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A bstract

This thesis studies the one-factor latent tra it model for binary data . In examines the 

sensitivity of the model when the assum ptions about the model are violated, it inves

tigates the inform ation about the prior distribution when the model is estim ated semi- 

param etrically and it also examines the goodness-of-fit of the model using M onte-Carlo 

simulations.

L atent tra it models are applied to  d a ta  arising from psychometric tests, ability tests or 

a ttitu d e  surveys. The d a ta  are often contam inated by guessing, cheating, unwillingness 

to  give the true  answer or gross errors. To study the sensitivity of the  model when 

the d a ta  are contam inated we derive the Influence Function of the param eters and the 

posterior means, a tool developed in the frame of robust statistics theory. We study the 

behaviour of the Influence Function for changes in the d a ta  and also the behaviour of the 

param eters and the posterior means when the d a ta  are artiflcially contam inated.

We further derive the Influence Function of the param eters and the posterior means 

for changes in the  prior distribution and study empirically the  behaviour of the model 

when the prior is a  m ixture of distributions.

Sem iparam etric estim ation involves estim ation of the prior together with the item 

param eters, A new algorithm for fully sem iparam etric estim ation of the model is given. 

The boo tstrap  is then used to  study the information on the laten t distribution than  can 

be extracted  from the d a ta  when the model is estim ated semiparametrically.

The use of the usual goodness-of-fit statistics has been ham pered for laten t tra it 

models because of the sparseness of the tables. We propose the use of M onte-Carlo 

sim ulations to  derive the empirical distribution of the goodness-of-fit statistics and also 

the  exam ination of the  residuals as they may pinpoint to  the  sources of bad fit.
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3.17 Standardised Oĝ  with the mean and the median of the prior. Scale 7, first

4 items  ....................................................................................................................122
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Chapter 1

Introduction and Literature 

R eview

1.1 Introduction

L atent variable models try  to  explain the association between observed variables (also 

called manifest  variables) by the means of a set of unobserved variables - the  latent 

variables or factors.

Both the observed and the latent variables may be categorical (measured on a nominal 

or ordinal scale) or metrical (measured on an interval or ratio  scale).

W hen the latent variables are metrical and the manifest variables categorical the  

model is called a latent tra it model. This thesis concentrates on laten t tra it  models for 

binary manifest d a ta  and particularly on the log it/p rob it model with one laten t variable.

The da ta , which could be responses to  an ability test or to  a questionnaire m easuring 

a ttitudes, are often ‘contam inated’ by guessing, cheating, faking, or errors when recording 

the responses. In this thesis we will investigate the sensitivity of the  model when such 

errors are present in the data . We will also investigate the  sensitivity of the model if 

one of its main assum ptions, the  assum ption about the  form of the  prior d istribution, 

is violated. We will then propose a sem i-param etric estim ation m ethod, by which the 

distribution of the latent variable is estim ated together with the item  param eters, and 

investigate the information th a t can be extracted about the form of th is d istribution. 

Finally we will examine new goodness-of-ht and diagnostic m ethods for the la ten t tra it



model.

In this C hapter we shall first introduce the model and then further illustrate the 

concept of robust statistics and give some robust statistics tools. We shall then review 

previous studies regarding robustness issues of the model and the sensitivity of the  model 

to  the  form of the prior distribution, studies related to  sem iparam etric estim ation of 

laten t tra it  models and finally studies on goodness-of-fit issues.

1.2 A latent variable model

Suppose

X is a  vector of p manifest variables z i , ..., Xp and y is the laten t variable.

The jo in t density of the x ’s is given by

/ ( x )  =  [  h{y)g{:ic\y)dy (1.1)
J Ry

where Ry  is the range space of y. Our main interest is in w hat can be known about y

after x  has been observed. This is given by the conditional density,

h{y\x) = h{y )g{x \y ) / f { x )  (1.2)

Since h  and g are not uniquely determined by (1.1) we do not yet have a complete 

specification of h{y\x).

The classes of distributions to  be considered can be narrowed down by assum ptions 

and restrictions arising from statistical properties. Furtherm ore, the choice for g depends 

on the  type of the manifest variables whereas to  some extent the choice for h (discrete 

or continuous) will lead to different types of latent variable models.

An essential assum ption for the general latent variable model is th a t  of conditional 

independence, form ulated as,

p
9 ( ^ \ y )  = Y l 9 i ( x i \ y )  (1.3)

2 =  1

I t says th a t  if the dependencies among the x ’s are induced by the laten t variable y, 

then when y  is accounted for and held fixed the x ’s will be independent. Then / ( x )  can



be w ritten as
p

/ M  =  [  [ f [ g i { x i  I y)]h{y)dy  (1.4)
2=1

for some h and gi, where Ry  is the range space of y.

1.3 Latent Trait M odels for Binary D ata

Binary d a ta  arise when questions are scored dichotomously, for example, in social surveys 

when the respondents are asked to  agree or to  disagree with an item of a  questionnaire, 

or, in educational testing, when students answer an item right or wrong. Responses are 

usually coded with 1 for a ‘positive’ response and with 0 for a  ‘negative’ response. If n 

respondents have answered a set of p  binary items, the d a ta  will be in a form of an n x p 

m atrix . Any row of th a t m atrix  will be the set of p responses from a given individual 

and will be called the response or score pattern for th a t individual. W ith p  variables, 

each having two outcomes, there are 2^ diflferent response patterns. It is common to 

sum m arise the d a ta  in a table showing the frequencies of each response pa tte rn . If 2^ 

is large compared to  n most of the frequencies of the response patterns may be 0 or 1. 

Then only the response patterns actually observed are listed.

Two approaches to  the construction of models for binary d a ta  have been used in the 

past. The response funct ion approach relates the probability of a positive response of an 

individual to  the  value for th a t individual of the latent variable y. The response function 

approach forms the basis of Item Response Theory (IR T), which provides m ethodology 

for the design, construction and evaluation of educational and psychological tests.

The underlying variable approach was developed in the line of traditional factor anal

ysis and supposes th a t the binary x ’s have been produced by dichotomising underlying 

continuous variables. In Bartholomew and K nott (1999) it is shown th a t these two ap

proaches are equivalent for binary data .

1.3.1 T he response function  approach

The response function 7Ti{y) gives the probability of a positive response to  item  i of an 

individual given h is/her value of the latent variable y. In educational testing 7Ti{y) is 

referred to  as the  item characteristic curve (ICC) or i tem response funct ion  (IRF). The 

shape of the curve shows how the probability of a correct response changes with ability.



Several models for 7Ti{y) have been proposed, the  most frequently used of which are 

the  normal and logistic (cumulative distribution) ogive models.

T h e  n o rm a l og ive  m o d e l Lawley (1943) and Lord and Novick (1968) proposed the 

norm al ogive model:

/ oo r9i
(f){t)dt= / (f){t)dt (1.5)

-gi J —oo

where

gi{y) =  ai {y -  bi) (1.6)

is a  linear function of y involving two item param eters a{ and 6%, and 4>{i) is the  normal 

density function, hi is called the difficulty param eter for item i and a* the discrim ination 

param eter.

T h e  tw o - p a r a m e te r  lo g is tic  og ive m o d e l Birnbaum  (1968) proposed the logistic 

ogive with two and three item param eters for the form of the response function.

For the two param eter model the probability of a  positive response (using his notation 

for the  param eters) is given by:

_  ex p (0 (a i(ÿ  -  6j)))

l  +  e x p (D (o ,( j /-6 i) ) )   ̂ )

hi is the item difficulty param eter, a* is the item discrimination param eter as above and 

D  is a unit scaling factor. Birnbaum (1968) took D  =  1.7 to  maximise quantita tive  

agreem ent between the param eters of the  normal and logistic models.

T h e  th r e e - p a r a m e te r  lo g is tic  og ive  m o d e l The three-param eter model includes a 

constan t so th a t the response function does not reach 0. The response function is given

As Ci allows subjects on the low end of the ability scale to  answer correctly, it is called 

the guessing param eter.



T h e  R a s c h  m o d e l Rasch (1960) simplified the tw o-param eter logistic model so th a t 

all items have the same discrim inating power. Thus the response function becomes:

-.< » ) =  a .» )

where i =  indexes the items and I =  indexes the  individuals, y  was

considered by Rasch a subject specific param eter and not a la ten t variable and it was 

usually denoted by 6. b{ is the item difficulty param eter.

A  g e n e ra l  m o d e l Bartholomew (1980) gave a general approach to  the choice of a 

suitable response function. T h a t paper listed a set of properties which the family of 

response functions should possess and then proposed a class of linear models meeting 

these requirem ents of the form

G “ ^7T,(y) =  aoi -f auH~^{y) ,  {i =  1, ...,p ) (1.10)

where 7Ti{y) =  P{xi  = l\y)  and y  is uniformly distributed on (0,1). The functions G~^ 

and H~^  are a rb itrary  but such th a t their inverses G  and H  are distribution functions 

of random  variables symmetrically distributed about zero.

Bartholomew and K nott (1999) show th a t if G~^ is chosen to  be the cum ulative 

logistic distribution function, then the ‘sufficiency principle’ can be fulfilled and thus the 

inform ation about the unidimensional y, which is contained in the  x ’s, can be conveyed 

by a unidimensional vector of observable quantities.

The distribution of the  latent variable is essentially arbitrary . It was argued in 

Bartholom ew (1980) th a t H  should be the distribution function of a sym m etrically dis

tribu ted  random  variable, on the basis th a t the direction of m easurem ent of the  laten t 

variable was arbitrary, but this still leaves a wide choice. However, the two functions 

which have been used most often in practice are the logistic and the normal. These 

are very similar in shape, and the choice between them  is of little  practical im portance. 

Bartholom ew and K nott (1999) argue th a t the normal function should be chosen when 

there is more than  one latent variable because then the laten t variables will rem ain inde

pendent under orthogonal rotation.

We shall later discuss in more detail the form of the d istribution of the prior.



If we choose the logistic distribution function for the response function and the normal

distribution for y, (1.10) can be w ritten in term s of the  uniformly distributed latent

variables y  as

\ogitTTi{y) =  aoi +  a u ^ ~ ^ ( y )  ( 1 . 11)

or, in term s of the normally distributed variable z, as

logit7Ti(z) =  aoi +  a u ( z ) .  (1.12)

We shall call this model the logit/probit model or, more briefly, the logit model.

This model is equivalent to  Birnbaum 's tw o-param eter logistic model for

d/Qi — Dbidf

and

—  Ddi

and equivalent to  the Rasch model for

dQi — 6j

and

Û1 j — 1.

I n te r p r e ta t io n  o f  th e  p a ra m e te r s  The param eters doi and a n  are the difficulty and 

discrim ination param eters for item i. These param eters determ ine the position and shape 

of the item ’s response function.

The param eter doi defines the probability of a  positive response to  item  i by an 

individual of median ability. Assuming the median of z is zero, th a t  will be

,Ti =  P (z i =  l |z  =  0) =  (1.13)

If, for example, aoi is large and positive (negative), the probability of a positive 

(negative) response for a median individual will be close to  1.

The param eter dn  is a  discrimination param eter because, for two individuals a given
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distance ap art on the z scale, the greater an  the greater the difference in their probabilities 

of responding positively to  item i.

As a coefficient of z, ai,- can also be thought of as a  factor loading. It thus indicates 

the weight to  be attached to  the various x ’s in the interpretation of the factor z, or the 

strength  of the link of the a:’s with z.

P r o p e r t ie s  o f  th e  r e s p o n s e  fu n c tio n  The choice of which of the  two possible out

comes is to  be regarded as ‘positive’ is entirely arbitrary. It ought not to  m atte r whether 

the code 1 is attached to  ‘Yes’ or ‘No’. Thus 7rj(z) and 1 — 7r^(z) should have the same 

form. For the  one-factor logit model,

^  exp(ao, +  awz)
1 + exp(floi +  ciliz)

or

1 +  exp (-Go,- -  auz)

and

1 1 -pexp(aoi +  aiiz)

Both have the same form, the only difference is in the signs of the a ’s. This is as 

it should be since if increasing z increases the probability of answering ‘Yes’ it should 

decrease the probability of answering ‘No’ by the same am ount.

The second property is the invariance of the form of the response function to  the 

direction of m easurem ent of the latent variables, which is again arbitrary. The choice of 

which end of the scale is ‘positive’ and which is ‘negative’ is of no significance. Changing 

the direction of m easurem ent involves replacing z by — z. This is equivalent to  changing 

the sign of an,  but it does not change the form of the model.

We assume for the one factor model th a t the response function is nondecreasing in 

the laten t variable, i.e. an,  i =  1 ,2 , . . . ,p is  always non-negative. This ensures th a t the 

probability of response increases, or decreases, in step with changes in the laten t variable. 

We can make all a i i ’s positive or zero by an appropriate choice of which outcom e is to  

be regarded as positive.



1.3 .2  T he underlying variable approach

This approach assumes th a t underlying the observed binary variables there are continuous 

variables, which we shall denote by An observed variable takes the  value of 1 when the 

underlying continuous variable is above a threshold and the value of 0 otherwise. Thus 

we may define

Xi =  1 if ii  > ki and X{ =  0 if <  ki (1.17)

This approach was developed so th a t traditional factor analysis techniques for continuous 

d a ta  could be applied to dichotomised data . The model, with the factors coming a t a 

second underlying level, can be defined as follows:

^ = fi Az 4" G (1.18)

where /z is the overall mean, A is the factor loadings vector, z the  underlying latent 

variable and e the error term . If z and e  are both assumed to  be normal then ^ will be 

norm al and their correlation coefficients can be estim ated from the bivariate 2 x 2  tables 

of the  x ’s. These are the so-called tetrachoric correlations which can be used as input 

to  a standard  factor analysis program . Unfortunately, correlation m atrices estim ated by 

these means are not always positive definite.

1.3 .3  R ela ted  M odels

L a te n t  C la ss  M o d e ls  W hen both the manifest and latent variables are categorical, 

a  laten t class models is defined. The latent class model was originally proposed by 

Lazarsfeld (1950), while Goodm an (1974) and Haberman (1979) extended its practical 

applicability.

The laten t class model can be param eterised in two different ways. The classical 

form ulation, given in Bartholomew and K nott (1999) is as follows:

Suppose the population can be divided into K  distinct categories, or laten t classes. 

Let TTij be the probability of a positive response on variable i for a  person in class j  and let 

rjj be the prior probability th a t a  randomly chosen individual is in class j  {Y^f=i rjj =  1). 

The conditional distribution of xi given the individual belongs to  laten t class j  is



given by

g i { X i \ j )  =  7T-j{l -  (1.19)

For the case of K  classes the probability of a response pattern  x  is given by

/ w = z ]  % n  ^ i j  (1 -  (1-20)
jz=l 1 = 1

L a te n t  C la ss  a n d  L a te n t  T ra it  M o d e ls  as L o g lin e a r  M o d e ls  The laten t class 

model can also be form ulated as a loglinear model (Haberm an 1979). For example, the 

log of the  expected frequency of the cell for latent class j and categories 1 for items 1, 2 

and 3 is given by:

lo g m jlif  =  u U j  u\  ul  Ui Uj\  +  Uji  +  Uji  (1.21)

in which rrijui =  n ^ ( l l l | j ) ,  n  is the sample size and ^ ( l l l j j )  =  ‘K\j'K2j'^3 j ’ Subscripts 

in (1.21) denote categories and superscripts denote variables.

The equivalence between these two form ulations is shown if the conditional response 

probabilities of the items given the latent class are form ulated in term s of the log-linear 

param eters:

exp(u^ +  u |^) +  exp(u'i +  M|J)

A laten t tra it model can be specified as a loglinear row effects model, where the

item categories are the rows and the latent variable is the interval level column variable. 

The row effects model has param eter row scores whereas the column scores are fixed. 

Let Zj denote one of the distinct po in ts/ nodes of z and denote the row score for 

row (response) 1 of item i. The two-way interaction between z and an item i can be 

form ulated with Wjj =  Zj, which means th a t the two-way interaction is proportional

to  the  point of variable z by the row effect.

The conditional probability of positive (1) response to  item  i for a  person in class j is 

given by

^  e x p M  +  m Z ;) -----------  (1.23)
exp(%^ +  fio Zj) 4- exp(w*i -f fxi Zj)



1.4 Estim ation M ethods for Latent Trait M odels

1.4.1 M axim um  L ikelihood

C o n d it io n a l  m a x im u m  lik e lih o o d  Conditional maximum likelihood is the  m ethod 

th a t  maximises the likelihood for the structural param eters of the model which is formu

lated as a  conditional probability on sufficient statistics for the nuisance param eters of the 

model. In the Rasch model the latent variable y is considered a param eter - one for each 

subject - and is a  nuisance param eter since the number of these param eters increases with 

the sample size, Andersen (1973) showed th a t for the Rasch model sufficient statistics 

for y, independent of the  item param eters, exist and so by conditioning on the sufficient 

statistics, estim ates for the structural param eters of the model - the  item param eters - 

can be obtained.

The sufficient sta tistic  for the Rasch model is the to ta l score

p
ti — ^   ̂  ̂ ~~ li •••) n, 2 — 1, . . . , p  (1.24)

i=l

The inference can be based on the to ta l score i i ,  By virtue of sufficiency of ti

the conditional distribution of .t/i, given ti is independent of the  latent variable y.

Hence the conditional likelihood is defined as

n
T (tti,..., (2p) =  y (^fi) ••••2'/p| /̂) (1.25)

/=!

and it involves only the item param eters. The estim ates for a i , . . . ,a p  are obtained as 

those th a t  maximise L ( a i , ..., a^).

M a rg in a l  m a x im u m  lik e lih o o d  Bock and Lieberman (1970) used the  m arginal maxi

mum likelihood m ethod to  estim ate the item param eters of the tw o-param eter laten t tra it 

model. The characteristic of the marginal maximum likelihood is th a t the  probability for 

a response pa tte rn  is integrated over the range of the laten t variable z. Bock and Lieber

man (1970) considered the normal ogive model for the response function and assumed 

the laten t variable to  follow the standard  normal distribution.

Assuming one latent variable, the likelihood to be maximised is the  jo in t probability
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function for a response pattern  of a randomly selected subject which is given by

/ W  =  /  Y[g i{x i \ z)h{z )dz  (1.26)
-̂OO

Then L =  lo g /(x )  is differentiated with respect to  the  item param eters. Bock and 

Lieberman (1970) solved the likelihood equations by the Newton-Raphson m ethod, ap

proxim ating the integral over z by a weighted sum m ation over a  set of finite num ber of 

points and weights. For the normal case they used Gauss-Herm ite quadratu re  nodes. 

The points (quadrature nodes) and weights are given in S trand and Sechrest (1966).

They noted th a t due to  heavy com putational requirem ents this m ethod could only be 

used for a small set of items.

Bock and Aitkin (1981) reformulated the Bock-Lieberman likelihood equations and 

gave a com putationally feasible solution also for large num ber of items. Their m ethod 

was closely related to  the E-M algorithm as discussed by Dem pster, Laird, and Rubin 

(1977). They used the normal ogive for the form of the response function and the A^(0,1) 

and other continuous distributions for the latent variable which they approxim ated with 

a  set of finite number of points and weights.

Bartholomew and K nott (1999) gave a variation of the E-M algorithm  for the logit 

response function, which can easily be adapted to  fit any response function. We shall 

describe this variation of the E^M algorithm  in more detail.

T h e  E -M  a lg o r i th m  Suppose th a t h{z) is approxim ated by a set of finite points, and 

their corresponding weights, so th a t z takes the values z i,Z 2 , • • - , z;t with probabilities 

h { z i ) , h ( z 2 ), • • - ,/i(z)t). The marginal distribution (1.26) for individual I is w ritten:

k
f M  =  I t̂)h{zt)

t=i

where

p
I Zt) = f j [ 7 r i ( Z f ) ^ ' ‘ ( l  -  7 T i ( Z f ) ) ^

i—1

We then have to maximise:

11



L =  ^ l o g / ( x i )
1=1

By differentiating the log-likelihood with respect to  unknown param eters we get:

ÔL _  X  dxj{ z , )  { fit  -  N,iTi{z,)}

W here,

Tit =  h(zt)Y^xug{Ki\zt)/f{^i)
/ = i

=  'Y^xi ih(zt\ 'x, i )  (1.28)
1 = 1

and

= h{zt)Ÿ,9i^l  I 
1=1

= (1-29)
f=i

The probability function h{zt | xi)  is the probability th a t an individual I with response 

vector xi  is located a t Zt.

The Nt  could be interpreted as the expected number of individuals a t zt and rn  is 

the expected num ber of those predicted to  be a t zt who will respond positively. The Nt  

and ra are functions of the unknown param eters.

If the  response function is taken to  be the logit, as in (1.14), (1.27) becomes:

QL
=  -  Ntni{zt)},  j  =  0 ,1 . (1.30)

( = 1

We define the steps of an E-M algorithm as follows: 

• step 1 Choose starting  values for aoi and a n

12



•  step 2 Com pute the values of ra and Nt  from (1.28) and (1.29)

•  step 3 Obtain improved estim ates of the  param eters by solving (1.30) for j  =  0,1 

and i =  1 , 2 , ...,p  treating  ra  and Na  as given numbers.

•  step 4 Return to  step 2 and continue until convergence is attained .

There is a  program  called TW OMISS (Albanese and K nott 1992a) which gives m ax

imum likelihood estim ates via this modified E-M algorithm  for the one- and two-factor 

laten t tra it model, using the logit model for the response function.

Bock and Aitkin (1981) suggested th a t a num ber of quadratu re  nodes between 3 and 7 

will be satisfactory for estim ating a model with more than  one laten t variable. However, 

Shea (1984) showed th a t many more nodes are needed in order to  get a reasonable 

accuracy for the param eter estim ates. TW OMISS allows the user to  choose either 8 , 16, 

32 or 48 quadratu re  nodes and weights to  fit the model.

1.4.2 G eneralised  Least Squares (GLS)

Generalised least squares m ethods assume th a t most of the relevant inform ation in the 

sample d a ta  is contained in the first- and second-order margins. Christoffersson (1975), 

using the underlying variable approach described in Section 1.3.2 proposed a Generalised 

Least Squares estim ator based on the marginal distributions of a  single item and of pairs 

of items, i.e. on 7Ti =  P{xi  =  1 ) and nij = P{xi  =  1, Xj =  1). For the  sample marginal 

proportions corresponding to  tt* and TTij the model is

Pi — TTj -f- €j, 2 = 1 ,..., Af

Pij =  TTij -h €ij, 2 =  1, ..., M  — 1, J =  2 + 1 , . . . ,M  (1.31)

The estim ator is defined by minimising

/(k, A, *) = tS-^t =  (n  -  P)S-^(n -  P) (1.32)
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regarded as a  function of the unknown param eters k, A and k  is the vector of 

thresholds, A is the m atrix of factor loadings, ^  is the covariance m atrix  of the factors and 

S “  ̂ is the estim ated dispersion m atrix  of II . The differences in the param eter estim ates 

and the standard  errors of this estim ator and the marginal ML estim ator of Bock and 

Lieberman (1970) are negligible. As GLS requires heavy com putations, Christoffersson 

(1975) proposed a simpler two-step estim ator. In the first step the threshold levels are 

estim ated and in the second step these are used to  estim ate A and $ .

M uthén (1978) made further improvements on this m ethod by substantially  reducing 

the am ount of numerical integration required.

1.5 M easurement of the Latent Variable

The simplest way to  score an individual is using the total score (number of I ’s):

p
ti = 'Y^x\ i.  (1.33)

i=l

In using the to ta l score we would be treating all items as equally im portan t.

Another way to score the response patterns is with the estim ated component score 

(Bartholomew 1984), which is the sum of the param eter estim ates à u  of the model for 

the items with response 1 :
p

CSi = àijxii 
1= 1

The response pattern  00110 would be scored +  This m ethod of scoring is said 

by Bartholomew to be more informative and to  give a be tter scoring th an  ju st using the 

to ta l num ber of I ’s.

We also may use the estim ated conditional mean E{z \x )  of the la ten t variable given 

the  response pattern  x, th a t is

k
E{z\xi)  = Y^z th{z t \ x i )  (1.34)

t=i
or

k
E{z\xi) =  ^  ztg{xi \z t )h{zt) / f{xi)  (1.35)

( = 1

This is also called the Bayesian Expected A Posteriori (EAP) estim ate of the distri
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bution of z (Bock and Aitkin 1981).

The conditional standard  deviation given the response pa tte rn  can be used as a  mea

sure of the information delivered by the latent variable.

K nott and Albanese (1993) and Albanese (1990) investigated the relation between 

component scores and conditional means and found th a t the la tte r m aintains the advan

tages of the component score, but it is more stable. The component score is strongly 

dependent on the values of an  while the conditional mean depends on Wi, which does not 

vary much even if some âi* are very large. This implies th a t significant differences in the 

posterior means do not always reflect different positions on the laten t scale, according to  

the conditional mean E{z \x ) ,  which is not desirable in most of the applications. They 

conclude th a t if the responses are complete (none missing) then both the com ponent 

score and the posterior means will provide the same ranking of individuals on the laten t 

scale, bu t if one wants to  use the latent score in further analyses then the conditional 

mean is more informative and reliable than  the component score, specially when one or 

more âi* are large (bigger than  3.0).

For this reason we will be using the posterior means as the  scoring m ethod of indi

viduals on the latent scale for the purposes of this thesis.

1.6 Robustness

Robust sta tistics studies the behaviour of statistical procedures, not only under s tric t 

param etric models, but also in smaller and in larger neighbourhoods of such param et

ric models. It studies deviations from the models since the assum ptions needed for a 

param etric model to  be valid are usually only approxim ately true.

The first theoretical approach to  robust statistics was introduced by H uber (1964) 

and Huber (1981). Huber identified neighbourhoods of a  stochastic model which are 

supposed to  contain the ‘tru e ’ distribution th a t generates the da ta . Then he found the 

minimax estim ator th a t behaves optim ally over the whole neighbourhood.

A nother approach to  robust statistics is through the Influence Function, originated 

by Hampel (1968). W ith this approach the effects of a very small (infinitesimal) viola

tion of the model assum ptions are studied and estim ators are developed such th a t  small 

deviations from the param etric model have small effects.
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In robustness theory the term s ‘model deviations’ and ‘violation of the model assum p

tions’ are used interchangeably with the term  ‘d a ta  contam ination’, in the  sense th a t, if 

there is a ‘tru e ’ param etric model, d a ta  contam ination arises when p a rt of the  d a ta  is 

not generated from this model.

Generally, deviations from strict param etric models may be due to

i) the occurrence of gross errors, ii) rounding and grouping, iii) violations of the 

distributional assum ptions of the model.

i) the occurrence of gross errors. Gross errors are occasional values where something 

went wrong, like mistakes in copying or com putation. Gross errors result in ‘outliers’, 

namely values which deviate from the pattern  set by the m ajority  of the da ta . Some 

gross errors may be harmless. On the other hand, outliers can also seriously change the 

fitted model.

In our case, where we have binary da ta , errors can only occur as an interchange of 

several O’s and I ’s. And since we have m ultivariate d a ta  where an individual’s response 

comprises a  response pattern , such a transposition will cause the frequency of the  correct 

response pattern  to  decrease by one and the frequency of another response pattern  to  

increase by one. Of course, a gross error in recording the frequency is also possible, bu t 

is equivalent.

(ii) rounding and grouping. Mainly applicable to  m etric da ta , as continuous d a ta  are 

often rounded, grouped, or classified coarsely. This could lead to  the  result, for example, 

th a t  a continuous distribution would not be a valid approxim ation to  the d a ta  any more.

Unless the  response is genuinely dichotomous, binary d a ta  are a result of a ‘coarse’ 

classification. There have been studies which are concerned with the effects of such a 

classification but for the purposes of the present study we will assume th a t  responses are 

genuinely dichotomous or th a t such effects are not significant.

(iii) violations of the distributional assum ptions of the model. In the context of 

m etric d a ta  this would refer primarily to  deviations from normality, or violation of the  

independence assum ption, due to  unsuspected serial correlations.

The assum ptions needed for the laten t variable models we use are given in Sections 1.2 

and 1.3.1. We shall apply robust statistics m ethods to  see whether the  assum ption about 

the distribution of the latent variable or d a ta  contam ination influences the param eter 

estim ates and the measurem ent of the latent variable.
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The assum ption of conditional independence is equivalent to  the assum ption th a t the 

num ber of latent variables are sufficient to  explain the association between the observed 

variables. W hether this is true or whether more laten t variables are needed in the model 

can be tested by goodness-of-fit measures and model choice criteria.

This thesis will explore the influence function approach and therefore we will now 

give its definition and some related concepts.

1.6.1 B asic  concep ts and defin itions

We shall first give the basic concepts on which robust statistics measures are based as 

they appear in Hampel, Ronchetti, Rousseeuw, and Stahel (1986) and later we shall 

a ttem p t to  apply them  to our model.

Suppose we have one-dimensional observations . . . ,Xn  which are independent and 

identically d istributed (i.i.d.). The observations belong to  some sample space A', which 

is a  subset of the real line 5R (or may equal 3%). A param etric model consists of a family 

of probability distributions Fe on the sample space, where the unknown param eter 6 

belongs to  some param eter space 0 .  In classical statistics, one then assumes th a t the 

observations X{  are distributed exactly like one of the Tg, and undertakes to  estim ate 6 

based on the d a ta  a t hand. In robustness theory the model is considered a m athem atical 

abstraction which is only an idealised approximation of reality, and statistical procedures 

are constructed with the aim to  behave fairly well under deviations from the assumed 

model.

The empirical distribution Gn of the sample (%i, . . . , X n )  is given by {1/n)  A^,.,

where Â  ̂ is the point mass 1 in z.

As estim ators of 9 we consider real-valued statistics =  Tn(A'i, . . . , X n ) .

We consider estim ators which are functionals [i.e., T„(Gn) =  T{Gn)  for all n  and Gn] 

or can asym ptotically be replaced by functionals. This means th a t we assume th a t  there 

exists a  functional Tidomain (T) -> 5ft [where the domain of T  is the  set of all d istribu

tions of F { X )  for which T  is defined] such th a t T ^ (% i,..., %n) T (G ) in probability 

when the observations are i.i.d. according to  the true distribution G  in domain (T). We 

say th a t  T{G)  is the asym ptotic value of { r„; n >  1 } a t G.

Robustness theory examines the sensitivity of the estim ators or the  estim ates in a
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neighbourhood of the true model and provides estim ators which are stable in a  specific 

neighbourhood. Consider the set of distributions

{F,\F, = { l - e ) F ô  + eW}  (1.36)

where W  is an arb itrary  distribution function. The d a ta  generated from F^ are actually 

generated from the true param etric model Fe with probability ( 1  — e) and from W  with 

small probability €. A particular case arises when W  =  A^;, i.e. the  distribution gives 

probability 1 to  an arb itrary  point x.  In th a t case, the neighbourhood of the  model,

which will also be referred to  as the contam inated model, is given by

{F,\F, = { l - e ) F 0 - h e A , }  (1.37)

1.6 .2  T he influence fu nction

To study the  behaviour of the  estim ators when the assum ptions of the  param etric model 

may be violated several measures have been developed.

A very im portan t such measure in robustness theory is the influence funct ion  which 

was invented by Hampel (1968)and was further developed by Hampel (1974) and Hampel 

et al. (1986).

Formally, the influence function (IF) of T  a t F  is given by

IF(x; T,  F)  = lim ^[(1  ~  + ~  (1.38)
 ̂  ̂ t ^o  t  ̂ '

in those x £ X  where this limit exists.

The influence function describes the eflFect of an infinitesimal contam ination a t the 

point X on the estim ates, standardised by the mass of the contam ination. It can be 

thought of as the relative change of the estim ates caused by a small proportion of addi

tional observations a t x. One could say it gives a picture of the  infinitesimal behaviour 

of the asym ptotic value, so it measures the asym ptotic bias caused by contam ination in 

the  observations.

In the multidimensional case, observations take values in an arb itrary  space X  and the 

param eters are vector-valued, so th a t 8  C Functionals T  can be defined on a suitable 

subset of the set of probability measures on A , taking values in 0 .  The p-dimensional
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influence function of a functional T  a t a distribution F  is given as in (1.38).

A useful property of the influence function is the following: if some distribution G  

is ‘near’ F , then the first-order von Mises expansion of T  a t F  (which is derived from a 

Taylor series) evaluated in G  is given by

T{G) = T [ F )  -{■ J  IF{x ;T^ F)d{G -  F){x)  remainder.  (1.39)

1.6.3 R ob u stn ess m easures derived from  th e  Influence Function

Hampel (1974) introduced some sum m ary values of the Influence Function which describe 

local robustness properties of the  estim ators. These are the following: i) the gross-error 

sensitivity of T  a t F , which is defined by the supremum of the absolute value:

f ( r , F )  =  s u p J IF ( z ;F ,F ) | .  (1.40)

The gross-error sensitivity measures the worst (approxim ate) influence which a small 

am ount of contam ination of fixed size can have on the value of the estim ator. It may be 

regarded as an upper bound on the (standardised) asym ptotic bias of the estim ator. It 

is a  desirable feature th a t 7 *(F, F ) be finite, in which case we say th a t T  is B-robust  a t 

F . Here, the  B  comes from Bias.

ii) the local-shift sensitivity., which measures the worst (approxim ate and standardised) 

effect of shifting an observation slightly from the point x  to  some neighbouring point y 

and is given by
r  =  s u p , , J : F ( , ; T , F ) _ I F ( . ; T , F ) |

\ y - x \

Note, th a t  even an infinite value of A* may refer to  a very limited actual change, because 

of the standardisation by \y — x\.

iii) the rejection pointy which is defined for a sym m etric F  around 0 and is given by :

p* =  inf{r > 0; IF(x; r ,  F ) =  0 when |z | >  r}. (1.42)

The rejection point is the point after which the IF becomes zero. It is desirable th a t the 

IF becomes zero in some region, so th a t contam ination in th a t region will not have any 

influence a t all. Therefore, it is desirable th a t p* is finite.
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1.6 .4  G lobal robustness m easures - th e  breakdow n point

The influence function is, by construction, an entirely local concept. Therefore, it m ust 

be complemented by a measure of the global reliability of the estim ator, which describes 

up to  w hat distance from the model distribution the estim ator still gives some relevant 

inform ation. In Hampel et al. (1986) it is explained th a t the term  ‘relevant inform ation’ 

refers to  some arb itrary  value of the Prohorov distance 7r(G , F)  (Prohorov 1956) between 

contam inated distributions G  and the ‘tru e ’ distribution F . The Prohorov distance of 

two probability distributions F  and G is defined by

7t(F , G)  =  inf{€; F(A ) <  G(A^)  +  e for all events A}, (1.43)

where is the set of all points whose distance from A  is less than  e.

Formally, the breakdown point e* of the sequence of estim ators {T%; n >  1 } is defined

by:

€* =  sup{e < 1; there is a  compact set ^  0  such th a t (1.44)

7t ( F ,G ) < €  implies G({T„ € Fe}) 1 )}.

Intuitively, the breakdown point is the smallest fraction of gross errors which can 

make the sta tistic  unbounded. It is the distance from the model distribution beyond 

which the sta tistic  becomes totally unreliable and uninformative. It is therefore desirable 

th a t  the estim ator has a high breakdown point.

1.6 .5  M -estin ia tors

Huber (1964) introduced a flexible class of estim ators called ‘M -estim ators’ which are a 

generalisation of maximum likelihood estim ators.

The maximum likelihood estim ator (MLE) is defined as the value =  T „ (X i , ..., An) 

which maximises

n / r . M ,  (1.45)
1 =  1

or equivalently by

In =  r n i n r j  (1.46)
t=i
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where In denotes the natural logarithm.

Huber (1964) proposed to  generalise this to

n

' ^ p { X i , T n )  = m ir iT j  (1.47)
2 =  1

where p is some function on ^  x ©. Suppose th a t p has a  derivative ^ ( z ,  ^) = d /ddp (x ,6 ) ,  

so the estim ate Tn satisfies the implicit equation

X^V>(X;,r„) =  0. (1.48)
1 = 1

Any estim ator defined by (1.47) or (1.48) is called an M -estim ator.

1.6 .6  Influence function  for M -estim ators

If Gn is the  empirical cumulative distribution function generated by the sample, then the 

solution Tn of (1.48) can also be w ritten as T(G n), where T  is the functional given by

j  i>(x,T(G))dG(x)  = Q (1.49)

for all distributions G  for which the integral is defined.

Let us now replace G  by Ft^x — {I —t)F  tA x  and differentiate with respect to  t, so

0 =  I  V -(y ,T (F ))rf(A ,-  f )  +  I  ^ m y , » ) ] n F ) d F { y ) ^ [ T { F t , , ) ] t = o  (1.50)

(if integration and differentiation may be interchanged). M aking use of (1.38) and (1.49) 

we obtain

IF(x-, V-, F )  =  _  i)]T(F)dF{y)
under the  assum ption th a t the denom inator is nonzero.

Therefore is B-robust a t F  if and only if ^ ( . ,T (F ) )  is bounded.

The maximum likelihood estim ator is also an M -estim ator, corresponding to  p (z , 6) =

21



- \ n f e { x ) ,  so:

The expression

d/dô[ln fe{x)]g = d/de[fô{x)]g/ /^(x)  (1.53)

is referred to  as the score function and will be denoted by s{Xy Ô), The M LE corresponds 

t o E ? = i s ( ^ i ,M i E „ )  =  0 .

1.7 D ata Contamination and Latent Trait M odels

M any researchers in the field of laten t tra it models have observed th a t estim ating latent 

tra it models is hampered by guessing, inattention to  easy questions, cheating, faking, or 

simply errors when recording or recoding the answers. There have been a lot of studies, 

particularly within the area of educational testing, aiming a t the  identification of ‘aber

ra n t’ response patterns, and also studies th a t proposed various m ethods of estim ating 

ability robustly, particularly in the Rasch model.

W aller (1974) proposed an estim ation procedure for the laten t tra it  model th a t  uses 

the  inform ation contained in the interaction between a person and an item to  remove 

m ost of the effects of random guessing from estim ates of ability, and from estim ates of 

the  difficulty and discrimination param eters. This is accomplished by removing from 

the estim ation procedure those item-person interactions characterised by the item  being 

too difficult for the model and therefore likely to invite guessing. So, the probability of 

positive response for item i by individual I is given by

TTii = F{aoi,au\ei)  if F  > Pc or gu if F  < Pc (1.54)

where, F  is the cumulative probability from the normal or the logistic ogive, &i is the 

ability of subject /, aoi and an  are the difficulty and discrim ination param eters, gu =  

P r (person / guesses item i correctly given F  < Pc), and Pc is some small probability. 

So the estim ate of any person’s ability is based on only those items for which there is a
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reasonable chance th a t the person achieved the correct response through the interaction 

of his ability and the item characteristics.

A preliminary estim ate of a sub jec t’s ability is obtained from the approxim ate trans

form ation of his per cent correct, inverse normal or logistic. Then an iterative procedure 

s ta rts , where the probability of correct response F  is estim ated for each sub jec t’s response 

to  an item . Any item for which this estim ated probability is less than  some small proba

bility, the  cut-off point is om itted. The optim al value Fc is found by fitting different 

values and taking the one th a t provides the best fit. The whole estim ation procedure is 

jo in t maximum likelihood, i.e. estim ates of $i are obtained by directly maximising the 

likelihood with respect to  them . The performance of the uncorrected 2-param eter model 

and the modified 2-param eter model were compared with simulated d a ta . Non-guessing 

and guessing d a ta  sets were generated. W aller’s model provided the best goodness-of-fit 

sta tistic  when the cut-off point used in the estim ation procedure was the one used to  

generate the data . In th a t case the model did also better in recovering the true difficulty 

param eters. Waller compared the information obtained with the uncorrected 2-param eter 

model, the modified 2-param eter model and the 3-param eter guessing model with real 

datasets. The modified 2-param eter model gave the largest average inform ation, bu t all 

the  models did better than  the others on some part of the ability range, no model could 

outperform  the other along the whole ability range.

W right and Mead (1976, unpublished m anuscript, see W ainer and W right (1980)) 

proposed a m ethod based on the residuals for each item ’s response for each person (the 

‘W IN ’ m ethod) in the  Rasch model. A t-statistic  is calculated for the  fit of the person’s 

response pattern  and if it is greater than some chosen value then all item s more than  two 

logits above the person’s ability estim ate are om itted from the person’s response pattern  

and a new ability estim ate is obtained, based upon the shortened test. The process is 

repeated until an acceptable t-value is achieved or the response pa tte rn  gets too short to  

work with.

W right (1980) and Smith (1982) proposed three indices for the analysis of the resid

uals: the  unweighted to ta l fit statistic , which compares observed and expected responses 

for each item for the whole response pattern , the unweighted between fit sta tistic , which 

compares the  person’s predicted score with the observed score on any subset of item s and
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the  unweighted within-set fit statistic , which compares observed and expected response 

for each item in a single subset of items.

This system atic analysis of each person’s response pa tte rn  is referred to  as person 

analysis.

Trabin and Weiss (1983) examine the fit of individuals to  item response models by 

the means of the ‘person response curve’. To construct a person response curve the 

items are ordered by difficulty levels into s tra ta  and then the proportion correct for an 

individual on each stra tum  is plotted against the s tra tum . The person response curve 

provides a means to  study testee response variability and the fit of individuals to  the  IRT 

model. The lower right-hand portion of the curve for each testee (proportion correct for 

the m ost difficult items) provides information on their guessing behaviour whereais the 

upper left-hand corner provides information on the carelessness of the testees. The curve 

will also show any deviation from a unidimensional response pattern , th a t  is if a  testee 

was answering correctly beyond the chance level some difficult items which were beyond 

h is/her ability level. Trabin and Weiss also plotted the expected person response curves, 

by plotting the probability of positive response from an IRT model against the difficulty 

of the items.

Levine and Rubin (1979) and Levine and Drasgow (1983) acknowledge the fact th a t 

some examinees are affected in their answers by test anomalies and thus the ability mea

sure obtained from a latent tra it model will not be valid for those examinees. They 

develop techniques which they call ‘appropriateness m easurem ent’ and which aim to 

identify ‘inappropriate’ test scores. Appropriateness m easurem ent is im plem ented by 

statistics, called appropriateness indices, th a t measure the degree to which an exam inee’s 

answer pattern  is ‘unusual’, th a t is, unlike the pattern  expected from typical examinees. 

In appropriateness measurement studies, examinees are sorted into two groups: (a) exam 

inees with very unusual answer patterns and (b) all other examinees. Levine and Rubin

(1979) identified three types of appropriateness indices and reported positive empirical 

findings from simulation studies. Levine and Drasgow (1983) extended these studies by 

using actual d a ta  and the estim ated param eters instead of the actual values and reported 

similar detection rates.

W ainer and W right (1980) examined robust estim ation of ability in the Rasch model.
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They proposed the use of the jack knife (Mosteller and Tu key 1977) and a robustified 

jackknife to  estim ate ability. The jackknifed estim ate of ability is a weighted mean 

of the ability estim ates obtained from standard  M aximum Likelihood estim ation using 

all items, and the ability estim ates obtained from standard  ML estim ation obtained 

by om itting each item in tu rn  (these are called the jackknifed ability estim ates). The 

robustified jackknife, called ‘Am jack’, is a robust function (used instead of the mean) of 

the jackknifed ability estim ates, which is the Sine M -estim ator (Andrews, Bickel, Hampel, 

Huber, Rogers, and Tu key 1972). Wainer and W right (1980) com pare the jackknife and 

robustified jackknife to  the standard  ML estim ates of ability, to  the  traditional guessing 

correction (putting a lower asym ptote on the item characteristic curve) and W right and 

M ead’s W IN m ethod. In their simulations Wainer and W right found th a t the jackknife 

and robustified jackknife performed well in term s of accuracy and efficiency when there 

was mild guessing or other distortions. W hen there was a fair am ount of guessing W IN 

did better. The lower asym ptote method performed well when there was a lot of guessing, 

the  tes t was long and the ability of the examinees was low.

Mislevy and Bock (1982) applied Tu key’s biweight (Mosteller and Tu key 1977) in es

tim ating ability, to  allow for response disturbances. They applied this to  the 2-param eter 

laten t tra it  model where the probability of correct response is given by

TTii = exp(ûoi + z ia u ) / { l  + exp{aoi -f ziau))  (1.55)

The probability of a response pattern  is given by

7̂1 = (1-56)
1 = 1

The items param eters are assumed to be known and so (1.56) can be regarded as the 

likelihood function of zi given the response pattern . The maximum likelihood of zi is the 

value which maximises (1.56) with respect to  the observations. Tu key’s biweight is given 

by

à; =  ^  WiXi/ Y 2  (1.57)

where W{ =  (1 — if < 1 and 0 otherwise, and U{ =  (z* — x ) l c d .  Tu key defines
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d as half the inter-quartile range, roughly comparable to  a standard  deviation, and c as 

an a rb itrary  constant. D ata  points are assigned decreasing weights as they depart from 

the biweight and non a t all if they lie beyond c inter-quartile range units away. It is 

noted th a t  the biweight must be computed iteratively, since the biweight depends on the 

weights and the weights depend on the biweight. Mislevy and Bock (1982) define i/, 

the  biweight estim ate of latent ability, analogously, by solving the modified likelihood 

equation:

=  0 (1.58)
li

but with

wii =  ( 1  -  Ui^Ÿ if £  I and 0  otherwise,

and uii =  (-aoi  -  z, an  ) /  c

The term  un represents the distance between item i and the subject z/ multiplied by 

the discrim ination of the item. In the Rasch one-param eter model each an  can be set 

equal to  1 . In th a t case un is simply proportional to the difference between estim ated 

ability and item difficulty.

The choice of the constant c is arbitrary. Large values mean th a t  little trim m ing 

of d a ta  will occur, whereas small values would lead to  a  lot of trim m ing. An item ’s 

influence is greatest if -aoi  is equal to the biweight estim ate of ability for subject I x 

the discrim ination param eter, as this will give un =  0 ; influence drops for items further 

from the subject, as the distance gets large for either easy items and high ability or for 

difficult item s and low ability. It reaches zero when un gets equal to  or exceeds 1 .

Mislevy and Bock (1982) propose estimation with Newton-Raphson iteration. The al

gorithm  converged, but one type of response pattern  was troublesome: If a subject missed 

every item except one or two of the hardest items, the biweight procedure would confront 

a vector of all incorrect responses - a pattern  which gives an infinite maximum likeli

hood ability estim ate. Analysis with simulated da ta  showed th a t the biweight estim ates 

of ability have smaller bias, and although they are more dispersed than  the maximum 

likelihood estim ates the reduction of bias gives a smaller mean square error than  the 

maximum likelihood estim ator even when the measurem ent disturbances are mild.

Sm ith (1985) compared Mislevy and Bock’s Biweight, w ith W ainer and W right’s Am-
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jack and person analysis within the Rasch model using simulated d a ta . Sm ith (1985) 

tested  the estim ation m ethods in the presence of guessing and in the presence of ‘s ta r tu p ’ 

disturbance, th a t is when subjects perform poorly in the  beginning of the test, because 

of anxiety. He found th a t Biweight recovered the generating ability be tte r than  Amjack 

and ML, in both instances. Though when ML was combined with person analysis, it did 

b e tte r  than  the robust procedures.

The studies reviewed above except W ainer and W right (1980) and Mislevy and Bock 

(1982) look for aberran t responses in the d a ta  according to  some ad-hoc criteria  and 

propose m ethods of downweighting or eliminating them . W ith sim ulation studies, i.e. by 

generating artificial d a ta  with and w ithout contam ination, they assess how well different 

estim ation m ethods do in estim ating the true ability param eters. W ainer and W right’s 

Amjack and Mislevy and Bock’s Biweight are estim ation m ethods th a t  do not require 

the  exam ination of each response pattern  separately, since the estim ation procedure will 

‘autom atically’ downweight unusual response patterns. Sm ith’s study showed lim itations 

for both m ethods.

In our study we will measure the sensitivity or robustness of the laten t tra it model 

when aberran t response patterns exist. We do so by calculating the Influence Function 

and other robust statistics tools. Large Influence Function values for some response 

pa tte rns mean th a t additional or fewer observations on those response patterns will affect 

a  lot the estim ation of the model param eters and the scoring of the la ten t variable. Large 

Influence Function values are associated with outliers so they may point out unusual 

response patterns with inconsistencies in the responses. One should thus be aware of 

those and if possible check whether they can be regarded as valid observations or they 

are the  result of gross errors or other nuisance factors.

1.8 Sensitivity of the latent trait m odel to the prior distri

bution

T he specification of model (1.4) requires an assumption to  be made about the form of the 

distribution of the latent variable y. This is called the underlying or the  prior distribution 

of y. The distinction is sometimes made between ‘underlying’ and ‘prio r’, depending on 

w hether one refers to  the distribution generating the responses or the distribution used
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to  fit the model.

The assum ption about the distribution of y is arbitrary, therefore it is im portan t to 

know whether the param eter estim ates are sensitive to the form of this distribution.

The effect of the form of the prior in the analysis has been investigated by Bock and 

Aitkin (1981), Bartholomew (1988), Bartholomew (1993), Seong (1990).

Bock and Aitkin (1981) proposed instead of making a rb itrary  assum ptions about the 

distribution of ability, to  estim ate it as a  discrete distribution over a  finite num ber of 

points. As the estim ate of the ability distribution a t the point Zt they used the  posterior 

density given the data , which they called the empirical distribution and is given by:

where r/ is the observed frequency of the response pattern  xi. The values obtained from 

(1.59) can be used in place of h{zt) in the likelihood equations, so effectively in (1.28) 

and (1.29) to  obtain improved estim ates of the param eters. As sta rting  point for the 

estim ation of the empirical distribution Bock and Aitkin proposed the use of the A^(0,1) 

as this represents maximum uncertainty in a distribution with finite mean and variance.

They fitted the two param eter normal ogive model to  two d a ta  sets using the N(0,1), 

the  empirical and the rectangular distributions as priors. To free the  estim ates from the 

dependence on the mean and variance of the prior they imposed the  following restrictions 

on the param eters: []? =  1 a,nd aoi =  0  {an and aoi are the  param eters of the  nor

mal ogive model). The param eter estim ates they obtained based on the nonnormal priors 

were alm ost indistinguishable from the ones obtained based on the N(0,1) distribution.

Bartholomew (1988) examined the sensitivity to  the prior of the  logit model by taking 

different shapes of standardised sym m etric distributions and looking a t their effect on the 

first and second order margins of the item response distribution.

He first briefly examines the literature, which suggests th a t m ethods which depend 

only on the first and second marginal proportions yield results very close to  those which 

are based on the comparison of the observed and expected values of the response pattern  

frequencies. Therefore if the choice of the prior has negligible effect on the expected first 

and second order marginal proportions then it will have little effect on the  numerical
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values of the  estim ates.

He calculated the first and second order expected margins for different sets of param 

eters, in the range of [-4,4], for different priors. The priors he considered were:

i) a three-point distribution with P (z  =  -f-zo) =  0, P (z  =  - z q ) — 0 and P (z  =  0) =  1,

ii) a  three-point distribution with P (z  =  +zo) =  1/2, P (z  =  —zq) =  1 /2  and P (z  =  

0 ) =  0 ,

iii) the normal,

iv) the logistic

and v) the rectangular distribution.

His results show th a t the logistic, normal and rectangular priors give very similar 

results with difference rarely amounting to  more than one or two units in the second 

decimal. Of the extrem al distributions (i,ii) the first is the poorer but still the  change 

in the  margins is relatively small (one or two units in the first decimal place for the first 

order margins and one unit in the first decimal for the second order margins) considering 

how unrealistic the distribution is. The greatest discrepancies occur when the  param eters 

are relatively large. A prior with very long tails would then lead to  marked effect but 

this is not practically reasonable. He therefore concludes th a t  any sym m etrical prior 

will predict essentially the same first and second order margins and he recommends the 

normal prior for general use since it has been most widely used in practice and it has 

ro tational advantages in models with several latent variables (Bartholom ew and K nott 

1999).

Seong (1990) investigated the effect of the prior distribution on the  item  and ability 

param eter estim ates together with the following factors: i) the  number of quadratu re  

points, ii) the  number of examinees and iii) the type of the underlying ability distribution. 

His results were based on simulated data . He used the term s ‘underlying’ and ‘prior’ 

distinctly for the distribution of the laten t variable, depending on whether he w e l s  referring 

to  the  one used in the generation of the response patterns or the one used in the  estim ation 

of the param eters. Both distributions were approxim ated by quadratu re  points and 

weights. He used the tw o-param eter normal ogive as a  response function and the  Bayesian 

EA P for the  ability param eter estim ation.

As measures of accuracy he used the square root of the mean squared difference be

tween the estim ates and the param eters (RMSE) and the mean of the absolute difference
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between estim ates and param eters. In addition he employed a split-plot factorial design 

to  investigate the effects of the above factors. The dependent variables in the  ANOVA 

were the log of the average of the squared differences (LMSE) between estim ates and the 

param eters, for item difficulty, item discrimination and ability. His results showed th a t 

the average difference measures were decreased when the two ability d istributions were 

m atched. Also, more than half of the to ta l sum of squares of the LMSE for ability estim a

tion was due to  the specification of the prior ability distribution. The results suggested 

th a t  it is im portan t th a t users should consider the m atch between the type of underlying 

and prior ability distributions employed, but when users do not have an idea about the 

type of underlying distribution, it is be tter to  use the normal prior distribution than  to  

choose an inappropriate prior distribution.

Zwinderman and van den Wollenberg (1990) examined the effect of misspecification 

of the laten t ability (6) distribution on the accuracy and efficiency of m arginal maximum 

likelihood (MML) item param eter estim ates and on MML statistics to  te s t sufficiency 

and conditional independence for the Rasch model. The results were com pared to  the 

conditional maximum likelihood approach (CML). In their sim ulations they generated 

d a ta  from a standard  normal distribution and from exponential distributions w ith various 

means to  have various degrees of skewness. They fitted the Rasch model with conditional 

m aximum likelihood and marginal maximum likelihood assuming a norm al distribution 

for ability. W hen the underlying distribution was the standard  normal MML gave more 

accurate and efficient estim ates than  CML. W hen though a normal prior was used when 

the underlying distribution was skewed, MML estim ators were less accurate and less ef

ficient than  CML estim ators. The effects were not large, though they increased as the 

skewness of the  underlying distribution increased. CML estim ators were also affected as 

the  skewness of the  num ber-correct distribution increased together with the skewness of 

the  underlying distribution. The sta tistic  Rim  s ta tistic  (Glas 1989) to  test the  sufficiency 

assum ption of the Rasch model in the MML approach, based on the observed and ex

pected frequency for each to ta l score, was severely affected by the  misspecification of the  

prior distribution.

Bartholom ew (1993) noted th a t the  population mean and standard  deviation are 

confounded in the param eter estim ates. Suppose th a t the laten t variable y is d istributed
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with mean ft and standard  deviation a  and let z = (y -  For the one-factor logit

model we will have:

logit 7ri(y) =  doî +  o-xiV (1.60)

We can transform  this model from the scale of y  to  th a t of z obtaining

logit7r*(z) =  aoi +  au{fi  -j- az)  =  aoi +  aufi  -|- a u a z  =  aj,- -f a j,z  (1.61)

Usually we assume a standardised distribution, so it is the  param eters aQi and 

th a t we estim ate in practice.

The confounding of the item param eters with the population characteristics has some 

intuitive meaning. A question which is a poor discrim inator in a population where a tti

tudes or an ability show little variation may be quite discrim inating in one where they 

are more highly dispersed. Similarly, questions which appear conservative in a  radical

population may be radical to  conservatives. Or, in the context of ability, a  question will

be regarded as easy or difficult depending on the underlying ability of the students it has 

been given to.

This presents no problems if we are considering a single population, bu t may present 

difficulties if we are interested in several populations, or the same one a t different tim es. 

Since we regard the a ’s as intrinsic properties of the questions, if we fit the  logit model 

to  two populations, any system atic differences in the estim ates can be a ttrib u ted  to 

differences in // and a. (1.61) shows th a t differences in location, measured by /i, will 

show up in agi and differences in a will affect an.  A non-system atic set of differences in 

either the difficulty of the discrimination param eters could not be due to  a population 

shift in either location or dispersion.

In our study we will further investigate the sensitivity of the  laten t tra it model to  

the form of the prior through the Influence Function. The Influence Function will show 

the behaviour of the  estim ates for small changes in the prior. We will also examine gross 

changes in the prior by fitting mixtures of normals as priors.
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1.9 Semiparametric estim ation of the latent trait m odel

Bock and Aitkin (1981) use of an empirical prior has also been referred to  as ‘semi- 

param etric’ estim ation of the latent tra it model, since there is no assumed param etric 

form for the prior. Since then m ethods have been developed to estim ate laten t tra it 

models, particularly the Rasch model, w ithout restricting the nodes of the laten t dis

tribution. This has been called nonparam etric estim ation of the  la ten t distribution, or 

‘fully sem iparam etric’ estim ation of the latent tra it model.

N o n p a r a m e tr ic  e s t im a tio n  o f  th e  m ix in g  d is t r ib u t io n  The la ten t distribution is 

in effect a mixing distribution so the results on estim ating nonparam etrically a  mixing 

distribution apply to  some extent to latent tra it models.

M ost of the  research on this topic has been based on the results of Kiefer and Wolfowitz 

(1956). In their paper they proved th a t the maximum likelihood estim ator of a  struc tu ra l 

param eter (a param eter th a t relates the explanatory variables to  the outcom e of interest) 

is strongly consistent, when the (infinitely many) incidental param eters (param eters th a t 

represent the effects of om itted variables) are independently d istributed random  variables 

with a  common unknown distribution, F.  Moreover, F  is also consistently estim ated, 

although it is not assumed to  belong to  a param etric class.

Laird (1978) examines nonparam etric maximum likelihood estim ation of a  d istribu

tion function F  with the following probability model: =  ( x i , ..., x^) is the observed

d a ta  vector and =  ( y i , ..., y„) is an unobserved random  sample, w ith distribution func

tion F{y) .  The sample space of the y^’s is and interval on the real line. Conditionally on 

yi, each Xi is independently distributed with density hi{xi\yi).  Marginally, each X{ has 

density

gi(xi\F) = j  hi(xi \y)dF(y)  (1.62)

The param etric form of A;(.|.) is assumed to be known. Laird shows th a t  the non

param etric maximum likelihood estim ate of the mixing distribution F  is self-consistent 

and then she uses this property to prove th a t, under certain conditions, the estim ate 

m ust be a step  function with finite number of steps. Then the mixing distribution is 

characterised uniquely by the location of the steps and the am ount of probability a t each 

step and the estim ation problem reduces to  th a t of maximum likelihood estim ation of
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the param eters of a m ixture of k densities, k is taken to  be the smallest integer such th a t  

the locations of the points are all d istinct and their probabilities all positive, k  is not 

known in advance but one can s ta r t  with a small k and maximise the likelihood until all 

locations are distinct and the probabilities all positive or s ta r t  with a  large k and take k 

to  be the number of distinct steps with positive probability.

Lindsay (1983) studied the geometry of the  likelihood of the  estim ator of a  m ixture 

density Q and gave conditions on the existence, discreetness, support size characterisa

tion and uniqueness of the estim ator. The m ixture density corresponding to  the  mixing 

distribution Q is defined with

=  j  fe(x)dQ(e)  (1.63)

where the fg ’s are called the atom ic densities because they correspond to  the  atom ic 

mixing distributions which assign probability one to  any set containing 9.

Suppose the observation vector x  has K  distinct observations y i , ..., yK and Uk is the 

num ber of a?’s which equal ŷ -. The atom ic and m ixture likelihood vectors are defined as

fe  =  ( f e ( y i ) , - ,  fe(yi<)) and Jq =  ( / g l y i ) , / g f e / c ) )

Lindsay defined the function D{9,Q)

which is the directional derivative of the loglikelihood a t Q tow ards 0, and used this 

to  determ ine various properties of the estim ator. He proved th a t  the m easure Q which 

maximises logZ-(Q) also minimises sup^D (^,Q ) and th a t supD{6,Q)  =  0. Moreover, the 

support of Q  is contained in the set of 6 for which D{9,Q)  =  0. The maximum number 

of support points is the number of distinct observations. Lindsay gave an algorithm  

to  estim ate the mixing distribution, the vertex direction m ethod (VDM ), which uses 

D{6^Q),  and also suggested the use of the VDM in alternation with the EM  to guarantee 

convergence.

N o n p a r a m e tr ic  e s t im a t io n  o f  th e  R a sc h  m o d e l Results regarding the nonpara

m etric estim ation of a  mixing distribution have been applied to  the Rasch model. In the 

following we review the most im portant papers.
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Cressie and Holland (1983) formulate the  m arginal probabilities of the response 

pa tte rn s in term s of the conditional odds of responding positively to  an item , V{ =  

7Ti{z)/{l — 7r{(z)), and w ithout making any assum ptions about the  distribution func

tion G  of z, with p(x)  = p(0) ^ \üiVi(zY*]dG(z),  or p{x)  =  p{0)E[IliVi{zY*],  where 

p ( 0 ) =  / n%(l / ( l  — Ki{z))dG{z). The marginal probabilities are therefore shown to  be 

proportional to  the m oments of a  special type of positive random  vector (z is defined to  

be positive). Using this result they reexpress p(x)  for the  Rasch model as a  loglinear 

model, logp(x) =  77 -f ^ 4 = 1  some param eters of which are the first p  m oments of 

u =  exp(z), where p is the number of items. If the loglinear param eters satisfy certain 

inequalities (Karlin and Studden 1966) then there exists a distribution function G  and 

its first p  m oments are defined.

De Leeuw and Verhelst (1986) put the various versions of the Rasch model in a general 

framework, making the distinction between a functional model, where the individuals are 

considered param eters, and the structu ral model, where the individuals are characterised 

by a random  variable with distribution Fj, which may be equal across individuals. They 

then focused on the nonparam etric estim ation of the Rasch model, th a t is when the 

common distribution F  is completely unknown. They proved th a t the marginal maximum 

likelihood estim ates of the item param eters in the structu ra l model, in which F, =  F , 

are equal to  the conditional maximum likelihood estim ates when the Rasch model holds, 

th a t  is when the fitted proportions of the score to ta ls are equal to  the  observed group 

to ta ls. These equations, where the fitted proportions under CML are put equal to  the 

fitted  proportions under MML, can be represented as power moment equations and can 

be solved for the latent distribution, using properties of Tchebyscheff system s (Karlin 

and Studden 1966). The solutions are step functions, with (p -f  l ) / 2  number of steps if 

p, the  num ber of items, is odd, and (p -f 2 ) / 2  if p is even, with the first point being equal 

to  — 0 0  in the  la tte r case.

The same ideas were developed independently by Follmann (1988). He also applied 

the  results of Karlin and Studden to  the Rasch model to  show th a t the  class of all 

m arginal logistic models is equivalent to  the class of marginal logistic models based on 

discrete laten t distributions with a t most (p -b 2 ) / 2  latent abilities.

Lindsay, Clogg, and Grego (1991) gave more general results regarding the estim ation
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of the Rasch model. They first made a distinction between concordant and discordant 

CcLses: A case is concordant if the marginal frequencies of the  to ta l scores can be fitted 

exactly by the model; it is discordant in all other cases. They then sta ted  th a t for 

concordant cases CML and MML estim ates of the item param eters are identical, as 

De Leeuw and Verhelst (1986) had proved, but the latent distribution cannot be estim ated 

uniquely in all cases. More specifically, in the case of ‘borderline concordance’, i.e. when 

a t least one of the determ inantal inequalities th a t arise in checking for concordance is 

an equality, the estim ate is unique. Moving above a critical num ber of points will not 

improve the fit and the resulting distribution will degenerate to  the one obtained with 

the critical num ber of points.

W hen all the inequalities hold strictly though (positive definite concordance) the 

laten t distribution cannot be estim ated uniquely. Increasing the num ber of critical points 

will not improve the fit but will give different distinct latent distributions.

In the discordant cases, CML and MML estim ates are different. Then the estim ate 

of the  latent distribution is unique and the maximum num ber of support points needed 

is p / 2 .

S e m ip a ra m e tr ic  e s t im a t io n  o f  o th e r  la te n t  t r a i t  m o d e ls  Bock and Aitkin (1981) 

suggested to  fit the 2 -param eter model using an empirical distribution, i.e. a distribution 

which will be estim ated from the d a ta  simultaneously with the param eters, as we saw in 

Section 1.8. In their estim ation method they fixed a grid of approxim ating points and 

they estim ated a t each iteration of the E-M algorithm the weights of the points. This 

m ethod will be described in detail in C hapter 4, Section (4.2).

Mislevy (1984) gives a non-param etric approach of estim ating the laten t distribution, 

‘a  sm ooth continuous m -variate distribution with finite m om ents’, w ithout specifying a 

particular latent tra it model. The continuous density is approxim ated by a discrete dis

tribution on a finite number of points- in effect an m-dimensional histogram . Only the 

weights though are estim ated from the data , the points have to  be defined beforehand. 

He refers to Laird (1978) for the simultaneous estim ation of points and weights in the 

unidimensional case but does not implement it for any particular latent tra it model. He 

suggests the  use of the points and weights to  calculate m oments of the laten t d istribu

tion. In the case where the form of the latent distribution is known (if it is a param etric
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distribution) then the loglikelihood can be differentiated w .r.t. the param eters and the 

equations can be solved for those, iteratively and using quadrature  or with M onte Carlo 

integration. Mislevy implements this for the m ultivariate normal and beta-binom ial dis

tributions.

Links with latent class analysis Sem iparam etric estim ation makes laten t tra it mod

els more similar to  latent class models. In latent class analysis the response probabilities 

of the  items are not linked to  the latent classes through a param etric form, and also 

the  positions of the classes in not restricted in any way. In fully param etric laten t tra it 

model the response probabilities are linked though a param etric function to  the underly

ing continuous laten t variable and the distribution of the laten t variable is param etrically 

specified.

In sem iparam etric estim ation there is no restriction on the form of the  laten t variable 

distribution. It tu rns out to  be th a t this is a step function but the position of the nodes 

and their probabilities are estim ated from the data . Thus one can consider them  as latent 

classes, where the classes are nodes along a continuum.

Croon (1990) considered the question of how an ordered relation may be defined on 

the  classes in a  latent class model. He proposed to  impose inequality restrictions on 

the  item response and the cumulative item response probabilities to  impose ordinality 

of the  laten t classes. So, the order relation on the set of laten t classes is defined by 

imposing on each item th a t the probability of ‘positive’ response should be an increasing 

function of the latent class number, or equivalently, th a t the  probability of a  ‘negative’ 

response should decrease as a function of the latent class number. In the case of a 

dichotom ous item i with ordered response categories 0  (for a  negative response) and 1 (for 

a positive response) the definition of ordered latent classes am ounts to  the requirem ent 

th a t  the probabilities of positive response belonging to  class t P{X i  =  1 |() satisfy a  certain 

m onotonicity condition th a t can be represented by the following system  of inequalities: 

P { X i  =  l \t) < P {X i  =  l \ t  4 - 1 ), for ( =  1,2,  ...,T  — 1 . For the estim ation of the  ordered 

la ten t class models he discusses an E-M algorithm , where during the M (axim ization) step 

the  item  response probabilities have to  be re-estim ated under the inequality restrictions 

given above. He shows th a t this constrained concave optim ization problem is formally 

identical to  the problem of estim ating a sequence of stochastically ordered distribution
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functions, for which algorithm s exist. In his examples he discusses sim ilarities of the 

ordered laten t class model with the 2-param eter latent tra it model. From the ordered 

laten t class analysis, clear differences among the items emerged with respect to  the way in 

which their response probabilities and cumulative response probabilities vary as a  function 

of the laten t variable. The two most obvious aspects of this relationship are its overall 

level and its steepness. So, if one compares the way the response probabilities of two 

items vary as a function or the ordinal latent variable, one will observe th a t irrespective 

of which class one considers, the response probabilities of one item  will always be lower. 

This is related to  the ‘popularity’, or ‘difficulty’ of the  items. The steepness, on the other 

hand, which is how drastically the probabilities of an item change as one moves along 

the laten t classes, has to do with the discrim inatory power of the  item .

From the estim ated proportions of respondents belonging to  each laten t class, one 

can get a rough idea of how the respondents are d istributed along the laten t continuum, 

for example, whether the respondents are concentrated a t a central position or a t the 

extremes.

Croon notes th a t one cannot choose the optim al num ber of la ten t classes on the 

basis of a  statistical test, as the results concerning the asym ptotic d istribution of the 

likelihood ratio  test sta tistic  do not apply. He therefore used in his examples the  Akaike’s 

Information Criterion instead.

Relations between latent tra it and latent class model were also examined by Haertel 

(1990). He gave conditions for the two-latent class and tw o-param eter normal ogive model 

to  agree and presented relations between items and generalised these to  continuous models 

with more than  one latent tra it and discrete models with more than  two laten t classes. 

In particular, he equated the response probabilities of the  2-latent class model to  the 

conditional response probabilities of the 2  param eter normal laten t tra it model a t the 

two points th a t had been used to  estim ate the prior, to  obtain the estim ates of the two 

item param eters, the threshold and the slope.

Haertel noted th a t one could get the param eters of the two param eter latent tra it 

model from the response probabilities of the latent class model and not vice versa, because 

of the indeterm inancy of item param eters due to  location and scale of prior. Although, he 

said, there is no direct correspondence between the item param eters of the two models.
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he proposed the log-odds ratio,

Wi =  ln[p2i(l -  P i i ) / P i i { l  -  P2i)]

as an item ’s discrimination index under the laten t class model. He also noted th a t the 

2 LC model provides a param eter for the latent tra it distribution whereas such param eters 

are introduced in the 2PN model only under ancillary assum ptions to  facilitate estim ation.

Heinen (1996) studied the links between latent tra it, latent class and loglinear models 

and gave equivalences between them . He discussed and gave examples of sem ipara

m etric estim ation of the Rasch and the 2-param eter laten t tra it model, though for the 

2 -param eter logistic model the nodes had to  be held fixed.

LEM, a com puter program  developed by Vermunt (1997), fits various types of laten t 

class and loglinear models. The various models are specified by imposing restrictions on 

the conditional response probabilities or the loglinear param eters, for example, by having 

inequality restrictions on the conditional probabilities one can form ulate an ordinal latent 

class model. In LEM, a latent tra it model can be defined as a  loglinear row-effects model, 

where the laten t variable is the ordinal column variable and the rows are the  items. If the  

scores for the column variable are not given, then the laten t tra it model is param eterised 

as a  row column association model and LEM can estim ate the scores of the column 

variable, so this makes it equivalent to  the fully sem iparam etric estim ation of the laten t 

tra it model. However, in case of binary data , there are not enough degrees of freedom to  

estim ate a row column association model. Thus the above param eterisation can only be 

defined for polytom ous items.

N o n p a r a m e tr ic  e s t im a tio n  o f  th e  m ix in g  d is t r ib u t io n  in  o th e r  a re a s  o f  a p p li

c a tio n  Nonparam etric estim ation of the mixing distribution has been applied in the 

estim ation of Generalized Linear Models (Aitkin 1996), in longitudinal analysis (Davies

1987) and in two-level variance component models (Hinde and Wood 1987), where the 

mixing distribution is used to  model overdispersion. We summ arise A itkin’s results as 

these seem more closely linked to  the estim ation of the laten t tra it model.

Aitkin (1996) gives a nonparam etric maximum likelihood estim ation m ethod of the 

mixing distribution in the case of overdispersed Generalized Linear Models. The mixing
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distribution has been used in GLM ’s to  take care of overdispersion. Specifying a  param et

ric form for it may affect the param eter estim ates, thus its non-param etric estim ation 

is of great value. A itkin’s method is based on the paper by Hinde and Wood (1987) 

where they address the com putational issues of NPML in the more general framework of 

two-level variance component models. The model is specified as follows: x =  (z i, ...Xn) 

is a random  sample from exponential distribution f{x\6)  with canonical param eter 9 and 

mean ji, and explanatory variables U =  (ui,...u„,) related to  jj, through a link function 

r]i — g{fii) with linear predictor r]i = (3'ui. Overdispersion is modelled by incorporating 

an unobserved random effect Z{ for the zth observation.

The likelihood of an observation is given by integrating over the  distribution of z. 

If one assumes a param etric form for z the integral is approxim ated by a sum over k 

m ass-points Zk with masses pk (appropriate for the chosen form).

The likelihood is thus the likelihood of a finite m ixture of exponential family densities 

with known m ixture proportions pk a t known m ass-points z t, with the linear predictor 

for the zth observation in the A;th m ixture component being rjik =  P'ui  -f &z&, where 

(7 is the scale param eter of the mixing distribution. One can regard this as the exact 

likelihood for this discrete mixing distribution for z. For the NPML estim ation of the 

masses and mass-points, the masses and m ass-points are trea ted  as unknown param eters. 

The number K  of points is also unknown but treated  as fixed, and sequentially increased 

until the likelihood is maximised. Since the variance of the mixing distribution is a 

function of the unknown param eters, the scale param eter is dropped and the m ass-point 

param eters are defined as with linear predictor rjik =  P'ui -f ak. a  functions as an 

intercept param eter for the kth. component: it can immediately be estim ated simply by 

including a ‘com ponent’ factor in the model with K  levels instead of variable z* (Hinde 

and Wood 1987). Estim ates of the weights are obtained by differentiating the likelihood 

with respect to  them . The model is estim ated by the same EM algorithm , with an 

additional calculation in the M -step of the estim ate of pk from the posterior probabilities 

(the probabilities of the observations given the component).

Lindsay and Lesperance (1995) reviewed methodological developments in sem ipara

m etric maximum likelihood estim ation of m ixture models and gave examples in various 

areas of application, whereas Boehning (1995) reviewed algorithm s for nonparam etric es

tim ation of the mixing distribution. M ost of the algorithm s are based on the directional
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derivative (1.64) and are all variants of the vertex direction method (VDM). The vertex 

exchange method (VEM) proposed by Boehning (1985) had the advantage over VDM th a t 

it could add a good support point and eliminate a bad support point a t each iteration. 

An improved and faster algorithm , the intra-simplex direction method (ISDM), also a 

variant of VDM was proposed by Lesperance and Kalbfleisch (1992). Susko, Kalbfleisch, 

and Chen (1998) further developed this algorithm  so th a t it can solve the problem of 

constrained estim ation.

In this thesis we will further explore sem iparam etric estim ation of the  prior, using 

Bock and A itkin’s empirical prior m ethod, and also fully sem iparam etric estim ation with 

a  new algorithm . We will also investigate on the information th a t  can be obtained about 

the  prior from a set of binary responses by m easuring the variability of the estim ated 

prior with boo tstrap  simulations.

1.10 Goodness-of-fit

1.10.1  G oodn ess-of-fit s ta tistic s

G o o d n e ss -o f-fit  in d ices  Goodness-of-fit is tested by comparing the observed and ex

pected frequencies of the 2^ possible response patterns. If n, the sample size, is reasonably 

large goodness-of-fit may be measured by either of

(a) the likelihood ratio  sta tistic

2P
G^ =  2 ^ 0 , l o g ( 0 , / E , )  (1.65)

i=l

or

(b) the Pearson chi-squared sta tistic

X'^ = Ÿ . ( O i - E i Ÿ  (1 .6 6 )
i=l  t=l

where 0{  and E{ are, respectively, the observed and expected frequencies of the  zth re

sponse pattern . Under the null hypothesis th a t the model fits, each sta tistic  is d istributed, 

approxim ately, like chi-squared with 2  ̂— 2 p — 1 degrees of freedom, 2p being the num ber 

of param eters to  be estim ated.
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and belong to  the family of ‘power divergence’ statistics (Read and Cressie

1988), all of which take the following form, differing only by the param eter A:

2P
2[A(A +  1)]-" Oi[{Oi/Ei)^ -  1] (1.67)

i=l

The likelihood ratio statistic  is obtained for A 0. W ith A =  1 we get the  Pearson 

chi-square. Read and Cressie suggested A =  2/3.

A nother set of indices are indices th a t compare a fitted model with a base-line model. 

As a base-line we take the value of when the x ’s are assumed to  be independent. This 

is obtained in the usual way for testing independence in p-way contingency tables and is 

equivalent to  setting a n  =  0 for all i in (2). If we let G q be the value of G^ for this special 

case and G j  be the corresponding value for the log it/p rob it model then the  percentage 

of G^ explained is

%G^ =  X  100 (1.68)

%G^  gives the extent to  which the model explains the associations among the  z ’s. 

An index similar to  (1 .6 8 ) has been used by Krebs and Schuessler (1987) for laten t 

tra it  models. The notion of the am ount of association explained is d istinct from th a t  of 

goodness-of-ht. It is quite possible for a  model which fits well to  account for only a  small 

p a rt of the  association. Nevertheless a poorly fitting model will give rise to  a  larger than  

expected G \  and this will have the effect of reducing the percentage of G^ explained.

1 .10 .2  T h e problem  o f goodn ess-of-fit

The use of these goodness-of-fit indices is often problem atic. The difficulty arises because 

2 ^ increases exponentially with p  so th a t the average expected frequency quickly becomes 

too small for the chi-squared approxim ation to  the sampling distribution to  be valid. For

example, if p  =  10, 2^ =  1024 and therefore, even with n  =  1000, there will be many

response pa tte rn s with E / s  which are much less than  1. The problem may be partly  

overcome by pooling response patterns so th a t the expected values for the groups thus 

formed are large enough (>  5, say) to  justify using the chi-squared approxim ation to 

the  sam pling distribution. However, this often leads to  a  situation where there are no 

degrees of freedom left. There are two other drawbacks to  pooling which become more
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serious as p  increases. F irst, pooling response patterns results in a  loss of information. 

If p =  20, for example, 2^ is close to  1 million and it will then be necessary to  pool 

about 5000 response patterns, on average, to  achieve an expected frequency of 5. The 

test will reveal nothing about the deviations from the model within these groups. We 

may therefore expect to find an increasing loss of power as p  increases and this is borne 

out by calculations reported later.

Secondly, in the calculation of we regard all of those response patterns for which 

Oj =  0 as pooled into a  single group. This happens in the  un pooled case as well, since 

their contribution is the sum of their expected frequencies and this is the sum of all 

expected frequencies of the 2^ table minus the sum of the expected frequencies of the NR 

observed response patterns: with i — 1 , . . . ,N R  and j  =  1 , . . . , 2 ,̂ and so

the contribution of the unobserved response patterns to  is equal to  ^ ( 0  — E k Ÿ / E k  =  

Y E k  = ~  Y E i ,  where & =  1 , ..., 2^ -  NR.

This observation alone is sufficient to  show th a t the chi-squared approxim ation cannot 

be valid because it depends on the assum ption th a t the jo in t distribution of the O^’s 

is m ultinomial. This cannot be so if the pooling is with regard to  the values of the 

frequencies th a t are pooled.

As for the likelihood ratio statistic , only those response patterns for which 0{ > 

0  contribute to  its calculation, so as p gets large, fewer cells out of the 2 ^ cells are 

contributing.

These considerations show (a) th a t there are serious questions about precisely how

and should be calculated and (b) th a t the sampling distribution cannot have the

form if extensive pooling is involved.

Since it is not always clear which m ethod is preferable, we shall calculate two versions 

of and X'^:

(i) using (1.65) and (1.66) without pooling

(ii) by pooling response patterns so th a t the expected frequencies in each group exceed 

5. This will be done by proceeding down the list of those patterns for which O,- is non-zero 

in order oî  E { z  \ x) and forming groups cumulatively until the expected size criterion is 

satisfied. Pooling is done on the basis of E {z  | x) to ensure th a t  the groups so formed 

are as homogeneous as possible with respect to  the latent variable.

To overcome the problems presented when the frequency tables are sparse, we will
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propose the use of M onte Carlo sampling to approxim ate the empirical d istribution of 

(1.65) and (1,66) and other derived statistics and also the use of diagnostic m ethods 

bcLsed on the residuals, in order to  draw inferences on the goodness-of-ht of a  model.

1.10.3  S tu d ies on th e  goodn ess-of-fit ind ices for categorical d ata

The statistical problem arising from the sparseness of the contingency table affects o ther 

models for d a ta  of this kind, and particularly latent class and loglinear models.

There have been a lot of studies th a t have investigated the behaviour of and 

in a  variety of models and conditions but it appears to  be difficult to  predict w hether

and would behave liberal (too many incorrect rejections) or conservative (to  few 

incorrect rejections). Larntz (1978) concluded th a t G^ is liberal, due prim arily to  the 

influence th a t  small expected cell frequencies have on this statistic . Koehler and Larntz

(1980) found th a t if there were many expected frequencies less than  one, then X ^  would 

be liberal, rejecting too often. They also found th a t if the ratio of the sample size n  over 

the num ber of cells k  was less than  0.5 G^ would be conservative, bu t if n / k  was greater 

than  0.5 G^ would be liberal. E veritt (1988) showed th a t  when there were few items 

in the  laten t class model G^ was conservative and when there were many item s G^ was 

liberal.

In the following we will review in greater detail three more recent studies th a t  have 

conducted M onte-Carlo simulations to examine the empirical distributions of X ^  and G^ 

and then used the empirical distributions of these statistics to draw inferences on the 

goodness-of-fit of the models tested.

Collins, Fidler, W ugalter, and Long (1993) investigated this problem in relation to  

the  laten t class model. They carried out simulations to  investigate how the  sampling 

distributions of G^, X ^  and the Read and Cressie (RC) index for A =  2 /3 , would be 

affected by the number of items, the number of latent classes fitted, the  size of the 

param eters (conditional response probabilities) and the different ratio  of sample size to  

num ber of cells (the ratio varied from 1 to  16). They found substantial deviations between 

the expectation of the chi-squared distribution and the G^ and the Read and Cressie 

distributions. In particular, the expectations of the empirical distributions of G^ and RC 

were lower than  the expectation of the chi-squared distribution if the conditional response
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probabilities were equal to  0.9, and higher than  the expectation of the chi-squared if the 

conditional response probabilities were equal to 0.65. So if and RC were compared 

to  a  critical value from chi-squared would not be rejecting enough in the first case and 

they would be rejecting too often in the second case. The mean of the distribution 

was closer to  the expectation of the chi-squared distribution but its standard  deviation 

much larger than  the standard  deviation of the theoretical distribution. Collins et al. 

(1993) carried also simulations to  dem onstrate procedure of M onte-Carlo sim ulations to 

test goodness-of-fit. The behaviour of the indices was consistent with w hat they found 

above and the M onte-Carlo procedure gave a clearer picture to  the relative fit of the 

models considered.

Reiser and VandenBerg (1994) used M onte-Carlo sim ulations to  study the behaviour 

of and for the log it/p robit latent tra it model. In particular, they carried out 

sim ulations under a  variety of conditions and measured the rate  of Type I and II errors 

of these statistics for two estim ation methods, the ‘full information m ethod’, where the 

2  ̂ response pattern  frequencies are used in the analysis and the ‘limited inform ation’ 

m ethod, where only the first- and second-order marginal frequencies are used in the 

estim ation of the same model. Their results for the full information m ethod showed th a t 

when the ratio of sample size to number of cells was smaller than  2, type I error of G^ was 

0 , whereas performed well even with 1 0  manifest variables and degree of sparseness 

equal to  0.5. Regarding the power of the tests, performed satisfactorily when the 

num ber of items was up to seven but with more than 8  items (and ratio  of sample size 

to  num ber of cell 1.95) the test had no power against the null hypothesis. The Pearson 

s ta tis tic  performed well up through eight variables, and then lost power. In general the 

limited inform ation m ethod had higher type I error rates bu t higher power.

Langeheine, Pannekoek, and van de Pol (1996) bootstrapped the G^, X ^  and the 

Read and Cressie sta tistic  of latent class, loglinear and latent M arkov models fitted to  

d a ta  with various degrees of sparseness. Their analyses showed th a t  the bootstrapped 

goodness-of-fit indices gave the same p  values as the non-bootstrapped ones when there 

was no sparseness, but when there was sparseness then the bootstrapped p values gave a 

higher probability of accepting a model as compared with the nonbootstrapped p  values. 

In some cases though there was disagreement between X ^  and G^ which the boo tstrap
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would not always resolve.

W hereas Collins et al. (1993) and Reiser and VandenBerg (1994) sim ulated d a ta  using 

the estim ated param eters of the model, Langeheine et al. (1996) used a procedure for 

sampling from a multinomial distribution over the 2  ̂ cells of the  table with probabilities 

estim ated from the model and n equal to the sample size.

We will use M onte-Carlo simulations to assess the goodness-of-fit of the  Schuessler 

Social Life Feeling scales. The number of items of these scales vary from 5 to  1 2 , thus 

allowing us to  study the behaviour of the M onte-Carlo m ethod for different num ber of 

items. We will also use some simulated datasets to  assess the power of the test. We will 

also propose the use of diagnostic m ethods to  complement the  goodness-of-fit test.

1.11 The D ata

The d a ta  used in this thesis are the ‘Social Life Feeling’ scales and ability tests from the 

N ational Foundation of Educational Research (NFER).

S oc ia l L ife F ee lin g  scales Schuessler’s original d a ta  on social life feelings related to  

1 2  scales using American respondents (Schuessler 1982). The study was then extended 

to  G erm an samples in collaboration with Krebs (Krebs and Schuessler 1987). In or

der to  adap t the American scales to the German situation and, especially, to  facilitate 

comparisons between the two countries the scales were further refined by om itting some 

questions and a few complete scales to  yield w hat the authors called inter-cultural scales. 

There were 9 scales with the numbers of items varying between 5 and 1 2 . There is no 

scale 7 in the intercultural scales though we will use the American scale 7 in some of our 

analyses. The questions for each scale are listed in the  Appendix. The sampling schemes, 

described in Schuessler (1982) and Krebs and Schuessler (1987), were designed to  yield 

about 2000 respondents in Germany and 1500 in the USA. The files supplied to  us have 

complete sets of responses of 1490 individuals for Germ any and 1416 individuals for the 

USA. In the case of Scale 4, which applies only to employed persons, the num bers are 

roughly halved in the German case.

N a t io n a l  F o u n d a tio n  o f  E d u c a tio n a l R e s e a rc h  d a ta  We will use test 1 of the 

N FER  tests for prim ary school boys (Gorman, W hite, L .O rchard, and A .Tate 1981).
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The test comprises 21 items and the sample size is 566. The test is described in the 

Appendix.

A t t i tu d e  to  e m p lo y m e n t d a ta  The da ta  are taken from Albanese and K nott (1992b) 

and Birkhoff (1991). They are the responses to  4 items chosen from 14 items concerning 

the a ttitu d e  to  work of 1915 German company employees in 1987. These items are part 

of an investigation about w hat the  employees thought to  be the strengths and weaknesses 

of the company and how they felt about their personal situation a t the work place. The 

items are given in the Appendix.

1.12 Outline of the thesis

In C hapter 2 we will investigate the sensitivity of the param eters of the  laten t tra it  model 

and the posterior means when d a ta  are contam inated, using robust statistics tools and 

empirical da ta .

In C hapter 3 we will study the behaviour of the model when the assum ption about 

the prior distribution is violated. Small violations will be studied using robust sta tistics 

tools and empirical data . We will also study gross discrepancies of the usual assum ptions 

by fitting m ixtures of normals as priors.

In C hapter 4 we will investigate sem iparam etric and fully sem iparam etric estim ation 

of the laten t tra it model. We will also measure the information about the prior th a t  can 

be obtained from fitting a latent tra it model to  a set of binary responses using boo tstrap  

samples.

In C hapter 5 we will examine the fit of the log it/p robit latent tra it model to  Schuessler’s 

Social Life Feeling scales using M onte-Carlo simulations as an alternative to  the  usual 

goodness-of-fit m ethods. We will also give diagnostic procedures, based on the residuals, 

which give insight to reasons of poor fit.

In C hapter 6  we will draw the conclusions of this thesis.
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Chapter 2

Sensitivity of the logit/ probit 

m odel to contam inated data

2.1 Introduction

In this chapter we will investigate the effect of d a ta  contam ination on the param eter esti

m ates and the posterior means, using robust statistical m ethods and empirical analysis.

By d a ta  contam ination we mean th a t some responses arose because of some mech

anism operating other than  the assumed latent variable. For example, in educational 

testing d a ta  contam ination may be present because of guessing, cheating or carelessness. 

In a ttitu d e  and personality questionnaires d a ta  contam ination may be due to  faking or 

carelessness. M istakes may also occur in the recording of the data .

We will first derive the Influence Function for the param eters of the  laten t tra it model, 

and study its behaviour for some datasets. We will then study the actual changes in the 

param eters for artificially contam inated datasets and find the am ount of contam ination 

for which maximum likelihood estim ation is robust. O ther types of contam ination, like 

shifting observations from one response pattern  to  another, and increasing the  probability 

of positive response for an item, will be investigated.

We will also study the effect of d a ta  contam ination on the scoring of the  laten t vari

able, both  theoretically, through the Influence Function, and empirically, through artifi

cially contam inated datasets. At the end of the chapter we will study the behaviour of 

existing ‘robust’ estim ation m ethods proposed in the literature for either the  param eters
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or the scoring of the latent variable.

2.2 The Influence Function of the parameters

The influence function (IF) of a param eter a t response x  may be thought of as the  ra te  of 

change of the param eter when a small ex tra  probability is given to  response x. Rewriting 

(1.38) using the notation for the latent tra it model, the influence function IF (a ji;x )  for 

the  param eter Gji, j  =  0 , 1 , i =  1 , ...,p  is given by

lim ~  (2 .1 )
e- ¥ 0  e  ̂ ’

where aji is evaluated from / ( x )  and aji{e) is evaluated from a population of X ’s which 

follow / ( x )  with probability ( 1  — e) and take the value x  with probability e. x  is a 

response pattern  and the population of the X ’s the set of all possible response pa tte rns 

for a  given num ber of items.

We take the param eters aji for an arb itrary  distribution over the  responses as being 

defined by their making the expected value of the score function of the  log it/p rob it 

model equal to  0. This will allow the influence function to tell us about the  sensitivity

of maximum likelihood estim ates of the aji to  changes in the distribution of responses

when the log it/p rob it model is fitted.

The score function for aji is given by the following equations, which are expanded 

forms of (1.27)

k

-  7Ti{zt))zlh{zt\:x), (2 .2)

or,

k

Y ^ ( x i - 7 r i { z t ) ) z l f { x \ z t ) h ( z t ) / f { x ) ,  j  =  0 ,1 , i =  l , . . . ,p .  (2.3)
t=zl

We arrange these elements (for each x) in a vector s.

Since we have a maximum likelihood estim ator (giving maximum likelihood estim ates 

(M LE)), which is a special case of an M -estim ator, the vector influence function of the

aji can be obtained from

IF[oÿ;x] =  % (2.4)
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(Hampel et al. (1986), also Section 1.6.6) where J  is the  information m atrix, given by

1 d f j x )  d f j x )
Jj-̂ /(x) daji da^m  ̂ '

where

(2 .6)

In the equations above, j  =  0,1 , /i =  0 ,1 , z =  1, ...,p  , m =  1, , . . ,p and x  a response 

pattern  taking 2  ̂ different values.

If p  is not too large, it is easy to  calculate the influence function from (2.4) for any 

given response x.

From Equations (2.4), (2.5), (2.6) we see th a t the influence function of aoi is a  sum 

of product of probabilities and the influence function of a it is a  sum of product of proba

bilities tim es z, which is a flnite number. Thus, the influence function is flnite, in which 

case we say th a t the maximum likelihood estim ator for this model is B-robust. This is 

expected since we have a distribution over a flnite num ber of response patterns. But, 

although the rates of change of the param eters cannot get inflnite, the  rates or the ac

tual values of the param eters may still get very large, changing the in terpretation  of the 

model and possibly the results of the analysis. Therefore, we would still like to  study 

the behaviour of the estim ates for some datasets, as the frequency distribution over the 

response patterns slightly changes.

2.3 Contam ination on a Point: Some Influence Function 

Results

To show the use of the influence function and results th a t can be deduced from it we will 

apply it firstly to  the  first four items of Schuessler’s Social Life Feeling scale 7 and then 

to  all 6  items of the same scale. Scale 7 is labelled ‘People’s Cynicism ’ and is applied to  

the  American sample only. The questions are given in the Appendix.

We describe in detail the influence function (IF) for the d a ta  for the first 4 items of 

Schuessler’s scale 7. We chose to work only with 4 items in order to  have a small num ber 

of possible response patterns and thus to be able to  observe the behaviour of the  IF a t 

each one of them . For the 6  item set we will calculate the  influence function in order to
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see how the number of the items may affect the sensitivity of the param eters.

It has not been possible to  estim ate the IF for a larger num ber of item s because the

probabilities of some response patterns are very small which causes numerical problems.

2.3 .1  Schuessler Social Life Feeling scale 7, first 4 item s

We calculated the influence function for a model with param eter values set to  M LE for 

a log it/p ro  bit model fitted to  the first four items of Scale 7. The param eter values and 

their standard  errors are given in Table 2.1 and the frequency distribution over the 16

response pattern  is given in Table 2.2.

Since the IF is evaluated at a model, and measures the  rates of change of the  param 

eters in a neighbourhood of the model, we shall assume th a t  these estim ates are the true 

model param eters. (We never know the true model param eters. Our sample may have 

come from a family of models, with different param eters. Therefore, it is only im portan t 

to  know th a t we are ‘close’ to  the  ‘tru e ’ model. We do not know when we obtain a

sam ple whether it contains contam inated d a ta  or not, bu t a t least when it contains a

small proportion of contam inated data , we would like to  obtain estim ates of the  model 

param eters th a t are ‘close’ to the estim ates we would have obtained had our sample been 

‘clean’).

Table 2.1: Scale 7, first 4 items, param eter values for model

2 S .C .  S .G .

“I 2T9 0 6  L38 0.19
2 -0.03 0.06 0.66 0.10
3 0.87 0.13 2.06 0.35
4 1.67 0.11 1.16 0.15

Values of the influence function for the different param eters a t every response pattern  

are shown in Figures 2.1 and 2,2. These are the rates of change of the  param eters as 

an infinitesimal am ount of probability is placed on each response p a tte rn  in tu rn . For 

example, in Figure 2.1 the rate  of change of the difficulty param eter of item 1, aoi, as 

response pattern  0 0 0 0  carries ex tra  probability, is around 2 .

R a te s  o f  c h a n g e  fo r  th e  d ifficu lty  p a r a m e te r  From Figure 2.1 we see th a t the  

influence function values range from around -30 to 6 . The largest fluctuations are observed
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Figure 2.1: Influence function for aoi, i =  1 , 4 ,  at all response patterns for scale 7
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Figure 2.2: Influence function for au, i = 1 , a t ali response patterns for scale 7 
Please note different range of y-scale for ai3
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Table 2.2: Scale 7, first 4 items, Influence Function

resp. obs ^01 ^02 Û03 fl04 flu a i 2 ^ 1 3 ai4
1 0 0 0 0 44 2.3 -2 . 2 -6 .2 0 . 1 1 5 .5 5.0 -6 . 0 11.9
2 0 0 0 1 59 -4.2 -2 . 2 0.3 -4.9 5.4 3.1 18.3 -13.0
3 0 0 1 0 13 2.4 -2 . 2 -2 0 .2 1.4 15.5 8 .1 - 9 0 .2 1 4 .3
4 0 0 1 1 31 -16.6 -2 .2 -1 .8 2 .9 -13.4 2 . 0 -17.5 2.7
5 0 1 0 0 17 - 1 . 6 2 .4 -0.7 -1.7 9.4 - 1 3 .4 14.1 8.1
6 0 1 0 1 32 -8 .8 2.3 1.5 -2 .8 -1.5 -8 . 6 2 2 .6 -8.7
7 0 1 1 0 8 -8.9 2.3 -6.9 -4.2 - 1 . 6 -1.9 -37.6 3.3
8 0 1 1 1 23 -2 7 .6 2.2 5 .6 2 . 0 -3 0 .1 - 1 . 0 12.5 1 . 0

9 1 0 0 0 80 -7.5 -2 . 2 -0 . 1 -3.5 -13.8 2.9 16.4 4 .6
1 0 1 0 0 1 145 -0 . 2 -2 .2 -4.9 0 . 1 -2 . 6 2 . 2 -1.9 -2 .9
1 1 1 0 1 0 50 4.1 -2 .2 -1.4 -9.5 4.0 1 . 2 -15.9 -7.5
1 2 1 0 1 1 296 2.3 -2 . 1 3.2 2 . 1 1 . 2 -4.0 2.3 1 . 1

13 1 1 0 0 39 -3 .8 2.3 -0.3 -5.4 -8 . 0 -7.5 15.7 0.8
14 1 1 0 1 113 4 .3 2.2 -11.3 2.8 4.2 -1.4 -26.2 2.5
15 1 1 1 0 43 2.5 2.2 4.6 -1 4 .8 1.5 -0.4 8 . 1 - 1 8 .0
16 n i l 423 2.3 2 . 2 3.3 2.2 1 . 2 2.4 2.4 1.4
min -27.6 -2 . 2 -2 0 . 2 -14.8 -30.1 -13.4 -90.2 -18.0
25% -7.8 -2 . 2 -5.3 -4.4 -3.9 -2.4 -16 .3 -4.0
m edian -0.9 0 . 0 -0.5 -0 . 8 1 . 2 0.4 2.4 1.3
75% 2.4 2 . 2 1.9 2 . 0 4.5 2.5 14.5 3.6
m ax 4.3 2.4 5.6 2.9 15.5 8 . 1 2 2 . 6 14.3
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for the difficulty param eters of items 1 and 3, whereas the one for item 2 is very well 

behaved.

For the difficulty param eter aon one would intuitively expect a negative change when 

Xi =  0 and a positive change when X{ = 1. As ex tra  probability is placed on a response 

p a tte rn  with z* =  1 , the probability of a positive response for this item rises and thus aoi 

m ust become larger. This behaviour is observed for the difficulty param eter of item 2, 

bu t the difficulty param eters of the rest of the items change sometimes in an unexpected 

way. For example, we would expect the rates of change of aoi to  be negative a t the first 

8  response patterns and positive a t the last 8  response patterns, but this is not so. Also, 

ao3 has a  fairly large negative rate  of change a t response pattern  0 0 1 0 , which we would 

expect to  be positive.

R a te s  o f  c h a n g e  fo r  th e  d isc r im in a tio n  p a r a m e te r  The rates of change for the 

discrim ination param eters (Figure 2.2) are generally larger than  the ones for the difficulty 

param eter and a ra te  of change up to  -90 is observed for ais.

This suggests th a t param eter values (or MLE) for the discrim ination param eter may 

change a lot for small changes in the data.

The largest negative rates of change are usually observed for the  discrim ination param 

eter of item i when ex tra  probability is placed on a response pa tte rn  where the response 

for item  i is different from the responses to the other items. The largest negative rates of 

change for a n  occurs a t response pattern  0 1 1 1 , for a t 0 1 0 0 , for a i 3 a t 0 0 1 0  and for 

Ü14  a t 1110. Since an  is a measure of the association of the item with the o ther items and 

with the latent variable, the negative rates of change a t these response patterns mean 

th a t as the la tte r carry ex tra  probability, the model will try  to  reduce the association of 

item  i with the rest of the items and with the latent variable.

The largest positive rates of change (22 and 16) are observed for the  discrim ination 

param eter of item 3, a t response patterns 0101 and 1000. The largest positive rate  for 

a i l ,  for a i 2 and for a i 4 is observed a t 0010. It seems th a t the  discrim ination param eter 

for item i increases, when ex tra  probability is placed on response patterns where the 

response to  item i is the same as to  most of the items.

Large positive rates of change in the discrimination param eter may imply th a t the 

response function of an item may become easily a threshold function, by increasing or

54



decreasing the probability of a response pattern , we cannot say though from the values 

of the  rates of change whether this would be the case or not.

A very large negative change on the other hand may downweight unduly the item in 

the calculation of the posterior means.

2.3.2 Schuessler Social Life Feeling scale 7, all 6 item s

It is interesting to see w hat the IF looks like when we have all 6  items of the scale, since

large rates of change when there are only 4 items could be due to  the  small num ber of

items.

The estim ated param eters of Scale 7 with all 6  items are given in Table 2.3.

Table 2.3: Scale 7, 6  items, param eter values for model

1 ^O i  S .G . SiG «

1  2.19 0.14 1.38 0.15
2 -0.03 0.06 0.77 0.09
3 0.83 0.10 1.90 0.19
4 1.73 0.11 1.27 0.14
5 -0.16 0.08 1.50 0.15
6  1.81 0.12 1.46 0.15

Table 2.4 shows the IF for «oi &nd an .  In the bottom  of the  Table some descriptive 

statistics for the IF are given. The minimum and maximum values of the  IF for each 

param eter are shown in bold so th a t the response patterns for which they occur can be 

identified (except for ao2 as its minimum and maximum values occur for m any response 

patterns).

The range of the IF is generally smaller than  the IF when there were only four items, 

both for aoi and an.  The IF now ranges from -21 to  5 approxim ately for aoi and from 

-47 to  14 for a ii.

The pa tte rn  of the changes is consistent with w hat we had observed in the  four item 

datase t. The IF of aoi is generally negative if the frequency of a  response pa tte rn  with 

item  2 =  0 increases and generally positive otherwise. The IF of a ii is generally positive if 

the frequency of a response pattern  increases with response to  item i same as to  most of 

the other items and negative otherwise. For example, increasing the frequency of 00100 

will decrease a %3 and increase all other an^s. (It is not so easy to  predict the direction of
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change of au  as it is with aoi, &nd even for qqi the direction of change is sometimes not 

the expected one.)

We observe th a t the most extreme changes occur a t ‘extrem e’ response patterns, i.e. 

response patterns for which a t least five out of the six have the same response, either 0  or 

1 . Particularly  000010 is extreme since there is a positive response to  the m ost difficult 

item and 0 0 1 0 0 0  since there is a positive response to  the m ost discrim inating item .

The m agnitude of the frequency does play a role in the m agnitude of the IF but a 

secondary one. The largest rates of change do not necessarily occur a t the  response pa t

terns with the smallest frequencies but large frequencies may prevent ‘extrem e’ response 

pa tte rn s exhibiting very large rates of change. For example, response patterns 101111, 

1 1 1 1 1 0 , m i l l  are extreme in the sense th a t five items have response 1 , but perhaps 

because of their large frequencies (169, 135 and 169 respectively) the IF of all param eters 

is quite small.

2.4 Actual rates of change of parameters and parameter 

estim ates with contamination in the data

To evaluate the m agnitude of the rates of change of the param eters given by the influence 

function, we calculated empirical rates of change which would have a similar interpre

tation  as the influence function. Assuming th a t our original da tase t is a ‘clean’ da tase t 

generated from the model, the empirical rates of change show how fast and in w hat 

direction the param eters change when estim ated from a da tase t which contains some 

contam ination a t a  particular response pattern . Thus the empirical rates of change are 

the  sample analogue of the IF and will partly serve to  verify our IF results. The main 

advantage of doing a sample sensitivity analysis though is to  understand and get a  feel

ing of the m agnitude of the rates of change by comparing the actual param eter estim ates 

obtained from different samples with the original ones.

We used the first four items of Schuessler’s scale 7. The contam inated datase ts were 

constructed by decreasing the observed frequencies of all response patterns by a percent

age, in the following example by 3%, and adding the same percentage (3%) of the to ta l 

frequency to  a particular response pattern . This was repeated for all response patterns. 

We thus constructed 16 contam inated datasets, from which param eter estim ates were
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Table 2.4: Scale 7, all 6 items, Influence Function
r e s p . p . obs O oi #0 2 O03 Q04 <305 O06 a n O i2 O l3 014 0 1 5 O l6

1 000000 30 0.7 -2.3 -3.7 -0.8 -3 .0 -0.8 13.1 4.2 3.9 10.2 2.8 10.3
2 000001 13 -1.4 -2.3 -2.4 -1.7 -2.9 -7.6 9.7 3.6 7.2 8.1 3.7 -16.8
3 000010 1 -0.7 -2.2 -0.2 -1.0 5.2 -0.5 10.7 4.5 14.1 9.3 -3 9 .4 10.0
4 000011 0 -5.5 -2.2 -0.9 -3.6 4.4 -1.6 3.5 3.3 11.5 4.5 -24.9 -6.0
5 000100 20 -1.1 -2.3 -2.6 -5.5 -2.9 -1.3 10.1 3.6 6.5 -13.5 3.5 8.8
6 000101 31 -5.3 -2.3 -2.5 -1.7 -2.8 -3.0 3.7 2.8 6.4 -6.4 3.7 -8.6
7 000110 3 -4.8 -2.2 -0.8 -1.1 4.5 -3.1 4.5 3.5 12.0 -5.2 -26.7 5.4
8 000111 5 -11.3 -2.2 -3.1 1.0 3.8 0.9 -5.2 2.0 3.9 -1.1 -14.0 -1.4
9 001000 10 -0.9 -2.2 -8.9 -1.0 -3.0 -0.2 10.3 4.3 -47 .4 9.2 9.2 10.5

10 001001 1 -6.8 -2.2 -3.2 -4.3 -2.9 -0.2 1.6 2.9 -24.0 3.2 6.6 -3.5
11 001010 1 -6.3 -2.2 -1.6 -3.8 4.1 -3.8 2.3 3.5 -18.3 4.0 -17.8 4.2
12 001011 1 -14.2 -2.2 1.5 -8.4 3.5 2.2 -9.6 1.3 -4.2 -4.6 -8.4 0.9
13 001100 6 -5.9 -2.2 -3.9 -0.1 -2.9 -3.8 2.8 3.1 -26.7 -3.3 7.0 4.3
14 001101 15 -13.3 -2.2 0.1 1.3 -2.8 1.4 -8.4 1.2 -9.7 -0.5 2.8 -0.4
15 001110 3 -13.0 -2.2 1.3 1.8 3.5 -9.1 -7.9 1.6 -5.4 0.4 -9.4 -5.0
16 001111 7 -22.5 -2.2 2.8 2.2 3.0 2.6 -22.3 -1.3 2.1 1.4 -2.0 1.8
17 010000 4 -0.1 2.4 -2.7 -1.0 -2.8 -0.8 11.7 13.6 6.1 9.4 3.9 9.8
18 010001 9 -3.5 2.4 -2.1 -2.7 -2.8 -4.5 6.5 -9.1 7.7 6.1 4.4 -11.2
19 010010 2 -2.9 2.4 -0.2 -2.1 4.8 -1.8 7.4 -8.2 13.8 7.1 -30.9 7.7
20 010011 2 -8.7 2.4 -1.9 -5.3 4.0 0.2 -1.4 -4.6 8.3 1.2 -17.6 -2.7
21 010100 4 -3.0 2.4 -2.2 -3.2 -2.8 -2.3 7.2 -9.6 7.4 -9.2 4.3 6.9
22 010101 22 -8.4 2.4 -3.0 -0.3 -2.8 -1.0 -0.8 -5.8 4.6 -3.7 3.8 -4.8
23 010110 0 -7.9 2.4 -1.6 0.2 4.1 -5.3 -0.1 -5.1 9.4 -2.6 -19.2 1.6
24 010111 6 -15.3 2.3 -5.0 1.8 3.4 2.0 -11.3 -2.0 -2.8 0.4 -7.7 0.7
25 011000 1 -3.7 2.4 -5.4 -2.5 -2.9 -2.1 6.2 -7.1 -33.6 6.4 8.5 7.2
26 011001 4 -10.5 2.4 -0.8 -6.3 -2.8 1.0 -4.1 -3.9 -13.9 -0.7 5.0 -1.2
27 011010 1 -10.1 2.4 0.5 -6.0 3.7 -6.7 -3.5 -3.3 -9.0 -0.1 -12.0 -0.9
28 011011 2 -18.9 2.3 2.6 -11.2 3.1 2.6 -16.8 -0.8 1.2 -9.8 -3.8 1.9
29 011100 1 -9.5 2.4 -1.3 0.9 -2.9 -6.5 -2.6 -4.3 -15.9 -1.4 5.6 -0.4
30 011101 7 -17.9 2.3 1.7 1.8 -2.7 2.1 -15.2 -1.5 -2.8 0.6 -0.1 0.9
31 011110 5 -17.6 2.3 2.5 2.2 3.2 -12.8 -14.8 -1.1 0.7 1.3 -4.6 -11.6
32 011111 10 -28 .3 2.2 3.3 2.4 2.7 2.8 -31 .1 1.1 4.4 1.7 1.1 2.2
33 100000 37 -7.2 -2.3 -2.7 -1.7 -2.9 -1.5 -13.3 3.5 6.2 8.1 3.3 8.5
34 100001 28 -2.1 -2.3 -2.7 -4.0 -2.8 -2.8 -5.5 2.7 5.7 3.7 3.5 -8.1
35 100010 6 -1.4 -2.2 -1.1 -3.5 4.4 -3.5 -4.3 3.4 11.2 4.6 -25.8 4.7
36 100011 9 1.1 -2.2 -3.5 -7.2 3.7 1.0 -0.5 1.8 2.5 -2.3 -13.3 -1.3
37 100100 36 -2.7 -2.3 -2.7 -2.0 -2.8 -3.8 -6.4 2.8 5.9 -6.8 3.5 4.3
38 100101 70 0.3 -2.2 -4.2 0.3 -2.8 0.0 -1.8 1.5 0.1 -2.4 2.4 -3.0
39 100110 13 0.9 -2.2 -3.0 0.8 3.8 -7.7 -0.8 2.0 4.2 -1.4 -14.7 -2.5
40 100111 26 2.3 -2.2 -7.3 2.0 3.2 2.4 1.2 -0.1 -12.2 0.9 -4.0 1.3
41 101000 11 -0.1 -2.2 -3.6 -4.1 -2.9 -4.2 -2.4 2.9 -25.5 3.4 6.6 3.5
42 101001 14 1.5 -2.2 0.3 -8.4 -2.7 1.4 0.1 1.0 -9.1 -4.7 2.3 -0.4
43 101010 5 2.1 -2.2 1.4 -8.2 3.5 -9.7 1.0 1.4 -4.9 -4.2 -8.8 -6.2
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Table 2.4 continued: Scale 7, all items, Influence Function
resp.p. obs Qoi <302 <3q3 004 005 00 6 O i l O l2 O l3 O l4 01 5 0x6

44 101011 20 2.4 -2.2 2.9 -13.9 3.0 2.5 1.4 -1.6 1.9 -15.0 -1.6 1.6
45 101100 30 1.4 -2.2 -0.1 1.2 -2.8 -9.2 -0.1 1.3 -10.6 -0.7 3.1 -5.3
46 101101 77 2.1 -2.2 2.3 1.9 -2.5 2.1 0.9 -1.2 -0.8 0.7 -4.2 0.9
47 101110 20 2.5 -2.2 2.9 2.2 3.0 -16.5 1.6 -1.1 2.0 1.3 -2.2 -18.2
48 101111 169 2.3 -2.2 3.1 2.3 2.9 2.5 1.3 -5.3 2.6 1.4 2.1 1.4
49 110000 6 -4.1 2.4 -2.3 -2.7 -2.8 -2.6 -8.6 -9.3 7.0 6.2 4.1 6.4
50 110001 19 -0.4 2.4 -3.2 -5.6 -2.8 -0.9 -2.9 -5.5 3.6 0.7 3.5 -4.5
51 110010 2 0.3 2.4 -1.9 -5.2 4.0 -5.8 -1.8 -4.8 8.3 1.4 -18.4 0.8
52 110011 12 2.0 2.3 -5.5 -9.5 3.3 2.0 0.9 -1.8 -4.7 -6.6 -7.0 0.7
53 110100 8 -0.8 2.4 -3.0 -0.5 -2.8 -5.8 -3.5 -6.0 4.4 -4.0 3.7 0.8
54 110101 68 1.3 2.3 -5.6 1.2 -2.8 1.2 -0.2 -2.6 -5.4 -0.6 1.4 -0.7
55 110110 4 1.9 2.3 -4.8 1.7 3.4 -10.7 0.7 -2.1 -2.1 0.2 -8.2 -7.8
56 110111 33 2.9 2.3 -10 .4 2.6 2.8 3.1 2.1 0.6 -24.0 2.0 1.2 2.6
57 111000 4 1.1 2.4 -1.1 -6.2 -2.8 -7.0 -0.6 -4.1 -15.0 -0.4 5.1 -1.4
58 111001 21 2.0 2.3 1.8 -11.1 -2.7 2.0 0.9 -1.3 -2.5 -9.7 -0.8 0.8
59 111010 5 2.6 2.3 2.6 -10.9 3.1 -13.5 1.7 -0.9 0.8 -9.3 -4.2 -12.9
60 111011 13 2.6 2.3 3.3 -17 .4 2.8 2.7 1.6 1.2 4.0 -21.8 1.4 1.9
61 111100 5 2.0 2.3 1.6 1.8 -2.7 -12.8 0.9 -1.6 -3.3 0.5 0.3 -11.6
62 111101 135 2.3 2.3 3.2 2.2 -2.3 2.5 1.3 0.9 2.9 1.3 -9.8 1.4
63 111110 13 2.7 2.3 3.4 2.4 2.8 -21 .2 1.9 1.0 4.7 1.7 1.1 -26 .7
64 111111 270 2.4 2.3 3.2 2.4 2.9 2.5 1.3 2.7 2.2 1.5 3.3 1.5
min -28.3 -2.3 -10.4 -17.4 -3.0 -21.2 -31.1 -13.6 -47.4 -21.8 -39.4 -26.7
25% -7.4 -2.2 -3.0 -5.3 -2.8 -5.4 -3.6 -3.5 -5.4 -3.4 -8.5 -3.8
median -1.2 0.0 -1.6 -1.4 0.2 -1.4 0.4 0.3 2.0 0.4 1.1 0.8
75% 1.6 2.3 1.6 1.4 3.4 1.6 1.9 2.7 5.9 2.3 3.6 2.8
max 2.9 2.4 3.4 2.6 5.2 3.1 13.1 4.5 14.1 10.2 9.2 10.5

obtained. The empirical ra te  of change of a param eter is the  difference of the  ‘original’ 

estim ate from the new one, divided by the am ount of contam ination (0.03),

In Figures 2.3 and 2,4 (left column) we see the empirical rates of change for the 

difficulty and discrimination param eters of the items, for the first four item s of scale 7, 

cLS each response pattern  carries 3% of the to ta l ex tra  frequency.

D iffic u lty  p a ra m e te r s  The actual rates of change of the param eters a t each response 

pattern  can be compared with the IF, which represents the ‘theoretical’ rates of change.

We observe th a t the pattern  of the influence function and the pattern  of the  actual 

rates of change across the response patterns are very similar (see Figures 2.1 and 2.3). 

Also the  range of the values of the two are approxim ately the same, though the  IF is for 

some cases larger than  the actual rate  of change, e.g. for «oi a t 0 1 1 1  and for uqs a t 0 0 1 0 . 

Thus the 3% contam ination, although it disturbs the  frequency of the response pa tte rn s 

with small initial frequency quite a lot, it can still be considered small for our purposes 

and therefore, by looking a t the m agnitude of the actual values obtained from fitting the 

model with 3% contam ination we can get some idea of the ‘extrem eness’ of the m agnitude
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Figure 2.3: Actual values and rates of change of ciQi, i = 1 , 4 ,  as each response pattern 
carries 3% extra frequency, Scale 7, first 4 items
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Figure 2.4: Actual values and rates of change of a^ , i = 1, as each response pattern 
carries 3% extra frequency, Scale 7, first 4 items
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of the IF or vice-versa. We will mainly judge the ‘extrem eness’ of the param eter values 

by whether they fall in the confidence intervals of the ‘original’ param eter estim ates. The 

la tte r  are given in Table 2.5.

Table 2.5: Scale 7, first 4 items, 95% confidence interval of param eters
aot ai i

item l.b. u.b. l.b. u.b.
1 1.87 2.50 1 . 0 1 1.75
2 -0.15 0.09 0.46 0 . 8 6

3 0.61 1 . 1 2 1.37 2.75
4 1.45 1.89 0.87 1.45

The largest in absolute value rates of change of aoi correspond to  values outside the 

confidence interval of the original estim ates. These are a t response pa tte rns 0011 and 

0111. 3% ex tra  frequency a t these response patterns will make item 1 a lot easier than  

would be expected from random variability.

Also, the two largest rates of change of ao4 » which occur a t response patterns 1010 

and 1 1 1 0 , correspond to param eter values outside the confidence interval of the initial 

param eter values. For Oo2 and ao3 , all param eter values are within the confidence interval 

of the initial param eter estim ates.

We conclude th a t 3% contam ination a t a  particular response pa tte rn , can sometimes 

result to  more extrem e param eter values than the values th a t would be expected from 

random  variability.

D is c r im in a tio n  p a ra m e te r s  As with aon we can compare the actual rates of change of 

the  param eters under 3% contam ination, with the infiuence function. The pa tte rn  of the 

two across the response patterns which carry the ex tra  frequency is very similar (Figures 

2.2 and 2.4). The range of the actual rates of change is smaller though, i.e. the  largest IF 

values correspond to  the largest actual rates of change but the la tte r are not as large (for 

example, actual rate  of change of a \ 3  a t response pattern  0010 is around -20, not -90). 

The largest influence function values though do point to  param eters th a t fall outside 

the 95% confidence interval of the ‘original’ param eter estim ates, if the corresponding 

response patterns carry 3% ex tra  frequency. The response patterns for which th is occurs 

are: for a n  a t 0 1 1 1 , for a ^  a t 0 1 0 0  and 0 1 0 1 , for a \ 3  a t 0 0 1 0 , 0 1 0 1 , 0 1 1 0  and 1 1 0 0 , for 

a i 4 a t 0010 and 1110. We note th a t for 0010 a n ,  a \ 2  and a i 4 are on the top bound of the
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confidence intervals and « 1 3  below the low bound. All the above response patterns have 

small frequencies, and as we also saw with aoi large rates of change of an  are associated 

with response patterns with small frequencies, but this is not the only factor determ ining 

their size, since rates of change a t response pattern  0 0 1 0  are larger than  the rates of 

change a t response pattern  0 1 1 0 , which is the one with the smallest original frequency ( 8  

observations).

W hat is perhaps more im portant in determining the size of the rates of change of the 

param eter is the initial size of the param eter. Here a i s  w e l s  the largest discrim ination 

param eter. It seems th a t large discrimination param eters may suddenly jum p to  a value 

th a t denotes a  threshold response function and this is certainly undesirable.

2.5 Other types of contamination

The type of contam ination considered so far was to  add observations to  a particular 

response pattern . In a real situation this could occur if a group of people were strongly 

influenced to  respond in a particular way to  all questions irrespectively of their laten t 

tra it modelled, for example, in an ability test, a group of students sitting  close together 

may cooperate and give the same answers. This could also be a result of a gross error, if 

the  frequency of a  response pattern  is misrecorded.

A nother situation th a t would contam inate the d a ta  would be the following: a pro

portion of people who would have answered in a particular way, for some reason they 

responded to  an item the other way round, for example, some individuals, instead of 

answering 1000 answered 1100. This could happen if, again in an ability testing situa

tion, some students who would not answer any of the last three item s were ‘whispered’ 

the correct answer to  the second item. This would have the effect of some am ount of 

frequency to  shift from response pattern  1 0 0 0  to  1 1 0 0 .

A nother type of disturbance in the da ta  would occur if the probability for a positive 

response for an item were determined to  some extent by some external factor, so th a t 

the probability of a positive response for th a t item were slightly increased or decreased 

for some individuals or all individuals irrespective of their ability. For example, an item 

could be particularly difficult for students with m other tongue other than  English, and 

th a t  would create response patterns with an ‘unnecessary’ zero response for th a t item.
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The rates of change of the param eters for such situations can be calculated directly 

from the influence function,

2.5.1 Increasing th e  probability  o f an item

The effect on the param eters of increasing the probability of a  positive response to  an 

item can be m easured by averaging the IF over the response patterns with ‘1’ for the 

particular item. For example, the rate  of change of aji if we increase the probability of 

positive response to  item 1 , is given by averaging the IF of aji a t the last eight response 

patterns (the ones with 1 for item 1 ).

The left side of Figures 2.5 and 2.6 show the rates of change of each param eter plotted 

against the item which carries ex tra  probability.

The right side of the same Figures show the actual rates of change of each param eter, 

calculated from d a ta  contam inated in the following way: 3% of the to ta l frequency was 

spread equally to the eight response patterns with response 1  to  the item which was 

supposed to  carry the ex tra  probability. The ‘theoretical’ rates of change (calculated 

from the IF) and the actual rates of change are very close, verifying our results.

Regarding the direction of the changes of the param eters, we note the following: In

creasing the probability of item i generally causes the difficulty param eter aoi to  increase, 

thus m aking item i easier. This is true for param eters aoi, ^ 0 2  and ao4 bu t not for aos, 

which shows a counter-intuitive behaviour. And increasing the probability of item  i 

causes the discrimination param eter a ii to decrease, making the item less discrim inating.

As to  the m agnitude of the rates of change we observe th a t they are very small, 

generally a lot smaller than the rates of change of the param eters when ex tra  probability 

was placed on one response pattern  a t a time. A large rate  of change is only observed for 

a i 3 when the probability of item 3 is increased, but again this is not as large as the rates of 

change of a i 3  when the probability of some response patterns was increased individually.

We thus expect the param eters to  change little and sm oothly as we progressively 

increase the probability placed on an item. To verify th a t, we progressively increased the 

probability of each item by spreading equally 3%, 5% and 10% of the  to ta l frequency to  

the eight relevant response patterns. The new difficulty param eters are shown in Table 

2.6. They are generally close to  the original param eters and they are all within the 

confidence intervals of the original estim ates with 5% contam ination, aoi falls below the
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Table 2.6: aoi obtained from contaminated data (increasing the probability of each item
in turn), with different €, Scale 7, first 4 items

€ 0 0.03 0.05 0 . 1 0

i increasing P(%i = 1 )
1 2.19 2 . 2 1 2 . 2 2 2 . 2 2

2 -0.03 -0.03 -0.03 -0.03
3 0.87 0.83 0.81 0.77
4 1.67 1.58 1.52 1.38

increasing P (z 2 = l]
1 2.19 2.06 1.96 1.76
2 -0.03 0.03 0.08 0.18
3 0.87 0.84 0.82 0.75
4 1.67 1.59 1.54 1.43

increasing P (z 3 = l]
1 2.19 2.05 1.95 1.74
2 -0.03 -0.03 -0.03 -0.03
3 0.87 0.83 0.84 0 . 8 6

4 1.67 1.61 1.56 1.45
increasing P(a:4 = lJ

1 2.19 2.03 1.92 1.69
2 -0.03 -0.03 -0.03 -0.03
3 0.87 0.84 0.83 0.80
4 1.67 1.69 1.70 1.75

low confidence interval bound when the probability of items 2,3 and 4 increases by 10%. 

ao4 falls below the low confidence interval bound when the probability of item s 1 and 2  

increase by 1 0 % whereas 0 9 3  exceeds the confidence interval bound when the probability 

of item 2  increases by 1 0 %.

The discrim ination param eters obtained are shown in Table 2.7. They are very close 

to  the original ones, and fall outside the confidence intervals of the original estim ates in 

only two cases, a^g when the probability of item 2  increases by 1 0 % and a is  when the 

probability of item 3 increases by 10%.

We also note th a t the param eters may be more affected by increasing the probability of 

another item rather than ‘th e ir’ item. For example, aoi and a n  are more affected when the 

probability of items 2 , 3 or 4, rather than  the probability of item 1 , is increased. Although 

it is not clear why this happens, it partly explains some counter-intuitive directions of 

change when ex tra  probability is placed on a response pattern  (e.g. positive change for 

aoi when ex tra  probability is placed on 0 0 0 0 ).
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Figure 2.5: Average rates of change of cioi, i — 1 , as extra probability is placed on 
each item, Scale 7, first 4 items
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Figure 2.6: Average rates of change of 0 ^ , i = 1 , as extra probability is placed on 
each item, Scale 7, first 4 items
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Table 2.7: au  obtained from contaminated data (increasing the probability of each item
in turn), with different e

e 0 0.03 0.05 0 . 1 0

i increasing P (x i ==1 )
1 1.38 1.34 1.31 1 . 2 2

2 0 . 6 6 0.65 0.64 0.61
3 2.06 2 . 0 2 2 . 0 1 2 . 0 0

4 1.16 1 . 1 0 1.06 0.97
increasing P (x 2 = ] )

1 1.38 1.30 1.26 1.17
2 0 . 6 6 0.57 0.50 0.36
3 2.06 2.05 2.03 1.92
4 1.16 1.13 1 . 1 1 1.08

increasing P (z 3 = ] )
1 1.38 1.30 1.25 1.13
2 0 . 6 6 0.69 0.70 0.71
3 2.06 1 . 6 6 1.46 1.14
4 1.16 1.16 1.15 1 . 1 2

increasing P (x 4 =; )
1 1.38 1.27 1.19 1.03
2 0 . 6 6 0.65 0.64 0.60
3 2.06 2.06 2 T# 2.13
4 1.16 1 . 1 1 1.08 1 . 0 0
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Table 2.8: Local shift sensitivities of the param eters of Scale 7, first 4 item s

#01 #02 <̂ 03 Û04 dll &12 &13 &14
19.0 4.6 18.8 17.0 31.3 18.4 84.2 24.9

from
to

0011
0010

0000
0100

0010
1010

1110
n i l

0111
n i l

0100
0000

0010
0000

0001
0000

2 .5 .2  S h iftin g  probab ilities from  one response p a ttern  to  another

Hampel et al. (1986) considered the effect of shifting an observation from one point x to  

a neighbouring point y, which they called ‘wiggling’ of observations. They said th a t  in tu

itively the effect of such a shift of observations can be m easured by IF(y; T, F)-IF(a:; T, F ) . 

The local shift sensitivity (Section 1.6.3) is a measure of the worst (approxim ate and stan 

dardised) effect of shifting observations from one point to  another. W hen the d a ta  are 

m etrical the difference of the infiuence functions is standardised by the difference of those 

points. In our case we cannot take a difference, but perhaps the analogue is to  take the 

num ber of different items in these two response patterns. For example, moving from 

0010 to  0101 for a i 3 the difference in the influence functions is 22.60-(-90.22)=112.82. 

Since 0010 and 0101 differ in three items, then dividing by three will give 37.61. Again 

for a i 3  shifting between 0010 and 0001 gives a standardised ra te  of change equal to  54.3 

and between 0010 and 0000 a rate  of change equal to  84.2. Since this is the maximum 

standardised difference this is the local shift sensitivity for 0 1 3 . The local shift sensitivi

ties are the  absolute values of the rates of change since sym m etrical rates of change are 

predicted for shifts of observations between a pair of response patterns.

The local shift sensitivities for all the param eters are given in Table 2.8.

These are quite large, th a t is for some param eters are close or even above the absolute 

maximum value of their infiuence function, which is not surprising since they were con

structed  from the largest values of the infiuence function. Let us see how the empirical 

rates of change and the actual param eters behave as we move observations between these 

pairs of response patterns.

Table 2.9 shows the rates of change of the difficulty and discrim ination param eters 

as we move 8  observations between the response patterns for which the largest rates of 

change will occur for one or more of the param eters.

We observe th a t  in most cases the rates of change are sym m etric for shifts of observa-
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Table 2.9: Scale 7, first 4 items, empirical rates of change of param eters as we move 
observations from one response pattern  to another

from to Ooi ^02 #03 ao4 ail #12 &13 &14
0 0 1 1

0 0 1 0

0 0 1 0

0 0 1 1

19.9
-17.7

0 . 0

0 . 0

-13.8
26.7

- 1 . 6

1.9
29.3

-27.6
5.6

-8.5
-55.4
1 0 1 . 6

11.4
-10.9

0 0 0 0

0 1 0 0

0 1 0 0

0 0 0 0

-4.2
4.3

4.5
-4 ^

6.5
-6 . 1

-2.4
2.3

-6.4
6.5

-17.9
20.3

23.6
-22.3

-4.8
4.7

0 0 1 0

1 0 1 0

1 0 1 0

0 1 0 0

2.7
-2.5

0 . 0

0 . 0

2 & 2

-14.2
- 1 0 . 8

11.4
- 1 0 . 1

1 0 . 2

-9.4
6 . 8

106.9
-56.9

-22.3
2 2 . 0

1 1 1 0

n i l
n i l
1 1 1 0

-0.9
0.5

0 . 0

0 . 0

-1.4
1.3

18.9
-16.3

-1.4
0 . 8

3.4
-2.9

-6.4
5.8

21.7
-18.7

0 1 1 1

n i l
n i l
0 1 1 1

35.1
-27.3

0 . 0

0 . 0

-2.3
2 . 0

-0.3
0 . 0

36.6
-28.9

3.9
-3.2

-9.9
8 . 8

-0.7
0 . 1

0 0 1 0

0 0 0 0

0 0 0 0

0 0 1 0

0.4
- 1 . 1

-0 . 0

-0 . 0

2 0 . 6

-10.3
-1.5

1 . 1

0.7
-1.9

-4.2
3.6

111.3
-67.7

-2.7
2 . 0

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

5.8
-6 . 0

0 . 0

0 . 0

-5.7
7.2

5.9
-4.4

8 . 8

-9.3
2.4

-2 . 8

-2 1 . 0

26.5
26.3

-24.1

tions between a pair of response patterns and fairly well approxim ated by the  standard 

ised differences in the influence functions (see Tables 2.8 and 2.2), There are a  few cases 

though, for example when observations are moved from 0 0 1 0  to  1 0 1 0 , where the rates of 

change for ao3 and « 1 3  are much larger than  the rates of change for the  opposite shift of 

observations and much larger than  w hat the influence functions would predict.

The fact th a t positive changes in the param eters may be larger than  the  negative 

ones for sym m etric shifts in frequencies may be due to  the frequency distribution of these 

d ata . For example, shifting frequencies from 0010 to  0000, to  0010 and to  1010 causes 

larger rates of change than  shifting frequencies in the opposite direction, bu t 0 0 1 0  had 

initial frequency of 13 whereas 0000, 0011 and 1010 had initial frequencies 44, 31 and 50 

respectively.

In Table 2.10 the new estim ates of aoi are shown, cls we move 8 , 12 and 14 observations 

between the above response patterns. ao2 and ao4 remain within the confidence interval 

of the original estim ates, but aoi exceeds the upper bound of its confidence interval if 1 2  

observations are shifted from 0 1 1 1  to  1 1 1 1  and ao3 which exceeds the upper bound of its 

confidence interval and becomes a lot easier if 12 observations (or 13) are moved from 

0010 to  0011, from 0010 to 1010 or if 13 observations are moved from 0010 to  0000 (the 

param eter estim ates outside the confidence intervals of the original estim ates are shown
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Table 2.10: Scale 7, first 4 items, üqi as we move observations from one response pattern
to another

8 1 2 14 8 1 2 14 8 1 2 14 8 1 2 14
from to &01 &02 &03 ao4
0 0 1 1

0 0 1 0

0 0 1 0

0 0 1 1

2.30
2.09

2.36
2.04

2.39
2.03

-0.03
-0.03

-0.03
-0.03

-0.03
-0.03

0.79
1 . 0 2

0.77
1.17

0.75
1.23

1 . 6 6

1 . 6 8

1 . 6 6

1.69
1 . 6 6

1.69
0 0 0 0

0 1 0 0

0 1 0 0

0 0 0 0

2.17
2 . 2 1

2.15
2.22

2.15
&23

-0 . 0 1

-0.06
0 . 0 1

-0.07
0 . 0 1

-0.08
0.91
0.83

0.92
0.82

0.93
0.81

1 . 6 6

1 . 6 8

1.65
1.69

1.65
1.69

0 0 1 0

1 0 1 0

1 0 1 0

0 1 0 0

2 . 2 0

2.17
2 . 2 1

2.17
2 . 2 1

2.17
-0.03
-0.03

-0.03
-0.03

-0.03
-0.03

1.03
0.79

1 .19
0.76

1.26
0.75

1.61
1.73

1.58
1.77

1.57
1.78

1 1 1 0

n i l
n i l
1 1 1 0

2T8
2.19

2.18
2.19

2.18
2.19

-0.03
-0.03

-0.03
-0.03

-0.03
-0.03

0 . 8 6

0.88
0 . 8 6

0 . 8 8

0.85
0 . 8 8

1.78
1.58

1.84
1.54

1.87
1.52

0 1 1 1

n i l
n i l
0 1 1 1

2 j#
2.04

2.51
1.97

2.58
1.94

-0.03
-0.03

-0.03
-0.03

-0.03
-0.03

0 . 8 6

0.88
0.85
0.89

0.85
0.89

1.67
1.67

1.67
1.67

1.72
1.67

0 0 1 0

0 0 0 0

0 0 0 0

0 0 1 0

2.19
2.18

2.19
2.18

2.19
2.18

-0.03
-0.03

-0.03
-0.03

-0.03
-0.03

0.98
0.81

1.09
0.79

1.14
0.78

1 . 6 6

1.67
1 . 6 6

1 . 6 8

1 . 6 6

1 . 6 8

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

2j%
2.15

2.24
2.14

2.24
2.13

-0.03
-0.03

-0.03
-0.03

-0.03
-0.03

0.84
0.91

0.82
0.93

0.82
0.95

1.70
1.65

1.72
1.64

1.73
1.63

in bold).

Table 2.11 shows the new estim ates of ait for the same changes in the frequencies of 

the  response patterns.

Except for the discrimination param eters of item 4 the rest of the discrim ination 

param eters fall outside the confidence interval of the  original estim ates for some changes 

in the frequencies of the response patterns. These cases are the following (values are shown 

in bold): a n  exceeds the upper bound of its confidence interval if 12 or 14 observations 

are shifted from 0 1 1 1  to  1 1 1 1 ;

a i 2 ju st exceeds the upper bound of its confidence interval if 14 observations are 

moved from 0 1 0 0  to 0 0 0 0 ;

a i3  though is more affected from these changes and exceeds the upper bound of the 

confidence interval of the original estim ate if we move 12 (or 13) observations from 0010 

to  0 0 1 1 , to  1 0 1 0  or to  0 0 0 0 .

2.6 The breakdown point

The concept of the breakdown point was described in Section 1.6.4. It is the largest 

fraction of gross errors which ‘never can carry the estim ate over all bounds’ (Hampel 

et al. (1986), page 97) or ‘the distance from the model distribution the estim ator still
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Table 2.11: Scale 7, first 4 items, an  as we move observations from one response pattern
to another

8 12 14 8 12 14 8 12 14 8 12 14
from to &11 #12 &13 #14
0011
0010

0010
0011

1.54
1.22

1.63
1.15

1.67
1.13

0.69
0.61

0.70
0.58

0.71
0.57

1.75
2.63

1.64
3.17

1.59
3.37

1.22
1.09

1.25
1.06

1.27
1.05

0000
0100

0100
0000

1.34
1.42

1.32
1.43

1.32
1.44

0.56
0.78

0.52
0.84

0.49
0.87

2.19
1.93

2.26
1.87

2.29
1.84

1.13
1.18

1.11
1.19

1.11
1.20

0010
1010

1010
0100

1.32
1.44

1.29
1.47

1.28
1.48

0.61
0.70

0.58
0.71

0.57
0.72

2.65
1.74

3.25
1.63

3.48
1.58

1.03
1.28

0.97
1.34

0.95
1.37

1110
n i l

n i l
1110

1.37
1.38

1.36
1.38

1.36
1.39

0 .6 8
0.65

0.69
0.64

0.70
0.63

2.02
2.09

2.00
2.10

1.99
2.11

1.28
1.05

1.35
1.00

1.38
Oj#

0111
n i l

n i l
0111

1.58
1.22

1.71
1.15

1.78
1.11

0 .6 8
0.64

0.70
0.64

0.70
0.63

2.00
2.11

1.97
2.13

1.98
2.14

1.15
1.16

1.15
1.16

1.21
1.16

0010
0000

0000
0010

1.38
1.37

1.38
1.36

1.38
1.36

0.64
0 .6 8

0.63
0.69

0.62
0.70

2.68
1 .68

3.22
1.53

3.41
1.47

1.14
1.17

1.13
1.17

1.13
1.17

0001
0000

0000
0000

1.43
1.33

1.45
1.30

1.46
1.28

0 .6 8
0.65

0 .68
0.64

0 .6 8
0.63

1.94
2.21

1.89
2.30

1.86
2.35

1.30
1.02

1.38
0.96

1.42
0.93

gives some relevant inform ation’.

Before attem pting  to find the breakdown point of the maximum likelihood estim ator 

for the  log it/p rob it model, we must define w hat the above mentioned ‘bounds’ would 

be for th a t  model. Very large discrimination param eters may be considered meaningless 

or invalidating the model, because the ability estim ates coming from th a t model (the 

posterior means) give deceptive results: in their calculation the information coming from 

the item with the large discrimination param eter prevails over the  information coming 

from the other items, and thus the posterior mean depends mostly on the response to 

th a t item and very little on the responses to  the rest of the items.

Very large can be considered anything larger than  4, since for such values the  re

sponse function becomes a threshold function, though the effect of a  large discrim ination 

param eter on the posterior analysis will depend on the size of the o ther discrim ination 

param eters as well.

A very large difficulty param eter does not have such a disturbing effect. If the  dif

ficulty param eter is large then the posterior means of all individuals will be pushed 

upwards, but their order will not change.

It would be extremely difficult to  specify m athem atically the largest proportion of 

contam ination th a t the estim ator could endure before giving too large (or too small)
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estim ates.

Therefore, we shall see empirically how the param eters for the datase t we considered 

above change, as we gradually increase the am ount of contam ination in the da ta . We 

are interested in large changes in the param eter estim ates, therefore we will look a t the 

types of contam ination th a t caused sometimes severe changes in the response patterns, 

namely increasing gradually the frequency of a  response pattern  and shifting observations 

between response patterns.

2 .6 .1  Increasing th e  frequency o f a response p attern

We will consider changes in the first 8  response patterns for the param eters of the first 

th ree item s and changes in the last 8  response patterns for changes in the param eters of 

item  4, as for some of those response patterns the param eters had the largest rates of 

change.

D iffic u lty  p a ra m e te r s  Figures 2.7 show the difficulty param eters aoi for the four items 

obtained as we gradually increased the percentage of ex tra  frequency a response pattern  

received, against th a t percentage.

The overall picture of the four graphs suggests th a t generally the param eters change 

linearly as the am ount of contam ination increcises and they fall within their original 

confidence intervals with 5% contam ination. Let us see w hat happens a t each param eter 

individually:

aoi changes smoothly with increased contam ination on m ost of the response p a t

terns considered, but exceeds the lower bound of the  confidence interval with 3% ex tra  

observations a t 0 0 1 1  and 0 1 1 1 .

ao2 changes proportionally to  the percentage of contam ination and ju st reaches the 

confidence interval bounds a t 5% contam ination for the response patterns considered.

ao3 changes smoothly, proportionally to  the  am ount of contam ination and reaches 

the  confidence interval bounds a t 5% contam ination for all response pa tte rns considered, 

except for 0 1 0 1 , where there is a very large increase in the param eter if the percentage 

of ex tra  observations placed on the response pattern  increases from 3% to  5%.

ao4 displays sm ooth changes and remains within the original confidence interval even 

w ith 5% contam ination.
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Figure 2.7: «ot as extra frequency is given on a response pattern, against the percentage
of extra frequency
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Figure 2.8: ûo4 as extra frequency is given on a response pattern, against the percentage
of extra frequency
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D is c r im in a tio n  p a ra m e te r s  In Figures 2.9 the discrimination param eters are plotted 

against the percentage of ex tra  frequency a particular response p a tte rn  receives. The 95% 

confidence interval bounds for the corresponding ‘original’ param eter are also plotted, as ■ 

these may be used to  assess the m agnitude of the changes.

We observe th a t  with 1% contam ination a t any of the  response pa tte rn s  considered, 

the new param eters lie in the confidence interval of the original param eters. W ith 3% 

contam ination though, a t some response patterns, the param eters reach or slightly exceed 

the confidence interval bounds. This happens for a n  a t response pa tte rns 0000 and 0111, 

for a \ 2  a t 0 1 0 0  and 0 1 0 1 , for Ui3  a t 0 1 0 1 , 0 1 1 0  and 0 0 1 0  and for a %4 a t 0 0 1 0  and 0 0 0 0 .

W ith 5% contam ination, the param eters exceed the confidence interval bounds more 

often, i.e. a t more response patterns. We observe th a t for all param eters, a t all of the 

response patterns considered, the change is generally linear, sm ooth. The param eters 

seem well behaved, as small distortions in the frequency distribution of the response 

p atterns lead generally to  small changes in the param eters, and the greater the  distortion 

in the  frequency distribution (in the sense defined so far) the greater the  changes in the 

param eters.

The linearity of the curves for a n ,  a %2 and a ^  shows th a t the  influence function is a 

good approxim ation of the rate  of change of these param eters a t any level of contam ina

tion.

There is one exception to  th a t: the change of a i 3  if we increase the ex tra  frequency 

placed on response pattern  0101 from 3% to 5% is very abrup t and a i 3 becomes very 

large, in effect infinite. Thus placing 5% ex tra  frequency to  a response pattern  can 

produce meaningless results, the estim ator a t th a t level of contam ination, for the model 

considered here, breaks down.

2.6 .2  Sh iftin g  observations betw een  response pattern s

We saw in Section 2.5.2 th a t even a very small number of observations, for example 12, 

can cause large changes to some param eters. We want to  find the sm allest num ber of 

observations for which large changes in the param eters occur. We will therefore consider 

changes in the frequencies of the response patterns as in Section 2.5.2, increasing the 

num ber of observations being shifted from 8  to  20. These num bers correspond to  a 

proportion of 0.0056 and 0.014 respectively, so much smaller than  the am ounts considered
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Figure 2.9: au  as extra frequency is given on a response pattern, against the percentage
of extra frequency
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Figure 2.10: CI1 4  as extra frequency is given on a response pattern, against the percentage
of extra frequency
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above. (In fact we could only remove 13 observations from 0010 and 17 from 0100. For 

the  move of observations in the opposite direction we moved the num ber shown in the 

Figures - 16 or 20).

D iffic u lty  p a r a m e te r  Figures 2.11 show the difficulty param eters as the num ber of 

observations shifted between response patterns increases. There are many straight lines 

which mean th a t the param eters change little even with 16 being shifted between response 

patterns. As we saw in Section 2.5.2, the param eters are more affected by changes in 

frequencies between particular pairs of response patterns. For changes a t those response 

pa tte rn s some param eters change smoothly as the number of observations shifted between 

response patterns increases but others exceed the confidence intervals of the  original 

param eter estim ates. As we saw in Section 2.5.2 aoi &nd aoa reach the bounds of their 

confidence intervals if 1 2  observations are shifted between response patterns.

ao4 exceeds the upper bound of its confidence interval with 16 observations shifted 

from 1110 to  1 1 1 1 . The opposite shift of observations also causes a  large change in the 

opposite direction but the param eter remains within the confidence interval.

D is c r im in a tio n  p a r a m e te r  Figures 2.12 show the discrimination param eters as we in

crease the num ber of observations we move between the same response patterns. Changes 

seem sm ooth as the number of observations increases but a n  and a %2 reach the bounds 

of the confidence intervals of the original estim ates with 14 observations shifted between 

some response patterns and aig even sooner, with 9 observations. In particular, a is  ex

ceeds the upper bound of the confidence interval if 9 observations are shifted from 0010 

to  1 0 1 0 , to  0 0 1 1  or to  0 0 0 0 .

A lthough 9 observations are a large proportion of 13, which is the  frequency of re

sponse pa tte rn  0010, they make up only 0.6% of the to ta l frequency. And 14 observations, 

which when shifted between some particular response patterns m ost param eters are af

fected, make up only 1 % of the to ta l frequency.

So the estim ator can be quite sensitive to  shifts in frequencies between response 

patterns.

It is hard to  draw a line and say how much resistant the  param eters of any model 

should be. Hampel e t al. (1986) cite a lot of surveys which contained a large percentage.
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Figure 2.11; ciQi as observations are shifted between response patterns, Scale 7, first 4
items
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Figure 2.12: an  as observations are shifted between response patterns, Scale 7, first 4
items
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up to  50%, of gross errors. But if the estim ator was th a t  ‘insensitive’ though, then it 

would not distinguish between the contam inated d a ta  and d a ta  coming from a different 

model. Thus the pattern  shown above, a sm ooth change as the  am ount of distortion 

increases, is most desirable. The log it/p robit model generally shows this behaviour, but 

occcLsionally a  small distortion can cause a  threshold model. The breakdown point seems 

to  be 0 .6 % since with a larger am ount of contam ination large changes in the  param eter 

estim ates may occur.

2.7 Robustness properties o f the posterior means

One of the aims of fitting a latent tra it model, is to  estim ate the latent scores and place 

the individuals along the latent tra it continuum . As we saw in C hapter 1 , Section 1.5, 

the posterior means E (z |x) are the most appropriate means to  score individuals on the 

laten t scale.

We would like to  see w hat effect a small contam ination of the  d a ta  will have on the 

scoring of the  individuals. Therefore we examine changes in the  posterior means for 

changes in the frequency distribution of the  response patterns. As before, we will derive 

the Influence Function of the posterior means and the component score, and then observe 

the actual changes in the posterior means when the d a ta  are contam inated.

2.7.1 Influence Function of th e p osterior  m eans

As we saw in C hapter 1 , Section 1.5 the posterior mean is given by

k

E{z\xi)  =  ^ z t g { x i \ z t ) h { z t ) / f { x i )  (2.7)
t=i

Since the influence function is a derivative of the estim ator the usual calculus prop

erties apply and so the infiuence function of the posterior means is derived as follows:

IF(g(z|x,)) =  [IF(g(xd^O)/M  -  gJx,|..)IF(/(x,))] ^̂ .8)
t= l

where

k

IF ( /(x ,) )  =  g l F ( a ( x i |z , ) ) A W ,  (2.9)
< = 1
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Table 2,12: Scale 7, first 4 items, Influence Function of E(z|x)

X
resp 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1

0 0 0 0 -0 . 2 2 . 1 -7.3 -4.7 0.4 2 . 6 -6 . 6 -3.9
0 0 0 1 2 . 1 -3.7 8.4 1 . 1 3.4 -2.9 8.7 1 . 1

0 0 1 0 -2 . 8 4.1 -35.7 -22.8 0.7 9.7 -28.4 -15.2
0 0 1 1 1.3 4.2 -2.3 1 . 6 3.1 6.3 0 . 1 4.3
0 1 0 0 1 . 2 2.7 3.2 4.1 -5.7 -4.2 -3.9 -3.4
0 1 0 1 2.6 -0 . 8 1 1 . 6 6.7 -0.9 -4.6 7.3 2 . 0

0 1 1 0 0 . 6 3.5 -1 1 . 1 -5.6 0.5 4.3 -9.6 -4.1
0 1 1 1 3.4 6 . 1 1 2 . 0 13.7 4.3 6 . 6 12.3 14.3
1 0 0 0 2 . 0 4.3 8.6 9.3 3.6 5.1 9.1 1 0 . 2

1 0 0 1 0.5 0 . 0 1 . 1 0.5 1.9 1.4 2.4 1 . 8

1 0 1 0 0 . 2 -2 . 0 -4.2 -5.4 1 . 2 -0.7 -2 . 6 -3.9
1 0 1 1 -0.5 -0.3 0 . 0 0.3 -2.4 -2.0 -1 . 8 -1.5
1 1 0 0 1.9 2.7 8 . 6 8.3 - 1 . 1 -0 . 6 5.1 4.7
1 1 0 1 -1 . 1 0 . 8 -9.5 -5.8 -1.4 1.3 -8 . 6 -5.0
1 1 1 0 1.5 -5.1 6.3 -0 . 8 2 . 0 -4.7 6.5 - 1 . 0

1 1 1 1 -1 . 0 -0.9 -1 . 0 -1 . 1 -0 . 2 -0.3 -0.4 -0.3
m in -2 . 8 -5.1 -35.7 -2 2 . 8 -5.7 -4.7 -28.4 -15.2
25% -0.3 -0 . 8 -5.0 -4.9 -1 . 0 -2.3 -4.6 -3.9
m edian 0.9 1.4 0.5 0.4 0 . 6 0.5 -0 . 2 -0.7
75% 1.9 3.6 8.4 4.7 2.3 4.5 6.7 2 . 6

m ax 3.4 6 . 1 1 2 . 0 13.7 4.3 9.7 12.3 14.3

and

IF (7Ti) =  (IF(aoi) +  IF (aii) z) tt* ( 1  -  7r,) (2 .1 1 )

2.7 .2  Influence Function resu lts

We calculated the Influence Function for the posterior means obtained from fitting the 

first 4 item s of Schuessler’s scale 7. Table 2.12 shows the Influence Function values for 

all the  posterior means as each response pattern  carries ex tra  probability. Figures 2.13 

show the Influence Function of all the posterior means as response patterns 0000, 0001 

and 0 0 1 0  carry ex tra  probability.
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Table 2.12 cont., Scale 7, first 4 items, Influence Function of E(z|x)
X

resp 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 n i l
0 0 0 0 3.0 5.5 -3.6 0 . 0 3.6 6.7 -2 . 6 2 . 0

0 0 0 1 3.9 -3.0 8 . 8 0.9 4.4 -3.1 9.6 1.7
0 0 1 0 5.1 17.1 -20.9 -7.7 11.3 26.5 -13.4 -0 . 2

0 0 1 1 -2 . 1 1 . 6 -4.9 -1 . 8 0 . 1 4.2 -2.9 0 . 1

0 1 0 0 2 . 8 3.5 4.2 6.9 -4.2 -3.7 -3.3 -0.9
0 1 0 1 2 . 1 -2.5 9.6 4.8 -1.9 -7.4 5.2 -0.4
0 1 1 0 1.9 6 . 8 -7.0 -1.7 3.0 9.1 -5.7 -1 . 0

0 1 1 1 - & 6 -4.8 0.3 0 . 6 -6 . 0 -5.2 -0.3 0 . 0

1 0 0 0 -3.5 -2.5 1 . 0 1 . 2 -2.7 -2.4 1 . 1 1 . 8

1 0 0 1 0.3 -0 . 1 0 . 8 -0.3 1.7 1 . 2 2 . 1 0 . 8

1 0 1 0 3.0 1 . 8 0 . 0 -1.5 4.4 3.7 1.9 -0 . 1

1 0 1 1 -0.3 -0 . 1 0.4 1 . 2 -2 . 1 -1.9 -1.5 -0 . 8

1 1 0 0 -1 . 0 -1 . 1 4.4 4.2 -4.3 -5.1 0.3 -0.3
1 1 0 1 1.9 5.3 -4.5 -0.9 2.5 6.7 -3.8 -0 . 6

1 1 1 0 3.3 -3.6 7.8 -0 . 1 3.5 -3.8 8.4 -0.3
n i l -1 . 1 -1 . 2 -1.3 -1.3 -0.5 -0 . 6 -0 . 6 -0 . 2

min -6 . 6 -4.8 -20.9 -7.7 -6 . 0 -7.4 -13.4 - 1 . 0

25% -1 . 0 -2.5 -3.9 -1.4 -2 . 2 -3.8 -3.0 -0.5
median 1.9 -0 . 1 0.3 0 . 0 0.9 -1 . 2 -0.4 -0 . 2

75% 3.0 4.0 4.3 1 . 2 3.5 4.8 2 . 0 0.3
max 5.1 17.1 9.6 6.9 11.3 26.5 9.6 2 . 0

Let us see how the posterior means change as ex tra  probability is placed on a response 

pattern .

As the probability of 0000 increases, items 1, 2 and 4 become more discrim inating, 

whereas item 3 becomes less discriminating. We observe th a t most of the posterior means 

th a t display negative changes are of response patterns th a t have response 1 for item  3 

(i.e. response patterns 0 0 1 0 , 0 1 1 0 , 0 1 1 1 , 1 0 1 0 , 1 1 1 0  bu t not 1011 and 1 1 1 1 ). Since item  

3 has lost some of its discriminating power, responding 1 to this item is less rewarding. 

The largest positive changes occur for response patterns 1001, 1101, 1100 and 1000. All 

have response 1 for item 1 , and as it happens an  has the  largest positive IF a t response 

pattern  0 0 0 0 .

As probability of response pattern  0001 increases, items 1, 2  and 3 become more 

discrim inating and item 4 less discriminating. Again, the  posterior means of the  response 

patterns th a t  have response 1 for item 4 display negative rates of change, as responding 

1 to  item 4 is not so ‘im portan t’. M ost of the posterior means move upwards, since 

the other three items become more discriminating and responding 1 to  them  pushes the
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Figure 2.13: Influence Function of E (z |x) when response patterns 0000, 0001 and 0010 
carry  ex tra  probability
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posterior mean higher.

We observe th a t the rates of change are not as extrem e as the rates for the individual 

param eters. To get a clearer idea of what these values represent we shall study the  actual 

rates of change as ex tra  frequency is placed on each response pa tte rn  in tu rn , and also 

w hat transpositions in the ordering of the response patterns occur, since it is the ordering 

of the  response patterns th a t essentially m atters.

2.7 .3  A ctu al rates o f change

G raphs 2.14 show the actual rates of change of all response pa tte rns as 3% ex tra  frequency 

is placed on response patterns 0 0 0 0 , 0 0 0 1  and 0 0 1 0 .

We observe th a t the pattern  of the changes is similar to  the IF but their range is 

smaller, i.e. the largest actual rates of change are not as large as predicted by the IF. 

Since the location and scale of the posterior means is determ ined by the prior distribution, 

it is only their ordering th a t m atters. In the following we shall see whether these changes 

actually alter the ordering of the response patterns.

G raphs 2.15 and 2.16 show E (z |x) from the contam inated d a ta  and E (z |x ) from the 

original d a ta  ordered according to  the m agnitude of E (z |x ) of the original da ta , when 

some response patterns carry 3% of the to tal ex tra  frequency.

W hen 0000 carries ex tra  frequency, the ordering of the response patterns is preserved 

for most response patterns, except for the following transpositions: E(z|0010) is now lower 

than  E(z|0101) and E(z|1100) so it is shifted two places down, E(z|0110) is now lower 

than  E(z|1001) and E(z|1010) lower than  E(z|1101) whereas before they were higher, so 

the last two are shifted one place down.

The ordering of the response patterns is preserved for all of them  when 3% of the  to ta l 

frequency is placed on response pattern  0 0 0 1  but more severe changes occur when ex tra  

frequency is placed on response pattern  0010. In the la tte r case, response pa tte rn  0010 

is shifted down four places, since item 3, the only one with response 1 in th a t pa ttern , 

has lost much of its discriminating power. Response pattern  0110, is also shifted down 3 

places, below 1 0 0 1 , 1 1 0 0  and 0 1 0 1 , whereas before it was above them .

Moreover, response pattern  1010 is now below 1101 and 1001 whereas 1101 is now 

above 1 0 1 0 , 0 1 1 1  and 1 1 1 0 .

Changes as ex tra  frequency is placed on response patterns 0101, 0110 and 0111 are
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Figure 2.14: Actual rates of E (z |x ) as 3% extra  frequency is placed on response patterns 
0 0 0 0 , 0 0 0 1  and 0 0 1 0

Please note different range of y scale for third graph 

actual rate of change of E(ZIX) when 0000 has 3% extra frequency 

10

-5

-10

E(ZIOOOI)

E(ZIOOOO)

E{ZI0101)
E(ZI0100P

E(znooi)
E(ZI1000f

E(ZIO O II)
E (Z I001of E (Z I011of

E(Z10111) E(ZIIOIO)

E(ZI1101)

Eizmoo"
" E(Z11111)

E(ZMOII)
E(ZI1110)

I  I  J  I  _ _ 1  _  l _ _  I_ _ _ _ _ _ _ _ 1   . . J _ _ _ _ _ _ _ _ I_ _ _ _ _ _ _ _ I_ _ _ _ _ _ _ _ I_ _ _ _ _ _ _ _ I______ I- - - - - - - - - - - - 1----------1_

rate of change of E(ZIX) when 0001 has 3% extra frequency

10

5 -
E(ZIOOIO) E (Z IO IIO )

■
E(znoio)

E{ZI1110)

E(ZIOIOO)
E(znooo)

E(zmoo)

E(ZIOOOO)
E(Z11011)

E(Z11111)

E(ZiOOOI)

-5 -

-10

rate of change of E(ZIX) when 0010 has 3% extra frequency

35

25

15

5

-5

-15

-25

-35

E(ZIO IO I) 
-  E(ZIOOOI) E (Z I0 1 0 0 f  
E(ZIOOW)) ■

E(znooi)

E(ZIIOOO)

E(ZI1101)

E (z m o o )

E(ZI1111)

----------------------- b(ZI1011)-----------------"
E(ZI0111) ■ E(ZI1110)

^ E(ZIIOIO) ■E(ZIOOII)

E(ZI0010r
E(ZI0110

- 6 ^



depicted in G raphs 2.16.

The largest transpositions occurred when ex tra  frequency was placed on response 

pattern  0010, 0110 and 0111. These were the response patterns with the largest IF. 

Generally transpositions occur in the middle of the laten t tra it range. The ordering of 

the response patterns a t the extremes of the range is more robust to  changes in the 

data . We conclude th a t the IF corresponds to  actual rates of change when the am ount 

of contam ination is small (for example 3%) and the large rates indicate changes th a t  will 

affect the ordering of the response patterns.

2 .7 .4  S h iftin g  observations from  one response p attern  to  another

In this section we examine the effects of shifting observations from one response pattern  

to another on the posterior means.

Figures 2.17, 2.18 and 2.19 show the posterior means from contam inated d a ta  in the 

above way ordered according to  the posterior means of the  original da ta .

In Figure 2.17, top panel, we see th a t when we move 14 observations from 0000 to 

0010 some transpositions in the ordering of the response patterns occur. In particular 

0 0 1 0  is shifted below 0 1 0 1  and 1 1 0 0 , 0 1 1 0  is shifted below 1 0 0 1  and 0 1 1 1  is shifted 

below 1101. This is due to  the decrease in the discrim inating power of item  3, as more 

observations are put on 0010. The pattern  of changes is very similar to  the changes when 

ex tra  observations are put on 0 0 1 0  but the changes are not so severe, since the percentage 

of contam ination is smaller.

The reverse action, i.e. putting observations from 0010 to  0000 causes larger transpo

sitions (Figure 2.17, bottom  panel). Item 3 becomes even more discrim inating and thus 

0010 is pushed above 1001, whereas 1101 is pushed below 0010, 0110 and 0011. Here the 

changes are more severe than  when ex tra  observations are put on 0 0 0 0 .

In Figure 2.18, top panel we have transpositions of up to  two places (i.e. the posterior 

means are shifted below or above two neighbouring posterior means), as 14 observations 

are shifted from 0101 to 0110. The pattern  of changes is similar to  the ones observed 

when ex tra  observations are put on 0110 but again changes here are smaller. In Figure 

2.18, bottom  panel, we have the reverse shift in frequency bu t here only 7 observations 

are shifted. The pattern  of changes is the opposite of the  one observed above, bu t as 

expected changes are much smaller.
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Figure 2.15: Posterior means from contaminated and original data ordered according to
posterior means from original data: 3% contamination on response patterns 0000, 0001
and 0010
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Figure 2.16: Posterior means from contaminated and original da ta  ordered according to 
posterior means from original data: contamination on response patterns 0 1 0 1 , 0 1 1 0 , 0 1 1 1
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Figures 2.19 show one place or none transpositions (posterior means may only change 

with one neighbouring response pattern places) and this is also the typical picture of the 

posterior means when we shift observations between response patterns not shown here.

Figure 2.17: Posterior means from contaminated and original da ta  ordered according to 
posterior means from original data; shifting 14 observations from 0000 to 0010 (top) and 
shifting 14 observations from 0010 to 0000 (bottom)
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0100 1000 1100 1001 0011 1010 1110 1111

0000 0001 0101 0010 0110 1101 0111 1011 
0100 1000 1100 1001 0011 1010 1110 1111

■ orig. E(ZIX)
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■ orig. E(ZIX)
0 E(ZIX)

2.8 Existing ‘robust’ methods

In the following we will examine how methods tha t have been proposed in the literature 

as ‘robust’ behave when the data  are contaminated by placing extra probability on a
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Figure 2.18: Posterior means from contaminated and original data ordered according to
posterior means from original data; shifting 14 observations from 0101 to 0110 (top) and
shifting 7 observations from 0011 to 0101 (bottom)
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Figure 2.19: Posterior means from contaminated and original data ordered according to
posterior means from original data; shifting 14 observations from 1111 to 1110 (top) and
shifting 14 observations from 1110 to 1111 (bottom)
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response pattern.

2.8.1 ‘Jackkn ifed’ estim ates o f th e param eters and th e  p o ster ior  m eans

W ainer and W right (1980) (see Section 1.7) suggested a combination of the  score obtained 

from the d a ta  and of the scores obtained from om itting each item in tu rn  as a  robust 

estim ate of the score of the latent variable.

They called these estim ates ‘jackknifed’ estim ates.

Following their idea we will explore whether a combination of the scores obtained from 

p  — 1 item datasets will give smaller rates of change when the d a ta  are contam inated.

We create datasets om itting each item in turn , so for a da tase t with p  item s we create 

p  subsets, each consisting of p — 1 items. For each one of these subsets we estim ate the 

item param eters and the posterior means for each response pattern .

I te m  p a ra m e te r s  As a robust estim ate of the param eters of the p  item  da tase t we 

take the median of param eter estim ates obtained from the subsets of items.

We applied this procedure to the first four items of scale 7 and to  all six item s of 

scale 7, both for the original and contam inated data . The contam ination we considered 

is giving 3% of the to ta l frequency to response pattern  0010 for the 4 item  set and the 

same frequency to  response pattern  0 0 0 0 1 0  for the 6  item set, as these were the response 

patterns for which the IF had the extreme values for most param eters.

In the upper part of Table 2.13 the ‘robust’ param eter estim ates for the  original and 

contam inated 4 item sets are given, together with the rates of change of the  param eters 

when there is contam ination. In the lower half of the same table there are the  standard  

param eter estim ates and rates of change for the same d a ta  .

We observe th a t the standard  and ‘robust’ estim ation procedures give very similar 

estim ates, both for the original and contam inated data . The discrim ination param eter 

for item 3 is somewhat smaller if the robust procedure is used.

The rates of change of the param eters of the robust procedure are slightly smaller for 

three of the four items, but very close to the rates of change obtained from the standard  

procedure, ais  still changes a lot if we place ex tra  frequency on 0 0 1 0 .

In Table 2.14 we have the param eter estim ates for the 6  item datase t, w ith the robust 

and standard  estim ation procedure, for the original and the contam inated da ta . Again
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Table 2,13: Scale 7, first 4 items, ‘robust’ parameter estimates

median of estim ates of om itted item subsets
i

orig. da ta 3% at 0010 rate  of ch. orig. da ta 3% at 0010 ra te  of ch.
1 2.15 2.17 O j# 1.32 1.70 12.75
2 -0.03 -0 . 1 0 -2.37 0.69 0 . 8 8 6.25
3 0.83 0.67 -5.30 1.92 0.96 -31.85
4 1 . 6 8 1.67 -0 . 2 2 1.17 1.51 11.28

standard  estim ates
i an

orig. d a ta 3% a t 0010 rate  of ch. orig. d a ta 3% a t 0 0 1 0 ra te  of ch.
1 2.19 2 . 2 1 0.70 1.38 1.75 12.33
2 -0.03 -0 . 1 0 -2.33 0 . 6 6 0 . 8 6 6.80
3 0.87 0 . 6 8 -6.37 2.06 0.98 -35.90
4 1.67 1 . 6 8 0.33 1.16 1.52 11.90

we observe th a t the  rates of change of the param eters when the robust procedure is used 

are very similar to  the ones from the standard  procedure and it is hard to  say which 

estim ator gives smaller rates of change.

P o s te r io r  m e a n s  Using the p — 1 item d a ta  we calculated ‘robust’ posterior means in 

two ways:

(a) We assigned the posterior means obtained from the p — 1 item d a ta  to  their 

corresponding response patterns of the p  item data . For example, if item 1 WcLS om itted, 

the  posterior mean of the response pattern  000 was assigned to  0000 and 1000. If item 

3 was om itted, the posterior mean of 010 was assigned to  0100 and to  0110. So, for the 

original 4 item datase t, each response pa tte rn  was assigned 4 posterior means. For each 

response pattern  we took the mean and median of the four posterior means as robust 

estim ates of the score of the latent variable. We calculated scores with this procedure for 

the  contam inated d a ta  as well. The rates of change of the ‘robust’ scores, together with 

the rates of change of the standard  posterior means, are shown if Figure 2.20. The rates 

of change are very similar, the rates of change of the  ‘robust’ estim ates are as large as 

the  rates of change of the posterior means obtained from all items.

In Figure 2.21 we have the median of the posterior means from the reduced item 

d a ta  for the contam inated da ta  plotted together with the same score estim ates for the
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Table 2.14: Scale 7, 6 items, Tobust’ parameter estimates

median of estim ates of om itted item subsets
i 0>0i ail

orig. d a ta 3% at 000010 rate of ch. orig. da ta 3% at 000010 ra te  of ch.
1 2.18 2 . 1 0 -2.67 1.36 1.61
2 -0.03 -0 . 1 0 -2.42 0.81 1 . 0 1 6.98
3 0.83 0.73 -3.42 1.94 1.99 1.82
4 1.72 1.69 -0.98 1.25 1.54 9.90
5 -0.16 -0.05 3.52 1.58 0 . 8 6 -23.88
6 1.83 1.89 1.98 1.50 1.96 15.35

standard  estim ates
i aoi an

orig. da ta 3% at 000010 rate of ch. orig. d a ta 3% at 000010 ra te  of ch.
1 2.19 2.14 - 1 . 6 6 1.38 1.67 9.58
2 -0.03 -0 . 1 0 -2.32 0.77 0.96 6.35
3 0.83 0.70 -4.37 1.90 1.84 -1.83
4 1.73 1.72 -0.19 1.27 1.61 11.35
5 -0.16 -0.05 3.43 1.50 0.80 -23.26
6 1.81 1.89 2.41 1.46 1.94 16.00

original da ta , ordered according to the m agnitude of the  la tte r. It seems th a t  these score 

estim ates are more affected with the ex tra  frequency on response pattern  0 0 1 0 , th an  the 

usual posterior means (Figure 2.15, bottom  panel). We see th a t  response p a tte rn  0010 is 

now shifted six places down and 1101 is shifted four places up. (We note th a t  0010 for 

the  original d a ta  is two places up, above 1 1 0 0  and 1 0 0 1  compared with its place when 

the posterior means were used to score response patterns on the laten t variable).

(b) We took the median of the param eter estim ates obtained from the four three- 

item  subsets and calculated the posterior means for each response pa tte rn  for the  original 

and the contam inated dataset. The rates of change of the posterior means when ex tra  

frequency is placed on response pattern  0010 are given in Figure 2.22. We observe th a t  

the  rates of change of the ‘robust’ posterior means are equal to  the rates of change of 

the  usual posterior means for most response patterns and slightly smaller a t response 

patterns 0 0 1 0 , 0 1 1 0 , 1 0 1 0 , 1 1 0 1  and 1 1 1 0 .

These differences seem really too small to say th a t the ‘robust’ m ethod is any b e tte r  

from the usual calculation of the posterior means. But we also need to  see w hether the  

ordering of the response patterns remains unchanged when the d a ta  are contam inated
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Figure 2.20: Actual rates of change of posterior means as 3% extra probability is placed 
at response pattern 0 0 1 0
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Figure 2.21: Scores equal to the median of the posterior means from the p — I subsets 
for contaminated (3% at 0010) and original data  ordered according to the scores for the 
original da ta  
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and we use the robust method. In Figure 2.23 we have the posterior means for the 

contam inated data  against the posterior means for the original data, both calculated with 

the ‘■robust’ procedure. There are still a lot of transpositions. These can be compared 

with the ones happening with the usual posterior means (the third panel of Figure 2.15). 

W ith the new estimates, 0010 is shifted down three places (as in Figure 2.15), except 

tha t now 0 0 1 0  is below 1 1 0 0  even for the original data.

0 1 1 0  is shifted down three places, below 1 0 0 1 , 1 1 0 0  and 0 1 0 1 , as with the standard 

posterior means.

0011 is shifted below 1100 and just below 1001. W ith the standard posterior means 

0 0 1 0  was also shifted below 1 1 0 0  but remained just above 1 0 0 1 .

And as with the standard posterior means, response pattern 1010 has moved below 

1 1 0 1  and 1 0 0 1  whereas 1 1 0 1  has moved above 1 0 1 0 , 0 1 1 1  and 1 1 1 0 .

So, although this ‘robust’ procedure attenuated a bit the effect of the large discrimi

nation param eter of item 3 and moved 0010 below 1100 for the original data , it did not 

provide any robustness to the posterior means when the da ta  were contam inated. We 

observed exactly the same transpositions between the posterior means of the contami

nated and original data, calculated from the ‘robust’ param eters, as we had observed for 

the standard posterior means calculated straight from the data.

Figure 2.22: Rate of change of E(z|x) calculated with the usual and the ‘robust’ method 
(medians) when 3% extra frequency is placed on 0010
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Figure 2.23: Posterior means calculated with ‘robust’ method from contaminated (3% at
0010) and original data ordered according to posterior means from original data
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2 .8 .2  B iw e ig h t  e s t im a te s  o f  a b i l i ty

In the following we will examine the behaviour of the biweight estimates of ability, devel

oped by Mislevy and Bock (1982) (see Chapter 1 , Section 1.7). Biweight estim ates are 

claimed to be robust to isolated deviant responses. We would hope they might also be 

robust when the da ta  are contaminated in the way we examined above, i.e. placing extra 

frequency on a response pattern. The biweight estimates are available as an option in the 

program BILOG (Mislevy and Bock 1990). Figure 2.24, top, shows the rates of change 

of the posterior means and the biweight estimates (‘Z_bw’) when 3% extra frequency 

is placed on response pattern 0010. We see that the rates of change are very similar, 

perhaps the rates of change of the biweight scores are slightly smaller.

Since the rates of change are dependent on the location and scale of the estimates, 

we rescaled the posterior means and the biweight scores so th a t the mean and standard 

deviation of the score estimates are 0 and 1 respectively. Again this in an option available 

in BILOG. The rates of change of the rescaled posterior means (‘Z_bilog’) and rescaled 

biweight scores (‘Z_bw’) when the data  are contaminated in the way described above are 

shown in the lower Figure 2.24. We now see tha t the biweight scores have the largest 

rates of change for most response patterns. The biweight score estimates are no more 

robust to contamination in the da ta  than the posterior means.
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Figure 2.24: Rates of change of posterior means and biweight estimates when 3% extra
frequency is placed on 0010 without scaling (top) and scaled to have mean=0 and sd=l
(bottom)
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2.9 Conclusions

In this chapter we derived the Influence Function for the param eters of the  laten t tra it  

model and the posterior means. We also observed the behaviour of the  param eters 

and the posterior means in artificially contam inated da ta . Param eters and posterior 

means were generally well behaved, th a t is for small am ount of contam ination - ex tra  

observations - on most response patterns, the param eters changed little, in a  predictable 

way and proportionally to the am ount of contam ination. There were cases though where 

relatively few ex tra  observations on some response patterns caused large rates of change 

of some param eters, threw  them  out of their ‘original’ confidence interval and changed 

the ordering of the scores of the response patterns on the latent variable scale. M ethods 

th a t have been proposed in the literature as ‘robust’ proved to  be no more robust than  

the standard  maximum likelihood estim ates of the param eters or the posterior means for 

the  d a ta  we examined.
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Chapter 3

Sensitivity of the logit/ probit 

m odel to the distribution of the  

latent factor

3.1 Introduction

In this chapter we shall investigate the robustness of the log it/p robit model to  changes 

in the prior distribution. We will first derive and examine the Influence Function of the 

param eters for changes in the prior and then investigate empirically the changes in the 

param eters when we fit priors which are m ixtures of the standard  normal and a small 

am ount of probability on a point. We will also examine how the posterior means are 

affected when we fit the model with such priors.

We will then investigate changes in the param eters for gross changes in the  prior. 

This consists of empirical analysis using mixtures of normals as priors. We use m ixtures 

as this allows us to  take a variety of shapes of distributions and see the effect of general 

changes in the form of the prior.

In the  following we will need to  distinguish (as in Seong (1990)) between the ‘under

lying’ and the ‘prior’, as term s for the distribution of the laten t variable of the  population 

studied. Before proceeding to  the main analyses, we shall first show the correspondence 

between changes in either of these two distributions.
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3.1.1 The prior and the underlying distributions

The underlying distribution is in effect the generating mechanism of the  response patterns. 

Given the item characteristics, the individual’s position on the la ten t scale determ ines 

h is/her probability of a positive response to  an item. We do not know the form of the 

d istribution but we can make an assum ption about it in order to  fit the  model. The prior

is the distribution used to  fit the model. We need to  clarify how the changes in the  item

param eters due to  changes in the underlying distribution correspond to  the changes in 

the item param eters due to  changes in the prior distribution.

Let the ‘tru e ’ item param eters be denoted with aji and the estim ates obtained from 

fitting a model be denoted with a*--.

Suppose th a t responses are generated from a population where the la ten t (underlying) 

variable y  is distributed as N(/i,<7 ^) from the model

logit7r,(y) =  Goi +  auV (3.1)

If we fit with a N(/x,<7 ^) as prior then the estim ated param eters will be Ggi =  ^Ot &nd 

a^ - =  a n  (approximately, apart from sampling variations).

B ut if we fit with the N(0,1) as the prior then the model fitted is

logit7Ti(z) =  ÜQi +  aliZ (3.2)

B ut z =  (^ -  ju) / ( 7  so.

logit7Ti(y) =  aoi-\- a*ii(y -  iJ,)/a (3.3)

=  <  +  G uV /f -

If we equate (3.1) and (3.3) then

Gii =  gJj/(T or ali =  a n a  (3.4)

and
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CtQi — ûoi ^IîM /^ (3'5)

or (3.6)

^Oi ~  ^Oi 4* ®lt/^/^ (3.7)

— ~i“ ^lif^ (3.8)

So, if // >  0 and we fit a N(0,1) prior the difficulty param eter estim ates will be larger 

than  the true param eters. Intuitively, if we estim ate a  population with mean ability

higher than  the mean of the prior, then the difficulty param eters will appear easier.

Similarly, if the true discrimination param eter is larger than  1 and we fit the  model with 

a N(0,1) prior, the discrimination param eter estim ates will be larger than  the true ones, 

reflecting the fact th a t the population is more dispersed than a one having a standard  

normal distribution.

Bartholomew (1993) makes the point th a t the param eter estim ates are confounded 

with the population param eters and thus if we fitted some items to  two populations using 

the N(0,1) as prior then the items would appear easier in the population with the higher 

ability. Similarly, the items would appear more discrim inatory in the population with 

the largest variance.

Now, if the underlying distribution is N(0,1) the ‘tru e ’ model is

logit7Ti(z) =  aoi +  a u z . (3.9)

If the d a ta  are fitted with a  a^) as prior, then the  model fitted is

logitTrXl/) =  ÜQi +  tti-y (3.10)

But y =  /i +  <7 Z so,

logit7r,(z) =  «5,-+  a;,(/z +  fjz) (3.11)

=  CtQi 0‘l iO 'Z
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Then,

and

ni a u / a  (3.12)

^Oi — ^Oi (3.13)

— aQi auf^j  ̂

Therefore, if /x >  0 then a^- < üQi and if £7 > 1 then a^- < an-

Let us see how changing the underlying distribution or the prior will affect the  pa

ram eter estim ates. If we multiply the standard  deviation of the underlying distribution <7 

by a positive number, r , and fit a N(0,1) prior, the  new param eter estim ates will be mul

tiplied by r. On the other hand, if we use as prior a distribution with standard  deviation 

multiplied by r , then the new discrimination param eters will be r  times smaller.

If we increase the mean of the underlying distribution (keeping its variance constant) 

and fit a N(0,1), then the new param eter estim ates for the  difficulty param eter will be 

larger by an  tim es the difference in the  means. If we increase the mean of the  prior 

though, keeping the variance constant, the new a^j’s will be smaller by the estim ated au  

tim es the difference in the means.

3.2 R ates o f Change for Priors - The Influence Function

In th is section we will apply the influence function to  measure the sensitivity of the 

param eters to  the prior distribution.

Changes in the underlying distribution will lead to  changes in the distribution of 

the  response patterns, and so the rates of change in the param eters th a t result will be a 

weighted average of the values of the influence function a t the different response patterns. 

We consider changes from the standard  normal prior to  a m ixture of th a t  with a  little 

ex tra  probability a t Zq.

Suppose we d istort the prior by adding a very small am ount of probability, c, on a
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point. Then the joint distribution of the x ’s will be given by:

A (x) =  J  g { x \  z ) { ( l - e ) h { z ) - i - e S ^ J d z  = { 1 - e ) f { x . ) +e f { y . \  Zo) (3.14)

This is close to  / ( x )  so using (1.39) we have

« ( W e r / e )  =  ( ^ { u n d e r j )  +  ^ J  IF (x , o ) ( / ( x  | Z^)  ~  / (x ) )d x  (3.15)

Since

j  IF (x , a ) /(x )d x  =  0 

the rate  of change of a is given by

y  IP (x , u ) / ( x  I %o)dx, (3.16)

or

^ I F ( x , a ) / ( x U , ) ,  (3.17)
X

i.e. the rate  of change is given by weighting the influence function a t each x  with the 

conditional distribution of x  a t the contam inated point Zq and averaging over x .

From the above we see th a t the distortion on a point is incorporated in / ( x ) .  Thus 

we are measuring the distortions in the prior indirectly by measuring the sensitivity of 

the  estim ator to  distortions in the joint distribution / ( x )  which are due to  d istortions in 

the underlying distribution. A distortion on a point of the  underlying distribution Zq will 

affect / ( x )  and not ju st a point of the x ’s. By averaging over the rates of change of the 

estim ator for all possible x ’s, we will obtain the rate  of change due to  a  distortion in the 

underlying distribution of the latent variable.

3.3 Influence Function Results

We calculated the influence function for a  model with param eter values set to  M LE for a 

log it/p rob it model fit to the first four items of the Schuessler Social Life Feelings Scales 

7, to  all six items of Scale 7 and to  the employment data . The employment d a ta  are the
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responses of 1915 individuals to  4 items regarding a ttitude  to  employment taken from 

Albanese and K nott (1992b) and Birkhoff (1991). The items are given in the  Appendix.

We used a N(0,1) for the prior and it was approxim ated by a set of 16 quadra tu re  

points and weights. We calculated the influence function and the rate  of change of each 

param eter on each quadrature point.

The param eter values for the subset of scale 7, the whole scale 7 and the employment 

d a ta  are in Tables 2.1, 2.3 and 3.1 respectively.

Table 3.1: Param eter values for model, employment d a ta
X ÜQi ü i i

1  0.87 0.97
2 0.81 1.97
3 1.43 1.83
4 0.86 0.27

R a te s  o f  c h a n g e  o f  th e  d ifficu lty  p a r a m e te r  Figures 3.1, 3.2 and 3.3 show the ra te  

of change in the difficulty param eter estim ates due to  distortions in / ( x )  which are due 

to  having a small ex tra  am ount of probability a t each quadrature  point of the underlying 

distribution.

The IF of for all i and all three datasets, does not seem very large. It is ‘s ’ shaped 

for most param eters, as it is generally negative when some ex tra  probability is placed on a 

negative z and positive when some ex tra  probability is placed on a positive z. We saw why 

this happens in Section 3.1.1. The changes are due to  the small change in the location 

of the underlying distribution as we move along the range of z. As more probability is 

placed on the negative side the number of more ‘negative’ response patterns, i.e. pa tterns 

with a lot of zeroes, increases. The model tries to  adjust to  th a t by m aking the item s 

more ‘difficult’, or aoi smaller.

Not all param eters follow this pa ttern  though. For example, aoi of scale 7, either 

within the four or six item set, has positive IF if ex tra  probability is placed on the  far 

end of the  negative side of the latent variable distribution. Also, for some param eters the 

largest negative value does not occur in the extremes of the distribution but in one of the 

quadratu re  points closer to  the middle. For example, agi and üqq have their minimum IF
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Figure 3.1: Influence Function for ciQi for changes in the underlying distribution, scale 7, 
first 4 items
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Figure 3.2: Influence Function for cioi for changes in the underlying distribution, scale 7
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Figure 3.3: Influence Function for ciQi for changes in the underlying distribution, employ
ment data.
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at -2.0. So there other factors that contribute to the way param eters change other than 

the location of the distribution.

We also observe for both the 4 and the 6  item set of scale 7, the rates of change 

are larger and more variable for different items in the negative range of z, than in its 

positive range. This is attributed to the skewness of the distribution of the data . There 

are fewer ‘negative’ response patterns, patterns with a lot of zeroes than patterns with 

a lot of ones, so a change in the negative side of the underlying distribution, which will 

affect the distribution of the ‘negative’ response patterns will have a larger effect on the 

parameters.

For the employment da ta  the IF is of the same order of magnitude whether changes 

occur in the positive or negative side of the distribution. Again we observe th a t aoa has 

its minimum negative IF not at the negative extremes of the distribution but at -2.0.

The rates of change seem to ‘level off’ in the extremes of z. As we move to the extremes 

of z the rate of change becomes stable, does not increase along with (the absolute value 

of) z. It seems the ‘location’ of the distribution th a t affects the param eters has more to 

do with where the main part of the distribution lies.
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R a te s  o f chan g e  o f th e  d isc rim in a tio n  p a ra m e te r  The rates of change of due 

to distortions in the distribution of the latent variable are shown Figures 3.4, 3.5 and 3.6.

Figure 3.4: Influence Function for an  for changes in the underlying distribution, scale 7 , 
first 4 items

30

20

10

0

•10

-20
■7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

■  a11

àa13
e a 1 4

q uad ra tu re  points

The rates of change of an  are negative on the central quadrature points. As extra 

probability is placed on one of the central quadrature points the underlying distribution 

shrinks, its variance decreases. The response patterns generated from such a distribution 

reflect this and thus the items appear less discriminatory.

The rates of change of the discrimination parameters are generally larger than the 

rates of change of the difficulty parameters. The first four items of scale 7 have similar 

rates of change, whether they are considered alone or part of the whole scale. The rates 

of change of the discrimination parameters of the employment da ta  are smaller than the 

rates of change of the first 4 items of scale 7.

The rates of change of an  also level off for extreme values of z. This indicates th a t the 

param eters are not increasingly affected by small changes in the prior at the extremes 

underlying distribution, even if these progressively move out of the range of the main 

part of the distribution.
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Figure 3.5: Influence Function for au  for changes in the underlying distribution, scale 7
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Figure 3.6: Influence Function of an  for changes in the underlying distribution, employ
ment da ta
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3.4 Empirical results

We fitted the latent tra it model to  the above d a ta  using a ‘contam inated’ prior, similar 

to  the prior used for the Influence Function. So the contam inated prior is a  m ixture of 

the standard  normal plus some probability added to  a quadra tu re  point. We used 0.01 

and 0.03 probability to  contam inate the prior in the above way.

We calculated the empirical rates of change in order to  check the  results from the 

Influence Function. The empirical rate  of change or ‘standard ised’ change is given by the 

difference of the ‘new’ param eter estim ate from the one obtained with a N(0,1) as prior 

divided by the am ount of change, i.e. 0.01 or 0.03. These standardised changes were 

calculated on all 16 quadrature  points.

We expect from Section 3.1.1 the actual rates of change to  have the opposite signs 

of the IF, since the IF corresponds to  changes in the underlying distribution whereas for 

the actual changes we have modified the prior, the distribution used to  fit the  model.

We will also examine how the new estim ates relate to  the  confidence intervals of the 

estim ates from the N(0,1) prior, to get a feeling of the m agnitude of the  actual changes 

in the  param eters.

D ifficu lty  p a r a m e te r  In Graphs 3.7 and 3.8 the standardised changes of aoi of Scale 

7 and the employment d a ta  are plotted against the quadratu re  point which carries the 

ex tra  weight.

We observe th a t rates of change of aoi for scale 7 and the employment d a ta  obtained 

from the influence function and the contam inated prior have very similar shapes and 

similar range of values, except for the different signs. The empirical rates of change of 

aoi are generally positive when the ex tra  probability is added on the negative side of the 

prior distribution and vice versa.

We shall now look a t the actual param eter values to  get a  feeling of their changes 

with the am ounts of contam ination we considered above. We will denote the estim ates 

obtained from the contam inated priors with a^j.

In Figure 3.9 we have the empirical rates of change and the  actual values of the 

difficulty param eters for the first 4 items of scale 7, when we place 0.03 ex tra  probability 

a t each quadratu re  point. We have also drawn the 95% confidence interval lines for the
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Figure 3 .V : Empirical rates of change for clqi for changes in the prior, scale 7
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Figure 3.8: Empirical rates of change for (iQi for changes in the prior, employment da ta
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param eters in order to  see whether the new param eter estim ates would fall within the 

confidence intervals of the param eters from the N(0,1) prior.

The empirical rates of change for aoi &re very similar to  IF, except for the  rate  of 

change of ao3 a t -5.5 which is much larger. It seems th a t 0.03 is a  larger distortion than  

the IF can predict for, which means th a t the change of the param eter is not proportional 

to  the am ount of contam ination any more. The actual param eter values are generally 

well behaved and remain within the confidence intervals of the original param eters. The 

single exception is üq̂  which goes up to  1.3 from 0.87 with the N(0,1) prior, when 0.03 

ex tra  probability is placed at -5.5.

Figure 3.10 shows &Q2 , which has the largest rate  of change of the difficulty param eter 

of the employment da ta , as we place ex tra  probability on each quadrature  point of the 

prior. We see th a t the new param eter values are well within the confidence interval of 

the param eter obtained with a N(0,1) prior.

We also examine a slightly larger am ount of contam ination. In Figure 3.11 we have 

the estim ates of ttQi ^  we increase the ex tra probability a t a point from 0.01, to  0.03 and 

0.05. All param eters remain within the confidence intervals of the ones from the N(0,1) 

prior.

D is c r im in a tio n  p a r a m e te r  The absolute values of the Influence Function and the 

empirical rates of change are very close for scale 7, both for the 4 and 6  item sets, and 

the employment da ta . The exception to  th a t is the actual rate  of change a i 3  of the 4 item 

Scale 7 data , a t quadrature point -5.5, which is much larger than  the IF. As with aos, 0.03 

contam ination causes changes in the param eter much larger than  the IF would predict, 

so the changes are not proportional to the am ount of contam ination, as we would expect 

them  to be in a ‘neighbourhood’ of the model. For the rest of the item s the Influence 

Function gives generally a good approxim ation of the rates of change we should expect 

when the d a ta  come from a ‘contam inated’ prior or they are fitted with one.

The actual rates of change of the param eters of the  first 4 items of scale 7 are shown in 

Figure 3.14, together with the estim ated discrimination param eters. In the  graphs with 

the param eters we have also drawn the 95% confidence interval bands of the param eter 

estim ates with the N(0,1) prior.

Looking a t the discrimination param eters of the first 4 items of scale 7, we see th a t
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Figure 3.9: Empirical rates of change for cioi and parameter estimates for changes in the
prior, Scale 7, first 4 items
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Figure 3.10: Employment data, ciq2  from contaminated prior (0.03 probability)
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Figure 3.11: Scale 7, as each quadrature point gets 0.01, 0.03 and 0.05 extra proba
bility

2.5

o 2

1.5

j . . .  9

-

-7 -6 -5

■ 0.01 

© 0.03 

A 0.05 

- l . b .  

- u .b .

•3 -2 -1 0 1 2 3
q uad , points

4 5 6 7

115



Figure 3.12: Empirical rates of change for au  for changes in the prior, scale 7
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Figure 3.13: Empirical rates of change for an  for changes in the prior, employment da ta

01 0
cCts

I  -2
0(/)
1■D

l - e

-10

A
I p

. V

1 1 1 1 1 1

 ̂  ̂$
■ a11

4 313 
e a i 4

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

116



Figure 3.14: Empirical rates of change for au  and parameter estimates for changes in the
prior, Scale 7, first 4 items
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the param eters remain within the confidence interval bands when 3 % extra probability 

is put on most of the quadrature points, and lie just outside the bands of their 

confidence intervals when extra probability is placed at -5.5 whereas a \2  lies just on the 

bound of the interval, definitely exceeds the bound at the 5.5 and lies ju st within the 

upper bound when extra probability is placed at -6 . 6  and -4.5.

The discrimination parameters of the employment da ta  seem better behaved. Figure 

3.15 shows a *3  for the employment da ta  as we place extra probability on each quadrature 

point. a i3 is the discrimination parameter with the largest absolute rates of change 

but with 0.03 contamination in the prior it stays within the confidence interval of a i3  

estimated with a standard normal.

Figure 3.15: Employment data, u%3 from contaminated prior (0.03 probability)
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We will now also look at the discrimination param eters of the six item scale 7, with 

0.01, 0.03 and 0.05 contamination.

In Figure 3.16 we see the estimates and « ^ 4  of scale 7 obtained as we increased

the am ount of extra probability on each quadrature point.

We see th a t remains within the confidence intervals of the initial estimates even 

with 0.05 ex tra  probability at the quadrature points, whereas and Û44 reach the 

border of their initial confidence interval with 0.03 contamination and get outside their 

confidence interval with 0.05 contamination at quadrature points -5.5, -4.5 and -3.6.

The rest of the param eter estimates remain within their confidence intervals with 0.05
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contamination on the quadrature points.

3.5 Standardised changes of the parameters

As the  changes in the param eters we observed in Section 3.4 are largely due to  the 

different location and scale of the contam inated prior from the N(0,1), in the following 

we will standardise the new param eter estim ates obtained from the contam inated prior 

and see how far the  standardised estim ates are from the original estim ates obtained with 

a N(0,1) prior.

D iffic u lty  P a r a m e te r  The estim ates obtained from the contam inated prior are de

noted with a^j. We will first standardise using (3.13), in order to  get the estim ates 

th a t  we would have got had we used a prior with mean equal to  0  and standard  deviation 

equal to  1 . The new estim ates are given by

%i — ^Ot +  (3.18)

where n  is the mean of the prior.

T he standardised Ug/s for the first four items of Scale 7 are shown in the left panel 

of F igure 3.17. We observe th a t all show a similar pattern : they are below the 

original estim ates when ex tra  probability is added on the negative range of z and they 

rise above the original estim ates when ex tra  probability is added on the positive side of 

z. ao3  is now within the confidence interval of the original estim ate a t z =  —5.5, bu t on 

three of the extrem e quadrature points the standardised estim ates reach the confidence 

interval bounds of the  original estim ates and a t 6 . 6  üq^ exceeds the upper bound. It 

seems th a t  standardising in this way ‘over-standardises’ the  param eter estim ates. As the 

prior d istribution is very skewed when ex tra  probability is added on the extrem es of the 

prior, the mean is not an appropriate measure of location of the prior. As alternative 

m easure of location we will use the median. The new estim ates are given by

Uqj =  ÜQi -h oj,m edian (3.19)

The mean and median of the distributions considered are given in Table 3.5. The

standardised estim ates from (3.19) are shown in the right panel of Figure 3.17. We
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Figure 3.16: Scale 7, a *3 and « ^ 4  as each quadrature point gets 0.01, 0.03 and 0.05
extra  probability
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observe th a t in most cases these standardised estim ates are closer to  the original ones 

than  the unstandardised or the standardised with the mean estim ates, and in m ost cases 

the  differences between them  and the original ones are negligible. S tandardisation did 

not work for agn iii the negative range of 2 , as it showed counter-expected behaviour, 

but Ooj- is closer to  aoi than  clq̂ . Also, standardisation with the median did not bring 

aQ3  a t 2  =  —5.5 within the corresponding confidence interval but the large change of 

ao3  a t -5.5 is only due to  the location of the prior, since the change of aos a t -6 . 6  is 

smaller. On the whole though, the effect of the prior on the difficulty param eter apart 

from its location and scale is small and it was only in this single case th a t a standardised 

param eter (standardised with the most appropriate measure of location) fell outside the 

confidence interval of the original estim ate for this dataset.

D is c r im in a tio n  P a r a m e te r  We will look at the standardised discrim ination param 

eter to  see the effect of the prior having taken into account changes in the param eters 

a ttrib u ted  to  the scale of the prior.

To standardise the  prior we will use both the standard  deviation and the interquartile 

ratio  of the prior, as the la tte r may be more appropriate measure of dispersion for the  

d istributions we consider.

So, the  standardised estim ates are given by

(3.20)

where o  is the  standard  deviation of the  m ixture 

and

«li =  (3.21)

where ‘iqr’ is the interquartile distance divided by the interquartile distance of the 

N(0,1) (=1.349). The standard  deviation and interquartile distance of the priors consid

ered are given in Table 3.5.

The estim ates standardised with the standard  deviation for the first four item s of 

Scale 7 are given in the left panel of Figure 3.18. We see th a t standardisation works well 

in the  middle range of 2 , though this is only noticeable for 0 ^ 3  as the unstandardised
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Figure 3.17: Standardised üq- with the mean and the median of the prior, Scale 7, first 4
items
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estim ates are also almost indistinguishable from the original ones in the  middle range of 

z. In the  negative range of z, where there were the largest discrepancies between the 

original and the unstandardised estim ates, standardisation brought a h  and within 

the  confidence interval of the original estim ates. Since increased instead of decreasing 

com pared to  a is , standardisation brought a[^ further away from the original estim ate.

Regarding the positive range of z, all a ^ /s  were very close to  the original estim ates. 

S tandard isation  with the standard  deviation of the prior ‘over-standardised’ the  estim ates 

so th a t  the  standardised estim ates got further away from the original ones a t the  outer 

points of z, sometimes even exceeding the corresponding confidence interval.

The estim ates standardised with the interquartile ratio are shown in the right panel of 

F igure 3.18. Although and are still outside the confidence intervals of the  original 

estim ates for some zq, more a^^’s than  o^ /s are closer to  the original estim ates a ^ ’s. We 

feel th a t  the  interquartile ratio is a more appropriate measure of scale for the  priors we 

considered.

Overall, the  estim ates standardised with the interquartile ratio  are very close to  the 

original estim ates from the N(0,1), in most cases indistinguishable from them . In the 

negative range of z, discrepancies from the original estim ates are more obvious, and 

some of the standardised param eters fell outside the confidence intervals of the  original 

estim ates. Changes are a ttribu ted  to  other characteristics than  the dispersion of the  prior 

which affect these data , as the changes are larger a t z =  —5.5 than  a t z =  —6 . 6  and also 

a h  gets larger instead of smaller when ex tra  probability is pu t on those points.

3.6 Sensitivity of the posterior means to the prior distri

bution

T he param eter changes showed some relatively large differences a t  some points of the 

prior d istribu tion , similar to  the changes we have seen when ex tra  probability was placed 

on a response pa tte rn . In the following we examine how contam inating the prior by 

placing ex tra  probability on a point may affect the posterior means. We will first derive 

the  Influence Function of the posterior means for changes in the prior distribution. We 

will then com pare the IF and the empirical rates of change of the posterior means for a 

particu lar da tase t.
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Figure 3.18: Standardised a\- with the standard deviation and the interquartile ratio of 
the prior, Scale 7, first 4 items
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Table 3.2: S tatistics of the m ixture 0.97 N (0,1) +  0.03
Zq mean median st.dev. intq.dist.

-6.63 -0.1989 -0.03855 1.4998 1.3994
-5.47 -0.1642 -0.03855 1.3569 1.3994
-4.49 -0.1348 -0.03855 1.2479 1.3994
-3.60 -0.1080 -0.03855 1.1607 1.3994
-2.76 -0.0828 -0.03855 1.0916 1.3994
-1.95 -0.0586 -0.03855 1.0397 1.3994
-1.16 -0.0349 -0.03855 1.0047 1.3994
-0.39 -0.0116 -0.03855 0.9870 1.3004
0.39 0.0116 0.039 0.9870 1.3004
1.16 0.3491 0.039 1.0047 1.3994
1.95 0.0586 0.039 1.0397 1.3994
2.76 0.0828 0.039 1.0916 1.3994
3.60 0.1080 0.039 1.1607 1.3994
4.49 0.1348 0.039 1.2479 1.3994
5.47 0.1642 0.039 1.3569 1.3994
6.63 0.1989 0.039 1.4998 1.3994

3 .6 .1  I n f lu e n c e  F u n c t io n  o f  t h e  p o s t e r i o r  m e a n s

Suppose we d istort the prior by adding a very small am ount of probability, €, on a point 

Zq. We denote the posterior means estim ated from such a prior Ee{z\x)  and they are 

given by:

Fe(2r|x) =
J z ^ ( x  I z)h^(z)dz

/e W
J z ^ ( x  I z )( ( l  -  e)h{z) eS^Jdz

A M
(3.22)

(3.23)

We will derive the Influence Function of the posterior means using the definition of 

the Influence Function (1.38) given in Section 1.6.2:

IF =  lim
e->0

^ (^ l^ )fro m  h, -^(^l^)from  h

/ ^ ^ ( x  I z)he{z ) / f , {x)  -  f  zg{x  I z ) h { z ) d z / f ( x )
e->0 e

(3.24)

The num erator of (3.24) becomes
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J  zg{-K I z)h,{z)/f ,{-K) -  J  I z )h { z ) d z / f { x )

^  I  zg{x  I z)[{l  -  €)/i(z) +  €Szo]dz _  J  zg{x\ z )h{z)dz  
{ l - e ) f { x ) - \ - e g { x \ z o )  f { x )

= f ^ 9 { ^ \ z ) { l - e ) h { z ) d z  f  zg{x \ z)e5^^dz J  zg{x\ z )h{z)dz
( 1  -  e ) /(x )  +  eg{x\zo) ( 1  -  e )/(x )  +  6g'(x|zo) / ( x )

_  / z ^ ( x  I z ) ( l  -  6)/i(z )/(x )(fz  z o g ( x \ z ) e
[ ( 1  -  ( ) / W  +  eg{x\zo)]f(x)  ( 1  -  e) f {x)  +  e^(x|zo) 

f  zg(xj z )h(z)[( l  -  e ) f ( x )  +  €^(x|zp)]c^z 
[(1 - € ) / ( x )  +  €5^(x|zo)]/(x)

^  -  /  ^P(x I z)€g(xlzo)h(z)dz zpg(x  | z)€
[ ( 1  -  0 / W  +  ^£f(xko)]/(x) ( 1  -  e) f ( x )  +  6ÿ(x|zo)

The e’s in the  num erators of (3.25) cancel out with the e in the denom inator of (3.24) 

So,

,p  ^  - f  z g ( x l  z)g(xlzo)h(z)clz zpg(x  | z)
e - * o [ ( l - e } f ( x )  +  e g ( x l z o M x ) ' ^  ( l - e ) f ( x )  +  eg(xl zo)  ’

Evaluated a t € =  0

_  - g ( x | z p )  J z f f ( x | z ) / i ( z ) d z  zo p (x |z o )

f i f (x lz o )E (z |x )  , z o p (x |z o )  /g  o'7 \

- 7w  ̂ ' '

S cale  7, fo u r  i te m s  The Influence Function of the posterior means for the  first 4 item s 

of Scale 7 are given in Table 3.3. We observe th a t apart from a few very large values the  

IF is generally quite small and in many cases zero.

The IF is very large for the posterior means of 0000 when ex tra  probability is placed on 

the quadratu re  points which are on the negative tail of the prior. The ex tra  probability on 

the extrem es of the negative range of the prior draws the posterior means of the  response 

patterns with many zeroes, and particularly 0 0 0 0 , further to  the  left of the negative range 

of the posterior distribution.

(We note th a t the IF here gives the rate  of change for changes in the prior used to  fit
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Table 3.3: Scale 7, first 4 items, Influence Function of E(z|x) for changes in the prior

X
q.point 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1

-6 . 6 -138.5 -0.4 -0 . 0 0 . 0 -4.9 -0 . 0 0 . 0 0 . 0

-5.5 -103.8 - 1 . 0 -0 . 0 0 . 0 -8 . 0 -0 . 1 -0 . 0 0 . 0

-4.5 -73.1 -2.3 -0 . 1 -0 . 0 - 1 1 . 0 -0 . 2 -0 . 0 0 . 0

-3.6 -44.1 -4.2 -0.4 -0 . 0 -12.5 -0 . 8 -0 . 1 -0 . 0

-2 . 8 -18.6 -5.5 -1.3 -0 . 1 - 1 0 . 1 -2 . 0 -0.4 -0 . 0

-2 . 0 -2.7 -3.6 -2 . 1 -0 . 6 -3.9 -2.5 - 1 . 1 -0 . 2

- 1 . 2 1 . 1 -0 . 1 - 1 . 0 - 1 . 0 0.5 -0.9 - 1 . 2 -0.7
-0.4 0.4 0.7 0.5 -0 . 2 0 . 6 0 . 6 0 . 2 -0 . 6

0.4 0 . 0 0 . 2 0.4 0 . 6 0 . 1 0.3 0 . 6 0.5
1 . 2 0 . 0 0 . 0 0 . 1 0.4 0 . 0 0 . 1 0 . 2 0 . 8

2 . 0 0 . 0 0 . 0 0 . 0 0 . 2 0 . 0 0 . 0 0 . 1 0 . 6

2 . 8 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.3
3.6 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 1

4.5 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0

5.5 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.05
6 . 6 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.06

min -138.5 -5.5 -2 . 1 - 1 . 0 -12.5 -2.5 - 1 . 2 -0.7
25% -25.0 -1.4 -0 . 2 -0 . 0 -5.6 -0.4 -0 . 0 -0 . 0

median 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

75% 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 2

max 1 . 1 0.7 0.5 0 . 6 0 . 6 0 . 6 0 . 6 0 . 8

the model, as the calculation of the posterior means involves the use of this prior. The 

sign of the actual rates of change will therefore be the same of the IF).

W hen ex tra  probability is placed on the extreme positive quadrature  points the  rates 

of change of the posterior means with a  lot of ones are positive, as these posterior means 

are pushed further to  the right of their distribution.

Changes in the  middle range of the prior affects the posterior means th a t are in the 

middle of their range, though the IF is then very small.

3.6.2 Em pirical changes of the posterior m eans

S ca le  7, fo u r  i te m s  We calculated the actual rates of change of the posterior means 

cis 0.03 ex tra  probability was placed on each response pattern  in tu rn . The actual rates 

of change for the posterior means of the response patterns 0 0 0 0 , 0 0 0 1 , 0 0 1 0 , 0 1 0 0 , 1 1 1 0  

and 1111 are shown in Figures 3.21 and 3.22.
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Table 3.3 cont.: Scale 7, first 4 items, Influence Function of E (z |x ) for changes in the
prior

X
q.point 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 n i l

-6 . 6 -0 . 1 0 . 0 0 . 0 0 . 0 -0 . 0 0 . 0 0 . 0 0 . 0

-5.5 -0.4 -0 . 0 0 . 0 0 . 0 -0 . 0 0 . 0 0 . 0 0 . 0

-4.5 - 1 . 1 -0 . 0 0 . 0 0 . 0 -0 . 1 -0 . 0 0 . 0 0 . 0

-3.6 -2.5 -0 . 1 -0 . 0 0 . 0 -0.5 -0 . 0 -0 . 0 0 . 0

-2 . 8 -4.0 -0.5 -0 . 1 -0 . 0 -1.3 -0 . 1 -0 . 0 0 . 0

-2 . 0 -3.3 -1.3 -0.4 -0 . 0 -2 . 1 -0 . 6 -0 . 1 -0 . 0

- 1 . 2 -0.4 - 1 . 2 -0.9 -0.3 - 1 . 0 - 1 . 1 -0 . 6 -0 . 1

-0.4 0.7 0.3 -0.4 -0.7 0.5 -0 . 2 -0.7 -0 . 6

0.4 0.2 0.5 0 . 6 0 . 0 0.4 0 . 6 0.4 -0.5
1 . 2 0 . 0 0 . 2 0.5 1 . 1 0 . 1 0.4 0.9 0 . 8

2 . 0 0 . 0 0 . 0 0.3 1 . 6 0 . 0 0 . 2 0 . 8 3.0
2.8 0 . 0 0 . 0 0 . 1 1 . 6 0 . 0 0 . 0 0.5 5.7
3.6 0 . 0 0 . 0 0 . 0 1.3 0 . 0 0 . 0 0.3 8.8
4.5 0 . 0 0 . 0 0 . 0 1 . 0 0 . 0 0 . 0 0 . 1 1 2 . 0

5.5 0 . 0 0 . 0 0 . 0 0.7 0 . 0 0 . 0 0 . 1 15.5
6 . 6 0 . 0 0 . 0 0 . 0 0.4 0 . 0 0 . 0 0 . 0 19.6

min -4.0 -1.3 -0.9 -0.7 -2 . 1 - 1 . 1 -0.7 -0 . 6

25% -0 . 6 -0 . 0 -0 . 0 -0 . 0 -0 . 2 -0 . 0 -0 . 0 -0 . 0

median 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

75% 0 . 0 0 . 0 0 . 0 1 . 0 0 . 0 0 . 0 0.3 6.5
max 0.7 0.5 0 . 6 1 . 6 0.5 0 . 6 0.9 19.6
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Figure 3.19: Influence Function of the posterior means of 0000, 0001 and 0010 as extra 
probability is placed on each quadrature point
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Figure 3.20: Influence Function of some posterior means of 0100, 1110 and 1111 as extra 
probability is placed on each quadrature point
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The pattern  and the range of the actual rates of change is very similar to  the  Influence 

Function. Although there are no rates of change equal to  zero, the actual rates of change 

th a t correspond to  IF= 0  are very small.

Since it is the ordering of the response patterns th a t essentially m atters, we will 

examine how the new ordering of the response patterns compares with the ordering of 

the response patterns obtained from fitting a N(0,1). We will use the first four item s of 

Scale 7 and then all six items.

In Figures 3.23 the posterior means obtained from the contam inated priors are plotted 

together with the posterior means obtained from the N(0,1) priors, ordered according to 

the la tte r. Contam inated priors in these graphs are m ixtures of the N(0,1) with 0.03 

probability on the first, second, third and th irteen th  quadrature  points, th a t  is on -6 .6 , 

-5.5, -4.5 and 3.6 (in the graph they are labelled q l ,  q2, q3 and q l3  respectively).

The m ost striking difference in the new posterior means and the ones from the N(0,1) 

is the  drop of the  posterior mean of the first response pattern  when ex tra  probability is 

placed on the first three quadrature  points.

Otherwise the posterior means from the contam inated d a ta  follow more or less the 

ordering of the posterior means from the N(0,1), except for a few transpositions in the 

middle of the laten t variable range, when ex tra  probability is placed on the first three 

quadra tu re  points.

The transpositions are the same when we place ex tra  probability a t -6.5, -5.5 or -4.5. 

The largest displacement is for response pattern  1101 which is moved then below 0011, 

0110 and 0010. And then there is the transposition between the consecutive response 

pa tte rn s 0010 and 1001. At these quadrature points we have the m ost extrem e rates of 

change and the largest displacements in the ordering of the response patterns. E x tra  

probability on the rest of the quadrature  points has small effects, and the picture of the 

‘new’ against the ‘old’ response patterns is similar to  the bottom  right of Figure 3.23, 

when ex tra  probability is placed on 3.6.

If we compare these changes with the changes in the posterior means when ex tra  

probability is placed on different response patterns (see Figures 2.15 and 2.16), we ob

serve th a t  these displacements are smaller and fewer than  the displacem ents th a t  happen 

when ex tra  observations are placed a t response patterns 0010, 0110 or 0111. In fact the 

transpositions in the middle of the  latent variable range when ex tra  probability is p u t on
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Figure 3.21: Actual rates of change of the posterior means of 0000, 0001 and 0010 as
extra probability is placed on each quadrature point
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Figure 3.22: Actual rates of change of the posterior means of 0100, 1110 and 1111 as
extra probability is placed on each quadrature point
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the first three quadrature points are very similar to the transpositions th a t happen when 

extra frequency is placed on response pattern 0101. (Please note difference in the scale 

of the graphs, which is due to the large negative value of E(Z|0000) here).

Figure 3.23: Scale 7, 4 items, posterior means from N(0,1) and from contam inated priors 
with 0.03 extra probability, ordered according to posterior means from N(0 ,1 )

E(ZIX) from N(0,1) and 0.97 N(0.1) + 0.03 at -6.6 E(ZIX) from N(0,1) and 0.97 N(0,1) + 0.03 at -5.5
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Scale 7, six  ite m s  We repeat this analysis for the posterior means obtained if we use 

all six items of scale 7.

Figure 3.24 shows the posterior means as we place 0.03 probability at -6 .6 , -5.5, - 

4.5 and -2.8 together with the posterior means obtained from the N(0,1) prior, ordered 

according to the latter.

There are a few transpositions between response patterns, usually between two con

secutive response patterns, or larger ones, when one response pattern is moved up to
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four places below or above from its previous place, but the order between the ones it 

is ‘jum ping’ is preserved. We must also take into account th a t here we have sixty-two 

response patterns so a rank change of four response patterns is not so crucial as when 

we have sixteen. The more severe transpositions - larger jumps - happen when we place 

extra probability at the second and third quadrature points.

When extra probability is placed at -2.8, the fifth quadrature point, the initial order 

of the posterior patterns is preserved, except for a few one-place transpositions.

Figure 3.24: Scale 7, posterior means from N(0,1) and from contam inated priors with 
0.03 extra probability, ordered according to posterior means from N(0,1)
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■0.5

There are naturally more transpositions when we place 0.05 extra probability at points 

of the prior. In Figure 3.25, we see the posterior means as we place 0.05 probability at 

-6 .6 , -5.5, -4.5 and -2.8. There is quite a lot of jumping up and down the ‘original’
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posterior means line when extra probability is placed on -5.5 or -4.5, though these are 

the quadrature points with the most extreme rates of change. The bottom  one of Figure 

3.25 shows the posterior means as we place probability on -2.8. There only one place 

transpositions between the posterior means (i.e. changes in the ranking with posterior 

means tha t are immediately before of after them only) and this is a more typical picture 

when extra probability is placed on the rest of the quadrature points.

Figure 3.25: Scale 7, posterior means from N(0,1) and from contam inated priors with 
0.05 extra probability, ordered according to posterior means from N(0,1)
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Scale 7, f irs t 4 ite m s , p o s te r io r  m ean s fro m  s ta n d a rd is e d  e s tim a te s  As some 

of the changes in the posterior means are due to changes in the location and scale of the 

prior, we will also look at the posterior means obtained from the standardised parameters. 

We used the param eters standardised with the median and interquartile ratio of the prior
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as these were closer the param eters obtained from the N(0,1) in most cases.

Figures 3.26 show the posterior means obtained from the standardised param eters 

when ex tra  probability is put a t each approxim ation point of the prior.

We see th a t these Figures are very similar to  Figures 3.23. The same transpositions 

happen between the posterior means of the response patterns, though in some cases the 

new posterior means are slightly closer to  the original ones. These transpositions happen 

for changes in the negative range of %. We saw in Section 3.5 th a t  the changes in the 

param eter estim ates when ex tra  probability was added on a negative point of z could not 

be fully a ttribu ted  to  the change in the location and dispersion of the prior relative to  the 

N(0,1) and the standardised estim ates were still different from the ones obtained from 

a N(0,1) prior. This explains why we still see transpositions in the  posterior means as 

when the la tte r are calculated from the unstandardised estim ates. We m ust note though 

th a t the numerical differences between consecutive response patterns are very small.

W hen ex tra  probability is added on the positive range of z, the posterior means 

w hether they have been calculated from the unstandardised or the standardised estim ates 

preserve the ordering of the posterior means from the N(0,1) prior.
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Figure 3.26: Scale 7, 4 items, posterior means from N(0,1) and from contam inated priors 
with 0.03 extra probability, ordered according to posterior means from N(0,1). The 
param eters used in the calculation of the posterior means from the contam inated prior 
have been standardised.
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3.7 Fitting m ixtures of normals

In the following we shall investigate the effect of fitting a one factor laten t tra it model 

taking m ixtures of normals of the form ( 1  -  6 ) N(0 ,1 ) +  S ^  the prior d istri

bution.

The m ixtures we considered are

i) 6  =  0,05, O’! =  1 and 112 =  1,2,3,4,5, and 6 .

ii) S =  0.50, 0-2 =  1 and 112 — 1,2,3,4,5 and 6 .

iii) S =  0.25, jj, =  0 and =  2 , 2.5 and 3.

iv) S =  0.50, = 0 and — 2 , 2.5 and 3.

These param eters determine very different shapes of distributions. The first group 

comprises skewed distributions, with a  small lump on the side, a t different locations. 

The second group comprises symm etric distributions consisting of two equal parts, which 

may overlap or be alm ost completely separate. The th ird  and fourth groups comprise 

unimodal distributions with inflated variance.

3 .7 .1  C alculations

The prior was approxim ated by a set of 16 quadrature points and their corresponding 

weights, 8  quadratu re  pairs were used for each component of the m ixture. The points 

and the weights were obtained by the NAG subroutine DOIBBF. The weights were then 

normalised (so th a t they added up to  1 ) and then again multiplied by the weight given 

to  each component of the m ixture. The model was fitted with TW OM ISS. For th is study 

we used the employment data .

3.7 .2  R esu lts

The param eter estim ates obtained by fitting the logit model with a m ixture as a  prior to  

the  employment d a ta  are given in the first part of Tables 3.6, 3.4, 3.7, 3.5, 3.9, 3.8 and 

are denoted by a'j .̂ These can be compared with the param eter estim ates obtained with 

a N(0,1), given in the left hand side of the same Tables and denoted by aji, j  =  0 ,1  i = 

1, ...4.

We observe th a t Uqj are smaller than  aoi if jj,2 > 0. This follows from (3.13). Since 

fi > 0 the subjects are assumed to  have a higher job satisfaction than  when fitting a
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N(0,1). W hen modelling the same response patterns, once with fi > 0 and once with 

^  =  0  the  items m ust appear more ‘difficult’ to respond positively to  in the first case.

The more the distribution is shifted to  the right, the smaller the difficulty param eter 

becomes. The largest discrepancies are observed when 5 =  0.5 and fi2 large.

The difficulty param eter remains unaffected though by the change of the dispersion 

and overall shape of the prior; the ag /s  coming from the m ixtures with the inflated 

variance are identical to  the ‘original’ aoi’s (see Tables 3.9 and 3.8).

As we saw in Section 3.1.1, changes in the variance of the prior distribution will m an

ifest themselves in the discrimination param eter. Since the variance of all the m ixtures 

we considered is larger than  1 , the response patterns are modelled as coming from a more 

variable population regarding a ttitude  to  work than  a N(0,1) population, and therefore an 

easier to  discrim inate population. W hen we model the same set of responses once as com

ing from a  more variable population and once as coming from a less variable population 

the  item s should appear less discrim inatory in the first case. As expected, the discrim

ination param eters are smaller than  when fitting the d a ta  with the N(0,1) as prior. 

The largest changes in an  are observed with the 0.5 N(0,1)-|- 0.5 N(//2 , 1) distribution.

In order to  free the param eter estim ates from the location and scale of the  prior 

fitted and see whether other characteristics of the prior affect the param eter estim ates, 

we standardised them  using Equations (3.18), (3.19), (3.20) and (3.21).

The estim ates standardised with the mean and standard  deviation a!ĵ  and the  esti

m ates standardised with the median and interquartile ratio  are given in Tables 3.6, 

3.4, 3.7, 3.5, 3.9, 3.8.

The mean, median, standard  deviation and the interquartile distance (iqd) of the 

priors are given in Table 3.10.

Let us see how the standardised estim ates compare with the estim ates obtained with 

the  N(0,1).

0 .5  N ( 0 ,1 ) +  0 .5  N ( /i2 »l) In Table 3.4 we see th a t  the  estim ates standardised with 

the  m ean, clq^ a.re very close to  aoi, in fact indistinguishable from the N(0,1) estim ates, 

even when fi2 = 6 . Since the mean is equal to the median for these distributions, Œq- 

is equivalent to  ü'q-. P lots of the standardised estim ates are shown in Figure 3.27. The 

s tra igh t lines are drawn a t the estim ates from the N(0,1) prior and a t bounds of their
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confidence intervals.

In Figure 3.28 we have the new standardised discrim ination estim ates, both with the 

standard  deviation and the interquartile ratio against the  mean of the second component 

of the m ixture, /i2 - We see th a t the estim ates standardised with the standard  deviation 

are smaller than the N(0,1) param eters, but remain within the confidence intervals of the 

N (0 ,1 ) param eters even with ^ 2  =  6 . Standardisation with the interquartile ratio  however 

makes the estim ates larger than  the N(0,1) estim ates and keeps a \ 2  and a i4 w ithin the 

confidence interval of the N(0,1) param eters for all values of 1 12 , but throws a n  and ais 

outside the confidence intervals for 112 >  4. The standardised estim ates are also given in 

Table 3.5.

For th is type of m ixture standardisation with the standard  deviation gives better 

results.

0 .95  N (0 ,1 )  +  0 .05  N(/X2 ,1 ) In Figure 3.29 and Table 3.6 we have the standardised 

difficulty param eters plotted against /i2 - Except for üq̂ , the  other standardised with the 

mean estim ates exceed the confidence interval bounds of the  N(0,1) estim ates for some 

value of Standardisation with the median gives far be tte r results, as the standardised 

param eters are within the confidence interval bands, though they are consistently smaller 

than  the  N(0,1) estim ates.

Regarding the discrimination param eter a[- (Figure 3.30, Table 3.7), for item s i= l,2 ,3  

it is w ithin the confidence interval of the corresponding a ^ s  up to  fj>2 equal to  4, or 5 for 

item  2 , bu t the standardised estim ates are too high for larger values of fi2 . a ^  though is 

very close to  au,  and well within the confidence intervals of the N(0,1) param eters.

0 .5  N ( 0 ,1 ) +  0 .5  N(0,<7|) The standardised estim ates with the standard  deviation 

and the interquartile ratio of the m ixture are shown in Figure 3.31 and in Table 3.8. Both 

standardisations give estim ates close to  the ones from the N(0,1) prior and well within 

the confidence intervals of the la tte r. It seems the standard  deviation works b e tte r for 

a i l  and the  interquartile ratio for a i 2 , but differences are so small th a t  they could be 

a ttr ib u ted  to  numerical imprecision.

0 .75  N ( 0 ,1 ) +  0 .25  N ( 0 ,(7 2 ) The new and standardised estim ates are given in Table 

3.9. As with the estim ates from 0.5 N (0 ,1 ) +  0.5 N(0 ,f7 2 ), the standardised estim ates
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Figure 3.27: 0.5 N(0,1) +  0.5 N(/^2 ,l), standardised üq- with the mean of the mixture
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Figure 3.28: 0.5 N(0,1) +  0.5 (^ui standardised with the standard deviation and
interquartile ratio of the mixture
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Figure 3.29: 0.95 N(0,1) +  0.05 standardised üq- with the mean and median of
the mixture
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Figure 3.30: 0.95 N(0,1) +  0.05 N(/i2 >l)» standardised with the standard deviation
and interquartile ratio of the mixture
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Figure 3.31: 0.5 N(0,1) +  0.5 N(0,cr^), standardised with the standard deviation and
interquartile ratio of the mixture
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Table 3.4: aoi, prior: 0.5 N(0,1) +  0.5 N(/X2 ,l)

M2 = 0 /^2 =  1 /i2 — 2 M2=3 /X2 = 6

s.e. a Oz
0.87 0.06 0.44 0 . 2 0.09 0.05 0.03 0.03
0.81 0 . 1 0 -0.07 -0.51 -0 . 6 6 -0.71 -0.73 -0.74
1.43 0.13 0.61 0.18 0 . 0 1 -0.06 -0 . 1 0 -0 . 1 2

0 . 8 6 0.05 0.74 0.67 0.64 0.63 0.62 0.62
ÛQt s.e. =  «01  +  «1:

0.87 0.06 0.87 0.87 0.87 0.87 0 . 8 6 0 . 8 6

0.81 0 . 1 0 0.81 0.81 0.81 0.81 0.81 0.81
1.43 0.13 1.43 1.44 1.47 1.49 1.50 1.50
0 . 8 6 0.05 0 . 8 6 0 . 8 6 0 . 8 6 0 . 8 6 0.85 0.85

with either the  standard  deviation or the  interquartile ratio  are very close to  the estim ates 

from the N(0,1)-

We conclude th a t standardising with some appropriate measure of location and dis

persion of the  prior gives very similar results to  those obtained by fitting a N(0,1) as a 

prior. So, assuming any distribution as the prior, will give essentially the same param eter 

estim ates apart from a location and scale transform ation. W hen the distribution assumed 

is very skewed a robust measure of location and scale is needed to  recover the estim ates 

th a t  would have been obtained with a N(0,1). It seems th a t  other characteristics of the 

shape of the prior distribution than  location and scale have little effect on param eter 

estim ates. The logit model seems fairly robust to  the form of the prior.

3.8 Conclusions

In this chapter we examined the sensitivity of the param eter estim ates and the posterior 

means to  changes in the prior distribution. We first examined the effect of the  param eters 

to  small changes in the  prior. We derived the Influence Function for the prior, measured 

a t each of the quadratu re  points, which gives the rates of change of the param eters when 

a small am ount of probability is placed a t each point. The Influence Function seemed 

generally well behaved, levelling off a t the extremes of the  prior distribution. We also 

fitted the prior using a m ixture of a N(0,1) plus a small am ount of probability on each 

quadratu re  point in tu rn . M ost of the param eters showed small changes and remained
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Table 3.5: aii, prior: 0.5 N(0,1) +  0.5 N(^2 »l)

= 0 fl2—2 M2 =3 M2 = 4 M2 =5 M2 = 6

a u s.e. a it
0.97
1.97
1.83
0.27

0 . 1 0

0.28
0.24
0.07

0.87
1.74
1.63
0.24

0.67
1.32
1.26
0.19

0.52
0.98
0.97
0.14

0.41
0.76
0.78
0 . 1 1

0.33
0.62
0.64
0.09

0.28
0.52
0.54
0.08

a \ i s.e. “ li = a*u (T

0.97 0 . 1 0 0.97 0.95 0.93 0.91 0.89 0 . 8 8

1.97 0.28 1.95 1.87 1.77 1.71 1.67 1.64
1.83 0.24 1.82 1.78 1.76 1.74 1.73 1.72
0.27 0.07 0.27 0.27 0.26 0.25 0.25 0.25
a u s.e. «it = ^ u  iqr

0.97 0 . 1 0 0.98 1.03 1.14 1 . 2 1 1.23 1.24
1.97 0.28 1.96 2 . 0 2 2.17 2.26 2.29 2.31
1.83 0.24 1.84 1.93 2.15 2.30 2.37 2.41
0.27 0.07 0.27 0.29 0.32 0.34 0.34 0.35

Table 3.6: aoi, prior: 0.95 N(0,1) +  0.05 N(/X2 ,l)

M2 =  0 M2 = l M2 — 2  M2 —3 M2 ""4 M2 —b M2 — 0

aoi s.e.
0.87
0.81
1.43
0 . 8 6

0.06
0 . 1 0

0.13
0.05

0.83
0.73
1.35
0.85

0.80
0.67
1.31
0.83

0.78
0 . 6 6

1.29
0.82

0.77
0.65
1.29
0.82

0.76
0.65
1.29
0.81

0.76
0.65
1.29
0.80

aoi s.e. ®0 i — ^oz ■4’ M
0.87
0.81
1.43
0 . 8 6

0.06
0 . 1 0

0.13
0.05

0.87
0.82
1.44
0 . 8 6

0.89
0 . 8 6

1.48
0 . 8 6

0.91
0.94
1.56
0 . 8 6

0.95
1 . 0 2

1.64
0 . 8 6

0.98
1 . 1 1

1.73
0.87

1.03
1 . 2 0

1.82
0 . 8 6

aoi s.e. «oi =  «oz +  ^ u  med ian
0.87
0.81
1.43
0 . 8 6

0.06
0 . 1 0

0.13
0.05

0.87
0.82
1.44
0 . 8 6

0.87
0.83
1.45
0.85

0.83
0.77
1.40
0.84

0.82
0.76
1.40
0.83

0.82
0.76
1.40
0.82

0.82
0.76
1.40
0.81

148



Table 3.7: au^ prior: 0.95 N(0,1) +  0.05 N (/i2 ,l)

^̂ 2 = 0 /i2 =  l fl2=2 ^2=3 //2=5 H2=Q
du s.e. d li

0.97
1.97
1.83
0.27

0 . 1 0

0.28
0.24
0.07

0.95
1.95
1.82
0.27

0.92
1.89
1.78
0.25

0.90
1 . 8 6

1.77
0.24

0.89
1.85
1.77
0.23

0.88
1.85
1.77
0 . 2 2

0 . 8 8

1.84
1.77
0 . 2 1

du s.e. ^ u  = 4% ^
0.97 0 . 1 0 0.97 1 . 0 0 1.07 1.18 1.30 1.45
1.97 0.28 1.99 2.06 2 . 2 2 2.45 2.73 3.04
1.83 0.24 1 . 8 6 1.95 2 . 1 2 2.35 2.62 2.92
0.27 0.07 0.27 0.27 0.28 0.30 0.32 0.34
du s.e.

>/
«Il = ^u  iqr

0.97 0 . 1 0.97 0.96 0.95 0.93 0.93 0.93
1.97 0.28 1.98 1.98 1.97 1.93 1.94 1.96
1.83 0.24 1.85 1.87 1.88 1.85 1 . 8 6 1 . 8 8

0.27 0.07 0.27 0.26 0.25 0.24 0.23 0.22

Table 3.8: fij,-, prier: 0.5 N(0,1) +  0.5 N (0 ,a-^)

= 1 <7^=2 cr^=2.5 (7^=3

dOi s.e. «Ot-
0.87 0.06 0.87 0.87 0.87
0.81 0 . 1 0 0.82 0.82 0.82
1.43 0.13 1.43 1.43 1.43
0 . 8 6 0.05 0 . 8 6 0 . 8 6 0 . 8 6

du s.e. ^ u
0.97 0 . 1 0 0.80 0.75 0.70
1.97 0.28 1.67 1.57 1.50
1.83 0.24 1.54 1.45 1.37
0.27 0.07 0 . 2 2 0 . 2 1 0.19
du s.e. ^ u  ~  ^ u  ^

0.97 0 . 1 0 0.98 0.99 0.99
1.97 0.28 2.04 2.08 2 . 1 2

1.83 0.24 1.89 1.92 1.94
0.27 0.07 0.27 0.27 0.27
dl,i s.e. a ïi =  «îi iqr
0.97 0 . 1 0 0.94 0.92 0.90
1.97 0.28 1.97 1.93 1.93
1.83 0.24 1.82 1.78 1.77
0.27 0.07 0.26 0.26 0.25
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Table 3.9: aji, prior: 0.75 N(0,1) +  0.25 N(0,o-^)

=  1 (7^=2 <7^=2.5 <7^=3
aoi s.e. «Ot

0.87 0.06 0.87 0.87 0.87
0.81 0.10 0.82 0.82 0.82
1.43 0.13 1.43 1.43 1.43
0.86 0.05 0.86 0.86 0.86
a i, s.e. “ it

0.97 0.10 0.88 0.84 0.82
1.97 0.28 1.82 1.77 1.72
1.83 0.24 1.69 1.63 1.59
0.27 0.07 0.24 0.23 0.22

an s.e. “ it =  “ it- “
0.97 0.10 0.98 0.99 1.00
1.97 0.28 2.04 2.07 2.11
1.83 0.24 1.89 1.92 1.95
0.27 0.07 0.27 0.27 0.27

0̂ 1,i s.e. a It- =  “ It iqr
0.97 0.10 0.95 0.93 0.92
1.97 0.28 1.97 1.97 1.94
1.83 0.24 1.83 1.81 1.79
0.27 0.07 0.26 0.26 0.25
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Table 3.10: Statistics of the mixture distributions

Prior: 0.95 N(0,1) +  0.05 1)
sta tistic M2 = 1 / 2̂ = 2 ^2=3 /^2=4 Â2 = 6

median
a

iqd

0.05
0.05
1 . 0 2

1.37

0 . 1 0

0.08
1.09
1.41

0.15
0.06
1 . 2 0

1.43

0 . 2 0

0.06
1.33
1.41

0.25
0.06
1.48
1.42

0.30
0.06
1.65
1.43

Prior: 0.5 N(0,1) +  0.5 N(//2 j 1 )
sta tistic Â2 = 1 ^ 2 = 2 /^2=3 A^2=4 ^2=5 /^2 = 6

yLi,/median 
a

iqd

0.50
1 . 1 2

1.52

1 . 0 0

1.41
2.06

1.50
1.80
2.97

2 . 0 0

2.24
4.00

2.50
2.69
5.00

3.00 
3.16
6 . 0 0

Prior: 0.75 N(0,1) +  0.25 N(0,cr^)
sta tistic (j^ = 2 (7^=2.5 (7^=3

o
iqd

1 . 1 2

1.46
1.17
1.50

1 . 2 2

1.52
Prior: 0.50 N(0,1) +  0.50 N (0 ,(t )̂

statistic <7^=2 a^=2.5 (7^=3
a

iqd
1 . 2 2

1.59
1.32
1 . 6 6

1.41
1.74

within the confidence interval of the estim ates obtained with a N(0,1) prior. There 

were also though large unexpected changes in some param eters as 0.03 probability was 

placed a t some quadrature points, which remained even after we had standardised the 

param eters for the change in the location and the scale of the prior.

The effect on the posterior means of 0.03 probability on some quadratu re  points 

caused some transpositions between them , but these were not so extrem e as when ex tra  

probability was placed on some response patterns.

We then fitted m ixtures of normals as priors to  examine the effect of gross changes 

in the prior on the param eter estim ates of the latent tra it model. We saw th a t when 

the  param eter estim ates were standardised with an appropriate measure of scale and 

location, for example the median and the interquartile ratio  respectively when the priors 

were very skewed, the estim ates differed very little from the ones obtained with a  N(0,1) 

prior, and remained within the confidence intervals of the  latter.
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Chapter 4

Semiparametric estim ation of the  

latent trait m odel

4.1 Introduction

This chapter focuses on the am ount of information about the distribution of the  latent 

variable, the ‘prior’ distribution, th a t can be retrieved from a set of n  responses to  p 

dichotomously scored questions.

Bock and Aitkin (1981) suggested the use of an ‘em pirical’ prior for the laten t tra it 

model, th a t is a prior estim ated together with the item param eters, in order to  free the 

estim ation from any assum ptions about the prior distribution. The use of an empirical 

prior, has also been called nonparametric estim ation of the  prior, or semiparametric esti

m ation of the laten t tra it model, since one still assumes a param etric form for the response 

function. Bock and Aitkin (1981) noted, th a t because the likelihood is so insensitive to 

the shape of the prior, one can’t  estim ate accurately its finer features.

In this chapter we try  to assess the information about the  prior by m easuring the 

variability of its sem iparam etric estim ate, by comparing it, for artificial da ta , w ith the 

distribution used to  generate the responses, and by comparing it with N(0,1), as th is is 

usually the assumed form of the  prior. Moreover, we investigate the effect of a different 

num ber of support points and different initial locations and weights of these points on 

the shape of the estim ated prior and the scores of the laten t variable.

We then explore the fully semiparametric estimation of the model, th a t  is the  es
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tim ation of both the nodes and the weights simultaneously with the item  param eters. 

A lthough much research has been undertaken on the nonparam etric - fully sem iparam et

ric estim ation of the Rasch model, we do not know of any similar work on the 2-param eter 

laten t tra it model. The estim ation m ethod we propose is an expansion of the EM  algo

rithm . Again we investigate the variability of the estim ated prior, and the advantages of 

th is m ethod over the  simple sem iparam etric approach.

Finally we compare the results from fitting the model sem iparam etrically with latent 

class and ordered latent class analysis.

4.2 Semiparametric M aximum Likelihood Estim ation

If the laten t tra it model is estim ated semiparametrically, then the prior is estim ated 

together with the item param eters. We shall first describe the m ethod where the nodes 

are defined on a grid where the bulk of the distribution is expected to  lie and only the 

weights are estim ated from the data . This m ethod was given by Bock and Aitkin (1981).

Estim ating the weights involves a small modification on the EM algorithm  given in 

C hapter 1 , Section 1.4.1. At the end of each M aximisation step, the posterior weights 

h*(zt) are computed as follows:

h*(zt) = " ^ h [ z t \ y . i ) / n  (4.1)
/=i

Then (1.28) and (1.29) are calculated with h*(zt) in place of h(zt).  We take the nodes 

z and the posterior weights h*{zi) obtained a t the last iteration as the estim ates of the 

approxim ation - or support - points of the empirical prior distribution.

Since the param eters are confounded with the location and scale of the  prior d istribu

tion, we standardise the nodes of the prior a t each iteration so th a t the mean of the  prior 

is 0 and its variance 1. The mean and the variance are computed from the estim ated 

nodes and weights with fi =  J2t=i Zth*(zt) and -  l^Yh*{zt),
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4.2 .1  R esu lts  from  th e Sem iparam etric E stim ation  o f th e  L atent Trait 

M odel

We shall first look a t the estim ated points and weights th a t result from different sets 

of starting  points. These may be equally spaced or not, and have equal or unequal 

probabilities.

As noted in Section 1.9, many researchers have investigated the question of the optim al 

or sufficient num ber of points needed for the  prior when this is estim ated empirically. 

De Leeuw and Verhelst (1986) and Lindsay, Clogg, and Grego (1991) gave the maximum 

num ber of points needed for a prior for the Rasch model as (p +  l ) /2  if p, the  num ber of 

item s, is odd, and (p +  2 ) / 2  if p  is even, with the first point being equal to  —oo in the 

la tte r  case.

We don’t have equivalent results for the 2-param eter logistic model, and also this is 

a  slightly different problem since the points are fixed on a grid, so we will investigate 

empirically the effect of the number of points, by estim ating the prior using different 

num ber of points and comparing the results.

Since Heinen (1996) noted an effect of the shape of the  starting  prior on the  goodness- 

of-fit of the  model, we also take different starting  grids for the same num ber or points to 

see their effect.

The d a ta  we are going to  use to  illustrate our results are the N FER  test 1 for prim ary 

school boys, the intercultural scale 9, both for the American and the Germ an samples, 

and some artificial data . NFER test 1 comprises 21 items and the sample size of the  boys 

d a ta  is 566. The test is described in the Appendix. Scale 9, consists of 12 items (given 

in the  Appendix) th a t have to do with ‘Future O utlook’. The sample sizes are 1416 and 

1490 for the American and German samples respectively.

We use as starting  points sets of 16, 10, 8 , 6 , 4, 3 and 2 points, between -4 and 4. For 

m ost of these sets the  points are equidistant and the weights uniform, bu t we use also 

sets for which the weights are skewed to  the right or to the left. We also use a set of 4 

not equidistant points. In all the cases, the points are standardised so th a t  their mean is 

equal to  0  and their variance equal to  1 .

The left plot of Figure 4.1 shows plots of the priors obtained from the sets of 16, 10 

and 8  s tarting  points (only the points with weight greater than 0.0001 are depicted). All
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the sets give the same overall picture, a distribution skewed to  the left. From the 16 

point prior, 7 points came out with zero weight (< 0.00001), from the 10 point prior 3 

came out with zero weight and from all the different 8  point priors 2  points resulted with 

zero weight. It seems th a t not so many points are needed to  approxim ate the prior.

The uniform prior in (-3.5, 3.5), the uniform in (-1.75, 1.75) and the skewed to  the 

right prior gave exactly the same set of final points and weights. The skewed to  the  left 

prior and the N(0,1) gave only slightly different points and weights, so, as can been seen 

in the plot, all three resulting distributions are very similar to  each other.

The right panel of Figure 4.1 shows the approxim ation points and weights for the 

priors with 6  or fewer support points. Two different sets of 6  points gave the  same 

solution for the prior, which has a  similar shape to the one obtained from 8  points. One 

of the  points resulted in zero weight. Of course, this does not necessarily mean th a t  6  

points are too many, but th a t the point may have been forced to  a  location where the 

probability was zero.

It seems th a t the  m agnitude of the starting  weights, or the shape of the prior once 

the location of the points has been fixed, does not m atter. We note though th a t  all of 

the above sets of points are equidistant, except for the ones th a t approxim ate the N(0,1) 

distribution, where the central points are slightly closer together than  the points further 

out on the sides of the distribution.

Let us see w hat happens when the distances between the points are more different.

We fitted the empirical prior to the American scale 9 d a ta  with two sets of four 

starting  points, -3, -1, 1, 3 and -3, 0, 1, 3 and two sets of three starting  points, - 1 , 0, 

1 and -1, 1, 2. The resulting distributions are shown in Figure 4.2. We see now th a t 

these are quite different. For the four point priors, we see th a t the prior from the second 

set (-3,0,1,3) is a two modal distribution, because the two middle points are two close 

together and one had to carry a low probability. Of course it is hard to  compare one set 

of points with another and judge how much the distributions really differ.

T h e  p r io r  as  a  s te p  fu n c tio n  The resulting prior can either be considered a step 

function, with num ber of steps equal to  the number of points with non zero weight, or a 

sm ooth function, with the support points and weights approxim ating this function.

In the case of the step function, the jum ps occur a t each support point and they  are
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Figure 4.1: Boys, test 1, support points and weights for empirical priors obtained from
different sets of starting points

16, 10 and 8 point priors 6. 4 , 3 and 2  point em pirical priors
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Figure 4.2: American scale 9, support points and weights for empirical priors obtained 
from different sets of starting points (equidistant and not-equidistant points)
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equal to the weight of the point. The cumulative distribution functions (cdf) of the 8  

and 4 point priors for the Boys, test 1 da ta  and the American scale 9 da ta  are plotted in 

Figure 4.3.

Figure 4.3: Cumulative distribution functions for the 8  point empirical prior for the Boys, 
test 1 da ta  (left) and 4 point empirical prior for the American scale 9 (right)
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It is difficult to compare cdfs from different number of starting points, or even same 

number but with different shape. It would be useful to have percentiles and compare 

those, but again the percentiles are not unique, as ranges of probability correspond to 

same value.

A solution to this problem is to rotate the cdf through 45 degrees, and take the 

percentiles by interpolating from fixed points of the original y-axis to the z-axis, as one 

would do with a continuous cdf. An example of a rotated cdf, which is the 8  point prior 

for the Boys, test 1 da ta  is plotted in Figure 4.4. The interpolated points will then have 

to be rotated back to the original axes.

T h e  p r io r  as a  co n tin u o u s  fu n c tio n  If the prior is considered a continuous distribu

tion, the support points can be taken as the centres of histogram bins with probabilities 

equal to the weight of the points. From the histogram the ogive for each prior can be
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Figure 4.4: Rotated cumulative distribution functions for the 8  point empirical prior for 
the Boys, test 1 da ta  (left) and for the 4 point empirical prior for the American scale 9 
(right)
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constructed.

By looking at the smoothed ogives it will be easier to compare priors th a t were 

approximated with different numbers of support points. Moreover, from the ogive one 

can easily interpolate the percentiles of the prior and see how much these differ.

The ogives of the priors tha t were obtained for the different sets of 8  points and 

weights, are depicted in the left Figure 4.5, whereas the right panel of Figure 4.5 shows 

the ogives of the 6 , 4, 3 and 2 point priors.

The ogives from the 8  point priors lie all very closely together. The ogives from the 

fewer point priors seem to differ in the first half of the distribution.

Figure 4.6 shows the ogives obtained from the two sets of 4 points and the two sets 

of 3 points (equidistant and non-equidistant points). These seem more different than the 

ogives obtained from the various 8  point priors but they are still similar.

It is still difficult to judge how much the ogives - or the percentiles - really differ, 

since we do not know how much variability is expected. In the following we shall use the 

bootstrap to measure the variability of the prior.
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Figure 4.5: Boys, test 1, ogives of empirical priors obtained from different sets of starting
points - equidistant and not equidistant points
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Figure 4.6: American scale 9, ogives of empirical priors obtained from different sets of 
starting  points - equidistant and not equidistant points
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4.3 Bootstrapping the prior - Nonparam etric B ootstrap

The boo tstrap  (Efron and Tibshirani 1993) creates new samples from the original sample 

in order to  measure the variability of the estim ators. The variability in the sample is 

supposed to  reflect the variability in the population the sample came from, so drawing 

new sam ples from the original sample will give an estim ate of this variability.

For each estim ated prior, we measured the variability of its percentiles. We took the 

percentiles th a t  correspond to  the cumulative probabilities:

0 .01,0 .05 ,0 .10 ,0 .15 ,..., 0.90,0.95,0.99,1.00.

We constructed confidence intervals for the percentiles in the following way: we took 

300 boo tstrap  samples, estim ated the approxim ation points and weights, sm oothed or 

ro ta ted  the  prior and calculated the percentiles for each sample. We thus obtained a 

b o o tstrap  distribution of the percentiles. We then constructed two types of confidence 

intervals for them : 1) Confidence intervals based on the percentiles of the  boo tstrap  dis

tribu tion  (Efron and Tibshirani 1993). 2) Confidence intervals based on the Kolmogorov- 

Sm irnov m ethod (Mood, Graybill, and D.C.Boes (1963), pages 508-512).

T he first type of confidence intervals (90% confidence) of the  empirical prior per

centiles are constructed taking the 5th and 95th percentiles of their boo tstrap  distribution 

as the  lower and upper bound respectively of their confidence interval.

T he second type of confidence intervals, which are based on the Kolmogorov-Smirnov 

m ethod, are constructed in the following way: for each boo tstrap  sample we calculate the 

differences of the  5th to  the 95th percentile from their respective original percentiles. (We 

disregard the  1st, 99th and 100th percentile because their values are extrem e and their 

variability a  lot larger than for the other percentiles. If we considered them  the resulting 

confidence intervals would be so large th a t they would be hardly meaningful.) We record 

the  m aximum  difference for each bootstrap  sample and formed the boo tstrap  distribution 

of the  maximum  differences. We then take the 90th percentile of the maximum  differences’ 

d istribution and add it to, and sub trac t it from each original percentile, for the lower and 

upper bound of its confidence interval. This m ethod should give 90% confidence for the 

intervals for all percentiles considered (5th to  95th) simultaneously.

The ogive and the confidence intervals of the percentiles of the  8 , 6 , 4  and 3 point 

sm oothed priors for the Boys, tes t 1 da ta , are depicted in Figure 4.7.
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We observe tha t the confidence intervals seem to follow closely the shape of the 

original ogive (except at the extremes of the distribution) and so it seems there is some 

information about the prior distribution coming through the set of binary responses.

Figure 4.7: Boys, test 1 , ogives of empirical priors with different numbers of support 
points and confidence bands of their percentiles

8  p o in t  p r io r 6  p o in t  p r io r
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Figure 4.8 shows the confidence bands for the smoothed 8  and 6  point priors, based on 

Kolmogorov-Smirnov method (‘simultaneous’ confidence), and based on the percentiles 

(‘individual’ confidence) for comparison. We joined the lower and upper bounds of these 

intervals to form envelopes of the prior. This facilitates comparison between distributions.
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although one should be aware th a t the level of confidence of the percentile confidence 

intervals does not apply to all of them simultaneously. As expected, the Kolmogorov- 

Smirnov confidence intervals are much wider.

Figure 4.8: Boys, test 1 , Kolmogorov-Smirnov and percentile confidence bands of the 8  

and 6  point prior ogives

Boys, test 1, ogive of 8 point empirical prior 
with individual and simultaneous confidence bands

Boys, test 1, ogive of 6 point empirical prior 
with individual and simultaneous confidence bands
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We shall use these confidence intervals to see whether priors th a t have been approx

imated with different number of points have the same shape, to see how well the prior 

recovers the shape of the distribution used to generate the data, to compare the esti

mated priors with the N(0,1) and to compare priors between groups th a t have answered 

the same set of questions. In the following we will report results for the smoothed priors.

4 . 3 . 1  A p p r o x i m a t i o n  w i t h  d i f f e r e n t  n u m b e r  o f  p o i n t s

Figure 4.9 shows the envelopes of the ogives of the 8 , 6 , 4, and 3 point priors, in pairs, 

for the NFER test 1 , boys data. The envelopes were formed by joining the bounds of the 

percentile confidence intervals.

We see tha t there is a complete overlap of the envelopes of the 8  point and 6  point 

priors, so the 6  point prior can still adequately capture the shape of the prior distribution. 

The envelopes of the 8  and 4 point priors do not overlap in the whole range of the 

distribution, which means that some of their percentiles differ significantly, though the
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distributions are still close to each other. There are more departures between the 8  and 

3 point priors. There is a bit of overlap in the ogives a t the very beginning, around the 

middle and a bit a t the very end of the distributions, but this only suggests th a t  the 

middle percentiles may coincide, and the distributions s ta r t and end a t about the  same 

locations, bu t this has to  do only with the locations of the  distributions and these have 

been held fixed. Therefore 3 points are too few to represent adequately the shape of a 

continuous prior.

In Figure 4.10 we have the envelopes of the 8 , 6 , 4 and 3 point priors, for the Boys, 

te s t 1 da ta , based on the Kolmogorov-Smirnov confidence intervals. As these are much 

wider there is an overlap of the envelopes even of the 8  and 3 point priors (except for the 

first percentile).

4.3 .2  N orm ality

We would like to  see how the shape of the prior compares with the N(0,1) particularly 

because a common assum ption about the prior is th a t it is normally d istributed. We 

therefore plotted the percentiles of the  N(0,1) against the  percentiles of the  empirical 

prior (QQ-plot) and also against the (joined) bounds of their confidence intervals to  see 

how much they would deviate from a straight line.

Figure 4.11 shows QQ-plots for the 8  point prior, with its confidence bands based on 

the  percentiles (left) and on the Kolmogorov-Smirnov m ethod (right), for the  Boys, test 

1  d a ta .

The QQ-plot of the ogive shows a distribution which has a  longer left tail than  the 

N(0,1), is skewed to  the left and is more contained in the  right hand side. We observe 

th a t  if we consider individual percentile confidence intervals then many of these will not 

include the corresponding N(0,1) percentile. If we consider the  sim ultaneous confidence 

intervals then their envelope will include the straight line for the greater part of the 

d istribution, and only the confidence bands of the 0.01, 0.95 and 0.99 percentiles will not 

include the corresponding N(0,1) percentiles.

The 4 point prior is more skewed than  the 8  point one, so now the first 10% of the 

d istribution lies further out to  the left than  expected from a N(0,1) (Figure 4.12, left). 

The 3 point prior. Figure 4.12, right, can hardly be said to  approxim ate the N(0,1), 

since the confidence bands of the percentiles do not include a t all the respective N(0,1)
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Figure 4.9: Boys, test 1, envelopes of ogives of priors of different number of support
points based on individual confidence intervals
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Figure 4.10: Boys, test 1, envelopes of ogives of priors of different number of support
points based on simultaneous confidence intervals
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Figure 4.11: Boys, test 1, QQ-plots of 8 point empirical prior with percentile and
Kolmogorov-Smirnov bootstrap confidence bands
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percentiles or the latter lie just on the borders of the intervals. (Note, in Figure 4.12 only 

the Kolmogorov-Smirnov confidence intervals are depicted).

4 . 3 . 3  A r t i f i c i a l  d a t a - m i x t u r e s

The information about the underlying distribution tha t comes through a set of binary 

responses can also be measured by the extent to which the estimated prior approximates 

the distribution that generated the data, if the latter is known. Therefore, we generated 

responses from mixtures of normals and estimated the prior. We will report results for 

the mixture 0.5 N(0,1) -f 0.5 N(3,l) though similar results have been obtained for the 

0.5 N(0,1) -t- 0.5 N (4,l) mixture as well.

As usual, the prior was standardised during the estimation procedure in order to avoid 

indeterminancies with the param eter estimates.

To compare the estimated prior with the underlying distribution, we plotted the 

percentiles of the prior, and their bootstrap confidence intervals, against the percentiles 

of the standardised random deviates used to generated the responses (QQ plots) (Figure 

4.1.3).

We observe tha t for the 8  point prior, most of the confidence intervals of the percentiles 

include the straight line, two lie just outside it, and the last two percentiles fall further up
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Figure 4.12: Boys, test 1, QQ-plots of 4 and 3 point empirical prior with Kolmogorov-
Smirnov bootstrap confidence bands
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Figure 4.13: Artificial data, QQ-plots of 8  and 4 point empirical priors against the actual 
latent distribution
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to the right of the 45 degrees line. This shows th a t the estimated prior has very similar 

shape to the distribution tha t generated the data, and only a t the upper end - the last 

5% of the distribution - it is more contained than the original distribution.

The 4 point prior is not as good as the 8  point prior to approxim ate the original 

distribution, with the 45 degree line lying mostly on the bounds of the confidence intervals 

of the percentiles. (If we take the simultaneous confidence intervals though, the confidence 

interval bands will include all the original percentiles, except the very last one. )

The QQ plots against the N(0,1) percentiles in Figure 4.14 are more suggestive about 

the success of the prior in revealing the original distribution of the data. We see th a t the 

estim ated priors follow the curves of the distribution used to generate the da ta  and they 

are only deeper than those of the original distribution, particularly if only 4 points are 

used to estim ate it.

Figure 4.14: Artificial data, QQ-plots of actual latent distribution and empirical prior 
against the N(0 ,1 )

8  p o in t  p r io r ,  1 2  i t e m s 4  p o in t  p r io r ,  1 2  I te m s
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N(0.1) * conf.intervals b a se d  on  percentiles N(0.1) * conf.intervals b a s e d  on  p ercen tiles

We would also like to see the effect of the number of items in retrieving the form of 

the latent distribution. Figure 4.15 shows QQ plots of the empirical prior when only 6  

items have been used in estimating the model, against the original ‘generated’ d a ta  and 

the N(0,1). Although the variability of the percentiles is larger, the overall picture is the 

same, so even with 6  items the form of the distribution th a t generated the d a ta  can be 

reasonably retrieved.
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Figure 4.15: Artificial data, QQ-plots of 8 point empirical prior estimated from 6 items
against the actual latent distribution and the N(0,1)
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4 . 3 . 4  P a r a m e t r i c  B o o t s t r a p

W ith the param etric bootstrap samples are drawn assuming the latent distribution is the 

estimated discrete prior and the parameters of the model th a t generate the responses 

are the estimated parameters. We implemented param etric bootstrapping only for the 

unsmoothed prior.

The variability of the prior is again inferred from the variability of the percentiles, 

which have been obtained from the rotated cdf.

The results from the parametric bootstrap are compared with the results from the 

nonparametric bootstrap, again considering the prior as a discrete distribution. This 

serves to check the accuracy and efficiency of the two methods.

Figure 4.16 shows the cumulative distribution functions of 8 , 4 and 3 point priors for 

the Boys, test 1 data, together with 90% percentile confidence bands from the param etric 

and non-parametric bootstrap.

We observe th a t the bands follow the shape of the cumulative distribution function, 

for example the jumps of bootstrap distributions are around the jumps of the origi

nal distribution. The confidence bands of the param etric bootstrap are narrower than 

those of the non-parametric bootstrap, they follow the original distribution more closely.
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Therefore the non-param etric bootstrap  provides relevant and valid information on the 

distribution of the prior.

The shape of the 8  point cdf is similar to  the smoothed ogive of the same distribution. 

For the 4 and 3 point priors the steps are now more obvious, so this representation is 

more accurate.

The 3 point prior displays a lot of variability around the steps, and smaller a t the 

jum ps, whereas the variability of the 8  point cdf seems more or less the same along the 

range of the distribution.

Figure 4.17 shows confidence bands of the 8  and 4 point cdfs, the  8  and 3, and the 4 

and 3 point cdfs overlaid. The difference in the shapes of the distributions is now more 

obvious than  when looking a t their smoothed ogives, but, if we look a t the confidence 

intervals of the percentiles, they will all overlap.

The differences in the cumulative distribution functions are more apparent if we look 

a t their param etric bootstrap  confidence bands in Figure 4.18. Some of the confidence 

intervals of the percentiles of the 8  and 3 point priors don’t  overlap, for example those 

corresponding to  cumulative probability of between 0.35 and 0.45. The 4 and 3 point 

cdfs are even more different, and there is less overlap in the  confidence intervals of their 

percentiles, for example the percentiles corresponding to  between 0.3 and 0.5 probability 

(approxim ately). Also, the cumulative probability corresponding to  the  z range of about 

0.3 and 0.6 is different for the two distributions. It seems th a t  3 points are too few to 

approxim ate a continuous distribution.

4.4 Scoring of the latent variable

In this section we examine how the posterior means obtained from an empirical prior 

compare to  the posterior means obtained from a N(0,1) and also how the num ber of 

points of the prior affects the distribution of the posterior means.

Figure 4.19 shows plots of the posterior means obtained from the different empirical 

priors against the posterior means obtained from the N(0,1) prior, for Boys test 1 .

For all priors, m ost of the posterior means lie between -2 and 2, with only a few 

reaching out to  -3. The posterior means obtained from the models with the 16 and 8  

point priors are alm ost perfectly linearly related with the posterior means obtained with
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Figure 4.16: Boys, test 1, cumulative distribution functions of the 8, 4 and 3 point priors,
with parametric and non-parametric bootstrap confidence bands
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Figure 4.17: Boys, test 1, cumulative distribution functions with nonparametric bootstrap
confidence bands overlaid for different priors
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Figure 4.18: Boys, test 1, cumulative distribution functions with parametric bootstrap
confidence bands overlaid
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Figure 4.19: Boys, test 1, posterior means from different empirical priors against the
posterior means from N(0,1) prior
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the N(0,1). This almost true for the posterior means obtained from the 6  point prior, 

though the distribution is more contained a t the right end compared to  the  one obtained 

from the N(0,1) or the priors with more approxim ation points. W ith the 4 point prior, 

small ‘p lateaus’ are becoming apparent, which indicates clusters of individuals with very 

similar posterior means. This is much more obvious with the posterior means obtained 

from the 3 point and the 2 point priors. We see th a t there are 3 groups and 2 groups 

respectively, having alm ost the same posterior means, whereas the N(0,1) prior or a  prior 

with more approxim ation points would have spread them  out.

We observe the same for the American scale 9 data . Figure 4,20 shows scatterp lo ts of 

the posterior means obtained with 8 , 4, 3 and 2 point priors against the posterior means 

obtained with a N(0,1) prior. Figure 4.21 shows the cumulative distribution functions of 

the  posterior means obtained with a N(0,1) prior and 16, 10, 6 , 4, 3 and 2 priors, and then 

their quantiles against the N(0,1) quantiles. We see th a t the posterior means obtained 

with a N(0,1) are closest to  the N(0,1) curve. The posterior means obtained with a  10 

point and 6  point prior are quite close together and closer to  the posterior means from 

the N(0,1) than  the posterior means obtained from the o ther priors.

We therefore conclude th a t more than  4 points are needed if one wants an ordering 

of the posterior means on a continuous line; with fewer support points clusters around 

points are formed.

4,5 Comparing populations

F itting  a latent tra it model using an empirical prior rather than a fixed one may have 

advantages when one aims to compare samples th a t have taken the same test or have 

answered the same questionnaire. Having a fixed location and scale for the prior, is 

essential, so as to  allow differences in location and scale between the samples to  come 

through the param eter estim ates. The empirical prior, a standardised distribution, will 

then only reveal other characteristics or differences between the latent distributions.

C o m p a r is o n  o f  p r io rs  o f  d iffe re n t g ro u p s  Figure 4.22 shows the confidence interval 

bands (based on the percentiles) of the ogives of the 8  and 6  point empirical priors of the 

American and German samples th a t have answered the items of scale 9. We observe th a t 

for both the 8  and 6  point priors, the American ogive is more to  the left in the  lower half
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Figure 4.20: American scale 9, E(Z|X) from 8, 4, 3 and 2 point empirical priors against
E(Z|X) from N(0,1) prior
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Figure 4.21: American scale 9, ogive and QQ plot of E(Z|X) obtained from various priors
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and more to the right in the upper half (disregarding the tails), which implies th a t the 

distribution of the American sample is a bit heavier in its left half than the German one 

whereas the German is heavier in the right half.

Figure 4.22: Ogives of 8  and 4 point priors, for the American and German scale 9

8 point prior 4 point prior
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C o m p a riso n  o f  p o s te r io r  m eans These differences are reflected in the posterior 

means obtained with an empirical prior.

Figure 4.23 shows QQ plots of the quantiles of the posterior means obtained with a 

N(0,1) prior, and with an 8  and a 6  point empirical prior. The posterior means obtained 

with the N(0,1) are close together and both close to the N(0,1). The posterior means 

obtained with the empirical priors are not as close together. We see th a t to the left 

of the centre, the German quantiles are above the American ones, so the distribution 

of the American sample is heavier than the German one there, whereas the opposite is 

happening to the right of the centre of the distribution.

So, fitting an empirical prior allows one to compare the shape of the latent distribution 

of each group, in addition to the information on the location and scale of the distribution 

which can be obtained from the param eters or the posterior means.
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Figure 4.23; American and German scales 9, E(Z|X) from N(0,1) and from 8 and 6 point
empirical priors

  A m erican sam pte
  G erm an  sa rrp ie
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4.6 Goodness-of-fit

T he sem iparam etric estim ation of the latent tra it model should improve its goodness- 

of-ht, since the latent distribution is also being modelled and any discrepancies due to 

m isspecihcation of the prior should be alleviated. The goodness-of-fit sta tistics can also 

help one to  decide on the points needed to adequately capture the shape of the prior.

Tables 4.1 and 4.2 show goodness-of-fit statistics for param etric and sem iparam etric 

estim ation of latent tra it model, for the American scale 9 and Boys, test 1 respectively. 

The definitions of X'^ and are given in Section 1.10. The Akaike Inform ation 

C riterion (AIC) is given by AIC =  —2l + 2r where I is the loglikelihood and r  is the 

num ber of estim ated param eters. The number of estim ated param eters is the num ber of 

item  param eters plus the number of points with non-zero weight (>  0.0000009) minus 

the  number of restrictions on the points and weights, which are 3).

We see th a t for both the Boys, test 1 d a ta  and the American scale 9 d a ta  sem ipara

m etric estim ation with 4 points or more gives a better %G^ and a larger loglikelihood. 

For the American scale 9 da ta  and are also better for the sem iparam etric models 

with more than  3 points, but for the Boys test 1 d a ta  a t least 8  points are needed to  beat 

the  G^ and from the N(0,1) prior.

The AIC suggests th a t the 4 point prior is best for the  American scale 9 and the 10 

point prior is best for the test 1 data.

A nother indication as to how many points are needed to  estim ated the prior is the 

relative change in the loglikelihood as the number of points increase. Figures 4.24 and 

4.25 show th a t likelihood increases a lot as we increase the num ber of points when th is is 

small - less than  4 - bu t with 4 or more points the changes in the loglikelihood become 

smaller.

This is consistent with w hat we have observed so far, th a t is a t least 4 and not more 

th an  8  points are needed to capture the original shape of the generating distribution, and 

also about so many to  have adequate variation in the posterior means.
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Table 4,1: American scale 9: Goodness-of-fit statistics

N(0,1) lOpt st uni 8 p t S t.  uni 6  point 4pt uni 3pt 2 pt

log-likelihood

d.f.
no.of param . 
AIC

51.04
-9876.26
1597.85
1316.40

96
24

19800.52

51.65
-9862.42
1538.33
1285.25

96
31

19786,85

51.65
-9862.45
1543.82
1294.98

98
28

19780.90

51.63
-9863.00
1537.55
1281.42

96
27

19780.00

51.46
-9866.86
1557.64
1309.91

99
25

19783.73

51.04
-9876.27
1608.30
1403.48

1 0 0

24
19800.54

48.15
-9941.91
1770.12
1754.16

1 1 1

24
19931.81

Table 4.2: Boys, test 1 : Coodness-of-fit statistics

N(0,1) lOpt st uni 8 p t S t.  uni 6  p t 4pt uni 3pt 2 pt
%G^
log-likelihood

no.of param . 
AIC

24.09
-6126.83
3827.15

23159.47
42

12333.67

24.82
-6101.77
3919.07

29082.41
46

12295.54

24.80
-6102.51
3681.93

19402.92
46

12297.02

24.73
-6104.87
3864.82

27129.65
45

12299.74

24.31
-6119.24
3900.83

27342.44
43

12324.48

23.33
-6153.13
3888.91

25219.49
42

12390.26

20.51
-6249.73
4022.07

24891.24
42

12583.46

The degrees of freedom were all negative because of the pooling of the response patterns.

Figure 4.24: American scale 9, loglikelihood against num ber of points used in simple 
sem iparam etric estim ation
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Figure 4.25: Boys, test 1 , loglikelihood against number of points used in simple semi- 
parametric estimation

4.7 Fully Semiparametric Estimation of the Latent Trait 

Model

In this section we will give an EM algorithm for the fully non param etric Maximum 

Likelihood estimation of the latent tra it model and examine the information tha t comes 

out about the prior distribution. The attribu te ‘fully’, which is due to Heinen (1996), 

emphasises that also the nodes of the prior are estimated from the data.

The estimation of the approximation nodes is quite im portant, as it frees entirely 

the estimation from any predefined assumptions or starting  values (unless there are local 

maxima). For example, we saw in Section 4.2.1 th a t two sets of four points, one with 

equidistant and one with non-equidistant points, gave different approximation points for 

the prior. Estim ating both the location and the weights of the points will provide a better 

approximation for the form of the latent distribution.

4 . 7 . 1  M a x i m u m  L i k e l i h o o d  E s t i m a t i o n

In Chapter 1 , Section 1.4.1 we gave the E-M algorithm th a t is being used to estimate 

the unknown param eters when the prior has a known param etric form. Now, in order to 

estim ate the z ’s we break the estimation into two parts, th a t is there are two E- and M-
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steps: the first E- and M -steps apply to  the estim ation of the item  param eters, whereas 

the  second E- and M -steps apply to  the estim ation of the laten t nodes.

To update the nodes we move each node by a proportion of the one-dimensional 

derivatives of the loglikelihood w .r.t. the  relevant node.

As in Section 4.2, we standardise the prior after each M -step, and then ad just the 

param eters accordingly, so th a t we avoid the indeterm inacy of the  location and scale of 

the  prior.

In order to  avoid maximization under restrictions, we will differentiate the loglike

lihood calculated with the standardised z ’s w .r.t. the unstandardised z^s and we will 

update the  i ’s with these quantities.

Then the loglikelihood will be again calculated with the standardised 5 ’s and stan 

dardised a ’s, since the likelihoods under standardised prior and param eters and unstan

dardised prior and param eters are equivalent.

In the following we will denote the weight of node zt with pt, and with z  and <7  ̂ the 

mean and standard  deviation of the prior respectively.

By differentiating the log-likelihood with respect to  the unknown z ’s we get:

^  _  A  d\ nf { xh)

_  A  A  d \ n f { x h )  d z y

_  ^9(^h\z j )h(z j )  1 dzy  . ,

h = \  w=l j = l

Now,

k

I
i= i

Y^ dg{y^h\zj) _  d\ng{xh\zy)  ,

24 24 ^
_  ^ih In 7T̂ (4 ) -k (1 -  ln( l  -  ' K j ( Z y ) )

24
_  ^  — 7rt(4 )) 27rt(4 ) / I ,  \

;^7rX4)(l-7r,(4)) %

5f(x/i|4)
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=  g -  ;r,W ))(7(xA|z.)

p
=  -  7 T i { z y ) ) a i i g { x h \ z y )  (4.3)

i=l

because

=  a u n i { z y ) { l - n i { z y ) )  (4.4)

and,

dzy _  d{zy -  z) /az)  
dzt dzt

d { { z y -  z ) jdz t)az  -  {zy -  z ){dcz /dzi )

Using

and evaluating the derivative a t z =  0  and cr̂  =  1 , we have 

if î; 7  ̂ t

— —d z j d z t  — Z y d d z !  d z t
O Z f

and if u =  t

(4.5)

dt = da^/dz f
k

= -  Y  P j P t ^ j P t i ^  -  pt)^t

k

= -YPjPt^j  (4-6)
j= i

— ~ P t  ~  ^ydt  (4.7)

f)z
-%— =  1 — d z fd z i  — ZfdcFzl dzt
OZi

—  ̂ ~  Pt  ~  (4.8)
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So, (4.2) becomes

n k P 1

^  H  -  ;r , '(4 ))« iig (xA l4 )A (4 ) f ,  ' „ "

k p  n  a -

f = l  2 = 1 /l=l
k p  p

— ^  ^  — ‘̂ i { ^ v ) N y ) { —p t  +  Z y d t )  +  ^  Cku{ l ' i t  — ‘̂ i { z t ) N t ) { l  — P t - \ -  Zi tdt )
V=l,v:^t 2 = 1 2 = 1

k p  p

=  J 2 Y 1  -  7^i{Zy)Ny){-pt +  Zydt) f  ^  (rjt ~  TT^Zf)//*) (4.9)
22= 1  2 =  1 2 =  1

where

^ 222 — ^  ] Xifih(^Zy I x/i) (4.10)
/l=l

N v = Y 1  I XA) (4.11)
/l=l

and dt =  dzy fdz f .

The weights are calculated by

n

=  I Z  /^(^(|XA)/M (4.12)
A= 1

We define the steps of an EM algorithm as follows:

•  s t e p l  Choose starting  values for aio and a n  and the approxim ating points and 

weights of the prior

s te p  2 : E -s te p  1  Com pute the values of rn and Nt  from (1.28)and (1.29)

s te p  3: M -s te p  1  Obtain improved estim ates of the param eters by solving (1.30)

s te p  4: E -s te p  2  Com pute the values of and Ny  from (4.10) and (4.11)
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Table 4.3: American scale 9: Estimated prior

Zt h(zt)
-2.287 0.063
-0.937 0.273
0.042 0.264
0.842 0.364
2.184 0.037

• s te p  5: M -s te p  2  Obtain improved estim ates of the nodes by solving (4.9) 

and calculate weights by solving (4.12).

Standardise the nodes so th a t the mean of the prior equals 0  and its standard  

deviation equals 1 . Adjust the param eters appropriately. Calculate the likelihood 

and check convergence. Return to  step 2 and continue until convergence is a ttained .

4.7 .2  R esu lts

A m e r ic a n  sca le  9 Table 4.3 shows the estim ated approxim ation points and weights 

for the American scale 9. The scale consists of 12 items. It is interesting to  see how many 

approxim ation points are needed or can be estim ated from this number of items.

We started  with 10, 8 , 6  and 5 points. All these sets gave 5 points with non-zero 

weight. The 5 point solution from the 5 starting  points is the same as the 5 point 

solution from the 6  points, which indicates th a t there is a  unique 5 point approxim ation 

for the laten t distribution.

We also fitted a 4 point prior, starting  from two different sets of points, one with 

equidistant and one with non-equidistant points (as in Section 4.2.1). Both sets gave 

the  same final solution, indicating again th a t there is a unique 4 point solution. The 

sem iparam etric estim ation had produced different results for the two different s ta rting  

values, which is understandable since the points were fixed and their num ber too small 

for the weights to  adjust between them .

The same procedure was repeated for German scale 9 and the Boys, test 1 d a ta . The 

G erm an scale 9 also gave 5 distinct points for the prior (identical solution with when we 

s ta rted  with 6  points) and the Boys, test 1 , which consists of 21 items, gave 6  d istinct
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points for the prior, a lot fewer than the number of items.

We can see how the points obtained from fully semiparametric estimation compare 

with the ones obtained from simple semiparametric estimation. In Figure 4.26 we see 

the points and weights obtained from a simple 6  point semiparametric solution and a 5 

point fully semiparametric solution for the American and German scale 9. (We are not 

comparing with the 5 point simple semiparametric solution because one of the points came 

out with zero weight). Both solutions seem very similar. The last 4 points and weights 

are very close together. The last two points of the fixed point prior are an approximation 

to the first point of the fully semiparametric prior. Since the fully semiparametric prior 

is more flexible to adjust, it is more economical with points.

Figure 4.26: Points and weights of 5 point fully semiparametric prior and 6  point semi
parametric prior, American scale 9, left, and German scale 9, right

R e la t io n s h ip  o f  t h e  n u m b e r  o f  i t e m s  w i t h  t h e  n u m b e r  o f  a p p r o x i m a t i o n  p o in t s

We saw in Section 4.2.1 that there have been results (De Leeuw and Verheist 1986), 

(Lindsay, Clogg, and Grego 1991) establishing the maximum number of points needed 

for the prior for the Rasch model as (p 4- l ) /2  if p, the number of items, is odd, and 

(p 4 - 2 ) / 2  if p is even, with the first point being equal to -o o  in the latter case.

We investigate empirically whether there is a connection between the number of sup

port points with the number of items of the test. We would like to see whether there are
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Table 4.4: Sets of items of German scale 9: Number of points of prior

no of items no of points needed max.no of points expected
1 2 5 7
1 1 5 6

1 0 4 6

9 5 5
8 4 5
7 4 4
6 3 4
5 3 3
4 3 3
3 3 2

results for the tw o-param eter logistic model, similar to  those for the Rasch model.

We constructed sets of items by reducing the num ber of items sequentially for three 

datasets, and estim ated the prior with different num ber of points, until all d istinct points 

had non-zero weight. The results for the German scale 9, the m ixture of normals and the 

Boys test 1 d a ta  appear in Tables 4.4, 4.5 and 4.6 respectively.

Both German scale 9 and the m ixture ‘ii30’ have 12 items and 1490 responses. Boys 

test 1 has 21 items and 566 responses. For the first two datasets results are the same 

except for the 6  item solution. The number of points with non-zero weight are in m ost 

cases fewer than the maximum number of points suggested by De Leeuw and Verhelst 

(1986). The only case th a t exceeds the number of points expected is the case of the first 

3 items of German scale 9, where 3 points came out with non-zero weight.

For the Boys test 1 d a ta  fewer points are being estim ated for the prior, which is 

probably due to the small number of responses.

4.7.3 O ptim ality  criteria

Lindsay (1983) gave the conditions for the estim ated mixing distribution to  be optim al, 

as we saw in Section 1.9. The D  function (1.64) will be in our case:

NR
(4.13)

I f ( ^ l )

where ni is the frequency of the distinct response pattern  xi and NR the num ber of
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Table 4.5: Sets of items of ‘Mixture of Normals’: Number of points of prior

no of items no of points needed max.no of points expected
1 2 5 7
1 1 5 6

1 0 4 6

9 5 5
8 4 5
7 4 4
6 4 4
5 3 3
4 3 3

Table 4.6: Sets of items of Boys test 1: Num ber of points of prior

no of items no of points needed max.no of points expected
2 1 6 1 1

15 5 8

1 2 4 7
8 3 5

distinct response patterns. For fixed item param eter estim ates, D (z, / )  should be equal 

to  zero a t each estim ated support point z. Moreover sup^D (z, / )  =  0, if /  is from an 

optim al prior.

R e s u l ts  Boys, test 1 . After successively fitting the model with different num ber of 

points, we obtained 6  d istinct points with non-zero weight for the prior. Figure 4.27 

shows a plot of Lindsay’s D against the latent variable, and the support points along the 

zero line. We see th a t  the estim ated points fall on the peaks of the D curve, these are 

a t 0, and the D curve does not cross the zero line. This shows th a t  the solution for the 

prior is optim al.

Germ an scale 9, 12 items. The estim ated prior has five support points. Figure 4.28, 

left shows Lindsay’s D curve and the support points. All five points fall exactly on the 

peaks of the  curve, which are a t zero, and again the D curve does not go above the zero 

line. So this solution seems to  be the optim al one.

Let us see w hat happens if we fit a 4 point prior. The D curve. Figure 4.28 right, 

shows clearly th a t this is not optim al. There are peaks around the support points going
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Figure 4.27: Boys, test 1, Lindsay’s D for the 6 point prior

above zero, indicating tha t an extra point is needed to bring them down.

For the sets consisting of 4 to 1 1  items the prior came out with 3 to 5 approximation 

points, the number being equal or smaller than the maximum number of approximation 

points needed for the Rasch model. For the 3 items set though, we obtained 3 distinct 

points. Function D is plotted in Figure 4.29 for the 3 and 2 point priors. In the 3 

point solution, the line is flat and goes along 0  after about z= -0 .2 , so both the second 

and third points have D=i). With the 2 point prior D also remains at zero above -0.2 

approximately) so also this solution is optimal. In this case the number of points cannot 

be determined uniquely.

4 .7 .4  S c o r in g  o f  t h e  l a t e n t  v a r ia b le

Figure 4.30 shows a QQ plot of the posterior means obtained from a N(0,1) prior, from 

a 8  point empirical (simple semiparametric) prior and from the 5 point optimal fully- 

semiparametric prior. Posterior means obtained from the 5 point fully semiparametric 

estimation are identical to the posterior means obtained from the 8  point simple semipara

metric estimation (the two lines coincide). So, simple and fully semiparametric estimation 

methods can provide the same results, but with the simple semiparametric estimation 

more points are needed so that the weights can adjust optimally along these points.
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Figure 4.28: German scale 9, Lindsay’s D for the 5 and 4 point fully-semiparametric prior
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Figure 4.29: German scale 9, first 3 items, Lindsay’s D for the 3 and 2 point fully- 
semiparametric prior
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Figure 4.30: American scale 9, QQ plots of E(Z|X) from N(0,1), semiparametric and fully
semiparametric estimation
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The distribution of the posterior means obtained with a N(0,1) is closer to the N(0,1) 

than the distribution of the posterior means when the model is fitted semiparametrically, 

so the N(0,1) prior imposes some structure on the distribution of the posterior means.

4.8 Bootstrapping the estim ated prior

We again use the non parametric bootstrap, as in Section 4.3 to construct confidence 

intervals of the percentiles of the prior. We smoothed or rotated the estimated prior, 

calculated its percentiles and then formed 300 bootstrap samples. For each percentile of 

the estimated prior we constructed confidence intervals based on the percentiles of their 

bootstrap distribution.

We will first use the bootstrap confidence intervals to see how well the estimated prior 

approximates the distribution that generated the data.

4 .8 .1  A r tif ic ia l d a ta

In this section we use the 0.5 N(0,1) +  0.5 N(3,l) mixture, which we will call ‘ii30’. The 

estimated prior came out with 5 support points. We smoothed the prior and constructed 

bootstrap confidence intervals of its percentiles.
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Figure 4.31 shows QQ plots of the percentiles of the estimated prior and their boot

strap confidence intervals against the percentiles of the distribution used to generate the 

da ta  (left) and against the N(0,1) (right).

In the left plot we see that most of the percentiles include the 45 degree line, or they 

are just off it (except the very last percentile which is further to the right). So the 5 

point prior is a very good approximation of the distribution that generated the data. 

The same can be inferred from the QQ plot against the Normal. If we compare it with 

the simple empirical prior, with the fixed nodes, we can say tha t  it does as well as the 8 

point empirical prior in covering the original curve and even better at the extremes of the 

distribution, and also the confidence intervals are generally smaller. So the nonparametric 

prior is more economical and more efficient.

Figure 4.31: Artificial data: QQ plot of fully semiparametric prior against original data  
and against the N(0,1)

5  p o in t  fu lly  s e m i - p a r .  p r io r ,  1 2  i t e m s
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5  p o in t  fu lly  s e m i - p a r .  p r io r ,  1 2  i t e m s
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g en e ra te d data N (0 .1 )

4 .8 .2  C o m p a r iso n  o f  P o p u la t io n s

In the following we will compare the priors and the posterior means of the American and 

German scale 9 obtained from the fully semiparametric model.

Figure 4.32 gives the bootstrap confidence bands of the 5 point fully semiparametric 

prior, considered either as a discrete distribution or an approximation to a continuous 

distribution, for the American and German scale 9. The pictures are very similar to those

193



of Figure (4.22), Section 4.5, and again they show that the distribution of the American 

da ta  is a bit heavier in the left half than the German one.

Figure 4.33 gives the ogives of the posterior means for American and German scale 9, 

obtained from the fully semiparametric prior. The picture is as expected from the ogives 

above and very similar with the ogive obtained from the 8 point simple semiparametric 

prior. So the fully semiparametric prior allows more information to come through the 

posterior means than a N(0,1) prior.

Figure 4.32: American and German scale 9, bootstrap bands of cdf of nonparametric 
prior and of smoothed nonparametric prior
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4.9 Goodness-of-fit

It is interesting to see whether fitting a nonparametric prior improves the goodness-of-fit 

of the latent trait model. We expect that it will, since some discrepancies between the 

model and the data  could be attributed to an inappropriate prior.

Tables 4.7 and 4.8 give the goodness-of-fit statistics for models with the N(0,1) prior, 

the 8 point simple semiparametric prior and the 5 point fully semiparametric prior.

For the American scale 9 data, and A'^ are similar for the simple and fully semi

parametric model and both are smaller than the ones obtained with a N(0,1) prior.

The AIC suggests the 8 point simple semiparametric model is the best one but the
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Figure 4.33: American and German scale 9, ogives of posterior means

Table 4.7: .American scale 9: Goodness-of-fit statistics

N(0,1) 8pt se mi par 5 pt fully semi par.
%G^
loglikelihood

d.f.
no.of param.
AIC

51.04
-987G.26
1597.85
1316.40

96
24

19800.52

51.65
-9862.45

1543.82
1294.98

98
28

19780.90

51.66
-9862.18
1542.98
1295.65

97
31

19786.36

likelihood is larger for the fully-semiparametric model.

For the Boys test 1 data, the fully semiparametric prior provides a larger %G^ and a 

larger likelihood, but the A'^ and indices are worse than the models from the N(0,1) 

or the 8 point semiparametric priors. The AIG suggests the 8 point simple semiparamet

ric model is the best one (also compared with the other simple semiparametric models 

examined earlier).
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Table 4.8: Boys, test 1: Goodness-of-fit statistics

N(0,1) 8pt semipar. 6 pt fully semipar.
24.09 24.80 24.87

loglikelihood -6126.83 -6102.51 -6100.05
3827.15 3681.93 3904.73

23159.47 19402.92 28629.67
no.of param. 42 46 51
AIC 12337.67 12297.02 12302.10

4.10 Comparison with latent class analysis

Fitting a latent trait model using an empirical prior is very similar to latent class analysis. 

In latent class analysis, the probabilities of belonging to a class are set out arbitrarily 

in the beginning and estimated and used again at each iteration of the EM algorithm. 

When fitting an empirical prior, the probabilities of being at a particular point are set out 

arbitrarily in the beginning and are estimated at each iteration. The difference is that in 

the latent trait model there is an underlying continuum and the probabilities are attached 

to some points on that continuum, whereas in latent class analysis the probabilities are 

not attached to any points. Because of the latter there isn’t any ordering of the classes, 

whereas when we fit a latent trait model we expect to get the individuals ordered along 

the continuum representing the latent trait.

Croon (1990) proposed an ordered latent class model where the ordered relations 

between the classes are defined by imposing inequality restrictions on the item response 

probabilities (see also Section 1.9). He considered this model as a nonparametric version 

of the latent trait model, or a model that is between the latent class model, where the 

latent variable is measured on a nominal level and the latent trait model, where the latent 

variable is measured on an interval scale level.

The semiparametric latent trait model seems to be very close to the ordered latent 

class model. In the following we shall compare the results of fitting Boys test 1 data 

and the American scale 9 data with latent class models, ordered latent class models and 

fully-semiparametric latent trait models.

C om parison  o f  class prob ab ilities w ith  prior d istr ib u tio n  The class probabilities 

of the two latent class solutions are exactly the same as the probabilities on each of the
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two nodes of the prior distribution when two nodes are used. The nodes for the estimated 

prior can be deduced from their weights, once the mean and variance of the prior have 

been determined: the weights and nodes are subject to the restrictions

h{zi)zi +  h{z2)z2 =  0

and

From these we have

and

h{zi)zl  +  h(z2)z\ =  1.

z \  =  l / [h{z 2 Y / h [ z i )  +  h(z 2 )]

zi =  -h{z2)z2lh{zi).

In Table 4.9 we see that for the Boys test 1 data the class probabilities of the 3 

latent class solution are almost equal to the probabilities of the 3 point prior distribution 

(unrestricted solutions same as restricted one, no restrictions were necessary), and the 

4 latent class probabilities, both from the unrestricted and restricted solution are again 

very similar to the probabilities of the 4 point prior distribution, any differences are less 

than 0.02.

In Table 4.10 the class probabilities of the 2, 3, 4 and 5 latent class and ordered latent 

class are shown, together with the weights of the nodes of the estimated priors, for the 

American scale 9 data. The weights of the estimated 3 point prior are very close to the 

latent class probabilities, and closer to the unrestricted than the restricted ones.

The weights of the 4 point prior are closer to the ordered latent class probabilities, 

except for the probability on the first node, which is about half the size of the first latent 

class probability.

For the 5 point prior /5  latent class solution we observe that the probabilities of the 

first three nodes are very close to the probabilities of the first three ordered latent classes, 

the last two nodes /  classes though differ considerably.

C om p arison  o f  con d ition a l resp on se  prob ab ilities In the following we shall com

pare the item conditional response probabilities given a latent class with the conditional
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Table 4.9: Boys, test 1: Estimated prior and latent class probabilities

2 points /  2 classes
nodes
weights

-1.534
0.298

0.652
0.702

I.e. probs 0.298 0.702
3 points /  3 classes

nodes
weights

-1.863
0.144

-0.462
0.382

0.939
0.474

I.e. probs 0.109 0.388 0.503
ord.I.e.probs 0.109 0.388 0.503

4 points /  4 classes
nodes
weights

-2.344
0.064

-1.212
0.167

-0.079
0.406

1.053
0.364

I.e. probs 0.037 0.179 0.404 0.381
ord.I.e.probs 0.054 0.180 0.400 0.365

Table 4.10: American scale 9: Estimated prior and latent class probabilities

2 points /  2 classes
nodes
weights

-1.219
0.402

0.820
0.598

I.e. probs 
s.e

0.402
0.017

0.598
0.017

3 points /  3 classes
nodes
weights

-1.623
0.206

-0.289
0.350

0.982
0.444

I.e. probs 
ord.I.e. probs

0.195
0.193

0.345
0.209

0.460
0.597

4 points /  4 classes
nodes
weights

-2.224
0.074

-0.848
0.306

0.348
0.394

1.271
0.226

I.e.probs 0.210 0.197 0.182 0.411
ord.I.e. probs 0.168 0.235 0.302 0.296

5 points /  5 classes
nodes
weights

-2.286
0.063

-0.936
0.273

0.042
0.264

0.842
0.364

2.184
0.037

I.e. 0.310 0.153 0.171 0.132 0.233
ord.I.e. probs 0.065 0.267 0.230 0.229 0.208
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response probabilities given a latent node of an estimated prior with the same number of 

nodes as the number of classes.

The item response probabilities in class 2 are all larger than the response probabilities 

in class 1. This is expected when there are just two classes and if it doesn’t happen it 

can be achieved by recoding the items.

Haertel (1990) gave approximate relations between the latent trait model fitted with a 

2 point fixed prior and the 2 latent class model, by setting P{xhi\zj) under the latent trait 

model equal to P{xhi =  l | i )  under the latent class model. He equated: ^[ai{z—bi)]z=-i =  

TTii and ^[ai{z — bi)]z=i =  7T2i, where $  is the standard normal cdf, TTji are the conditional 

response probabilities given class j  and -1 and +1 are the values for the quadrature nodes 

zi and 22- From these equations he solved for a* and 6,- and noted that these parameters 

can only be determined up to a linear transformation. The indeterminacy in the 2- 

parameter latent trait model arises because the parameters are affected by changes in 

the location and scale of the prior. The latent class probabilities have no similar scale 

indeterminacy.

In our results we see that for the two latent class solution, the conditional probabilities 

of giving a positive response to item i given the latent class are the same as the conditional 

probabilities of giving a positive response to item i at each node of the two-point prior 

distribution.

Let use look at the marginal probabilities of a response pattern under the two models:

The probability of a response pattern x/ under the 2 point latent trait model is given

by:

(1 -  (4.14)
i = i î = i

For the case of 2 latent classes the probability of a response pattern x/ is given by

/(x/) = 1 ]  % n  ^̂ -(1 -  (4.15)
i = i  î = i

The two formulations so far are the same. So under maximum likelihood h{zj) should 

be equal to r]j and the conditional probabilities of the items should also be the same.

The difference is that the latent trait model uses two item parameters to estimate the
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conditional probabilities on the two nodes. The latent class model directly estimates the 

two conditional probabilities for each item. The item parameters are adjusted to the 

scale and location of the nodes so that the conditional probabilities are the same as those 

coming from the latent class model (since those will give the same likelihood).

There is no apparent link between the latent trait and latent class conditional proba

bilities when there are more than two classes, but in the following we shall compare the 

conditional probabilities in the latent class and latent trait models when there are more 

than two classes for the test 1 and the American scale 9 data.

B o y s , te s t  1 d ata  Figure 4.34, shows the items’ conditional response probabilities for 

the three and four unrestricted and restricted latent class model. We see that in the three 

class model (top of Figure) the response probabilities are all ordered, i.e. the response 

probability of positive response of an item given class j  is greater than the response 

probability given class 2, if i  > 2, for all items, indicating the ordering of the latent 

classes along a latent continuum.

In the four class model, the response probabilities are again ordered for most items, 

except for some small inversions. For items 1 and 2, where the response probability 

given class 2 is greater than the response probability given class 3, and for items 5 and 

13 where the response probability given class 1 is greater than the response probability 

given class 2 (middle of Figure 4.34). These differences though are very small and could 

easily be attributed to estimation inaccuracy. The ordered latent class solution, same 

Figure, bottom, imposes such restrictions so that these inversions in the probabilities do 

not occur.

Figure 4.35 shows scatterplots of the conditional probabilities in the kth. latent class 

against the conditional response probabilities on the kth estimated approximation point 

of the latent trait distribution for the three latent class model and the latent trait model 

estimated with a three-point prior, and Figure 4.36 shows the same scatterplots for the 

four latent class model and four point empirical prior.

We observe that for the three latent classes /  three point prior, the conditional prob

abilities in classes 2 and 3 are not only linearly related but also almost numerically equal 

to the conditional probabilities at the second and third approximation points. The con

ditional probabilities in class one and on the first node are positively linearly related but
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Figure 4.34: Boys, test 1: Conditional response probabilities of the items for the 3 and 
4, unconstrained and constrained latent class model
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there are some discrepancies from the 45 degree line.

Thus there seems to be not only an inherent ordering of the latent classes but also 

the latent classes seem to be placed at or around the estimated approximation points of 

the prior.

Similarly, for the four latent class /  four point empirical prior model, the conditional 

probabilities in the first class are positively linearly related but generally different from 

the conditional probabilities on the first node, but the conditional probabilities in the 

other 3 classes are close, almost equal, to the conditional probabilities at the other nodes.

Although the ordering of the latent classes has been established for these data, we 

also observe a very close correspondence between the two sets of response probabilities. 

This shows that the spacing between the classes corresponds to the spacing between 

the estimated latent nodes of the latent trait distribution is such that it gives the same 

response probabilities as the latent class model. (The location and scale of the latent 

distribution have been constrained in the estimation of the latent trait model, but the 

parameters adjust for that so that they give the same response probabilities at relative 

points of the distribution, for example at the middle of the distribution). So in the latent 

trait model the model fits the response probabilities by imposing a structure through the 

item s’ difficulty, the items’ discrimination and the spacing of the prior distribution. In 

the latent class model there is a parameter for each conditional probability in each class. 

There is an implicit indication of the item parameters in the latent class model as well 

though. As Croon (1990) noted, the overall level of the conditional response probabilities 

of an item as compared with the level of the response probabilities of another item, 

whatever the latent class, has to do with the difficulty of the item whereas the steepness 

of the conditional probabilities curve along the ordered latent classes has to do with the 

discrimination of an item.

When there are few classes /  nodes the models use approximately the same number 

of parameters to model the response probabilities so the maximum likelihood solutions 

from both models should be very similar (and exactly the same when there are two nodes 

or classes). As the number of classes increases, the latent class model leaves much more 

freedom for the conditional probabilities to vary, whereas the conditional probabilities in 

the latent trait model are determined by the item parameters.
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Figure 4.35: Boys, test 1: response probabilities of latent classes against response prob
abilities at each corresponding node of latent distribution, 3 nodes /  classes
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Figure 4.36: Boys, test 1: response probabilities in ordered latent classes against response
probabilities at each corresponding node of latent distribution, 4 nodes /  classes
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A m erican  sca le  9 Figures 4.37, 4.38 and 4.39 show scatterplots of the conditional 

response probabilities given a latent class against the corresponding node of the estimated 

prior, for the 3 latent class /  3 point prior, 4 latent class /  4 point prior and 5 latent class 

/  5 point prior respectively. Figure 4.40 presents the same information in a different way, 

it shows line plots of the conditional probabilities of the 5 point latent trait and 5 latent 

class model.

All scatterplots show linear relationships between the two corresponding sets of re

sponse probabilities, with a small dispersion around the 45 degree line. The conditional 

probabilities in the middle classes, for example classes 2 and 3 in the 4 and 5 class models 

are closer to the 45 degree line than the conditional probabilities of class 1 in the 4 class 

model and class 5 in the 5 class model. In the latter cases the response probabilities 

given the latent class are more dispersed than the response probabilities given the latent 

node, which is expected since the latent class models give more freedom for the response 

probabilities to vary.

We note that for the Boys, test 1 data the 3 (and the 4) latent class solutions resulted 

in unidentified parameters (LEM (Vermunt 1997), which was used to fit the latent class 

models, gave a warning message). For the American scale 9 data, fitting an ordered latent 

class model with 4 ordered latent classes resulted in unidentified parameters.

Therefore, a latent class model with the optimal number of nodes fitted suggested 

from the gradient D  (Section 4.7.3) for either datasets cannot be fitted with a latent 

class model.

4. i l  Conclusions

In this chapter we explored semiparametric and fully semiparametric estimation of the 

latent trait model. We gave an algorithm for the fully semiparametric estimation of the 

latent trait model so that both the points and the weights of the prior can be estimated 

simultaneously with the item parameters, and investigated the amount of information 

about the prior that can be obtained from a sample of binary responses to a set of items. 

Regarding the simple semiparametric estimation, we showed that when there are enough 

(six to eight) points, the shape of the distribution that generated the data can be retrieved 

successfully. When the points are not held fixed but estimated from the data fewer points
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Figure 4.37: American scale 9: 3 latent classes /3  point estimated prior: response proba
bilities of ordered latent classes against response probabilities at each corresponding node
of latent distribution
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Figure 4.38: American scale 9: 4 latent classes /4  point estimated prior: response proba
bilities of ordered latent classes against response probabilities at each corresponding node
of latent distribution
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Figure 4.39: American scale 9: 5 latent classes /5  point estimated prior: response proba
bilities of ordered latent classes against response probabilities at each corresponding node
of latent distribution
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Figure 4.40: American scale 9: 5 latent classes /5  point estimated prior: response prob
abilities of ordered latent classes and response probabilities
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may be sufficient.

We showed that it is feasible to estimate the latent trait model without any as

sumptions about the prior, apart from fixing its location and scale, and all this in the 

standard framework of estimating latent trait models. The optimality of the solution can 

be checked by formal criteria.

This makes the 2-parameter latent trait model far more attractive than the Rasch 

model, because it has the advantage over the Rasch model that no assumptions are needed 

about the ability distribution, and yet it is more flexible, since it allows a discrimination 

parameter.

Apart from allowing us to get rid of a restricting assumption, this estimation pro

cedure offers information about the latent distribution. We investigated empirically, by 

means of the bootstrap and simulated data, the variability of the prior and how well 

the prior can recover the distribution that generated the data. We saw that the prior 

distribution may be different from the normal, which is the usual assumption about the 

prior. And although the parameters are not affected very much from the shape of the 

distribution, a parametric prior imposes its shape on the posterior means. The posterior 

means are therefore more informative when a nonparametric prior is fitted.

A nonparametric prior is also useful when one wants to compare different populations 

that have answered the same set of questions, since the shape of the latent distribution 

can also be compared, in addition to the location and scale comparisons that can be made 

from the parameters.

The fully semiparametric latent trait model is very similar to an ordered latent class 

model. It has the advantages over the latter that is more parsimonious and optimality 

criteria can be applied to determine the number of classes /nodes needed.
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Chapter 5

The G oodness-of-Fit of Latent 

Trait M odels

5.1 Introduction

One of the main problems with the use of latent trait models in attitude and educational 

measurement has been judging the goodness-of-fit of the chosen model. This arises be

cause of the sparseness of the multi-way contingency tables to which the response patterns 

give rise. Many of the expected frequencies are typically very small and this invalidates 

the traditional tests of fit. The main purpose of this chapter is to investigate the fit of 

the logit/probit latent trait model to the data sets used by Krebs and Schuessler (1987). 

We shall propose the use Monte-Carlo simulations to approximate the empirical distri

butions of the goodness-of-fit statistics used. Apart from the global tests, we will further 

use diagnostic procedures, based on residuals, which give greater insight into the reasons 

for a poor fit and so suggest ways in which the scales may be improved. Some of this 

material has been presented in Bartholomew and Tzamourani (1999).

5.2 Goodness-of-Fit and Derived Statistics

G ood n ess-o f-fit  s ta tis t ic s  The most common used statistics to measure the fit of a 

latent trait model are the chi-squared statistic and the loglikelihood ratio statistic 

(Chapter 1, Section 1.10). We saw in that Section that as the number of items, p, gets 

large the contingency table for these items becomes very sparse and thus the chi-squared
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distribution is no longer a valid approximation to the sampling distribution of G"̂  and X"̂ . 

To avoid the problem of cells having very small expected frequency, pooling of response 

patterns can be used. Pooling may result in a loss of power of the statistics though, 

therefore we will calculate G'̂  and both with pooling together response patterns 

with expected frequency less than 5 and without pooling.

In addition to the pooled and un pooled versions of and X'  ̂ we will use three other 

statistics derived from them. Since the pooling of categories in TWOMISS is automatic, 

the number of degrees of freedom will vary from one sample to another. A way of 

standardising the results is to divide the pooled (or X^) by its degrees of freedom, /  

say to give the ‘amount of (or X^) per degree of freedom’. The third statistic is the 

%G  ̂ defined in (1.68). To calculate %G  ̂ we use the unpooled G^.

As a poorly fitting model will give a smaller percentage of G  ̂ explained than a 

well fitting one, if we use (1.68) as a test of goodness-of-fit we must look in its empirical 

distribution for values significantly smaller than would be expected if the model is correct.

5.3 The M onte Carlo Test

We shall carry out the test as follows. For any data set we first estimate the parameters 

of the logit/probit model. Next we generate N  independent samples of z ’s treating the 

estimated a ’s as the true values. This is an example of the parametric bootstrap, since 

we generate data from the model parameters. For each such sample we compute G^, X^ 

and the derived statistics described above. We then judge the significance of the observed 

value by reference to the empirical sampling distribution. The critical values of G^, X^, 

G ^ //, X"^jf are the 95% values of their empirical sampling distribution, whereas the 

critical value of %G  ̂ is the 5% value of its empirical sampling distribution.

We investigate the empirical sampling distributions of these statistics for the inter- 

cultural social life feelings’ scales described in Chapter 1, Section 1.11, for the American 

and German samples. There are 9 scales with the numbers of items varying between 5 

and 12. We have retained the original numbering of the scales to facilitate comparisons 

with earlier work but the reader should note that there is no Scale 7 in our analysis. The 

questions for each scale are listed in the Appendix.
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Table 5.1: Goodness-of-fit statistics for the intercultural scales

Pooled statistics Un pooled statistics
I P  /  G 'V / X ‘/ f  W  X'  ̂ %G^Scale P

American sample
1
2
3
4
5
6 
8
9
10

12
6
9

12
5

2151.7
117.4
373.3
213.3 
132.1 
167.0 
223.9

1602.2
30.4

2089.8
120.5
265.4
157.2 
111.7 
116.1
188.3 

1332.1
28.9

85
41
82
67
64
54

105
97
14

25.3
2.9
4.6
3.2
2.1
3.1
2.1 

16.5
2.2

24.6 
2.9
3.2
2.3
1.7 
2.2
1.8

13.7 
2.1

2613.7
123.9
520.3 
272.6 
166.0 
252.1
307.4 

2220.9
47.1

4193.4
130.1
521.7 
237.4 
153.3
257.1
296.7 

4274.2
46.4

45.6
92.2
79.4 
58.9 
8& 2  

76.8
73.4 
51.0
90.3

German sample
1
2
3
4
5
6 
8
9
10

12
6
9

12
5

2067.6
71.8

507.7 
152.2 
132.9
221.7
188.7 

1367.8
35.0

1827.4
72.9 

384.1
113.0
104.0 
159.3 
149.7

1065.1
32.9

105
37
76
30
45
52

102
108

16

19.7
1.9 
6.7
5.1 
3.0 
4.3
1.9

12.7
2.2

17.4
2.0
5.1
3.8 
2.3
3.1 
1.5
9.9
2.1

2661.1
93.1 

645.1 
215.3
171.5
299.5 
272.7

2063.5
39.1

4357.2
96.1

663.0
228.2
152.6 
279.5
277.7 

4562.8
38.9

37.3
92.6
73.3
75.1 
81.8
67.7
74.2
50.4
92.3

5.4 Results: Global Tests

5.4.1 G oodness-of-fit statistics for the inter-cultural scales

The results of the various tests based on and for the American and German scales 

are given in Table 5.1.

Using the chi-squared approximation the fit as judged by and (the pooled 

versions) is poor for all scales in both countries. All reach the 1% significance level and 

most greatly exceed it. We note that the degree of significance appears to increase with 

p. Also, the amount of G  ̂ explained declines markedly as p increases.

Let us see how the degree of sparseness varies between these scales, as measured by 

the n/2^, i.e. the sample size over the number of possible response patterns. In Table

5.2 we give the number of possible response patterns 2^, the ratio of the sample size n 

over 2  ̂ and the actual number of distinct response patterns observed, NR, for each of 

the American and German scales. We see that even with 8 items, the average number
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Table 5.2: Degree of sparseness of the intercultural scales

Scale P 2P
American
m/2P

sample
NR

German sample 
n/2P NR

1 12 4096 0.3 822 0.4 905
2 6 64 22.1 61 23.3 64
3 9 512 2.8 304 2.9 296
4 8 256 5.5 185 2.7* 132
5 7 128 11.1 121 11.6 104
6 8 256 5.5 170 5.8 170
8 8 256 5.5 215 5.8 199
9 12 4096 0.3 729 0.4 691

10 5 32 44.3 31 46.6 32

* n=688 for German scale 4

per cell, if subjects were distributed uniformly over the cells, is 5.5. Since this is not the 

case, there will be a lot of cells with observed - and expected - frequency smaller than 5. 

The extent of pooling undertaken can be measured by comparing the number of distinct 

response patterns NR with the degrees of freedom in each scale, given in Table 5.1.

5.4.2 M onte-Carlo test results for the inter-cultural scales

The Monte Carlo test was carried out by computing each statistic listed in Table 5.1 on 

1000 samples. The significance was then judged by reference to the empirical sampling 

distribution and Table 5.3 gives the estimated P-values.

This table presents a very different picture to that in Table 5.1. Virtually all of the 

tests yield P-values towards the upper tail but only in the case of scales 2, 5 and 10 is the 

evidence for rejection of the model unequivocal for both countries. In addition Scale 3 fits 

poorly in the German but not the American case. For Scale 8 all indices are below the 

5% significance level for the American sample, except for G ^/f  and which are just 

above 5%. Other more marginal cases are provided by Scale 4 (American) and Scale 6 

(German). And for the Scale 9, the German sample, only the unpooled is significant. 

Here, especially, we might hope the residuals to throw some further light on the matter.

It is worth noting that likelihoods for this model are often fairly flat in the neighbour

hood of the maximum so there are other sets of parameter values for the model which 

could be seriously entertained in each case and it is possible that some of these might 

give better fits. {G  ̂ is, of course, based on the likelihood and so should indicate the best

214



Table 5.3: P-values of Monte Carlo tests of fit for the intercultural scales

Pooled statistics Un pooled statistics
Scale %G^

American sample
1 0.204 0.350 0.218 0.319 0.140 0.205 0.399
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.496 0.527 0.418 0.449 0.298 0.226 0.300
4 0.056 0.094 0.030 0.039 0.201 0.488 0.344
5 0.005 0.005 0.008 0.012 0.004 0.005 0.011
6 0.634 0.733 0.440 0.583 0.382 0.219 0.398
8 0.018 0.006 0.053 0.018 0.015 0.011 0.063
9 0.281 0.349 0.268 0.327 0.258 0.200 0.459
10 0.030 0.019 0.036 0.019 0.000 0.001 0.003

German sam pie
1 0.271 0.209 0.293 0.230 0.215 0.041 0.396
2 0.002 0.001 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.001 0.000 0.000 0.000 0.001
4 0.216 0.140 0.222 0.147 0.314 0.579 0.355
5 0.000 0.001 0.000 0.001 0.000 0.004 0.006
6 0.041 0.068 0.065 0.082 0.019 0.062 0.076
8 0.283 0.295 0.432 0.448 0.122 0.061 0.185
9 0.106 0.152 0.141 0.152 0.019 0.082 0.170
10 0.009 0.007 0.025 0.017 0.014 0.011 0.015
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fit possible but this is not necessarily so for the pooled version.) It is evident from the 

tables that there is some association between the F-values and the number of items. In 

particular, Scales 2, 5 and 10 have the fewest items and the poorest fits in both countries. 

There is, of course, no reason why this should not happen by chance because these are 

real data and we have no independent evidence on whether the scales are truly unidimen

sional. Nevertheless, the scales were all constructed on the same principles and we have 

already given reasons for expecting power to decline as p increases. We have, therefore 

carried out Monte Carlo experiments with artificial data to see whether this is likely to 

be the case. Before presenting those results we will first present some experiments that 

investigated the size of the test.

5.4.3 M easuring the size of the M onte-Carlo test

The experiment we describe below aims to measure the size of the Monte-Carlo tests of 

the various goodness-of-fit indices - we find how many times the Monte-Carlo tests reject 

the model when the data are generated from the model.

We used three sets of parameters, which were the estimated parameters for scales 1, 

5, and 10, all estimated from the American sample. The number of items for each set 

was 12, 7 and 5 respectively.

From each set of parameters we generated 100 samples. To each sample we fitted the 

1-factor latent trait model and recorded the parameters and the goodness-of-fit statistics. 

We then conducted the Monte-Carlo test for these statistics, for each of the 100 samples, 

as described in Section 5.3 but using only 200 simulations, and recorded their F-value.

Table 5.4 shows the frequencies of the F-values of the goodness-of-fit statistics (only 

two categories, values between 0.0 and 0.05 and values between 0.05 and 0.10), for each 

set of initial parameters.

Since the Monte-Carlo test is conducted for data generated from the model, we would 

expect the distribution of F-values to be uniform between 0 and 1 and the intervals 0.0 

to 0.5 or 0.5 to 0.10 to each include approximately 5 values.

For the 5 item sets, we see that ungrouped and ungrouped have either

4 or 5 values between 0.0 and 0.05. So ba&ed on these statistics the Monte-Carlo test 

rejects the model 4 or 5 times out of a hundred, if we test at 5%. If we test at 10% the 

Monte-Carlo test of un grouped and ungrouped rejects the model 7, 8, 9,
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Table 5.4: Frequencies of f-v a lu es  of the Monte-Carlo tests, conducted for 100 sets of
artificial da ta  generated from t le 1-factor model

statistics f-values between 12 items 7 items 5 items
0.0-0.05 1 3 4
0.05-0.10 1 4 3
0.0-0.05 1 4 4
0.05-0.10 1 4 4

G 'V / 0.0-0.05 2 2 2
0.05-0.10 4 5 5

x y f 0.0-0.05 1 6 2
0.05-0.10 2 1 5

G^ ungr. 0.0-0.05 1 4 5
0.05-0.10 4 1 4

ungr. 0.0-0.05 3 4 4
0.05-0.10 4 5 7
0.0-0.05 0 2 1
0.05-0.10 0 2 7

and 11 times out of the 100 respectively. 6*^//, and %G^ would reject the model

fewer times, only 2, 2 and 1 times respectively if we tested at the 5% level and 7, 7 and 

8 respectively if we tested at the 10% level.

With the 7 item sets we get approximately the same results. The most different figure 

is the frequency of %G^ between 0.05 and 0.10 which is only 2.

With the 12 item sets though we get quite different results. The frequencies in all 

cells are smaller, which means that the Monte-Carlo test for most indices would reject the 

model fewer times than expected from the nominal significance level. The best behaved 

index is the ungrouped with 3 f-values between 0.0 and 0.05 and 4 f-values between

0.05 and 0.10.

5.4.4 M easuring the power of the M onte-Carlo test

First of all we created artificial data sets with different numbers of items generated by a 

logit/probit model with two factors. The probability of positive response for item i for 

the two factor model is given by

e x p (û o i  +  a u z i  4- 0 2 (2 2 )
Z2) =  :----------- }--------------------------------

1 -f exp(ooi +  Oi,zi +  02*22)
(5.1)
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Table 5.5: Model parameter values used to generate artificial data

Î 0>0i an Ü2i
1 0.30 1.50 1.00
2 0.20 1.50 1.00
3 0.10 1.50 1.00
4 0.10 1.50 1.00
5 -0.10 1.50 1.00
6 -0.10 1.50 1.00
7 -0.20 1.50 1.00
8 -0.30 1.50 1.00
9 0.30 1.50 -1.00

10 0.20 1.50 -1.00
11 0.10 1.50 -1.00
12 0.10 1.50 -1.00
13 -0.10 1.50 -1.00
14 -0.10 1.50 -1.00
15 -0.20 1.50 -1.00
16 -0.30 1.50 -1.00

where Zi and Z2 are the two latent factors and an and ü2i their loadings for item i. We 

then carried out the Monte Carlo test to see whether the departure from the one-factor 

model would be detected. The number of items varied between 10 and 20. In each case 

all values of an  were set equal to the fairly typical value of 1.5. For the second factor, 

half of the items were given a loading of - f l  and the remainder a loading of -1. The «io’s 

were given values varying between -f-0.3 and -0.3. For example, the parameter values 

used to generate the 16-item set are given in Table 5.5.

The Monte Carlo goodness of fit tests for a one-factor model were then applied to 

each artificial data set using 1000 replications. The estimated P-values are given in Table 

5.6.

It is clear that there is a tendency for all tests to yield more highly significant results 

with the lower values of p than with the higher but the effect is hardly detectable, at this 

level of accuracy, until p exceeds 14 or 15.

We gave reasons in Chapter 1, Section 1.10 why the pooled versions of and 

lose power because of the pooling of the response patterns. Why should the unpooled 

though lose power as well whereas the unpooled seems not to be affected? As p gets 

very large, there will be more response patterns with frequency equal to 1. The expected
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Table 5.6: P-values of Monte Carlo tests of fit for the artificial data 

Pooled statistics Unpooled statistics
p G^ x V / G^ %G'̂
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000
14 0.000 0.000 0.000 0.000 0.000 0.000 0.023
16 0.000 0.000 0.043 0.014 0.000 0.000 0.085
18 0.432 0.377 + * 0.046 0.000 0.296
20 0.919 0.883 * * 0.233 0.000 0.425

* These statistics could not be computed because the degrees of freedom were negative.

frequency of these response patterns is very small, and the individual contributions to

i.e. \ n{ l / Ei )  are smaller than the individual contributions to (1 — Ei)/Ei^  if E{ < 0.5. 

For values closer to 1, say between 0.6 and 1, which are perhaps more probable for best 

fitting models, then the contributions to G^, Inl/E*, are larger than the contributions to 

(1 — Ei ) j Ei .  Therefore, if p  is large, the best fitting models will also yield high G^’s 

and the G  ̂obtained from a non-fitting model will not be so much larger, as they would be 

for X'^. In addition, as p gets large, fewer cells out of the 2  ̂ cells are contributing to G^. 

For the calculation of though, the frequencies of the unobserved response patterns 

are taken into account: as we saw in Section 1.10 the contribution of the unobserved 

response patterns to is equal to ^ ( 0  -  EkY/Ek  =  Y^Ek — ~ where

A: =  1 ,..., 2  ̂— NR and i =  1 ,..., NR.

For two of the above sets of parameters, for the 8 and 12 parameter set we conducted

a more thorough experiment on the lines of Section 5.4.3.

We generated 100 samples from the parameters in Table 5.5, for the 8 and 12 item 

sets, which indicate a 2-factor model. We fitted the 1-factor model to each of the samples, 

and recorded the goodness-of-fit statistics.

We then conducted the Monte-Carlo test for these statistics, for each of the 100

samples, as described in Section 5.4.3 and recorded its P-value.

We would like to see how many times the Monte-Carlo tests correctly reject the model.

For the 8 item set, all 100 P-values, for all of the goodness-of-fit statistics considered, 

are 0.00. This means that the Monte-Carlo tests for all indices always - correctly - rejected 

the model.

For the 12 item set, all 100 P-values for G^, X^, G ^ //, X ' /̂/ ,  ungrouped G  ̂ and
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ungrouped were 0. As for the %G'̂ , only three F-values were equal to or larger than 

0 .

For these artificial data the Monte-Carlo tests proved to be very powerful but the 

data have been generated from parameters that are very high for the second factor. Even 

for data generated from such parameters the behaviour of the Monte-Carlo tests deteri

orates with increasing number of items as the results of Table 5.6 indicated above, but 

the enormous amount of time and resources to conduct the more thorough experiments 

prohibited us of conducting them for sets with larger number of items.

For real datasets, loss of power may diminish with fewer items than the number in 

the artificial datasets, as the departure from the unidimensionality in these datasets is 

very strong and will not be typical of real datasets. This fact makes the need for some 

kind of supplementary test the more necessary.

5.5 Results: Residuals

If the global test indicates a significant departure, we can examine the individual con

tributions to the total value of the statistic to see whether the significance arises from 

particular response patterns. The test lends itself to this kind of decomposition and 

the individual terms, (Oi — /F*, can be used as residuals whose values should be

in the neighbourhood of 1 if the fit is adequate. Unless p is very small, this interpreta

tion breaks down because of the fact that 0{  must be an integer and F* may be very 

small indeed. This means that the corresponding residual is either very small or very 

large. We find that it is more informative to look at residuals constructed from pairs 

or triplets of responses. TWOMISS enables us to compare the observed and expected 

frequencies of observing all possible responses to pairs of questions and prints out the 

values of (O -  F)^ / F  in each case. The same information can be obtained for all triplets. 

The pair-wise comparisons are of particular interest. If these residuals are small it means 

that the associations between all pairs of responses are well predicted by the model. A 

model which was successful in this respect might be judged adequate even if it was less 

good at accounting for the higher order associations.

There is no precise theoretical guidance on how to judge the significance of individual 

residuals. They are not independent and the chance of large values occurring by chance
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presumably increases with p. If we treat them as individually distributed like the square 

of a standard normal variable, values of the order of 4 or more would be suggestive of 

a real departure from the model. In practice, if several values of this order occur and if 

they involve a common variable, or pair of variables, it is worth examining the questions 

involved for a possible explanation.

The simulations reported above about the power of the global test also provide a 

pointer to what residuals we might expect to find for departures from unidimensionality 

of the kind considered there. The larger second order residuals were typically between 4 

and 10: third order margins tended to be much larger.

In the following we will look at the two- and three-way residuals for each scale and 

try to identify in some cases any systematic effects that cause them.

S ca le  1 In the case of Scale 1 there are two residuals greater than 4 in the American 

sample and five in the German sample. In particular, for the American sample, the 

two ‘large’ residuals are: for response 0,1 to items 5 and 4 the residual is 4.0 and for 

response 1,1,1 to items 10,11 and 12 the residual is 4.1. For the German sample, the 

large three-way residual is for response 1,1,1 to items 4,5,6 and it is equal to 4.96.

The two-way residuals with supporting data are set out as 2 x 2 tables in Table 5.7. 

When we set out the residuals in this form it is easy to see the nature of the deviations 

from the model’s predictions. By referring to the questions at the same time (given in 

the Appendix) we could perhaps explain their occurrence.

For items 5 and 6 there is more disagreement between the items, i.e. more responses 

(0,1) and (1,0) than the model would predict, and less agreement than the model would 

predict. Responses (0,1) give rise to a large residual. Looking at the items, we see that 

both of them relate to chance influencing life, but item 5 has a positive attitude whereas 

in item 6 this is expressed with some resignation. The opposite directions of these items 

could perhaps explain the excess disagreement between the two.

For the pairs of items (4, 11) and (10, 12) there is less disagreement between the 

responses to these items and more agreement than the model would predict.

We see that items 10 and 12 are very similar, both referring to having ‘control’ or 

‘influence’ over ones’s life, and thus indicating that there is more of a direct link between 

these items than the underlying attitude.
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Table 5.7: Scale 1, residuals for the pairs of questions (5,6), (4,11) and (10,12), German 
sample

Pair (5,6) (4,11) (10, 12)

Response 1 0 1 0 1 0
0
E

( 0  -  E f j E
1

357
323.6

3.4

461
494.2

2.2

294
312.8

1.1

640
621.1

0.6

354
319.3

3.8

231
265.0

4.4
0
E

(0  -  E ) ^ E
0

128
160.9
6.7

544
511.3

2.1

102
82.6
4.5

454
473.5

0.8

253
287.0

4.0

652
618.7

1.8
The rows relate to the first question in each pair and the columns to the second.

Table 5.8: Scale 2 residuals for the pairs of questions (1, 2), (1, 4) and (4, 5) (American 
sample)

Pair (1 ,2 ) (1 ,4 ) (4, 5)

Response 1 0 1 0 1 0
0
E

[ 0 - E Ÿ  / E
1

635
614.6

0.7

267
287.9

1.5

417
434.7

0.7

485
467.9

0.6

381
357.5

1.5

118
142.3
4.2

0
E

( O - E f  I E
0

94
115.5
4.0

420
397.9

1.2

82
65.2
4.3

432
448.2

0.6

298
322.2

1.8

619
593.9

1.1

The rows relate to the first question in each pair and the columns to the second.

Items 4 and 11 look quite different and thus the excess disagreement between the two 

is difficult to explain. Of course, we note again that the single residual greater than 4 in 

the 2 x 2  table is not very large.

S ca le  2 All versions of the global test give a highly significant result for both countries. 

In the American case this appears to arise from 3 pairs of questions: (1, 2), (1, 4), and 

(4, 5). The relevant residuals and frequencies are again set out as 2x2  tables in Table 

5.8.

We observe that there is a greater tendency to respond positively to questions 1 and 

2 and to 4 and 5 than the model predicts. In the case of 1 and 4 the reverse is true. 

Reference to the Appendix shows that questions 1 and 2 are very similar. It may be
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that some respondents recognised this and tended to give the same answer to both. This 

amounts to saying that there is a direct link between answers to the questions in addition 

to the indirect link via the latent variable. Only the latter is provided for by the model.

Questions 4 and 5 both begin with the words ‘most people’. It is possible that this 

pre-disposes some respondents to agree out of a desire to ‘go with the crowd’. This 

phenomenon is known to occur in survey work where such people are described as ‘yea- 

sayers’. If this is the case it means that there is a second factor at work which operates 

independently of the sentiment of the questions.

Questions 1 and 4, like 1 and 2, are very similar except, in this case, one puts essen

tially the same proposition negatively and the other positively.

Reiser, Wallace, and Schuessler (1986) investigated the effect of the direction-of- 

wording of social life feeling items and observed that individuals are generally more likely 

to endorse a negative item than disagree with a positive item, all else being equal. This 

may be the reason why the rate of agreeing with item 1 is much higher than the rate of 

disagreeing with item 4 but it is not clear how we can interpret this effect for pairs of 

responses.

These conclusions are corroborated by inspection of the three-way residuals. The 

triplet (1, 2, 4), with positive answers to 1 and 2 and a negative answer to 4, occurred 

285 times against a prediction of 251.8 giving a residual of 4.4.

Since the German data also gave a significant departure overall, we might expect the 

same patterns in the residuals to emerge. A similar analysis to that given above shows 

that questions 4 and 5 are again implicated but this time in the pairs (3, 4) and (5, 6). 

The questions in this case were asked in German and it is not clear how far the arguments 

used above would apply in a different cultural context. Questions 3 and 4 are similar in 

the view they express as are 5 and 6. Again there is a hint that there may be a direct 

link between these variables.

None of the deviations we have noted for Scale 2 is unduly large and we would not 

press the particular interpretations we have put upon them. The logit/probit model 

does provide reasonable predictions of almost all of the two and three-way marginal 

responses. The main practical conclusion of the analysis is the warning to avoid questions 

with similar wording especially if they occur close together in the sequence. Similarly, 

one should avoid phraseology which might encourage respondents to agree (or disagree)
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regardless of the sentiment expressed. In the case of Scale 2 it seems unlikely that either 

of these features is important enough to diminish the value of the scale.

Scale 3 There are no residuals greater than 4 either for the American or German 

sample, although the Monte-Carlo tests reject the model for the German sample.

Scale 4 In the American sample, the two-way margins are all small and there are only 

two greater than 4 three way residuals, in particular: response 1,1,1 to items 1, 4 and 7: 

6.34 and the same response to items 2,3 and 6: 4.93. The Monte-Carlo test of all indices 

accept the model except for j  j  and X^f  f  which were above the 5% significance level. 

The German sample has no residuals greater than 4 and all Monte-Carlo tests accept the 

model.

Scale 5 There were no large two- or three-way residuals for either the American or the 

German sample, although the Monte-Carlo tests reject the model for both samples.

Scale 6 All two- and three-way residuals are small for the American sample and all 

Monte-Carlo tests accept the model. In the German sample there is one relatively large 

residual, the three-way margin to items 2,7 and 9 is 6.1. Most of the Monte-Carlo tests 

accept the model except for the pooled and unpooled G^.

Scale 8 In the case of Scale 8, in the American sample, there are no two-way residuals 

greater than 4. However, the Monte-Carlo test rejects the model. In the German sample, 

there is only one two-way residual greater than 4 and no three-way residuals greater than

0.89 so again there is little evidence of a departure from the model. The Monte-Carlo 

tests accept the model.

Scale 9 The American sample for scale 9 fitted the model well, since all residuals are 

small and all Monte-Carlo tests accept the model. The case of the German sample is 

more interesting because the largest two-way residuals all involve question 5. These are 

as follows:

(2, 5), 5.6; (5, 7), 5.4 and (5, 12), 7.7
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Table 5.9: Scale 10 residuals for variables 1 and 5

American 
1 0

German 
1 0

0 81 65 101 94
E 1 60.8 8&5 85.8 109.1

( 0  -  E ) y E 6.7 4.7 2.7 2.1
0 248 1022 319 976
E 0 268.3 1001.8 334.3 960.7

{ O - E f / E 1.5 0.4 0.7 0.2
The rows relate to question 1 and the columns to question 5.

When we turn to the three-way residuals, there are several in the range 7-10 and all 

involve question 5. The scale in question is named ‘Future Outlook’ and we note that 

question 5 has no future reference. It is also worth noting that the phrase ‘this country 

is sick’ is an American expression which may have had a different connotation in the 

German context.

If question 5 is omitted all three-way residuals are small and the only two-way residuals 

which are greater than 4 relate to different pairs. When Monte Carlo tests for the reduced 

set of 11 items were carried out, the significance levels vary between just below 5% to 

just above 1%. Overall we might regard the fit as just acceptable. In view of our earlier 

simulations it is interesting that the global test on the full set of 12 items failed to detect 

the effect of the anomalous question 5.

Scale 10 In this case there is evidence for a significant departure in the American data. 

The source of the trouble appears to lie with the pair (1, 5). The residuals are high both 

for this pair and the triplets into which it enters. The position for the two-way margins 

for the American and the German data is set out in Table 5.9.

In the German case the residuals are not large enough to attract attention on their 

own but the deviations are in the same direction as those yielding the much larger Amer

ican residuals. Reference to the Appendix shows that there is no obvious link in form or 

content between the questions. It may be that there is a second latent variable operating. 

This view is supported by the observation that, although the scale is labelled ‘economic 

self-determination’, question 5 has no economic reference. The sense of personal auton

omy which it expresses may have a broader connotation.
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Looking at all scales, for most cases the rejection of the model by the Monte-Carlo 

tests was confirmed by large two- and three-way marginal residuals and the acceptance 

of the model confirmed by small residuals. However, there were some discrepancies 

between the Monte-Carlo tests and our expectations from the analysis of the residuals. 

In particular, for five scales (American scales 5 and 8 and German scales 3 and 5 and 10) 

the Monte-Carlo tests rejected the model although there were no large two- or three-way 

marginal residuals (for scale 10 though, the Monte-Carlo test agrees with the result from 

the chi-squared distribution which should be valid in that case). This shows that any 

deviations from the model are not such as to affect the expected pair-wise associations.

For the cases where the Monte-Carlo test failed to detect departure from the model 

but had a few high residuals (German scales 1 and 9), the failing of the Monte-Carlo 

test could be attributed to the loss of power due to the large number of items. On the 

other hand, the analysis of the residuals does not constitute a formal test and also, as p 

increases residuals might be expected to get larger.

5.6 Discussion

Our results show that the and tests for goodness-of-fit based on the chi-squared 

approximation are liable to grossly over-state the degree of significance. As an alternative 

we recommend the use of Monte-Carlo tests supplemented by an examination of the 

residuals. Although our simulations are based on 1000 replications, two hundred or so, 

samples are sufficient to obtain a good general indication of the quality of the fit and 

this is computationally feasible. The variety of statistics we have considered give broadly 

similar results.

Reiser and VandenBerg (1994) also concluded that both and over-state the 

significance for small values of p up to about 7 but that as p increases beyond that the 

type I  errors fall rapidly to zero. This implies that it is hardly ever possible to get a 

value of for example, which is significant. This is different from what we observed 

in our data but other studies (see Section 1.10) noted differences in the way G^ and 

behave when the number of items is large. These differences arise from the degree of 

sparseness and the number of empty cells. The latter greatly influence the calculation of 

the degrees of freedom. If the table is sparse but with no empty cells then the degrees of
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freedom will be 2^— the number of parameters, which will be a very large nimlber, so 

and X'  ̂ may not come out significant. On the other hand, if there are mam eimpty cells 

the degrees of freedom will be n— the number of parameters, a much smaller mumber.

Both Collins et al. (1993) and Langeheine et al. (1996) conclude that the clhi-squared 

approximations to the and tests are inadequate for sparse tables anc tlhat Monte 

Carlo tests are the only viable option. Langeheine et al. (1996) use the tern “nonnaive’ 

bootstrap for what we have called the Monte Carlo test and argue that thiis is to be 

preferred to the naive bootstrap. The distinction is made in terms of whether ^we sample 

from the ‘data’ (naive) or the ‘model’ (nonnaive) but their method is different Ifrom ours. 

They give a procedure for sampling from a multinomial distribution over tfiie 2  ̂ cells 

of the table with probabilities estimated from the model and ‘n ’ equal to tlhe sample 

size. In contrast, we follow Collins et al. (1993) and simulate response paitterns for 

each individual in the sample using the estimated parameters of the model. Lndividuals 

are then allocated to cells of the table according to the outcomes. The two methods 

are equivalent. Ours, of course, is specific to the logit/probit model but has advantages 

when 2  ̂ becomes very large. This is because we generate n standard normal vairiates (z’s) 

and p Bernoulli variâtes (z /s )  for each trial. The method of Langeheine et W. (1996) 

involves generating 2  ̂ — 1 binomial variâtes, it having first been necessary to  estimate 

the probabilities for that number of cells. If p is 15 or 20, say, this becomes a formidable 

undertaking as these authors note.

Langeheine et al. (1996) and Collins et al. (1993) consider X^ and G  ̂ cissp<ecial cases 

of the Read and Cressie index, which is a wider class of measures of fit known as power 

divergence statistics, but they do not consider derived statistics such as %0'̂  or G^ff,

The Monte-Carlo test though will not provide an adequate solution if p is very large 

either. Simulations with artificial data generated from the 1-factor model showed that 

the size of the test for all indices diminishes as p gets large. The best behaved index 

was the unpooled Further simulations with artificial data generated from a 2-factor 

model showed that the power of all tests except of the un pooled X^ also diminishes when 

the number of items gets large, in our examples greater than 14, though this has also to 

do with how far the data deviate from the model.

We complemented the Monte-Carlo tests by the analysis of the two- and three-way 

margins of the residuals. The examination of residuals may help to identify the reasons
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for a poor fit. For example, our observations on question wording suggested that there 

might be direct links between responses to some questions.
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Chapter 6

Conclusions

This thesis focused on the 2-parameter latent trait model for binary data. It examined 

the robustness of the model under violations of its assumptions, in particular when the 

data are contaminated, and when the assumption about the prior distribution is violated. 

It further examined the semiparametric estimation of the model, that is estimating the 

model without assuming a parametric form of the prior, and investigated the informa

tion on the distribution of the latent variable that can be retrieved from a set of binary 

responses. Finally it examined the goodness-of-fit of the model using Monte-Carlo simu

lations and diagnostic methods based on the residuals.

In Chapter 1 we reviewed estimation methods of latent trait models, and studies on 

the robustness of latent trait models. We presented the tools from robust statistics theory 

that were used in this thesis to examine the robustness of the 2-parameter model. We 

also reviewed studies on the semiparametric estimation of the Rasch model and mixing 

distributions, as the semiparametric estimation of the model we proposed is based on 

these methods. We finally presented the goodness-of-fit problem which arises from sparse 

tables and affects the latent trait model and reviewed studies using Monte-Carlo methods 

as an alternative to traditional methods for latent class and loglinear models.

In Chapter 2 we investigated the robustness of the item parameters and the posterior 

means when the data are contaminated. The data that can be analysed with a latent trait 

model are often the results of ability tests, psychometric tests or attitude questionnaires. 

The responses are often influenced by other factors than the assumed latent variable, 

for example cheating, faking, or misrecording the answers. Since the data are binary, a
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misrecorded answer for an item causes the frequency of a response pattern to decrease 

by one and the frequency of another to increase by one. We examined the behaviour 

of the item parameters and the posterior means when extra probability was placed on 

a response pattern, when the probability of an item was increased and when observa

tions were shifted between response patterns. To do this we first derived the Influence 

Function and examined its behaviour. The Influence Function measures the effect on 

the estimator when extra probability is placed on a response pattern. We complemented 

the IF analysis by examining the behaviour of the parameter estimates and the posterior 

means when artificially contaminating the data in several ways. The effect of putting 

extra observations on a response pattern was in most cases confined, that is the parame

ters changed smoothly with increasing amount of contamination and remained within the 

confidence intervals of the original parameter estimates when the amount of contamina

tion was small. In some cases though, putting observations on a response pattern would 

throw some parameters out of the original confidence interval for the data examined. In 

those CcLses the ordering of the posterior means would also be affected. Increasing the 

probability of positive response of an item had small or no effects on the parameters. 

On the other hand, shifting observations between response patterns would cause larger 

effects than increasing the frequency of a response pattern alone. For the data examined, 

shifting less than 1% of the total observations between some response patterns brought 

some parameters outside the confidence intervals of the original estimates, indicating a  

very small breakdown point for the estimator. Such changes in the frequency distribution 

of the response patterns caused also large changes in the ordering of the response patterns, 

according to the posterior means.

It would be interesting to investigate in the future gross changes in the frequency 

distribution, for example missing out a frequency of a response pattern or transposing 

frequencies between two response patterns.

Methods to robustify the Maximum Likelihood estimation of the latent variable sug

gested in the literature, such as ‘jackknifing’ the posterior means (or the parameters) 

and the biweight estimation of ability proved no more robust than the usual procedures. 

Part of further research will be to develop a robust estimator by placing bounds on the 

Influence Function, as suggested by Huber (1981).

The parametric estimation of the latent trait model requires an assumption about the
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form of the latent variable, the prior distribution. This has been usually assumed to be 

the standard normal. In Chapter 3 we examined the sensitivity of the model when the 

assumption of normality of the prior distribution is violated. We derived the IF for the 

parameters and the posterior means for small changes in the prior. We also examined 

the behaviour of the parameters and the posterior means when the data were fitted 

with a prior contaminated in a similar way, i.e. with a mixture of a N(0,1) and a small 

probability on a point. Changes in the parameters and the posterior means seemed small, 

certainly smaller than when the same percentage of probability was placed on a response 

pattern, which was expected, since contamination on the prior spreads on several response 

patterns, thus averaging out changes in the parameters or the posterior means. We also 

fitted mixtures of normals as priors to measure the effect of large changes in the prior 

distribution. The parameters showed very small deviations from the original parameters 

after they had been standardised with an appropriate measure of location and dispersion,

i.e. the mean and standard deviation respectively for symmetric distributions and the 

median and interquartile ratio for skewed distributions.

In Chapter 4 we explored the semiparametric and fully semiparametric estimation 

of the latent trait model, i.e. making no assumption about the form of the prior but 

having either fixed nodes on a grid and estimating the weights (simple semiparametric 

estimation) or estimating both the points and the weights simultaneously with the item 

parameters (fully semiparametric estimation). The estimation is achieved by an EM 

algorithm. Bock and Aitkin (1981) proposed the first method. We extended the algorithm 

by adding an extra and M-step to accommodate the simultaneous estimation of the 

nodes. The solution is checked with optimality criteria proposed by Lindsay (1983). 

Estimating the model fully semiparametrically makes the use of the 2-param'eter latent 

trait model more attractive, since there is no need to make an assumption about the 

form of the latent distribution. It also brings the model closer to latent class analysis, 

and particularly when restrictions on the order of the latent classes are placed, but the 

latent trait model has the advantages that it is more parsimonious and formal criteria 

on the number of nodes /  classes needed can be used. We further used the bootstrap to 

measure the variability of the estimated prior and thus assess the information that can 

be retrieved from a set of binary responses on the distribution of the latent variable. The 

envelopes formed by joining the bootstrap percentile confidence intervals of the percentiles
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of the prior distribution followed closely the shape of the smoothed prior, indicating that 

there is information about the form of the distribution in the data. The shape was, 

for some datasets, different from the N(0,1) which is the usual assumption about the 

prior. Furthermore, the empirical prior estimated for artificial data seemed to recover 

satisfactorily the form of the distribution that generated the data. A limitation of our 

algorithm is that it converges slowly and it could be perhaps improved by incorporating 

the use of the gradient D given by Lindsay (1983) to speed up the search for the optimal 

solution.

In Chapter 5 we examined the goodness-of-ht of the 2-parameter latent trait model 

using Monte-Carlo methods. Since the and statistics do not follow the chi-squared 

distributions if the cross-classification table of the data is sparse, we used Monte-Carlo 

simulations to approximate the empirical distribution of and other derived statis

tics. The Monte-Carlo test though seemed to lose power as the number of items in

creased and therefore we complemented the results based on the empirical distribution 

of the statistics with analyses of the 2- and 3-way marginal residuals. These are more 

informative as they may also indicate the source of any discrepancies of the model.

As the Monte-Carlo test provides a more formal means to test the model it would be 

worth examining further the properties of the test and also finding ways to improve its 

performance when the number of items get large.
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A ppendix

Intercult lirai ‘Social Life Feeling’ Scales

Schuessler conducted a survey comprising 114 questions on ‘Social Life Feelings’ on a 

sample of 1416 Americans (Schuessler 1982). From these questions twelve scales compris

ing 95 items were formed. The survey was later repeated in Germany, reaching a sample 

of 1490. After further analysis of the questions more items and a whole scale (scale 7) 

were eliminated. The resulting scales are the so called intercultural scales (Krebs and 

Schuessler 1987).

The data are coded in a way that ‘1’ conveys a ‘negative’ feeling, such as ‘doubt’ or 

‘cynicism’ in the scales below.

Scale 1: ‘Doubt about Self-Determination’.

1. There are few people in this world you can trust, when you get right down to it.

2. If the odds are against you, it’s impossible to come out on top.

3. The average person can get nowhere by talking to public officials.

4. The future is too uncertain for a person to plan ahead.

5. Nowadays a person has to live pretty much for today and let tomorrow take care 

of itself.

6. W hat happens in life is largely a matter of chance.

7. I’ve had more than my share of troubles.

8. The world is too complicated for me to understand.
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9, I regret having missed so many chances in the past.

10. I have little influence over the things that happen to me.

11. For me one day is no different from another.

12. I sometimes feel that I have little control over the direction my life is taking.

Scale 2: ‘Doubt about Trust^vorthiness of People’.

1. It is hard to figure out who you can really trust these days.

2. There are few people in this world you can trust, when you get right down to it.

3. Strangers can generally be trusted.

4. Most people can be trusted.

5. Most people don’t really care what happens to the next fellow.

6. Many people are friendly only because they want something from you.

Scale 3: ‘Feeling Down’.

1. At times I feel that I am a stranger to myself.

2. 1 sometimes feel forgotten by friends.

3. Out of place.

4. That my life is not very useful.

5. I feel somewhat apart even among friends.

6. Very lonely or remote from other people.

7. Depressed or very unhappy.

8. Bored.

9. Vaguely uneasy about something without knowing why.

234



Scale 4: ‘Job Satisfaction’.

1. I am satisfied with the work I do.

2. I would like more freedom on the job.

3. People feel like they belong where I work.

4. There is too little variety in my job.

5. My job gives me a chance to do what I do best.

6. I have too small a share in deciding matters that affect my work.

7. My job means more to me than just money.

8. There must be better places to work.

Scale 5: ‘Faith in Citizen Involvement’.

1. The average person has considerable influence on politics.

2. The average person has much to say about running local government.

3. Taking everything into account, the world is getting better.

4. The average person has a great deal of influence on government decisions.

5. People like me have much to say about politics.

6. By taking part in political and social affairs the people can control world events.

7. I am usually interested in local elections.

Scale 6: ‘Feeling Up’.

1. Anyone can raise his standard of living if he is willing to work at it.

2. That my life is not very useful.

3. I have a great deal in common with most people.

4. Things get better for me as I get older.
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5. When I make plans, I am almost certain that I can make them work.

6. I get a lot of fun out of life.

7. There is much purpose to what I am doing at present.

8. I am satisfied with the way things are working out for me.

Scale 8: ‘Disillusionment with Government’.

1. In my opinion this country is sick.

2. Our local government costs the taxpayer more than it is worth.

3. Our country has too many poor people who can do little to raise their standard of

living.

4. Most politicians are more interested in themselves than in the public.

5. We are slowly losing our freedom to the government.

6. The average person has much to say about running local government.

7. Most supermarkets are honestly run.

8. 1 have little confidence in the government today.

Scale 9: ‘Future Outlook’.

1. Many people will be out of work in the next few years.

2. Although things keep changing all the time, one still knows what to expect from

one day to another.

3. The future of this country is very uncertain.

4. The future looks very bleak.

5. In my opinion this country is sick.

6. The future is too uncertain to plan ahead.

7. We are slowly losing our freedom to the government.
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8. The lot of the average man is getting worse, not better.

9. It’s unfair to bring children into the world with the way things look for the future.

10. Many things our parents stood for are going down the drain.

11. I have little confidence in the government today.

12. The future looks very bright to me.

Scale 10: ‘Economic Self Determination’.

1. Anyone can raise his standard of living if he is willing to work at it.

2. Our country has too many poor people who can do little to raise their standard of 

living.

3. Individuals are poor because of the lack of effort on their part.

4. Poor people could improve their lot if they tried.

5. Most people have a good deal of freedom in deciding how to live.

Am erican scale

Scale 7:‘People cynicism’

1. In a society where almost everyone is out for himself, people soon come to distrust 

each other.

2. Most people know what to do with their lives.

3. Too many people in our society are just out for themselves and don’t really care 

for anyone else.

4. Many people in our society are lonely and unrelated to their fellow human beings.

5. Many people are friendly only because they want something from you.

6. Many people don’t know what to do with their lives.
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N FE R  data

Test 1 is a reading test and corresponds to a story entitled ‘King Lion’ (NFER workbook 

number 0247). The story is written as a fable, in which a small animal, a squirrel, outwits 

a more powerful one. King Lion. The lion announces that in order to save the animals 

work in fetching his food, he will eat one of them every day, in an order they choose. They 

are left to decide how to put his suggestions into practice. The squirrel saves everybody’s 

life by leading the lion to a deep pool where, he alleges, a strange creature is waiting for 

him. On seeing his reflexion on the water, the lion jumps into the pool and drowns.

The questions are the following;

I. In the story it says that the lion would roar for food and his servants came running. 

Why did they come running?

2 and 3. Write down the names of two of Lion’s servants.

4. On the day when the story takes place. Lion was in an atrocious temper. ‘Atrocious’ 

means....

5. When Lion looked at his servants ‘with a cold eye’, what sort of look do you think 

this was?

6. Why did Lion’s servants squeak when they spoke to him?

7. The lion said, ‘It’s been inconsiderate of me to make all of you come with the food. 

You ’re overworked’. Was the lion really worried that the animals might be overworked?

8. How can you tell?

9. ‘In order to improve the service I’m going to make a small change in the way 

things are done. It’s been inconsiderate of me to make all of you come with the food. 

You ’re overworked’. Does this show Lion was kind hearted and cared about his servants? 

Explain why or why not.

10. The Lion said he was going to make a small change in the way things were run. 

What was the change that he wanted to make?

II. Why were the animals silent for the first hour of their meeting and why did they 

look at each other out of the corners of their eyes?

12. What was the problem with Wildebeeste’s plan to choose who went first?

13. What was wrong with Wart Hog’s plan to decide who went first?

14. If you had been at that meeting would you have thought of a better plan to decide
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who the lion would eat first? What would it have been?

15. Why did all the animals shout ‘WHAT?’ when Ground Squirrel said ‘I’ll go’?

16. Did you notice anything about the squirrel’s attitude to the lion? Is it different 

from that of the other animals?

17. How did Squirrel persuade King Lion to go with him down to the river?

18. If Squirrel had said ‘King Lion, there’s a creature by the water. You must go 

down and see it immediately’, what do you think Lion would have said?

19 and 20. King Lion and the Ground Squirrel go down to the deepest pool on the 

river. Explain, in your own words, what happens after this.

21. Do you think Lion really deserved what happened to him?

A ttitude to em ploym ent data

The data we used were taken from Albanese and Knott (1992b) and Birkhoff (1991). 

They are the responses to 4 items chosen from 14 items concerning the attitude to work 

of 1915 German company employees in 1987. These items are part of an investigation 

about what the employees thought to be the strengths and weaknesses of the company 

and how they felt about their personal situation at the work place. For each item the 

respondents were asked if they agree or disagree with each of the following statements:

1. My work is interesting because I have the feeling that I am needed.

2. In my work I find self-assurance and appreciation.

3. My work is fun,

4. Sometimes I have the feeling that I am exerting myself day after day and still I see 

no success.

For items 1 to 3 ‘agree’ was coded as 1 and ‘disagree’ was as 0. Item 4 conveys a 

feeling opposite to that of the other items, so ‘agree’ was coded as 0, and ‘disagree’ as

1. Thus a positive response (1) indicates that the respondent has a positive attitude 

towards his/her work, is generally satisfied with it, whereas a negative response indicates 

the opposite.
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