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Abstract

It has been shown in the literature that under asymmetric information, trading 

process itself is a part o f pricing mechanism and order flow is the vehicle o f 

information transmission and has a profound impact on prices. This thesis is 

composed o f three major closely connected parts on order flow economics: (1) 

exchange rate determination and inter-market order flow effect, (2) market 

conditions and order flow impact and (3) limit order execution and microstructure 

factors.

The first part o f  this thesis empirically investigates the price impact o f  order flow 

in four major currency markets and the results show that order flow has strong 

impact on exchange rates in all four markets and over various sampling 

frequencies. In a new result, inter-market effect is discovered where exchange rate 

movements in one market can be explained by the order flow in other relevant 

markets. In terms o f  forecasting ability, the order flow model out-performs 

random walk model that has so far beaten all macro-based exchange rate models.

The second part addresses the dependence structure between flow and price 

change in the FX markets and finds that flow-retum relationship is not linear as 

assumed in the previous literature. Order flow tends to be more informative and 

has larger impact on prices when market spreads are large, volume is low or 

volatility is high. These results cannot be fully explained by existing 

microstructure models.

The last part o f  thesis studies how limit order execution probability is affected by 

microstructure factors. Using the tick data from the London Stock Exchange, it is 

demonstrated that price aggressiveness, spread and potential market pressure have 

significant impacts on the limit order execution.
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Chapter 1

Introduction

1.1 Information, Order Flow and Asset Pricing

A vast number of financial assets are bravely priced by markets everyday. A 

principle task of finance theory is to understand how the assets are priced. In 

the standard asset pricing paradigm, to value an asset, one only needs to account 

for the delay and the risk o f payments. John Cochrane puts this idea as “...price 

equals expected discounted payoff. The rest is elaboration, special cases and a 

closet full of tricks that make the equation useful for one or another application” 

(See Cochrane (2001), Page xiii).

Under textbook perfect market conditions where all information about the ex­

pected payoff is public and the mapping mechanism from information to price is 

common knowledge and effortless,1 we can apply Cochrane’s pricing formula to 

any asset easily. Under these assumptions, price formation, the mapping process 

from information to equilibrium price, is automatic and instant; all transactions 

take place at a publicly agreed equilibrium price to realize risk sharing and the

1 These conditions are normally implicitly assumed for most macro exchange rate models and 
early asset pricing models.
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trading mechanisms and trading activities are irrelevant to asset pricing.2

As it has been widely accepted now that these assumptions, however, are not 

necessarily true in reality. We have seen a large amount of researches, both theo­

retical and empirical, demonstrating that some information about the asset future 

payoff is not public and is dispersed among millions of investors as private in­

formation (see, for example, Bagehot (1971), Grossman and Stiglitz (1980), Kyle 

(1985), Glosten and Milgrom (1985), French and Roll (1986), Hasbrouck (1991a, 

1991b), Payne (2003), to name a few.). It is also widely acknowledged that differ­

ent investors might have different interpretation o f the same piece o f information 

and the mapping mechanism is not homogeneous. Isard (1995, pp. 182) describes 

this embarrassment in a context of foreign exchange determination:

...economists today still have very limited information about the re­

lationship between equilibrium exchange rates and macroeconomic 

fundamentals. Accordingly, it is hardly conceivable that rational mar­

ket participants...could use that information to form precise expecta­

tions about the future market-clearing levels o f exchange rates.

When information structure is asymmetric, market is believed to play a role 

of information aggregation. How is the dispersed information aggregated or how 

the private information is incorporated into the prices? Expectations model (for 

example, Grossman (1976) and Grossman and Stiglitz (1980)) usually assume a 

fiction of representative Walrasian auctioneer who collects orders and finds the 

market clearing prices. The process starts with investors submitting their optimal 

demand conditional on their own private information, the auctioneer collects the 

orders and announces a potential price, investor revise their optimal demands con­

ditional on the price and their information. The process o f submitting demand =>

2Such an agnostic view can be found in the rational expectation literature, see Radner (1982) 
and Blume and Easley (1990) for more discussion.
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announcing potential price => revising demand continues until there are no more 

demand revisions, the equilibrium price is found and information is aggregated. 

Clearly there is no transaction taking place outside the equilibrium price and the 

final trading activities play no role of price discovery but only serve as means of 

market clearing.3

Certainly there exist markets that bear at least an approximate resemblance 

to the Walrasian framework4. But there are many other financial markets where 

price-setting cannot be convincingly argued to fit in this picture. For example, 

in the foreign exchange markets and in the main trading periods o f most stock 

exchanges, trading takes place continuously and there are specific market partici­

pants playing roles far more active in price-setting than the Walrasian auctioneer 

does. The market maker or specialist in many exchanges do not have the lux­

ury of going through the repetitive process of submitting demand => announcing 

potential price => revising demand before setting the actual transaction prices. 

Also importantly, the insiders, such as those in Kyle (1985), might not even have 

the incentives to submit a fully informative demand and demand revision during 

the Walrasian auction process5. How are the ’’equilibrium prices” formed?6 The 

easiest way to demonstrate the information incorporation mechanism is by using 

Glosten and Milgrom (1985) framework. Assume there are informed and liquid­

ity traders in the market. The market maker sets the ask price at to the expected 

value of an asset after seeing a trader wishing to buy (i.e. Et [V\Buy\. at depends 

on the conditional probability that V is either lower or higher than his prior belief 

Vo given that a trader wishes to buy. The bid price bt is defined similarly given

3 It seems that, in this Walrasian framework, the process o f submitting demand =» announcing 
potential price  =*> revising demand is contributing to the price discovery.

4For example, the open and close auction call at the London Stock Exchange.
5This valuable incentive argument is suggested by Richard Lyons.
6“Equilibrium price” is usually used as a static concept. Applying it in a dynamic sense, we 

mean the regret-free price conditional on the information available at the time o f setting price.
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that a trader wishes to sell. If the liquidity traders are assumed equally likely to 

buy or sell whatever the information, good news will result in an excess o f buy 

orders and bad news will result in an excess o f sell orders. This implies that the 

conditional probability incorporates the new information that the market maker 

learned from observing the order flow and is hence a posterior belief about the 

asset value. The posterior will become a new prior in the next round of trading. 

As the trading takes place continuously, the updating process continues and the 

information ’’flows” into the prices.

In the above Bayesian learning process, trading activity is clearly relevant to 

the price discovery per se. Trading, the signed transaction quantities in particular, 

not only serves as a mechanism o f market clearing, but also serves as a vehicle 

of information transmission. Dispersed private information is effectively incorpo­

rated into prices through trading order flow.

Order flow in the market microstructure literature is defined as the net o f buy 

initiated orders and sell initiated orders. It is a measure o f market“opinion”. It 

should be noted that order flow is fundamentally different from trading volume 

which has no direction and has no clear relation with the price setting. It should 

be also pointed out that order flow is different from the classic demand-supply 

pressure. Classic demand-supply is associated with public information and price 

changes due to demand-supply imbalance do not need transactions. Clearly here 

price changes due to order flow as in the Bayesian learning process are associated 

with trading activities. It is through the trading activities that non-public informa­

tion is incorporated into the prices.7 In this sense, order flow is informative and 

can be used to explain price changes.

Turning to the empirical side, there is an increasing amount o f evidence show­

7In the real world, there might be other channels through which private information can be 
incorporated into prices, e.g. limit order, as I will argue in the last section o f this chapter, could 
be alternative channel. However, as shown in the vast microstructure empirical researches and 
thorough out this dissertation, order flow perhaps is one o f the most important channels.
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ing the strong impact o f order flow on asset returns in both equity and foreign ex­

change markets. Hasbrouck (1991a, 1991b), Hasbrouck and Seppi (2001), French 

and Roll (1986) and Chordia, Roll and Subrahmanyam (2002) study equity mar­

kets and Evans and Lyons (2002a), Caia et al. (2001), Rime (2000), Danielsson, 

Payne and Luo (2002) and Payne (2003) study foreign exchange markets. The 

evidence from all these research works amounts to a simple point: order flow is 

informative and has significant impact on returns.

If  price is driven by order flow, then what drives order flow? Like many other 

important issues in finance, economists still only have very limited understanding 

to this fundamental question. This question can be exploited in the following two 

sub-questions:

1. Can order flow convey public information or can public information drive 

order flow?

2. What information is behind the order flow that drives price?

The first question seems to be out of place at first glance. If  information is 

public, there is no need to “ convey” it and it should have been incorporated into 

the price once it is announced. In market microstructure theory, order flow is 

also always modelled to convey private information. It should be noted, however, 

that this argument is built up on an assumption that investors are homogeneous 

in the sense o f knowledge background, information processing ability and the 

magnitude o f rationality. If  investors have different interpretations of and draw 

different insights from the same piece of information, then the price adjustment 

(to the public information) might not be sufficient and instant. In this situation, 

order flow might convey public information as well. Evans and Lyons (2003) and 

Love and Payne (2002) provide evidence that order flow is useful in transmitting 

(public) macro news to exchange rates.
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The second question is very important but also more complex. Even though 

it is believed that order flow contains information valuable for forecasting price 

(see, for example, Goodhart (1988)), it is less clear what this information might 

be about. In a broad sense of asset pricing, there are two types of information that 

is relevant to asset price: information about future payoff and information about 

the discount factor or pricing kernel8. In theory, order flow is overwhelmingly as­

sumed to convey the first type of information (for example, Kyle (1985), Glosten 

and Milgrom (1985) and Easley and O’Hara (1992)) but the empirical evidence is 

limited.9 Evans and Lyons (2002a), Rime (2000) and Danielsson and Payne and 

Luo (2002) find strong contemporaneous correlations between flows and returns 

in foreign exchange markets, the horizons over which the returns and flows are 

measured are at relatively short (from five minutes to one week). Though authors 

working with high frequency data believe that results based on certain intervals, 

such as daily or weekly, are consistent with the story that order flow conveys fun­

damental information on future payoffs because the price impacts can be seen as 

‘permanent’, those who believe fundamental information on future payoff should 

last much longer (above one month, for example) think that the existing results 

are not hard evidence and the evidence from much lower frequency data is still 

desired.

On the other hand, there is increasing amount o f evidence showing that order 

flow conveys information about the discount factors.10 Caia et al. (2001) find that 

order flow reveals private information about the portfolio shifts that have signif­

icant impact on the dramatic changes o f USD/JPY rate in 1998. In their survey

8Campbell and Shiller (1988) demonstrate that a large part o f variation in aggregate equity 
values appears to be due to changes in discount rates rather than changes in expected payoff.

9Evans and Lyons (2003) and Love and Payne (2002) find order flow is useful in conveying 
macro news which can be interpreted as news regarding future payoff.

10This argument would require imperfect substitutability among different assets in the market. 
For more discussion, see Lyons (2001).
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paper, Gehrig and Menkhoff (2002) provide evidence that order flow conveys in­

formation on semi-fundamentals, such as short-term trading objective, liquidity 

consideration and portfolio shifts, which has short-run price impacts. Overall, so 

far we see more evidence that order flow conveys information relevant to short 

and medium term price movements than the evidence that order flow conveys in­

formation about future payoff, a view labelled by Froot and Ramadorai (2002) as 

weakflow-centric view.

If  information conveyed by order flow is less important in the long run than 

in short or medium run, is it still useful to study order flow for a better under­

standing of asset pricing? The answer is yes for two reasons. Firstly, the concept 

o f ‘fundamentals” of an asset is far more elusive than it appears to be. For exam­

ple, in most theoretical models, the fundamentals refer to the final payoff o f an 

asset and is assumed to be static. However, it is almost impossible for an investor 

to tell what is the final payoff o f a stock or an exchange rate. Even for the same 

piece of public information (on future payoff), different investors can draw dif­

ferent conclusions and will take different actions based on their own understand­

ing. Market order flow serves as a vote counter and aggregates information on 

economic factors, some o f which even economists do not understand quite well. 

Given the dismal empirical result on the relationship between“fundamentals” and 

the actual asset prices (such as exchange rate disconnect puzzle, excess volatility 

puzzle), the order flow approach, humble but more practical, can lead us closer to 

understanding price behaviour. Secondly, the short to medium term price forma­

tion process, like the long-term relationship between asset prices and the ultimate 

economic variables, is also of profound importance for market participants.11.

11 Some fundamental factors have temporary feature, e.g. the temporary shift o f fiscal policy. 
Other factors can be mistakenly thought to be transitory. For example, until very recently, liquidity 
has been thought to be a transitory effect and has been excluded in most classic asset pricing 
models. Academics have now started realizing that such ‘short term’ factors could be fundamental 
and pervasive risk factors priced by markets (see Pastor and Stambaugh (2003)).
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Investors having short investment horizons obviously care about such short to 

medium term price behaviour. Policy makers, like central banks and regulators, 

are also turning to the micro market behaviour to better understand many classic 

financial issues like intervention and financial crisis.12 Order flow, though itself 

is only a proxy for the economic variables that drive asset prices, it can neverthe­

less serve as a media which allows us to study price evolution on one hand and to 

telescope the ultimate and elusive economic variables on the another hand.

This thesis contains three closely connected articles on order flow economics: 

(1) exchange rate determination and inter-market order flow effects, (2) market 

conditions and order flow impact and (3) limit order execution and microstructure 

factors. These research works extend the existing literature on order flow and 

enhance our understanding of price formation process in foreign exchange and 

equity markets. The following sections in this chapter provide a brief outline of 

the motivations and main results obtained in subsequent chapters.

1.2 Order Flow Effects in FX Markets

Chapter two is based on co-joint work with Jon Danielsson and Richard Payne, 

’’Exchange Rate Determination and Inter-Market Order Flow Effects”. It further 

examines the price impact o f order flow across different exchange rates and over 

a range o f sampling frequencies, investigates information flow across related mar­

kets and tests the forecasting power of order flow models.

12e.g. Payne and Vitale (2000), Danielsson and Saltoglu (2003), and Dominguez (2003a, b) 
adopt micro approach to intervention and crisis.
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1.2.1 Issues, Methodology and Data

Empirical models o f exchange rate determination, especially at intermediate esti­

mation horizons, have frustrated economists at least since the Meese and Rogoff 

(1983a, b) result that macro-based exchange rate models have little in-sample ex­

planatory power and underperform a random walk in out-of-sample forecasting. 

In the empirical finance literature, there is, however, a long tradition o f studying 

the higher frequency relationship between the prices and trading volume (see, for 

example, Clark (1973), Tauchen and Pitts (1983)). Such analysis cannot help re­

solve Meese-Rogoff puzzle, not least because volume is directionless and bears no 

information on the direction of exchange rate movements. Recently, researchers 

have investigated the price impact o f order flow, a variable that is fundamen­

tally different from volume. For example, Hasbrouck (1991a) and Madhavan and 

Smidt (1991) study equity markets. Cohen and Shin (2002) and Danielsson and 

Saltoglu (2002) study fixed income markets. Lyons (1995), Payne (2003), and 

Evans and Lyons (2002a) study foreign exchange rate markets. In these empirical 

microstructure researches order flow has been shown to be a key determinant in 

high frequency asset price changes.

From the perspective of benchmark rational expectations models o f asset pric­

ing or exchange rate determination, the importance o f order flow is puzzling. 

Such models predict that prices should respond to new information without any 

consistent effect on order flow. Intuitively, when new information arrives every 

agent immediately revises his/her estimate o f the value and thus there are no rea­

sons/opportunities for one-sided trading. Thus one must look beyond these mod­

els to find a rationale for order flow’s effects on prices.

In general terms, order flow can be a determinant o f prices in environments 

where agents do not share the same information or where they do not agree on the 

model by which asset prices are determined. In this context, order flow can con­

15



vey information about micro factors (e.g. shifts in hedging demands) and macro 

factors (e.g. public announcements). While the micro information is specific to 

individual agents, macro information can be also interpreted differently across 

agents. Consider an economy where agents have asymmetric information and/or 

disagree about the asset pricing model. In that case, disagreements between FX 

market participants regarding the manner in which exchange rates are determined 

or the non-public information relevant for exchange rate determination will be re­

vealed in order flow and thus flow can be used to explain (and possibly forecast) 

exchange rates in the short to medium term. Recent empirical work supports this 

intuition, e.g. Evans and Lyons (2002a) who find strong dependence of daily ex­

change rate changes on daily order flow, even after accounting for macroeconomic 

fundamentals.

Chapter two is aimed to investigate the importance o f order flow for exchange 

rate determination and extends the extant research in three areas:

1. Extend the earlier results of Evans and Lyons (2002a) who only consider 

the daily sampling frequency and two currency pairs. Using a unique data 

set which contains four currency pairs (EUR/USD, EUR/GBP, GBP/USD 

and USD/JPY) and spans nine months on average, this research investigates 

the relationship between order flows and exchange rate changes across fre­

quencies, ranging from five minutes to one week and for four rates. The 

relatively long time-series dimension o f our data and the fact that we have 

four exchange rates to consider, we can examine how the explanatory power 

o f order flow changes with sampling frequency and whether the effects of 

flows are consistent across currency pairs.13

2. The flow-retum relationship is investigated in an inter-market framework.

13 Also note that order flow used in this study is measured from direct inter-dealer market and it 
may be different from that measured from brokered transactions.
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Specifically, we investigate whether order flows in other relevant markets 

(e.g. EUR/USD) have explanatory power for exchange rate changes (e.g. 

GBP/USD) beyond its own order flow. This research is motivated by the 

following economic reasoning: a currency trader who has private informa­

tion regarding the future value o f a currency, say the dollar, could profit 

from this information in many possible currency markets e.g. GBP/USD, 

USD/JPY, EUR/USD. Given the informational links between all dollar re­

lated markets, order flow in one market has important implication for the 

asset in another market14.

3. This work goes beyond prior work on the contemporaneous relationship be­

tween returns and flows to evaluate the forecasting power of order flows for 

exchange rates. In theory (e.g. Kyle (1985)), order flow generated by in­

formed trading has the property of autocorrelation because informed traders 

behave strategically and split their demand in a sequence o f trades. Here 

we seek to understand whether, using order flows and in some cases past 

returns also, we can generate forecasts that improve upon naive statistical 

alternatives. Thus we test whether empirical models based on order flow 

can pass the tests that standard macroeconomic models failed. O f course, 

the analysis conducted here is at much higher sampling frequencies than 

those considered by Meese and Rogoff (1983a), but the possibility that one 

can generate useful, non-trivial forecasts of rates at the daily level indicates 

that one might also be able to do so at lower frequencies.

,4More recently, this idea has been used as a basic assumption to address international currency 
competition by Lyons and Moore (2003).
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1.2.2 Main Results and Contribution

We study the explanatory and forecasting power o f order flow for exchange rates 

changes for our major exchange rates at sampling frequencies ranging from 5 

minutes to 1 week. The key results include;

•  The contemporaneous relationship between flows and changes in rates is 

significant for all four rates but model explanatory power varies across sam­

pling frequencies. At intra-day frequencies the flow-retum relationship is 

strong for all four rates. At the daily and weekly level, there is still strong 

explanatory power o f order flow for exchange rates changes for EUR/USD 

and USD/JPY but not for EUR/GBP and GBP/USD.

•  However, when one examines the inter-market effects o f order flows, one 

sees that price changes for EUR/GBP and GBP/USD are strongly affected 

by EUR/USD order flow and, taking these effects into account, at daily and 

weekly sampling frequencies overall flows have strong explanatory power 

for the Sterling rates.

•  An analysis o f the forecasting power o f order flows, using the technique of 

Meese and Rogoff (1983a, b), demonstrates that flow analysis outperforms 

a naive benchmark across essentially all sampling frequencies for all rates.

•  A simple true out-of-sample forecasting experiment using order flows does 

not provide terribly valuable exchange rate forecasts. There is, however, 

evidence that order flow can be forecast out o f sample.

These results serve to emphasize the role played by order flow in FX, and pos­

sibly other, markets. We provide clear evidence that order flows can be used to ex­

plain and forecast rates at very high frequencies as well as observations intervals 

relevant to international macroeconomics. The results o f the inter-market order
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flow effects are new and provide direct empirical evidence for the international 

currency competition model by Lyons and Moore (2003) who assume informed 

currency traders can exploit their information advantage by in-direct trading. Fi­

nally, the results from forecasting experiments indicate order flow has potential to 

forecast exchange rates and provide a step stone for a more sophisticated forecast­

ing model development.

1.3 Market Conditions and Price Impact of Order 

Flow

Order flow drives price because it carries information. Order flow will have larger 

impact on prices when it is more informative, and vice versa. Chapter three, ’’Mar­

ket Conditions, Order Flow and Exchange Rates Determination”, investigates how 

informativeness o f order flow changes under different market conditions in foreign 

exchange markets.

1.3.1 Issues, Methodology and Data

In comparison to macroeconomic models of nominal exchange rates, the market 

microstructure approach has been quite successful in explaining exchange rate 

changes over short to medium time horizons. Though there is reported evidence 

that fundamentals have explanatory and forecasting power to exchange rates over 

longer periods (for example, Mark (1995)), Meese-Rogoff puzzle has never been 

convincingly over-turned over short horizons. On the order hand, researchers 

who apply the microstructure approach have been more lucky. Evens and Lyons 

(2002a) claim that net order flow has substantial explanatory power for exchange 

rate changes on a daily basis and can explain 60 percent and 40 percent of return
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variation for DEM/USD and USD/JPY respectively. Rime (2000) shows that order 

flow can explain 30 percent of return variation for NOK/DEM on a weekly basis. 

Chapter two will provide further evidence that order flow has explanatory power 

for exchange rate changes for EUR/USD, GBP/USD, USD/JPY, and EUR/GBP at 

higher frequency levels and within an inter-market framework

The microstructure approach to exchange rate analysis is based upon a simple 

idea that order flow carries information and thus has explanatory power for price 

movements. The existing research work in this line has largely assumed that the 

informativeness o f order flow is constant even if  the market experiences dramat­

ically different situations. Is this assumption valid? This question hasn’t been 

addressed in the extant empirical literature.

Turning to theory, we don’t have a better answer either. There is little con­

sensus among the existing microstructure theories on at what market conditions 

order flow could be more informative. In the models o f Admati and Pfleiderer 

(1988) and Subrahmanyam (1991), both the informed and the discretionary liq­

uidity traders can strategically choosing their trading time and such strategic be­

havior will impact on the informativeness o f order flow. Admati and Pfleiderer 

(1988) predict that informativeness o f order flow will be positively correlated with 

bid-ask spreads and negatively correlated with volatility and trading volume.

In the information uncertainty model of Easley and O’Hara (1992), however, 

the occurrence o f trades is associated with information events. When a trade oc­

curs, the market maker will update his/her belief towards a higher probability of 

some information events and adjust the quotes accordingly. The model predicts 

that order flow is more informative when spreads are high, volatility is high and 

trading volume is high.

Given the order flow’s significant impact on price and its increasing usage by 

practitioners in their decision making, characterizing the information transmission
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mechanism o f order flow is important from the point o f views o f both academics 

and market participants. Chapter three attempts to address these issues by study­

ing a simple empirical model:

APt =  a  +  (3* Qt +£r (1-1)

where APt is price change and Qt is aggregated order flow within time interval 

[t — 1, /] respectively.

Generally speaking, the information effect of order flow will be captured by 

the regression coefficient p. In words, the more informative the order flow the 

larger the P, and vice versa. If  order flow is not equally informative, p is expected 

to be a function o f some structural parameter Zt measuring market conditions, i.e, 

P =  P(Z,).

The main objective o f chapter three is to empirically characterize the func­

tion p (Zt), where three market condition measures are examined: bid-ask spread, 

volatility and trading volume. The data used in this study is transaction level data 

collected by Reuters D2000-2 in the inter-dealer spot FX markets. It covers four 

major currency pairs (EUR/USD, EUR/GBP, GBP/USD and USD/JPY) and spans 

nine months on average between 1999 to 2000.15

1.3.2 Main Results and Contribution

The major findings include:

•  The informativeness of order flow is not constant under different market 

conditions as was assumed in the existing empirical microstructure liter­

ature. This result highlights the non-linearity in the relationship between

15 the data set used in chapter three is the same as that used in chapter two except that chapter 
two only use transaction information while chapter three use information on both transactions and 
firm quotes.
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order flow and price movement.

•  Order flow tends to be more informative when bid-ask spreads are high, 

volatility is high or trading volume is low. This relationship is significant 

and persistent across different sampling frequencies and exchange rates.

•  The relationships between the price impact of order flow and the market 

conditions are significantly captured by our Interaction model and Logistic 

Smooth Transition Regression (LSTR) model. In particular, the empirical 

results from the LSTR model also suggest that the price impact o f order flow 

shifts within a relative small range of market conditions that the market is 

very likely to experience.

It should be noted that the measure o f order flow informativeness in this re­

search relies on the aggregation of order flow. Working on a transaction base, 

the regression model (1.1) might be distorted by the transitory liquidity effect. 

Through aggregation, the liquidity trades can be largely cancelled out over time. 

In this research we have run a set o f robustness tests, including testing seasonality 

impact and experimenting regression (1.1) in an inter-market framework in which 

liquidity effect does not exist at all.

This research work challenges a widely adopted assumption in previous empir­

ical market microstructure literature that order flow is equally informative under 

different market conditions. The evidence provided here indicates that the equal 

informativeness assumption is ungrounded. The non-linearity identified in this 

study implies that the flow models can be improved by taking into account the 

market conditions.

This work is among the first that test the theoretical predictions on the relation­

ship between the order flow informativeness and market conditions. Clearly the 

results are neither fully consistent with the predictions of Admati and Pfleiderer’s
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model nor with those o f Easley and O ’Hara’s information uncertainty model. So 

far, to my knowledge, we haven’t seen any theoretical models that explicitly take 

market conditions as an input element in pricing mechanism. Although to develop 

a theory that better explain the empirical results presented in chapter three is not 

within the research agenda of this thesis, I believe future research on this issue 

will be worthwhile.

1.4 Limit Order Execution Probability

Limit order is one o f the major types o f order commonly seen in electronic trading 

systems. With a limit order, one needs to specify the desired transaction price and 

the quantity/size to buy or sell. Once a limit order is submitted, it will sit in a queue 

usually called limit order book. For limit order trading, most exchanges maintain 

a strict price and time priority.16 For a limit buy order, when market transaction 

price is at or below the pre-specified price of the limit order, the limit order will be 

partially or completely executed depending on the size of the incoming sell order. 

For a limit sell order, execution condition is similar. A salient feature of limit 

order is that limit orders are usually executed at better prices than the best offers 

(for buy limit order) or bids (for sell limit order) available at the time of limit 

order submission, but there is no guarantee o f execution. Non-execution implies 

implicit cost. Chapter four investigates various factors that might impact on the 

execution probability of limit orders.

16Orders with more competitive prices will be first filled. For orders that have same prices, 
those are submitted earlier will be filled first.
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1.4.1 Issues, methodology and Data

As more and more stock exchanges are adopting the automatic order-driven sys­

tems, limit order has been widely used as a major trading means. Comparing with 

market order, the benefits o f limit order includes price improvement (buy at bid 

price or sell at ask price) and no price uncertainty. However, the benefit does not 

come without cost: execution is not secured. Since non-execution cost could be 

very high, investors trading with limit order need to evaluate the execution prob­

ability o f their submission strategies and take this into account in forming the 

investment decisions.17

Chapter four analyzes how such probability can be affected by various fac­

tors and attempts to provide a method to evaluate the execution probabilities of 

different order submission strategies. The issue is clearly important to the mar­

ket participants, especially to the trading desk of institutional investors for whom 

the trading cost is among the top concerns.18 It is also important from market 

structure point o f view: limit order placement has important impacts on market 

liquidity and spread dynamics. In the classic market microstructure models, in­

formed traders are overwhelmingly assumed to use market orders to exploit their 

information advantage. However, there is experimental evidence showing that in­

formed investors do not restrict themselves to market orders. In an experiment 

study, Bloomfield, O ’Hara and Saar (2002) find informed traders can use more 

limit orders than liquidity traders do in certain market conditions. Actually the 

use of the limit order by informed investors who want to buy can be rationalized

,7For example, Donald Keim and Ananth Madhavan wrote in the a article that ’’the implicit 
costs...associated with missed trading opportunities...are significant relative to explicit costs and 
realized portfolio returns”. Source: Financial Times, 23 July 2002.

18Recently the fund management companies are under increasing pressure from regulatory or­
ganizations and investors to better manage their trading cost (see BGI INSIGHT, 2003, quarterly 
magazine from the Barclays Global Investors).
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in following simple model (similarly for those who want to sell):

f  nm = E [v \s ] -(p ask + XQ2)
< ( 1.2) 
[ m  =  n ( K ) ( ^ [ v | 5 ] - y )  +  ( i - n ( K ) ) o

where the nm and 7t/ are expected profit o f trading quantity of Q by using market 

and limit order respectively, ^[v^] is the expected value of the asset conditional 

on the private signal s. p ask is current market ask price and p l is the price of 

limit order. X is the price impact coefficient in the sense o f Kyle (1985). II is the 

probability o f execution of limit order, n  is a function o f k , a vector of factors 

which can impact on the limit order execution probability.

In the above setup, observation of private signal wouldn’t necessarily lead to 

the use of market orders. By using a market order, informed investors can secure 

a transaction but have to pay the transaction costs, including bid-ask spread and 

price impact cost, which is measured by XQ2. By using a limit order, though the 

transaction price could be lower ( p l < p ask +  XQ2), the execution is not secured 

(n  <  1). Under certain market conditions (for example, when execution probabil­

ity and spread are large), informed trader might be better off by using limit order 

rather than market order. An implication of this simple model is that limit order 

could also convey information, a point that I believe is of profound importance in 

market microstructure but is largely ignored in existing literature.

Clearly, the execution probability, II, is a key factor affecting investors’ de­

cision on the choice between different types o f orders. A better understanding 

o f how such probability is determined —  the objective o f this research —  will 

not only have important implications for practitioners but also can enhance our 

knowledge of price discovery process in limit order trading systems.

In recent years, limit order trading has drawn increasing attention in market 

microstructure literature and it has been demonstrated that various factors can
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impact on limit order execution (Cohen, Maier, Schwartz and Whitcomb (1981), 

Angel (1994), Glosten (1994), Kumar and Seppi (1992), Seppi (1997), Handa 

and Schwartz (1996), Parlour (1998) and Foucault (1999), Chung, Ness and Ness 

(1999), Biais, Hillion and Spatt (1995) and Ahn, Bae and Chan (2001) ,etc). The 

focus of these studies, however, is not on the limit order execution itself but is 

mainly on the choice between market order and limit order and how such choice 

impacts on market equilibrium.

Works on limit order execution are relatively few and most concentrate on 

time-to-execution. Foucault, Kadan and Kandel (2001) develop an equilibrium 

model for time-to-execution of limit orders. In another work, Lo, Mckinlay and 

Zhang (2002) compare three different econometric models for the time-to-execution 

o f limit orders and find the time-to-execution is sensitive to limit price and other 

explanatory variables. Current research focuses on the execution probability and 

can be seen as complementary study o f this line o f literature.

Research in chapter four is also related to microstructure literature on prof­

itability study of order submission strategies. Handa and Schwartz (1996) and 

Harris and Hasbrouck (1996) compare the ex post profitability o f different order 

submission strategies in NYSE. This chapter uses a sample of FT30 stocks from 

limit book system o f London Stock Exchange (LSE) to analyze how limit order 

execution probability is affected by various factors and evaluate such probability 

ex ante. Obviously the analysis conducted in this chapter is a building block to 

extend the profitability analysis in real time.

Chapter four adopts a two-stage methodology to address the issue. In the 

first stage, potential factors, mainly derived from theoretical models or relevant 

empirical researches, are examined one by one against actual transaction data to 

test whether the factors can impact on the limit order execution probability as 

assumed in theory. In the second stage, the probability is modelled as a function
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of the all factors examined in the first stage. In this way the factors can be tested 

simultaneously. Moreover, the estimates can be feedback into to model to evaluate 

the execution probability of different limit order submission strategies in real time.

1.4.2 Main Results and Contributions

Chapter four empirically investigates the impacts o f various microstructure factors 

on the limit order execution probability and models such probability o f limit order 

submission strategies. The main results are,

•  For a given stock, price aggressiveness, measured as the extent to which a 

limit order betters the best existing quote on the same side, has a significant 

positive impact on the limit order execution probability. In General, spread 

is negatively correlated with unconditional limit order execution probabil­

ity. When price aggressiveness is controlled, spread impact is particularly 

strong. Potential Market Pressure (PMP), a difference between the buying 

pressure and selling pressure built up on the limit order book, has significant 

impact on the execution probabilities. For buy (sell) orders, the larger PMP, 

the smaller (larger) execution probability.

•  Across different stocks, market liquidity, measured as trading volume o f a 

stock, has strong impact on the limit order execution probabilities. Trading 

less liquid stock, a trader have to post a more aggressive limit price to get 

the same likelihood o f execution as trading liquid stocks.

•  Contrary to the intuition, order size and the time of the day do not have 

strong impacts on limit order execution as expected. Order size has a U- 

shape of execution probability with the middle-size orders have the smallest 

execution chance. Large orders are usually submitted more strategically by 

cutting spread aggressively when it is large.
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•  Volatility has positive impact on limit order execution but much weaker 

compared with price aggressiveness, spread or PMP.

•  The limit order execution probability is modelled as a function o f a vector 

o f factors (price aggressiveness, spread, PMP, order size, volatility and time 

o f day) in a probit model. The estimation results indicate that the proposed 

model is capable o f capturing the features regarding the relationship be­

tween limit order execution probability and its major determinants and can 

be used to forecast the such probabilities of different limit order submission 

strategies.

In previous researches, a set o f factors have been assumed to have important 

impacts on the order submission19. Chapter four attempts to test these predictions 

thoroughly by using a unique data set from the London Stock Exchange. The 

empirical results on the impact of spread and aggressiveness provide direct sup­

porting evidence for the model predictions o f Foucault et al. (2001). Volatility, 

which is the key driving force of market liquidity dynamics in theoretical mod­

els is found to have only slight impact on limit order execution while potential 

market pressure, which has been escaped the economists’ scope, is found to have 

profound impact on the limit order execution in our sample. This research work 

tries to establish some ’’stylized facts” for further theoretical research on the liq­

uidity demand-supply in the limit order trading system.

In the existing market microstructure literature, both theoretical and empirical, 

market order is believed to be the vehicle of information transmission. As argued 

in previous subsection, in equilibrium, the choice between limit order and market 

order depends on the expected execution probability which in turn depends on

19For example, volatility has been a key driving force o f market liquidity dynamics in theo­
retical models by Foucault (1999) and Handa and Schwartz (1996). Order size (e.g. Harris and 
Houbrouck (1996)) and time o f day have also been assumed to have negative impact on the limit 
order execution.
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the quality o f signal, spread, aggressiveness o f limit order and current market 

pressure. If  the execution probability is large enough, limit order can be used by 

informed investor and therefore can be informative. The strong impact o f PMP on 

limit order execution probability indicates that PMP might have predictive power 

for the future price movements and can be explained as suggestive evidence on 

the hypothesis that limit order can also convey information. The formal modelling 

o f information transmission by limit order is beyond the research agenda o f this 

chapter but the result found in this research is encouraging for the future research 

in this direction.
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Chapter 2 

Exchange Rate Determination and 

Inter-Market Order Flow Effects

2.1 Introduction

Empirical models o f exchange rate determination, especially at intermediate esti­

mation horizons, have frustrated economists at least since the Meese and Rogoff 

(1983a, b) result that macro-based exchange rate models underperform a random 

walk in forecasting ability. In the empirical finance literature, there is, however, 

a long tradition of studying the higher frequency relationship between the price 

o f financial assets and trading volume.1 Such analysis cannot help resolve the 

Meese-Rogoff puzzle, not least because volume is directionless, i.e., a change in 

volume cannot predict the direction of FX changes. Recently, researchers have 

investigated the impact of signed volume, i.e., the decomposition of volume into 

transactions initiated by sellers and buyers, separately. The difference between 

seller and buyer initiated volume is termed order flow , a variable that is funda­

mentally different from volume. Order flow has been shown in empirical mar- 

]See e.g. Clark (1973); Epps and Epps (1976); Tauchen and Pitts (1983); Karpoff (1987).
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ket microstructure research to be a key determinant in high frequency asset price 

changes.2 Several authors, e.g. Lyons (1995), Payne (2003), and Evans and Lyons 

(2002a) study the relationship between order flow and foreign exchange rates. The 

objective of this chapter is to investigate the relationship between order flow and 

FX rates, extending extant research in three aspects: providing augmented evi­

dence regarding the dependence o f prices on flows, examining inter-market order 

flow effects, applying Meese-Rogoff methodology to test the forecasting power of 

order flow model.

From the perspective of benchmark rational expectations models of asset price 

or exchange rate determination, the importance o f order flow is puzzling. Such 

models predict that prices should respond to new information without any consis­

tent effect on order flow. Intuitively, when new information arrives every agent im­

mediately revises his/her estimate of value and thus there are no reasons/opportunities 

for one-sided trading. Thus one must look beyond these models to find a rationale 

for order flow’s effects on prices.

In general terms, order flow can be a determinant o f prices in environments 

where agents do not share the same information or where they do not agree on 

the model by which asset prices are determined. In this context, order flow can 

conveys information about micro factors (e.g. shifts in hedging demands) and 

macro factors (e.g. public announcements). While the micro information is spe­

cific to individual agents, macro information can also be interpreted differently 

across agents. Consider an economy where agents have asymmetric information 

and/or disagree about the asset pricing model. In that case, the agents’ trading 

strategies and, in particular, aggressiveness, might reveal underlying information 

regarding future payoffs or change o f risk premia and hence affect asset price

2For example, by Hasbrouck (1991a) and Madhavan and Smidt (1991) who study equity mar­
kets, and Cohen and Shin (2002) and Danielsson and Saltoglu (2003) who study fixed income 
markets.
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changes. Recent empirical work supports this intuition. For example, Evans and 

Lyons (2002a) find strong dependence o f daily exchange rate changes on daily 

order flow, even after accounting for macroeconomic fundamentals.3

The objective o f this chapter is to investigate the importance o f order flow for 

exchange rate determination. In this we extend the earlier results o f Evans and 

Lyons (200a) who only consider the daily sampling frequency and one currency 

pair a time. We investigates the relationship between order flow and exchange 

rates across frequencies, ranging from five minutes to one week. Furthermore we 

study four currency pairs (EUR/USD, EUR/GBP, GBP/USD and USD/JPY) and 

explicitly model the impact of order flow across markets, e.g. investigating the 

impact o f EUR/USD order flow on EUR/GBP exchange rate. Finally, we apply 

Meese-Rogoff methodology to test whether the order flow models beat a random 

walk in forecasting.

Our data derives from transaction-level information obtained from the Reuters 

D2000-2 electronic brokers and covers approximately 10 months for EUR/USD 

and GBP/USD and eight months for EUR/GBP and USD/JPY. The sample starts 

in 1999 and ends in 2000. Our analysis consists of three set of empirical exercises.

First, we evaluate how order flow is contemporaneously related to changes 

in exchange rates across sampling frequencies. Taking advantage of the rela­

tively long time-series dimension of our data and the fact that we have four ex­

change rates to consider, we can examine how the explanatory power o f order flow 

changes with sampling frequency and whether the effects o f flows are consistent 

across currency pairs.

Second, we look at the dependence o f exchange rate changes on order flows 

from other markets by investigating whether order flows in one currency pair have 

explanatory power for another currency pair.

3 Similarly, Chordia et al. (2002) show that daily changes in US equity market levels are 
strongly related to market wide order flow measures.
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Finally, in order to investigate order flow from a macroeconomic perspective, 

we evaluate the forecasting power o f order flows for exchange rates. Here we 

seek to understand whether, using order flows and perhaps past returns, we can 

generate forecasts that improve upon naive statistical alternatives. Thus we test 

whether empirical models based on order flows can pass the Meese-Rogoff test.

The results from these three research questions provide new insights into the 

market microstructure analysis o f high frequency exchange rates as well as the 

macroeconomics analysis o f medium term exchange rate determination.

First, we demonstrate that, within a single market, contemporaneous order 

flow significantly explains exchange rate changes, across sampling frequencies. 

We however observe considerable differences in the explanatory power of the var­

ious regressions. For EUR/USD rate, R2 hovers around 40% across frequencies, 

while for USD/JPY the R2 increases with aggregation, from 6% at five minutes to 

67% at one week. In contrast, R2 for both GBP rates decreases with aggregation 

from 26% at five minutes to 1% at one week. Taken in isolation, the results from 

GBP regressions are somewhat puzzling.

We subsequently extend the model by including order flow from other mar­

kets. For the EUR/USD and USD/JPY, the inclusion o f order flows from other 

markets makes little difference. However, for GBP rates, especially at lower fre­

quencies, order flow from other markets has strong and significant impact, espe­

cially for the EUR/GBP rate where the EUR/USD order flow is found to be the 

primary exchange rate determinant. To understand why, here we offer two ex­

planations, one from theoretical perspective and one from practical perspective. 

In theory, a currency trade can be achieved by direct trading or in-direct trading. 

Suppose a investor with Sterling Pound has private information about Euro (e.g. 

Euro will appreciate in the future). He can buy Euro directly in EUR/GBP market 

and in this case we will see the standard single market result, i.e., a positive im­
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pact o f EUR/GBP order flow on EUR/GBP rate. However this investor can also 

trade GBP/USD and EUR/USD to exploit his information advantage if the in­

direct markets are liquid and price impacts are small4. Obviously the order flow 

in GBP/USD and EUR/USD markets conveys information about EUR/GBP. From 

the practical perspective, market players in the one market will keep their eyes 

open to the price changes and order flows of other markets. Dealers in EUR/GBP 

market will adjust the EUR/GBP quote when observing positive order flow in 

EUR/USD market or negative order flow in GBP/USD market, both indicating a 

appreciation of Euro against Sterling. In this case, we will observe price change 

in EUR/GBP rate without companying EUR/GBP order flow.

These results suggest that while basic own order flow model may be appropri­

ate for the largest currencies, it is less so for smaller currencies with many traded 

exchange rates such as GBP.5 While Rime (2000) finds that order flow are signif­

icant in explaining EUR/SEK, the EUR contract is the only traded currency for 

SEK. In contrast, there are multiple traded currency pairs for GBP. As a result, 

information regarding SEK will go through EUR/SEk order flow, while the in­

formation regarding GBP can flow through any traded currencies. Furthermore, 

this provides significant evidence o f strong information links between FX mar­

kets, with small markets dominated by larger ones. This effects persist across our 

frequencies and strengthen with aggregations, suggesting that these information 

links may persist beyond our sampling frequencies.

The final key result is on the forecasting o f exchange rates. First, we use Meese 

and Rogotf (1983a, b) framework, and find that the order flow models almost 

always yield a better forecast (in RMSE terms) than does a random walk model.

4In that case, we will see a negative order flow in GBP/USD market and a positive order flow 
in EUR/USD market.

5Indeed, according to the Bank o f International Settlements (2002) in April 2001 the EUR/USD 
represented 30% o f all spot FX trading, the USD/JPY 21%, GBP/USD 7% and EUR/GBP 3%. The 
first three exchange rates are the three largest currency pairs while EUR/GBP is only the eighth.
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This result is consistent across sampling frequencies and currencies. Therefore, 

the order flow model passes the Meese-Rogoff test that macroeconomic models 

have failed so often. We note however that Meese-Rogoff test is not a genuine 

out-of-sample forecasting test. We run such a test with simple specification and 

find that order flow does not perform particularly well in forecasting exchange 

rates. We find however that order flow itself can be forecasted. This suggests that 

a more sophisticated specification for a pure forecast model for exchange rates 

may provide significant forecasting power.

In sum, our results suggest that order flow analysis can be very useful in un­

derstanding exchange rate determination. From a low frequency, macroeconomic 

perspective, order flows can contribute strongly to our ability to explain exchange 

rate changes while they allow one to improve exchange rate forecasts most dra­

matically at a microstructure level. While further work using longer data samples 

would be useful to verify and clarify our results, the analysis here clearly points 

to the information content of order flow.

The rest of this chapter is structured as follows. Section 2.2 outlines FX mar­

ket, our data sources and our processing of the data. Section 2.3 presents our 

analysis o f the explanatory power of order flow for exchange rates in single mar­

ket and section 2.4 presents our inter-market analysis results. The following sec­

tion presents the forecasting results. Some discussion o f our findings is given in 

Section 2.6 and Section 2.7 concludes.

2.2 The FX Markets and the Data

2.2.1 The foreign exchange markets

The spot foreign exchange market is best described as a de-centralized multi­

dealer market. In this market, market makers are large commercial banks lo­
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cated in major money centres, including London, New York, Tokyo, Zurich and 

Hongkong. These banks operate as dealers, trading with each other as well as 

with non-bank customers. Unlike equity market, FX market is a 24 hours market 

and has no opening and closing procedure. But, since the market activities (in the 

sense o f quoting and trading) are very sparse on weekends and some holidays, it 

is practically viewed as closed during these periods.

Following Lyons (2001), we divided the spot FX market into three segments 

by their information structure characteristics: customer-dealer, brokered inter­

dealer and direct inter-dealer. The customer-dealer segment is usually thought 

as the major source of information in the FX markets. However, due to the lack 

of transparency, the transactions between dealers and their non-bank customers 

largely remain private information to the dealer themselves. The brokered inter­

dealer market is thought to be the most transparent part o f the FX spot market and 

most of the transactions are conducted through EBS or Reuters D2000-2, the two 

major electronic dealing systems in this market.6

2.2.2 The Data

The data set used in the research comes from the brokered segment o f the inter­

dealer FX market and are drawn from the Reuters D2000-2 system. Thus the 

data contains no information on customer-dealer FX trades or on direct (i.e. non­

intermediated) trades between dealers.7 A subscriber to D2000-2 sees the follow­

ing items on the trading screen, for up to 6 exchange rates:

• Best limit buy and sell prices

6EBS, Reuters D2000-2 are brokered inter-dealer systems and Reuters D2000-1 is a bilateral 
direct inter-dealer system. EBS claimed to handle 37% o f the brokered trade in London and it is 
believed that Reuters has the same share. See Payne (2003).

7For a full description of the segments o f the spot FX market and the data available from each 
segment see the excellent descriptions contained in Lyons (2001).
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•  The quantities available for trade at the best prices

• An indicator o f the characteristics of the last trade rder flow can be forecast 

out of sample.

The raw data set is composed of tick level information (including transactions 

and firm quotes), covering four major floating rates: EUR/USD, EUR/GBP, GBP/ 

USD and USD/JPY. Each transaction record contains a time stamp for the trade, a 

variable indicating whether the trade was a market buy or sell and the transaction 

price. For the quotes, each record contains a time stamp, bid and ask prices.8 Thus 

we do not need to make use o f potentially inaccurate, ad hoc algorithms to assign 

trade direction. The samples for EUR/USD and GBP/USD cover a period o f ten 

months from 28 September 1999 to 24 July 2000. Samples for EUR/GBP and 

USD/JPY cover a period o f eight months from 1 December 1999 to 24 July 2000. 

One limitation o f the data supplied is a lack o f information about the size o f each 

trade. Thus we cannot analyze whether the Dollar value o f order flow matters over 

and above order flow measured simply in terms o f numbers of trades.9 Neverthe­

less this high frequency data set has two valuable characteristics: long sample 

periods and multiple exchange rates. The long sample period ensures reasonable 

statistical power for various econometric tests and the broad currency scope pro­

vides a platform to check the robustness of model estimation cross-sectionally on 

major floating exchange rates.

8Chapter two will only use transaction information and Chapter three will use information on 
both transaction and quote

9However, we do not expect the using the number o f trades to proximate volume will alter the 
validity this research given the high correlation between the number o f trade and volume reported 
in the literature, e.g Danielsson and Payne (2000) report a correlation o f 0.94.
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2.2.3 Filtering and time aggregation

For the later analysis, we time aggregate the transaction-level data to various de­

grees. Prior to time aggregation, however, we remove sparse trading periods from 

the data. Such sparse trading periods include the overnight periods, weekends, 

some world-wide public holidays and certain other dates where the feed from 

D2000-2 is very low.10

The analysis focuses on 8 different time aggregation levels: 5 minutes, 15 

minutes, 30 minutes, 1 hour, 4 hours, 6 hours, 1 day and 1 week.11 Note that 

the definition of one day in this research corresponds to a trading day defined 

as the interval between 6 and 18 DST. Thus one day covers 12 rather than 24 

hours. Similarly, one week covers 5 trading days. The time aggregation is done as 

follows. First, The sample is scanned along calendar time. At every observation 

point the last transaction price is recorded along with the excess o f the number of 

market buys over market sells since the last observations point. The logarithmic 

price changes is constructed from the price data.

After filtering and aggregation, 32 databases (8 sampling frequencies x 4 ex­

change rates) are created. These aggregated databases are the foundation for the 

model estimations and their properties are summarized in Table 2.1. As mentioned 

above, the long sample periods are valuable in that after filtration and aggregation 

we still have a decent number o f observations at our lower sampling frequen­

cies. For example, at the daily level, we have 201 observations for EUR/USD and 

GBP/USD and 160 observations for EUR/GBP and USD/JPY. The sample periods 

covers a time during which there was a depreciation o f the EUR against the USD

10Ovemight is defined as a period from 18:00 to 6:00 DST next day. It should be noted that this 
definition is only proper for the traders in London and New York, but not for the traders in Asian 
markets. It corresponds to the portion o f  the day when trade on D2000-2 is least intensive, even 
for USD/JPY.

11 We have experimented with denser time aggregation levels and the results do not alter the 
pattern we reported here.
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and GBP, a depreciation of GBP against USD and a depreciation o f JPY against 

USD. These market trends are reflected in the columns o f each panel in Table 2.1 

that display mean returns. Comparing panel (b) with the other three panels, it is 

clear that the number o f trades in USD/JPY is far less than for the other three mar­

kets. GBP/USD is the most heavily traded pair with EUR/USD and GBP/USD 

just behind. These numbers reflect two things. First, Reuters D2000-2 has poor 

coverage o f JPY markets and, compared to its competing system (EBS), has a 

minority share in EUR/USD trade. In contrast, D2000-2 dominates trade in GBP 

rates.

2.3 Own Order Flow and Foreign exchange rate De­

termination

The study o f the high frequency relationship between price changes and order flow 

has a long tradition in the market microstructure literature. In contrast, it is only 

recently that such relationships have been studied at lower sampling frequency 

pairs, such as daily or weekly.

We begin simply by tracking how the explanatory power o f order flow for 

price changes varies across sampling frequencies and across currencies. To this 

end we run a set of regressions o f the following form;

AP ( k \ t =  a(*)/ +  P(*)/e(*),y+ e, (2.1)

where AP{k)^t is the change in transaction price for currency pair i at sampling 

frequency k  and Q(k)i)t is the order flow in the interval ending at t for currency 

pair i at sampling frequency k. While several authors have provided results from 

regressions such as that above for specific currencies at specific sampling ffe-
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quencies, our analysis looks at four exchange rates from a sampling frequency of 

5 minutes all the way through weekly.

Table 2.2 contains the estimation results for model (2.1) for our four exchange 

rates and over the entire spectrum of time aggregation levels.12

At the highest frequencies (less than one hour) there is significant effects from 

order flow for all currencies, with the strongest effects for EUR/USD and R2 

ranges from 33% to 45%. These results confirm what microstructure economists 

have long known —  order flow carries information for high-frequency asset price 

determination. People who are sceptical to the information explanation may think 

that the regressions at very high frequencies are simple capturing the liquidity 

effects.

As a result, from the point o f view of exchange rate determination, we move 

toward lower frequencies. Consider first results from the daily frequency fre­

quency, initially for EUR/USD and USD/JPY in order to provide comparability 

with Evans and Lyons (2002a).13 Their daily USD/DEM and USD/JPY regres­

sion R2 were just over 0.60 and 0.40 respectively which are broadly consistent 

with our results. The results reported in this research directly corroborate those of 

Evans and Lyons (2002a).

However, our results on the GBP related exchange rates are much less sup­

portive o f their results. By looking at the low frequency regressions in the final 

two panels o f Table 2.2, one can see that the explanatory power o f order flow 

for GBP/EUR and GPB/USD is very poor. At sampling frequencies exceed­

12Since the normality o f our return data is rejected by the Jarque-Bera test (not reported), we 
also experimented with a LAD estimator for these regressions, but the results were not qualitatively 
affected.

13 Note that our definition o f the aggregation time interval is slightly different from that in ?. 
Whilst their ’daily’ aggregation interval is defined as a period from 4:00 pm to 4:00 pm next 
day our definition is a period from 6:00 am to 6:00 pm excluding overnight period. We also 
experimented with a interval definition that includes overnight period in this comparison study 
and find results that do not differ qualitatively from those we reported here.
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ing one hour, in no single case does the regression R2 exceed 0.10, although in 

five o f the eight cases the order flow variable is statistically significant. Thus, at 

least for GBP, the assertion that order flow matters for exchange rate determina­

tion when one moves towards sampling frequencies that matter to international 

macroeconomists appears less secure than our EUR/USD and USD/JPY results 

suggested.

A graphical representation o f these results using a somewhat more dense set 

o f sampling frequencies is given in Figure 2.1. The figure clearly demonstrates 

the importance of order flow regardless o f sampling frequency for EUR/USD and 

USD/JPY but also points to the declining effect o f order flow in the Sterling mar­

kets.

2.4 Inter-market Order Flow Analysis

Most existing order flow research focuses on one asset at a time. However, since 

exchange rates are relative prices of currencies, and three of our exchange rates 

form a triangle relationship, it is o f interest to investigate how order flow in one 

currency pair might be used to explain the exchange rate o f another currency pair. 

This is denoted as inter-market order flow  analysis.

The reason for considering inter-market effect is the peculiar nature o f cur­

rency markets. In theory, an informed currency trader can have multi-route trad­

ing strategies to exploit his information. In a broad sense, consider, e.g., a trader 

has superior information about the future value o f USD, perhaps that USD can 

be expected to appreciate vis-a-vis other currencies. The trader can exploit this 

information by trading in USD/JPY, EUR/USD, GBP/USD, and so on. Holding 

others constant, an order flow in one market (e.g. GBP/USD) can convey valuable

14Evans and Lyons (2002b) is an exception.
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information to other relevant markets (USD/JPY). Given the fact that three of the 

currency pairs used in this study forms a perfect triangle system, this multi-route 

trading possibility is particularly important because any trading within the triangle 

system can be realized by direct or in-direct trading. Suppose a investor has supe­

rior information about the relative value of EUR to GBP (e.g. Euro will appreciate 

in the future). He can buy EUR directly in EUR/GBP market and in this case we 

will see the standard single market result, i.e., a positive impact of EUR/GBP or­

der flow on EUR/GBP rate. However this investor can also trade GBP/USD and 

EUR/USD to exploit his information advantage if  the in-direct markets are liquid 

and price impacts are small. This reasoning is actually in line with the argument 

o f vehicle currency literature that transaction cost is the major determinant on 

the choice o f trading currencies (e.g. Matsuyama et al. (1993) and Rey (2001)). 

Under this hypothesis, order flow in GBP/USD and EUR/USD markets conveys 

information about EUR/GBP. Since liquidity suppliers in one market can observe 

the order flow in other market, they can revise their valuation o f a currency without 

actual trading.

It is in this analysis that the multi-currency nature of our data set becomes 

extremely useful. The inter-market effects is investigated by extending (2.1) to 

include the order flow from all currency pairs, while still remaining within the lin­

ear specification that relates price changes in market i to contemporaneous order 

flows in all four markets. The specification is given below;

AP(k)tf = a{k)i + Y i m i j Q { k ) u + t i ,< , i , j  = E D ,SD ,E S,D Y  (2.2) 
j

where, as before, k  indexes sampling frequency, i is the rate to be explained and 

the summation over j  gives an explanatory term that is linear in all four order flow 

variables. Table 2.3 presents the main results from estimating (2.2) for all rates

42



and all sampling frequencies, while the change in R2 is shown in Figure 2.2.

Consider first the results for USD/JPY as it is the only JPY rate and because 

the other three rates form a triangulating relationship. We see that for USD/JPY, 

aside from the strong own flow effects uncovered in Section 2.3, there are few 

other significant flow variables. As one might expect, no GBP/EUR flow variable 

is significant. A couple o f EUR/USD and GBP/USD flows are significant and, as 

expected given the definition o f the rates, they enter with negative signs.15 In all 

cases the improvement in the R2 o f the regressions as compared to the univariate 

specifications in Section 2.3 is small.

The results for other three exchange rates are striking. For EUR/USD, panel 

(a) o f Table 2.3, the order flow coefficients o f EUR/GBP and GBP/USD are, as ex­

pected, consistently positive and significant at the 1 percent level at relatively high 

frequencies. The significance o f GBP/USD flow persists to the daily level. Also, 

USD/JPY flow is significant, with the expected negative coefficient, at very high 

sampling frequencies. Overall, these effects lead to improvements in explanatory 

power (change in R2 or AR2) up to 6% and for all specifications below the daily 

level this improvement is significant.

For GBP rates, the results are very interesting. Flows in the other GBP rate 

(EUR/GBP flow in the GBP/USD price change regressions and vice versa) are 

strongly significant at higher frequencies while USD/JPY flows have virtually no 

effects. However, the dominant new right-hand side variable in these regressions 

is EUR/USD flow. In each and every case for these two exchange rates, EUR/USD 

flows are strongly significant with a positive coefficient. These extended specifi­

cations show markedly improved explanatory power over the univariate models 

in Section 2.3, o f between 5% and 35% with the largest improvements being at 

the lowest sampling frequencies.16 In all cases, the extra right-hand side variables

15 A negative flow in these rates means Dollar sales, thus driving the Yen price o f  a Dollar down.
16Note, even if  there is substantial improvement o f R2 for both EUR/GBP and GBP/USD when
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can be shown to significantly improve the explanatory power o f the regression. 

It is for the EUR/GBP that the effects of EUR/USD flow is strongest, providing 

virtually all explanatory power at the lower frequencies.

Bring the the results o f Table 2.2 and Table 2.3 together, a seemingly puzzle

emerges: Rueters D2000-2 has the best coverage of Sterling based exchange rates,

the explanatory power o f Euro-Dollar order flow, which is not mainly covered by

D2000-2 system, is much stronger than Sterling order flow. However, if  price

change is more due to information flow than duo to liquidity effects, flow coverage

of a particular system might not be a critical determinant o f flow explanatory

power if  the information carried by order flow is visible to market participants

regardless where the flow is traded. Since Euro-Dollar is most liquid asset in FX

market, information that drives other assets movements (e.g. Euro-Sterling) can

very likely be represented in Euro-Dollar flows.17 This conjecture is consistent

with the results in Panel (c) and (d) o f Table 2.3, where the AR2 o f (c) is much

larger than AR2 of (d), because if  Euro-Sterling is less liquid than Sterling-Dollar

information about Euro-Sterling is more likely to be explored through Euro-Dollar

than in the case of Sterling-Dollar. This puzzle can be further investigated by

confining the inter-market analysis to the two Sterling based exchange rates in our

sample because D2000-2 has best coverage o f them. I exclude Dollar-Yen and

Euro-Dollar from the regression 2.2 and results are reported in Table 2.4. When

sampling frequency is high, for both EUR/GBP and GBP/USD, adding the order

flow of second rate does not change R2 very much. When sampling frequencies

are lower than 4 hours, AR2 is larger when GBP/USD flow is added in EUR/GBP

equation than when EUR/GBP flow is added in GBP/USD equation. This result is

also consistent with our information hypothesis because GBP/USD is more liquid

other order flow is included in the regressions, R2 for GBP/USD suffers decrease from 30% to 
15% percent. This is probably due to the sample specific randomness.

17This hypothesis has be confirmed by my recent talks with the primary traders in Barclays 
Global Investors (BGI), one o f the largest currency managers in the world.
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than EUR/GBP and information can be more easily exploited through GBP/USD 

than EUR/GBP.

These results provide clear evidence of flow information being transmitted 

across linked exchange rate markets, especially for the less liquid markets. The 

EUR/USD exchange rate is the largest and most liquid in the world, and its or­

der flow is shown to dominate across all three triangular currency pairs. This is 

especially apparent for the least liquid of these three currency pairs, EUR/GBP.

In sum, the presence o f significant inter-market order flow effects indicates 

that information spills over linked markets and reinforces the notion that order 

flow is a significant determinant of exchange rates. Furthermore, the fact that the 

order flow from the largest currencies dominates the determination o f  the smaller 

currencies, suggests that new information first flows into the most liquid markets, 

i.e. where new information can be best exploited. This result has important im­

plication for the studies on exchange rate determination, especially for less liquid 

exchange rates.

2.5 Forecasting Ability Analysis

The order flow models estimated above (2.1) and (2.2) used contemporaneous or­

der flow to explain exchange rate changes. However, as argued by Frankel and 

Rose (1995,pp. 1702) "Fitting exchange rates to contemporary observable vari­

ables, in-sample, is one thing. Forecasting out o f  sample is quite a n o t h e r The 

forecast ability of exchange models is examined by Meese and Rogoff (1983a,b) 

who study the out-of-sample forecasting ability o f various structural and time 

series models from 1 to 12 months and concluded that none o f these models 

performed any better than a random walk model at short horizons (one month). 

This research provides a first investigation o f the out-of-sample forecasting per­
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formance o f the order flow models for exchange rates, across different sampling 

frequencies and using a variety o f forecasting specifications. We first use the 

methodology proposed by Meese and Rogoff (1983a,b), and then extend this to 

genuine out-of-sample forecasts testing.

2.5.1 Meese-Rogoff Out-of-SampIe Forecasts

The Meese and Rogoff (1983a,b) test requires using data up until time t to estimate 

the parameters o f the relationship between price changes and order flow, and then 

using the estimated relationship to forecast the price change at t +  1 based on 

observed order flow at t +  1. The root mean squared error (RMSE) from order 

flow model is then compared to the RMSE of a random walk (RW) model with 

a drift. Thus the Meese-Rogoff test is not a genuine out-of-sample forecasting 

experiment as observed future order flow is used in the forecasting.

The sampling frequency analyzed ranges from 5 minutes to 1 week and for 

each sampling frequency we look at forecasting horizons from one to 12 observa­

tions.18 The forecasting equation that is equivalent to the regression model (2.1) 

is thus given by;

AP{k)i)t+h = a  ( k \ t +  $(k)ijQ (k)ij+h +  Et+h (2.3)

where AP(k)ijt+it is the return o f a specific time interval (defined by the sampling 

frequency) h-step-ahead o f time t and forecasted at time t. Q(k)iyt+h is the order 

flow of the time interval over which the return is forecasted, we have added time 

subscripts to the regression intercept and slope coefficients to emphasize that they 

are estimated using information until t only.

18Take a frequency o f four hours and a horizon o f 6 as an example. The forecast horizon, in 
terms o f hours, is 24 hours (4 x 6). Since 12 hours represents one trading day (as the overnight 
period has been excluded) 24 hours represents a two-day forecast
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The benchmark forecasting model is a drifting random walk where log price 

follows a random walk with drift. The h-step-ahead price change is forecast to be 

the average exchange rate change from the beginning o f the sample till time t.

AP(k)i,t+h =  p ( k \ t +  x\t+h (2.4)

where p ^ t  is the estimated drift based on information up to time t only (for ex­

change rate i and sampling frequency k). The models are estimated and forecast 

recursively. The initial forecast estimation period is the first four months o f the 

data in all cases. The criterion used to judge forecast accuracy is the RMSE, 

comparing that o f the order flow model with that of the random walk.

The main results are reported in Table 2.5. The columns headed ‘OF’ and 

‘RW’ are the RMSEs generated by forecast models (2.3) and (2.4) respectively. 

The /-stats comparing forecast accuracy are those given in Diebold (2001, pp. 

293). The most striking feature of Table 2.5 is that the RMSEs generated by the 

order flow models are virtually all lower than those generated by RW model. Fur­

thermore, for all exchange rates, this forecast improvement is significant at higher 

sampling frequencies. When sampling frequency goes towards the lower end, the 

forecast improvements become insignificant for Sterling based rates.19 Never­

theless, if  we put all four exchange rates, sampling frequencies and forecasting 

horizons together, we find that overall, order flow based forecasting analysis out­

performs that o f the macro models considered by Meese and Rogoff (1983a,b). 

Here we show that even at the daily and weekly sampling frequencies, heavily 

traded exchange rates such as EUR/USD and USD/JPY can be forecasted using 

order flow. Furthermore, since these results are generated only by using own order

19The lack o f significance for Sterling based rates might be due to the insufficient explanatory 
power o f Sterling order flow model itself discussed in section 2.4, i.e. information about Sterling 
rates might not manifested itself through Sterling flow directly.
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flow, the GBP results would probably be improved considerably when flows from 

other markets are included.

2.5.2 Genuine Forecasting

Since the Meese-Rogoff test is no a genuine forecast test, this subsection extends 

the forecast results above by considering true forecasts o f price changes, based 

not on order flow observations arriving after the forecast date, but only using or­

der flow information available at the forecast date. Thus, it is expected that these 

forecasting results would be somewhat less impressive than those in the prior sub­

section. The focus here is on the one-step ahead forecasting for all of the pre­

viously studied sampling frequencies and for all four exchange rates. The order 

flow based forecasts are drawn from the following specification;

AP(k)i>t+i = a{k)iyt +  (3 {k)i,tQ{k)u  +  et+l (2.5)

To emphasize, when constructing the forecast o f the price change at t -1-1 from 

the prior specification, the intercept and slope in the regression are estimated using 

information available at t only and the order flow observation entering into the 

forecast is dated t also. Thus, these are genuine forecasts. Again we compare the 

ability o f specification (2.5) to forecast price changes with the forecast produced 

by the random walk model (2.4). Results are presented in Table 2.6 for the entire 

spectrum of sampling frequencies and exchange rates.

Inspection o f this table indicates that if  there is any statistical significance in 

our somewhat naive linear specification then it is concentrated at the highest fre­

quency, i.e. 5 minutes. For all o f the regressions considered here, the RMSE of the 

order flow forecasting model is virtually the same as, or at most only marginally 

below, that o f the random walk forecast. Thus, the explanatory power of our gen­
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uine forecasting regressions is poor and there is little evidence that these simple 

linear specifications contain true forecasting power. Only at the highest frequen­

cies is the relationship between order flow at t and the one-period price change to 

t +  1 positive and significant.

2.5.3 Order Flow Forecasting

The final forecasting exercise focusses on the predictability o f order flow itself. 

The aim is to test whether flows can be forecast with past information on flows 

themselves and price changes. If  this was the case, then another route to forecast­

ing exchange rate changes would possibly exist. One could combine the strong 

contemporaneous relationship between price changes and order flows uncovered 

in Section 2.3 and an order flow forecast to construct a price forecast. The fore­

casting model considered here is specified as;

J L
Q{k)i , t+1 = «(&)/,*+ X  ^ ( k ) j ti1t A P ( k ) i it - j + i  +  ^ y { k ) i , i tt Q ( k ) t - i + \ + £/+i (2.6)

j =  l i= i

i.e. for a given sampling frequency (k) and exchange rate (0, the flow at t +  1 

is regressed on it’s own first L lags and on J  lags of the price change. In the 

estimations both J  and L is set at 2 after some experimentation with alternative 

lag lengths. Results from estimations are given in Table 2.7.

The results indicate that the majority o f the statistical significance in the fore­

casting regressions comes at very high frequencies. Even though there is evidence 

o f high-frequency positive dependence in order flow, in all cases the RMSE from 

the random walk model and (2.6) are virtually identical.

For the GBP exchange rates there is also evidence of negative dependence of 

current flow on past returns. Thus, when prices have been rising in the recent past,
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order flows tend to become negative —  a manifestation o f contrarian or negative 

feedback trading. This causality is reversed for the USD/JPY. Thus, in this case 

there would seem to be evidence o f aggressive momentum type trades.

While there is significant relationship between current flows and past return 

and flow information, our simple linear specifications cannot be used to forecast 

price changes. The results do suggest however that there is some potential for the 

creation of a sophisticated forecast model for prices and flows.

2.6 Discussion

The current study has thrown up a number of new and interesting results on the 

explanatory power, forecasting ability and inter-market effects o f order flow anal­

ysis. However, one clear implication of this work is an affirmation of results from 

previous analysis —  order flow has strong explanatory power for exchange rate 

changes. This explanatory power is very strong at very high frequencies but per­

sists to much lower frequencies, daily and weekly, that can genuinely be consid­

ered of interest to international macroeconomists. This research provides strong 

evidence that currency flows carry information, confirming the evidence contained 

in Payne (2003), Evans and Lyons(2002a) and Rime (2000) amongst others. Of 

course we cannot uncover whether order flow carries information regarding fun­

damentals, long-run risk premia or a mixture o f the two, but the key result is that 

flows are informative to those looking from a trading perspective and those with a 

medium term macroeconomic view.

While the results on the longer-run relationship between flows and exchange 

rate changes in this chapter are similar to those derived by Evans and Lyons 

(2002a), there is some interesting and important differences between both their 

results and the data upon which they are based and those presented in this re­
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search. First o f all, data used in this research is drawn from the electronically 

brokered segment o f the market while theirs is from the direct trading segment. 

In the former case this implies that there is pre-trade anonymity but trades are 

published to the market at large. In the latter case, quoting and trading is clearly 

non-anonymous but the occurrence and details o f trades are both kept private to 

the counterparties. Based on this, brokered trades may have different information 

content, and in this research, strong evidence o f information effects is identified in 

the brokered segment. Thus results provided in this research provide strong cor­

roborating evidence for the results of Evans and Lyons (2002a), especially when 

considering the different data sources and sample periods.

However, results in this chapter contain a very important difference to those 

in Evans and Lyons(2002a). The univariate regressions (equation (2.1)) o f price 

changes on order flow for GBP exchange rates perform very poorly at lower sam­

pling frequencies, with explanatory power close to zero. This appears to fly in the 

face o f the preceding discussion —  perhaps the USD/JPY and EUR/USD results 

are anomalous and order flow has no long run effect on exchange rates for the 

majority of currency pairs. While this is clearly a possibility (despite empirical 

evidence to the contrary for Scandinavian exchange rates in Rime (2000)), we 

feel that such a conclusion would be unwarranted. Indeed, it is demonstrated in 

the inter-market regressions (equation (2.2)) that once one allows for aggressive 

buying and selling pressure in related markets, order flows have strong effects in 

all four exchange rates at every sampling frequency considered in this study. This 

is a key new result. Therefore order flow carries information that not only affects 

exchange rate changes in its own market but also in the other markets. Empirically 

we see information instantly spilling over from m arkets (via order flow) to prices 

in market B.

It is interesting to note that the dominant flow variable in this data set is
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EUR/USD flow. EUR/USD flow has clear and persistent effects on both EUR/GBP 

and GBP/USD rates. This is intuitive since because the EUR/USD is the most 

liquid and heavily traded currency pair globally, one can expect that any informa­

tion about either EUR or USD would hit this market first due to its low transac­

tion costs and massive participation. Thus those quoting prices in related pairs 

will very likely keep an eye on EUR/USD developments, including order flow, in 

forming of their prices.

A final point to note regarding the inter-market flow analysis carried out in 

Section 2.4 is that in this analysis we see prices for a given rate move in the ab­

sence o f trade in that rate, as they are affected by flows occurring in other markets. 

Thus, one cannot explain away the importance o f order flow in an inter-market 

context by simply asserting that aggressive buying or selling pressure is just tem­

porarily moving prices due to low market liquidity and that after such “digestion 

effects” have run their course prices would revert —  here there is nothing to digest 

aside from information. This, in our view, only serves to reinforce evidence that 

order flows do carry information and also information that is relevant at macroe­

conomic sampling frequencies.

The final part o f this study is the forecasting power o f order flows for exchange 

rates. Three sets of results are established. First, the order flow model beats the 

same random walk benchmark that macroeconomic models o f 70s and 80s lost 

out to. The second is a true one-step ahead out-of-sample experiment. This ex­

periment shows that order flow forecasts hardly reduce RMSEs relative to random 

walks (If there is any, it is only at the highest sampling frequencies i.e. 5 minutes). 

Finally, order flow is found to be predictable.
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2.7 Conclusion

This chapter studies the explanatory and forecasting power o f order flow for ex­

change rates changes at sampling frequencies ranging from 5 minutes to one week. 

It is demonstrated that order flow analysis has strong power to both explain and 

forecast exchange rate changes at virtually all frequencies. The key results of this 

research are as follows;

1. The contemporaneous relationship between flows and changes in rates is 

very strong at intra-day frequencies for all four rates.

2. At the daily and weekly level, there is still strong explanatory power of 

order flow for exchange rates changes for EUR/USD and USD/JPY. This is 

not the case for EUR/GBP and GBP/USD.

3. However, when one examines the inter-market effects o f order flows, one 

sees that price changes for EUR/GBP and GBP/USD are strongly affected 

by EUR/USD order flow and, taking these effects into account, overall flows 

have strong explanatory power for the GBP rates. The result that EUR/USD 

order flow significantly explains EUR/GBP and GBP/USD rates suggests 

that a significant portion of information on GBP is revealed in the trading 

activities in EUR/USD market.

4. An analysis of the forecasting power o f order flows, using the technique of 

Meese and Rogoff (1983a,b), demonstrates the flow analysis outperforms a 

naive benchmark across essentially all sampling frequencies for all rates.

5. A true out-of-sample forecasting experiment, however, demonstrates that 

the simple order flow models do not provide terribly valuable exchange rate 

forecasts aside from at extremely high sampling frequencies.
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6. Order flow can be forecasted out o f sample and this implies the possibility 

of the creation o f some more sophisticated forecasting models.

These results serve to emphasize the role played by order flow in foreign ex­

change, and possibly other markets. This chapter provides clear evidence that 

order flows can be used to explain and forecast rates at trading desk sampling 

frequencies as well as observations intervals relevant to international macroeco­

nomics. The information content of order flow implies that simple symmetric 

information, rational expectations models o f exchange rate determination are not 

consistent with the data. Further work on modelling exchange rates to take ac­

count of these effects as well as further empirical work to clarify the role of order 

flow in exchange rate determination can only help move exchange rate analysis 

out of the cul-de-sac in which it has resided for the last two decades or so.
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Table 2.1: Summary of time aggregated databases

In each panel o f Table 1, k is sampling frequency. Obs is the total number o f (derived) observations in that database, r  is the average return for that 
sampling frequency. Returns are defined as 100 x (log(Pt) — log(Pt- 1)). Columns headed Trades, Quotes, Buys and a  give the average number o f  
trades, average number o f quotes, average number o f buys and standard deviation o f returns for that frequency.

EUR/USD(a) USD/JPY(b)
k Obs Trades Quotes Buys r a Obs Trades Quotes Buys r a

5m 29107 16 51 8 -0.0006 0.06 23148 1 7 1 0.0004 0.08
15m 9701 49 153 25 -0.0017 0.10 7715 4 21 2 0.0008 0.10
30m 4850 98 306 49 -0.0038 0.13 3857 7 41 4 0.0022 0.13

lhr 2424 196 611 99 -0.0050 0.20 1928 15 83 8 0.0038 0.18
4hr 605 782 2444 395 -0.0196 0.40 481 58 330 30 -0.0052 0.37
6hr 404 1174 3669 593 -0.0313 0.47 321 88 496 45 0.0089 0.41

12hr 201 2347 7317 1185 -0.0676 0.62 160 175 988 90 0.0351 0.56
lwk 42 11305 35831 5702 -0.3373 1.53 33 1024 5961 526 0.2785 1.22

EUR/GBP(a) GBP/USD(b)
k Obs Trades Quotes Buys r a Obs Trades Quotes Buys r a

5m 23148 14 34 8 -0.0002 0.05 29107 17 44 9 -0.0004 0.04
15m 7715 43 103 23 -0.0007 0.09 9701 52 131 27 -0.0012 0.07
30m 3857 87 206 45 -0.0015 0.13 4850 104 263 53 -0.0029 0.09

lhr 1928 174 411 90 -0.0025 0.18 2424 208 525 106 -0.0049 0.13
4hr 481 694 1646 362 -0.0106 0.37 605 832 2098 424 -0.0200 0.26
6hr 321 1041 2468 542 -0.0160 0.45 404 1249 3150 636 -0.0291 0.32

12hr 160 2085 4944 1086 -0.0384 0.61 201 2496 6280 1271 -0.0603 0.45
lwk 33 10383 25506 5423 -0.0482 1.36 42 13245 35328 6753 -0.2299 0.92



Table 2.2: Explaining Exchange Rates with Order Flow

AP { k ) iJt =  a (k )i  +  P (* ) i0 (* ) i , /  +  e,

where A{k)P^t is price change at sampling frequency k for exchange rate i at time t and Q{k)^t is order flow for the same exchange rate at the same 
sampling frequency. All t-values are constructed using the Newey-West estimator o f the coefficient variance-covariance matrix. The order flow is 
scaled by 10- 2 .

EUR/USD USD/JPY EUR/GBP GBP/USD

k. P /-value R2 P /-value R2 P /-value R2 P /-value R2
5m 0.40 72.39 0.33 1.08 24.71 0.06 0.41 60.30 0.26 0.29 65.07 0.26
15m 0.38 53.25 0.43 1.17 26.53 0.15 0.38 32.01 0.26 0.26 36.58 0.24
30m 0.36 45.30 0.45 1.19 20.96 0.25 0.33 20.51 0.21 0.23 21.30 0.21
lhr 0.36 29.91 0.38 1.25 18.98 0.30 0.30 12.85 0.16 0.21 13.95 0.16
4hr 0.34 17.63 0.38 1.14 9.70 0.30 0.16 3.00 0.05 0.13 3.95 0.05
6hr 0.34 15.35 0.38 1.21 10.59 0.42 0.10 2.00 0.02 0.11 3.66 0.05
12hr 0.30 11.04 0.35 1.17 10.70 0.50 0.02 0.36 0.00 0.14 4.12 0.08
lw k 0.31 5.51 0.45 0.91 11.43 0.67 0.06 0.59 0.01 0.05 0.70 0.01



Table 2.3: Inter-market Information flow

eJ>(k)i4 = a{k)i + Y f i{ k ) ijQ (k )u  + t i4, , i = E D ,D Y,E S,SD
j

where k indexes sampling frequency, i is the rate to be explained and the summation over j  gives an explanatory term that is linear in all four order 
flow variables. Columns headed AR2 give the changes in R2 between the model with and without order flow from other markets. The last column in 
each panel is the value o f  the F-test o f  the null Hq : pj  =  0 for j  ^  /. The order flow is scaled by 10-2 . a'b'c indicate the 1%, 5% or 10% significance 
level by using the Newey-West coefficient variance-covariance estimator.

EUR/USD (a) USD/JPY (b)

k Ped fW P^s P5D AR2 p-value P ED fW fW PSD AR2 p-value
5m 0.32a -0.05° 0.18a 0.14a 0.054 0.01 -0.02* 1.07" -0.01 -0.01 0.001 0.01

15m 0.31" -0.05* 0.16a 0.13a 0.056 0.01 -0.02c 1.17a -0.00 -0.01 0.001 0.05
30m 0.31" -0.10° 0.13° 0.11" 0.048 0.01 -0.01 1.19a 0.00 -0.01 0.001 > 0 .1 0

lhr 0.32a -0.01* 0.11a 0.12° 0.039 0.01 -0.02 1.24a -0.00 -0.03* 0.005 0.01
4hr 0.35° -0.05 0.03 0.10a 0.016 0.01 -0.04c 1.13a 0.05 -0.03 0.010 0.10
6hr 0.34° -0.09 0.03 0.12a 0.029 0.01 0.01 1.22a 0.01 -0.03 0.002 > 0 .1 0

12hr 0.33a -0.03 -0.05 0.08c 0.015 > 0 .1 0 0.02 1.17a -0.02 -0.02 0.003 > 0 .1 0
lwk 0.39a -0.01 -0.00 0.15 0.044 > 0 .1 0 0.04 0.89a 0.06 -0.12* 0.057 > 0 .1 0

EUR/GBP (c) GBP/USD (d)

k $E D jW AR2 p -value P DY Prs PSD AR2 /7-value
5m 0.21° -0.02 0.30a -0.13a 0.099 0.01 0.10a -0.03* -0.1l a 0.27° 0.041 0.01

15m 0.23a -0.02 0.26a -0.13a 0.130 0.01 0.09° -0.03 -0.10° 0.25a 0.045 0.01
30m 0.23a -0.05 0.22a -0.11° 0.142 0.01 0.08a -0.03 -0.10a 0.22a 0.048 0.01

lhr 0.23a -0.03 0.19a -0.09a 0.146 0.01 0.10" -0.06 -0.09a 0.20a 0.055 0.01
4hr 0.26° -0.05 0.07 -0.02 0.220 0.01 0.1 oa -0.02 -0.07* 0.10a 0.065 0.01
6hr 0.28a -0.04 0.01 0.01 0.235 0.01 0.09a -0.09 -0.01 0.09* 0.053 0.01

12hr 0.28a -0.11 -0.03 -0.04 0.263 0.01 0.10a -0.00 -0.02 0.12a 0.054 0.01
lwk 0.29a -0.07 0.01 0.08 0.335 0.01 0.12* 0.05 -0.00 0.07 0.107 0.05



Table 2.4: Inter-market information flow experiments

AP(k)i = a(k) +  p {k)iQ{k)i + z(k)h , i =  ES, SD 

AP(k)i = a(k) +  P(i),,i Q{k)ES + m > M k)sD +  e (i) ,- , , i = E S,SD

where k indexes sampling frequency and i is the exchange rate to be explained. Time index t has 
been suppressed for simplicity. AP{k)1 is price change at sampling frequency k for exchange rate 
i and Q{k)1 is order flow for the same exchange rate and same sampling frequency. The columns 
under AR2ES and AR2SD give the difference o f R2 o f the above two regression equations

Freq ARes

5m 0.78% 0.79%
10m 0.87% 0.75%
15m 0.72% 0.78%
20m 0.55% 0.79%
25m 0.65% 1.04%
30m 0.50% 0.97%

lhr 0.08% 0.77%
2hr 0.07% 0.77%
4hr 0.50% 0.51%
6hr 1.90% 0.06%

12hr 0.41% 0.00%
lw k 3.31% 0.00%
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Table 2.5: Meese-Rogoff (1983) forecasting experiments: Root Mean Squared Errors (RMSE)

h is forecast horizon in observations, k is the sampling interval. Forecasting horizon in real time is defined as h x  k. The columns under OF and 
RW  give the RMSEs o f the h-step-ahead return forecast for the order flow and random walk models (2.3) and (2.4). The /-statistic for forecast 
improvement o f the order flow model over the random walk is as given in Diebold(2001) (pp. 293).

EUR/USD USD/JPY EUR/GBP GBP/USD
Freq h OF RW /-stats OF RW /-stats OF RW /-stats OF RW /-stats

5m 1 0.05 0.06 -6.23 0.07 0.08 -0.52 0.05 0.05 -4.38 0.03 0.04 -4.28
6 0.05 0.06 -6.23 0.07 0.08 -0.52 0.05 0.05 -4.38 0.03 0.04 -4.28

12 0.05 0.06 -6.23 0.07 0.08 -0.52 0.05 0.05 -4.38 0.03 0.04 -4.28
15m 1 0.07 0.10 -7.82 0.09 0.10 -1.30 0.08 0.09 -3.44 0.06 0.07 -2.99

6 0.07 0.10 -7.82 0.09 0.10 -1.30 0.08 0.09 -3.44 0.06 0.07 -2.98
12 0.07 0.10 -7.82 0.09 0.10 -1.29 0.08 0.09 -3.43 0.06 0.07 -2.98

30m 1 0.10 0.13 -7.84 0.11 0.13 -1.72 0.12 0.13 -2.16 0.08 0.09 -2.32
6 0.10 0.13 -7.84 0.11 0.13 -1.70 0.12 0.13 -2.15 0.08 0.09 -2.32

12 0.10 0.13 -7.84 0.11 0.13 -1.70 0.12 0.13 -2.16 0.08 0.09 -2.31
lhr 1 0.16 0.20 -4.03 0.14 0.17 -2.57 0.18 0.19 -1.19 0.13 0.14 -1.29

6 0.16 0.21 -4.03 0.14 0.17 -2.56 0.18 0.19 -1.20 0.13 0.14 -1.28
12 0.16 0.21 -4.00 0.14 0.17 -2.55 0.18 0.19 -1.20 0.13 0.14 -1.28

4hr 1 0.33 0.42 -2.50 0.32 0.37 -0.94 0.36 0.37 -0.25 0.27 0.27 -0.04
6 0.33 0.42 -2.46 0.33 0.38 -0.90 0.37 0.38 -0.26 0.27 0.27 -0.04

12 0.33 0.41 -2.31 0.33 0.38 -0.89 0.37 0.38 -0.28 0.27 0.27 -0.05
6hr 1 0.39 0.50 -2.40 0.32 0.43 -2.97 0.48 0.48 -0.04 0.32 0.33 -0.08

6 0.40 0.50 -2.38 0.32 0.43 -2.96 0.48 0.49 -0.02 0.32 0.33 -0.08
12 0.40 0.49 -2.20 0.32 0.44 -2.97 0.48 0.48 -0.01 0.32 0.33 -0.08

12hr 1 0.54 0.66 -2.07 0.40 0.58 -2.63 0.67 0.66 0.07 0.46 0.47 -0.16
6 0.53 0.65 -1.94 0.41 0.58 -2.47 0.69 0.68 0.12 0.47 0.47 -0.13

12 0.54 0.66 -1.82 0.42 0.60 -2.47 0.68 0.67 0.16 0.47 0.47 -0.14
lwk 1 1.28 1.62 -1.10 0.76 1.20 -1.86 1.68 1.63 0.12 0.97 0.94 0.15

6 1.39 1.76 -1.18 0.80 1.24 -1.51 1.85 1.84 0.04 0.97 0.94 0.12
12 1.51 1.96 -1.16 0.62 1.18 -1.60 1.31 1.32 -0.02 0.98 1.01 -0.17



Table 2.6: Out-of-sample forecast experiments

A P ( k ) i j + i  — + ${k) i , tQ(k) i , t  H- £/+i
where A(k)Pijt+\ is price change at sampling frequency k for exchange rate i at time t +  1 and 

Q{k)iit is order flow for the same exchange rate and same sampling frequency at t. The columns 
under OF and RW  give the forecast RMSEs o f the model above and random walk models and the 

^-statistic for the forecast improvement over random walk is reported in the last column o f each 
panel. The order flow is scaled down 10- 2 . a,b'c indicate the 1%, 5% or 10% significance level by 
using the Newey-West coefficient variance-covariance estimator.

EUR/USD (a) USD/JPY(b)
Freq p R2 OF RW /-stats P R2 OF RW /-stats

5m 0.03“ 0.002 0.06 0.06 -0.02 0.09* 0.000 0.09 0.09 0.00
15m 1 o © o 0.000 0.10 0.10 0.00 -0.01 0.000 0.09 0.09 0.00
30m -0.00 0.000 0.13 0.13 0.01 -0.12° 0.003 0.13 0.13 0.03

lhr 0.01 0.001 0.20 0.20 0.00 0.02 0.000 0.17 0.17 0.00
4hr 0.01 0.000 0.42 0.42 0.02 0.09 0.002 0.37 0.37 0.01
6hr 0.00 0.000 0.50 0.50 0.02 0.03 0.000 0.43 0.43 0.04

12hr -0.04 0.007 0.67 0.66 0.02 0.03 0.000 0.58 0.58 0.03
lwk -0.10* 0.041 1.62 1.62 -0.01 0.12 0.011 1.22 1.20 0.10

EUR/GBP (c) GBP/USD (d)

Freq p R2 OF RW /-stats P R2 OF RW /-stats
5m 0.05fl 0.004 0.05 0.05 -0.04 0.02° 0.001 0.04 0.04 0.00

15m -0.01 0.000 0.08 0.08 0.02 -0.04 0.000 0.07 0.07 0.00
30m -0.00 0.000 0.13 0.13 0.02 0.00 0.000 0.09 0.09 0.01

lhr -0.00 0.000 0.19 0.19 0.02 0.00 0.000 0.14 0.14 0.01
4hr -0.07* 0.011 0.38 0.37 0.04 0.04c 0.005 0.27 0.28 0.00
6hr 0.01 0.000 0.48 0.48 0.03 0.01 0.001 0.33 0.33 0.02

12hr -0.01 0.000 0.67 0.66 0.12 0.00 0.000 0.47 0.47 0.06
lw k -0.01 0.001 1.69 1.63 0.14 0.04 0.006 1.00 0.94 0.37
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Table 2.7: Forecasting Order Flow Out-of-Sample

Q{k ) i , t + i  = a { k ) i}t + P (% lVAP(A:)lV_y+i + X'VW/,/v2Wr-/+l + e/+l
j =  1 /=i

where A(k)Piit is price change at sampling frequency k for exchange rate i at time / and Q(k)jtt+ j 
is order flow for the same exchange rate and sampling frequency at time / + 1 . The columns under 

OF  and RW  give the forecast RMSEs o f model (2.6) and random walk models and the /-statistic 

for the forecast improvement over RW is reported in the last column. *’*,c indicate 1%, 5% or 10% 
significance level by using the Newey-West variance-covariance estimator.

k Pi k Yi Y2 R2 OF RW /-stats

EUR/USD 5m 3.15* 0.22 0.13* 0.01 0.020 8.45 8.49 -0.10
15m 2.53 -4.65c 0.05* 1.55 0.005 17.01 17.01 0.00
30m 1.32 -2.77 0.04c 0.72 0.002 25.97 25.95 0.01

lhr 4.93 -3.66 0.04 5.44c 0.003 31.39 31.34 0.03
4hr 4.97 13.61 0.03 -7.44 0.007 70.46 70.23 0.04
6hr 4.24 6.39 0.03 9.79 0.026 83.29 82.66 0.10

12hr 37.13* 14.59 0.01 -0.16 0.048 120.40 117.32 0.24
lwk -32.57 51.87 0.04 -27.96 0.072 331.68 278.70 1.10

USD/JPY 5m 2.44* 0.79* 0.19* 0.04* 0.064 1.72 1.79 -0.56
15m 4.21* 0.22 0.10* 3.41c 0.040 3.59 3.63 -0.09
30m 5.25* 1.29 0.03 9.20* 0.032 5.96 6.03 -0.09

lhr 5.86* 0.99 0.09* 0.88 0.039 8.35 8.55 -0.25
4hr -1.08 2.44 0.09c 0.11 0.010 18.93 18.78 0.10
6hr 1.82 -0.83 0.09 7.59 0.018 22.79 22.62 0.08

12hr 9.59 14.30* -0.04 -0.11 0.050 35.25 35.39 -0.03
lwk -4.62 -50.06* 0.34 0.42c 0.161 126.06 108.08 0.71

EUR/GBP 5m -5.70* -5.55* 0.12* 0.04* 0.013 6.53 6.57 -0.11
15m -14.96* -10.00* 0.10* 0.04* 0.016 0.00 0.00 0.00
30m -19.20* -4.07 0.09* -0.00 0.017 15.43 15.45 -0.03

lhr -18.91* -3.56 0.05c 0.04 0.018 24.62 24.95 -0.19
4hr -3.39 -10.91 0.09* -0.04 0.017 53.35 53.09 0.06
6hr -8.26 3.94 0.02 0.06 0.008 68.27 67.30 0.16

12hr 21.92c 9.53 0.09 0.01 0.036 104.24 97.68 0.65
lwk -26.99 82.14* 0.25* -0.08 0.249 273.88 262.86 0.21

GBP/USD 5m -8.12* -11.83* 0.07* 0.04* 0.007 7.03 7.08 -0.18
15m -23.80* -10.67* 0.07* 0.03* 0.015 12.20 12.21 0.00
30m -27.30* -14.76* 0.08* 0.04c 0.021 17.77 18.07 -0.29

lhr -31.37* -16.52* 0.06* 0.09* 0.034 23.59 23.82 -0.18
4hr -14.35* 7.23 0.13* 0.03 0.021 49.42 49.46 -0.01
6hr -10.36 24.78* 0.06 0.04 0.022 67.76 67.43 0.06

12hr 18.99 4.51 0.09 0.05 0.027 90.09 88.26 0.23
lwk -13.88 41.59 0.09 0.05 0.044 271.59 244.34 0.80

t t



Figure 2.1: Variation in R2 of order flow model across sampling frequencies
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Figure 2.2: R2 for univariate and multivariate order flow models
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Chapter 3 

Market conditions, order flow and 

exchange rates determination

3.1 Introduction

In macroeconomic models, foreign exchange rates are determined by the underly­

ing fundamental factors in the economy. The information about these fundamental 

factors is public knowledge and rational agents all correctly understand the map­

ping from information to prices. In these models, there is no private information, 

trading activities play no role in exchange rates determination and price formation 

is straightforward and immediate. Unfortunately these models are associated with 

poor empirical performance. In general, their explanatory power is very low over 

short horizons. In their seminal papers Meese and Rogoff (1983a, 1983b) vig­

orously show that the proportion o f monthly exchange rate movements that can 

be explained by macro models is virtually zero and their forecast ability is even 

worse than a random walk.1

In recent years, a new direction in exchange rate analysis, the market mi­

'For a recent survey o f this literature, see Frankel and Rose (1995) and Isard (1995)
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crostructure approach, has drawn growing attention. The microstructure approach 

assumes that the information structure in the market is asymmetric, i.e. some 

agents in the market have private information.2 The informed traders can exploit 

their informational advantages by issuing orders to market makers. By observing 

order flow, the market maker makes inference about the private information and 

adjusts quotes accordingly. For example, if there is an incoming buy order, the 

market maker might increase the probability that the customer may have received 

‘good’ news. If he saw a sell order, he will reduce this probability. In this way, 

private information is incorporated into the price and in this sense we say that 

order flow is informative.

This approach has recently been applied to foreign exchange markets and it 

has generated some promising results. Evans and Lyons (2002a) claim that order 

flow has substantial explanatory power for exchange rate changes on a daily basis 

and can explain 60 percent and 40 percent of return variations for DEM/USD and 

JPY/USD respectively. Rime (2000) shows that order flow can explain 30 percent 

o f return variation for NOK/DEM on a weekly basis. Chapter two o f this thesis 

works on high frequency data and shows that order flow has explanatory power 

for exchange rate changes for EUR/USD, GBP/USD, USD/JPY, and EUR/GBP at 

relatively high frequency levels even though the explanatory power varies across 

exchange rates and sampling frequencies. The central idea o f this approach is that 

order flow carries information and thus has explanatory power for price move­

ments.3

An implicit underlying assumption in the standard microstructure approach to 

exchange rates analysis is that the informativeness of order flow is constant even

2In this approach, private information is defined as any information that is not public and helps 
forecast the future price better than public information alone. See Lyons (2001)

3It is important to note that order flow is fundamentally different from volume. In the mar­
ket microstructure literature, order flow is defined as the net of buyer-initiated orders and seller- 
initiated orders.
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if the market experiences dramatically different situations. Consider the the fol­

lowing claim of the Reserve Bank of Australia: ”• • • highly leveraged institutions 

in mid-1998 deliberately traded during Sydney lunch time, or in the slow period  

between Sydney’s wind-down and London s wind-up, in order to have maximum 

effects on the Australia dollar’s exchange rate (Market Dynamics 2000, pp 127-8 

) .”4 This claim reflects the worries behind the following question: ”Is the infor­

mativeness o f order flow really constant?” .

The objective of this chapter is to examine whether the above basic assump­

tion is valid and extends the analysis o f the role o f order flow in information 

transmission by further investigating the relationship between market conditions 

and the informativeness of order flow. Even though the price impact o f order flow 

is substantial, there is little consensus among the existing microstructure theories 

concerning under which market conditions order flow could be more informative. 

In the models o f Admati and Pfleiderer (1988) and Subrahmanyam (1991), both 

the informed and the discretionary liquidity traders can strategically choose their 

trading time and such strategic behavior will impact on the informativeness o f or­

der flow. Admati and Pfleiderer (1988) predict that informativeness o f order flow 

will be positively correlated with bid-ask spreads and negatively correlated with 

volatility and trading volume.

In the information uncertainty model o f Easley and O’Hara (1992), however, 

the occurrence of trades is associated with information events. When a trade oc­

curs, the market maker will update his/her belief towards a higher probability of 

the information events and adjust the quotes accordingly. The model predicts that 

order flow is more informative when spreads are high, volatility is high and trading 

volume is high.

This chapter develops a methodology to study the relationship between in­

4It is quoted from McCauley (2001), ’’Comments on ’Order flow and exchange rate dynam­
ics’”. pp.194
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formativeness o f order flow and market conditions and tests a set of hypotheses 

implied by classic market microstructure models. The market conditions studied 

in this paper are a set o f important market statistics: bid-ask spread, volatility and 

trading volume. The data used in this study contains information of transactions 

and firm quotes generated by Reuters D2000-2 in the inter-dealer spot FX mar­

kets. It covers four major currency pairs (EUR/USD, EUR/GBP, GBP/USD and 

USD/JPY) and spans nine months on average between 1999 to 2000. The major 

findings o f this study are:

1. The informativeness o f order flow is not constant under different market 

conditions as was assumed in the standard microstructure approach. This 

result highlights the non-linearity in the relationship between order flow 

and price movement.

2. Order flow tends to be more informative when bid-ask spreads are high, 

volatility is high or trading volume is low. This relationship is significant 

and persistent across different sampling frequencies and exchange rates. 

Clearly these results are neither fully consistent with the predictions of Ad­

mati and Pfleiderer’s model nor with those of Easley and O ’Hara’s informa­

tion uncertainty model.

3. The relationship between the price impact o f order flow and the market 

conditions is significantly captured by our Interaction model and Logistic 

Smooth Transition Regression (LSTR) model. In particular, the empirical 

results from the LSTR model also suggests that the price impact of order 

flow shifts within a relative small range of market conditions that the market 

is very likely to experience.

The remainder of the chapter is organized as follows: Section 3.2 discusses 

the theoretical background and generates hypotheses. Section 3.3 presents the
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methodology. Section 3.4 describes data. Model estimation and empirical analysis 

are presented in section 3.5. Section 3.6 presents two sensitive tests. Section 3.7 

gives a brief discussion. Section 3.8 concludes.

3.2 The informativeness of order flow

Since the classic papers of Kyle (1985) and Glosten and Milgrom (1985), we 

have witnessed a large amount o f work supporting the idea that order flow car­

ries information and has impacts on the price formation process. Perraudin and 

Vitale [1996] and Evans and Lyons (2002a,b) explicitly model order flow as the 

means o f information transmission in FX markets. In these models, dealers first 

receive information from their non-dealer customer order flow and then share or 

spread the information afterwards through inter-dealer trading. On the empiri­

cal side, French and Roll (1986), Hasbrouck (1991a,b), Ito, Lyons and Melvin 

(1998), Lyons (1995) and Payne (2003) show that order flow has a strong impact 

on price movements on both equity and FX markets. In particular, Evans and 

Lyons (2002a), Rime (2000) and the previous chapter claim that order flow has 

significant explanatory power for exchange rates movements in inter-dealer spot 

markets.

Since order flow, the information transmission medium, is one o f the key steps 

to understanding security price behavior, characterizing this transmission mech­

anism under different market conditions will help people better understand the 

price formation process. This issue has been studied in a number of theoretical 

works by Admati and Pfleiderer (1988), Diamond and Verrecchia (1987), Subrah- 

manyam (1991), Easley and O’Hara (1992), Foster and Viswanathan (1990), etc. 

There is, however, little consensus among the theoretical models regarding the 

market conditions under which order flow could be more informative and indeed
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the results of some of these models contradict each other.

In the classic paper o f Admati and Pfleiderer (1988), by introducing discre­

tionary liquidity traders, the authors derive a model which endogenizes trading 

volume, volatility and the bid-ask spread. They show that in equilibrium discre­

tionary traders will clump together. In order to camouflage their trading and min­

imize the price impact, the informed traders will also trade more heavily during 

the period when liquidity traders concentrate. The prediction o f the model is that 

during the concentration: (1) volume will be higher because of increased trading 

activity for both informed and uninformed traders; (2) volatility could be higher 

because more informed trading occurs at that time; (3) spreads will be lower be­

cause competition o f informed traders will decrease the bid-ask spread, leading to 

a better trading term for liquidity traders; (4) order flow will be less informative 

because o f the clump o f liquidity trading.

In the information uncertainty model developed by Easley and O’Hara (1992), 

high trading volume indicates a larger likelihood o f an information event having 

occurred. Therefore during the period when volume is high, volatility will be 

high and order flow will be more informative. In their model, a small spread can 

be interpreted as a small likelihood of an information event. The authors argue 

that when there is a low probability of an information event the market maker 

will shrink the quotes toward “V*, the unconditional expectation of V, and not 

toward the signal-based values o f V or V. • • • With trade now ‘safer’ the mar­

ket maker reduces his spread.”(pp.587). In other words, the model predicts that 

the informativeness o f order flow is positively correlated with volume, volatility 

and spreads. Based on a different underlying information structure, the trading 

constraint model o f Diamond and Verrecchia (1987) has a different implication. 

In the paper, the authors argue that due to trading constraints o f informed traders, 

sparse trading could indicate a ‘bad information event’ rather than ‘no information

69



event’.

Paralleling the theoretical debate above, a fair amount o f empirical work has 

been developed to test asymmetric information models (see, for example, Madha- 

van and Smidt (1991), Brock and Kleidon (1992), Bollerslev and Domowitz(1993), 

Hsieh and Kleidon (1996)). However, the focus of most of this literature is on 

the patterns in volume, volatility and spreads. Lyons (1996) is one of very few 

who addresses the above issue empirically. Lyons tests the event-uncertainty hy­

pothesis against the hot potato hypothesis5 by studying the relationship between 

informativeness o f order flow and market activity intensity. The author finds ev­

idence for the hot potato hypothesis if  the market activity intensity is measured 

by trading intensity. He also finds evidence for event-uncertainty hypotheses if 

activity intensity is measured by quoting intensity. Yet it is unexplained why the 

different measurement of market pace leads to the opposite conclusions. One of 

the potential weaknesses of the paper comes from the data set, which covers only 

five working days for a single dealer in August 1992. As Mello (1996) argues, 

since markets might experience different conditions (turbulent vs calm periods) 

and dealers might have different characteristics (eg, capital size, trading strate­

gies), one week data from a single dealer might not tell the whole story.

Given the order flow’s significant impact on price and its increasing usage by 

practitioners in their decision making, characterizing the information transmission 

mechanism o f order flow is important from the point o f view o f both academics 

and market participants. To characterize the informativeness of order flow under 

different market conditions, we first address the question related to the assumption 

o f the standard microstructure approach: ‘Is order flow equally informative under 

different market conditions?’. The assumption can be formalized in the following

5The hot potato  is a metaphor used by foreign exchange dealers in referring to the repeated 
passage o f idiosyncratic inventory imbalances from dealer to dealer following a customer order 
flow innovation. The hot potato hypothesis assumes that the trades are less informative when 
trading intensity is high.
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set of hypotheses we will test in this study:

Hypothesis I: Orderflow is equally informative regardless o f  trading volume f  

Hypothesis II: Order flow  is equally informative regardless o f  spread. 

Hypothesis III: Orderflow is equally informative regardless o f  market volatil­

ity.

Nest we address the following question: ‘if  the informativeness o f order flow 

changes under different market conditions, then what is the direction of the change?’ 

This question tries to characterize the informational aspect o f price impact of or­

der flow in security markets. In addressing this question, we test the predictions 

o f market microstructure models.

3.3 Methodology

3.3.1 Core model

The asymmetric information pricing model of microstructure is based on a learn­

ing process faced by market intermediaries. Either in the sequential model of 

Glosten and Milgrom (1985) or in the batch trading model of Kyle (1985), a lot of 

attention has been given to the effect o f asymmetric information on market prices. 

If  a trader has superior information about the underlying value of the asset, his 

trades will reveal, at least partially, this private information about the value of the 

asset and will affect the behaviour o f market prices.

The key to understanding the above information revealing process is Bayesian 

learning. Take the model o f Glosten and Milgrom (1985) as an example, the 

market maker sets the ask price at to the expected value V o f an asset after seeing 

a trader wishing to buy. at depends on the conditional probability that V is either

6The irrelevancy hypothesis implies that neither Admati and Pfleiderer (1988)’s prediction nor 
Easley and O’Hara ( 1992)’s prediction is valid.
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lower (V = V) or higher (V = V) than his prior belief (V) given that a trader wishes 

to buy. The bid price bt is defined similarly given that a trader wishes to sell. If  the 

noise traders are assumed equally likely to buy or sell regardless of information, 

good news will result in an excess of buy orders and bad news will result in an 

excess of sell orders. In the model, the conditional probability incorporates the 

new information that the market maker learned from observing the order flow and 

is hence a posterior belief about the asset value V. The posterior will become a 

new prior in the next round o f trading and the updating process continues.

The central idea of the above information extracting process is that the market 

maker adjusts the quoting prices by observing order flow which in turn is driven 

by information. In this sense we say that information, through order flow, drives 

price movements. This idea can be put in the following simple empirical model7:

APt =  +  £> (3.1)

where APt is price change between the time t — 1 and t. Qt is aggregated order 

flow within time interval^ — l,f]. Generally speaking, the information effect of 

order flow will be captured by the regression coefficient p. In words, the more 

informative the order flow the larger the p, and vice versa.

Broadly speaking, P is a function o f some structural parameter Zt measur­

ing market conditions, i.e P =  p (Zt). The question whether the informativeness 

o f order flow is constant under different market conditions can be addressed by 

testing whether p (Zt) =  Po, where Po is constant. Zt in this paper is a set of impor­

tant market characteristic statistics: trading volume, return variance and bid-ask 

spreads. If  P(Z,) is not constant, characterizing the function p(Z,) is a key aspect 

o f studying price impact of order flow and will help people better understand the

7A similar modelling strategy has been extensively used in empirical work, such as Madhavan 
and Smidt (1991), Lyons (1995,2001), Foster and Viswanathan (1990)
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price formation process.

3.3.2 Nonlinearity test

In this section we first use a quintile model, in which we study the price impact 

o f order flow by dividing the whole sample into 5 sub-samples according to the 

market condition measuring variable, to test whether the regression coefficient p in 

the core model (3.1) is constant. If  not, a recursive regression model is employed 

to further study the dynamics of p.

Quintile model

A very straightforward way to test model stability is to split the sample into differ­

ent sub-samples and see whether the model is stable across sub-samples. In this 

paper, the sample is split into 5 sub-samples according to the variable Zti which 

measures market conditions. Division of the sample into 5 groups is based on the 

consideration o f both the size of each group and the difference o f market condi­

tions of each group.8The market conditions o f interest in this paper are market 

volatility, liquidity and volume. Take the case o f volatility as an example, the ob­

servations are divided into 5 sub-samples by the magnitude of market volatility 

o f the time interval from which the observation is drawn. Dummy variable Sjt is 

used to distinguish each sub-sample. With this constraint, the core model (3.1) 

can be expressed as
j

AP/ =  oc +  ^  Py *Sjt * Qt +  £* (3.2)
j= i

where Sji =  1 for the corresponding sub-sample j  and 0 otherwise and J  is equal 

to 5.

8 However, it should be admitted that there is no absolute criterion on how many groups sample 
should be split. Indeed, we experiment with a moving window regression model and find that the 
results are similar to those o f the Quintile model.
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For the cases o f market liquidity and volume, the quintile model is similarly 

constructed.

Under the null, i.e. the order flow is equally informative under different market 

conditions, all regression coefficients will be equal. This can be tested to see 

whether P* =  py,Vi,y.

Recursive least squares regression model

Another way to investigate the variation o f P is via a sorted recursive least squares 

regression model. In this model, the observations are sorted by the interesting 

variable Zt and regression model (3.1) is run recursively on these re-sorted obser­

vations. This approach allows an analysis of the relationship between informa­

tiveness o f order flow and market statistics with the least prior constraint. Since 

no model specification has been postulated on P and Zt, we can obtain a graphical 

representation o f the relationship between the informativeness o f order flow and 

the market statistics.

For simplicity, we re-write the core model in a vector form:

APt = x tB + ut (3.3)

where xt =  [1, Qt\  and B is the coefficient vector [a, p f in the core model (3.1).

The recursive model is usually used to check whether the model structure 

varies for a time series. In this paper our purpose is slightly different. We aim 

to check whether the model structure varies along the third variable Zt rather than 

along the time dimension. For this purpose the recursive model is constructed as 

in three steps:

Step one, Sort the observations xt according to Z*, which could be volatility, 

bid-ask spread or trading volume. After sorting, the observations are re-arranged
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by ascending value o f Zt.

Step two: Fit the model (3.1) to the first k (k =  2) observations and get the 

coefficient estimate b Next use the first k + 1 observations as regressor and com­

pute the regression coefficient again. Proceed in this way, adding one observation 

at a time until the final regression coefficient, which is based on the all observa­

tions, is obtained. This process will generate a sequence o f coefficient estimates, 

bk,bk+i,...,b„. In general,

bm =  (XmXm) XmAPm m = k, k - \- \ ,. .. ,n  (3*4)

where Xm is the m x k  matrix o f regressors for the first m sample points, and APm 

is the m-vector of the first m observations of the dependent variables.

Step three: The standard errors o f the coefficients are calculated at each stage 

o f the recursion (except the first one) and the evolution of the coefficients and their 

plus and minus two standard errors are graphed.

A visual inspection of the graph may suggest parameter constancy, or its re­

verse. A substantial vertical movement o f a coefficient, to a level outside previ­

ously estimated confidence limits, is usually a result of the model trying to digest 

a structural change and may suggest parameter instability.

3.3.3 Nonlinearity modelling

In this section we try to answer the second question ‘how does the informativeness 

o f order flow change under different market conditions?’ by modelling the nonlin­

earity in the order flow and price change relationship. We use simple interaction 

models and a more complex smooth transition regression model to characterize 

the informativeness o f order flow under different market conditions.
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Interaction model

Since so far there is little theoretical guide as to what specific form the relation­

ship between the informativeness and market conditions should take, the inter­

action model simply conjectures that the informativeness o f order flow has some 

linear relationship with the market condition measuring variable Zt . Formally the 

following constraint is put on p in equation (3.1):

p =  Pi +  p2 *Z, (3.5)

Zt is the measurement o f market conditions of interest (it could be volume, volatil­

ity or spread). Inserting (3.5) back into (3.1) and rearranging it results in the 

following nonlinear regression model:

APt = cl +  Pi * Qt +  p2 * Zt * Qt +  £* (3-6)

In the interaction model, the regression coefficient p2 captures the nonlinearity in 

the relationship between order flow and price change. A positive P2 indicates or­

der flow is more informative under conditions where Zt is larger. In this sense, the 

interaction model can be used to test the predictions o f various theoretical mod­

els about the relationship between the informativeness o f order flow and market 

conditions in the market microstructure literature.

Logistic smooth transition regression: LSTR

An alternative approach to model the nonlinearity of order flow and price change 

is to relax the linear specification between the informativeness o f order flow and 

market conditions and assume the relationship between p and Zt is itself non­

linear.
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In this section we choose the widely used logistic smooth transition regres­

sion (LSTR) to model the relationship between order flow and price movements. 

Formally the LSTR can be written as

AP, =  p/xt +  (e 'x ,)F(Z /) +  e, (3.7)

where xt =  [1 ,Qt], e( ~  i.i.d(0 ,o2), £[xte,] =  0,(3 =  (Po, P i)' and 6 =  (0o, ©l)' . 

F(Zt) is the logistic function and can be written as

F(Z,) =  (1 + exp {-T (Z t - c ) } ) - 1 -  1 /2 (3.8)

where the logistic parameter y > 0 and c measures transition point.

The idea behind LSTR model is that the relationship between order flow and 

price movement changes gradually with the market condition measuring variable 

Zt . The transitional feature is captured by the model parameters 0i and y.

3.4 Data Description

3.4.1 The Data

The data set used in this Chapter is the same as that of Chapter two. The data set 

provides two types o f tick level information: trades and firm quotes. In short, this 

data covers four currency pairs: EUR/USD, EUR/GBP, GBP/USD and USD/JPY. 

The samples for EUR/USD and GBP/USD cover a period o f ten months from 28 

September 1999 to 24 July 2000. EUR/GBP and USD/JPY samples cover a period 

o f eight months from 1 December 1999 to 24 July 2000.

For the purpose o f current study, this data set has significant advantages over 

foreign exchange data used in the past work (e.g. Bollerslev and Domowitz

77



(1993), and Lyons (1996)). The data used in Bollerslev and Domowitz (1993) 

are indicative quotes from Reuters FXFX.9 The shortcoming of indicative quotes 

is that the return variance derived from them is far larger than that derived from the 

actual quotes or trades and the spread is less correlated with market activities.10 

The data used in Lyons (1996) is transaction data, but it covers only 5 working 

days for a single dealer. Our data set contains transaction and firm quote informa­

tion, covers four major exchange rates and spans nine months on average. While 

the long sample period provides us with the opportunity to address our questions 

from the time aggregation angle without loss of statistical power, the multiple 

rates allow us to check the robustness of the estimation cross-sectionally.

3.4.2 Filtering and time aggregation

This chapter follows the same filtering and aggregation procedure o f chapter two. 

Again, we exclude overnight periods, weekends, some world-wide public holi­

days and certain other dates where the feed from D2000-2 is very low. For a given 

time aggregation interval (e.g. 10 minutes), we record at every observation point 

the transaction price, order flow, total number of buys and sells, average bid-ask 

spread and volatility. Spreads are calculated as the percentage o f trade price in 

basis point. Volatility is calculated as the return variance within the time inter­

val. Within the generated time series, we further remove the observations that 

have “wrong” values o f market condition variables, for example, zero or negative 

spreads.

To better capture the effects o f the changing market conditions on the flow- 

retum relationship, this research focuses on relatively high frequency intervals

9Reuters FXFX system is a screen system that is used to post quotes to attract customers. 
Unlike the quotes posted in the brokerage screens, the quotes displayed on FXFX screen are only 
indicative, not firm.

,0Refer to Danielsson and Payne (2000) for a full discussion
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because as sampling frequency declines, the feature of market conditions is atten­

uated. Specifically, we focus on 5 time aggregation levels: 5 minutes, 10 minutes, 

20 minutes, 30 minutes and 1 hour.11 The filtering and aggregation finally leaves 

us 20 databases (5 sampling frequencies x 4 exchange rates), each representing 

a different sampling frequency for an exchange rate. These aggregated databases 

are summarized in Table 3.1. As mentioned previously, the long covering peri­

ods is a valuable characteristic o f our sample. After the filtration and aggregation 

we still have a reasonably large number of observations for each rate and each 

sampling frequencies in our generated databases.

3.5 Estimation and Analysis

In this section we use four major floating rates (EUR/USD, EUR/GBP, GBP/USD 

and USD/JPY) to estimate the models and present the main empirical results.

The following definitions will be used throughout the paper: APt is the log 

price change within the time interval [f — 1, f]. Qt is the order flow, defined as the 

difference between the number o f buys and number of sells within time interval 

[t — 1, /], Zt could be average spread, return variance or trading volume within time 

interval [t — 1 ,f]12.

3.5.1 Quintile model

In order to get a complete picture of variation in the price impact o f order flow, we

estimate the quintile model from two dimensions: market conditions and time ag­

11 We have experimented with denser and longer time aggregation levels and the results do not 
alter the pattern we reported here but become less significant as aggregation level goes lower, e.g
12 hours.

12Since the size o f each trade is not available in our data, the difference between buy initiated 
and sell initiated orders and the total number o f  trades are used as proxies for order flow and 
volume respectively in this paper. For more discussion o f such proxies see Danielsson and Payne 
[2000].
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gregations. For market conditions, we check the following three important market 

statistics: bid-ask spread, trading volume and market volatility. For time aggrega­

tion, we estimate the model for a series of sampling frequencies from 5 minutes 

to 1 hour.

In estimating the model, we divide the sample (for each sampling frequency 

database) into 5 equal-sized groups according to variable Zt, which can be spread, 

volume or volatility. Take 10 minutes sampling frequency as an example, when 

Zt represents spread, we divide the database into 5 groups by the magnitude of 

spread. So group 1 will have the 20% of the observations with the smallest spread 

and group 5 will have the 20% of the observations with the largest spread. The 

same idea applies to other sampling frequencies and market conditions.

The results of estimates of the quintile model are presented in Tables 3.2, 3.3 

and 3.4. The most notable result is that the F-tests are significant in all three ta­

bles for most sampling frequencies and all currency pairs (except for JPY/USD 

and USD/GBP in Table 3.4). In particular, if  the observations are arranged along 

bid-ask spread and volatility, F-tests are significant for almost all sampling fre­

quencies from 5 minutes to 1 hour and all exchange rates. If  the observations 

are arranged by volume, F-tests are significant for all sampling frequency for 

USD/EUR and GBP/EUR. But it is significant only for high sampling frequencies 

for JPY/USD and not significant for USD/GBP. Compared to the cases o f spread 

and volatility, the results o f volume market condition are less impressive, espe­

cially when GBP/USD is considered.13 Nevertheless, the overall results from the 

quintile model as shown in Table 3.2, 3.3 and 3.4 suggest that the null hypothe­

sis of order flow being equally informative under various market conditions, ie. 

p, =  py, V7,y, is overwhelmingly rejected in our samples.

Another interesting result is the changing pattern o f p across groups. In Table

13 This result can arise for various reasons, such as sample specific randomness or using proxy 
for volume. A much longer sample period is required to further investigate this issue.

80



3.2 and Table 3.3, p tends to increase from group 1 to group 5. In Table 3.4, p tends 

to decrease from group 1 to group 2 and then remains relatively stable (except for 

JPY/USD). For example, in Table 3.2 the p o f EUR/USD based on the 10 minute 

sampling frequency increases from 0.0027 for group 1 (with smallest spreads) 

to 0.0077 (with largest spreads) for group 5. The pattern exhibited here is quite 

persistent for most sampling frequencies and exchange rates. The increasing p in 

Table 3.2 and Table 3.3 and the decreasing p in Table 3.4 indicates that P might be 

an increasing function of market spread and volatility and a decreasing function 

o f trading volume (at least in some range o f volume). In other words, order flow is 

more informative when market spread is large, volatility is high or trading volume 

is low.

3.5.2 Recursive least squares regression model

The purpose of using the recursive least squares regression model is to get a visual 

idea about the relationship between the informativeness o f order flow and various 

market conditions without imposing other prior constraints. For this purpose we 

choose hourly frequency data as representative to estimate the model. We re-sort 

the observations by variable Zt (which could be bid-ask spread, volatility or trad­

ing volume). In the first regression, we use the first 50 observations to void the 

possible excessive volatility early on in the recursive regression process. Then in 

each of the following recursive regression, we use additional 5 observations. The 

sequence of coefficients of P and their 2 standard deviations from the recursive re­

gressions are drawn against Zt in Figure 3.1, Figure 3.2 and Figure 3.3 for market 

conditions of spreads, volatility and volume respectively.

Clearly from Figure 3.1 and Figure 3.2 we can see that p increases with spread 

and volatility very sharply within a certain (small) range of spread and volatility 

and becomes more stable after that. In Figure 3.3 p decreases to some extent at
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the beginning (except for Dollar-Yen) and becomes stable (but still decreasing) 

after that. Since the number of observations become fewer for very large spreads, 

volatility and volume, the reduction of the additional number o f observation can 

potentially explain the stability o f P as spreads, volatility and volume increase. To 

clarify this ambiguity, in Figures 3.4, 3.5 and 3.6 we re-draw the sequence of P 

against the recursive regression process. For the purpose o f studying the effect 

o f market conditions on the price impact o f order flow, we deliberately label the 

x-axis with the values of variable Zt for those regressions rather than with the 

sequence of number representing the recursive process. Since 5 extra observations 

will be added to each o f the regressions along the recursive process, the recursive 

process can also be viewed as a proxy for the number o f observations used in the 

regression. For example, in the case of EUR/USD-spread (the first graph in Figure

3.4), the fifth point on the x-axis (labelled with 4.48) indicates that when 80% of 

observations enter the regression, the P will be about 0.0035 and the spread will 

increase to a level o f 4.87 basis points. The advantage of this presenting method is 

that it allows us to study how p and Zt change simultaneously along the recursive 

process.

In general, we can see a smoother change o f P in all three Figures 3.4, 3.5 and 

3.6. But it is still the case that the p increases or decreases more sharply for the 

first part o f observations in all graphs.14 In Figure 3.4 and Figure 3.5, P increases 

with bid-ask spread and market volatility respectively for a large proportion of 

the observations. In figure 3.6, p decreases with trading volume (except for Yen- 

Dollar) only for the first 30 percent of the observations and becomes more stable 

when observations with larger volume are added into the regression. It is impor­

tant to note that in both Figure 3.4 and Figure 3.5, p completes the shift within a

14In recursive regression models, as more and more observations enter the regression the impact 
Zt on |3 will attenuate and converges to the equilibrium pattern. As a complementary exercise, we 
experiment with moving window regressions and find the patterns confirm what reported in here.
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fairly small range of market conditions and this range covers a large proportion of 

the total observations. For example, for USD/EUR-spread, the price impact o f or­

der flow increases with market spreads and this increasing trend covers 80 percent 

o f the total observations. Even though the spread ranges from 1 basis point to 50 

basis points for the total observations, the P finishes the shift within a fairly small 

range of spread from 1.4 basis points to 5 basis points (see USD/EUR in Figure

3.4). In other words, the results from the recursive model indicate that the shift of 

the price impact o f order flow is not an extreme market condition phenomenon. 

Instead it shifts within a small range of market conditions which cover most o f the 

cases the market is likely to experience.

The visual inspection indicates that the value o f P varies substantially under 

different market conditions and moves outside previously estimated confidence 

limits in almost all graphs o f Figure 3.4,3.5 and 3.6. From an econometric point of 

view, this violation indicates that the structure imposed in the core model (3.1) is 

not stable as the market conditions (measured by Zt) vary. The instability suggests 

a high possibility o f the non-linear relationship between the order flow and price 

change.15

3.5.3 Interaction model

The interaction model (3.6) is evaluated along two dimensions: market conditions 

and time aggregations. The estimation is based on the 20 databases described in 

the Data Section. The estimates o f model coefficients are presented in Tables 3.5 

,3 .6  and 3.7.

In Table 3.5, spread is the market condition of interest. The most notable 

feature of this part is that P2 is significantly away from zero for almost all the

15 We exercise a group o f  CUSUM tests on the base o f the regression residuals o f the recursive 
model to check the model stability and the result confirms our speculation, i.e. the hypothesis o f  
linear relationships between order flow and the price change is rejected.
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sampling frequencies and all exchange rates. Another important feature we can 

see in this table is that p2 is constantly positive for all time aggregation levels and 

all exchange rates. The significantly positive p2 suggests that the order flow tends 

to be more informative when spreads are larger.

Volatility is considered in Table 3.6. Similar as in Table 3.5, the signs of 

the estimator o f the regression coefficient p2 are positive in most o f the cases. 

Positive p2 indicates that the order flow is more informative when market is more 

volatile. The p2 is significant for USE/EUR and GBP/EUR but less significant for 

JPY/USD and USD/GBP.

Table 3.7 examines the market condition o f trading volume. One notable fea­

ture of this part is the sign o f the estimator o f the regression coefficient. Contrary 

to Table 3.5 and Table 3.6, the estimates o f the regression coefficients p2 are neg­

ative in most o f the cases(except for EUR/USD). Negative p2 indicates that the 

order flow is less informative when trading volume is higher. The p2 , however, 

are not significant in most cases. The lack o f significance might be due to the 

fact the informativeness of order flow doesn’t have linear relationship with market 

volume (as seen in our quintile model).

Overall the results from the interaction model indicate that the linear rela­

tionship between the informativeness and market conditions imposed by equation 

(3.5) is positive and significant for a large spectrum o f time aggregation levels 

when market condition is measured by spread and volatility. When market con­

dition is measured by volume, the linear relationship is not significant for most 

cases.

3.5.4 LSTR model

In the LSTR model (3.7), we assume that the relationship between order flow 

(Qt) and price change (AP*) evolves smoothly with the market condition measur­
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ing variable Zt. The coefficients (0i,y) determine how the price impact o f order 

flow varies as a function o f the transition variable Zu which measures the market 

conditions. The logistic parameter y determines the smoothness o f transition, the 

sign of 0i determines the direction of the transition. A positive 0i suggests the 

informativeness o f order flow is an increasing function o f the transition variable 

Zt and a negative 0i will suggest the opposite.

The Non-linear Least Squares approach is used to estimate the LSTR model 

and the estimates reported in Table 3.8 are based on hourly sampling frequency 

data16. In the top panel, where the transition variable is spread, the regression 

coefficient estimates of 0i are both positive and significant and the estimates of y 

are also significant for all cases. In the middle panel, where the transition variable 

is volatility, the regression coefficient estimates of 0i are both positive and signif­

icant in three out o f four cases and the estimates o f y are also significant for two 

out of four cases. In the bottom panel, where the transition variable is volume, we 

are not able to fit the model for GBP/USD. But for the other three exchange rates, 

the regression coefficient estimates of 0i are both negative and significant and the 

estimates of y are also significant (except for USD/JPY).

The results reported in Table 3.8 indicate that the LSTR model can not only 

manifest the qualitative relationship between the informativeness of order flow 

and market conditions but also capture the transition feature o f this relationship. 

To have a visual impression, the smooth transition relationships are drawn in Fig­

ures 3.7, 3.8 and 3.9. One of the most interesting points in Figure 3.7 is that 

the p in the core model (3.1) changes quickly within a specific range o f bid-ask 

spreads. For example, the p triples if  the spread increases from 2 basis points to 4 

basis points for EUR/USD. For USD/JPY, the P shifts quickly from around zero

16Before estimating the LSTR, we evaluate an auxiliary regression as a test o f linearity against 
Smooth Transition Regression model (see Granger and Tersvirta[1997] p .117): ut =  oc +  P i Qt + 
P2QtZt +  foQtZ? +  faQtZ? +  T)/, where ut is the OLS residual from the core model (3.1). In 11 
out 12(4 rates x 3 market conditions) cases, the results are in favor o f STR model.
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to 0.025 when spreads move from 10 basis points to 20 basis points. The transi­

tion feature shown in Figure 3.7 suggests that the price impact o f order flow shifts 

quickly within a small range of market liquidity conditions.

In contrast to the graphs in Figure 8, the graphs in Figure 3.8 are smoother. 

The P increases smoothly as the volatility increases. It is important to note, how­

ever, that the P does not really shift a lot (except for JPY/USD, which doubles 

in the shift) as it does in Figure 3.7. p only increases from 0.0030 to 0.0045 for 

USD/EUR, from 0.0030 to 0.0034 for GBP/EUR and from 0.00200 to 0.00202 

for USD/GBP. The small magnitude of shifts might suggest that the price impact 

o f order flow is less sensitive to volatility than to bid-ask spreads.

In Figure 3.9, p shifts downward rapidly when trading volume increases. In 

particular, the shift occurs within a very small range around the lowest volume. 

The p finishes the shift before the volume reaches 20 for for USD/EUR and 

GBP/EUR and 40 for JPY/USD. The magnitude of the shift for different exchange 

rates is a mixture. While p decreases dramatically from 0.02 to less than 0.005 for 

EUR/USD, it decreases only a little for USD/JPY and even less for EUR/GBP.

Overall, the results from the LSTR model indicate that the relationship be­

tween order flow and price movement changes with the market conditions that FX 

market is very likely to experience.

3.6 Seasonality and Simultaneity Test

3.6.1 Intra-day Seasonality

It is well known that high frequency data usually displays some intra-day pattern 

o f the market spread, volatility and trading volume. Such intraday regularity can 

introduce bias into our previous empirical analysis. In this subsection we examine 

the impact of intraday seasonality on our previous analysis.
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A straightforward way to study the seasonality impact is to separate the market 

condition variable Zt (which can be spread, volatility or volume) into an expected 

part Zst and an unexpected part Z“ and explicitly model them separately. A sim­

ple but effective way to decompose the intra-day regularity is to use the intra-day 

pattern itself as a proxy of the expected part17. For instance, as far as the spread 

is concerned, the expected spread o f a time interval can be proxied by the average 

spread of that specific time interval o f all days over all sample period. The un­

expected spread o f that period can be proxied by the difference between the total 

spread Zt and the expected spread Zst :

— Zt —Zst (3.9)

To examine the intraday impact, the decomposed market conditions can be used 

to re-estimate our empirical models. For simplicity, we only re-evaluate the in­

teraction model with the de-seasonlised data. Plug (3.9) back into (3.6) resulting 

in:

APt — ex +  Pi * Qt +  p2 * * Qt +  P3 * Zf * Qt +  St (3.10)

where Z can be spread,volatility or volume. P2 and P3 measures unexpected and 

expected impact o f market conditions on informativeness o f order flow respec­

tively. The seasonality impact can be evaluated by applying the F-test to the null 

hypothesis: P2 =  p3 -

The regression model (3.10) is estimated for 30 minute and 1 hour sampling 

frequencies and the results are reported in Panel A and Panel B respectively in 

Table 3.9. When Z =  Spread , the impact o f expected and unexpected spread, 

measured by P2 and P3 respectively, are at the same magnitude and most have 

expected signs. The p-value of F-test cannot reject the null that P2 =  P3 . This

17Goodhart, Love, Payne and Rime (2000) use the same method. An alternative approach is to 
use the ARMA model, eg. Hartmann (1999).
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pattern is very consistent for different sampling frequencies and across different 

exchange rates. The results suggest that it is total rather than unexpected spreads 

that affect the informativeness o f order flow. For volume, most cases of the ex­

pected part have the expected signs and are significant. Unexpected volume is 

less significant and 5 out 8  cases have the expected signs. The last column shows 

that in half o f cases the F-test reject the null. Overall the results indicates that 

the expected volume plays a much bigger, significant role than does unexpected 

volume. Finally, when Z is volatility, we find that p2 and P3 are both positive and 

significant for most cases in both Panel A and Panel B. The magnitude of P2 and
A  A  A

p3 , however, are significantly different with P3 much larger than P2 . This differ­

ence o f magnitude is further reflected in the last column where F-test rejects null 

for most cases except USD/JPY. This evidence indicates that both components of 

volatility can affect the informativeness o f order flow, but the seasonal component 

has a stronger impact. Note it is not a surprising result that expected components 

are significant in the regressions because the data used in this exercise hasn’t been 

de-seasoned. The aim here is to test whether the results found in previous sections 

are due to pure seasonality effects. The results in Table 3.9 confirms that market 

conditions do impact on the informativeness o f order flow.

3.6.2 Simultaneity Test

So far we have examined a set of market statistics separately and we found that 

find each o f the market conditions variables (spreads, volatility and volume) can 

affect the informativeness o f order flow. Since those statistics are three aspects of 

the same market, they are connected with each other18. For example, volatility 

will tend to be higher at the market ’opening’ when bid-ask spread is larger. This

18 See, for example, Hsieh and Kleidon (1996), Danielsson and Payne (2000) and Admati and 
Pfleiderer (1988).

88



overlapped trading pattern may bias our results based on individual factors. In this 

subsection we examine such simultaneity by putting all three factors simultane­

ously in our interaction model and evaluate the impact of each factor simultane­

ously. The formal regression model can be written as:

AP, =  o t+ p i0 , +  p 2z f preadQt +  P iZ ™ umeQt +  p AZ vt olatilityQt +  e, (3.11)

where APt is price change within [t — 1 ,t]. QJt is order flow. z?pread ,ZPolume 

and z ^ olatlllty are the average spread, total volume and volatility within [/ — 1, /] 

respectively.

The model is evaluated for 30 minutes and 1 hour sampling frequencies and 

the estimates are reported respectively in Panel A and Panel B in Table 3.10. In 

both Panel A and B, we find the P2 , which measures spreads effect, is positive 

and significant. The volatility effect is positive and significant for 6 out 8 cases. 

For volume, P3 takes the correct sign for most cases but only half are signif­

icant. For the volume and volatility cases, the insignificance is mainly related 

with Sterling-Dollar and Dollar-Yen. To further test whether such insignificance 

is due to the particularly strong factor correlation o f GBP/USD and USD/JPY, 

we calculated factor cross-autocorrelation for all currency pairs and report the 

results in Table 3.11. Comparing the cross-autocorrelations o f GBP/USD and 

USD/JPY with those o f EUR/USD and EUE/GBP, we find that the magnitude 

of cross-autocorrelations is either same or smaller in the cases o f GBP/USD and 

USD/JPY. Also there is no particular lead-lag relationship among factors. Proba­

bly a more plausible explanation might be that the (3 does not take a simple linear 

relationship with volume and volatility. Overall, the results o f this simple simul­

taneity analysis confirm our previous finding: each of the three factors, spreads, 

volatility and volume, can affect the informativeness o f order flow.
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3.7 Discussion

In this chapter, we attempted to characterize the informational aspects of order 

flow under different market conditions. The way we measure the informative­

ness of order flow, which is defined as the regression coefficient o f price variation 

on order flow, is in the same spirit of that o f Lyons (1995, 1996).19 One point 

worth mention o f this measurement is that the regression coefficient might just 

pick the ’liquidity’ or ’digestion’ rather than the information effect in the market. 

To mitigate the impact of such potential mis-measurement, this research bases the 

analysis on the use of aggregated order flow rather than order flow o f individual 

transactions because noise trade can be largely cancelled out through the aggrega­

tion.20

To further support the robustness o f our measurement, we conduct another 

experiment here which provides strong evidence that the order flow regression co­

efficients do capture information effects rather that liquidity effects. The study in 

chapter two and by Evans and Lyons (2002b) demonstrates that order flow of one 

market can be used to explain the price changes o f inter-linked markets because 

order flow in one market could convey information about the valuation of the as­

sets traded in other markets. Since this inter-market order flow effects cannot be 

attributed to liquidity effect, it provides an ideal framework to test the robustness 

o f our results on the market conditions and order flow informativeness. In partic­

ular, we experiment with our interaction model in an inter-market framework. We 

study the impact o f order flow o f one rate (e.g. EUR/USD) on the variations of 

another exchange rate (e.g. EUR/GBP) under different market conditions o f the

19Generally speaking, this measurement stems from the classic model o f Kyle [1985]. In this 
model, equilibrium price is a linear function o f total order flow. The coefficient o f order flow, X, 
equals to 2(a^/Zo)-1 2̂- When order flow is more informative, i.e. a 2 is small, the coefficient will 
be larger.

20The study o f Lyons (1995,1996) is more based on transaction level. The analysis o f Hasbrouck 
(1991a,b) is also based transaction level.
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first market (e.g.EUR/USD) and find that order flow tends to have a larger impact 

(i.e. larger (3) on other rates when the market has larger spreads, higher volatility 

or lower volume.21 In this inter-market framework, it can no longer be argued 

that the order flow effect picked by p is due to liquidity effects. Given the evi­

dence from inter-market analysis, together with the considerable number of trades 

in our aggregation, we believe that the regression coefficient can be treated as a 

fair measurement o f informativeness of order flow.

Using the order flow coefficient to measure its informativeness, we find that 

order flow tends to be more informative when market spreads are high, volatility is 

high or volume is low. The patterns are persistent across different exchange rates 

and over a wide range o f sampling frequencies. The evidence highlights the non- 

linearity in the relationship between order flow and price movement and provides a 

potential to improve the methodology used in the current microstructure approach 

to FX analysis.

The relationships between order flow informativeness and market conditions 

found in this study are neither fully consistent with the predictions of the infor­

mation uncertainty model of Easley and O’Hara (1992) nor with the predictions 

o f the Admati and Pfleiderer (1988) model. In Easley and O ’Hara’s information 

uncertainty model, high trading volume is due to information event. But if  at 

the same time there is substantial increase in liquidity trading, the information 

might be diluted and order flow become less informative. In the model o f Ad­

mati and Pfleiderer (1988), during concentration period, the price volatility will 

be high because more informed trader will also choose to trade during concen­

tration. However, if  the information can be sufficiently diluted by noise orders,

21 Take USD/EUR and GBP/EUR as example, we estimate regression model: APtES =  oc+ Pi * 
Q fD +  P2 * Z fD * Q fD +  £/. When Z is Spread, P2 is 0.0003 and significant at 1 % level. When Z is 
Volatility, P2 is 0.0188 and significant at 5% level. When Z is Volume, P2 is -0.0001 and significant 
at 10% level. The R2 is between 24% and 26%.
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the order flow impact could be reduced and price variation could be lower. Since 

the empirical evidence provided in the current study cannot be fully explained by 

existing theory, further research to provide vigorous economic explanation is a 

worthwhile object of future study.

3.8 Conclusion

This chapter presents a methodology to characterize the price impact of order flow 

under different market conditions. In particular, research focuses on: (1) testing 

a set o f hypotheses in the microstructure literature about the informativeness of 

order flow; (2) modelling the informativeness o f order flow under different market 

conditions.

This chapter uses a high frequency data set of the inter-dealer FX spot market 

captured by Reuters 2000-2 to create a set of time series databases covering a 

wide range o f sampling frequencies. We estimated the various models using these 

databases and find strong evidence to reject the hypothesis that the order flow is 

equally informative under different market conditions. More specifically, we find 

that order flow is more informative under such market conditions when spreads are 

high, volatility is high or volume is low. This pattern is persistent across different 

exchange rates and over a wide range of sampling frequencies. These findings are 

neither fully consistent with the prediction from the Easley and O ’Hara’s model 

nor with that from the Adamati and Pfleiderer’s model.

It has been shown in this chapter that the relationship between order flow and 

price changes are non-linear. We model the nonlinearity between order flow and 

price changes by two alternative ways and they are both statistically significant. In 

particular, our LSTR model shows that the price impact of order flow can change 

within normal conditions that the FX market is very likely to experience.
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Table 3.1: Summary of aggregated databases

In each panel o f the table, Freq is sampling frequency. Obs is the total number o f (derived) observations in that database, r  is the average return 
for that sampling frequency. Retum(A/)) is defined as (log(Pt) -  /og(P,_i))100. tno, qno, bno, sprd, std is the average number o f trades, average 

number of quotes, average number o f buys, average bid-ask spread and average standard deviation o f return for that frequency.

EUR/USD(a) USD/JPY(b)
Freq obs rtn tno qno bno sprd std freq obs rtn tno qno bno sprd std

5m 21155 -0.0011 22 68 11 3.17 0.0127 5m 6139 0.0010 4 15 2 18.89 0.0292
10m 10855 -0.0017 43 133 22 3.35 0.0139 10m 3704 0.0041 6 28 3 19.65 0.0316
20m 5522 -0.0044 84 262 42 3.50 0.0153 20m 2129 0.0014 11 51 5 19.39 0.0351
30m 3653 -0.0054 126 395 64 3.39 0.0159 30m 1166 0.0018 17 83 9 18.24 0.0413

lhr 1966 -0.0092 237 742 120 4.23 0.0185 lhr 1056 -0.0009 24 127 12 22.85 0.0435

EUR/GBP(c) GBP/USD(d)
Freq obs rtn tno qno bno sprd std freq obs rtn tno qno bno sprd std

5m 17008 -0.0003 19 45 10 3.50 0.0129 5m 22935 -0.0005 21 54 11 2.03 0.0079
10m 8700 -0.0006 38 89 20 3.62 0.0135 10m 11730 -0.0010 42 106 21 2.05 0.0082
20m 4420 -0.0018 74 175 39 3.69 0.0141 20m 5939 -0.0020 83 210 42 2.07 0.0086
30m 2930 -0.0032 112 265 58 3.63 0.0146 30m 3973 -0.0030 124 314 63 2.07 0.0089

lhr 1541 -0.0056 214 508 111 3.88 0.0152 lhr 2038 -0.0060 243 615 124 2.08 0.0093



Table 3.2: Spread effect on price impact o f order flow
The model to be estimated is:

AP• = a  +  £y= i Py * Sjt * Qt +  £t

where APt is price change defined as {log(P, ) — log{Pt~ \ )) * 100. Qj, is order flow which is defined as the net o f number of 

buys and number o f sells within [f — 1, f ]. Observations are divided into 5 categories by spread. Sjt is indicator variable that 

takes on the value 1 if  the spread belongs to the specific category and 0 otherwise. The informativeness o f order flow of 

category j  is measured by regression coefficients Py. The last column is the />-value o f /•’-test o f the null that P, =  Py, V/,y. 

The model was estimated for a spectrum of sampling frequencies.

EUR/USD

Freq P i P 2 P s P4 P s R2 /7-value
5m 0.0027 0.0034 0.0041 0.0053 0.0077 0.4730 < 0 .01

10m 0.0027 0.0033 0.0040 0.0050 0.0077 0.4681 < 0 .01
20m 0.0026 0.0031 0.0040 0.0052 0.0078 0.4759 < 0 .01
30m 0.0026 0.0031 0.0039 0.0049 0.0073 0.4707 < 0 .01

lhr 0.0025 0.0028 0.0040 0.0054 0.0070 0.4584 < 0 .01

USD/JPY

Freq P i P2 P s P4 P s R2 /7-value
5m 0.0064 0.0090 0.0143 0.0152 0.0211 0.0982 < 0 .01

10m 0.0070 0.0099 0.0140 0.0145 0.0212 0.1209 < 0 .01
20m 0.0070 0.0091 0.0127 0.0155 0.0202 0.1648 < 0 .01
30m 0.0078 0.0103 0.0111 0.0137 0.0202 0.2858 < 0 .01

lhr 0.0077 0.0112 0.0133 0.0141 0.0213 0.2735 < 0 .01

EUR/GBP

Freq P i P 2 P 3 P4 P s R2 /7-value
5m 0.0029 0.0036 0.0044 0.0051 0.0069 0.3527 < 0 .01

10m 0.0031 0.0037 0.0040 0.0049 0.0064 0.3256 < 0 .01
20m 0.0028 0.0036 0.0035 0.0041 0.0060 0.3027 < 0 .01
30m 0.0028 0.0031 0.0032 0.0037 0.0055 0.2479 < 0 .01

lhr 0.0023 0.0029 0.0032 0.0031 0.0056 0.2123 < 0 .01

GBP/USD

Freq P i P 2 P 3 P4 P s R2 p - value
5m 0.0024 0.0029 0.0032 0.0034 0.0043 0.3551 < 0 .01

10m 0.0024 0.0028 0.0030 0.0031 0.0041 0.3402 < 0 .0 1
20m 0.0024 0.0027 0.0027 0.0028 0.0039 0.2963 < 0 .01
30m 0.0023 0.0023 0.0026 0.0023 0.0035 0.2571 < 0 .01

lhr 0.0022 0.0018 0.0021 0.0021 0.0034 0.1938 < 0 .01
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Table 3.3: Volatility effect on price impact of order flow
The model to be estimated is:

AP• =  oc +  £ /= ]  Py *Sjt *Q t+ £t

where AP, is price change defined as (log(Pt ) — log{Pt- \ )) * 100. Q jt is order flow which is defined as the net of number 

o f buys and number o f sells within [f — 1,/]. Observations are divided into 5 categories by volatility which is defined as the 

standard deviation o f returns within [t — 1,/]. Sjt is indicator variable that takes on the value 1 if  the volume belongs to the 

specific category and 0 otherwise. The informativeness of order flow of category j  is measured by regression coefficients 

Py. The last column is the />-value o f F-test o f the null that P,- =  Py,Vi',/. The model was estimated for a spectrum of 

sampling frequencies.

EUR/USD

Freq P i P 2 P3 P4 P s R2 p -value
5m 0.0026 0.0032 0.0038 0.0046 0.0066 0.4650 < 0 .01

10m 0.0025 0.0032 0.0037 0.0045 0.0059 0.4582 < 0 .01
20m 0.0023 0.0030 0.0035 0.0044 0.0058 0.4674 < 0 .01
30m 0.0024 0.0030 0.0036 0.0042 0.0056 0.4612 < 0 .01

lhr 0.0022 0.0029 0.0034 0.0044 0.0052 0.4439 < 0 .01

USD/JPY

Freq P i P 2 P 3 p 4 P s R2 p -value
5m 0.0048 0.0078 0.0113 0.0158 0.0241 0.1071 < 0 .01

10m 0.0057 0.0087 0.0121 0.0148 0.0231 0.1272 < 0 .0 1
20m 0.0067 0.0093 0.0121 0.0142 0.0192 0.1614 < 0 .0 1
30m 0.0075 0.0102 0.0120 0.0143 0.0183 0.2775 < 0 .01

lhr 0.0085 0.0100 0.0116 0.0144 0.0176 0.2603 < 0 .01

EUR/GBP

Freq P i P 2 P 3 P4 P s R2 p -value
5m 0.0033 0.0037 0.0041 0.0046 0.0062 0.3437 < 0 .01

10m 0.0032 0.0035 0.0038 0.0045 0.0057 0.3217 < 0 .01
20m 0.0031 0.0032 0.0035 0.0043 0.0047 0.2944 < 0 .01
30m 0.0029 0.0032 0.0032 0.0040 0.0038 0.2384 < 0 .0 5

lhr 0.0027 0.0028 0.0032 0.0033 0.0035 0.1979 > 0 .1 0

GBP/USD

Freq P i P 2 P 3 p4 P s R2 p -value
5m 0.0023 0.0028 0.0030 0.0033 0.0040 0.3545 < 0 .01

10m 0.0022 0.0027 0.0029 0.0032 0.0035 0.3359 < 0 .01
20m 0.0023 0.0023 0.0028 0.0029 0.0034 0.2947 < 0 .01
30m 0.0021 0.0024 0.0026 0.0025 0.0028 0.2533 < 0 .0 5

lhr 0.0020 0.0022 0.0024 0.0022 0.0021 0.1847 > 0 .1 0
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Table 3.4: Volume effect on price impact o f order flow
The model to be estimated is:

APt =  <x +  5 ^ _ i $ j* S jt *Qt +  Et

where APt is price change defined as (log(Pt ) — log(Pt~ \ )) * 100. Qjt is order flow which is defined as the net of number 

o f buys and number o f sells within [f — 1, /]. Observations are divided into 5 categories by volume which is defined as the 

total number o f trades within [/ — 1, /]. <Sy, is indicator variable that takes on the value 1 if  the volume belongs to the specific 

category and 0 otherwise. The informativeness o f order flow of category j  is measured by regression coefficients Py. The 

last column is the />-value o f F-test o f the null that p, =  Py,Vi',y. The model was estimated for a spectrum of sampling 

frequencies.

EUR/USD

Freq P i P2 P s P4 P s R2 p-value
5m 0.0070 0.0045 0.0040 0.0040 0.0042 0.4278 < 0 .01

10m 0.0073 0.0044 0.0037 0.0037 0.0040 0.4303 < 0 .01
20m 0.0076 0.0039 0.0037 0.0035 0.0040 0.4361 < 0 .01
30m 0.0066 0.0033 0.0034 0.0034 0.0039 0.4356 < 0 .01

lhr 0.0071 0.0042 0.0032 0.0034 0.0037 0.4206 < 0 .01

USD/JPY

Freq P i P2 P3 P4 P s R2 p -value
5m 0.0057 0.0141 0.0128 0.0146 0.0133 0.0871 < 0 .0 5

10m 0.0089 0.0120 0.0193 0.0145 0.0126 0.1100 < 0 .0 5
20m 0.0137 0.0158 0.0149 0.0131 0.0120 0.1473 > 0 .1 0
30m 0.0144 0.0146 0.0120 0.0129 0.0128 0.2588 > 0 .1 0

lhr 0.0103 0.0177 0.0141 0.0126 0.0130 0.2482 > 0 .1 0

EUR/GBP

Freq P i P 2 P s P4 P s R2 p -value
5m 0.0055 0.0046 0.0044 0.0043 0.0044 0.3275 < 0 .01

10m 0.0058 0.0041 0.0041 0.0041 0.0042 0.3089 < 0 .01
20m 0.0056 0.0041 0.0037 0.0041 0.0036 0.2901 < 0 .01
30m 0.0053 0.0037 0.0036 0.0036 0.0032 0.2395 < 0 .01

lhr 0.0064 0.0031 0.0033 0.0034 0.0027 0.2090 < 0 .01

GBP/USD

Freq P i P2 Ps p4 P s R2 p-value
5m 0.0032 0.0031 0.0032 0.0031 0.0032 0.3434 > 0 .1 0

10m 0.0032 0.0029 0.0029 0.0029 0.0031 0.3301 > 0 .1 0
20m 0.0030 0.0028 0.0028 0.0028 0.0028 0.2887 > 0 .1 0
30m 0.0029 0.0026 0.0026 0.0025 0.0025 0.2516 > 0 .1 0

lhr 0.0027 0.0027 0.0024 0.0021 0.0020 0.1868 > 0 .1 0
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Table 3.5: Relationship between order flow informativeness and spread
The model to be estimated is:

A Pt — (X +  P i  *  Qt +  P 2 *  Zt *  Qt 4 - £ /

where APt is price change defined as {log{Pt+&) — log(Pt)) * 100. Qt is order flow which is defined 
as the net o f number o f buys and number o f sells within [t — l,f]. Zt is average spread during the 
time interval [t — 1,/]. The linear relationship between informativeness o f order flow and spread 
will be captured by P2 . The reported t-value is based on Newey-West variance-covariance matrix 
estimate. The model was estimated for a spectrum o f sampling frequencies.

EUR/USD(a) USD/JPY(b)

Freq P i ' ( P i ) P 2 ' ( P 2) R2 P i ' ( P i ) P 2 ' ( P 2 ) R2
5m 0.0025 5.45 0.0007 3.31 0.4547 0.0103 15.17 0.0002 4.34 0.0924

10m 0.0022 4.33 0.0008 3.47 0.4602 0.0102 13.22 0.0002 3.97 0.1171
20m 0.0022 3.24 0.0007 2.27 0.4593 0.0093 11.02 0.0002 3.49 0.1572
30m 0.0017 4.23 0.0008 4.41 0.4659 0.0092 10.35 0.0002 4.09 0.2815

lhr 0.0024 3.45 0.0005 1.64 0.4338 0.0098 9.09 0.0002 3.12 0.2612

EUR/GBP(c) GBP/USD(d)

Freq P i ' ( P i ) P 2 ' ( P 2 ) R2 P i ' ( P i ) P 2 ' ( P 2 ) R2
5m 0.0020 11.27 0.0008 13.37 0.3503 0.0013 8.33 0.0010 11.48 0.3559

10m 0.0019 7.36 0.0007 8.50 0.3271 0.0011 4.06 0.0010 7.13 0.3419
20m 0.0016 5.48 0.0007 7.41 0.3054 0.0008 2.09 0.0010 4.73 0.2987
30m 0.0013 3.65 0.0007 6.33 0.2532 0.0011 2.54 0.0007 3.25 0.2560

lhr 0.0010 1.87 0.0006 3.58 0.2123 0.0004 0.73 0.0009 2.86 0.1900
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Table 3.6: Relationship between order flow informativeness and volatility
The model to be estimated is:

A P( — (X +  P i  *  Qt 4- P 2  * Zt * Qt +  £t

where APt is price change defined as (log(Pt) -  log(Pt- \ )) * 100. Qt is order flow which is defined 
as the net o f number o f buys and number o f sells within [r — 1 ,f]. Zt is volatility which is defined as 
the standard deviation o f returns within [f — 1 ,f]. The linear relationship between informativeness 
o f order flow and volatility will be captured by ^2- The reported t-value is based on Newey- 
West variance-covariance matrix estimate. The model was estimated for a spectrum o f sampling 
frequencies.

EURAJSD(a) USD/JPY(b)

Freq P i ' ( P i ) P 2 ' ( P 2 ) R2 P i ' ( P i ) P 2 ' ( P 2 ) R2
5m 0.0034 25.15 0.0569 4.99 0.4407 0.0124 12.67 0.0239 0.55 0.0865

10m 0.0035 28.10 0.0374 3.93 0.4335 0.0128 10.37 0.0194 0.40 0.1079
20m 0.0033 27.32 0.0390 4.72 0.4406 0.0118 15.68 0.0319 1.20 0.1501
30m 0.0033 20.51 0.0287 2.54 0.4347 0.0113 18.26 0.0374 2.14 0.2711

lhr 0.0032 14.93 0.0287 2.04 0.4194 0.0119 17.45 0.0278 2.34 0.2517

EUR/GBP(c) GBP/USD(d)

Freq P i ' ( P i ) P 2 ' ( P 2 ) R2 P i ' ( P i ) P 2 ' ( P 2 ) R2
5m 0.0030 16.00 0.1063 7.20 0.3400 0.0022 16.76 0.1104 6.47 0.3516

10m 0.0029 11.18 0.0899 4.61 0.3171 0.0024 7.01 0.0676 1.65 0.3340
20m 0.0031 9.18 0.0475 1.94 0.2900 0.0021 4.46 0.0751 1.36 0.2951
30m 0.0026 11.44 0.0605 3.77 0.2413 0.0025 7.57 0.0034 0.09 0.2512

lhr 0.0027 3.42 0.0299 0.54 0.1974 0.0017 4.57 0.0478 1.22 0.1876
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Table 3.7: Relationship between order flow informativeness and volume
The model to be estimated is:

APt — ot 4- Pi * Qt 4- P2 * Zt * Qt 4- Ei

where APt is price change defined as (log(Pt) — log{Pt- \ )) * 100. Qt is order flow which is de­
fined as the net o f number o f buys and number o f sells within [f — l,f]. Zt is volume (scaled 
by 10-2 )which is defined as the total number o f  trades within [/ — 1,/]. The linear relationship 

between informativeness o f order flow and volume will be captured by P2 . The reported t-value 
is based on Newey-West variance-covariance matrix estimate. The model was estimated for a 
spectrum o f sampling frequencies.

EUR/USD(a) USD/JPY(b)

Freq P i ' ( P i ) P 2 * (P 2 ) R2 P i ' ( P 0 P 2 / ( P 2 ) R2
5m 0.0039 35.28 0.0007 2.16 0.4245 0.0137 14.09 -0.0078 -0.64 0.0855

10m 0.0039 30.94 0.0001 0.80 0.4237 0.0150 11.98 -0.0138 -1.42 0.1074
20m 0.0037 17.96 0.0002 1.06 0.4275 0.0148 11.31 -0.0107 -1.84 0.1467
30m 0.0034 11.57 0.0002 1.10 0.4280 0.0139 9.91 -0.0038 -0.76 0.2584

lhr 0.0039 15.15 -0.0001 -0.96 0.4120 0.0147 10.41 -0.0037 -1.05 0.2459

EUR/GBP(c) GBP/USD(d)

Freq P i / ( P i ) P 2 ' ( P 2 ) R2 P i / ( P i ) P 2 / ( P 2 ) R2
5m 0.0046 37.16 -0.0004 -1.07 0.3269 0.0030 36.36 0.0003 1.13 0.3436

10m 0.0045 22.63 -0.0004 -1.13 0.3075 0.0031 27.44 -0.0001 -0.36 0.3300
20m 0.0046 17.84 -0.0006 -2.62 0.2903 0.0028 15.43 0.0000 0.20 0.2886
30m 0.0050 12.81 -0.0009 -3.18 0.2481 0.0026 13.07 -0.0001 -0.43 0.2513

lhr 0.0045 9.74 -0.0004 -2.55 0.2066 0.0028 8.34 -0.0002 -1.60 0.1881
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Table 3.8: Coefficients estimates for LSTR model

The model to be estimate is:

A Pt =  Po +  P i  *Qt +  (0 o  +  0 i *  Qt)F{Zt) 

where F(Zt) is a logistic function that can be written as

F(Z,) =  ( l  +  e x p { - i ( Z , - c ) } ) - '  - 1 / 2 ,  y >  0

and APt is price change defined as (log(Pt) -  log(Pt- 1)) * 100. Qt is order flow defined as the 
net o f number o f buys and number o f sells within [t — 1 ,f]. Zt is the market conditions measuring 

variable. The model estimation (based on hourly sampling frequency) under different market 
conditions o f spread, volatility and volume are reported in the following three panels respectively. 
The number in bracket is is value. indicates that the model can not be fitted. The transition 
feature o f the price impact o f order flow is captured by the parameters y and 0 i .

Spread

Po P i Oo 0 i Y c
EUR/USD -0.0188 0.0042 0.0201 0.0048 8.5287 2.70

(-5.30) (35.42) (1.87) (5.78) (3.27)
USD/JPY -0.0020 0.0113 -0.0458 0.0285 2.1476 14.00

(-0.26) (14.76) (-1.11) (3.86) (2.48)
EUR/GBP -0.0427 0.0028 0.0906 0.0071 0.9801 2.70

(-7.81) (15.82) (2.39) (2.36) (1.97)
GBP/USD -0.0086 0.0034 0.0200 0.0031 1.4006 3.00

(-1.44) (10.67) (1.36) (3.85) (2.03)

Volatility

Po P i 00 01 Y c
EUR/USD -0.0165 0.0031 -0.0141 0.0046 5.7683 0.011

(-4.13) (28.20) (-0.93) (7.60) (4.35)
USD/JPY 0.0117 0.0067 -0.0902 0.0259 4.8007 0.006

(0.83) (3.17) (-1.76) (5.13) (2.75)
EUR/GBP -0.0313 0.0030 -0.0187 0.0009 33.0713 0.012

(-6.49) (17.12) (-1.70) (2.13) (0.48)
GBP/USD -0.0136 0.0020 -0.0900 0.0081 0.1736 0.006

(-4.11) (13.84) (-0.41) (0.42) (0.36)

Volume

Po P i §o 01 Y c
EUR/USD 0.0134 0.0130 -0.0741 -0.0189 4.1527 10

(1.14) (7.23) (-2.87) (-5.27) (5.10)
USD/JPY -0.0098 0.0141 -0.0050 -0.0050 0.5887 18

(-1.30) (12.85) (-0.08) (-0.44) (0.29)
EUR/GBP -0.0068 0.0081 -0.0724 -0.0107 1.9924 2

(-0.43) (4.40) (-1.90) (-2.92) (3.73)
GBP/USD - -
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Table 3.9: Seasonality impact analysis
The model to be estimated is:

APt — a  +  Pi * Qt +  02 * ■ZJ' * Qt +  P3 *  Zf  *  Qt +  Et

where APt is price change within [f — 1,/]. Qj, is order flow which is defined as the net o f number o f buys and number of 

sells within [f — 1, t]. Z f  and Z f  are the unexpected and expected part o f market condition measuring variable (Z,)of interest 

(Volume is scaled down by 103). The model is estimated for 30 minute and 1 hour sampling frequencies. The last column 

is the /7-value o f F-test o f null hypothesis that p2 =  P3

Panel A: Sampling Freq=30 minute
Z  — Spread

C urrlD Pi '( P . ) P2 '(P 2 ) P3 '( P a ) /•-value
EUR/USD 0.0019 (10.44) 0.0009 (11.74) 0.0008 (11.79) > 0 .1 0
EUR/GBP 0.0010 (2.63) 0.0006 (5.42) 0.0008 (6.55) > 0 .2 5
GBP/USD 0.0008 (1.34) 0.0007 (4.23) 0.0009 (2.96) > 0 .2 5
USD/JPY 0.0133 (4.80) 0.0002 (6.35) 0.0000 -(0.24) > 0 .1 0

Z  =  Volume

C u rrlD P. ' ( P i ) P2 '(P 2 ) Pa '( P a ) p -value
EUR/USD 0.0061 (17.88) 0.0048 (5.58) -0.0175 -(7.77) < 0 .01
EUR/GBP 0.0061 (12.38) -0.0074 -(5.73) -0.0180 -(4.67) <0.01
GBP/USD 0.0032 (11.92) 0.0002 (0.23) -0.0052 -(2.75) < 0 .01
USD/JPY 0.0227 (3.63) -0.0171 -(0.33) -0.5529 -(1.53) > 0 .1 0

Z  =  Volatility

C urrlD Pi '( P . ) P2 '(P 2 ) Pa '( P a ) /7-value
EUR/USD 0.0004 (1.00) 0.0226 (5.47) 0.2317 (9.70) < 0 .01
EUR/GBP -0.0009 -(0.89) 0.0471 (3.60) 0.3049 (4.33) < 0 .01
GBP/USD -0.0002 -(0.18) -0.0004 -(0.03) 0.3037 (2.56) < 0 .0 5
USD/JPY 0.0101 (3.22) 0.0371 (4.52) 0.0656 (0.88) > 0 .1 0

Panel B: Sampling Freq=l hour
Z =  Spread

C urrlD P. ' ( P i ) P2 '(P 2 ) Pa '( P a ) /7-value
EUR/USD 0.0025 (12.07) 0.0006 (5.80) 0.0004 (6.51) > 0 .2 5
EUR/GBP 0.0013 (2.54) 0.0008 (4.20) 0.0006 (4.24) > 0 .2 5
GBP/USD -0.0002 -(0.22) 0.0008 (2.91) 0.0012 (2.73) > 0 .2 5
USD/JPY 0.0125 (5.94) 0.0002 (5.00) 0.0000 (0.51) > 0 .1 0

Z  — Volume

C u rrlD P. '( P . ) P2 '(P 2 ) Pa '( P a ) / ’-value
EUR/USD 0.0061 (13.64) 0.0013 (1.98) -0.0089 -(5.84) < 0 .01
EUR/GBP 0.0054 (8.47) -0.0036 -(3.62) -0.0080 -(3.17) < 0 .1 0
GBP/USD 0.0032 (8.01) -0.0015 -(2.41) -0.0031 -(2.21) > 0 .1 0
USD/JPY 0.0206 (4.38) -0.0279 -(0.77) -0.2901 -(1.50) > 0 .1 0

Z  — Volatility

C urrlD Pi ' ( P i ) P2 '(P 2 ) Pa '( P a ) P-value
EUR/USD 0.0001 (0.25) 0.0246 (4.39) 0.2145 (7.41) < 0 .01
EUR/GBP -0.0003 -(0.21) 0.0155 (0.82) 0.2275 (2.59) < 0 .0 5
GBP/USD -0.0017 -(1.06) 0.0419 (2.54) 0.4058 (2.44) < 0 .0 5
USD/JPY 0.0099 (2.02) 0.0277 (3.04) 0.0729 (0.66) > 0 .2 5

101



Table 3.10: Simultaneity analysis
The model to be estimated is:

A/>, = a + p, *0, + p2* Z?pread *Qt + Ps * Z™ume * Qt + P4 * ZPola,ili,y *Q'+£,

where APt is price change within [f — l,f]. Qp  is order flow defined as the net o f number o f buys and number o f sells 

within [ / - l , / ] .  zfpread,Z[o!ume and Z vt olatility are the average spread, total volume and volatility within [f — 1 ,t] respectively 

(Volume is scaled down by 103). The model is estimated for 30 minute and 1 hour sampling frequencies. The number 

reported in parentheses are f-value.

Panel A: Sampling Freq=30 minutes

P i P 2 P3 P4 R2
EUR/USD 0.0008 0.0008 0.0037 0.0093 0.4706

(3.46) (15.68) (4.71) (2.20)
EUR/GBP 0.0027 0.0005 -0.0079 0.0429 0.2638

(6.97) (5.11) -(6.32) (3.06)
GBP/USD 0.0010 0.0008 -0.0005 -0.0215 0.2565

(2.85) (5.22) -(0.68) -(1.55)
USD/JPY 0.0091 0.0002 -0.0318 0.0303 0.2900

(5.86) (5.46) -(0.66) (3.70)

Panel B: Sampling Freq=l hour

P i P2 P3 P4 R2
EUR/USD 0.0019 0.0005 0.0005 0.0200 0.4378

(6.00) (7.93) (0.87) (3.54)
EUR/GBP 0.0024 0.0005 -0.0032 0.0069 0.2181

(4.13) (4.16) -(3.35) (0.35)
GBP/USD 0.0013 0.0006 -0.0017 0.0446 0.1949

(2.23) (2.22) -(2.89) (2.57)
USD/JPY 0.0101 0.0002 -0.0290 0.0226 0.2655

(5.69) (4.17) -(0.80) (2.44)
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Table 3.11: Factor Cross-autocorrelation

where Vol, Std  and Sprd  are volume, volatility and spread respectively. For each o f the frequencies, first three lines are the correlations, the middle 
three lines are first order cross-autocorrelations and the bottom three lines are second order cross-autocorrelations.

Freq=30 mins
ED ES SD YD

Vol Sprd Std Vol Sprd Std Vol Sprd Std Vol Sprd Std
Vol 1 1 1 1

Sprd -0.48 1 -0.35 1 -0.32 1 -0.11 1
Std -0.05 0.32 1 0.02 0.28 1 0.08 0.23 1 0.03 0.16 1

Vol'.i 0.6 -0.4 -0.11 0.63 -0.28 -0.01 0.59 -0.21 0.05 0.4 -0.18 -0.02
Sprdt -1 -0.42 0.65 0.23 -0.31 0.58 0.18 -0.27 0.58 0.11 -0.11 0.26 0.03

Stdt-1 -0.07 0.22 0.13 -0.01 0.19 0.1 0.06 0.13 0.08 -0.02 0.02 0.03

Volt- 2 0.34 -0.25 -0.05 0.41 -0.13 -0.03 0.36 -0.09 0.06 0.21 -0.1 -0.02
Sprdf-2 -0.27 0.37 0.16 -0.2 0.37 0.14 -0.21 0.42 0.08 -0.11 0.12 0.04

Stdt—2 -0.07 0.16 0.09 -0.04 0.19 0.08 0.04 0.11 0.06 -0.04 0.02 0.04

Freq=l hr
ED ES SD YD

Vol Sprd Std Vol Sprd Std Vol Sprd Std Vol Sprd Std
Vol 1 1 1 1

Sprd -0.52 1 -0.46 1 -0.36 1 -0.18 1
Std -0.13 0.31 1 0.02 0.22 1 0.06 0.2 1 0.1 0.12 1

Volt- \ 0.51 -0.36 -0.11 0.54 -0.23 0.03 0.47 -0.12 0.04 0.47 -0.19 0
Sprdt -1 -0.34 0.36 0.17 -0.28 0.44 0.16 -0.27 0.51 0.09 -0.09 0.25 0.02

Stdt-1 -0.1 0.15 0.07 -0.02 0.21 0.1 0.03 0.13 0.05 -0.03 0.02 0.03

Volt- 2 0.06 -0.06 -0.01 0.18 0.08 0.12 0.13 0.11 0.09 0.24 -0.11 0.04
Sprdt- 2 0.01 0.03 0.05 -0.05 0.11 0.03 -0.1 0.26 0.08 -0.06 0.04 0.01

Stdt—2 -0.02 0.07 0.04 0.02 0.08 0.08 0.03 0.12 0.06 0 0.02 0.05



Figure 3.1: Function (3(Z,)) from recursive model (Zt is spread)
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The regression coefficients of the recursive regression model are drawn against market spread. Spreads are measured in 

basis points. The dotted line is the two standard deviation confidence bounds.

Figure 3.2: Function p (Zt ) from recursive model (Z, is volatility)

o

d

o

s
d

0 .007 0 .070 0 .134 0 .198 0 .262 0 .326

Euro-Dollar

d

d

o

sO
0 .009 0 .030 0.051 0 .072 0 .093 0.1

o
o

d

§
o

0.777

Dollar-Yen

d

o

s
o

0.005 0.020 0 .036 0.051 0 .066 0 .082

The regression coefficients of the recursive regression model are drawn against volatility. Volatility is computed as return 

standard deviation. The dotted line is the two standard deviation confidence bounds.
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Figure 3.3: Function (3(Z,) from recursive model (Zt is volume)
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The regression coefficients of the recursive regression model are drawn against volume. Volume is proxied by the total 

number of trades. The dotted line is the two standard deviation confidence bounds.

Figure 3.4: Evolution of (3 along spread in recursive model
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ps are drawn along the recursive regression process. Note: x-axis is deliberately labelled with the spread of the last 

observation in that regression rather than with the sequence number of regression. Spreads are measured in basis points. 

The dotted line is the two standard deviation confidence bcjiQ^.



Figure 3.5: Evolution of (3 along volatility in recursive model
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Ps are drawn along the recursive regression process. Note: x-axis is deliberately labelled with the volatility o f the last 

observation in that regression rather than with the sequence number o f regression. Volatility is computed as return standard 

deviation. The dotted line is the two standard deviation confidence bounds.

Figure 3.6: Evolution o f (3 along volume in recursive model
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Ps are drawn along the recursive regression process. Note: x-axis is deliberately labelled with the volume of the last 

observation in that regression rather than with the sequencj Q^nber of regression. Volume is proxied by the total number 

o f trades. The dotted line is the two standard deviation confidence bounds.



Figure 3.7: Shift of price impact of order flow with spread
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Fig. 14 is a graphic representation of LSTR model when transition variable Z, is spread. In this figure, Pi + 0 | * F (Z ,)  in 

model (6) is drawn against Zt with the estimated parameters P i, 0 i , y,c.

Figure 3.8: Shift o f price impact of order flow with volatility
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Fig. 15 is a graphic representation o f LSTR model when transition variable Zt is volatility. In this figure, Pi + 0 i * F (Z t ) in 

model (6) is drawn against Z, with the estimated parameters P i, 0 | ,y,c.
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Figure 3.9: Shift of price impact of order flow with volume
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Fig. 15 is a graphic representation o f LSTR model when transition variable Z, is volume. In this figure, Pi +  0i *F (Z ,)  in 

model (6) is drawn against Z, with the estimated parameters P i, 0 i ,y,c.
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Chapter 4 

Limit Order Execution Probability: 

Evidence from the London Stock 

Exchange

4.1 Introduction

Interest in limit order trading has grown rapidly in recent years as more and more 

stock exchanges are adopting automatic order-driven systems. In order-driven 

systems, such as Tokyo Stock Exchange, Paris Bourse or Hong Kong Stock Ex­

change, there is no designed market maker as intermediary o f trading. Supply and 

demand of liquidity is conducted by the natural buyers and sellers.

Comparing with market order, limit order has the benefit o f price improvement 

and no price uncertainty. However, the benefit does not come without cost: execu­

tion is not secured. Such implicit costs...associated with missed trading opportu­

nities... are significant relative to explicit costs and realized portfolio returns} In 

a study by Handa and Schwartz (1996), the authors experiment with NYSE trans­

1 Source: Financial Times, 23 July 2002, by Donald Keim and Ananth Madhavan
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action data and find that limit order strategy is profitable conditional on execution 

but non-execution limit order is inferior to market order. Since non-execution cost 

could be very high, investors trading with limit order need to evaluate the execu­

tion probability of their submission strategies and take this into account in forming 

the investment decisions.

This chapter analyzes how such probability can be affected by various fac­

tors and attempts to provide a mechanism to evaluate the execution probability of 

different order submission strategies. The issue is clearly important to the mar­

ket participants, especially to the trading desk of institutional investors to whom 

the trading cost is among the top concerns. It is also important from theoretical 

perspective because limit order placement has important impact on market liquid­

ity and spread dynamics. In the classic market microstructure models, informed 

traders are overwhelmingly assumed to use market orders to exploit their infor­

mation advantage. However, this prior is not necessarily true both in theory and 

reality. In theory, the optimal strategy of an informed investor doesn’t necessarily 

lead to the use of market order. Using a market order, an investor has to pay bid- 

ask spread and price impact cost and these cost can reduce the potential benefit of 

the private information. If using a limit order, the probability o f execution is less 

than one but transaction cost (including spread and negative price movement) is 

lower. Overall, the expected profit o f using limit order is not necessarily less than 

that o f using market order. When transaction cost is high and limit order execu­

tion probability is large enough, the informed investor can be better off by issuing 

limit order.2 There is experimental evidence showing that informed investors do 

not restrict themselves to market orders. In their experiment study, Bloomfield, 

O ’Hara and Saar (2002) find informed traders can use more limit orders than liq­

2When the execution probability is small, more market order will be used. The increasing 
usage o f market order will increase the execution probability o f limit order. In theory, there should 
be an equilibrium under which the expected profit is indifferent to the investors.
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uidity traders do in certain market conditions. Clearly, the execution probability 

is a key determinant on the choice of order type. A better understanding of how 

such probability is determined —  the objective of this study —  will enhance our 

knowledge of price discovery process in limit order trading systems.

In recent years, limit order trading has drawn increasing attention in market 

microstructure literature. Cohen, Maier, Schwartz and Whitcomb (1981), An­

gel (1994), Glosten (1994), kumar and Seppi (1992), Seppi (1997), Handa and 

Schwartz (1996), Parlour (1998) and Foucault (1999) develop equilibrium models 

of limit order book. Chung, Ness and Ness (1999) examine the impact of limit or­

der on the dynamics o f bid-ask spreads in NYSE. Biais, Hillion and Spatt (1995) 

and Ahn, Bae and Chan (2001) empirically investigate the order flow dynamics in 

Paris Bourse and Hong Kong Stock Exchange respectively. These studies imply 

that various factors can impact on limit order execution, however, none of them 

focuses on the limit order execution itself. Instead the attention is mainly on the 

choice between market order and limit order and how such choice impacts on 

market equilibrium.

Works on limit order execution are relatively few and most concentrate on 

time-to-execution. Foucault, Kadan and Kandel (2001) develop an equilibrium 

model for time-to-execution of limit order. Under some simplified assumptions3, 

the model predicts that time-to-execution depends on order aggressiveness and 

other market conditions. In another work, Lo, Mckinlay and Zhang (2002) com­

pare three different econometric models for the time-to-execution o f limit order 

and claim survival model is superior to other two models in fitting the data. Using 

limit orders via QuantEx o f ITG, they also find the time-to-execution is sensi­

tive to limit price and other explanatory variables. The current study focuses on 

the execution probability and can be seen as complementary study of the above

3 In this model, if  a trade submits a limit order, he/she must improve prevailing inside spread.
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papers.

Research in this chapter is also related to the microstructure literature on prof­

itability study of order submission strategies. Handa and Schwartz (1996) and 

Harris and Hasbrouck (1996) compare the profitability of different order submis­

sion strategies in NYSE. The performance in both paper is measured ex post, 

i.e. conditional on actual execution state of limit order. This chapter attempts to 

analyze how limit order execution probability is affected by various factors and 

evaluate such probability ex ante. Clearly this study can been seen as an extension 

o f this literature because it provides the potential for further study o f profitability 

o f order submission strategies in real time.

Using a sample o f FT30 stocks from the limit book system of the London 

Stock Exchange (LSE), we find three factors, price aggressiveness, spread and 

potential market pressure, have significant impact on limit order execution proba­

bility for all stocks. In particular, the more aggressive limit order the larger chance 

the order will get filled. For a given limit price, a wider bid-ask spread will reduce 

the execution probability. A limit order will have higher execution probability 

when market pressure from the opposite market is larger. Moreover, we also find 

liquidity has strong impact on limit order execution. Trading less liquid stock, a 

trader has to post a more aggressive limit price to get the same chance o f execution 

as trading liquid stocks.4 Impact o f volatility is positive but weak.

Contrary to the intuition, order size and the time of the day do not have strong 

impact on limit order execution as expected. For order size, we find a U-shape 

o f execution probability with middle-size order having the smallest execution 

chance. Many reasons could lead to such U-shape. For example, if large orders 

are pre-negotiated outside market, they will be easily executed. Since such infor­

mation is not available, we cannot test this hypothesis in this study. However, we

4This result is consistent with the finding in NYSE by Chung, Ness and Ness (1999) that 
liquidity provided by specialist is most valuable with less liquid stocks.
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do find that large orders usually are submitted more strategically. They cut spread 

aggressively when it is large. In this way they deviate themselves from the rest of 

limit orders to get a better execution chance.5

In evaluating the execution probability, we incorporating all factors analyzed 

in a probit model. We find the model is capable of capturing the major feature 

o f the relationship between limit order execution probability and its determinant 

factors. Since the factors are measured conditional on information available at 

the moment of order submission, the model can be used to evaluate the execution 

chance of various order submission strategies in real time.

The rest o f this chapter is organized as follows. The next section describes 

our empirical approach and defines hypotheses. Section 4.3 discusses market and 

data. Section 4.4 presents results on the impact of various factors. Section 4.5 

models the limit order execution probability. Section 4.6 discusses and concludes.

4.2 Analysis Design

4.2.1 Factor selection and hypothesis specification

For the present purpose, a limit order strategy is defined as the combination of 

order choice (including limit price and order size) and market conditions chosen 

to place the order. Market conditions per se cannot be controlled by investors but 

investors can time their trading in more favorable conditions. In the current study, 

we analyze a set of factors might have impacts on limit order execution probabili­

ties. The factors studied in this work can be roughly classified as theory-motivated 

and intuition-motivated factors. The former includes price aggressiveness, volatil­

ity and volume. The latter includes spread, order size, and potential market pres­

5 We also find large orders tend to be submitted when market pressure from other side o f market 
is large though this is only significant for sell orders.
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sure. In the next subsections we define each factor and define hypotheses.

A. Price aggressiveness and Bid-Ask Spread

Foucault et al. (2001) derive a dynamic model of order driven market populated 

with discretionary liquidity traders. Traders differ by their impatience which is 

modelled as waiting cost. In general, impatient trades use market order while pa­

tient traders are more likely to use limit order. Under equilibrium, the competition 

among liquidity providers will force them to submit more aggressive orders to 

reduce the waiting cost. The model implies that the more aggressive is the limit 

order, the larger is the execution probability.

Actually the price aggressiveness is first introduced in an empirical study by 

Harris and Hasbrouck (1996). Denote the price o f limit order, bid, ask and middle 

quotes prevailing at the time o f limit order submission as p l, qbld, qask, and qmld 

respectively. Price aggressiveness is defined as

L =  <
f o r  a buy order,

I t  , ( 4 1 )
g ~ f f  or a sell order.

L measures the extent to which a limit order betters the existing quotes of the 

same side. A limit buy (sell) order posted at the current best bid (ask) will have 

L = 0. L >  0 indicates that a limit order cuts the current spread and L < 0 indicates 

a limit order is away from the market best quote. 6 In the current research, L is 

expressed in basis point relative to the middle quote.

6Foucault, Kadan and Kandel (2001) use J  as price conservativeness measure. J  is defined as 
the distance between the limit price and market price. For buy order, J  =  q™* — p 1. For sell order, 
J  =  p l —qb,d. Foucault et al. (2001) claim that the more conservative the limit order the longer will 
be the execution time. However, it should be noted that, the two measures, L and J, are equivalent 
for a given bid-ask spread because L + J  — Spread.
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It should be noted that L is a relative measure of price aggressiveness. For a 

given bid-ask spread, the larger is L the more aggressive is the limit order. But 

if  spread is allowed to vary, as is the case when comparing the aggressiveness of 

orders submitted at different time when spread is unequal, this might not be true. 

The reason can be clearly seen in the Figure 4.1. In Panel A, spread for limit 

order (a) and (b) are the same. We say order (a) is more aggressive than order 

(b) since L o f order (a) is larger. In Panel B, however, even if  two orders has the 

same L-measure, we say order (a) is more aggressive than order (b) because it cut 

the larger proportion o f prevailing spread. Clearly, price aggressiveness measure 

L  is relative to spread. For a given L, a larger spread will be expected to reduce 

the execution probability o f limit order. The above considerations lead to the 

following two hypotheses:

Hypothesis 1: More aggressive limit order has larger execution probability 

fo r  a given spread.

Hypothesis 2: For the same aggressiveness, limit order has larger execution 

probability when market spread is small.

B. Volatility

Market volatility is a key factor determining liquidity dynamics in theoretical 

models. In Foucault’s (1999) model, high volatility is caused by in-flow o f in­

formation. In such circumstance, limit order traders will post their quotes more 

conservatively to compensate for the ‘adverse selection’ cost. This will make trad­

ing with market order more costly and investors will more likely use limit order 

rather than market order. Since more limit and less market orders are issued, the 

execution chance of limit order become smaller. The model predicts volatility has 

a negative relationship with limit order execution probability.

However, Handa and Schwartz (1996) argue that short term volatility is more
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likely caused by liquidity shock and can be seen as a profitable market condition 

for limit order trading. Thus volatility should have a positive relationship with 

limit order execution probability. However, it should also be noted that an increas­

ing volatility will attract more limit orders into the market. Therefore volatility 

might be beneficial to the limit orders already in the market but might not for 

the limit orders submitted after observing the high volatilities because more limit 

order and less market order can reduce the execution probability o f limit order.

From the implications of the models by Foucault (1999) and Handa and Schwartz 

(1996), we have the following null hypothesis regarding the relationship between 

volatility and limit order execution probability:

Hypothesis 3: Limit order has larger execution probability when volatility is 

high, other conditions equal.

In this study, we examine two volatility measures, Pre-volatility and Post­

volatility. Pre-volatility is measured over 30 minutes immediately before the sub­

mission of a limit order and post-volatility is measured over 30 minutes immedi­

ately after the submission of a limit order.7 I f  the high volatility can benefit the 

limit order already in the market, post-volatility will have a positive relation to the 

execution probability o f limit order. But if  the limit order is attracted to market 

after observing high pre-volatility, the impact o f pre-volatility might be negative.

C. Volume

It is believed that how actively a stock is traded will have impact on the execution 

chance of limit orders. In his famous paper, Demsetz (1968) argued that " The 

greater the frequency o f  transacting, the lower will be the cost o f  waiting in trad­

ing queue o f  a specified length.” (pp.41). The Demsetz’s model implies that high

7It should be noted that while Pre-volatility can be calculated but Post-volatility is not available 
at the time o f order submission. We examine both in this study to better understand how volatilities 
impact on limit order trading environment.
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trading volume will be associated with larger execution probability.

However, Foucault et al. (2001) have a different claim. They argue that when 

trading is sparse, the waiting cost will increase. The increased waiting cost will 

force the investor to cut the spread more aggressively and lead to a short waiting 

time. The model implies we might observe a higher execution chance when trad­

ing is sparse because investors post their limit orders more aggressively. Clearly 

two different models have different predictions regarding the relationship between 

trading volume and limit order execution probabilities. Thus the two model im­

plications can be examined by testing the following null hypothesis,

Hypothesis 4: Limit order has larger execution probability i f  trading volume 

is high.

D. O rder Size

Order size is one o f the variables investor can control when submitting a limit 

order. Intuition suggests that order size should have a negative impact on the order 

execution probability (specially when completed execution is considered). In their 

study on the limit orders submitted to SuperDot to NSYSE, Harris and Hasbrouck 

(1996) find a negative relationship between the order execution probability and 

the size.8 The discussion with market participants, however, indicates there is 

another possibility. When a investor issue a large order, he/she usually acts more 

strategically by either carefully choosing the market conditions or quoting limit 

price more aggressively. Such strategic behavior could lead to a higher execution 

probability for large orders. In this study, the size effect is investigated by testing 

the following hypothesis,

8 Harris and Hasbrouck adopted a stock-insensitive classification rule, defining orders with less 
than 200 shares as tiny orders, orders with more than 200 shares but less than 500 shares as small 
orders, orders with more than 500 but less than 1000 shares as middle orders and those with more 
than 1000 shares as large orders.
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Hypothesis 5: Limit order execution probability negatively correlated with 

order size.

To account for the characteristics o f different stocks, we apply a stock-sensitive 

division rule to classify orders into different size groups. The limit orders o f each 

stock are divided into four groups (tiny, small, middle and large) conditional on 

the characteristic o f the stock .9 By this way we can study execution probability 

o f each size group. The incremental effect o f order size is also examined in our 

probit model study in later part o f this chapter.

E. Potential M arket Pressure

The state o f limit order book is an important factor investors take into account 

when making their order placement decisions. 10 In the market microstructure lit­

erature, investors who have inside information always use market order to exploit 

their information advantage. Thus market order is informative and is modelled 

to be the driving force of price movements. However, if  transaction cost is high 

information trader might be better off by using limit order. This implies that limit 

order, like market order, can carry information about asset value and price move­

ments . 11 When a large number of limit orders are built on one side o f the order 

book, their information will predict opposite price movement and the limit orders 

on the other side will have larger chance of execution.

We use potential market pressure (PMP) to characterize the impact o f book 

state on the limit order execution. The potential market pressure is defined as the 

difference between market depth’ o f buy side and sell side while accounting for

9Normal Market Size (NMS) can be used as size classification criteria. After careful study o f  
each stock, we apply a finer classification criteria to account for the order distribution to avoid too 
few observations in any groups

10For example Parlour (1998) explicitly shows traders ‘look at both sides o f  market’ to deter­
mine the optimal order strategy.

11 Unlike market order, limit order hasn’t been modelled explicitly to transmit information in 
theory and the transmission mechanism is still not very clear.
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the distance between the orders and the best market quotes;

k c i7Pbuy  k c 7v^se//
PMP  =  ln [Y  ~ ^ —h--------] -  l n [ f ------- = p ---- — ] (4.2)

i 1 +  (qbid -  p]uy) /d t i 1 +  { p f  ~  q ask) M

where pt and Sizei are price and size of order i. di is the scaling factor (here di is 

the tick size applied). The PMP can be seen as a pre-cursor of ‘realized market 

pressure’ which is proxied by order flow  in market microstructure literature. The 

empirical microstructure literature (e.g. Chapter Two of this thesis) has shown 

order flow can explain the price movements because information is incorporated 

into the price through order flow. Even though limit orders on the book cannot af­

fect price directly because they are not true order flow, they can form the pressure 

on the market quotes which will eventually impacts on prices.

A positive PMP indicates more market pressure from buy side and will push 

the market quotes up while a negative PMP  indicates larger pressure from sell side 

and can press market quotes down. Since the potential market pressure can affect 

quote prices it could impact on actual price movements indirectly. If a positive 

PMP  forms upward pressure for price movement it will increase the execution 

probability of sell limit order and decrease the execution probability of buy limit 

order. This intuition can be formally examined by testing the following hypothe­

sis;

Hypothesis 6 : A positive (negative) PMP is positively correlated with sell 

(buy) limit order execution probability.
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4.2.2 Empirical modelling

Our aim is to study the relationship between the limit order execution probability 

and a vector o f explaining variables, x. Let

In the current context, the probability itself is not observable. In stead we only 

observe the response variable Y  which only takes value 0 or 1. This is typical 

set up for binary choice model. In this study, we choose a common probit model 

where F ( )  takes a form of normal cumulative distribution function, O(-), i.e.,

Using probit model (4.5), we can estimate the execution probability of a limit 

order strategy. Moreover, the simultaneous regression allows us to test the various 

hypotheses jointly. It is worth noting that the marginal effect o f factors is not 

straightforward (as in linear regression) because probit model is non-linear. The 

marginal impact o f explaining variable varies with x and is given by following 

formula

1 i f  the limit order is executed,

0  i f  the limit order is not executed.
(4.3)

then relationship can be expressed as;

P rob{Y =  l } = F ( p x )  and Prob{Y =  0} =  1 - F ( p 'x )  (4.4)

Usually function F(f)  can be any continuous function subject to F(-) E [0,1].

P rob{Y =  l} =  0 ( P x ) (4.5)

(4.6)
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4.3 Market and Data Description

4.3.1 Limit order trading in LSE

Prior to 1997, the London Stock Exchange was a pure dealership system. The 

major problems of the trading system are its pre- and post-trade opacity and over 

concentration of order flow. 12 To overcome these disadvantages, a limit order 

trading system, SETS, was introduced in October 1997. Since then, London stock 

market has become a hybrid market with a centralized limit order book system 

working in parallel with an off-book dealership market. 13 There are no forced 

interactions between either prices or quantities of book and off-book trades. The 

trades occurred in one system are not constrained in any way by market status of 

the other. Investors can choose to trade on any or both of the systems. Since the 

purpose o f this paper is to examine the limit order execution condition we will 

focus our discussion more on the order book system.

The SETS system is becoming more and more important and is described 

as the ‘main price formation mechanism’ by the exchange. Unlike the dealer­

ship market, which is featured with low transparency, 14 SETS is among the most 

transparent of all limit order books available in major equity markets because the 

complete book state is visible to the member firms and transactions are publicized 

immediately to all participants. This feature is valuable to current study because 

investors trading in the book system can form their order placement strategies con­

ditional on the rich information on book state and the transaction history easily.

12Roughly five major dealer firms handled more than two-thirds o f order flow in actively traded 
stocks. See Friederich and Payne (2001) for detailed discussion.)

13 In the dealership market, the market making is not a binding obligation. Dealers provide 
market liquidity voluntarily

,4There is no pre-trade transparency as quotes are requested/provided on a purely bilateral ba­
sis but post-trade transparency is high because dealers are requested to report the trade within 3 
minutes o f its occurrence. In fact, as more and more dealers are adopting the electronic trad­
ing/recording system, the trades are usually reported immediately after it occurs.
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The order book is a self execution system and no market maker is involved. 

There are two major types o f order investors can submit to the book: market order 

and limit order. 15 Liquidity is provided by limit orders. Trade occurs when two 

limit order prices cross or a market order is submitted to trade against the existing 

limit orders. There is no pre-specified price for market order and it is executed 

against the most competitive existing limit orders. Limit order must be submitted 

with a pre-specified limit price and after submission it will sit in the order book 

and wait for execution against incoming orders. 16 The price priority and time 

priority are strictly maintained in SETS.

The book trading system in LSE starts with an opening auction from 07:50 to a 

random time between 08:00:00 and 08:00:30.17 During the auction time, member 

firms are permitted to submit or delete limit orders and market orders. At the 

end o f the auction period, the order book is frozen temporarily and an auction is 

called. The limit order and market will be executed at the auction price subject to 

price and time priorities. The remaining limit orders will sit on the book waiting 

for later execution. The price from the opening auction is the open price for the 

day. Once the auction matching process for a particular stock is complete, the 

continuous trading in that stock can begin.

The continuous trading is the main part o f trading process in SETS and it lasts 

eight and half hours. During this period, investors submit market orders and limit 

orders to the book and transactions occur once a price cross is generated. Once 

order is submitted, it cannot be modified but can be deleted and re-submitted.

15 In total there are five types o f order in SETS system: market, limit, Execution and Eliminate, 
At Best and Fill or Kill order. The last three types o f  order only consist a tiny proportion o f total 
orders and share very similar feature as market order in regard to the immediacy o f execution. The 
minimum order size is 1 share and no limit on maximum order size.

16A limit order can be executed immediately if  it generates price cross, i.e. the limit price is at 
least as good as the opposite best quote. The tick size is 0.25p, 0.50p and l.OOp for stocks with 
price below 500p, between 500p and lOOOp and over lOOOp respectively.

17The random time is due to the computer processing time for different stocks
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The re-submitted order is treated as a new order. At 16:30, a closing auction pe­

riod begins and it ends at a random time between 16:35:00 and 16:35:30. After 

the auction matching process, the limit trading system is officially closed . 18 The 

closing price for a stock is either the auction price or, in the event of no transac­

tions from auction matching, the Volume Weighted Average Price (“VWAP”) of 

all transactions from 16:20 to 16:30.

4.3.2 Data description

The data used in this study is tick data generated by SETS book system covering 

FT30 stocks. The sample covers randomly selected five working days in June. 19 

For the purpose of this study, we exclude orders submitted and executed during 

the auction periods. The daily trading volume (number o f shares), number of 

trades and names of the FT30 stocks are presented in Table 4.1. Clearly either by 

daily number o f shares or by daily number trades, there is wide variation of how 

actively a stock is traded. In this research, we use daily volume as a proxy for 

liquidity of each stock to study volume impact on limit order execution.

Table 4.2 provide a sample o f the original data used in this research. A major 

advantage o f this data set is that it provides a complete image of whole book his­

tory. From this data, we can recover following information o f each order entered 

into the limit order trading system:

•  time of order entry

• whole book state at the time o f order submission

• order type, direction, price (for limit order), and order size

18The dealership market has no formal closing time and trading activities could continue there.
19The five days are the 13th, 19th, 21th, 22th and 25th o f June 2001 and cover all week days. 

We also experiment with another randomly chosen five days for robust check: 1th, 7th, 13th, 19th 
and 25th. The results are similar to what reported here.
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•  the time o f each subsequent event happened on the order, including (partial) 

execution, deletion or expiration

•  prices and quantities of each transaction relevant to the order

Clearly the above information is critical for the current study because we can 

examine the market conditions at the time an order is submitted and track the life 

path of the order.

If a limit order is submitted with a price better than the opposite quote, it 

will generate a price cross and be executed immediately.20  Because such orders 

behave like a market order, they are classified as market order in current study. 

The characteristics of different order type of each stock are summarized in Table

4.3. In general, the number of buy orders are slightly larger than the number o f 

sell orders. Among the total orders, roughly 70 percent are limit orders. The 

proportion o f limit buy order and limit sell order are generally balanced. The 

average execution probability of limit order is less than 50 percent.

4.3.3 Intraday pattern

Figure 4.2 plots the intraday pattern of order flow and limit order behavior o f the 

SETS system. The upper panel is intraday dynamic o f the order flow composition. 

It is clear that at the beginning and lunch time o f a trading day, the total number 

of orders and the proportion o f market order are relatively small. As US market 

starts to trade, more orders are attracted into the market. In the last 30 minutes, 

the proportion o f market order increases a lot.

The lower panel plots the overall limit order execution probabilities and the 

price aggressiveness (in basis points). The most striking feature is the high cor­

relation between the execution probability and the price aggressiveness of limit

20Such limit orders are called marketable limit order in the literature.
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orders. Another interesting point is that investors’ behavior has a clear intraday 

pattern. At the beginning of a trading day, investors are generally more conser­

vative (they post their limit orders more conservatively by choosing a smaller 

L) because information uncertainty in the market could be high after overnight. 

As trading continues, more information is incorporated into the market and the 

investors become more confident. When market becomes more informative in­

vestors post their limit orders less conservatively and remain relatively stable for 

the most o f the time. However, in the last 30 minutes, market becomes very ag­

gressive, investors post the limit prices aggressively and the proportion o f market 

order increases.

4.4 The Impact of Factors on Limit Order Execu­

tion Probability

As we have seen from the intraday pattern figure, investors’ behaviour in the first 

and the last 30 minutes is quite different from other time. In this study, we exclude 

the new submissions o f these two sub-periods from our analysis in order to focus 

on the continuous trading part and mitigate the impacts o f the opening and closing 

auctions.

4.4.1 Volume Effect

To study the volume effect, we split the FT30 stocks equally into five groups 

according to how actively a stock is traded. Then we compare the execution prob­

ability o f limit orders in the low, middle and high volume groups.21 Since the 

evidence from intraday pattern study suggests that the execution probability of

2’The low, middle and high volume groups are group 1, 3 and 5 respectively.
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limit order could be highly correlated with the price aggressiveness, we also cal­

culate the price aggressiveness (L-measure) of limit orders in different volume 

groups to account for this factor.

The main results are presented in Table 4.4. The first row o f the table indicates 

there is a positive relationship between the limit order execution probability and 

how actively a stock is traded. The limit order execution probability o f low volume 

group is smaller than that of the middle volume group which in turn is smaller 

than that of the largest volume group. The mean difference test indicates that such 

relationship is statistically significant22. The execution probability o f limit orders 

o f the least liquid and the most liquid stock groups are plotted in the upper panel 

o f Figure 4.3.

The second row is the average price aggressiveness o f limit orders of each 

volume groups. Surprisingly, we find a negative relationship between the stock 

volume and the limit order price aggressiveness. Limit orders trading on the most 

liquid stocks are the most conservative ones but such orders still enjoy a reason­

able execution probability. This result suggests that trading on less liquid secu­

rities, investors have to quote their prices more aggressively to get a reasonable 

execution chance. The price aggressiveness (in basis points) of limit orders on the 

least liquid and most liquid stock groups are plotted in the lower panel o f Figure

4.3.

In general, the evidence regarding the relationship between limit order execu­

tion probability and the stock volume is consistent with the prediction of Demsetz 

(1968). However, our results on price aggressiveness and volume do support the 

claim of Foucault et al. (2001) that investors trading on less liquid stocks will 

behave more aggressively.

22We use the paired r-test along the every 15 minutes interval to have smaller standard deviation.
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4.4.2 Price aggressiveness and Spread

To study the impact of price aggressiveness and spread, we first calculate the 

price aggressiveness, L, of each limit order (by formula (4.1)) and the spread, S, 

at the time immediately before the order is submitted. Then for each stock within 

each day, we split the limit orders into five groups according to its L-measure. 

We group orders by their aggressiveness within each day because we believe that 

price aggressiveness is more relevant within a trading day than across days. For 

the similar reason, the limit orders are also split into five groups according to the 

spread at the time of submission23. After the grouping, each limit order is tagged 

with two labels Li (price aggressiveness group i) and Sj (spread group j) .  Finally, 

we calculate the execution probabilities o f each L-groups and 5-groups for whole 

sample days. Table 4.5 reports the major results 24

The upper panel is the limit order execution probabilities o f different price 

aggressiveness groups. The limit orders labelled with L\ and L 5 are those most 

conservative and the most aggressive order groups respectively. The first row is the 

overall execution probabilities of the different L-groups. Not surprisingly, there is 

a monotonic relationship of the execution probability and the price aggressiveness. 

The more aggressive (when L is larger), the larger the execution probability. This 

relationship is quite persistent when volume is controlled as shown in the next 5 

rows of Panel A.

The lower panel is the limit order execution probabilities of different market 

spread conditions (5-groups). The first row is the overall unconditional execution 

probabilities o f the limit orders under different spread conditions. Even though 

we find that the execution probability declines when spreads become very large 

(group 5 4  and S$), the general relationship between limit order execution proba­

23 Spread grouping is independent o f price aggressiveness grouping.
24We also studied price aggressiveness and spread impact on each o f  the 30 stocks. Since the 

patterns are similar to those reported here we skip them to save space.
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bility and spread is not clear because investors can increase their order execution 

chance by cutting spread aggressively when it is large. To disentangle these two 

factors, we examine those orders that are submitted with the same price as the 

best market quote (which is labelled with L 3 ). When the price aggressiveness is 

controlled, a clear pattern emerges: the execution probability declines with spread 

monotonically. This result is consistent with the model prediction of Foucault, 

Kadan and Kandel (2001) that the distance between limit price and opposite mar­

ket quote is negatively correlated with order execution probability.

4.4.3 Size effect

Following Harris and Hasbrouck (1996), we split the limit orders of each stock 

into four groups (tiny, small, middle and large) according to their order size. But 

we apply a stock-sensitive division criteria because order size is stock relevant in 

our sample. The limit order execution probability of each size group is calculated 

and reported in the first row of Table 4.6. Contrary to the intuition, we find a U- 

shape rather than a downward slope relationship between the execution probability 

and the order size: the middle size group has the smallest execution probability.

Many reasons could lead to this U-shape pattern. An obvious candidate could 

be that large orders tend to be more aggressive. To check this hypothesis, we 

re-calculate the execution probability of each size group conditional on the price 

aggressiveness, Li. The result is reported in the lower panel of Table 4.6. Com­

paring with upper panel, we find that the U-shape is more flattened in many cases 

in the lower panel (for L3 , L 4  and L 5 groups) than in upper panel. This implies 

that price aggressiveness is part of the reason but not all because the U-shape is 

persistent when price aggressiveness is controlled.

Another potential explanation could be that investors with larger orders tend 

to act more strategically. When spreads are large, they can cut the spreads ag­
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gressively and deviate themselves away from the rest o f limit orders in the book. 

To test this hypothesis, we calculate the price aggressiveness of each size groups 

conditional on spread. The results are reported in Table 4.7 and they confirms our 

conjecture. In all cases, L value of large orders is larger than that o f middle orders. 

Specially when spreads are large. For example, in £ 4  and S5 spread groups, large 

orders have larger L and are much more aggressive than middle orders (also more 

aggressive than small orders).

In general, we find a U-shape relationship between the execution probability 

and the limit order size in our sample. This result is significantly different from 

that documented by Harris and Hasbrouck (1996) who found a negative corre­

lation between the limit order size and the its execution probability. Our results 

indicate that the U-shape relationship found in this chapter is at least partially 

attributed to the strategic behaviour of the investors trading with larger orders.

4.4.4 Potential market pressure

In this study, we use formula (4.2) to calculate PMP  for each limit order. We 

recovered from our data set the whole book state at any moment before a new 

order enters the book system and calculated the PMP  for every limit order at the 

moment immediately before it is submitted. Like price aggressiveness, PMP  is 

relevant more relevant within a trading day than acrose different trading days. We 

split the limit orders into three groups (Low, Middle and High) according to their 

associated PMP  within each trading day for each stock. If, as argued in previous 

sections, limit order can also convey information, a positive PM P , which repre­

sents a market pressure from the buy side, will predict a upwards price movement 

and have a negative (positive) impact on the execution probabilities o f buy (sell) 

orders. Similarly a negative PMP, which represents a market pressure from the 

sell side, will predict a downwards price movement and have a positive (negative)
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impact on the execution probabilities of buy (sell) orders. To test this hypothesis, 

we evaluate the effects of PMP  on the limit buy and sell orders separately.

The average execution probability of all limit orders o f each PMP  group is 

calculated and reported in Table 4.8. The first row presents the unconditional 

execution probabilities of each PMP  group. Clearly we find that PMP  has impact 

on limit order execution probability. For buy orders, the larger the PM P , the 

smaller is the execution probability. For sell orders, the larger the PMP , the larger 

the execution probability. The mean difference test indicates that the potential 

market pressure derived from book state has a significant impact on the limit order 

execution probability. As it is shown in the next five rows, the pattern is consistent 

after control o f volume groups.

A significant and persistent effect of PM P  on the limit order execution is con­

sistent with the hypothesis that limit order, like order flow, also conveys informa­

tion. It should be noted, however, that information contained in PMP  is informa­

tion that hasn’t been but is about to be incorporated into the prices. Thus, unlike 

order flow , which contemporaneously correlates with price, PM P  can be used to 

predict future price changes. Ours results also confirm the theoretical argument 

that the book state has important implications for investors to form their order 

submission strategies (e.g. see Parlour (1998)).

4.4.5 Volatility

To study the effect o f volatility on the limit order execution probability, we cal­

culated two types o f volatility: pre-volatility and post-volatility. The former is 

measured within 30 minutes immediately before an order is submitted. The latter 

is measured within 30 minutes immediately after an order is submitted. For each 

stock within each trading day, we split the limit orders into three groups (Low,
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Middle and High) according to their pre-volatility (and post-volatility) . 25

The execution probability o f each volatility group is calculated and reported 

in Panel A (for post-volatility) and Panel B (for the pre-volatility) of Table 4.9. 

For the post-volatility, we find the evidence that volatility has a positive impact on 

the limit order execution probabilities (either volume is controlled or not). High 

volatilities do increase the execution chance of limit orders. This result rejects 

with the model prediction of Foucault (1999) and support the supports the hy­

pothesis of Handa and Schwarts (1996) that volatility could be caused by liquidity 

reasons and is a favorable trading condition for limit orders.

When volatility is measured before the limit order submission (Panel B), its 

impact is much smaller and is insignificant in most cases. This result is consistent 

with the implication o f Handa and Schwarts (1996) model and suggests that there 

is some equilibrium dynamics o f order submission. However, it should be noted 

that even though volatility has been a major determinant of limit order execution 

probability in both models, the evidence found in this study suggests that the 

impact volatility is weak and economically insignificant, especially when it is 

compared with price aggressiveness, spreads and PMP.

4.5 Estimation of execution probability

4.5.1 Estimating the execution probability

In this section, we model the limit order execution probability with probit model 

(4.5) and evaluate the impacts of the various factors in the last section simulta­

neously. With the aim to evaluate the effects of these factors on the limit order 

submissions, we choose to measure all factors ex ante rather than ex post. More

25 We experimented with volatilities generated by both market-wide trading and limit order trad­
ing and we found that the volatility generated from the limit order system has a stronger impact 
on the limit order execution probability.
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specifically, we estimate model (4.5) with the following specification,

x-P =  a +  P iSpreadi +  QiU +  P3PM P, +  ^V o la tility  t +  pstmlDi +  faSizei (4.7)

where i is the order index. tmlDi =  2 ,3 ,..., 16 is time zone within which order i 

is submitted, 26  Sizet is the order size, Spreadi is the percentage spread of middle 

quote (in basis points). Li is the price aggressiveness defined by (4.1), PMPi 

is the potential market pressure defined by (4.2). Spreadi, Li and PMPi are all 

measured at the time immediately before a limit order is submitted. Volatility,• is 

the return variance of measured over the 30 minutes immediately before an order 

is submitted. Since our focus in this part is to estimate the model for each stock, 

volume is not included in the specification because it is not characteristics o f an 

order but a stock.

As we have discussed in previous sections, potential market pressure has an 

opposite effect on buy and sell orders. We estimate the probit model for buy 

and sell orders separately. From our factor analysis, we would expect that pi is 

negative, P2 and P4  are positive for both buy and sell orders and P3 is negative for 

buy orders and positive for sell orders. We use variable tmlDi to test whether time 

o f the day is an important factor because o f the time priority rule. If  the length 

o f the remaining time is important, we would expect a negative P5 . Theoretically 

speaking, size itself should have non-positive effect, but if the large orders behave 

strategically, we might not be able to observe the negative coefficient of P6 in this 

setup.

Using maximum likelihood method we estimate the probit model (4.7) for buy 

and sell orders for each stock and present the main results in Table 4.10 for buy

26The whole trading time from 8:00 to 16:30 is divided into 17 time zones with each zone has 
30 minutes. Since the first and the last 30 minutes are excluded, tmID  varies from 2 to 16. For 
example, if  an order is submitted between 12:30 and 13:00, tmID=10.
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orders and Table 4.11 for sell orders. As seen in formula (4.6), the marginal effect 

o f explaining variables is (t>(Px)p, the value of <})(•) for ‘an average observation’ is 

calculated and reported as cj)(x) in the first column in both tables. The last columns 

o f Table 4.10 and 4.11 are Likelihood Ratio Indices. The Likelihood Ratio (LR) 

test (column under LR-stat) highly rejected the null hypothesis that all coefficients 

except intercept are zero.

The most striking feature of Table 4.10 and 4.11 is the persistence and signif­

icance o f the three factors we identified from our previous analysis: price aggres­

siveness, spread and and PMP. Under this setup where all factors are evaluated 

simultaneously, we find that spread has a significant negative impact on the limit 

order execution probability after accounting for the factor of price aggressiveness. 

The impact o f the PMP  is also of paramount. A negative (positive) P3 for buy 

(sell) order implies that it is much harder to have a limit buy (sell) order executed 

when there is large market pressure from from the buy (sell) side, holding other 

market conditions equal.

For most o f the cases, volatility has an positive impact on the limit order exe­

cution probability. However, compared to price aggressiveness, spreads and PMP, 

volatility has a much less significant effect. Only less than half o f the cases have 

positive significant regression coefficients. It seems that time factor has stronger 

impact on sell orders than on buy orders. However, for both types o f order more 

than half the cases either have a ‘wrong’ sign or are insignificant. Similarly, there 

are only a few cases where order size has a negative significant regression coeffi­

cient. These results implies that neither time o f submission nor order size has an 

important impact on the limit order execution probability in our sample.
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4.5.2 Predict the execution probability: An experiment

Using the probit model, we can evaluate the execution probability o f different 

order submission strategies. To see the implication of the model, we randomly 

choose four stocks (BAE system, Barclays, HSBC Holdings and Shell) and eval­

uate the execution probability of various submission strategies in the following 

example. Consider the two orders:

Order I Order 2

When the PMP  changes, the above two orders form two set o f infinite number of 

submission strategies. The estimated execution probabilities are plotted in Figure 

4.4. Note: in all graphs Order 1 is plotted with dotted line and Order 2 is plotted 

with solid line.

In all graphs we find that Order 1 has large execution probability than order 2 

(because it is more aggressive). The execution chance of the buy orders decreases 

with PMP  while that o f that sell orders increases with PMP. For example, in 

the case o f BARC buy order in Figure 4.4, when PM P  varies from -1.5 to 1.5, 

the execution probability of order 1 decreases from 30% to less than 15%. For a 

given market condition, 1 0  basis points of return improvement (moving from order 

1 to order 2) can reduce the execution probability dramatically. The decrease in 

execution probability, however, is not equal under different market conditions. 

When PM P  is large, the decrease is less severe than when PMP  is small. For 

example, when PMP  =  1.5, the difference of execution probability between order

L — —5 basis points 

average order size

L = —15 basis points 

average order size 

Spread = 1 5  basis points 

PMP  G [—1.5, 1.5]

Buy, or Sell

Spread = 1 5  basis points

PMP e  [-1 .5 , 1.5] 

Buy, or Sell
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1 and order 2 is only 10%, but it will increase to 20% when PM P  declines to -1.5. 

This result implies that the ‘effort’ (move from order 2 to order 1) is most valued 

when liquidity from the same side is most wanted.

4.6 Discussion and Conclusion

Execution probability o f limit order is a critical determinant of order submission 

strategy which in turn has important impacts on price discovery process. In clas­

sic market microstructure literature, informed traders are uniformly modelled to 

use market order and demand liquidity while ‘noise traders’ provide liquidity and 

prevent market from breaking down. In this setup, market order, which is believed 

to carry information, is the driver o f price discovery process. However, as argued 

in section 1.4, informed trader can be perfect rational to use limit order in real­

ity where transaction cost is not negligible. In equilibrium, the expected profit 

o f using different types of order should be equal, i.e. %m = %i in equation ( 1 .2 ). 

Clearly the expected profit o f using a limit order (tt/) depends on the probability 

of execution of the order (II), which in turn is a function o f other microstructure 

factors.

Theory and intuition suggest that a number o f factors can affect the limit order 

execution. This study empirically examines the impacts o f these factors on the 

execution probability of limit orders. The factors investigated in this research in­

clude Price Aggressiveness, Spread, Volatility, Volume, Potential Market Pressure 

(PMP) and Order Size.

Using a sample of limit order segment o f the London Stock Exchange, we find 

that price aggressiveness, bid-ask spread and potential market pressure (PMP) 

have the strongest impacts on the limit order execution probability for a given 

stock. Trading on a less liquid stock, investors have to post their orders more
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aggressively than trading on a more liquid stock. Volatility can increase limit 

order execution probability but its impact is weak. Contrary to the intuition, size 

itself doesn’t have significant effect on limit order execution. In fact, we find a U- 

shape pattern of size effect in our sample. Such U-shape relationship between size 

and execution probability is at least partially attributed to the strategic behaviour 

of investors with large orders.

We evaluate the execution probability of different order submission strategies 

with a probit model which is capable of capturing the features regarding the re­

lationship between limit order execution probability and its major determinants. 

The model provides a potential ground for future studies on the comparison of 

profitability o f different order submission strategies.

The results from this study have important implications for investors to imple­

ment efficient trading strategies, especially for institutional investors who more 

and more depend on automatic trading algorithm. From theoretical microstruc­

ture perspective, this study provides clear evidence that a number of factors can 

impact on limit order execution probability and, therefore, can impact on order 

choice, liquidity dynamics and price formation process. For example, PMP  ef­

fect indicates that limit order book state has predictive power for the direction of 

future price movements and can be viewed as an in-direct evidence for the hy­

pothesis (which has been raised in the introduction section 1.4) that limit order, 

like market order, can convey information. Modelling the information incorpora­

tion mechanism and price formation process with limit order trading is outside the 

research agenda of this study, but the evidence presented in this chapter does sug­

gest that future research in this direction, that we haven’t seen so far, can enrich 

the market microstructure literature.

136



Table 4.1: Characteristics of FT30 Stocks

The table gives basic information on the components o f FT30 index. NMS is ‘Normal Market 
Size’ is a measure o f the average size (in number o f shares) o f an institutional trade in the stock 
concerned calculated by the London Stock Exchange. The last three columns are based on a 
sample o f randomly chosen five working days in June 2001.,

Mnem Name NMS Daily Volume(shrs) Daily Trades
AL. Alliance&Leicester 50000 746104 300

ANL Abbey National 1 0 0 0 0 0 1678846 533
ARM Arm Holdings 1 0 0 0 0 0 5999286 730
AZN AstraZeneca 75000 2298534 852

BA. BAE Systems 2 0 0 0 0 0 4409697 471
BARC Barclays 1 0 0 0 0 0 1765250 919

BG. BG Group 150000 7967388 522
BP. BP PLC 2 0 0 0 0 0 18933259 1208

BT.A BT Group 2 0 0 0 0 0 22980423 1299
CGNU CGNU PLC (AVIVA) 1 0 0 0 0 0 1919170 740

CTM ColtTelecom 150000 2984904 715
CW. Cable & Wireless 2 0 0 0 0 0 8900083 912

DGE Diageo 2 0 0 0 0 0 4103698 740
GSK GlaxoSmithKline 1 0 0 0 0 0 7523137 1396
HFX Halifax 75000 1509498 502

HSBA HSBCHoldings 2 0 0 0 0 0 6731891 901
ISYS Invensys 2 0 0 0 0 0 5686549 445
KGF Kingfisher 1 0 0 0 0 0 3242541 496

LLOY Lloyds-TSB 2 0 0 0 0 0 4817047 8 6 6

LOG Logica 1 0 0 0 0 0 2159368 745
MKS Marks & Spencer 2 0 0 0 0 0 4017295 447
PRU Prudential 150000 3004526 678

PSON Pearson 75000 1838736 614
RBOS Royal Bank o f Scot. 1 0 0 0 0 0 2315341 800

RTR Reuters Group 150000 2770629 870
SHEL Shell Transport (Reg) 2 0 0 0 0 0 17590314 1008
SPW Scottish Power 1 0 0 0 0 0 3083384 562

TSCO Tesco 2 0 0 0 0 0 9505741 722
ULVR Unilever 2 0 0 0 0 0 6346998 778

VOD Vodafone Group 2 0 0 0 0 0 123248459 1973
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Table 4.2: Sample o f SETs Data (AL. 1 June 2001)

The codes under column Event represent different types o f event. N: new order entry, D: deletion of order, P: partial execution, M: complete 

execution. Order Code is the unique id o f each order, Time is the event time stamp. ‘LO’, ‘AA’ in column Type represent limit order and market 
order respectively. ‘S’ and ‘B ’ in column Dir represent sell and buy order respectively. The number under Price are limit order price or transaction 

price, depending on the Event code. TSize and Size are the transaction size and remaining size o f the order. TransCode is the id o f each transaction. 
Counterpart is the counterpart order code o f the current transaction.

Event Order Code Time Type Dir Price TSize Size TransCode Counterpart
N 901B54AI01 09:14:12 LO S 761 0 13100
N 601C6VER01 09:15:15 LO B 757.5 0 1500
N A018KLFQ01 09:16:39 LO S 759 0 4370
N 501LRB0B01 09:17:15 LO B 757 0 1500
N 501LSANS01 09:27:25 AA B 0 0 5000
P 501LSANS01 09:27:25 AA B 0 1081 3919 A018KLMI01 501LSANT01
D 301IOG3J01 09:47:48 LO B 758.5 3480 0

N A018JJ3I01 09:51:25 LO B 758.5 0 3480
D A018K06R01 10:01:33 LO B 763 1 0 0 0 0

N 101N37E801 10:05:16 LO S 763.5 0 1 0 0 0

M A018KOEX01 10:07:32 LO B 764 13100 0 301IOGEL01 A018KOEY01
N 901B55B401 1 0 :1 0 :2 0 LO S 766.5 0 1 0 0 0

N 601C6XQQ01 10:16:49 LO B 764.5 0 8916
N 701AEOOA01 10:16:57 LO B 764.5 0 780
D 601C6YM301 10:20:16 LO S 769 7000 0

M C016Q5QZ01 10:20:19 LO B 765 2 0 0 0 0 201HJBOH01 201HJBOI01
N B017AAHT01 10:24:16 LO S 767 0 3000
M 501LSEUL01 10:31:47 LO S 767 3940 0 701AER2001 701AER2101
N 101N37VF01 10:31:48 LO S 770 0 1970
N 101N393T01 10:44:19 LO B 765 0 1500
N 201HJECH01 10:51:39 LO S 767.5 0 1610
N 501LSGHD01 10:53:43 LO S 765 0 3915
N C016Q6J701 10:58:59 LO B 766 0 6000
N 701AESJR01 10:59:18 LO S 769.5 0 1640
M F018XBV101 11:18:18 LO B 768 387 0 E0194BJ501 F018XBV201
M C016Q80A01 11:24:47 LO B 768.5 621 0 501LSGKA01 C016Q80B01
P 301ION7U01 11:39:14 AA B 0 15000 1 0 0 0 601C6YI901 301ION7Z01
N 501LSKEX01 11:39:39 LO S 770.5 0 2510



Table 4.3: Summary statistics of limit orders of FT30 stocks

Total is the total number o f limit and market (including marketable limit) orders. Buy and Limit 
are the proportion o f buy and limit to total orders respectively. Limit Buy is the proportion o f buy 
limit orders to total limit orders. Exe. is the execution probabilities o f limit orders. The last two 

columns are the execution probabilities o f limit buy and sell orders respectively. All statistics are 
daily averages computed based on a sample o f randomly chosen five working days in June 2001.

Mnem Total Buy (%) Limit (%) Limit Buy (%) Exe. Exe. (Buy) Exe. (sell)
AL. 4282 51.03 70.9 53.36 22.13 20.43 24.08

ANL 7293 55.61 73.12 58.45 27.62 28.04 27.03
ARM 7683 54 63.89 53.23 41.92 38.19 46.17
AZN 14740 52.36 78.73 51.71 21.98 23.51 20.34

BA. 5156 53.53 66.19 56.08 38.85 34.8 44.03
BARC 11579 59.06 71.97 65.32 30.58 28.86 33.81

BG. 5458 47.6 64.18 49.5 40.94 41.06 40.81
BP. 11133 54.24 63.45 56.17 52.32 52.72 51.81

BT.A 13659 51.89 66.59 54.9 40.27 43.53 36.3
CGNU 8471 54.5 66.62 58.67 34.34 34.22 34.52

CTM 8801 54.27 69.26 55.84 33.27 33.9 32.47
CW. 10053 54.92 66.38 54.47 36.63 37.8 35.22

DGE 9733 45.64 72.05 42.64 27.18 34.88 21.45
GSK 15091 52.02 66.73 55.63 39.28 40.95 37.18
HFX 5835 54.81 65.36 63.29 30.34 32.93 25.86

HSBA 9536 53.69 66.17 53.91 38.81 38.89 38.72
ISYS 4054 52.76 56.27 52.83 41.43 39.25 43.87
KGF 5350 49.44 64.79 46.83 38.29 36.29 40.04

LLOY 10243 53.31 65.97 54.25 29.91 29.43 30.48
LOG 8919 45.73 68.72 42.68 38.64 34.14 41.99
MKS 4778 54.02 65.24 56.4 36.8 37.26 36.2
PRU 7113 55.27 65.16 57.3 39.55 39.57 39.51

PSON 5981 54.72 58.87 53.54 41.89 43.93 39.55
RBOS 10091 58.25 71.19 58.74 32.41 28.72 37.65

RTR 10147 50.73 67.14 49.71 33.14 32.33 33.95
SHEL 22197 57.5 83.45 58.59 15.66 16.19 14.9

SPW 6056 56.61 63.72 60.51 36.9 37.17 36.48
TSCO 6723 54.48 61.49 57.5 43.57 43.25 44
ULVR 14095 36.13 79.83 31.97 17.06 30.8 10.61

VOD 15965 58.37 58.92 59.96 54.48 56.42 51.57
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Table 4.4: Volume and Execution Probability

The FT30 stocks are equally divided into five groups (each group has 6  stocks) by their daily 
average trading volume. The first and the second rows under Low, Middle and High are the average 
execution probabilities and the price aggressiveness (defined by formula (4.1)) o f limit orders of 
each volume groups respectively. LMM (Low minus Middle) and MMH (Middle minus High) are 
r-stat o f the paired mean difference tests (paired by every fifteen minutes interval from 8:30 to 

16:00). ab ,c indicate 10%, 5% and 1% significance levels.

Low Middle High LMM MMH
Execution Probability 

Price Aggressiveness (L-measure)
31.46
-4.97

33.17
-11.93

35.23
-2 1 .2

— 1.72c 
6.91a

-2 .0 5 b
9.27*

Table 4.5: Price aggressiveness and bid-ask spread

The price aggressiveness is defined by formula (4.1). The orders o f each stock are divided into 
five groups by their aggressiveness within each trading day {L\ to L$ with L\ is the least aggressive 
group. Note that orders in L$ group are defined to have L =  0.). The execution probabilities of 
each group (across stocks and trading days) are computed and reported in the first row of Panel A. 
The rest 5 rows o f Panel A report the execution probabilities o f each group controlled by trading 
volume group. In Panel B, the limit orders are grouped by their spreads (measured at the time 
o f order entry) in a similar way and the execution probabilities are calculated for each spread 
group (Si represents the smallest spread group). The first and second rows o f Panel B reports the 
execution probabilities o f each spread group for all orders and orders in L$ group respectively.

Panel A. Price Aggressiveness and Exe.Prob.
L\ Li h U Ls

All Orders 8 13 43 56 57

VolGrpl 7 12 39 48 51
VolGrp2 8 12 36 51 53
VolGrp3 7 11 41 57 59
VolGrp4 9 13 44 60 59
VolGrp5 10 15 50 63 6 6

Panel B. Spread and Exe.Prob.
S\ s 2 s 3 s 4 5s

All Orders 36.66 37.85 37.37 35.46 31.19
Li 54.41 48.97 42.28 33.76 24.85
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Table 4.6: Execution Probability o f Different Size Groups

Tiny orders on average have 200 shares or less. The remaining orders o f each stock are equally 
divided into three groups: small, middle and large. The limit order execution probabilities o f each 
size group are computed (across stocks) and are reported in the first row. The rest rows report the 
probabilities o f each size group controlled for price aggressiveness o f orders. L\ and Ls represent 
the least and the most aggressive groups respectively.

Tiny Small Middle Large
ALL 46.80 35.52 29.99 42.95

L\ 1 1 .1 0 7.60 6.61 14.20
Li 21.17 11.64 10.24 22.18
Li 50.46 42.36 39.57 47.93
U 64.28 56.26 52.90 56.52
Ls 65.70 56.03 56.22 58.63

Table 4.7: Price Aggressiveness o f Different size Groups

For each stock, its limit orders are ranked in in two dimensions simultaneously: size and the 
spreads. Orders are divided into tiny, small, middle and large groups by their size. Orders within 
each trading day are equally re-divided into five groups by their market spreads condition (mea­
sured at the time o f order entry). In this way, all limit orders o f each stock are split by a size-spread 
matrix. This table reports the price aggressiveness o f each size-spread groups averaged across 
stocks.

Spread Tiny Small Middle Large
-5.38 -6.87 -11.77 -11.38

s 2 -2.69 -4.82 -9.52 -6.54
s 3 -0 .2 2 -3.15 -6.9 -4.7
s 4 3.06 -1 .6 6 -4.85 -1.58
5s 5.82 0.95 -0.96 4.05

141



Table 4.8: PMP impacts and Execution Probability

The PMP (Potential Market Pressure) is first calculated for each limit order. Then the limit orders 
o f each stock are equally divided into Low, Middle and High PMP groups within each trading 
day. The execution probabilities o f limit buy (sell) orders o f each PMP group (across stocks and 
trading days) are computed and reported in the first row o f the left (right) panels o f the table. LMH 
(Low minus High) is the execution probabilities difference between low and High PMP groups, 
f-stat is based on the mean difference test o f Low and High PMP groups. The remaining rows are 
computed in the same way after controlling for trading volume group.

BUY Order SELL Order
Low Middle High LMH t-stat Low Middle High LMH t-stat

Overall 41.5 36.2 32.4 9.0 22.18 31.4 34.5 37.8 -6.4 -14.54

VolGrpl 38.6 32.6 27.2 11.4 12.04 27.7 32.7 38.0 -10.3 -9.01
VolGrp2 35.7 30.1 28.2 7.5 8.93 29.9 32.6 35.9 -6 .0 -6.84
VolGrp3 44.6 35.1 30.1 14.5 13.37 33.2 37.1 39.9 -6.7 -5.69
VolGrp4 44.7 41.2 37.0 7.8 7.89 28.4 31.2 34.4 -5.9 -6.57
VolGrp5 44.1 40.8 37.5 6.7 8.61 36.9 38.9 41.3 -4.3 -4.73
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Table 4.9: Volatility and Execution Probability

Market volatility is computed as sum o f squared return. The pre-volatility and post-volatility are 
measured over 30 minutes immediate before/after the order is submitted. For each stock within 
each trading day, the limit orders are equally divided into Low, Middle and High groups by their 
associated pre-volatility (and post-volatility). The execution probabilities o f each volatility group 
are calculated and reported in the first rows o f Panel A (post-volatility) and Panel B (pre-volatility). 
The probabilities in the remaining rows are similarly computed after controlling for trading volume 
groups. LMH (Low minus High) and f-stat are the difference o f the execution probability between 
the Low and High volatility groups and the /-stats o f the mean difference test.

Panel A. Post-volatility 
Low Middle High LMH t-stat

ALL 35.0 35.7 36.6 - 1.6 -5.47
VolGrpl 31.8 33.4 33.2 - 1.6 -2 .0 0
VolGrp2 31.1 31.4 33.8 -0 .2 -4.34
VolGrp3 35.2 36.6 37.9 -1.3 -3.27
VolGrp4 34.7 36.4 36.7 - 1.6 -2.95
VolGrp5 40.4 39.7 40.5 0 .6 -0.19

Panel B. Pre-Volatility 
Low Middle High LMH t-stat

ALL 35.5 36.2 35.7 -0 .2 -0.76
VolGrpl 31.9 33.2 33.3 -1.4 -1.93
VolGrp2 31.4 33.2 31.7 -0.3 -0.51
VolGrp3 36.9 36.7 36.0 0.9 1 .12
VolGrp4 35.5 35.8 36.5 - 1.0 -1.47
VolGrp5 40.3 40.5 39.8 0.5 0 .8 8
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Table 4.10: Estimation the Execution Probability for Buy Limit Order
The model estimated is (4.5) where

P x =  a  +  $\Spread  +  faL +  foPM P +  ^ V o la tility  +  fctm lD  +  foSize

L and PM P  are price aggressiveness and potential market pressure defined by formula (4.1) and
(4.2) and measured at the time o f order entry. Volatility is computed as the sum of squared 
returns and measured over 30 minutes immediate before the order is submitted. tmID  is ordered 
number from 2  to 16 for time periods from 08:30 to 16:00. The column headed <J)(x P) is scaling 
coefficients o f marginal effect for an ‘average order’. LR-stats is based the Likelihood Ratio test 
of the null that all coefficients (except intercept) are zero. LRI is the likelihood ratio index defined 
by Greene [1993] (pp.891).

Mnem <j>(x'p) Pi P2 03 04 05 06 LR-stats LRI
AL. 0.243 -0 .0 1 ° 0.04“ -0.18“ -0.17* -0.04“ 1.74* 183 0.136

ANL 0.345 -0 .0 2 “ 0.04“ -0 .2 2 “ 0 .10c 0 .0 1 c 1.06c 432 0 .2 0 1

ARM 0.385 -0 .0 1 “ 0 .0 2 “ -0 .01 0.08* -0 .0 1 1.82“ 246 0.113
AZN 0.230 -0.03“ 0.07“ -0.14“ 0.18“ -0 .0 1 “ -0.44 1123 0.226

BA. 0.328 -0.03“ 0.07“ -0.28“ 0.36“ 0 .0 0 -0.08 389 0.238
BARC 0.308 -0.04“ 0.08“ -0.17“ 0.30“ o © -2.60“ 887 0.190

BG. 0.388 1 o © A 0.05“ -0.14“ -0.19“ 0 .0 2 “ -0.29* 2 0 2 0.141
BP. 0.398 -0 .0 1 “ 0.04“ -0 .2 2 “ 0.40“ 0 .0 1 “ 0 .11 336 0 .1 0 0

BT.A 0.394 -0 .0 2 “ 0.04“ -0 .10“ 0 .2 1 “ 0 .0 2 “ 0 .0 0 505 0 .1 2 0

CGNU 0.358 -0 .0 2 “ 0.04“ -0.24“ 0.03 0 .0 0 1.15* 374 0.126
CTM 0.372 0 .0 0 “ 0 .0 1 “ -0 .0 2 0 .0 1 “ -0.03“ 1.24“ 104 0.037
CW. 0.380 -0 .0 1 “ 0 .0 2 “ -0 .10“ 0.07“ -0 .0 1 c 0.29* 258 0.086

DGE 0.383 -0.03“ 0.06“ -0.17“ 0.45“ 0 .0 0 0.56* 321 0.141
GSK 0.386 -0 .0 2 “ 0.06“ -0.16“ 0.37“ 0 .0 1 “ -0.53“ 589 0 .1 2 1

HFX 0.345 -0 .0 2 “ 0.05“ -0.18“ 0 .1 2 0 .0 0 -1.37* 345 0.168
HSBA 0.382 -0.03“ 0.06“ -0.15“ 0.14 0 .0 2 “ 0.16 425 0.153

ISYS 0.382

<3O©1 0.03“ -0.33“ -0.13“ 0 .01 0.50“ 201 0 .2 0 0
KGF 0.376 -0 .0 1 “ 0.03“ -0.18“ -0.03 -0 .0 1 1 .10“ 152 0.113

LLOY 0.293 -0 .0 2 “ 0.07“ -0.24“ 0 .11 -0 .0 1 “ 0.59* 738 0.240
LOG 0.360 -0 .0 1 “ 0.03“ -0.19“ -0 .01 0 .0 0 1.15* 246 0.115
MKS 0.381 -0 .0 2 “ 0.04“ -0.31“ 0.07* 0 .0 1 “ 0.16 215 0.142
PRU 0.379 -0 .0 2 “ 0.06“ -0.19“ -0.08 0 .0 2 “ -0.07 416 0.180

PSON 0.391 -0 .0 2 “ 0.03“ -0.19“ 0 .1 0 0 .01 1 .10“ 236 0.145
RBOS 0.318 -0 .0 “ 2 0.06“ -0 .10“ -0.16“ 0 .0 0 -0.57 553 0.151

RTR 0.367 -0 .0 1 “ 0.03“ -0.09“ 0 .10* -0 .0 1 “ 1.08“ 215 0.074
SHEL 0.066 -0.03“ 0.07“ -0.17“ -0 .2 1 * 0 .0 2 “ 0.19“ 2943 0.409
SPW 0.363 -0 .0 2 “ 0.04“ -0 .2 1 “ -0.13“ 0 .0 2 “ 0.91“ 398 0.199

TSCO 0.393 -0 .0 1 “ 0.05“ -0.28“ -0 .2 0 0 .0 1 0.16C 244 0 .1 2 1
ULVR 0.362 -0.03“ 0.05“ -0 .2 0 “ 0.04 0 .0 1 “ 0.87“ 465 0.179

VOD 0.392 0 .0 0 0 .0 2 “ -0.13“ 0.07* 0 .0 1 “ 0 .0 2 * 237 0.052
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Table 4.11: Estimation the Execution Probability for Sell Limit Order
The model estimated is (4.5) where

P x  =  a  +  Pi Spread  +  P2L 4- P3 PMP +  P4 Volatility +  P stmID  +  P6 Size

L and PM P  are price aggressiveness and potential market pressure defined by formula (4.1) and
(4.2) and measured at the time o f order entry. Volatility is computed as the sum o f squared 
returns and measured over 30 minutes immediate before the order is submitted. tmID  is ordered 
number from 2  to 16 for time periods from 08:30 to 16:00. The column headed <|)(x P) is scaling 
coefficients o f marginal effect for an ‘average order’. LK-stats is based the Likelihood Ratio test 
o f the null that all coefficients (except intercept) are zero. LRI is the likelihood ratio index defined 
by Greene [1993] (pp.891).

Mnem < K * P ) P i P 2 P4 P5 P6 ZJ?-stats LRI
AL. 0.280 -0 .0 2 a 0.04a 0.26° 0 .01 -0 .0 2 ° 3.75a 243 0 .2 0 0

ANL 0.287 -0 .0 2 ° 0.04° 0.32° 0.05 0 .0 0 -0.43 414 0 .2 2 1

ARM 0.397 -0 .0 1 a 0 .0 2 ° 0.13a 0 .0 0 0 .0 0 1.46a 193 0 .1 0 2

AZN 0.183 -0 .0 2 ° 0.07° 0.1  T 0.26° -0 .0 2 ° 1.37a 1307 0.264
BA. 0.396 -0 .0 1 ° 0.04° 0.14° 0.28* 0 .0 0 -0.25 130 0 .1 0 2

BARC 0.367 -0 .0 2 ° 0.04° 0.24a 0.19 -0 .0 2 a 5.03° 270 0.114
BG. 0.387 -0 .0 1 a 0.03a 0.09* 0 .0 2 -0 .0 2 a 0.45° 139 0.092
BP. 0.399 -0 .0 1 a 0.05a 0.05 0.63° 0 .0 1 * -0.30° 303 0.116

BT.A 0.356 -0 .0 2 ° 0.04a 0.06* 0.05 -0 .0 1 c 0.28a 604 0.180
CGNU 0.370 -0 .0 1 ° 0.04a 0.16a 0.07c -0 .0 1 * 0 .6 6 229 0.114

CTM 0.365 -0 .0  l a 0 .0 1 a 0 .01 0 .0 0 O O & 0.93* 126 0.058
CW. 0.372 1 O O h—* O 0.03a 0.15a 0 .0 2 1 O O Ci 0 .2 2 * 273 0.107

DGE 0.271 -0 .0 2 ° 0.06a 0.17a 0.13 -0 .0 1 a 0.96a 682 0.257
GSK 0.373 -0 .0 1 a 0.04a 0 .12a 0.03 0 .0 0 -0.18 362 0.096
HFX 0.289 -0 .0 2 a 0.04a 0.06 0.09 -0.03a 1 .0 1 * 215 0.181

HSBA 0.373 -0 .0 1 * 0.05a 0.23a 0.14 1 O O -0 .2 1 341 0.142
ISYS 0.397 -0 .0 1 a 0.03a 0 .2 0 a -0.06 0 .0 0 0.54° 243 0.273
KGF 0.379 -0 .0 2 a 0.03a 0 .11* 0.13a 0 .0 0 1.35a 191 0 .1 2 2

LLOY 0.351 -0 .0 2 ° 0.07a 0 .2 1 a -0.09 0 .0 2 a 0.91° 639 0.290
LOG 0.391

OO1 0 .0 2 a 0 .0 2 0.06“ -0 .0 2 a 5.00a 263 0.092
MKS 0.359

OO1 0.03a 0.43a 0 .10a -0 .0 2 ° 1.09a 234 0.199
PRU 0.380 -0 .0 2 a 0.04a 0 .2 2 a -0.14 0 .0 1 a 0.95* 278 0.161

PSON 0.381 I O O t—1 a 0.03a -0.04 0.16* 0 .0 0 -0 .01 175 0.123
RBOS 0.384 -0 .0 2 ° 0.04° 0.14a 0.30a 0 .0 0 1.18 306 0.127

RTR 0.367 -0 .0 1 a 0.03° 0.08a 0.07 -0 .0 2 a 0 .6 8 c 194 0.066
SHEL 0 .1 2 1 -0 .0 2 a 0.07a 0.18a 0 .1 2 -0 .0 1 * -0 .0 2 1497 0.345

SPW 0.361 -0 .0 2 a 0.05a 0.05 0.04 0 .01 1 .10“ 257 0.192
TSCO 0.394 -0 .0 2 a 0.04a 0 .2 2 a 0.55° 0 .0 0 0.37° 184 0.123
ULVR 0.031 -0.03a 0.08a 0.25a 0.36° -0 .0 2 ° 0.52a 1658 0.310

VOD 0.397 0 .0 0 0 .0 2 a 0.09 0 .2 1 a -0 .0 1 -0.03* 241 0.082

145



Figure 4.1: L-measure and price aggressiveness

In Panel A, limit order (a) and (b) face the same market spreads. Order (a) has larger L and is 
therefore more aggressive than order (b). In Panel B, limit order (a) and (b) have the same price 
aggressiveness measure L but face different market spreads. Order (a) is more aggressive than 
order (b).
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Figure 4.2: Intraday pattern of limit orders

Panel A is the number of total and limit orders (computed in every 15 minutes) of the FT30 stocks 
sumbitted to the SETS system in the LSE. Panel B plots the average execution probabilities and 
price aggressiveness of the limit orders (computed in every 15 minutes).
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Figure 4.3: Volume Effect

The FT30 stocks are equally divided into five groups by their daily average trading volume. Panel 
A and B are the execution probabilities and price aggressiveness of the limit orders in the lowest 
and highest volume groups respectively.
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Figure 4.4: Predict Execution Probability: An Experiment

First type of orders for both sell and buy have L=-5 basis points and the second type of orders for 
sell and buy have L=-15 basis points. All orders take the average size of limit orders traded on 
Barclays, BAE, HSBC and Shell respectively. The PMP changes from -1.5 to 1.5. All orders are 
submitted between 12:30 to 13:00 (tmID=10).
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