 2 i r f uj )  -  H h l  (5.2)
j=i  j=i

where f uj  =  f u { X j ’,(f>). Concentration of this likelihood yields >/n-consistent esti­

m ates <f> =  argmin^o-2(0) and <7* =  a*(<j>) where crj(^) =

8These tests are improved in Elliot, Stock, and Rothenberg (1994)
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The test s tatistic  is constructed on the score principle. Let u  be the (n — 1) x 1 vector
9 A * Awith j - th  element log |4sin (-^-)|, let f u be the (n — 1) x 1 vector w ith j- th  elem ent 

/•u(Aj;</>), and let M  be the projector on the space orthogonal to  the (n — 1) x 1
A A

vector w ith y-th element ^  log / u(Aj; (f>). The test statistic  is

* _  7T U)'fu

~  c l  \\Mu\\-

A 2?Under suitable regularity conditions (Robinson (1994a)), S  —> Af(0,1) as n — oo. 

The resulting testing rules for Ho are summarized in the table below:

Alternative Hypothesis Reject Ho when 

Hi : d > do S  > za

Hi : d < d0 S  < —za

Hi : d ^  d0 S  > zaf2

Note: Rules for o-level tests of H q : d  =  do against various alternatives. z a is the quantile o f a 

standard normal variate.

This testing procedure provides us with two efficient tests of persistence: the  null 

Hq : d =  1 against the alternative Hi : d < 1, which is the unit root test, and the 

null Hq : d = 1/2 against the alternative Hi : d < 1/2, which is a non-stationarity 

test.9

5.3.2 Estimation

The three sem iparam etric estim ates of long memory discussed previously, the  LW, 

the LP and the AP, are applied to the returns rt and the  log squared returns x t . 

Standard errors based on asym ptotic variances are included when applicable. The 

sem iparam etric techniques rely on the specification of the spectral density on a de­

generating band of frequencies. They are therefore based on the  concentration of 

the variance of the process in a  neighbourhood of frequency zero and are insensitive

9I(d) processes can be seen as increasingly nonstationary as d increases from 1/2  to 1.
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to any short memory behaviour of the series. Such short range dependent behaviour 

in the series, if mis-specified in a fully param etric model, will bias the estim ation 

of the long range dependent param eter itself. Thus, the robust method advocated 

above could serve as a pre-estim ation technique and enable us to create a fraction­

ally differenced series A dx t which, as noted in chapter 3 is an asymptotically valid 

approximation to an 1(0 ) series without any param etric assumption on the autocor­

relations of the underlying 1(0) process A dx t . On this differenced series, traditional 

model selection m ethods (using the  AIC for instance) may be carried out to identify 

the order of a covariance stationary ARMA model for instance.

Our purpose in using the  sem iparam etric estim ates is to  yield robust pre-estimates 

of d which can be compared w ith those obtained from a fully param etric model 

which perm its both long and short range dependence. If then there are no signs of 

system atic bias in the estim ates obtained from the fully param etric model, we can 

proceed to compare the contributions m ade to  overall tem poral dependence by each 

of the long and short memory components.

The param etric model we adopt is an extension of the LMSV model of Harvey 

(1993):

x t =  c +  hi -f

(5.3)

(1 -  L)d( 1 -  tj>L)ht = r,t

where c is a constant, f  has m ean zero and variance 7r2/ 2 , 77 ~  Af(0,<r2) and d 

lies within the stationarity  and invertibility range (—1 /2 ,1 /2 ) . 10 This framework 

is consistent with the sem iparam etric specification described above insofar as the 

spectral density of a process thus specified follows 1.18.

The estim ation procedure is a frequency domain quasi log likelihood m axim isation11.

10This specification for the log squared returns is derived from the formulation in footnote 3, 

hence =  log(e2) is distributed as a lo g x 2 variate.

11Note that in this case, the m aximisation is performed over the whole range of harmonic fre­
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Asym ptotic distributional results are derived as a special case of the work of Heyde 

and Gay (1993). Letting Ix (A) denote the periodogram of the process of log squared 

returns defined as in 1.53, the estim ates of the fractional differencing param eter d 

and of the autoregressive param eter maximise

C(d, 4>) =  -  log (2jtgj) -  ^  (5.4)
i =l j= i 9i

where
^ | 4 sin2 ( ^ ) | - j  2

27r(l — 2</>cos Aj +  02)

The first order autoregressive short range dependent specification in volatility is 

chosen for comparison with the traditional stochastic variance specification. Both 

specifications naturally  suffer from the ignored nonlinearity in the £t which is likely 

to affect x t . B ut this new framework allows us to discrim inate long m em ory and 

strong autoregressive effects w ith a simple quasi-likelihood ratio  test. The AR(1)- 

LMSV model 5.3 is compared to two nested alternatives

Xt  — c  h t  +
(5.5)

(1 -  <t>L)ht = r)t

x t = c +  ht + Zt

(L M ) < and (A R )

(1 -  L )dht =  rjt

obtained for <j> =  0 and d =  0 respectively. The frequency domain likelihood is 

computed as in 5.4 for each of these nested models and the following tests are 

performed using the  likelihood ratio principle:

Ho : d = 0 against H a : d > 0.

(5.6)

Ho : (f) = 0 against H a : 0 <  \<t>\ < 1.

If the subscript .u denotes the unconstrained estim ates, the likelihood ratio  statistic  

is 2 [£ (du, (j)u) — £ (d , <̂>)j where C is the concentrated form of the asym ptotically x 2 

quasi-likelihood in 5.4.

quencies. In the semiparametric case, only a degenerate band of harmonic frequencies was used. 

The present estim ate is therefore sensitive to any short range dependent mis-specification. It is 

likely to be sensitive to the seasonal component in the series discussed in Section 2.4, but it is 

nonetheless reported before as well as after deseasonalisation for completeness.
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5.3.3 Stationary cointegration

The presence of long memory in the log squares of essentially m artingale difference 

returns can be accounted for in a version of the m ixture of distributions hypothesis 

Clark (1973), Epps and Epps (1976) and Tauchen and P itts  (1983) which stipulates 

th a t the conditional variance of uncorrelated returns is driven by the aggregation 

of a number of heterogeneous autoregressive information arrival processes. The ag­

gregation result is given in Robinson (1978b) and Granger (1980) and is restated in 

precisely the framework adopted here by Andersen and Bollerslev (1997a). The for­

eign exchange m arket considered here is sufficiently integrated and global to assume 

tha t the information process driving the volatility of one exchange ra te  is essentially 

the same as the information process driving the volatility of another. Hence the 

two volatilities are driven by a unique long memory component. They are therefore 

cointegrated in the sense defined by Robinson (1994c), namely th a t a linear combi­

nation of the two series has a strictly lesser degree of long memory than  either of 

the individual series. This analysis is m ade more precise below, and a methodology 

is given for the analysis of stationary cointegration between volatility series.

Call X t the vector of log squared returns for several exchanges and suppose it is 

covariance stationary with absolutely continuous spectral distribution function sat­

isfying the local specification

f x ( X ) ~ A G A  as A 0+ (5.7)

where G is a real sym m etric N  x N  m atrix , A =  diag |A -d‘ J with 0 <  d{ <  |  

for t =  1 , . . . , iV and A  ~  B  indicates th a t the ratios of the corresponding elements 

of A  and B  (with identical dimensions) tend to one. Thus the representation is 

sem iparam etric in the sense th a t the spectral density m atrix  of the  squares process 

is specified only on a degenerating band of frequencies.

The existence of a linear long run relationship between the  squared returns entails 

the existence of a linear combination of X t  with a lesser degree of tem poral depen­

dence than the original variates. Namely, there exists a vector (3 such th a t j3Xt is
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I(d') with 0 <  d! < mini<,<;v d{. In the current framework, this fractional cointegra­

tion relationship can be defined by the fact th a t one (or several) linear com bination 

of X t has a spectral density with small order of m agnitude with respect to  the 

original:

Fp*x (A) =  0  (X~2d ) when A —> 0 with 0 <  d' <  min^d,-. (5-8)

As Fpoc (A) =  p 'F x  (A) /?, this is realized if (3'Gp =  0. So the long run components 

span the same space as the columns of a m atrix  /3± such th a t G = Pl P'l - The 

existence of long run  relationships in the squares therefore implies th a t G is reduced 

rank. More precisely, the num ber of long run relationships12 in the system  is N  — 

rank(G ) and the num ber of long memory conditionally heteroskedastic factors in a 

factor model representation is equal to rank(G ).

In a similar analysis to  the traditional cointegrating rank eigenvalue test discussed 

in Johansen (1996), the choice of K  is based on the eigenvalues of a spectral esti­

m ate for the vector process X t . Indeed, under specification 5.7 there are exactly 

K  stationary cointegrating relationships if and only if there are exactly N  — K  oi 

F x  (A)’s eigenvalues with small order of m agnitude with respect to \ ~ 2mmi<i<N h  as 

A —»• 0+ .

Having determ ined the number of cointegrating relationships, K  stationary  cointe­

grating relationships between the squared returns can be estim ated. The m atrix  

of N  — K  linearly independent normalised stationary cointegrating vectors is esti­

m ated w ith a sem iparam etric methodology developed by Marinucci and Robinson 

(1996) and based on set of frequency domain regressions which do not suffer from 

simultaneous equations bias as tim e domain ordinary least squares based m ethods13 

do.

The analysis can be greatly simplified when the degrees of fractional integration 

in the squared processes are found to be equal as tends to be the  case for the

12It is also the number of stationary cointegrating vectors.

13OLS and state of the art methods described in Johansen (1996) and the references therein are 

all directed to the 1(1) versus 1(0) paradigm and are inconsistent in the stationary case.
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volatilities examined here. A test for this restriction with standard x 2 limiting 

distribution was proposed by Robinson (1995b). It is indispensable to  perform this 

test in case N  =  2, as fractional cointegration may only arise between two variables 

with identical degrees of fractional integration.

The procedure advocated is therefore the following (All the m ethods m entioned are 

discussed below):

• Estim ate semiparam etrically the jo in t degree of fractional integration in the 

squared process X t using the local W hittle, log periodogram and averaged 

periodogram estim ates of long memory.

• Test for equality of the degrees of fractional integration in the squared re­

turns process using Robinson (1995b)’s Fischer type statistic  w ith x 2 lim iting 

distribution. Call d the jo in t degree of fractional integration.

• Compute the eigenvalues of a spectral estim ate for the density m atrix  of the 

squares Fx  (A) and test for stationary cointegrating rank w ith a likelihood 

ratio procedure discussed below. Call K  the resulting stationary cointegrating 

rank, which is also the num ber of factors to be included in the model.

• Estim ate the N  — K  relevant stationary cointegrating relationships.

These model selection and pre-estim ation procedures and the subsequent fully para­

m etric estim ation based on a frequency domain approxim ation of the likelihood are 

presented below.

First we consider estim ation of long memory and testing equality of the degrees of 

long memory for two series. Let the discrete Fourier tranform  of X tj  be defined as

wXl(X) =  - ^ = J 2 X tjeia  (5.9)
V27rn t=1

A typical element of the multivariate periodogram I x { A) is

I x jk =  w X]w Xk
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where A* denotes the complex conjugate of A. Testing equality of long memory 

degrees estim ated with the LW, the LP or the AP sem iparam etric estim ates is 

im portant for two reasons. F irst, one m ight want to  simplify the analysis by testing 

for the equality of the d{. Moreover, one would need to perform this test prior to 

identifying a potential fractional cointegration relationship between two variables, 

in which case it is sine qua non. Let d = (d{)1̂_1 the vector of degrees of fractional 

differencing for the different components of X t and let d be its estim ate. Robinson 

(1995b) proposes a test statistic  with x 2 limiting distribution for a homogeneous 

restriction

H0 : P d = 0,

where P  is H  x N  with rank H  < N .  It is derived from the log-periodogram 

regression equation 1.78 for /;r„(A) and is equal to

d'p' [ ( o , p )  {(z ' z )_1 ® n }  (o,p)']-1 Pd

where Z  is the m atrix  of regressors and Cl is the m atrix  of sample variances and 

covariances based on the residuals. The next step, when there is more than  two 

series under investigation, is to test for fractional cointegrating rank, or for the 

num ber of long run relationships between the series. We consider the following 

estim ate for G :
*1 771

<*» =  - £  V j V !  (5.10)

where

and

(5-11)

v ,( \)  = y /l  -  2d ,\d‘w i(\) .  (5.12)

From Theorem  2 of Robinson (1995b), E (G m) =  G  +  0 (^ 5 p )  and therefore, Gm 

is asym ptotically unbiased. From Theorem 1 of Robinson (1994c), for diagonal 

elements of G , denoted Gu, we have
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Proving the same for non diagonal elements Ggh of G  would yield a consistent 

estim ate of G  for ~  ^  0 when n —>• oo. Using the asympototic uncorrelatedness

of the over j  and I from Theorem 2 of Robinson (1995b), the problem of finding 

the lim iting distribution of eigenvalues of Gm in order to test their significance

-thereby testing for cointegrating rank- could be reduced to  finding the lim iting

distribution of
-I 771

for l = (5.14)
m ;=i

Once we have identified the num ber N  — K  of stationary cointegrating relationship- 

swithin the vector of squared returns X t , the cointegrating vectors can be identified 

as param eterising linear regressions of one component of X t , denotes f*, against K  

others, denoted Z*, as follows:

f t  =  % t P  +  e t . ( 5 . 1 5 )

A direct OLS or GLS estim ation would prove inconsistent due to simultaneous equa­

tions bias, regardless of the short range specification of the residuals. Marinucci and 

Robinson (1996) show th a t a frequency domain analogue on a degenerating band 

of frequencies is consistent. The shift into frequency domain is perceptible in the 

following simple transform ation. M ultiplying each side of 5.15 by elAjt and summing 

over the observations yields the discrete Fourier transform  regression

™c(A?) =  W z (\ j )P  +  we(Xj)

where W z  =  (wzjk)j,k=i,...,Ki Xj =  and w  is defined in 5.9, and the la tte r regres­

sion taken over a degenerated band of frequencies yields the estim ate

p = |ne  Mr; WziXjWz^y

which is consistent under 1.69.14 The convergence ra te  for each component (3j of 

P is (m / n ) di~d' where d! is the degree of fractional integration in the regression 

residuals. It is conjectured by the  authors, moreover, th a t ( n /m ) dj~d> (f3j — pj)  will 

jointly converge to  a norm al distribution (when the  spectral density of Z  is square 

integrable).

14When m  =  n — 1, $  is the OLS estim ate for the regression.

- l
He

w'=i
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Table 5.3: Test for long memory on returns 
Tests of the significance of the Fractional Differencing Parameter for Raw Exchange Rate Returns

Rate d=-0.5 d=0 d=0.5

D EM /U SD 113.48 -5.02 -18.51

JP Y /U SD 112.55 -4.68 -19.71

JPY /D E M 122.09 0.46 -18.02

Note: Testing of the value of the fractional differencing parameter is carried out via the test 

procedure developed in Robinson (1996).

5.4 Results

Our results are presented in two stages. In the first sub-section we docum ent the  

results of pre-testing for long range dependence, using the procedure developed 

in Robinson (1994a). We then go on to  present the estim ations of the fractional 

differencing param eter, for both returns and volatility, using the LW and the  LP 

sem iparam etric estim ates and the  fully param etric AR(1)-LMSV model. Finally, a 

set of specification tests of the AR(1)-LMSV model is presented.

5.4.1 Testing for Long Range D ependence

In table 5.3 we present the test results for raw exchange rate returns for the D EM /U SD , 

JPY /U SD  and JPY /D E M . As indicated in Section 3 the test s tatistic  proposed by 

Robinson (1994a) (<S) has a lim iting standard norm al distribution under the speci­

fied null hypothesis, implying a one-sided rejection region of 2.32 at 1%. Our null 

hypotheses are form ulated as follows. F irst, standard efficient m arkets theory indi­

cates th a t asset prices should follow a random  walk, implying th a t returns should be 

1(0). This defines one hypothesis as Ho : d =  0. Second, we employ the  theoretical 

bounds for stationarity  and invertibility of the fractionally integrated representation 

for returns as hypotheses, yielding Ho : d =  — |  and H q : d =  | .

Results yield the following observations. For all three currencies one can strongly
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Table 5.4: Test of long memory on volatility 

Tests of the significance of the Fractional Differencing Parameter for Exchange Rate Volatility 

(log(r2)).

Rate d=0 d=0.5 d = l

D EM /U SD 33.23 -13.15 -20.53

JP Y /U SD 21.12 -14.05 -20.70

JPY /D E M 31.06 -12.40 -20.38

Note: Testing of the value of the fractional differencing parameter is carried out via the test 

procedure developed in Robinson (1996).

reject the hypothesis th a t d = 0.5 in favour of d < 0.5 implying th a t returns are 

covariance-stationary. Similarly one can conclude th a t the return  processes are 

invertible given the sign and m agnitude of the test statistics corresponding to the 

hypothesis tha t d — —0.5. A more interesting result appears when examining the 

second column of table 5.3. W hereas for the JPY /D E M  the test statistic  indicates 

th a t one cannot reject the hypothesis of FX quotations following an 1(1) process, 

for the DEM /USD and JPY /U SD  there is evidence th a t the degree of fractional 

integration in returns is negative. This then implies th a t the degree of integration 

for the quotation series of these two currencies is between one half and unity, such 

th a t these rates are non-stationary but not 1(1).

Tables 5.4 and 5.5 present the results from the same testing framework on raw and 

deseasonalised FX volatility (computed, as indicated in Sections 3 and 4 as log(rj)). 

As an indication of the efficacy of our deseasonalisation procedure, in figure 5.4 we 

present the periodogram of our deseasonalised volatility. Comparison with Figure 1 

demonstrates th a t the am plitudes at the seasonal frequencies are greatly reduced, 

although not completely elim inated.15

15As an alternative to our deseasonalisation procedure, we also computed all estim ations for the 

volatility of a time-scale transformed series o f midquotes. We used the thetartime scale proposed 

by Dacorogna, Muller, Nagler, Olsen, and Pictet (1993). Results from these estim ations were very 

similar to those for deseasonalised volatility and are available upon request from the authors.
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Figure 5.4: Periodogram for Deseasonalised JPY/USD Log Squared Returns
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The hypotheses of interest in our exam ination of volatility are as follows. F irst, given 

the m any previous studies which have dem onstrated th a t intra-day FX volatility 

has an IGARCH or alm ost-integrated SV representation, is there a random  walk in 

volatility? Second, can one characterise volatility as being long range dependent? 

The former dictates exam ination of Ho : d =  1 whilst the hypotheses pertinent to 

the la tte r are H0 : d = 0 and Ho : d = | .

The final column of tables 5.4 and 5.5 presents the evidence pertinent to the  hy­

pothesis of a random  walk in volatility. There is strong evidence th a t, for all curren­

cies, this hypothesis can be strongly refuted in favour of a degree of integration in 

volatility of less than  unity. Further, this conclusion is stable across both raw and 

deseasonalised volatility. There is still, however, the possibility of non-stationarity 

in volatility if d G [0.5,1]. Column 2 of the tables indicates th a t the non-stationarity 

hypothesis can be rejected also, with the test statistics indicating th a t d <  0.5 for 

all three currencies. Finally, evidence on the long range dependence of volatility is 

shown in column 1. From both  tables one can draw the conclusion th a t the  true  

value of d lies between zero and one half, evidence of long memory in the volatility 

of all currencies.
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Table 5.5: Test of long memory on deseasonalized volatility
Tests of the significance of the Fractional Differencing Parameter for Deseasonalised Exchange Rate

Volatility.

Rate

oII"0 d=0.5 d = l

D EM /U SD 22.38 -14.26 -20.62

JP Y /U SD 18.54 -14.63 -20.28

JPY /D E M 24.26 -13.65 -20.55

Note: Testing of the value of the fractional differencing parameter is carried out via the test 

procedure developed in Robinson (1996).

Hence, the testing procedure indicates the following. Returns can be characterised 

as short range dependent, covariance stationary processes, w ith some indication of 

negative degrees of fractional integration for the DEM /USD and JPY /U SD . The 

volatility results indicate covariance-stationarity also, with the non-stationarity and 

1(1) hypotheses convincingly refuted, although there is consistent evidence of long 

range dependence. The volatility processes are therefore completely mean reverting, 

a result which is more comfortable than th a t of 1(1) volatility from a theoretical point 

of view.

5.4.2 Sem iparam etric E stim ations

We first present point estim ates for the fractional differencing param eter for the three 

returns series. The local W hittle  and log periodogram estim ates of long memory are 

employed. Table 5.6 gives the results.

Examining first the LP estim ates it is quite clear th a t the negativity of d indicated 

in the previous subsection is a very minor economic phenomenon, indicating th a t 

returns display very small anti-persistent tendencies. For no currency does d exceed 

0.05 in absolute value. This implies th a t the  quotation series may be regarded as 

following 1(1) processes to more-or-less any degree of precision, in line with the 

efficient m arkets hypothesis.
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Table 5.6: Long memory in returns 

Estim ation of the Fractional Differencing Parameter (rf) for Exchange Rate Returns.

Rate c

LW

i

LP

DEM /USD -0.38

(0.02)

-0.01

(0.05)

JPY /U SD -0.02

(0.02)

-0.03

(0.05)

JPY /D EM -0.01

(0.02)

-0.01

(0.05)

Note: Estim ation of the long memory models is carried out via the local W hittle and log peri­

odogram procedures. Standard errors in parentheses.

This conclusion becomes less clear when one examines the LW estim ates. W hilst the 

results for the JPY /U SD  and JPY /D E M  are very similar to  their LP counterparts, 

the value of d derived for the DEM /USD is now greatly negative. This implies 

a covariance-stationary and invertible representation for DEM /USD returns which 

displays non-negligible anti-persistence. Given the confluence between the testing 

and LP results, however, we are inclined to treat this feature as an anomaly and 

describe the  re turn  generating process as approximately 1(0)

The estim ation results for the volatility series are presented (for raw and deseason­

alised volatility) in tables 5.7 and 5.8. Here we complement the sem iparam etric 

procedures used in the analysis of returns with the fully param etric AR(1)-LMSV 

model.

The results of both  tables dem onstrate th a t the testing procedures contained in the  

previous subsection deliver the correct inferences. Across currencies and estim ators 

there is consistent evidence th a t the value of d for the volatility series is between 0.2 

and 0.3. This indicates th a t volatility can be characterised as covariance-stationary, 

invertible and long range dependent. The only real difference in estim ation results
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Table 5.7: Long memory in volatility
Estimation of the Fractional Differencing Parameter (d) for Exchange Rate Volatility.

Rate

LW

d

LP LMSV

D EM /U SD 0.29

(0.02)

0.21

(0.05)

0.37

(0.01)

JP Y /U SD 0.27

(0.02)

0.19

(0.05)

0.24

(0.01)

JPY /D E M 0.27

(0.02)

0.28

(0.05)

0.32

(0.01)

Note: Estimation of the long memory models is carried out via the local W hittle and log pe­

riodogram procedures, plus the fully parametric Long Memory in Stochastic Volatility model of 

Harvey (1993) (LMSV). Standard errors in parentheses.

for raw and deseasonalised volatility is th a t the AR(1)-LMSV estim ates tend to 

be slightly greater for the former and greater than  the results delivered by the 

semiparametric estim ators. This is likely to  be due to  mis-specfication of the short- 

range dependence in the series i.e. omission of an explicit seasonal in the fully 

param etric model. As one m ight expect, the  difference in estim ated d between the 

semiparametric and fully param etric procedures is far smaller for deseasonalised 

volatility.

5.4.3 Specification Tests on the Fully Param etric M odel

The next step in our empirical methodology involves a series of estim ations and 

specification tests on the fully param etric model outlined in Section 2.2. These 

tests allow us to examine the relative contributions of short memory and long mem­

ory components to the tem poral dependence in the volatility process. As indicated 

in Section 2.2 our fully param etric  model nests a pure LMSV model (obtained by 

setting (j) =  0 in equation 5.3) and a standard AR(1)-SV model (obtained by restrict­

ing d =  0 in 5.3.) By estim ating the unrestricted model and these two restricted
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Table 5.8: Long memory in deseasonalized volatility
Estimation of the Fractional Differencing Parameter (d) for Deseasonalised Exchange Rate Volatil­

ity.

Rate LW

d

LP LMSV

DEM /USD 0.31

(0.02)

0.32

(0.05)

0.26

(0.01)

JPY /U SD 0.32

(0.02)

0.30

(0.05)

0.22

(0.01)

JPY /D EM 0.30

(0.02)

0.30

(0.05)

0.26

(0.01)

Note: Estimation of the long memory models is carried out via the local W hittle and log pe­

riodogram procedures, plus the fully parametric Long Memory in Stochastic Volatility model of 

Harvey (1993) (LMSV). Deseasonalisation is carried out via a frequency domain Double-Window  

Smoother (DW in.). Standard errors in parentheses.

alternatives we can employ a frequency-domain Likelihood Ratio test to  gauge the 

significance of the long memory and AR(1) components. Results of these estim ations 

and the associated tests, for deseasonalised volatility only, are given in table 5.9.

Examining first the results which correspond to the simple AR(1)-SV models one can 

note the appearance of the common result th a t the ‘underlying’ volatility process 

has an autoregressive param eter very close to unity in all cases. This conforms with 

the results of m any earlier studies. Moving on to  the pure LMSV models it is quite 

clear th a t the conclusions of the previous estim ations still hold and further tha t 

the long memory specification gives a far better fit than  does the autoregression (as 

evidenced by the lower minimised log likelihood.)

A comparison w ith the unrestricted model yields the following observations. F irst, 

the improvement in fit of the combined model over the pure LMSV model is marginal, 

as the comparison of log-likelihoods displays. Second, and more im portantly, the
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Table 5.9: Param etric testing for long memory in volatility 
Extensions of various LMSV specifications and Likelihood Ratio Testing using Deseasonalised 

Volatility

Rate E

LM-AR

EM /U SI

LM

)

AR LM-AR

JPY /U SD

LM AR LM-AR

JPY /D E V

LM

[

AR

d 0.26

(0.01)

0.25

(0.01)

- 0.22

(0.01)

0.24

(0.01)

- 0.26

(0.01)

0.24

(0.01)

-

0.12

(0.01)

- 0.96

(0.01)

0.15

(0.01)

- 0.96

(0.01)

0.15

(0.01)

- 0.93

(0.01)

LogL 3097.8 3098.2 3143.2 17228.9 17231.0 17304.8 15645.6 15646.1 15726.4

LR - 0.85 90.90** - 4.10* 151.75** - 0.88 161.50**

Note: Estimation of the long memory models is carried out via the the fully parametric Long 

Memory in Stochastic Volatility model of Harvey (1993) (LMSV). Columns headed LM-AR present 

results from the model presented in equation 5.3. Columns headed LM are estimated with the 

restriction that the autoregressive parameter is zero and columns headed AR are estim ates from 

the model where the fractional differencing parameter is set to zero. The final row of the table 

gives Likelihood Ratio Statistics relevant to the omission of the given parameter. * denotes the test 

is significant at 5%, ** denotes significance at 1%. Deseasonalisation is carried out via a frequency 

domain Double-Window Smoother . Standard errors in parentheses.
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value of the autoregressive param eter is far lower in the unrestricted model, in all 

cases between 0.1 and 0.2. Given the pure AR(1)-SV results, this may be taken 

as evidence th a t the previous findings of near unit-root behaviour in intra-day FX 

volatility are caused by model mis-specification through the omission of long-range 

dependent components. This result confirms the evidence from daily da ta  found 

in Baillie, Bollerslev, and Mikkelsen (1996). These conclusions are reinforced by 

the quasi-LR test statistics. In the unrestricted model one can convincingly reject 

the hypothesis th a t the degree of fractional integration in volatility is zero for all 

currencies, whereas the hypothesis th a t the autoregressive param eter is zero cannot 

be rejected in two of the three cases and is only marginally rejected in the  third.

A clear comparison of the AR-SV and LM-SV models, in term s of how well they 

fit the data, is shown in Figure 5. The figure graphs the actual correlogram of 

the volatility process for the DEM /USD alongside those implied by the estim ated 

AR-SV and LM-SV models. It is immediately apparent th a t the long memory 

specification gives a far be tter approxim ation of the true volatility dynamics than 

does the autoregressive model. The autoregressive model greatly overstates the  low 

order autocorrelations but dies out too quickly to mimic the  persistently positive 

high-order autocorrelations in the DEM /USD data. Intuitively, the estim ated au­

toregressive param eter is driven very close to unity in order to  try  to  approxim ate 

the long memory in volatility, but this only results in the low order autocorrelations 

being far too high whilst the exponential decay in the correlogram ensures tha t, 

even if the estim ated autoregressive param eter is arbitrarily close to  unity, the  au­

toregressive specification cannot m atch the persistence in volatility exhibited by the 

data.

5.4.4 Fractional cointegration

In the following section, the D E M /JPY  (Deutsch M ark/Japanese Yen) is replaced 

by another exchange against the US Dollar: GBP/USD (British Pound/U S Dollar)



172 Chapter 5

Figure 5.5: Comparison of Actual and Implied Correlograms for DEM/USD
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to  avoid spurious cointegration due to the circularity effect. We report in table 5.10 

the results d{ from the local W hittle (LW), the log periodogram (LP) and the aver­

aged periodogram (AP) with autom atic bandw idth selection procedures described 

in chapter 4, and we also report the selected bandwidths m.

The Wald statistic for the test of equality of these long memory param eters is 

W  =  0.184 which is far lower than  the 90% level quantile of a x 2 distribution with 

two degrees of freedom. We therefore fail to reject the hypothesis of equality of these 

long memory parameters.

Let X t be our vectors of exchange rates against the dollar. We form a spectral esti­

m ate of the m atrix G as indicated in 5.10 with m  = 857 and com pute its eigenvalues:

<*i =  2.5 

a 2 =  1.1

a 3 =  0.5

which does not seem conclusive. If anything, there is evidence of G  being rank two. 

This evidence is reinforced by aberrant regression results when G  is assumed to be 

rank two.
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Table 5.10: A utom atic estim ation of long memory in deseasonalised volatility 

Estimation of the Fractional Differencing Parameter (d ) for Exchange Rate Volatilities.

Rate

LW

d

LP AP LW

m

LP AP

DEM /U SD 0.31

(0.02)

0.32

(0.05)

0.35 626 607 551

JP Y /U SD 0.32

(0.02)

0.30

(0.05)

0.32 657 654 645

G B P/U SD 0.35

(0.02)

0.35

(0.05)

0.38 633 619 511

Note: Estimation of the long memory parameters carried out via the local W hittle, log periodogram  

and averaged periodogram procedures.

In th a t case, there is exactly one long run relationship between the exchange rates 

volatilities. In order to identify it, we run the frequency domain analogue of the 

regression

X DBM =  p iX ; PY +  f32X f BP +  u, 

which yields the estim ated regression

£DEM =  ,346X?py  +  ,555X °bp  

(.16)

where the standard errors are computed under the conjecture of norm ality and the 

confidence interval on the degree of fractional integration of the  residuals includes 

zero, so th a t we cannot reject the hypothesis th a t the residuals are 1(0), otherwise 

interpreted as a hypothesis of full stationary cointegration.

5.5 Conclusion

Hence, to restate  the main findings; returns can be characterised as 1(0) processes 

to a great degree of precision; volatility, on the other hand, is best represented by a
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covariance stationary, long range dependent process; furtherm ore, there is evidence 

tha t the common finding of near-integrated volatility processes is driven by the 

mis-specification of traditional models which do not perm it long range dependence. 

Finally, there is evidence of stationary cointegration between the volatility series, 

thus bringing tentative support to the M ixture of Distributions Hypothesis for spec­

ulative prices, and paving the way for parsimonious factor representations of vectors 

of foreign exchange rate returns with fractionally integrated volatilities. However, 

further research into the process of information filtration through the m arket would 

be needed, in particular in view of the evidence of a large discrepancy in persistence 

on volatilities between shocks related to  macroeconomic “news” announcements and 

other types of shocks. There is indeed a possibility th a t long memory in the volatil­

ity may be generated spuriously by the aggregation of these two kinds of shocks. In 

this event, however, efficient estim ation of even spurious long memory volatilities 

remains valuable for forecasting purposes and risk analysis.
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