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Tisztasdg — félegészség
Hungarian proverb (almost)

Always seek the general and never quite trust it
Joseph Epstein



Abstract

In this thesis we discuss possible generalizations of totally unimodular and network matrices. Our
purpose is to introduce new classes of matrices that preserve the advantageous properties of these
well-known matrices. In particular, our focus is on the polyhedral consequences of totally unimod-
ular matrices, namely we look for matrices that can ensure vertices that are scalable to an integral
vector by an integer k. We argue that simply generalizing the determinantal structure of totally uni-
modular matrices does not suffice to achieve this goal and one has to extend the range of values
the inverses of submatrices can contain. To this end, we define k-regular matrices. We show that
k-regularity is a proper generalization of total unimodularity in polyhedral terms, as it guarantees
the scalability of vertices. Moreover, we prove that the k-regularity of a matrix is necessary and
sufficient for substituting mod-k cuts for rank-1 Chvétal-Gomory cuts.

In the second part of the thesis we introduce binet matrices, an extension of network matrices
to bidirected graphs. We provide an algorithm to calculate the columns of a binet matrix using
the underlying graphical structure. Using this method, we prove some results about binet matrices
and demonstrate that several interesting classes of matrices are binet. We show that binet matrices
are 2-regular, therefore they provide half-integral vertices for a polyhedron with a binet constraint
matrix and integral right hand side vector. We also prove that optimization on such a polyhedron
can be carried out very efficiently, as there exists an extension of the network simplex method for
binet matrices. Furthermore, the integer optimization with binet matrices is equivalent to solving a
matching problem.

We also describe the connection of k-regular and binet matrices to other parts of combinatorial
optimization, notably to matroid theory and regular vectorspaces.
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Chapter 1

Introduction

Totally unimodular matrices play a central role in combinatorial optimization and integer program-
ming because they ensure integrality. In this thesis we examine matrices that can guarantee half-
integrality.

The link that connects totally unimodular matrices to integral polyhedra is Hoffrman and Kruskal’s
[44] famous theorem which states that for integral A matrices, the polyhedron P(A4,b) = {z |
Az < b, z > 0} is integral for all integral right hand side vectors b, if an only if A is totally
unimodular. In terms of integer programming, totally unimodular matrices are the integral matrices
for which maz{cz | Az < b, z > 0} has integral optimal solution for any ¢ and any integral b.
Total unimodularity thus settles the question of integrality in the sense that if we wish to decide if
an integral matrix will give integral optimal solutions for all objective vectors and any integral right
hand side, then we only have to check if the matrix is totally unimodular or not.

There are conditions, however, that take us beyond total unimodularity. For example, what if the
matrix in question is not integral? Or what can we say about matrices that ensure integral optimal
solutions for only a special set of right hand sides? These questions are not independent. If A is
rational, then one can find a nonnegative integer k, such that if we multiply every row of A by k&,
we get an integral matrix, kA. But then instead of inequalities Az < b, we have kAz < kb and
we deal with polyhedra that are required to be integral for only special b’ vectors, namely for those
whose elements are integer multiples of k. For example, if k = 2, so the elements of A are halves of
integers, then we are to characterize integral matrices A’ for which {z | A’z < b/, z > 0} is integral
for all even vectors b’. Or equivalently, we examine matrices that provide half-integral vertices for
polyhedra with integral right hand sides. In the approach followed in this work we combine the two
questions above and examine rational matrices that ensure integral vertices for polyhedra in which
the right hand side vector has elements that are integer multiples of a positive integer k.

Half-integral vertices arise naturally when A is the incidence matrix of an undirected graph. It
is well-known that the incidence matrix of a directed graph is totally unimodular, and Heller and

7



CHAPTER 1. INTRODUCTION 8

Tompkins [40] showed that the incidence matrix of an undirected graph is totally unimodular if and
only if the graph is bipartite. In fact, if an undirected graph G is not bipartite, then it contains an odd
cycle, and the determinant of the related submatrix of its incidence matrix A is £2. Furthermore, it
is not difficult to prove that if G is a connected undirected graph, then

for each submatrix R of A, det(R) € {0,+1,£2}. (1.1)

This property then easily implies that P(A, b) is integral for even b vectors. The converse, however,
20
is not true. For example, P(A, b) is clearly integral for A = 0 2 and any even b, but det(A) = 4.

Let us relax then the condition on determinants in (1.1) so that this example is not ruled out.
For each submatrix R of A,det(R) € {0,+2",r € N}. 1.2

This property seems to be a sufficiently wide extension of total unimodularity, one that involves
the incidence matrix of any undirected or directed graph. It would be natural to claim that if a matrix
A has property (1.2), then P(A,b) is integral for any even vector b. Such a claim would be false,
however, as evidenced by matrix A = [4] and vector b = 2.

So neither property (1.1) nor property (1.2) is able to capture the real nature of matrices that
provide integral vertices for any even right hand side vector. We will show that the property that
accomplishes this task is:

for each non-singular submatrix R of A, 2R™! is integral. (1.3)

Let us give now two definitions that extend properties (1.2) and (1.3) for any positive integer k.

Definition. A matrix is called totally k-modular if for all of its square submatrices R, the determinant
det(R) € {0, +k",r € N}. ‘

Definition. A rational matrix is called k-regular if for each of its non-singular square submatrices
R, kR is integral.

Both definitions generalize total unimodularity, but as argued above for the case of k¥ = 2, and
proved later for general values of k in the thesis, k-regularity is the property that takes over the role
of total unimodularity in the theory of rational matrices that ensures integral vertices for polyhedra
with special right hand sides. One of our most important new results states this.

Theorem. A rational matrix A is k-regular, if and only if the polyhedron {z | Az < kb, z > 0} is

integral for any integral vector b.

Having generalized total unimodularity by k-regularity, one can ask for interesting k-regular ma-
trices. Something similar to network matrices, which are totally unimodular and involve all ‘nice’
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examples of totally unimodular matrices, such as the node-edge incidence matrices of directed graphs
or interval matrices. In the second part of the thesis we show that for 2-regularity, the most impor-
tant case of k-regularity, there is a natural extension of network matrices, which we call the binet
matrices. Binet matrices are 2-regular and involve a wide range of ‘nice’ 2-regular matrices. For
example, the node-edge incidence matrix of an undirected graph is a binet matrix. Furthermore, just
as every totally unimodular matrix is 2-regular, every network matrix is binet. And there are totally
unimodular matrices that are not network matrices but we will show that they are binet matrices.

Network matrices are derived from directed graphs. Binet matrices, on the other hand, are de-
fined on a common generalization of directed and undirected graphs, namely the bidirected graphs
introduced by Edmonds [23]. The result about the 2-regularity of the incidence matrix of an undi-
rected graph can be extended to the more general context of bidirected graphs. In fact, bidirected
graphs provide the most general graphical environment in which 2-regularity can be discussed. We
define binet matrices algebraicaly, using node-edge incidence matrices of bidirected graphs, but we
also show that there is a graphical derivation of binet matrices from the underlying bidirected graph,
enhancing the parallelism with network matrices.

Network matrices are the most important totally unimodular matrices not only because they in-
volve all the ‘nice’ examples. They are also desirable for their practical advantages and theoretical
significance. On the practical side, if the constraint matrix of a linear program is a network matrix,
then besides the fact that the total unimodularity of network matrices guarantees integral optimal so-
lutions in case of integral right hand sides, the graphical structure underlying network matrices also
offers a very efficient algorithm to find these optimal solutions. This algorithm is the network simplex
method that adapts the techniques of the simplex method to directed graphs. The simplex method
can also be adapted to bidirected graphs, giving rise to the binet simplex method, an algorithm that
can efficiently find the optimal solution of linear programs with a binet constraint matrix.

The theoretical significance of network matrices is related to the decomposition theory of totally
unimodular matrices, due to Seymour [58]. This theory claims that every totally unimodular matrix
is built up by simple operations from network matrices and two further totally unimodular matrices
that are not network. We will show that the two exceptional matrices are binet, as are all network
matrices, so the decomposition theory of totally unimodular matrices can be rephrased so that every
totally unimodular matrix is built up by simple operations from binet matrices.

The decomposition of totally unimodular matrices is a consequence of the decomposition of
regular matroids. Totally unimodular matrices are strongly connected to regular matroids, just as
network matrices are to graphic matroids. In this thesis, although our focus is on matrices, we
also discuss the matroidal connections of binet matrices. Basically, binet matrices represent signed
graphic matroids, in much the same way as network matrices represent graphic matroids. On the
other hand, we do not give a matroidal representation of 2-regular matrices, nor a characterization
of signed graphic matroids similar to that of graphic matroids. This gap in matroidal equivalence
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will probably delay the discovery of a recognition algorithm for 2-regular or binet matrices. In fact,
the only device we possess to prove that a matrix is 2-regular (besides checking the inverse of each
submatrix) is to show that the matrix is binet. Thus, the current status of recognizing 2-regular
matrices is in par with the theory of totally unimodular matrices after the identification of network
matrices but prior to the discovery of the decomposition theory that led to a recognition algorithm
for totally unimodular matrices.

In the remainder of this chapter we first give an overview of the thesis, then provide a background
to the research chapters by listing the necessary definitions and results.

1.1 The structure of the thesis

The thesis can be divided into two parts. The first deals with the generalization of total unimodularity,
the second discusses the generalization of network matrices.

Total k-modularity and k-regularity, the extensions of total unimodularity, are defined in Chapter
2, where their connection and basic properties are also described. Chapter 3 is about the polyhedral
implications of k-regularity. This is the chapter where the choice of k-regularity as the proper gener-
alization of total unimodularity is justified. We extend the polyhedral integrality results about totally
unimodular matrices to rational and integral k-regular matrices in that chapter.

Chapter 4 is about bidirected graphs. This chapter does not contain new results, it serves as a
foundation for further parts.

We embark on generalizing network matrices in Chapter 5, where we define binet matrices,
describe in great detail the graphical method to derive them from the underlying bidirected graphs,
and prove some fundamental properties of binet matrices. Chapter 5 is a focal point in the thesis,
every chapter after it exploits the results given there. The next chapter, for instance, gives examples of
binet matrices by delineating the underlying bidirected graphs, and relies on the graphical algorithm
described in Chapter 5 to derive the matrices form the graphs. We show in Chapter 6 that network
matrices and other interesting totally unimodular and not totally unimodular matrices are binet.

Chapter 7 is about the polyhedral results related to binet matrices. We prove that binet matrices
are 2-regular, linking thus the two parts of the thesis. We also present a characterization of binet
matrices that are totally unimodular. The 2-regularity of binet matrices means that a linear program
with binet constraint matrix and integral right hand side has half-integral optimal solutions. Chapters
8 and 9 offer methods to find the optimal solutions. In Chapter 8, we mention general-purpose
methods for linear programs with binet constraint matrix (for short, binet optimization problems),
but mainly focus on integer programs. It turns out that finding integer solution to a binet optimization
problem is equivalent to solving a matching problem, so a strongly polynomial algorithm exists for
this task. Chapter 9 concentrates on the binet simplex method. We argue that such a method exists,
since bidirected graphs can be considered to be special cases of generalized networks and the existing
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generalized network simplex method can be adapted to bidirected graphs.

Chapter 10 deals with matroids. To exhibit the connection of binet matrices to existing special
classes of matroids, we introduce some further generalizations of graphs and define the matroids on
these graphs in a more general form. That chapter mainly contains known results. Our contribution is
to show how binet matrices fit into existing theories, so widening their applicability. This is also true
for Chapter 11, which describes a different concept to generalize totally unimodular matrices. This
generalization, due to Lee [48], deals with the linear vectorspaces arising as row spaces of matrices.
We demonstrate the differences of this concept from ours, which concentrates on matrices. Chapter
11 belongs rather to the first part of the thesis, which is about k-regularity, than the second, which
concerns binet matrices. We put it at the end of the thesis because it is not an essential part of the
dissertation, only a very important related issue.

1.2 Preliminaries

Here we define the notions used throughout the thesis, and give some known results that are going to
be built upon later. The notations we use are standard. Similarly, the results listed here can be found
in any textbook on combinatorial optimization. A reader not familiar with the content of this section
can consult, for example, Nemhauser and Wolsey [51] or Schrijver [S5]. Later, in due course, we
will give the definitions of further concepts that appear only in parts of the dissertation. For example,
we describe basic matroid theory in Section 10.2.

1.2.1 Graphs

G(V, E) denotes a graph with node set V' and edge set E. Edges can be directed, undirected or
bidirected. Bidirected graphs are defined in Chapter 4, where we also redefine many of the general
graphic structures mentioned here. E can contain loops, i.e., edges whose end-nodes coincide. We
will also employ loose edges, i.e., virtual edges that have no end-nodes. A directed edge has one tail
(the node where the edge comes from) and one head (where it goes). An undirected graph can be
considered as a graph in which each node has two heads and no tails. An edge connecting nodes u
and v is denoted by (u, v). If it is a directed edge, then this notation implies that  is the tail and v is
the head of the edge.

We will use the standard names for special subgraphs. So we will speak about walks, paths
(meaning simple paths), trees, parallel edges, etc. A walk is a sequence of edges such that every
edge is incident to the ones standing before and after it in the sequence. (In Figure 5.2(ii), page 49,
edges 8,7r1,74,73,72,71 form a walk.) A path is a walk that does not cross itself, i.e., it does not
use the same node twice, except maybe the first node. (As e.g., 8,71, 4 in Figure 5.2(ii).) A graph
is connected if there is a path between any two nodes. By a cycle we mean a closed path, and not
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a closed walk. For example, the first graph in Figure 5.2 is a cycle, the other two graphs are not.
A tree is a connected graph which does not contain a cycle. A theta graph is the union of three
internally node-disjoint paths between the same pair of nodes (see Figure 1.1). In all these subgraphs

Figure 1.1: A theta graph.

the directions of the edges are not relevant. When they are, we speak about directed paths, directed
cycles, etc.. If G is not connected, then it has more than one connected components, or in short,
components. An edge is a cut-edge, if it separates two parts of the graph, i.e., after deleting a cut-edge
the graph has one more connected component. We call a connected subgraph that contains exactly
one cycle a I-tree. The name follows [2], but the same or very similar structures have appeared in
the literature with several different names. A very similar concept is called an ‘augmented tree’ in
[2], and a ‘quasitree’ in [50). Zaslavsky [73] used the name ‘unicycle’ for a 1-tree. Note that Held
and Karp [39] used the term 1-tree for a similar, less general structure. We use the name 1-tree to
express the fact that such a subgraph contains a tree plus exactly one additional edge. Note that the
number of nodes in a 1-tree equals the number of edges. A subgraph spanned by an edge set contains
the edges in the set and their end-nodes. A subgraph is spanning, if the graph spanned by its edges
contains all nodes of the graph. A node is isolated if it is not incident to any edge.

We will use the standard graph operations, such as deletion or contraction of edges. Contraction
can be imagined as shrinking the edge until it has zero length, and its end-nodes become one node.

The node-edge incidence matrix of a graph has its rows and columns associated with the nodes
and edges of the graph. The non-zeros in a column associated with edge e stand in the rows that
correspond to the end-nodes of e. Heads get positive signs, tails get negative signs.

1.2.2 Numbers, vectors, matrices

As always, Z, Q, and R denote the set of integer, rational, and real numbers. N contains the nonnega-
tive integers. The set of positive real and integer numbers are Ry and Z, respectively. The greatest
integer smaller than z € R is denoted by |z].

Vectors and matrices whose elements are integers are called integral. That is, integral m-dimen-
sional vectors are those in Z™, an integral matrix of size m x n is in Z™*", Similarly, rational

vectors and matrices have elements from Q. The set of m-dimensional vectors whose elements are
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all integer multiples of a rational r is denoted by rZ™. If r = 15, then we use the term half-integral.
That is, half-integral vectors and matrices have elements that are integer multiples of 1. If k is
integer, then for any element a of kZ it is true that k|a, i.e., k divides a or a is divisible by k. If =
is an integral vector, then the greatest integer that divides each element of = is its greatest common
divisor, denoted as ged(z). The characteristic vector z € {0,1}™ of aset S C {1,2,...,m} is

defined as
1 i€8S
Ty =
0 148

For a matrix A with row set I and column set J, (A);; or A;; or a;; denotes the element in row
i € I and column j € J. This fact can also be expressed as A = [a,-j]fgf. If A is a matrix, then
kA and A/k denote the matrix obtained by multiplying or, respectively, dividing all elements by k.
Thus, A is a half-integral matrix, if and only if 24 is integral.

Vectors that contain only zeros are called all-zero, and denoted by 0. Every element of an all-one
vector is 1. We use the notation 1 for all-one vectors. In matrix notation, [4, B] denotes a matrix in
which A and B stand next to each other, and not one in which A is above B. To get simpler notations
for matrices, we sometimes leave blank the cells that contain 0 elements. If we do not want to specify

a part of a matrix or vector, we use the sign *. So

<l

is a 2 x 2 matrix which has a and b in its diagonal, zero above its diagonal and an unspecified element
below it. In other words, A is a lower triangular matrix. Note that instead of elements, we can define

e

is a matrix that has submatrices A; and A; in the upper left and bottom right corners, respectively,

a matrix with its submatrices. Thus,

and zeros outside them. This structure of A is its decomposition to components A; and A;. If A;
and A; are square submatrices, then they are blocks of A, and A is block diagonal.

The unit matrix is denoted by I. We do not specify its size, it is usually clear from the context. If
not, we will use the notation I,,, for unit matrices of size m.

Vectors Z1,...,2, are linearly independent, if there is no A = (A\;...,A;) such that A # 0
and ) \;z; = 0. The determinant of a square matrix A is denoted as det(A). A is non-singular, if
det(A) # 0. In this case, the columns of A are linearly independent vectors, and A is invertible. The
cofactor of element A;j, cof (Ai;), is the determinant of the submatrix achieved by deleting row 3
and column ¢ from the square matrix A and scaled by (—1)*+7, The rank of a matrix A, rank(A),
is the size of the largest non-singular square submatrix in A. A matrix is of full row rank, if its rank
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equals the number of its rows, or equivalently, if its row vectors are linearly independent. A basis
of a full row rank matrix A is a non-singular square submatrix of size rank(A). The rank of the
node-edge incidence matrix 4 of a connected directed graph G on m nodes is m — 1. Moreover, by
deleting any row, A can be made a full row rank matrix A’. The bases of A’ correspond to spanning
trees of G.

Pivoting on an element o of a matrix A means the following transformation:

a=|® S| ma=| Ve e | (14)
b D -b/a D- lbe

where a is a non-zero element, b is a column vector, ¢ is a row vector, and D is a matrix. Pivoting is
equivalent to a series of row operations executed on [A, I], which is the same as premultiplying [A, I]
by the the inverse of a basis. Thatis, if A = [R, S] and R is a basis of A, then consecutive pivoting
on the diagonal elements of R converts [R, S,I] to [I, R~1S, R™1] (up to column permutations).
This phenomenon can also be expressed as a ‘change in the basis’, namely changing the roles of I
and R.

A matrix is called torally unimodular, if each of its submatrices has determinant 0, +1 or —1.
The following lemma can be proved by Cramer’s rule, which determines the element of the inverse
of a matrix. Namely, it states that (A™1);; = cof(A;;)/det(A).

Lemma 1.1, For every non-singular submatrix R of a totally unimodular matrix, R~ is integral.
A full row rank matrix is unimodular, if each of its bases has determinant £1.
Lemma 1.2. A matrix A is totally unimodular if and only if A, I is unimodular.

Totally unimodular matrices play a central role in this thesis. We give two theorems that charac-
terize totally unimodular matrices.

Theorem 1.3. (Ghouila-Houri [34]) A 0, %1 matrix is totally unimodular, if and only if for each
collection of columns or rows, there exists a scaling of the selected columns or rows by £1 such that

the sum of the scaled columns or rows is a vector of 0, £1 elements.

Theorem 1.4. (Gomory, see Camion [10]) If A is a 0, 1 matrix, then it is either totally unimodular

or has a submatrix with determinant +2.

Examples of totally unimodular matrices include the incidence matrices of directed graphs and
network matrices. Pivoting on a network matrix yields another network matrix. Similarly, the pivoted
version of a totally unimodular matrix is still totally unimodular,
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1.2.3 Polyhedra

A set P of vectors in R™ is a polyhedron if P = {z | Az < b} for an m X n matrix A and m-dimen-
sional vector b. If A is a rational matrix and b is a rational vector, then P is a rational polyhedron.
A polytope is a bounded polyhedron. Equivalently, a polytope P can be defined as the convex hull
of a finite set F of vectors, P = conv(F). The vectors of a polyhedron are also called its points.
An extreme point or vertex of a polyhedron P = {z | Az < b} is a point determined by n linearly
independent equations from Az = b. Every extreme point of P can arise as an optimal solution of
maz{cz | z € P} for a suitably chosen c.

If P has at least one vertex (in which case P is called pointed), then P is called integral, if all
of its vertices are integral. One can also define integrality of polyhedra without vertices, as follows.
A non-empty subset F' of polyhedron P = {z | Az < b} is a minimal face if F = {z | A’z = ¥’}
for some subsystem A’z < b of Az < b. Therefore, a vertex is always a minimal face, consisting
of one point. Furthermore, P = {z | Az < b} is pointed, if and only if rank(A) = n. Now, a
polyhedron is integral, if each of its minimal faces contains an integral point. This is consistent with
the previous definition given above for pointed polyhedra.

We call a polyhedron half-integral, if each of its minimal faces contains a half-integral point.
The extreme points of a pointed half-integral polyhedron are half-integral. An integral polyhedron P
provides integral optimal solutions for maz{cz | € P} for any c¢. Similarly, if P is half-integral,
then the optimal solutions are half-integral.

Totally unimodular matrices are important, because they lead to integral polyhedra. The follow-
ing results illustrate this statement.

Theorem 1.5, Let A be a totally unimodular matrix, and b be an integral vector. Then the polyhedron
P = {z | Az < b} isintegral.

We give a sketch of the proof for the next lemma here, because later we will refer to it.

Lemma 1.6. Let A be an integral matrix and b an integral vector. Then polyhedron P={z|Az < b,
z > 0} is integral, if and only if polyhedron Q = {z | [A, Iz = b, z > 0} is integral.

Proof: Let us first suppose that P is integral and z* is a vertex of Q. Then 2* = (z*,u*) > 0 and
Az* 4+ u* = b. Thus, z* € P and it is a vertex of P. So z* is integral, and because A and b are
integral, u* and 2* are integral.

Suppose now that @ is integral and z* is a vertex of P. Let u* = b — Az* and 2* = (z*,u*).
Then z* is a vertex of @, so it is integral, hence z* is integral too. O

Theorem 1.7. Let A be an integral full row rank matrix. Then the polyhedron P = {z | Az = b,

z > 0} is integral for each integral vector b, if and only if A is unimodular.

The next theorem, which is fundamental in the field, is a consequence of Lemma 1.2, Lemma 1.6
and Theorem 1.7.
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Theorem 1.8. (Hoffmann and Kruskal [44]) Let A be an integral matrix. Then the polyhedron
P = {z | Ax < b,z > 0} is integral for each integral vector b, if and only if A is totally uni-

modular.

Further bounds on z and Az can be handled similarly, as it is easy to see that A is totally uni-
modular if and only if [AT, - AT, I, -I]T is such.

Theorem 1.9, Let A be an integral matrix. Then the polyhedron P = {z | a < Az < b,c <z < d}
is integral for all integral vectors a, b, c and d, if and only if A is totally unimodular.



Chapter 2

Generalizations of total

unimodularity

Our aim is to generalize totally unimodular matrices so that most of their advantages are preserved.
A totally unimodular matrix has two important attributes that establish its agrecable properties: it
is integral and any of its non-singular submatrices has an integral inverse. Both attributes are con-
sequences of the requirement on the subdeterminants of a totally unimodular matrix. We will see
that if the requirement is relaxed, then this advantageous co-existence breaks down. If we extend
the possible values for subdeterminants, then the inverses of submatrices are not integral. On the
other hand, if we want all inverses to be integral, or scalable to integral, then the integrality of the
matrix cannot be guaranteed. Thus we give two different generalizations of totally unimodular ma-
trices: total k-modularity prescribes specific values for subdeterminants, while k-regularity requires
the inverses of subdeterminats to be scalable to integral.

One can argue about which generalization is more appropriate. Total k-modularity is the natural
generalization, allowing powers of an integer k for subdeterminants, and it keeps the integrality of a
matrix, but it fails to provide similar consequences for polyhedra as does total unimodularity. In fact,
we will show in the next chapter that it is k-regularity, which preserves the integrality of the inverses
up to a multiplication by k, that inherits the propertics of totally unimodular matrices that make them
so important in combinatorial optimization. We also show in this chapter that for integral matrices
and special but important values of k, total k-modularity is implied by k-regularity. That is why most
of this chapter is about k-regular matrices. In our treatment, total k-modularity appears mainly as an
advantageous property of special k-regular matrices.

Matrices with conditions on subdeterminants have been studied. The name of total k-modularity
comes from Appa [3]. Whittle [68] called totally 2-modular matrices 2-matrices. For the same
set of matrices, Zaslavsky used the name totally dyadic. Lee [48] also dealt with subdeterminants.

17
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We present more about his results in Chapter 11. Matrices with special inverses, to the best of our
knowledge, first appeared in Appa [3]. In that work, all matrices are assumed to be integral, too
strong a requirement for k-regularity.

We start the chapter with the definitions of total k-modularity and k-regularity. Section 2.1 also
contains the basic results about totally k-modular and k-regular matrices. In Section 2.2 we deal with
operations that preserve the k-regularity of a matrix. It will be apparent in this section that there is a
substantial difference between integral and non-integral k-regular matrices. The last section of this
chapter is about conditions that are necessary or sufficient for the total k-modularity or k-regularity
of a matrix.

2.1 Definitions and basic facts

A matrix is totally unimodular if all of its square submatrices have determinant 0, 1 or —1. An
immediate generalization is to allow other values for subdeterminants. In what follows, let k be a
positive integer.

Definition 2.1. A matrix is called totally k-modular, if for all of its square submatrices R, the
determinant det(R) € {0,+k",r € N}.

Obviously, a totally k-modular matrix is integral. The other generalization we give is based on
Lemma 1.1, which claims that if a matrix is totally unimodular, then the inverses of its submatrices
are integral.

Definition 2.2. A rational matrix is called k-regular, if for each of its non-singular square submatri-
ces R, kR™! is integral.

Now, Lemma 1.1 can be rephrased so that if A is totally unimodular, then it is 1-regular. The set
of 1-regular matrices, however, is wider than that of totally unimodular matrices as a 1-regular matrix
is not necessarily integral. For example, A = [14] is a 1-regular matrix. In Section 6.1.2 we give
further non-integral, 1-regular matrices. On the other hand, it is easy to see that for integral matrices
total unimodularity is equivalent to 1-regularity.

Lemma 2.3, An integral matrix is 1-regular if and only if it is totally unimodular.
Appa extended this result for special but important values of k.

Theorem 2.4. (Appa [3]) Suppose k = 1 or k is a prime number. If an integral matrix is k-regular,
then it is totally k-modular.

Proof: Let A be an integral, k-regular matrix. Then for any nonsingular submatrix R of A, kR™! is
integral. Now |det(kR™!)| - |det(R)| = k™ if R is an m x m matrix. But kR~! and R are integral
matrices, so det(kR~!) and det(R) are integers. Then, for either k = 1 or k is a prime number,
det(R) € {xk",r € N}. a
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With the same proof, the following similar theorem can be proved. It holds for more possible
values of k, but its claim is weaker.

Theorem 2.5. Suppose that k = p™ where p = 1 or p is a prime number and r € N If an integral
matrix is k-regular, then it is totally p-modular.

The converse of Theorem 2.4 is not true. The following matrices are all totally 2-modular but
none of them is 2-regular.

A=[4] with A™1 =[14] 2.1
2 1
A= with A7! = 0 2.2)
0 1 -1
1 -1 1] Y% YU W
A=(1 1 1| withAl=|-15 15 ¢ (23)
1 0 -1] Y Va2
[1 1 0 0 0 0] [ -1 b 0 0 O]
011000 1 -1 0 0
=1 1
A=101000withA'1=/21/2/2000 24)
100110 - Y- Y%B-1h 1
000011 Y Y- 1 K-l
0 0 010 1 | - Y- V2 Vo]

Observe that all these matrices are 4-regular. This fact suggests the following result, which is
valid for any integer k.

Theorem 2.6. For any totally k-modular matrix A, there exists anr € N such that A is k™-regular.

Proof: Letr = maz{q : |det(R)| = k?if R is a submatrix of A}. The elements of the inverse of
a non-singular R are computed as (R™');; = cof(R;;)/det(R), where cof (R;;) is the cofactor of
element R;; in R, i.e., the determinant of a submatrix of A. Thus (R~!);; = %k* for an appropriate
integer s, and we can be sure that 8 > —r. It follows then that k" R;; is integral. O

Note that if r = 0, so every subdeterminant of A is 0 or &1, then we get Lemma 1.1. For further
references, we state Theorem 2.6 for the case where r = 1.

Lemma 2.7. If for each non-singular square submatrix R of a matrix A, det(R) € {£1, tk}, then
A is k-regular.

The converse of this lemma, which would require that a k-regular matrix has only subdeterminant
0, £1, £k, is not true, as 215, where I, is the 2 x 2 identity matrix, or the following 0, 1 matrix
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show.
-1 -1 1 -4 1% 0
B=|[1 -1 1| withBl=|-15 0 15 (2.5)
-1 11 0 ¥ Y

In both examples the determinant is 4 though the matrices are 2-regular. Thus, allowing higher
powers of k in Definition 2.1, as opposed to the case in Lemma 2.7, has two advantages. It provides
us with a necessary condition of k-regularity for an important class of possible values of k, namely if
k is a power of a prime. On the other hand, this definition does not rule out decomposable matrices.

In this thesis we mainly focus on 2-regular matrices. Their importance among k-regular matrices
is explained by Theorem 1.4. It claims that if a 0, 1 matrix is not totally unimodular, then it has a
submatrix with determinant £2. Take a k-regular matrix A with elements 0,+1. If it is not totally
unimodular (i.e, 1-regular), then it has a minimal submatrix B with determinant £2, That is, every
subdeterminant of B is 0, £1. It follows then that the inverse of B has half-integral but not integral
elements. This fact implies the following observation.

Lemma 2.8. If a matrix with 0, £1 elements is k-regular, then either k = 1, or 2|k.

2.2 Matrix operations

Total unimodularity of a matrix is maintained under several operations, e.g. transposing, taking sub-
matrices or pivoting. Some of these operations preserve k-regularity too, as simple checking of the
defining condition shows.

Lemma 2.9. Let A be k-regular. Then the following matrices are also k-regular:
(a) the transpose of A,

(b) any submatrix of A,

(c) the matrix obtained by multiplying a row or column of A by -1,

(d) the matrix obtained by interchanging two rows or columns of A,

(e) the matrix obtained by duplicating a row or column of A,

(f) the matrix obtained by dividing a row or column of A by a non-zero integer.

Proof: We prove only part (f). The other parts are even more trivial. If one divides a row of A by
a non-zero integer d, then the inverse of any submatrix B of A is either unchanged, if B does not
contain the divided row, or a column of B~ is multiplied by d. So if kB~ is integral, then the new
inverse is also integral. O

Matrix A is totally unimodular if and only if [4, I] is unimodular, i.e., each of its bases has
determinant +1. This equivalence can be carried over for integral k-regular matrices.
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Lemma 2,10, Let A be an integral matrix. Then the following statements are equivalent.
(a) A is k-regular.

(b) [A, I] is k-regular.

(c) For each basis T of [A, I the matrix kT ! is integral.

Proof: LetT be a basis of [A, I]. Then up to row permutations

-1
T S I and T-1 = 0 R ,
R 0 I -SR™!

where S and R are submatrices of A, R is a non-singular square matrix and I is an identity matrix of
appropriate size (it may be empty, in which case T = R). If kT~ is integral, then obviously kR~!
is integral, If kR~ is integral, then, since S is integral, kT~ is also integral. The rest of the proof
is an easy consequence of the fact that any submatrix of a k-regular matrix is also k-regular. a

It is necessary to require the integrality of A in the lemma above, because for example if

1
A= [1/:| , then A is 1-regular, but [A, I] is not, as
2

-1
10 |1 0
1 1 1y 1|

Another operation which preserves the k-regularity of an integral matrix is pivoting.

Lemma 2.11. Let A be an integral k-regular matrix. Then matrix A obtained by pivoting on a

non-zero element is also k-regular.

Proof: Let us suppose that A has m rows. Pivoting is equivalent to row operations on [4, I]. That is,
by using the notations of (1.4), first divide the first row of [A4, I] by a, getting A’. By Lemma 2.9(f)
and Lemma 2.10, A’ is k-regular. Then subtract b; times the first row of A’ from the i** row
(i =2,...,m), obtaining A. Matrices A’ and A have the following form:

A= 1 ¢/a 1/a 0 i 1 c/a l/a 0
> D o I|’ 0 D-1bc -b/a I|

Notice that A equals [4, I] up to column exchanges. Thus, by Lemma 2.10, 4 is k-regular if kT~
is integral for each basis T' of A. We show that this is true.
Let T be a basis of A. Then there is a basis T" of A’ such that

r=| 10 -T' and then T~! = (T")™* . Loy
-b I b I
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A’ is k-regular, so k(7" )_1 is integral. Column vector b is integral, hence kT —! is also integral. [

It is a well-known fact, and easily follows from the proof above, that pivoting on a matrix is
equivalent to multiplying the matrix by the inverse of a basis. We make use of this parallelism in the

next lemma.

Lemma 2.12. Let A be an integral, k-regular, full row rank matrix, R be a basis of itand A = [R, S).
Then

(a) R~ is k-regular,

(b) R71S is k-regular,

(¢c) R~ A is k-regular.

Proof: The matrix R™}[A,I] = [I,R™1S, R™1] can be obtained from [A, I] by consecutive pivot-
ing. Then, by Lemma 2.11 and Lemma 2.10, all claims follow. O

As the proofs of Lemma 2.11 and Lemma 2.12 strongly used Lemma 2.10, it is to be expected that
they do not remain valid for rational matrices. For example, A = [1] is 1-regularbut A = A~! = [2]
is not 1-regular.

This example emphasises the fact that rational matrices behave quite differently from integral
ones. However, the examples given so far of rational 1-regular matrices could be obtained triv-
ially from totally unimodular matrices by dividing a row by 2. Lemma 2.9(f) then ensures their
K 1A

1-regularity. This is not always the case. For example, the 1-regular matrix |:
-n

] cannot

11
be achieved in this way, because the only candidate, ) is not totally unimodular. But it is

2-regular, which leads to the following result. Recall that A/s denotes the matrix obtained from A
by dividing each of its elements by s.

Lemma 2.13. Let A be a rational matrix and 8 and k be positive integers. Then A/s is k-regular if
and only if A is sk-regular.

Proof: Let R be a non-singular square submatrix of A. (R/s)~! = sR™! so k(R/s)™! is integral if
and only if skR™! is such. O

One direction of this lemma means that dividing the whole matrix makes it ‘stronger’, k-regular.
It is necessary to require that all elements of A are divided. If this is not the case, then we cannot
ensure k-regularity, only a weaker version, as in Lemma 2.9(f), where we stated that if we divide
some rows or columns of A by g, then we can preserve its sk-regularity. The other direction of
Lemma 2.13 is about multiplication of a matrix with a positive integer. It is easy to show that in this
case, as opposed to division, there is no difference between multiplying the whole matrix or only
some rows or columns — both make it ‘weaker’.
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2.3 Necessary and sufficient conditions

Since it became clear that totally unimodular matrices play an important role in the theory of integer
programming several necessary and sufficient conditions for a matrix being totally unimodular have
been found. A comprehensive list of these results can be found in e.g., [S5]. We also stated some of
these conditions in Section 1.2.2. Unfortunately, these characterizations cannot be directly extended
to k-regular matrices because they make use of the determinental definition of totally unimodular
matrices, which does not remain valid for k-regular matrices. Nevertheless, necessary conditions can
be given. One of them extends the following result of Chandrasekaran. Recall that ged(z) denotes
the greatest common divisor of the elements of the integral vector z.

Theorem 2.14. (Chandrasekaran [13]) Matrix A is totally unimodular if and only if for each non-
singular square submatrix R of A and for each non-zero 0, £1 vector y, gcd(Ry) = 1.

The necessary condition for integral k-regular matrices is the following:

Theorem 2.15. If A is an integral k-regular matrix, then for any non-singular square submatrix R

of A and for each non-zero 0, £1 vector y, gcd(Ry)|k.
Proof: Ais k-regular, so kR™! is integral. Then using the notation ! = ged(Ry),

1

Thy = R“IR%ky = kR’l%Ry

is integral. This implies that l|k. O

This condition is not sufficient, as shown for k = 2 by matrix A of (2.2), which is not 2-regular
even though gcd(Ry)|2 for any submatrix R and non-zero 0,1 vector y. For total k-modularity,

however, a similar condition is sufficient.

Theorem 2,16. If for each non-singular square submatrix R of matrix A and for each non-zero vec-
tor y whose elements are of {0,xk",r € N}, gcd(Ry) is a power of k, then A is totally k-modular.

Proof: We prove the theorem by induction on the size of R. If R = [a] is a 1 x 1 non-singular
matrix, then for y = 1 the condition of the theorem claims that det(R) = gcd(Ry) = a is a power
of k. Now let R be a non-singular square submatrix of A such that for all real submatrices S of
R, det(S) € {0,£k",r € N}. Then Rd = [det(R),0,...,0]T, where d is a vector made up from
the cofactors of R corresponding to its first row, hence its elements are of the set {0, k", r € N}.
The condition of the theorem claims that then gcd(Rd) = tdet(R) is a power of k, so the total
k-modularity of A follows. a

If we assume that k is prime, then the condition becomes necessary as well.
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Theorem 2.17. Ifk is a prime number (or 1) and A is a totally k-modular matrix, then for each non-
singular submatrix R of A and for each non-zero vector y whose elements are of {0,+k",r € N},

ged(Ry) is a power of k.

Proof: Let us use the shorthand notation ! = gcd(Ry). The vector b = Ry/l is integral, and the
only solution of the linear system Rz = b is z = y/I. Then, by Cramer’s rule, z; = det(D)/det(R),
where D is an integral matrix made up from b and all but the i** columns of R. Thus, I|y;det(R) and
because i can be chosen so that y;, det(R) € {xk",r € N} and k is prime, ! is a power of k. O



Chapter 3

Polyhedra with k-regular matrices

Hoffman and Kruskal’s theorem (Theorem 1.8) fully characterizes integral matrices which lead to
an integral polyhedron for all integral right hand side vectors. Our purpose in generalizing totally
unimodular matrices was to extend this result. One can take two approaches for extension. The first
asks what kind of rational matrices provide the same polyhedral property. We will show that these
are exactly the 1-regular matrices. The other approach for extending Theorem 1.8 is to consider only
special right hand sides, namely vectors which are integer multiples of &, and require the integrality of
the polyhedra for only these vectors. This approach leads to k-regular matrices. These results justify
our statement in the previous chapter which claimed that k-regularity is the appropriate generalization
of total unimodularity as it retains some important polyhedral implications. We discuss these two
extensions in Section 3.1.

Polyhedra with special right hand side vectors have been extensively studied. The best known of
these results deals with balanced matrices, which can guarantee integral polyhedra for all-one right
hand sides. In Section 3.2, we examine the relationship of 2-regular and balanced matrices. Our
results are negative — neither of these two notions implies the other. We discuss balanced matrices in
this thesis only to demonstrate that 2-regular matrices represent a really new set of matrices.

Another important notion connected to integral polyhedra is total dual integrality, which deals
with fixed b vectors and examines the integral solutions of the inequality system Az < b. In Section
3.3, we extend the definition of total dual integrality to cover half-integral solutions.

Finally, we discuss Chv4tal-Gomory cuts. If a polyhedron {z | Az < b, z > 0} is not integral,
then its integer hull can be achieved by applying cuts. We show in Section 3.4 that it suffices to use
very special cuts if matrix A is k-regular.

25
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3.1 Integral polyhedra

In Section 1.2.3 we listed the important results that relate totally unimodular matrices to integral
polyhedra. The key property of totally unimodular matrices, which makes it possible to prove those
results, is the integrality of the inverse of any of its non-singular submatrices. The definition of 1-
regularity requires just this property of a rational matrix, therefore it is no suprise that most of the
results that hold for totally unimodular matrices can be proved for 1-regular matrices too, using the
same ideas. We present these results in Section 3.1.1.

In Section 3.1.2 we treat k-regular matrices. By a simple device based on Lemma 2.13, we adapt
the results about 1-regular matrices to k-regular ones. We prove that k-regular matrices are exactly
the rational A matrices for which polyhedron P = {z | Az < b, z > 0} is integral for all right hand
side vectors b that are divisible by k. In other words, if b is integral then for any vertex v of P, kv
is an integral vector. This result is the most important one in this chapter, and one of the main new
results of the whole thesis.

3.1.1 1-regular matrices

Theorem 3.1. Let A be a 1-regular matrix, and b an integral vector. Then the polyhedron P = {z |
Az < b} is integral.

Proof: Let F = {z | A'z = b'} be a minimal face of P with a full row rank matrix A’. Then it can
be assumed that A’ = [R, S] where R is a basis. Thus, (R-1%,0)" € F and R~V is an integral
vector, so P is integral. O

We showed in Section 2.2 that Lemma 1.2 cannot be extended to rational matrices. In fact,
we gave a 1-regular matrix A for which [A, I] was not 1-regular. As a consequence, we can state
only half of Lemma 1.6 for rational matrices. In the proof of the other direction, we exploited the
integrality of the matrix.

Lemma 3.2. Let A be a 1-regular matrix and b an integral vector. Then polyhedron P={z|Az < b,
z > 0} is integral, if polyhedron Q = {z | [A,I]z = b, z > 0} is integral.

The analogue of Theorem 1.7, however, is true. The proof we give here is a slight modification
of Veinott and Dantzig’s [67] proof.

Theorem 3.3. Let A be a rational full row rank matrix. Then the polyhedron P = {z | Az = b,
z > 0} is integral for each integral vector b, if and only if each basis of A has integral inverse.

Proof: Let us suppose first that each basis of A has an integral inverse, and z* is a vertex of P. Then
the columns of A corresponding to non-zero components of z* are linearly independent, so we can

extend them to a basis B. The non-zero part of z* equals B~1b, which is integral, thus z* is integral.
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Suppose now that {z | Az = b, £ > 0} is integral for each integral vector b. Let B be a
basis of A. We will show that B—1e; is an integral vector for each unit vector e;, which implies the
integrality of B!, Since B is a rational matrix, there exists an integral y such that By is integral
and z = y + B~le; > 0. Then b = Bz is integral. Let 2’ arise from z by adding zero-components
corresponding to the colums that are not in B 5o as to obtain Az’ = b. Then 2’ is a vertex of P, so it
is integral. Therefore z and B—'e; = z — y are integral, too. O

Hoffman and Kruskal’s Theorem 1.8, is a consequence of Lemma 1.2, Lemma 1.6 and The-
orem 1.7. We showed above that the lemmas do not hold for 1-regular matrices, so the rational
version of Theorem 1.8 cannot be achieved through them. It can, however, be proved directly.

Theorem 3.4. Let A be a rational matrix. Then the polyhedron P = {z | Az < b, z > 0} is
integral for each integral vector b, if and only if A is 1-regular.

Proof: The theorem can be proved in much the same way as Theorem 3.3 above. Here we outline
only the few differences from that proof.

When proving that P is integral for all b vectors if A is 1-regular, observe that each vertex of P
is related to a non-singular square submatrix R of A such that z* = (R~%,0), where b® consists
of the components of b corresponding to the rows of R.

To see that R™! is integral, generate y and z and define bF as Rz. For 2’ = (z,0), extend b® to
integral vector b so that Az’ < b. O

Theorem 1.9, where lower and upper bounds on z and Az are present, has a strong practical
importance. Unfortunately, it does not remain valid for rational matrices, as we cannot ensure the

A
1-regularity of I if A is a non-integral 1-regular matrix. For example, (z1,z2) = (12,1) is a
non-integral vertex of the polyhedron defined by the following inequality system

0<z +¥222<1
0< z,22 <1

though the matrix [1, %3] is 1-regular. Hence, the 1-regularity of A is not sufficient to guarantee the
integrality of polyhedron {z | a < Az < b,l < z < u} for all integral vectors I, u, a,b. But is is
necessary.

Theorem 3.5. Let A be a rational matrix. If for all integral vectors 1, u, a and b the polyhedron
{z|a < Az <b, | <z < u}isintegral, then A is I-regular.

Proof: If {z | @ < Az < b, | < = < u} is integral for all integral vectors I, u, a and b, then
{z | Az < b, z > 0} is integral for all b, so by Theorem 3.4, A is 1-regular. O
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If A is integral, then the converse of Theorem 3.5 is also true, but it is exactly Theorem 1.9, as
integral 1-regular matrices are totally unimodular, by Lemma 2.3.

3.1.2 k-regular matrices

Recall that kZ™ denotes the set of m-dimensional vectors with elements that are integer multiples
of k. Moreover, A/k is the matrix obtained from A by dividing every element by k. Lemma 2.13
claims that

A is k-regular if and only if A/k is 1-regular. @3.1)

The proofs of the following theorems rely on the fact that one can divide every element in a linear
inequality system by a positive number, leaving the solution space unchanged, i.e.,

{z| Az < b} ={z | (A/k) < (b/k)} forak >0 (3.2)

Using (3.1) and (3.2), we can extend the results given in the previous section for 1-regular matrices
to k-regular ones. In the proofs, replace A with A/k and b with b/k. A is a matrix of size m x n in
all theorems.

Theorem 3.6, Let A be a k-regular matrix, and b € kZ™, Then the polyhedron {z | Az < b} is

integral.

Theorem 3.7. Let A be a rational full row rank matrix. Then the polyhedron {z | Az = b, z > 0}
is integral for each vector b € kZ™, if and only if for each basis B of A, kB! is integral.

Theorem 3.8. Let A be a rational matrix. Then the polyhedron {z | Az < b, = > 0} is integral for
each vector b € kZ™, if and only if A is k-regular.

Theorem 3.9. Let A be a rational matrix. If the polyhedron {z | a < Az < b, l < z < u}is
integral for all vectors a,b € kZ™ andl,u € kZ", then A is k-regular.

Theorem 3.8 is a central result of the thesis. It extends Hoffman and Kruskal’s characterization
of totally unimodular matrices to k-regular matrices. From the opposite point of view, it describes
rational matrices that provide integral polyhedra for any right hand side vector that is an integer
multiple of k.

Just as for non-integral 1-regular matrices, the converse of Theorem 3.9 does not hold if A is not
integral. For integral matrices, however, one can prove the reverse direction too.

Theorem 3.10. Let A be an integral matrix. Then the polyhedron {z | a < Az < b, Il <z < u}is
integral for all vectors a,b € kZ™ and l,u € kZ", if and only if A is k-regular.

Proof: We have only to show that if A is k-regular, then the polyhedron is integral. But this easily
follows from Lemma 2.9 and 2.10, which imply that [4, — A, I, —I]T is k-regular, if Ais such. O
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In the remainder of the thesis we focus on 2-regular matrices. An alternative way of stating
Theorem 3.8 is that 2-regular matrices are the rational matrices that ensure half-integral polyhedra.

Corollary 3.11. The rational matrix A is 2-regular, if and only if polyhedron {z | Az < b, z > 0}

has half-integral vertices for all integral vectors b.

3.2 Balancedness and bicolorability

This short section contains only counterexamples. We show that 2-regularity is not equivalent to
balancedness or bicolorability. Our purpose is to show that 2-regular matrices are not disguised
versions of matrices belonging to a known class. In other words, k-regularity is a new generalization
of total unimodularity.

A 0,1 matrix is balanced if it does not contain a square submatrix of odd order with exactly
two 1’s in each row and column. Balanced matrices were introduced by Berge [7]. For example, a
balanced matrix cannot have a submatrix '

A = (3.3)

QO =
- O
O

Each totally unimodular 0,1 matrix is balanced, but not conversely. The following matrix is
balanced, but not totally unimodular,

1111 - ¥ Y Y
16 14 14 1

A2=1100 with A7 = s Vet (3.4)
1010 -1 Va-1
1001 Bn-1-1 %

Note that in Section 6.1.6 we show that A; is 2-regular.
Balanced matrices are important because of the following result.

Theorem 3.12. (Berge [7]) A 0,1 matrix A is balanced if and only if for every submatrix B of A, the
polyhedron {z | Bz = 1, z > 0} is integral.

The proof of this theorem can be found in [55].

Berge [7] introduced another notion for 0,1 matrices. A 0,1 matrix is bicolorable if its columns
can be partioned into blue and red columns in such a way that every row with two or more 1’s contains
a 1 in a blue column and a 1 in a red column. Bicolorability of a matrix is strongly connected to its
balancedness.
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Theorem 3.13. (Berge [7]) A 0,1 matrix A is balanced if and only if every submatrix of A is bicol-

orable.

Thus balancedness implies bicolorability. Does 2-regularity imply either of them? The answer
is in the negative. Matrix A; of (3.3) is 2-regular, but it is obviously not balanced, and it is easy to
show that it is not bicolorable either. The opposite direction is also blocked. Matrix

A3=

O O O R R
O O O O O O M
- - -
o 0o 0 0 - O O M
o e - I - - )
©C O = H O ©C O O
O - O =~ O 0 o O
- O O = O O © ©

is balanced, hence bicolorable, but not 2-regular, as its inverse contains quarters (e.g., the elements in
rows 5 to 8 and columns 1 to 4 of the inverse are all £14). Figure 3.1 illustrates the relation between
2-regular, balanced and totally unimodular 0,1 matrices. Note that Truemper [63] and Conforti and
Cornuéjols [15] generalized balancedness and bicolorability for 0, 1 matrices. The relation illus-
trated in Figure 3.1 holds in this more general setting as well.

Balanced

Figure 3.1: The relation between 2-regular, balanced and totally unimodular (TU) matrices

3.3 Total dual half-integrality

If a matrix A is totally unimodular, then the polyhedron {z | Az < b} is integral for all integral vec-
tors b. If we need integrality for only a given b, and not all the integral ones, then total unimodularity
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is too strong a requirement. For example,

1

0 3.5)
1

is not a totally unimodular matrix, but the only extreme point of P = {z | Az < 0} is (0,0), so P is
an integral polyhedron. Thus, we need new notions if we are to examine the integrality of polyhedron
P(A,b) = {z | Az < b} fora specific b vector. The notion that proved to be the most useful for this
is total dual integrality.

Definition 3.14. (Edmonds and Giles [24]) A system of rational inequalities Az < b is called totally
dual integral (TDI) if for all integral ¢ such that maz{cz | Az < b} is finite, the dual problem
min{yb | yA = ¢,y > 0} has an integral optimal solution.

Note that the definition is about the inequality system, not the polyhedron it defines. For instance,

1-1 0

determines the same polyhedron as {z | Az < 0} with A of (3.5), but while Az < 0 is TDI, the
system of (3.6) is not.

Obviously, if A is totally unimodular, then Az < b is TDI for any rational vector b. TDI systems
are important, because they define integral polyhedra. The proof of this fact relies on the following
result of Edmonds and Giles [24] and Hoffman [43].

Theorem 3.15. The polyhedron {z | Az < b} is integral if and only if maz{cz | Az < b} is

integral for all integral c for which the maximum is finite.

In other words, for the existence of an integral optimal solution of maz{cz | Az < b} for any ¢,
it is enough to show that the maximum itself is integral for all integral choices of ¢.

Now the following theorem is easy.

Theorem 3.16. If Az < bis TDI and b is integral, then the polyhedron P(A,b) = {z | Az < b} is

integral,

Note that one can specify the totally dual integral requirement for polyhedra of special format.
For example, the system Az < b, z > 0 is TDI, if and only if the dual min{yb | yA > ¢, y > 0}
has an integral optimum for each integral vector ¢ with finite minimum. More about TDI systems
and proofs of the theorems given above can be found in the usual sources, [S1] and [55].

In this work we are more interested in half-integral polyhedra than integral ones. The definition
of total dual integrality can be changed to accommodate half-integrality.
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Definition 3.17. A rational system of inequalities Az < b is totally dual half-integral (TDHI) if for
all integral ¢ such that maz{cz | Az < b} is finite, the dual problem min{yb | yA = ¢, y > 0} has
a half-integral optimal solution.

Theorem 3.18. If Az < b is TDHI and b is integral, then the polyhedron P(A,b) = {x | Az < b}
is half-integral.

Proof: P(A,b) is half-integral if and only if P(A, 2b) is integral, which is equivalent, by Theorem
3.15, to the fact that for all integral ¢ the optimum in maz{cz | Az < 2b} is integral. This is satisfied
if the dual min{2yb | yA = ¢, y > 0} has a half-integral optimal solution, exactly what is required
for the total dual half-integrality of Az < b. O

Just as with totally unimodular matrices and total dual integrality, if A is 2-regular, then Az < b
is TDHI for any rational b. However, the constraint matrix in

- N
- O W

2
z< |1 3.1
1

is not 2-regular, but the system is TDHI. To see this, take the dual problem with an integral vector
c=(c,c2):
min 2y;+ Y2 +ys3
subject to + 2ys + =c
d] Y1+ aYy2 TYs 1 3.9)
3+ +ys =¢2
Y1,Y2,Y3 2 0

The basic solutions of the dual are

¢ —¢C c—C 3c1 —¢ ¢z 3¢ —c
y(l)= (0’ 12 2,02),y(2)=(22 1,0’ 12 2) 1y(3)=('§27'16_210)

All three have the same objective value (¢ + ¢;)/2. Furthermore, y(1) is feasible if 0 < ¢; < a1,
y@ is feasible if ¢; < ¢z < 3¢, and y(®) is feasible if 0 < ¢z < 3c;. Therefore, if there is a feasible
solution of (3.8), then there is a half-integral optimal solution. Note that the system

()

defines the same polyhedron as (3.7), but this latter system is not TDHI, because the only basic
solution, y(®, is not necessarily half-integral.
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3.4 Chvaital-Gomory cuts

An important problem of integer programming is to find the integer hull Py of a polyhedron P, i.e,
the convex hull of the integer points in P:

Py = conv{PNZ"}

Theorem 1.8 can be stated in the following way.

Corollary 3.19. An integral matrix A is totally unimodular, if and only if P = Py for P = {z |
Az < b, z > 0} and any integral b.

In several theoretical and practical problems, however, the constraint matrix A is not totally
unimodular and the right hand side vector b is such that P # Py. To tackle these cases and find
integer solutions, different methods have been developed. One of the most studied approaches is the
cutting plane method, pioneered by Gomory in [37]. The basic concept of the cutting plane method is
the Chvdtal-Gomory (CG) cut, defined as follows. Given an integral m x n matrix A and an integral
vector b, a CG-cut of the polyhedron P = {z | Az < b} is an inequality of the form

AT Az < |ATb) where A € RT and ATA € Z™.

Note that it is enough to require that A € [0, 1)™ because if we replace A by A — |A], then we geta
stronger CG-cut.

The rank-1 closure of P is defined as the intersection of P with the half-spaces induced by all
possible undominated CG-cuts:

Po={zeP|XTAz < |[\Tb|forA €[0,1)™, ATA € Z"}

Caprara and Fischetti [11} introduced half-integral Chvdtal-Gomory cuts and the corresponding clo-
sure:

Py, ={z € P|uTAz < |u"b] foru € {0,%4}™, pTA € Z"}

Obviously, P C P, C Py, C P. Itis also known that P = P, holds if and only if P = P;. This
does not remain valid for half-integral cuts, for example P = Py, for any b € 2Z™ but this does
not imply that P = Py. It is worth mentioning that Caprara and Fischetti [11] showed that P, can
replace Py in Corollary 3.19, i.e., a 0, =1 matrix A is totally unimodular if and only if P = Py, for
P={z|Az <b, z>0}andallb € Z™.

In this section we will examine the case where P, = Py,. This occurs, for example, when A is
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an integral m X n matrix satisfying

m
Y lagl<2 forj=1,...,n,
i=1
according to Edmonds [22] and Edmonds and Johnson [25]. In this case P, = Py = Pr. Gerards
and Schrijver dealt with the transpose, i.e., integral A matrices of size n X m satisfying
m
Zla;j|$2 fori=1,...,n, 3.9)
=1
and proved that B, = Py for these matrices too. In this case, however, P, is not necessarily equal
to Py. (In Section 7.3 we will discuss the characterization of matrices that satisfy (3.9) and ensure

P, = P;.) Here we show that it is the 2-regularity of the matrices in these examples that ensures
Py, =PF.

Theorem 3.20. Let A be am X n integral matrixand P = {z | Az < b, = > 0}. A is 2-regular if
and only if Py, = P, forallb € Z™.

Proof: Let us suppose first that P, = By, forallb € Z™, and letb € 2Z™. Then P = B, = P
which implies P = Py for all such b. By Theorem 3.8 this means that A is 2-regular.

R A -
Assume now that A is 2-regular. We will use the notations A = and b=

b
0] . Obviously,

P = {z | Az < b}, and by Lemma 2.10, A is 2-regular. Let us take an arbitrary CG-cut of P with
A € [0,1)™+", The maximum of the linear program maz{\T Az | Az < b} is at most ATb so
the dual problem min{uTd | uTA = ATA, u > 0} has an optimal solution . Since AT A is
integral, it follows from Corollary 3.11 that x4 can be chosen to be half-integral. For this half-integral
dual optimal solution uTA = AT A, and uTb < ATb because X is dual feasible, so the CG-cut
AT Az < |ATbH] is dominated by uT Az < |uTb]|. We can further stregthen the cut by replacing u
with ¢ — | ], keeping its half-integrality. We showed that any CG-cut is dominated by a half-integral

cut, s0 Py, C P, which is equivalent to Py, = P;. a
Caprara, Fischetti and Letchford [12] extended half-integral cuts to mod-k cuts. These are CG-
cuts where ™
1 k-1
'\G{O’E"”’T} (3.10)

The corresponding closure is defined as
Puoax = {z € P | AT Az < | ATb| for X satistying (3.10) and AT A € Z"™}

For applications of mod-k cuts, see [12]. In much the same way as Theorem 3.20, we can prove the

more general result:
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Theorem 3.21. Let A be a m X n integral matrix and P = {z | Az < b,z > 0}. A is k-regular if
and only if P, = Ppog forallb e Z™.



Chapter 4

Bidirected graphs

In this chapter we describe bidirected graphs. They provide a common generalizations of both di-
rected and undirected graphs, containing ordinary edges, loops and half-edges. The edges can be
directed in more possible ways than in a directed graph. In a directed graph, if an end-node of an
edge is its tail, then the other end-node of the edge must be its head. Undirected graphs can be viewed
as graphs in which each edge has two heads. In a bidirected graph, the end-nodes of the edges can
be heads or tails, independently from each other.

The notions defined for undirected or directed graphs can be extended to bidirected graphs. For
example, we define operations on bidirected graphs, such as the deletion of nodes, edges, or the
contraction of an edge. More importantly, we introduce the incidence matrix of a bidirected graph.
The node-edge incidence matrix of a simple undirected graph is a 0,1 matrix with exactly two 1’s in
each column. A directed graph is represented by a 0, +1 matrix in which each column has one +1
and one —1. If there are loops in the graphs, then they can be represented by columns with a single
non-zero. The node-edge incidence matrix of a bidirected graph is a matrix with elements 0, +1, +2
such that a column can have at most two non-zeros, and if it has two, then they are both +1. The
operations on graphs have their parallel operations on incidence matrices.

Bidirected graphs serve as a background for introducing binet matrices in the next chapter, and
incidence matrices provide the link between them. To this end, we examine the subdeterminants of
an incidence matrix in Section 4.2. Our main interest is in the bases of an incidence matrix, that
is why we give a characterization of non-singular submatrices of the node-edge incidence matrix
of a bidirected graph. We also prove that incidence matrices of bidirected graphs are 2-regular,
thus establishing the connection of the remainder of the thesis with what has been described in the
previous chapters.

The content of this chapter is not new. Bidirected graphs were introduced by Edmonds in [23],
and since then they have appeared in the literature several times. For example, Schrijver [56] gave a
necessary and sufficient condition for the existence of an integer solution to a linear inequality system

36
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Az < bin which A is the edge-node incidence matrix of a bidirected graph. Gerards and Schrijver
[33] characterized bidirected graphs which lead to matrices with strong Chvétal rank 1. We will give
more details and extensions of this latter result in Section 7.3. Bidirected graphs are strongly related
to signed graphs, introduced by Harary [38]. Chapter 10 describes signed graphs and other graphs
related to bidirected graphs.

The structure of non-singular submatrices of incidence matrices is also known. For example, in
Chapter 9 we describe generalized networks and, in Lemma 9.2, we characterize the bases of their
incidence matrices. We will see that the structure of the bases is very similar to what appears in this
chapter. In fact, bidirected graphs can be considered to be special generalized networks, so results
about generalized networks imply those about bidirected graphs.

4.1 Basic notions

A bidirected graph G(V, E) on node set V and with edge set E can have four types of edges: a
link, written e:uv, has two distinct end-nodes (u and v); the end-nodes of a loop, e:uu, coincide; a
half-edge, e:u, has one end-node, the other end is not connected to any node; and a loose edge, e:0
has no end-nodes at all. The edges are signed with + or — at their end-nodes. That is, links can be
signed with +—, ++ or ——; loops, as their end-nodes coincide, are either ++ or ——; half-edges
have only one sign, + or —. Links with different signs at their two end-nodes are called directed
edges, all other edges are called bidirected. If a bidirected edge is signed with ++, then we call it a
positive edge, edges signed with —— are negative. If an edge is signed with + at an end-node, then
this node is an in-node or head of the edge. An end-node signed with — is called the out-node or tail
of the edge.

Figure 4.1 shows two possible graphical representations of the same bidirected graph. Heads and
tails can be represented with arrows as in (i), or signs as in (ii). All edges other than e; are bidirected.
Edge e; is adirected link, ez and ez are bidirected links, es and eg are loops, e4 and e are half-edges.
Loose edges are not depicted. In the remainder of the thesis we will use arrows as in Figure 4.1(i).

A walk in a bidirected graph is a sequence (v1, €1, v2,€2,-..,€t—2,V:—1,€:—1, V) Where v; and
vi4+1 are end-nodes of edge e; (i = 1,...,t — 1), including the case where v; = v;+; and e; is a
half-edge or a loop. If v; = v;, then the walk is closed. If the walk consists of only links, and it does
not cross itself, i.e. v; #v; forl1 <§<¢,1<j <t i+#j,thenitisapath. A closed walk which
does not cross itself is called a cycle. That is, a cycle can be a loop, a half-edge or a closed path.
If the number of bidirected edges in a cycle is odd, then it is called an odd cycle, otherwise it is an
even cycle. Obviously, a loop or a half-edge always makes an odd cycle. Two links forming a cycle
are parallel. A bidirected graph is connected, if there is a path between any two nodes. A tree is a
connected graph which does not contain a cycle. A connected graph containing exactly one cycle is
called a I-tree. This name is justified by the fact that a 1-tree consists of a tree and one additional
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an
Figure 4.1: Possible graphical representations of a bidirected graph

edge. If the unique cycle in a 1-tree is odd, then we will call it an odd I-tree.

One can straightforwardly define the node-edge incidence matrix A(G) of a bidirected graph G.
Let ae = (ave \v 6 V) be a column of 4(G) corresponding to edge e e E. The non-zero entries
in this column, being £1 or £2, are in the rows corresponding to the end-nodes of e. The sign of the
entry depends on whether the corresponding end-node is an in-node or an out-node of the edge. That

is, the non-zeros in ae are as follows:

if ezuv is a link, then aue = =1, ave = £1
if e;uu is a loop, then aue = +2

if exu is a half-edge, then aue = +1.

Ife:0 is a loose edge, then all the entries in the column ae are zero. As an example, the incidence

matrix of the bidirected graph depicted in Figure 4.1 is

el 62 63 e4 65 66 e7

viooo-1 0 0 1 0 0 0
A= 1 1 1 0 0 2 0 0
3 0 I -1 0 0o -2 0
V¥ 0 0 -1 0 0 0 -l

The edge-node incidence matrix ofa bidirected graph is, of course, the transpose of the node-edge
incidence matrix. When we write simply incidence matrix, then we mean the node-edge incidence
matrix.

The relation of incidence matrices and bidirected graphs is two-way (or bidirectional). Given an
m X n integral matrix 4 = (oij) satisfying

m

Aaij|<2  forj = (4.2)
i=1
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we can find a bidirected graph G(A) with m nodes and n edges such that its node-edge incidence
matrix is A. In other words, property (4.2) characterizes the node-edge incidence matrices of bidi-
rected graphs, In what follows we identify the columns (rows) of A(G) with the edges (nodes) of G,
so that e can refer to either an edge of the graph or a column of the matrix.

Operations on A(G) which maintain (4.2) can be translated to operations on bidirected graphs.
Such operations are, for example, multiplying a row or a column with —1, or deleting a row or a
column. It can be verified that the following transformation (which appeared in [33]) also maintains
(4.2):

A=I:a Ic)] —+A' =D —abe 4.3)

where « is a non-zero entry, b is a column vector, c is a row vector, and D is a submatrix of A. Note
that if e is the only non-zero entry in the first column of A, then b = 0 so that A’ = D. If a is not
the only non-zero entry, then both & and the only other non-zero are 41, Thus abe is a matrix with
only one non-zero row equivalent to &=c. Now ¢; = 2 implies D;; = 0 for all ¢, because of (4.2),
therefore A’ is bound to satisfy (4.2).

We now give the graphical equivalents of the matrix operations. They are extensions of standard
operations on directed or undirected graphs, such as edge or node deletion, and edge contraction,
taking into account the signs of the edges.

When multiplying a column with —1 in A, we simply change the sign(s) at the end-node(s)
of the corresponding edge. Directed edges remain directed with the opposite direction, positive
edges become negative and vice versa. We call this operation reversing the direction of an edge.
Multiplying a row with —1 means changing the signs of the incident edges at the node corresponding
to the row. If the node was an in-node of an edge, then it becomes an out-node, and vice versa.
Consequently, incident directed links become bidirected and bidirected links become directed. We
call this operation switching at a node.

Column deletion easily translates to bidirected graphs, it is equivalent to deleting an edge from the
graph. Deletion of a row corresponds to the removal of the related node together with the edge-ends
incident to the node. That is, links connected to this node become half-edges, loops and half-edges
located at the deleted node become loose edges. All other edges and nodes remain unchanged. We
call this operation deleting a node. Figure 4.2 shows an example where node vs of the graph in
Figure 4.1 is deleted.

Finally, the transformation defined by (4.3) translates to bidirected graphs as follows. Let us
suppose that the first row and column of A in (4.3) correspond to node v and edge e:uv, respectively.
Then, when applying the transformation on G(A), the resulting graph, G(A’) has one less node and
one less edge. We call this operation contracting edge e together with node u. For the different kinds
of edges the operation has to be defined carefully, because the case when « is the only non-zero in
column e (i.e. e is a loop or a half-edge) leads to A’ = D, while e being a link leads to a more
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e3

2
e v4

Figure 4.2: Deleting node V5 from the graph in Figure 4.1

complex situation.

If e is a loop or a half-edge at u, then u and e are removed from the graph, the incident loops
and half-edges at u other than ¢ become loose edges, and the incident links lose one end-node and
become half-edges. Thus, contracting a loop or a half-edge located at u differs from deleting node
u in only one respect, namely that one less loose edge (corresponding to ¢) is created. As loose
edges are not shown in diagrams in any case, there is no difference in the graphical representation of
contracting a loop or a half-edge with u# or deleting node u.

If e is a directed link, then we get an operation similar to the ordinary graph contraction. Here
we remove the edge e and the end-node u. The edges connected to u in G (4) will be connected to
v in G(4'), directed edges parallel to e will become loose edges, while parallel bidirected edges in
G(A4) will become loops atv in G(4'). Figure 4.3(i) shows the effect of contracting e! with node v\
from the graph in Figure 4.1. Finally, if e is a bidirected link, then contracting it with ¥ means first
switching at u, and then contracting the now directed edge e, as described above. Figure 4.3(ii) shows
the contraction of e; with V5 from the graph in Figure 4.1. The incidence matrices corresponding to

the graphs in Figure 4.3(i) and (ii) are as follows:

62 63 64 65 66 e7 €1 €2 ed 65 66 e7

| %) 1 0 1 2 0 0 1 0 1 0 0 0
ana Vi

V3 1 1 0 0 2 0 |4) 1 1 0 2 0 0

14 0 I 0 0 0 -1 Vi 0 -1 0 0 2 -1

These matrices can be obtained by applying (4.3) on matrix 4 of(4.1) witha = an anda = a33,

respectively.

Remark 4.1. Contracting a bidirected link e:uv with u and contracting it with v result in different
graphs. But the two graphs differ only in the sign of the remaining end-node’s row, which can be

easily eliminated by a multiplication with -1, i.e. a switching at the node. For example, contracting
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()

Figure 4.3: Contracting edge e! with node /1 and edge  with node V5 in the graph in Figure 4.1

edge e; with t4 from the graph in Figure 4.1 leads to the graph and incidence matrix shown in
Figure 4.4. When it does not cause problems, e.g. the signs of the edges incident to u are not

relevant, we will use the shorter ‘contracting edge e’ instead of the full ‘contracting e with u |

ei e¢i ed 65 N i
vi -1 0 1 0 0 0
Vi 1 1 0 2 0 0
V3 0 1 0 0 -2 1

Figure 4.4: Contracting edge e3 with t4 in the graph in Figure 4.1

Let R be a submatrix of the incidence matrix 4(G). It can be obtained by row and column
deletions. By the analogous operations, a bidirected graph G (R) can be obtained from G. It is clear
that G(R) does not depend on the order of the row and column deletions. This graph can be achieved
by edge and node deletions, but strictly speaking it is not a subgraph of G, as it can contain half-
edges and loose edges that are not present in the original edge set £. However, when it does not
create confusion, we will call it a subgraph of G.

If A(G) is not of full row rank, then by deleting rows it can be made a full row rank matrix. For
the sake of simpler statements, and without loss of generality, in what follows we usually assume
that the node-edge incidence matrix of a bidirected graph is always of full row rank.

A bidirected graph G is connected, if and only if its node-edge incidence matrix cannot be de-
composed. Sometimes we will call a non-decomposable matrix 4{G) connected in this context.

In what follows, we will mainly deal with connected bidirected graphs and incidence matrices. So
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unless we specifically claim the contrary, we always assume bidirected graphs to be connected.

4.2 Determinants

In this section we deal with the determinants of incidence matrices of bidirected graphs. First we
characterize non-singular submatrices by means of their graphical representation, then prove that the
inverses of these submatrices are half-integral, i.e., the incidence matrices of bidirected graphs are
2-regular. This extends the well-known result about the total unimodularity of the incidence matrices
of directed graphs.

Let us start with two propositions.

Proposition 4.2. Let T be a square matrix of size n whose non-zero elements are Ty; = 1 for
i=1...,nTip1i=-1fori=1,...,n~1and T1, = £1. That is, T is of the following form

- -

1 +1
-11
T = -1 ‘.. “4.4)

-11

Then det(T) = 0if T1p = =1, and det(T) = 2 if T1, = 1.
Proof: By cofactor expansion, det(T) = 1 + (-1)*+1Ty,(-1)""1. O
Proposition 4,3, Switchings at nodes do not change the parity of a cycle.

Proof: Switchings at nodes that are not part of a cycle obviously do not have any effect on the cycle.
If a cycle is a loop or a half-edge, then a switching at its node changes only the sign of the edge, the
cycle remains odd. Otherwise, if the cycle consists of links, there are exactly two of them incident to
any node of the cycle. Switching at such a node changes the incident directed links to bidirected ones
and vice versa. Thus, if there were two bidirected or two directed links incident to the node, then the
number of bidirected edges in the cycle changes by 2. If one incident link was directed and the other
bidirected, then it remains so after switching. Therefore, the number of bidirected edges in the cycle
changes by an even number at any switching, and the parity of the cycle remains the same. O

Lemma 4.4. Any square submatrix R of the incidence matrix A of a bidirected graph G is non-

singular if and only if each connected component of G(R) is an odd 1-tree.

Proof: If Ris a1l x 1 matrix, then the theorem is trivial as a loop or a half-edge is an odd 1-tree by
definition. Let us assume that R is of size m, and the theorem is true for submatrices smaller than m.
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If R is not connected, then it is non-singular if and only if it is decomposable to non-singular blocks,
so the theorem follows by induction. Thus, let us assume that R is connected.

Since R is a square submatrix, G(R) has as many edges as nodes. Because it is connected, it
contains exactly one cycle, so it is a 1-tree. We now show that is must be odd, that is, its cycle is
an odd cycle. Let R; be the submatrix of R corresponding to the cycle (i.e., its rows and columns
correspond to the nodes and edges of the cycle), and R; be the submatrix of the non-cycle nodes and
edges. That is, if the first rows and columns correspond to the nodes and edges of the cycle, then R

R= R1 *
R,

G(R;) can be obtained from G by deleting the nodes and edges of the cycle, so all non-cycle
edges incident to cycle nodes will be half-edges in G(Rz), the other non-cycle edges remain un-

has the following form:

changed. Consequently, each component of G(R;) is an odd 1-tree. As the size of any of these
components is less then m, by induction the singularity of R depends on the singularity of R;.

If G(R,) is a loop or a half-edge, then R; is non-singular. Else, by permuting its rows and
columns and multiplying them by +1, R; can be transformed to R] which is of form (4.4). R; is
non-singular if and only if R, is such,

By Proposition 4.2, R; is non-singular if and only if the element standing in its upper right
hand corner is +1, i.e., if G(R]) contains exactly one bidirected edge. We achieved R’ from R by
permutations and multiplying some rows and columns by —1. Multiplying a row by —1 is equivalent
to a switching, which keeps the parity of the cycle. Permutations or multipying columns with —1 do
not change the number of bidirected edges. It follows that R is non-singular if its cycle contains an
odd number of bidirected edges, and singular if it contains an even number of them. O

If a connected bidirected graph contains an odd cycle, then we can extend the cycle to a spanning
odd 1-tree by adding new edges. That is, in this case we have a spanning submatrix R such that its
incidence matrix is non-singular. The case where a bidirected graph does not contain an odd cycle is
handled by the following lemma.

Lemma 4.5. If there are no odd cycles in a bidirected graph G, then it can be transformed to a
directed graph by switchings.

Proof: First, there cannot be loops or half-edges in G, as they are odd cycles themselves. We can
clearly suppose without loss of generality that G is connected. So there is a spanning tree in G. By
switching on the nodes, the tree edges can be changed to directed links. If the graph now contains
a bidirected link e, then the unique cycle formed by e and some tree-edges is an odd cycle, as
it contains one bidirected edge, e itself. This contradicts the condition, taking into account that
switchings preserve the parity of a cycle. O
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Combining these observations, we have the following corollary.

Corollary 4.6. Let G be a connected bidirected graph on m nodes and A be its node-edge incidence
matrix. Then rank(A) is either m or m —1, and rank(A) = m— 1 ifand only if G does not contain

an odd cycle.
We can state another easy consequence of Lemma 4.4,

Corollary 4.7. Let A be a full row rank node-edge incidence matrix of a bidirected graph, and T a
collection of linearly independent columns of A. Then each connected component of G(T') is either
an isolated node, or forms a tree or an odd 1-tree. Conversely, if any component of a subgraph
G(R) is either an isolated node or forms a tree or an odd 1-tree, then the columns of R are linearly

independent.

Proof: The proof in both directions relies on the fact that if the columns of T' are linearly indepen-
dent, then it can be extended to a basis R by adding columns of A. Then G(T') arises from G(R)
by deleting edges. By Lemma 4.4, the connected components of G(R) are odd 1-trees, so G(T') can
have only components listed in the statement. Note that isolated nodes correspond to all-zero rows
of T, O

The following theorem establishes the connection of bidirected graphs to k-regularity.
Theorem 4.8. The incidence matrix A of a bidirected graph is 2-regular.

Proof: Let R be a non-singular submatrix of A. Clearly, it is enough to consider connected subma-
trices, because if R is decomposable into blocks and each block can be shown to have half-integral
inverse, then the inverse of R is half-integral too. So let R be a connected, non-singular submatrix
of size 1. We will show that det(R) = %1 or £2. Then Lemma 2.7 ensures that A is 2-regular.

As R is a submatrix of A, the total number of non-zero elements in R cannot exceed 2 because
each column of A has at most two. Since R is non-decomposable and non-singular, the total number
of non-zero elements in R must be at least 2/ — 1. To see this consider the following bipartite graph,
called the adjacency graph of R. It has 2! nodes — one for each row and column — and an edge joining
a row node 1 to a column node j if and only if R;; # 0. R is non-decomposable if and only if its
adjacency graph is connected, i.e., it has at least 2] — 1 edges.

If R has 2I non-zero elements, then it can be transformed to the form of (4.4), so by Proposi-
tion 4.2, |det(R)| = 2.

Consider the case where R has 2] — 1 non-zero elements. Its adjacency graph is a tree graph.
So the determinant of R can be obtained by expansion through a row or a column containing only
one non-zero entry. It is fairly obvious that the absolute value of the determinant is the absolute
value of the product of I non-zero elements of R. Since there is only one column that has less than
two non-zeros, R contains at most one £2 element, Thus the product of any subset of the non-zero
elements is +1 or £2. Hence |det(R)| = 1 or 2 and the theorem follows. O
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As incidence matrices of bidirected graphs are exactly the matrices that satisfy (4.2), an alterna-
tive way of stating Theorem 4.8 is that if A is an integer matrix satisfying (4.2), then A is 2-regular.
This fact has appeared in the literature several times. For example, it is mentioned in Gerards and
Schrijver [33]. Hochbaum et al. [42] and Lee [48] prove that det(R) = =1 or +2 for connected,

non-singular submatrices, which is the main point of our proof.



Chapter 5

Binet matrices

This chapter is central in the thesis. It describes the generalization of network matrices for bidirected
graphs.

Network matrices can be defined in two equivalent ways. The graphical definition starts with
a connected directed graph with a given spanning tree in it. The rows and columns of the network
matrix are associated with the tree and non-tree edges, respectively. For any non-tree edge s, we find
the unique cycle (called the fundamental cycle) which contains & and some edges from the tree. The
column of the network matrix corresponding to 8 will contain +1 in the rows of the tree edges in
its fundamental cycle and 0 elsewhere. The signs of the non-zeros depend on the directions of the
edges. If walking through the tree along the fundamental cycle starting at the tail of s, a tree edge
lies in the same direction, it gets a positive sign, if it lies in the opposite direction, it gets a negative
sign.

In the algebraic derivation of the network matrices, the incidence matrix A of the directed graph
is used. To make it full row rank, an arbritrary row is deleted. Every basis in this full row rank matrix
A’ corresponds to a spanning tree in the graph. If basis R is associated with the given spanning tree,
and we denote the remaining part of A’ as S, then the network matrix equals R~1S.

We apply these methods to bidirected graphs to get the bidirected analogue of network matrices,
the binet matrices'. We define binet matrices in the algebraic way but, in parallel with network ma-
trices, we also provide an algorithm to determine the columns of a binet matrix using its graphical
representation. This algorithm will be used substantially in establishing the properties of binet ma-
trices. Similarly to network matrices, if the graphical definition were not available, then the analysis
of binet matrices would be more cumbersome. We will see examples in Section 5.2 that exhibit the
difference between the elegant graphical ideas and the clumsy matrix explanations. Except for these
illustrative points, we will use almost exclusively the graphical representation of binet matrices in

U'The term binet is used here as a short form for bidirected nerwork, but by coincidence it also matches the name of Jacques
Binet (1786-1856) who worked on the foundations of matrix theory and gave the rule of matrix multiplication.

46
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the whole thesis. That is why we will spend a relatively large part of the chapter on explaining the
graphical method of deriving binet matrices. Most of Section 5.1 is devoted to this task.

Section 5.2 deals with fundamental properties of binet matrices. We show that a wide range of
operations on binet matrices maintain its binetness. We give necessary conditions for binet matrices
in Section 5.3. Finally, we describe our attempts at finding a recognition algorithm for binet ma-
trices in Section 5.4. The result contained in the last two sections might prove useful in yielding a
characterization for binet matrices, a task which has not been accomplished.

5.1 Definition and graphical representation

Definition 5.1. Let A be a full row rank incidence matrix of a bidirected graph G, R be a basis of it
and A = [R, S]. The matrix B = R~'S is called a binet matrix.

Subgraph G(R) is called the basis of the graph, and its edges are called the basic edges. The
edges of G that are not in the basis (i.e., those of G(S)) are the non-basic edges. By Lemma 4.4, a
basis of a bidirected graph has odd 1-tree components. The unique cycles in the basic components
are called basic cycles. We call bidirected graph G(A) the binet representation of binet matrix B.
When in a bidirected graph representing a binet matrix, the basic and non-basic edges are clearly
indicated, then we call it a binet graph.

The same binet matrix may arise from different incidence matrices, i.e., it may have different bi-
net representations. For example, the two binet graphs in Figure 5.1 give two possible representations
of the following binet matrix:

81 82 83
1 0 1
B= " .1)
T2 1 1 0
T3 0 1

Note that we identify the rows and columns of B with basic and non-basic edges, a technique we
will use throughout this dissertation. The incidence matrices of the binet graphs in Figure S.1 are as

follows.
1 T2 T3 8 82 83 T T2 T3 8 82 83
v 1 0 O 1 0 1 U1 0 11 -1 1 0| -1
and
V2 0 1 0 1 1 0 V2 -1 1 1 0 2 0
v3 01 0 1 0 1 1 v3 1 0 O

That the graphs in Figure 5.1 really represent B can be checked by taking the inverse of the basis
R = [r1, 72, 73] and multiplying it with S = [s1, 82, 83] in both incidence matrices. In what follows,
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Figure 5.1: Different binet representations of binet matrix (5.1)

we give a graphical method to obtain a binet matrix from its binet graph. This spares us the need to
take the inverse of the basis and makes handling binet matrices much easier.

Let 4 have m rows and n columns. Let s be a non-basic edge, in other words, column s of
the node-edge incidence matrix is in S. Let the corresponding column of B be w, i.e. w = i?-1s.
The column vectors of the m x m non-singular matrix R span an m-dimensional Eucledian vec-
torspace, Rm. As Rw = s, column w represents the unique coordinates of vector s in this basis. Let

{ri,r2,.e., rt) be the subset of columns of R where the coordinates are non-zero:

s = w(ri)ri A wir:)rz -——- tw(rt)rt, tu(r,) ~ 0, i=1,...,f (5.2)

So by setting s = r0 and defining w(s) = w(r0) = -1, we get

m
ATw{iri)ri= 0 (5.3)
t=0

The columns of the matrix R’ = [a,n, 7*2,...,7¢] form a minimal dependent set in Mm. That

is, the columns of R' are dependent, and deleting any column from R’, we end up with matrices
the columns of which are linearly independent. This implies the following lemma, illustrated in

Figure 5.2.

Lemma 5.2. The graph G(R') spanned by edges s,ri,... ,t* falls in one of the following three

categories.
(i) It is an even cycle, or

(ii) it is a graph consisting of two node-disjoint odd cycles connected with a path which has no

common node with the cycles except its end-nodes, or

(iii) it is a graph consisting oftwo odd cycles which have exactly one common node.
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Vi

@ fii) (iii)

Figure 5.2: Examples of minimal dependent subgraphs

Proof: First note that G(R') is connected. If it is not, then R/ is decomposable, and s is spanned
by the columns that are in the same submatrix as s. The other columns have zero coordinates,
contradicting (5.2).

The columns of R’ are minimally dependent, so according to Corollary 4.7, G(R') is not a tree
or an odd 1-tree, but every connected component of the bidirected graphs obtained from G(R') by
deleting any edge 7 is either a tree or an odd 1-tree. (Isolated edges are ruled outas G(R') is spanned
by edges.) Now let us have a closer look at the possible cases.

If the deleted edge r is a cut-edge in G(R'), i.e., the graph obtained by deleting it has two
components, then both components must be an odd 1-tree, otherwise by redrawing r we would get a
tree or an odd 1-tree. This corresponds to category (ii).

Ifr is not a cut-edge, i.e., the graph G’ obtained by deleting r is connected, then G’ is either a
tree or an odd 1-tree. If it is a tree, then redrawing r the graph (which is G{R’)) contains exactly one
cycle, which cannot be odd. There cannot be any non-cycle edge in G(R'), because then deleting that
edge would not result in a tree or odd 1-tree graph. So G(R') is an even cycle, leading to category
0).

Ifr is not a cut-edge and G' is an odd I-tree, then by redrawing » we get at least one new cycle.
The new cycle must be odd, otherwise we could delete an edge from the old odd cycle, and the
resulting graph would not be a tree or an odd I-tree. So every cycle in G(R') is odd. If there are
two edge-disjoint cycles, then we have category (ii) or (iii). If the cycles are not edge-disjoint, then
G(R') can be viewed as a graph in which there are three internally node-disjoint paths connecting
the same pair of nodes, that is a theta graph. (See Figure 1.1). It is easy to see that all three cycles in

a theta graph cannot be odd, so this case is impossible, and the proofis completed. o

We will call graphs in categories (ii) and (iii) in Lemma 5.2 and illustrated in Figure 5.2, hand-
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cuffs. In parallel with the term ‘fundamental cycle’ in case of network matrices, we will use the
phrase fundamental circuit of s for G (R'). Thus, Lemma 5.2 claims that every fundamental circuit
is either an even cycle or a handcuff.

Let s connect nodes u and v, and let the minimal closed walk going through all the edges of
its fundamental circuit be (u,8 = fo,v = no, f1,71, f2,M2,...,0¢-1, fg, u), where fy,..., f, are
edges and no, . .., n,— are nodes. We will also refer to this walk as the fundamental circuit. Since
the walk uses only the edges and nodes of G(R') and it uses all of them at least once, this terminology
causes no ambiguity.

For example, in Figure 5.2(i), gequals 3and f; =1, ny =v;, fa=7r2, n2a=1v2, fs=rs. In
Figure 5.2(ii), g=10 and f, =11, n1 =v1, fa=rs, na=v2, f3=r3, ng=vs, fa=rs, na=vy,
fs=r1, ns=v, fo=8, ne=u, fr=rs, nr=vs4, fo=re, ng=vs, fo=rr, no=ve, fro=rs.

The minimality of the fundamental circuit ensures that any of its edges is traversed at most twice
in the walk. When a particular edge (or node) is traversed twice, then two different edge (or node)
labels in the walk refer to it. For example, in Figure 5.2(ii) n; and n4 denote the same node, v; and
edge r; is traversed twice, so both f; and f5 refer to this edge. A node of the fundamental circuit is
called an even node if it is an in-node of both or neither of the edges that stand next to it in the walk.
Otherwise it is called an odd node. Note that while a node in @(R’ ) may have 3 or 4 incident edges,
in the walk these edges get different labels so that exactly two edges from { fo,. .., f;} are incident
to it. This also means that a node of G(R') may be represented by n; and n; in the walk with n;
being an odd node and n; being an even node. For instance, node v; in Figure 5.2(ii) is an odd node
when it first occurs in the list as n; but an even node in its second occurance as ng.

Coefficients w(r;) (i = 0,1,...,%) are non-zero weights corresponding to columns of R’ so
that their weighted sum is the zero vector (as shown in (5.3)). As rows of the incidence matrix
are associated with the nodes of G and columns with the edges, w(r;)’s can be viewed as non-zero
weights assigned to the edges of the fundamental circuit so that at every node the sum of the weights
signed by the signs of the edge-ends is zero. Knowing that w(rg) = —1 and that two f; edges are
incident to every node in the fundamental circuit, this zero sum property provides us with a quick
method for tracing the other coefficients. Basically, we first give weight b(f1) to fi so that vector
(b(f1) f» — 8) has 0 in the row corresponding to node v. Then, in the same way, we can determine
b(f2), b(f3) and so on. Since different f;’s and n;’s could be associated with the same edge or
node of the graph, values of b(f;)’s must be adjusted to obtain the correct coefficients w(r;). For
example, if f; is a half-edge, then nj_, = n; so b(f;) is counted twice, but in R’ column f; has 1
at this node. Furthermore, the b(f;) values of edges appearing twice in the fundamental circuit are
summed. Algorithm 1 summarizes these considerations in a formal way. By applying these rules we
get weights that satisfy (5.3). Since we know that w is unique, our rules provide us with the correct
coefficients.

Instead of the successive method of determining the b(f;) values in Step 2 in Algorithm 1, an
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Algorithm 1 Calculating the elements of a binet matrix

Step1
Step 2

Step 3

Step 4

Step 5§

b(fo) =-1

Fori=1togqlet

b(f;) = —b(fi—1) ifn;_y is an even node
Y71 b(fi-1) if iy is an odd node

If 8 is a half-edge, or a link which is traversed twice in the fundamental circuit (so it lies
on the path connecting two odd cycles), then divide every weight by 2:

b(f;) := b—(zi’l fori=1,...,q

If f; is a half-edge and f; # s, then multiply b(f;) by 2:
b(fs) == 2b(f:)

If basic edge r; is traversed twice in the fundamental circuit, then let w(r;) be the sum of
the values of its two appearences:

w(r) :=b(f;,) +b(f5) if f, =riand fj; =1
Otherwise let w(r;) equal the value of its only appearence:

w(r;) :=b(fy) if fj =ri

alternative way can be given. It consists of first calculating the node-values ¢(n;) (f = 0,1,...,g—1)

defined as the sum of the signs of the incident f; edges, i.e.:

0 if n; is an odd node
¢(n;) =4 +2 ifn;is an in-node of both f; and f;11 5.4
—2 if n; is an out-node of both f; and f;,

Thenfori=1,2,...,q

1 if ‘E_ic(n,-) =2 (mod4)

b(fi) = =
-1 if ) ¢(n;) =0 (mod 4)

=0

As a summary, let us recap the steps of the graphical method for calculating the elements of a
binet matrix. First identify the basis graph, and take a non-basic edge s. Find its fundamental circuit,
which can be an even cycle or a handcuff, Assign —1 to s, then walk along the fundamental circuit

and take note of the b(f;) value of each edge by negating the value at even nodes and keeping it at
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odd nodes. If you follow the rules, then you arrive back to s with -1. Calculate the w(n) values
by taking into account the half-edges and the edges traversed twice. An edge traversed twice must
get the same b(fi) value in both occurences, otherwise its corresponding w (n) value would be 0.
Finally, fill column s of the binet matrix with vector w: non-zeros in the rows of the basic edges in
the fundamental circuit, zeros in other rows. Repeat this for each non-basic edge. Figure 5.3 shows

a binet matrix achieved this way from the binet graph depicted next to it.

Si S2 83 s4 S5 S6
n 1 1 v 44 0 0
r2 0 1 ))Q 44 0 0
7 1 1 w 44 0 O
r4 1 2 0 -1 0 0
75 0 1 0 0 0 0
re 0 -1 0 1 0 O
n 0 0 O 1 1 2
w 0 0 0 1 2 2
Figure 5.3: An example of a binet graph, and its binet matrix. The heavy edges r\,r2, ..., r8 make

up the basis.

The fundamental circuit of si is an even cycle (u4, /o =si, no=v2, /i=ri, ni=Vi, f2=r3,
n:=Vs, f3=r14, va). Nodes v and u4 are even nodes, nodes /1 and >3 are odd nodes. The non-zero

elements of column si in the binet matrix are calculated as:

w{ri) = b(fi) =1, w{r3) = b(f2) = 1, v>(r4) = b{f3) = 1.

The minimal dependent set including $2is a handcuff {s2,r6,r4,r2,n ,r3,r5}. The fundamental
circuitof s2is(uS, /0= $2, v6, /i=r6, ud, /2=r4, v3, f3=r2, v2, /4=r1i, vu h =r3, V3, fe =

r4, Vs, /7=15, uS). The non-zero elements of column s2 in the binet matrix are calculated as:

w(rG = b(fi) = -1, tu(rd) = b{f2) + b{fG = 2, w{r2) = b{f3) = 1,
w(ri) = &(4) = 1, wir3) = b{fs) = 1, w(rs) = b(f7) = 1.

The fundamental circuit of s3 is a handcuff (u3, fo=s3, v3, fl=r2, v2, f2=n, v\, f3=r3,

v3). As s3 is a half-edge, the non-zero elements of column s3 in the binet matrix are calculated as:

The fundamental circuit of s4 is a handcuff (u7, /o = s4, u6, /i=r6, v4, /2=14, v3, f3 =73,
vi, fi=n, v2, h=r>,u3,/6=r1r4,u4, /7=16,u6, /s =s4, u7, /9=17, u8, fio =r8, v8, fn =

r7,v7). As s4 appears twice in the fundamental circuit and r8 is a half-edge, the non-zero elements
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of column s4 in the binet matrix are calculated as:

w(re) = WALEUID _y ) W +W) _
wire) =2 = L =B - 2 ey 2 U
w(ry) = b(fs) +b(.f11) — 1, w(rs) = 2b(§1o) -1

The fundamental circuit of s5 is (vs, fo = 85, V7, fi =1, Vs, f2 =rs, vs). The non-zero
elements of column g5 in the binet matrix are calculated as:

w(rr) =b(f1) =1, w(rs) =2b(f2) =2.

The fundamental circuit of 8¢ is (v7, fo=28e, v7, f1 =17, vs, fa=rs, vs, fs=r7, v7). The
non-zero elements of column sg in the binet matrix are calculated as:

w(r?) =b(f1) + b(fs) =2, w(rs) =2b(f2) =

Note that if we use the algebraic method instead of the graphical one, we could get the 8 x 6
matrix of Figure 5.3 by inverting the 8 x 8 matrix [ry,72,...,7s] and taking R~'S where S is
the 8 x 6 node-edge incidence matrix corresponding to the non-basic edges. Clearly, the graphical
method is more elegant and compact. Furthermore, the graphical representation of a binet matrix
helps us to prove results about binet matrices, which would be more cumbersome with the algebraic
method. In the remaining sections we will give some of these results, where the elegant graphical

proofs are much easier than the ones with matrices and their inverses.

5.2 Operations on binet matrices

In this section we give some operations that, when applied to a binet matrix, result in another binet
matrix. We will give the proof in both graphical and algebric terms. It will be obvious that the
graphical explanations are better, as they are more compact and easier to follow. This shows the
power of the graphical algorithm to determine binet matrices.

We start with some trivial operations and then go on to more complex ones. Some other related
results are also given. Let us start with a graphical operation which does not change the binet matrix.

Switching at a node of the binet graph keeps the parity of every node of the fundamental circuit
(see Proposition 4.3), so clearly does not affect the calculations. The matrix operation equivalent to
switching is multiplying a row of the node-edge incidence matrix A by —1. The effect of this change
is easy to detect: a column in the inverse of the basis R and the corresponding row in the non-basic
part S is multiplied by —1. So R~15 does not change.
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Lemma 5.3, Switching at a node of a binet graph keeps the binet matrix unchanged.

Permuting rows or columns of a binet matrix obviously results in another binet matrix. It is just
a bit more difficult to prove that a matrix achieved by multiplying a row or column of a binet matrix
by —1 is also binet, as it is equivalent to reversving the direction of the corresponding, basic or

non-basic, edge.

Lemma 5.4, A binet matrix remains a binet matrix under the following operations:

(a) permuting rows and columns,

(b) multiplying a row or a column by -1.

Lemma 5.5. A binet matrix remains a binet matrix under the following operations:

(a) deleting a column,
(b) repeating a column,

(c) adding a unit column.

Proof: If we delete a non-basic edge from the graph, its column is deleted from the binet matrix,
Similarly, adding an identical copy of a non-basic edge to the graph results in a column repetition.
Adding a new non-basic edge which is an identical copy of a basic edge means that the binet matrix of
the extended graph contains a new unit column, having 1 in the row of the duplicated basis edge. O

Corollary 5.6. B is a binet matrix if and only if [B, I] is such.

Lemma 5.5 lists column operations that maintain binet matrices. These operations can be applied

to rows as well.

Lemma 5.7, Let B be a binet matrix. Matrix B' obtained from B by the following operations is also
a binet matrix.

(a) deleting a row,
(b) repeating a row,
(c) adding a unit row.

Proof: Let us suppose that B = R™1S, where A = [R, S] is an incidence matrix of a bidirected
graph. We give the basic (R') and non-basic (S’) part of the new incidence matrix that defines B’.
Furthermore, we present the related transformations on the binet graph,

We will use the following notations. Let V', Eg, and Es be respectively the set of nodes, basic
edges and non-basic edges in G(A). If M is a matrix whose rows and columns are labelled by sets
F and G, respectively, and F; C F, G; C G, then (M )g: denotes the submatrix with row labels
F, and column labels G . To simplify notations, if F; = F or G; = G, then we do not put them in
the corresponding subscript or superscript. So for example, (M) denotes the row corresponding to
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f € F and (M)? denotes the column corresponding to g € G. Instead of (M)} we use the common
M f g

(a) Deleting row r from B can be achieved by contracting the basic edge r from the binet graph.
By enumerating all possible cases corresponding to the type of the edge and the parity of its end-
nodes in the fundamental circuits, one can check that a new basis graph is created by the contraction,
the fundamental circuits contain all their old edges except r, and the values corresponding to these
edges are unchanged in the binet matrix. These implications are easier to establish for directed r,
basically because then the sum of the node values defined in (5.4) is unchanged for each node. For
bidirected r one can use the fact that contracting a bidirected link starts with a switching to make it
directed, and switchings do not alter the binet matrix.

Algebraicly, let u be the removed end-node of r and v be the other end-node if it exists. Then
R = (A2 = Rur(R)y_y(R)F* " and §' = (S)v—u — Rur(R)y_y(S)u. (See (43)) It
is easily checked that (R™1)%__ = —RuyrRor(R71)g,_, and R = (R‘l)}‘g;f,., therefore
RS = (R")gz—rS = (B)gg—r = B'.

(b) Let e be the row we wish to repeat. The new binet graph, G(B') can be obtained from G(B)
by subdividing e into two new basic edges e and r by inserting a new odd node ¢, in the following
way.

If eww (if it is a loop or a half-edge, then whenever we use v we mean ), then insert a new node
t into the graph, connect e to ¢ instead of v with the same sign(s) at its end-node(s), connect nodes ¢
and v with a new directed link » and direct r so that ¢ becomes an odd node (see Figure 5.4 for the
cases of (i) a link, (ii) a loop and (iii) a half-edge).

@ (i)
Figure 5.4: The graphical equivalent of repeating row e

Each fundamental circuit that goes through e will go through r as well, and one checks easily with
reference to Algorithm 1 that the value of both w(e) and w(r) will be equal to w(e) calculated in the
old graph. Since ¢ is an odd node, ¢(t) = 0 (see (5.4)), so all the other values in each fundamental
circuit remain unchanged. Therefore the new row r of the binet matrix of the transformed graph
equals row e of the original matrix and other rows are unchanged.

To explain the same operation algebraically, add a new column labelled 7 to R, and a new row
labelled ¢ to A. In the non-basic part S, the new row contains only zeros. The non-zero entries in the
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new row and column of R' are the following:

, , R,. ifeisalink or a half-edge
te = R:H‘ = _Rtr = 1 e .
3 Rue ifeisaloop.

Furthermore, one entry in R is changed: R}, = 0, if e is a link or a half-edge and R,, = %Rue, if
e is aloop. It can be readily verified that (R’ _I)Y;R = R!and (R'"), = (R™!),, which implies
that row r of B’ equals row e of B.

(c) Let us suppose now that we would like to add a unit row with the only non-zero element in
column e:uv. We can apply the same operation as in part (b). Suppose the non-basic edge e has
end-nodes u and v. Then subdivide e with a new node ¢ into edges e and r as shown in Figure 5.4,
The new edge r will be a basic edge and e remains non-basic. Then 7 is only used in the fundamental
circuit of e, that is why its row has zeros in the other columns. In column e, however, it has —1, as
node ¢ is an odd node. Multiplying the new unit row by —1, i.e., reversing the direction of r (see
Lemma 5.4) we get a positive unit row.

The matrix transformation is very similar to the previous one. There is a new row ¢ added to A,

and a new column r to R. The new row and column have non-zeros

Sue if eis alink or a half-edge
1Sue ifeisaloop.

£e=R:;r="R2r={

The only other change is that S};, = 0, if e is a link or a half-edge and S}, = 1Sy, if e is a loop.
The inverse of R’ contains R™! as it is of the following form:

RI‘“1= R—l (R——l)u
Ry,

where the last row and column are related to r and ¢. Thus the last row of B, corresponding to r,
has a —1 in column ¢ and zeros elsewhere. O

Parts (a) of Lemmas 5.5 and 5.7 together imply the most important result in this section:
Theorem 5.8. Every submatrix of a binet matrix is binet.

We already know that a binet matrix [B, I] arises from a full row rank incidence matrix A by
taking a basis and pre-multiplying A with its inverse. Alternatively, this can be viewed as pivoting
on A, as defined in (1.4). We now show that these operations can also be applied to binet matrices.
Lemma 5.9. Let B be a binet matrix and T be a basis of [B, I]. Then
(a) T—'[B, 1] is binet
(b) B obtained by pivoting on a non-zero element of B is binet.
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Proof: (a) Let B = R™1S, where A = [S, R] is an incidence matrix of a bidirected graph. Then
[B,I] = R™'A. If T is a basis of [B, I], then there is a basis U of A such that T = R~1U. Then
T-[B,I] = U R[R™1S,I] = U![S, R] = U~ A. With column permutations, A = [W, U], so
U—'A=[U"W,I]| = [B',I], where B' is a binet matrix.

a 0

b I
(using the notations of (1.4)). T is a basis of [B, I], so T~}[B, I] and any matrix obtained from this
by column deletion, e.g. B, is binet.

(b) Pivoting is equivalent to pre-multiplying [B, I] with the inverse of matrix T' =

Graphically, pivoting means changing the basis graph. If the first row and column of B corre-
spond to basic edge r and non-basic edge s respectively, then in the binet graph representing B, r is
a non-basic edge and s is a basic edge. In other words, the new basis consists of (R \ r) U s. O

As stated above, binet matrices arise from incidence matrices by a series of pivoting. When
applying basis exchanges, this translates to the following. We start with an artifical unit basis, i.e.,
the initial basis comprises positive half-edges at each node. In this basis, the incidence matrix is a
binet matrix. When a pivot step is done, one of the artificial half-edges is exchanged with a normal
basic edge, and the artifical edge disappears. When we have exchanged and removed all the artifical
edges, the basis is R and the matrix has become B.

Switching on the binet graph keeps the binet matrix unchanged, which provides a method to find
a special binet representation of a binet matrix.

Lemma 5.10. There always exists a representation of a binet matrix where each connected compo-

nent of the basis contains only one bidirected edge.

Proof: Let binet matrix B be represented by the binet graph G. Consider a component of the basis.
By switchings at the cycle nodes, all but one of the cycle edges can be made directed. Then by
consecutive switchings at the ends of the bidirected non-cycle edges, we end up with a component
where all the edges except one cycle edge are directed.

Algebraicaly it means the following. Let us suppose that the basis R is connected. We have
shown in the proof of Lemma 4.4 that by multiplying the rows by —1, the submatrix of R that
corresponds to the cycle can be transformed so that it contains only one bidirected edge (note that
column scaling is not needed here). By further multiplications of the rows of R, the non-cycle basic
edges of G can also be transformed to directed edges. So there exists a diagonal 0, %1 matrix E such
thatif R’ = ER, then G(R') contains only one bidirected edge. Then B= R~!S = R-1E-1ES =
R'™'S', where §' = ES and R' is a basis of [R', $"] = EA. Thus B has a binet representation in
which the basis R’ contains only one bidirected edge. O

Remark 5,11, The transformation carried out in the proof of Lemma 5.10 changes only the di-
rections of the edges in the binet graph, the structure remains unchanged. Futhermore, the only
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bidirected edge in each component must be in its cycle, but we are free to choose which cycle edge
remains bidirected.

Binet matrices are not necessarily integral matrices. It is easily seen, and follows from Algo-
rithm 1, that binet matrices can have elements 0,+1,+2 and £15. The following lemma gives a
necessary and sufficient condition for a binet matrix to be integral. Then we use the condition to
prove that with a series of pivot steps any binet matrix can be made integral.

Lemma 5.12. A binet matrix is integral if and only if it has a binet representation in which
(a) every cycle in each connected component of its basis is a half-edge, or
(b) the basis is connected and the binet graph has no half-edges.

Proof: The lemma follows easily from the rules of calculating the elements of the matrix given in
Algorithm 1, and the fact that G is connected. O

Remark 5.13. An alternative version of condition (b), where we forbid only non-basic half-edges is
clearly equivalent, because if there is a basic half-edge, then we are in case (a).

Lemma 5.14, Let B be a non-integral binet matrix with m rows. By at most 2m pivot operations B
can be converted to an integral binet matrix

Proof: Let B be a binet matrix with a non-integral element b;; in row r; and column s;. Then
bi; = £1% and, according to Algorithm 1 this can occur if and only if r; is an edge of a cycle which
is not a half-edge and s; is a half-edge or lies on the connecting path between two basic components.
By pivoting on b;; we exchange basic edge r; with non-basic edge s;, as described in the proof of
Lemma 5.9. After pivoting the basis contains more half-edges or fewer components, therefore after
a finite number of pivots the basis satisfies the conditions of Lemma 5.12, and B is integral.

To determine the number of necessary pivots, let H denote the number of basic half-edges in a
binet graph, and C be the number of basic components. If 8; is a half-edge, then after exchanging
it with r;, H is increased by 1 and C remains the same (as r; cannot be a cut-edge because it is in a
cycle and s; cannot connect two unconnected components of the old basis because it is a half-edge).
If 8; lies on the connecting path between two basic components, then C is decreased by 1 after
pivoting and H is unchanged. Therefore, the value of M = H — C is increased by 1 in each pivot
steps. The maximal value for H is m, the number of basic edges. Moreover, C cannot be more than
m. So M is certainly between —m and m. It implies that the algorithm must terminate in at most
2m steps. a

5.3 Necessary conditions

We give two necessary conditions on integral binet matrices. The first claims that an integral binet
matrix is the sum of two network matrices, while the second result is very similar to a well-known
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characterization of totally unimodular matrices due to Ghouila-Houri [34] (see Theorem 1.3). Un-
fortunately, neither of the conditions are sufficient.

Theorem 5.15. If B is an integral binet matrix, then there exist network matrices Ny and N2 such
that

(a) B= N; + N,

M

(b) both [Ny, N3] and ] are network matrices

2

Proof: Let binet graph G = (V, R, S) with node set V, basic edges R, and non-basic edges S,
represent B. By Lemma 5.10 and Lemma 5.12, G is one of the following two types.

1. All the basic cycles of G are half-edges, and they are the only bidirected edges in the basis.
II. There are no half-edges in G, the basis is connected and it contains only one bidirected edge.

‘We deal with the two cases separately. In both we introduce a way of constructing a spanning tre¢ and
two connected directed graphs giving network matrices that satisfy the conditions of the theorem.
Case 1. We will use the graph in Figure 5.5 as an example.

Let us introduce a new node vg into G and connect each basic half-edge to it. That is, change the
half-edges to links by declaring vg to be their second end-node. Their signs at vp should be chosen
so that the links become directed. The basis now contains only directed links, and no cycles, soitis a
directed tree T', spanning node set V' Uwvg. With the process described below, we construct connected
directed graphs D; and D, so that they both contain T', and network matrices N, and N based on
this tree in graphs D; and D, respectively, that satisfy the conditions of the theorem. The idea is
to replace each non-basic edge s € S in G by two directed non-tree edges, one in Dy and one in
D,, such that the fundamental circuits of the directed edges (also denoted by 8) together give the
fundamental circuit of 8 in G. It might happen that one edge is enough, i.e., there is no edge in D,
corresponding to 8. Figure 5.6 illustrates the process on the graph of Figure 5.5. To keep a consistent
setting, we will use the phrase ‘loose edge’ in this case, meaning that we add an edge that has no
end-nodes. In directed graphs this means that the edge is not there, only virtually.

(a) If, s is a directed link (like s, in Figure 5.5), then let it remain the same in D; and associate
a loose edge with it in D,.

(b) If 8 is a half-edge (like s3 in Figure 5.5), then connect it to vp in D; and direct it as described
above. A loose edge is associated with it in Ds.

(c) If s:uv is a bidirected link or a loop (s3 and 84 are such in Figure 5.5), then imagine two
new half-edges h,, and h, incident to u and v and directed so that u (or v) is an out-node of h,, (h,)
if and only if it is an out-node of 8. If 8 is a loop (i.e., 4 = v), then h,, and h, are two identical
half-edges. It is clear that the column of the incidence matrix of G that corresponds to s is the sum
of the columns of the matrix that correspond to the related half-edges, and this remains true for binet
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matrix B. Now apply the operation of part (b) to ~u and Av, with the only change that for #v we
change the role of D\ and D 2. So at the end, we have an edge in each of Di and D 2. They are the

two new edges that correspond to s in G.

Figure 5.5: Binet graph B with only half-edge basic cycle edges

Figure 5.6: Directed graphs Di and D> made from binet graph B of Figure 5.5

It follows from the definition of binet and network matrices that column s of B equals the sum of
columns s of Ni and N: for any non-basic edge. We have derived every column of the binet matrix

as the sum of two corresponding columns of network matrices, so B = N\ + N2.

[Ni, V2] is trivially a network matrix, as both N\ and N\ are based on 7. As for ’ , consider
N:

the following construction. Reverse the direction of every edge in D (getting D'2), unify the uo node
in D\ and D 2, as shown in Figure 5.7. As to non-tree edges, if there is a non-tree edge connecting u
with vo in D| and another one connecting v with vg in D> and they correspond to the same non-basic

edge of B, then we substitute them by a new edge between u and v in the unified graph, and keep
the directions at # and v. The network matrix of the so defined unified directed graph is

Case II. We will use the graph in Figure 5.8 as an example.
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Figure 5.7: Unification of D| andI1”

Letri be the the only bidirected edge in G (so it must be in the cycle), and vo be an end-node of
it. We ‘open’ the cycle at uo, by splitting no into two separate nodes vo and vig so thatri is incident
to Vg and other basic edges incident to vg are incident to v'g. Furthermore, we switch at v so that the

basis becomes a directed tree 7. Figure 5.9 shows this operation.

Figure 5.8: Binet graph B with a connected basis

We will construct directed graphs D i and D: such that they contain 7 as spanning tree, and
their corresponding network matrices Ni and N: satisfy the conditions of the theorem. Figure 5.9
illustrates. Again, we replace all non-basic edges s ¢ S by two directed edges, one in D| and the
other in D 2, so that the sum of the network matrixcolumnscorresponding tothe new edges (also

denoted by s) is the column s of 23.

* If s is a directed link and 7Q is not its end-node (asSiin Figure 5.8),then it remains thesame

in Dx and becomes a loose edge in D 2.
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53

Figure 5.9: Directed graphs D\ and D : made from binet graph B of Figure 5.8 by opening the cycle

» Ifs is adirected link and uo is its end-node (as for s> in Figure 5.8), then vy is its end-node in

D\ and it is represented by a loose edge in D 2.

» If s is a bidirected edge connecting it and v where u,v * vo (but u might be equal to v) as in
case of S; and 54, then let s connect # and vQin D\ and v and v(f in D 2, such that u (or v) is a

tail of s in D\ (or D2) if and only if it is a tail of s in G.

» If s:ttuo is a bidirected link incident to vo (as s5), then s connects u and vVQin D\ with the

above described direction at it, and s is a loose edge in D 2.

« Ifsis aloop atvg (as se), then let s connect vo and Vg in D\ with the same direction at Vg as

s has at uo in G, and s is a loose edge in D 2.

We have listed all the possible cases, and in each case column s of B is equal to the sum of

columns s of Nl and JV,,s0 B = N\| + N2.

rNi
The network representations of /N\,iV2] and are made in the same way as before, unifying
N:

vo of Z% with Vg of D in the latter case. Figure 5.10 gives the unified graph for our example.

|

As a corollary, another necessary condition can be derived. It is similar to Theorem 1.3, which
claims that for each collection of columns of a totally unimodular matrix, there exists a scaling of
the selected columns by = 1 such that the sum of the scaled columns is a vector of o, 1 elements,
and the same is true for rows. Obviously, as this condition is also sufficient for total unimodularity,
it cannot remain valid for 2-regular matrices. For integral binet matrices, however, we can provide

something similar.
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Figure 5.10: Unification of Di and D: in Case I

Theorem 5.16. For each collection of columns or rows ofan integral binet matrix, there exists a
scaling ofthe selected columns or rows by £ 1 such that the sum of'the scaled columns or rows is a

vector of {0, £1, £2} elements.

Proof: Since column (row) deletions preserves the binetness of matrix B, we can assume that every
column (row) is selected.
1. Columns. By Theorem 5.15, there exist network matrices N1 and N: such that B = N\ + iV2

i
and N = is also a network matrix. By Theorem 1.3, there is a £1 vector d such that Nd
No

is a vector of 0, £1 elements, hence Bd = (Ni + N2)d = Nid + N2d is a vector of {0, +1, £2}
elements. Thus vector d gives the good scaling.

2. Rows. Very similar using the fact that /N\,iV2] is a network matrix. o

Unfortunately, neither the condition of Theorem 5.15, nor the condition of Theorem 5.16 is suf-
ficient for binet matrices. For example, for matrix B below, the network matrices Ni and JV2 satisfy
conditions (a) and (b) of Theorem 5.15. This implies that the rows and columns of B can be scaled

as in Theorem 5.16. On the other hand, B is not a binet matrix, because it is not even 2-regular.

2 1 1 0 1 1
= ® o and N = (5.5)
| - = 0 1

B
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5.4 Towards recognition

In this section we turn to the problem of recognizing binet matrices. This problem is in the com-
plexity class NP, because it is easy to verify that a matrix is binet, one only has to give a binet
representation. It is @ much more difficult question, and unsettled as yet, if the recognition problem
is in P or not, i.e., if there is a polynomial algorithm that can decide if a given matrix is binet or not.

For network matrices, the parallel question is answered — several polynomial-time algorithms
exist for recognition. The best-known one is probably Schrijver’s method (see [51] and [55]), which
adapts the matroidal ideas of Bixby and Cunningham [9] to matrices. The algorithm works by reduc-
ing the problem to a set of smaller problems, which can then be handled easily. The smaller problems
consist of deciding if a matrix with at most two non-zeros per column is a network matrix or not.
The reduction is done by identifying rows of the matrix that correspond to cut-edges of the spanning
tree, and then carrying on with the smaller matrices associated with the components.

The ideas of this algorithm cannot be directly adapted to binet matrices because the basis of a
binet graph, a forest of odd 1-trees is more complex than a tree. We have to admit that we have
been unable to devise a recognition algorithm for binet matrices. However, we present here a simple
method that is able to prove or disprove if a small matrix is binet. The approach is to formulate the
problem as a mixed integer programming (MIP) problem, and then solve it. Of course, the method is
not polynomial, as long as there is no polynomial algorithm invented to solve MIP problems.

Before embarking on the description of this method, we present some simple ‘preprocessing’
rules that simplifies our task. As Lemma 5.14 states, every rational binet matrix can be converted
to an integral binet matrix by a finite number of pivot steps. The theorem also implies that even in
the worst case we need only a specified number of these pivots to get the integral matrix, provided
that the matrix we started with was binet. This means that if we have a method that can decide the
binetness of integral matrices, then, preceded by the steps described in Algorithm 2, this method can
be applied to rational matrices too.

Algorithm 2 Preprocessing steps for rational matrices
Input Anm x n matrix B

Step1 Check the elements of B. If it has an element other than 0, 1, £2, or £, then B is not
binet.

Step 2 If B is integral, STOP, Otherwise, pivot on a 14 element.

Step 3 Repeat Step 1 and Step 2 at most 2m times. If the algorithm does not stop during these,
then B is not binet.

So let us assume that we are given an m x n matrix B, and we want to decide if it is binet or not.
B is binet if and only if there exist an m X m matrix R and an m x n matrix S such that they satisfy
the following conditions:
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(a) RB=2S,
(b) R is anon-singular matrix,

Moreover, R and S are node-edge incidence matrices of bidirected graphs, i.e., we have the further

conditions:

(¢) R and S are integral matrices, and
(d) condition (4.2) holds for R and S.

Define index sets I = {1,...,m},J ={1,...,m}and K = {1,...,n}. In our model, we have
integer variables r;; for all (4, ) € I x J, and integer variables s;; for all (i,k) € I x K to represent
the unknown elements of matrices R and S. Moreover, let B = [b3)5& ) be the given matrix, i.c.,
bjx are data for this model. Condition (a) then takes the form

D orijbir=sa  V(i,k)€Ix K
jeJ
Variables r;; and 8;;, are integer but not nonnegative. So, following the standard technique, let us
introduce the nonnegative variables 3%, r;; for all (i, 5) € I x J, and s}, s, forall (i,k) € I x K,
with which we wish to represent the positive and negative parts of r;; and s;;. Thus,

rij = ;'} —r; and |ry|= r;';- + i (5.6)
8ik = s}’,’, -85 and |su|= a}';, + 85 6.7

Condition (b), the non-singularity of R cannot be modelled with linear constraints. However, R
certainly do not have all-zero rows or columns:

Y lrijl > 1 foralli € Iand ) |ryj| > 1 forallj € J
jeJ iel

We can also assume that B has no all-zero column, therefore S cannot have one either.

leijl >1foralljeJ
i€l

So we look for a feasible solution in the set defined by the following constraints.

Z rijbix = ik Vi,k)eIx K (5.82)

jeJ

rig =15 =15 V(i,j)eIxJ (5.8b)

sik = 8, — 85 V(i,k) eI x K (5.8¢)
1<) (i +r5) <2 Vied (5.8d)

icl
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Y e+ =1 Viel (5.8¢)
jeJ

1<) (sf+83) <2 Vk e K (5.80
i€l
5,75 8%, 85, 2 Olinteger  VieLLVj € J,Vke K (5.82)

Although we need only a feasible solution from this set to prove the binetness of B, to ensure
that %, r;; and s}, 87, are really the positive and negative parts of r;; and s;x, we use the objective

function

min Y, (H+ri)+ Y, (sh+sz) (5.9)
(65)eIxJ (i,k)eIxK

We will see later that this might not be enough, and further devices are needed.

If there is no feasible solution to the mixed integer programming problem defined by constraints
(5.8a)-(5.8g), then we can be sure that matrix B is not binet. However, if there is a solution, then it
does not mean that B is binet, as it may happen that matrix R obtained from the solution is singular,
so that RB = S does not imply R~1S = B. Consequently, in this form the method is more suitable
for proving that a matrix is not binet, a theoretically interesting but practically not so important
question. And even this works in practice only for small matrices, as the number of integer variables
(2m(m + n)) is forbidding for large instances.

The model so far is applicable for any rational matrix. If B is integral, however, then there
are further possibilities to strengthen the formulation. As mentioned earlier, this assumption is not
restrictive, the recognition of non-integral binet matrices is not more difficult than that of integral
ones. So let B be an integral matrix. By Lemmas 5.10 and 5.12 any possible binet representation of
B is of the following two types:

Type I: Every basic cycle is a half-edge, and all the other basic edges are directed.

Type II: There are no half-edges in the binet graph, the basis is connected and there is only one
bidirected edge in the basis.

These conditions imply further constraints in the MIP formulation.

In case of Type I, R cannot contain a loop, so each of its non-zero elements is 1. Hence
rh+r; <1 V(G,5)eIxJ (5.10)
14 ] — »J .

Furthermore, if there are two non-zeros in a column of R, so this column corresponds to a link in the
graph, then the link must be directed, i.e., the non-zeros are of opposite sign and their sum is zero.
Basic half-edges, on the other hand, correspond to columns of R in which the sum of elements is
+1. It can be assumed without loss of generality that all basic half-edges are positive, because we



CHAPTER 5. BINET MATRICES 67

can switch at any node of the binet graph without affecting B (sec Lemma 5.3). So we have:

Yori<1 VieJ (5.11)
il
By adding constraints (5.10) and (5.11) to constraints (5.8a)-(5.8g), we get a model for matrices of
Type L.
Assuming that B is of Type I, the graph cannot contain half-edges so (4.2) holds with equality
for both R and S, therefore constraints (5.8d) and (5.8f) are replaced by

Y h+r=2 VielJ (5.80")
iel
Y (sh+sz)=2 Vkek (5.81)
i€l

Observe that these constraints mean that any feasible solution now has the same value in objective
fuction (5.9). Thus, the objective function will not ensure that at least one of r;’j‘ and i (or s?,“ and
8;.) is zero as it should be with the positive and negative parts of r;; (or s;;). To overcome this, we
can introduce new binary variables 7;; € {0,1} and 3 € {0,1} foralli € I,j € Jandk € K,

and new constraints
ri < 2y V(i,5) € Ix J (5.12a)
r; $2-2F; V@5 eIxJ (5.12b)
s} < 28, V(i,k)eIx K (5.12¢)
85, <2-28 V(G,k)eIxK (5.12d)

These new constrains force that r,-+j and r;; (and 87, and s}, respectively) cannot be non-zero at
the same time, thus validating equations (5.6) (and (5.7), respectively).

Moreover, if B is of Type II, then R contains exactly one column that corresponds to a bidirected
edge. The sum of the elements in this column is +2, whereas the sum of the elements in any other
column is 0. If the bidirected edge is not positive (that is, the sum of the elements in its column is
—2), then we can switch at its end-nodes, making it positive. Thus the following inequalities are also
valid.

> =2 (5.132)
(5.4)erIxJ
0<) rij+Y ra<2  Viledj#l (5.13b)
icl iel

We can also be sure that the number of —1 elements in R is m — 1, as each directed link is
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associated with one, and the only bidirected link can be assumed to be positive:

Z ry=m-— 1 (5.19)
GA)eIxJ
With these new variables and new or modified constraints, we can formulate the recognition of
integral binet matrices of Type II. Note, that the non-singularity of R still causes problems. That
happened when we ran the model on B = M(K,) and B = M (Kg) defined in Section 6.2. We
got a feasible solution in which R was singular. For illustration, we give the R matrices obtained for
B = M(K}) in the two types.

0 0 0-10 00001 0
0000 1 0100 0 0

R 00000 . (0000 0-
-1 01 1 0-1 100000
0 1-1-1 1 0 0-1 1 1-1 0

l 0-1 0 0 0 0 1 0-1-1 0 1]

In this singular case, further considerations might help. For example, one can try to show that the
singular solution is unique. Or rule this bad solution out with new constraints.

However, as mentioned above, if there is no feasible solution (singular or non-singular) to either
model, then the integral matrix B cannot fall in either Type I or Type II, and consequently, it cannot
be binet. In this way, we could prove easily that the following matrix B or its transpose are not binet
matrices. Note that B is 2-regular, as showed in [3] and in Section 6.2 in this work.

1 1 1 1
B=|-1 1 1 -1
1 1 -1 -1

Considering that our purpose with this formulation is to find a feasible solution of an integer
programming model, in which there are conditions that cannot be formulated with linear constraint,
or prove that such a solution does not exist, other methods, probably heuristic ones could be called in,
On the other hand, we have not given up the hope of finding a combinatorial recognition algorithm.



Chapter 6

Examples of binet and 2-regular

non-binet matrices

Here we give some examples of binet matrices, and also show that some interesting 2-regular matri-
ces are not binet. The examples will show that the class of binet matrices is a real extension of that of
network matrices as all network matrices are binet, but there are binet matrices that are not network.
These latter matrices include totally unimodular and not totally unimodular ones. The totally uni-
modular but not network matrices we give are the special matrices appearing in the decomposition
theory of totally unimodular matrices.

The counterexamples include matrices that are transposes of binet matrices, and we also give an
example of a matrix which is 2-regular, but neither the matrix itself nor its transpose is binet. The
techniques we employ to prove that these matrices are not binet are diverse. For example, in one
instance we eliminate all the possible cases, while in another, a matrix cannot be binet because of a
corollary of a theorem. We also use the MIP model, described in Section 5.4.

In Section 6.3 we show that binet matrices appear in special problems with at most three variables
per row. This setting, extensively examined by Hochbaum [41], has several combinatorial and real
life applications.

6.1 Examples

We start with some trivial examples, then show that some interesting totally unimodular and not
totally unimodular matrices are binet. Recall that a binet matrix is defined as R~ S, where matrix
[R, S] is the node-edge incidence matrix of a bidirected graph, and R is a basis.

69
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6.1.1 Node-edge incidence matrices

If A is the node-edge incidence matrix of a bidirected graph, then it is binet because [A4, I] is also an
incidence matrix of a bidirected graph, having a positive half-edge at every node. Taking R = I and
S=A wegetR™15=A.

6.1.2 Inverse of a basis

Let R be a basis of the incidence matrix A of a bidirected graph. The inverse of R is a binet matrix,
since the matrix [R, I] is the node-edge incidence matrix of a bidirected graph. Algorithm 1 provides
us with a method of calculating elements of R~1. In fact, a column of R~ can be calculated by
determining the fundamental circuit of a non-basic half-edge corresponding to a column of I. The
following lemma makes use of this representation of the columns.

Lemma 6.1. If R is a basis of the node-edge incidence matrix of a bidirected graph, then each row
of the inverse of its every component is of the following two types:

(a) contains only £Y4 entries,

(b) contains only 0, £1 entries.

Further, if the only cycle in the component is a half-edge, then its inverse is integral (has only rows
of type (b)).

Proof: Let us suppose that the basis is connected as each component can be viewed separately with
respect to taking inverse. Then G(R) contains exactly one cycle, which is an odd cycle. As men-
tioned above, columns of R~! are related to non-basic half-edges. The fundamental circuit of such
a half-edge always contains two odd cycles (one of them is the half-edge itself, the other is the basic
cycle) connected with a path, i.e. it is a handcuff illustrated in Figure 5.2(ii) and (iii). The basic
cycle edges appear once in the fundamental circuit, while the non-cycle basic edges, if they lie on the
connecting path, appear twice. According to Step 3 of Algorithm 1, all the b(f;) values are divided
by 2. Therefore, if the odd cycle of G(R) is not a half-edge, then coefficients w(r;) are £ on
the basic cycle edges, and 1 on the non-cycle basic edges for every non-basic half-edge. As each
column of R™! refers to a non-basic half-edge, the main part of the theorem is proven. In the special
case where the unique cycle of the basis graph G(R) is a half-edge, by Step 4 the only cycle edge
row is multiplied by 2 so that all rows contain only 0, £1 entries. O

So R~! is binet, and then 2-regular by Theorem 7.1. Furthermore, the inverse of R~ is integral,
which suggest that R~! may be 1-regular. This suggestion can be easily verified.

Lemma 6.2. If R is a basis of the node-edge incidence matrix of a bidirected graph, then R™! is

1-regular.
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Proof: The matrix [R,2I] is a the node-edge incidence matrix of a bidirected graph, so R~:21 =
2R i is a binet matrix. Any binet matrix is 2-regular by Theorem 7.1, and according to Lemma 2.13,

the half of a 2-regular matrix is 1-regular. mi

Note that R ~x can easily be non-integral, in which case it represents an example of 1-regular but
not totally unimodular matrices.
The question arising here is whether Lemma 6.2 is valid only for incidence matrices or true for

any arbitrarily chosen integral 2-regular R matrix. The matrix

1 2 1-2
R = with inverse R 1=
0 1 0 1

answers this question in the negative, because R 1 has a submatrix whose inverse is not integral.

6.1.3 Network matrices

It is straightforward that every network matrix is a binet matrix. Recall that the deletion of a row
from an incidence matrix is equivalent to the deletion of a node from the graph, so deleting a row
from the incidence matrix of a directed graph results in a bidirected graph which contains directed
links and half-edges. The spanning tree is replaced by a set of odd cycle components, comprising the

basis of the binet graph. Figure 6.1 depicts the network and binet representation of a network matrix.

no A Sl 23
ri -1 1 -1

r2T s3 2 1 -1 1

r3 1 -1 0

r4 -1 0 0

Figure 6.1: The network and binet representations of the network matrix N.

Later, in Lemma 7.4 we will show that this kind of binet represenation is characteristic for net-
work matrices. It does not mean, however, that this is the only possibility for representing network

matrices with binet graphs.

Lemma 6.3. There always exists a binet representation o fany network matrix with at least two rows

where the basis is connected, and the basic cycle is not a half-edge.

Proof: Let a directed graph with a given spanning tree represent the network matrix. We show how
to construct the required binet represenation. To this end, first insert a new bidirected basic link /
into the graph so that it connects two nodes that are not connected with a tree edge. (Figure 6.2

illustrates the operation on the graph of Figure 6.1.) The tree extended with this new edge is a binet
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basis graph in which the basic cycle contains at least three edges. Moreover, no fundamental circuit
uses the new bidirected edge. So the binet matrix of this graph is equal to the original network matrix
plus an all-zero row. If we delete the all-zero row, we get the original matrix. The equivalent graph
operation, according to Lemma 5.7, is contracting edge /. Since the basic cycle contained at least
three edges, after contraction the cycle has at least two edges, so it cannot be a half-edge. The basis

is obviously connected. m|

Figure 6.2: Inserting a bidirected edge / in a network and the graph obtained by contracting /

6.1.4 Interval matrices and their generalizations

Interval matrices [29] are well-known special network matrices, in which the spanning tree is a
directed path. The non-tree edges then can be associated with subpaths. Obviously, the non-zero
elements in each column of an interval matrix have the same sign, and there is a permutation of
the rows such that the resulting matrix has consecutive non-zeros in each column. With appropriate
scaling of the columns, the matrix can be made nonnegative, and then the columns can be considered
as characteristic vectors of intervals on a line with finite segments. Hence the name interval matrix.
Lee [48] generalized interval matrices by defining skew interval matrices. In a skew interval
matrix, the columns are of two types. There are columns which are characteristic vectors of intervals,
just as in the case of interval matrices. The columns of the other type contain -1 in rows that
correspond to segments to the left of an interval, 0 in the rows of the segments belonging to the
interval, and 1 in rows whose segments are to the right of the interval. In the formal definition, we

replace the segments by points, an obvious conversion.

Definition 6.4. (Lee [48]) Let V' be a finite set of points on the real line, and let X and J be finite
sets of intervals (defined by consecutive points) of the line. For each interval / € X UJ define
L) ={peV |p<gq WRE€/},andR(I)= {p€V |p >gq VW GI}! Thecolumns ofa skew

interval matrix A correspond to intervals in X and J, its rows are associated with "P. The elements
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of A are the following:

1 if pel Ie1)

0 if pglI Ie1)

apr=4 -1 if peL(I) (I€J)

0 if pel (IeJ)
if peRI) (IeJ)

Trivially, if 7 = @, we get back the interval matrices (unsigned). Skew interval matrices, how-
ever, are not necessarily network matrices, and not even totally unimodular as the following matrix

shows.

(= I
- = O
- -0 O
- o O M

00

A further step of generalization in Lee [48] is when zero-length intervals are also allowed. A
matrix whose rows can be permuted and whose columns can be scaled by —1 to get a skew interval
matrix with this generalized intervals is said to have the skew consecutive property (though ‘cyclic
consecutive property’ would be a more descriptive name). That is, a matrix has the skew consecutive
property if its rows can be premuted so that each column is of the form

*(0,0,...,0,1,1,...,1,0,0,...,0)T,
or +(-1,-1,...,-1,0,0,...,0,1,1,...,1)7,

where any of the continuous substrings may have zero length. Lee proved that a matrix with the skew
consecutive property is 2-regular. Here we prove that they are binet.

Theorem 6.5. If matrix B has the skew consecutive property, then it is binet.

Proof: 'We give a binet representation. Letry,...,ry and 8y, .. ., 8, denote the rows and columns of
B. Let G be a binet graph in which edges ry,. .. ,r,, form the cycle vy, r1,v2,72, .. ., "m, Vm Where
V1 ..., U, are the nodes of G. (See Figure 6.3 for an example.) Moreover, 8;,..., 8, are chords of
the cycle, such that the two paths on the cycle connecting the end-nodes of a chord correspond to
the rows of B with zeros and non-zeros, respectively. The cycle-edges are directed so that all nodes
except v; have one incoming and one outgoing incident cycle-edges.

This setting implies that any fundamental circuit that goes through v; changes sign at this node,
the other fundamental circuits have the same sign on all of its edges, representing the fact that the
sign of elements in a column of B changes between the top and the bottom of the column. The exact
directions of the edges can be easily adjusted to the signs of the non-zeros in the matrix, O
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si 2 s3 s4 ss

rl 1 0 0 1 -1

ri 1 -1 0 0 -1
B =

73 1 -1 1 0 0

n 0 -1 1 -1 0

745 0 0 1 -1 1

Figure 6.3: A matrix with the skew consecutive property, and its binet representation

6.1.5 Totally unimodular but not network matrices

Consider matrices B\ and B : below. These are the two well-known (see e.g. [55]) totally unimodular
matrices that play an important role in the decomposition theory of totally unimodular matrices, due
to Seymour [58] (see Section 10.2.1). Neither they nor their transposes are network matrices. The
graphs drawn next to them show that Bi and B: are binet matrices. This implies that the binet

representation of matrices is more powerful then the network representation.

Si S2 S3 s4 £5

71 1 0 1 -1
-1 1 1
Bi = e 6.1
73 I -l 0
74 0 1 -1 0
75 0 1 -1 1
Si S2 S3 S4 S5
7 1 1 1 1 1
1 1 1 0 O
B, = 7 (6.2)
s 1 0 1 1 0
s 10 0 1 1
7 1 1 0 O 1

Note that up to row multiplications by -1, Bi is the same as matrix B of Figure 6.3. No wonder

that their binet representations are so similar.

6.1.6 Minimally non-totally unimodular matrices

In [16], Comudjols gives four minimally non-totally unimodular 0,1 matrices. To show the power of

binet representations, we give the binet graphs of these matrices.
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6.2 Counterexamples

The node-edge incidence matrix of a bidirected graph is binet. In this section we show that this is
not necessarily true for the transpose, the edge-node incidence matrix of a bidirected graph. This
result is not a surprise, as the transpose of a network matrix is not necessarily network either, so we
should not expect the opposite for binet matrices. Nevertheless, our counterexamples are interesting
because they also show that totally unimodular or 2-regular matrices are not necessarily binet.

As mentioned in Section 7.3, Gerards and Schrijver [33] gave a characterization of matrices
that are edge-node incidence matrices of bidirected graphs and have strong Chvétal rank 1. The
key matrix in their characterization is M (K,), the edge-node incidence matrix of K, the complete
undirected graph on four points:

M(K,) =

© = = O O =
O e~ O = O
- O = O O

©C O O = = =

- =

The edge-node incidence matrices of bidirected graphs are exactly the integral matrices A (of size
m x n) that satisfy the transposed version of (4.2), namely,

n
Y laijl <2 fori=1,...,m 6.7)
i=1

The characterization appearing in [33] is now the following.

Theorem 6.6. (Gerards and Schrijver) An integral matrix satisfying (6.7) has strong Chvdtal rank 1,
if and only if it cannot be transformed to M (K ) by a series of following operations:

(i) deleting or permuting rows or columns, or multiplying them by —1

1
(ii) replacing matrix s ; by the matrix D — fg.

The graphical equivalent of the matrix operations in Theorem 6.6 can also be given, following
[33] and Section 4.1. Deleting a row or column of an edge-node incidence matrix is equivalent to
deleting an edge or a node from the graph. Multiplying a row with —1 translates to reversing the
direction of an edge, while multiplying a column with —1 corresponds to a switching. Operation (ii)
has already appeared as (4.3), so it is the same as the contraction of an edge (note that (4.3) is sym-
metric to transposing). Thus, the edge-node incidence matrix of a bidirected graph has strong Chvital
rank 1, if and only if the graph cannot be transformed to K4 by a series of edge and node deletions,
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edge direction reversals, switchings and contractions. Theorem 7.9 states that every integral binet
matrix has strong Chvital rank 1. Combining it with Theorem 6.6 we get:

Theorem 6.7. If a bidirected graph can be transformed to K4 by a series of edge and node deletions,
edge direction reversals, switchings and contractions, then its edge-node incidence matrix is not

binet,

Theorem 6.7 implies that the edge-node incidence matrix of any graph that has K4 as a subgraph
is not binet. For example, M (Ks), the edge-node incidence matrix of the complete undirected graph
on six nodes is such. The following lemma shows that we cannot sign the elements of M (Kg) to
make it binet. In other words, the edge-node incidence matrix of a bidirected graph obtained from
K by arbitrarily orienting the edges is not binet.

Lemma 6.8, Let B be a binet matrix of size m X n. If m > 2n, then

(a) B has an all-zero row, or
(b) B has a row with exactly one non-zero, or

(c) B has two rows with corresponding elements having the same absolute value.

Proof: Let G be the bidirected matrix that represents B. Since B has m rows and n columns, G
has m nodes and m + n edges. Let d(v) denote the degree of node v, i.c., the number of edge-ends
incident to v. As the basis of the graph spans G, there is no node with zero degree. For the same
reason, if d(v) = 1, then the only edge incident to v is a basic edge. The row corresponding to this
edge is all-zero, as no fundamental circuit can go through the edge.

So let us assume that the degree of every node is at least 2. Let the number of half-edges in G
be k. The sum of the node degrees is }_ d(v) = 2(m + n — k) + k < 3m — k. This implies that
there must be a node (let us call it v) with degree 2 such that there is no half-edge incident to it. If a
loop is incident to v, then it must be in the basis, and the corresponding row is all-zero. If two links,
(say e and f) are incident to v, then at least one of them is in the basis. If one of the edges (say e)
is basic and the other is non-basic, then there is only one fundamental circuit going through e, the
one that corresponds to f. This means that B has a row satisfying condition (b). If both e and f are
basic, then either both of them are in a basic cycle or neither of them. Furthermore, their rows can
differ only in the signs of the non-zero elements as any fundamental circuit that goes through either
of them goes through the other too. Thus rows e and f of B satisfy condition (c). O

Observe now that M (K(g) has 15 rows and 6 columns, each row contains exactly two non-zeros,
and the non-zeros are in different positions in different rows, so none of conditions (a), (b) and (c)
can be satisfied for any signed version of M (Kg). Therefore, M (Ksg) cannot be signed to a binet
matrix. Note that if the edges of K are oriented so that the graph is directed, then the corresponding
edge-node incidence matrix is totally unimodular. Thus we have an example of a matrix which is
totally unimodular, but not binet.
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The counterexamples given so far were edge-node incidence matrices of bidirected graphs, i.e.,
they were transposes of binet matrices, hence 2-regular. A matrix that is not 2-regular cannot be
binet. So the question arises: Are there matrices that are 2-regular, but neither binet, nor a transpose
of a binet? The matrix 21, the 2 x 2 diagonal matrix with 2’s in the diagonal, is such. It is clearly 2-
regular, symmetric, and cannot be binet, because in any possible binet representation the basis must
be connected and both basic edges are half-edges (otherwise we could not get only 2’s and zeros in
the matrix), which is impossible. Matrix 21, is twice a totally unimodular matrix, so it is trivially
2-regular. If our purpose is to prove the 2-regularity of a matrix, then it is enough to show that it is:

e twice a totally unimodular matrix, or
¢ a binet matrix, or
o the transpose of a binet matrix.

Is there any matrix which is 2-regular but does not fall into any of these categories? There is a trivial
example, [12,2]. No binet matrix can have a £2 and a 14 in the same row or column, for example
because then pivoting on the 12 would result in a 4. But is there any integral matrix that is not of
the types above? The answer is yes.

Consider the following matrix.
1 1 1 1
A=|-1 1 1 -1 (6.8)
1 1 -1 -1

By careful analysis of all the cases, one can show that neither this matrix nor its transpose is binet.
Alternatively, one can apply the MIP-based recognition approach described in Section 5.4. It is also
easy to show that any submatrix of A is binet. The submatrices achieved by deleting rows are trivially
such, as they satisfy (4.2). The 3 x 3 submatrices obtained by column deletions are binet matrices
with a triangle basis and non-basic loops. As a consequence, matrix A is 2-regular, because any of
its square submatrices is binet. Obviously, A/2 cannot be totally unimodular. The submatrices of
AT are also easily shown to be binet, so we get the following result.

Lemma 6.9. The matrix A of (6.8) and its transpose are 2-regular, minimally non-binet matrices.

6.3 Matrices with at most three non-zeros per row

Hochbaum [41] examines integer programs in which each constraint involves up to three variables.
That is, a constraint that is not an upper bound on a variable can be of the forms:

ai%i +ajz; <b or iz +ajzi+2i; <b
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where a;, a; are rationals without any restriction on their signs. A further assumption is that variable
z;; appears in only one constraint. Following [41], we will call such a problem an IP2 problem. The
generic matrix format of IP2 problems is the following:

maxcz + dz

A1 I z <b (IPZ)
Ag 0 z -

I1<z<u

I:<z<u,

where matrices A; and A, contain at most two non-zeros in each row. It is also permitted to add
further identity matrices while maintaining the results. That is, the constraint matrix can be of the

A I - I
A 0 - 0

A special IP2 problem, called binarized, is when the elements of the constraint matrix are all 0, +1.

form:

Hochbaum [41] concludes that a binarized IP2 problem always has